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Preface
INTRODUCTION

This book was developed from classroom notes prepared in connection with junior–senior under-
graduate courses in mechanical design, machine design, mechanical engineering design, and engi-
neering design and analysis. The scope of this book is wider than any other book on the subject. 
In addition to its applicability to mechanical engineering, and to some extent, aerospace, agricul-
tural, and nuclear engineering, and applied engineering mechanics curricula, I have endeavored to 
make this book useful to practicing engineers as well. This book offers a simple, comprehensive, 
and methodical presentation of the fundamental concepts and principles in the design and analysis 
of machine components and basic structural members. This coverage presumes knowledge of the 
mechanics of materials and material properties. However, topics that are particularly significant to 
understanding the subject are reviewed as they are taken up. Special effort has been made to present 
a book that is as self-explanatory as possible, thereby reducing the work of the instructor.

The presentation of the material in this book strikes a balance between the theory necessary to 
gain insight into mechanics and the design methods. I, therefore, attempt to stress those aspects of 
theory and application that prepare a student for more advanced study or professional practice in 
design. Above all, I have made an effort to provide a visual interpretation of equations and present 
the material in a form useful to a diverse audience. The analysis presented should facilitate the use 
of computers and programmable calculators. The commonality of the analytical methods needed 
to design a wide variety of elements and the use of computer-aided engineering as an approach to 
design are emphasized.

Mechanical Engineering Design provides unlimited opportunities for the use of computer graph-
ics. Computer solutions are usually preferred because the evaluation of design changes and “what-if” 
analyses require only a few keystrokes. Hence, many examples, case studies, and problems in this book 
are discussed with the aid of a computer. Generally, solid modeling serves as a design tool that can be 
used to create finite element (FE) models for analysis and dynamic simulation. Instructors may use a 
simple PC-based FE program to give students exposure to the method applied to stress concentration 
and axisymmetrically loaded and plane stress problems. The website for this book (see Optional Media 
Supplements, page xxii) allows the user to treat problems more realistically and demonstrates the ele-
ments of good computational practice. This book is independent of any software package.

Traditional analysis in design, based on the methods of mechanics of materials, is given full 
treatment. In some instances, the methods of the applied theory of elasticity are employed. The role 
of the theory of elasticity in this book is threefold: it places limitations on the application of the 
mechanics of materials theory; it is used as the basis of FE formulation; and it provides exact solu-
tions when configurations of loading and component shape are simple. Plates and basic structural 
members are discussed to enable the reader to solve real-life problems and understand interactive 
case studies. Website addresses of component and equipment manufacturers and open-ended web 
problems are given in many chapters to provide the reader access to additional information on those 
topics. Also presented is finite element analysis (FEA) in computer-aided design. The foregoing 
unified methods of analysis give the reader the opportunity to expand his or her ability to perform 
the design process in a more realistic setting. This book attempts to fill what I believe to be a void 
in the world of textbooks on mechanical design and machine design. 

This book is divided into three sections. The basics of loading, stress, strain, materials,  deflection, 
stiffness, and stability are treated first. Then fracture mechanics, failure criteria, fatigue phenomena, 
and surface damage of components are dealt with. These are followed by applications to machine 
and miscellaneous mechanical and structural components. All the sections attempt to provide an 
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integrated approach that links together a variety of topics by means of case studies. Some chapters 
and sections in this book are also carefully integrated through cross-referencing. Throughout this 
book, most case studies provide numerous component projects. They present different aspects of 
the same design or analysis problem in successive chapters. Case studies in the preliminary design 
of two machines are taken up in the last chapter. 

Attention is given to the presentation of the fundamentals and necessary empirical information 
required to formulate design problems. Important principles and applications are illustrated with 
numerical examples, and a broad range of practical problems are provided to be solved by students. 
This book offers numerous worked-out examples and case studies, aspects of which are presented in 
several sections of this book; many problem sets, most of which are drawn from engineering prac-
tice; and a multitude of formulas and tabulations from which design calculations can be made. Most 
problems can be readily modified for in-class tests. Answers to Selected Problems and References 
(identified in square brackets) are given at the end of this book.

A sign convention consistent with vector mechanics is used throughout for loads, internal forces 
(with the exception of the shear in beams), and stresses. This convention has been carefully chosen to 
conform to that used in most classical mechanics of materials, elasticity, and engineering design texts, 
as well as to that most often employed in the numerical analysis of complex machines and structures. 
Both the international system of units (SI) and the US customary system of units are introduced; how-
ever, all examples and problems in this book are provided using SI units.

TEXT ARRANGEMENT

A glance at the table of contents shows the topics covered and the way in which they are organized. 
Because of the extensive subdivision into a variety of topics and the use of alternative design and 
analysis methods, this book should provide flexibility in the choice of assignments to cover courses 
of varying length and content. A discussion of the design process and an overview of the material 
included in this book are given in Sections 1.1 through 1.4. Most chapters are substantially self-con-
tained. Hence, the order of presentation can be smoothly altered to meet an instructor’s preference. 
It is suggested, however, that Chapters 1 and 2 be studied first. The sections of this book marked 
with an asterisk (*) deal with special or advanced topics. These are optional for a basic course in 
design and can be skipped without disturbing the continuity of this book.

This book attempts to provide synthesis and analysis that cut through the clutter and save the 
reader’s time. Every effort has been made to eliminate errors. I hope I have maintained a clarity of 
presentation, as much simplicity as the subject permits, unpretentious depth, an effort to encourage 
intuitive understanding, and a shunning of the irrelevant. In this context, emphasis is placed on the 
use of fundamentals to build students’ understanding and ability to solve more complex problems 
throughout.

Features

The following overview highlights key features of this innovative machine design book.

Large Variety of Interesting and Engaging Worked Examples and Homework Problems 
Providing fresh, practically based problem content, the text offers 680 homework problems, 185 
worked examples, and 14 case studies.

Consistent Problem-Solving Approach
To provide students a consistent framework for organizing their work, worked examples and case 
studies use a standard problem-solving format:

 1. Problem statement (given).
 2. Find.
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 3. Assumptions.
 4. Solution.
 5. Comments.

Unique Case Studies
Fourteen text cases provide additional applications of the use of design processes. Two major case 
studies—the crane with winch study and the high-speed cutting machine study—concern system 
design, allowing students to see how the stress and displacement of any one member may be invari-
ably affected by the related parts. These also add to the skill sets they need as practicing engineers. 
The cases are interesting and relevant with special emphasis on industry uses, material selection, 
safety considerations, and cost factors.

Three Aspects of Solid Mechanics Emphasized
Equilibrium, material behavior, and geometry of deformation. This book reinforces the importance 
of these basic principles of analysis.

Strong Visual Approach
This book includes about 540 figures and 35 photographs, many with multiple parts, to aid students’ 
comprehension of the concepts. All regular figures include explanatory captions.

Introduction
The author provides solid pedagogical tools and objectives for each chapter, including an excellent 
summary at the beginning.

Additional Features
Free-body diagrams, review of key stress analysis concepts, material properties and applications, 
rational design procedure, role of analysis, and FEA in design.

this edition’s Promise

Text Accuracy
The author, a proofreader, and a production editor checked all final pages for accuracy.

Solution Accuracy
Fully worked-out solutions written and class-tested by the author. An accuracy checker indepen-
dently checked all final solutions.

Reliability
Over the last three decades, Ansel C. Ugural has written best-selling books on advanced mechanics 
of materials, elasticity, mechanics of materials, beams, plates and shells, mechanical design, and 
mechanical engineering design.

Time-Saving Support Material
Available on the companion site at http: //www .phys icalp roper tieso fmate rials .com/ book/ ?isbn =9781 
43986 6511. 

meeting aBet Criteria

This book addresses the following ABET criteria:

 1. An ability to apply knowledge of mathematics, science, and engineering.
 2. 
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 3. An ability to design a system, a component, or a process to meet desired needs within 
realistic constraints such as economic, environmental, social, political, ethical, health and 
safety, manufacturability, and sustainability.

 4. An ability to identify, formulate, and solve engineering problems.
 5. An understanding of professional and ethical responsibilities.
 6. An ability to use the techniques, skills, and modern engineering tools necessary for engi-

neering practice.

SUPPLEMENTS

This book is accompanied by a comprehensive Instructor’s Solutions Manual. Written and class 
tested by the author, it features complete solutions to all problems in the text. Answers to Selected 
Problems are given at the end of this book. The password-protected Instructor’s Solutions Manual 
is available for adopters through the publisher. 

Optional Material is also available from the CRC Website https://www.routledge.com/
Mechanical-Engineering-Design/Ugural/p/book/9781032170046. This book, however, is indepen-
dent of any software package.
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Symbols
See Sections 11.2, 11.4, 11.9, 11.11, 12.3, 12.5, 12.6, 12.8, and 12.9 for some gearing symbols.

ROMAN LETTERS

A  Amplitude ratio, area, coefficient, cross-sectional area
Ae  Effective area of clamped parts, projected area
Af  Final cross-sectional area
Ao  Original cross-sectional area
At  Tensile stress area, tensile stress area of the thread
a  Acceleration, crack depth, distance, radius, radius of the contact area of two spheres
B  Coefficient
b  Distance, width of beam, band, or belt; radius
C   Basic dynamic load rating, bolted-joint constant, centroid, constant, heat coefficient, 

specific heat, spring index transfer
Cc  Limiting value of column slenderness ratio
Cf  Surface finish factor
Cr  Reliability factor, contact ratio
Cs  Basic static load rating, size factor
c  Distance from neutral axis to the extreme fiber, radial clearance, center distance
D  Diameter, mean coil diameter, plate flexural rigidity [Et3/12(1 − v2)]
D  Diameter, distance, pitch diameter, wire diameter
davg  Average diameter
dc  Collar (or bearing) diameter
dm  Mean diameter
dp  Pitch diameter
dr  Root diameter
E  Modulus of elasticity
Eb  Modulus of elasticity for the bolt
Ek  Kinetic energy
Ep  Modulus of elasticity for clamped parts, potential energy
e  Dilatation, distance, eccentricity, efficiency
F  Force, tension
Fa  Axial force, actuating force
Fb  Bolt axial force
Fc  Centrifugal force
Fd  Dynamic load
Fi  Initial tensile force or preload
Fn  Normal force
Fp  Clamping force for the parts, proof load
Fr  Radial force
Ft  Tangential force
Fu  Ultimate force
f  Coefficient of friction, frequency
fc  Collar (or bearing) coefficient of friction
fn  Natural frequency
G  Modulus of rigidity
g  Acceleration due to gravity
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H  Time rate of heat dissipation, power
HB  Brinell hardness number (Bhn)
HV  Vickers hardness number
h  Cone height, distance, section depth, height of fall, weld size, film thickness
hf  Final length, free length
h0  Minimum film thickness
hs  Solid height
I  Moment of inertia
Ie  Equivalent moment of inertia of the spring coil
J  Polar moment of inertia, factor
K  Bulk modulus of elasticity, constant, impact factor, stress intensity factor, system stiffness
Kc  Fracture toughness
Kf  Fatigue stress-concentration factor
Kr  Life adjustment factor
Ks  Service factor, shock factor, direct shear factor for the helical spring
Kt  Theoretical or geometric stress concentration factor
Kw  Wahl factor
k  Buckling load factor for the plate, constant, element stiffness, spring index or stiffness
kb  Stiffness for the bolt
kp  Stiffness for the clamped parts
L  Grip, length, lead
Le  Equivalent length of the column
Lf  Final length
L0  Original length
L5  Rating life for reliability greater than 90%
L10  Rating life
l  Direction cosine, length
M  Moment
Ma  Alternating moment
Mf  Moment of friction forces
Mm  Mean moment
Mn  Moment of normal forces
m  Direction cosine, mass, module, mass
N  Normal force, number of friction planes, number of teeth, fatigue life or cycles to failure
Na  Number of active spring coils
Ncr  Critical load of the plate
Nt  Total number of spring coils
Nθ  Hoop force
Nϕ  Meridional force
n   Constant, direction cosine, factor of safety, modular ratio, number, number of threads, 

rotational speed
ncr  Critical rotational speed
P   Force, concentrated load, axial load, equivalent radial load for a roller bearing, radial load 

per unit projected area
Pa  Alternating load
Pall  Allowable load
Pcr  Critical load of the column or helical spring
Pm  Mean load
p  Pitch, pressure, probability
pall  Allowable pressure
pi  Internal pressure
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pmax  Maximum pressure
pmin  Minimum pressure
po  Outside or external pressure
p0  Maximum contact pressure
p(x)  Probability or frequency function
Q  First moment of area, imaginary force, volume, flow rate
Qs  Side leakage rate
q  Notch sensitivity factor, shear flow
R  Radius, reaction force, reliability, stress ratio
Rb  Rockwell hardness in B scale
Rc  Rockwell hardness in C scale
r  Aspect ratio of the plate, radial distance, radius, radius of gyration
ravg  Average radius
ri  Inner radius
ro  Outer radius
S   Section modulus, Saybolt viscometer measurement in seconds, Sommerfeld number, 

strength
Se  Endurance limit of mechanical part

′Se  Endurance limit of specimen
Ses  Endurance limit in shear
Sf  Fracture strength
Sn  Endurance strength of mechanical part

′Sn   Endurance strength of specimen
Sp  Proof strength, proportional limit strength
Su  Ultimate strength in tension
Suc  Ultimate strength in compression
Sus  Ultimate strength in shear
Sy  Yield strength in tension
Sys  Yield strength in shear
s  Distance, sample standard deviation
T  Temperature, tension, torque
Ta  Alternating torque
Td  Torque to lower the load
Tf  Friction torque
Tm  Mean torque
To  Torque of overhauling
Tt  Transition temperature
Tu  Torque to lift the load
T  Temperature, distance, thickness, time
ta  Temperature of surrounding air
to  Average oil film temperature
U  Strain energy, journal surface velocity
u0  Strain energy density
Uod  Distortional strain energy density
Uov  Dilatational strain energy density
Ur  Modulus of resilience
Ut  Modulus of toughness
U*  Complementary energy

*Uo  Complementary energy density
u  Radial displacement, fluid flow velocity
V  Linear velocity, a rotational factor, shear force, volume

ISTUDY

www.konkur.in

Telegram: @uni_k



xxx Symbols

Vs  Sliding velocity
υ  Displacement, linear velocity
W  Work, load, weight
w  Distance, unit load, deflection, displacement
X  A radial factor
y  Lewis form factor based on diametral pitch or module, a thrust factor
y  Distance from the neutral axis, Lewis form factor based on circular pitch, quantity
y   Distance locating the neutral axis
z  Number of standard deviations

GREEK LETTERS

α   Angle, angular acceleration, coefficient, coefficient of thermal expansion, cone angle, form 
factor for shear, thread angle

αn  Thread angle measured in the normal plane
β  Angle, coefficient, half-included angle of the V belt
γ   Included angle of the disk clutch or brake, pitch angle of the sprocket, shear strain, weight 

per unit volume; yxy, yyz, and yxz are shear strains in the xy, yz, and xz planes
γmax  Maximum shear strain
∆  Gap, material parameter in computing contact stress
δ  Deflection, displacement, elongation, radial interference or shrinking allowance, a virtual 

infinitesimally small quantity
δmax  Maximum or dynamic deflection
δs  Solid deflection
δst  Static deflection
δw  Working deflection
є  Eccentricity ratio
ε  Normal strain; εx, εy, and εz are normal strains in the x, y, and z directions
εf  Normal strain at fracture
εt  True normal strain
εu  Ultimate strain
η  Absolute viscosity or viscosity
θ  Angle, angular displacement, slope
θp  Angle to a principal plane or to a principal axis
θs  Angle to a plane of maximum shear
λ  Lead angle, helix angle, material constant
μ  Population mean
ν  Kinematic viscosity, Poisson’s ratio
ρ  Mass density
σ  Normal stress; σx, σy, and σz are normal stresses in the x, y, and z planes, standard deviation
σa  Alternating stress
σall  Allowable stress
σcr  Critical stress
σe  Equivalent stress
σea  Equivalent alternating stress
σem  Equivalent mean stress
σmax  Maximum normal stress
σmin  Minimum normal stress
σnom  Nominal stress
σoct  Octahedral normal stress
σres  Residual stress
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xxxiSymbols

τ   Shear stress; τxy, τyz, and τxz are shear stresses perpendicular to the x, y, and z axes and 
parallel to the y, z, and x axes; direct shear stress; torsional shear stress

τavg  Average shear stress
τall  Allowable shear stress
τoct  Octahedral shear stress
τmax  Maximum shear stress
τmin  Minimum shear stress
τnom  Nominal shear stress
ϕ   Angle, angle giving the position of minimum film thickness, pressure angle, angle of twist, 

angle of wrap
ϕmax  Position of maximum film pressure
ψ  Helix angle, spiral angle
ω  Angular velocity, angular frequency (ω = 2πf)
ωn  Natural angular frequency
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Abbreviations
all  Allowable
avg  Average
Bhn  Brinell hardness number
CCW  Counterclockwise
CD  Cold drawn
cr  Critical
CW  Clockwise
fpm  Foot per minute
ft  Foot, feet
h  Hour
HD  Hard drawn
hp  Horsepower
HT  Heat treated
Hz  Hertz (cycles per second)
ID  Inside diameter
in.  Inch, inches
ipm  Inch per minute
ips  Inch per second
J  Joule
kg  Kilogram(s)
kip  Kilopound (1000 lb)
kips  Kilopounds
ksi  Kips per square inch (103 psi)
kW  Kilowatt
lb  Pound(s)
ln  Napierian natural logarithm
log  Common logarithm (base 10)
m  Meter
max  Maximum
min  Minimum
mph  Miles per hour
m/s  Meter per second
N  Newton
NA  Neutral axis
OD  Outside diameter
OQ&T  Oil quenched and tempered
OT  Oil tempered
Pa  Pascal
psi  Pounds per square inch
Q&T  Quenched and tempered
rad  Radian
req  Required
res  Residual
rpm  Revolutions per minute
rps  Revolutions per second
s  Second
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xxxiv Abbreviations

SI  System of international units
st  Static
SUS  Saybolt universal seconds
SUV  Saybolt universal viscosity
VI  Viscosity index
W  Watt
WQ&T  Water quenched and tempered
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Section I

Fundamentals

A bolt cutter suited for professional users (www.ridgit.com). We will examine such a tool in Case 
Studies 1.1, 3.1, and 4.1. Section I is devoted to the analysis of load, material properties, stress, 
strain, deflection, and elastic stability of variously loaded machine and structural components.
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1 Introduction

1.1  SCOPE OF THIS BOOK

As an applied science, engineering uses scientific knowledge to achieve a specific objective. The 
mechanism by which a requirement is converted to a meaningful and functional plan is called a 
design. The design is an innovative, iterative, decision-making process. This book deals with the 
analysis and design of machine elements or components and the basic structural members that 
compose the system or assembly. Typical truss, frame, and plate structures are also considered. The 
purpose and scope of this text may be summarized as follows: it presents a body of knowledge that 
will be useful in component design for performance, strength, and durability; provides treatments of 
design to meet strength requirements of members and other aspects of design involving prediction 
of the displacement and buckling of a given component under prescribed loading; presents classical 
and numerical methods amenable to use in electronic digital computers for the analysis and design 
of members and structural assemblies; and presents many examples, case studies, and problems of 
various types to provide an opportunity for the reader to develop competence and confidence in 
applying the available design formulas and deriving new equations as required.

The text consists of three sections. Section I focuses on fundamental principles and methods, a 
synthesis of stress analysis, and materials engineering, which forms the cornerstone of the subject 
and has to be studied carefully. We begin with a discussion of basic concepts in design and analysis 
and definitions relating to properties of a variety of engineering materials. Detailed equilibrium and 
energy methods of analysis for determining stresses and deformations in variously loaded members, 
designs of bars and beams, buckling, failure criteria, and reliability are presented in Section II. A 
thorough grasp of these topics will prove of great value in attacking new and complex problems. 
Section III is devoted mostly to the design of machine components. The fundamentals are applied 
to specific elements such as shafts, bearings, gears, belts, chains, clutches, brakes, and springs and 
typical design situations that arise in the selection and application of these items and others. Power 
screws; threaded fasteners; bolted, riveted, and welded connections; adhesive bonding; and axi-
symmetrically loaded components are also considered in some detail. In conclusion, introductory 
finite element analysis (FEA) and case studies in design are covered.

A full understanding of terminology in both statics and principles of mechanics is an essential 
prerequisite for the analysis and design of machines and structures. Design methods for members 
are founded on the methods of mechanics of materials; and the theory of applied elasticity is used 
or referred to in the design of certain elements. The objective of this chapter is to provide the reader 
with the basic definitions and process of the design, load analysis, and the concepts of solid mechan-
ics in a condensed form. Selected references provide readily available sources where additional 
analysis and design information can be obtained.

1.2  MECHANICAL ENGINEERING DESIGN

Design is the formulation of a plan to satisfy a particular need, real or imaginary. Fundamentally, 
design represents the process of problem solving. Engineering design can be defined as the process 
of applying science and engineering methods to prescribe a component or a system in sufficient 
detail to permit its realization. A system constitutes several different elements arranged to work 
together as a whole. Design is thus the essence, art, and intent of engineering. Design function refers 
to the process in which mathematics, computers, and graphics are used to produce a plan. Engineers 
with more scientific insight are able to devise better solutions to practical problems. Interestingly, 
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4 Mechanical Engineering Design

there is a similarity between the engineer and the physician. Although they are not scientists, both 
use scientific evidence complemented by empirical data and professional judgment in dealing with 
demanding problems.

Mechanical design means the design of components and systems of a mechanical nature— 
machines, structures, devices, and instruments. For the most part, mechanical design utilizes stress 
analysis methods and materials engineering and energy concepts. That is, it applies them to the 
design of mechanical systems or components where structures, motion, and energy or heat transfer 
can be involved. A machine is an apparatus consisting of interrelated elements or a device that 
modifies force motion or energy (see Section 1.9). Machine design is the art of planning or devising 
new or improved machines to accomplish a specific purpose. The field of machine design is a subset 
of mechanical design in which focus is on the structures and motion only.

Mechanical engineering design deals with the conception, design, development, and application 
of machines and mechanical apparatus of all types. It involves all the disciplines of mechanical 
engineering. Although structural design is most directly associated with civil engineering, it inter-
acts with any engineering field that requires a structural system or member. As noted earlier, the 
topic of machine design is the main focus of this text.

The ultimate goal in a mechanical design process is to size and shape the elements and choose 
appropriate materials and manufacturing processes so that the resulting system can be expected to 
perform its intended function without failure. An optimum design is the best solution to a design 
problem within prescribed constraints. Of course, such a design depends on a seemingly limitless 
number of variables. When faced with many possible choices, a designer may make various design 
decisions based on experience, reducing the problem to that, with one or few variables.

Generally, it is assumed that a good design meets performance, safety, reliability, aesthetics, and 
cost goals. Another attribute of a good design is robustness, a resistance to quality loss, or deviation 
from desired performance. Knowledge from the entire engineering curricula goes into formulating 
a good design. Communication is as significant as technology. Basically, the means of communica-
tion are written, oral, and graphical forms. The first fundamental canon in the Code of Ethics for 
Engineers [1] states that “Engineers shall hold paramount the safety, health, and welfare of the pub-
lic in the performance of their professional duties.” Therefore, engineers must design products that 
are safe during their intended use for the life of the products. Product safety implies that the product 
will protect humans from injury, prevent property damage, and prevent harm to the environment.

A plan for satisfying a need often includes preparation of individual preliminary design. A pre-
liminary design, sometimes also referred to as a conceptual design, is mainly concerned with analy-
sis, synthesis, evaluation, and comparison of proposed machine components or machines. Each 
preliminary design involves a thorough consideration of the loads and actions that the structure or 
machine has to support. For each case, a mechanical analysis is necessary. Design decisions, or 
choosing the reasonable values of the factors, are important in the design process. As a designer 
gains more experience, decisions are reached more readily. Both individual talent and creativeness 
are needed in engineering design.

1.2.1  aBet deFinition oF design

The Accreditation Board for Engineering and Technology (ABET) defines engineering design as 
the process of devising a system, component, or process to meet desired needs. It is a decision-
making process (often iterative), in which basic science, mathematics, and engineering sciences are 
applied to convert resources optimally to meet a stated objective. Among the fundamental elements 
of the design process are the establishment of objectives and criteria, synthesis, analysis, construc-
tion, testing, and evaluation. 

The engineering design component of a curriculum must include most of the following fea-
tures: development of student creativity, use of open-ended problems, development and use of mod-
ern design theory and methodology, formulation of design problem statements and specifications, 
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5Introduction

consideration of alternative solutions, feasibility considerations, production processes, concurrent 
engineering design, and detailed system description. Further, it is essential to include a variety 
of realistic constraints, such as economic factors, safety, reliability, aesthetics, ethics, and social 
impact. The ABET criteria (Preface) for accreditation emphasize the use of teams in solving prob-
lems and creating designs.

1.3  DESIGN PROCESS

The process of design is basically an exercise in creativity. The complete process may be outlined 
by design flow diagrams with feedback loops. Figure 1.1 shows some aspects of such a diagram. In 
this section, we discuss the phases of design common to all disciplines in the field of engineering 
design. Most engineering designs involve safety, ecological, and societal considerations. It is a chal-
lenge to the engineer to recognize all of these in proper proportion. Fundamental actions proposed 
for the design process are establishing a need as a design problem to be solved, understanding the 
problem, generating and evaluating possible solutions, and deciding on the best solution.

1.3.1  Phases oF design

The design process is independent of the product and is based on the concept of a product life cycle. 
The content of each engineering design problem is unique, but the methodology for solving these prob-
lems is universal and can be described in a specific way. To understand fully all that must be considered 
in the process of design, here we explain the characteristics of each phase of Figure 1.1. The process 
is neither exhaustive nor rigid and will probably be modified to suit individual problems. A number of 
authorities on the methodology of design have presented similar descriptions of the process.

1.3.1.1  Identification of Need
The design process begins with a recognition of a need, real or imagined, and a decision to do 
something about it. For example, present equipment may require improvements to its durability, 
efficiency, weight, speed, or cost. New equipment may be needed to perform an automated func-
tion, such as computation, assembly, or servicing. The identification aspect of design can have its 
origin in any number of sources. Customer reports on the product’s function and quality may force 

Synthesis

Identification of need

Definition of problem

Analysis

Testing and evaluation

Presentation

Iteration

FIGURE 1.1 Design process.
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6 Mechanical Engineering Design

a redesign. Business and industrial competition constantly force the need for new or improved 
apparatus, processes, and machinery designs. Numerous other sources of needs give rise to contem-
porary design problems.

1.3.1.2  Definition of the Problem
This phase in design conceives the mechanisms and arrangements that will perform the needed 
function. For this, a broad knowledge of members is desirable, because new equipment ordinarily 
consists of new members, perhaps with changes in size and material. Specification is a form of input 
and output quantities. A number of decisions must be made to establish the specification set, which 
is a collection of drawings, text, bills of materials, and detailed directions. All specifications must 
be carefully spelled out. Often, this area is also labeled design and performance requirements. The 
specifications also include the definitions of the member to be manufactured, the cost, the range of 
the operating temperature, expected life, and the reliability.

A standard is a set of specifications for parts, materials, or processes intended to achieve uni-
formity, efficiency, and a specified quality. A code is a set of specifications for the analysis, design, 
manufacture, and construction of something. The purpose of a code is to achieve a specified degree 
of safety, efficiency, and performance or quality. All organizations and technical societies (listed in 
Section 1.6) have established specifications for standards and safety or design codes.

Once the specifications have been prepared, relevant design information is collected to make a 
feasibility study. The purpose of this study is to verify the possible success or failure of a proposal 
both from the technical and economic standpoints. Frequently, as a result of this study, changes 
are made in the specifications and requirements of the project. The designer often considers the 
engineering feasibility of various alternative proposals. When some idea as to the amount of space 
needed or available for a project has been determined, to-scale layout drawings may be started.

1.3.1.3  Synthesis
The synthesis (putting together) of the solution represents perhaps the most challenging and inter-
esting part of the design. Frequently termed the ideation and invention phase, it is where the largest 
possible number of creative solutions is originated. The philosophy, functionality, and uniqueness 
of the product are determined during synthesis. In this step, the designer combines separate parts 
to form a complex whole of various new and old ideas and concepts to produce an overall new idea 
or concept.

1.3.1.4  Analysis
Synthesis and analysis are the main stages that constitute the design process. Analysis has as its 
objective satisfactory performance, as well as durability with minimum weight and competitive cost. 
Synthesis cannot take place without both analysis or resolution and optimization, because the prod-
uct under design must be analyzed to determine whether the performance complies with the speci-
fications. If the design fails, the synthesis procedure must begin again. After synthesizing several 
components of a system, we analyze what effect this has on the remaining parts of the system. It is 
now necessary to draw the layouts, providing details, and make the supporting calculations that will 
ultimately result in a prototype design. The designer must specify the dimensions, select the com-
ponents and materials, and consider the manufacturing, cost, reliability, serviceability, and safety.

1.3.1.5  Testing and Evaluation
At this juncture, the working design is first fabricated as a prototype. Product evaluation is the final 
proof of a successful design and usually involves testing a prototype in a laboratory or on a com-
puter that provides the analysis database. More often, computer prototypes are utilized because they 
are less expensive and faster to generate. By evaluation, we discover whether the design really satis-
fies the need and other desirable features. Subsequent to many iterations (i.e., repetitions or returns 
to a previous state), the process ends with the vital step of communicating the design to others.
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1.3.1.6  Presentation
The designer must be able to understand the need and describe a design graphically, verbally, and 
in writing. This is the presentation of the plans for satisfying the need. A successful presentation 
is of utmost importance as the final step in the design process. Drawings are utilized to produce 
blueprints to be passed to the manufacturing process.

It is interesting to note that individual parts should be designed to be easily fabricated, assembled, 
and constructed. The goal of the manufacturing process is to construct the designed component or 
system. Manufacturability plays an important role in the success of commercial products. Individual 
parts should be designed to be easily fabricated, assembled, and constructed. The process planning 
attempts to determine the most effective sequence to produce the component. The produced parts 
are inspected and must pass certain quality control or assurance requirements. Components surviv-
ing inspection are assembled, packaged, labeled, and shipped to customers.

The features of a product that attract consumers and how the product is presented to the market-
place are significant functions in the success of a product. Marketing is a crucial last stage of the 
manufacturing process. Market feedback is very important in enhancing products. These feedback 
loops are usually incorporated into the first stage of a design process. Many disciplines are involved 
in product development. Therefore, design engineers need to be familiar with other disciplines, at 
least from a communication standpoint, to integrate them into the design process.

1.3.2  design Considerations

Usually engineering designs involve quite a number of considerations that must be properly rec-
ognized by the engineer. Traditional considerations for a mechanical component, or perhaps the 
entire system, include strength, deflection, weight, size and shape, material properties, operating 
conditions, processing, cost, availability, usability, utility, and life. Examples of modern consider-
ations are safety, quality of life, and the environment. Miscellaneous considerations include reli-
ability, maintainability, ergonomics, and esthetics. 

We shall consider some of the foregoing factors throughout this text. Frequently, fundamentals will 
be applied to resolve a problem based on the design decisions. A final point to be noted is that often 
a variety of design considerations may be incompatible until the engineer puts together a sufficiently 
imaginative and ingenious solution. The design of the winch crane (see Figure 18.1) provides a simple 
example. Here, achieving a desired aesthetic appearance is almost incompatible with cost limitations.

In concluding this section, we note that a degree of caution is necessary when employing formu-
las for which there is uncertainty in applicability and restriction of use. The relatively simple form 
of many formulas usually results from idealizations made in their derivations. These assumptions 
include simplified boundary conditions and loading on a member, and approximation of shape or 
material properties. Designers and stress analysts must be aware of such constraints.

1.4  DESIGN ANALYSIS

The objective of the design analysis is, of course, to attempt to predict the stress or deformation in 
the component so that it may safely carry the loads that will be imposed on it. The analysis begins 
with an attempt to put the conceptual design in the context of the abstracted engineering sciences to 
evaluate the performance of the expected product. This constitutes design modeling and simulation.

1.4.1  engineering modeling

Geometric modeling is the method of choice for obtaining the data necessary for failure analysis 
early in the design process. Creating a useful engineering model of a design is probably the most 
difficult and challenging part of the whole process. It is the responsibility of the designer to ensure 
the adequacy of a chosen geometric model for a particular design. If the structure is simple enough, 
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8 Mechanical Engineering Design

theoretical solutions for basic configurations may be adequate for obtaining the stresses involved. 
For more complicated structures, finite element models can not only estimate the stresses, but also 
utilize them to evaluate the failure criteria for each element in a member.

We note that the geometric model chosen and subsequent calculations made merely approximate 
reality. Assumptions and limitations, such as linearity and material homogeneity, are used in devel-
oping the model. The choice of a geometric model depends directly on the kind of analysis to be 
performed. Design testing and evaluation may require changing the geometric model before final-
izing it. When the final design is achieved, the drafting and detailing of the models start, followed 
by the documentation and production of final drawings.

1.4.2  rational design ProCedure

The rational design procedure to meet the strength requirements of a load-carrying member 
attempts to take the results of fundamental tests, such as tension, compression, and fatigue, and 
apply them to all complicated and involved situations encountered in present-day structures and 
machines. However, not all topics in design have a firm analytical base from which to work. In those 
cases, we must depend on a semi-rational or empirical approach to solving a problem or selecting a 
design component.

In addition, details related to actual service loads and various factors, discussed in Section 7.7, 
have a marked influence on the strength and useful life of a component. The static design of axially 
loaded members, beams, and torsion bars are treated by the rational procedure in Chapters 3 and 9. 
Suffice it to say that complete design solutions are not unique and often trial and error is required 
to find the best solution.

1.4.3  methods oF analysis

Design methods are based on the mechanics of materials theory generally used in this text. Axi-
symmetrically loaded mechanical components are analyzed by methods of the elasticity theory in 
Chapter 16. The former approach employs assumptions based on experimental evidence along with 
engineering experience to make a reasonable solution for the practical problem possible. The latter 
approach concerns itself largely with more mathematical analysis of the exact stress distribution on 
a loaded body [2, 3]. The difference between the two methods of analysis is further discussed at the 
end of Section 3.17.

Note that solutions based on the mechanics of materials give average stresses at a cross-section. 
Since, at concentrated forces and abrupt changes in a cross-section, irregular local stresses (and 
strains) arise, only at a distance about equal to the depth of the member from such disturbances are 
the stresses in agreement with the mechanics of materials. This is due to Saint-Venant’s Principle: 
the stress of a member at points away from points of load application may be obtained on the basis 
of a statically equivalent loading system; that is, the manner of a force’s application on stresses is 
significant only in the vicinity of the region where the force is applied. This is also valid for the 
disturbances caused by the changes in the cross-section. The mechanics of materials approach is 
therefore best suited for relatively slender members.

The complete analysis of a given component subjected to prescribed loads by the method of 
equilibrium requires consideration of three conditions. These basic principles of analysis can be 
summarized as follows:

 1. Statics. The equations of equilibrium must be satisfied.
 2. Deformations. Stress–strain or force deformation relations (e.g., Hooke’s law) must apply 

to the behavior of the material.
 3. Geometry. The conditions of compatibility of deformations must be satisfied; that is, each 

deformed part of the member must fit together with adjacent parts.

ISTUDY

www.konkur.in

Telegram: @uni_k



9Introduction

Solutions based on these requirements must satisfy the boundary conditions. Note that it is not 
always necessary to execute the analysis in this exact order. Applications of the foregoing pro-
cedure are illustrated in the problems involving mechanical components as the subject unfolds. 
Alternatively, stress and deformation can also be analyzed using the energy methods. The roles of 
both methods are twofold. They can provide solutions of acceptable accuracy, where the configu-
rations of loading and member are regular, and they can be employed as a basis of the numerical 
methods for more complex problems.

1.5  PROBLEM FORMULATION AND COMPUTATION

The discussion in Section 1.3 shows that synthesis and analysis are the two faces of the design. 
They are opposites, but symbiotic. These are the phases of the mechanical design process addressed 
in this book. Most examples, case studies, and problems are set up so the identification of need, 
specifications, and feasibility phases already have been defined. As noted previously, this text is 
concerned with the fundamentals involved, and mostly with the application to specific mechanical 
components. The machine and structural members chosen are widely used and will be somewhat 
familiar to the reader. The emphasis in treating these components is on the methods and procedures 
used.

1.5.1  solving meChaniCal ComPonent ProBlems

Ever-increasing industrial demand for more sophisticated machines and structures calls for a good 
grasp of the concepts of analysis and design and a notable degree of ingenuity. Fundamentally, design 
is the process of problem solving. It is very important to formulate a mechanical element problem and 
its solution accurately. This requires consideration of the physical item and its related mathematical 
situations. The reader may find the following format helpful in problem formulation and solution:

 1. Given: define the problem and known quantities.
 2. Find: state consistently what is to be determined.
 3. Assumptions: list simplifying idealizations to be made.
 4. Solution: apply the appropriate equations to determine the unknowns.
 5. Comments: discuss the results briefly.

We illustrate most of these steps in the solution of the sample problems throughout the text.
Assumptions expand on the given information to further constrain the problem. For example, one 

might take the effects of friction to be negligible, or the weight of the member can be ignored in a 
particular case. The student needs to understand what assumptions are made in solving a problem. 
Comments present the key aspects of the solution and discuss how better results might be obtained 
by making different analysis decisions, relaxing the assumptions, and so on.

This book provides the student with the ideas and information necessary for understanding 
mechanical analysis and design and encourages the creative process based on that understanding. It 
is important that the reader visualizes the nature of the quantities being computed. Complete, care-
fully drawn, free-body diagrams (FBDs) facilitate visualizations, and we provide these, knowing 
that the subject matter can be mastered best by solving practical problems. It should also be pointed 
out that the relatively simple form of many equations usually results from simplifying assumptions 
made with respect to the deformation and load patterns in their derivation. Designers and analysts 
must be aware of such restrictions.

1.5.1.1  Significant Digits
In practical engineering problems, the data are seldom known with an accuracy of greater than 
0.2%; answers to such problems should not exceed this accuracy. Note that when calculations are 
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10 Mechanical Engineering Design

performed by electronic calculators and computers (usually carrying eight or nine digits), the pos-
sibility exists that the numerical result will be reported to an accuracy that has no physical meaning. 
Consistently throughout this text, we shall generally follow a common engineering rule to report 
the final results of calculations:

• Numbers beginning with “1” are recorded to four significant digits.
• All other numbers (that begin with “2” through “9”) are recorded to three significant digits.

Hence, a force of 15 N, for example, should read 15.00 N, and a force of 32 N should read 32.0 N. 
Intermediate results, if recorded for further calculations, are recorded to several additional digits 
to preserve the numerical accuracy. We note that the values of π and trigonometric functions are 
calculated to many significant digits (10 or more) within the calculator or computer.

1.5.2  ComPutational tools For design ProBlems

A wide variety of computational tools can be used to perform design calculations with success. 
A high-quality scientific calculator may be the best tool for solving most of the problems in 
this book. General purpose analysis tools such as spreadsheets and equation solvers have par-
ticular merit for certain computational tasks. These mathematical software packages include 
MATLAB®, TK Solver, and MathCAD. The tools have the advantage of allowing the user to 
document and save completed work in a detailed form. Computer-aided design (CAD) software 
may be used throughout the design process, but it supports the analysis stages of the design more 
than the conceptual phases.

In addition, there is proprietary software developed by a number of organizations to implement 
the preliminary design and proposal presentation stage. This is particularly true for cases in which 
existing product lines needed to be revised to meet new specifications or codes.

The computer-aided drafting software packages can produce realistic 3D representations of a 
member or solid models. The CAD software allows the designer to visualize without costly models, 
iterations, or prototypes. Most CAD systems provide an interface to one or more FEA or boundary 
element analysis (BEA) programs. They permit direct transfer of the model’s geometry to an FEA 
or BEA package for analysis of stress and vibration, as well as fluid and thermal analysis. However, 
usually, these analyses of design problems require the use of special purpose programs. The FEA 
techniques are briefly discussed in Chapter 17.

The computer-based software may be used as a tool to assist students with design projects and 
lengthy homework assignments. However, computer output providing analysis results must not be 
accepted on faith alone; the designer must always check computer solutions. It is necessary that 
fundamentals of analysis and design be thoroughly understood.

1.5.3  the Best time to solve ProBlems

Daily planning can help us make the best of our time. A tentative schedule [4] for the morning per-
son who prefers to wake up early and go to sleep early is presented in Table 1.1. It is interesting to 
note that the so-called evening person works late and wakes up late. Most people may shift times 
from one to another, and others combine some characteristics of both.

We point out that creativity refers to the state or quality of being creative and serves well for 
open-ended thinking. Rejuvenation is a phenomenon of vitality and freshness being restored and 
achieved by renewing the mind with activities like reading, artwork, and puzzle solving. During 
times suitable for problem solving, concentration is at the highest for doing analysis. Work involving 
concentration is unsuitable when the body’s biological clock changes.
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11Introduction

1.6  FACTOR OF SAFETY AND DESIGN CODES

It is sometimes difficult to determine accurately the various factors involved in the phases of design 
of machines and structures. An important area of uncertainty is related to the assumptions made 
in the stress and deformation analysis. An equally significant item is the nature of failure. If failure 
is caused by ductile yielding, the consequences are likely to be less severe than if caused by brittle 
fracture. In addition, a design must take into account such matters as the following: types of service 
loads, variations in the properties of the material, whether failure is gradual or sudden, the conse-
quences of failure (minor damage or catastrophe), human safety, and economics.

1.6.1  deFinitions

Engineers employ a safety factor to ensure against the foregoing unknown uncertainties involving 
strength and loading. This factor is used to provide assurance that the load applied to a member does 
not exceed the largest load it can carry. The factor of safety, n, is the ratio of the maximum load that 
produces failure of the member to the load allowed under service conditions:

 =n
Failure load

Allowable load
 (1.1)

The allowable load is also referred to as the service load or working load. The preceding represents 
the basic definition of the factor of safety. This ratio must always be greater than unity, n > 1. Since 
the allowable service load is a known quantity, the usual design procedure is to multiply this by the 
safety factor to obtain the failure load. Then, the member is designed so that it can just sustain the 
maximum load at failure.

A common method of design is to use a safety factor with respect to the strength of the member. 
In most situations, a linear relationship exists between the load and the stress produced by the load. 
Then, the factor of safety may also be defined as:

 =n
Material strength
Allowable stress

 (1.2)

In this equation, the materials strength represents either static or dynamic properties. Obviously, 
if loading is static, the material strength is either the yield strength or the ultimate strength. For 
fatigue  loading, the material strength is based on the endurance limit, discussed in Chapter 7. 

TABLE 1.1
Optimum Time to Do Everything
Time Activity

6:00 a.m. Wake

6:00–6:30 a.m. Unsuitable for concentration

6:30–8:30 a.m. Suitable for creativity

8:30 a.m.–12:00 noon Suitable for problem solving

12:00–2:30 p.m. Unsuitable for concentration

2:30–4:30 p.m. Suitable for problem solving

4:30–8:00 p.m. Rejuvenation

8:00–10:00 p.m. Unsuitable for problem solving

10:00 (or 11:00) p.m.–6:00 a.m. Sleep
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12 Mechanical Engineering Design

The allowable stress is also called the applied stress, working stress, or design stress. It represents 
the required strength.

The foregoing definitions of the factor of safety are used for all types of member and loading condi-
tions (e.g., axial, bending, shear). Inasmuch as there may be more than one potential mode of failure 
for any component, we can have more than one value for the factor of safety. The smallest value of n 
for any member is of the greatest concern, because this predicts the most likely mode of failure.

1.6.2  seleCtion oF a FaCtor oF saFety

Modern engineering design gives a rational accounting for all factors possible, leaving relatively 
few items of uncertainty to be covered by a factor of safety. The following numerical values of fac-
tor of safety are presented as a guide. They are abstracted from a list by Vidosic [5]. These safety 
factors are based on the yield strength Sy or endurance limit Se of a ductile material. When they are 
used with a brittle material and the ultimate strength Su, the factors must be approximately doubled:

 1. n = 1.25–1.5 is for exceptionally reliable materials used under controllable conditions and 
subjected to loads and stresses that can be determined with certainty. It is used almost 
invariably where low weight is a particularly important consideration.

 2. n = 1.5–2 is for well-known materials under reasonably constant environmental conditions, 
subjected to loads and stresses that can be determined readily.

 3. n = 2–2.5 is for average materials operated in ordinary environments and subjected to loads 
and stresses that can be determined.

 4. n = 2.5–4 is for less-tried (or 3–4 for untried) materials under average conditions of envi-
ronment, load, and stress.

 5. n = 3–4 is also for better-known materials used in uncertain environments or subjected to 
uncertain stresses.

Where higher factors of safety might appear desirable, a more thorough analysis of the problem 
should be undertaken before deciding on their use.

In the field of aeronautical engineering, in which it is necessary to reduce the weight of the struc-
tures as much as possible, the term factor of safety is replaced by the term margin of safety:

 = −n
Ultimate load
Design load

1 (a)

In the nuclear reactor industries, the safety factor is of prime importance in the face of many 
unknown effects, and hence, the factor of safety may be as high as five. The value of factor of safety 
is selected by the designer on the basis of experience and judgment.

The simplicity of Equations (1.1) and (1.2) sometimes masks their importance. A large number 
of problems requiring their use occur in practice. The employment of a factor of safety in a design 
is a reliable, time-proven approach. When properly applied, sound and safe designs are obtained. 
We note that the factor of safety method to safe design is based on rules of thumb, experience, and 
testing. In this approach, the strengths used are always the minimum expected values.

A concept closely related to safety factor is termed reliability. It is the statistical measure of 
the probability that a member will not fail in use. In the reliability method of design, the goal is to 
achieve a reasonable likelihood of survival under the loading conditions during the intended design 
life. For this purpose, mean strength and load distributions are determined, and then, these two are 
related to achieve an acceptable safety margin. Reliability is discussed in Chapter 6.

1.6.3  design and saFety Codes

Numerous engineering societies and organizations publish standards and codes for specific areas 
of engineering design. Most are merely recommendations, but some have the force of law. For the 
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13Introduction

majority of applications, the relevant factors of safety are found in various construction and manu-
facturing codes, for instance, the American Society of Mechanical Engineers (ASME) Pressure 
Vessel Codes. Factors of safety are usually embedded into computer programs for the design of spe-
cific members. Building codes are legislated throughout this country and often deal with publicly 
accessible structures (e.g., elevators and escalators). Underwriters Laboratories (UL) has developed 
its standards for testing consumer products. When a product passes their tests, it may be labeled 
listed UL. States and local towns have codes as well, relating mostly to fire prevention and building 
standards.

It is clear that, where human safety is involved, high values of safety factors are justified. 
However, members should not be overdesigned to the point of making them unnecessarily costly, 
heavy, bulky, or wasteful of resources. The designer and stress analyst must be aware of the codes 
and standards, lest their work lead to inadequacies.

The following is a partial list of societies and organizations* that have established specifications 
for standards and safety or design codes:

AA Aluminum Association

AFBMA Anti-Friction Bearing Manufacturing Association

AGMA American Gear Manufacturing Association

AIAA American Institute of Aeronautics and Astronautics

AISC American Institute of Steel Construction

AISI American Iron and Steel Institute

ANSI American National Standards Institute

API American Petroleum Institute

ASCE American Society of Civil Engineers

ASLE American Society of Lubrication Engineers

ASM American Society of Metals

ASME American Society of Mechanical Engineers

ASTM American Society for Testing and Materials

AWS American Welding Society

IFI Industrial Fasteners Institute

ISO International Standards Organization

NASA National Aeronautics and Space Administration

NIST National Institute for Standards and Technology

SAE Society of Automotive Engineers

SEM Society for Experimental Mechanics

SESA Society for Experimental Stress Analysis

SPE Society of Plastic Engineers

1.7  UNITS AND CONVERSION

The units of the physical quantities employed in engineering calculations are of major signifi-
cance. The most recent universal system is the International System of Units (SI). The US cus-
tomary units have long been used by engineers in this country. While both systems of units are 
reviewed briefly here, this text primarily uses SI units. Some of the fundamental quantities in 
SI and the US customary systems of units are listed in Table 1.2. For further details, see, for 
example, Reference [6].

* The addresses and data on their publications can be obtained in any technical library or from a designated website; for 
example, for specific titles of ANSI standards, see www.ansi.org.
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14 Mechanical Engineering Design

We observe from the table that, in SI, force F is a derived quantity (obtained by multiplying the 
mass m by the acceleration a, in accordance with Newton’s Second Law, F = ma). However, in the 
US customary system, the situation is reversed, with mass being the derived quantity. It is found 
from Newton’s Second Law, as lb · s2/ft, sometimes called the slug.

Temperature is expressed in SI by a unit termed kelvin (K), but for common purposes, the degree 
Celsius (°C) is used (as shown in Table 1.2). The relationship between the two units: temperature in 
Celsius = temperature in kelvins − 273.15. The temperature is expressed in US units by the degree 
Fahrenheit (°F). Conversion formulas between the temperature scales are given by

 ( )= −t t
5
9

32c f  (1.3)

and

 ( )= − + .t t 32 273 15k f  (1.4)

where t is the temperature. Subscripts c, f, and k denote the Celsius, Fahrenheit, and kelvin, 
respectively.

It is sufficiently accurate to assume that the acceleration of gravity, denoted by g, near Earth’s 
surface equals

 ( )= . .g 9 81 m/s or 32 2 ft/s2 2  

From Newton’s second law, it follows that, in SI, the weight W of a body of mass 1 kg is W = mg = 
(1 kg) (9.81 m/s2) = 9.81 N. In the US customary system, the weight is expressed in pounds (lb). The 
unit of force is of particular importance in engineering analysis and design, because it is involved in 
calculations of the force, moment, torque, stress (or pressure), work (or energy), power, and elastic 
modulus. Interestingly, in SI units, a newton is approximately the weight of (or earth’s gravitational 
force on) an average apple.

Tables A.1 and A.2 furnish conversion factors and SI prefixes in common usage. The use of pre-
fixes avoids unusually large or small numbers. Note that a dot is to be used to separate units that are 
multiplied together. Thus, for instance, a newton meter is written N · m and must not be confused 
with mN, which stands for millinewtons. The reader is cautioned always to check the units in any 
equation written for a problem solution. If properly written, an equation should cancel all units 
across the equals sign.

TABLE 1.2
Basic Units

Quantity

SI Unit US Unit

Name Symbol Name Symbol

Length Meter m Foot ft

Force3 Newton Na Pound force lb

Time Second s Second s

Mass Kilogram kg Slug lb · s2/ft

Temperature Degree Celsius °C Degree Fahrenheit °F

a Derived unit (kg · m/s2).
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15Introduction

1.8  LOADING CLASSES AND EQUILIBRIUM

External forces, or loads acting on a structure or member, may be classified as surface forces and 
body forces. A surface force acts at a point or is distributed over a finite area. Body forces are 
distributed throughout the volume of a member. All forces acting on a body, including the reactive 
forces caused by supports and the body forces, are considered external forces. Internal forces are 
the forces holding together the particles forming the member.

Line loads and concentrated forces are considered to act along a line and at a single point, 
respectively. Both of these forces are thus idealizations. Nevertheless, they permit accurate analysis 
of a loaded member, except in the immediate vicinity of the loads. Loads and internal forces can be 
further classified with respect to location and method of application: normal, shear, bending, and 
torsion loads and combined loadings. There are a few types of loading that may commonly occur 
on machine or structural members.

A static load is applied slowly, gradually increasing from zero to its maximum value and thereaf-
ter remaining constant. Thus, a static load can be a stationary (i.e., unchanging in magnitude, point 
of application, and direction) force, torque, moment, or a combination of these acting on a member. 
In contrast, dynamic loads may be applied very suddenly, causing vibration of the structure, or they 
may change in magnitude with time. Note that, unless otherwise stated, we assume in this book that 
the weight of the body can be neglected and that the load is static. As observed earlier, in SI, force is 
expressed in newtons (N). But, because the newton is a small quantity, the kilonewton (kN) is often 
used in practice. The unit of force in the US customary system is pounds (lb) or kilopounds (kips).

1.8.1  Conditions oF equiliBrium

When a system of forces acting on a body has zero resultant, the body is said to be in equilibrium. 
Consider the equilibrium of a body in space. The conditions of equilibrium require that the follow-
ing equations of statics need be satisfied:

 
Σ = Σ = Σ =

Σ = Σ = Σ =

F F F

M M M

0 0 0

0 0 0

x y z

x y z

 (1.5)

If the forces act on a body in equilibrium in a single (xy) plane, a planar problem, the most common 
forms of the static equilibrium equations are:

 Σ = Σ = Σ =F F M0 0 0x y z  (1.6)

By replacing either or both force summations by equivalent moment summations in Equation (1.6), 
two alternate sets of equations can be obtained [3].

When bodies are accelerated, that is, the magnitude or direction of their velocity changes, it is 
necessary to use Newton’s Second Law to relate the motion of the body with the forces acting on 
it. The plane motion of a body, symmetrical with respect to a plane (xy) and rotating about an axis 
(z), is defined by:

 Σ = Σ = Σ = αF ma F ma M Ix x y y z  (1.7)

in which
m represents the mass, and
I is the principal centroidal mass moment of inertia about the z axis.

The quantities ax, ay, and α represent the linear and angular accelerations of the mass center about 
the principal x, y, and z axes, respectively. The preceding relationships express that the system of 
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16 Mechanical Engineering Design

external forces is equivalent to the system consisting of the inertia forces (max and may) attached 
at the mass center and the couple moment Iα. Equation (1.7) can be written for all the connected 
members in a 2D system and an entire set solved simultaneously for forces and moments.

A structure or system is said to be statically determinate if all forces on its members can be 
obtained by using only the equilibrium conditions; otherwise, the structure is referred to as stati-
cally indeterminate. The degree of static indeterminacy is equal to the difference between the num-
ber of unknown forces and the number of pertinent equilibrium equations. Since any reaction in 
excess of those that can be found by statics alone is called redundant, the number of redundants is 
the same as the degree of indeterminacy. To effectively study a structure, it is usually necessary to 
make simplifying idealizations of the structure or the nature of the loads acting on the structure. 
These permit the construction of an FBD, a sketch of the isolated body and all external forces act-
ing on it. When internal forces are of concern, an imaginary cut through the body at the section of 
interest is displayed, as illustrated in the next section.

1.8.2  internal load resultants

Distributed forces within a member can be represented by statically equivalent internal forces, so-
called stress-resultants, or load resultants. Usually, they are exposed by an imaginary cutting plane 
containing the centroid C through the member and resolved into components normal and tangential 
to the cut section. This process of dividing the body into two parts is called the method of sections. 
Figure 1.2a shows only the isolated left part of a slender member. A bar whose least dimension is 
less than about 1/10 its length may usually be considered a slender member. Note that the sense of 
moments follows the right-hand screw rule and, for convenience, is often represented by double-
headed vectors. In 3D problems, the four modes of load transmission are axial force P (also denoted 
F or N), shear forces Vy and Vz, torque or twisting moment T, and bending moments My and Mz.

In planar problems, we find only three components acting across a section: the axial force P, 
the shear force V, and the bending moment M (Figure 1.2b). The cross-sectional face, or plane, is 
defined as positive when its outward normal points in a positive coordinate direction and as negative 
when its outward normal points in the negative coordinate direction. According to Newton’s Third 
Law, the forces and moments acting on the faces at a cut section are equal and opposite. The loca-
tion in a plane where the largest internal force resultants develop and failure is most likely to occur 
is called the critical section.

z
Mz

Vz P T

(a) (b)

x

Vy

My

y

V
P x

M

y

z
C

FIGURE 1.2 Internal forces and moments by the method of sections: (a) the general or three-dimensional 
(3D) case and (b) the two-dimensional (2D) case.
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1.8.3  sign Convention

When both the outer normal and the internal force or moment vector component point in a positive 
(or negative) coordinate direction, the force or moment is defined as positive. Therefore, Figure 
1.2 depicts positive internal force and moment components. However, it is common practice for 
the direction shown in the figure to represent a negative internal shear force. In this text, we use 
a sign convention for shear force in a beam that is contrary to the definition given in Figure 1.2 
(see Section 3.6). Note also that the sense of the reaction at a support of a structure is arbitrarily 
assumed; the positive (or negative) sign of the answer obtained by the equations of statics will indi-
cate that the assumption is correct (or incorrect).

1.9  FREE-BODY DIAGRAMS AND LOAD ANALYSIS

Application of equilibrium conditions requires a complete specification of all loads and reactions 
that act on a structure or machine. So, the first step in the solution of an equilibrium problem should 
consist of drawing a free-body diagram (FBD) of the body under consideration. An FBD is simply a 
sketch of a body, with all of the appropriate forces, both known and unknown, acting on it. This may 
be of an entire structure or a substructure of a larger structure. The general procedure in drawing a 
complete FBD includes the following steps:

 1. Select the free body to be used.
 2. Detach this body from its supports and separate from any other bodies. (If internal force 

resultants are to be determined, use the method of sections.)
 3. Show on the sketch all of the external forces acting on the body. Location, magnitude, and 

direction of each force should be marked on the sketch.
 4. Label significant points and include dimensions. Any other detail, however, should be omitted.

Clearly, the prudent selection of the free body to be used (see Step 1) is of primary significance. The 
reader is strongly urged to adopt the habit of drawing clear and complete FBDs in the solution of 
problems concerning equilibrium. Example 1.1 and Case Study 1.1 will illustrate the construction 
of the FBDs and the use of equations of statics.

A structure is a unit composed of interconnected members supported in a manner capable of 
resisting applied forces in static equilibrium. The constituents of such units or systems are bars, 
beams, plates, and shells, or their combinations. An extensive variety of structures are used in 
many fields of engineering. Structures can be considered in four broad categories: frames, trusses, 
machines, and thin-walled structures. Adoption of thin-walled structure behavior allows certain 
simplifying assumptions to be made in the structural analysis [2]. The American Society of Civil 
Engineers (ASCE) lists design loads for buildings and other common structures [7].

Here, we consider load analysis dealing with the assemblies or structures made of several con-
nected members. A frame is a structure that always contains at least one multiforce member, that 
is, a member acted on by three or more forces, which generally are not directed along the member. 
A truss is a special case of a frame, in which all forces are directed along the axis of a member. 
Machines are similar to frames in that at least one of the elements may be multiforce members. 
However, as noted earlier, a machine is designed to transmit and modify forces (or energy) and 
always contains moving parts.

Usually, the whole machine requires a base (a frame, housing) into or upon which all subassemblies 
are mounted. For this purpose, a variety of structural types may be used. A baseplate represents the 
simplest kind of machine frame. A machine room floor consists of a number of spaced cross-beams 
forming a grid pattern. Basically, components of machines and their bases are designed on similar prin-
ciples. In both cases, recognition must be given to growing necessity for integration of manufacturing, 
assembly, and inspection requirements into the design process at an early stage (Section 1.3).
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18 Mechanical Engineering Design

The approach used in the load analysis of a pin-jointed structure may be summarized as fol-
lows. First, consider the entire structure as a free body, and write the equations of static equilib-
rium. Then, dismember the structure, and identify the various members as either two-force (axially 
loaded) members or multiforce members. Pins are taken to form an integral part of one of the mem-
bers they connect. Draw the FBD of each member. Clearly, when two-force members are connected 
to the same member, they are acted on by that member with equal and opposite forces of unknown 
magnitude, but known direction. Finally, the equilibrium equations obtained from the FBDs of the 
members may be solved to yield various internal forces.

Example 1.1: Load Resultants at a Section of a Piping

An L-shaped pipe assembly of two perpendicular parts AB and BC is connected by an elbow at B and 
bolted to a rigid frame at C. The assembly carries a vertical load PA, a torque TA at A, as well as its own 
weight (Figure 1.3a). Each pipe is made of steel of unit weight w and nominal diameter d.

Find

What are the axial force, shear forces, and moments acting on the cross-section at point O?

Given

a = 0.6 m, b = 0.48 m, d = 63.5 mm (2.5 in.), PA = 100 N, TA = 25 N · m, w = 5.79 lb/ft (see Table A.4)

Assumption

The weight of the pipe assembly is uniformly distributed over its entire length.

Solution

See Figure 1.3 and Equation (1.5).
Using the conversion factor from Table A.1, w = 5.79 (N/m)/(0.0685) = 84.53 N/m. Thus, the weights 

of the pipes AB and BO are equal to

 ( )( ) ( )( )= = = =. . . , . . .W W84 53 0 6 50 72 N 84 53 0 48 40 57 NAB BO  

My

WBO

WAB

100 N

25 N  m

O
Vz

Mz

0.24 m

(a) (b)

0.24 m

0.3 m

0.3 m

A

B

T
F

Vy

y

x

z b

C

B

PA

TA

a

d

A

O

FIGURE 1.3 Example 1.1. (a) Pipe assembly and (b) FBD of part ABO.
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Free body: Part ABO. We have six equations of equilibrium for the 3D force system of six unknowns 
(Figure 1.3b). The first three from Equation (1.5) results in the internal forces on the pipe at point O as 
follows:

 

Σ = =

Σ = − − − = =

Σ = =

:

: . . : .

:

F F

F V V

F V

0 0

0 50 72 40 57 100 0 191 3 N

0 0

x

y y y

z z

 

Applying the last three from Equation (1.5), the moments about point O are found to be

 

( )( ) ( )

( ) ( )( ) ( )( )

Σ = + + = = − ⋅

Σ = =
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y y

z z

z

 

Comment: The negative value calculated for T means that the torque vector is directed opposite to that 
indicated in Figure 1.3b. 

1.10  CASE STUDIES IN ENGINEERING

An engineering case is an account of an engineering activity, event, or problem. Good case studies 
are taken from real-life situations and include sufficient data for the reader to treat the problem. 
They may come in the following varieties: the history of an engineering activity, illustration of some 
form of engineering process, an exercise (such as stress and deformation analysis), a proposal of 
problems to be solved, or a preliminary design project. Design analysis has its objective satisfactory 
performance as well as durability with minimum weight and competitive cost. Through case stud-
ies, we can create a bridge between systems theory and actual design plans.

The basic geometry and loading on a member must be given to the engineer before any analysis 
can be done. The stress that would result, for example, in a bar subjected to a load would depend on 
whether the loading gives rise to tension, transverse shear, direct shear, torsion, bending, or contact 
stresses. In this case, uniform stress patterns may be more efficient at carrying the load than others. 
Therefore, making a careful study of the types of loads and stress patterns that can arise in structures 
or machines, considerable insight can be gained into improved shapes and orientations of compo-
nents. This type of study allows the designer and analyst in choosing the shape or volume (weight) 
of members that will optimize the use of the material provided under the conditions of applied loads.

Case studies presented in select chapters of this text involve situations found in engineering prac-
tice. Among these are various preliminary design projects: the assemblies containing a variety of 
elements such as links under combined axial and bending loads, ductile–brittle transition of steel, 
shafts subjected to bending and torsion simultaneously, gear sets and bearings subject to steady and 
fluctuating loads, compression springs, connections, a floor crane with electric winch, and a high-
speed cutting machine. Next, Case Study 1.1 involving a bolt cutter demonstrates the simplest form 
of force determination.

Case Study 1.1 Bolt Cutter Loading Analysis

Many components, such as bicycle levers, automotive scissors jacks, bolt cutting tools, vari-
ous types of pliers, and pin-connected symmetrical assemblies, may be treated by applying 
Equation (1.5), similar to that which will be illustrated here. We note that a mechanical linkage 
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20 Mechanical Engineering Design

system is designed to transform a given input force and movement into a desired output force 
and movement. In this case, accelerations on moving bars require that a dynamic analysis be 
done through the use of Equation (1.7). Bolt cutters can be used for cutting rods (see Section I 
section opener page), wire mesh, and bolts. Often, a bolt cutter’s slim cutting head permits cut-
ting close to surfaces and incorporates one-step internal cam mechanism to maintain precise 
jaw or blade alignment. Handle design and handle grips lend to controlled cutting action. Jaws 
are manufactured from heat-treated, hardened alloy steel.

Figure 1.4 depicts schematic drawing of a bolt cutter, a pin-connected tool in the closed posi-
tion in the process of gripping its jaws into a bolt. The user provides the input loads between the 
handles, indicated as the reaction pairs P. Determine the force exerted on the bolt and the pins 
at joints A, B, and C.

Given

The geometry is known. The data are

 P a b c d e9 N 25 mm 75 mm 12 5 mm 200 mm 25 mm, , , . , ,= = = = = =  

Assumptions

Friction forces in the pin joints are omitted. All forces are coplanar, 2D, and static. The weights 
of members are neglected as being insignificant compared to the applied forces.

Solution

The equilibrium conditions are fulfilled by the entire cutter. Let the force between the bolt and 
the jaw be Q, whose direction is taken to be normal to the surface at contact (point D). Due to 
the symmetry, only two FBDs shown in Figure 1.5 need to be considered. Inasmuch as link 3 is 
a two-force member, the orientation of force FA is known. Note also that the force components 
on the two elements at joint B must be equal and opposite, as shown on the diagrams.

Conditions of equilibrium are applied to Figure 1.5a to give FBx = 0 and

 
( ) ( )

Σ = − + = = +

Σ = − = =

F Q F F F Q F

M Q F F
Q

0

100 75 0
4
3

y A By A By

B A A

 

from which Q = 3FBy. In a like manner, referring to Figure 1.5b, we obtain

Bolt
Jaw Handle

a
2

3
C e

1

d P

P

AD B

b c

FIGURE 1.4 Sketch of a bolt cutter.
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( ) ( ) ( )

Σ = − + − = = +

Σ = + − = =.

F F F F
Q

M F F F

9 0
3

9

25 12 5 9 200 0 144 N

y By Cy Cy

C By By By

 

and FCx = 0. Solving Q = 3(144 N) = 432 N. The shear forces on the pins at the joints A, B, and 
C are

 = = = = =, ,F F F F F576 N 144 N 153 NA B By C Cy  

Comments: Observe that the high mechanical advantage of the tool transforms the applied load 
to a large force exerted on the bolt at point D. The handles and jaws are under combined bending 
and shear forces. Stresses and deflections of the members are taken up in Case Studies 3.1 and 
4.1 in Chapters 3 and 4, respectively. 

1.11  WORK, ENERGY, AND POWER

This section provides a brief introduction to the method of work and energy, which is particularly 
useful in solving problems dealing with buckling design and components subjected to combined 
loading. All machines or mechanisms consisting of several connected members involve loads and 
motion that, in combination, represent work and energy. The concept of work in mechanics is pre-
sented as the product of the magnitudes of the force and displacement vectors and the cosine of the 
angle between them. The work W done by a constant force F moving through a displacement s in 
the direction of force can be expressed as:

 =W Fs (1.8)

Similarly, the work of a couple of forces or torque T during a rotation θ of the member, such as the 
wheel, is given by:

 = θW T  (1.9)

The work done by a force, torque, or moment can be regarded as a transfer of energy to the mem-
ber. In general, the work is stored in a member as potential energy, kinetic energy, internal energy, 
or any combination of these, or is dissipated as heat energy. The magnitude of the energy a given 
component can store is sometimes a significant consideration in mechanical design. Members, when 

y

x

25

(a)

(b)

75

Q FA FBy

FBx

D A B FBx

2

B

C FCy

FCx

1

12.5

25

9 N200

FIGURE 1.5 Dimensions are in millimeters. FBDs of bolt cutter shown in Figure 1.4, (a) jaw and (b) handle.
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22 Mechanical Engineering Design

subjected to impact loads, are often chosen based on their capacity to absorb energy. Kinetic energy 
Ek of a member represents the capacity to do work associated with the speed of the member. The 
kinetic energy of a component in rotational motion may be written as:

 = ωE I
1
2

k
2 (1.10)

The quantity I is the mass moment of inertia and ω represents the angular velocity or speed. Table 
A.5 lists mass moments of inertia of common shapes. The work of the force is equal to the change in 
kinetic energy of the member. This is known as the principle of work and energy. Under the action 
of conservative forces, the sum of the kinetic energy of the member remains constant.

The units of work and energy in SI is the newton meter (N · m), called the joule (J). In the US 
customary system, work is expressed in foot pounds (ft · lb) and British thermal units (Btu). The unit 
of energy is the same as that of work. The quantities given in either unit system can be converted 
quickly to the other system by means of the conversion factors listed in Table A.1. Specific facets are 
associated with work, energy, and power, as will be illustrated in the analysis and design of various 
components in the chapters to follow.

Example 1.2: Camshaft Torque Requirement

A rotating camshaft (Figure 1.6) of an intermittent motion mechanism moves the follower in a direction 
at right angles to the cam axis. For the position shown, the follower is being moved upward by the lobe 
of the cam with a force F. A rotation of θ corresponds to a follower motion of s. Determine the average 
torque T required to turn the camshaft during this interval.

Given

F = 1.2 N, θ = 8° = 0.14 rad, s = 1.5 mm.

Assumptions

The torque can be considered to be constant during the rotation. The friction forces can be omitted.

Solution

The work done on the camshaft equals the work done by the follower. Therefore, by Equations (1.8) 
and (1.9), we write

 θ =T Fs (a)

n

FIGURE 1.6 Example 1.2. Camshaft and follower.

ISTUDY

www.konkur.in

Telegram: @uni_k



23Introduction

Substituting the given numerical values,

 ( ) ( )= =. . . . .T 0 14 1 2 0 0015 0 0018  

The foregoing gives T = 0.0129 N · m.

Comments: Using the conversion factor (Table A.1), in USCS units, the answer is:

 ( )= = ⋅. .T 0 0129 8 851 0.1124 lb in. 

The stress and deflection caused by force F at the contact surface between the cam and follower are 
considered in Chapter 8.

Example 1.3: Automobile Traveling at a Curved Road

A car of mass m is going through a curve of radius r at a speed of V. Calculate the centrifugal force Fc.

Given

m = 2 tons = 2000 kg, r = 120 m, V = 153 km/h = 153(1000)3600 = 42.5 m/s

Assumption

The speed is constant.

Solution

The centrifugal force is expressed in the form

 =F
mV

r
c

2
 (1.11)

Introducing the given data,

 
( )= = ⋅ =. .F

2000 42 5

120
30,104 kg m/s 30 1 kNc

2
2  

Comment: Since the automobile moves at constant speed along its path, the tangential component of 
inertia force is zero. Centrifugal force (normal component) represents the tendency of the car to leave 
its curved path.

Power is defined as the time rate at which work is done. Note that, in selecting a motor or engine, 
power is a much more significant criterion than the actual amount of work to be performed. When 
work involves a force, the rate of energy transfer is the product of the force F and the velocity V at 
the point of application of the force. The power is therefore defined thus:

 =P FVPower  (1.12)

In the case of a member, such as a shaft rotating with an angular velocity or speed ω in radians per 
unit time and acted on by a torque T, we have:

 = ωP TPower  (1.13)

The mechanical efficiency, designated by e, of a machine may be defined as follows:

 =e
Power output
Power input

 (1.14)
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24 Mechanical Engineering Design

Because of energy losses due to friction, the power output is always smaller than the power input. 
Therefore, machine efficiency is always less than 1. Inasmuch as power is defined as the time rate 
of doing work, it can be expressed in units of energy and time. Hence, the unit of power in SI is the 
watt (W), defined as the joule per second (J/s). If US customary units are used, the power should be 
measured in ft · lb/s or in horsepower (hp).

1.11.1  transmission oF Power By rotating shaFts and wheels

The power transmitted by a rotating machine component such as a shaft, flywheel, gear, pulley, 
or clutch is of keen interest in the study of machines. Consider a circular shaft or disk of radius r 
subjected to a constant tangential force F. Then, the torque is expressed as T = Fr. The velocity at the 
point of application of the force is V. A relationship between the power, speed, and the torque acting 
through the shaft is readily found, from first principles, as follows.

In SI units, the power transmitted by a shaft is measured by kilowatt (kW), where 1 kW equals 
1000 W. One watt does the work of 1 N · m/s. The speed n is expressed in revolutions per min-
ute; then, the angle through which the shaft rotates equals 2πn rad/min. Thus, the work done per 
unit time is 2πnT. This is equal to the power delivered: 2πnT/60 = 2πnFr/60 = kW(1000). Since 
V = 2πrn/60, the foregoing may be written as FV = kW(1000). For convenience, power transmitted 
may be expressed in two forms:

 = =FV Tn
kW

1000 9549
 (1.15)

where
T = the torque (N · m)
n = the shaft speed (rpm)
F = the tangential force (N)
V  = the velocity (m/s)

We have one horsepower (hp) equals 0.7457 kW, and the preceding equation may be written as

 = =
.

FV Tn
hp

745 7 7121
 (1.16)

In US customary units, horsepower is defined as a work rate of 550 × 60 = 33,000 ft · lb/m. An equa-
tion similar to that preceding can be obtained:

 = =
, ,
FV Tn

hp
33 000 63 000

 (1.17)

Here, we have
T = the torque in lb · in.
n = the shaft speed in rpm
F = the tangential force in lb
V = the velocity in fpm

Example 1.4: Power Capacity of Punch Press Flywheel

A high-strength steel flywheel of outer and inner rim diameters do and di, and length in axial direction 
of l, rotates at a speed of n (Figure 1.7). It is to be used to punch metal during two-thirds of a revolution 
of the flywheel. What is the average power available?

Given

do = 0.5 m, n = 1000 rpm, ρ = 7860 kg/m3 (Table B.1)
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Assumptions

 1. Friction losses are negligible.
 2. Flywheel proportions are di = 0.75do and l = 0.18do.
 3. The inertia contributed by the hub and spokes is omitted: the flywheel is considered as a rotat-

ing ring free to expand.

Solution

Through the use of Equations (1.9) and (1.10), we obtain

 θ = ωT I
1
2

2 (1.18)

where

 ( )θ = π = π2
3

2 4 /3rad 

 ( )ω = π =1000 2 /60 104 7 rad/s.  

 

( ) ( )

( ) ( ) ( )( )

= π − ρ

= π −  = ⋅

, .

. . . .

I d d l
32

Case 5 Table A 5

32
0 5 0 375 0 09 7860 2 967 kg m

o i
4 4

4 4 2

 

Introducing the given data into Equation (1.18) and solving T = 3882 N · m. Equation (1.15) is therefore

 

( )= =

= .

Tn
kW

9549

3882 1000

9549

406 5

 

Comment: The braking torque required to stop a similar disk in a two-thirds revolution would have an 
average value of 3.88 kN · m (see Section 16.5).

1.12  STRESS COMPONENTS

Stress is a concept of paramount importance to a comprehension of solid mechanics. It permits the 
mechanical behavior of load-carrying members to be described in terms essential to the analyst and 

Rim Hub

Spoke

(a) (b)

n

l

do
di

FIGURE 1.7 Example 1.4. (a) Punch press flywheel and (b) its cross-section.
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26 Mechanical Engineering Design

designer. Applications of this concept to typical members are discussed in Chapter 3. Consider a 
member in equilibrium, subject to external forces. Under the action of these forces, internal forces, 
and hence stresses, are developed between the parts of the body. In SI units, the stress is measured 
in newtons per square meter (N/m2) or pascals. Since the pascal is very small quantity, the mega-
pascal (MPa) is commonly used. Typical prefixes of the SI units are given in Table A.2. When the 
US customary system is used, stress is expressed in pounds per square inch (psi) or kips per square 
inch (ksi).

The 3D state of stress at a point, using three mutually perpendicular planes of a cubic element 
isolated from a member, can be described by nine stress components (Figure 1.8). Note that only 
three (positive) faces of the cube are actually visible in the figure and that oppositely directed 
stresses act on the hidden (negative) faces. Here, the stresses are considered to be identical on the 
mutually parallel faces and uniformly distributed on each face. The general state of stress at a point 
can be assembled in the form:

 

τ τ τ
τ τ τ
τ τ τ



















=
σ τ τ
τ σ τ
τ τ σ



















xx xy xz

yx yy yz

zx zy zz

x xy xz

yx y yz

zx zy z

 (1.19)

This is a matrix presentation of the stress tensor. It is a second-rank tensor requiring two indices to 
identify its elements. (A vector is a tensor of first rank; a scalar is of zero rank.) The double-subscript 
notation is explained as follows: the first subscript denotes the direction of a normal to the face on 
which the stress component acts; the second designates the direction of the stress. Repetitive sub-
scripts are avoided in this text. Therefore, the normal stresses are designated σx, σy, and σz, as shown 
in Equation (1.19). In Section 3.16, it is demonstrated rigorously for the shear stresses that τxy = τyx, 
τyz = τzy, and τxz = τzx.

1.12.1  sign Convention

When a stress component acts on a positive plane (Figure 1.8) in a positive coordinate direction, 
the stress component is positive. Also, a stress component is considered positive when it acts on a 
negative face in the negative coordinate direction. A stress component is considered negative when 
it acts on a positive face in a negative coordinate direction (or vice versa). Hence, tensile stresses 
are always positive, and compressive stresses are always negative. The sign convention can also 
be stated as follows: a stress component is positive if both the outward normal of the plane on 
which it acts and its direction are in coordinate directions of the same sign, otherwise it is negative. 

z

 τzz = σz

τzy
τzx

τyz τyx

τxy

τxz

x

τyy = σy

τxx = σx

y

FIGURE 1.8 Element in three-dimensional (3D) stress. (Only stresses acting on the positive faces are shown.)
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27Introduction

Figure 1.8 depicts a system of positive normal and shearing stresses. This sign convention for stress, 
which agrees with that adopted for internal forces and moments, is used throughout the text.

1.12.2  sPeCial Cases oF state oF stress

The general state of stress reduces to simpler states of stress commonly encountered in practice. 
An element subjected to normal stresses σ1, σ2, and σ3, acting in mutually perpendicular directions 
alone with respect to a particular set of coordinates, is said to be in a state of triaxial stress. Such a 
stress can be represented as:

 

σ
σ

σ



















0 0

0 0

0 0

1

2

3

 

The absence of shearing stresses indicates that these stresses are the principal stresses for the ele-
ment (Section 3.15).

In the case of two-dimensional (2D) or plane stress, only the x and y faces of the element are 
subjected to stresses (σx, σy, τxy), and all the stresses act parallel to the x and y axes, as shown in 
Figure 1.9a. Although the 3D aspect of the stress element should not be forgotten, for the sake of 
convenience, we usually draw only a 2D view of the plane stress element (Figure 1.9b). A thin plate 
loaded uniformly over the thickness, parallel to the plane of the plate, exemplifies the case of plane 
stress. When only two normal stresses are present, the state of stress is called biaxial.

In pure shear, the element is subjected to plane shear stresses acting on the four side faces only, 
for example, σx = σy = 0 and τxy (Figure 1.9b). Typical pure shear occurs over the cross-sections and 
on longitudinal planes of a circular shaft subjected to torsion. Examples include axles and drive 
shafts in machinery, propeller shafts (Chapter 9), drill rods, torsional pendulums, screwdrivers, 
steering rods, and torsion bars (Chapter 14). If only one normal stress exists, the one-dimensional 
(1D) stress (Figure 1.9c) is referred to as a uniaxial tensile or compressive stress.

1.13  NORMAL AND SHEAR STRAINS

In the preceding section, our concern was with the stress within a loaded member. We now turn to 
deformation caused by the loading, the analysis of which is as important as that of stress. The analy-
sis of deformation requires the description of the concept of strain, that is, the intensity of deforma-
tion. As a result of deformation, extension, contraction, or change of shape of a member may occur. 
To obtain the actual stress distribution within a member, it is necessary to understand the type of 

z

y

x

σy

(a) (b) (c)

σy

σxσx

τxy=τyx
τyx

y y

x x
σy

σy

σx

σx

σx σx

τxy=τyx

τxy

τyx

τyx

FIGURE 1.9 (a) Element in plane stress and (b and c) 2D and 1D presentations of plane stress.
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28 Mechanical Engineering Design

deformation occurring in that member. Only small displacements, commonly found in engineering 
structures, are considered in this text.

The strains resulting from small deformations are small compared with unity, and their products 
(higher-order terms) are neglected. The preceding assumption leads to one of the fundamentals of 
solid mechanics, the principle of superposition that applies whenever the quantity (deformation or 
stress) to be obtained is directly proportional to the applied loads. It permits a complex loading to 
be replaced by two or more simpler loads and thus renders a problem more amenable to solution, as 
will be observed repeatedly in the text.

The fundamental concept of normal strain is illustrated by considering the deformation of the 
homogenous prismatic bar shown in Figure 1.10a. A prismatic bar is a straight bar having constant 
cross-sectional area throughout its length. The initial length of the member is L. Subsequent to 
application of the load, the total deformation is δ. Defining the normal strain ε as the unit change 
in length, we obtain

 ε = δ
L

 (1.20)

A positive sign designates elongation; a negative sign, contraction. The foregoing state of strain is 
called uniaxial strain. When an unconstrained member undergoes a temperature change. ΔT, its 
dimensions change and a normal strain develops. The uniform thermal strain for a homogeneous 
and isotropic material is expressed as:

 ε = α∆Tt  (1.21)

The coefficient of expansion α is approximately constant over a moderate temperature change. It 
represents a quantity per degree Celsius (1/°C) when ΔT is measured in °C.

Shear strain is the tangent of the total change in angle taking place between two perpendicular 
lines in a member during deformation. Inasmuch as the displacements considered are small, we 
can set the tangent of the angle of distortion equal to the angle. Thus, for a rectangular plate of unit 
thickness (Figure 1.10b), the shear strain γ measured in radians is defined as:

 γ = π − β
2

 (1.22)

Here, β is the angle between the two rotated edges. The shear strain is positive if the right angle 
between the reference lines decreases, as shown in the figure; otherwise, the shearing strain is nega-
tive. Because normal strain ε is the ratio of the two lengths, it is a dimensionless quantity. The same 
conclusion applies to shear strain. Strains are also often measured in terms of units mm/mm, in./in., 
and radians or microradians. For most engineering materials, strains rarely exceed values of 0.002 
or 2000 μ in the elastic range. We read this as 2000 μ.

L

P

(a) (b)

δ β

FIGURE 1.10 (a) Deformation of a bar and (b) distortion of a rectangular plate.

ISTUDY

www.konkur.in

Telegram: @uni_k



29Introduction

Example 1.5: Strains in a Plate

Given

A thin, triangular plate ABC is uniformly deformed into a shape ABC, as depicted by the dashed lines 
in Figure 1.11.

Find

 a. The normal strain along the centerline OC.
 b. The normal strain along the edge AC.
 c. The shear strain between the edges AC and BC.

Assumptions

The edge AB is built into a rigid frame. The deformed edges AC = BC ′ are straight lines.

Solution

We have LOC = a and = = = .L L a a2 1 41421AC BC  (Figure 1.11).

 a. Normal strain along OC. Since the contraction in length OC is Δa = −0.0015a, Equation 
(1.20) gives

 ε = − = − = − µ. .a

a

0 0015
0 0015 1500OC  

 b. Normal strain along AC and BC. The lengths of the deformed edges are equal to 
LAC = LBC = [a2 + (a − 0.0015)2]1/2 = 1.41315a. It follows that

 ε = ε = − − = − µ. .
.
a a

a

1 41315 1 41421
1 41421

750AC AC  

 c. Shear strain between AC and BC. After deformation, angle ACB is therefore

 ′ =
−







= °−tan
.

.AC B
a

a a
2

0 0015
90 0861  

  So, the change in the right angle is 90 − 90.086 = − 0.086°. The associated shear strain (in radians) 

equals γ = − π



 = − µ.0 086

180
1501

Comment: Inasmuch as the angle ACB is increased, the shear strain is negative.

Frame

O

a

A B

90°

x

y

C
0.0015aC΄

a

FIGURE 1.11 Example 1.5. Deformation of a triangular plate with one edge fixed.
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PROBLEMS

Sections 1.1 through 1.9
 1.1 A right angle bracket ABC of a control mechanism is subjected to loads F, P, and T, as 

shown in Figure P1.1. Draw an FBD of the member and find
 a. The value of the force F.
 b. The magnitude and direction of reaction at support B.
 1.2 A frame consists of three pin-connected members ABC of length 3a, and ADE and BD 

carry a vertical load W at point E as shown in Figure P1.2.
 Find

 a. The reactions at supports A and C.
 b. The internal forces and moments acting on the cross-section at point O.
 1.3 and 1.4 Two planar pin-connected frames are supported and loaded as shown in 

Figures P1.3 and P1.4. For each structure, determine
 a. The components of reactions at B and C.
 b. The axial force, shear force, and moment acting on the cross-section at point D.
 1.5 The piston, connecting rod, and crank of an engine system are shown in Figure P1.5. 

Calculate
 a. The torque T required to hold the system in equilibrium.
 b. The normal or axial force in the rod AB.

 Given: A total gas force P = 18 kN acts on the piston as indicated in the figure.

F
A

C

5
4

3

P = 68 kN

T = 36 kN

B

0.5 m

0.25 m 0.25 m

FIGURE P1.1 

2a 3a
4a

a

a

D

A
O

C

W

E

B

FIGURE P1.2 
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 1.6 A crankshaft supported by bearings at A and B is subjected to a horizontal force P = 4 kN 
at point C, and a torque T at its right end is in static equilibrium (Figure P1.6).

 Find:
 a. The value of the torque T and the reactions at supports.
 b. The shear force, moment, and torque acting on the cross-section at D.
 Given: a = 120 mm, b = 50 mm, d = 70 mm, P = 4 kN.

 1.7 A structure, constructed by joining a beam AB with bar CD by a hinge, is under a weight 
W = 30 kN and a horizontal force P = 60 kN, as depicted in Figure P1.7. Draw an FBD of 
the beam AB and compute the reactions at support A.

 1.8 A planar frame is supported and loaded as shown in Figure P1.8. Determine the reaction at 
hinge B.

4 m
Hinge

8 kN/m

2 m

2 m1 m3 m

D

10 kN

C

A

B

FIGURE P1.3 

2 m

B

A

D

C

1 m

1 m 1 m

40 kN

1.5 m 1.5 m

FIGURE P1.4 

P
A

B

T

C

0.15 m

0.2 m0.5 m

FIGURE P1.5 
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32 Mechanical Engineering Design

 1.9 A hollow transmission shaft AB is supported at A and E by bearings and loaded as depicted 
in Figure P1.9. Calculate

 a. The torque T required for equilibrium.
 b. The reactions at the bearings.

 Given: F1 = 4 kN, F2 = 3 kN, F3 = 5 kN, F4 = 2 kN.

P

b

z

C

D
d

y

a
a

A

B

T x

FIGURE P1.6 

W = 30 kN

2.1 m

1.2 m

2.4 m

Link
D

C

A

O

B

1.8 m

1.2 m

1.8 m
P = 60 kN

FIGURE P1.7 

Hinge

72 kN/m

B C

D

A

1.8 m 1.2 m

1.2 m

1.2 m

FIGURE P1.8 
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 1.10 A crank is built in at left end A and subjected to a vertical force P = 2 kN at D, as shown in 
Figure P1.10.

 a. Sketch FBDs of the shaft AB and the arm BC.
 b. Find the values and directions of the forces, moments, and torque at C, at end B of arm 

BC, at end B of shaft AB, and at A.
 1.11 A pipe formed by three perpendicular arms AB, BC, and CD lying in the x, y, and z direc-

tions, respectively, is fixed at left end A (Figure P1.11). The force P = 200 N acts at point E 
by a wrench. Draw the FBD of the entire pipe and determine the reactions at A.

 1.12 Resolve Problem 1.11 for the case in which the entire piping is constructed of a 75 mm (3 
in.) nominal diameter standard steel pipe.

 Assumption: The weight of the pipe (see Table A.4) will be taken into account.
 1.13 Pin-connected members ADB and CD carry a load W applied by a cable-pulley arrange-

ment, as shown in Figure P1.13. Determine
 a. The components of the reactions at A and C.
 b. The axial force, shear force, and moment acting on the cross-section at point G.

 Given: The pulley at B has a radius of 150 mm. Load W = 1.6 kN.

y
F1 F2

0.3 m

T

E

F3

F4

x

D

C

A

z

1 m

1 m

0.5 m
0.5 m

0.3 m

B

FIGURE P1.9 

y

A

z

125 mm

B

x

C

25 mm

P = 2 kN

100 mm

D

FIGURE P1.10 
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 1.14 A bent rod is supported in the xz plane by bearings at B, C, and D and loaded as shown 
in Figure P1.14. Calculate the moment and shear force in the rod on the cross-section at 
point E, for P1 = 200 N and P2 = 300 N.

 1.15 Redo Problem 1.14, for a case in which P1 = 0 and P2 = 400 N.
 1.16 A gear train is used to transmit a torque T = 150 N ⋅ m from an electric motor to a driven 

machine (Figure P1.16). Determine the torque acting on the driven machine shaft, Td, 
required for equilibrium.

y

z A

300 mm

E

x

150 mm

180 mm

P = 200 N

C

B

D

200 mm

FIGURE P1.11 

B

0.4 m
A

C

E

0.4 m
0.5 m 1.0 m W

Cable

D G

FIGURE P1.13 

z

P1

B

A

100
250

200

175
C

x

100

150
P2

D

E

FIGURE P1.14 Dimensions are in millimeters.

ISTUDY

www.konkur.in

Telegram: @uni_k



35Introduction

 1.17 A planar frame formed by joining a bar with a beam with a hinge is loaded as shown in 
Figure P1.17. Calculate the axial force in the bar BC.

 1.18 A frame AB and a simple beam CD are supported as shown in Figure P1.18. A roller fits 
snugly between the two members at E. Determine the reactions at A and C in terms of 
load P.

Section 1.10
 1.19 Consider a conventional air compressor, like a small internal combustion engine, which 

has a crankshaft, a connecting rod and piston, a cylinder, and a valve head. The crankshaft 
is driven by either an electric motor or a gas engine. Note that the compressor has an air 
tank to hold a quantity of air within a preset pressure range that drives the air tools.

da = 100 mm

db = 200 mm

Motor T

A

Td
B

C

dc = 100 mm

To driven
machine

D
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36 Mechanical Engineering Design

  Given: The compressor’s crankshaft (such as in Figure P1.6) is rotating at a constant 
speed n. Mean air pressure exerted on the piston during the compression period equals 
p. The piston area, piston stroke, and compressor efficiency are A, L, and e, respectively. 
Data:

  A = 2100 mm2, L = 60 mm, e = 90%, n = 1500 rpm, p = 1.2 MPa.
 Find

 a. Motor power (in kW) required to drive the crankshaft.
 b. Torque transmitted through the crankshaft.
 1.20 A car of weight with its center of gravity located at G is shown in Figure P1.20. Find the 

reactions between the tires and the road.
 a. When the car travels at a constant speed V with an aerodynamic drag of 18 hp.
 b. If the car is at rest.
  Given: a = 1.5 m, b = 0.55 m, c = 0.625 m, L = 2.7 m, V = 29 m/s, W = 14.4 kN. 
  Assumptions: The car has front wheel drive. Vertical aerodynamic forces are omitted. 

Drag force Fd may be approximated by Equation (1.17).
 1.21 Redo Problem 1.20, for a case in which the car has rear-wheel drive and its load acting at 

G is increased about 5.4 kN.
 1.22 A shaft ABC is driven by an electric motor, which rotates at a speed of n and delivers 

35 kW through the gears to a machine attached to the shaft DE (Figure P1.22). Draw the 
FBD of the gears and find

 a. Tangential force F between the gears.
 b. Torque in the shaft DE.

 Given: rA = 125 mm, rD = 75 mm, n = 500 rpm.
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 1.23 The input shaft to a gearbox operates at speed of n1 and transmits a power of 23 kW. The 
output power is 20 kW at a speed of n2. What is the torque of each shaft (in kN · m) and the 
efficiency of the gearbox?

 Given: n1 = 1800 rpm, n2 = 425 rpm.
 1.24 A punch press with a flywheel produces N punching strokes per minute. Each stroke pro-

vides an average force of F over a stroke of s. The press is driven through a gear reducer by 
a shaft. Overall efficiency is e. Determine

 a. The power output.
 b. The power transmitted through the shaft.

 Given: N = 150, F = 2.25 kN, s = 62.5 mm, e = 88%.
 1.25 A rotating ASTM A-48 cast iron flywheel has outer rim diameter do, inner rim diameter di, 

and length in the axial direction of l (Figure 1.7). Calculate the braking energy required in 
slowing the flywheel from 1200 to 1100 rpm.

 Assumption: The hub and spokes add 5% to the inertia of the rim.
 Given: do = 400 mm, di = 0.75do, l = 0.25do, ρ = 7200 kg/m3 (see Table B.1).

Sections 1.11 and 1.12
 1.26 A pin-connected frame ABCD consists of three bars and a wire (Figure P1.26). Following 

the application of a horizontal force F at joint B, joint C moves 0.4 in. to the right, as 
depicted by the dashed lines in the figure. Compute the normal strain in the wire.

 Assumptions: The bars will be taken as rigid and weightless. Inasmuch as the angle of 
rotation of bar DC is very small, the vertical coordinate of C′ can be taken to be equal to 
its length: LDC ≈ LDC cos α. Similarly, LAB ≈ LAB cos α.

 1.27 A hollow cylinder is under an internal pressure that increases its 300 mm inner diameter 
and 500 mm outer diameter by 0.6 and 0.4 mm, respectively. Calculate

 a. The maximum normal strain in the circumferential direction.
 b. The average normal strain in the radial direction.
 1.28 A thin triangular plate ABC is uniformly deformed into a shape ABC, as shown by the 

dashed lines in Figure P1.28. Determine
 a. The normal strain in the direction of the line OB.
 b. The normal strain for the line AB.
 c. The shear strain between the lines AB and AC.
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38 Mechanical Engineering Design

 1.29 A 200 mm × 250 mm rectangle ABCD is drawn on a thin plate prior to loading. After load-
ing, the rectangle has the dimensions shown by the dashed lines in Figure P1.29. Calculate, 
at corner point A,

 a. The normal strains εx and εy.
 b. The final length of side AD.
 1.30 A thin rectangular plate, a = 200 mm and b = 150 mm (Figure P1.30), is acted on by a biax-

ial tensile loading, resulting in the uniform strains εx = 1000 μ and εy = 800 μ. Determine 
the change in length of diagonal BD.

 1.31 When loaded, the plate of Figure P1.31 deforms into a shape in which diagonal AC elongates 
0.2 mm and diagonal BD contracts 0.5 mm while they remain perpendicular. Calculate the 
average strain components εx, εy, and γxy.
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FIGURE P1.28 
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 1.32 A rigid bar ABC is attached to the links AD and BE as illustrated in Figure P1.32. After 
the load W is applied, point C moves 5 mm downward, and the axial strain in the bar AD 
equals 800 μ. What is the axial strain in the bar BE?

 1.33 As a result of loading, the thin rectangular plate (Figure P1.30) deforms into a parallelo-
gram in which sides AB and CD shorten 0.004 mm and rotate 1000 μ rad counterclockwise, 
while sides AD and BC elongate 0.006 mm and rotate 200 μ rad clockwise. Determine, at 
corner point A,

 a. The normal strains εx and εy, and the shear strain γxy.
 b. The final lengths of sides AB and AD.

 Given: a = 50 mm, b = 25 mm.

y
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2 Materials

2.1  INTRODUCTION

A great variety of materials has been produced, and more are being produced, in seemingly endless 
diversification. Material may be crystalline or non-crystalline. A crystalline material is made up 
of a number of small units called crystals or grains. Most materials must be processed before they 
are usable. Table 2.1 gives a general classification of engineering materials. This book is concerned 
with the macroscopic structural behavior: properties that are based on experiments using samples of 
materials of appreciable size. It is clear that a macroscopic structure includes a number of elemen-
tary particles forming a continuous and homogeneous structure held together by internal forces. The 
website at www.matweb.com offers extensive information on materials.

In this chapter, the mechanical behavior, characteristics, treatment, and manufacturing processes 
of some common materials are briefly discussed. A review of the subject matter presented empha-
sizes how a viable as well as an economic design can be achieved. Later chapters explore typical 
material failure modes in more detail. The average properties of selected materials are listed in 
Table B.1 in Appendix B [1–4]. Unless specified otherwise, we assume in this text that the material 
is homogeneous and isotropic. With the exception of Sections 2.10 and 5.10, our considerations are 
limited to the behavior of elastic materials. Note that the design of plate and shell-like members, 
for example, as components of a missile or space vehicle, involves materials having characteristics 
dependent on environmental conditions. We refer to the ordinary properties of engineering materi-
als in this volume. It is assumed that the reader has had a course in material science.

2.2  MATERIAL PROPERTY DEFINITIONS

Mechanical properties are those that indicate how the material is expected to behave when sub-
jected to varying conditions of load and environment. These characteristics are determined by stan-
dardized destructive and nondestructive test methods outlined by the American Society for Testing 
and Materials (ASTM). A thorough understanding of material properties permits the designer to 
determine the size, shape, and method of manufacturing mechanical components.

Durability denotes the ability of a material to resist destruction over long periods of time. The 
destructive conditions may be chemical, electrical, thermal, or mechanical in nature, or be combi-
nations of these conditions. The relative ease with which a material may be machined, or cut with 
sharp-edged tools, is termed its machinability. Workability represents the ability of a material to 
be formed into a required shape. Usually, malleability is considered a property that represents the 
capacity of a material to withstand plastic deformation in compression without fracture. We see in 
Section 2.10 that hardness may represent the ability of a material to resist scratching, abrasion, cut-
ting, or penetration.

Frequently, the limitations imposed by the materials are the controlling factors in design. 
Strength and stiffness are the main factors considered in the selection of a material. However, for a 
particular design, durability, malleability, workability, cost, and hardness of the materials may be 
equally significant. In considering the cost, attention focuses not only on the initial cost, but also 
on the maintenance and replacement costs of the part. Therefore, selecting a material from both 
functional and economic standpoints is vitally important.

An elastic material returns to its original dimensions on removal of applied loads. This elastic 
property is called elasticity. Usually, the elastic range includes a region throughout which stress and 
strain have a linear relationship. The elastic portion ends at a point called the proportional limit. 
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42 Mechanical Engineering Design

Such materials are linearly elastic. In a viscoelastic solid, the state of stress is a function of not only 
the strain, but the time rates of change of stress and strain as well. A plastically deformed member 
does not return to its initial size and shape when the load is removed.

A homogenous solid displays identical properties throughout. If properties are the same in all 
directions at a point, the material is isotropic. A composite material is made up of two or more 
distinct constituents. A non-isotropic, or anisotropic, solid has direction-dependent properties. 
Simplest among them is that the material properties differ in three mutually perpendicular direc-
tions. A material so described is orthotropic. Some wood material may be modeled by orthotropic 
properties. Many manufactured materials are approximated as orthotropic, such as corrugated and 
rolled metal sheets, plywood, and fiber-reinforced concrete.

The capacity of a material to undergo large strains with no significant increase in stress is called 
ductility. Thus, a ductile material is capable of substantial elongation prior to failure. Such materi-
als include mild steel, nickel, brass, copper, magnesium, lead, and Teflon. The converse applies to a 
brittle material. A brittle material exhibits little deformation before rupture, for example, concrete, 
stone, cast iron, glass, ceramic materials, and many metallic alloys. A member that ruptures is 
said to fracture. Metals with strains at rupture in excess of 0.05 in./in. in the tensile test are some-
times considered to be ductile [5]. Note that, generally, ductile materials fail in shear, while brittle 
materials fail in tension. Further details on material property definitions are found in Sections 2.12 
through 2.14, where descriptions of metal alloys, the numbering system of steels, typical nonmetal-
lic materials, and material selection are included.

2.3  STATIC STRENGTH

In analysis and design, the mechanical behavior of materials under load is of primary importance. 
Experiments, mainly in tension or compression tests, provide basic information about the overall 
response of specimens to the applied loads in the form of stress–strain diagrams. These curves are 

TABLE 2.1
Some Commonly Used Engineering Materials
Metallic materials

Ferrous metals Nonferrous metals

 Cast iron  Aluminum

 Malleable iron  Chromium

 Wrought iron  Copper

 Cast steel  Lead

 Plain carbon steel  Magnesium

 Steel alloys  Nickel

 Stainless steel  Platinum

 Tool steel  Silver

 Special steels  Tin

 Structural steel  Zinc

Nonmetallic materials

Carbon and graphite Plastics

Ceramics Brick

Cork Stone

Felt Elastomer

Glass Silicon

Concrete Wood
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43Materials

used to explain a number of mechanical properties of materials. Data for a stress–strain diagram are 
usually obtained from a tensile test. In such a test, a specimen of the material, usually in the form 
of a round bar, is mounted in the grips of a testing machine and subjected to tensile loading, applied 
slowly and steadily or statically at room temperature (Figure 2.1). The ASTM specifies precisely the 
dimensions and construction of standard tension specimens.

The tensile test procedure consists of applying successive increments of load while taking cor-
responding electronic extensometer readings of the elongation between the two gage marks (gage 
length) on the specimen. During an experiment, the change in gage length is noted as a function 
of the applied load. The specimen is loaded until it finally ruptures. The force necessary to cause 
rupture is called the ultimate load. Figure 2.2 illustrates a steel specimen that has fractured under 
load, and the extensometer attached at the right by two arms to it. Based on the test data, the stress 
in the specimen is found by dividing the force by the cross-sectional area, and the strain is found by 
dividing the elongation by the gage length. In this manner, a complete stress–strain diagram, a plot 
of strain as abscissa and stress as the ordinate, can be obtained for the material. The stress–strain 
diagrams differ widely for different materials.

2.3.1  stress–strain diagrams For duCtile materials

A typical stress–strain plot for a ductile material such as structural or mild steel in tension is shown 
in Figure 2.3a. Curve OABCDE is a conventional or engineering stress–strain diagram. The other 
curve, OABCF, represents the true stress–strain. The true stress refers to the load divided by the 

FIGURE 2.1 Tensile loading machine with automatic data-processing system (Courtesy of MTS Systems 
Corp.).
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44 Mechanical Engineering Design

actual instantaneous cross-sectional area of the bar; the true strain is the sum of the elongation 
increments divided by the corresponding momentary length. For most practical purposes, the con-
ventional stress–strain diagram provides satisfactory information for use in design.

We note that engineering stress (σ) is defined as load per unit area, and for the tensile specimen 
is calculated from

 σ = P

A
 (a)

Su

Sy
Sp

O

(a) (b)

Yielding

Elastic range
Plastic range

Strain
hardening

Necking

h

ε

ε

σ 
(M

Pa
)
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B C
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1

g
E

50.0 01.0 51.0 02.0 52.0 03.00

140
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C

E

D
420
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D

E

FIGURE 2.3 Stress–strain diagram for a typical structural steel in tension: (a) not drawn to scale and 
(b) drawn to scale.

FIGURE 2.2 A tensile test specimen with extensometer attached; the specimen has fractured (Courtesy of 
MTS Systems Corp.).
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45Materials

where
P is the applied load at any instant
A represents the original cross-sectional area of the specimen

The stress is assumed to be uniformly distributed across the cross-section. The engineering strain (ε) 
is given by Equation (1.20). A detailed analysis of stress and strain will be taken up in the next chapter.

2.3.1.1  Yield Strength
The portion OA of the diagram is the elastic range. The linear variation of stress–strain ends at the 
proportional limit, Sp, point A. The lowest stress (point B) at which there is a marked increase in 
strain without a corresponding increase in stress is referred to as the yield point or yield strength Sy. 
For most cases, in practice, the proportional limit and yield point are assumed to be one: Sp ≈ Sy. 
In the region between B and C, the material becomes perfectly plastic, meaning that it can deform 
without an increase in the applied load.

2.3.1.2  Strain Hardening: Cold Working
The elongation of a mild steel specimen in the yield (or perfect plasticity) region BC is typically 
10–20 times the elongation that occurs between the onset of loading and the proportional limit. The 
portion of the stress–strain curve extending from A to the point of fracture (E) is the plastic range. 
In the range CD, an increase in stress is required for a continued increase in strain. This is called 
the strain hardening or cold working. If the load is removed at a point g in region CD, the mate-
rial returns to no stress at a point h along a new line parallel to the line OA: a permanent set Oh 
is introduced. If the load is reapplied, the new stress–strain curve is hgDE. Note that there is now 
new yield point (g) that is higher than before (point B), but reduced ductility. This process can be 
repeated until the material becomes brittle and fractures.

2.3.1.3  Ultimate Tensile Strength
The engineering stress diagram for the material when strained beyond C displays a typical ultimate 
stress (point D), referred to as the ultimate or tensile strength Su. Additional elongation is actually 
accompanied by a reduction in the stress, corresponding to fracture strength Sf (point E) in the 
figure. Failure at E occurs by separation of the bar into two parts (Figure 2.2), along the cone-
shaped surface forming an angle of approximately 45° with its axis that corresponds to the planes 
of maximum shear stress In the vicinity of the ultimate stress, the reduction of the cross-sectional 
area or the lateral contraction becomes clearly visible, and a pronounced necking of the bar occurs 
in the range DE. An examination of the ruptured cross-sectional surface depicts a fibrous structure 
produced by the stretching of the grains of the material.

Interestingly, the standard measures of ductility of a material are defined on the basis of the 
geometric change of the specimen, as follows:

 ( )= −L L

L
Percent elongation 100f 0

0

 (2.1)

 ( )= −A A

A
Percent reduction in area 1000 f

0

 (2.2)

Here, A0 and L0 denote, respectively, the original cross-sectional area and gage length of the speci-
men. Clearly, the ruptured bar must be pieced together to measure the final gage length Lf. Similarly, 
the final area Af is measured at the fracture site where the cross-section is minimal. Note that the 
elongation is not uniform over the length of the specimen but concentrated in the region of the neck-
ing. Therefore, percentage elongation depends on the gage length.
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46 Mechanical Engineering Design

The diagram in Figure 2.3a depicts the general characteristics of the stress–strain diagram for 
mild steel, but its proportions are not realistic. As already noted, the strain between B and C may 
be about 15 times the strain between O and A. Likewise, the strains from C to E are many times 
greater than those from O to A. Figure 2.3b shows a stress–strain curve for mild steel drawn to 
scale. Clearly the strains from O to A are so small that the initial part of the curve appears to be a 
vertical line.

2.3.1.4  Offset Yield Strength
Certain materials, such as heat-treated steels, magnesium, aluminum, and copper, do not show a 
distinctive yield point, and it is usual to use a yield strength Sy at an arbitrary strain. According to 
the so-called 0.2% offset method, a line is drawn through a strain of 0.002 (that is 0.2%), parallel 
to the initial slope at point O of the curve, as shown in Figure 2.4. The intersection of this line with 
the stress–strain curve defines the offset yield strength (point B). For the materials mentioned in the 
preceding discussion, the offset yield strength is slightly above the proportional limit.

2.3.2  stress–strain diagram For Brittle materials

The tensile behavior of gray cast iron, a typical brittle material, is shown in Figure 2.5a. We observe 
from the diagram that rupture occurs with no noticeable prior change in the rate of elongation. 
Therefore, for brittle materials, there is no difference between the ultimate strength and the fracture 
strength. Also, the strain at the rupture is much smaller for brittle materials than ductile materials. 
The stress–strain diagrams for brittle materials are characterized by having no well-defined linear 
region. The fracture of these materials is associated with the tensile stresses. Therefore, a brittle 
material breaks normal to the axis of the specimen (Figure 2.5b), because this is the plane of maxi-
mum tensile stress.

2.3.3  stress–strain diagrams in ComPression

Compression stress–strain curves, analogous to those in tension, may also be obtained for a variety 
of materials. Most ductile materials behave approximately the same in tension and compression 
over the elastic range. For these materials, the yield strength is about the same in tension and com-
pression: Sy ≈ Syc, where the subscript c denotes compression. But in the plastic range, the behavior 
is quite different. Since compression specimens expand instead of necking down, the compressive 
stress–strain curve continues to rise instead of reaching a maximum and dropping off.

A material having basically equal tensile and compressive strengths is termed an even material. 
For brittle materials, the entire compression stress–strain diagram has a shape similar to the shape 
of the tensile diagram. However, brittle materials usually have characteristic stresses in compression 

σ
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O
0.2%
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line
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FIGURE 2.4 Determination of yield strength by the offset method.
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that are much greater than in tension. A material that has different tensile and compressive strengths 
is referred to as an uneven material.

It is interesting to note that the strength of a machine component depends on its geometry and mate-
rial as well as the type of loading it will experience. The strength of most metals is directly associated 
with the yield strength Sy of the material. When dealing with polymers or ceramics, the strength of 
interest is the ultimate strength Su at the break or fracture, respectively, rather than the yield strength as 
for metals (see Example 2.5). Properties of a variety of nonmetals will be discussed in later sections.

2.4  HOOKE’S LAW AND MODULUS OF ELASTICITY

Most engineering materials have an initial region on the stress–strain curve where the material 
behaves both elastically and linearly. The linear elasticity is a highly important property of materi-
als. For the straight-line portion of the diagram (Figure 2.3), the stress is directly proportional to 
the strain. Therefore,

 σ = εE  (2.3)

This relationship between stress and strain for a bar in tension or compression is known as Hooke’s 
law. The constant E is called the modulus of elasticity, elastic modulus, or Young’s modulus. 
Inasmuch as ε is a dimensionless quantity, E has units of σ. In SI units, the elastic modulus is 
measured in newtons per square meter (or pascals), and in the US customary system of units, it is 
measured in pounds per square inch (psi).

Equation (2.3) is highly significant in most of the subsequent treatment; the derived formulas 
are based on this law. We emphasize that Hooke’s law is valid only up to the proportional limit of 
the material. The modulus of elasticity is seen to be the slope of the stress–strain curve in the lin-
early elastic range and is different for various materials. The E represents the stiffness of material 
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FIGURE 2.5 Gray cast iron in tension: (a) stress–strain diagram and (b) fractured specimen.
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in tension or compression. It is obvious that a material has a high elastic modulus value when its 
deformation in the elastic range is small.

Similarly, linear elasticity can be measured in a member subjected to pure shear loading. 
Referring to Equation (2.3), we now have

 τ = γG  (2.4)

This is the Hooke’s law for shear stress τ and shear strain γ. The constant G is called the shear mod-
ulus of elasticity or modulus of rigidity of the material, expressed in the same units as E: pascals or 
psi. The values of E and G for common materials are included in Table B.1.

We note that the slope of the stress–strain curve above the proportional limit is the tangent 
modulus Et. That is, Et = dσ/dε. Likewise, the slope of a line from the origin to the point on the 
stress–strain curve above the proportional limit is known as the Secant modulus Es. Therefore, 
Es = σ/ε. Below the proportional limit, both Et and Es equal E.

In the elastic range, the ratio of the lateral strain to the axial strain is constant and known as 
Poisson’s ratio:

 = −v
Lateral strain
Axial strain  (2.5)

Here, the minus sign means that the lateral or transverse strain is of sense opposite to that of the 
axial strain.* Figure 2.6 depicts the lateral contraction of a rectangular parallelepiped element of 
side lengths a, b, and c in tension. Observe that the faces of the element at the origin are assumed 
to be fixed in position. The deformations are greatly exaggerated, and the final shape of the element 
is shown by the dashed lines in the figure. The preceding definition is valid only for a uniaxial 
state of stress. Experiments show that, in most common materials, the values of v are in the range 
0.25–0.35. For steels, Poisson’s ratio is usually assumed to be 0.3. Extreme cases include v = 0.1 for 
some concretes and v = 0.5 for rubber (Table B.1).

Example 2.1: Deformation and Stress in a Tension Bar

A tensile test is performed on an aluminum specimen of diameter d0 and gage length of L0 (see  
Figure 2.7). When the applied load reaches a value of P, the distance between the gage marks has 
increased by ΔL while the diameter of the bar has decreased by Δd.

* It should be mentioned that there are some solids with a negative Poisson’s ratio. These materials become fatter in the 
cross-section when stretched [6].

Original shape
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FIGURE 2.6 Axial elongation and lateral contraction of an element in tension (Poisson’s effect).
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Given: d0 = 50 mm, Δd = 0.01375 mm, Lo = 250 mm, ΔL = 0.2075 mm, P = 114 kN

Find:

 a. Axial and lateral strains
 b. Poisson’s ratio
 c. Normal stress and modulus of elasticity

Solution

 a. Lateral or transverse strain is equal to

 ε = ∆ = − = − = − µ. .d

d

0 01375
50

0 000275 275l
0

 

 where the transverse strain is negative, since the diameter of the bar decreases by Δd
  Axial strain, from Equation (1.20), is

 ε = ∆ = = = µ. .L

L

0 2075
250

0 00083 830a
0

 

 b. Poisson’s ratio, using Equation (2.5) is

 ν ( )= − ε
ε

= − − = .275

830
0 33t

a

 

 c. We have (see Section 2.3) the normal stress:

 
( )

( )
σ = = π =

.
.P

A

114 10

4
0 05

58 06 MPaa

3

2
 

  Modulus of elasticity, by Equation (2.3), is then

 
( )

( )= σ
ε

= =−

.
E

58 06 10

830 10
70 GPaa

a

6

6
 

Comments: The stress obtained (58.06 MPa) is well within the yield strength of the material (260 
MPa, from Table B.1). We note that, practically, when properties such as Poisson’s ratio and modulus 
of elasticity are studied, it is best to work with the corresponding stress–strain diagram, assuring that 
these quantities are associated with the elastic range of the material behavior.

2.5  GENERALIZED HOOKE’S LAW

For a 2D or 3D state of stress, each of the stress components is taken to be a linear function of the 
components of strain within the linear elastic range. This assumption usually predicts the behavior 

d0

P P

L0

FIGURE 2.7 Example 2.1. A tensile specimen.
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of engineering materials with good accuracy. In addition, the principle of superposition applies under 
multiaxial loading, since strain components are small quantities. In the following development, we rely 
on certain experimental evidence to derive the stress–strain relations for linearly elastic isotropic mate-
rials: a normal stress creates no shear strain whatsoever, and shear stress produces only shear strain.

Consider now an element of unit thickness subjected to a biaxial state of stress (Figure 2.8). Under 
the action of the stress σx, not only would the direct strain σx/E occur, but a y contraction as well, −vσx/E. 
Likewise, were σy to act, only an x contraction −vσy/E and a y strain σy/E would result. Therefore, 
simultaneous action of both stresses σx and σy results in the following strains in the x and y directions:

 ε = σ − σ
E

v
E

x
x y  (2.6a)

 ε = σ − σ
E

v
E

y
y x  (2.6b)

The elastic stress−strain relation, Equation (2.4), for the state of 2D pure shear, is given by

 γ = τ
G

xy
xy  (2.6c)

Inversion of Equations (2.6a) and (2.6b) results in the stress–strain relationships of the form

 

( )

( )

σ =
−

ε + ε

σ =
−

ε + ε

τ = γ

E

v
v

E

v
v

G

1

1

x x y

y y x

xy xy

2

2  (2.7)

Equations 2.6 and 2.7 represent Hooke’s law for 2D stress.
The foregoing procedure is easily extended to a 3D stress state (Figure 1.9). Then, the strain–

stress relations, known as the generalized Hooke’s law, consist of the following expressions:

 

( )

( )

( )

ε = σ − σ + σ 

ε = σ − σ + σ 

ε = σ − σ + σ 

E
v

E
v

E
v

1

1

1

x x y z

y y x z

z z x y

 (2.8)
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FIGURE 2.8 Element deformations caused by biaxial stress.
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 , ,
G G G

xy
xy

yz
yz

xz
xzγ = τ γ = τ γ = τ

 

The shear modulus of elasticity G is related to the modulus of elasticity E and Poisson’s ratio v. It 
can be shown that

 ( )=
+

G
E

v2 1
 (2.9)

So, for an isotropic material, there are only two independent elastic constants. The values of E 
and G are determined experimentally for a given material, and v can be found from the preceding 
basic relationship. Since the value of Poisson’s ratio for ordinary materials is between 0 and 1/2, we 
observe from Equation (2.9) that G must be between (1/3)E and (1/2)E.

2.5.1  volume Change

The unit change in volume e, the change in volume ΔV per original volume Vo, in elastic materials 
subjected to stress is defined by

 = ∆ = ε + ε + εe
V

V
x y z

0

 (2.10)

The shear strains cause no change in volume. The quantity e is also referred to as dilatation. 
Equation (2.10) can be used to calculate the increase or decrease in volume of a member under load-
ing, provided that the strains are known.

Based on the generalized Hooke’s law, the dilatation can be found in terms of stresses and mate-
rial constants. Using Equation (2.8), the stress–strain relationships may be expressed as follows:

 

σ = ε + λ τ = γ

σ = ε + λ τ = γ

σ = ε + λ τ = γ

G e G

G e G

G e G

2

2

2

x x xy xy

y y yz yz

z z xz xz

 (2.11)

In the preceding, we have

 ( )= ε + ε + ε = − σ + σ + σe
v

E

1 2
x y z x y z  (2.12)

 ( )( )λ =
+ −

vE

v v1 1 2
 (2.13)

where λ is an elastic constant.
When an elastic member is subjected to a hydrostatic pressure p, the stresses are σx = σy = σz = −p 

and τxy = τyz = τxz = 0. Then, Equation (2.12) becomes e = −3(1−2v)p/E. This may be written in the fol-
lowing form:

 ( )= − =
−

K
p

e

E

v3 1 2
 (2.14)

The quantity K represents the modulus of volumetric expansion or the so-called bulk modulus of 
elasticity. Equation (2.14) shows that, for incompressible materials (e = 0), v = 1/2. For most materials, 
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however, v < 1/2 (Table B.1). Note that, in the perfectly plastic region behavior of a material, no vol-
ume change occurs, and hence, Poisson’s ratio may be taken as 1/2.

Example 2.2: Determination of Displacements of a Plate

A steel panel of a device is approximated by a plate of thickness t, width b, and length a, subjected to 
stresses σx and σy, as shown in Figure 2.9. Calculate

 a. The value of σx for which length a remains unchanged
 b. The final thickness t′ and width b′
 c. The normal strain for the diagonal AC
 d. The change in volume of the plate

Given: a = 400 mm, b = 300 mm, t = 6 mm, E = 200 GPa, v = 0.3, and σy = 220 MPa.

Assumption: The plate is in plane state of stress.

Solution

Inasmuch as the length does not change, we have εx = 0. In addition, plane stress σz = 0. Then, Equation 
(2.8) becomes

 σ = σvx y (2.15a)

 

( )

( )

ε = σ − σ

ε = − σ − σ

E
v

v

E

1
y y x

z x y

 (2.15b)

 a. The given data are carried into Equation (2.15a) to yield

 ( )σ = × =.0 3 220 10 66 MPax
6  

 b. Through the use of Equation (2.15b), we obtain

 ( ) ( )ε = −  = µ.10

200 10
220 0 3 66 1001y

6

9
 

y
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σx

x
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FIGURE 2.9 Example 2.2. Plate in biaxial stress.
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 ( ) ( )ε = − + = − µ.0 3

200 10
66 220 429z 3

 

 In the foregoing, a minus sign means a decrease in the thickness. Therefore,

 ( ) ( )′ = + ε = =. .t t 1 6 0 9996 5 998 mmz  

 ( ) ( )′ = + ε = =. .b b 1 300 1 0010 300 300 mmy  

 c. The original and final lengths of the diagonal are, respectively,

 ( )= + =AC 300 400 500 mm2 2
1

2  

 ( )′ ′ = + =. .A C 300 300 400 500 180 mm2 2
1

2  

 Note that A′C′ is not shown in Figure 2.9. The normal strain for the diagonal is

 ε = − = µ.500 180 500
500

360AC  

Comment: Alternatively, this result may readily be found by using the strain transformation equations, 
to be discussed in Section 3.11.

 d. Change in volume, applying Equation (2.12), is

 

( )

[ ]( )
( )

= − = σ + σ + σ

= − + + = × −. .

e
v

E

1 2

1 2 0 3

200 10
66 220 0 10 0 57 10

x y z

9
6 3

 

 Equation (2.10) is therefore

 ( )( )∆ = = × × × =−.V eV 0 57 10 400 300 6 410 mmo
3 3 

Comment: The positive sign indicates an increase in the volume of the plate.

Example 2.3: Volume Change of a Cylinder under Biaxial Loads

A solid brass cylinder of diameter d and length L (Figure 2.10) is under axial and radial pressures 210 
and 84 MPa, respectively.

Find: The change in

 a. The length ΔL and diameter Δd
 b. The volume of the cylinder ΔV

Given: d = 125 mm, L = 200 mm, and E = 105 GPa, v = 0.34 (from Table B.1).

Assumption: Cylinder deforms uniformly.
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Solution

Axial stress σx = −210 MPa and along any diameter radial stresses σy = σz = σ = −84 MPa. Applying 
Equation (2.8), associated strains are found as follows:

 
[ ]

( )( )

( )ε = − σ − σ + σ

= −
×

− +  = − µ.

E
v

1

10
105 10

210 0 34 84 84 1456

x x

6

9

 

and

 

( )

( )( )

ε = ε = ε = − σ − σ + σ 

= −
×

− +  = µ.

E
v

1

10
105 10

84 0 34 84 210 152

y z x

6

9

 

 a. Changes in length and diameter. Decrease in length and increase in diameter are, respectively,

 .L L 1456 10 200 291 2 10 mmx
6 3( ) ( )( )∆ = ε = − × = −− −  

 d d 152 10 125 19 10 mm6 3( ) ( )( )∆ = ε = × =− −  

 b. Volume change. Using Equation (2.12), we have

 

( )

= ε + ε

= − + × = − ×− −

e 2

1456 2 152 10 1152 10

x

6 6

 

 It follows, from Equation (2.10), that

 

.

V Ve

1152 10 62 5 200 2827 mm

o

6 2 3( ) ( ) ( )

∆ =

= − × π  = −−

 

Comment: A negative sign means a decrease in the volume of the cylinder.

x

z

y

L

d

FIGURE 2.10 Example 2.3. A solid cylinder.
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2.6  THERMAL STRESS–STRAIN RELATIONS

When displacements of a heated isotropic member are prevented, thermal stresses occur. The 
effects of such stresses can be severe, particularly since the most adverse thermal environments are 
frequently associated with design requirements dealing with unusually stringent constraints as to 
weight and volume. The foregoing is especially true in aerospace and machine design (e.g., engine, 
power plant, and industrial process) applications.

The total strains are obtained by adding thermal strains of the type described by Equation (1.21) 
and the strains owing to the stress resulting from mechanical loads. In doing so, for instance, refer-
ring to Equation (2.6) for 2D stress,

 

E
v T

E
v T

E

1

1

x x y

y y x

xy
xy

( )

( )

ε = σ − σ + α

ε = σ − σ + α

γ = τ

 (2.16)

From these equations, we obtain the stress–strain relations as

 

E

v
v

E T

v
E

v
v

E T

v
G

1 1

1 1

x x y

y y x

xy xy

2

2

( )

( )

σ =
−

ε + ε − α
−

σ =
−

ε + ε − α
−

τ = γ

 (2.17)

The quantities T and α represent the temperature change and the coefficient of expansion, respec-
tively. Equations for 3D stress may be readily expressed in a like manner.

Note that because free thermal expansion causes no distortion in an isotropic material, the shear 
strain is unaffected, as shown in the preceding expressions. The differential equations of equilib-
rium are based on purely mechanical considerations and unchanged for thermoelasticity. The same 
is true of the strain–displacement relations and hence the conditions of compatibility, which are 
geometrical in character (see Section 3.17). Thermoelasticity and ordinary elasticity therefore dif-
fer only to the extent of Hooke’s law. Solutions for the problems in the former are usually harder to 
obtain than solutions for the problems in the latter.

In statically determinate structures, a uniform temperature change will not cause any stresses, as 
thermal deformations are permitted to occur freely. On the other hand, a temperature change in a 
structure supported in a statically indeterminate manner induces stresses in the members. Thermal 
loads and stresses in components and assemblies are illustrated in the later chapters.

2.7  TEMPERATURE AND STRESS–STRAIN PROPERTIES

A large deviation in temperature may cause a change in the properties of a material. In this section, 
temperature effects on stress–strain properties of materials are considered. Effects of temperature 
on impact and fatigue strengths are treated in Sections 2.9 and 7.7, respectively. Another important 
thermal effect results because most materials expand with an increase in temperature.

2.7.1  short-time eFFeCts oF elevated and low temPeratures

For the static short-time testing of metals at elevated temperatures, it is generally found that the 
ultimate strength, yield strength, and modulus of elasticity are lowered with increasing temperature, 
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whereas the ductility increases with temperature. Here, elevated temperatures refer to the absolute 
temperatures in excess of about one-third of the melting point absolute temperature of the material. 
On the contrary, at low temperatures, there is an increase in yield strength, ultimate strength, modu-
lus of elasticity, and hardness and a decrease in ductility for metals. Therefore, when the operating 
temperatures are lower than the transition temperature, defined in Section 2.9, the possibility arises 
that a component could fail due to a brittle fracture.

The problem of designing for extreme temperatures is a special one, in that information con-
cerning material properties is not overly abundant. Figure 2.11 depicts the effect of low and high 
temperatures on the strength of a type 304 stainless steel [7]. The considerable property variations 
illustrated by these curves are caused by metallurgical changes that take place as the temperature 
increases or decreases.

2.7.2  long-time eFFeCts oF elevated temPeratures: CreeP

Most metals under a constant load at elevated temperatures over a long period develop additional 
strains. This phenomenon is called creep. Creep is time-dependent because deformation increases 
with time until a rupture occurs. For some nonferrous metals and a number of nonmetallic materials 
such as plastics, wood, and concrete, creep may also be produced at low stresses and normal (room) 
temperatures.

A typical creep curve, for a mild steel specimen in tension at elevated temperatures, consists of 
three regions or stages (Figure 2.12). In the first region, the material is becoming stronger because of 
strain hardening, and the strain rate or creep rate (dε/dt) decreases continuously. This stage is impor-
tant if the load duration is short. The second region begins at a minimum strain rate and remains 
constant because of the balancing effects of strain hardening and annealing. Annealing refers to a 
process involving softening of a metal by heating and slowly cooling, discussed in Section 2.11. The 
secondary stage is usually the dominant interval of a creep curve. In the third region, the annealing 
effect predominates, and the deformation occurs at an accelerated creep rate until a rupture results.

When a component is subjected to a steady loading at elevated temperature and for a long period, 
the creep-rupture strength of the material determines its failure. However, failure at elevated tem-
peratures due to dynamic loading will most likely occur early in the life of the material. Interest in 
the phenomenon of creep is not confined to possible failure by rupture, but includes failure by large 
deformations that can make equipment inoperative. Therefore, in many designs, creep deformation 
must be kept small. However, for some applications and within certain temperatures, stress, and 
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FIGURE 2.11 Stress–strain diagrams for AISI type 304 stainless steel in tension: (a) at low temperatures 
and (b) at elevated temperatures.
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time limits, creep effects need not be considered, and the stress–strain properties determined from 
static short-time testing are adequate.

2.8  MODULI OF RESILIENCE AND TOUGHNESS

Some machine and structural elements must be designed more on the basis of absorbing energy than 
withstanding loads. Inasmuch as energy involves both loads and deflections, stress–strain curves are 
particularly relevant. A detailed discussion of strain energy and its application is found in Chapter 5. 
Here, we limit ourselves to the case of a member in tension to illustrate how the energy-absorbing 
capacity of a material is determined.

2.8.1  modulus oF resilienCe

Resilience is the capacity of a material to absorb energy within the elastic range. The modulus 
of resilience Ur represents the energy absorbed per unit volume of material, or the strain energy 
density, when stressed to the proportional limit. This is equal to the area under the straight-line por-
tion of the stress–strain diagram (Figure 2.13a), where proportional limit Sp and yield strength Sy 
are taken approximately the same. The value of modulus of resilience, setting σx = Sy into Equation 
(5.1b), has the following form:

 =U
S

E2
r

y
2

 (2.18)
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ra
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FIGURE 2.12 Creep curve for structural steel in tension at high temperatures.
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FIGURE 2.13 Stress–strain diagram: (a) modulus of resilience and (b) modulus of toughness.
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where E is the modulus of elasticity. Therefore, resilient materials are those having high strength 
and low moduli of elasticity.

2.8.2  modulus oF toughness

Toughness is the capacity of a material to absorb energy without fracture. The modulus of toughness 
Ut represents the energy absorbed per unit volume of material up to the point of fracture. It is thus 
equal to the entire area under stress–strain diagram (Figure 2.13b). Expressed mathematically, the 
modulus of toughness is

 ∫= σ ε
ε

U dt

0

f

 (2.19)

The quantity εf is the strain at fracture. Clearly, the toughness of a material is related to its ductility 
as well as to its ultimate strength. It is often convenient to perform the foregoing integration graphi-
cally. A planimeter can be used to determine this area.

Sometimes, the modulus of toughness is approximated by representing the area under the stress–
strain curve of ductile materials as the average of the yield strength Sy and ultimate strength Su times 
the fracture strain. Therefore,

 = + εU
S S

2
t

y u
f  (2.20)

For brittle materials (e.g., cast iron), the approximation of the area under the stress–strain curve 
(Figure 2.5), as given by Equation (2.20), would be considerably in error. In such cases, the modulus 
of toughness is occasionally estimated by assuming that the strain–stress curve is a parabola. Then, 
using Equation (2.19) with εf = εu, the modulus of toughness is

 = εU S
2
3

t u u (2.21)

in which εu is the strain at the ultimate strength.
Toughness is usually associated with the capacity of a material to withstand an impact or shock 

load. Two common tests, the Charpy and Izod tests, discussed in the next section, determine the 
impact strength of materials at various temperatures. We observe that toughness obtained from 
these tests is as dependent on the geometry of the specimen as on the load rate. The units of both 
the modulus of toughness and modulus of resilience are expressed in joules (N ⋅ m) per cubic meter 
(J/m3) in SI and in in. ⋅ lb per cubic inch in the US customary system. These are the same units 
of stress, so we can also use pascals or psi as the units for Ur and Ut. As an example, consider a 
structural steel having Sy = 250 MPa, Su = 400 MPa, εf = 0.3, and E = 200 GPa (Table B.1). For this 
material, by Equations (2.18) and (2.20), we have Ur = 156.25 kPa and Ut = 97.5 MPa, respectively.

Note that fracture toughness is another material property that defines its ability to resist further 
crack propagation at the tip of a crack. When stress intensity reaches the fracture toughness, a frac-
ture takes place with no warning. The study of this phenomenon is taken up in Section 6.3.

Example 2.4: Material Resilience on an Axially Loaded Rod

During the manufacturing process, a prismatic round steel rod must acquire an elastic strain energy of 
Uapp = 25 N ⋅ m (Figure 2.14). Determine the required yield strength Sy for a factor of safety of n = 1.9 
with respect to permanent deformation.

Given: E = 210 GPa, diameter d = 20 mm, length L = 1.2 m.
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Solution

The volume of the member is

 . .V AL
4

0 02 1 2 377 10 m2 6 3( )( ) ( )= = π = −  

The rod should be designed for a strain energy:

 ( )= = = ⋅. .U nU 1 9 25 47 5 N mapp  

The strain energy density is therefore 47.5/377(10–6) = 126(103) N ⋅ m/m3.
Through the use of Equation (2.18), we have

 ( ) ( )= =
×

;U
S

E

S

2
126 10

2 210 10
r

y y
2

3
2

9
 

Solving,

 =S 230 MPay  

Comment: Observe that the factor of safety is applied to the energy load and not to the stress.

Example 2.5: Most Efficient Rubber Bearing for Impact

A vibration absorption unit (such as in Figure P2.10) is to be designed using natural rubber (NR) or a 
synthetic rubber (SR), polyurethane rubber, and bearing material.

Find: Which is the most efficient choice?

Assumptions: Resilience is an important factor to be considered in this evaluation. As noted in Section 
2.3, ultimate strength at the break will be substituted for the yield strength in Equation (2.18).

Solution

NR. Approximate mean values of the yield strength and modulus of elasticity, by Table B.10, are

 = = =. .S E28 MPa and 4 6 MPa 0 0046 GPau  

Through the use of Equation (2.18), the modulus of resilience is

d

P

P

L

FIGURE 2.14 Example 2.4. Prismatic bar in tension.
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 ( )
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Polyurethane rubber. Material properties from Table B.10 are

 .S E30 MPa and 17 MPa 0 017 GPau = = =  

Equation (2.18) is thus

 ( )
( ) ( )

( )

( )
( )

=

= = =. .

U
S

E2

30 10

2 17 10
26 471 10 Pa 26 5 MPa

r SR
u
2

2 12

6
6

 

Comments: Results show that NR is about 3.2 times more resilient than synthetic polyurethane rubber. 
NR is elastically more stretchy and flexible; it should be the choice for this application.

2.9  DYNAMIC AND THERMAL EFFECTS

A dynamic load applied to a structure or machine is called the impact load, also referred to as 
the shock load, if the time of application is less than one-third of the lowest natural period of the 
structure. Otherwise, it is termed the static load. Examples of a shock load include rapidly moving 
loads, such as those caused by a railroad train passing over a bridge, or direct impact loads, such as 
a result from a drop hammer. In machine operation, impact loads are due to gradually increasing 
clearances that develop between mating parts with progressive wear, for example, steering gears 
and axle journals of automobiles; sudden application of loads, as occurs during the explosion stroke 
of a combustion engine; and inertia loads, as introduced by high acceleration, such as in a flywheel.

2.9.1  strain rate

Strains and stresses in dynamic loading are much greater than those found in static loading, and 
hence, effects of impact loading are significant. Physical properties of materials depend on loading 
and speed. When a body is subjected to dynamic loading, strain rate dε/dt and its strengths increase. 
Here, ε and t represent normal strain and time, respectively. That is, the more rapid the loading, the 
higher both the yield and ultimate strengths of the material, as illustrated in Figure 2.15. However, 
the curves indicate little change in elongation: ductility remains about the same. Observe that for 
strain rates from 10−1 to 103 s−1, the yield strength increases significantly.

2.9.2  duCtile–Brittle transition

We now discuss the conditions under which metals may manifest a change from ductile to brittle or 
from brittle to ductile behavior. The matter of ductile–brittle transition has important applications 
where the operating environment includes a wide variation in temperature or when the rate of dynamic 
loading changes. The stress raisers, such as grooves and notches, also have a significant effect on the 
transition from brittle to ductile failure. The transition temperature represents roughly the temperature 
at which a material’s behavior changes from ductile to brittle. While most ferrous metals have a well-
defined transition temperature, some nonferrous metals do not. Therefore, the width of the temperature 
range over which the transition from brittle to ductile failure occurs is material dependent.
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Let us, to begin with, refer to Figure 2.16a, where yield strength Sy and fracture strength Sf in 
tension are shown as functions of the temperature of a metal. Note that Sf exhibits only a small 
decrease with increasing temperature. The point of intersection (C) of the two strength curves in 
the figure defines the critical or transition temperature, Tt. If, at a given temperature above Tt, the 
stress is progressively increased, failure will occur by yielding, and the fracture curve will never be 
encountered. Likewise, for a test conducted at T < Tt, the yield curve is not intercepted, since failure 
occurs by fracture. At temperatures close to Tt, the material generally exhibits some yielding prior 
to a partially brittle fracture.

A transition phenomenon is more commonly examined from the viewpoint of the energy 
required to fracture a notched or unnotched specimen; the impact toughness rather than the stress 
(Figure 2.16b). The transition temperature is then defined as the temperature at which there is a 
sudden decrease in impact toughness. The Charpy and Izod method notched-bar impact bending 
tests made at various temperatures utilize specimens to determine the impact toughness. In both 
tests, the specimen is struck by a pendulum released from a fixed height, and the energy absorbed 
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FIGURE 2.15 Influence of strain rate on tensile properties of a mild steel at room temperature.
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FIGURE 2.16 Typical transition curves for metals: (a) variation of yield strength Sy and fracture strength Sf 
with temperature and (b) effects of loading rate, stress around a notch, and temperature on impact toughness.
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is computed from the height of the swing (or indicated on a dial) after fracture. We note that the 
state of stress around the notch is triaxial and nonuniformly distributed throughout the specimen. 
Notches (and grooves) reduce the energy required to fracture and shift the transition temperature, 
normally very low, to the range of normal temperatures. This is the reason why most experiments 
are performed on notched specimens.

The foregoing discussion shows that, under certain conditions, a material said to be ductile will 
behave in a brittle fashion and vice versa. The principal factors governing whether failure occurs by 
fracture or yielding are summarized as follows (Figure 2.16):

 1. Temperature: If the temperature increases (exceeds Tt), the resistance to yielding is less 
than the resistance to fracture (Sy < Sf), and the specimen yields. On the contrary, if the 
temperature decreases (less than Tt), the specimen fractures without yielding.

 2. Loading rate: Increasing the rate at which the load is applied increases a metal’s ability to 
resist yielding.

 3. Triaxiality: The effect on the transition of a 3D stress condition around the notch, the so-
called triaxiality, is similar to that of the loading rate.

In addition, other factors may also affect a ductile material to undergo a fracture similar to that of a 
brittle material. Some of these are fatigue; cyclic loading at normal temperatures (see Section 8.3); 
creep; long-time static loading at elevated temperatures; severe quenching, in heat treatment, if not 
followed by tempering; and work hardening by sufficient amount of yielding. Internal cavities or 
voids in casting or forging may have an identical effect.

Case Study 2.1 Rupture of titanic’s Hull

Titanic was designed by expert engineers, employing the most advanced technologies and 
extensive features of the day, and was called unsinkable. The world’s largest at the time, this 
passenger steamship was on her maiden voyage from Southampton, England to New York City 
when it struck an iceberg in the North Atlantic. Titanic sank on April 15, 1912, resulting in the 
deaths of 1517 out of 2223 people on board in one of the deadliest peacetime maritime disasters 
in history. The huge loss of life, including noteworthy victims, changes in maritime law, and 
later, the discovery of the famous underwater wreck have all driven a continuing interest in this 
complex case. The general characteristics of the Titanic include the following:

Weight (tonnage): 46,328 gross register tons (GRT)
Length: 269.1 m
Height: 53.3 m (keel to top of funnels)
Depth: 19.7 m
Propulsion: Two bronze triple-blade wing propellers and one bronze quadruple-blade center 

propeller
Installed power: 46,000 hp (total)
29 marine boilers feeding two four-cylinder steam engines, each producing 15,000 hp for 

the wing propellers
A low-pressure turbine producing 16,000 hp for the center propeller
Speed: 21 knots (39 km/h)
Capacity: 3547 passengers and crew (fully loaded)

Among the many possible reasons for the sinking (Figure 2.17), Titanic’s construction has 
often been cited. Particular focus has been given to the quality of the ship’s hull. Initially, histo-
rians thought the iceberg had simply cut a gash into the hull. Because the part of the ship that the 
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iceberg damaged is now buried, investigators used sonar to examine the area in question. They 
discovered that the massive iceberg had actually caused the hull to buckle, allowing water to 
enter Titanic between her 25–38 mm thick steel plates. Metallurgical analysis of small pieces of 
this hull plating revealed that the steel had a high ductile–brittle transition temperature, making 
it dangerous for icy water and leaving the hull vulnerable to dent-induced ruptures.

Although probably the best plain carbon steel available at the time, the hull fragments were 
found to have very high contents of phosphorus and sulfur and a low content of manganese, 
compared with modern steels. Excessive amounts of phosphorus initiates fractures, sulfur 
forms grains of iron sulfide that facilitate propagation of cracks (particularly at punched rivet 
holes), and lack of manganese makes steel less ductile. Charpy V-notch tests on the recovered 
samples showed them undergoing ductile–brittle transition at around 32°C for longitudinal sam-
ples and 56°C for transverse samples, compared with a transition temperature of about −17°C 
common for modern steel [8]. Since Titanic was sailing in −2°C ocean water, the ship’s hull was 
extremely brittle. Therefore, Titanic’s steel was unsuitable for use at such low temperatures and 
contributed significantly to its sinking.

Comments: A number of other fatal static tank failures by brittle fracture also occurred in the 
early 1900s. The ductile–brittle transition temperature of parts under various environmental 
conditions is an important factor in design.

2.10  HARDNESS

Selection of a material that has good resistance to wear and erosion very much depends on the hard-
ness and the surface condition. Hardness is the ability of a material to resist indentation and scratch-
ing. The kind of hardness considered depends on the service requirements to be met. For example, 
gears, cams, rails, and axles must have a high resistance to indentation. In mineralogy and ceramics, 

FIGURE 2.17 Depiction of Titanic sinking (Courtesy of google.com).
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the ability to resist scratching is used as a measure of hardness. The indentation hardness, generally 
used in engineering, is briefly discussed in this section.

Hardness testing is one of the principal methods for ascertaining the suitability of a material for 
its intended purpose. It is also a valuable inspection tool for maintaining uniformity of quality in 
heat-treated parts. Indentation hardness tests most often involve one of these three methods: Brinell, 
Rockwell, or Vickers [5]. The shore scleroscope hardness testing is sometimes employed as well. 
These nondestructive tests yield a relative numerical measure or scale of hardness, showing how 
well a material resists indentation.

2.10.1  Brinell hardness

The Brinell hardness test uses a spherical ball in contact with a flat specimen of the material and 
subjected to a selected compressive load. Subsequent to the removal of the load, the diameter of 
the indentation is measured with an optical micrometer. The hardness is then defined as the Brinell 
hardness number (Bhn), HB, which is equal to the applied load (in kg) divided by the area of the 
surface of indentation (in mm2). Therefore, the units of HB (and other hardness numbers) are the 
same as those of stress. However, they are seldom stated.

Tables of hardness values are given in the standards of the ASTM. The Brinell test is used mainly 
for materials whose thickness is 6.25 mm or greater. As a rule, case-hardened steels are unsuitable 
for Brinell testing. The test is used to determine the hardness of a wide variety of materials. The 
harder the material, the smaller the indentation, and the higher the Brinell number.

2.10.2  roCkwell hardness

The Rockwell test uses an indenter (steel ball or diamond cone called a brale) pressed into the 
material. The relationships of the total test force to the depth of indentation provide a measure of 
Rockwell hardness, which is indicated on a dial gage. Depending on the size of the indenter, the 
load used, and the material being tested, the Rockwell test furnishes hardness data on various 
scales. Two common scales, RB and RC (i.e., Rockwell B and C), are frequently used for soft met-
als (such as mild steel or copper alloys) and hard metals (such as hardened steel or heat-treated 
alloy steel), respectively. In standard tests, the thickness should be at least 10 times the indenta-
tion diameter.

The Rockwell test is simple to perform and the most widely employed method for determining 
hardness of metals and alloys, ranging from the softest bearing materials to the hardest steels. It can 
also be used for certain plastics, such as acrylics, acetates, and phenolics. Optical measurements are 
not required; all readings are direct. Routine testing is usually performed with bench-type Rockwell 
machines.

2.10.3  viCkers hardness

The Vickers hardness test is similar to the Brinell test. However, it uses a four-sided inverted dia-
mond pyramid with an apex angle of 136°. The Vickers hardness number (HV) is the ratio of the 
impressed load to the square indented area. The Vickers hardness test is of particular value for hard, 
thin materials where hardness at a spot is required.

2.10.4  shore sClerosCoPe

The shore scleroscope uses a small diamond-tipped pointer or hammer that is allowed to fall from a 
fixed height onto the specimen. Hardness is measured by the height of the rebound. The method is 
easy and rapid to apply. However, the results obtained are the least reliable of all machine methods. 
The hardness of soft plastics and wood felts is measured by this scleroscope.
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2.10.5  relationshiPs among hardness and ultimate strength in tension

Figure 2.18 shows the conversion plot between Brinell, Rockwell (B and C), and the tensile strength 
of steel. Note that the curves for RB and RC are nonlinear and the related values are only approxi-
mate. However, the results of the Brinell hardness test have been found to correlate linearly with the 
tensile strength Su of most steels as follows:

 = .S H3 45 MPau B  (2.22)

This is indicated by a nearly straight line in the figure. In addition, for stress-relieved (not cold 
drawn) steels, the tensile yield strength Sy is given by

 = −.S S7 24 207 MPay u  (2.23)

Substituting Equation (2.22),

 = −.S H3 62 207 MPay B  (2.24)

Formulas (2.22) through (2.24) are estimates and should be used only when definite strain harden-
ing data are lacking.

Example 2.6: Finding the Strength of Steel from Hardness

An American Iron and Steel Institute (AISI) 4140 steel component is heat-treated to 217 Bhn (Brinell 
hardness number). Determine the corresponding values of the ultimate tensile strength Su and the yield 
strength in tension Sy.

Assumption: Relationships among hardness and ultimate strength are sufficiently accurate.
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FIGURE 2.18 Hardness conversion to ultimate strength in tension of steel.
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Solution

Through the use of Equation (2.22), the ultimate strength is equal to

 
( )

=

= =

.

. .

S H3 45 MPa

3 45 217 748 7 MPa

u B
 

In a like manner, Equation (2.24) gives the following yield strength:

 ( )= − =.S 3 62 217 207 MPa 579 MPay  

Comment: Experimental data obtained for the material under consideration would serve to refine the 
preceding formulas.

2.11  PROCESSES TO IMPROVE HARDNESS AND THE STRENGTH OF METALS

A material with metallic properties consisting of two or more elements, one of which is a basic 
metal, is called an alloy. An alloying element is deliberately added to a metal to alter its physical or 
mechanical properties. For example, the addition of alloying elements to iron results in cast iron and 
steel. By general usage, the term metal is used in a generic sense, often referring to both a simple 
metal and metallic alloys. Unless specified otherwise, we adhere to this practice.

There are a number of ways to increase the hardness and strength of metals. These include suit-
ably varying the composition or alloying, mechanical treatment, and heat treatment. Various alloys 
are considered in the next section. Numerous coatings and surface treatments are also available 
for materials. Several of these have the main purpose of preventing corrosion while the others are 
aimed at improving surface hardness and wear. In this section, we shall discuss only a few treat-
ments and coating types.

2.11.1  meChaniCal treatment

Mechanical forming and hardening consist of hot-working and cold-working processes. A metal 
can be shaped and formed when it is above a certain temperature, known as the recrystallization 
temperature. Below this temperature, the effects of mechanical working are cold worked. On the 
other hand, in hot working, the material is worked mechanically above its recrystallization tempera-
ture. Note that hot working gives a finer, more uniform grain structure and improves the soundness 
of the material. However, in general, cold working leaves the part with residual stress on the surface. 
Thus, resulting mechanical properties in the foregoing processes are quite different.

2.11.1.1  Cold Working
Cold working, also called strain hardening, is a process of forming the metal usually at a room 
temperature (see Section 2.3). This results in an increase in hardness and yield strength, with a loss 
in toughness and ductility (that can be recovered by a heat treatment process termed annealing). 
Cold working is used to gain hardness on low-carbon steels, which cannot be heat treated. Typical 
examples of cold-working operations include cold rolling, drawing, spinning, stamping, and form-
ing. As noted previously, the relative ease with which a given material may be machined, or cut with 
sharp-edged tools, is called its machinability.

The most common and versatile of the cold-working treatments is shot peening. It is widely 
used with springs, gears, shafts, connecting rods, and many other components. In shot peening, 
the surface is bombarded with high-velocity iron or steel shot (small, spherical pellets) discharged 
from a rotating wheel or pneumatic nozzle. The process leaves the surface in compression and 
alters its smoothness. Since fatigue cracks are not known to initiate or propagate in a compression 
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region (see Section 7.1), shot peening has proven very successful in raising the fatigue life of most 
members. Machine parts made of very high-strength steels (about 1400 MPa), such as springs, have 
particularly benefited. Shot peening has also been used to reduce the probability of stress corrosion 
cracking in a turbine rotor and blades.

2.11.1.2  Hot Working
Hot working reduces the strain hardening of a material but avoids the ductility and toughness loss 
attributed to cold working. However, hot-rolled metals tend to have greater ductility, lower strength, 
and a poorer surface finish than cold-worked metals of the identical alloy. Examples of hot-working 
processes are rolling, forging, hot extrusion, and hot pressing, where the metal is heated sufficiently 
to make it plastic and easily worked. Forging is an automation of blacksmithing. It uses a series of 
hammer dies shaped to gradually form the hot metal into the final configuration. Practically any 
metal can be forged. Extrusion is used mainly for nonferrous metals and it typically uses steel dies.

2.11.2  heat treatment

The heat treatment process refers to the controlled heating and subsequent cooling of a metal. It 
is a complicated process, employed to obtain properties that are desirable and appropriate for a 
particular application. For instance, an intended heat treatment may be to strengthen and harden a 
metal, relieve its internal stresses, harden its surface only, soften a cold-worked piece, or improve 
its machinability. The heating is done in the furnace, and the maximum temperature must be main-
tained long enough to refine the grain structure. Cooling is also done in the furnace or an insulated 
container. The definitions that follow are concerned with some common heat-treating terms [1, 2].

Quenching: The rapid cooling of a metal from an elevated temperature by injecting or spray-
ing the metal with a suitable cooling medium, such as oil or water, to increase hardness. 
The stress–strain curve as a result of quenching a mild steel is depicted in Figure 2.19.

Tempering or drawing: A process of stress relieving and softening by heating, then quench-
ing. Figure 2.19 shows a stress–strain curve for a mild steel after tempering.

Annealing: A process involving heating and slowly cooling, usually applied to induce soften-
ing and ductility. The quenching and tempering process is reversible by annealing; that is, 
annealing effectively returns a part to the original stress–strain curve (Figure 2.19).

Normalizing: A process that includes annealing, except that the material is heated to a slightly 
higher temperature than annealing. The result is a somewhat stronger, harder metal than a 
fully annealed one.
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FIGURE 2.19 Stress–strain diagrams for annealed, quenched, and tempered steel.
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Case hardening or carburizing: A process where the surface layer (or case) is made sub-
stantially harder than the metal’s interior core. This is done by increasing the carbon con-
tent at the surface. Surface hardening by any appropriate method is a desirable hardening 
treatment for various applications. Some of the more useful case-hardening processes 
are carburizing, nitriding, cyaniding, induction hardening, and flame hardening. In the 
induction-hardening process, a metal is quickly heated by an induction coil followed by 
quenching in oil.

Through hardening: With a sufficiently high-carbon content, 0.35–0.50%, the material is 
quenched and drawn at suitable temperatures to obtain the desired physical properties. 
Alloy steels will harden and retain their shape better than plain carbon steels when heat 
treated. The greater strength and hardness of surface and core for heat-treated material is 
accompanied by loss of ductility.

2.11.3  Coatings

Coating is a covering that is applied to the surface of a part, often referred to as the substrate. A 
variety of metallic and nonmetallic surface coatings are used for metals. As noted before, they 
mainly improve surface hardness, wear resistance, and scratch resistance. In many situations, coat-
ings are also applied to alter dimensions slightly and alter physical properties (i.e., appearance, 
color, reflectance, and resistance). Some examples of practical importance are fasteners that are 
plated to increase corrosion resistance, selective parts of automobiles chrome-plated for appearance 
and corrosion resistance, piston rings that are chrome-plated to increase wear resistance. Here, plat-
ing refers to a thin coating of metal.

The coating is an essential part of the finished products involving printing processes and semi-
conductor device fabrication. Printing and coating processes deal with the application of a thin film 
of material to a substrate, such as paper, fabric, and foil. It is to be noted that most coatings are 
usually porous, which promotes undesirable crack growth and reduces fatigue strength of metals, 
so they should not be employed on components that are fatigue loaded. Coatings, applied with high 
temperatures, may also thermally induce tensile residual stresses to the surface of parts. Frequently, 
coatings are applied as solids, liquids, or gases. Numerous protective chemical coatings and paints 
are in widespread use.

2.11.3.1  Galvanization
The process of galvanization involves applying a protective metallic coating to the surface of 
another dissimilar metal to prevent rusting. A galvanic action may be created electrochemically. 
Combinations of metals, like steel and cast iron, are considered safe from galvanic action. On the 
other hand, combinations like aluminum and copper will experience severe corrosion in moist sur-
roundings. Zinc coatings represent the common practice of galvanizing ferrous materials to prevent 
them against corrosion.

2.11.3.2  Electroplating
The process of electroplating is the creation of a galvanic action, where the part to be plated 
is the cathode (negative electrode) and the plating material is the anode (positive electrode). 
These two metals are immersed in a solution, called an electrolyte bath, and a direct current is 
applied from anode to cathode. Ions or atoms of the plating are driven through the solution and 
cover the part with a thin coating. Electroplating thus is mainly used for depositing a layer of 
material to create a desired property, such as abrasion and wear resistance, corrosion protec-
tion, and aesthetic qualities, to a surface. Another application of the electroplating is to build 
up the thickness of undersized parts. As the name suggests, an electroless plating puts a coating 
of metal on a part without any electric current. For this purpose, zinc is the most commonly 
used metal.
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2.11.3.3  Anodizing
The process of anodizing is used to increase the thickness of the oxide layer on the surface of the 
metal parts. It is a relatively inexpensive treatment with good corrosion resistance and wear. This 
process provides better adhesion for paint primers and glues than bare metal. Thin anodic coats or 
anodic films are customarily applied to protect aluminum alloys. Aluminum oxide is naturally very 
hard and abrasion resistant. Titanium, zinc, and magnesium can also be anodized. However, the 
process is not a useful treatment for iron or carbon steel. Anodic films are usually much stronger 
and more adherent than most paint kinds or metal plating.

2.12  GENERAL PROPERTIES OF METALS

There are various nonferrous and ferrous engineering metals (Table 2.1). This section attempts to 
provide some general information for the readers to help identify the types of a few selected metal 
alloys. Appendix B lists common mechanical properties of the foregoing materials.

2.12.1  iron and steel

Iron is a metal that, in its pure form, has almost no commercial use. The addition of other elements 
to iron essentially changes its characteristics, resulting in a variety of cast and wrought irons and 
steel. Cast iron and cast steel result from pouring the metal into molds of the proper form. To make 
wrought iron and varieties of wrought steel, the metal is cast into a suitable size and shape (e.g., 
slabs) then hot rolled to form bars, tubing, plate, structural shapes, pipe, nails, wires, and so on. 
Wrought iron is tough and welds easily. Cast steel can also be readily welded. Steel is difficult to 
cast because it shrinks considerably. Castings are ordinarily inferior to corresponding wrought met-
als in impact resistance.

2.12.2  Cast irons

Cast iron is an iron alloy containing over 2% carbon. Cast irons constitute a whole family of mate-
rials. Having such a high-carbon content, cast iron is brittle, has a low ductility, and hence cannot 
be cold worked. While relatively weak in tensile strength, it is very strong in compression. Bronze 
welding rods are widely used in cast iron that is not easily welded. The common composition of cast 
iron is furnished in Table 2.2.

The characteristics of cast iron can be altered extensively with the addition of alloying metals 
(such as copper, silicon, manganese, phosphorus, and sulfur) and proper heat treatment. Cast iron 
alloys are widely used as crankshafts, camshafts, and cylinder blocks in engines, gearing, dies, 
railroad brake shoes, rolling mill rolls, and so on. Cast iron is inexpensive, easily cast, and readily 
machined. It has superior vibration characteristics and resistance to wear.

TABLE 2.2
Composition of Cast Iron
Carbon 2.00–4.00%

Silicon 0.50–3.00%

Manganese 0.20–1.00%

Phosphorus 0.05–0.80%

Sulfur 0.04–0.15%

Iron Remainder
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Since the physical properties of a cast iron casting are fully affected by its cooling rate during 
solidification, there are various cast iron types. Gray cast iron is the most widely used form of cast 
iron. It is common to refer gray cast iron just as cast iron. Other basic types of cast iron include 
malleable cast irons and nodular or ductile cast irons. Nodular cast iron shrinks more than gray cast 
iron, but its melting temperature is lower than for cast steel. A particular type of cast iron, called 
Meehanite iron, is made using a patented process by the addition of a calcium–silicon alloy. In 
practice, cast irons are classified with respect to ultimate strength. In the ASTM numbering system 
for cast irons, the class number corresponds to the minimum ultimate strength. Thus, an ASTM 
No. 30 cast iron has a minimum tensile strength of 30 ksi (210 MPa). Some average properties and 
minimum ultimate strengths of cast irons are shown in Tables B.1 and B.2, respectively.

2.12.3  steels

Steel is an alloy of iron containing less than 2% of carbon. Additional alloying elements ease the 
hardening of steel. Nevertheless, carbon content, almost alone, induces the maximum hardness that 
can be developed in steel. Steels are used extensively in machine construction. They can be clas-
sified as plain carbon steels, alloy steels, high-strength steels, cast steels, stainless steel, tool steel, 
and special purpose steel.

2.12.3.1  Plain Carbon Steels
These steels contain only carbon, usually less than 1%, as a significant alloying element. Carbon is 
a potent alloying element, and a wide range of changes in strength and hardness can be obtained by 
changing the amount of this element. Carbon steel owes its distinct properties chiefly to the carbon it 
contains. The range of desired characteristics can be further gained by heat treatment. Plain carbon 
steel is the least expensive steel, manufactured in larger quantities than any other. Table 2.3 sum-
marizes general uses for steels having various levels of carbon content.

Low-carbon or mild steels, also referred to as the structural steels, are ductile and thus read-
ily formable. If welded, they do not become brittle. Where a wear-resistant surface is needed, this 
steel can be case-hardened. A minimum 0.30% carbon is necessary to make a heat-treatable steel. 
Therefore, medium- and high-carbon steels can be heat treated to achieve the desired characteristics.

2.12.3.2  Alloy Steels
There are many effects of any alloy addition to a basic carbon steel. The primary reason is to improve 
the ease with which steel can be hardened. That is, potential hardness and strength, controlled by 
the carbon content, can be accomplished with less drastic heat treatment by alloying. When a proper 
alloy is present in a carbon steel, the metallurgical changes take place during quenching at a faster 
rate, the cooling effects penetrate deeper, and a large portion of the part is strengthened.

Ordinary alloying elements (in addition to carbon) include, singly or in various combinations, 
manganese, molybdenum, chromium, vanadium, and nickel. Added to the steel, nickel and chro-
mium also bring significant impact resistance and provide considerable wear resistance as well as 

TABLE 2.3
Groups and Typical Uses of Plain Carbon Steels
Type Carbon Content (%) Area of Use

Low carbon 0.03–0.25 Plate, sheet, structural parts

Medium carbon 0.30–0.55 Machine parts, crane hooks

High carbon 0.60–1.40 Springs, tools, cutlery
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corrosion resistance, respectively. A variety of carbon and alloy steels are employed for the con-
struction of machinery and structures.

2.12.3.3  Stainless Steels
The so-called stainless steels are in widespread use for resisting corrosion (see Section 8.2) and 
heat-resisting applications. They contain (in addition to carbon) at least 12% chromium as the basic 
alloying element. Stainless steel is of three types: austenitic (18% chromium, 8% nickel), ferritic 
(17% chromium), and martensitic (12% chromium). The austenitic kind of stainless steel in particu-
lar polishes to a luster and finish. All the chromium–nickel steels have greater corrosion-resistant 
properties than the plain chromium steels and may be welded. The mechanical characteristics of 
various wrought steels are given in Table B.5.

2.12.3.4  Steel Numbering Systems
Various numbering systems of steels are used. The Society of Automotive Engineers (SAE), the 
AISI, and the ASTM have devised codes to define the alloying elements and the carbon content in 
steels. These designations can provide a simple means by which any particular steel can be speci-
fied. A brief description of the common systems follows.

The AISI/SAE numbering system generally uses a number composed of four digits. The first two 
digits indicate the principal alloying element. The last two digits give the approximate carbon con-
tent, expressed in hundredths of percent. The AISI number for steel is similar to the SAE number, 
but a letter prefix is included to indicate the process of manufacture (such as A and C for the steels) 
For instance,

 ( )AISI C1020 SAE1020 steel 

represents a plain carbon steel denoted by the basic number 10, containing 0.20% carbon. In a like 
manner,

 ( )AISI A3140 SAE3140 steel 

is an alloy steel (with nickel and chromium designated by 31) with 0.40% carbon. We see from the 
foregoing examples that the first two digits are not so systematic.

The ASTM numbering system for steels is based on the ultimate strength. The most-used 
 specifications are ASTM-A27 mild- to medium-strength carbon-steel castings for general appli-
cation and A148 high-strength steel castings for structural purposes. Tables B.1 and 14.2 include 
average properties of a few ASTM steels. Samples of the minimum yield strengths Sy and ultimate 
strengths Su for certain ASTM steels are shown in Table 2.4 [9], where Q and T denote quenched 
and tempered (Q&T), respectively. Note that the ASTM-A36 is the all-purpose carbon grade steel 

TABLE 2.4
Structural Steel Strengths in the ASTM Numbering System

Steel Type ASTM No.

Sy Su Max. Thickness

MPa (ksi) MPa (ksi) mm (in.)

Carbon A36 248 (36) 400 (58) 200 (8)

Low alloy A572 290 (42) 414 (60) 150 (6)

Stainless A588 345 (50) 480 (65) 100 (4)

Alloy Q&T A514 690 (100) 758 (110) 62.5 (2.5)
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extensively used in building and bridge construction, ASTM-A572 is a high-strength low alloy steel, 
A588 represents atmospheric corrosion-resistant high-strength low alloy steel, and A514 is an alloy 
Q&T steel. For complete information on each steel, reference should be made to the appropriate 
ASTM specification.

The ASTM, the AISI, and the SAE developed the unified numbering system (UNS) for metals 
and alloys. This system also contains cross-reference numbers for other material specifications. 
The UNS uses a letter prefix to indicate the material (e.g., G for the carbon and alloy steels). The 
mechanical properties of selected carbon and alloy steels are furnished in Tables B.3 and B.4. 
The AISI, the SAE, the ASTM, and UNS lists are continuously being revised, and it is necessary 
to consult the latest edition of a material handbook. We mostly use the AISI/SAE designations 
for steels.

2.12.4  aluminum and CoPPer alloys

Aluminum alloys are very versatile materials, having good electrical and thermal conductivity, as 
well as light reflectivity. They possess a high strength-to-weight ratio, which can be a very impor-
tant consideration in the design of, for example, aircraft, missiles, and trains. Aluminum has a high 
resistance to most corrosive atmospheres, because it readily forms a passive oxide surface coating. 
Lightweight aluminum alloys have extensive applications in manufactured products. Aluminum is 
readily formed, drawn, stamped, spun, machined, welded, or brazed. The high-strength aluminum 
alloys have practically the same strength as mild steel.

Numerous aluminum alloys are available in both wrought and cast form. The aluminum casting 
alloys are indicated by three-digit numbers. The wrought alloys, shaped by rolling or extruding, 
use four-digit numbers. Silicon alloys are preferred for casting. Typical wrought aluminum alloys 
include copper and silicon–magnesium. The comparison and mechanical properties of some typi-
cal aluminum alloys are given in Table B.6. The temper of an aluminum alloy is the main factor 
governing its strength, hardness, and ductility. Temper designation is customarily specified by cold 
work such as rolling, drawing, or stretching. Other alloys are heat treatable, and their properties can 
be enhanced considerably by appropriate thermal processing.

Copper alloys are very ductile materials. Copper may be spun, stamped, rolled into a sheet, or 
drawn into wire and tubing. Owing to its high electrical and thermal conductivity, resistance to cor-
rosion, but relatively low ratio of strength to weight, copper is used extensively in the electrical, tele-
phone, petroleum, and power industries. The most notable copper-base alloys are brass and bronze. 
Brass is a copper–zinc alloy, and bronze is composed mainly of copper and tin. Brass and bronze 
are used in both cast and wrought form. The strength of brass increases with the zinc content. Brass 
is about equal to copper in corrosion resistance, but bronze is superior to both.

Die castings generally are made from zinc, aluminum, magnesium, and, to a lesser extent, brass. 
They are formed by forcing a molten alloy into metal molds or dies under high pressure. The die cast 
process is applicable for parts containing very thin sections of intricate forms. Copper and most of 
its alloys can be fabricated by soldering, welding, or brazing. They can be worked and strengthened 
by cold working, but cannot be heat treated. The machinability of the brass and bronze is satisfac-
tory. The properties of copper alloys can often be significantly improved by adding small amounts 
of additional alloying elements (Table B.7).

2.13  GENERAL PROPERTIES OF NONMETALS

The three common categories of nonmetals are of engineering interest: plastics, ceramics, and 
composites (see Table 2.1). Plastics represent a vast and growing field of synthetics. Sometimes, 
optimum properties can be obtained by the combination of dissimilar materials or composites. 
Ceramics are hard, heat-resistant, brittle materials. Here, we briefly discuss the general properties 
of these materials.
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2.13.1  PlastiCs

Plastics are synthetic materials known as polymers. They are increasingly employed for structural 
purposes, and thousands of different types are available. Table 2.5 presents several common plas-
tics. The mechanical properties of these materials vary tremendously, with some plastics being 
brittle and others ductile. When designing with plastics, it is significant to remember that their prop-
erties are greatly affected by both change in temperature and the passage of time. Observe from the 
table that polymers are of two principal classes: thermoplastics and thermosets.

Thermoplastic materials repeatedly soften when heated and harden when cooled. There are also 
highly elastic flexible materials known as thermoplastic elastomers. Thermosets or thermosetting 
plastics sustain structural change during processing to become permanently insoluble and infusible. 
Thermoplastic materials may be formed into a variety of shapes by the simple application of heat 
and pressure, while thermoset plastics can be formed only by cutting or machining.

Rubber is a common elastomer. Elastomers’ industrial applications include belts, hoses, gaskets, 
seals, machinery mounts, and vibration dampers. NR was originally derived from latex, a milky 
colloid produced by some plants. The purified form of NR is the chemical polyisoprene, which can 
also be produced synthetically. NR has a long fatigue life and high strength even without reinforcing 
fillers. It has good creep and stress relaxation resistance and is low cost, but its main disadvantage is 
its poor oil resistance. SRs are artificially produced materials with properties similar to NR. A wide 
range of different SRs have been produced with chemical and mechanical properties for a variety 
of applications (see Table B.10).

An examination of tensile stress–strain diagrams at various low temperatures, for instance, 
a cellulose nitrate and similar ones for other plastics, indicates that the ultimate strength, yield 
strength, and modulus of elasticity, but not ductility, increase with the decrease in temperature. 

TABLE 2.5
Selected Plastics
Chemical Classification Trade Name

Thermoplastic materials

 Acetal Delrin, Celcon

 Acrylic Lucite, Plexiglas

 Cellulose acetate Fibestos, Plastacele

 Cellulose nitrate Celluloid, Nitron

 Ethyl cellulose Gering, Ethocel

 Polyamide Nylon, Zytel

 Polycarbonate Lexan, Merlon

 Polyethylene Polythene, Alathon

 Polystyrene Cerex, Lustrex

 Polytetrafluoroethylene Teflon

 Polyvinyl acetate Gelva, Elvacet

 Polyvinyl alcohol Elvanol, Resistoflex

 Polyvinyl chloride PVC, Boltaron

 Polyvinylidene chloride Saran

Thermosetting materials

 Epoxy Araldite, Oxiron

 Phenol-formaldehyde Bakelite, Catalin

 Phenol-furfural Durite

 Polyester Beckosol, Glyptal

 Urea-formaldehyde Beetle, Plaskon
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These modifications of the stress–strain properties are similar to those found for metals (see Section 
2.7). Experiments also show an appreciable decrease in impact toughness with a decrease in tem-
perature for some plastics, but not all. A loaded plastic may stretch gradually over time until it is no 
longer serviceable. Interestingly, because of its light weight, the strength-to-weight ratio for nylon is 
about the same as for structural steel.

The principal advantage of plastics is their ability to be readily processed; as previously noted, 
most plastics can easily be molded into complicated shapes. Large elastic deflections allow the design 
of polymer components that snap together, making assembly fast and inexpensive. Furthermore, 
many plastics are low-cost materials and display exceptional resistance to wear and corrosive 
attacks by chemicals.

Fiber reinforcement increases the stiffness, hardness, strength, and resistance to environmental 
factors and reduces the shrinking of plastics. A glass-reinforced plastic has improved strength by 
a factor of about two or more. Further improvement is gained by carbon reinforcement. The fore-
going relatively new materials (with 10–40% carbon) have tensile strengths as high as 280 MPa. 
Reinforced plastics increasingly are being employed for machine and structural components requir-
ing light weight or high strength-to-weight ratios. Tables B.1 and B.8 show that the range of proper-
ties that can be obtained with plastics is very large.

2.13.2  CeramiCs and glasses

Ceramics are basically compounds of nonmetallic as well as metallic elements, mostly oxides, 
nitrides, and carbides. Generally, silica and graphite ceramics dominate the industry. However, 
newer ceramics, often called technical ceramics, play a major role in many applications. Glasses 
also consist of metallic and nonmetallic elements; however, they have a crystal structure. Glass 
ceramics are in widespread usage as electrical, electronic, and laboratory ware.

Ceramics have high hardness and brittleness, and high compressive but low tensile strengths. 
Both ceramics and glasses exhibit behavior and are typically 15 times stronger in compression than 
in tension. High temperature and chemical resistance, high dielectric strength, and low weight char-
acterize many of these materials. Therefore, attempts are being made to replace customary metals 
with ceramics in some machine and structural members.

2.13.3  ComPosites

As mentioned earlier, a composite material is made up of two or more unique elements. Composites 
usually consist of a high-strength reinforcement material embedded in a surrounding material. They 
have a relatively large strength-to-weight ratio compared to a homogeneous material and additional other 
desirable characteristics. Furthermore, there are many situations where different materials are used in 
combination so that the maximum advantage is gained from each component part. For instance, graph-
ite-reinforced epoxy gets strength from the graphite fibers, while the epoxy protects the graphite from 
oxidation and provides toughness. In this text, the discussions concern isotropic composites, like rein-
forced-concrete beams and multilayer members and filament-wound anisotropic composite cylinders.

2.13.3.1  Fiber-Reinforced Composite Materials
It will be recalled from Section 2.2 that a material whose characteristics rely on direction is termed 
anisotropic. Here, we briefly discuss an important class of widely used anisotropic materials 
known as fiber-reinforced composites. Typical examples are thick-walled vessels under high pres-
sure, marine and aircraft windshields, portions of space vehicles, and components of many other 
machines and structures. Publications associated with the theory and applications of composites 
contain extensive practical information (see [10]).

A fiber-reinforced composite is made by firmly fixing fibers of a strong, stiff material into a 
weaker reinforcing material or matrix. Familiar materials used for fibers include carbon, glass, 
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polymers, graphite, and some metals, while various resins are employed as a matrix (such as in 
glass filament/epoxy rocket motor cases). Figure 2.20 illustrates the cross-sections of two typical 
fiber-reinforced composite materials. Fiber length is an important parameter for strengthening and 
stiffening of fiber-reinforced composites. For example, for a number of glass-and-carbon-fiber-rein-
forced composites, the fiber length is about 1 mm, or 20–150 times its diameter.

A layer, also called a lamina, of a composite material consists of a large number of parallel 
fibers embedded in a matrix (Figure 2.20a). So, a laminate is composed of an arbitrarily oriented 
variety of bonded layers or laminas. Each layer may have a different thickness, orientation of fiber 
directions, and anisotropic properties. Some layers are positioned so their fibers are oriented usu-
ally at 30°, 45°, or 60° relative to one another. This increases the resistance of the laminate to the 
applied loads. A special case of an anisotropic material is an orthotropic material. When the fibers 
of all layers are positioned in the same orientation, the laminate represents an orthotropic material. 
Usually, a composite is composed of bonded three-layer orthotropic materials. Figure 2.20b depicts 
a cross-ply laminate, in which the fibers of the mid-layer and two outer layers are positioned along 
axial and lateral directions, respectively.

2.14  SELECTING MATERIALS

Material selection plays a very significant role in machine design. Each material should be chosen 
carefully according to the specific requirements imposed on the components, since these members 
operate in various environments. Preference of a specific material for the members relies on the 
purpose and kind of operation as well as the expected failure mode of these elements. Strength 
and stiffness present essential factors taken into account in the choice of a material. But selecting a 
material from both a functional and an economical viewpoint is of the utmost importance.

2.14.1  strength density Chart

The common properties of materials are not sufficient for selecting a material for a particular appli-
cation. Rather, one or several combinations of properties are required. Some important property 
combinations include stiffness versus density (E–ρ), strength versus density (S–ρ), strength versus 
temperature (S–T), and stiffness versus strength (E–S). Various other combinations might be useful 
in material selection; however, the foregoing are the primary considerations in designing machine 
elements.

In this section, we shall discuss briefly only one of Ashby’s material selection charts [3]. These 
graphs are a very useful reference for the practicing engineers. It should be mentioned that the 
information contained in Ashby’s charts is for rough calculations and not for final design analy-
sis. Ordinary properties of a material chosen should be employed in the final design followed by 

Matrix

Fibers

(a) (b)

FIGURE 2.20 Fiber-reinforced materials: (a) single layer and (b) three-cross layer.
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experimental verification and testing. Table B.9 in Appendix B furnishes the types and abbrevia-
tions for the material selection charts.

Figure 2.21 portrays S strength ρ-to-density (weight per unit volume) relationships for a number 
of materials. The sketched values for the strength are (1) yield strength for metals and polymers, 
(2) compressive strength for ceramics and glasses, (3) tensile strength for composites, and (4) tear 
strength for elastomers. It can be seen that the brittle materials are enclosed by dashed envelopes. 
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FIGURE 2.21 Strength versus density for engineering materials. The envelopes enclose data for a pre-
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Materials placed at the greatest distance from a selected guide line (up and left) are superior. 
In other words, materials with the greatest strength-to-weight ratios are placed in the upper left 
corner. Observe from the graph that the strength-to-weight ratios of some woods are as good as 
high-strength steel and better than most other metals. For the preceding reason, wood is a favorite 
material in building construction.

Example 2.7: Selecting Fishing Rod Material

A fishing rod is to be made from a tapered tube. Determine the material that makes the rod as strong 
as possible for a given weight.

Assumption: The material is tentatively selected for preliminary design purposes.

Solution

Figure 2.21 shows that the strongest materials for a given density are diamond, silicon carbide, and 
other ceramics.

Comment: It is not practical and too expensive to use such materials for fishing rods. We thus choose a 
carbon-fiber-reinforced plastic or glass-fiber-reinforced plastic with 800–1000 MPa strength for density 
of 1.5 Mg/m3.

PROBLEMS

Sections 2.1 through 2.7
 2.1 A bar of diameter d, gage length L, is loaded to the proportional limit in a tensile testing 

machine. A strain gage is placed on the surface of the bar to measure normal strains in the 
longitudinal direction. Under an axial load P, the bar is elongated 0.03 mm and its diameter 
reduced 0.006 mm. Calculate the proportional limit, modulus of elasticity, Poisson’s ratio, 
reduction in area, and percentage elongation.

  Given: d = 12.5 mm, L = 200 mm, P = 18 kN.
 2.2 A 3.125 mm diameter and 5.6 m long steel wire of yield strength Sy = 350 MPa stretches by 

7.5 mm when subjected to a 2.2 kN tensile load. Compute the modulus of elasticity E.
 2.3 A tensile test is performed on a flat-bar ASTM-A243 high-strength steel specimen (Figure 

P2.3). At a certain instant, the applied load is P, while the distance between the gage marks 
is increased by ∆L, and the width wo of the bar is decreased by ∆w. Find

 a. The axial strain and axial stress.
 b. The modulus of elasticity.
 c. Decrease in original width ∆w and the original thickness ∆t.
  Given: Lo = 63.5 mm, ∆L = 0.0841 mm, to = 6.1 mm, wo = 12.7 mm, P = 21.5 kN, v = 0.3.
 2.4 When a 5 mm diameter brass bar is stretched by an axial force P, its diameter decreases by 

1.5 mm. Find the magnitude of the load P.
  Given: E = 105 GPa, Sy = 250 MPa, and v = 0.34 (by Table B.1).

L0

P

w0

P

t0

FIGURE P2.3 
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 2.5 A 15 mm × 15 mm square ABCD is drawn on a member prior to loading. After loading, the 
square becomes the rhombus shown in Figure P2.5. Determine

 a. The modulus of elasticity.
 b. Poisson’s ratio.
 c. The shear modulus of elasticity.
 2.6 A bar of any given material is subjected to uniform triaxial stresses. Determine the maxi-

mum value of Poisson’s ratio.
 2.7 A rectangular block of width a, depth b, and length L is subjected to an axial tensile load 

P, as shown in Figure P2.7. Subsequent to the loading, dimensions b and L are changed to 
1.999 in. and 10.02 in., respectively. Calculate

 a. Poisson’s ratio.
 b. The modulus of elasticity.
 c. The final value of the dimension a.
 d. The shear modulus of elasticity.
  Given: a = 75 mm, b = 50 mm, L = 250 mm, P = 450 kN.
 2.W Search the website at www.matweb.com. Review the material property database and select
 a. Four metals with a tensile strength Sy < 50 ksi (345 MPa), modulus of elasticity 

E > 26 × 106 psi (179 GPa), and Brinell hardness number HB < 200.
 b. Three metals having elongation greater than 15%, E > 28 × 106 psi (193 GPa) and 

Poisson’s ratio v < 0.32.
 c. One metallic alloy that has E>30 × 106 psi (207 GPa) and ultimate strength in compres-

sion Suc = 200 ksi (1378 MPa).
 2.8 The block shown in Figure P2.7 is subjected to an axial load P. Calculate the axial strain.
  Given: P = 25 kN, a = 20 mm, b = 10 mm, L = 100 mm, E = 70 GPa, and v = 0.3. 
  Assumption: The block is constrained against y- and z-directed contractions.
 2.9 An aluminum alloy 2014-T6 square plate of sides a and thickness t is subjected to normal 

stresses σx and σz as shown in Figure P2.9. Find the change in
 a. The length AB.
 b. The thickness of the plate.
 c. The volume of the plate.
  Given: a = 320 mm, t = 15 mm, σx = 80 MPa, σz = 140 MPa, E = 72 GPa, v = 0.3 (Table B.1).

21.17 mm
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 2.10 A vibration damper unit is composed of a rubber cylinder of diameter d compressed inside 
a wrought iron cylinder by a force F applied to the steel rod (Figure P2.10). Develop, in 
terms of d, F, and Poisson’s ratio v for the rubber, the following expression for the lateral 
pressure p between the rubber and the wrought iron cylinder:

 ( )=
π −

p
vF

d v

4
12  (P2.10)

 Compute the value of p for the following data: d = 62.5 mm, v = 0.5, and F = 10 kN.
  Assumptions: Friction between the rubber and cylinder as well as between the rod and 

cylinder can be negligible. The cylinder and rod are taken to be rigid.
 2.11 Consider Figure P2.11 with a bronze block (E = 100 GPa, v = 1/3) subjected to uniform 

stresses σx, σy, and σz. Calculate the new dimensions after the loading.
  Given: L = 100 mm, a = 50 mm, and b = 10 mm prior to the loading

 .150 MPa 90 MPa and 0x y zσ = σ = − σ =  

 2.12 Resolve Problem 2.11 assuming that the block is under a uniform pressure of only p = 120 
MPa on all its faces.

 2.13 An ASTM A-48 gray cast iron solid sphere of radius r is under a uniform pressure p 
(Figure P2.13). Find

 a. The decrease in circumference of the sphere.

y

z
σxσz
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 b. Decrease in the volume ΔV of the sphere.
  Given: r = 125 mm, p = 168 MPa, E = 70 GPa, v = 0.25 (from Table B.1). Note: The volume 

of the sphere is Vo = 4πr3/3.

Sections 2.8 through 2.14
 2.14 Determine the approximate value of the modulus of toughness for a structural steel bar 

having the stress–strain diagram of Figure 2.3b. What is the permanent elongation of the 
bar for a 50 mm gage length?

 2.15 A strain energy of 9J must be acquired by a 6061-T6 aluminum alloy rod of diameter d and 
length L, as an axial load is applied (Figure P2.15). Determine the factor of safety n of the 
rod with respect to permanent deformation.

  Given: d = 5 mm and L = 3 m.
 2.16 Compute the modulus of resilience for two grades of steel (see Table B.1):
 a. ASTM-A242.
 b. Cold-rolled stainless steel (302).
 2.17 Compute the modulus of resilience for the following two materials (see Table B.1):
 a. Aluminum alloy 2014-T6.
 b. Annealed yellow brass.
 2.18 A bar is made from a magnesium alloy, stress–strain diagram shown in Figure P2.18. 

Estimate the values of
 a. The modulus of resilience.
 b. The modulus of toughness.
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 2.19 A square steel machine component of sides a by a and length L has to resist an axial energy 
load of 400 N ⋅ m. Determine

 a. The required yield strength of the steel.
 b. The corresponding modulus of resilience for the steel.
  Given: a = 50 mm, L = 1.5 m, factor of safety with respect to yielding n = 1.5, and G = 200 

GPa.
 2.20 A strain energy of Uapp = 17 N ⋅ m must be acquired by an ASTM-A36 steel rod of diameter 

d and length L when the axial load is applied (Figure P2.15). Calculate the diameter d of 
the rod with a factor of safety n with respect to permanent deformation.

  Given: L = 2.4 m and n = 5.
 2.21 The stress–strain diagrams of a structural steel bar are shown in Figure P2.21. Find
 a. The modulus of resilience.
 b. The approximate modulus of toughness.
 2.22 A 50 mm square steel rod with modulus of elasticity E = 210 GPa and length L = 1.2 m has 

to resist an axial energy load of 150 N ⋅ m. On the basis of a safety factor n = 1.8, find
 a. The required proportional limit of steel.
 b. The corresponding modulus of resilience for the steel.
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 2.23 An AISI 1030 steel machine component is normalized to 149 Bhn. Using the relationships 
of Section 2.10, determine the values of Su and Sy for this component.

 2.24 An AISI 1060 steel part is annealed to 179 Bhn. Using the relationships given in Section 
2.10, calculate the values of Su and Sy for this part.

 2.25 An AISI 4130 steel machine element is annealed to 156 Bhn. Using the relationships given 
in Section 2.10, estimate the values of Su and Sy for this element.

 2.26 An AISI 1095 steel component is annealed to 293 Bhn. Using the relationships given in 
Section 2.10, compute the values of Su and Sy for this component.
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3 Stress and Strain

3.1  INTRODUCTION

This chapter provides a review of and insight into stress and strain analyses. Expressions for both 
stresses and deflections in mechanical elements are developed throughout the text as the subject 
unfolds, after examining their function and general geometric behavior. With the exception of 
Sections 3.13 through 3.17, we employ mechanics of materials approach, simplifying the assump-
tions related to the deformation pattern so that strain distributions for a cross-section of a member 
can be determined. A fundamental assumption is that plane sections remain plane. This hypothesis 
can be shown to be exact for axially loaded elastic prismatic bars and circular torsion members and 
for slender beams, plates, and shells subjected to pure bending. The assumption is approximate for 
other stress analysis problems. Note, however, that there are many cases where applications of the 
basic formulas of mechanics of materials, so-called elementary formulas for stress and displace-
ment, lead to useful results for slender members under any type of loading.

Our coverage presumes a knowledge of mechanics of materials procedures for determining 
stresses and strains in both a homogeneous and an isotropic bar, shaft, and beam. In Sections 3.2 
through 3.8, we introduce the basic formulas, the main emphasis being on the underlying assump-
tions used in their derivations. Next to be treated are the transformation of stress and strain at a 
point and measurement of normal strains on the free surface of a member. Then attention focuses on 
stresses arising from various combinations of fundamental loads applied to members and the stress 
concentrations. The chapter concludes with discussions on the states of stress and strain.

In the treatment presented here, the study of complex stress patterns at the supports or locations 
of concentrated load is not included. According to Saint-Venant’s Principle (Section 1.4), the actual 
stress distribution closely approximates that given by the formulas of the mechanics of materials, 
except near the restraints and geometric discontinuities in the members. For further details, see 
texts on solid mechanics and theory of elasticity, for example, References [1–3].

3.2  STRESSES IN AXIALLY LOADED MEMBERS

Axially loaded members are structural and machine elements having straight longitudinal axes and 
supporting only axial forces (tensile or compressive). Figure 3.1a shows a homogeneous prismatic 
bar loaded by tensile forces P at the ends. To determine the normal stress, we make an imaginary 
cut (section a–a) through the member at right angles to its axis (x). A free-body diagram of the iso-
lated part is shown in Figure 3.1b. Here, the stress is substituted on the cut section as a replacement 
for the effect of the removed part.

Assuming that the stress has a uniform distribution over the cross-section, the equilibrium of the 
axial forces, the first of Equation (1.5), yields P = ∫σxdA or P = Aσx. The normal stress is therefore

 σ = P

A
x  (3.1)

where A is the cross-sectional area of the bar. The remaining conditions of Equation (1.5) are also 
satisfied by the stress distribution pattern shown in Figure 3.1b. When the member is being stretched 
as depicted in the figure, the resulting stress is a uniaxial tensile stress; if the direction of the 
forces is reversed, the bar is in compression, and uniaxial compressive stress occurs. Equation (3.1) 
is applicable to tension members and chunky, short compression bars. For slender members, the 
approaches discussed in Chapter 6 must be used.
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Stress due to the restriction of thermal expansion or contraction of a body is called thermal 
stress, σt. Using Hooke’s law and Equation (1.21), we have

 ( )σ = α ∆T Et  (3.2)

The quantity ∆T represents a temperature change. We observe that a high modulus of elasticity E 
and high coefficient of expansion α for the material increase the stress.

3.2.1  design oF tension memBers

Tension members are found in bridges, roof trusses, bracing systems, and mechanisms. They are 
used as tie rods, cables, angles, channels, or combinations of these. Of special concern is the design 
of prismatic tension members for strength under static loading. In this case, a rational design proce-
dure (see Section 1.6) may be briefly described as follows:

 1. Evaluate the mode of possible failure. Usually the normal stress is taken to be the quantity 
most closely associated with failure. This assumption applies regardless of the type of 
failure that may actually occur on a plane of the bar.

 2. Determine the relationships between load and stress. This important value of the normal 
stress is defined by σ = P/A.

 3. Determine the maximum usable value of stress. The maximum usable value of σ without 
failure, σmax, is the yield strength Sy or the ultimate strength Su. Use this value in connec-
tion with the equation found in Step 2, if needed, in any expression of failure criteria, as 
discussed in Chapter 6.

 4. Select the factor of safety. A safety factor n is applied to σmax to determine the allowable 
stress σall = σmax/n. The required cross-sectional area of the member is therefore

 =
σ

A
P

all

 (3.3)

If the bar contains an abrupt change of cross-sectional area, the foregoing procedure is 
repeated, using a stress-concentration factor to find the normal stress (Step 2).

Example 3.1: Design of a Hoist

A pin-connected two-bar assembly or hoist is supported and loaded as shown in Figure 3.2a. Determine 
the cross-sectional area of the round aluminum eyebar AC and the square wood post BC.

Given: The required load is P = 50 kN. The maximum usable stresses in aluminum and wood are 480 
MPa and 60 MPa, respectively.

Assumptions: The load acts in the plane of the hoist. Weights of members are insignificant compared 
to the applied load and omitted. Friction in pin joints and the possibility of member BC buckling are 
ignored.

L
(a) (b)

P
a

a

P x
σx

A
P

FIGURE 3.1 (a) Prismatic bar in tension and (b) free-body diagram of an isolated portion.
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Design Decision: Use a factor of safety of n = 2.4.

Solution

Members AC and BC carry axial loading with relative dimensions shown by small triangles in 
Figure 3.2b. We see that the slopes of the forces FA and FB are 5/12 and 1/1, respectively. It fol-
lows that FAy/5 = FA/13 and F / 2By , and that the vertical force components are FAy = (5/13)FA and 

( )=F F1/ 2By B. Hence, applying equations of statics to the free-body diagram of Figure 3.2b, we 

have

 ∑ ( ) ( ) ( )= − − + = =. . .M F F40 2 5 30 2 5
5

13
3 5 0 130 kNB A A  

 ∑ ( ) ( ) ( )= − − + = =. . .M F F40 2 5 30 6
1
2

3 5 0 113 1 kNA B B  

Note, as a check, that ΣFx = 0.
The allowable stress, from design procedure Steps 3 and 4, is

 
.

,
.

480
2 4

200 MPa
60
2 4

25 MPaAC BCall all( ) ( )σ = = σ = =  

By Equation (3.3), the required cross-sectional areas of the bars are

 
( ) ( )

= = = =,
.

A A
130 10

200
650 mm

113 1 10

25
4524 mmAC BC

3
2

3
2  

Comment: A 29 mm diameter aluminum eyebar and a 68 mm × 68 mm wood post should be used.

3.3  DIRECT SHEAR STRESS AND BEARING STRESS

A shear stress is produced whenever the applied forces cause one section of a body to tend to slide 
past its adjacent section. As an example, consider the connection shown in Figure 3.3a. This joint 
consists of a plate or bracket, a clevis, and a pin that passes through holes in the bracket and clevis. 
A force-flow path through the connection is depicted by the dashed lines in Figure 3.3b. Observe 
that in this symmetrical design, the load P is equally divided between the two prongs of the clevis. 
The pin resists the shear across the two cross-sectional areas at b–b and c–c; hence, it is said to 
be in double shear. At each cut section, a shear force V, equivalent to P/2, (Figure 3.3c) must be 
developed. Thus, the shear occurs over an area parallel to the applied load. This condition is termed 
direct shear.

BA

2.5 m
(a) (b)

x

y

3.5 m

C

P

A

C

FA FB

B

3
4

2.5 m 12 1
1

30 kN
40 kN

13
5 2√

FIGURE 3.2 Example 3.1. (a) A loaded hoist and (b) its free-body diagram.
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86 Mechanical Engineering Design

The distribution of shear stress τ across a section cannot be taken as uniform. Dividing the total 
shear force V by the cross-sectional area A over which it acts, we can obtain the average shear stress 
in the section:

 τ = V

A
avg  (3.4)

The average shear stress in the pin of the connection shown in the figure is therefore τavg = (P/2)/
(πd2/4) = 2P/πd2. Direct shear arises in the design of bolts, rivets, welds, and glued joints, as well as 
in pins (Sections 15.13 through 15.18). In each case, the shear stress is created by a direct action of 
the forces in trying to cut through the material. Shear stress also arises in an indirect manner when 
members are subjected to tension, torsion, and bending, as discussed in the following sections.

Note that under the action of the applied force, the bracket and the clevis press against the pin in 
bearing and a nonuniform pressure develops against the pin (Figure 3.3b). The average value of this 
pressure is determined by dividing the force P transmitted by the projected area Ap of the pin into 
the bracket (or clevis). This is called the bearing stress:

 σ = P

A
b

p

 (3.5)

Therefore, bearing stress in the bracket against the pin is σb = P/td, where t and d represent the 
thickness of the bracket and the diameter of the pin, respectively. Similarly, the bearing stress in the 
clevis against the pin may be obtained. In the preceding, it is assumed that the diameter of the pin 
and the hole (in bracket and clevis) are about the same.

Example 3.2: Design of a Monoplane Wing Rod

The wing of a monoplane is approximated by a pin-connected structure of beam AD and bar BC, as 
depicted in Figure 3.4a. Determine

t

Bracket

Prong

b c

b c

Clevis

P

d
Pin

P(b)

Bracket
bearing area

(a)

b

b
V V =

c
P

P/td

2
c

(c)

P P

FIGURE 3.3 (a) A clevis-pin connection, with the bracket bearing area depicted, (b) force-flow lines, and (c) 
portion of pin subjected to direct shear stresses and bearing stress.
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87Stress and Strain

 a. The shear stress in the pin at hinge C
 b. The diameter of the rod BC

Given: The pin at C has a diameter of 15 mm and is in double shear.

Assumptions: Friction in pin joints is omitted. The air load is distributed uniformly along the span 
of the wing. Only rod BC is under tension. A round 2014-T6 aluminum alloy bar (see Table B.1 in 
Appendix B) is used for rod BC with an allowable axial stress of 210 MPa.

Solution

Referring to the free-body diagram of the wing ACD (Figure 3.4b),

 ∑ ( ) ( )= − = =. .M F F36 1 8
1
5

2 0 72 45 kNA BC BC  

where ( )F 1/ 5BC  is the vertical component of the axial force in member BC.

 a. Through the use of Equation (3.4),

 
( )

τ = =
π 

=,
.

F

A2
72 450

2 0 0075
205 MPaBC

avg 2
 

 b. Applying Equation (3.1), we have

 ( )σ = =, ,F

A A
210 10

72 450
BC

BC

BC BC

6  

 Solving

 ( )= =−.A 3 45 10 m 345 mmBC
4 2 2 

 Hence,

 = π =, .d
d345

4
20 96 mm

2

 

Comments: A 21 mm diameter rod should be used. Note that for steady inverted flight, the rod BC 
would be a compression member.

CA
A

B

D xCD

1.6 m

(a) (b)

1.8 m

2 m

FBC
2

y

1

10 × 3.6 = 36 kN

1 m

2 m
10 kN/m

5 m√

FIGURE 3.4 Example 3.2. (a) A uniformly loaded wing and (b) its free-body diagram.

ISTUDY

www.konkur.in

Telegram: @uni_k



88 Mechanical Engineering Design

3.4  THIN-WALLED PRESSURE VESSELS

Pressure vessels are closed structures that contain liquids or gases under pressure. Common exam-
ples include tanks for compressed air, steam boilers, and pressurized water storage tanks. Although 
pressure vessels exist in a variety of different shapes (see Section 16.9), only thin-walled cylindrical 
and spherical vessels are considered here. A vessel having a wall thickness less than about 1/10 of 
inner radius is called thin-walled. For this case, we can take ri ≈ ro ≈ r, where ri, ro, and r refer to 
inner, outer, and mean radii, respectively. The contents of the pressure vessel exert internal pressure, 
which produces small stretching deformations in the membrane-like walls of an inflated balloon. In 
some cases, external pressures cause contractions of a vessel wall. With either internal or external 
pressure, stresses termed membrane stresses arise in the vessel walls.

Application of the equilibrium conditions to an appropriate portion of a thin-walled tank suffices 
to readily determine membrane stresses [2]. Consider a thin-walled cylindrical vessel with closed 
ends and internal pressure p (Figure 3.5a). The longitudinal or axial stress σa and circumferential 
or tangential stress σθ acting on the side faces of a stress element shown in the figure are principal 
stresses:

 σ = pr

t2
a  (3.6a)

 σ =θ
pr

t
 (3.6b)

The circumferential strain as a function of the change in radius δc is εθ = [2π(r + δc) − 2πr]/2πr = δc/r. 
Using Hooke’s law, we have εθ = (σθ − vσa)/E, where v and E represent Poisson’s ratio and the modu-
lus of elasticity, respectively. The extension of the radius of the cylinder, δc = εθr, under the action of 
the stresses given by Equations (3.6a) and (3.6b) is therefore

 ( )δ = − νpr

Et2
2c

2

 (3.7)

The tangential stresses σ act in the plane of the wall of a spherical vessel and are the same in 
any section that passes through the center under internal pressure p (Figure 3.5b). Sphere stress is 
given by:

 σ = pr

t2
 (3.8)

It is half the magnitude of the tangential stresses of the cylinder. Thus, a sphere is an optimum 
shape for an internally pressurized closed vessel. The radial extension of the sphere, δs = εr, applying 
Hooke’s law ε = (σ − νσ)/E is then

(a)

t

σ

σ

(b)

σ

σ

σ
t

r
σθ r

σa

FIGURE 3.5 Thin-walled pressure vessels: (a) cylindrical and (b) spherical.

ISTUDY

www.konkur.in

Telegram: @uni_k



89Stress and Strain

 ( )δ = − νpr

Et2
1s

2

 (3.9)

Note that the stress acting in the radial direction on the wall of a cylinder or sphere varies 
from −p at the inner surface of the vessel to 0 at the outer surface. For thin-walled vessels, 
radial stress σr is much smaller than the membrane stresses and is usually omitted. The state 
of stress in the wall of a vessel is therefore considered biaxial. To conclude, we mention that 
pressure vessel design is essentially governed by the ASME Pressure Vessel Design Codes 
(Section 16.9).

Thick-walled cylinders are often used as vessels or pipe lines. Some applications involve air or 
hydraulic cylinders, gun barrels, and various mechanical components. Equations for elastic stresses 
and displacements for these members are developed in Chapter 16.* Compound thick-walled cylin-
ders and disks under pressure, thermal, and dynamic loading are discussed. Numerous illustrative 
examples also are given.

Example 3.3: Design of Spherical Pressure Vessel

A spherical vessel of radius r is subjected to an internal pressure p. Determine the critical wall thick-
ness t and the corresponding diametral extension.

Assumption: A safety factor n against bursting is used.

Given: r = 0.75 m, p = 10 MPa, Su = 420 MPa, E = 210 GPa, ν = 0.3, n = 3.

Solution

We have σ = Su/n. Applying Equation (3.8),

 ( )
( )= = = =. . .t

pr

S n2 /

10 0 75

2 420/3
0 0268 m 26 8 mm

u

 

Then Equation (3.9) results in

 ( )
( ) ( )( ) ( ) ( )

( )
δ = − ν =

×
×

= =−. .
.

. .pr

Et

1

2

10 10 0 75 0 7

2 210 10 0 0268
0 35 10 m 0 35 mms

2 6 2

9
3  

The diametral extension is therefore 2δs = 0.7 mm.

3.5  STRESS IN MEMBERS IN TORSION

In this section, attention is directed toward stress in prismatic bars subject to equal and oppo-
site end torques. These members are assumed to be free of end constraints. Both circular and 
rectangular bars are treated. Torsion refers to twisting a structural member when it is loaded 
by couples that cause rotation about its longitudinal axis. Recall from Section 1.8 that, for con-
venience, we often show the moment of a couple or torque by a vector in the form of a double-
headed arrow.

* Within this chapter, some readers may prefer to study Section 16.3.
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3.5.1  CirCular Cross-seCtions

Torsion of circular bars or shafts produced by a torque T results in a shear stress τ and an angle of 
twist or angular deformation ϕ, as shown in Figure 3.6a. The basic assumptions of the formulations 
on the torsional loading of a circular prismatic bar are as follows:

 1. A plane section perpendicular to the axis of the bar remains plane and undisturbed after 
the torques are applied.

 2. Shear strain γ varies linearly from 0 at the center to a maximum on the outer surface.
 3. The material is homogeneous and obeys Hooke’s law; hence, the magnitude of the maxi-

mum shear angle γmax must be less than the yield angle.

The maximum shear stress occurs at the points most remote from the center of the bar and is 
designated τmax. For a linear stress variation, at any point at a distance r from center, the shear stress 
is τ = (r/c)τmax, where c represents the radius of the bar. On a cross-section of the shaft, the resisting 
torque caused by the stress distribution must be equal to the applied torque T. Hence,

 ∫= τ



maxT r

r

c
dA 

The preceding relationship may be written in the form

 ∫= τmaxT
c

r dA2  

By definition, the polar moment of inertia J of the cross-sectional area is

 ∫=J r dA2  (a)

For a solid shaft, J = πc4/2. In the case of a circular tube of inner radius b and outer radius c, J = π(c4 
− b4)/2.

Shear stress varies with the radius and is largest at the points most remote from the shaft center. 
This stress distribution leaves the external cylindrical surface of the bar free of stress distribution, 
as it should be. Note that the representation shown in Figure 3.6a is purely schematic. The maximum 

L

r

c
τ

dA

(a)

T

T

(b)

γmax

τmax

τmax

τmax

τzx τxz

x

FIGURE 3.6 (a) Circular bar in pure torsion and (b) shear stresses on transverse (xz) and axial (zx) planes in 
a circular shaft segment in torsion.
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91Stress and Strain

shear stress on a cross-section of a circular shaft, either solid or hollow, is given by the torsion 
formula:

 τ =max
T

J
C  (3.10)

The shear stress at distance r from the center of a section is

 τ = T

J
r  (3.11)

The transverse shear stress found in Equations (3.10) or (3.11) is accompanied by an axial shear 
stress of equal value, that is, τ = τxz = τzx (Figure 3.6b), to satisfy the conditions of static equilibrium 
of an element. Since the shear stress in a solid circular bar is maximum at the outer boundary of the 
cross-section and 0 at the center, most of the material in a solid shaft is stressed significantly below 
the maximum shear stress level. When weight reduction and savings of material are important, it is 
advisable to use hollow shafts (see also Example 3.4).

3.5.2  nonCirCular Cross-seCtions

In treating torsion of noncircular prismatic bars, cross-sections that are initially plane experience 
out-of-plane deformation or warping, and the first two assumptions stated previously are no lon-
ger appropriate. Figure 3.7 depicts the nature of distortion occurring in a rectangular section. The 
mathematical solution of the problem is complicated. For cases that cannot be conveniently solved 
by applying the theory of elasticity, the governing equations are used in conjunction with the experi-
mental techniques. The finite element analysis is also very efficient for this purpose. Torsional stress 
(and displacement) equations for a number of noncircular sections are summarized in references 
such as [3, 4]. Table 3.1 lists the exact solutions of the maximum shear stress and the angle of twist 
ϕ for a few common cross-sections. Note that the values of coefficients α and β depend on the ratio 
of the side lengths a and b of a rectangular section. For thin sections ( )a b , the values of α and β 
approach 1/3.

The following approximate formula for the maximum shear stress in a rectangular member is 
of interest:

 τ = +



.max

T

ab

b

a
3 1 82  (3.12)

(b)

(a)

T

T

FIGURE 3.7 Rectangular bar (a) before and (b) after a torque is applied.
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As in Table 3.1, a and b represent the lengths of the long and short sides of a rectangular cross-
section, respectively. The stress occurs along the centerline of the wider face of the bar. For a thin 
section, where a is much greater than b, the second term may be neglected. Equation (3.12) is also 
valid for equal-leg angles; these can be considered as two rectangles, each of which is capable of 
carrying half the torque.

TABLE 3.1
Expressions for Stress and Deformation in Some  
Cross-Sectional Shapes in Torsion

Cross-Section
Maximum 

Shearing Stress Angle of Twist

2a

2b
A

Ellipse for circle: a = b

τ =
π

T

ab

2
A 2

( )
φ =

+
π

a b T

a b G

2 2

3 3

A a

Equilateral triangle

τ = T

a

20
A 3 φ = . T

a G

46 2
4

A
b

a

Rectangle

τ =
α

T

ab
A 2 φ =

β
T

ab G3

a/b α β 

1.0 0.208 0.141

1.5 0.231 0.196

2.0 0.246 0.229

2.5 0.256 0.249

3.0 0.267 0.263

4.0 0.282 0.281

5.0 0.292 0.291

10.0 0.312 0.312

∞ 0.333 0.333

A

b

a

B
t

t1

Hollow rectangle

τ = T

abt2
A

1

τ = T

abt2
B

( )φ =
+at bt T

tt a b G2
1

1
2 2

2b

2a

Hollow ellipse for hollow circle: a = b

τ =
π
T

abt2
A ( )

φ =
+

π

a b T

a b tG4

2 2

2 2

a
A

Hexagon

τ = . T

a

5 7
A 3 φ = . T

a G

8 8
4
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93Stress and Strain

Example 3.4: Torque Transmission Efficiency of Hollow and Solid Shafts

A hollow shaft and a solid shaft (Figure 3.8) are twisted about their longitudinal axes with torques Th 
and Ts, respectively. Determine the ratio of the largest torques that can be applied to the shafts.

Given: c = 1.15b.

Assumptions: Both shafts are made of the same material with allowable stress, and both have the same 
cross-sectional area.

Solution

The maximum shear stress τmax equals τall. Since the cross-sectional areas of both shafts are identical, 
π(c2−b2) = πa2:

 = −a c b2 2 2 

For the hollow shaft, using Equation (3.10),

 ( )= π − τT
c

c b
2

h
4 4

all 

Likewise, for the solid shaft,

 = π τT a
2

s
3

all  

We therefore have

 
( )

= − = −
−

/
T

T

c b

ca

c b

c c b

h

s

4 4

3

4 4

2 2 3 2  (3.13)

Substituting c = 1.15b, this quotient gives

 = .T

T
3 56h

s

 

Comments: The result shows that hollow shafts are more efficient in transmitting torque than solid 
shafts. Interestingly, thin shafts are also useful for creating an essentially uniform shear (i.e., τmin ≈ 
τmax). However, to avoid buckling (see Section 5.9), the wall thickness cannot be excessively thin.

3.6  SHEAR AND MOMENT IN BEAMS

In beams loaded by transverse loads in their planes, only two components of stress resultants occur: 
the shear force and bending moment. These loading effects are sometimes referred to as shear and 
moment in beams. To determine the magnitude and sense of shearing force and bending moment at 

b

τmaxc
a

τmin τmax

b

FIGURE 3.8 Example 3.4. Hollow and solid shaft cross-sections.
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any section of a beam, the method of sections is applied. The sign conventions adopted for internal 
forces and moments (see Section 1.8) are associated with the deformations of a member. To illustrate 
this, consider the positive and negative shear forces V and bending moments M acting on segments 
of a beam cut out between two cross-sections (Figure 3.9). We see that a positive shear force tends 
to raise the left-hand face relative to the right-hand face of the segment, and a positive bending 
moment tends to bend the segment concave upward, so it retains water. Likewise, a positive moment 
compresses the upper part of the segment and elongates the lower part.

3.6.1  load, shear, and moment relationshiPs

Consider the free-body diagram of an element of length dx, cut from a loaded beam (Figure 3.10a). 
Note that the distributed load w per unit length, the shears, and the bending moments are shown as 
positive (Figure 3.10b). The changes in V and M from position x to x + dx are denoted by dV and dM, 
respectively. In addition, the resultant of the distributed load (wdx) is indicated by the dashed line in 
the figure. Although w is not uniform, this is permissible substitution for a very small distance dx.

Equilibrium of the vertical forces acting on the element of Figure 3.10b, ∑Fx = 0, results in 
V + wdx = V + dV. Therefore,

 =dV

dx
w (3.14a) 

This states that at any section of the beam, the slope of the shear curve is equal to w. Integration of 
Equation (3.14a) between points A and B on the beam axis gives

 ∫− = =V V wdx A BArea of load diagram between andB A

A

B

 (3.14b)

Clearly, Equation (3.14a) is not valid at the point of application of a concentrated load. 
Similarly, Equation (3.14b) cannot be used when concentrated loads are applied between A and 
B. For equilibrium, the sum of moments about O must also be 0: ∑M0 = 0 or M + dM − (V + dV)
dx − M = 0. If second-order differentials are considered to be negligible compared with differ-
entials, this yields

x

x

y

A BO

w
y

dx

(a) (b)

dx

M M + dM

V + dV

w

x
V

w dx

dx/2

O

FIGURE 3.10 (a) Beam and (b) an element isolated from it.

+V –V +M –M

FIGURE 3.9 Sign convention for beams: definitions of positive and negative shear and moment.
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 =dM

dx
V  (3.15a)

The foregoing relationship indicates that the slope of the moment curve is equal to V. Therefore, the 
shear force is inseparably linked with a change in the bending moment along the length of the beam. 
Note that the maximum value of the moment occurs at the point where V (and hence dM/dx) is 0. 
Integrating Equation (3.15a) between A and B, we have

 ∫− = =M M Vdx A BArea of shear diagram between andB A

A

B

 (3.15b)

The differential equations of equilibrium, Equations (3.14a) and (3.15a), show that the shear and 
moment curves, respectively, always are 1° and 2° higher than the load curve. We note that Equation 
(3.15a) is not valid at the point of application of a concentrated load. Equation (3.15b) can be used 
even when concentrated loads act between A and B, but the relation is not valid if a couple is applied 
at a point between A and B.

3.6.2  shear and moment diagrams

When designing a beam, it is useful to have a graphical visualization of the shear force and moment 
variations along the length of a beam. A shear diagram is a graph where the shearing force is plotted 
against the horizontal distance (x) along a beam. Similarly, a graph showing the bending moment 
plotted against the x axis is the bending moment diagram. The signs for shear V and moment M 
follow the general convention defined in Figure 3.9. It is convenient to place the shear and bending 
moment diagrams directly below the free-body, or load, diagram of the beam. The maximum and 
other significant values are generally marked on the diagrams.

We use the so-called summation method of constructing shear and moment diagrams. The pro-
cedure of this semigraphical approach is as follows:

 1. Determine the reactions from free-body diagram of the entire beam.
 2. Determine the value of the shear, successively summing from the left end of the beam to 

the vertical external forces, or using Equation (3.14b). Draw the shear diagram, obtaining 
the shape from Equation (3.14a). Plot a positive V upward and a negative V downward.

 3. Determine the values of moment, either continuously summing the external moments from 
the left end of the beam, or using Equation (3.15b), whichever is more appropriate. Draw 
the moment diagram. The shape of the diagram is obtained from Equation (3.15a).

A check on the accuracy of the shear and moment diagrams can be made by noting whether or not 
they close. Closure of these diagrams demonstrates that the sum of the shear forces and moments 
acting on the beam is 0, as it must be for equilibrium. When any diagram fails to close, you know 
that there is a construction error or an error in the calculation of the reactions. Examples 3.5 and 3.6 
illustrate the method.

A procedure identical to the preceding one applies to axially loaded bars and twisted shafts. The 
applied axial forces and torques are positive if their vectors are in the direction of a positive coordi-
nate axis. When a bar is subjected to loads at several points along its length, the internal axial forces 
and twisting moments vary from section to section. A graph showing the variation of the axial force 
along the bar axis is called an axial force diagram. A similar graph for the torque is referred to as a 
torque diagram. We note that the axial force and torque diagrams are not used as commonly as shear 
and moment diagrams.
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3.7  STRESSES IN BEAMS

A beam is a bar supporting loads applied laterally or transversely to its (longitudinal) axis. This 
flexure member is commonly used in structures and machines. Examples include the main mem-
bers supporting floors of buildings, automobile axles, and leaf springs. Interestingly, the following 
formulas for stresses and deflections of beams can readily be reduced from those of rectangular 
plates [3].

3.7.1  assumPtions oF Beam theory

The basic assumptions of the technical or engineering theory for slender beams are based on geom-
etry of deformation. They can be summarized as follows:

 1. The deflection of the beam axis is small compared with the depth and span of the beam.
 2. The slope of the deflection curve is very small, and its square is negligible in comparison 

with unity.
 3. Plane sections through a beam taken normal to its axis remain plane after the beam is 

subjected to bending. This is the fundamental hypothesis of the flexure theory.
 4. The effect of shear stress τxy on the distribution of bending stress σx is omitted. The stress 

normal to the neutral surface, σy, may be disregarded.

A generalization of the preceding presuppositions forms the basis for the theories of plates and shells 
[5]. In deep, short beams (where L/h < 5), shear stresses are important. Such beams are treated by 
means of the theory of elasticity because Assumptions 3 and 4 are no longer appropriate.

It is interesting to note that in practice, the span/depth ratio is approximately 10 or more for metal 
beams of compact section, 15 or more for beams with relatively thin webs, and 24 or more for rect-
angular timber beams [4]. In addition, the slope of the deflection curve of the beam is almost always 
less than 5° or 0.087 rad, and hence, (0.087)2 = 0.0076 ≪ 1. Therefore, the equations developed in 
this book generally give results of good accuracy for beams of customary proportions.

When treating the bending problem of beams, it is frequently necessary to distinguish between 
pure bending and nonuniform bending. The former is the flexure of a beam subjected to a constant 
bending moment; the latter refers to flexure in the presence of shear forces. We discuss the stresses 
in beams in both cases of bending.

3.7.2  normal stress

Consider a linearly elastic beam having the y axis as a vertical axis of symmetry (Figure 3.11a). 
Based on Assumptions 3 and 4, the normal stress σx over the cross-section (such as A–B, Figure 3.11b) 
varies linearly with y, and the remaining stress components are 0:

 σ = σ = τ =ky 0x y xy  (a)

Here,
k is a constant
y = 0 contains the neutral surface

The intersection of the neutral surface and the cross-section locates the neutral axis (NA). Figure 
3.11c depicts the linear stress field in section A–B.

Conditions of equilibrium require that the resultant normal force produced by the stresses σx 
be 0 and the moments of the stresses about the axis be equal to the bending moment acting on the 
section. Hence,
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 ∫ ∫( )σ = − σ =,dA dA y M0x

A

x

A

 (b)

in which A represents the cross-sectional area. The negative sign in the second expression indicates 
that a positive moment M is one that produces compressive (negative) stress at points of positive y. 
Carrying Equation (a) into Equation (b),

 ∫ =k ydA 0
A

 (c)

 ∫− =k y dA M
A

2  (d)

Since k = 0, Equation (c) shows that the first moment of cross-sectional area about the NA is 0. This 
requires that the neutral and centroidal axes of the cross-section coincide. It should be mentioned 
that the symmetry of the cross-section about the y axis means that the y and z axes are principal 
centroidal axes. The integral in Equation (d) defines the moment of inertia, I = ∫y2dA, of the cross-
section about the z axis of the beam cross-section. It follows that

 = −k
M

I
 (e)

An expression for the normal stress, known as the elastic flexure formula applicable to initially 
straight beams, can now be written by combining Equations (a) and (e):

 σ = − My

I
x  (3.16)

Here, y represents the distance from the neutral axis (NA) to the point at which the stress is calcu-
lated. It is common practice to recast the flexure formula to yield the maximum normal stress σmax 

B
x z

A
y y

NA

(a)

x

V
B

c
C

b

z

A
M

y y

y1

Centroid
of A*

NA
y

(b)

x

B

y

A
y

σx

(c)

A*

FIGURE 3.11 (a) A beam subjected to transverse loading, (b) segment of beam, and (c) distribution of bend-
ing stress in a beam.
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98 Mechanical Engineering Design

and denote the value of |ymax| by c, where c represents the distance from the NA to the outermost 
fiber of the beam. On this basis, the flexure formula becomes

 σ = =max
Mc

I

M

S
 (3.17)

The quantity S = I/c is known as the section modulus of the cross-sectional area. Note that the 
flexure formula also applies to a beam of an unsymmetrical cross-sectional area, provided I is a 
principal moment of inertia and M is a moment around a principal axis.

3.7.2.1  Curved Beam of a Rectangular Cross-Section
Many machine and structural components loaded as beams, however, are not straight. When beams 
with initial curvature are subjected to bending moments, the stress distribution is not linear on 
either side of the NA, but increases more rapidly on the inner side. The flexure formulas for these 
axi-symmetrically loaded members are developed in Chapter 16, using elasticity, or exact and 
approximate technical theories.*

Here, the general equation for stress in curved members is adapted to the rectangular cross-
section shown in Figure 3.12. Therefore, for pure bending loads, the normal stresses σi and σo at 
the inner and outer surfaces of a curved rectangular beam, respectively, from Equation (16.52) are

 
( ) ( )σ = − − σ = −M R r

Aer

M R r

Aer
i

i

i
o

o

o
 (3.18)

The quantities R and e by Table 16.1 and Figure 3.12 are

 ( )= = −
ln

R
h

r r
e r R

/o i

 (3.19)

In the foregoing expressions, we have
A = the cross-sectional area
h = the depth of beam
R = the radius of curvature to the NA

* Some readers may prefer to study Section 16.8.

Stress
distribution

Centroidal
axis

Neutral
axis

y
y

e

M

b

h
C

h/2

M

rri

ro

R

FIGURE 3.12 Curved bar of rectangular cross-section in pure bending.
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99Stress and Strain

M  =  the bending moment, positive when directed toward the concave side, as shown in the 
figure

ri, ro =  radii of the curvature of the inner and outer surfaces, respectively
r   =  the radius of curvature of the centroidal axis
e  =  the distance between the centroid and the NA

Accordingly, a positive value obtained from Equation (3.18) means tensile stress.
The NA shifts toward the center of curvature by distance e from the centroidal axis (y = 0), as 

shown in Figure 3.12. The expression for R and e for many common cross-sectional shapes can be 
found by referring to Table 16.1. Combined stresses in curved beams are presented in Chapter 16. 
A detailed comparison of the results obtained by various methods is illustrated in Example 16.6. 
Deflections of curved members due to bending, shear, and normal loads are discussed in Section 5.5.

3.7.3  shear stress

We now consider the distribution of shear stress τ in a beam associated with the shear force V. The 
vertical shear stress τxy at any point on the cross-section is numerically equal to the horizontal shear 
stress at the same point (see Section 1.11). Shear stresses as well as the normal stresses are taken 
to be uniform across the width of the beam. The shear stress τxy = τyx at any point of a cross-section 
(Figure 3.11b) is given by the shear formula:

 τ = VQ

Ib
xy  (3.20)

Here,
V = the shearing force at the section
b = the width of the section measured at the point in question

By definition, Q is the first moment with respect to the NA of the area A* beyond the point at 
which the shear stress is required. We thus have

 ∫= = *

*

Q ydA A y

A

 (3.21)

The quantity A* represents the area of the part of the section beyond the point in question, and y  
is the distance from the NA to the centroid of A*. Clearly, if y  is measured above the NA, Q equals 
the first moment of the area above the level where the shear stress is to be found, as shown in 
Figure 3.11b. It is obvious that shear stress varies in accordance with the shape of the cross-section.

3.7.3.1  Rectangular Cross-Section
To ascertain how the shear stress varies, we must examine how Q varies, because V, I, and b are 
constants for a rectangular cross-section. In so doing, we find that the distribution of the shear stress 
on a cross-section of a rectangular beam is parabolic. The stress is 0 at the top and bottom of the 
section (y1 = ±h/2) and has its maximum value at the NA (x1 = 0) as shown in Figure 3.13. Therefore,

 ( )τ = = =
/max

*V

Ib
A y

V

bh b

bh h V

A12 2 4
3
23

 (3.22)

where A = bh is the cross-sectional area of a beam having depth h and width b. For narrow beams 
with sides parallel to the y axis, Equation (3.20) gives solutions in good agreement with the exact 
stress distribution obtained by the methods of the theory of elasticity. Equation (3.22) is particularly 
useful, since beams of rectangular section form are often employed in practice. 
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100 Mechanical Engineering Design

The shear force acting across the width of the beam per unit length along the beam axis may be 
found by multiplying τxy in Equation (3.22) by b (Figure 3.11b). This quantity is denoted by q, known 
as the shear flow,

 =q
VQ

I
 (3.23)

This equation is valid for any beam having a cross-section that is symmetrical about the y axis. It 
is very useful in the analysis of built-up beams. A beam of this type is fabricated by joining two or 
more pieces of material. Built-up beams are generally designed on the basis of the assumption that 
the parts are adequately connected so that the beam acts as a single member. Structural connections 
are taken up in Chapter 15.

3.7.3.2  Various Cross-Sections
It should be noted that the shear formula, also called the shear stress formula, for beams is derived 
on the basis of the flexure formula. Hence, the limitations of the bending formula apply. A variety 
of cross-sections are treated upon following procedures similar to those for rectangular section dis-
cussed earlier and for a circular section (described in Example 3.11). Table 3.2 lists some common 
cases. Observe that shear stress can always be expressed as a constant times the average shear stress 
(P/A), in which the constant is a function of the cross-sectional shape.

Example 3.5: Maximum Stresses in a Simply Supported Beam

A simple beam of T-shaped cross-section is loaded as shown in Figure 3.14a. Determine

 a. The maximum shear stress
 b. The shear flow qj and the shear stress τj in the joint between the flange and the web
 c. The maximum bending stress

Given: P = 4 kN and L = 3 m.

Solution

The distance y from Z axis to the centroid is determined as follows (Figure 3.14b):

 
( ) ( )

( ) ( )= +
+

= +
+

=y
A y A y

A A

20 60 70 60 20 30

20 60 60 20
50 mm1 1 2 2

1 2

 

The moment of inertia I about the NA is found using the parallel axis theorem:

 
( )( ) ( )( ) ( )( ) ( )( )= + + +

= ×

I
1

12
60 20 20 60 20

1
12

20 60 20 60 20

136 10 mm

3 2 3 2

4 4

 

h/2

y

h/2

b

xVz

y

y1 NA

V
A

3
2

τmax =

A*

FIGURE 3.13 Shear stresses in a beam of rectangular cross-section.
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101Stress and Strain

The shear and moment diagrams (Figures 3.14c, 3.14d) are drawn using the method of sections

 a. The maximum shearing stress in the beam occurs at the NA on the cross-section supporting 
the largest shear force V. Hence,

 ( )= = ×Q 50 20 25 25 10 mmNA
3 3 

 Since the shear force equals 2 kN on all cross-sections of the beam (Figure 3.14c), we have

 
( )

( )τ = =
× ×

×
=

−

− .
.max

maxV Q

lb

2 10 25 10

136 10 0 02
1 84 MPaNA

3 6

8  

 b. The first moment of the area of the flange about the NA is

 ( )= = ×Q 20 60 20 24 10 mmf
3 3 

 Applying Equations (3.23) and (3.20),

TABLE 3.2
Maximum Shearing Stress for Some Typical Beam  
Cross-Sectional Forms

Cross-Section
Maximum 

Shearing Stress Location

A. Rectangle

NA

V

z

τ =max
V

A

3
2

NA

B. Circle V

NA

τ =max
V

A

4

3

NA

C. Hollow circle V

NA

τ =max
V

A
2

NA

D. Triangle
V

NA

τ =max
V

A

3

2

Halfway between 
top and bottom

E. Diamond V

NA
h

τ =max
V

A

9

8

At h/8 above and 
below the NA

Notes: A, cross-sectional area; V, transverse shear force; NA, the neutral axis.
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( )

= =
× ×

×
=

−

− .q
VQ

I

2 10 24 10

136 10
35 3 kN/mj

f
3 6

8  

 
( )

τ = = =
.

.
.VQ

lb

35 3 10

0 02
1 765 MPaj

f
3

 

 c. The largest moment occurs at midspan, as shown in Figure 3.14d. Therefore, from Equation 
(3.17), we obtain

 
( )σ = = ×

×
=−

. .max
M

I

3 10 0 05

136 10
110 3 MPaC

3

8  

3.8  DESIGN OF BEAMS

We are here concerned with the elastic design of beams for strength. Beams made of a single mate-
rial and of two different materials are discussed. We note that some beams must be selected based 
on allowable deflections. This topic is taken up in Chapters 4 and 5. Occasionally, beam design 
relies on the plastic moment capacity, the so-called limit design [2].

3.8.1  PrismatiC Beams

We select the dimensions of a beam section so that it supports safely applied loads without exceeding 
the allowable stresses in both flexure and shear. Therefore, the design of the member is controlled by 

(c)

V

x

P
2

= 2 kN

P
2

(d)

M

x

PL
4

= 3 kN  m

P

(a)

A
C B x

y

P
22

L
2
LP

2

20 mm

60 mm

NA

60 mm

20 mm
(b)

Z

y

z
y = 50 mm

A1

A2

FIGURE 3.14 Example 3.5. (a) Loading diagram, (b) beam cross-section, (c) shear diagram, and (d) moment 
diagram.
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103Stress and Strain

the largest normal and shear stresses developed at the critical section, where the maximum value of the  
bending moment and shear force occur. Shear and bending moment diagrams are very helpful for 
locating these critical sections. In heavily loaded short beams, the design is usually governed by 
shear stress, while in slender beams, the flexure stress generally predominates. Shearing is more 
important in wood than steel beams, as wood has a relatively low shear strength parallel to the grain.

Application of the rational procedure in design, outlined in Section 3.2, to a beam of ordinary 
proportions often includes the following steps:

 1. It is assumed that failure results from yielding or fracture and flexure stress is considered 
to be most closely associated with structural damage.

 2. The significant value of bending stress is σ = Mmax/S.
 3. The maximum usable value of σ without failure, σmax, is the yield strength Sy or the 

 ultimate strength Su.
 4. A factor of safety n is applied to σmax to obtain the allowable stress: σall = σmax/n. The 

required section modulus of a beam is then

 =
σ
maxS

M

all

 (3.24)

There are generally several different beam sizes with the required value of S. We select the one 
with the lightest weight per unit length or the smallest sectional area from tables of beam proper-
ties. When the allowable stress is the same in tension and compression, a doubly symmetric section 
(i.e., section symmetric about the y and z axes) should be chosen. If σall is different in tension and 
compression, a singly symmetric section (e.g., a T beam) should be selected so that the distances 
to the extreme fibers in tension and compression are in a ratio nearly the same as the respective 
σall ratios.

We now check the shear-resistance requirement of the beam tentatively selected. After substitut-
ing the suitable data for Q, I, b, and Vmax into Equations (3.20), we determine the maximum shear 
stress in the beam from the formula

 τ =max
maxV Q

Ib
 (3.25)

When the value obtained for τmax is smaller than the allowable shearing stress τall, the beam is 
acceptable; otherwise, a stronger beam should be chosen and the process repeated.

Example 3.6: Design of a Beam of Doubly Symmetric Section

Select a wide-flange steel beam to support the loads shown in Figure 3.15a.

Given: The allowable bending and shear stresses are 160 and 90 MPa, respectively.

Solution

Shear and bending moment diagrams (Figures 3.15b, 3.15c) show that Mmax = 110 kN · m and Vmax = 40 kN. 
Therefore, Equation (3.24) gives

 ( )= × = ×S
110 10

160 10
688 10 mm

3

6
3 3  

Using Table A.6 from Appendix A, we select the lightest member that has a section modulus larger than 
this value of S: a 200 mm W beam weighing 71 kg/m (S = 709 × 103 mm3). Since the weight of the beam 
(71 × 9.81 × 10 = 6.97 kN) is small compared with the applied load (80 kN), it is neglected.
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104 Mechanical Engineering Design

The approximate or average maximum shear stress in beams with flanges may be obtained by divid-
ing the shear force V by the web area:

 τ = =V

A

V

ht
avg

web

 (3.26)

In this relationship, h and t represent the beam depth and web thickness, respectively. From Table A.6, 
the area of the web of a W 200 × 71 section is 216 × 10.2 = 2.203(103) mm2. We therefore have

 ( )τ = × =−.
.40 10

2 203 10
18 16 MPaavg

3

3
 

Comment: Inasmuch as this stress is well within the allowable limit of 90 MPa, the beam is acceptable.

3.8.2  Beams oF Constant strength

When a beam is stressed to a uniform allowable stress, σall, throughout, then it is clear that the beam 
material is used to its greatest capacity. For a prescribed material, such a design is of minimum 
weight. At any cross-section, the required section modulus S is given by

 =
σ

S
M

all

 (3.27)

where M presents the bending moment on an arbitrary section. Tapered beams designed in this 
manner are called beams of constant strength. Note that shear stress at those beam locations where 
the moment is small controls the design.

2 m 3 m

30 kN 20 kN 30 kN

BA

3 m
(a)

2 m

x
(c)

110
8080

x

V
(kN)

(b)

40
10

10
40

(kN   m) 
M

FIGURE 3.15 Example 3.6. (a) Load diagram, (b) shear diagram, and (c) moment diagram.
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105Stress and Strain

Beams of uniform strength are exemplified by leaf springs and certain forged or cast machine 
components (see Section 14.10). For a structural member, fabrication and design constraints make 
it impractical to produce a beam of constant stress, so welded cover plates are often used for parts 
of prismatic beams where the moment is large, for instance, in a bridge girder. If the angle between 
the sides of a tapered beam is small, the flexure formula allows little error. On the other hand, the 
results obtained by using the shear stress formula may not be sufficiently accurate for nonprismatic 
beams. Usually, a modified form of this formula is used for design purposes. The exact distribution 
in a rectangular wedge is obtained by the theory of elasticity [3].

Example 3.7: Design of a Constant Strength Beam

A cantilever beam of uniform strength and rectangular cross-section is to support a concentrated load 
P at the free end (Figure 3.16a). Determine the required cross-sectional area for two cases: (1) the width 
b is constant; (2) the height h is constant.

Solution

 a. At a distance x from A, M = Px, and S = bh2/6. Through the use of Equation (3.27), we write

 =
σ

bh Px

6

2

all

 (a)

 Similarly, at a fixed end (x = L and h = h1),

 =
σ

bh PL

6
1
2

all

 

 Dividing Equation (a) by the preceding relationship results in

 =h h
x

L
1  (b)

 Therefore, the depth of the beam varies parabolically from the free end (Figure 3.16b).

L

(a)

P

(b)

P

A
h h1

Bx

(c)

P b1b

x

FIGURE 3.16 Example 3.7. (a) Uniform strength cantilever, (b) side view, and (c) top view.
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 b. Equation (a) now yields

 =
σ







=b
P

h
x

b

L
x

6
2

all

1  (c)

Comments: In Equation (c), the expression in parentheses represents a constant and is set equal to 
b1/L so that when x = L, the width is b1 (Figure 3.16c). In both cases, obviously the cross-section of 
the beam near end A must be designed to resist the shear force, as shown by the dashed lines in the 
figure.

Example 3.8: Design of Traffic Light Support Beam

A three-phase traffic light of weight W carries a steel beam (Figure 3.17a) of yield strength Sy. The beam 
may be modeled as a prismatic member having constant cross-sectional area and length L, as illustrated 
in Figure 3.17b.

Given: L = 4.5 m, Sy = 250 MPa, W = 200 N.

Find: The safety factor n of the beam associated with yielding for the two choices of the same nominal 
depth beam geometries, shown in Figure 3.17c,

 a. The circular tube
 b. The rectangular tube

(c)

0.216 in.

(50.8 mm)
2 in.

0.188 in.
(5.49 mm) (4.78 mm)

x

(b)
L = 4.5 m

W = 200 N

σmaxσmax

y

x
w

A

M V
A

y

Supporting
beam

(a)

A B

B

Traffic
light

(76.2 mm)
3 in.

FIGURE 3.17 Example 3.8. (a) Schematic model, part of structure, (b) free-body diagram of the beam AB, 
and (c) two standard beam cross-sections.
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107Stress and Strain

Assumptions:

 1. The weight of the beam w per unit length and the weight W of the traffic light will be taken 
into account. The wind loading is disregarded.

 2. The left end of the beam is taken as built-in to a rigid tapered pipe.
 3. According to loading and support conditions, the beam develops an internal shear force V 

and bending moment M at each section along its length. Inasmuch as the ratio of the length to 
nominal depth of the beam equals 4500/75 = 60, the effect of shear on bending stress can be 
disregarded (see Section 3.7).

Solution

See Figure 3.17, Table A.4, and Equation (3.24).
We observe from Figure 3.18b that the largest bending stress takes place at point A on the top surface 

of the left end of the beam. Hence, A represents the critical point, where the weight of the traffic light W 
and the beam weight w per unit length produce a bending moment M (and a shear force V = wL) in the 
vertical plane. At the left end of the beam, moment is expressed as

 = +M WL wL
1
2

2 (3.28)

 a. Circular pipe (3 in. nominal diameter, Table A.4)

 = = = = ×. . . .w S7 58 lb/ft 110 7 N/m 1 72 in. 28 2 10 mm3 3 3  

 Equation (3.28) yields

 ( ) ( )( )= + = ⋅. . . .M 200 4 5
1
2

110 7 4 5 2 021 kN m2  

 The flexure formula Equation (3.27) results in

 σ = = =;
.
, .M

S n
n

250 2021
28 2

3 49all  (3.29a)

 b. Rectangular tube (3 × 2 in. nominal size and 3/16 in. thick, Table A.4)

 = = = = ×. . .w S5 59 lb/ft 81 6 N/m 0 977 in. 16 10 mm3 3 3  

 Through the use of Equation (3.28), we find

 ( ) ( )( )= + = ⋅. . . .M 200 4 5
1
2

81 6 4 5 1 726 kN m2  

 It follows that

 σ = = =; , .M

S n
n

250 1726
16

2 32all  (3.29b)

Comment: The results indicate that a circular pipe is very efficient for bending loads, and rectangular 
tubing seems to be the weaker beam.

3.9  PLANE STRESS

The stresses and strains treated thus far have been found on sections perpendicular to the coordi-
nates used to describe a member. This section deals with the states of stress at points located on 
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inclined planes. In other words, we wish to obtain the stresses acting on the sides of a stress element 
oriented in any desired direction. This process is termed a stress transformation. The discussion 
that follows is limited to 2D, or plane, stress. A 2D state of stress exists when the stresses are inde-
pendent of one of the coordinate axes, here taken as z. The plane stress is therefore specified as 
σz = τyz = τxz = 0, where σx, σy, and τxy have nonzero values. Examples include the stresses arising on 
inclined sections of an axially loaded bar, a shaft in torsion, a beam with transversely applied force, 
and a member subjected to more than one load simultaneously.

Consider the stress components σx, σy, τxy at a point in a body represented by a 2D stress 
element (Figure 3.18a). To portray the stresses acting on an inclined section, an infinitesimal 
wedge is isolated from this element and depicted in Figure 3.18b. The angle θ, locating the x′ 
axis or the unit normal n to the plane AB, is assumed positive when measured from the x axis in 
a counterclockwise direction. Note that according to the sign convention (see Section 1.11), the 
stresses are indicated as positive values. It can be shown that equilibrium of the forces caused 
by stresses acting on the wedge-shaped element gives the following transformation equations for 
plane stress [1]:

 σ = σ θ + σ θ + τ θ θ′ cos sin sin cos2x x y xy
2 2  (3.30a)

 ( ) ( )τ = τ θ − θ + σ − σ θ θ′ ′ cos sin sin cosx y xy y x
2 2  (3.30b)

The stress σ ′y  may readily be obtained by replacing θ in Equation (3.30a) with θ + π/2 (Figure 3.18c). 
This gives

 σ = σ θ + σ θ − τ θ θ′ sin cos sin cos2y x y xy
2 2  (3.30c)

Using the double-angle relationships, the foregoing equations can be expressed in the following 
useful alternative form:

 ( ) ( )σ = σ + σ + σ − σ θ + τ θ′ cos sin1
2

1
2

2 2x x y x y xy  (3.31a)

 ( )τ = − σ − σ θ + τ θ′ ′ sin cos1
2

2 2x y x y xy  (3.31b)

 ( ) ( )σ = σ + σ − σ − σ θ − τ θ′ cos sin1
2

1
2

2 2y x y x y xy  (3.31c)

y

y

A

x x xO O O
B

y΄

y΄ x΄x́ x΄
y΄

σy

σx

nσx

(a) (b) (c)

σx΄
σx΄

θ

σy΄
τx΄y΄ τx΄y΄

σy

τxy

τxy

τxy

θ

θ

θ

FIGURE 3.18 Elements in plane stress.
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For design purposes, the largest stresses are usually needed. The two perpendicular directions 

( )′θ θ″andp p  of planes on which the shear stress vanishes and the normal stress has extreme values 

can be found from

 θ = τ
σ − σ

tan2
2

p
xy

x y

 (3.32)

The angle θp defines the orientation of the principal planes (Figure 3.19). The in-plane principal 
stresses can be obtained by substituting each of the two values of θp from Equation (3.32) into 
Equations (3.31a) and (3.31c) as follows:

 σ = σ = σ + σ ± σ − σ



 + τmax,min ,

2 2
x y x y

xy1 2

2
2  (3.33)

The plus sign gives the algebraically larger maximum principal stress σ1. The minus sign results in 
the minimum principal stress σ2. It is necessary to substitute θp into Equation (3.31a) to learn which 
of the two corresponds to σ1.

Example 3.9: Stresses in a Cylindrical Pressure Vessel Welded along a Helical Seam

Figure 3.20a depicts a cylindrical pressure vessel constructed with a helical weld that makes an angle 
ψ with the longitudinal axis. Determine

 a. The maximum internal pressure p
 b. The shear stress in the weld

y΄

x΄

y΄

x΄

x

x

σ2

(a) (b)

θ́ p

θp̋

σ1 σ1
σ2

FIGURE 3.19 Planes of principal stresses.

Weld

(a) (b) 100 MPa

35.3 MPa

σ2 = 20p

σ1 = 40p

35°
55°

A A

x

x́

ýy

FIGURE 3.20 Example 3.9. (a) cylindrical pressure vessel, (b) element in plane stress.
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Given: r = 240 mm, t = 6 mm, and ψ = 55°. Allowable tensile strength of the weld is 100 MPa.

Assumptions: Stresses are at point A on the wall away from the ends. Vessel is a thin-walled cylinder.

Solution

The principal stresses in axial and tangential directions are, respectively,

 ( )
( )σ = = = = σ σ = σ = = σθ,pr

t

p
p p

2

240

2 6
20 2 40a a2 1

 

The state of stress is shown on the element of Figure 3.20b. We take the x′ axis perpendicular to the 
plane of the weld. This axis is rotated θ = 35° clockwise with respect to the x axis.

 a. Through the use of Equation (3.31a), the tensile stress in the weld is

 

( )

( )

( )

σ = σ + σ − °

= − − ° ≤

′ cos

cosp p

2
2 35

30 10 70 100 10

x
2 1

6

 

 from which pmax = 3.76 MPa.
 b. Applying Equation (3.31b), the shear stress in the weld corresponding to the foregoing value 

of pressure equals

 
( )

( )

τ = − σ + σ − °

= − ° = −

′ ′ sin

sin .p

2
2 35

10 70 35 3 MPa

x y
2 1

 

 The answer is presented in Figure 3.20b.

3.9.1  mohr’s CirCle For stress

Transformation equations for plane stress, Equations (3.31a) and (3.31b), can be represented with σ 
and τ as coordinate axes in a graphical form known as Mohr’s circle (Figure 3.21b). This represen-
tation is very useful in visualizing the relationships between normal and shear stresses acting on 

O

D

C

E
x

σ΄= σavg

B(σy, τxy)

A(σx, – τxy)

σ2

σ1

τ

(a) (b) (c)

B1 A1

y

x

σy

σx
θ

τxy

y

x΄ y΄ B΄

Á
x΄

σ2θ

τmax

+

+

R

FIGURE 3.21 (a) Stress element, (b) Mohr’s circle of stress, and (c) interpretation of positive shear stress.
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111Stress and Strain

various inclined planes at a point in a stressed member. Also, with the aid of this graphical construc-
tion, a quicker solution to a stress-transformation problem can be facilitated.

The coordinates for point A on the circle correspond to the stresses on the x face or plane of the 
element shown in Figure 3.21a. Similarly, the coordinates of a point A′ on Mohr’s circle are to be 
interpreted, representing the stress components σ ′x  and τ ′ ′x y  that act on the x′ plane. The center is 
at (σ′, 0) and the circle radius r equals the length CA. In a Mohr’s circle representation, the normal 
stresses obey the sign convention of Section 1.13. However, for the purposes of only constructing 
and reading values of stress from a Mohr’s circle, the shear stresses on the y planes of the element 
are taken to be positive (as before), but those on the x faces are now negative (Figure 3.21c).

The magnitude of the maximum shear stress is equal to the radius R of the circle. From the 
geometry of Figure 3.21b, we obtain

 τ = σ − σ



 + τmax

2
x y

xy

2
2  (3.34)

Mohr’s circle shows the planes of maximum shear are always oriented at 45° from planes of princi-
pal stress (Figure 3.22). Note that a diagonal of a stress element along which the algebraically larger 
principal stress acts is called the shear diagonal. The maximum shear stress acts toward the shear 
diagonal. The normal stress occurring on planes of maximum shear stress is

 ( )′σ = σ = σ + σ1
2

x yavg  (3.35)

It can readily be verified using Equations (3.30) or Mohr’s circle that on any mutually perpendicular 
planes,

 = σ + σ = σ + σ = σ σ − τ = σ σ − τ′ ′ ′ ′ ′ ′I Ix y x y x y xy x y x y1 2
2 2  (3.36)

The quantities I1 and I2 are known as 2D stress invariants, because they do not change in value when 
the axes’ positions are rotated. This assertion is also valid in the case of a 3D stress. Interestingly, 
in mathematical terms, the stress which components transform in the foregoing way upon rotation 
is termed tensor. Equations (3.36) are particularly useful in checking numerical results of stress 
transformation.

Note that in the case of triaxial stresses σ1, σ2, and σ3, Mohr’s circle is drawn corresponding to 
each projection of a 3D element. The three-circle cluster represents Mohr’s circle for triaxial stress 
(see Figure 3.22). The general state of stress at a point is discussed in some detail in Section 3.15. 

σ2

σ1

σavg

Shea
r

diago
nal

x

45°
θ́p

σavg τmax

FIGURE 3.22 Planes of principal and maximum shear stresses.
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112 Mechanical Engineering Design

Mohr’s circle construction is of fundamental importance because it applies to all (second-rank) 
tensor quantities: that is, Mohr’s circle may be used to determine strains, moments of inertia, and 
natural frequencies of vibration [6]. It is customary to draw only a rough sketch for Mohr’s circle; 
distances and angles are determined with the help of trigonometry. Mohr’s circle provides a con-
venient means of obtaining the results for the stresses under the following two common loadings.

3.9.1.1  Axial Loading
In this case, we have σx = σ1 = P/A, σy = 0, and τxy = 0, where A is the cross-sectional area of the bar. 
The corresponding points A and B define a circle of radius R = P/2A that passes through the origin 
of the coordinates (Figure 3.23b). Points D and E yield the orientation of the planes of the maximum 
shear stress (Figure 3.23a), as well as the values of τmax and the corresponding normal stress σ′:

 τ = ′σ = =max R
P

A2
 (a)

Observe that the normal stress is either maximum or minimum on planes for which shearing stress is 0.

3.9.1.2  Torsion
Now we have σx = σy = 0 and τxy = τmax = Tc/J, where J is the polar moment of inertia of cross-sectional 
area of the bar. Points D and E are located on the τ axis, and Mohr’s circle is a circle of radius 
R = Tc/J centered at the origin (Figure 3.24b). Points A1 and B1 define the principal stresses:

σ΄

C

R

E

x

D

B1 A1

τ

σ

(a) (b)

2θ

P
A

σ=τmax

σ΄ θ=45°

P Px

FIGURE 3.23 (a) Maximum shear stress acting on an element of an axially loaded bar and (b) Mohr’s circle 
for uniaxial loading.

T
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Brittle material
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(c)
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x΄ y΄
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τmax
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σ1

45°
T

c
C

2θ
B1

E x
x́

D

σA1

τ

τmaxR

FIGURE 3.24 (a) Stress acting on a surface element of a twisted shaft, (b) Mohr’s circle for torsional loading, 
and (c) brittle material fractured in torsion.
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 σ ± = ±. R
Tc

J
1 2  (b)

So, it becomes evident that, for a material such as cast iron that is weaker in tension than in shear, 
failure occurs in tension along a helix indicated by the dashed lines in Figure 3.24a.

Fracture of a bar that behaves in a brittle manner in torsion is depicted in Figure 3.24c; ordinary 
chalk behaves this way. Shafts made of materials weak in shear strength (e.g., structural steel) 
break along a line perpendicular to the axis. Experiments show that a very thin-walled hollow shaft 
buckles or wrinkles in the direction of maximum compression, while in the direction of maximum 
tension, tearing occurs.

Example 3.10: Stress Analysis of Cylindrical Pressure Vessel Using Mohr’s Circle

Redo Example 3.9 using Mohr’s circle. Also determine maximum in-plane and absolute shear stresses 
at a point on the wall of the vessel.

Solution

Mohr’s circle (Figure 3.25), constructed referring to Figure 3.20 and Example 3.9, describes the state of 
stress. The x′ axis is rotated 2θ = 70° on the circle with respect to the x axis.

 a. From the geometry of Figure 3.25, we have σx′ = 30p − 10p cos 70° ≤ 100(106). This results in 
pmax = 3.76 MPa.

 b. For the preceding value of pressure, the shear stress in the weld is

 ( )τ = ± ° = ±′ ′ . sin .10 3 76 70 35 3 MPax y  

 The largest in-plane shear stresses are given by points D and E on the circle. Hence,

 ( ) ( )τ = ± − = ± = ±. .p p
1
2

40 20 10 3 76 37 6 MPa 

  The third principal stress in the radial direction is 0, σ3 = 0. The three principal stress circles are 
shown in the figure. The absolute maximum shear stresses are associated with points D′ and E′ 
on the major principal circle. Therefore,

 ( ) ( )τ = ± − = ± = ±. .max p
1
2

40 0 20 3 76 75 2 MPa 

σ΄=30p
E΄

E

D

D΄

x΄

τ

(σx ,́τx ý́ )

σ3=0 σ2=20p

R=10p

40p=σ1

y΄

y
σ

x
C
70°

FIGURE 3.25 Example 3.10.
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3.10  COMBINED STRESSES

Basic formulas of mechanics of materials for determining the state of stress in elastic members are 
developed in Sections 3.2 through 3.7. Often these formulas give either a normal stress or a shear 
stress caused by a single load component being axially centric, or lying in one plane. Note that each 
formula leads to stress as directly proportional to the magnitude of the applied load. When a com-
ponent is acted on simultaneously by two or more loads, causing various internal-force resultants 
on a section, it is assumed that each load produces the stress as if it were the only load acting on the 
member. The final or combined stress is then found by superposition of several states of stress. As 
we see throughout the text, under combined loading, the critical points may not be readily located. 
Therefore, it may be necessary to examine the stress distribution in some detail.

Consider, for example, a solid circular cantilevered bar subjected to a transverse force P, a torque 
T, and a centric load F at its free end (Figure 3.26a). Every section experiences an axial force F, a 
torque T, a bending moment M, and a shear force P = V. The corresponding stresses may be obtained 
using the applicable relationships:

 ′σ =
′

τ = − ′σ = − τ = −, ,F

A

Tc

J

Mc

I

VQ

Ib
x t x d  

Here, τt and τd are the torsional and direct shear stresses, respectively. In Figure 3.26b, the stresses 
shown are those acting on an element B at the top of the bar, and on an element A on the side of the 
bar at the NA. Clearly, B (when located at the support) and A represent the critical points at which 
most severe stresses occur. The principal stresses and maximum shearing stress at a critical point 
can now be ascertained, as discussed in the preceding section.

The following examples illustrate the general approach to problems involving combined load-
ings. Any number of critical locations in the components can be analyzed. These either confirm the 
adequacy of the design or, if the stresses are too large (or too small), indicate the design changes 
required. This is used in a seemingly endless variety of practical situations, so it is often not worth-
while developing specific formulas for most design uses. We develop design formulas under the 
combined loading of common mechanical components, such as shafts, shrink or press fits, fly-
wheels, and pressure vessels in Chapters 9 and 16.

Example 3.11: Determining the Allowable Combined Loading in a Cantilever Bar

A round cantilever bar is loaded as shown in Figure 3.26a. Determine the largest value of the load P.

Given: Diameter d = 60 mm, T = 0.1P N · m, and F = 10P N.

Assumptions: Allowable stresses are 100 MPa in tension and 60 MPa in shear on a section at a = 120 
mm from the free end.

y

z

x d
A

L a P
F

C

TB
C

σx́ σx́+σx̋
τd+τt τt

A B

(a) (b) (c)

FIGURE 3.26 (a) Combined stresses owing to torsion, tension, and direct shear; (b, c) stress elements at 
points A and B.
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Solution

The normal stress at all points of the bar is

 
( )

′σ = = =
π

=
.

.F

A

P

A

P
P

10 10

0 03
3536 8x 2  (a)

The torsional stress at the outer fibers of the bar is

 
( )

( )
τ = − =

π
= −. .

. /
.Tc

J

P
P

0 1 0 03

0 03 2
2357 9t 4  (b)

The largest tensile bending stress occurs at point B of the section considered. Therefore, for a = 120 
mm, we obtain

 
( )

( )
σ = =

π
=″ . .

.
.Mc

I

P
P

0 12 0 03

0 03 /4
5658 8x 4  

Since ( )( )= = π π = =/Q Ay c c c b c/2 4 3 2 /3 and 22 3 , the largest direct shearing stress at point A is

 
( )

τ = − = − = −
π

= −
.

.VQ

Ib

V

A

P
P

4
3

4

3 0 03
471 57d 2  (c)

The maximum principal stress and the maximum shearing stress at point A (Figure 3.26b), applying 
Equations (3.33) and (3.34) with σy = 0 and Equations (a), (b), and (c), are

 

( )( )

( )

σ = ′σ + ′σ



 + τ + τ













= + 



 + −











= + =

. . .

. . .

/

/
P P

P

P P P

2 2

3536 8
2

3536 8
2

2829 5

1768 4 3336 7 5105 1

A
x x

d t1

2
2

1 2

2
2

1 2

 

 ( )τ = .max P3336 7
A

 

Likewise, at point B (Figure 3.26c),

 

( )

( )

σ = ′σ + σ + ′σ + σ





+ τ












= + 



 + −











= + =

″ ″

. . .

. .

/

/
P P

P

P P P

2 2

9195 6
2

9195 6
2

2357 9

4597 8 5167 2 9765

B
x x x x

t1

2

2

1 2

2
2

1 2

 

 ( )τ = .max P5167 2
B

 

It is observed that the stresses at B are more severe than those at A. Inserting the given data into the 
foregoing, we obtain

 ( ) = = .P P100 10 9765 or 10 24 kN6  
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 ( ) = =. .P P60 10 5167 2 or 11 61 kN6  

Comment: The magnitudes of the largest allowable transverse, axial, and torsional loads that can be 
carried by the bar are P = 10.24 kN, F = 102.4 kN, and T = 1.024 kN · m, respectively.

Example 3.12: Pressure Capacity of a Hydraulic Cylinder

Pressurized hydraulic fluid (liquid or air) produces stresses and deformation of a cylinder. Hydraulic 
systems are widespread usage in brakes, control mechanisms, and actuators in positioning devices. A 
hydraulic cylinder of a loader truck is shown in Figure P18.1 of Problem 18.1. The design of a pressur-
ized duplex conduit is illustrated in Example 16.2.

Given: A hydraulic cylinder of radius r and thickness t subjected to internal pressure p is simultane-
ously compressed by an axial load P through the piston of diameter d ≈ 2r, as shown in Figure 3.27a. 
Note that, the vessel is inadvertently subjected to torque T at its mounting. Data: r = 60 mm, t = 5 mm, 
and T = 300 N · m. Allowable in-plane shear stress in the cylinder wall will be 75 MPa.

Find: The largest value of p that can be applied to the cylinder.

Assumptions: The critical stress is at point A on cylinder remote from the ends. The effect of bending 
of the cylinder on stresses is disregarded.

Solution

Combined stresses act at a critical point on an element in the wall of the pipe (Figure 3.27b). We 
have

 

( ) ( )

τ = =
π

=
π

=
. .

.

Tr

J

T

r t2

300

2 0 06 0 005
2 65 MPa

xy 2

2

 

 
( )
( )σ = = =pr

t

p
p

2

60

2 5
6x  

 σ = =θ
pr

t
p12  

Mounting

Piston
(a)

T

T

Mounting

A

t

d

P

p

Cylinder

(b)
A x

y σθ

σx

τxy

FIGURE 3.27 Example 3.12. (a) Schematic hydraulic cylinder and (b) element in plane stress.
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Applying Equation (3.34),

 
( )τ = −



 +

= + ≤

.

.

max
p p

p

6 12
2

2 65

9 7 023 75

2

2

 

From which

 =p 25 MPamax  

Comment: The largest allowable axial load that can be applied to the piston is about Pmax = 25(π × 602)  
= 283 kN.

Case Study 3.1 Bolt Cutter Stress Analysis

A bolt cutting tool is shown in Figure 1.4. Determine the stresses in the members.

Given: The geometry and forces are known from Case Study 1.1. The material of all parts is 
AISI 1080 HR steel. Dimensions are in inches. We have

 ( )= = = =. , . ,S S S E420 MPa Table B 3 0 5 210 MPa 200 GPay yx y  

Assumptions:

 1. The loading is taken to be static. The material is ductile, and stress-concentration factors 
can be disregarded under steady loading.

 2. The most likely failure points are in link 3, the hole where pins are inserted, the connecting 
pins in shear, and jaw 2 in bending.

 3. Member 2 can be approximated as a simple beam with an overhang.

Solution
See Figures 1.4 and 3.28.
The largest force on any pin in the assembly is at joint A.

Member 3 is a pin-ended tensile link. The force on a pin is 576 N, as shown in Figure 3.28a. 
The normal stress is therefore

 ( )( ) ( )( )
σ =

−
= =−. – . .

.F

w d t

576 N

9 375 3 125 3 125 10
29 49 MPaA

3 3
6

 

For the bearing stress in joint A, using Equation (3.5), we have

 ( )( )( )
σ = = =−. .

.F

dt

576

3 125 3 125 10
58 98 MPab

A

3
6

 

The link and other members have ample material around holes to prevent tearout. The 3.125 mm 
diameter pins are in single shear. The worst-case direct shear stress, from Equation (3.4), is
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( )

( )τ =
π

=
π ×

=
−.

.F

d

4 4 576

3 125 10
75 1 MPaA

2 3 2  

Member 2, the jaw, is supported and loaded as shown in Figure 3.28b. The moment of inertia of 
the cross-sectional area is

 

( )

( ) ( )( ) ( )

= −

= −  = =
−

− −.
. . .

I
t

h d
12

4 6875 10

12
9 375 3 125 10 309 10 m 310 mm

2
2
3 3

3
3 3 9 12 4 4

 

The maximum moment that occurs at point A of the jaw equals M = FBb = 144(0.075) = 10.8 N · m. 
The bending stress is then

 
( )

( )
( )

σ = = =
−

−

. .
.Mc

I

10 8 4 6875 10

310 10
163 3 MPac

3

12
 

It can readily be shown that the shear stress is negligibly small in the jaw.
Member 1, the handle, has an irregular geometry and is relatively massive compared to the 

other components of the assembly. Accurate values of stresses as well as deflections in the 
handle may be obtained by the finite element analysis.

Comment: The results show that the maximum stresses in members are well under the yield 
strength of the material.

3.11  PLANE STRAIN

In the case of two-dimensional (2D) or plane strain, all points in the body before and after the appli-
cation of the load remain in the same plane. Therefore, in the xy plane, the strain components ɛx, 
ɛy, and γxy may have nonzero values. The normal and shear strains at a point in a member vary with 
direction in a way analogous to that for stress. We briefly discuss expressions that give the strains in 

FA = 576 N

31.25

(a) (b)

3

FA

= L3

d = 3.125

t3 = 3.125

w3 = 9.375

A

A

FA = 576 N FB = 144 N
Q = 432 N

2

    b = 75    a = 25

h2 = 9.375

t2 = 4.6875

d = 3.125

A BD

FIGURE 3.28 Dimensions are in millimeters. Some free-body diagrams of bolt cutter shown in Figure 1.4: 
(a) link 3 and (b) jaw 2.
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119Stress and Strain

the inclined directions. These in-plane strain transformation equations are particularly significant in 
experimental investigations, where strains are measured by means of strain gages. The site at www 
.measurementgroup.com includes general information on strain gages as well as instrumentation.

Mathematically, in every respect, the transformation of strain is the same as the stress trans-
formation. It can be shown that [3] transformation expressions of stress are converted into strain 
relationships by substitution:

 σ → ε τ → γ
and

2
 (a)

These replacements can be made in all the analogous 2D and 3D transformation relations. Therefore, 
the principal strain directions are obtained from Equation (3.32) in the form, for example,

 θ = γ
ε − ε

tan 2 p
xy

x y

 (3.37)

Using Equation (3.33), the magnitudes of the in-plane principal strains are

 ε = ε + ε ± ε + ε



 + γ



,

2 2 2
x y x y xy

1 2

2 2

 (3.38)

In a like manner, the in-plane transformation of strain in an arbitrary direction proceeds from 
Equations (3.31):

 ( ) ( )ε = ε + ε + ε − ε θ + γ θ′ cos sin1
2

1
2

2
2

2x x y x y
xy  (3.39a)

 ( )γ = − ε − ε θ + γ θ′ ′ sin cos2 2x y x y xy  (3.39b)

 ( ) ( )ε = ε + ε − ε − ε θ − γ θ′ cos sin1
2

1
2

2
2

2y x y x y
xy  (3.39c)

An expression for the maximum shear strain may also be found from Equation (3.34). Similarly, 
the transformation equations of 3D strain may be deduced from the corresponding stress relations 
given in Section 3.17.

3.11.1  mohr’s CirCle For strain

In Mohr’s circle for strain, the normal strain ɛ is plotted on the horizontal axis, positive to the right. 
The vertical axis is measured in terms of γ/2. The abscissa of the center C and the radius R of the 
circle, respectively, are

 ε = ′ε = ε + ε = ε − ε



 + γ



, R

2 2 2
x y x y xy

avg

2 2

 (b)

When the shear strain is positive, the point representing the x axis strain is plotted a distance γ/2 
below the axis and vice versa when shear strain is negative. Note that this convention for shearing 
strain, used only in constructing and reading values from Mohr’s circle, agrees with the convention 
used for stress in Section 3.9.
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Example 3.13: Determination of Principal Strains Using Mohr’s Circle

It is observed that an element of a structural component elongates 450 μ along the x axis, contracts 120 
μ in the y direction, and distorts through an angle of −360 μ (see Section 1.13). Calculate

 a. The principal strains
 b. The maximum shear strains

Given: ɛx = 450 μ, ɛy = − 120 μ, γxy = − 360 μ.

Assumption: Element is in a state of plane strain.

Solution

A sketch of Mohr’s circle is shown in Figure 3.29, constructed by finding the position of point C 
at ɛ′ = (ɛx + ɛy)/2 = 165 μ on the horizontal axis and of point A at (ɛx − γxy/2) = (450 μ, 180 μ) from the 
origin O.

 a. The in-plane principal strains are represented by points A and B. Hence,

 ( )ε = µ ± +



 + −









,

/

165
450 120

2
1801 2

2
2

1 2

 

 ε = µ ε = − µ502 1721 2  

 Note, as a check, that ɛx + ɛy = ɛ1 + ɛ2 = 330 μ. From geometry,

 ′θ = = °−tan .1
2

180
285

16 14p
1  

 It is seen from the circle that ′θp locates the ɛx direction.
 b. The maximum shear strains are given by points D and E. Hence,

 ( )γ = ± ε − ε = ± µmax 6741 2  

E

OB1

B(–120, –180)

A(450, 180)

C

R

R

A1

x

y

έ =165

2θṕ

ε(μ)

D

γ
2

(μ)

FIGURE 3.29 Example 3.13.
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Comments: Mohr’s circle depicts that the axes of maximum shear strain make an angle of 45° with 
respect to principal axes. In the directions of maximum shear strain, the normal strains are equal to 
ɛ′ = 165 μ.

3.12  MEASUREMENT OF STRAIN: STRAIN ROSETTE

The equations of transformation for strain and Mohr’s circle facilitate the interpretation of strain 
gage measurements, but literature on the subject should be consulted to gain further insight 
into experimental stress analysis. A variety of mechanical, electrical, and optical systems have 
been manufactured for measuring the normal strain on the free surface of a member where 
a state of plane stress occurs [7]. A widely employed, convenient, and accurate method uses 
electrical strain gages. We shall now briefly discuss a typical bonded strain gage and its special 
combinations.

Strain gage. A typical strain gage composed of a grid of fine wire or foil filament cemented 
between two sheets of treated paper foil or plastic backing is depicted in Figure 3.30. The back-
ing serves to insulate the grid from the metal surface on which it is to be bonded. Usually, 0.03 
mm diameter wire or 0.003 mm foil filament is used. The gages are manufactured in various gage 
lengths, changing from 4 to 150 mm, and are designed for different environmental conditions. As 
the surface is strained, the grid is lengthened or shortened, which changes the electrical resistance 
of the gage. A bridge circuit, connected to the gage by means of wires, is then used to trans-
late variations in electrical resistance into strains. An instrument employed for this purpose is the 
Wheatstone bridge.

Strain rosette. At least three strain measurements in three different directions at a point on the 
surface of a member are needed to find the average state of strain at that point. So, three gages are 
often clustered to form a strain rosette, which may be cemented to the free surface of a member. 
Two customary kinds of rosettes are the rectangular rosette with three gages spaced at 45° angles 
and the delta rosette with three gages spaced at 60° angles (Figure 3.31).

Let us consider an arbitrary arrangement of strain gages with angles θa, θb, and θc about to the 
reference x axis, as shown in Figure 3.32. Then a-, b-, and c-directed normal strains, referring to 
Equations (3.30) and (3.39), are expressed as follows:

FIGURE 3.30 Strain gage (Courtesy: Micro-Measurements Division, Vishay Intertechnology, Inc., Malvern, PA).
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ε = ε θ + ε θ + γ θ θ

ε = ε θ + ε θ + γ θ θ

ε = ε θ + ε θ + γ θ θ

cos sin sin cos

cos sin sin cos

cos sin sin cos

a x a y a xy a a

b x b y b xy b b

c x c y c xy c c

2 2

2 2

2 2

 (3.40)

If the values of ɛa, ɛb, and ɛc are measured for given θa, θb, and θc, the values of ɛx, ɛy, and γxy can be 
obtained by simultaneous solution of Equation (3.40). Usually, one of the axes is taken to be aligned 
with one arm of the rosette, say, the arm a. Hence, ɛx = ɛa, the strain in the direction a. The compo-
nents ɛy, γxy may then be written in terms of the measured strains ɛa, ɛb, and ɛc in the directions of 
the three rosette arms a, b, c, respectively.

Example 3.14: Measured Strains in a Frame Component

Given: At point A on the free surface of a frame during a static testing, the 45° rosette readings show 
the normal strains:

 ε = µ ε = µ ε = − µ, ,800 600 150a b c  

45° 45°M M

1 2 3

RA

60° 60°

(a) (b)

FIGURE 3.31 Rosette strain gages: (a) rectangular rosette and (b) delta rosette (Courtesy: Micro-
Measurements Division, Vishay Intertechnology, Inc., Malvern, PA).

a

b
c

θc θb

θa
x

O

FIGURE 3.32 A schematic strain rosette.
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123Stress and Strain

at θa = 0°, θb = 45°, and θc = 90°, respectively (Figure 3.33).

Find: The plane strain components.

Solution

For the 45° rosette arrangement, Equation (3.40) reduces to

 ( )ε = ε ε = ε ε = ε + ε + γ, , 1
2

a x c y b x y xy  

from which

 ( )ε = ε ε = ε γ = ε − ε + ε, , 2x a y c xy b a c  (3.41)

Substituting the given data, we obtain ɛx = 800 μ, ɛy = −150 μ, and γxy = 550 μ.

Comment: The principal strains and the maximum shear strains for these numerical values may then 
readily be calculated.

3.13  STRESS-CONCENTRATION FACTORS

The condition where highly localized stresses are produced as a result of an abrupt change in geom-
etry is called the stress concentration. The abrupt change in form or discontinuity occurs in such fre-
quently encountered stress raisers as holes, notches, keyways, threads, grooves, and fillets. Note that 
the stress concentration is a primary cause of fatigue failure and static failure in brittle materials, as 
discussed in the next section. The formulas of mechanics of materials apply as long as the material 
remains linearly elastic and shape variations are gradual. In some cases, the stress and accompany-
ing deformation near a discontinuity can be analyzed by applying the theory of elasticity. In those 
instances that do not yield to analytical methods, it is more usual to rely on experimental techniques 
or the finite element method (see Case Study 17.3). In fact, much research centers on determining 
stress-concentration effects for combined stress.

A geometric or theoretical stress-concentration factor Kt is used to relate the maximum stress at 
the discontinuity to the nominal stress. The factor is defined by

 = σ
σ

= τ
τ

max maxK Kort t
nom nom

 (3.42)

θc

θb

xaA

b

c

FIGURE 3.33 Rectangular strain rosette.
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124 Mechanical Engineering Design

Here, the nominal stresses are stresses that would occur if the abrupt change in the cross-section 
did not exist or had no influence on stress distribution. It is important to note that a stress-con-
centration factor is applied to the stress computed for the net or reduced cross-section. Stress-
concentration factors for several types of configuration and loading are available in technical 
literature [8, 9].

The stress-concentration factors for a variety of geometries, provided in Appendix C, are use-
ful in the design of machine parts. Curves in the Appendix C figures are plotted on the basis of 
dimensionless ratios: the shape, but not the size, of the member is involved. Observe that all these 
graphs indicate the advisability of streamlining junctures and transitions of portions that make up 
a member; that is, stress concentration can be reduced in intensity by properly proportioning the 
parts. Large fillet radii help at re-entrant corners.

The values shown in Figures C.1, C.2, and C.7 through C.9 are for fillets of radius r that join a 
part of depth (or diameter) d to one of larger depth (or diameter) D at a step or shoulder in a member 
(see Figure 3.34). A full fillet is a 90° arc with radius r = (D − df)/2. The stress-concentration factor 
decreases with increases in r/d or d/D. Also, results for the axial tension pertain equally to cases 
of axial compression. However, the stresses obtained are valid only if the loading is not significant 
relative to that which would cause failure by buckling.

Example 3.15: Design of Axially Loaded Thick Plate with a Hole and Fillets

A filleted plate of thickness t supports an axial load P (Figure 3.34). Determine the radius r of the fillets 
so that the same stress occurs at the hole and the fillets.

Given: P = 50 kN, D = 100 mm, df
 = 66 mm, dh = 20 mm, t = 10 mm.

Design Decisions: The plate will be made of a relatively brittle metallic alloy; we must consider stress 
concentration.

Solution
For the circular hole,

 ( ) ( )= = = − = − =. ,d

D
A D d t

20
100

0 2 100 20 10 800 mmh
h

2  

Using the lower curve in Figure C.5 in Appendix C, we find that Kt = 2.44 corresponding to dh/D = 0.2. 
Hence,

 ( )σ = = × =−. .K
P

A
2 44

50 10

800 10
152 5 MPatmax

3

6
 

D P
dfdh

r

t

FIGURE 3.34 A flat bar with fillets and a centric hole under axial loading.
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125Stress and Strain

For fillets,

 ( )σ = = × =− .K
P

A
K K

50 10

660 10
75 8 MPat t tmax

3

6
 

The requirement that the maximum stress for the hole and fillets be identical is satisfied by

 = =. . .K K152 5 75 8 or 2 01t t  

From the curve in Figure C.1, for D/df = 100/66 = 1.52, we find that r/df = 0.12 corresponding to Kt = 2.01. 
The necessary fillet radius is therefore

 = × =. .r 0 12 66 7 9 mm 

3.14  IMPORTANCE OF STRESS-CONCENTRATION FACTORS IN DESIGN

Under certain conditions, a normally ductile material behaves in a brittle manner and vice versa. So, 
for a specific application, the distinction between ductile and brittle materials must be inferred from 
the discussion in Section 2.9. Also remember that the determination of stress-concentration factors 
is based on the use of Hooke’s law.

3.14.1  Fatigue loading

Most engineering materials may fail as a result of propagation of cracks originating at the point of 
high dynamic stress. The presence of stress concentration in the case of fluctuating (and impact) 
loading, as found in some machine elements, must be considered, regardless of whether the material 
response is brittle or ductile. In machine design, then, fatigue stress concentrations are of paramount 
importance. However, its effect on the nominal stress is not as large, as indicated by the theoretical 
factors (see Section 7.7).

3.14.2  statiC loading

For static loading, stress concentration is important only for brittle material. However, for some 
brittle materials having internal irregularities, such as cast iron, stress raisers usually have little 
effect, regardless of the nature of loading. Hence, the use of a stress-concentration factor appears 
to be unnecessary for cast iron. Customarily, stress concentration is ignored in static loading of 
ductile materials. The explanation for this restriction is quite simple. For ductile materials, slowly 
and steadily loaded beyond the yield point, the stress-concentration factors decrease to a value 
approaching unity because of the redistribution of stress around a discontinuity.

To illustrate the foregoing inelastic action, consider the behavior of a mild-steel flat bar that con-
tains a hole and is subjected to a gradually increasing load P (Figure 3.35). When σmax reaches the 

PP

A

Sy

σmax = σnom

m

q p n

FIGURE 3.35 Redistribution of stress in a flat bar of mild steel.
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yield strength Sy, stress distribution in the material is of the form curve mn, and yielding impends at 
A. Some fibers are stressed in the plastic range, but enough others remain elastic, and the member 
can carry additional load. We observe that the area under the stress distribution curve is equal to 
the load P. This area increases as overload P increases, and a contained plastic flow occurs in the 
material. Therefore, with the increase in the value of P, the stress distribution curve assumes forms 
such as those shown by line mp and finally mq. That is, the effect of an abrupt change in geometry 
is nullified, and σmax = σnom, or Kt = 1; prior to necking, a nearly uniform stress distribution across the 
net section occurs. Hence, for most practical purposes, the bar containing a hole carries the same 
static load as the bar with no hole.

The effect of ductility on the strength of the shafts and beams with stress raisers is similar to that 
of axially loaded bars. That is, localized inelastic deformations enable these members to support 
high stress concentrations. Interestingly, material ductility introduces a certain element of forgive-
ness in analysis while producing acceptable design results; for example, rivets can carry equal loads 
in a riveted connection (see Section 15.13).

When a member is yielded nonuniformly throughout a cross-section, residual stresses remain 
in this cross-section after the load is removed. An overload produces residual stresses favorable to 
future loads in the same direction and unfavorable to future loads in the opposite direction. Based 
on the idealized stress–strain curve, the increase in load capacity in one direction is the same as the 
decrease in load capacity in the opposite direction. Note that coil springs in compression are good 
candidates for favorable residual stresses caused by yielding.

Example 3.16: Load Capacity of a Stepped Steel Shaft in Tension

A round stepped ASTM-A36 structural steel shaft of diameters d and D with shoulder fillet radius r is 
loaded by an axial tensile load P as shown in Figure 3.36. Compute

 a. The value of P that may be applied to the bar without causing the steel to yield
 b. The maximum value of P that the bar can carry

Given: d = 25 mm, D = 50 mm, r = 3. 75 mm, Sy = 250 MPa (Table B.1).

Assumption: The mild steel is idealized to be elastic-plastic material.

Solution

 a. Yield load. Material behaves elastically. From the given dimensions, the geometric propor-
tions of the bar are

D

r

P

P d

FIGURE 3.36 Example 3.16. A filleted shaft in an axial tensile load.
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 = = = =, . .D

d

r

d

50
25

2
3 75
25

0 15  

 The corresponding stress-concentration factor from Figure C.7 is found as K = 1.8.
The largest load without causing yielding takes place when σmax= Sy. Equation (3.42) then 

becomes 

 = =
π /

S K
P

A
K

P

d 4
y t

y
t

y
2

 

 Introducing the given data leads to

 ( ) ( )
=

π
.

.
P

250 10 1 8
4

0 025
y6

2
 

 from which

 = .P 68 2 kNy
 

 b. Ultimate load. The maximum load supported by the shaft causes all the material at the small-
est cross-section to yield uniformly. Consequently, σmax = σnom or Kt = 1. We thus have

 = =
π /

S
P

A

P

d 4
u

u u
2

 

 Inserting the given numerical values, we have

 ( ) ( )
=

π .
P

250 10
4

0 025
u6

2
 

 Solving,

 = .P 122 7 kNu
 

Comment: Inasmuch as Pu > Py, the elastic design is conservative.

*3.15 THREE-DIMENSIONAL STRESS

In the most general case of 3D stress, an element is subjected to stresses on the orthogonal x, y, and 
z planes, as shown in Figure 1.8. Consider a tetrahedron, isolated from this element and represented 
in Figure 3.37. Components of stress on the perpendicular planes (intersecting at the origin O) can 
be related to the normal and shear stresses on the oblique plane ABC, by using an approach identical 
to that employed for the 2D state of stress.

Orientation of plane ABC may be defined in terms of the direction cosines, associated with the 
angles between a unit normal n to the plane and the x, y, z coordinate axes:

 ( )( ) ( )= = =cos , , cos , , cos ,n n nx l y m z n  (3.43)

The sum of the squares of these quantities is unity:

 + + =l m n 12 2 2  (3.44)
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Consider now a new coordinate system x′, y′, z′, where x′ coincides with n and y′, z′ lie on an oblique 
plane. It can readily be shown that [3] the normal stress acting on the oblique x′ plane shown in 
Figure 3.37 is expressed in the form

 ( )σ = σ + σ + σ + τ + τ + τ′ lnl m n lm mn2x x y z xy yz xz
2 2 2  (3.45)

where l, m, and n are direction cosines of angles between x′ and the x, y, z axes, respectively. The 
shear stresses τx′y′ and τx′z′ may be written similarly. The stresses on the three mutually perpendicu-
lar planes are required to specify the stress at a point. One of these planes is the oblique (x′) plane 
in question. The other stress components σy′, σz′, and τy′z′ are obtained by considering those (y′ and 
z′) planes perpendicular to the oblique plane. In so doing, the resulting six expressions represent 
transformation equations for 3D stress.

3.15.1  PrinCiPal stresses in three dimensions

For the 3D case, three mutually perpendicular planes of zero shear exist, and on these planes, the 
normal stresses have maximum or minimum values. The foregoing normal stresses are called prin-
cipal stresses σ1, σ2, and σ3. The algebraically largest stress is represented by σ1 and the smallest 
by σ3. Of particular importance are the direction cosines of the plane on which σx′ has a maximum 
value, determined from the following equations:

 ( )
σ − σ τ τ

τ σ − σ τ
τ τ σ − σ



































= =, , ,
l

m

n

i0 1 2 3

x i xy xz

xy y i yz

xz yz z i

i

i

i

 (3.46)

A nontrivial solution for the direction cosines requires that the characteristic determinant vanishes. Thus,

 

σ − σ τ τ
τ σ − σ τ
τ τ σ − σ



















= 0

x i xy xz

xy y i yz

xz yz z i

 (3.47)

y

A

n

x
C

σx'

τx'z'

O

B

z

τx'y'

FIGURE 3.37 Components of stress on a tetrahedron.
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129Stress and Strain

Expanding Equation (3.47), we obtain the following stress cubic equation:

 σ − σ + σ − =I I I 0i i i
3

1
2

2 3  (3.48)

where

 

= σ + σ + σ

= σ σ + σ σ + σ σ − τ − τ − τ

= σ σ σ − τ τ τ − σ τ − σ τ − σ τ

I

I

I 2

x y z

x y x z y z xy yz xz

x y z xy yz xz x yz y xz z xy

1

2
2 2 2

3
2 2 2

 (3.49)

The quantities I1, I2, and I3 represent invariants of the 3D stress. For a given state of stress, Equation 
(3.48) may be solved for its three roots, σ1, σ2, and σ3. Introducing each of these principal stresses 
into Equation (3.46) and using + + =l m n 1i i i

2 2 2 , we can obtain three sets of direction cosines for 
three principal planes. Note that the direction cosines of the principal stresses are occasionally 
required to predict the behavior of members. A convenient way of determining the roots of the 
stress cubic equation and solving for the direction cosines is given in Appendix D.

After obtaining the 3D principal stresses, we can readily determine the maximum shear stresses. 
Since no shear stress acts on the principal planes, it follows that an element oriented parallel to the 
principal directions is in a state of triaxial stress (Figure 3.38). Therefore,

 ( )τ = σ − σmax
1
2

1 3  (3.50)

The maximum shear stress acts on the planes that bisect the planes of the maximum and minimum 
principal stresses as shown in the figure.

Example 3.17: Three-Dimensional State of Stress in a Member

At a critical point in a loaded machine component, the stresses relative to the x, y, z coordinate system 
are given by

 

σ τ τ
τ σ τ
τ τ σ



















=
















60 20 20
20 0 40
20 40 0

MPa

x xy xz

xy y yz

xz yz z

 (a)

σ2

σ3

σ1

45°

FIGURE 3.38 Planes of maximum 3D shear stress.
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Determine the principal stresses σ1, σ2, σ3 and the orientation of σ1 with respect to the original coordi-
nate axes.

Solution

Substitution of Equation (a) into Equation (3.48) gives

 ( )σ − σ − σ + = =, , , , ,i60 2 400 64 000 0 1 2 3i i i
3 2  

The three principal stresses representing the roots of this equation are

 σ = σ = σ = −, ,80 MPa 20 MPa 40 MPa1 2 3  

Introducing σ1 into Equation (3.46), we have

 
−

−
−

































=
l

m

n

60 80 20 20
20 0 80 40
20 40 0 80

0
1

1

1

 (b)

Here l1, m1, and n1 represent the direction cosines for the orientation of the plane on which σ1 acts.
It can be shown that only two of Equation (b) are independent. From these expressions, together with 

+ + =l m n 11
2

1
2

1
2 , we obtain

 = = = = = =. , . , .l m n
2
6

0 8165
1
6

0 4082
1
6

0 40821 1 1  

Comment: The direction cosines for σ2 and σ3 are ascertained in a like manner. The foregoing compu-
tations may readily be performed by using the formulas given in Appendix D.

3.15.2  simPliFied transFormation For three-dimensional stress

Often, we need the normal and shear stresses acting on an arbitrary oblique plane of a tetrahedron 
in terms of the principal stresses acting on perpendicular planes (Figure 3.39). In this case, the x, 
y, and z coordinate axes are parallel to the principal axes: σx′ = σ, σx = σ1, τxy = τxz = 0, and so on, as 

y

A C

x

n

σ2

σ3
σσ1 τ

O

B

z

FIGURE 3.39 Triaxial stress on a tetrahedron.
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depicted in the figure. Let l, m, and n denote the direction cosines of oblique plane ABC. The normal 
stress σ on the oblique plane, from Equation (3.45), is

 σ = σ + σ + σl m n1
2

2
2

3
2 (3.51a)

It can be verified that the shear stress τ on this plane may be expressed in the following convenient 
form:

 ( ) ( )( )τ = σ − σ + σ − σ + σ − σ 
/

l m m n n l1 2
2 2 2

2 3
2 2 2

3 1
2 2 2

1 2
 (3.51b)

The preceding expressions are the simplified transformation equations for 3D state of stress.

3.15.3  oCtahedral stresses

Let us consider an oblique plane that forms equal angles with each of the principal stresses, repre-
sented by face ABC in Figure 3.39 with OA = OB = OC. Thus, the normal n to this plane has equal 
direction cosines relative to the principal axes. Inasmuch as l2 + m2 + n2 = 1, we have

 = = =l m n
1
3

 (c)

There are eight such planes, or octahedral planes, all of which have the same intensity of normal 
and shear stresses at a point O (Figure 3.40). Interestingly, the same normal stresses acting on all 
eight planes serve to enlarge (or contract) the octahedral plane, but not to distort it. On the contrary, 
identical shear stresses occurring on all eight planes serve to distort the octahedron without altering 
its volume.

Substitution of the preceding equation into Equations (3.51) results in the magnitudes of the 
octahedral normal stress and octahedral shear stress, in the following forms:

 ( )σ = σ + σ + σ1
3

oct 1 2 3  (3.52a)

 ( ) ( )( )τ = σ − σ + σ − σ + σ − σ 
/1

3
oct 1 2

2
2 3

2
3 1

2 1 2
 (3.52b)

A

C
σ1

σoct

σ3

σ2

τoct

O

B

Octahedral
plane

FIGURE 3.40 Stresses on an octahedron.
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Equation (3.52a) indicates that the normal stress acting on an octahedral plane is the mean of the 
principal stresses. It should be noted that equality of stresses in eight octahedral planes is a powerful 
factor in the failure of ductile materials. That is, the octahedral stresses play an important role in 
certain failure criteria, as discussed in Sections 5.2 and 6.8.

Example 3.18: Principal Stresses Using Mohr’s Circle

Figure 3.41a depicts a point in a loaded machine base subjected to 3D stresses. Determine at the point

 a. The principal planes and principal stresses
 b. The maximum shear stress
 c. The octahedral stresses

Solution
We construct Mohr’s circle for the transformation of stress in the xy plane, as indicated by the solid lines 
in Figure 3.41b. The radius of the circle is R = (12.52 + 302)1/2 = 32.5 MPa.

 a. The principal stresses in the plane are represented by points A and B:

 σ = + =. .47 5 32 5 80 MPa1  

 σ = − =. .47 5 32 5 15 MPa2  

80 MPa

25 MPa

15 MPa

z

x
θ'p  =    33.7°

y'
x'

(c)

C1 O C
σ (MPa)

A(60, –30)

15
80

σ'= 47.5
τ

(MPa)

z

B

B1 A1

R

x

x

2θ'p 

y

y

25 MPa

(a) (b)

35 MPa

30 MPa

60 MPa

–25

FIGURE 3.41 Example 3.18. (a) Stress element for θ = 0°, (b) Mohr’s circle for strain, and (c) stress element 
for θ = 33.7°.
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 The z faces of the element define one of the principal stresses: σ3 = −25 MPa. The planes of 
the maximum principal stress are defined by ′θp, the angle through which the element should 
rotate about the z axis:

 ′θ = = °−tan
.

.1
2

30
12 5

33 7p
1  

 The result is shown on a sketch of the rotated element (Figure 3.41c).

 b. We now draw circles of diameters C1B1 and C1A1, which correspond, respectively, to the 
projections in the y′z′ and x′z′ planes of the element (Figure 3.41b). The maximum shearing 
stress, the radius of the circle of diameter C1A1, is therefore

 ( )τ = + = .1
2

80 25 52 5 MPamax  

 Planes of the maximum shear stress are inclined at 45° with respect to the x′ and z faces of the 
element of Figure 3.41c.

 c. Through the use of Equations (3.52a) and (3.52b), we have

 ( )σ = + − = .1
3

80 15 25 23 3 MPaoct  

 ( ) ( ) ( )τ = − + + + − −  = .
/1

3
80 15 15 25 25 80 43 3 MPaoct

2 2 2 1 2
 

*3.16 EQUATIONS OF EQUILIBRIUM FOR STRESS

As noted earlier, the components of stress generally vary from point to point in a loaded member. 
Such variations of stress, accounted for by the theory of elasticity, are governed by the equations 
of statics. Satisfying these conditions, the differential equations of equilibrium are obtained. To 
be physically possible, a stress field must satisfy these equations at every point in a load-carrying 
component.

For the 2D case, the stresses acting on an element of sides dx and dy and of unit thickness are 
depicted in Figure 3.42. The body forces per unit volume acting on the element, Fx and Fy, are inde-
pendent of z, and the component of the body force Fz = 0. In general, stresses are functions of the 
coordinates (x, y). For example, from the lower-left corner to the upper-right corner of the element, 
one stress component, say, σx, changes in value: σx + (∂σx/∂x)dx. The components σy and τxy change 
in a like manner. The stress element must satisfy the equilibrium condition ∑ Mz = 0. Hence,

 

∂σ
∂







− ∂σ
∂







+ τ + ∂τ
∂







− τ + ∂τ
∂







+ − =

y
dxdy

dx

x
dxdy

dy

x
dx dxdy

x
dy dxdy F dxdy

dx
F dxdy

dy

2 2

2 2
0

y x
xy

xy

yx
x

y x

 

After neglecting the triple products involving dx and dy, this equation results in τxy = τyx. Similarly, 
for a general state of stress, it can be shown that τyz = τzy and τxz = τzx. Hence, the shear stresses in 
mutually perpendicular planes of the element are equal.
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The equilibrium condition of x-directed forces must sum to 0, ∑ Fx = 0. Therefore, referring to 
Figure 3.45, we write

 σ + ∂σ
∂







− σ + τ + ∂τ
∂







− τ + =
x

dx dy dy
y

dy dx dx F dxdy 0x
x

x xy
xy

xy x  

Summation of the forces in the y direction yields an analogous result. After reduction, we obtain the 
differential equations of equilibrium for a 2D stress in the form [3]

 

∂σ
∂

+ ∂τ
∂

+ =

∂σ
∂

+ ∂τ
∂

+ =

x y
F

y x
F

0

0

x xy
x

y xy
y

 (3.53)

In the general case of an element under 3D stresses, it can be shown that the differential equations 
of equilibrium are determined similarly.

We observe that two relations of Equations (3.53) involve the three unknown (σx, σy, τxy) stress 
components. Therefore, problems in stress analysis are internally statically indeterminate. In the 
mechanics of materials methods, this indeterminacy is eliminated by introducing simplifying 
assumptions regarding the stresses and considering the equilibrium of the finite segments of a load-
carrying component.

*3.17 STRAIN-DISPLACEMENT RELATIONS: EXACT SOLUTIONS

If deformation is distributed uniformly over the original length, the normal strain may be written 
ɛx = δ/L, where L and δ are the original length and the change in length of the member, respectively 
(see Figure 1.10a). However, the strains generally vary from point to point in a member. Hence, the 
expression for strain must relate to a line of length dx, which elongates by an amount du under the 
axial load. The definition of normal strain is therefore

 ε = du

dx
x  (3.54)

This represents the strain at a point.

σy

∂σy

σx
∂σxσx

σy

dx

dx

dx

+

+

+

+

dy

dy

dy

Fy

Fx

x

y

τxy

τyx

τyx

τxy
∂τxy

∂τyx

∂y

∂y

∂x

∂x

FIGURE 3.42 Stresses and body forces on an element.

ISTUDY

www.konkur.in

Telegram: @uni_k



135Stress and Strain

As noted earlier, in the case of 2D or plane strain, all points in the body, before and after 
the application of load, remain in the same plane. Therefore, the deformation of an element of 
dimensions dx and dy and of unit thickness can contain normal strain (Figure 3.43a) and a shear 
strain (Figure 3.43b). Note that the partial derivative notation is used, since the displacement u 
or υ is function of x and y. Recalling the basis of Equations (3.54) and (1.22), an examination of 
Figure 3.43  yields

 ε = ∂
∂

ε = ∂υ
∂

γ = ∂υ
∂

+ ∂
∂

, ,u

x y x

u

y
x y xy  (3.55)

Obviously, γxy is the shear strain between the x and y axes (or y and x axes); hence, γxy = γyx. A long 
prismatic member subjected to a lateral load (e.g., a cylinder under pressure) exemplifies the state 
of plane strain. In an analogous manner, the strains at a point in a rectangular prismatic element of 
sides dx, dy, and dz are found in terms of the displacements u, υ, and w.

3.17.1  ProBlems in aPPlied elastiCity

In many problems of practical importance, the stress or strain condition is one of plane stress or 
plane strain. These 2D problems in elasticity are simpler than those involving three dimensions. 
A finite element solution of 2D problems is taken up in Chapter 17. In examining Equation (3.55), 
we see that the three strain components depend linearly on the derivatives of the two displacement 
components. Therefore, the strains cannot be independent of one another. An equation, referred to 
as the condition of compatibility, can be developed showing the relationships among ɛx, ɛy, and γxy 
[3]. The condition of compatibility asserts that the displacements are continuous. Physically, this 
means that the body must be pieced together.

To conclude, exact solution by the theory of elasticity is based on the following requirements: 
strain compatibility, stress equilibrium, general relationships between the stresses and strains, and 
boundary conditions for a given problem. In Chapter 16, we discuss various axi-symmetric prob-
lems using the applied elasticity approaches. In the method of mechanics of materials, simplifying 
assumptions are made with regard to the distribution of strains in the body as a whole, or in a finite 
portion of the member. Thus, the difficult task of solving the condition of compatibility and the dif-
ferential equations of equilibrium are avoided.

PROBLEMS

Sections 3.1 through 3.8
 3.1 Two plates are fastened by a bolt and nut as shown in Figure P3.1. Calculate
 a. The normal stress in the bolt shank.
 b. The average shear stress in the head of the bolt.
 c. The shear stress in the threads.

(a) (b)
dx

dx

dy

+

+

dy dy

dy
y

u
u

dx

dx
Á

A

B́

B

C΄

C
D́

Dx

∂u
∂u

∂y

∂x

∂x ∂y
∂υ

∂υ

υ

υ

FIGURE 3.43 Deformations of a 2D element: (a) normal strain and (b) shear strain.
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 d. The bearing stress between the head of the bolt and the plate.
  Assumption: The nut is tightened to produce a tensile load in the shank of the bolt of 

45 kN.
 3.2 A short steel pipe of yield strength Sy is to support an axial compressive load P with factor 

of safety of n against yielding. Determine the minimum required inside radius a
  Given: Sy = 280 MPa, P = 1. 2 MN, and n = 2.2.
  Assumption: The thickness t of the pipe is to be one-fourth of its inside radius a.
 3.3 The landing gear of an aircraft is depicted in Figure P3.3. What are the required pin diam-

eters at A and B?
  Given: Maximum stress of 196 MPa in shear. A factor of safety n = 2 will be used.
  Assumption: Pins act in double shear.
 3.4 The frame of Figure P3.4 supports a concentrated load P. Calculate
 a. The normal stress in the member BD if it has a cross-sectional area ABD.
 b. The shearing stress in the pin at A if it has a diameter of 25 mm and is in double shear.
  Given: P = 5 kN, ABD = 8 × 103 mm2.
 3.5 Two bars AC and BC are connected by pins to form a structure for supporting a vertical 

load P at C (Figure P3.5). Determine the angle α if the structure is to be of minimum 
weight.

25.78

10.94

21.12

12.5

50

25

FIGURE P3.1 Dimensions are in millimeters.

0.1 m

0.4 m

0.4 m

0.4 m

45 kN

15°

A B

C

D

FIGURE P3.3 
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137Stress and Strain

  Assumption: The normal stresses in both bars are to be the same.
 3.6 A uniform thickness steel tube of length L and rectangular cross-section having a mean 

width a by mean depth b is built in at one end and carries a torque T at the free end (Figure 
P3.6). What is the minimum wall thickness t if the shearing stress and the angle of twist 
are limited to τall and θall, respectively?

  Given: a = 2b = 90 mm, L = 0.8 m, T = 1.2 kN · m, G = 28 GPa, τall= 30 MPa, θall = 1.5°.
  Assumption: The effect of stress concentration at the corners is neglected.
 3.7 Redo Problem 3.6 for a case in which the cross-section of the tube is a square (a = b = 70 

mm) box of uniform thickness t.

1 m 2 m

1 m

1.5 m

D

P

C

E

A B

FIGURE P3.4 

A

B

L
P

C
α

FIGURE P3.5 

a
bT

t

L

FIGURE P3.6 
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 3.8 An aluminum alloy 2014-T6 tube of modulus of rigidity G, length L, and a × a square 
cross-section of uniform thickness t is under a torque as illustrated in Figure P3.6. The 
allowable yield strength in shear and angle of twist are τall and θall, respectively. What is 
the largest value of the torque that can be applied to the tube?

  Given: a = 31.25 mm, t = 4.7 mm, L = 2.45 m, G = 28.7 GPa (Table B.1), τall = 105 MPa, 
θall = 12°.

 3.9 A circular cylindrical tube having an outside radius of ro and inside radius of ri is twisted 
at its ends by a torque T. Compare the shear stresses in the tube obtained by Equation (3.11) 
with that estimated by τ = T/2πabt in Table 3.1.

  Given: ro = 12.4 mm and ri = 11 mm.
 3.10 For a pin-and-clevis joint (see Figure 3.3a), it is found that forces act on the pin as depicted 

in the free-body diagram of Figure P3.10. Draw the shear and bending moment diagrams. 
Design the pin (find diameter d) on the basis of

 1. Bending strength, σall = 250 MPa
 2. Shear strength, τall = 150 MPa
 3.11 Design the cross-section (determine h) of the simply supported beam loaded at two loca-

tions as shown in Figure P3.11.
  Assumption: The beam will be made of timber of σall = l2.5 MPa and τall = 700 kPa.
 3.12 A rectangular beam is to be cut from a circular bar of diameter d (Figure P3.12). Determine 

the dimensions b and h so that the beam will resist the largest bending moment.
  Given: b = 200 mm, t = 15 mm, h1 = 175 mm, h2 = 150 mm, V = 22 kN.
 3.13 A box beam is made of four 50 mm × 200 mm planks, nailed together as shown in Figure 

P3.13. Determine the maximum allowable shear force V.
  Given: The longitudinal spacing of the nails, s = 100 mm; the allowable load per nail, 

F = 15 kN.
 3.14 For the beam and loading shown in Figure P3.14, design the cross-section of the beam for 

σall = 12 MPa and τall = 810 kPa.
 3.15 Select the S shape of a simply supported 6-m long beam subjected a uniform load of inten-

sity 50 kN/m, for σall = 170 MPa and τall = 100 MPa.

14 mm 14 mm

30 kN 30 kN

d

P = 60 kN

30 mm

FIGURE P3.10 

1 m 1 m 1 m 50 mm

4 kN2.7 kN

h

BA

FIGURE P3.11 
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139Stress and Strain

 3.16 and 3.17 The beam AB has the rectangular cross-section of constant width b and variable 
depth h (Figures P3.16 and P3.17). Derive an expression for h in terms of x, L, and h1, as 
required.

  Assumption: The beam is to be of constant strength.
 3.18 The state of stress at a point in a loaded machine component is represented in Figure P3.18. 

Determine
 a. The normal and shear stresses acting on the indicated inclined plane a–a.
 b. The principal stresses.
  Sketch the results of the properly oriented elements.

z

b

d

y

C
h

FIGURE P3.12 

50 mm

200 mm

200 mm

50 mm

FIGURE P3.13 

b

2b
A 1.2 m

B

2 kN/m

FIGURE P3.14 

A

x B

wow =wox/L

h1h

L

FIGURE P3.16 
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3.19 At point A on the upstream face of a dam (Figure P3.19), the water pressure is −70 kPa, and 
the measured tensile stress parallel to this surface is 30 kPa. Calculate

 a. The stress components σx, σy, and τxy.
 b. The maximum shear stress.
  Sketch the results of a properly oriented element.
 3.20 The stress acting uniformly over the sides of a skewed plate is shown in Figure P3.20. 

Determine
 a. The stress components on a plane parallel to a–a.
 b. The magnitude and orientation of principal stresses.
  Sketch the results of the properly oriented elements.
 3.21 A thin skewed plate is depicted in Figure P3.20. Calculate the change in length of
 a. The edge AB.
 b. The diagonal AC.
  Given: E = 200 GPa, v = 0.3, AB = 40 mm, and BC = 60 mm.

L/2

h1

x

A

w

Bh

L/2

FIGURE P3.17 

15 MPa

25 MPa

10 MPa

y

a
a

x

15°

FIGURE P3.18 

A

55°

FIGURE P3.19 
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141Stress and Strain

 3.22 The stresses acting uniformly at the edges of a thin skewed plate are shown in 
Figure P3.22. Determine

 a. The stress components σx, σy, and τxy.
 b. The maximum principal stresses and their orientations.
  Sketch the results of the properly oriented elements.
 3.23 For the thin skewed plate shown in Figure P3.22, determine the change in length of the 

diagonal BD.
  Given: E = 200 GPa, v = l/4, AB = 50 mm, and BC = 75 mm.
 3.24 The stresses acting uniformly at the edges of a wall panel of a flight structure are depicted 

in Figure P3.24. Calculate the stress components on planes parallel and perpendicular to 
a–a. Sketch the results of a properly oriented element.

 3.25 A rectangular plate is subjected to uniformly distributed stresses acting along its edges 
(Figure P3.25). Determine

 a. The normal and shear stresses on planes parallel and perpendicular to a–a.
 b. The maximum shear stress.
  Sketch the results of the properly oriented elements.
 3.26 For the plate shown in Figure P3.25, calculate the change in the diagonals AC and BD.
  Given: E = 210 GPa, v = 0.3, AB = 50 mm, and BC = 75 mm.

a

a

B

A D

C

50 MPa

50 MPa

60°

35°

FIGURE P3.20 

140 MPa

70 MPa

DA

B C

30°

FIGURE P3.22 

100 MPa

a

a50°

45°
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 3.27 A cylindrical pressure vessel of diameter d = 0.9 m and wall thickness t = 3 mm. is simply 
supported by two cradles, as depicted in Figure P3.27. Calculate, at points A and C on the 
surface of the vessel,

 a. The principal stresses.
 b. The maximum shear stress.
  Given: The vessel and its contents weigh 1.2 kN/m of length, and the contents exert a uni-

form internal pressure of p = 42 kPa on the vessel.
 3.28 Redo Problem 3.27, considering point B on the surface of the vessel.
 3.29 Calculate and sketch the normal stress acting perpendicular and shear stress acting parallel 

to the helical weld of the hollow cylinder loaded as depicted in Figure P3.29.
 3.30 A link having a T section is subjected to an eccentric load P, as illustrated in Figure P3.30. 

Compute at section A–B the maximum normal stress.
 3.31 Figure P3.31 shows an eccentrically loaded bracket of b × h rectangular cross-section. Find 

the maximum normal stress.
  Given: b = 25 mm, h = 100 mm, P = 50 kN.
 3.32 What is the largest load P that the bracket of Figure P3.31 can support?
  Given: h = 6b = 150 mm, σall = 120 MPa.

25 MPa

40 MPa

a

50 MPaC

D
x

y

a

A

B

40°

FIGURE P3.25 

A

B

C

1.5 m

4.5 m

0.9 m

FIGURE P3.27 

50 mm

50°
110 kN
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143Stress and Strain

 3.33 A pipe of 120 mm outside diameter and 10 mm thickness is constructed with a helical weld 
making an angle of 45° with the longitudinal axis, as shown in Figure P3.33. What is the 
largest torque T that may be applied to the pipe?

  Given: Allowable tensile stress in the weld, σall = 80 MPa.
 3.34 The strain at a point on a loaded shell has components ɛx = 500 μ, ɛy = 800 μ, ɛz = 0, and 

γxy = 350 μ. Determine
 a. The principal strains.
 b. The maximum shear stress at the point.
  Given: E = 70 GPa and v = 0.3.
 3.35 A thin rectangular steel plate shown in Figure P3.35 is acted on by a stress distribution, 

resulting in the uniform strains ɛx = 200 μ and γxy = 400 μ. Calculate
 a. The maximum shear strain.
 b. The change in length of diagonal AC.
 3.36 The strain at a point in a loaded bracket has components ɛx = 50 μ, ɛy = 250 μ, and γxy = −150 μ. 

Determine the principal stresses.
  Assumptions: The bracket is made of a steel of E = 210 GPa and v = 0.3.
 3.W Review the website at www.measurementsgroup.com. Search and identify
 a. Websites of three strain gage manufacturers.
 b. Three grid configurations of typical foil electrical resistance strain gages.

P = 40 kN

80 mm

B

A

70 mm
P 16 mm

62 mm

8 mm
45 mm

Section A–B

FIGURE P3.30 

h

P
b

FIGURE P3.31 
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45°
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 3.37 A thin-walled cylindrical tank of 500 mm radius and 10 mm wall thickness has a welded 
seam making an angle of 40° with respect to the axial axis (Figure P3.37). What is the 
allowable value of p?

  Given: The tank carries an internal pressure of p and an axial compressive load of P = 20π 
kN applied through the rigid end plates.

  Assumption: The normal and shear stresses acting simultaneously in the plane of welding 
are not to exceed 50 MPa and 20 MPa, respectively.

Sections 3.11 through 3.17
 3.38 At point A on the surface of a steel vessel, a strain gage measures ɛx′ and ɛy′ in the x′ and y′ 

directions at an angle θ to the x and y axes, respectively (Figure P3.38). Find
 a. Strain components ɛx, ɛy, and γx′y′.
 b. Poisson’s ratio v for the vessel.
  Given: ɛx′, = 240 μ, ɛy′, = 410 μ, γxy = 0, θ = 34°.
 3.39 The strain measurements from a 60° rosette mounted at point A on a loaded C-clamp, a 

portion depicted in Figure P3.39, are

 ε = µ ε = µ ε = − µ, ,880 320 60a b c  

  Find the magnitudes and directions of principal strains.

y

A

C

14.062 mm

x

23.438 mm

FIGURE P3.35 
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145Stress and Strain

 3.40 An ASTM-A242 high-strength steel shaft of radius c is subjected to a torque T (Figure 
P3.40). A strain gage placed at point A measures the strain ɛϕ at an angle ϕ to the axis of 
the shaft. Compute the value of torque T.

  Given: c = 44 mm, G = 80.5 GPa, ɛϕ = 600 μ, ϕ = 25°.
 3.41 During a static test, the strain readings from a 45° rosette (Figure P3.41) mounted at point 

A on an aircraft panel are as follows:

 , ,300 375 150a b cε = − µ ε = − µ ε = µ  

A

A c

b

a

60°

60°

FIGURE P3.39 

y

z
x

T

T

φ

A
c 

FIGURE P3.40 
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  Determine the magnitudes and directions of principal strains.
 3.42 The 15 mm thick metal bar is to support an axial tensile load of 25 kN as shown in Figure 

P3.42 with a factor of safety of n = 1.9 (see Appendix C). Design the bar for minimum 
allowable width h.

  Assumption: The bar is made of a relatively brittle metal having Sy = 150 MPa.
 3.43 Calculate the largest load P that may be carried by a relatively brittle flat bar consisting of 

two portions, both 12 mm thick and, respectively, 30 and 45 mm wide, connected by fillets 
of radius r = 6 mm (see Figure C.1).

  Given: Sy = 210 MPa and a factor of safety of n = 1.5.
 3.44 A steel symmetrically filleted plate with a central hole and uniform thickness t is under an 

axial load P (Figure P3.44). Compute the value of the maximum stress at both the hole and 
the fillet.

  Given: dh = 15 mm, D = 90 mm, r = 7.5 mm, t = 10 mm, P = 12 kN.
 3.45 What are the full-fillet radius r and width d of the steel plate under tension shown in Figure 

P3.45? Use the maximum permissible stress of σmax and permissible nominal stress in the 
reduced section of σnom.

  Given: D/d = 1.5, σmax = 180 MPa, σnom = 110 MPa.

25 kN
50 mm

25 kN

r h

FIGURE P3.42 
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 3.46 For the 12.5 mm-thick full-fillet ASTM-A242 high-strength steel bar of Figure P3.45, what 
is the value of maximum axial load P that can be applied without causing permanent 
deformation?

  Given: r/d = 0. 2 and Sy = 350 MPa (from Table B.1).
 3.47 Consider a point in a loaded machine component subjected to the 3D state of stress repre-

sented in Figure P3.47. Find, using the Mohr’s circle,
 a. The principal stresses.
 b. The maximum shear stress.
  Given: σx = 168 MPa, σy = 84 MPa, τxy = 42 MPa, σz = −21 MPa.
 3.48 Rework Problem 3.47 for a case in which the state of stress is as follows:
  Given: σx = 50 MPa, σy = 0, τxy = 25 MPa, σz = −60 MPa.
 3.49 Redo Problem 3.47 knowing that the state of stress is represented by
  Given: σx = 70 MPa, σy = 14 MPa, τxy = −56 MPa, σz = 35 MPa.
 3.50 The 3D state of stress at a point in a loaded frame is represented in Figure P3.50. Determine
 a. The principal stresses, using Mohr’s circle.
 b. The octahedral shearing stresses and maximum shearing stress.

y

σy

σz

z

τxy

σx

x

FIGURE P3.47 
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 3.51 At a point in a structural member, stresses with respect to an x, y, z coordinate system are 
Calculate

 
− −

−

















70 0 56
0 14 0
56 0 14

MPa 

 a. The magnitude and direction of the maximum principal stress.
 b. The maximum shear stress.
 c. The octahedral stresses.
 3.52 The state of stress at a point in a member relative to an x, y, z coordinate system is

 

−

















63 0 0
0 84 0
0 0 126

MPa 

 Determine
 a. The maximum shear stress.
 b. The octahedral stresses.
 3.53 At a critical point in a loaded component, the stresses with respect to an x, y, z coordinate 

system are

 
.

.
.

297 5 0 0
0 36 82 0
0 0 54 74

MPa
−

















 

 Determine the normal stress σ and the shear stress τ on a plane whose outer normal is 
oriented at angles of 40°, 60°, and 66.2° relative to the x, y, and z axes, respectively.
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4 Deflection and Impact

4.1  INTRODUCTION

Strength and stiffness are considerations of basic importance to the engineer. The stress level is 
frequently used as a measure of strength. Stress in members under various loads was discussed 
in Chapter 3. We now turn to deflection, the analysis of which is as important as that of stress. 
Moreover, deflections must be considered in the design of statically indeterminate systems, although 
we are interested only in the forces or stresses.

Stiffness relates to the ability of a part to resist deflection or deformation. Elastic deflection or 
stiffness, rather than stress, is frequently the controlling factor in the design of a member. The 
deflection, for example, may have to be kept within limits so that certain clearances between 
components are maintained. Structures such as machine frames must be extremely rigid to 
maintain manufacturing accuracy. Most components may require great stiffness to eliminate 
vibration problems. We begin by developing basic expressions relative to deflection and stiffness 
of variously loaded members using the equilibrium approaches. The integration, superposition, 
and moment-area methods are discussed. Then, the impact or shock loading and bending of 
plates are treated. The theorems based upon work–energy concepts, classic methods, and finite 
element analysis (FEA) for determining the displacement on members are considered in the 
chapters to follow.

4.1.1  ComParison oF various deFleCtion methods

When one approach is preferred over another, the advantages of each technique may be briefly sum-
marized as follows. The governing differential equations for beams on integration give the solution 
for deflection in a problem. However, it is best to limit their application to prismatic beams, other-
wise, considerable complexities arise. In practice, the deflection of members subjected to several 
loading conditions, or complicated ones, is often synthesized from simpler loads, using the principle 
of superposition.

The dual concepts of strain energy and complementary energy provide the basis for some 
extremely powerful methods of analysis, such as Castigliano’s theorem and its various forms. These 
approaches may be employed very effectively for finding deflection due to applied forces and are not 
limited at all to linearly elastic structures. Similar problems are treated by the principles of virtual 
work and minimum potential energy for obtaining deflections or forces caused by any kind of defor-
mation. They are of great importance in the matrix analysis of structures and in finite elements. The 
moment-area method, a specialized procedure, is particularly convenient if deflection of only a few 
points on a beam or frame is desired. It can be used to advantage in the solution of statically inde-
terminate problems, as a check. An excellent insight into the kinematics is obtained by applying this 
technique. The FEA is perfectly general and can be used for the analysis of statically indeterminate, 
as well as determinate problems, both linear and nonlinear.

4.2  DEFLECTION OF AXIALLY LOADED MEMBERS

Here, we are concerned with the elongation or contraction of slender members under axial load-
ing. The axial stress in these cases is assumed not to exceed the proportional limit of the linearly 
elastic range of the material. The definitions of normal stress and normal strain and the relationship 
between the two, given by Hooke’s law, are used.
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Consider the deformation of a prismatic bar having a cross-sectional area A, length L, and modu-
lus of elasticity E, subjected to an axial load P (see Figure 3.1a). The magnitudes of the axial stress 
and axial strain at a cross-section are found from σx = P/A and εx = σx/Ε, respectively. These results 
are combined with εx = δ/L and integrated over the length L of the bar to give the following equation 
for the deformation δ of the bar:

 δ = PL

AE
 (4.1)

The product AE is known as the axial rigidity of the bar. The positive sign indicates elongation. 
A negative sign would represent contraction. The deformation δ has units of length L. Note that 
for tapered bars, the foregoing equation gives results of acceptable accuracy, provided the angle 
between the sides of the rod is no larger than 20° [1].

Most of the force–displacement problems encountered in this book are linear, as in the preced-
ing relationship. The spring rate, also known as spring constant or stiffness, of an axially loaded 
bar is then

 =
δ

=k
P AE

L
 (4.2)

The units of k are often kilonewtons per meter or pounds per inch. Spring rate, a deformation char-
acteristic, plays a significant role in the design of members.

A change in temperature of ΔT° causes a strain εt = α∆T, defined by Equation (1.21), where α 
represents the coefficient thermal expansion. In an elastic body, thermal axial deformation caused 
by a uniform temperature is therefore

 ( )δ = α ∆T Lt  (4.3)

The thermal strain and deformation are usually positive if the temperature increases, and negative 
if it decreases.

Example 4.1: Analysis of a Duplex Structure

A steel rod of cross-sectional area As and modulus of elasticity Es has been placed inside a copper tube 
of cross-sectional area Ac and modulus of elasticity Ec (Figure 4.1a). Determine the axial shortening of 
this system of two members, sometimes called an isotropic duplex structure, when a force P is exerted 
on the end plate as shown.

(a) (b)

End plate

Copper tube

Steel rod
L

P

P

Pc

Ps

FIGURE 4.1 Example 4.1.
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Assumptions: Members have the same length L. The end plate is rigid.

Solution

The forces produced in the rod and in the tube are designated by Ps and Pc, respectively.

Statics: The equilibrium condition is applied to the free body of the end plate (Figure 4.1b):

 + =P P Pc s  (a)

This is the only equilibrium equation available, and since it contains two unknowns (Pc and Ps), the 
structure is statically indeterminate to the first degree (see Section 1.8).

Deformations: Through the use of Equation (4.1), the shortening of the members are

 δ = δ =,P L

A E

P L

A E
c

c

c c
s

s

s s

 

Geometry: Axial deformation of the copper tube is equal to that of the steel rod:

 =P L

A E

P L

A E
c

c c

s

s s

 (b)

Solution of Equations (a) and (b) gives

 
( ) ( )=

+
=

+
,P

A E P

A E A E
P

A E P

A E A E
c

c c

c c s s
s

s s

c c s s

 (4.4)

The foregoing equations show that the forces in the members are proportional to the axial rigidities.
Compressive stresses σc in copper and σs in steel are found by dividing Pc and Ps by Ac and As, 

respectively. Then, applying Hooke’s law together with Equation (4.4), we obtain the compressive strain

 ε =
+
P

A E A Ec c s s

 (4.5)

The shortening of the assembly is therefore δ = εL.

Comments: Equation (4.5) indicates that the strain equals the applied load divided by the sum of the 
axial rigidities of the members. Composite duplex structures are treated in Chapter 16.

Example 4.2: Analysis of Bolt–Tube Assembly

In the assembly of the aluminum tube (cross-sectional area At, modulus of elasticity Et, length Lt) 
and steel bolt (cross-sectional area Ab, modulus of elasticity Eb) shown in Figure 4.2a, the bolt is 

Aluminum tube

Steel bolt

Lt

Nut

(a) (b)

Pb

Pt

FIGURE 4.2 Examples 4.2 and 4.3.
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single-threaded, with a 2 mm pitch. If the nut is tightened one-half turn after it has been fitted snugly, 
calculate the axial forces in the bolt and tubular sleeve.

Given: At = 300 mm2, Et = 70 GPa, Lt = 0.6 m, Ab = 600 mm2, and Eb = 200 GPa.

Solution

The forces in the bolt and in the sleeve are denoted by Pb and Pt, respectively.

Statics: The only equilibrium condition available for the free body of Figure 4.2b gives

 =P Pb t  

That is, the compressive force in the sleeve is equal to the tensile force in the bolt. The problem is there-
fore statically indeterminate to the first degree.

Deformations: Using Equation (4.1), we write

 δ = δ =,P L

A E

P L

A E
b

b b

b b
t

t t

t t

 (c)

where
 δb is the axial extension of the bolt
 δt represents the axial contraction of the tube

Geometry: The deformations of the bolt and tube must be equal to Δ = 0.002/2 = 0.001 m, and the move-
ment of the nut on the bolt must be

 δ + δ = ∆b t  

 
+

+ = ∆P L

A E

P L

A E
b b

b b

t t

t t

 (4.6)

Setting Pb = Pt and Lb = Lt, the preceding equation becomes

 +





= ∆
P

A E A E L

1 1
b

b b t t t

 (4.7)

Introducing the given data, we have

 ( ) ( )+








 = .

.
P

1
600 200 10

1
300 70 10

0 001
0 6

b 3 3  

Solving, Pb = 29.8 kN.

Example 4.3: Thermal Stresses in a Bolt–Tube Assembly

Determine the axial forces in the assembly of bolt and tube (Figure 4.2a), after a temperature rise of ΔΤ.

Given: ΔΤ = 100°C, αb = 11.7 × 10−6/°C, and αt = 23.2 × 10−6/°C.

Assumptions: The data presented in the preceding example remain the same.

Solution

Only the force–deformation relations, Equation (c), change from Example 4.2. Now the expressions for 
the extension of the bolt and the contraction of the sleeve are
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( )

( )

δ = + α ∆

δ = − α ∆

P L

A E
T L

P L

A E
T L

b
b b

b b
b b

t
t t

t t
t t

 (d)

Note that, in the foregoing, the minus sign indicates a decrease in tube contraction due to the tempera-
ture rise.

We have Lb = Lt and Pb = Pt. These, carried into δb + δt = Δ, give

 ( )+





+ α − α ∆ = ∆
P

A E A E
T

L

1 1
b

b b t t
b t

t

 (4.8)

where, as before, Δ is the movement of the nut on the bolt. Substituting the numerical values into 
Equation (4.8), we obtain

 ( ) ( ) ( ) ( )+








 + − =−. . .

.
P

1
600 200 10

1
300 70 10

11 7 23 2 10 100
0 001
0 6

b 3 3
6  

This yields Pb = 50.3 kN.

Comment: The final elongation of the bolt and the contraction of the tube can be calculated by substi-
tuting the axial force of 50.3 kN into Equation (d). Interestingly, when the bolt and tube are made of the 
same material (αb = αt), the temperature change does not affect the assembly. That is, the forces obtained 
in Example 4.2 still hold.

Example 4.4: Deflections of a Three-Bar Device

The rigid member BC is attached by the 12 mm diameter rod AB and the 10 mm diameter rod CD 
(Figure 4.3a). Each rod is made of cold-rolled yellow brass with yield strength Sy and elastic modulus 
of elasticity E. What is the displacement of point E of the bar caused by a vertical load P applied at this 
point?

0.6 m

0.4 m

C

δE

δB
δC

C'

E B

B'
(c)

60 kN

E

0.2 mB

FAB FCD

C0.4 m

(b)D

C0.4 m

P = 60 kN

E

0.2 m

(a)

B

12 mm 10 mm

A

0.6 m

FIGURE 4.3 Example 4.4. (a) A three-bar assembly, (b) FBD of bar BC, and (c) displacement diagram of 
centerline of bar BC.
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Given: Sy = 435 MPa, P = 60 kN, E = 105 GPa (by Table B.1).

Assumptions: Failure will not occur at the pin-connected joints. Both rods deform uniformly.

Solution

The cross-sectional areas of the bars equal

 ( ) ( )= π = = π =. . .A A
4

12 113 1 mm
4

10 78 5 mmAB CD
2 2 2 2  

Free body of bar BC. Applying equations of equilibrium to Figure 4.3b, the tensile forces in each bar 
are

 ( ) ( )Σ = − + = =. .M F F0: 0 6 60 0 4 0 40 kNC AB AB  

 Σ = − + + = =F F F0: 60 40 0 20 kNy CD CD  

Displacements of B and C. The deflections of the bottom of the links, respectively, are

 
( )

( )
( )

( )( )
δ = = =

.
.

.F L

A E

40 10 0 6

113 1 105 10
2 02 mmB

AB AB

AB

3

3
 

 
( )

( )
( )

( )( )
δ = = =

.
.

.F L

A E

20 10 0 6

78 5 105 10
1 46 mmC

CD CD

CD

3

3
 

Displacement of E. A diagram showing the centerline displacements of points B, C, and E on the rigid 
bar is represented in Figure 4.3b. It follows that, by proportion of the shaded triangle, the displacement 
of point E is found as

 ( ) ( )δ = δ + δ − δ 



 = + 











.

.
. .0 4

0 6
1 46 0 56

2
3

E C B C  

or

 δ = .1 83 mmE  

Comment: A positive sign means downward displacement. The largest axial stress is in rod AB, σAB = 4
0(103)/113.1 × 10−6 = 354 MPa < 435 MPa. Therefore, the bar will not deform permanently.

4.3  ANGLE OF TWIST OF SHAFTS

In Section 3.5, the concern was with torsion stress. We now treat angular displacement of twisted 
prismatic bars or shafts. We assume that the entire bar remains elastic. For most structural materi-
als, the amount of twisting is small, and hence the member behaves as before. But in a material such 
as rubber, where twisting is large, the basic assumptions must be reexamined.

4.3.1  CirCular seCtions

Consider a circular prismatic shaft of radius c, length L, and modulus of elasticity in shear G 
(Figure 3.6). The maximum shear stress τmax and maximum shear strain γmax are related by Hooke’s 
law: γmax = τmax/G. Moreover, by the torsion formula, τmax = Tc/J, where J is the polar moment of 
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155Deflection and Impact

inertia. Substitution of the latter expression into the former results in γmax = Tc/GJ. For small defor-
mations, by taking tan γmax = γmax, we also write γmax = cϕ/L. These expressions lead to the angle of 
twist, representing the angle through which one end of a cross-section of a circular shaft rotates with 
respect to another:

 φ = TL

GJ
 (4.9)

Angle ϕ is measured in radians. The product GJ is called the torsional rigidity of the shaft. Equation 
(4.9) can be used for either solid or hollow bars having circular cross-sections. We observe that the 
spring rate of a circular torsion bar is given by

 =
φ

=k
T GJ

L
 (4.10)

Typical units of the k are kilonewton-meters per radian or pound-inches per radian.
Examining Equation (4.9) implies a method for obtaining the modulus of elasticity in shear G for 

a given material. A circular prismatic specimen of the material, of known diameter and length, is 
placed in a torque-testing machine. As the specimen is twisted, increasing the value of the applied 
torque T, the corresponding values of the angle of twist ϕ between the two ends of the specimen are 
recorded as a torque-twist diagram. The slope of this curve (T/ϕ) in the linearly elastic region is the 
quantity GJ/L. From this, the magnitude of G can be calculated.

4.3.2  nonCirCular seCtions

As pointed out in Section 3.5, determination of stresses and displacements in noncircular members 
is a difficult problem and beyond the scope of this book. However, the following angle of twist for-
mula for rectangular bars is introduced here for convenience:

 φ = TL

CG
 (4.11)

where

 = − −














.C

ab b

a

b

a16
16
3

3 36 1
12

3 4

4  (4.12)

In Equation (4.12), a and b denote the wider and narrower sides of the rectangular cross-section, 
respectively. Table 3.1 gives the exact solutions of the angle of twist for a number of commonly 
encountered cross-sections [1, 2].

Example 4.5: Determination of Angle of Twist of a Rod with Fixed Ends

A circular brass rod (Figure 4.4a) is fixed at each end and loaded by a torque T at point D. Find the 
maximum angle of twist.

Given: a = 0.5 m, b = 1 m, d = 25 mm, T = 55 N · m, and G = 39 GPa.

Solution

The reactions at the end are designated by TA and TB.

Statics: The only available equation of equilibrium for the free-body diagram of Figure 4.4b yields

 + =T T TA B  
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Therefore, the problem is statically indeterminate to the first degree.

Deformations: The angles of twist at section D for the left and right segments of the bar are

 φ = φ =,T a

GJ

T b

GJ
AD

A
BD

B  (a)

Geometry: The continuity of the bar at section D requires that

 φ = φ =T a T borAD BD A B  (b)

Equations (a) and (b) can be solved simultaneously to obtain

 = =,T
Tb

L
T

Ta

L
A B  (4.13)

The maximum angle of rotation occurs at section D. Therefore,

 φ = =T a

GJ

Tab

GJL
A

max  

Substituting the given numerical values into this equation, we have

 
.

. .
. .max

55 0 5 1

39 10
32

0 025 1 5
0 012 rad 0 7

9 4( )
( )( )

( ) ( )
φ = π = = °

 

4.4  DEFLECTION OF BEAMS BY INTEGRATION

Beam deflections due to bending are determined from deformations taking place along a span. 
Analysis of the deflection of beams is based on the assumptions of the beam theory outlined in 
Section 3.7. As we see in Section 5.4, for slender members, the contribution of shear to deflection 
is regarded as negligible, since for static bending problems, the shear deflection represents no more 
than a few percent of the total deflection. Direct integration and superposition methods for deter-
mining elastic beam deflection are discussed in the sections to follow.

Governing the differential equations relating the deflection υ to the internal bending moment 
M in a linearly elastic beam whose cross-section is symmetrical about the plane (xy) of loading is 
given by [3]:

 
υ =d

dx

M

EI

2

2  (4.14)

(a) (b)

TA

TB

B

T
D

A

B

C
a

bL

A

L
2

d

DT

FIGURE 4.4 Example 4.5.
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The quantity EI is called the flexural rigidity. The sign convention for applied loading and the inter-
nal forces, according to that defined in Section 1.8, is shown in Figure 4.5. The deflection and slope 
θ (in radians) of the deflection curve are related by the equation

 θ = υ = υ′d

dx
 (4.15)

Positive (and negative) θ, like moments, follow the right-hand rule, as depicted in the figure.
As shown in Section 3.6, internal shear force V, bending moment M, and the load intensity w 

are connected by Equations (3.14) and (3.15). These, combined with Equation (4.14), give the useful 
sequence of relationships, for the constant EI, in the following form:

 = = υ = υ″M EI
d

dx
EIMoment

2

2  (4.16a)

 = = υ = ′′′υV EI
d

dx
EIShear

3

3  (4.16b)

 = = υ = υ″″w EI
d

dx
EILoad

4

4  (4.16c)

The deflection υ of a beam can be found by solving any one of the foregoing equations by successive 
integrations. The choice of equation depends on the ease with which an expression of load, shear, 
or moment can be formulated and individual preference. The approach to solving the deflection 
problem beginning with Equations (4.16c) or (4.16b) is known as the multiple-integration method. 
When Equation (4.16a) is used, because two integrations are required to obtain the υ, this is called 
the double-integration method.

The constants of the integration are evaluated using the specified conditions on the ends of the 
beam, that is, the boundary conditions. Frequently encountered conditions that may apply at the 
ends (x = a) of a beam are shown in Figure 4.6. We see from the figure that the force (static) variables 
M, V and the geometric (kinematic) variables υ, θ are 0 for common situations.

y, υ

w

V

P

V x
Elastic curve

M

Mo

υ

ρ

θ = dυ
dx

FIGURE 4.5 Positive loads and internal forces.

υ υ

(a) (b) (c) (d)

υ υ
a a

x x x x

a
a

υ(a) = 0υ(a) = 0
θ(a) = 0

θ(a) = 0
M(a) = 0 M(a) = 0

V(a) = 0
V(a) = 0

FIGURE 4.6 Boundary conditions: (a) fixed end, (b) simply supported end, (c) free end, and (d) guided or 
sliding support.
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If the beam has a cross-sectional width b that is large compared to the depth h (i.e., b ≫ h), 
the beam is stiffened, and the deflection is less than that determined by Equation (4.16) for nar-
row beams. The large cross-sectional width prevents the lateral expansion and contraction of the 
material, and the deflection is thereby reduced, as shown in Section 4.9. An improved value for the 
deflection υ of wide beams is obtained by multiplying the result given by the equation for a narrow 
beam by (1 − ν2), where ν is Poisson’s ratio.

4.5  BEAM DEFLECTIONS BY SUPERPOSITION

The elastic deflections (and slopes) of beams subjected to simple loads have been solved and are 
readily available (see Tables A.8 and A.9 in Appendix A). In practice, for combined load configura-
tions, the method of superposition may be applied to simplify the analysis and design. The method 
is valid whenever displacements are linearly proportional to the applied loads. This is the case if 
Hooke’s law holds for the material and deflections are small.

To demonstrate the method, consider the beam of Figure 4.7a, replaced by the beams depicted 
in Figure 4.7b and 4.7c. At point C, the beam undergoes deflections (υ)P and (υ)M, due to P and M, 
respectively. Hence, the deflection υC due to combined loading is υC = (υC)P + (υC)M. From the Cases 
1 and 2 of Table A.8, we have

 υ = +PL

EI

ML

EI

5
48 8

C

3 2

 (4.17)

Similarly, the deflection and the angle of rotation at any point of the beam can be found by the 
foregoing procedure.

The method of superposition can be effectively applied to obtain deflections or reactions for 
statically indeterminate beams. In these problems, the redundant reactions are considered unknown 
loads and the corresponding supports are removed or modified accordingly. Next, superposition is 
employed: the load diagrams are drawn and expressions are written for the deflections produced by 
the individual loads (both known and unknown); the redundant reactions are computed by satisfy-
ing the geometric boundary conditions. Following this, all other reactions can be found from equa-
tions of static equilibrium.

The steps described in the preceding paragraph can be made clearer though the illustration of a 
beam statically indeterminate to the first degree (Figure 4.8a). Reaction RB is selected as redundant 
and treated as an unknown load by eliminating the support at B. Decomposition of the loads is 
shown in Figure 4.8b and 4.8c. Deflections due to RB and the redundant RB are (see Cases 5 and 8 
of Table A.8)

 ( ) ( )υ = − υ =,wL

EI

R L

EI

5
24 6

B w B R
B

4 3

 (4.18)

From the geometry of the original beam,

M

P P

C B
2

(a) (b) (c)

A
= +

C B AL

L

A C B M

FIGURE 4.7 Deflections of a cantilevered beam.
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 υ = − + =wL

EI

R L

EI

5
24 6

0B
B

4 3

 (4.19)

or

 =R wL
5
4

B  (4.20)

The remaining reactions are RA = RC = 3wL/8, as determined by applying the equations of equi-
librium. Having the reactions available, deflection can be obtained using the method discussed in 
the preceding section.

Case Study 4.1 Bolt Cutter Deflection Analysis

Members 2 and 3 of the bolt cutter shown in Figure 3.28 are critically stressed. Determine the 
deflections employing the superposition method.

Given: The dimensions (in inches) and loading are known from Case Study 3.1. The parts are 
made of AISI 1080 HR steel having E = 200 GPa.

Assumptions: The loading is static. The member 2 can be approximated as a simple beam with 
an overhang.

Solution

See Figures 3.28 and 4.9 and Table A.8.
Member 3. The elongation of this tensile link (Figure 3.28a) is obtained from Equation (4.1). 

So, due to symmetry in the assembly, the displacement of each end point A is

 
.

. .
. .

PL

AE

F L

AE

1
2 2

576 31 25 10

2 9 375 3 175 10 200 10
1 512 10 m 1 512 10 mm

A
A 3

3

6 9
6 3( )

( )( ) ( ) ( )( )( )

δ = 



 =

=
×

×
= =

−

−
− −

 (4.21)

(a)

(b) (c)

w

A B C

L LRA RB RC

w

A B C
+

RB

A B C

FIGURE 4.8 Deflections of a two-span continuous beam.
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Member 2. This jaw is loaded as shown in Figure 3.28b. The deflection of point D is made up 
of two parts: a displacement υ owing to bending of part DA acting as a cantilever beam, and a 
displacement υ2 caused by the rotation of the beam axis at A (Figure 4.9).

The deflection υ1 at D (by Case 1 of Table A.8) equals

 υ = Qa

EI3
1

3

 

The angle θA at the support A (from Case 7 of Table A.8) is

 θ = Mb

EI3
A  

where M = Qa. The displacement υ2 of point D, due only to the rotation at A, is equal to θA a, or

 υ = Qba

EI3
2

2

 

The total deflection of point D, shown in Figure 4.9, υ1 + υ2, is then

 ( )υ = +Qba

EI
a b

3
D

2

 (4.22)

In the foregoing, we have

 

( )( )

=

= =. . .

I t h
1

12

1
12

4 6825 9 375 321 87 mm

2 2
3

3 4

 

Substitution of the given data results in

 
. .

.
. .432 0 025 0 1

3 200 10 321 87 10
0 1398 10 m 0 14 mmD

2

9 12
3

( )( )
( ) ( )υ =

× ×
= × =−

−  

Comment: Only very small deflections are allowed in members 2 and 3, to guarantee the proper 
cutting stroke, and the values found, are acceptable.

AθA
υD

b

B

a

Q

D

FIGURE 4.9 Deflection of simple beam with an overhang.
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4.6  BEAM DEFLECTION BY THE MOMENT-AREA METHOD

In this section, we consider a semigraphical technique called the moment-area method for deter-
mining deflections of beams. The approach uses the relationship between the derivatives of the 
deflection v and the properties of the area of the bending moment diagram. Usually, it gives a more 
rapid solution than integration methods when the deflection and slope at only one point of the beam 
are required. The moment-area method is particularly effective in the analysis of beams of variable 
cross-sections with uniform or concentrated loading.

4.6.1  moment-area theorems

Two theorems form the basis of the moment-area approach. These principles are developed by con-
sidering a segment AB of the deflection curve of a beam under an arbitrary loading. The sketches of 
the M/EI diagram and the greatly exaggerated deflection curve are shown in Figure 4.10a. Here, M 
is the bending moment in the beam and EI represents the flexural rigidity. The changes in the angle 
dθ of the tangents at the ends of an element of length dx and the bending moment are connected 
through Equations (4.14) and (4.15):

 θ =d
M

EI
dx (a)

The difference in slope between any two points, A and B, for the beam (Figure 4.10) can be 
expressed as follows:

 ∫θ = θ − θ = = 





Mdx

EI

M

EI
A Barea of diagram between andBA B A

A

B

 (4.23)

B

A

υ

(a)

(b)

θA

θB

dθ
θBAtAB

A

x

x

Á

B

dx

dt

Tangents
at A and B

x1

M/EI C

x1 x2

M
EI

FIGURE 4.10 Moment-area method: (a) M/EI diagram and (b) elastic cure.
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This is called the first moment-area theorem: the change in angle θBA between the tangents to the 
elastic curve at two points, A and B, equals the area of the M/EI diagram between those points. Note 
that the angle θBA and the area of the M/EI diagrams have the same sign. That means a positive 
(negative) area corresponds to a counterclockwise (clockwise) rotation of the tangent to the elastic 
curve as we proceed in the x direction. Hence, θBA shown in Figure 4.10b is positive.

Inasmuch as the deflection of a beam is taken to be small, we see from Figure 4.10b that the 
vertical distance dt due to the effect of curvature of an element of length dx equals xdθ, where dθ 
is defined by Equation (a). Therefore, vertical distance AA′, the tangential deviation tAB of point A 
from the tangent at B, is

 ∫= = 





t x
Mdx

EI

M

EI
A B xarea of diagram between andAB

A

B

1 1 (4.24)

in which x is the horizontal distance to the centroid C of the area from A. This is the second 
moment-area theorem: the tangential deviation tAB of point A with respect to the tangent at B equals 
the moment with respect to A of the area of the M/EI diagram between A and B.

Likewise, we have

 = 





t
M

EI
A B xarea of diagram between andBA 2 (4.25)

The quantity x2 represents the horizontal distance from point B to the centroid C of the area (Figure 
4.10a). Note that tAB ≠ tBA generally. Also observe from Equations (4.24) and (4.25) that the signs of 
tAB and tBA depend on the sign of the bending moments. In many beams, it is obvious whether the 
beam deflects upward or downward and whether the slope is clockwise or counterclockwise. When 
this is the case, it is not necessary to follow the sign conventions described for the moment-area 
method: we calculate the absolute values and find the directions by inspection.

4.6.2  aPPliCation oF the moment-area method

Determination of beam deflections by moment-area theorems is fairly routine, as illustrated in 
Examples 4.6, 4.7, and 9.6. They are equally applicable for rigid frames. In continuous beams, the 
two sides of a joint are 180° to one another, whereas in rigid frames, the sides of a joint are often at 
90° to one another. Our discussion is limited to beam and shaft problems. A correctly constructed 
M/EI diagram and a sketch of the elastic curve are always necessary. Table A.3 may be used to 
obtain the areas and centroidal distances of common shapes.

The slopes of points on the beam with respect to one another can be found from Equation (4.23), 
and the deflection by using Equation (4.24) or (4.25). The moment-area procedure is readily used 
for beams in which the direction of the tangent to the elastic curve at one or more points is known 
(e.g., cantilevered beams). For computational simplicity, M/EI diagrams are often drawn and the 
formulations made in terms of the quantity EI; that is, numerical values of EI may be substituted in 
the final step of the solution.

For a statically determinate beam with various loads or an indeterminate beam, the displace-
ments determined by the moment-area method are usually best found by superposition. This 
requires a series of diagrams indicating the moment due to each load or reaction drawn on a sep-
arate sketch. In this manner, calculations can be simplified, because the areas of the separate M/
EI diagrams may be simple geometric forms. When treating statically indeterminate problems, 
each additional compatibility condition is expressed by a moment-area equation to supplement 
the equations of statics.
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Example 4.6: Displacements of a Stepped Cantilevered 
Beam by the Moment-Area Method

A nonprismatic cantilevered beam with two different moments of inertia carries a concentrated load P 
at its free end (Figure 4.11a). Find the slope at B and deflection at C.

Solution

The M/EI diagram is divided conveniently into its component parts, as shown in Figure 4.11b:

 = − = − = −, ,A
PL

EI
A

PL

EI
A

PL

EI8 16 8
1

2

2

2

3

2

 

The elastic curve is in Figure 4.11c. Inasmuch as θA = 0 and υA = 0, we have θC = θCA, θB = θBA, υC = tCA, 
and υB = tBA.

Applying the first moment-area theorem,

 θ = + + = −A A A
PL

EI

5
16

B 1 2 3

2

 (4.26)

The minus sign means that the rotations are clockwise. From the second moment-area theorem,

 υ = 



 + 



 = −A

L
A

L PL

EI4 3
5
96

C 1 2

3

 (4.27)

The minus sign shows that the deflection is downward.

Example 4.7: Reactions of a Propped-Up Cantilever by the Moment-Area Method

A propped cantilevered beam is loaded by a concentrated force P acting at the position shown in  
Figure 4.12a. Determine the reactional forces and moments at the ends of the beam.

(b)

xA

B

υ

(c)

= tBAθB υB

Tangent at A

xA1 A3
A2

M/EI
L/3

–PL/2EI –PL/4EI –PL/2EI

(a)

L/4 L/3

y
P

B xCA

2EI EI

L/2 L/2

FIGURE 4.11 Example 4.6.
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Solution

The reactions indicated in Figure 4.12a show that the beam is statically indeterminate to the first degree. 
We select RB as a redundant (or unknown) load and remove support B (Figure 4.12b). The corresponding 
M/EI diagram is in Figure 4.12c, with the component areas

 = = −,A
R L

EI
A

Pa

EI2 2
B

1

2

2

2

 (4.28)

One displacement compatibility condition is required to find the redundant load. Observe that the slope 
at the fixed end and the deflection at the supported end are 0; the tangent to the elastic curve at A passes 
through B, or tBA = 0. Therefore, by the second moment-area theorem,

 



 − −



 =R L

EI

L Pa

EI
L

a

2
2
3 2 3

0B
2 2

 

Solving,

 ( )= −R
Pa

L
L a

2
3B

2

3  (4.29)

Comment: The remaining reactions are obtained from equations of statics. Then, the slope and deflec-
tion are found as needed by employing the usual moment-area procedure.

4.7  IMPACT LOADING

A moving body striking a structure delivers a suddenly applied dynamic force that is called an 
impact or shock load. Details concerning material behavior under dynamic loading are presented 

RB

(a)

(b)

(c)

RB

RA

P

MA B
P

A C

a

x

y

L

b

–Pa/EI 3L

C
a

x

RBL/EI
M/EI

A2

A1

3
2L

–

FIGURE 4.12 Example 4.7.
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165Deflection and Impact

in Section 2.9 and Chapter 7. Although the impact load causes elastic members to vibrate until equi-
librium is re-established, our concern here is with only the influence of impact or shock force on the 
maximum stress and deformation within the member.

Note that the design of engineering structures subject to suddenly applied loads is complicated 
by a number of factors, and theoretical considerations generally serve only qualitatively to guide the 
design [4]. In Sections 4.8 and 4.9, typical impact problems are analyzed using the energy method 
of the mechanics of materials theory together with the following common assumptions:

 1. The displacement is proportional to the loads.
 2. The material behaves elastically, and a static stress–strain diagram is also valid under 

impact.
 3. The inertia of the member resisting impact may be neglected.
 4. No energy is dissipated because of local deformation at the point of impact or at the 

supports.

Obviously, the energy approach leads to an approximate value for impact loading. It presupposes 
that the stresses throughout the impacted member reach peak values at the same time. In a more 
exact method, the stress at any position is treated as a function of time, and waves of stress are 
found to sweep through the elastic material at a propagation rate. This wave method gives higher 
stresses than the energy method. However, the former is more complicated than the latter and is not 
discussed in this text. The reader is directed to the references for further information [5].

4.8  LONGITUDINAL AND BENDING IMPACT

Here, we determine the stress and deflection caused by linear or longitudinal and bending impact 
loads. In machinery, the longitudinal impact may take place in linkages, hammer-type power tools, 
coupling-connected cars, hoisting rope, and helical springs. Examples of bending impact are found 
in shafts and structural members, such as beams, plates, shells, and vessels.

4.8.1  Freely Falling weight

Consider the free-standing spring of Figure 4.13a, on which is dropped a body of mass m from a 
height h. Inasmuch as the velocity is 0 initially and 0 again at the instant of maximum deflection of 
the spring (δmax), the change in kinetic energy of the system is 0. Therefore, the work done by gravity 
on the body as it falls is equal to the resisting work done by the spring:

 ( )+ δ = δmax maxW h k
1
2

2  (4.30)

in which k is the spring constant.

L
h

(a)

m
W = mg

δmax
m

υ
(b)

L

m

υ

FIGURE 4.13 (a) Freely falling body and (b) horizontal moving body.
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166 Mechanical Engineering Design

The deflection corresponding to a static force equal to the weight of the body is simply W/k. This 
is called the static deflection, δst. The general expression of maximum dynamic deflection is, using 
Equation (4.30),

 ( )δ = δ + δ + δ h2st st stmax
2

 (4.31a)

This may be written in the form

 δ = + +
δ







δmax
h

1 1
2

st
st (4.31b)

The term in the parenthesis in this equation, termed the impact factor, will be designated by

 = + +
δ

K
h

1 1
2

st

 (4.32)

Multiplying the K by W gives an equivalent static, or maximum dynamic load:

 =P KWmax  (4.33)

To compute the maximum stress and deflection resulting from impact loading, P may be used in the 
formulas for static loading. The maximum stress and maximum deflection resulting from the impact 
loading may be obtained by using Pmax in expressions for static loading. Thus,

 σ = σmax K st (4.34)

and

 δ = δmax K st (4.35)

4.8.1.1 Special Cases
Two extreme situations are clearly of particular interest. When h ≫ δmax, the work term Wδmax in 
Equation (4.30) may be neglected, reducing the expression to

 δ = δmax h2 st  (a)

On the other hand, when h = 0, the load is suddenly applied, and Equation (4.30) reduces to

 δ = δmax 2 st (b)

4.8.2  horizontally moving weight

An analysis similar to the preceding one may be used to develop expressions for the case of a mass 
(m = W/g) in horizontal motion with a velocity υ, stopped by an elastic body. In this case, kinetic 
energy Ek = mυ2/2 replaces W(h + δmax), the work done by W, in Equation (4.30). By so doing, the 
maximum dynamic deflection and load are

 δ = δ υ
δ

=max
g

E

k

2
st

st

k
2

 (4.36a)
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 = υ
δ

=maxP m
g

E k2
st

k

2

 (4.36b)

The quantity δst is the static deflection caused by a horizontal force W. Note that m is measured in kg 
in SI or lb · s2/in. in US units. Likewise expressed are υ (in m/s or in./s), the gravitational accelera-
tion g (in m/s2 or in./s2), and Ek (in N · m or in. · lb).

When the body hits the end of a prismatic bar of length L and axial rigidity AE (Figure 4.13b), 
we have k = AE/L and hence δst = mgL/AE. Equations (4.36) are therefore

 δ = υ
max

m L

AE

2

 (4.37a)

 = υ
maxP

m AE

L

2

 (4.37b)

The corresponding maximum dynamic compressive stress, taken to be uniform through the bar, is

 σ = υ
max

m E

AL

2

 (4.38)

The foregoing shows that the stress can be reduced by increasing the volume AL or decreasing the 
kinetic energy Ek and the modulus of elasticity E of the member. We note that the stress concentra-
tion in the middle of a notched bar would reduce its capacity and tend to promote brittle fractures. 
This point has been treated in Section 2.9.

Example 4.8: Impact Loading on a Rod

The prismatic rod depicted in Figure 4.14 has length L, diameter d, and modulus of elasticity E. A rub-
ber compression washer of stiffness k and thickness t is installed at the end of the rod.

 a. Calculate the maximum stress in the rod caused by a sliding collar of weight W that drops 
from a height h onto the washer.

 b. Redo part a, with the washer removed.

d

CollarW

Rod

L

h

t

Rubber
washer

FIGURE 4.14 Example 4.8.

ISTUDY

www.konkur.in

Telegram: @uni_k
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Given: = = = =. , . , . , . ,L h d t1 5 m 0 9 m 12 5 mm 6 25 mm

 = = =, ,E k W200 GPa 30 N/m 36 N 

Solution

The cross-sectional area of the rod A = π(12.5)2/4 = 122.72 mm2

 a. For the rod with the washer, the static deflection is

 

. .
.

WL

AE

W

k

36 1500

122 72 200 10

36
4 5

2 2 10 8 mm

st

3
3

( )
( )

( )

δ = +

=
×

+ = × +−
 

 The maximum dynamic stress, from Equations (4.33) and (4.32), equals

 

( )
( )

σ =

= + +












=−.
.

max
WK

A

36
122 72 10

1 1
2 900

8
4 7 MPa6

 

 b. In the absence of the washer, this equation results in

 ( )
( )σ = + + +

×












=− −.
.

.
.max

36
122 72 10

1 1
2 900 6 25

2 2 10
266 6 MPa6 3  

Comments: The difference in stress for the preceding two solutions is large. This suggests the need for 
flexible systems for withstanding impact loads. Interestingly, bolts subjected to dynamic loads, such as 
those used to attach the ends to the tube in pneumatic cylinders, are often designed with long grips (see 
Section 15.9) to take advantage of the more favorable stress conditions.

Example 4.9: Impact Loading on a Beam

A weight W is dropped from a height h, striking at midspan a simply supported steel beam of length L. 
The beam is of rectangular cross-section of width b and depth d (Figure 4.15). Calculate the maximum 
deflection and maximum stress for these two cases:

 a. The beam is rigidly supported at each end.
 b. The beam is supported at each end by springs.

Given: W = 100 N, h = 150 mm, L = 2 m, b = 30 mm, and d = 60 mm.

Assumptions: Modulus of elasticity E = 200 GPa and spring rate k = 200 kN/m.

Solution

We have Mmax = WL/4 at point C and I = bd3/12. The maximum deflection, due to a static load, is (from 
Case 5 of Table A.8)
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 ( )
( ) ( )

( )( )
δ = =

×
=

. .
.WL

EI48

100 2 12

48 200 10 0 03 0 06
0 154 mmst

3 3

9 3  

The maximum static stress equals

 
( )( )( )

( )( )
σ = = =.

. .
.maxM C

I

100 2 0 03 12

4 0 03 0 06
2 778 MPast 3  

 a. The impact factor, using Equation (4.32), is

 ( )
( )= + + =−

.
.

.K 1 1
2 0 15

0 154 10
45 15

3
 

 Therefore,

 ( )δ = =. . .max 45 15 0 154 6 95 mm 

 ( )σ = =. .max 45 15 2 778 125 MPa 

 b. The static deflection of the beam due to its own bending and the deformation of the springs is

 δ = + =. .0 154
50
200

0 404 mmst  

 The impact factor is then

 ( )
( )= + + =−

.
.

.K 1 1
2 0 15

0 404 10
28 27

3
 

 Hence,

 ( )δ = =. . .max 28 27 0 404 11 42 mm 

 ( )σ = =. . .max 28 27 2 778 78 53 MPa 

W

CA B
d

b
h

L
2

L
2

FIGURE 4.15 Example 4.9.
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170 Mechanical Engineering Design

Comments: Comparing the results, we observe that dynamic loading considerably increases deflection 
and stress in a beam. Also noted is a reduction in stress with increased flexibility, owing to the spring 
added to the supports. However, the values calculated are probably somewhat higher than the actual 
quantities, because of our simplifying assumptions 3 and 4.

Example 4.10: Impact Analysis of a Diving Board

A diving board, also referred to as springboard, is a flexible board from which a dive may be executed, 
that is secured at one end and projecting over water at the other. The spring constant of a diving board 
is customarily adjusted by way of a fulcrum (roller support). Commercial fiberglass diving boards 
are made of molded fiberglass and a laminated Douglas fir wood core, with additional fiberglass that 
reinforces the tip and fulcrum area. Residential diving boards are usually fabricated of Douglas fir 
wood core with acrylic coating. Some springboards are made out of aluminum and there is frequently 
textured gripping material, such as crushed glass or sand mixed with the paint, to provide grip to 
persons not wearing shoes. It was shown in Example 2.3 using Ashby’s chart that glass-reinforced 
plastic is one of the low-cost materials that make a beam (like a diving board) as strong as possible 
for a given weight.

Given: A diver of weight W is bouncing on a rectangular cross-sectional diving board ABC (Figure 
4.16). On a particular bounce, the diver reaches a height h above the end C of the board. Data are as 
follows:

 = = = =a L b d3 m 4 m 400 mm 65 mm 

 = = =.h E W500 mm 12 6 GPa 600 N 

Find:

 a. The maximum static deflection and stress in the board
 b. The maximum dynamic deflection at end C
 c. The maximum dynamic stress in the board

Assumptions:

 1. The diver remains as a rigid mass when strikes the very end C of the board.
 2. The flexural rigidity EI of the beam is constant.

A
B

L
a

C
b

h

W

d

FIGURE 4.16 Example 4.10. Model of diving board.
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171Deflection and Impact

 3. The weight of the beam (e.g., fiberglass board) is much smaller than that of the diver and is 
neglected.

 4. The deformation of the board due to the shear force is disregarded.

Solution

The beam’s cross-sectional area properties are

 ( )( )( )= = = .I bd
1

12
1

12
400 65 9 154 10 mm3 3 6 4 

 ( )= = .c
1
2

65 32 5 mm 

 a. Static loading. The deflection at point C, from Case 10 of Table A.8, is

 υ = Wa L

EI3
st

2

 (c)

 Introducing the given numerical values, we have

 ( ) ( )
( ) ( )

( )
υ =

×
=−. .

.600 3 4

3 12 6 10 9 154 10
62 4 mmst

2

9 6
 

 The magnitude of the maximum moment M = Wa takes place at point B of the beam. The 
flexure formula results therefore in

 
( )

( )
( )

σ = =
× ×

=
−

−

.
.

.Mc

I

600 3 32 5 10

9 154 10
6 39 MPast

3

6
 

 b. Maximum deflection at C. The impact factor, using Equation (4.32), is found to be

 
( )= + +

υ
= + =

.
.K

h
1 1

2
1

2 500

62 4
5 126

st

 

 Hence,

 ( )υ = υ = =. . .max K 5 126 62 4 319 9 mmst  

 c. Maximum stress in the board. Through the use of Equation (4.34), we have

 ( )σ = σ = =. . .max K 5 126 6 39 32 8 MPast  

 which takes place at point B of the beam.

Comments: The results show that the dynamic deflection and dynamic stress in the diving board 
are much greater than the corresponding static quantities. But the actual values could be less than 
those calculated because of simplifying assumptions 3 and 4 of Section 4.7. A safety factor should 
be used to ensure against uncertainties related to strength of the board and the loading applied by 
the diver.
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172 Mechanical Engineering Design

4.9  TORSIONAL IMPACT

In machinery, torsional impact occurs in the rotating shafts of punches and shears; in geared drives; 
at clutches, brakes, and torsional suspension bars; and numerous other components. Here, we dis-
cuss the stress and deflection in members subjected to impact torsion. The problem is analyzed by 
the approximate energy method used in the preceding section. Advantage will be taken of the anal-
ogy between linear and torsional systems to readily write the final relationships.

Consider a circular prismatic shaft of flexural rigidity GJ and length L, fixed at one end and 
subjected to a suddenly applied torque T at the other end (Figure 4.17). The shaft stiffness, from 
Equation (4.10), is k = GJ/L, where J = πd4/32 and d is the diameter. The maximum dynamic angle 
of twist (in rad), from Equation (4.36a), is

 φ = E L

GJ

2 k
max  (4.39a)

in which Ek is the kinetic energy. Similarly, the maximum dynamic torque, referring to Equation 
(4.36b), is

 =T
E GJ

L

2 k
max  (4.39b)

The maximum dynamic shear stress, τmax = 16Tmax/πd3, is therefore

 τ =max
E G

AL
2 k  (4.40)

Here, A represents the cross-sectional area of the shaft.
Recall from Section 1.10 that, for a rotating wheel of constant thickness, the kinetic energy is 

expressed in the form

 = ωE I
1
2

k
2 (4.41)

with

 =I mb
1
2

2 (4.42a)

 = π ρm b t2  (4.42b)

d

φ

L

FIGURE 4.17 Bar subjected to impact torsion.
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173Deflection and Impact

In the foregoing, we have

I  =  the mass moment of inertia (N · s2 · m or lb · s2 · in.)
ω  =  the angular velocity (rad/s)
m  =  the mass (kg or lb · s2/in.)
b  =  the radius
t  =  the thickness
ρ  =  the mass density (kg/m3 or lb · s2/in.4)

As before, W and g are the weight and acceleration of gravity, respectively. A detailed treatment of 
stress and displacement in disk flywheels is given in Section 16.5.

Note that in the case of wheel of variable thickness, the mass moment of inertia may conve-
niently be obtained from the expression

 =I mr2 (4.43)

The quantity r is called the radius of gyration for the mass. It is a hypothetical distance from the 
wheel center at which the entire mass could be concentrated and still have the same moment of 
inertia as the original mass.

Example 4.11: Impact Loading on a Shaft

A shaft of diameter d and length L has a flywheel (radius of gyration r, weight W, modulus of rigidity 
G, yield strength in shear Sys) at one end and runs at a speed of n. If the shaft is instantly stopped at the 
other end, determine

 a. The maximum shaft angle of twist
 b. The maximum shear stress

Given: d = 75 mm, L = 0.76 m, W = 530 N, r = 250 mm, n = 150 rpm.

Assumption: The shaft is made of ASTM-A242 steel. So, by Table B.1, G = 79 GPa and Sys = 210 GPa.

Solution

The area properties of the shaft are

 ( )( ) ( )= π = = π =. , .A J
75

4
4 418 mm

75

32
3 11 10 mm

2
2

4
6 4 

The angular velocity equals

 ω = π



 = π



 = πn

2
60

150
2
60

5 rad/s 

 a. The kinetic energy of the flywheel must be absorbed by the shaft. So, substituting Equation 
(4.43) into Equation (4.41), we have

 
( ) ( )

( )

= ω

= π = ⋅.
.

.

E
W r

g2

530 5 0 25

2 9 809
416 6 N m

k

2 2

2 2
 

(a)
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 From Equation (4.39a),

 ( )
( )( )

( )
φ = =

×













= = °

. .
.

. .

/
E L

GJ

2 2 416 6 0 76

79 10 3 11

0 05 rad 2 87

k
max 3

1 2

 

 b. Through the use of Equation (4.40),

 

( )
( )

( )
( )

τ = =
×

×













=

−

.
. .max

/
E G

AL
2 2

416 6 79 10

4 418 10 0 76

198 MPa

k
9

3

1 2

 

Comment: The stress is within the elastic range, 198 < 210, and hence assumption 2 of Section 4.7 is 
satisfied.

PROBLEMS

Sections 4.1 through 4.6
 4.1 A high-strength steel rod of length L, used in a control mechanism, must carry a tensile 

load of P without exceeding its yield strength Sy, with a factor of safety n, nor stretching 
more than δ.

 a. What is the required diameter of the rod?
 b. Calculate the spring rate for the rod.
  Given: P = 10 kN, E = 200 GPa, Sy = 250 MPa, L = 6 m, δ = 5 mm.
  Design Decision: The rod will be made of ASTM-A242 steel. Take n = 1.2.
 4.2 In Figure 4.3a of Example 4.4, let the bar AB be 12 mm wide and 8 mm thick uniform 

rectangular cross-sectional bar. Compute the stress, the deformation, and the stiffness of 
the bar.

 4.3 A hollow aluminum alloy 2014-T6 bar of length L must support an axial tensile load of P 
at a normal stress of σmax. The outside and inside diameters of the bar are D and d, respec-
tively. Calculate the outside diameter, axial deformation, and spring rate of the bar.

  Given: E = 72 GPa (by Table B.1), d = 0.6D, L = 375 mm, P = 75 kN, σmax = 140 MPa.
 4.4 At room temperature (20°C), a gap Δ exists between the wall and the right end of the bars 

shown in Figure P4.4. Determine:
 a. The compressive axial force in the bars after the temperature reaches 140°C.
 b. The corresponding change in length of the aluminum bar.
  Given:

 = = α = × ° ∆ =−, , ,A E1000 mm 70 GPa 23 10 / C 1 mma a a
2 6  

 = = α = × °−, , .A E500 mm 210 GPa 12 10 / Cs s s
2 6  

300 mm 250 mm Δ

SteelAluminum

CBA

FIGURE P4.4 
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175Deflection and Impact

 4.5 Redo Problem 4.4 for the case in which Δ = 0.
 4.6 A rigid beam AB is hinged at the left end A and kept horizontally by a vertical steel pipe at 

point C (Figure P4.6). The pipe has an outer diameter D, inside diameter d, and length L. 
Find the vertical deflection δB of the right end B of the beam caused by the applied load P.

  Given: a = 1.3 m, b = 350 mm, D = 105 mm, d = 95 mm, L = 625 mm, P = 12 kN, E = 200 GPa.
 4.7 A rod ABC is composed of two materials joined and has a diameter d and total length L 

(Figure P4.7). Part AB is cold-rolled 510 bronze and part BC is aluminum alloy 6061-T6. 
The rod is subjected to an axial tensile load P. Find:

 a. The lengths La and Lb in order that both parts have the same elongation.
 b. The total elongation of the rod.
  Given: d = 50 mm, L = 0.6 m, P = 120 kN, Ea = 70 GPa, Eb = 110 GPa (by Table B.1).
 4.8 Figure P4.8 shows an aluminum bar CE of cross-sectional area A hinged at upper end C 

and pin connected at point D to a rigid beam AD. Find the vertical displacement produced 
by loads P and R:

 a. At the end A of beam AD.
 b. At the end E of bar CE.
  Given: E = 70 GPa, Aa = 130 mm2, P = 12 kN, R = 4 kN, a = 2b, L1 = 2L2 = 0.3 m.
 4.9 Resolve Problem 4.8, for the case in which force R is directed upward at end E of bar CE.
 4.10 Two steel shafts are connected by gears and subjected to a torque T, as shown in Figure 

P4.10. Calculate:
 a. The angle of rotation in degrees at D.
 b. The maximum shear stress in shaft AB.
  Given: G = 79 GPa, T = 500 N · m, d1 = 45 mm, d2 = 35 mm.

A
C

D

L
Steel
pipe

b
a

P

B

FIGURE P4.6 

Bronze

P

d Aluminum
A

B

C

Lb

Lc Ld

P

FIGURE P4.7 
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 4.11 Determine the diameter d1 of shaft AB shown in Figure P4.10, for a case in which the maxi-
mum shear stress in each shaft is limited to 150 MPa.

  Design Decisions: d2 = 65 mm. The factor of safety against shear is n = 1.2.
 4.12 A hollow high-strength ASTM-A242 steel shaft is subjected to a torque T at a maximum 

shear stress of τmax. The outside radius, inside radius, and length of the shaft are c, b, and 
L, respectively.

  Find:
 a. The outside diameter.
 b. The angle of twist.
 c. The spring rate.
  Given: c = 2b, L = 250 mm, G = 79 GPa (from Table B.1), τmax = 140 MPa, T = 4.5 kN · m.
 4.13 Three pulleys are fastened to a solid stepped steel shaft and transmit torques as illustrated 

in Figure P4.13.
  Find:
 a. The angle of twist ϕBC between B and C.
 b. The angle of twist ϕBD between B and D.
  Given: d1 = 34 mm, d2 = 25 mm, L1 = 625 mm, L2 = 750 mm, G = 79 GPa, TB = 560 kN · m, 

TC = 1.4 kN · m, TD = 450 N · m.
 4.14 A high-strength ASTM-A242 steel shaft AE of outer diameter D and inside diameter d 

is supported by bearing at B and carries torques T1, T2, and T3 at A, C, and D, as seen in 
Figure P4.14. The shaft is connected to a gear box at E.

A

P

a

B D

E

R

L2

L1
Aluminum

C

b

FIGURE P4.8 

1.8 m

A

240 mm

d1
B

360 mm

D

C
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FIGURE P4.10 
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  Determine:
 a. The angle of twist ϕA at end A.
 b. The safety factor n on the basis of the yield strength.
  Given: d = 35 mm, D = 50 mm, L1 = 450 mm, L2 = 375 mm, L3 = 625 mm, T1 = 1.1 kN · m, 

T2 = 3 kN · m, T3 = 0.7 kN · m, G = 79 GPa, τy = 210 MPa (from Table B.1).
 4.15 A disk is attached to a 40 mm diameter, 0.5 m long steel shaft (G = 79 GPa) as depicted in 

Figure P4.15.
  Design Requirement: To achieve the desired natural frequency of torsional vibrations, the 

stiffness of the system is specified such that the disk will rotate 1.5° under a torque of kN · m. 
How deep (h) must a 22 mm diameter hole be drilled to satisfy this requirement?

 4.16 A structural steel beam AB supported at the ends as illustrated in Figure P4.16 is subjected to 
a concentrated load P at the midspan C. Find the vertical deflection of the beam at end B.

 4.17 A simple beam of wide-flange cross-section carries a uniformly distributed load of inten-
sity w (Figure P4.17). Determine the span length L.

  Given: h = 315 mm, E = 200 GPa.
  Design Requirements: σmax = 70 MPa, υmax = 3.1 mm.

D

TD

C

A
TB

B d1

d2

TC

EL1

L2

FIGURE P4.13 

L3

Gear
box

E

A B

T2

T1

T3

L1

L2

C

D

FIGURE P4.14 

ISTUDY

www.konkur.in

Telegram: @uni_k



178 Mechanical Engineering Design

 4.18 A shaft-pulley assembly with an overhang is shown in Figure P4.18. Observe that the pul-
ley rotates freely and delivers no torque but a tension load to its shaft.

  Determine:
 a. Equations of the elastic curve using Equation (4.16a)
 b. The deflection at point C
  Assumption: The bearings at A and B act as simple supports.
 4.19 Two cantilever beams AB and CD are supported and loaded as shown in Figure P4.19. 

What is the interaction force R transmitted through the roller that fits snugly between the 
two beams at point C? Use the method of superposition and the deflection formulas of the 
beams from Table A.8.

 4.20 Figure P4.20 shows a compound beam with a hinge at point B. It is composed of two parts: 
a beam BC simply supported at C and a cantilevered beam AB fixed at A. Apply the super-
position method using Table A.8 to determine the deflection υB at the hinge.

 4.21 A steel cantilever beam AB built-in at end A and reinforced at location C by a steel rod CD 
is to carry a load W at the free end B (Figure P4.21). After the loading, the beam deflects 
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180 Mechanical Engineering Design

downward at C and develops a reactive tensile force F in the rod. Verify that equation for 
this force using the method of superposition is expressed as follows:

 ( )
( )= +

+
F

WL k L a

kL EI

2 3

2 3

2

3
 (P4.21)

  In this expression, we have EI as the flexural rigidity of the beam, and k = F/δC represents 
the spring rate of the rod with δC its elongation.

 4.22 A propped cantilevered beam carries a uniform load of intensity w (Figure P4.22). 
Determine the reactions at the supports, using the second-order differential equation of the 
beam deflection.

 4.23 A fixed-ended beam AB is under a symmetric triangular load of maximum intensity as 
shown in Figure P4.23. Determine all reactions, the equation of the elastic curve, and the 
maximum deflection.

  Requirement: Use the second-order differential equation of the deflection.
 4.24 A fixed-ended beam supports a concentrated load P at its midspan (Figure P4.24). 

Determine all reactions and the equation of the elastic curve.
 4.25 Redo Problem 4.22, using the method of superposition together with Table A.8.
 4.26 and 4.27 A simple beam with an overhang and a continuous beam are supported and 

loaded, as shown in Figures P4.26 and P4.27, respectively. Use the area moments to deter-
mine the support reactions.
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Sections 4.7 through 4.9
 4.28 The uniform rod AB is made of steel. Collar D moves along the rod and has a speed of 

υ = 3.5 m/s as it strikes a small plate attached to end A of the rod (Figure P4.28). Determine 
the largest allowable weight of the collar.

  Given: Sy = 250 MPa, E = 210 GPa.
  Design Requirement: A factor of safety of n = 3 is used against failure by yielding.
 4.29 The 20 kg block D is dropped from a height h onto the steel beam AB (Figure P4.29). 

Determine:
 a. The maximum deflection of the beam.
 b. The maximum stress in the beam.
  Given: h = 0.5 m, E = 210 GPa.
 4.30 Collar of weight W, depicted in Figure P4.30, is dropped from a height h onto a flange at 

end B of the round rod. Determine the W.
  Given: h = 1.1 m, d = 25 mm, L = 4.6 m, E = 200 GPa.
  Requirement: The maximum stress in the rod is limited to 250 MPa.
 4.31 The collar of weight W falls a distance h when it comes into contact with end B of the round 

steel rod (Figure P4.30). Determine diameter d of the rod.
  Given: W = 90 N, h = 1.2 m, L = 1.5 m, E = 200 GPa.
  Design Requirement: The maximum stress in the rod is not to exceed 125 MPa.
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182 Mechanical Engineering Design

 4.32 The collar of weight W falls onto a flange at the bottom of a slender rod (Figure P4.30). 
Calculate the height h through which the weight W should drop to produce a maximum 
stress in the rod.

  Given: W = 500 N, L = 3 m, d = 20 mm, E = 170 GPa.
  Design Requirement: Maximum stress in the rod is limited to σmax = 350 MPa.
 4.33 A block of weight W falls from a height h onto the midspan C of a simply supported beam. 

The beam is also reinforced at C by a spring of stiffness k as shown in Figure P4.33.
  Find:
 a. The maximum deflection.
 b. The maximum stress.
  Given: h = 50 mm, k = 180 kN/m, W = 24 kg, E = 70 GPa.
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183Deflection and Impact

 4.34 Design the shaft (determine the minimum required length Lmin), described in Example 
4.11, so that yielding does not occur. Based on this length and the given impact load, what 
is the angle of twist?

 4.35 The steel shaft and abrasive wheels A and B at the ends of a belt-drive sheave rotate at n 
rpm (Figure P4.35). If the shaft is suddenly stopped at the wheel A because of jamming, 
determine:

 a. The maximum angle of twist of the shaft.
 b. The maximum shear stress in the shaft.
  Given: Da = 125 mm, Db = 150 mm, d = t = 25 mm, L = 0.3 m, n = 1500 rpm, G = 79 GPa, 

Sys = 250 MPa, density of wheels ρ = 1800 kg/m3.
  Assumption: Abrasive wheels are considered solid disks.
 4.36 Redo Problem 4.35, for a case in which the shaft runs at n = 1200 rpm and the wheel end B 

is suddenly stopped because of jamming.
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5 Energy Methods and Stability

5.1  INTRODUCTION

As pointed out in Section 1.4, instead of the equilibrium methods, displacements and forces can be 
ascertained through the use of energy methods. The latter are based on the concept of strain energy, 
which is of fundamental importance in analysis and design. The application of energy techniques 
is effective in cases involving members of variable cross-sections and problems dealing with elastic 
stability, trusses, and frames. In particular, strain energy approaches can greatly ease the chore of 
obtaining the displacement of members under combined loading.

In this chapter, we explore two principal energy methods and illustrate their use with a variety 
of examples. The first deals with the finite deformation experienced by load-carrying components 
(Sections 5.2 through 5.6). The second, the variational method, based on a virtual variation in stress 
or displacement, is discussed in Sections 5.7 and 5.8. Literature related to the energy approaches is 
extensive [1–4].

Elastic stability relates to the ability of a member or structure to support a given load without 
experiencing a sudden change in configuration. A buckling response leads to instability and col-
lapse of the member. Some designs may thus be governed by the possible instability of a system that 
commonly arises in buckling of components. In Sections 5.9 through 5.14, we are concerned pri-
marily with the column buckling, which presents but one case of structural stability [5–10]. Critical 
stresses in rectangular plates are discussed briefly in Section 5.15.

The problem of buckling in springs is examined in Section 14.6. Both equilibrium and energy 
methods are applied in determining the critical load. The choice depends on the particulars of the 
problem considered. Although the equilibrium approach gives exact solutions, the results obtained 
by the energy approach (sometimes approximate) are usually preferred due to the physical insight 
that may be more readily gained. A vast number of other situations involve structural stability, such 
as the buckling of pressure vessels under combined loading; twist-bend buckling of shafts in tor-
sion; lateral buckling of deep, narrow beams; and buckling of thin plates in the form of an angle 
or channel in compression. Analysis of such problems is mathematically complex, and beyond the 
scope of this text.

5.2  STRAIN ENERGY

Internal work stored in an elastic body is the internal energy of deformation or the elastic strain 
energy. It is often convenient to use the quantity, called strain energy per unit volume or strain 
energy density. The area under the stress–strain diagram represents the strain energy density, des-
ignated Uo, of a tensile specimen (Figure 5.1). Therefore,

 U d0 x x∫= σ ε  (5.1a)

The area above the stress–strain curve is termed the complementary energy density:

 U d0 x x∫= ε ε*  (5.2)

Observe from Figure 5.1b that, for a nonlinearly elastic material, these energy densities have dif-
ferent values.
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186 Mechanical Engineering Design

In the case of a linearly elastic material, from the origin up to the proportional limit, substituting 
σx/E for εx, we have

 U
E

1
2

1
2

0 x x x
2= σ ε = σ  (5.1b)

and the two areas are equal U Uo o= *, as shown in Figure 5.1a. In SI units, the strain energy density 
is measured in joules per cubic meter (J/m3) or in pascals; in US customary units, it is expressed in 
inch-pounds per cubic inch (in. ⋅ lb/in.3) or psi. Similarly, strain energy density for shear stress is 
given by

 U
G

1
2

1
2

0 xy xy xy
2= τ γ = τ  (5.3)

When a body is subjected to a general state of stress, the total strain energy density equals simply 
the sum of the expressions identical to the preceding equations. We have then

 U
1
2

0 x x y y z z xy xy yz yz xz xz( )= σ ε + σ ε + σ ε + τ γ + τ γ + τ γ  (5.4)

Substitution of the generalized Hooke’s law into this expression gives the following equation, 
involving only stresses and elastic constants:

 U
E G

1
2

2
1

2
0 x y z x y y z x z xy yz xz

2 2 2 2 2 2( )( )= σ + σ + σ − ν σ σ + σ σ + σ σ + τ + τ + τ




 (5.5)

When the principal axes are used as coordinate axes, the shear stresses are 0. The preceding equa-
tion then becomes

 U
E

1
2

20 1
2

2
2

3
2

1 2 2 3 1 3( )= σ + σ + σ − ν σ σ + σ σ + σ σ  (5.6)

in which σ1, σ2, and σ3 are the principal stresses.
The elastic strain energy U stored within an elastic body can be obtained by integrating the strain 

energy density over the volume V. Thus,

 U U dV U dxdydz
V

0 0∫ ∫∫∫= =  (5.7)

σx

(a) (b)
εx

Uo Uo

εxO O

σx

Proportional 
limit

Proportional 
limit

U *
o U *

o

FIGURE 5.1 Work done by uniaxial stress: (a) linearly elastic material and (b) nonlinearly elastic material.
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187Energy Methods and Stability

This equation is convenient in evaluating the strain energy for a number of commonly encountered 
shapes and loading. It is important to note that the strain energy is a nonlinear (quadratic) function 
of load or deformation. The principle of superposition therefore is not valid for the strain energy.

5.2.1  ComPonents oF strain energy

The 3D state of stress at a point (Figure 5.2a) may be separated into two parts. The state of stress in 
Figure 5.2b is associated with the volume changes, the so-called dilatations. In the figure, σm rep-
resents the mean stress or the octahedral stress σoct, defined in Section 3.15. On the other hand, the 
shape changes, or distortions, are caused by the set of stresses shown in Figure 5.2c.

The dilatational strain energy density can be obtained through the use of Equation (5.6) by let-
ting σ1 = σ2 = σ3 = σm. In so doing, we have

 U
E E

3 1 2
2

1 2
6

ov m
2

1 2 3
2( ) ( )( )= − ν σ = − ν σ + σ + σ  (5.8)

The distortional strain energy density is readily found by subtracting the foregoing from 
Equation (5.6):

 U
G G

1
12

3
4

od 1 2
2

2 3
2

3 1
2

oct
2( ) ( )( )= σ − σ + σ − σ + σ − σ  = τ  (5.9)

The quantities G and E are related by Equation (2.9). The octahedral planes where σoct and τoct act 
are shown in Figure 3.43.

Test results indicate that the dilatational strain energy is ineffective in causing failure by yielding 
of ductile materials. The energy of distortion is assumed to be completely responsible for material 
failure by inelastic action. This is discussed further in Chapter 7. Stresses and strains associated 
with both components of the strain energy are also very useful in describing the plastic deformation.

Example 5.1: Components of Strain Energy in a Prismatic Bar

A structural steel bar having a uniform cross-sectional area A carries an axial tensile load P. Find the 
strain energy density and its components.

Solution

The state of stress is uniaxial tension, σx = σ = P/A, and the remaining stress components are 0 (Figure 
5.2a). We therefore have the stresses causing volume change σm = σ/3 and shape change σx − σm = 2σ/3, 
σy − σm = σz − σm = σ/3 (Figures 5.2b and 5.2c). The strain energy densities for the stresses in Figure 5.2, 
from Equations (5.5), (5.8), and (5.9), are

σz

(a) (b) (c)

σx

σy

σm

σm

σy – σm

σz – σm

σx – σm

σm = (σx + σy + σz)
1
3

= +

FIGURE 5.2 (a) Principal stresses, resolved into (b) dilatational stresses and (c) distortional stresses.
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U
E

U
E E

U
E E

2

1 2

6 12

1

3
5
12

0

ov

od

2

2 2

2 2

( )

( )

= σ

= − ν σ = σ

= + ν σ = σ

 (5.10)

Comment: We observe that Uo = Uoυ + Uod and that 5Uoυ = Uod. That is, to change the shape of a unit vol-
ume element subjected to simple tension, five times more energy is absorbed than to change the volume.

5.3  STRAIN ENERGY IN COMMON MEMBERS

Recall from Section 5.2 that the method of superposition is not applicable to strain energy; that is, 
the effects of several forces or moments on strain energy are not simply additive. In this section, 
the following types of loads are considered for the various members of a structure: axial load-
ing, torsion, bending, and shear. Note that the equations derived are restricted to linear material 
behavior.

5.3.1  axially loaded Bars

The normal stress at any transverse section through a bar subjected to an axial load P is σx = P/A, 
where A represents the cross-sectional area and x is the axial axis (Figure 5.3). Substitution of this 
and Equation (5.1) into Equation (5.7) and setting dV = Adx, we obtain

 U
P dx

AE

1
2

a

L

0

2

∫=  (5.11)

For a prismatic bar, subjected to end forces of magnitude P, Equation (5.10) becomes

 U
P L

AE2
a

2

=  (5.12)

The quantity E represents the modulus of elasticity and L is the length of the member.

Example 5.2: Energy Absorbed by a Bolt Fastener

A stainless (302) cold-rolled steel bolt is under a tension force P when used as a fastener as shown in 
Figure 5.4. The shank and thread diameters of the bolt are ds and dt, respectively. Detailed discussion 
of threaded fasteners will be taken up in Chapter 15.

P

x

L

FIGURE 5.3 Nonprismatic bar with varying axial loading.
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189Energy Methods and Stability

Given: Prescribed numerical values are ds = 18.8 mm, dt = 15.8 mm, Ls = 75 mm, Lt = 2.9 mm, 
E = 190 GPa, Sy = 520 MPa (by Table B.1 in Appendix B).

Find: (a) The maximum tension force that the bolt can carry without yielding and (b) the maximum 
elastic strain energy that the bolt can absorb.

Assumption: The extra material that makes up the threads can be disregarded.

Solution

The major (shank) and minor (thread root) cross-sectional areas of the bolt, respectively, are

 A d
4 4

18 8 277 6 mms s
2 2 2( )= π = π =. .  

 A d
4 4

15 8 196 1 mmt t
2 2 2( )= π = π =. .  

 a. Allowable load. The largest stress of 520 MPa takes place within region Lt = 2.9 mm. It  follows 
that

 P S A 520 196 1 102 kNy tall ( )= = =.  

 b. Strain energy capacity of bolt. Applying Equation (5.11) within each portion, we have

 U
P L

AE

P

E

L

A

L

A2 2
s

s

t

t

all
2

all
2

∑= = +





 (5.13)

 Introducing the data leads to

 
U

102

2 190
75

2 776
2 9

196 1

27 38 0 27 0 015 7 8 N m

2( )
( )

( )

= +





= + = ⋅

.
.
.

. . . .

 

dt

ds

Lt

P Ls

FIGURE 5.4 Example 5.2. A bolted connection.
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Comments: It is interesting to note that, if the bolt has a uniform diameter of dt = 16 mm throughout its 
779 mm length, we obtain

 U 27 38
77 9

196 1
10 9 N m= 



 = ⋅. .

.
.  

It would then absorb about 28% more elastic energy, although it has a smaller cross-section along its 
shank.

5.3.2  CirCular torsion Bars

In the case of pure torsion of a bar, Equation (3.11) for an arbitrary distance r from the centroid of the 
cross-section gives τ = Tr/J. The strain energy density, Equation (5.3), becomes then Uo = T2r2/2J2G. 
Inserting this into Equation (5.7), the strain energy owing to torsion is

 U
T

GJ
r dA dx

2
t

L

0

2

2
2∫ ∫= 



  (5.14)

We have dV = dA dx; dA is an element of the cross-sectional area. By definition, the term in paren-
theses is the polar moment of inertia J of the cross-sectional area. Hence,

 U
T dx

GJ

1
2

t

L

0

2

∫=  (5.15)

For a prismatic bar subjected to end torques T (Figure 3.6), Equation (5.15) appears as

 U
T L

GJ2
t

2

=  (5.16)

in which L is the length of the bar.

5.3.3  Beams

Consider a beam in pure bending. The flexure formula gives the axial normal stress σx = My/I. Using 
Equation (5.1), the strain energy density is Uo = M2y2/2EI2. After carrying this into Equation (5.7) 
and noting that M2/2EI2 is a function of x alone, we obtain

 U
M

EI
y dA dx

2
b

L

0

2

2
2∫ ∫= 



  (5.17)

Since the integral in parentheses defines the moment of inertia I of the cross-sectional area about the 
neutral axis, the strain energy due to bending is

 U
M dx

EI

1
2

b

L

0

2

∫=  (5.18)

This, integrating along beam length L, gives the required quantity.
For a beam of constant flexural rigidity EI, Equation (5.18) may be written in terms of deflection 

by using Equation (4.14) as follows:

 U
EI d

dx
dx

2
b

L

0

2

2

2

∫= υ





 (5.19)
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The transverse shear force V produces shear stress τxy at every point in the beam. The strain energy 
density, inserting Equation (3.20) into Equation (5.3), is Uo = V2Q2/2GI2b2. Integration of this, over 
the volume of the beam of cross-sectional area A, results in the strain energy for beams in shear:

 U
V dx

AG2
s

L

0

2

∫= α
 (5.20)

In Equation (5.20), the form factor for shear is

 
A

I

Q

b
dA2

2

2∫α =  (5.21)

This represents a dimensionless quantity specific to a given cross-sectional geometry.
Example 5.3 illustrates the determination of the form factor for shear for a rectangular cross-sec-

tion. Other cross-sections can be treated similarly. Table 5.1 furnishes several cases [3]. Subsequent 
to finding α, the strain energy due to shear is obtained using Equation (5.20).

Example 5.3: Total Strain Energy Stored in a Beam

A cantilevered beam with a rectangular cross-section supports a concentrated load P as depicted in 
Figure 5.5. Find the total strain energy and compare the values of the bending and shear contributions.

Solution

The first moment of the area, by Equation (3.21), is Q b h y/2 /2 2
1
2( ) ( )= − . Inasmuch as A/I2 = 144/bh5, 

Equation (5.21) gives

 
bh

h
y bdy

144 1
4 4

6
5

h

h

5

2

2
2

1
2

2

1∫α = −






=
− /

/

 

TABLE 5.1
Form Factor for Shear for Various Beam Cross-Sections

Cross-Section Form Factor α

Rectangle 6/5

I section, box section, or channelsa A/Aweb

Circle 10/9

Thin-walled circular 2

a A, area of the entire section; Aweb, area of the web ht, where h is the beam 
depth and t is the web thickness.

P

x
A

z

y

y1M

V

B

b

h

L

x

FIGURE 5.5 Examples 5.3 and 5.4.
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From the equilibrium requirements, the bending moment M = −Px and the shear force V = P at x 
(Figure 5.5). Carrying these and α = 6/5 into Equations (5.18) and (5.20), then integrating, we obtain

 U
P x

EI
dx

P L

EI2 6
b

L

0

2 2 2 3

∫= =  (5.22)

 U
V

AG
dx

P L

AG

6
5 2

3
5

s

L

0

2 2

∫= =  (5.23)

Note that I/A = h2/12. The total strain energy stored in the cantilever beam is

 U U U
P L

EI

E

G

h

L6
1

3
10

b s

2 3 2

= + = + 













 (5.24)

Through the use of Equations (5.22) and (5.23), we find the ratio of the shear strain energy to the 
bending strain energy in the beam as follows:

 
U

U

E

G

h

L

h

L

3
10

3
5

1s

b

2 2

( )= 



 = + ν 



  (5.25)

Comments: When, for example, L = 10h and v = 1/3, this quotient is only 1/125: the strain energy owing 
to the shear is less than 1%. For a slender beam, h ≪ L, it is observed that the energy is due mainly to 
bending. Therefore, it is usual to neglect the shear in evaluating the strain energy in beams of ordinary 
proportions. Unless stated otherwise, we adhere to this practice.

5.4  WORK–ENERGY METHOD

The strain energy of a structure subjected to a set of forces and moments may be expressed in terms 
of the forces and resulting displacements. Suppose that all forces are applied gradually and the final 
values of the force and displacement are denoted by Pk (k = 1, 2, …, n) and δk, the total work W, 

P1 2 k k∑ δ/  is equal to the strain energy gained by the structure, provided no energy is dissipated. 
That is,

 U W P
1
2

k

n

k k

1

∑= = δ
=

 (5.26)

In other words, the work done by the loads acting on the structure manifests as elastic strain energy.
Consider a member or structure subjected to a single concentrated load P. Equation (5.26) then 

becomes

 U P
1
2

= δ (5.27)

The quantity δ is the displacement through which the force P moves. In a like manner, it can be 
shown that

 U M
1
2

= θ (5.28)

 U T
1
2

= φ (5.29)
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Note that M (or T) and θ (or ϕ) are, respectively, the moment (or torque) and the associated slope (or 
angle of twist) at a point of a structure.

The foregoing relationships provide a convenient approach for finding the displacement. This 
is known as the method of work–energy. In the next section, we present a more general approach 
that may be used to obtain the displacement at a given structure even when the structure carries 
combined loading.

Example 5.4: Beam Deflection by the Work–Energy Method

A cantilevered beam with a rectangular cross-section is loaded as shown in Figure 5.5. Find the 
deflection υA at the free end by considering the effects of both the internal bending moments and 
shear force.

Solution

The total strain energy U of the beam, given by Equation (5.24), is equated to the work, W = PυA/2. 
Hence,

 
PL

EI

E

G

h

L3
1

3
10

A

3 2

υ = + 













 (5.30)

Comment: If the effect of shear is disregarded, note that the relative error is identical to that found in 
the previous example. As already shown, this is less than 1% for a beam with a ratio L/h = 10.

5.5  CASTIGLIANO’S THEOREM

Castigliano’s theorems are in widespread use in the analysis of structural displacements and forces. 
They apply with ease to a variety of statically determinate, as well as indeterminate, problems. Two 
theorems were proposed in 1879 by A. Castigliano (1847–1884). The first theorem relies on a virtual 
(imaginary) variation in deformation and is discussed in Section 5.7. The second concerns the finite 
deformation experienced by a member under load. Both theorems are limited to small deformations 
of structures. The first theorem is pertinent to structures that behave nonlinearly as well as linearly. 
We deal mainly with Castigliano’s second theorem, which is restricted to structures composed of 
linearly elastic materials. Unless specified otherwise, we refer in this text to the second theorem as 
Castigliano’s theorem.

Consider a linearly elastic structure subjected to a set of gradually applied external forces Pk 
(k = 1, 2, …, n). Strain energy U of the structure is equal to the work done W by the applied forces, as 
given by Equation (5.26). Let us permit a single load, say, Pi, to be increased at a small amount dPi, 
while the other applied forces Pk remain unchanged. The increase in strain energy is then dU = (dU/
dPi) dPi where dU/dPi represents the rate of change of the strain energy with respect to Pi. The total 
energy is

 U U
U

P
dP

i
i′ = + ∂

∂






 

Alternatively, an expression for U′ may be written by reversing the order of loading. Suppose that 
dPi is applied first, followed by the force Pk. Now the application of dPi causes a small displacement 
dδi. The work, dPi ⋅ dδi/2, corresponding to this load increment, can be omitted because it is of the 
second order. The work done during the application of the forces Pk is unaffected by the presence 
of dPi. But the latter force dPi performs work in moving an amount δi. Here, δi is the displacement 
caused by the application of Pk. The total strain energy due to the work done by this sequence of 
loads is therefore
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 U U dPi i′ = + ⋅δ  

Equating the preceding equations, we have the Castigliano’s theorem:

 
U

P
i

i

δ = ∂
∂

 (5.31)

The foregoing states that, for a linear structure, the partial derivative of the strain energy with 
respect to an applied force is equal to the component of displacement at the point of application 
and in the direction of that force.

Castigliano’s theorem can similarly be shown to be valid for applied moments M (or torques T) 
and the resulting slope θ (or angle of twist ϕ) of the structure. Therefore,

 
U

M
i

i

θ = ∂
∂

 (5.32)

 
U

Ti

φ = ∂
∂

 (5.33)

In using Castigliano’s theorem, we must express the strain energy in terms of the external forces or 

moments. In the case of a prismatic beam, we have U M dx EI22∫= / . To obtain the deflection υi, 

corresponding to load Pi, it is often much simpler to differentiate under the integral sign. In so 
doing, we have

 
U

P EI
M

M

P
dx

1
i

i i
∫υ = ∂

∂
= ∂

∂
 (5.34)

Similarly, the slope may be expressed as

 
U

M EI
M

M

M
dx

1
i

i i
∫θ = ∂

∂
= ∂

∂
 (5.35)

Generally, the total strain energy in a straight or curved member subjected to a number of com-
mon loads (axial force F, bending moment M, shear force V, and torque T) equals the sum of the 
strain energies given by Equations (5.11), (5.16), (5.18), and (5.20). So, by applying Equation (5.31), 
the displacement at any point in the member is obtained in the following convenient form:

 
AE

F
F

P
dx

EI
M

M

P
dx

AG
V

V

P
dx

GJ
T

T

P
dx

1 1 1 1
i

i i i i
∫ ∫ ∫ ∫δ = ∂

∂
+ ∂

∂
+ α ∂

∂
+ ∂

∂
 (5.36)

Clearly, the last term of this equation applies only to circular bars. An expression may be written 
for the angle of rotation in a like manner. If it is necessary to obtain the displacement at a point 
where no corresponding load acts, the problem is treated as follows. We place a fictitious force Q (or 
couple C) at the point in question in the direction of the desired displacement δ (or θ). We then apply 
Castigliano’s theorem and set the fictitious load Q = 0 (or C = 0) to obtain the desired displacements.

Example 5.5: Deflection of a Curved Frame Using Castigliano’s Theorem

A load of P is applied to a steel curved frame, as depicted in Figure 5.6a. Develop an expression for the 
vertical deflection δυ of the free end by considering the effects of the internal normal and shear forces 
in addition to the bending moment. Calculate the value of δυ for the following data:
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 = = =, , ,a h b60 mm 30 mm 15 mm  

 = = =, , .P E G10 kN 210 GPa 80 GPa  

Solution

A free-body diagram of the part of the bar defined by angle θ is depicted in Figure 5.6b, where the 
internal forces (F and V) and moment (M) are positive as shown. Referring to the figure, we write

 ( )= − θ = θ = θcos , sin , cosM PR V P F P1  (5.37)

Therefore,

 ( )∂
∂

= − θ ∂
∂

= θ ∂
∂

= θcos , sin , cosM

P
R

V

P

F

P
1  

The form factor for shear for the rectangular section is α = 6/5 (Table 5.1). Substitution of the preceding 
expressions into Equation (5.36) with dx = Rdθ results in

 
PR

EI
d

PR

AG
d

PR

AE
d1

6
5

3

0

2

0

2

0

2∫ ∫ ∫( )δ = − θ θ + θ θ + θ θυ

π π π

cos sin cos  

Using the trigonometric identities cos2θ = (1 + cos2θ)/2 and sin2θ = (1 − cos2θ)/2, we obtain, after 
integration,

 
PR

EI

PR

AG

PR

AE

3
2

3
5 2

3

δ = π + π + π
υ  (a)

The geometric properties of the cross-section of the bar are

 ( )= = × =−. . . , . ,A R0 015 0 03 4 5 10 m 0 075 m4 2  

 I
1

12
0 015 0 03 337 5 10 m3 10 4( )=   = × −. . .  

Carrying these values into Equation (a) gives

 2 81 0 04 0 01 10 2 86 mm3( )δ = + + × =υ
−. . . .  

Comments: If the effects of the normal and shear forces are neglected, we have δυ = 2.81 mm. Then, the 
error in deflection is approximately 1.7%. For this curved bar, where R/c = 5, the contribution of V and F 
to the displacement can therefore be disregarded. It is common practice to neglect the first and the third 
terms in Equation (5.36) when R/c > 4.

h

a

(a) (b)

A

P

O c

B b

F

M

O

P

B
A

V

θR

R

h

Section A–B

FIGURE 5.6 Example 5.5. (a) Steel curved frame and (b) free-body diagram.
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Example 5.6: Displacements of a Split Ring by Castigliano’s Theorem

A slender, cross-sectional, circular ring of radius R is cut open at θ = 0, as shown in Figure 5.7a. The ring 
is fixed at one end and loaded at the free end by a z-directed force P. Find, at the free end A,

 a. The z-directed displacement.
 b. The rotation about the y axis.

Solution

Since the rotation is sought, a fictitious couple C is applied at point A. The bending and twisting 
moments at any section are (Figure 5.7b):

 M PR C T PR C1( )= − θ − θ = − θ − θθ θsin sin , cos cos  (5.38)

 a. Substitution of these quantities with C = 0 and dx = Rd0 into Equation (5.36) gives

 

U

P EI
P R Rd

GJ
PR R Rd

PR

EI

PR

GJ

1

1
1 1

3

z

0

2

0

2

3 3

∫

∫

( )( )

( ) ( )

δ = ∂
∂

= − θ − θ θ

+ − θ − θ θ

= π + π

π

π

sin sin

cos cos

 (b)

 b. Introducing Equations (5.38) into Equation (5.35) with dx = Rd0 and setting C = 0, we have

 

U

C EI
PR Rd

GJ
PR Rd

PR

EI

PR

GJ

1

1
1

y

0

2

0

2

2 2

∫

∫

( )( )

( )( )

θ = ∂
∂

= − θ − θ θ

+ − θ − θ θ

= π + π

π

π

sin sin

cos cos

 (c)

O

z

(a)
x

(b)

–P
A

P
R(1–cos θ)

C

θ
O

Mθ
Tθ

A

P
R

y

θ

R

R sin θ

FIGURE 5.7 Example 5.6.
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*5.5.1 aPPliCation to trusses

We now apply Castigliano’s theorem to plane trusses. As pointed out in Section 1.9, it is assumed that 
the connection between the members is pinned and the only force in the member is an axial force, either 
tensile or compressive. Note that, in practice, members of a plane truss are usually riveted, welded, or 
bolted together by means of so-called gusset plates. However, due to the slenderness of the members, the 
internal forces can often be computed on the basis of frictionless joints that prevent translation in two 
directions, corresponding to the reactions of two unknown force components.

The method of joints and method of sections are commonly used for the analysis of trusses. 
The method of joints consists of analyzing the truss, joint by joint, to determine the forces in the 
members by applying the conditions of equilibrium to the free-body diagram for each joint. This 
approach is most effective when the forces in all members of a truss are to be determined. If, how-
ever, the force in only a few members of a truss is desired, the method of sections applied to a por-
tion (containing two or more joints) of the truss is isolated by imagining that the members in which 
the forces are to be ascertained are cut.

The strain energy U for a truss is equal to the sum of the strain energies of its members. In the 
case of a truss consisting of m members of length Lj, axial rigidity Aj, Ej, and internal axial force Fj, 
the strain energy can be found from Equation (5.11) as

 U
F L

A E2
j

m
j j

j j1

2

∑=
=

 (5.39)

The displacement δi of the joint of application of load Pi can be obtained by substituting Equation 
(5.39) into Castigliano’s theorem, Equation (5.31). Therefore,

 
U

P

F L

A E

F

P
i

i j

m
j j

j j

j

i1

∑δ = ∂
∂

= ∂
∂

=

 (5.40)

The preceding discussion applies to statically determinate and indeterminate linearly elastic trusses.

Example 5.7: Displacements of a Crane Boom by Castigliano’s Theorem

A planar truss with pin and roller supports at A and B, respectively, is subjected to a vertical load P at 
joint E, as shown in Figure 5.8. Determine:

 a. The vertical displacement of point E.
 b. The horizontal displacement of point E.

RAy

RAx

RB B D

C

EA

P

Q

L

L L

FIGURE 5.8 Example 5.7

ISTUDY

www.konkur.in

Telegram: @uni_k



198 Mechanical Engineering Design

Assumption: All members are of equal axial rigidity AE.

Solution

 a. The equilibrium conditions for the entire truss (Figure 5.8) result in RAx = 2P, RAy = P, and 
RB = 2P. Applying the method of joints at A, E, C, and D, we obtain

 F P F F P F P2 2AD AC CE DE= = = = −, ,  

 F F F P0 2BC CD BD= = = −,  

 Through the use of Equation (5.40),

 

AE
FL

F

P

AE
PL P L P L

PL

AE

1

1
2 1 2 2 2 2 2 2

11 657

∑
( )( )( )( ) ( ) ( )( ) ( )

δ = ∂
∂

= + + − −





=

υ

.  (d)

 The positive sign for δυ indicates that the displacement has the same sign as that assumed for 
P; it is downward.

 b. As the horizontal displacement is sought, a fictitious load Q is applied at point E (Figure 5.8). 
Now FAC = FCE = P + Q; all other forces remain the same as given by Equation (d). From 
Equation 5.40, we have

 
AE

FL
F

Q

L

AE
P Q

1 2
h ( )δ = Σ ∂

∂
= +  

 However, Q = 0, and the preceding reduces to

 
PL

AE
2hδ =  

Comment: A somewhat detailed finite element analysis (FEA) of the member forces, displacements, 
and design of a basic truss are discussed in Case Study 17.1.

5.6  STATICALLY INDETERMINATE PROBLEMS

Castigliano’s theorem or the unit load method may be applied as a supplement to the equations 
of statics in the solutions of support reactions of a statically indeterminate structure. Consider, 
for instance, a structure indeterminate to the first degree. In this case, we select one of the 
reactions as the redundant (or unknown) load, say, R1, by removing the corresponding support. 
All external forces, including both loads and redundant reactions, must generate displacements 
compatible with the original supports. We first express the strain energy in terms of R1 and the 
given loads. Equation (5.34) may be applied at the removed support and equated to the given 
displacement:

 
U

R
0

1
1

∂
∂

= δ =  (5.41)

This expression is solved for the redundant reaction R1. Then, we can find the other reactions from 
static equilibrium.
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In an analogous manner, the case of statically indeterminate structure with n redundant reac-
tions, assuming no support movement, can be expressed in the following form:

 
U

R

U

R
0 0

n1

∂
∂

= … ∂
∂

=, ,  (5.42)

By solving these equations simultaneously, the magnitude of the redundant reactions is obtained. 
The remaining reactions are found from equations of equilibrium. Note that Equation (5.42), 
Castigliano’s second theorem, is also referred to as the principle of least work in some literature.

Analytical techniques are illustrated in the solution of the following sample problems.

Example 5.8: Deflection of a Ring by Castigliano’s Theorem

A ring of radius R is hinged and subjected to force P as shown in Figure 5.9a. Taking into account only 
the strain energy due to bending, determine the vertical displacement of point C.

Solution

Owing to symmetry, it is necessary to analyze only a quarter segment (Figure 5.9b). Inasmuch as MA and 
MB are unknowns, the problem is statically indeterminate. The moment at any section a–a is

 M M PR
1
2

1B ( )= − − θθ cos  

Since the slope is 0 at B, substituting this expression into Equation (5.35) with dx = Rdθ, we have

 
EI

M PR Rd
1 1

2
1 1 0B B

0

2

∫ ( ) ( )θ = − − θ





θ =
π

cos
/

 

from which MB = PR[1 − (2/π)]/2. The first equation then becomes

 M
PR

2
2= θ −
π





θ cos  

The displacement of point C, by Equation (5.34), is

 

EI
M

M

P
Rd

EI
P

R
Rd

4

4
2

2

C

0

2

0

2 2

∫

∫

δ = ∂
∂

θ

= θ −
π













θ

π

θ
θ

π

cos

/

/
 

A

P/2

MB

dθ

θ

(a) (b)

A

OO

R B a

R

B
a

C
P

FIGURE 5.9 Example 5.8. (a) Ring and (b) quarter segment.
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Integration of the foregoing results in

 
PR

EI
0 15C

3

δ = .  (a)

The positive sign of δC means that the displacement has the same sense as the force P, as shown.

Example 5.9: Deflection and Reaction of a Frame Using Castigliano’s Theorem

A frame of constant flexural rigidity EI supports a downward load P, as depicted in Figure 5.10a. Find

 a. The deflection at E.
 b. The horizontal reaction at E, if the point E is a fixed pin (Figure 5.10b).

Solution

 a. Inasmuch as a displacement is sought, a fictitious force Q is introduced at point E (Figure 
5.10a). Because of symmetry about a vertical axis through point C, we need to write expres-
sions for moment associated with segments ED and DC, respectively:

 M Qx M Qa
Px

2
1 2= = +,  

 The horizontal displacement at E is found by substituting these equations into Equation 
(5.36):

 
EI

Qx xdx
EI

Qa
Px

adx
1 2

2
E

a b

0 0

2

∫ ∫( )δ = + +





/

 

 Setting Q = 0 and integrating,

 
Pab

EI8
E

2

δ =  (b)

 b. The problem is now statically indeterminate to the first degree; there is one unknown reac-
tion after satisfying three equations of statics (Figure 5.10b). Since δE = 0, setting Q = −R, we 
equate the deflection given by Equation (a) to zero. In so doing, we have

Q R

A

P

E

D D

E

C

R

C

2

(a) (b)

2

P P

B B

a

A

P
2

P
2 2

P
2

bb

FIGURE 5.10 Example 5.9.
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EI

Rx xdx
EI

Ra
Px

adx
1 2

2
0

a b

0 0

2

∫ ∫( )− + − +



 =

/

 

 The preceding gives

 R
Pb

a ab

3
8 3

2

2=
+

 (c)

5.7  VIRTUAL WORK PRINCIPLE

In connection with virtual work, we use the symbol δ to denote a virtual infinitesimally small 
quantity. An arbitrary or imaginary incremental displacement is termed a virtual displacement. A 
virtual displacement results in no geometric alterations of a member. It also must not violate the 
boundary or support conditions for a structure. In the brief development to follow, px, py, and pz 
represent the x, y, and z components of the surface forces per unit area and the body forces are taken 
to be negligible.

The virtual work, δW, done by surface forces on a member under a virtual displacement is 
given by

 W p u p p w dAx y z∫ ( )δ = δ + δυ + δ  (5.43)

The quantity A is the boundary surface area, and δu, δυ, and δw represent the x-, y-, and z-directed 
components of a virtual displacement. In a like manner, the virtual strain energy, δU, acquired of a 
member of volume V caused by a virtual straining is expressed as follows:

 U dV
V

x x y y z z xy xy yz yz xz xz∫ ( )δ = σ δε + σ δε + σ δε + τ δγ + τ δγ + τ δγ  (5.44)

It can be shown that [1, 3] the total work done during the virtual displacement is 0: δW − δU = 0. 
Therefore,

 W Uδ = δ  (5.45)

This is called the principle of virtual work.
It is essential to note that during a virtual displacement, the magnitudes and directions of applied 

forces do not change. Application of the virtual work principle to find deflections of typical beams 
is shown in the next section.

5.7.1  Castigliano’s First theorem

Consider now a structure subjected to a set of external forces Pk (k = 1.2, …, n). Suppose that the 
structure experiences a continuous virtual displacement in such a manner that it vanishes at all 
points of loading except under a single load, say, Pi. The virtual displacement in the direction of this 
force is denoted by δ(δi). From Equation (5.45), we have δU = Pi δ(δi). In the limit, the principle of 
virtual work results in

 P
U

i
i

= ∂
∂δ

 (5.46)
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This is known as Castigliano’s first theorem: for a linear or nonlinear structure, the partial deriva-
tive of the strain energy with respect to an applied virtual displacement is equal to the load acting 
at the point in the direction of that displacement. Similarly, it can be demonstrated that

 M
U

i
i

= ∂
∂θ

 (5.47)

in which θi is the angular rotation, and Mi represents the resulting moment.
Note that Castigliano’s first theorem is also known as the theorem of virtual work. It is the basis 

for the derivation of the finite element stiffness equations. In applying Castigliano’s first theorem, 
the strain energy must be expressed in terms of the displacements.

*5.8 USE OF TRIGONOMETRIC SERIES IN ENERGY METHODS

Certain problems in structural analysis and design are amenable to solutions by the use of trigono-
metric series. This technique offers a significant advantage because a single expression may apply 
to the entire length or surface of the member. A disadvantage in the trigonometric series is that 
arbitrary support conditions can make it impossible to write a series that is simple. The solution by 
trigonometric series is applied for variously loaded members in this and the sections to follow [1, 4].

The method is now illustrated for the case of a simple beam loaded as depicted in Figure 5.11. 
The deflection curve can be represented by the following Fourier sine series:

 a
m x

L
m

m

1

∑υ = π

=

∞

sin  (5.48)

that satisfies the boundary conditions (υ = 0, υ″ = 0 at x = 0 and x = L). The Fourier coefficients am are 
the maximum coordinates of the sine curves, and the values of m show the number of half-waves in 
the sine curves. The accuracy can be improved by increasing the number of terms in the series. We 
apply the principle of virtual work to determine the coefficients.

The strain energy of the beam, substituting Equation (5.48) into Equation (5.19), is expressed in 
the following form:

 U
EI d

dx
dx

EI
a

m

L

m x

L
dx

2 2

L L

m

m

0

2

2

2

0 1

2
2

∫ ∫ ∑= υ





= π





π









=

∞

sin  (a)

The term in brackets, after expanding, can be expressed as

 U a a
m

L

n

L

m x

L

n x

L
m n

m n

1 1

2 2

∑∑= π





π





π π

=

∞

=

∞

sin sin  

x

Py

A

c

L

FIGURE 5.11 Simply supported beam under a force P at an arbitrary distance c from the left support.
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For the orthogonal functions sin (mπx/L) and sin (nπx/L), by direct integration, it can be verified 
that

 
m x

L

n x

L
dx

m n

L m n

0 for

2 for

L

0
∫

( )
( )

π π =
≠

=






sin sin

,

/ ,
 (5.49a)

The strain energy given by Equation (a) is therefore

 U
EI

L
m a

4
m

m

4

3

1

4 2∑= π

=

∞

 (5.50)

The virtual work done by a force P acting through a virtual displacement at A increases the strain 
energy of the beam by δU. Applying Equation (5.45),

 P UA− ⋅δυ = δ  (b)

The minus sign means that P and δυA are oppositely directed. So by Equations (5.50) and (b),

 P
m c

L
a

EI

L
m a

4
m

m

m

m

1

4

3

1

4 2∑ ∑− π δ = π δ
=

∞

=

∞

sin  

The foregoing gives

 a
PL

EI m

m c

L

2 1
m

3

4 4= −
π

πsin  

Carrying this equation into Equation (5.48), we have the equation of the deflection curve:

 
PL

EI m

m c

L

n x

L

2 1

m

3

4

1

4∑υ = −
π

π π

=

∞

sin sin  (5.51)

Using this infinite series, the deflection for any prescribed value of x can be readily obtained.

Example 5.10: Deflection of a Cantilevered Beam by the Principle of Virtual Work

A cantilevered beam is subjected to a concentrated load P at its free end, as shown in Figure 5.12. 
Derive the equation of the deflection curve.

Assumptions: The origin of the coordinates is placed at the fixed end. Deflection is taken in the fol-
lowing form:

 a
m x

L
1

2
m

m

1 3 5

∑υ = − π





= …

∞

cos
, , ,

 (c)

L

y
P

xA

FIGURE 5.12 Example 5.10.
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Solution

The boundary conditions, υ(0) = 0 and υ′(0) = 0, are satisfied by the preceding equation.
Substitution of this series into Equation (5.19) gives

 U
EI

a
m

L

m x

L
dx

2 2 2

L

m

m

0 1 3 5

2
2

∫ ∑= π





π









= …

∞

cos
, , ,

 

Squaring the term in brackets and noting the orthogonality relation,

 
m x

L

m x

L
dx

m n

L m n2 2

0 for

2 for

L

0
∫

( )
( )

π π =
≠

=






cos cos

,

/
 (5.49b)

the strain energy becomes

 U
EI

L
m a

64
m

m

4

3

1 3 5

4 2∑= π

= …

∞

, , ,

 (5.52)

By the principle of virtual work, −P ⋅ δυA = δU, we have

 P
m

a
EI

L
m a1

2 64
m

m

m

m

1 3 5

4

3

1 3 5

4 2∑ ∑− − π



 δ = π δ

= …

∞

= …

∞

cos
, , , , , ,

 

This results in am = −32 PL3/m4π4 EI. The beam deflection is found by inserting the value of am obtained 
into Equation (c).

Comment: At the free end (x = L), retaining only the first three terms of the solution, we have the value 
of the maximum deflection υmax = PL3/3.001EI. The exact solution owing to bending is PL3/3EI.

5.9  BUCKLING OF COLUMNS

A prismatic bar loaded in compression is called a column. Such bars are commonly used in trusses 
and in the framework of buildings. They are also encountered in machine linkages, jack screws, 
coil springs in compression, and a wide variety of other elements. The buckling of a column is its 
sudden, large, lateral deflection due to a small increase in existing compressive load. A wooden 
household yardstick with a compressive load applied at its ends illustrates the basic buckling phe-
nomenon. Failure from the viewpoint of instability may take place for a load that is 1% of the 
compressive load alone that would cause failure based on a strength criterion. That is, consideration 
of material strength (stress level) alone is insufficient to predict the behavior of such a member. 
Railroad rails, if subjected to an axial compression because of temperature rise, could fail similarly.

5.9.1  Pin-ended Columns

Consider a slender pin-ended column centrically loaded by compressive forces P at each end (Figure 
5.13a). In Figure 5.13b, load P has been increased sufficiently to cause a small lateral deflection. 
This is a condition between stability and instability or neutral equilibrium. The bending moment at 
any section is M = −Pυ. So Equation (4.14) becomes

 EI
d

dx
P

2

2

υ = − υ (5.53)
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or

 
d

dx
k 0

2

2
2υ + υ =  (5.54)

For simplification, the following notation is used:

 k
P

EI
2 =  (5.55)

The solution of Equation (5.54) is

 A kx kxBυ = +sin cos  (a)

The constants A and B are obtained from the end conditions:

 L0 0 and 0( ) ( )υ = υ =  

The first requirement gives B = 0 and the second leads to for A = 0 or sin kL = 0. If A = 0, the solu-
tion of Equation (5.54) is called trivial. The other possibility, sin kL, is satisfied by

 
P

EI
L n n 1 2( )= π = …, ,  (b)

The quantity n represents the number of half-waves in the buckled column shape. Note that n = 2,… 
are usually of no practical interest. The only way to obtain higher modes of buckling is to provide 
lateral support of the column at the points of 0 moments on the elastic curve, the so-called inflec-
tion points.

When n = 1, the solution of Equation (b) results in the value of the smallest critical load, Euler’s 
buckling load:

 P
EI

L
cr

2

2= π
 (5.56)

This is also called Euler’s column formula. The quantities I, L, and E are moments of inertia of the 
cross-sectional area, the original length of the column, and the modulus of elasticity, respectively. 

P

A A

B

P

A

x

x
M

y

P

P

υ

(a) (b) (c)

y, υ

L

B

FIGURE 5.13 Column with pinned ends: (a) initially straight, (b) buckled form for number of half-wave 
n = 1, and (c) free-body diagram of a segment.
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Note that the strength is not a factor in the buckling load. Introducing the foregoing results back in 
Equation (a), we obtain the buckled shape of the column as

 A
x

L
υ = πsin  

The value of the maximum deflection, υmax = A, is undefined. Therefore, the critical load sustains 
only a small or no lateral deflection [3, 5].

It is clear that EI represents the flexural rigidity for bending in the plane of buckling. If the col-
umn is free to deflect in any direction, it tends to bend about the axis having the smallest principal 
moment of inertia I. By definition, I = Ar2, where A is the cross-sectional area and r is the radius of 
gyration about the axis of bending. We may consider the r of an area to be the distance from the 
axes at that entire area that could be concentrated and yet has the same value for I. Substitution of 
the preceding relationship into Equation (5.56) gives

 P
EA

L r
cr

2

2( )
= π

/
 (5.57)

We seek the minimum value of Pcr; hence, the smallest radius of gyration should be used in this 
equation. The quotient L/r, called the slenderness ratio, is an important parameter in the classifica-
tion of columns.

5.9.2  Columns with other end Conditions

For columns with various combinations of fixed, free, and pinned supports, Euler’s formula can be 
written in the following form:

 P
EI

L
cr

e

2

2= π
 (5.58)

in which Le is called the effective length. As shown in Figure 5.14, it develops that the effective 
length is the distance between the inflection points on the elastic curves. In a like manner, Equation 
(5.57) can be expressed as

 P
EA

L r
cr

e

2

2( )
= π

/
 (5.59)

Le = 2L Le = L Le = 0.7L
Le = 0.5L

L

P P

(a) (b) (c) (d) (e)

P P P

Le = L

FIGURE 5.14 Effective lengths of columns for various end conditions: (a) fixed–free, (b) pinned–pinned, (c) 
fixed–pinned, (d) fixed–fixed, and (e) fixed–nonrotating.
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The quantity Le/r is referred to as the effective slenderness ratio of the column. In the actual design 
of a column, the designer endeavors to configure the ends, using bolts, welds, or pins, to achieve the 
required ideal end condition.

Minimum AISI recommended actual effective lengths for steel columns [7] are as follows:

 

.

.

.

.

L L

L L

L L

L L

L L

2 1 fixed–free

pinned–pinned

0 80 fixed–pinned

0 65 fixed–fixed

1 2 fixed–nonrotating

e

e

e

e

e

( )
( )

( )

( )

( )

=

=

=

=

=

 (5.60)

Note that only a steel column with pinned–pinned ends has the same actual length and the theo-
retical value noted in Figure 5.14b. Also observe that steel columns with one or two fixed ends 
always have actual lengths longer than the theoretical values. The preceding apply to end construc-
tion, where ideal conditions are approximated. The distinction between the theoretical analyses and 
empirical approaches necessary in design is discussed in Section 5.13.

5.10  CRITICAL STRESS IN A COLUMN

As previously pointed out, a column failure is always sudden, total, and unexpected. There is no 
advance warning. The behavior of an ideal column is often represented on a plot of average criti-
cal stress Pcr/A versus the slenderness ratio Le/r (Figure 5.15). Such a representation offers a clear 
rationale for the classification of compression bars. The range of Le/r is a function of the material 
under consideration.

5.10.1  long Columns

For a long column, that is, a member with a sufficiently large slenderness ratio, buckling occurs 
elastically at stress that does not exceed the proportional limit of the material. Hence, Euler’s load 
of Equation (5.59) is appropriate in this case, and the critical stress is

Short
columns
(struts)

Intermediate
columns

Strength limit

Parabolic curve

Tangent-modulus
curve

Long columns

Slenderness ratio

Cr
iti

ca
l s

tr
es

s

D

C

Le/r(Le/r)c

Sp

A B

P/A

Su

O

Euler,s
curve

FIGURE 5.15 Average stress in columns versus the slenderness ratio.
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P

A

E

L r
cr

cr

e

2

2( )
σ = = π

/
 (5.61)

The corresponding portion CD of the curve (Figure 5.15) is labeled as Euler’s curve. The smallest 
value of the slenderness ratio for which Euler’s formula applies is found by equating σcr to the pro-
portional limit or yield strength (Sp ≈ Sy) of the specific material:

 
L

r

E

S
e

c y





 = π  (5.62)

For instance, in the case of a structural steel with E = 210 GPa and Sy = 250 MPa, this equation gives 
(Le/r)c = 91.

We see from Figure 5.15 that very slender columns buckle at low levels of stress; they are much 
less stable than short columns. Equation (5.62) shows that the critical stress is increased by using 
a material of higher modulus of elasticity E or by increasing the radius of gyration r. A tubular 
column, for example, has a much larger value of r than a solid column of the same cross-sectional 
area. However, there is a limit beyond which the buckling strength cannot be increased. The wall 
thickness eventually becomes so thin as to cause the member to crumble due to a change in the 
shape of a cross-section.

5.10.2  short Columns or struts

Compression members having low slenderness ratios (for instance, steel rods with L/r < 30) show 
essentially no instability and are called short columns. For these bars, failure occurs by yielding or 
crushing, without buckling, at stresses above the proportional limit of the material. Therefore, the 
maximum stress

 
P

A
σ =max  (5.63)

represents the strength limit of such a column, shown by horizontal line AB in Figure 5.15. This is 
equal to the yield strength or ultimate strength in compression.

5.10.3  intermediate Columns

Most structural columns lie in a region between the short and long classifications, represented by 
part BC in Figure 5.15. Such intermediate columns fail by inelastic buckling at stress levels above 
the proportional limit. Substitution of the tangent modulus Et, slope of the stress–strain curve 
beyond the proportional or yield point, for the elastic modulus E, is the only modification necessary 
to make Equation (5.59) applicable in the inelastic range. Hence, the critical stress may be expressed 
by the generalized Euler’s buckling formula, the tangent modulus formula:

 
E

L r
cr

t

e

2

2( )
σ = π

/
 (5.64)

If the tangent moduli corresponding to the given stresses can be read from the compression stress–
strain diagram, the value of L/r at which a column buckles can readily be calculated by applying 
Equation (5.64). When, however, L/r is known and σcr is to be obtained, a trial-and-error approach 
is necessary.

Over the years, many other formulas have been proposed and employed for intermediate col-
umns. A number of these formulas are based on the use of linear or parabolic relationships between 
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the slenderness ratio and the critical stress. The parabolic JB Johnson formula has the following 
form:

 S
E

S L

r

1
2

cr y
y e

2

σ = −
π





  (5.65a)

or, in terms of the critical load,

 P A S A
S L r

E
1

4
cr cr y

y e
2

2

( )= σ = −
π











/
 (5.65b)

where A represents the cross-sectional area of the column. The relation (5.65) seems to be the pre-
ferred one among designers in the machine, aircraft, and structural steel construction fields. Despite 
much scatter in the test results, the Johnson formula has been found to agree reasonably well with 
experimental data. However, the dimensionless form of tangent modulus curves has very distinct 
advantages when structures of new materials are analyzed.

Note that Equations (5.61), (5.62), and (5.64) or (5.65) determine the ultimate stresses, not the 
working stresses. It is therefore necessary to divide the right side of each formula by an appropriate 
factor of safety, often 2–3, depending on the material, to determine the allowable values. Some typi-
cal relationships for allowable stress are introduced in Section 5.13.

Example 5.11: The Most Efficient Design of a Rectangular Column

A steel column of length L and an a × b rectangular cross-section is fixed at the base and supported at 
the top, as shown in Figure 5.16. The column must resist a load P with a factor of safety n with respect 
to buckling.

 a. What is the ratio of a/b for the most efficient design against buckling?
 b. Design the most efficient cross-section for the column, using L = 400 mm, E = 200 GPa, P = 15 

kN, and n = 2.

Assumption: Support restrains end A from moving in the yz plane but allows it to move in the 
xz plane.

L

b

B

a

z

P

A

y

x

FIGURE 5.16 Example 5.11.
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Solution

The radius of gyration r of the cross-section is

 r
I

A

ba

ab

a
r a

/12
12

or / 12z z
2 z

3 2

= = = =  

Similarly, we obtain r b/ 2y = . The effective lengths of the column shown in Figure 5.16 with respect 
to buckling in the xy and xz planes, from Figures 5.14a and 5.14c, are Le = 0.7L and Le = 2L, respectively. 
Thus,

 
L

r

L

a

0 7
/ 12

e

z

= .
 

(a)

 
L

r

L

b

2
/ 12

e

y

=  

 a. For the most effective design, the critical stresses corresponding to the two possible 
modes of buckling are to be identical. Referring to Equation (5.61), it is concluded there-
fore that

 
L

a

L

b

0 7
/ 12

2
/ 12

=.
 

 Solving,

 
a

b
0 35= .  (b)

 b. Designing for the given data, based on a safety factor of n = 2, we have Pcr = 2(15) = 30 kN and

 
P

A b

30 10

0 35
cr

cr
3

2

( )
σ = =

.
 

 The second of Equation (a) gives L r b b2 0 4 12 2 771e ( )= =/ . / . / . Through the use of 
Equation (5.61), we write

 
b b

30 10

0 35

200 10

2 771

3

2

2 9

2

( ) ( )
( )

=
π ×

. . /
 

 from which b = 24 mm and hence a = 8.4 mm.

Example 5.12: Development of Specific Johnson Formula

Derive a specific Johnson formula for the intermediate sizes of columns having

 a. Round cross-sections.
 b. Rectangular cross-sections.
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Solution

 a. For a solid circular section, A = πd2/4, I = πd4/64, and

 r
I

A

d

4
= =  (c)

 Using Equation (5.65a)

 
P

d
S

E

S L

d

4 1
2

4cr
y

y e
2

2

π
= −

π




  

 Solving,

 d
P

S

S L

E
2 cr

y

y e
2 2

2

1 2

=
π

+
π







/

 (5.66)

 b. In the case of a rectangular section of height h and width b with h < b: A = bh, I = bh3/12; 
hence, r2 = h2/12. Introducing these into Equation (5.65a),

 P

bh
S

E

S L

h

1
2

12cr
y

y e

2

= −
π







 

 or

 b
P

hS
L S

Eh
1

3
cr

y
e y
2

2 2

=
−

π






 (5.67)

Example 5.13: Load-Carrying Capacity of a Pin-Ended Braced Column

A steel column braced at midpoint C as shown in Figure 5.17. Determine the allowable load Pall on the 
basis of a factor of safety n.

Given: L = 375 mm, a = 6.25 mm, b = 25 mm, Sy = 250 MPa, E = 200 GPa

Assumptions: Bracing acts as simple support in the xy plane. Use n = 3.

Solution

Referring to Example 5.11, the cross-sectional area properties are

 r
a

12
6 25

12
1 804 mmz = = =. .  

 r
b

12
25
12

7 217 mmy = = = .  

and A = ab = (6.25)(25) = 156.25 mm2

Buckling in the xz plane (unrestrained by the brace). The slenderness ratio is L/ry = 375/7.217 = 
51.9 < 91 and the Johnson equation is valid per Equation (5.62). Relation (5.65b) results in

 
P 250 156 25 1

250 51 9

4 200 10

35 73 kN

cr

2

2 3( )( )( ) ( )= −
π ×













=

. .

.
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Buckling in the xy plane (braced). We have Le/r = 187.5/1.804 = 103.9. Hence, applying Euler’s equation,

 
P

EA

L r

200 10 156 25

103 9

28 57 kN

cr
e

2

2

2 3

2

( )
( )

( )
( )

= π =
π ×

=

/
.

.

.

 

Comment: The working load Pall, therefore, must be based on buckling in the xy plane:

 P
P

n

28 57
3

9 52 kNall
cr= = =. .  

5.11  INITIALLY CURVED COLUMNS

In an actual structure, it is not always possible for a column to be perfectly straight. As might 
be expected, the load-carrying capacity and deflection under load of a column are significantly 
affected by even a small initial curvature. To determine the extent of this influence, consider a pin-
ended column with the unloaded form described by a half sine wave:

 a
x

L
0 0υ = πsin  (a)

This is shown by the dashed lines in Figure 5.18, where a0 represents the maximum initial 
displacement.

5.11.1  total deFleCtion

An additional displacement υ1 accompanies a subsequently applied load P. Therefore,

 0 1υ = υ + υ  

y

P

L/2

L/2

B

a

b

a

z

x

C

A

y

FIGURE 5.17 Example 5.13.
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The differential equation of the column, using Equation (4.14), is

 EI
d

dx
P P

2
1

2 0 1( )υ = υ + υ = − υ (5.68)

Introducing Equation (a) and setting k2 = P/EI, we have

 
d

dx
k

P

EI
a

x

L

2
1

2
2

1 0
υ + υ = − πsin  

For simplicity, let b designate the ratio of the axial load to its critical value:

 b
P

P

PL

EIcr

2

2= =
π

 (5.69)

The trial particular solution of this equation, υ1p = B sin(πx/L), when inserted into Equation (b) gives

 B
Pa

EI L P

a

b1 1
0

2 2
0

( ) ( )=
π −

=
−/ /

 

The general solution of Equation (5.68) is

 c kx c kx B
x

L
1 1 2υ = + + πsin cos sin  

The constants c1 and c2 are evaluated, from the end conditions υ1(0) = υ1(L) = 0, as c1 = c2 = 0. The 
column deflection is then

 a
x

L
B

x

L

a

b

x

L1
0

0υ = π + π =
−

πsin sin sin  (5.70)

This equation indicates that the axial force P causes the initial deflection of the column to increase 
by the factor l/(l − b). Since b < 1, this factor is always greater than unity. Clearly, if b = 1, deflection 

y

υo

υ1

P

υ

L

x

FIGURE 5.18 Initially curved column with pinned ends.
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becomes infinitely large. Note that an initially curved column deflects with any applied load P in 
contrast to a perfectly straight column that does not bend until Pcr is reached.

5.11.2  CritiCal stress

We begin with the formula applicable to combined axial loading and bending: σx = (P/A) + (My/I), in 
which A and I are the cross-sectional area and the moment of inertia. Substituting M = −Pυ together 
with Equation (5.70) into this expression, the maximum compressive stress at midspan is found as

 
P

A

a A

S b
1

1
1

oσ = +
−





max  (5.71)

The quantity S represents the section modulus I/c, in which c is the distance measured in the y direc-
tion from the centroid of the cross-section to the outermost fibers.

By imposing the yield strength in compression (and tension) Sy as σmax, we write Equation (5.71) 
in the following form:

 S
P

A

a A

S b
1

1
1

y
y o= +

−




  (5.72)

In the foregoing, Py is the limit load that results in impending yielding and subsequent failure. Given 
Sy, ao, E, and the column dimensions, Equation (5.72) may be solved exactly by solving a quadratic 
or by trial and error for P. The allowable load Pall can then be obtained by dividing Py by an appro-
priate factor of safety n.

5.12  ECCENTRIC LOADS AND THE SECANT FORMULA

In the preceding sections, we deal with the buckling of columns for which the load acts at the cen-
troid of a cross-section. We here treat columns under an eccentric load. This situation is obviously 
of great practical importance because frequently problems occur in which load eccentricities are 
unavoidable.

Let us consider a pinned-end column under compressive forces applied with a small eccentric-
ity e from the column axis (Figure 5.19a). We assume the member is initially straight and that the 

e

x

P

P

P/
A,

 M
Pa

y
υ

L/2

0

100

200

275
0.1

0.2

0.4

0.6

1.0

E = 200 GPa
Sy = 275 MPa

Euler’s
curve

80
Le/r

160 200

L/2

(a) (b)

0 = ec
r2

FIGURE 5.19 (a) Eccentrically loaded pinned-pinned column and (b) graph of the secant formula.
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material is linearly elastic. By increasing the load, the column deflects, as depicted by the dashed 
lines in the figure. The bending moment at distance x from the midspan equals M = −P(υ + e). Then, 
the differential equation for the elastic curve appears in the following form:

 EI
d

dx
P e 0

2

2 ( )υ + υ + =  

The boundary conditions are υ(L/2) = υ (−L/2) = 0. This equation is solved by following a procedure 
in a manner similar to that of Sections 5.9 and 5.10. In so doing, expressed in the terms of the critical 
load Pcr = π2EI/L2, the midspan (x = 0) deflection is found as

 e
P

P2
1

cr

υ = π −








secmax  (5.73)

We observe from the foregoing expression that, as P approaches Pcr, the maximum deflection goes 
to infinity. It is therefore concluded that P should not be allowed to reach the critical value found in 
Section 5.9 for a column under a centric load.

 EI
d

dx
P e 0

2

2

υ + υ + =( )  

The maximum compressive stress σmax takes place at x = 0 on the concave side of the column. Hence,

 
P

A

M c

I
σ = +max

max  

The quantity r is the radius of gyration and c is the distance from the centroid of the cross-section to 
the outermost fibers, both in the direction of eccentricity. Carrying Mmax = −P(υmax + e) and Equation 
(5.73) into the foregoing expression,

 
P

A

ec

r

P

P
1

2 cr
2σ = + π

















secmax  (5.74a)

Alternatively, we have

 
P

A

ec

r

L

r

P

AE
1

22σ = +














secmax  (5.74b)

This expression is referred to as the secant formula. The term ec/r2 is called the eccentricity ratio.
We now impose the yield strength Sy as σmax. Then, Equation (5.74b) can be written as

 
P

A

S

ec r L r P AE1 sec 2
y

e
2( ) ( )

=
+  / / /

 (5.75)

Here, the effective length is used: hence, the formula applies to columns with different end condi-
tions. Figure 5.19b is a plot of the preceding expression for steel having a yield strength of 275 MPa 
and modulus of elasticity of 200 GPa. Note how the P/A contours asymptotically approach Euler’s 
curve as Le/r increases. Equation (5.75) may be solved for the load P by trial and error or a root-
finding technique using numerical methods. Design charts in the style of Figure 5.19b can be used 
to good advantage (see Problem 5.50). Obviously, column design by the secant formula might best 
be programmed on a computer.
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Formula 5.74 is an excellent description of column behavior, provided the eccentricity e of the 
load is known with a degree of accuracy. We point out that the foregoing derivation of the secant 
formula is on the assumption that buckling takes place in the xy plane. It may also be necessary to 
analyze buckling in the plane; Equation (5.74) does not apply in this plane. This possibility corre-
lates especially to narrow columns.

Example 5.14: Analysis of Buckling of a Column Using the Secant Formula

A 6.1 m long pin-ended ASTM-A36 steel column of S200 × 34 section (Figure 5.20a) is subjected to a 
centric load P1 and an eccentrically applied load P2, as shown in Figure 5.20b. Determine

 a. The maximum deflection.
 b. The factor of safety n against yielding.

Given: The geometry of the column and applied loading are known.

Data: Sy = 250 MPa, E = 200 GPa (from Table B.1).

Solution

See Figure 5.20 and Table A.7.
The loading may be replaced by a statically equivalent load P = 455 kN acting with an eccentricity 
e = 30 mm (Figure 5.20c). Using the properties of an S200 × 34 section given in Table A.7, we obtain

 
P

A

L

r

455
4 37

104 1 MPa
6 100
78 7

77 51e= = = =
.

. , ,
.

.  

 
ec

r

eA

S

30 4 37

266
0 4932

( )= = =. .  

 P
EI

L

200 10 27 10

6 1
1 432 kNcr

2

2

2 9 6

2

( )( )
( )

= π =
π × ×

=
−

.
,  

 a. Carrying P/Pcr = 0.318 and e = 30 mm into Equation (5.73) leads to the value of midspan 
deflection of the column as

 e
p

P2
1 30 1 581 1 17 43 mm

cr

( )υ = π





−












= − =sec . .max  

z

C

(a) (b) (c)

y

P1 = 364 kN P2 = 91 kN
e = 30 mm

P = 455 kN

=

150 mm

FIGURE 5.20 Example 5.14.
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 b. In a like manner, through the use of Equation (5.74a), we have

 
P

A

ec

r

P

P
1

2
185 2 MPa

cr
2σ = + π

















=sec .max  

 Hence,

 n
S 250

185 2
1 35y=

σ
= =

.
.

max
 

Comment: Since the maximum stress and the slenderness ratio are within the elastic limit of 250 MPa 
and the slenderness ratio of about 200, the secant formula is applicable.

5.12.1  short Columns

A strut or short column under a centric compression load P will shorten prior to the stress approach-
ing the elastic limit of the material. As previously noted, at this point, yielding occurs and useful-
ness of a component may be at an end. For a case in which there is eccentricity in loading, the elastic 
strength is reached at small loads (Figure 5.19a).

The secant formula for short columns returns to usual form for small values of the slenderness 
ratio L/r. In this situation, the secant is nearly equal to 1, and consequently, Equation (5.74b) 
reduces to

 
P

A

ec

r
1 2σ = +



max  (5.76)

The preceding is a relationship often employed for short columns. Clearly, unlike Equations (5.74), 
Equation (5.76) does not incorporate the bending deflection, which has the effect of increasing the 
eccentricity e and thus stress at the midspan.

Example 5.15: Stress in a Strut of a Clamping Assembly

A piece of work in the process of manufacture is attached to a cutting machine table by a bolt tightened 
to a tension of T (Figure 5.21a). The clamp contact is offset from a centroidal axis of the strut AB by a 

Strut
T

B

A

Workpiece

(a)

A

B
e

P

P

d

(b)

L

FIGURE 5.21 Example 5.15. (a) Fastening assembly and (b) strut with eccentric compressive load.
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distance e as shown in Figure 5.21b. The strut is made of a structural ASTM 36 steel of diameter d and 
length L.

Given: The numerical values are

 d e L30 mm 3 5 mm 125 mm= = =.  

 T P E2 7 kN 200 GPa by Table B 1( )= = = .  

Find: The largest stress in the strut, applying

 a. Equation (5.76) for a short compression bar.
 b. The secant formula.

Assumption: The strut is taken as a pin connected at both ends, and hence Le = L.

Solution

The cross-sectional area properties of the strut equal to

 c
d

2
1
2

30 15 mm( )= = =  

 A d
4 4

30 706 9 mm2 2 2( )= π = π = .  

 I d
64 64

30 39 76 10 mm4 4 3 4( )= π = π = ×.  

 r I A/ 7 5 mm= = .  

 
L

r

12 5
7 5

16 6667e = =.
.

.  

Substitution of the given data leads to

 
P

A

3500
706 9

4 951 kPa= =
.

.  

 
ec

r

3 5 15

7 5
0 93332 2

( )( )
( )

= =.
.

.  

 a. Short-column formula. Insertion of the foregoing values into Equation (5.76) results in

 
P

A

ec

r
1 9572 kPa2σ = +



 =max  

 b. Secant formula. Introducing the data into Equation (5.74), we obtain

 
P

A

ec

r

L

r

P

AE
1

2
9572 kPae

2σ = +


















=secmax  

Comment: The results indicate that for this short column, the effect of the lateral deflection on stress 
can be omitted.
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219Energy Methods and Stability

5.13  DESIGN FORMULAS FOR COLUMNS

In Sections 5.9 and 5.10, we obtain the critical load in a column by applying Euler’s formula. This 
is followed by the investigation of the deformations and stresses in initially curved columns and 
eccentrically loaded columns by using the combined axial load and bending formula and the secant 
formula, respectively. In each case, we assume that all stresses remain below the proportional point 
or yield limit and that the column is a homogeneous prism.

The foregoing idealizations are important in understanding column behavior. However, the 
design of actual columns must be based on empirical formulas that consider the data obtained by 
laboratory tests. Care must be used in applying such special purpose formulas. Specialized refer-
ences should be consulted prior to design of a column for a particular application. Typical design 
formulas for centrically loaded columns made of three different materials follow. These represent 
specifications recommended by the American Institute of Steel Construction (AISC), the Aluminum 
Association, and the National Forest Products Association (NFPA). Various computer programs are 
readily available for the analysis and design of columns with any cross-section (including variable) 
and any boundary conditions.

Column formulas for structural steel [7]:

 σ = − 

















<





/S

n

L r

C

L

r
C1

1
2

y e

e

e
call

2

 (5.77a)

 
( )

σ = π ≤ ≤



. /

E

L r
C

L

r1 92
200

e
c

e
all

2

2  (5.77b)

where

 C E S2 /c y
2= π  (5.78a)

 n
L r

C

L r

C

5
3

3
8

/ 1
8

/e

c

e

c

3

= + 





− 



  (5.78b)

Column formulas for aluminum 6061-T6 alloy [8]:

 
L

r
19 ksi 130 MPa 9 5e

allσ = = ≤



.  (5.79a)

 

L

r

L

r

L

r

20 2 0 126 ksi

140 0 87 MPa 9 5 66

e

e e

allσ = − 











= − 











< <





. .

. .  (5.79b)

 ( )

( )
σ =

= × ≥





,
/

/

L r

L r

L

r

51 000 ksi

350 10
MPa 66

e

e

e

all 2

3

2
 (5.79c)
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Column formulas for timber of a rectangular cross-section [9]:

 
L

d
1 2 ksi 8 27 MPa 11e

allσ = = ≤



. .  (5.80a)

 
L d L

d
1 2 1

1
3 26

ksi 11 26e e
all

2

σ = − 













 < ≤



. /

 (5.80b)

 E

L d

L

d

0 3
26 50

e

e
all 2( )

σ = < ≤





.
/

 (5.80c)

where d is the smallest dimension of the member. The allowable stress is not to exceed the value of 
stress (1.2 ksi or 8.27 MPa) for compression parallel to the grain of the timber used. Equation (5.80c) 
may be used with either SI or US customary units.

Note that, for the structural steel columns, in Equations (5.77) and (5.78), Cc defines the limiting 
value of the slenderness ratio between intermediate and long bars. This is taken to correspond to 
one-half the yield strength Sy of the steel. By Equation (5.61), we therefore have

 C
L

r

E

S

2
c

e

y

2

= = π
 (a)

Clearly, by applying a variable factor of safety, Equation (5.78b) renders a consistent formula for 
intermediate and short columns. Also observe in Equation (5.79) that for short and intermediate alu-
minum columns, σall is constant and linearly related to Le/r. For long columns, a Euler-type formula 
is applied in both steel and aluminum columns. Equation (5.80c) for timber columns is also Euler’s 
formula, adjusted by a suitable factor of safety.

Example 5.16: Design of a Wide-Flange Steel Column

Select the lightest wide-flange steel section to support an axial load of P on an effective length of Le.

Given: Sy = 250 MPa, E = 200 GPa (from Table B.1), P = 408 kN, Le = 4 m.

Solution

See Table A.6.
A suitable size for a prescribed shape may conveniently be obtained using the tables in the AISC 
manual. However, we use a trial and error procedure here. Substituting the given data, Equation (5.78a) 
results in

 C
E

S

2 2 200 10

250
126c

y

2 2 3( )
= π =

π ×
=  

as the slenderness ratio

First Try: Let Le/r = 0. Equation (5.78b) yields n = 5/3, and by Equation (5.77a), we have σall = 250/n = 150 
MPa. The required area is then

 A
P 408 10

150 10
2720 mm

all

3

6
2=

σ
= ×

×
=  

Using Table A.6, we select a W150 × 24 section having an area A = 3060 mm2 (greater than 2720 mm2) 
and with a minimum r of 24.6 mm. The value of Le/r = 4/0.0246 = 163 is greater than Cc = 126, which 
was obtained in the foregoing. Therefore, applying Equation (5.77b),
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200 10

1 92 163
38 7 MPaall

2 9

2

( )
( )

σ =
π ×

=
.

.  

Hence, the permissible load, 38.7 × 106(3.06 × 103) = 118 kN, is less than the design load of 408 kN, and 
a column with a larger A, a larger r, or both must be selected.

Second Try: Consider a W150 × 37 section (see Table A.6) with A = 4740 mm2 and minimum r = 38.6 
mm. For this case, Le/r = 4/0.0386 = 104 is less than 126. From Equation (5.77a), we have

 n
5
3

3
8

104
126

1
8

104
126

1 91
3

= + 



 − 



 = .  

 
250
1 91

1
1
2

104
126

86 3 MPaall

2

σ = − 













 =

.
.  

The permissible load for this section, 86.3 × 4740 = 409 kN, is slightly larger than the design load.

Comment: A W150 × 37 steel section is acceptable.

Example 5.17: Steel Connecting Rod Buckling Analysis

A pin-ended steel rod with a rectangular cross-sectional area of b × h is subjected to a centric compres-
sion load P as illustrated in Figure 5.22.

Given: b = 30 mm, h = 50 mm, E = 200 GPa, P = 60 kN, Sy = 250 MPa.

Find: Through the use of AISC formulas, compute

 a. The permissible stress for the rod length of L = 1.2 m.
 b. The maximum length Lmax for which the rod can safely support the loading.

Assumptions: The pinned ends are designed to create an effective length of L = Le. Friction in the joints 
is disregarded.

Solution

The cross-sectional area properties of the rod are

 A bh 30 50 1 5 10 mm3 2= = × = ×.  

 I hb
1

12
1

12
50 30 112 5 10 mmmin

3 3 3 4( )( )= = = ×.  

P

b h

P

L

FIGURE 5.22 Example 5.17. Free-body diagram of the connecting rod.
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 r r
I

A
8 66 mmmin

min= = = .  

The limiting value of the slenderness ratio Cc, from Equation (5.78a), is equal to

 C
E

S

2 2 200 10

250
125 7c

y

2 2 3( )
= π =

π ×
= .  

 a. Allowable stress. For the 1.2 m rod column, Le/r = 1200/8.66 = 138.6 > Cc, and Equation 
(5.77b) applies. Therefore,

 
E

L r1 92

200 10

1 92 138 6
53 5 MPa

e
all

2

2

2 9

2

( )
( ) ( )

σ = π =
π ×

=
. / . .

.  

Comment: The foregoing stress is much lower than specified material strength; rod will not yield.

 b. Largest column length. When the 60 kN load is to be safely carried, the required value of the 
allowable stress equals

 
P

A

60 10

1 5 10
40 MPaall

3

3( )
( )σ = = =−.

 

 Assuming Le/r > Cc, Equation (5.77b) leads to

 
L r

200 10

1 92
all

2 9

2

( )
( )

σ =
π ×
. /max

 

 Equating the preceding equations results in

 
L

r
160 3max = .  

 Inasmuch as Lmax/r > C, our assumption was correct. It follows that

 
L

r

L
L

8 66
160 3 1 388 mmax max

max= = =
.

. , .  

Comment: Should the length of this connecting rod be more than 1.388 m, it would buckle.

*5.14  ENERGY METHODS APPLIED TO BUCKLING

Energy approaches often more conveniently yield solutions than equilibrium techniques in the anal-
ysis of elastic stability and buckling. The energy methods always result in buckling loads higher 
than the exact values if the assumed deflection of a slender member subject to compression differs 
from the true elastic curve. An efficient application of these approaches may be realized by select-
ing a series approximation for the deflection. Since a series involves a number of parameters, the 
approximation can be improved by increasing the number of terms in the series.

Reconsider the column hinged at both ends as depicted in Figure 5.13a. The configuration of 
this column in the first buckling mode is illustrated in Figure 5.13b. It can be shown [3] that the 
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displacement of the column in the direction of load P is given by δu ≈ (1/2)∫(dυ/dx)2dx. Inasmuch as 
the load remains constant, the work done is

 W P
d

dx
dx

1
2

L

0

2

∫δ = υ



  (5.81)

The strain energy associated with column bending is given by Equation (5.19) in the following form:

 U
M

EI
dx

EI d

dx
dx

2

L L

1

0

2

0

2

2

2

∫ ∫= = υ





 

Likewise, the strain energy owing to a uniform compressive load P is from Equation (5.11),

 U
P L

AE2
2

2=  

Because U2 is constant, it does not enter the analysis. Since the initial strain energy equals 0, the 
change in strain energy as the column proceeds from its initial to its buckled configuration is

 U
EI d

dx
dx

2

L

0

2

2

2

∫δ = υ





 (5.82)

From the principle of virtual work, δW = δU, it follows that

 P
d

dx
dx EI

d

dx
dx

1
2

1
2

L L

0

2

0

2

2

2

∫ ∫υ



 = υ





 (5.83a)

This results in

 P
EI

L

L
0

2

0

∫
∫

( )

( )
=

′′υ

υ '
 (5.83b)

The end conditions are fulfilled by a deflection curve of the following form:

 a
x

L
υ = πsin  

in which a represents a constant. Carrying this deflection into Equation (5.83b) and integrating, the 
critical load is found as

 P
EI

L
cr

2

2= π
 

We observe from Equation (5.83a) that, for P > Pcr, the work done by P exceeds the strain energy 
stored in the column; that is, a straight column is unstable if P > Pcr. This point, with regard to stabil-
ity, corresponds to A = 0 in Section 5.9 and could not be found as readily by the equilibrium method. 
When P = Pcr, the column is in neutral equilibrium. If P < Pcr, a column is in stable equilibrium.
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Example 5.18: Buckling Load and Deflection Analysis of a 
Beam–Column by the Principle of Virtual Work

A simply supported beam–column is under a lateral force F at point A and axial loading P, as shown in 
Figure 5.23. Develop the equation of the elastic curve.

Solution

The total work done is obtained by the addition of the work owing to the force F to Equation (5.86). This 
problem has already been solved for P = 0 by employing the following series for deflection:

 a
m x

L
m

m

1

∑υ = π

=

∞

sin  (5.48)

On following a procedure similar to that used in Section 5.8, the condition δU = δW now becomes

 
EI

L
m a

P

L
m a F

m c

L
a

4 4
m

m

m

m

m

m

4

3

1

4 2
2

1

2 2

1

∑ ∑ ∑( ) ( ) ( )π δ = π δ + π δ
=

∞

=

∞

=

∞

sin  

Solving,

 a
FL

EI m

m c L

m b

2 1 /
m

3

4 2 2

( )=
π

π
−

sin
 

The quantity b = P/Pcr is defined by Equation (5.69). Carrying this equation into Equation (a) results in

 ∑ ( )
( ) ( )υ =

π
π

−
π ≤ ≤

= …

∞ sin / sin
, ,

FL

EI

m c L

m m b

m x

L
x L

2
0

m

3

4

1 3
2 2

 (a)

Comments: When P approaches its critical value, we have b → 1 and the first term in Equation (a),

 
FL

EI b

c

L

x

L

2 1
1

2

4υ =
π −

π πsin sin  (b)

shows that the deflection becomes infinite, as expected. Comparing Equation (b) with Equation 
(5.51), we see that the axial force increases the deflection produced by the lateral force by a factor 
of 1/(1 − b).

*5.15  BUCKLING OF RECTANGULAR PLATES

A plate is an initially flat structural member with smaller thickness compared with the remaining 
dimensions. It is usual to divide the plate thickness t into equal halves by a plane parallel to the 

y

P

F

Ac

L

x

FIGURE 5.23 Example 5.18.
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faces. This plane is called the midsurface of the plate. The plate thickness is measured in a direction 
normal to the midsurface at each point under consideration. Plates of technical importance are usu-
ally defined as thin when the ratio of the thickness to the smaller span length is less than 1/20. The 
basic assumptions of the small deflection theory of bending for isotropic, homogenous, thin plates 
are analogous to those associated with the simple bending theory of beams (Section 3.7). Here, we 
discuss briefly the buckling of thin rectangular plates. For a detailed treatment of the subject, see [5].

Should a plate be compressed in its midplane, it becomes unstable and begins to buckle at a 
certain critical value of the in-plane force. The buckling of plates is qualitatively analogous to col-
umn buckling. However, a buckling analysis of the former case is not performed as readily as the 
latter. This is especially true in plates having other than simply supported edges. Often, in these 
cases, the energy method is used to good advantage to obtain the approximate buckling loads. Thin 
plates or sheets, although quite capable of carrying tensile loadings, are poor in resisting compres-
sion. Usually, buckling or wrinkling phenomena observed in compressed plates (and shells) occur 
rather suddenly and are very dangerous. Fortunately, there is close correlation between theory and 
experimental data concerned with buckling of plates under a variety of loads and edge conditions.

Consider a simply supported rectangular plate subjected to uniaxial in-plane compressive forces 
per unit length N (Figure 5.24). It can be shown that the minimum value of N occurs when n = 1. 
That is, when the simply supported plate buckles, the buckling mode can be only one-half sine wave 
across the span, while several half sine waves can occur in the direction of compression.

The critical load Ncr per unit length of the plate is expressed as follows [10]:

 N
D

b

m

r

r

n
k

D

b
cr

2

2

2
2

2

2= π +



 = π

 (5.84)

Here, the buckling load factor, aspect ratio, and flexural rigidity are, respectively,

 
ν( )= + = =

−
, ,k

m

r

r

n
r

a

b
D

Et

12 1

3

2
 

The quantity E represents the modulus of elasticity and υ is Poisson’s ratio. The ratio m/r = 1 pro-
vides the following minimum value of the critical load

 N
D

b

4
cr

2

2= π
 (5.85)

N

a/2

t

a

b

FIGURE 5.24 Compression of plate, simply supported on all four edges.
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The corresponding critical stress, Ncr/t, is given by

 
E t

b3 1
cr

2

2

2

( )σ = π
− ν





  (5.86)

where t is the thickness of the plate.
Variations in the buckling load factor k as functions of the aspect ratio r for m = 1, 2, 3, 4 are 

sketched in Figure 5.25. Obviously, for a specific m, the magnitude of k depends on r only. With ref-
erence to the figure, the magnitude of Ncr and the number of half-waves m for any value of the aspect 
ratio r can easily be found. When r = 1.5, for example, by Figure 5.25, k = 4.34 and m = 2. The cor-
responding critical load is equal to Ncr = 4.34π2D/b2, under which the plate buckles into two half sine 
waves in the direction of the loading, as depicted in Figure 5.24. We also see from Figure 5.25 that a 
plate m times as long as it is wide buckles in m half sine waves. Therefore, a long plate (b ≪ a) with 
simply supported edges under a uniaxial compression tends to buckle into a number of square cells 
of side dimensions b, and its critical load for all practical purposes is defined by Equation (5.85).

PROBLEMS

The beams, frames, and trusses described in the following problems have constant flexural rigidity 
EI, axial rigidity AE, and shear rigidity JG.

Sections 5.1 through 5.8
 5.1 The stepped bar having a square cross-section with sides a and a circular cross-section 

with diameter d is under an axial tensile force P as shown in Figure P5.1 What is the ratio 
of d/a in order that the strain energy in both parts is the same?

 5.2 For the axially loaded stepped-bar illustrated in Figure P5.1, determine
 a. The strain energy.
 b. The deflection at the free end, using the work–energy method.
 5.3 The stepped-shaft ABC (G = 40 GPa) carries torques as shown in Figure P5.3. For a case in 

which TB = 4 kN ⋅ m and TC = 1.5 kN ⋅ m, find the strain energy of the shaft.
 5.4 Resolve Problem 5.3 knowing that the part AB of the shaft is hollow, the inside diameter is 

20 mm, and TB = 2 kN · m and TC = 5 kN · m.
 5.5 Compute the strain energy of the aluminum alloy shaft (G = 28 GPa) seen in Figure P5.3 if 

Tb = 0 and the angle of twist ϕ is 0.06 rad.

12

1 2 3 4 = m m = 1

m = 2
m = 3

m = 4

b

a

y

xN
8

4

0 1 2
a
b

r =

3 4

k

FIGURE 5.25 Variation of buckling load factor k with aspect ratio r for various numbers of half sine waves 
in the direction of compression.
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 5.6 The shaft ABC (G = 80 GPa) of Figure P5.3 is subjected to torques TB = 0 and TA = 1.4 kN · m. 
Find the angle of twist ϕ using the work–energy approach.

 5.7 and 5.8 A beam of rectangular cross-sectional area A is supported and loaded as shown 
in Figures P5.7 and P5.8. Determine the strain energy of the beam caused by the shear 
deformation.

 5.9 A simply supported rectangular beam of depth h, width b, and length L is under a uniform 
load w (Figure P5.8). Show that the maximum strain energy density due to bending is given 
by U0,max = 45U/8V. The quantities U and V represent the strain energy and volume of the 
beam, respectively.

 5.10 An overhang beam is loaded as shown in Figure P5.7. Determine the vertical deflection υA 
at the free end A due to the effects of bending and shear. Apply the work–energy method.

P

d

a
a

L/2

L

FIGURE P5.1 

45 mm

30 mm

C

B

TB

TC

A

0.54 m

0.36 m

FIGURE P5.3 

P

B

a

C

L

A

FIGURE P5.7 
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 5.11 and 5.12 A beam is supported and loaded as illustrated in Figures P5.11 and P5.12. Find 
the strain energy in the beam due to bending.

 5.13 and 5.14 A beam of rectangular cross-section is supported and loaded as seen in Figures 
P5.11 and P5.12. What is the strain energy of the beam owing to shear deformation?

 5.15 A beam is supported and loaded as illustrated in Figure P5.12. Applying the work–energy 
approach, find the deflection at point C (or D) owing to bending and shear.

 5.16 A workpiece is clamped to a milling machine by a steel bolt of diameter d tightened to a 
tension of T (Figure P5.16). The steel link AB has a rectangular cross-section of width b 
and depth h. Find

 a. The strain energy and deflection of the bolt caused by the axial load P.

w

A

L

B

FIGURE P5.8 

w

A
B

L

FIGURE P5.11 

P P

A
C

a 2a a

D
B

FIGURE P5.12 

50 mm

h
B

Workpiece

A

Link b

d
T

30 mm

25 mm

FIGURE P5.16 
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 b. The strain energy in the link due to bending.
  Given: b = 12 mm, h = 8 mm, d = 6 mm, T = 630 N, E = 200 GPa.
 5.17 A cantilevered spring of constant flexural rigidity EI is loaded as depicted in Figure P5.17. 

Applying Castigliano’s theorem, determine the vertical deflection at point B.
  Assumption: The strain energy is attributable to bending alone.
 5.18 Figure P5.18 shows a compound beam with a hinge at C. It is composed of two portions: a 

beam BC, simply supported at B, and a cantilever AC, fixed at A. Employing Castigliano’s 
theorem, determine the deflection υD at the point of application of the load P.

 5.19 A steel I-beam is fixed at B and supported at C by an aluminum alloy tie rod CD of cross-
sectional area A (Figure P5.19). Using Castigliano’s theorem, determine the tension P in 
the rod caused by the distributed load depicted, in terms of w, L, A, Ea, Es, and I, as needed.

 5.20 and 5.21 A bent frame is supported and loaded as shown in Figures P5.20 and P5.21. 
Employing Castigliano’s theorem, determine the horizontal deflection δA for point A.

  Assumption: The effect of bending moment is considered only.

P

B

L

C

θR

A

FIGURE P5.17 

Hinge

C D

P

BA

a a a

FIGURE P5.18 

EaA

EsI

D

B

w

L

2L

C

FIGURE P5.19 
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 5.22 A semicircular arch is supported and loaded as shown in Figure P5.22. Using Castigliano’s 
theorem, determine the horizontal displacement of the end B.

 Assumption: The effect of bending moment is taken into account alone.
 5.23 A frame is fixed at one end and loaded at the other end as depicted in Figure P5.23. Apply 

Castigliano’s theorem to determine
 a. The horizontal deflection δA at point A.
 b. The slope θA at point A.
  Assumption: The effects of axial force as well as shear are omitted.
 5.24 A frame is fixed at one end and loaded as shown in Figure P5.24. Employing Castigliano’s 

theorem, determine
 a. The vertical deflection δA at point A.
 b. The angle of twist at point B.
  Assumption: The effect of bending moment is considered only.

4a

C

A
B

w

3a 2a

FIGURE P5.20 

C B

A
P

L

a

FIGURE P5.21 

P

C

R

O

θ BA

FIGURE P5.22 
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 5.25 The basic truss shown in Figure P5.25 carries a vertical load 2P and a horizontal load P at 
joint B. Apply Castigliano’s theorem, to obtain horizontal displacement δC of point C.

  Assumption: Each member has an axial rigidity AE.
 5.26 A three-member truss carries load P, as shown in Figure P5.26. Applying Castigliano’s 

theorem, determine the force in each member.
 5.27 A curved frame of a structure is fixed at one end and simply supported at another, where 

a horizontal load P applies (Figure P5.27). Determine the roller reaction F at the end B, 
using Castigliano’s theorem.

  Assumption: The effect of bending moment is considered only.

C

D

A P

Ba

a

a

FIGURE P5.23 

C T = T0(1 – x/L)

B

P

Ax

z
y

L

a

FIGURE P5.24 

P

A
C
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 5.28 A two-hinged frame ACB carries a concentrated load P at C, as shown in Figure P5.28 
Determine, using Castigliano’s theorem,

 a. The horizontal displacement δB at B.
 b. The horizontal reaction R at B, if the support B is a fixed pin.
  Assumption: The strain energy is attributable to bending alone.
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 5.29 Figure P5.29 shows a structure that consists of a cantilever AB, fixed at A, and bars BC 
and CD, pin connected at both ends. Find the vertical deflection of joint C, considering the 
effects of normal force and bending moment. Employ Castigliano’s theorem.

 5.30 A cantilevered beam with a rectangular cross-section carries concentrated loads P at the free 
end and at the center as shown in Figure P5.30. Determine, using Castigliano’s theorem,

 a. The deflection of the free end, considering the effects of both the bending and shear.
 b. The error, if the effect of shear is neglected, for the case in which L = 5h and the beam 

is made of ASTM-A36 structural steel.
 5.31 A curved frame ABC is fixed at one end, hinged at another, and subjected to a concentrated 

load P, as shown in Figure P5.31. What are the horizontal H and vertical F reactions? Use 
Castigliano’s theorem.

  Assumption: The strain energy is attributable to bending only.
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 5.32 A pin-connected structure of three bars supports a load W at joint D (Figure P5.32). Apply 
Castigliano’s theorem to determine the force in each bar.

  Given: a = 0.6L, h = 0.8L.
 5.33 A simply supported beam carries a distributed load of intensity w = w0 sin πx/L as shown in 

Figure P5.33. Using the principle of virtual work, determine the expression for the deflec-
tion curve υ.

  Assumption: The deflection curve has the form υ = a sin πx/L, where a is to be found.
 5.34 Applying Castigliano’s first theorem, find the load W required to produce a vertical dis-

placement of 6 mm, at joint D in the pin-connected structure depicted in Figure P5.32. 
Given: h = 3 m, α = 30°, E = 200 GPa, A = 625 mm2.

  Assumption: Each member has the same cross-sectional area A.
 5.35 A cantilevered beam is subjected to a concentrated load P at its free end (Figure 5.12). 

Apply the principle of virtual work to determine
 a. An expression for the deflection curve υ.
 b. The maximum deflection and the maximum slope.
  Assumption: Deflection curve of the beam has the form υ = ax2 (3L − x)/2L3, where a is a 

constant.
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 5.36 A simply supported beam is loaded as shown in Figure 5.11. Using the virtual work prin-
ciple, determine the deflection at point A.

  Assumption: The deflection curve of the beam is of the form υ = ax(L − x), in which a is a 
constant.

Sections 5.9 through 5.12
 5.37 An industrial machine requires a solid, round steel piston connecting a rod of length L that 

carries a maximum compressive load P. Determine the required diameter.
  Given: L = 1.2 m, P = 50 kN, E = 210 GPa, Sy = 600 MPa.
  Assumption: The ends are taken to be pinned.
 5.38 Redo Problem 5.37 for a cold-rolled (510) bronze connecting rod.
  Given: L = 250 mm, P = 220 kN, E = 110 GPa, Sy = 520 MPa (Table B.1).
 5.39 Repeat Example 5.12 for a long column using Euler’s formula.
 5.40 Figure P5.40 shows the cross-sections of two aluminum alloy 2014-T6 bars used as com-

pression members, each having an effective length Le. Find
 a. The wall thickness t of the hollow square bar in order that they have the same cross-

sectional area.
 b. The critical load of each bar.
  Given: D = 50 mm, d = 35 mm, a0 = 50 mm, Le = 2.2 m, E = 72 GPa (from Table B.1).
 5.41 A control linkage is composed of a structural ASTM-A36 steel rod AB of diameter d and 

a pivot arm CD as depicted in Figure P5.41 The load is transmitted to the rod through pin 

td dt
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A. Compute the maximum value of Q that can be applied based on the buckling strength of 
the rod and a safety factor of n.

  Given: a = 150 mm, b = 30 mm, L = 0.4 m, d = 8 mm, n = 1.4, E = 200 GPa, Sy = 250 MPa (see 
Table B.1).

 5.42 A round steel column with length L is built in at its base and pinned at its top and carries a 
maximum allowable load P as shown in Figure P5.42. What is the diameter d of the mem-
ber on the basis of factor of safety n with respect to buckling?

  Given: L = 1 m, P = 22 kN, n = 2.6, E = 200 GPa, Sy = 250 GPa (from Table B.1).
 5.43 Resolve Problem 5.42 knowing that the length of the column is L = 625 mm and the largest 

allowable load is P = 125 kN.
 5.44 A two-member pin-connected structure supports a concentrated load P at joint B as shown 

in Figure P5.44. Calculate the largest load P that may be applied with a factor of safety n.
  Given: n = 2.5, E = 210 GPa.
  Assumption: Buckling occurs in the plane of the structure.
 5.45 A simple truss is loaded as shown in Figure P5.45. Calculate the diameter d necessary for
 a. The bar AB.
 b. The bar BC.
  Given: E = 210 GPa, Sy = 250 MPa.
  Assumption: Failure occurs by yielding. Buckling occurs in the plane of the truss. Euler’s 

formula applies.

d

L

P

FIGURE P5.42 

10 mm
diameter

0.6 m

0.4 m

0.25 m

15 mm
diameter

B

C

A

P

FIGURE P5.44 

ISTUDY

www.konkur.in

Telegram: @uni_k



237Energy Methods and Stability

 5.46 A structure that consists of the beam AB and the column CD is supported and loaded as 
shown in Figure P5.46. What is the largest load F that may be applied?

  Given: The member CD is a round steel bar with E = 200 GPa.
  Design Assumption: Failure is due to buckling only. Use Euler’s formula with a factor of 

safety n = 1.5.
 5.47 A solid circular steel column of length L and diameter d is hinged at both ends. Calculate 

the load capacity for a safety factor of n.
  Given: Sy = 350 MPa, E = 210 GPa, L = 1 m, d = 60 mm, n = 3.
  Assumption: The initial crookedness is 2 mm.
 5.48 A rectangular aluminum alloy 2014-T6 tube of uniform thickness t (Figure P5.48) is used 

as a column of length L fixed at both ends. What is the critical stress in the column?
  Given: b = 160 mm, h = 80 mm, L = 5.5 m, t = 15 mm, E = 72 GPa (by Table B.1).
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238 Mechanical Engineering Design

 5.49 Redo Problem 5.48, for the case in which the column is pinned at one end and fixed at the 
other.

 5.50 A steel pipe of outer diameter D and inner diameter d is employed as a 2 m column (Figure 
P5.50). Use Figure 5.19 to determine the largest allowable load Py when the eccentricity e is

 a. 12 mm.
 b. 9 mm.
  Given: D = 100 mm, d = 88 mm, L = 2 m, Sy = 275 MPa, E = 200 GPa.
 5.51 A pin-ended wrought iron pipe of outer diameter D, inside diameter d, and length L carries 

an eccentric load P with a safety factor of n as shown in Figure P5.50. What is the largest 
allowable eccentricity e?

  Given: D = 200 mm, d = 175 mm, L = 3.66 m, P = 440 kN, n = 1.5, E = 190 GPa, Sy = 210 MPa.
 5.52 A pin-ended steel tube is subjected to an eccentrically applied load P (Figure P5.50). 

For the case in which the maximum deflection at the mid length is υmax, find
 a. The eccentricity e.
 b. The maximum stress in the rod.
  Given: D = 200 mm, d = 175 mm, L = 4.6 m, P = 45 kN, υmax = 1.25 mm, E = 200 GPa.
 5.53 Redo Problem P5.52, knowing that the bottom and top ends of the column are fixed and 

free, respectively.
 5.54 A steel hollow box column of length L is fixed at its base and free at its top as illustrated in 

Figure P5.54. For a case in which a concentrated load P acts at the middle of side AB (i.e., 
e = 37.5 mm) of the free end, find the maximum stress in the column.

  Given: b = 150 mm, h = 75 mm, t = 15 mm, L = 1.8 m, E = 200 GPa, P = 160 kN.
 5.55 Resolve Problem 5.54 knowing that the load acts at the middle of side AC (i.e., e = 75 mm).
 5.56 An aluminum alloy 6061-T6 hollow box column of square cross-section and length L is 

built in at its base and free at its top (Figure P5.56). The column is under a compressive 
load P acting with an eccentricity of e. Find

 a. The horizontal deflection of the top of the column.
 b. The maximum stress in the column.
  Given: ao = 120 mm, ai = 100 mm, e = 55 mm, L = 2 m, P = 200 kN, E = 70 GPa, Sy = 260 

MPa (from Table B.1).
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239Energy Methods and Stability

 5.57 Figure P5.56 shows a steel tubular column subjected to a concentrated load P with an 
eccentricity e. When the horizontal deflection at the top caused by the loading is υmax, find

 a. The eccentricity e.
 b. The largest stress in the column.
  Given: ao = 120 mm, ai = 100 mm, L = 1.9 m, P = 300 kN, υmax = 15 mm, E = 200 GPa, 

Sy = 250 MPa (from Table B.1).
 5.58 A brass column (E = 105 GPa), with one end fixed and the other free, is under axial com-

pression. Compute the critical buckling load for the following two forms (Figure P5.40):
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240 Mechanical Engineering Design

 a. A cylindrical tube with D = 51 mm outer diameter.
 b. A square tube with an ao = 40 mm outer dimension.
  Requirement: The column cross-sectional area and length are A = 500 mm2 and L = 2 m, 

respectively.
 5.59 Consider a b × h rectangular cross-sectional structural steel column with one end fixed and 

one end pinned. Determine the buckling load for the two lengths:
 a. L = 180 mm.
 b. L = 500 mm.
  Given: b = 35 mm, h = 10 mm, Sy = 250 MPa, E = 200 GPa (see Table B.1).
 5.60 A 750 mm long hollow aluminum alloy 6061-T6 tube having pinned ends has a D = 62.5 

mm outer diameter and inside diameter d = 60 mm. Determine
 a. The critical load for a concentric loading.
 b. The maximum stress under an eccentric loading (Figure P5.50) with P = 16 kN and 

e = 3 mm.
  Given: E = 70 GPa, Sy = 270 MPa.

Sections 5.13 through 5.15
 5.61 A steel rod of length L is required to support a concentric load P. Compute the minimum 

diameter required.
  Given: Sy = 350 MPa, E = 200 GPa, L = 3 m, P = 50 kN.
  Assumption: Both ends of the rod are fixed.
 5.62 A 4 m long fixed-ended timber column must safely carry a 100 kN centric load. Design the 

column using a square cross-section.
  Given: E = 12.4 GPa and σall = 10 MPa for compression parallel to the grain.
 5.63 An aluminum alloy 6061-T6 pipe has an outer diameter D, inner diameter d, and length L. 

Determine the allowable axial load P if the pipe is used as a column fixed at one end and 
pinned at the other.

  Given: D = 350 mm, d = 300 mm, L = 6.1 m.
 5.64 A pin-ended steel column is subjected to a vertical load P. Determine the allowable stress.
  Given: The cross-section of the column is 80 × 120 mm and length is 3.5 m.

 p E S600 kN 210 GPa 280 MPay= = =,  

 5.65 A W 360 × 216 rolled-steel column (see Table A.6) with built-in ends is braced at midpoint 
C, as depicted in Figure P5.65. Calculate the allowable axial load P.

  Given: E = 200 GPa, Sy = 280 MPa.
 Assumption: Bracing acts as a simple support in the xy plane.

 5.66 An a × a square cross-sectional aluminum alloy 6061-T6 column of length L = 0 5 m is 
pinned at both ends. Compute the minimum allowable width a when the member is to 
 support an axial load of P = 200 kN.

 5.67 Figure P5.67 shows the rectangular cross-section of an aluminum alloy 6061-T6 (see 
Table B.1) tube that is to be used as a column of an effective length Le. What is the largest 
allowable axial centric load P?

  Given: Le = 4.3 m, E = 70 GPa (Table B.1).
 5.68 A 3.5 in. by 2.5 in rectangular cross-sectional timber column of length L is fixed at its base 

and free at its top. Compute the maximum allowable axial load P that it can support.
  Given: L = 1.22 mm, E = 12 GPa (Table B.1).
 5.69 Resolve Problem 5.68 for the case in which the length of the column is L = 750 mm.
 5.70 A simply supported beam–column carries a uniformly distributed lateral load w and axial 

compression forces P (Figure P5.70). Using the principle of virtual work, determine an 
expression for the deflection υ. Let the deflection curve be expressed by Equation (5.48).

ISTUDY

www.konkur.in

Telegram: @uni_k



241Energy Methods and Stability

6 m

6 m

A

C

B

P

y

y

z

x

FIGURE P5.65 

20 mm 200 mm

100 mm

FIGURE P5.67 

L

A

y
w

BP P x

FIGURE P5.70 

ISTUDY

www.konkur.in

Telegram: @uni_k



ISTUDY

www.konkur.in

Telegram: @uni_k

https://taylorandfrancis.com


DOI: 10.1201/9781003251378-7

Section II

Failure Prevention

An automobile crankshaft split into pieces because of fatigue loading (www.google.com). Prevention 
or reduction of such fatigue failures as well as surface damage due to corrosion and wear is one 
of the greatest challenges to modern engineering. Many surface treatments and coatings tailored 
to suit different materials and environments can be used to enhance the life and performance of 
products. Section II is concerned with the formulations of static and dynamic failure criteria, the 
reliability method in design, and an empirical approach to surface wear. Practical applications to 
variously loaded components are included.
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6 Static Failure Criteria 
and Reliability

6.1  INTRODUCTION

A proper design includes the prediction of circumstances under which failure is likely to occur. In the 
most general terms, failure refers to any action that causes the member of the structure or machine to 
cease to function satisfactorily. The strength, stiffness, and stability of various load-carrying members 
are possible types or modes of failure. Failure may also be associated with poor appearance, poor adapt-
ability to new demands, or other considerations not directly related to the ability of the structure to carry 
a load. Important variables associated with the failure include the type of material, the configuration and 
rate of loading, the shape and surface peculiarities, and the operational environment.

This chapter is devoted to the study of static failure criteria and the reliability method in design. 
We are concerned mainly with the failure of homogeneous and isotropic materials by yielding and 
fracture. The mechanical behavior of materials associated with failure is also discussed. In addi-
tion to possible failure by yielding or fracture, a member can fail at much lower stresses by crack 
propagation, should a crack of sufficient size be present. The fracture mechanics theory provides a 
means to predict a sudden failure on the basis of a computed stress-intensity factor compared to a 
tested toughness criterion for the material (Sections 6.2 through 6.4). Other modes of failure include 
excessive elastic deflection of some element, rendering the machine or structure useless, or failure 
of a component by buckling. Various types of failure are considered in the problems presented as 
the subject unfolds [1–4].

Unless we are content to overdesign members, it is necessary to predict the most probable modes 
of failure and product reliability. Of necessity, the strength theories of failure are used in the major-
ity of machine and structural designs. The actual failure mechanism in an element may be quite 
complicated; each failure theory is only an attempt to model the mechanism of failure for a given 
class of material. In each case, a factor of safety is employed to provide the required safety and reli-
ability. Clearly, composite materials that do not exhibit uniform properties require more complex 
failure criteria [3].

6.2  INTRODUCTION TO FRACTURE MECHANICS

Fracture is defined as the separation or fragmentation of a member into two or more pieces. It nor-
mally constitutes a pulling apart associated with tensile stress. A relatively brittle material fractures 
without yielding occurring throughout the fractured cross-section. Thus, a brittle fracture occurs 
with little or no deformation or reduction in area, and hence very little energy absorption. This type 
of failure usually takes place in some materials in an instant. The mechanisms of brittle fracture 
are the concern of fracture mechanics. It is based on a stress analysis in the vicinity of a crack, flaw, 
inclusion, or defect of unknown small radius in a part. A crack is a microscopic flaw that may exist 
under normal conditions on the surface or within the material.

As pointed out in Section 3.13, the stress-concentration factors are limited to elastic structures 
for which all dimensions are precisely known, particularly the radius of the curvature in regions 
of high stress concentration. When there exists a crack, the stress-concentration factor approaches 
infinity as the root radius approaches 0, thus rendering the concept of a stress-concentration fac-
tor useless. Furthermore, even if the radius of curvature of the flaw tip is known, the high local 
stresses there lead to some local plastic deformation. Elastic stress-concentration factors become 
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meaningless for this situation. On the basis of the foregoing, it may be concluded that analysis from 
the point of view of stress-concentration factors is inadequate when cracks are present.

In 1920, Griffith postulated that an existing crack rapidly propagates (leading to rupture in an 
instant) when the strain energy released from the stressed body equals or exceeds that required to 
create the surfaces of the crack. On this basis, it has been possible to calculate the average stress (if 
no crack were present) that causes crack growth in a part. For relatively brittle materials, the crack 
provides a mechanism by which energy is supplied continuously as the crack propagates.

Since major catastrophic failures of ships, bridges, and pressure vessels in the 1940s and 1950s, 
increasing attention has been given by design engineers to the conditions of the growth of a crack. 
Griffith’s concept has been considerably expanded by Irwin [5]. Although Griffith’s experiments 
dealt primarily with glass, his criterion has been widely applied to other materials, such as hard 
steels, strong aluminum alloys, and even low-carbon steel below the ductile–brittle transition tem-
peratures. Inasmuch as failure does not occur then in an entirely brittle manner, application to mate-
rials that lie between relatively brittle and ductile requires modification of the theory and remains 
an active area of contemporary design and research in solid mechanics.

Adequate treatment of the subject of fracture mechanics is beyond the scope of this text. However, 
the basic principles and some important results are simply stated. Briefly, the fracture mechanics 
approach starts with an assumed initial minute crack (or cracks), for which the size, shape, and loca-
tion can be defined. If brittle failure occurs, it is because the conditions of loading and environment are 
such that they cause an almost sudden propagation to failure of the original crack. Under fatigue load-
ing, the initial crack may grow slowly until it reaches a critical size at which the rapid fracture occurs.

6.3  STRESS-INTENSITY FACTORS

In the fracture mechanics approach, a stress-intensity factor, K, is evaluated, as contrasted to stress-
concentration factors. This can be thought of as a measure of the effective local stress at the crack 
root. The three modes of crack deformation of a plate are depicted in Figure 6.1. The most currently 
available values of K are for tensile loading normal to the crack, which is called mode I (Figure 
6.1a). Accordingly, it is designated as KI. Other types, modes II and III, essentially pertain to the 
in-plane and out-of-plane shear loads, respectively (Figures 6.1b and 6.1c). The treatment here con-
cerns only mode I, and we eliminate the subscript and let K = KI.

Acceptable solutions for many configurations, specific initial crack shapes, and orientations have 
been developed analytically and by computational techniques, including finite element analysis 
(FEA). For plates and beams, the stress-intensity factor is defined in the form [6]

 K a= λσ π  (6.1)

(b) (c)(a)

FIGURE 6.1 Crack deformation types: (a) mode I, opening; (b) mode II, sliding; and (c) mode III, tearing.
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where
σ = the normal stress
λ = the geometry factor, depending on a/w, listed in Table 6.1
a = the crack length (or half crack length)
w = the member width (or half width of the member)

We observe from Equation (6.1) and Table 6.1 that the stress-intensity factor depends on the applied 
load and geometry of the specimen as well as the size and shape of the crack. Clearly, the K may be 
increased by increasing either the stress or the crack size. The units of the stress-intensity factors 
are commonly MPa m in SI and ksi in . in US customary system.

Most cracks are not as simple as depicted in Table 6.1. They may be at an angle, embedded in a 
body, or sunken into a surface. A shallow surface crack in a member may be considered semiellipti-
cal. A circular or elliptical shape has proven to be adequate for various studies. Books on fracture 
mechanics provide methods of analysis, applications, and voluminous references [7].

Note that crack propagation occurring after an increase in load may be interrupted if a small 
inelastic zone forms ahead of the crack. But stress intensity has risen with the increase in crack 
length and, in time, the crack may advance again a short amount. If stress continues to increase 
due to the reduced load-carrying area or otherwise, the crack may grow, leading to failure. The 
use of the stress-intensity factors to predict the rate of growth of a fatigue crack is discussed in 
Section 7.14.

6.4  FRACTURE TOUGHNESS

In a toughness test of a given material, the stress-intensity factor at which a crack propagates is mea-
sured. This is the critical stress-intensity factor, known as the fracture toughness and designated by 
the symbol Kc. Usually, testing is done on an ASTM standard specimen, either a beam or a tension 
member with an edge crack at the root of a notch. Loading is applied slowly and a record is made of 
load versus notch opening. The data are interpreted for the value of fracture toughness [7].

For a known applied stress acting on a part of known or assumed crack length, when the magni-
tude of stress-intensity factor K reaches fracture toughness Kc, the crack propagates, leading to rup-
ture in an instant. The factor of safety for fracture mechanics, the strength–stress ratio, is therefore

 n
K

K
c=  (6.2)

Substituting the stress-intensity factor from Equation (6.1), the foregoing becomes

 n
K

a
c=

λσ π
 (6.3)

Table 6.2 presents the values of the yield strength and fracture toughness for some metal alloys, 
measured at room temperature in a single edge-notch test specimen [8]. For consistency of results, 
the ASTM specifications require a crack length a or member thickness t given by

 a t
K

S
2 5 c

y

2

≥ =






, .  (6.4)

This ensures plane strain and flat crack surfaces. The values of a and t obtained by Equation (6.4) 
are also included in the table.

Application of the preceding equations is illustrated in the solution of various numerical prob-
lems to follow.
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Example 6.1: Edge Crack on Aircraft Panel

An aircraft panel of width w and thickness t is loaded in tension, as shown in Figure 6.2. Estimate the 
maximum load P that can be applied without causing sudden fracture when an edge crack grows to 
length of a.

Given: w = 100 mm, t = 16 mm, a = 20 mm.

Design Decision: The plate will be made of 7075-T7351 aluminum alloy. This decision should result 
in low weight.

TABLE 6.1
Geometry Factors λ for Some Initial Crack Shapes
Case A. Tension of a long plate with a central crack

t

σ 2a 2w σ

a/w λ
0.1 1.01

0.2 1.03

0.3 1.06

0.4 1.11

0.5 1.19

0.6 1.30

Case B. Tension of a long plate with an edge crack

t

σ

a

w σ

a/w λ

0 (w → ∞) 1.12

0.2 1.37

0.4 2.11

0.5 2.83

Case C. Tension of a long plate with double-edge cracks a/w λ
t

σ

a

2w σ

a

0 (w → ∞) 1.12

0.2 1.12

0.4 1.14

0.5 1.15

0.6 1.22

Case D. Pure bending of a beam with an edge crack

M M

a

w

t

a/w
0.1
0.2
0.3
0.4
0.5
0.6

a/w
1.02
1.06
1.16
1.32
1.62
2.10
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Solution

From Table 6.2,

 K S31 MPa m 31 1000 MPa mm 392 MPac y= = =,  

for the aluminum alloy. Note that values of the length a and thickness t satisfy Table 6.2. Referring to 
Case B of Table 6.1, we have

 
a

w

20
100

0 2 1 37= = λ =. , .  

Equation (6.3) with n = 1:

 
K

a

31 1000

1 37 20
90 27 MPac

all ( )
σ =

λ π
=

π
=

.
.  

Hence,

 P wt 90 27 100 16 144 4 kNall ( )( )( )= σ = × =. .  

Comment: The nominal stress at the fracture, P/(16)(100 − 20) = 112.8 MPa, is well below the yield 
strength of the material.

Example 6.2: Design of a Wide Plate with a Central Crack

A large plate of width 2w carries a uniformly distributed tensile force P in a longitudinal direction with 
a safety factor of n. The plate has a central transverse crack that is 2a long. Calculate the thickness t 
required

 1. To resist yielding.
 2. To prevent sudden fracture.

Given: w = 60 mm, P = 160 kN, n = 2.5, a = 9 mm.

TABLE 6.2
Yield Strength Sy and Fracture Toughness Kc for Some Engineering Materials
Metals Sy Kc Minimum Values of a and t

MPa (ksi) MPa m ksi in( ). mm (in.)

Steel

 AISI 4340 1503 (218) 59 (53.7) 3.9 (0.15)

Stainless steel

 AISI 403 690 (100) 77 (70.1) 31.1 (1.22)

Aluminum

 2024-T851 444 (64.4) 23 (20.9) 6.7 (0.26)

 7075-T7351 392 (56.9) 31 (28.2) 15.6 (0.61)

Titanium

 Ti-6A1-2V 798 (116) 111 (101) 48.4 (1.91)

 Ti-6a1-6V 1149 (167) 66 (60. 1) 8.2 (0.32)
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Design Decision: The plate is made of Ti-6A1-6V alloy.

Solution

By Table 6.2,

 K S66 1000 MPa mm 1149 MPac y= =,  

for the titanium alloy.

 a. The allowable tensile stress based on the net area is

 
S

n

P

w a t2
y

all ( )σ = =
−

 

 Hence,

 t
Pn

w a S2

160 10 2 5

2 60 9 1149
3 4 mm

y

3( )( )
( )( )=

−
=

−
=

.
.  

 b. By Case A of Table 6.1,

 
a

w

9
60

0 15 1 02= = λ =. , .  

 Through the use of Equation (6.3) with n = 2.5, the stress at fracture is

 
K

n a

66 1000

1 02 2 5 9
153 9 MPac

( ) ( )
σ =

λ π
=

π
=

. .
.  

 Since this stress is smaller than the yield strength, the fracture governs the design; σall = 153.9 
MPa. Therefore,

 t
P

w2

160 10

2 60 153 9
8 33 mmreq

all

3( )
( )( )=

σ
= =

.
.  

Comment: Use a thickness of 8.7 mm. Both values of a and t fulfill Table 6.2.

P

P

t

a

w

FIGURE 6.2 Example 6.1.
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Example 6.3: Load Capacity of a Bracket with an Edge Crack

A bracket having an edge crack and uniform thickness t carries a concentrated load, as shown in Figure 
6.3a. What is the magnitude of the fracture load P with a safety factor of n for crack length of a?

Given: a = 4 mm, w = 50 mm, d = 100 mm, t = 25 mm, n = 1.2.

Assumptions: The bracket is made of AISI 4340 steel. A linear elastic stress analysis is acceptable.

Solution

Referring to Table 6.2,

 K S59 MPa m 1503 MPac y= =,  

Observe that values of a and t both satisfy the table. At the section through the point B (Figure 6.3b), 
the bending moment is

 M P d
w

P P
2

0 1 0 025 0 125( )= +



 = + =. . .  

Nominal stress for the combined loading, by superposition of two states of stress for axial force P and 
moment M, is expressed as

 P

wt

M

tw

6

a a b b

a b 2

λσ = λ σ + λ σ

= λ + λ  (6.5)

Here, w and t represent the width and thickness of the member, respectively.
The ratio of crack length to bracket width is a/w = 0.08. For Cases B and D of Table 6.1, we have 

λa = 1.12 and λb = 1.02, respectively. Equation (6.5) leads to

 

P P

P P P

1 12
0 05 0 025

1 02
6 0 125

0 025 0 05

896 12 240 13 136

2( )
( )

( )
λσ = +

= + =

.
. .

. .
. .

. .

 

Then, through the use of Equation (6.3),

 
K

n a
P13 136

59 10

1 2 0 004
c

6( )
( )

λσ =
π

=
π

; .
. .

 

A

P
(a) (b)

B
Crack

a

d

A
P

M

Ba

w/2w

FIGURE 6.3 Example 6.3. (a) Bracket with edge crack and (b) free-body diagram of segment AB.

ISTUDY

www.konkur.in

Telegram: @uni_k



252 Mechanical Engineering Design

Solving, P = 33.4 kN.

Comment: The normal stress at fracture, 33.4/[0.25(0.05 − 0.004)] = 29 MPa, is well below the yield 
strength and our assumption is valid.

6.5  YIELD AND FRACTURE CRITERIA

In many cases, a member fails when the material begins to yield or deform permanently. For metals, 
the shear stress plays an important role in yielding. Occasionally, a small dimensional change may 
be tolerated and a static load that exceeds the yield point permitted. The fracture at the ultimate 
strength of the material would then constitute failure. The fracture, or separation of the material 
under stress into two or more parts, is usually associated with a tensile stress. Particularly in a 1D 
stress field, compression stress is generally considered less damaging than tensile stress. The brittle 
or ductile character of a material is relevant to the mechanism of failure. The distinction between 
ductile and brittle material itself is not simple, however. The nature of the stress, the temperature, 
and the material itself all play a role, as is discussed in Section 2.9, by defining the boundary 
between ductility and brittleness.

Let us consider an element subjected to a triaxial state of stress, where σ1 > σ2 > σ3. Recall that 
subscripts 1, 2, and 3 denote the principal directions. The state of stress in a uniaxial loading is 
defined by σ1, equal to the normal force divided by the cross-sectional area, and σ1 = σ3 = 0. 
Corresponding to the onset of yielding and fracture in a simple tension test, the stresses and strain 
energy shown in the second column of Table 6.3 are determined as follows. When the specimen 
starts to yield, we have σ1 = Sy. Therefore, the maximum shear stress is τmax = σ1/2 = Sy/2 by Equation 

(3.34), the maximum distortion energy density absorbed by the material is U S G/6od y
2=  using 

Equation (5.9) with G = E/2(1 + ν), and the maximum octahedral shear stress is S2 /3 yoct ( )τ =  from 

Equation (3.52b). On the other hand, at an impending fracture, the maximum principal stress is 
σ1 = Su. Note that the foregoing quantities obtained in simple tension have special significance in 
predicting failure involving combined stress.

In the torsion test, the state of stress is specified by τ = σ1 = −σ2 and σ3 = 0. Here, the shear stress is 
calculated using the torsion formula. Corresponding to this case of pure shear, at the start of yielding 
and fracture, are the stresses and strain energy shown in the third column of the table. These quanti-
ties are readily obtained by a procedure similar to that described in the preceding for tension test.

TABLE 6.3
Utilizable Values of a Material for States of Stress in Tension and 
Torsion Tests
Quantity Tension Test Torsion Test

Maximum shear stress Sys = Sy/2 Sys

Maximum energy of distortion U E S1 3od y
2( )= + ν / U S 1 3od y

2 ( )= + ν /

Maximum octahedral shear stress S2 3 yoct ( )τ = / S2 / 3 ysoct ( )τ =

Maximum principal stress Su Sus

Notes: Sy, yield strength in tension; Sys, yield strength in shear; Su, ultimate strength in ten-
sion; Sus, ultimate strength in shear.
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253 Static Failure Criteria and Reliability

The mechanical behavior of materials subjected to uniaxial normal stresses or pure shearing 
stresses is readily presented on stress–strain diagrams. The onset of failure by yielding or fracture 
in these cases is considerably more apparent than in situations involving combined stress. From 
the viewpoint of mechanical design, it is imperative that some practical guidelines be available to 
predict yielding or fracture under various conditions of stress, as they are likely to exist in service. 
To meet this need, a number of failure criteria or theories consistent with the behavior and strength 
of material have been developed.

These strength theories are structured to apply to particular classes of materials. We discuss the 
two most widely accepted theories to predict the onset of inelastic behavior for ductile materials 
under combined stress in Sections 6.6 through 6.9. The three fracture theories pertaining to brittle 
materials under combined stress are presented in Sections 6.10 through 6.12. As we observe, the 
theory behind most static failure criteria is that whatever is responsible for failure in the simple ten-
sile test is also responsible for failure under combined loading. It is important to note that “yielding 
of ductile materials” should be further qualified to mean “yielding of ductile metals”; many poly-
mers are ductile but do not follow the standard yield theories.

6.6  MAXIMUM SHEAR STRESS THEORY

The maximum shear stress theory is developed on the basis of the experimental observation that 
a ductile material yields as a result of slip or shear along crystalline planes. Proposed by Coulomb 
(1736–1806), it is also known as the Tresca yield criterion in recognition of the contribution by 
Tresca (1814–1885) to its application. This theory states that yielding begins whenever the maxi-
mum shear stress at any point in the body becomes equal to the maximum shear stress at yielding 
in a simple tension test. Hence, according to Equation (3.50) and Table 6.3,

 S S
1
2

1
2

ys ymax 1 3τ = σ − σ = =  

The maximum shear stress theory is therefore given by

 
S

n
y

1 3σ − σ =  (6.6)

for a factor of safety n.
In the case of plane stress, σ3 = 0, two combinations of stresses are to be considered. When σ1 and 

σ2 have opposite signs, that is, one tensile and the other compressive, the maximum shear stress is 
(σ1 − σ2)/2. The yield condition then becomes

 
S

n
y

1 2σ − σ =  (6.7)

The foregoing may be restated in the form, for n = 1:

 
S S

1
y y

1 2σ − σ = ±  (6.8)

When σ1 and σ2 carry the same sign, the maximum shear stress is (σ1 − σ3)/2 = σ1/2. Then, for 
|σ1| > |σ2| and |σ2| > |σ1|, we have the yield conditions, respectively,

 
S

n

S

n
andy y

1 2σ = σ =  (6.9)
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Equations (6.8) and (6.9) for n = 1 are represented graphically in Figure 6.4. Note that Equation 
(6.8) applies to the second and fourth quadrants, while Equation (6.9) applies to the first and third 
quadrants. The boundary of the hexagon thus marks the onset of yielding, with points outside the 
shaded region depicting a yielded state. We demonstrate in Section 6.9 that the maximum shear 
stress theory has reasonably good agreement with the experiment for ductile materials. The theory 
offers an additional advantage in its ease of application. However, the maximum distortion criterion, 
discussed next, is recommended because it correlates better with the actual test data for yielding of 
ductile materials.

6.6.1  tyPiCal Case oF ComBined loading

In a common case of combined plane bending, torsion, axial, and transverse shear loadings, such as 
in Figure 3.29, we have σy = σz = τxz = τxz = 0. Hence, the principal stresses reduce to

 
2

x
1 2σ = σ ± τ, max (6.10)

where

 
2

x
xy

2
2

1 2

τ = σ



 + τ









max

/

 

Substituting these into Equation (6.7), the maximum shear stress criterion becomes

 
S

n
4y

x xy
2 1 2( )= σ + τ /  (6.11)

for the preceding special case.

Example 6.4: Failure of a Rod under Combined Torsion and Axial Loading

A circular rod, constructed of a ductile material of tensile yield strength Sy, is subjected to a torque T. 
Determine the axial tensile force P that can be applied simultaneously to the rod (Figure 6.5).

Given: T = 500π N · m, D = 50 mm, factor of safety n = 1.2.

Design Decisions: The rod is made of steel of Sy = 300 MPa. Use the maximum shear stress failure 
criterion.

0–1

–1

1

1

σ1/Sy

σ2/Sy

FIGURE 6.4 Yield criterion based on maximum shear stress.
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Solution

For the situation described, the critical stresses occur on the elements at the surface of the shaft. Based 
on the maximum shear stress theory, from Equation (6.11),

 
S

n
4x

y
xy

2
2

1 2

σ = 



 − τ













/

 (a)

where

 
P

A

P

D

Tr

J

T

D

4 16
x xy2 3σ = =

π
τ = =

π
,  (b)

Substituting the given numerical values, Equation (a) gives

 
300 10

1 2
4

16 500
0 05

214 75 MPax

6 2

3

2
1 2

σ = ×





− × π
π ×



















=
. .

.
/

 

The first of Equation (b) is therefore

 P
0 05 214 75 10

4
421 7 kN

2 6( )( )
=

π ×
=

. .
.  

Comment: This is the maximum force that can be applied without causing permanent deformation.

6.7  MAXIMUM DISTORTION ENERGY THEORY

The maximum distortion energy theory or criterion was originally proposed by Maxwell in 1856, 
and additional contributions were made in 1904 by Hueber, in 1913 by von Mises, and in 1925 by 
Hencky. Today, it is mostly referred to as the von Mises–Hencky theory or simply von Mises theory. 
This theory predicts that failure by yielding occurs when at any point in the body, the distortion 
energy per unit volume in a state of combined stress becomes equal to that associated with yielding 
in a simple tension test. Hence, in accordance with Equation (5.9) and Table 6.3,

 
G E

S
1

12
1
3

y1 2
2

2 3
2

3 1
2 2( ) ( )( )σ − σ + σ − σ + σ − σ  = + ν

 

where G = E/2(1 + v). The maximum energy of distortion criterion for yielding is therefore

D

T

P

x

FIGURE 6.5 Example 6.4.
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S

n

2
2

y
1 2

2
2 3

2
3 1

2 1 2
( ) ( )( )σ − σ σ − σ + σ − σ  =

/
 (6.12)

for a safety factor n.
It is often convenient to replace Sy/n by an equivalent stress σe in the preceding equation. In so 

doing, we have

 
2

2
e1 2

2
2 3

2
3 1

2 1 2
( ) ( )( )σ − σ σ − σ + σ − σ  = σ

/
 (6.13)

Commonly used names for the equivalent stress are the effective stress and the von Mises stress. 
Observe from Equations (6.12) and (6.13) that only the differences of the principal stresses are 
involved. Consequently, the addition of an equal amount to each stress does not affect the conclu-
sion with respect to whether or not yielding occurs. In other words, inelastic action does not depend 
on hydrostatic tensile or compressive stress.

For plane stress σ3 = 0, the maximum energy of distortion theory becomes

 
S

n
y

1
2

1 2 2
2 1 2( )σ − σ σ + σ =

/
 (6.14)

or

 e1
2

1 2 2
2 1 2( )σ − σ σ + σ = σ

/
 (6.15)

Equation (6.14) may alternatively be represented in the following form for n = 1:

 
S S S S

1
y y y y

1

2

1 2 2

2
σ





− σ





σ





+ σ





=  

This expression defines the ellipse shown in Figure 6.6. As in the case of the maximum shear stress 
theory, points within the shaded area represent nonyielding states. The boundary of the ellipse 
indicates the onset of yielding, with the points outside the shaded area representing a yielded state. 
The maximum energy of distortion theory of failure agrees quite well with test data for yielding of 
ductile materials and plane stress. It is commonly used in design and gives the same result as the 
octahedral shear stress theory, discussed in the next section.

–1

1

–1 0 1 σ1/Sy

σ2/Sy

(–1, –1)

(1, 1)

FIGURE 6.6 Yield criterion based on distortion energy.
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6.7.1  yield surFaCes For triaxial state oF stress

We observe from Equation (6.12) that only the differences of the stresses are involved. Hence, the 
addition of an equal amount to each stress does not affect the conclusion with respect to whether or 
not yielding will take place. That is, yielding does not depend on hydrostatic tensile or compressive 
stresses. Figure 6.7a depicts a state of stress defined P(σ1, σ2, σ3) in a principal stress coordinate 
system. Clearly, a hydrostatic alteration of the stress at point P requires shifting of this point P 
direction parallel to direction n, making equal angles with coordinate axes. This is because changes 
in hydrostatic stress involve changes of the normal stresses by equal amounts.

We are led to conclude therefore that the yield criterion distortion energy theory is properly 
described by the cylinder shown in Figure 6.7b and that the surface of the cylinder is the yield sur-
face, also called the yield locus. Points within the surface represent states of nonyielding. Thus, any 
calculations that predict a stress state outside the yield locus predict failure. The ellipse of Figure 
6.6 is defined by the intersection of the cylinder with the σ1, σ2 plane. Note that the yield surface or 
yield locus appropriate to the maximum-stress theory (indicated by the dashed lines for plane stress) 
is described by a hexagonal surface placed within the cylinder.

6.7.2  tyPiCal Case oF ComBined loading

Reconsider the particular case of combined loading, where σy = σz = τyz = τxz = 0 (see Section 6.6). 
Substitution of Equation (6.10) into (6.14) leads to the expression

 
S

n
3y

x xy
2 2 1 2( )= σ + τ

/
 (6.16)

Clearly, Equation (6.16) is based on the maximum energy of distortion criterion for the foregoing 
special case.

6.8  OCTAHEDRAL SHEAR STRESS THEORY

The octahedral shear stress theory, also known as the Mises–Hencky criterion or simply the 
Mises criterion, predicts failure by yielding whenever the octahedral shear stress for any state of 

σ1

σ2

σ3

n

P

(a)

σ1

σ3

(b)

σ2

Axis

σ1

σ2

(c)
σ3

Shear stress
theory

Distortion
energy theory

FIGURE 6.7 Yield criteria based on distortion energy and shear stress: (a) stress state defined by position, 
(b) 3D yield loci, and (c) view along (n), axis of cylinder and hexagon.
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stress equals the octahedral shear stress for the simple tensile test. Accordingly, through the use of 
Equation (3.52b) and Table 6.3, the octahedral shear stress theory is

 S
2

3
yoctτ =  (6.17)

which gives Equation (6.12). Eichinger (in 1926) and Nadai (in 1937) independently developed this 
theory.

The octahedral shear stress criterion may also be considered in terms of distortion energy. In a 
general state of stress, from Equation (5.9), we have

 U
E

3
2

1
od oct

2= + ν τ  

When the foregoing reaches the value given in Table 6.3, Equation (6.17) is found again.
We see that the octahedral shear stress criterion is equivalent to the distortion energy theory; 

that is, the former criterion enables us to apply the latter theory while dealing with stress rather than 
energy. We use the procedure of the energy of distortion criterion in this text.

Example 6.5: Design of a Torsion Bar

A cold-drawn AISI-1050 steel torsion bar CB of diameter d is fastened to a rigid arm at A, supported by 
a bearing at C, and fixed at B, as depicted in Figure 6.8. At the right end of the arm, the tire wheel on 
which the vertical force P acts from the ground is mounted.

Given:

a = 120 mm d = 34 mm L = 360 mm

P = 2.6 kN  Sy = 580 MPa (from Table B.3)

z
B

Torsion
bar

d
a

Bearing
y

A

C

Arm

P

x

L

FIGURE 6.8 Example 6.5. Schematic of rear wheel suspension used in some autos.
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Assumptions: Bearing C acts as a simple support. Effect of transverse shear due to P is negligible.

Find: Factor of safety n with respect to inelastic deformation of the torsion bar, using the maximum 
shear stress and the maximum distortion energy criteria.

Solution

The critical stresses occur on the surface of the torsion bar. We have the torque T = PL = 2600(0.36) = 936 
N · m and moment M = Pa = 2600(0.12) = 312 N · m act uniformly along this member. Thus, with refer-
ence to Figure 6.8, Equations (3.10) and (3.16) result in the maximum shear and bending stresses:

 
T

d

16 16 936

0 034
121 3 MPaxy 3 3

( )
( )

τ =
π

=
π

=
.

.  

and

 
M

d

32 32 312

0 034
80 86 MPax 3 3

( )
( )

σ =
π

=
π

=
.

.  

Maximum shear stress theory. Through the use of Equation (6.11),

 
n

80 86 4 121 3
5802 2 1 2

( ) ( )+  =. .
/

 

from which n = 2.27.
Maximum energy of distortion theory. Applying Equation (6.14),

 
n

80 86 3 121 3
5802 2 1 2

( ) ( )+  =. .
/

 

Solving, we obtain n = 2.58.

Comment: Inasmuch as the maximum distortion energy criterion is more accurate, it makes sense for 
a higher factor of safety to be obtained by this theory.

Example 6.6: Failure Analysis of a Conical Liquid Storage Tank

A thin-walled conical vessel, or tank, is supported on its edge and filled with a liquid, as depicted 
in Figure 6.9. Determine the vessel wall thickness on the basis of the maximum shear stress and the 
energy of distortion failure theories.

Given: The geometry and loading of the tank are known.

Assumptions:

 1. The vessel is made of structural steel of yield strength Sy.
 2. The factor of safety against yielding is n.
 3. The vessel is taken to be simply supported from the top.

Solution

It can be shown that [6], the tangential stress σθ = σ1 and meridional stress σs = σ2 in the tank are 
expressed as follows:

 

h y y
t

h y y
t

2
3 2

1

1

( )σ = γ − α
α

σ = γ −





α
α

tan
cos

tan
cos

 (a)

ISTUDY

www.konkur.in

Telegram: @uni_k



260 Mechanical Engineering Design

where
h = the liquid height
t = the vessel wall thickness
α = the half angle at the apex of cone
γ = the specific weight of liquid

The largest magnitudes of these principal stresses are given by

 

tan
cos

, tan
cos

tan
cos

, tan
cos

,max

,max

h

t

h

t
y

h

h

t

h

t
y

h

4 12
at

2

3
16 4

at
3
4

1

2

2

2

2

2

1

2

σ = γ α
α

σ = γ α
α

=





σ = γ α
α

σ = γ α
α

=





 (b)

Comment: Note that the maximum stresses occur at different locations.

Maximum shear stress criterion. Since σ1 and σ2 are of the same sign and |σ1| > |σ2|, the first of 
Equation (6.9) together with Equation (b) results in

 
S

n

h

t4
y

2

= γ α
α

tan
cos

 (6.18)

The thickness of the vessel is obtained from the preceding equation in the form

 t
h n

S
0 25

y

2

= γ α
α

. tan
cos

 (6.19a)

Maximum energy of distortion criterion. Inasmuch as the maximum magnitudes of σ1 and σ2 occur 
at different locations, we must first determine the section at which combined stresses are at a critical 
value. For this purpose, we substitute Equation (a) into Equation (6.14):

 

S

n
h y y

t
h y y

t

h y y
t

h y y
t

2
3 2

2
3 2

y
2

2

2 2

( )

( )

= γ − α
α







+ γ −





α
α







− γ − α
α







γ −





α
α







tan
cos

tan
cos

tan
cos

tan
cos

 (c)

Differentiation of Equation (c) with respect to the variable y and equating the result to 0 gives

 y h0 52= .  

Introducing this value of y back into Equation (c), the thickness of the vessel is found to be

 t
h n

S
0 225

y

2

= γ α
α

. tan
cos

 (6.19b)

σ1

σ2

t

y

h

α

FIGURE 6.9 Example 6.6. Conical tank filled with a liquid.
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Comment: The thickness according to the maximum shear stress criterion is therefore 10% larger than 
that based on the maximum distortion energy criterion.

6.9  COMPARISON OF THE YIELDING THEORIES

Two approaches may be used to compare the theories of yielding heretofore discussed. The first 
comparison equates, for each theory, the critical values corresponding to uniaxial loading and tor-
sion. Referring to Table 6.3,

 

S S

S S

Maximum shearing stress theory: 0 50

Energy of distortion theory or its equivalent

the octahedral shear stress theory: 0 577

ys y

ys y

=

=

.

,

.

 (6.20)

We observe that the difference in strength predicted by these criteria is not substantial. A second 
comparison may be made by means of superposition of Figures 6.4 and 6.6. This is left as an exer-
cise for the reader.

Experiment shows that, for ductile materials, the yield stress obtained from a torsion test is 
0.5–0.6 times than that determined from simple tension test. We conclude, therefore, that the energy 
of distortion criterion or octahedral shearing stress criterion is most suitable for ductile materials. 
However, the shear stress theory, which results in Sys = 0.50Sy, is simple to apply and offers a con-
servative result in design.

As a third comparison, consider a solid shaft of diameter D and tensile yield strength Sy subjected 
to combined loading consisting of tension P and torque T. The yield criteria based on the maximum 
shear stress and energy of distortion theories, for n = 1, are given by Equations (6.11) and (6.16):

 S S4 3y x xy y x xy
2 2 1 2 2 2 1 2( ) ( )= σ + τ = σ + τ,/ /

 (a)

In the preceding, σx and τxy represent axial tension and torsional stresses, respectively. Therefore,

 
P

D

T

D

4 16
x xy2 3σ =

π
τ =

π
,  

A dimensionless plot of Equation (a) and some experimental results are shown in Figure 6.10 [6]. 
We note again particularly good agreement between the maximum energy of distortion criterion 
and experimental data for ductile materials. The difference in results is not very great, however, and 
both theories are widely used in design of members.

6.10  MAXIMUM PRINCIPAL STRESS THEORY

In accordance with the maximum principal stress theory, credited to Rankine (1820–1872), a mate-
rial fails by fracturing when the maximum principal stress reaches the ultimate strength Su in a 
simple tension test. Thus, at the beginning of the fracture,

 
S

n

S

n
oru u

1 3σ = σ =  (6.21)

for safety factor n. That is, a crack starts at the most highly stressed point in a brittle material when 
the maximum principal stress at the point reaches Su. This criterion is suggested by the observation 
that fracture surfaces in brittle materials under tension are planes that carry the maximum principal 
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stress. Clearly, the maximum principal stress theory is based on the assumption that the ultimate 
strength of the material is the same in tension and compression: Su = |Suc|.

For the case of plane stress (σ3 = 0), Equation (6.21), the fracture condition is given by

 
S

n

S

n
oru u

1 2σ = σ =  (6.22)

This may be restated in the form, for n = 1,

 
S S

1 or 1
u u

1 2σ = ± σ = ±  (6.23)

Figure 6.11 is a plot of Equation (6.23). Note that points a, b, and c, d in the figure indicate the tensile 
and compressive principal stresses, respectively. As in other criteria, the boundary of the square indi-
cates the onset of failure by fracture. The area within the boundary is therefore a region of no failure.

Note that, while a material may be weak in simple compression, it may nevertheless sustain very 
high hydrostatic pressure without fracturing. Furthermore, most brittle materials are much stronger 

a

b

c

0–1

–1

σ1/Su

σ2/Su

1

1d

FIGURE 6.11 Fracture criterion based on maximum principal stress.
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FIGURE 6.10 Yield curves for torsion-tension shaft. The points shown in this figure are based on experi-
mental data.
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263 Static Failure Criteria and Reliability

in compression than in tension; that is, Suc ≫ Su. These are inconsistent with the theory. Moreover, 
the theory makes no allowance for influences on the failure mechanism other than those of normal 
stresses. However, for brittle materials in all stress ranges, the maximum principal stress theory has 
good experimental verification, provided there is a tensile principal stress.

Example 6.7: Failure of a Pipe of Brittle Material under Static Torsion Loading

A cast pipe of outer diameter D and inner diameter d is made of an aluminum alloy having ultimate 
strengths in tension and compression Su and Suc, respectively. Determine the maximum torque that can 
be applied without causing rupture.

Given: D = 100 mm, d = 60 mm, Su = 200 MPa, Suc = 600 MPa.

Design Decision: Use the maximum principal stress theory and a safety factor of n = 2.

Solution

The torque and the maximum shear stress are related by the torsion formula:

 T
J

c

0 05 0 03

2 0 05
170 9 10

4 4
6( )

( )= τ =
π − τ

= × τ−. .
.

.  (a)

The state of stress is described by

 01 2 3σ = −σ = τ σ =,  

From Equation (6.22) and the preceding, we have τ = Su/n. Then, Equation (a) results in

 T 170 9 10
200 10

2
17 09 kN m6

6

= × ×





= ⋅−. .  

Comment: According to the maximum principal stress theory, the torque is limited to 17.09 kN · m to 
avoid failure by fracture (Figure 6.11).

6.11  MOHR’S THEORY

Mohr’s theory of failure is employed to predict the fracture of a material with different properties 
in tension and compression when the results of a variety of tests are available for that material. This 
criterion uses Mohr’s circles of stress. Using the extreme values of principal stress enables one to 
apply Mohr’s approach to either 2D or 3D cases.

Experiments are performed on a given material to determine the states of stress that result in fail-
ure. Each such state of stress defines Mohr’s circle. When the data describing states limiting stress 
are derived from only simple tension, compression, and torsion tests, the three resulting circles are 
sufficient to construct the envelope, labeled by lines AB and A′B′ in Figure 6.12.

Simple
compression

Simple tension

τ

σ

Failure envelope
Torsion

B΄

B

A

A΄

FIGURE 6.12 Mohr’s fracture criterion.
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Note that Mohr’s envelope represents the locus of all possible failure states. Many solids, par-
ticularly those that are brittle, show greater resistance to compression than to tension. As a result, 
higher limiting shear stresses, for these materials, are found to the left of the origin, as depicted in 
the figure.

6.12  COULOMB–MOHR THEORY

The Coulomb–Mohr theory, like Mohr’s criterion, may be employed to predict the effect of a given 
state of stress on a brittle material having different properties in tension and in compression. Mohr’s 
circles for the uniaxial tension and compression tests are used to predict failure by the Coulomb–
Mohr theory, as shown in Figure 6.13a. The points of contact of the straight-line envelopes (AB and 
A′B′) with the stress circles define the state of stress at a fracture. For example, if such points are C 
and C′, the stresses and the planes on which they act can be obtained using the established proce-
dure for Mohr’s circle of stress.

In the case of plane stress, we have σ3 = 0. When σ1 and σ2 have opposite signs (i.e., one is tensile 
and the other is compressive), it can be verified that [9] the onset of fracture is expressed by

 
S S n

1

u u

1 2σ − σ =  (6.24)

for safety factor n. Here, Su and Suc represent the ultimate strengths of the material in tension and 
compression, respectively. This equation may be rearranged into the form

 n
S

S S/
u

u uc1 2

=
σ − σ

 (6.25)

Relationships for the case where the principal stresses have the same sign may be deduced from 
Figure 6.13a. In the case of biaxial tension, the corresponding circle is represented by diameter OE. 
Hence, fracture occurs if either of the two tensile stresses achieves the value Su; that is,

 
S

n

S

n
oru u

1 2σ = σ =  (6.26)

For biaxial compression, Mohr’s circle of diameter OD is obtained. Failure by fracture occurs if 
either of the compressive stresses attains the value Su; therefore,

 
S

n

S

n
oruc uc

2 1σ = σ =  (6.27)
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FIGURE 6.13 (a) Straight-line Mohr’s envelopes and (b) the Coulomb–Mohr fracture criterion.
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The foregoing expressions are depicted in Figure 6.13b, for the case in which n = 1. Lines ab and 
af represent Equation (6.26), and lines dc and de, Equation (6.27). The boundary bc is obtained 
by applying Equation (6.24). Line ef completes the hexagon in a way similar to Figure 6.4. Points 
within the shaded area represent states of nonfailure according to the Coulomb–Mohr theory. The 
boundary of the figure depicts the onset of failure due to fracture.

In the case of pure shear, the corresponding limiting point g represents the ultimate shear 
strength Sus. At point g, σ1 = Sus and σ2 = −σ1 = −Sus. Substituting for σ1, σ2, and n = 1 into Equation 
(6.24), we have

 S
S

S S1 /
us

u

u uc

=
+

 (6.28)

When |Suc| = Su, Suc = 0.5Su. If |Suc| = 4Su, typical of ordinary gray cast iron, then Sus = 0.8Su.

Example 6.8: Rework Example 6.7, Employing the Coulomb–Mohr Theory

Solution

We have the following results, from Example 6.7:

 T 170 9 10 6= × τ−.  

and σ1 = −σ2 = τ. So, applying Equation (6.24) with n = 2,

 
200 10 600 10

1
26 6

τ
×

− −τ
×

=  

Solving, τ = 75 MPa. The first equation then gives T = 12. 82 kN · m.

Comment: On the basis of the maximum principal stress theory, the torque that can be applied to the 
pipe 17.09 kN · m obtained in Example 6.7 is thus 25% larger than on the basis of the Coulomb–Mohr 
theory.

Example 6.9: Largest Load Supported by the Frame of a Punch Press

Figure 6.14 depicts a punch press frame made of ASTM A-48 gray cast iron having ultimate strengths 
in tension and compression Su and Suc, respectively. Calculate the allowable load P.

Given: Su = 170 MPa, Suc = 650 MPa.

Design Decisions: Use the Coulomb–Mohr theory and a factor of safety of n = 2.5.

Solution

The centroid, total section area, and moment of inertia about the neutral axis (Figure 6.14) are

 z
180 80 210 120 240 60

180 80 120 240
110 mm

( )( ) ( )= × + ×
× + ×

=  

 A 180 80 120 240 43 2 10 mm3 2= × + × = ×.  

 
I

1
12

80 180 80 180 100
1

12
240 120 120 240 50

289 44 10 mm

3 2 3 2

6 4

( )( ) ( )( ) ( )( ) ( )( )= + × + + ×

= ×.
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The internal force resultants in section A–B are equivalent to a centric force P and a bending moment 
M = 0.51P.

Note that cast iron has a nonlinear stress–strain relationship. Therefore, bending stresses are not 
exactly given by the flexure formula, σ = Mc/I. For simplicity, however, it is generally used in the 
design of cast iron machine elements. Hence, the stress distribution across the section is taken to be 
linear.

The distances from the neutral axis to the extreme fibers are cA = 110 mm and cB = 190 mm. The 
greatest tensile and compressive stresses occur at points A and B, respectively:

 
P

A

Mc

I
P P23 148 193 823A

Aσ = + = +. .  

 
P

A

Mc

I
P P23 148 334 784B

Bσ = + = −. .  

We therefore have on the tension and compression sides, respectively,

 
P

P

216 971 0

311 636 0
1 2

2 1

σ = σ =
σ = − σ =

. ,
. ,

 (a)

The maximum allowable load P is the smaller of the two loads calculated from Equations (a), (6.26), 
and (6.27):

 P P216 971
170 10

2 5
or 313 4 kN

6( )
= =.

.
.  

 P P311 636
650 10

2 5
or 834 kN

6( )
− = =.

.
 

Comment: The tensile stress governs the allowable load P = 313.4 kN that the member can carry.

6.13  RELIABILITY

The concept of reliability is closely related to the factor of safety. Reliability is the probability that 
a member or structure will perform without failure a specific function under given conditions for 
a given period of time. It is very important for the designer and the manufacturer to know the reli-
ability of the product. The reliability R can be expressed by a number that has the range

 R0 1≤ <  

NA

80 mm

P

P

B A

0.4 m

B A 240 mm

120 mm
180 mm

Section A–B

z = 110 mm

FIGURE 6.14 Example 6.9.
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267 Static Failure Criteria and Reliability

For instance, reliability of R = 0.98 means that there is 98% chance, under certain operating condi-
tions, that the part will perform its proper function without failure; that is, if 100 parts are put into 
service and an average of two parts fail, then the parts proved to be 98% reliable.

Recall from Section 1.6 that, in the conventional design of members, the possibility of failure 
is reduced to acceptable levels by factor of safety based on the judgment derived from past perfor-
mances. In contrast, in the reliability method, the variability of material properties and fabrication-
size tolerances, as well as uncertainties in loading and even design approximations can be appraised 
on a statistical basis. As far as possible, the proposed criteria are calibrated against well-established 
cases. The reliability method has the advantage of consistency in the safety factor, not only for 
individual members, but also for complex structures and machines. Important risk analyses of com-
plete engineering systems are based on the same premises. Clearly, the usefulness of the reliability 
approach depends on adequate information on the statistical distribution of loading applied to parts 
in service, from which can be calculated the significant stress and significant strength of production 
runs of manufactured parts.

Note that the reliability method for design is relatively new and analyses leading to an assessment 
of reliability address uncertainties. Of course, this approach is more expensive and time-consuming 
than the factor of safety method of design, because a larger quantity of data must be obtained by 
testing. However, in certain industries, designing to a designated reliability is necessary. We use 
the factor of safety for most of the problems in this text. For an interactive statistics program from 
the engineering software database, see the website at www.mecheng.asme.org/database/STAT/
MASTER.HTML.

6.14  NORMAL DISTRIBUTIONS

To obtain quantitative estimates of the percentages of anticipated failures from a study, we must look 
into the nature of the distribution curves for significant quantities involved. We consider only the case 
involving the normal or Gauss distribution, credited to Gauss (1777–1855). This is the most widely 
used model for approximating the dispersion of the observed data in applied probability [9, 10].

Several other distributions might prove useful in situations where random variables have only 
positive values or asymmetrical distributions. A formula introduced by Weibull is often used in 
mechanical design. This formula does not arise from classical statistics and is flexible to apply. The 
Weibull distribution is used in work dealing with experimental data, particularly reliability. The 
distribution of bearing failures at a constant load can be best approximated by the Weibull distribu-
tion (see Section 10.15).

In analytical form, the Gaussian, or normal, distribution is given as follows:

 p x e x
1

2
x 2 2( ) ( )=

πσ
−∞ < < ∞( )− −µ σ/  (6.29)

where
p(x)  =  the probability or frequency function
σ  =  the standard deviation*
μ  =  the mean value
x  =  the quantity

The standard deviation is widely used and regarded as the usual index of dispersion or scatter of the 
particular quantity. The mean value and standard deviations are defined by

* The symbol σ used for standard deviation here should not be confused with the symbol of stress, although often the units 
are the same.
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where n is the total number of elements, called the population.
A plot of Equation (6.29), the standard normal distribution, is shown in Figure 6.15. This bell-

shaped curve is symmetrical about the mean value μ. Since the probability that any value of x will 
fall between plus and minus infinity is 1, the area under the curve in the figure is unity. Note that 
about 68% of the population represented fall within the band μ + 1σ, 95% fall within the band μ + 2σ, 
and so on.

The reliability, or rate of survival, R is a function of the number of standard deviations z, also 
referred to as the safety index:

 z
x= − µ

σ
 (6.31)

The straight line of Figure 6.16, drawn on probability-chart paper, plots percentages of reliability 
R as an increasing function of number of standard deviations z. A larger z results in fewer failures, 
hence a more conservative design. We note that the percentage of the population corresponding to 
any portion of the standard normal distribution (Figure 6.15) can be read from the reliability chart.

6.15  RELIABILITY METHOD AND MARGIN OF SAFETY

In the reliability method of design, the distribution of loads and strengths are determined for a given 
member, and then these two are related to achieve an acceptable success rate. The designer’s task 
is to make a judicious selection of materials, processes, and geometry (size) to achieve a reliability 
goal. The approach of reliability finds considerably more application with members subjected to 
wear and fatigue loading. We here introduce it in the simpler context of static loading. Section 7.6 
discusses the reliability factor for fatigue endurance strength of materials.

Consider the distribution curves for the two main random variables, load L and strength S, which is 
also called capacity or resistance (Figure 6.17). For a given member, the frequency functions p(l) and 
p(s) define the behavior of critical parameters load and strength. The mean value of strength is denoted 
by μs and the mean value of the load by μl. So, based on mean values, there would be a margin of safety

 m S L= −  (6.32)

σ
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0.6826

0.136
0.0214

0.00135
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y, 
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FIGURE 6.15 The standard normal distribution.
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However, the interference or shaded area of overlap in the figure indicates some possibility of a 
weak part in which failure could occur. The preceding margin of safety must not be confused with 
that used in aerospace industry (see Section 1.8).

Figure 6.18 shows a corresponding plot of the distribution of margin of safety. In this diagram, 
the probability of failure is given by the (shaded) area under the tail of the curve to the left of the 
origin. The member would survive in all instances to the right of the origin. By statistical theory, 
the difference between two variables with normal distributions has itself a normal distribution. 
Therefore, if the strength S and the load L are normally distributed, then the margin of safety m also 
has a normal distribution, as shown in Figures 6.17 and 6.18.

The margin of safety has a mean value μm and standard deviation σm expressed as follows:

 m s lµ = µ − µ  (6.33a)

 m s l
2 2σ = σ + σ  (6.33b)
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FIGURE 6.16 Reliability chart: generalized normal distribution curve plotted on special probability paper.

p(s)
or

p(l)

L

S

l or sO μl μs
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Here, σs and σl are, respectively, the standard deviations for the strength S and the load L. When 
S > L, m is positive. The designer is interested in the probability that m > 0; that is, the area to the 
right of 0 in Figure 6.18. At x = m = 0, Equation (6.31) becomes z = μ/σ. The number of standard 
deviations, on introducing Equation (6.32), may now be written in the following form:

 z m

m

s l

s l
2 2

= µ
σ

= µ − µ
σ + σ

 (6.34)

For the prescribed mean and deviation values of the strength and load, Equation (6.34) is solved 
to yield the number of standard deviations z. Then, the probability that a margin of safety exists 
may be read as the reliability R from the chart of Figure 6.16. Equation (6.34) is therefore called the 
coupling equation, because it relates the reliability, through z, to the statistical parameters of the 
normally distributed strength and load. For example, when the mean values of S and L are equal 
(i.e., μs = μl) it follows that z = 0 and the reliability of a part is 50%. Reliability of an assembly or 
system of parts may be found from their individual reliability values.

Application of the reliability theory is illustrated in the solution of the following numerical 
problems.

Example 6.10: Shipment of Control Rods

In a shipment of 600 control rods, the mean tensile strength is found to be 245 MPa and the standard 
deviation 35 MPa. How many rods can be expected to have:

 a. A strength of less than 206.5 MPa.
 b. A strength of between 206.5 and 339.5 MPa.

Given: μs = 206.5 and 339.5 MPa, μl = 245 MPa, σm = 35 MPa.

Assumption: Both loading and strength have normal distributions.

Solution

 a. Substituting given numerical values into Equation (6.34) results in the number of standard

 z
206 5 245

35
1 10= − =. .  

 The corresponding reliability, obtained from Figure 6.16, is 86.5%. Note that 1 − 0.865 = 0.135 
represents the proportion of the total rods having a strength less than 206.5 MPa. Hence, the 
number of rods with a strength less than 206.5 MPa is 600(0.135) = 81.

 b. In this case, applying Equation (6.31),

p(m)

m

O mμm

FIGURE 6.18 Normal distribution curve of margin of safety m = S − L.
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 z
339 5 245

35
2 7= − =. .  

 From Figure 6.16, we then have R = 99.65%. The number of rods expected to have strength 
between 206.5 and 339.5 MPa is therefore 600(0.9965 − 0.135) = 517.

Example 6.11: Machine Part in Service

At the critical point of a machine part in service, the load-induced mean stress and standard 
 deviation are 210 and 35 MPa, respectively. If the material has a yield strength of 350 MPa with a 
standard deviation of 28 MPa, determine the reliability against yielding. What percentage of failure 
is expected in service?

Given: μs = 350 MPa, μl = 210 MPa, σs = 28 MPa, σl = 35 MPa.

Assumption: Both loading and strength have normal distribution.

Solution

Through the use of Equation (6.33), we have

 350 210 140 MPamµ = − =  

 28 35 44 82 MPam
2 2σ = + = .  

Equation (6.34) then gives z = 140/44.82 = 3.124. Figure 6.16 shows that this corresponds to 99.91% 
 reliability. So, the failure percentage expected in service would be 100 − 99.91 = 0.09%.

Example 6.12: Twisting-Off Strength of Bolts

Bolts, each of which has a mean twisting-off strength of 25 N · m with a standard deviation of 1.5 N 
· m, are tightened with automatic wrenches on a production line (see Section 15.7). If the automatic 
wrenches have a standard deviation of 2 N · m, calculate the mean value of wrench torque setting that 
results in an estimated 1 bolt in 400 twisting off during assembly.

Given: μs = 25 N · m, σs = 1.54 N · m, σl = 2 N · m.

Assumption: Both the wrench twist-off torque and the bolt twist-off strength have normal distributions.

Solution

Substitution of σs = 1.5 N · m and σι = 2 N · m in Equation (6.33b) gives σm = 2.5 N · m. Figure 6.16 shows 
that a reliability of 399/400 = 0.9975, or 99.75%, corresponds to 2.8 standard deviation. The mean value 
is then μm = zσm = 2.8(2.5) = 7 N · m. Since μs = 25 N · m, we have, from Equation (6.33a), μl = 18 N · m. 
This is the required value of wrench setting.

PROBLEMS

Sections 6.1 through 6.4
 6.1 An A1SI-4340 steel ship deck of thickness t and width 2w is in tension. If a central trans-

verse crack of length 2a is present (Case A of Table 6.1), estimate the maximum tensile 
load P that can be applied without causing sudden fracture. What is the nominal stress at 
fracture?

  Given: t = 25 mm, w = 250 mm, a = 25 mm.
 6.2 Estimate the maximum load P that the plate shown in Case B of Table 6.1 can carry. What 

is the mode of failure?
  Given: Sy = 650 MPa, Kc = 100 MPa m, w = 350 mm, a = 25 mm, t = 15 mm, safety n = 1.2.
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 6.3 A 2024-T851 aluminum alloy plate of width w and thickness t is subjected to a tensile load-
ing. It contains a transverse crack of length a on one edge (Figure 6.2). There is concern 
that the plate will undergo sudden fracture. Calculate the maximum allowable axial load 
P. What is the nominal stress at fracture?

  Given: w = 125 mm, t = 25 mm, a = 20 mm.
 6.4 A thin, long AISI 4340 steel instrument panel of width 2w is under uniform longitudinal 

tensile stress σ. When a 2a long central transverse crack is present (Case A, Table 6.1), 
based on a safety factor n against yielding, compute the factor of safety for fracture.

  Given: a = 2 mm, n = 2.5, a/w = 0.2.
 6.5 A 7073-T3351 aluminum alloy long plate of width w with and edge crack is subjected to 

tension (Case B, Table 6.1). The required factor of safety against yielding and the crack 
length are n and a, respectively. Find the safety factor on the basis of fracture.

  Given: a = 5 mm, n = 2.8, a/w = 0.2.
 6.6 A long Ti-6A1-4V titanium panel of width 2w and thickness t carries a uniform ten-

sion. For a case in which a central transverse crack of length 2a exits (Case A, Table 6.1), 
determine

 a. The safety factor for yielding and fracture.
 b. The tensile stress when fracture occurs.
  Given: a = 50 mm, t = 25 mm, σ = 150 MPa.
 6.7 An AISI-4340 steel pipe of diameter d and wall thickness t contains a crack of length 2a. 

Estimate the pressure p that will cause fracture when
 a. The crack is longitudinal as in Figure P6.7.
 b. The crack is circumferential.
  Given: d = 50 mm, t = 4 mm, a = 5 mm.
  Assumption: A factor of safety n = 1.5 and geometry factor λ = 1.01 are used (Table 6.1).
 6.8 A 7075-T7351 aluminum alloy beam containing an edge crack of length a is in pure bend-

ing, as shown in Case D of Table 6.1. Determine the maximum moment M that can be 
applied without causing sudden fracture.

  Given: a = 40 mm, w = 100 mm, t = 25 mm.
 6.9 An AISI-4340 steel plate of width w = 125 mm and thickness t = 25 mm is under uniaxial 

tension. A crack of length a is present on the edge of the plate, as shown in Figure 6.2. 
Determine

 a. The axial load possible Pall for the case in which a = 12.5 mm.
 b. The critical crack length a, if the plate is made of Ti-6A1-6V titanium alloy and sub-

jected to the Pall calculated in part a.
 6.10 Rework Example 6.3, for the case in which the bracket is made of AISI-403 stainless steel 

and a = 15 mm, d = 156.25 mm, w = 37.5 mm, t = 12.5 mm, and n = 2.
 6.11 An AISI-4340 steel ship deck panel of width w and thickness t is under tension. Calculate 

the maximum load P that can be applied without causing fracture when double-edge cracks 
grow to a length of a (Case C of Table 6.1).

  Given: t = 25 mm, w = 50 mm, a = 5 mm, n = 1.4.

2a

t
r

p
Crack

FIGURE P6.7 
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Sections 6.5 through 6.12
 6.12 A solid steel shaft having yield strength Sy and diameter D carries end loads P, M, and T 

(Figure P6.12). Calculate the factor of safety n, assuming that failure occurs according to 
the following criteria:

 a. Maximum energy of distortion.
 b. Maximum shear stress.
  Given: D = 100 mm, Sy = 260 MPa, P = 50kN, M = 5kN · m, T = 8kN · m.
 6.13 Redo Problem 6.9, applying the Coulomb–Mohr failure criterion and knowing that the 

shaft is constructed from ASTM A-48 gray cast iron.
 6.14 A steel bar AB of diameter D and yield strength Sy supports an axial load P and vertical 

load F acting at the end of the arm BC (Figure P6.14). Determine the largest value of F 
according to the maximum energy of the distortion theory of failure.

  Given: D = 40 mm, Sy = 250 MPa, P = 20F.
  Assumptions: The effect of the direct shear is negligible and the factor of safety n = 1.4.
 6.15 Resolve Problem 6.14 through the use of the maximum shear stress theory of failure.
 6.16 A steel rod of diameter D, yield strength in tension Sy, and yield strength in shear Ssy, is 

under loads F and P = 0 (Figure P6.14). Based on a safety factor of n, find the maximum 
allowable value of F applying

 a. The maximum shear stress failure criterion.
 b. The maximum distortion energy failure criterion.
  Given: D = 60 mm, n = 1.6, Sy = 260 MPa, Ssy = 140 MPa.

x

B
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F
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D
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z

y

C 0.4 m

FIGURE P6.14 
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 6.17 A cantilever WF aluminum alloy beam of yield strength Sy is loaded as shown in 
Figure P6.17. Using a factor of safety of n, determine whether failure occurs according to 
the maximum shear stress criterion.

  Given: Sy = 320 MPa, n = 2, Iz = 13.4 × 106 mm4.
 6.18 Resolve Problem 6.17 applying the maximum energy of distortion theory.
 6.19 A thin-walled cylindrical pressure vessel of diameter d and constructed of structural steel 

with yield strength Sy must withstand an internal pressure p. Calculate the wall thickness t 
required.

  Given: Sy = 250 MPa, d = 500 mm, p = 3.5 MPa, n = 1.5.
  Design Decision: Use the following criteria:
 a. Maximum shear stress.
 b. Maximum energy of distortion.
 6.20 Redo Problem 6.19, if the vessel is made of a material having Su = 350 MPa and Suc = 630 MPa.
  Design Decision: Apply the following theories:
 a. Maximum principal stress.
 b. Coulomb–Mohr.
 6.21 A cantilever WF cast iron beam of ultimate tensile strength Su and ultimate compression 

strength Suc is subjected to a concentrated load at its free end (Figure P6.17). What is the 
factor of safety n?

  Given: Su = 280 MPa, Suc = 620 MPa.
  Assumption: Failure occurs in accordance with the following theories:
 a. Maximum principal stress.
 b. Coulomb–Mohr.
 6.22 Design the cross a b × 2b rectangular overhang beam (i.e., find the dimension b), loaded 

as illustrated in Figure P6.22, for σa11 = 140 MPa. Apply the maximum principal failure 
criterion.

 6.23 Rework Example 6.9, if the cross-section A–B of the punch press shown in Figure 6.14 is a 
120 mm deep by 300 mm wide rectangle.
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275 Static Failure Criteria and Reliability

 6.24 and 6.25 The state of stress shown (Figures P6.24 and P6.25) occurs at a critical point in 
an ASTM A-48 gray cast iron (Table B.1) component of a lawn mower. Calculate the factor 
of safety n with respect to fracture.

  Design Decision: Apply the following criteria:
 a. Maximum principal stress.
 b. Coulomb–Mohr.
 6.26 A closed-ended cylinder, of radius r and wall thickness t is constructed of ASTM-A36 

structural steel having tensile strength Sy, rests on cradles as depicted in Figure P6.26.
  Determine: The allowable pressure the shell can carry on the basis of a factor of safety n. 

Apply the two yield failure criteria:
 a. The maximum shear.
 b. The maximum energy of distortion.
  Given: r = 300 mm, t = 10 mm, n = 1.4, Sy = 250 MPa (by Table B.1).
  Assumption: The largest stresses take place on the elements outside of the cylinder wall, 

away from the supports and ends.
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276 Mechanical Engineering Design

 6.27 A cylindrical rod of diameter D is made of ASTM-A36 steel (Table B.1). Use the maxi-
mum shear stress criterion to determine the maximum end torque T that can be applied to 
the rod simultaneously with an axial load of P = 45 kN (Figure 6.5).

  Given: D = 50 mm.
  Assumption: n = 1.5.
 6.28 Redo Problem 6.27, applying the maximum energy of distortion criterion.
 6.29 An ASTM-20 gray cast iron rod (Table B.2) is under pure torsion. Determine, with a factor 

of safety n = 1.4, the maximum shear stress τ that may be expected at impending rupture 
using

 a. The Coulomb–Mohr criterion.
 b. The principal stress criterion.
 6.30 The state of stress shown in Figure P6.30 occurs at a critical point in a machine component 

made of ASTM-A47 malleable cast iron (Table B.1). Apply the Coulomb–Mohr theory to 
calculate the maximum value of the shear stress τ for a safety factor of n = 2.

 6.31 Resolve Problem 6.30 for the condition that the machine component is made of an 
ASTM-A242 high-strength steel (Table B.1). Use

 a. The maximum energy of distortion criterion.
 b. The maximum shear stress criterion.
 6.32 At a critical point in a cast metal (Su = 55 MPa, Suc = 160 MPa) machine frame, the state of stress 

is as depicted in Figure P6.32. Find whether failure occurs at the point in accordance with
 a. The maximum principal stress theory.
 b. The Coulomb–Mohr theory.
 6.33 A cast iron ASTM grade A-47 round shaft is simultaneously subjected to torque T and load 

P, as shown in Figure P6.33. Find the diameter D, through the use of
 a. The maximum normal stress criterion.
 b. The Coulomb–Mohr failure criterion.
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277 Static Failure Criteria and Reliability

  Given: L = 300 mm, T = 680 N · m, P = 750 N, n = 2.5, Su = 350 MPa, Suc = 630 MPa (from 
Table B.1).

  Assumption: The effect of transverse shear will be disregarded.
 6.34 Figure P6.34 shows that a bracket arm of length a is acted on by a vertical loads W kips and 

F at its free ends. The ASTM-A242 high-strength steel rod has diameter D, length L, and 
shear yield strength Sy. Find the factor of safety n for the rod, using the maximum shear 
stress theory of failure.

  Given: D = 50 mm, L = 250 mm, a = 300 mm, W = 9 kN, F = 2 kN, Sy = 210 MPa.
 6.35 An ASTM-A36 steel shaft of length L carries a torque T and its own weight per unit length 

w (see Table B.1), as depicted in Figure P6.35. Determine the required shaft diameter D, 
using the maximum energy of distortion criterion with a safety factor of n = 2.1.

  Given: L = 6 m, T = 400 N · m.
  Assumption: The bearings at the ends act as simple supports.
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Sections 6.13 through 6.15
 6.36 At a critical location in a component in tension, the load-induced stresses are μl = 250 MPa 

and σι = 35 MPa. What is the reliability R against yielding?
  Given: The material yield strengths are μs = 400 MPa and σs = 30 MPa.
 6.37 Calculate the diameter d of a bar subjected to an axial tensile load P for a desired reliability 

of R = 99.7%.
  Given: The material yield strengths of μs = 350 MPa and σs = 35 MPa. The loads of 

μl = 200 kN and σl = 30 MPa.
 6.38 Determine the mean μ and the standard deviation σ for the grades of a sample of 12 stu-

dents shown in the accompanying table.

n 1 2 3 4 5 6 7 8 9 10 11 12

x 77 85 48 94 80 60 65 96 70 86 69 82

y 78.2 82.1 60.3 91.5 84.6 70.8 68.4 90.8 75.0 92.5 61.8 80.1

Notes: n, number of students; x, final examination grade; y, course grade.
 6.W Search and download the statistics shareware program on the website at www.m echen g 

.asm e.org /data base/ STAT/ MASTE R.HTM L for computing the mean and standard devia-
tions for a normal distribution. Resolve Problem 6.38 using this program.

 6.39 A total of 68 cold-drawn steel bars have been tested to obtain the 0.2% offset yield strength 
Sy in MPa. The results are as follows:

Sy 520 460 430 545 570 575 595 600 620 660

n 7 2 5 5 10 18 8 3 6 4

  Based on the normal distribution, determine
 a. The mean μ and standard deviation σ of the population.
 b. The reliability for a yield strength of Sy = 525 MPa.
 6.40 A bar under a maximum load of 25 kN was designed to carry a load of 30 kN. The maxi-

mum load is applied with standard deviation of 600 lb and shaft strength standard devia-
tion of 2 kN; both are normally distributed. Calculate the expected reliability.

 6.41 A 12.5 mm diameter ASTM-A242 high-strength steel rod carries an axial nominal load of 
Pnom. Experimental data show that the yield strength is normally distributed with a mean 
value of Sy.nom and standard deviation of σs. Owing to the variety of operational conditions, 
the load has been found to actually be normally distributed random variables with standard 
deviation of 2.5 kN. Estimate, on the basis of yielding failure,

 a. The factor of n safety.
 b. The reliability R of the rod.
  Given: Pnom = 35 kN, σs = 28 MPa, Sy,nom = μs = 350 MPa (from Table B.1).
 6.42 A structural member is subjected to a maximum load of 20 kN. Assume that the load and 

strength have normal distributions with standard variations of 3 and 2.5 kN, respectively. 
If the member is designed to withstand a load of 25 kN, determine the failure percentage 
that would be expected.
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7 Fatigue Failure Criteria

7.1  INTRODUCTION

A member may fail at stress levels substantially below the yield strength of the material if it is 
subjected to time-varying loads rather than static loading. The phenomenon of progressive fracture 
due to repeated loading is called fatigue. Its occurrence is a function of the magnitude of stress 
and a number of repetitions, so it is called fatigue failure. Photographs (Figure 7.1) represent two 
components failed by fatigue. We observe throughout this chapter that the fatigue strength of a 
component is significantly affected by a variety of factors. A fatigue crack most often is initiated at a 
point of high stress concentration, such as at the edge of a notch, or by minute flows in the material. 
Fatigue failure is of a brittle nature even for materials that normally behave in a ductile manner. The 
usual fracture occurs under tensile stress and with no warning. For combined fluctuating loading 
conditions, it is common practice to modify the static failure theories and material strength for the 
purposes of design.

The fatigue failure phenomenon was first recognized in the 1800s when railroad axles fractured 
after only a limited time in service. Until about the middle of the nineteenth century, repeated and 
static loadings were treated alike, with the exception of the use of safety factors. Poncelet’s book 
in 1839 used the term fatigue owing to the fluctuating stress. At the present time, the development 
of modern high-speed transportation and machinery has increased the importance of the fatigue 
properties of materials. In spite of periodic inspection of parts for cracks and other flaws, numer-
ous major railroad and aircraft accidents have been caused by fatigue failures. Fatigue is the single 
largest cause, estimated to be 90%, of failure in metals. In particular, structural fatigue failures 
are catastrophic and dangerous, taking place suddenly and usually without any warning. The basic 
mechanism associated with fatigue failure is now reasonably well understood, although research 
continues on its many details [1–16]. The complexity of the problem is such that rational design 
procedures for fatigue are difficult to develop. The great variation in properties makes it necessary 
to apply statistical methods in the evaluation of the fatigue strength.

Essentially, fatigue is crack propagation, initially on a microscopic scale and then very rapidly as 
the fatigue crack reaches a critical length. Experiments have shown that fatigue cracks often begin 
at a surface and propagate through the rest of the body, unless large subsurface flaws and stress 
raisers exist in the material. The fatigue life of a component comprises the time it takes a crack to 
start plus the time it needs to propagate through the section. Design life can be extended by mini-
mizing initial surface flows through processes like grinding or polishing, relieving tensile residual 
stresses on surface through manufacturing processes or by various surface treatments, maximizing 
propagation time using a material that does not have elongated grains in the direction of fatigue 
crack growth, and using material properties that permit larger internal flaws. We shall here present 
methods to design for cyclic loading. It is important to note that in applying any of these techniques, 
generous factors of safety should always be used.

7.2  NATURE OF FATIGUE FAILURES

The type of fracture produced in ductile metals subjected to fatigue loading differs greatly from 
that of fracture under static loading, considered in Section 2.3. In fatigue fractures, two regions of 
failure can be detected: the beachmarks (so termed because they resemble ripples left on sand by 
retracting waves) zone produced by the gradual development of the crack, and the sudden-fracture 
zone. As the name suggests, the latter region is the portion that fails suddenly when a crack reaches 
its size limit. Figure 7.2 depicts fatigue fracture surfaces of two common cross-sections under high 
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280 Mechanical Engineering Design

nominal stress conditions [1]. Note that the curvature of the beachmarks serves to indicate where the 
failure originates. The beachmarked area, also referred to as the fatigue zone, has a smooth, velvety 
texture. This contrasts with the sudden-fracture region, which is relatively dull and rough, looking 
like a static brittle type.

Microscopic examinations of ductile metal specimens subjected to fatigue stressing reveal that little, 
if any, distortion occurs, whereas failure due to static overload causes excessive distortion. The appear-
ance of the surfaces of fracture greatly aids in identifying the cause of crack initiation to be corrected in 
redesign. For this purpose, numerous photographs and schematic representations of failed surfaces have 
been published in the technical literature [1, 5]. Figure 7.3 is a simplified sketch of the effect of state of 
stress on the origin, appearance, and location of fatigue fracture for variously loaded sections. For all axial 
and bending stress conditions, as well as the high-torsion smooth stress condition, the crack growth in the 
beachmarks region is indicated by curved vectors, starting from the point of crack initiation.

Note that the sudden-fracture region can be a small portion of the original cross-section, particu-
larly under bending and torsion fatigue stressing. Unless interrupted by notches, the fatigue crack 
under bending is normal to the tensile stresses, that is, perpendicular to the axis of a shaft. It follows 

(a) (b)

FIGURE 7.1 (a) Fatigue failure of a road bike hub, causing four spokes to break off its flange and (b) break-
ing apart of a typical crankshaft due to repeated dynamic loading.

Beachmarks
zone

Sudden
fracture zone

(a) (b)

FIGURE 7.2 Schematic representation of fatigue fracture surfaces of circular and rectangular cross- 
sections  subjected to (a) tension–tension or tension–compression and (b) reversed bending. (Based on 
American Society of Metals, Failure analysis and prevention, Metals Handbook, Metals Park, OH, ASM 
International, 2020.)
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281Fatigue Failure Criteria

that crack growth is due to tensile stress and the crack grows along planes normal to the largest 
tensile stress. Clearly, fatigue stresses that are always compressive will not generate crack growth, 
since they tend to close the crack. In torsional fatigue failures, the crack is at a 45° angle to the axis 
of a notch-free shaft (or spring wire) under high nominal stress conditions (Figure 7.3). Finally, note 
that if cracks initiate at several circumferential points, the sudden-fracture zone is more centered.

Alternating torsion

High nominal stress Low nominal stress
Smooth SmoothNotched Notched

High nominal stress Low nominal stress
Smooth SmoothNotched Notched

Single deflection bending

Reversed bending

Rotating bending

Tension and tension-compression

FIGURE 7.3 Effect of state of stress on fatigue fracture of circular smooth and notched cross-sections under 
various loading conditions. (From Engel, L. and Klingele, H., An Atlas of Metal Damage, Hanser Verlag, 
Munich, Germany, 1981.)
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282 Mechanical Engineering Design

7.3  FATIGUE TESTS

To determine the strength of materials under the action of fatigue loads, four types of tests are performed: 
tension, torsion, bending, and combinations of these. In each test, specimens are subjected to repeated 
forces at specified magnitudes while the cycles or stress reversals to rupture are counted. A widely used 
fatigue testing device is the R.R. Moore high-speed rotating-beam machine (Figure 7.4a). To perform a 
test, the specimen is loaded with a selected weight W. Note that turning on the motor rotates the speci-
men, however, not the weight. There are various other types of fatigue testing machines [3]. A typical 
rotating-beam fatigue testing machine has an adjustable-speed spindle, operating at speeds in ranges of 
500–10,000 rpm. The device can apply a moment up to 22.6 N · m to the specimen.

7.3.1  reversed Bending test

In the rotating-beam test, the machine applies a pure bending moment to the highly polished, so-
called “mirror finish” specimen of a circular cross-section (Figure 7.4b). As the specimen rotates 
at a point on its outer surface, the bending stress varies continuously from maximum tension to 
maximum compression. This fully or completely reversed bending stress can be represented on the 
stress S-cycles N axes by the curves of Figure 7.4c. It is obvious that the highest level of stress is at 
the center, where the smallest diameter is about 7.5 mm. The large radius of curvature avoids stress 

(b)
R = 250 mm (10 in.)

Polished surface
End

7.62 mm
(0.300 in.)

Number of cycles
–S

N

+S

St
re

ss

0
0.5

(c)

1.0 1.5

(a)

Fulcrum

Bearing housing
Specimen

W/2 W/2

Flexible coupling Counter

Motor

FIGURE 7.4 Bending fatigue: (a) schematic of the R.R. Moore rotating-beam fatigue testing machine, 
(b) standard round specimen, and (c) completely reversed (sinusoidal) stress.
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concentration. Various standard types of fatigue specimens are used, including those for axial, tor-
sion, and bending stresses described in the ASTM manual on fatigue testing.

In some fatigue testing machines, constant-speed (usually 1750 rpm) motors are used, which give 
the sinusoidal type, or fully reversed, cyclic stress variation shown in the figure. It takes about one-
half of a day to reach 106 cycles and about 40 days to reach 108 cycles on one specimen. A series of 
tests performed with various weights and using multiple specimens, carefully made to be nearly the 
same as possible, gives results of the fatigue data.

7.4  S–n DIAGRAMS

Fatigue test data are frequently represented in the form of a plot of fatigue strength S or completely 
reversed stress versus the number of cycles to failure or fatigue life N with a semilogarithmic scale, 
that is, S against log N. Sometimes data are represented by plotting S versus N or log S versus log N. 
Inasmuch as fatigue failures originate at local points of relative weakness, usually the data contain 
a large amount of scatter. In any case, an average curve, tending to conform to a certain generalized 
pattern, is drawn to represent the test results.

Figure 7.5 shows two typical S–N diagrams corresponding to rotating-beam tests on a series 
of identical round steel and aluminum specimens subjected to reversed flexural loads of different 
magnitude. As may be seen from the figure, when the applied maximum stress is high, a relatively 
small number of cycles cause fracture. Note that, most often, fatigue data represent the mean values 
based on a 50% survival rate (50% reliability) of specimens.

7.4.1  enduranCe limit and Fatigue strength

The endurance limit and fatigue strength are two important cyclic properties of the materials. The 
fatigue strength ( )′Sn , sometimes also termed endurance strength, is the completely reversed stress 
under which a material fails after a specified number of cycles. Therefore, when a value for the 
fatigue strength of a material is stated, it must be accompanied by the number of stress cycles. The 
endurance limit ( )′Se  or fatigue limit is usually defined as the maximum completely reversed stress 
a material can withstand indefinitely without fracture. The endurance limit is therefore stated with 
no associated number of cycles to failure.

7.4.1.1  Bending Fatigue Strength
For ferrous materials, such as steels, the stress where the curve levels off is the endurance limit 
( )′Se  (Figure 7.5). Note that the curve for steel displays a decided break or knee occurring before or 
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FIGURE 7.5 Fully reversed rotating-beam S–N curves for two typical materials.
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near 1 × 106 cycles. This value is often used as the basis of the endurance limit for steel. Beyond the 
point ( )′S Ne e, failure does not occur, even for an infinitely large number of loading cycles. At N = Nf 
cycles, rupture occurs at approximately static fracture stress Sf ≈ 0.9Su, where Su is the ultimate 
strength in tension.

On the other hand, for nonferrous metals, notably aluminum alloys, the typical S–N curve 
indicates that the stress at failure continues to decrease as the number of cycles increases 
(Figure 7.5). That is, nonferrous materials do not show a break in their S–N curves, and as a 
result, a distinct endurance limit cannot truly be specified. For such materials, the stress cor-
responding to some arbitrary number of 5(108) cycles is commonly assigned as the endurance 
strength, ( )′Sn .

It is necessary to make the assumption that most ferrous materials must not be stressed above 
the endurance limit ( )′Se , if about 106 or more cycles to failure is required. This is illustrated in 
Figure 7.6, presenting test results for wrought steels having ultimate strength Su < 200 ksi. Note the 
large scatter in fatigue life N corresponding to a given stress level and the small scatter in fatigue 
stress corresponding to a prescribed life. The preceding is typical of fatigue strength tests. The 
figure also depicts that samples run at higher reversed stress levels break after fewer cycles, and 
some (labeled in the dotted circle) do not fail at all prior to their tests being stopped (here at 107 
cycles). The data are bracketed by solid lines. Interestingly, at the lower bound of the scatter band, 
the endurance limit can be conservatively estimated as 0.5Su for design purposes. We mention that, 
for most wrought steels, the endurance limit varies between 0.45 and 0.60 of the ultimate strength.

7.4.1.2  Axial Fatigue Strength
Various types of fatigue servohydraulic testing machines have been developed for applying fluctu-
ating axial compression. A specimen similar to that used in static tensile tests (see Section 2.3) is 
used. The most common types apply an axial reversed sinusoidal stress as shown in Figure 7.4c. 
A comparison of the strengths obtained for uniaxial fatigue stresses and bending fatigue stresses 
indicates that, in some cases, the former strengths are about 10–30% lower than the latter strengths 
for the same material [7]. Data for completely reversed axial loading test on AISI steel (Su = 125 ksi) 
are shown in Figure 7.7. Observe the slope at around 103 cycles and the change to basically no slope 
at about 106 cycles corresponding to the endurance limit ( )′Se .

7.4.1.3  Torsional Fatigue Strength
A limited number of investigations have been made to determine the torsional fatigue strengths of 
materials using circular or cylindrical specimens subjected to complete stress reversal. For ductile 
metals and alloys, it was found that the torsional fatigue strength (or torsional endurance limit) for 
complete stress reversal is about equal to 0.577 times the fatigue strength (or endurance limit) for 
complete bending stress reversal [8].
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FIGURE 7.6 Fully reversed rotating-beam S–N curve for wrought steels with superimposed data points [6].
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For brittle materials, the ratio of the fatigue strength in reversed bending to reversed torsion is 
higher and may approach the value of 1. The failure points for reversed bending and reversed torsion 
in biaxial-stress tests are similar to that for static loading failure (e.g., Figure 6.10). We conclude 
therefore that the relationship between torsional strength and bending strength in cyclic loading is 
the same as in the static loading case.

7.4.2  Fatigue regimes

The stress-life (S–N) diagrams indicate different types of behavior as the cycles to failure increase. 
Two essential regimes are the low-cycle fatigue (1 < N < 103) and the high-cycle fatigue (103 ≤ N). 
Note that there is no sharp dividing line between the two regions. In this text, we assume high-cycle 
fatigue starting at around N = 103 cycles. The infinite life begins at about 106 cycles, where failures 
may occur with only negligibly small plastic strains. The finite life portion of the curve is below 
about 107 cycles. The boundary between the infinite life and finite life lies somewhere between 106 
and 107 cycles for steels, as shown in Figure 7.7. For low-cycle fatigue, the stresses are high enough 
to cause local yielding.

A fracture mechanics approach is applied to finite life problems in Section 7.14. We use the 
stress-life data in treating the high-cycle fatigue of components under any type of loading. For fur-
ther details, see [5, 10], which also provide discussion of the strain-life approach to fatigue analysis.

7.5  ESTIMATING THE ENDURANCE LIMIT AND FATIGUE STRENGTH

Many criteria have been suggested for interpreting fatigue data. No correlation exists between the 
endurance limit and such mechanical properties as yield strength and ductility. However, experi-
ments show that the endurance limit, endurance strength, endurance limit in shear, and ultimate 
strength in shear can be related to the ultimate strength in tension.

Experimental values of ultimate strengths in tension Su and shear should be used if they are 
available (see Appendix B). Recall from Section 2.10 that Su can be estimated from a nondestructive 
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hardness test. For reference purposes, Table 7.1 presents the relationships among the preceding 
quantities for a number of commonly encountered loadings and materials [9, 11]. Steel product 
manufacturers customarily present stress data of this kind in terms of the ultimate tensile strength, 
because Su is the easiest to obtain and most reliable experimental measure of part strength.

If necessary, the ultimate strength of a steel can be estimated by Equation (2.22) as Su = 3500 Hb 
in MPa or Su = 500HB in ksi. Here HB denotes the Brinell hardness number (Bhn). It should be noted, 
however, that Equation (7.1) can be relied on only up to Bhn values of about 400. Test data show 
that the endurance limit ( )′Se  may or may not continue to increase for greater hardness, contingent 
on the composition of the steel [11].

In the absence of test data, the values given in the table can be used for preliminary design 
calculations. The relations are based on testing a polished laboratory specimen of a fixed size and 
geometric shape and on a 50% survival rate. Therefore, these data must be modified by those factors 
adversely affecting results determined under laboratory conditions, discussed in the next section.

7.6  MODIFIED ENDURANCE LIMIT

The specimen used in the laboratory to determine the endurance limit is prepared very carefully and 
tested under closely controlled conditions. However, it is unrealistic to expect the endurance limit of a 
machine or structural member to match the values obtained in a laboratory. Material, manufacturing, 
environmental, and design conditions influence fatigue. Typical effects include the size, shape, and 

TABLE 7.1
Approximate Fatigue Strength of the Specimens for Fully Reversed Loads
Reversed bending

Steels ( )′ = .S S0 5e u [Su < 1400 MPa (200 ksi)] (7.1)

( )( )′ =S 700 MPa 100 ksie [Su ≥ 1400 MPa (200 ksi)]

Irons ( )′ = .S S0 4e u [Su < 400 MPa (60 ksi)] (7.2a)

( ) ( )′ =S 160 MPa 24 ksie [Su ≥ 400 MPa (60 ksi)]

Aluminums ( )′ = .S S0 4n u [Su < 330 MPa (48 ksi)] (7.2b)

( )( )′ =S 130 MPa 19 ksin [Su ≥ 330 MPa (48 ksi)]

Copper alloys ( )′ = .S S0 4n u [Su < 280 MPa (40 ksi)] (7.2c)

( )( )′ =S 100 MPa 14 ksin [Su ≥ 280 MPa (40 ksi)]

Axial loading

Steels ( )′ = .S S0 45e u
(7.3)

Torsional loading

Steels ( )′ = .S S0 29es u

Irons ( )′ = .S S0 32es u

(7.4)

Copper alloys ( )′ = .S S0 22es u

Also

Steels Sus = 0.67 Su (7.5a)

Sys = 0.577Sy (7.5b)

Notes:  ′Se , endurance limit; ′Ses, endurance limit in shear; Su, ultimate tensile strength; Sy, yield strength 
in tension; Sys, yield strength in shear; Sus, ultimate strength in shear; ′Sn, endurance strength.
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287Fatigue Failure Criteria

composition of the material; heat treatment and mechanical treatment; stress concentration; residual 
stresses, corrosion, and temperature; speed and type of stress; and life of the member [3].

To account for the most important of these effects, various endurance limit modifying factors are 
used. These empirical factors, when applied to steel parts, lead to results of good accuracy, because 
most of the data on which they are based are obtained from testing steel specimens. The corrected 
or modified endurance limit, also referred to as the endurance limit, representing the endurance 
limit of the mechanical element, is defined as follows:

 ( )= ′/S C C C C K S1e f r s t f e (7.6)

where
Se = the modified endurance limit

′Se = the endurance limit of the test specimen
Cf = the surface finish factor
Cr = the reliability factor
Cs = the size factor
Ct = the temperature factor
Kf = the fatigue stress-concentration factor

This working equation for the endurance limit is extremely important in fatigue problems. It should 
be used when actual fatigue test data that pertain closely to the particular application are not avail-
able. Equation (7.6) can be applied with great confidence to steel components, since the data on 
which correction factors rely usually come from testing steel specimens.

Recall from Section 7.4 that nonferrous materials show no break in their S–N curves: hence, 
a definite endurance limit of a test specimen cannot be specified. For these materials, the fatigue 
strength ′Sn  replaces ′Se in Equation (7.6). Likewise, for the case of reversed torsion loading, the 
modified endurance limit in shear Ses and endurance limit in shearing test specimen ′Ses supersede Se 
and ′Se, respectively, in the equation.

7.7  ENDURANCE LIMIT REDUCTION FACTORS

The endurance limit’s modifying or reduction factors must be used in design applications with great 
care, since the available information is related to specific specimens and tests. Only limited data are 
available for material strength in severe environments. Manufacturing processes can have significant 
effects on fatigue life characteristics. Most of the miscellaneous factors affecting the endurance limit, 
such as heat treatment, corrosion, mechanical surface treatment, metal spraying, residual stresses, and 
welding, have no quantitative values. Random variations occur in these factors, which are experimen-
tally determined. The values assigned depend on the designer’s experience and judgment.

Corrosion fatigue is a complicated action, not yet entirely rationalized, but some experiments 
show its severity. Corrosion from water and acids may reduce the endurance limit to a very low 
value. The small pits that form on the surface act as stress raisers (Section 8.2). Based on empirical 
data, for carbon and low-carbon steels in freshwater, Equation (7.1) should be changed to

 ( )′ =S 100 MPa 15 ksie  (a)

The only chromium and stainless steels retain considerable strength in water, since the alloying 
elements provide some corrosion protection. Most other material operating environments also have 
lowered fatigue strength.

The endurance limit modifying factors are nearly 1.0 for bending loads under 103 cycles. They 
increase progressively in some manner with the increase in the number of cycles. In the following 
brief discussion, some representative or approximate values for reduction factors are presented. 
These values are abstracted from [7–9].
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7.7.1  surFaCe Finish FaCtor

Fatigue strength is sensitive to the condition of the surface, because the maximum stresses occur here 
in bending and torsion. As already noted, the rotating-beam specimen is polished to a mirror finish to 
preclude surface imperfections serving as stress raisers; rougher finishes lower the fatigue strength.

The surface finish factor Cf, which depends on the quality of the finish and tensile strength, may 
be expressed in the form

 =C ASf u
b (7.7)

where the ultimate strength Su is in either MPa or ksi. Table 7.2 presents the values of factor A and 
exponent b for a variety of finishes applied to steels. We observe from Equation (7.7) that (since 
b < 0) the values of Cf decrease with increases in tensile strength Su. The surface factor for mirror-
polish finish steels equals approximately 1, Cf = 1.

Equation (7.7) has the advantage of being computer programmable and eliminating the need to 
refer to charts such as Figure 7.8. Note that the surface conditions in this figure are poorly defined 

TABLE 7.2
Surface Finish Factors cf

Surface Finish

A

MPa ksi b

Ground 1.58 1.34 –0.085

Machined or cold drawn 4.51 2 7 –0.265

Hot rolled 57.7 14 4 –0.718

Forged 272.0 39.9 –0.995

Ultimate strength, Su (MPa)

Hardness (Bhn)

Su
rfa

ce
 fa

ct
or

, C
f

420
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
120 160 200 240 280 320 360 400 440 480 520

560 700 840 980 1120 1260 1400 1540 1680 1820

Corroded  in salt water

As forged

Hot rolled

Machined

Fine ground or
commercially polished

Corroded in
tap water

Mirror polished

FIGURE 7.8 Surface factors for various finishes on steel [6].
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(e.g., the machined surface texture or degree of roughness) Interestingly, Figure 7.8 shows that cor-
rosive environments drastically reduce the endurance limit.

Table 7.2 may also be applied to aluminum alloys and other ductile metals with caution. It is 
important to mention that testing of actual parts under service loading conditions must be done in 
critical applications. The surface factor for ordinary cast irons is also taken to be approximately 1, 
Cf = 1, since their internal discontinuities dwarf the effects of a rough surface.

7.7.2  reliaBility FaCtor

The factor of reliability Cr accounts for material variation in fatigue data and depends on the sur-
vival rate. It is defined by the following commonly used formula:

 = − .C z1 0 08r  (7.8)

The quantity z is the number of standard deviations, discussed in Section 6.14.
For a required survival rate or percent reliability, Figure 6.16 gives the corresponding z, and then 

using Equation (7.8), we calculate a reliability factor. Table 7.3 presents a number of values of the Cr. 
Observe that a 50% reliability has a factor of 1, and the factor reduces with increasing survival rate.

7.7.3  size FaCtor

The influence of size on fatigue strength can be a significant factor. The endurance limit decreases 
with increasing member size. This is owing to the probability that a larger part is more likely to have 
a weaker metallurgical defect at which a fatigue crack will start. There is notable scatter in reported 
values of the size factor Cs. Various researchers have suggested different formulas for estimating it.

The approximate results for bending and torsion of a part of diameter D may be stated as follows:

 
( )
( ) ( )

=
< ≤ < ≤





> >









. .

. .
C

D D

D D

0 85 13 mm 50 mm
1
2

2 in

0 70 50 mm 2 in
s  (7.9)

This applies to cylindrical parts, and for members of other shapes, few consistent data are available. 
For a rotating part of a rectangular cross-section of width b and depth h, use the following equation [9]:

 ( )= . /D bh0 8 1 2 (7.10)

Prudent design would suggest employing a factor Cs = 0.7, lacking other information. Note that, for 
axial loading, there is no size effect: Cs = 1.

TABLE 7.3
Reliability Factors
Survival Rate (%) Cr

50 1.00

90 0.89

95 0.87

98 0.84

99 0.81

99.9 0.75

99.99 0.70
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7.7.4  temPerature FaCtor

Temperature effects vary with the material in most cases, and values of ultimate strength should 
be modified before determining the endurance limit ′Se in Equation (7.6). Alternatively, for steels, 
a temperature factor Ct can be approximated at moderately high temperatures by the formula [7]

 C

T

T T

T T

1 450 C 840 F

1 0 0058 450 450 C 550 C

1 0 0032 840 840 1020 F

t

( )
( )
( )

=

≤ ° °

− − ° < ≤ °

− − ° < ≤ °










.

.

 (7.11)

A more accurate estimation of Ct is presented in [10, 11]. Unless otherwise specified, we assume 
throughout the text that the operating temperature is normal, or room temperature, and take 
Ct = 1.

7.7.5  Fatigue stress-ConCentration FaCtor

As pointed out earlier, the stress concentration is a very significant factor in failure by fatigue. For 
dynamic loading, the theoretical stress-concentration factor Kt (see Section 3.13) needs to be modi-
fied on the basis of the notch-sensitivity of the material. Notch is a generic term in this context and 
can be a hole, a groove, or a fillet. The fatigue stress-concentration factor may be defined as

 = −
K

Endurance limit of notch free specimen
Endurance limit of notch free specimen

f  (7.12)

The tests show that Kf is often equal to, or less than, the Kt, owing to internal irregularities in the 
material structure. Therefore, even unnotched samples may suffer from these internal notches. An 
extreme case in point is gray cast iron.

The foregoing situation is dealt with by using a notch factor. The two stress-concentration factors 
are related by the ratio of the notch-sensitivity q:

 = −
−

q
K

K

1

1
f

t

 (7.13a)

This expression can be written in the form

 ( )= + −K q K1 1f t  (7.13b)

We observe from Equation (7.13) that q varies between 0 (giving Kf = 1) and 1 (giving Kf = Kt). 
Generally, the more ductile the material response, the less notch-sensitive it is. Materials showing 
brittle behavior are more notch-sensitive. Obviously, notch-sensitivity also depends on the notch 
radius. Contrary to Kt, as notch radii approach 0, the q decreases and approaches 0.

Figures 7.9a and 7.9b provide approximate data for steels and 2024 aluminum alloys subjected 
to reversed bending, reversed axial loads, and reversed torsion [5, 8]. Note that the actual test data 
from which the curves were plotted exhibit a large amount of scatter. So, it is always safe to use 
Kf = Kt when there is doubt about the true value of q. The curves show that q is not far from unity for 
large notch radii. For larger notch radii, use the values of q corresponding to r = 0.16 in. (4 mm). In 
concluding this discussion, we note that the notch-sensitivity of a cast iron is very low, 0 < q ≤ 0.20, 
depending on tensile strength. If one is uncertain, it would be conservative to use a value q = 0.20 
for all grades of cast iron.
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291Fatigue Failure Criteria

Example 7.1: Endurance Limit of a Torsion Bar

A round torsion bar machined from steel is under reversed torsional loading. Because of the design of 
the ends, a fatigue stress-concentration factor Kf exists. Estimate the modified endurance limit.

Given: The diameter of the bar is d = 40.625 mm and Kf = 1.2. The operating temperature is 500°C 
maximum.

Assumption: Reliability is 98%.

Design Decision: The bar is made of AISI 1050 cold-drawn steel.

Solution

From Table B.3, we find the ultimate strength in tension as Su = 690 MPa. Then, applying Equation (7.4), 
the endurance limit of the test specimen is

 ( )′ = = =. .S S0 29 0 29 690 200 MPaes u  

By Equation (7.7) and Table 7.2, the surface finish factor is

4.0

0
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FIGURE 7.9 Fatigue notch-sensitivity curves for (a) bending and axial loads and (b) torsion [8].
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 ( )= = =−. ..C AS 4 5 690 0 80f u
b 0 265  

The reliability factor corresponding to 98% is Cr = 0.84 (Table 7.3). Using Equation (7.9), the size factor 
Cs = 0.85. Applying Equation (7.11),

 ( )= − − =. .C 1 0 0058 500 450 0 71t  

Hence, the endurance limit for design is found to be

 

( )
( )( )( )( )( )( )

= ′

=

=

/

. . . . / .

.

S C C C C K S1

0 80 0 84 0 85 0 71 1 1 2 200

67 6 MPa

es f r s t f es

 (b)

Example 7.2: Endurance Limit for a Stepped Shaft in Reversed Bending

Rework Example 7.1 for the condition that the critical point on the shaft is at a diameter change from d to 
D with a full fillet where there is reversed bending and no torsion, as shown in Figure 7.10.

Given: d = 40.625 mm, D = 46.875 mm, Su = 690 MPa.

Solution

We now have, by Equation (7.1), ( )′ = =.S 0 5 690 345 MPae . From the given dimensions, the full fillet 
radius is r = (46.875 – 40.625)/2 = 3.125 mm. Therefore,

 = = = =.
.

. , .
.

.r

d

D

d

3 125
40 625

0 08
46 875
40 625

1 15 

Referring to Figure C.9 in Appendix C, Kt = 1.7 For r = 3.125 mm and Su = 690 MPa, by Figure 7.9a, 
q = 0.82. Hence, through the use of Equation (7.13b),

 
( )

( )

= + −

= + − =. . .

K q K1 1

1 0 82 1 7 1 1 57

f t

 

The endurance limit, given by Equation (b) of Example (7.1), becomes

 

( )
( )( )( )( )( )( )

= ′

=

=

/

. . . . / .

.

S C C C C K S1

0 80 0 84 0 85 0 71 1 1 57 345

89 1 MPa

e f r s t f e

 

7.8  FLUCTUATING STRESSES

Any loads varying with time can actually cause fatigue failure. The type of these loads may vary 
greatly from one application to another. Hence, it is necessary to determine the fatigue resistance of 
parts corresponding to stress situations other than the complete reversals discussed so far.

M M
d

r

D

FIGURE 7.10 Example 7.2.
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A common fluctuating stress pattern consists of an alternating (usually sinusoidal) stress super-
imposed on a uniform mean stress (Figure 7.11a). This loading is typical for an engine valve spring 
that is preloaded at installation and then further compressed when the valve is opened. The case in 
which the mean stress is 0 is called fully or completely reversed stress (Figure 7.11b), discussed in 
Section 7.3. Figure 7.11c shows repeated stress, where the minimum value equals 0. Figure 7.11d 
shows pulsating stress, varying between 0 and the maximum value with each application of load, 
as on the teeth of gears. Note that the shape of the wave of the stress–time relation has no impor-
tant effect on the fatigue failure, so usually the relation is schematically depicted as a sinusoidal or 
sawtooth wave.

Irrespective of the form of the stress–time relation, the stress varies from a maximum stress σmax 
to a minimum stress σmin. Therefore, the definitions of mean stress and range or alternating stress 
are

 

( )

( )

σ = σ + σ

σ = σ − σ

max min

max min

1
2

1
2

m

a

 (7.14)

Clearly, these components of the fluctuating stress are also independent of the shape of the stress–
time curve. Two ratios can be formed:

 = σ
σ

= σ
σ

,min

max
R A a

m

 

Here
R is the stress ratio
A represents the amplitude ratio

When the stress is fully reversed (σm = 0), we have R = 1 and A = ∞.

O

O
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t

t

Stress

(a) (b)

(c) (d)

Stress

Stress

σm

σm

σm = 0

σmin

σmin

σmax

σmax

σa

σa

σa

O t

Stress

σm
σmax

σa

σmax

FIGURE 7.11 Some cyclic stress–time relations: (a) fluctuating, (b) completely reversed, (c) repeated, and 
(d) pulsating.
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The mean stress is analogous to a static stress, which may have any value between σmax and σmin. 
We see that the presence of a mean stress component can have a significant effect on the fatigue life. 
The alternating stress represents the amplitude of the fluctuating stress. We have occasion to apply 
the subscripts (a and m) of these components to shear stresses as well as normal stresses.

7.9  THEORIES OF FATIGUE FAILURE

To predict whether the state of stress at a critical point in an element would result in failure, a fatigue 
criterion based on the mean and alternating stresses is used. Such a theory utilizes static and cyclic 
material characteristics. Table 7.4 presents frequently employed fatigue failure theories or criteria, 
also called the mean stress-alternating stress relations [6, 12]. Equations as written apply only to 
materials with an endurance limit; either Se, or ′Se  can be used in these relationships. For a finite life 
(a given number of cycles), the corresponding fatigue strength Sn may be substituted for the endur-
ance limit.

The criteria in the table together with the given material properties form the basis for practical fatigue 
calculations for members subjected to a simple fluctuating loading. Note that the modified Goodman 
criterion is algebraically more involved, as there are two inequalities to check rather than one in the 
other relations. In the case of combined fluctuating loading, the static failure theories are modified 
according to a mean stress-alternating stress relation listed in Table 7.4, as will be shown in Section 7.12.

Figure 7.12 shows the foregoing relationships, plotted on mean stress (σm) versus alternating 
stress (σa) axes. A fatigue failure diagram of this type is usually constructed for analysis and design 
purposes; it is easy to use, and the results can be scaled-off directly. For each criterion, points on or 
inside the respective line guard against failure. The mean stress axes of the diagrams have the frac-
ture strength Sf, ultimate strength Su, and yield strength Sy. Clearly, the yield strength plotted on the 
ordinate as well as endurance limit in Figure 7.12b indicates that yielding rather than fatigue might 
be the criterion of failure. The yield line connecting Sy on both axes shown in the figure serves as a 
limit on the first cycle of stress.

7.10  COMPARISON OF THE FATIGUE CRITERIA

A comparison of the failure theories for fatigue may be made referring to Figure 7.12. We see from 
Figure 7.12a that the Gerber criterion leads to the least conservative results for fracture. The Gerber 

TABLE 7.4
Failure Criteria for Fatigue
Fracture Theory Goodman Gerber SAE

Equation σ + σ =
S S

1a

e

m

e

σ + σ





=
S S

1a

e

m

e

2 σ + σ =
S S

1a

e

m

f

Yield Theory Soderberg Modified Goodman

Equation σ + σ =
S S

1a

e

m

y

σ + σ =
S S

1a

e

m

u

σ
σ

= ≥ β






for a

m

σ + σ =
S

1a m

y

σ
σ

= ≤ β






for a

m

Notes: a, alternating; y, static tensile yield; m, mean; u, static tensile ultimate; 
e, modified endurance limit; f, fracture. Material constant, β = Se(Su − Sy)/
Su(Sy − Se).
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(parabolic) line is a good fit to experimental data, making it useful for the analysis of failed parts. 
The Goodman criterion is more conservative than the SAE criterion. For hard steels, both theories 
give identical solutions, since for brittle materials Su = Sf.

Figure 7.12b shows that the modified Goodman criterion resembles the Soderberg criterion, 
except that the former is slightly less conservative. Two line segments form the modified Goodman 
failure line, as shown in the figure. The 45° line segment implies failure when the maximum mean 
stress exceeds the yield strength. The modified Goodman line in particular is better for highly local-
ized yielding occurring in many machine parts. Note that the Soderberg theory eliminates the need 
to involve the yield line.

Recall from Section 7.1 that fatigue failures appear brittle, even if the material shows some 
ductility in a static tension test, as high stresses and yielding are localized near the crack. Thus, the 
Goodman criterion, which gives reasonably good results for brittle materials while giving conser-
vative values for ductile materials, is a realistic scheme for most materials. For most metals, the 
Soderberg relation also leads to conservative estimates. Both theories are in widespread use for 
mild steel. In this text, the Goodman criterion is used to derive readily the basic equations for the 
design and analysis of common components. The easy and quick graphical approach is applied for 
the modified Goodman criterion. The Soderberg line is employed less often.

Example 7.3: Allowable Fully Reversed Load of an Actuating Rod

A round rod is subjected to an axial tensile force Fm. Calculate the limiting value of the completely 
reversed load Fa that can be applied with a 10 mm eccentricity without causing fatigue failure at 106 
cycles.

Given: The diameter of the rod D = 40 mm and Fm = 110 kN.

Assumptions: The rod is made of ASTM-A36 steel having Sy = 200 MPa, Su = 400 MPa (Table B.1), and 
Sn = 210 MPa at 106 cycles.

Design Decisions: Apply the Soderberg and Goodman criteria.

Solution

The mean and maximum alternating stresses are

 
( )

σ = =
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=
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FIGURE 7.12 Fatigue diagrams showing various theories of failure: (a) fracture criteria and (b) yield criteria.
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( )

( )
σ = =

π
=. .

.
.M c

I

F
F

0 01 0 02

0 02 /4
1591 5a

a a
a4  

Soderberg criterion. Substituting these and the given numerical values into Table 7.4,

 
×

+ = =. . .F
F

1591 5
210 10

87 54
250

1 or 85 75 kNa
a6  

Goodman criterion. Similar to the preceding, we now have

 
×

+ = =. . .F
F

1591 5
210 10

87 54
400

1 or 103 1 kNa
a6  

Comment: According to the Goodman theory, the eccentric load that can be carried by the rod is thus 
about 17% larger than can be carried on the basis of the Soderberg theory.

7.11  DESIGN FOR SIMPLE FLUCTUATING LOADS

When tensile stress at a point occurs by an alternating stress σa and a mean stress as shown in 
Figure  7.11a, both these components contribute to failure. The failure line (Figure 7.12) is an 
approximate depiction of this effect. Usually, a fatigue theory of failure is not applied to problems 
where mean stress is negative.

As noted previously, the Goodman criterion may be used safely with almost any material for 
which the endurance limit Se and ultimate strength Su are known. For design purposes, these quanti-
ties are replaced by Se/n and Su/n, respectively, where n represents the factor of safety. In so doing, 
the Goodman criterion, given in Table 7.4, becomes

 
σ + σ −
S S n

1a

e

m

u

 (7.15)

where σa and σm are defined by Equation (7.14). We note that, if a stress concentration exists at the 
cross-section for which the stresses are computed, for ductile materials, it is commonly neglected as 
far as the mean stress is concerned (see Section 3.14). However, stress concentration must be taken 
into account for calculating the modified endurance limit Se from Equation (7.6).

The Goodman criterion, Equation (7.15), may be rearranged in the following convenient form:

 = σ + σS

n

S

S
u

m
u

e
a (7.16)

The right-hand side of this equation can then be considered the static equivalent of the fluctuating 
state of stress. Hence, we define the equivalent normal stress as

 σ = σ + σS

S
e m

u

e
a (7.17)

Although Equation (7.17) refers to normal stress, the development could have been made equally 
well for shear stress by replacing σ by τ. The equation for equivalent shear stress is then

 τ = τ + τS

S
e m

u

e
a (7.18)
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In this expression, it is assumed that

 ≈S

S

S

S
us

es

u

e

 (7.19)

because data for the ultimate strength in shear Sus and modified endurance limit in shear Ses are 
ordinarily not available. However, recall from Sections 7.4 through 7.6 that there are methods for 
estimating these quantities.

In some situations, a member is to withstand a given ratio of the alternating load to mean load. A 
solution may then readily be obtained if the ratio of alternating stress to mean stress can be deter-
mined from some known stress-load relationship. In such cases, it is suitable to recast Equation 
(7.16) into the form

 σ = σ
σ

+

/S n
S

S
1

m
u

a

m

u

e

 (7.20)

Once mean stress σm is obtained, the stress-load relationship is used to determine the required 
dimension of the element. For shear stress, the foregoing equation may be expressed as

 τ = τ
τ

+

/S n
S

S
1

m
us

a

m

u

e

 (7.21)

A reasonable design procedure ensures a significant safety factor against fatigue failure in the 
 material. For a fluctuating stress, by inversion of Equation (7.16), we express the factor of safety n 
as follows:

 =
σ + σ

n
S
S

S

u

m
u

e
a

 (7.22)

The equations for the safety factor become, with simple steady stress,

 =
σ

n
Su

m

 (7.23)

and with simple alternating stress,

 =
σ

n
Se

a

 (7.24)

It should be pointed out that Equations (7.15) through (7.23) could also be written on the basis of the 
Soderberg criterion by substituting Sy for Su.

7.11.1  design graPhs oF Failure Criteria

The graphical representations of the Soderberg, Goodman, and the modified Goodman theories 
are shown in Figure 7.13. Note that other criteria listed in Table 7.4 may be plotted similarly. The 
Soderberg failure line is drawn between the yield point and the endurance limit on mean stress-
range stress coordinates (Figure 7.13a). It is an approximate representation of the fatigue.

The safe stress line through any point A (σm, σa) is constructed parallel to the Soderberg line. 
This line is the locus of all sets of σm and σa stresses having a factor of safety n. Any point on or 
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below the safe line represents safe loading. The Goodman criteria are interpreted in a like manner 
(Figure 7.13b). The graphical approach permits rapid solution of the mean or range stress and pro-
vides an overview of the failure theory. Graphical solutions serve as a check to analytically obtained 
results.

The examples that follow illustrate the application of the Goodman criteria to the design of mem-
bers under a simple fluctuating loading.

Example 7.4: Design of a Cylindrical Pressure Vessel for Fluctuating Loading

A thin-walled cylindrical pressure vessel of diameter d is subjected to an internal pressure p varying 
continuously from pmin to pmax. Determine the thickness t for an ultimate strength Su, modified endur-
ance limit Se, and a safety factor of n.

Given: d = 1.5 m, pmin = 0.8 MPa, pmax = 4 MPa

  Sy = 300 MPa, Su = 400 MPa, Se = 150 MPa.

Design Decision: The Goodman theories, based on maximum normal stress and a safety factor of n = 2, 
are used.

Solution

The state of stress on the cylinder wall is considered to be biaxial (see Section 3.4). Maximum principal 
stress, that is, tangential stress, in the cylinder has the mean and range values

 σ = σ =,p r

t

p r

t
m

m
a

a  (a)

where

 ( ) ( )= + = + =. .p p p
1
2

1
2

4 0 8 2 4 MPam max min  

 ( ) ( )= − = − =. .p p p
1
2

1
2

4 0 8 1 6 MPaa max min  

Since stresses are proportional to pressures, we have

 
σ
σ

= = =.
.

p

p

1 6
2 4

2
3

a

m

a

m

 

Substitution of the given data into Equation (7.20) gives 400/2
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FIGURE 7.13 (a) Soderberg diagram and (b) Goodman diagrams
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 σ =
+

=/400 2
2
3

400
150

1
72 MPam  

Using Equation (a), we have

 
( )=

σ
= =.

t
p r 2 4 750

72
25 mmm

m

 

This is the minimum safe thickness for the pressure vessel.
Alternatively, a graphical solution of σm by the modified Goodman criterion is obtained by plotting 

the given data to scale, as shown in Figure 7.14. We observe from the figure that the locus of points 
representing σm and σa for any thickness is a line through the origin with a slope of 2/3. Its intersection 
with the safe stress line gives the state of stress σm σa for the minimum safe value of the thickness t. The 
corresponding value of the mean stresses is σm = 72 MPa.

Example 7.5: Safety Factor against Fatigue Failure of a Tensile Link

A tensile link of thickness t with two fillets is subjected to a load fluctuating between Pmin and Pmax 
(Figure 7.15). Calculate the factor of safety n for unlimited life based on the Goodman criterion.

Given: D = 120 mm, d = 80 mm, r = 16 mm, t = 15 mm,

  Pmin = 90 kN, Pmax = 210 kN.

Design Decisions: The link is made of steel with Su = 700 MPa. The fillets and adjacent surfaces are 
ground A reliability of 99.9% is desired.

Solution

The minimum cross-sectional area equals A = 80 × 15 = 1200 mm2. The maximum mean and range 
stresses are

σm
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Modified
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FIGURE 7.14 Example 7.4. Goodman criteria applied to design of pressure vessel.
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FIGURE 7.15 Example 7.5.
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( )

( )
( )

σ =
+

×
=−

210 90 10

2 1200 10
125 MPam

3

6
 

 
( )

( )
( )

σ =
−

×
=−

210 90 10

2 1200 10
50 MPaa

3

6
 

Referring to Figure C.1, for D/d = 1.5 and r/d = 0.2, we obtain Kt = 1.72. Inasmuch as the given 16 mm 
fillet radius is large, we use the value of the notch-sensitivity for the steel having Su = 700 MPa, corre-
sponding to r = 4 mm in Figure 7.9a; that is, q = 0.85. Hence, Kf = 1 + 0.85(1.72 − 1) = 1.61.

For axial loading, there is no size factor, Cs = 1.0. Corresponding to a round surface finish, from 
Equation (7.7) and Table 7.2,

 
( )

( )

=

= =−. ..

C A S

1 58 700 0 91

f u
b

0 085
 

By Table 7.3, for 99.9% material reliability, Cr = 0.75. The temperature is not elevated, Ct = 1.0. The 
modified endurance limit, using Equation (7.3) and Equation (7.6), is

 

( )( )

( )( )( )( )( )( )

=

= ×

=

/ .

. . . . / . .

.

S C C C C K S1 0 45

0 91 0 75 1 0 1 0 1 1 61 0 45 700

133 5 MPa

e f r s t f u

 

The factor of safety, applying Equation (7.22), is therefore

 
( )

=
+

=

.

.n
700

125
700

133 5
50

1 81 

Comment: If the load is well controlled and there is no impact, this factor guards the link against the 
fatigue failure.

Case Study 7.1 Camshaft Fatigue Design of Intermittent-Motion Mechanism

Figure 7.16 illustrates a rotating camshaft of an intermittent-motion mechanism in its peak lift 
position. The cam exerts a force P on the follower, because of a stop mechanism (not shown), 
only during less than half a shaft revolution. Calculate the factor of safety for the camshaft 
according to the Goodman criterion.

Given: The geometry is known and the shaft supports a pulsating force with Pmax and Pmin. The 
material of all parts is AISI 1095 steel, carburized on the cam surface and oil quenched and 
tempered (OQ&T) at 650°C. The fillet and adjacent surfaces are fine ground.

Data:

 = =. ,P P7 2 kN 0max min  

 ( )= =, .S S896 MPa 552 MPa from Table B 4u y  

 = =, ,L L70 mm 80 mm1 2  
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 = =. , . ,L L12 5 mm 37 5 mm3 4  

 ( )= + + = ,L L L L
1
2

95 mm5 1 3 4  

 ( )= + + = ,L L L L
1
2

105 mm6 2 3 4  

 = =, ,D D25 mm 40 mms c  

 = =. , . ,r r37 5 mm 2 5 mmc  

 ( ) ( )= π = = −/ / . .I c D 32 1 534 10 mm 1 534 10 ms
3 3 3 6 3 

Assumptions:

 1. Bearings act as simple supports.
 2. The operating temperature is normal.
 3. The torque can be regarded negligible.
 4. A material reliability of 99.99% is required.

Solution

See Figures 7.16 and 7.17.
Alternating and mean stresses. The reactions at the supports A and B are determined by the 

conditions of equilibrium as

 

( )

=
+

= =. .

R
L

L L
P

105
200

7 2 3 78 kN

A
6

5 6
max

 

 = − = .R P R 3 42 kNB Amax  

and noted in Figure 7.17a.

Follower
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Shaft

Shaft
rotationrc

DsDs
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L3 L4
Pmax

Pmax
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F

E

B

rr

Df

Cam

Dc L5 L6

L2L1

FIGURE 7.16 Layout of camshaft and follower of an intermittent-motion mechanism.
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The plot of the moment diagram, from a maximum moment of = 3800 × 0.105 = 399 N · m, is 
shown in Figure 7.17b. We observe that the moment on the right side

 
= −





= = ⋅

M R L L
1
2

3420(0.08625) 295 N m

B 6 4
 

is larger than (2562 lb · in.) at the left side. We have

 ( )σ = = =

σ =

−/ .
.max

min

M

I c

295

1 534 10
192 3 MPa

0

6
 

Equation (7.14) results in

 σ = σ = =. .192 3
2

96 2 MPaa m  

Stress-concentration factors. The step in the shaft is asymmetrical. Stress at point E is influ-
enced by the radius r = 37.5 mm (equivalent to a diameter of 75 mm) and at point F by the 
200 mm cam radius (equivalent to Dc = 40 mm diameter). Hence, we obtain the following values:

At point E,

 = = = =. . , . ,r

d

D

d

2 5
25

0 1
75
25

3 0  

Kt = 1.8 (from Figure C.9)
At point F,

 = = = =. . , . ,r

d

D

d

2 5
25

0 1
40
25

1 6  

7.2 kN

RA = 3.78 kN

x

RB =3.42 kN

37.5 mm

359.1

(a)

(b)

76.25 mm 86.25 mm

95 mm 105 mm.

M
(N ∙ m)

FIGURE 7.17 Diagrams of camshaft shown in Figure 7.16: (a) load and (b) bending moment.
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 ( )= .K 1 7 from Figure C.9t  

For r = 2.5 mm and Su = 896 MPa, by Figure 7.9a, q = 0.86. It follows from Equation (7.13b) that

 ( ) ( )= + − =. . .K 1 0 86 1 8 1 1 69f E
 

 ( ) ( )= + − =. . .K 1 0 86 1 7 1 1 60f F
 

Comments: Note that the maximum stress in the shaft is well under the material yield strength. 
The stress concentration at E is only 5% larger than that at F. Therefore, fatigue failure is 
expected to begin at point F, where the stress pulses are tensile and compressive at E.

Modified endurance limit. Through the use of Equation (7.6), we have

 =






′S C C C C
K

S
1

e f r s t
f

e  

where
Cf = 1.58(896)−0.085 = 0.886 (from Table 7.2)
Cr = 0.75 (by Table 7.3)
Cs = 0.85 (from Equation (7.9))
Ct = 1.0 (room temperature)
Kf = 1.6

( )′ = =.S 0 5 896 448 MPae  (by Equation (7.1))

Hence,

 ( )( )( )( ) ( )= 



 =. . . .

.
.S 0 886 0 75 0 85 1 0

1
1 6

448 158 2 MPae  

Factor of safety. The safety factor guarding against fatigue failure at point F is determined 
using Equation (7.22):

 
( )

=
σ + σ

=
+

=
.

.
.

.n
S
S

S

896

96 2
896

158 2
96 2

1 4u

m
u

e
a

 

Comments: If the load is properly controlled so that there is no impact, the foregoing factor 
seems well sufficient. Inasmuch as lift motion is involved, the deflection needs to be checked 
accurately by FEA. Case Study 8.1 analyzes contact stresses between cam and follower.

7.12  DESIGN FOR COMBINED FLUCTUATING LOADS

In numerous practical situations, structural and machine components are subject to combined fluc-
tuating bending, torsion, and axial loading, for example, propeller shafts, crankshafts, and airplane 
wings. Often, under conditions of a general cyclic state of stress, static failure theories are modified 
for analysis and design. In this section, we consider the maximum shear stress and maximum distor-
tion energy theories associated with the Goodman criterion. Note that the expressions to follow can 
also be written based on the Soderberg criterion, substituting the yield strength Sy for the ultimate 
strength Su, as required.
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For combined stresses, we treat the fatigue effect first by defining equivalent values of each 
principal stress. We designate the mean component of σ1a owing to a steady loading by σ1m and the 
alternating component due to the reversed load by σ1a. Based on the Goodman relation, the equiva-
lent principal stresses are then

 ( )σ = σ + σ = , ,S

S
i 1 2 3ie im

u

e
ia  (7.25)

These equivalent values are then used in the expressions of static failure criteria applied to fatigue 
loading.

Equation (6.6), with Su replacing the quantity Sy used thus far, and Equation (7.25) lead to the 
maximum shear stress theory applied to fatigue loading. Therefore,

 ( ) ( )= σ − σ = σ − σ + σ − σS

n

S

S
u

e m m
u

e
a a1 3 1 3 1 3  (7.26)

Clearly, it is assumed that this modified static yield failure theory applies to brittle behavior as well. 
For the special case, where σy = σz = τyz = τxz = 0, Equation (6.11) results in

 ( )= σ + τ
/S

n
4u

x xy
e

2 2 1 2
 (7.27)

Introducing the equivalent stresses σe and τe from Equations (7.17) and (7.18) for σx and τxy, respec-
tively, into Equation (7.27), we have the maximum shear stress theory incorporated with the 
Goodman criterion:

 σ + σ





+ τ + τ

















/
S

n

S

S

S

S
4u

xm
u

e
xa xym

u

e
xya

2 2 1 2

 (7.28)

Similarly, Equation (7.13a) and Equation (7.25) give the maximum distortion energy theory applied 
to fatigue loading as

 { }( ) ( )( )= σ − σ + σ − σ + σ − σ 
/S

n

1
2

u

e
1 2

2
2 3

2
3 1

2 1 2
 (7.29)

The 2D equivalent (σ3 = 0) is

 ( )= σ − σ σ + σ
/S

n
u

e
1
2

1 2 2
2 1 2

 (7.30)

For the special case in which σy = σz = τyz = τxz = 0 using Equation (6.16),

 ( )= σ + τ
/S

n
3u

x xy
e

2 2 1 2
 (7.31)

Substitution of the equivalent stresses σe for σx and τe for τxy into this expression gives the maximum 
energy of distortion theory combined with the Goodman criterion:

 σ + σ





+ τ + τ

















/
S

n

S

S

S

S
3u

xm
u

e
xa xym

u

e
xya

2 2 1 2

 (7.32)
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7.12.1  alternative derivation

Equivalent alternating stress/equivalent mean stress fatigue criteria are represented in Table 7.4, 
replacing σa and σm with σea and σem. In so doing, the Goodman criterion, for example, becomes

 = σ + σ
n S S

1 ea

e

em

u

 (7.33)

The static failure theories may also be modified, substituting a and m in the expressions given in 
Sections 6.6 through 6.12. So, the von Mises stresses for the alternating and mean components for 
triaxial and biaxial states of stress are obtained by applying Equation (6.13) and Equation (6.15), 
respectively. In a like manner, relations for the special case in which σy = σz = τyz = τxy = 0, through the 
use of Equation (6.16), may be written as

 ( ) ( )σ = σ + τ σ = σ + τ,/ /
3 3ea xa xya em xm xym

2 2 1 2 2 1 2
 (7.34)

Carrying Equation (7.34) into Equation (7.33) yields the energy of distortion theory associated with 
the Goodman relation in the following alternate form:

 ( ) ( )= σ + τ + σ + τ
/ /

n S S

1 1
3

1
3

e
xa xya

u
xm xym

2 2 1 2 2 1 2
 (7.35)

in which n represents the factor of safety.
In conclusion, we note that Equation (7.28) and Equation (7.32) or Equation (7.35) can be 

employed to develop a series of design formulas for a factor of safety guarding against fatigue 
failure [12, 13]. Their application to the design of transmission shafts is illustrated in the next 
chapter. Obviously, fatigue analysis should be considered wherever a simple or combined fluctuat-
ing load is present. Springs, for example, frequently fail in fatigue. Chapter 14 treats spring design 
by using the Soderberg and Goodman criteria. We discuss preloaded threaded fasteners in fatigue 
in Section 15.12.

7.13  PREDICTION OF CUMULATIVE FATIGUE DAMAGE

Machine and structural members are not always subjected to the constant stress cycles, as shown in 
Figure 7.11. Many parts may be under different severe levels of reversed stress cycles or  randomly 
varying stress levels. Examples include automotive suspension and aircraft structural compo-
nents  operating at stress levels between the fracture strength Sf and endurance limit ′Se, say, S 
(Figure 7.5). If the reversed stress is higher than the endurance limit, S replaces ′Se in Equation (7.6) 
and the design may again be based on the formulas developed in the preceding section. However, 
when a machine part is to operate for a finite time at higher stress, the cumulative damage must be 
examined.

It is important to note that predicting the cumulative damage of parts stressed previously to the 
endurance limit is at best a rough procedure. This point is demonstrated by the typical scatter band 
depicted in Figure 7.6 for completely reversed loads. Clearly, for parts subjected to randomly vary-
ing loads, the damage prognosis is further complicated.

7.13.1  miner’s Cumulative rule

The simplest, most widely accepted criterion used to explain cumulative fatigue damage is called 
the Miner’s rule. The procedure, also known as the linear cumulative damage rule, is expressed in 
the form
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 + + =n

N

n

N
11

1

2

2

 (7.36)

where
 n represents the number of cycles of higher stress S applied to the specimen
 N is the life (in cycles) corresponding to S, as taken from the appropriate S–N curve

Miner’s equation assumes that the damage to the material is directly proportional to the number 
of cycles at a given stress. The rule also presupposes that the stress sequence does not matter and 
the rate of damage accumulation at a stress level is independent of the stress history. These have 
not been completely verified in tests. Sometimes specifications are used in which the right side of 
Equation (7.36) is taken to be between 0.7 and 2.2.

A typical set of plots of S versus N, for different types of surfaces, is shown in Figure 7.18 [5, 
6]. The values of N1, N2, and so on may be obtained from such curves. Employing these values, 
Equation (7.36) becomes the design criterion. The use of Miner’s rule is illustrated in the solution 
of the following numerical problem.

Example 7.6: Cumulative Fatigue Damage of a Machine Bracket

A steel bracket of a machine is subjected to a reversed bending stress of S1 for n1 cycles,
S2 for n2 cycles, and S3 for n3 cycles. Determine whether failure will occur.

Given: S1 = 420 MPa, S2 = 350 MPa, S3 = 280 MPa

  n1 = 5,000 cycles, n2 = 20,000 cycles, n3 = 30,000 cycles.

Design Decisions: The bracket has a machined surface and Bhn = 200. Miner’s cumulative damage 
rule is used.

Solution

The appropriate limiting number of cycles corresponding, respectively, to the preceding stress values 
is, from Figure 7.18,
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FIGURE 7.18 Allowable stress-cycle diagram for steel parts with 187–207 Bhn.
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 = = =, , ,N N N12,000 cycles 50,000 cycles 280,000 cycles1 2 3  

Applying Equation (7.36),

 + + =,
,

,
,

,
,

.5 000
12 000

20 000
50 000

30 000
280 000

0 924 

Comment: Since 0.924 < 1, the member is safe.

7.14  FRACTURE MECHANICS APPROACH TO FATIGUE

As discussed previously, the fatigue failures are progressive, starting with a very small crack at 
or near a surface, followed by their gradual increase in width and depth, and then sudden fracture 
through the remaining zone. We now present a procedure for estimating the life remaining in a part 
after the discovery of a crack. The method, known as the fracture mechanics approach to fatigue, 
applies to elastic isotropic materials.

To develop fatigue strength data in terms of a fracture mechanics approach, numerous speci-
mens of the same material are tested to failure at certain levels of cyclical stress range Δσ. The test 
is usually done in an axial fatigue testing machine. The crack growth rate da/Dn is continuously 
measured as the applied stress varies from σmin to σmax during the test. Here, a represents the initial 
crack length and N is the number of stress cycles.

For each loading cycle, the stress intensity range factor AK is defined as

 ∆ = −max minK K K  (7.37a)

where Kmax and Kmin are the maximum and minimum stress intensity factors, respectively, around a 
crack. From Equation (6.1), we have

 = λ π σ = λ π σ, ,max max min minK a K a  (7.38)

in which λ is a geometry factor. Substitution of this into Equation (7.37a) gives

 ( )∆ = λ π σ − σmax minK a  (7.37b)

The quantities σmax and σmin are the maximum and minimum nominal stresses, respectively. The 
critical or final crack length af at fracture, from Equation (6.3) taking a factor of safety n = 1, may 
be expressed as

 =
π λσ





max

a
K1

f
c

2

 (7.39)

where Kc is the fracture toughness.
Crack growth rate da/dN is often plotted on log–log paper against the stress intensity range factor 

ΔK. The major central portion of the curve plots as a straight line and is of interest in predicting 
fatigue life. The relationship in this region is defined in the form [14]

 ( )= ∆da

dN
A K n (7.40)

This is known as the Paris equation, after P.C. Paris. The empirical values of the factor A and expo-
nent n for a number of steels are listed in Table 7.5.
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Equation (7.40) is integrated to give the number of cycles N to increase the crack length from an 
initial value a to the critical length af at fracture, the remaining fatigue life, based on a particular 
load, geometry, and material parameters for a particular application. Considering λ independent of 
the initial crack length, it can be shown that [16]

 
( )

= −

−



 λ∆σ

− −

.

/ /

N
a a

A
n

1
2

1 77

f
n n

n

1 2 1 2

 (7.41)

where
N = the fatigue life cycles
a = the initial crack length
af = the crack length at fracture
λ = the geometry factor (see Table 6.1)
Δσ = the stress range (in MPa or ksi)

The application of Equation (7.41), the fatigue life determination procedure, is illustrated in the 
simple example that follows.

Example 7.7: Fatigue Life of Instrument Panel with a Crack

A long plate of an instrument is of width 2w and thickness t. The panel is subjected to an axial tensile 
load that varies from Pmin to Pmax with a complete cycle every 15 s. Before loading, on inspection, a 
central transverse crack of length 2a is detected on the plate. Estimate the expected life.

Given: a = 7.5 mm, t = 20 mm, w = 50 mm, Pmax = 2Pmin = 648 kN.

Assumption: The plate is made of an AISI 4340 tempered steel.

Solution

See Tables 6.1, 6.2, and 7.5.
The material and geometric properties of the panel are

 = × = = =−. , , , ,A n K S6 9 10 3 59 MPa m 1503 MPac y
12  

 λ = =. , .a w1 02 for / 0 15 (Case A of Table 6.1) 

Note that the values of a and t satisfy Table 6.2. The largest and smallest normal stresses are

 ( )( )σ = = = σ =
. .

,max
max

min
P

wt2
648

2 0 05 0 02
324 MPa 162 MPa  

TABLE 7.5
Paris Equation Parameters for Various Steels

Steel

A

SI Units US Units n

Ferritic-pearlitic 6.90 × 10−12 3.60 × 10−10 3.00

Martensitic 1.35 × 10−10 6.60 × 10−9 2.25

Austenitic stainless 5.60 × 10−12 3.00 × 10−10 3.25

Source: Based on [15].
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The cyclical stress range is then Δσ = 324 − 162 = 162 MPa.
The final crack length at fracture, from Equation (7.39), is found to be

 
.max

a
K1 1 59

1 02 324
0.0101 m 10.1 mmf

c
2

=
π λσ







=
π ×





 = =  

Substituting the numerical values, Equation (7.41) results in

 ( )( ) ( )( )( )
= −

−  
=

− −

−

. .
. . . . .

N
0 0101 0 0075

6 9 10 0 5 1 77 1 02 162 5
18,327 cycles

05 05

12 3  

With a period of 15 s, approximate fatigue life L is

 
( )

( )= = .L
18,327 15

60 60
76 36 h 

PROBLEMS

Sections 7.1 through 7.7
 7.1 A round bar made of 1020 steel having fatigue properties illustrated in Figure 7.7 is sub-

jected to a completely reversed bending of M = 4 kN · m. Find the maximum diameter D of 
the bar, for

 a. The infinite life.
 b. Least 105 cycles to failure.
 7.2 A circular aluminum alloy (2024) rod with the fatigue properties shown in Figure 7.7 is 

under a completely reversed bending moment M = 1.5 kN · m. Estimate the largest diameter 
D of the rod, at

 a. The fatigue strength.
 b. Least 107 cycles to failure.
 7.3 A structural steel bar of thickness t with full fillets is loaded by reversed axial force P 

(Figure P7.3). Calculate
 a. The maximum stress.
 b. The maximum fatigue stress-concentration factor.
  Given: P = 15 kN, t = 10 mm.
 7.4 A bar with full fillets is forged from a structural steel (Figure P7.3). Determine the value 

of the endurance limit Se.
  Assumptions: A survival rate of 95% is used. The operating temperature is 475°C 

maximum.
 7.5 A machined and full-filleted AISI 4140 annealed steel bar carries a fluctuating axial load-

ing, as shown in Figure P7.5. What is the value of endurance limit Se?
  Given: b = 20 mm, D = 30 mm, r = 2 mm.
  Assumptions: A reliability of 90% is used.

A

P P

C

rc rd

D B

34 mm38 mm30 mm

FIGURE P7.3 
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 7.6 A stepped cantilever beam of diameters d and D, machined from an AISI 1060 annealed 
steel bar, is subjected to a fluctuating moment M, as depicted in Figure P7.6. Determine the 
modified endurance limit Se.

  Given: d = 25 mm, D = 35 mm, r = 4 mm.
  Design Assumption: Reliability is 90%.
 7.7 A notched beam, machined from AISI 1030 hot-rolled steel, is subjected to reversed bend-

ing. Determine the endurance limit Se.
  Assumptions: A survival rate of 98% and Cs = 0.7 are used. The fatigue stress-concentra-

tion factor is Kf = 2.5.
 7.8 A circular shaft of diameter D, groove diameter d, and groove radius r is subjected to a 

moment M and a torque T = 0 (Figure P7.8). Find the endurance limit Se, if the shaft is made 
from AISI 1095 annealed steel.

  Given: D = 30 mm, d = 25 mm, r = 2 mm.
  Design Assumption: A survival rate of 95% will be used. The operating temperature is 

525°F maximum.
 7.9 Resolve Problem 7.8, for a case in which the grooved shaft is subjected to a torque T and 

M = 0 (Figure P7.8).
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Sections 7.8 through 7.14
 7.10 At a critical point of a thin panel, the bending stress fluctuates. Compute the mean stress, 

range stress, stress ratio, and amplitude ratio for the three common cases:
 a. Completely reversed (σmax = −σmin = 84 MPa).
 b. Nonzero mean (σmax = 84 MPa, σmin = −14 MPa).
 c. Released tension (σmax = 84 MPa, σmin = 0).
 7.11 A stepped cantilevered beam, machined from steel having ultimate tensile strength Su, 

is under reversed bending (Figure P7.6). Determine the maximum value of the bending 
moment M, using the Goodman criterion.

  Given: d = 25 mm, D = 37.5 mm, r = 1.25 mm, Su = 700 MPa.
  Design Assumptions: A survival rate of 95% is used. The factor of safety n = 1.5.
 7.12 A cold-drawn AISI 1020 CD steel link is subjected to axial loading (which fluctuates from 

0 to F) by pins that go through holes (Figure P7.12). What is the maximum value of F with 
a factor of safety of n, according to the Goodman criterion?

  Given: R = 10 mm, r = 4 mm, t = 2.5 mm, n = 1.4.
  Assumption: A reliability of 99.99% is used.
 7.13 Consider the steel link described in Problem 7.12 operating at a temperature 1010°F maxi-

mum with a reliability factor of 95%. Find the largest value the axial tensile force F, using 
the SAE criterion.

  Assumption: Fracture strength of the member will be Sf = 415 MPa with a factor of safety 
of n = 1.2.

 7.14 What is the maximum value of the axial load F applied to the steel link of Problem 7.12, 
employing the Soderberg criterion?

  Assumptions: Reliability factor is 90%. Factor of safety will be n = 2.2. The largest operat-
ing temperature equals 540°C.

 7.15 A cold-drawn AISI 1050 steel plate with a central hole is under a tension load P that varies 
from 5 to 25 kN (Figure P7.15). Based on the Goodman criterion, determine the factor of 
safety n:

 a. Against yielding.
 b. Against fatigue failure.
  Given: D = 25 mm, d = 5 mm, t = 10 mm.
  Assumption: A reliability of 98% and Cr = 0.7 are used.
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 7.16 Resolve Problem 7.15 for the condition that the load varies from −5 to 25 kN.
  Assumption: Buckling does not occur.
 7.17 A machined AISI 4130 normalized steel bar of diameter D carries an axial load P, as 

shown in Figure P7.17. Calculate the value of:
 a. The static force P to produce fracture.
 b. The completely reversed force P to produce fatigue failure.
  Given: D = 53.125 mm.
  Assumptions: The survival rate is 95%. The operating temperature is 900°F maximum.
 7.18 Redo Problem 7.17 for the case of a grooved shaft shown in Figure P7.18.
  Given: D = 53.125 mm, d = 50 mm, r = 1.25 mm.
 7.19 A stepped shaft ground from AISI 1040 annealed steel is subjected to torsion, as shown in 

Figure P7.19. Determine the value of:
 a. The torque T to produce static yielding.
 b. The torque T to produce fatigue failure.
  Given: D = 50 mm, d = 25 mm, r = 1.25 mm.
  Assumption: Reliability is 98%.
 7.20 Repeat Problem 7.19 for the condition that the shaft is subjected to axial loading and no 

torsion.
 7.21 Redo Problem 7.19 for the case in which the shaft is machined from an AISI 1095 hot- 

rolled steel.
 7.22 A shaft with a transverse hole ground from AISI 1095 annealed steel is under bending 

moment M that varies from 56.5 to 158.2 N · m (Figure P7.22). Determine the factor of 
safety n against fatigue failure, using the Goodman criterion.

  Given: D = 25 mm, d = 3.125 mm.
  Assumption: A reliability of 99% is used.
 7.23 Resolve Problem 7.22 for the condition that shaft is ground from AISI 1060 HR steel and 

is under axial loading varying from 20 to 60 kN.
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 7.24 A rotating AISI 1030-CD steel beam having a machined surface carries an axial load P 
and a moment M as shown in Figure P7.24. Compute the factor of safety based upon the 
Goodman criterion.

  Given: D = 25 mm, M = 150 N · m, P = 15 kN.
  Assumptions: Reliability factor will be 99.9%. Take Cs = Ct = 1.
 7.25 Consider the shaft described in Problem 7.22 operating at a temperature 850°F maximum 

with a reliability factor of 90%. Find the factor of safety n against failure by yielding using 
the Soderberg criterion.

 7.26 A thin-walled cylindrical vessel of diameter d is subjected to an internal pressure vary-
ing from 420 to 2100 kPa continuously. Apply the maximum energy of distortion theory 
incorporated with the Soderberg relation to design the vessel.

  Given: d = 2 m, Sy = 280 MPa, Su = 210 MPa, n = 2.5.
 7.27 A thin-walled cylindrical vessel of diameter d and thickness t is under internal pressure 

varying from 0 6 to 2.8 MPa continuously.
  Given: d = 1.5 m, t = 25 mm, Sy = 250 MPa, Su = 350 MPa, Se = 150 MPa.
  Design Decision: Use the maximum energy of distortion theory incorporated with the 

Goodman relation. Determine the factor of safety n.
 7.28 A small leaf spring, b = 10 mm wide, 100 mm long, and h mm deep, is subjected to a con-

centrated center load P varying continuously from 0 to 20 N. The spring may be approxi-
mated to be a simply supported beam (Figure P7.28). Calculate the required depth for a 
factor of safety of 4.
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  Given: Su = 980 MPa, Se = 400 MPa.
  Design Decision: Apply the Goodman theory, based on the maximum normal stress.
 7.29 Redo Problem 7.28 using the Soderberg criterion and yield strength of Sy = 620 MPa.
 7.30 An electrical contact includes a flat spring in the form of a cantilever, 3.125 mm wide × 

37.5 mm long and h mm deep, is subjected at its free end to a load P that varies continu-
ously from 0 to 2.25 N (Figure P7.30). Compute the value of h for a factor of safety n = 1.2.

  Given: Su = 1050 MPa, Se = 504 MPa.
  Design Decision: Employ the Goodman criterion, based on the maximum normal stress.
 7.31 Consider the cantilever and loading described in Problem 7.30 operating at a temperature 

880°F maximum. What is the value of the depth h according to the SAE criterion based on 
the maximum normal stress?

  Given: Fracture strength Sf = 690 MPa, factor of safety n = 1.5.
 7.32 A cantilever spring is subjected to a concentrated load P varying continuously from 0 to Po 

(Figure P7.32). What is the greatest allowable load Po for n = 4?
  Given: Sy = 850 MPa, Se = 175 MPa, b = 5 mm, h = 10 mm, Kf = 2.
  Assumption: Failure occurs due to bending stress at the fillet.
  Design Decision: Use the Soderberg criterion.
 7.33 Resolve Problem 7.32 for the load varying from Po/2 upward to Po downward, n = 2.
 7.34 A 24 mm wide, 4 mm thick, and 300 mm long leaf spring, made of AISI 1050CD steel, 

is straight and unstressed when the cam and shaft are removed (Figure P7.34). Use the 
Goodman theory to calculate the factor of safety n for the spring.

  Given: Se = 250 MPa, E = 200 GPa, v = 0.3.
  Assumption: The cam rotates continuously. Leaf spring is considered as a wide cantilever 

beam.
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315Fatigue Failure Criteria

 7.35 Repeat Problem 7.34 for the case in which the cantilevered spring is made of normalized 
AISI 1095 steel and employing the Soderberg criterion.

 7.36 Consider the long leaf spring of Problem 7.34 operating at a temperature 490°C maximum 
with a 99.9% reliability rate. What is the factor of safety n for the spring on the basis of the 
Gerber criterion?

 7.37 Figure P7.37 shows a circular aluminum bar having two shoulder fillets supporting a con-
centrated load P at its midspan. Determine the allowable value for diameter D if stress 
conditions at the fillets are to be satisfactory for conditions of operation.

  Given: Su = 600 MPa, Sy = 280 MPa, n = 2.5, Kf Se = 150 MPa.
  Assumptions: The load P varies from 2 to 6 kN. The Soderberg relation is employed.
 7.38 The filleted flat bar shown in Figure P7.38 is made from 1040 steel OQ&T at 650°C. What 

is the factor of safety n, if the bending moment M varies from 0.6 to 3 kN · m?
  Given: Kf Se = 400 MPa, D = 120 mm, d = 60 mm, r = 4 mm, t = 20 mm.
  Design Assumption: The Goodman criterion of fatigue failure is applied.
 7.39 Redo Problem 7.38 for a case in which the moment M varies from 200 to 2200 N · m, 

through the use of the Gerber criterion.
 7.40 A filleted bar in fluctuating bending, as described in Problem 7.38, is to operate at a tem-

perature 475°C maximum with a reliability rate of 95%. Find the factor of safety n employ-
ing the SAE criterion.

  Assumption: The moment M varies from 1 to 2 kN · m.
 7.41 A long AISI 403 stainless steel equipment plate of width 2w and thickness t having a 

double-edge crack of length a is subjected to an axial load varying from Pmin to Pmax with 
a complete cycle every 20 s (Case C, Table 6.1). What is the expected life?

  Given: a = 32 mm, t = 34 mm, w = 60 mm, Pmin = 2.2 kN, Pmax = 950 kN.
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8 Surface Failure

8.1  INTRODUCTION

So far, we have dealt with the modes of failure within the components by yielding, fracture, and 
fatigue. A variety of types of failure or damage called wear can also occur to the surfaces of ele-
ments generally. Surface failure or damage, a gradual process, may often render the part unfit for 
use. The surface may also corrode in a corrosive surrounding such as salt or water. A corrosive 
environment may reduce the fatigue strength of a metal (Section 7.7). Note that the combination of 
stress and corrosive surrounding increases the material corrosion more rapidly than without stress. 
This chapter represents a brief discussion to the extensive topic of surface damage.

When two solid parts are pressed together, high contact stresses are caused that need special 
consideration. Two geometric cases are of practical significance: sphere on sphere and cylinder on 
cylinder (Sections 8.6 through 8.8). It will be observed that the former will have a circular contact 
patch and the latter will create a rectangular patch. Under repeated loading, contact stresses lead 
to surface-fatigue failure. Often two machine elements, such as cam and follower and the teeth of 
a pair of gears, mate with one another by rolling, sliding, or a combination of rolling and sliding 
contact (Section 8.9).

The surface strength of materials is of utmost importance to design machines having a long 
and satisfactory life. Surface engineering, a multidisciplinary activity, tailors the properties of 
the surfaces and near-surface regions of a material to allow the surface to perform functions 
that are distinct from those functions demanded from the bulk of the material [1, 2]. Thus, it 
improves the function and serviceability and increases the working life of the machine and struc-
tural components.

Surface damage prevention is an important scientific and engineering challenge (Section 8.10). 
Introduction of a lubricant to a sliding interface helps to reduce the friction. The role of lubrication 
in controlling wear for various machine elements and some other considerations with respect to 
material failure will be further discussed for specific applications in Section III.

8.2  CORROSION

Corrosion is the deterioration or destruction of a material because of a chemical reaction with its 
environment. It is the wearing away of metals owing to chemical reaction. Usually, this means 
electrochemical oxidation of metals in reaction with an oxidant such as oxygen. Rusting is the term 
commonly used for the oxidation of iron and steel. It represents the formation of an oxide of iron 
due to oxidation of the iron atoms in solid solution. This kind of damage often produces oxide(s) 
and/or salt(s) of the original metal. The main culprits in corroding metals are hydrogen and oxygen. 
Pure metals are customarily more resistive to corrosion than those containing impurities or small 
amounts of other elements.

Corrosion can also allude to materials other than metals, such as polymers; however, in this 
context, the term degradation is more proper. Ceramic materials are almost entirely immune to cor-
rosion. Usually, corrosion can be concentrated locally to form a pit or crack, or it can extend across 
a wide area. Galvanic corrosion occurs when two different materials contact one another and are 
immersed in any substance that is capable of conducting an electric current. It is of major interest 
to the marine industry and also anywhere where water contacts metal structures, such as pipes. It 
is frequently possible to chemically remove the corrosion to produce a clean surface. For instance, 
phosphoric acid is often applied to ferrous surfaces of tools to remove rust. Materials (typically 
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318 Mechanical Engineering Design

metals) also chemically deteriorate when subjected to a high-temperature atmosphere containing 
oxidizing compounds.

Corrosion is a complex phenomenon and still to be understood. It is usually studied in the spe-
cialized field of corrosion engineering. Atmospheric corrosion is greatest at high temperatures and 
high humidity, such as that in tropical climates. For further details, see texts on corrosion and [3, 4]. 
Figure 8.1 is a broad guidance only for showing comparative rankings of the resistance of a variety 
of materials to corrosive attack by six surroundings. Observe that comparative rankings range from 
A (excellent) to D (bad). Table B.9 furnishes the classes and abbreviations for Figure 8.1.

8.2.1  Corrosion and stress ComBined

When a member is stressed in the presence of a corrosive surrounding, the corrosion is accelerated 
and failure takes place at a more rapid rate than would be anticipated from either the stress alone or 
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the corrosion process alone. Most structural alloys corrode only from exposure to moisture in the 
air, but the process can be strongly affected by exposure to certain substances. Corrosion is occa-
sionally accelerated by relative movement between the metal and corrosive fluid, which prevents the 
formation of a passive surface film on the metal.

Since the corrosion process takes place on exposed surfaces, methods to reduce the activity of 
the exposed surface, such as passivation and chromate conversion, can increase a material’s corro-
sion resistance. However, some corrosion mechanisms are less visible and less predictable. Failure 
of mechanical equipment due to corrosion may be hazardous to the operating personnel. Most 
machine components fail (such as corroded exhaust systems and suspension joints of automobiles) 
by surface deterioration rather than by breakage. Rust is one of the most common causes of bridge 
accidents. Corrosion and wear damage to materials, both directly and indirectly, cost industrial 
economies hundreds of billions of dollars.

8.2.1.1  Stress Corrosion
Stress corrosion refers to the combined condition of static tensile stress and corrosion. Static stresses 
hasten the corrosion process. Stress corrosion cracking (SCC) may take place from the simultane-
ous presence of a static tensile stress and a specific corrosive environment. The metal as a whole 
is usually unaffected; however, a network of fine cracks spreads over its surface. The action may 
proceed along the grain boundaries or may occur across the crystals. Tensile stress-concentration 
cracking represents the sum of the residual and operating stresses present at the local site where the 
cracks initiate. Examples of this kind of failure include steel boiler tubes operating with corrosive 
fluid, stainless steel aircraft parts, and bridge cables exposed to the salt and chemicals in the local 
atmosphere.

If a stress exists in a structure exposed to a corrosive environment, the rate of corrosion can 
increase and be extremely localized. Furthermore, some specific chemicals are so aggressive that 
corrosion will occur at relatively low stress levels, such as those created during manufacturing. The 
residual stress in a component can then be enough to trigger crack growth and failure. Sometimes 
corrosion pits were found inside the broken parts (Figure 8.2a), but more often on the surface (Figure 
8.2b and c), depending upon the applications.

For SCC to occur, it requires certain conditions, including susceptible material (stainless steel 
304 is susceptible), tensile force, undesirable environment (such as with high chloride concentra-
tion), higher temperatures, and tiny surface scratches created by machining that act as stress con-
centrations. In order to remove the surface scratches, bolts should be rolled instead of turned. One 
of the main causes of a structural component failure is corrosion as it threatens the strength and 
integrity of the member. Thus, the parts have to be periodically inspected for corrosion.

8.2.1.2  Corrosion Fatigue
For a case in which the member is cyclically stressed in a corrosive surrounding, the crack will grow 
more rapidly than from either factor alone. The preceding is termed corrosion fatigue. It takes place 
most markedly with metals having little corrosion resistance. Corrosion can be highly concentrated 
locally to form a pit or crack, or it can extend across a wide area more or less uniformly corrod-
ing the surface. Intergranular corrosion, or the failure of grain boundaries, may occur particularly 
when impurities are present. Corrosion fatigue failures depict discoloration of the crack propagation 
surfaces.

8.2.2  Corrosion wear

Corrosion wear designates a failure due to chemical reaction on the surface of a part. It adds to the 
corrosive environment a mechanical disruption of the surface layer owing to sliding or rolling con-
tact of two bodies. Corrosion wear takes place if a corrosive atmosphere like oxygen is present on 
the surface of the material in combination with sliding that breaks the oxides free from the surfaces. 
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This action exposes new material to the corrosive elements. Corrosion fatigue is the contamination 
of a corrosive surrounding with cyclic stresses, which greatly shortens the fatigue life of materials.

Surface corrosion combined with stresses produces a more destructive action than would be 
anticipated due to the corrosion and stress separately. Many processes are in widespread usage 
for applying a corrosion-resistant coating to the surface of steel and iron products. Application of 
corrosion-resistant coatings is one of the most widely employed means of protecting metals, such as 
steels, for outdoor applications.

A number of coatings are available to choose from. Proper selection is on the basis of the 
component size, the corrosive environment, the anticipated temperatures, the coating thick-
ness, and the costs. Painting is probably the most widely used engineering coating employed to 
protect steel from corrosion. Corrosion-resistant plating like chromium is also frequently used. 
There are a variety of natural material combinations where corrosion can be reduced to a very 

(a)

(b)

(c)

FIGURE 8.2 (a) SCC of a bolt, (b) ship’s propeller assembly corroded by seawater, and (c) corroded wing 
control shaft of an airplane.
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low value. Often, such combinations will give the highest amount of corrosion protection at the 
lowest cost.

8.2.2.1  Fretting
Fretting corrosion occurs in tight joints (such as press fits and bolted or riveted connections) where 
practically no motion is present. Fluctuating loads that produce a slight relative movement are ade-
quate to set up a corrosive wear termed fretting. This action can remove a significant volume of 
material over time. It typically occurs in bearings, although most bearings have their surfaces hard-
ened to resist the problem. Another situation occurs when cracks in either surfaces are created. The 
roughness and pitting produced by fretting reduce the fatigue strength. Pitting is among the most 
common and damaging forms of corrosion.

Resistance to fretting action varies considerably in different materials. Cobalt-base hard-facing 
and similar alloys are among the best. Usually, steel-on-steel and cast iron-on-cast iron are good. 
Unprotected bearings on large structures like bridges can suffer serious degradation in behavior, 
especially when salt is applied during winter to de-ice the highways on the bridges. Low-viscosity, 
highly adhesive lubricants help to reduce the intensity of fretting by keeping oxygen away from the 
active surface.

8.2.2.2  Cavitation Damage
High relative velocities between solid parts and liquid particles can produce cavitation of the liquid, 
which may destroy the surface of the part. Bubbles are produced if the liquid pressure drops lower 
than its vapor pressure. Cavitation ordinarily takes place on ship propellers, turbine blades, and 
centrifugal pumps. Damage caused by cavitation to metal surfaces is mechanical. But in corrosive 
surroundings, cavitation can often damage protective oxide films on the surface that appears to be 
roughened with closely spaced pits. In severe situations, enough material is taken off that the sur-
face has a spongy texture. Cast stainless steel, cast magnesium bronze, cast steel, bronze, cast iron, 
and aluminum are frequently used to reduce the cavitation [4]. The most effective way to deal with 
cavitation damage is generally to increase the surface hardness.

8.3  FRICTION

Friction is the force resisting relative movement between surfaces in contact. When a force is applied 
to a body, the resistive force of friction acts in the opposite direction, parallel to mating surfaces. 
The fundamental kinds of friction are sliding and rolling. The fundamental equation for determin-
ing the resistive force of friction when trying to slide two solid bodies together states that the force 
of friction equals the coefficient of friction times the normal compressive force pushing the two 
bodies together. Therefore,

 =F fP (8.1)

where
F = the friction force
f = the coefficient of friction
P = the normal force or perpendicular force pushing the two bodies together

The foregoing equation is valid for both static and kinetic sliding friction. The former is the 
 friction before a body starts to move and the latter is the friction when the body is sliding. Static and 
sliding frictions have different friction coefficient or constant values [5], as shown in Table 8.1. In 
this text, f denotes the sliding friction coefficient. When a part rolls on another without sliding, the 
so-called rolling friction constant fr is much smaller than that of sliding friction, fr ≪ f. In the case 
of sliding friction of hard surfaces, Equation (8.1) shows that friction is independent of the area of 
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the mating surfaces. However, when it applies to soft surfaces, rotating friction and fluid friction, 
the coefficient of friction may depend upon area, shape, and viscosity factors. Surface roughness has 
influence on both sliding and rolling frictions.

Introduction of a lubricant between mating surfaces reduces the coefficient of friction consider-
ably. Lubricants also serve to remove heat from the interface. They may be liquid or solid, which 
shares the properties of low shear strength and high compressive strength. Lower temperatures 
reduce surface interactions and wear. A somewhat detailed discussion of lubricants and lubrication 
phenomena will be taken up in Chapter 10. A final point is to be noted that, in many situations, 
such as turbine and generator bearings, low friction is desirable. However, in brakes and clutches 
(Chapter 13), controlled high friction is needed.

8.4  WEAR

As pointed out previously, wear is a broad term that encompasses numerous types of failures on the 
surface of the member. It is one of the most important and harmful processes in machine design. 
Failure from wear customarily involves the loss of some material from the mating surfaces of the 
parts in contact. When the parts are in sliding contact, various types of wear of deterioration occur 
that can be classed under the general heading “wear.” In this case, the severity of wear can be 
reduced by using a lubricant (i.e., oil, grease, or solid film) between the mating surfaces.

The study of the process of wear is part of the discipline of tribology [6]. Wear is usually divided, 
by the physical nature and the underlying process, into three common classes. These are adhesive 
wear, abrasive wear, and corrosive wear (Section 8.2). The surface fatigue, an important surface dete-
rioration, is sometimes also classed as wear, and will be discussed in Section 8.9. All kinds of wear 
are greatly influenced by the presence of a lubricant. Wear ordinarily requires some relative motion 
to exist between two surfaces. Stresses introduced in two materials contacting at a rolling interface 
highly depends on the geometry of the surfaces in contact, on the loading, and on material properties.

8.4.1  adhesive wear

On a microscopic scale, sliding metal surfaces are never smooth, and inevitable peaks—usually 
termed asperities—and valleys take place, as depicted in Figure 8.3. At the locations indicated 

TABLE 8.1
Coefficients of Friction for Various Material Combinations

Material 1 Material 2

Static Kinematic or Sliding

Dry Lubricated Dry Lubricated

Mild steel Mild steel 0.74 — 0.57 0.09

Mild steel Cast iron — 0.183 0.23 0.133

Mild steel Aluminum 0.61 — 0.47 —

Mild steel Brass 0.51 — 0.44 —

Hard steel Hard steel 0.78 0.11–0.23 0.42 0.03–0.19

Hard steel Babbitt 0.42–0.70 0.08–0.25 0.34 0.06–0.16

Teflon Teflon 0.04 — — 0.04

Steel Teflon 0.04 — — 0.04

Cast iron Cast iron 1.10 — 0.15 0.07

Cast iron Bronze — — 0.22 0.077

Aluminum Aluminum 1.05 — 1.4 —
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by arrows in the figure, local temperatures and pressures are very high, which causes adhesions. 
Adhesive wear is one of the most common kinds of wear and the least preventable. It occurs if the 
asperities of two mating surfaces stick to one another and break during sliding, transferring material 
from one part to another or out of the system. In the former situation, so-called scoring or scuffing 
results. In both cases, surface failure occurs in the absence of adequate lubricant. Severe adhesive 
wear is termed seizure or galling.

Usually, the harder the surface, the greater the resistance to adhesive wear. Most solids will 
adhere on contact to some extent. But lubricants and contaminants usually suppress adhesion. Thus, 
adhesive wear is commonly encountered in conjunction with lubricant failure and often referred to as 
welding wear or galling. Metallurgically identical metals, called compatible, should not run together 
in unlubricated sliding contact. Metallurgically incompatible metals can slide on one another with 
relatively little scoring. Therefore, incompatible pairs can be run together and expected to resist 
adhesive wear best. Also, partially incompatible pairs are better in sliding contact than partially 
compatible pairs.

8.4.2  aBrasive wear

Abrasive wear occurs when a hard surface slides across a softer surface. The ASTM defines abrasive 
wear as the loss of material due to hard particles that are forced against and move along solid surface. 
Abrasion takes place in two modes, known as two-body and three-body abrasive wear, when two inter-
acting surfaces are in direct physical contact and one is significantly harder than the other. Two-body 
wear occurs when the hard particles remove material from the opposite surface. Examples include soft 
Babbitt bearings used with hard automotive crankshafts and wearing down of wood or soft metal with 
sandpaper.

Three-body abrasion arises when small and hard particles are introduced between the sliding 
surfaces, at least one of which is softer than the particles. That is, this type of abrasion is caused by 
the presence of foreign materials between the rubbing surfaces. Therefore, in the design of machin-
ery, it is very important to use pertinent oil filters, dust covers, air filters, shaft seals, etc. to keep 
irrelevant particles away from the rubbing metal surfaces. In both modes, the harder the surface, the 
more resistant it is to abrasive wear.

8.5  WEAR EQUATION

For two rubbing surfaces, the volume of material removed by wear is directly proportional to the 
sliding distance and applied normal force while inversely proportional to the surface hardness. 
However, the volume of the wear is independent of the velocity of sliding. No single predictive wear 
formula could be found for general and practical use. A classic, commonly employed wear equation 
based on the theory of asperity contact is of the form

 =V K
PL

H
 (8.2)

FIGURE 8.3 Adhesive wear simulation: schematic of greatly enlarged view of two nominally smooth rub-
bing surfaces.
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where
V = the volume of material worn away
K = the wear coefficient or constant (dimensionless)
P = the compressive force between the surfaces
L = the length of sliding
H = the surface hardness,* MPa or ksi

It is interesting to note that an alternative form of Equation (8.2) may be written as

 V
PL

H K/
=  (a)

Thus, we observe that for a given load P and length L, the material volume is a minimum when H/K 
is a maximum.

Often the depth of wear δ may be of interest in applications than the volume. Then, Equation 
(8.2) may be written as

 δ = K
PL

HAa

 (8.3)

Here, the quantity Aa is the apparent area of contact of the interface. Application of this equation to 
a journal bearing is illustrated in Section 10.4. Clearly, both adhesive wear and abrasive wear obey 
the foregoing relationships given by Equations (8.2) and (8.3).

Coefficient K represents a measure of the severity of wear. Typically for mild wear, K ≈ 10−8, 
whereas for severe wear, K = 10−2. Figure 8.4 shows the ranges of wear coefficient values determined 
with a variety of combinations of material compatibility and lubrication for three wear modes. We 

* Hardness may be expressed as Brinell, Vickers, and Rockwell in units kg/mm2 (see Section 2.10). To convert to MPa or 
ksi, multiply by 9.81 or 1.424, respectively.
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FIGURE 8.4 Some selected wear constants for a variety of general sliding situations. (Based on references 
such as [6, 7].)
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note that the values of wear coefficients belong to the softer of the two rubbing materials. Table 8.2 
presents examples of approximate range of values of K for a few materials in contact.

The adhesive wear constants for some metallic sliding can be readily estimated from Table 8.3. 
The values listed depend on the tendency of the sliding metal to adhere, on the basis of metallurgi-
cal compatibility, and on the lubrication of the sliding surfaces. From a compatibility chart [7], it 
can be found that, for example, iron is compatible with aluminum, gold titanium, lead, and zinc. 
Also, iron is partially compatible with copper, partially incompatible with tin and magnesium, and 
incompatible with lead and silver. Observe from Table 8.3 that partially compatible and partially 
incompatible pairs are placed in the same category, because the wear constants for sliding metals 
differ only slightly.

Note that unlubricated surfaces are those operated in air without the presence of a lubricant. 
Water, alcohol, and kerosene are among the poor lubricant category. Good lubricants include petro-
leum-based liquids and organic synthetic lubricants. Excellent lubrication is very difficult to attain 
for sliding between like and compatible metals; however, it is less difficult for partially compatible 
or incompatible metal surfaces [8]. Lubricants and lubrication will be studied in somewhat more 
details in Part A of Chapter 10.

Presently, there exist a few standard methods for different types of wear to obtain the amount 
of material removal during a specified time period under well-defined conditions. The ASTM 
International Committee attempts to update wear testing for specific application. The Society of 
Tribology and Lubrication Engineers (STLE) list a number of frictional wear and lubrications tests. 
The literature contains values of K for numerous combinations of metals that have been obtained 
under laboratory conditions. The results must be evaluated in service.

TABLE 8.2
Coefficients of Adhesive Wear for Various Rubbing Materials
Material 1 Material 2 Adhesive Wear Coefficient, K

Copper Copper 10−2

Mild steel Mild steel 10−2 to 10−1

Brass Hard steel 10−3

Lead Steel 2 × 10−3

Polytetrafluoroethylene Steel 2 × 10−5

Stainless steel Hard steel 2 × 10−5

Tungsten carbide Tungsten carbide 10−6

Polyethylene Steel 10−8 to 10−7

TABLE 8.3
Adhesive Wear Coefficients K for Typical Metallic Sliding Surfaces

Identical Compatible
Partially Compatible or 
Partially Incompatible Incompatible

Unlubricated 15 × 10–4 5 × 10–4 10–4 15 × 10–6

Poor lubrication 3 × 10–4 10–4 2 × 10–5 3 × 10–6

Good lubricant 3 × 10–5 10–5 2 × 10–6 3 × 10–7

Excellent lubrication 10–6 3 × 10–7 10–7 3 × 10–8
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Test data to define wear constants K show considerable scatter and cannot be obtained with high 
precision. A common test used to estimate the wear volume is the pin-on-disk method. In this pro-
cedure, under controlled loading and lubrication conditions, a cylindrical round end pin is pressed 
against the surface of a rotary disk on the testing apparatus (Figure 8.5). Weight (and hence equiva-
lent volume) losses of pin and disk can be measured for a specified test duration. Finally, Equation 
(8.2) is used to determine the wear coefficient, as illustrated in the solution of the following sample 
problem.

Example 8.1: Finding Wear Coefficients from Experimental Data

A component of a braking system consists of the unlubricated rounded end of a 2011-T3 wrought 
aluminum alloy pin being pushed with a force P against the flat surface of a rotating AISI-1095 
HR steel disk (see Figure 8.5). The rubbing contact is at a radius R and the disk rotates at a speed 
n. Consequent to a t minutes test duration, the disk and pin are weighed. It is found that adhesive 
wear produced weight losses equivalent to wear volumes of Va and Vs for the aluminum and steel, 
respectively.

Find: Compute the wear coefficients.

Data: The given numerical values are as follows:
Steel disk: 248 Brinell hardness (Table B.3) wear volume Vs = 0.98 mm3

Aluminum pin: 95 Brinell hardness (Table B.6) wear volume Va = 4.1 mm3

Contact force: P = 30 N at a radius R = 24 mm
Test duration: t = 180 min at a sliding speed n = 120 rpm.

Solution

See Figure 8.5 and Equation (8.2).
Total length of sliding is expressed as

 
( )( )( )

= π

= π = ×.

L Rnt2

2 24 120 180 3 26 10 mm6
 (b)

The values of hardness of pin and disk are

 ( )= =.H 9 81 95 932 MPaa  

 ( )= =.H 9 81 248 2433 MPas  

P

Pin
(soft material)

Disk
(hard
material)

Worn surface

Contact
radius, R

Speed, n

FIGURE 8.5 Schematic of pin-on-disk testing apparatus.
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Through the use of Equation (8.2), we have K = VH/PL. Therefore, introducing the numerical values, 
the wear coefficients for aluminum pin and steel disk are, respectively,

 ( )
( )=

×
= × −.

.
.K

4 1 932

30 3 26 10
3 91 10a 6

5 

 ( )
( )=

×
= × −.

.
.K

0 98 2433

30 3 26 10
2 44 10s 6

5 

Comments: Observe that the wear coefficient of the pin is about 1.6 times that of the disk wear coef-
ficient. Interestingly, if the worn pin surface remains flat, for a given pin diameter, we approximately 
have

 =
π

= πV
d h

V Rdh
4

2a
p

s d

2

 (c)

Since wear volumes (as well as d and R) are known, then the linear pin wear depth hp and the wear depth 
of hd in the disk may readily be computed.

8.6  CONTACT-STRESS DISTRIBUTIONS: HERTZ THEORY

The application of a load over a small area of contact results in unusually high stresses. Situations 
of this nature are found on a microscopic scale whenever force is transmitted through bodies in 
contact. The original analysis of elastic contact stresses, by H. Hertz, was published in 1881. In his 
honor, the stresses at the mating surfaces of curved bodies in compression are called Hertz contact 
stresses. The Hertz problem relates to the stresses owing to the contact surface of a sphere on a 
plane, a sphere on a sphere, a cylinder on a cylinder, and the like. In addition to rolling bearings, the 
problem is of importance to cams, push-rod mechanisms, locomotive wheels, valve tappets, gear 
teeth, and pin joints in linkages.

Consider the contact without deflection of two bodies having curved surfaces of different radii 
(r1 and r2), in the vicinity of contact. If a collinear pair of forces (F) presses the bodies together, 
deflection occurs and the point of contact is replaced by a small area of contact. The first steps taken 
toward the solution of this problem are the determination of the size and shape of the contact area 
as well as the distribution of normal pressure acting on the area. The deflections and subsurface 
stresses resulting from the contact pressure are then evaluated. The following basic assumptions are 
generally made in the solution of the Hertz problem:

 1. The contacting bodies are isotropic, homogeneous, and elastic.
 2. The contact areas are essentially flat and small relative to the radii of curvature of the 

undeflected bodies in the vicinity of the interface.
 3. The contacting bodies are perfectly smooth; therefore, friction forces need not be taken 

into account.

The foregoing set of presuppositions enables elastic analysis by theory of elasticity. Without going 
into the rather complex derivations, in this section, we introduce some of the results for both cyl-
inders and spheres. The next section concerns the contact of two bodies of any general curvature. 
Contact problems of rolling bearings and gear teeth are discussed in the later chapters.*

* A summary and complete list of references dealing with contact-stress problems are given by References [9–11].
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8.6.1  Johnson–kendall–roBerts (Jkr) theory

The Hertzian theory of contact does not consider adhesion between contacting bodies; accordingly, 
contacting bodies can be separated without adhesion forces. However, in the late 1960s, some con-
tradictions were noticed when the Hertz model was compared with experiments involving contact 
between rubber and glass spheres. It has been observed that, at low loads there was some adhesion 
if the contacting surfaces were smooth.

The JKR theory was the first to incorporate adhesion into Hertzian contact, by using a balance 
between the stored elastic energy and the loss in surface energy. This method takes into account the 
effect of contact pressure and adhesion only inside the area of contact. In the following sections our 
discussions are limited to Hertz theory solutions for non-adhesive elastic contact.

8.7  SPHERICAL AND CYLINDRICAL SURFACES IN CONTACT

Figure 8.6 illustrates the contact area and corresponding stress distribution between two spheres, 
loaded with force F. Similarly, two parallel cylindrical rollers compressed by forces F are shown 
in Figure 8.7. We observe from the figures that, in each case, the maximum contact pressure exists 

z
z

y

y

x a a

F

F

Contact
area

r1

r2
2a

(a) (b)

E1

E2

po po

O
O

FIGURE 8.6 (a) Spherical surfaces of two members held in contact by force F and (b) contact-stress distribu-
tion. Note: the contact area is a circle of radius a.
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FIGURE 8.7 Two cylinders held in contact by force F uniformly distributed along cylinder length L. Note: 
the contact area is a narrow rectangle of 2a × L.
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on the load axis. The area of contact is defined by dimension a for the spheres and a and L for the 
cylinders. The relationships between the force of contact F, maximum pressure po, and the deflec-
tion δ at the point of contact are given in Table 8.4. Obviously, the δ represents the relative displace-
ment of the centers of the two bodies, owing to local deformation. The contact pressure within each 
sphere or cylinder has a semielliptical distribution; it varies from 0 at the side of the contact area to 
a maximum value po at its center, as shown in the figures. For spheres, a is the radius of the circular 

TABLE 8.4
Maximum Pressure po, and Deflection δ of Two Bodies at the Point of 
Contact

Configuration ==
ππ

p
F
a

Spheres: 1.5o 2 ==
ππ

p
F
aL

Cylinders:
2

o

A z

a y

r1 r2 = ∞

F

F

Sphere on a flat surface Cylinder on a flat surface

= ∆.a Fr0 880 1
3

= ∆.a
F

L
r1 076 1

δ = ∆. F
r

0 775 2
2

1

3

For E1 = E2 = E

δ = +





. lnF

EL

r

a

0 579 1
3

2 1

B z

a
y

r1

r2

F

F

Two spherical balls Two cylindrical rollers

= ∆.a F
m

0 880 3

δ = ∆. F m0 775 2 23

= ∆.a
F

Lm
1 076

C z

y

r2

r1

a
F

F

Sphere on a spherical seat Cylinder on a cylindrical seat

= ∆.a F
n

0 880 3 = ∆.a
F

Ln
1 076

δ = ∆. F n0 775 2 23

Source: [9].

Notes: ∆ = + = + = −, , ,
E E

m
r r

n
r r

1 1 1 1 1 1

1 2 1 2 1 2

 where the modulus of elasticity (E) and radius 

(r) are for the contacting members, 1 and 2. The L represents the length of the cylinder 
(Figure 8.7). The total force pressing two spheres or cylinder is F. Poisson’s ratio ν in the 
formulas is taken as 0.3.
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contact area (πa2). But, for cylinders, a represents the half-width of the rectangular contact area 
(2aL), where L is the length of the cylinder. Poisson’s ratio ν in the formulas is taken as 0.3.

The material along the axis compressed in the z direction tends to expand in the x and y direc-
tions. However, the surrounding material does not permit this expansion; hence, the compressive 
stresses are produced in the x and y directions. The maximum stresses occur along the load axis z, 
and they are principal stresses (Figure 8.8). These and the resulting maximum shear stresses are 
given in terms of the maximum contact pressure po by the equations to follow [8].

8.7.1  two sPheres in ContaCt (Figure 8.6)

 ( )
( )

σ = σ = − −



 + ν −

+ 












−tan

/ /
p

z

a z a z a
1

1
1

1

2 1
x y o

1
2

 (8.4a)

 
( )

σ = −
+ /

p

z a1
z

o
2  (8.4b)

Therefore, we have τxy = 0 and

 ( )τ = τ = τ = σ − σmax
1
2

yz xz x z  (8.4c)

A plot of these equations is shown in Figure 8.9a.
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FIGURE 8.8 Principal stress below the surface along the load axis z.
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FIGURE 8.9 Stresses below the surface along the load axis (for ν = 0.3): (a) two spheres and (b) two parallel 
cylinders. Note: all normal stresses are compressive stresses.
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8.7.2  two Cylinders in ContaCt (Figure 8.7)

 σ = − ν + 



 −













p
z

a

z

a
2 1x o

2
 (8.5a)
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σ = − −
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 + 
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p
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 (8.5b)

 
( )

σ = −
+

−
/

p

z a1
z

o

2
 (8.5c)

 ( ) ( ) ( )τ = σ − σ τ = σ − σ τ = σ − σ, ,1
2

1
2

1
2

xy x y yz y z xz x z  (8.5d)

Equations (8.5a) through (8.5c) and the second of Equation (8.5d) are plotted in Figure 8.9b. For 
each case, Figure 8.9 illustrates how principal stresses diminish below the surface. It also shows 
how the shear stress reaches a maximum value slightly below the surface (at about z = 0.75a) and 
diminishes. The maximum shear stresses act on the planes bisecting the planes of maximum and 
minimum principal stresses.

The subsurface shear stresses are believed to be responsible for the surface-fatigue failure of 
contacting bodies (see Section 8.9). The explanation is that minute cracks originate at the point of 
maximum shear stress below the surface and propagate to the surface to permit small bits of mate-
rial to separate from the surface. As already noted, all stresses considered in this section exist along 
the load axis z. The states of stress off the z axis are not required for design purposes, because the 
maxima occur on the z axis.

Example 8.2: Maximum Contact Pressure between a Cylindrical Rod and a Beam

A concentrated load F at the center of a narrow, deep beam is applied through a rod of diameter d laid 
across the beam width of width b. Determine

 a. The contact area between rod and beam surface.
 b. The maximum contact stress.
 c. The maximum value of the subsurface shear stress.

Given: F = 4 kN, d = 12 mm, L = 125 mm.

Assumptions: Both the beam and the rod are made of steel having E = 200 GPa and ν = 0.3.

Solution

We use the equations on the third column of Case A in Table 8.4.

 a. Since E1 = E2 = E or Δ = 2/E, the half-width of the contact area is

 
( )

( )
( )

= ∆

= =

.

.
.

. .

a
F

L
r1 076

1 076
4 10

0 125

0 006 2

200 10
0 0471 mm

1

3

9
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 The rectangular contact area equals

 ( )( )= =. .aL2 2 0 0471 125 11 775 mm2 

 b. The maximum contact pressure is therefore

 
( )

( )=
π

=
π

=−.
.p

F

aL

2 2 4 10

5 888 10
432 5 MPao

3

6
 

 c. Observe from Figure 8.9b that the largest value of the shear stress is at approximately z = 0.75a 
for which

 ( )τ
= τ = =. . . .,max

,max
p

0 3 or 0 3 432 5 129 8 MPayz

o
yz  

 This stress occurs at a depth z = 0.75(0.0471) = 0.0353 mm below the surface.

Case Study 8.1 Cam and Follower Stress Analysis of an Intermittent-Motion Mechanism

Figure 7.16 shows a camshaft and follower of an intermittent-motion mechanism. For the posi-
tion indicated, the cam exerts a force Fmax on the follower. What are the maximum stress at the 
contact line between the cam and follower, and the deflection?

Given: The shapes of the contacting surfaces are known. The material of all parts is AISI 1095 
steel carburized on the surfaces, oil quenched, and tempered (Q&T) at 650°C.

Data:

 . , . , . ,F P r D L7 2 kN 37 5 mm 37 5 mmc fmax max 4= = = = =  

 ,E S200 GPa 552 MPay= =  

Assumptions: Frictional forces can be neglected. The rotational speed is slow so that the load-
ing is considered static.

Solution

See Figure 7.16, Table 8.4, and Tables B.1 and B.4 in Appendix B.
Equations on the second column of Case A of Table 8.4 apply. We first determine the half-

width a of the contact patch. Since E1 = E2 = E and Δ = 2/E, we have

 = ∆.a
F

L
r1 076 c

max

4

 

Substitution of the given data yields
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The rectangular patch area is

 . . .aL2 2 0 2887 10 37 5 10 21 6525 10 m4
3 3 6 2( )( ) ( )= × × =− − −  

Maximum contact pressure is then

 

. .
.

maxp
F

aL

2

2 7200

0 2887 10 37 5 10
423 4 MPa

o
4

3 3( )( )

=
π

=
π × ×

=− −

 

The deflection δ of the cam and follower at the line of contact is obtained as follows:

 δ = +





. lnmaxF

EL

r

a

0 579 1
3

2 c

4

 

Introducing the numerical values,

 

.
.

ln .
.

. .

0 579 7200

200 10 37 5 10

1
3

2 37 5
0 2887

3 276 10 m 3 276 10 mm

9 3

6 3

( )
( ) ( )

( )δ =
× ×

+ ×





= =

−

− −

 

Comment: The contact stress is determined to be less than the yield strength and the design is 
satisfactory. The calculated deflection between the cam and the follower is very small and does 
not affect the system performance.

*8.8  MAXIMUM STRESS IN GENERAL CONTACT

In this section, we introduce some formulas for the determination of the maximum contact stress 
or pressure po between the two contacting bodies that have any general curvature [10, 11]. Since the 
radius of curvature of each member in contact is different in every direction, the equations for the 
stress given here are more complex than those presented in the preceding section. A brief discussion 
on factors affecting the contact pressure is given in Section 8.9.

Consider two rigid bodies of equal elastic modulus E, compressed by F, as shown in 
Figure 8.10. The load lies along the axis passing through the centers of the bodies and through 
the point of contact and is perpendicular to the plane tangent to both bodies at the point of con-
tact. The minimum and maximum radii of curvature of the surface of the upper body are r1 and 
′r1 ; those of the lower body are r2 and ′r2  at the point of contact. Therefore, 1/r1, ′/ r1 1 , l/r2, and 

′/ r1 2  are the principal curvatures. The sign convention of the curvature is such that it is posi-
tive if the corresponding center of curvature is inside the body; if the center of the curvature is 
outside the body, the curvature is negative. (For instance, in Figure 8.11, r1, ′r1  are positive, while 
r2, ′r2  are negative.)

Let θ be the angle between the normal planes in which radii r1 and r2 lie (Figure 8.10). Subsequent 
to the loading, the area of contact will be an ellipse with semiaxes a and b. The maximum contact 
pressure is

 =
π

.p
F

ab
1 5o  (8.6)
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where

 = =a c
Fm

n
b c

Fm

n
a b3 3  (8.7)

In these formulas, we have

 ( )=
+

′
+ +

′

=
− ν

m

r r r r

n
E4

1 1 1 1
4

3 1
1 1 2 2

2
 (8.8)

The constants ca and cb are given in Table 8.5 corresponding to the value of α calculated from the 
formula

 α =cos B

A
 (8.9)

Here,

 = = ± −
′







+ −
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 (8.10)
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FIGURE 8.10 Curved surfaces of different radii of two bodies compressed by forces F.
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FIGURE 8.11 Contact loads in a (a) single-row ball bearing and (b) wheel and rail.
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The proper sign in B must be chosen so that its values are positive.
Using Equation (8.6), many problems of practical importance may be solved. These include 

contact stresses in rolling bearings (Figure 8.11a) contact stresses in cam and push-rod 
mechanisms (see Problem P8.10), and contact stresses between a cylindrical wheel and rail  
(Figure 8.11b).

Example 8.3: Ball Bearing Load Capacity

A single-row ball bearing supports a radial load F as shown in Figure 8.11a. Calculate:

 a. The maximum pressure at the contact point between the outer race and a ball.
 b. The factor of safety, if the ultimate strength is the maximum usable stress.

Given: F = 1.2 kN, E = 200 GPa, ν = 0.3, and Su = 1900 MPa. Ball diameter is 12 mm; the radius of the 
groove, 6.2 mm; and the diameter of the outer race, 80 mm.

Assumptions: The basic assumptions listed in Section 8.6 apply. The loading is static.

Solution

See Figure 8.11a and Table 8.5.
For the situation described, = ′ = .r r 0 006 m1 1 , r2 = −0.0062 m, and ′ = − .r 0 04 m2 .

 a. Substituting the given data into Equations (8.8) and (8.10), we have

 
( )

( )=
− −

= =
×

= ×

. . .

. ,
.

.m n
4

2
0 006

1
0 0062

1
0 04

0 0272
4 200 10

3 0 91
293 0403 10

9
9 

 ( ) ( ) ( )= = = + − +  =
.

. , . .
/

A B
2

0 0272
73 5294

1
2

0 136 2903 2 0 68 14522 2 2 1 2
 

 From Equation (8.9),

 α = = α = °cos .
.

. , .68 1452
73 5294

0 9268 22 06  

Corresponding to this value of a, interpolating in Table 8.5, we obtain ca = 3.5623 and 
cb = 0.4255. The semiaxes of the ellipsoidal contact area are found by using Equation (8.7):

TABLE 8.5
Factors for Use in Equation (8.7)

α (°) ca cb α (°) ca cb

20 3.778 0.408 60 1.486 0.717

30 2.731 0.493 65 1.378 0.759

35 2.397 0.530 70 1.284 0.802

40 2.136 0.567 75 1.202 0.846

45 1.926 0.604 80 1.128 0.893

50 1.754 0.641 85 1.061 0.944

55 1.611 0.678 90 1.000 1.000
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 = ×
×







=. .
.

.
/

a 3 5623
1200 0 0272
293 0403 10

1 7140 mm9

1 3

 

 = ×
×







=. .
.

.
/

b 0 4255
1200 0 0272
293 0403 10

0 2047 mm9

1 3

 

 The maximum contact pressure is then

 ( )=
π ×

=.
. .

p 1 5
1200

1 7140 0 2047
1633 MPao  

 b. Since contact stresses are not linearly related to load F, the safety factor is defined by 
Equation (1.1):

 =n
F

F
u  (a)

 in which Fu is the ultimate loading. The maximum principal stress theory of failure gives

 
( )

=
π

=
π

. .
/

S
F

ab

F

c c F m n

1 5 1 5
u

u u

a b u
3

2  

 This may be written as

 
( )

=
π

.
/ /S
F

c c m n

1 5
u

u

a b

3

2 3  (8.11)

Introducing the numerical values into the preceding expression, we have

 ( )
( )

=
π ×

×






.

. . .
.

/
F

1900 10
1 5

3 5623 0 4255
0 0272

293 0403 10

u6
3

9

2 3  

 Solving, Fu = 1891 N. Equation (a) gives then

 = = .n
1891
1200

1 58 

Comments: In this example, the magnitude of the contact stress obtained is quite large in comparison 
with the values of the stress usually found in direct tension, bending, and torsion. In all contact prob-
lems, 3D compressive stresses occur at the point, and hence a material is capable of resisting higher 
stress levels.

8.9  SURFACE-FATIGUE FAILURE

Surface fatigue is a process by which the surface of a material is weakened by repeated load-
ing. Fatigue damage is produced when the particles are detached by repeated crack growth of 
microcracks on the surface. These microcracks are either superficial cracks or subsurface cracks. 
The discussion of Section 8.6 shows that when two solid members are pressed together, contact 
stresses are produced. Pitting is a surface-fatigue failure, also often referred to as fatigue wear; 
due to many repetitions of high contact stress, small pieces of material are lost from the surface, 
leaving behind pits. Pits grow into larger areas of flaked-off surface material, which is then termed 
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spalling. An audible warning is often noticeable when the pitting process commences. In machine 
components such as rolling-element bearings, gears, friction drives, cams, and tappets, a prevalent 
form of failure is fatigue wear. In these situations, the removal of material results from a cyclic 
load variation.

Surface fatigue occurs in pure-rolling or roll-sliding contact, owing to many thousands of cycles 
of repeated contact stress. A typical stress-life diagram on the basis of computed maximum contact 
pressure po (see Sections 8.7 and 8.8) is shown in Figure 8.12. Note that the degree of sliding usually 
increases from the parallel rollers (top line) to spur gear teeth (bottom line). Other types of gear have 
essentially pure sliding at their interfaces. Observe from the figure that the tendency of surface-
fatigue failure can be reduced by decreasing the sliding and decreasing loads.

High-strength smooth materials are required in contact-stress applications. No material has an 
endurance limit against surface fatigue. Therefore, a contact stress or surface-fatigue strength value 
for only a particular number of cycles is given for the materials. Usually, increased surface hard-
ness increases resistance to surface fatigue. Also, compressive residual stresses in the contacting 
surfaces increase resistance to surface-fatigue failure. These contact stresses can be introduced by 
methods such as surface treatments, thermal treatments, and mechanical treatments. Thermal stress-
ing occurs whenever a part is heated and cooled, as in heat treatment. The most common methods 
for introducing surface compressive stresses are shot peening and cold forming (see Section 2.11). 
Mechanical prestressing refers to the prearranged overloading of the part in the same direction as 
its service loading, before its being placed in service.

8.9.1  stresses aFFeCting surFaCe Fatigue

When two surfaces are in pure-rolling contact, shear stress τ (existing at any point below the surface 
and a distance from the load axis) reverses while going through the contact zone from A to A′, as 
shown in Figure 8.13. This fully reversed shear stress, as well as the subsurface maximum shear 
stress occurring along the load axis and maximum contact pressure po, may be the cause of pits that 
begin at the subsurface.

If some sliding accompanies rolling, as shown in Figure 8.13, both fully reversed tangential 
surface shear and normal stresses are produced as any point on the surface rolls through the contact 
region; pitting begins at the surface. The resulting surface tensile stress leads to the propagation 
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FIGURE 8.12 Average S–N curves for contact stresses, 10% failure probability [8].
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of surface-fatigue cracks. Figure 8.14 depicts the stresses produced below the surface that deform 
and weaken the metal. As cyclic loading continues, faults or cracks form below the surface (Figure 
8.15a). Consequently, the faults merge near (Figure 8.15b) or on the surface. Material at the surface 
of the element is then readily broken away. In addition, significant factors that influence stresses in 
contact zone include highly localized heating and thermal expansion produced by sliding friction 
and the increase in viscosity of the oil due to high pressure in elastohydrodynamic lubrication (see 
Section 10.16).

8.10  PREVENTION OF SURFACE DAMAGE

Corrosion and wear represent enormous ecological and economic burdens. Prevention or reduc-
tion of surface failure is one of the greatest challenges to modern engineering. Machines should be 

F

F

Driving
cylinder

A
A

Á
Á

ττ

FIGURE 8.13 Two rotating cylinders compressed by force F. Note the subsurface shear stress that reverses 
when rolling through the contact zone.

F

F

Driving
cylinder

FIGURE 8.14 Two rotating and sliding thick-walled cylinders compressed by force F. Tangential normal 
and shear stresses due to the sliding friction between the members have the largest values at the surface in the 
locations shown.
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designed to reduce surface failure as much as feasible and provide for easy replacement of worn-
out components. Smoothness and hardness of a surface (see Section 7.7 and Section 8.4) improve 
fatigue strength and provide resistance to wear. Compressive residual stresses in contacting sur-
faces increase fatigue strength, resistance to SCC, corrosion fatigue, and surface fatigue, as well as 
decrease damage from fretting corrosion.

In contemporary design of most machine elements, it is important to choose different mate-
rials for the interior and for the surface, that is, to avoid making parts from a single material. 
When the material most suitable for the bulk of the component does not meet the surface require-
ments, a second material can usually be used on the surface. Steel parts, for instance, can be coated 
with chromium, zinc, nickel, or other metals to provide needed resistance. Soft metal components, 
including plastic parts, can be coated with hard bright surface metal to enhance abrasion resistance 
and appearance.

For low-friction and wear applications, coatings embodying plastics like Teflon, plating, and 
application of enamel are often used. Some other plastic coatings are employed for applications 
where a high coefficient of friction is required, such as brakes, belts, and clutches. Ceramic mate-
rial coatings may be used for components with surfaces under extreme heat. Frequently, the desired 
coating can be mixed with a paint-type material. Attention must be paid to ecological and health 
concerns when choosing a coating material and coating process. Waste disposal without polluting 
the environment and the development of safe and economical processes for various coatings thus 
become very significant.

Numerous precautions may be taken into account by a designer to reduce wear damage. 
Appropriate choice of materials and lubricants, cleanliness of the surfaces, and avoiding stress 
concentrations are among the most common remedies. Proper surface finish and hardness, 
strength to reduce abrasion, and increased surface life are necessary. Corrosive surroundings need 
special materials and thus coatings should be considered in some applications. Aluminum alloys 
often undergo a surface treatment. As discussed in Section 2.11, anodizing, a process whereby 
a surface is oxidized, increases corrosion resistance and wear resistance. It is usually applied to 
protect aluminum alloys.

Material homogeneity in contact-stress applications is useful. Often, higher surface hardness 
reduces wear and surface-fatigue damage. Hydrodynamic and hydrostatic lubrication are desir-
able where possible. More will be said about these in Section 10.3. Seals to protect bearings and 
other joints should be provided. A less stiff material should be used to increase the contact-patch 
area and reduce stresses in surface-fatigue situations. Careful attention is required when any 
type of fatigue loading combined with a corrosive surrounding. Finally, attention is necessary 
considering the possibility of fretting failure when vibration is present in press or shrink fits or 
tight joints.

(a) (b)

FIGURE 8.15 A simulation of surface-fatigue failure: (a) below the surface and (b) near the surface.
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PROBLEMS

Sections 8.1 through 8.10
 8.1 A bearing made of ASTM-A36 structural steel is used in a slow-moving gate. In order to 

increase the bearing life only of the rubbing surfaces, it will be changed with lead of 3 Bhn, 
brass of 8 Bhn, or polyethylene of 7 Bhn. Which one of these materials will give the longest 
life?

 8.2 A bronze part of 60 Bhn rubs back and forth over a distance of 80 mm in the slot of a 1010 
CD steel link of 105 Bhn (Table B.3). Find the volumes of bronze and steel that will wear 
away during an average of 1500 times per 6 months for a compressive load between the 
surfaces of P = 40 N.

  Assumption: Sliding surfaces are unlubricated and metals are partially compatible.
 8.3 A steel follower stem of 450 Bhn moves up and down over a distance of 37.5 mm in the 

sleeve of a 160 Bhn cam follower systems. See, for example, Figure 7.16. The follower arm 
is to operate an average of 6000 times per month. Find the volumes of metal that will wear 
away from the stem and follower during a year.

  Assumption: Metallic sliding surfaces are identical and have good lubrication. Stem exerts 
an average y compressive load of P = 45 kN on sleeve.

 8.4 Reconsider Example 8.1, for a case in which the rotating disk is manufactured of wrought 
copper alloy with 110 Vickers hardness and a contact force of P = 25 kN.

 8.5 Redo Example 8.1, knowing that the pin is made of wrought copper alloy with 85 Vickers 
hardness and a contact force of P = 35 kN.

 8.6 Two identical 300 mm diameter balls of a rolling mill are pressed together with a force of 
F = 500 N. Determine:

 a. The width of contact.
 b. The maximum contact pressure.
 c. The maximum principal stresses and shear stress in the center of the contact area.
 d. The largest value of the subsurface shear stress.
  Assumption: Both balls are made of steel of E = 210 GPa and ν = 0.3.
 8.7 A spherical ball of radius r1 fitting in a spherical bearing seat of radius r2 supports a radial 

load F as depicted in Figure P8.7 Both ball and seat are made of AISI4130 normalized steel 
of ν = 0.3, E = 200 GPa, and Sy = 436 MPa (Table B.4). Compute:

 a. The pressure at the contact point between the ball and seat.
 b. The deflection of the ball and seat at the point of contact.
 c. The maximum value of subsurface shear stress.
  Given: r1 = 6 mm, r2 = 6.05 mm, F = 2.2 kN.
 8.8 In a machine, a cylindrical roller of radius r1 is preloaded with a force F against a parallel 

cylindrical roller of radius r2, as shown in Figure 8.7. The rollers have a length L and are 
made of AIS1 1010 HR steel (see Table B.3). Find:

Spherical
seat

2r2

F

Spherical
ball

r1

FIGURE P8.7 Ball and socket joint.
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 a. The width of contact and the maximum contact pressure.
 b. The largest value of the subsurface shear stress.
  Given: r1 = 25 mm, r2 = 75 mm, L = 25 mm, F = 220 N, E = 200 GPa, Sy = 180 MPa.
 8.9 A 14 mm diameter cylindrical roller runs on the inside of a ring of inner diameter 90 mm 

(see Figure 10.23a). Calculate:
 a. The half-width a of the contact area.
 b. The value of the maximum contact pressure po.
  Given: The roller load is F = 200 kN/m of axial length.
  Assumption: Both roller and ring are made of steel having E = 210 GPa and ν = 0.3.
 8.10 A spherical-faced (mushroom) follower or valve tappet is operated by a cylindrical cam 

(Figure P8.10). Determine the maximum contact pressure po.
  Given: r r 250 mm2 2= ′ = , r1 = 9.375 mm, and contact force F = 2.25 kN.
  Assumptions: Both members are made of steel of E = 200 GPa and ν = 0.3.
 8.11 Resolve Problem 8.10, for a case in which the follower is flat faced.
  Given: w = 6.25 mm.
 8.12 A hardened steel spherical ball of radius r1 exerts a force F against a flat seat. Find:
 a. The largest contact stress that results from the loading.
 b. The deflection of the ball and seat at the point of contact.
  Given: . , , , , .r F S E56 25 mm 360 N 420 MPa 200 GPa 0 3y1 = = = = ν = .
 8.13 A cylindrical roller of radius r1 and length L is subjected to a load F as it slowly runs inside 

a semicircular parallel groove with radius r2 of a block (Figure P8.13). Both roller and 
block are made of AISI 1030 annealed steel. Determine:

 a. The width of contact and the largest contact pressure.
 b. The maximum principal stresses and shear stresses in the center of the contact area.
 c. The largest value of the maximum subsurface shearing stress.
  Given: r1 = 15 mm, r2 = 16.25 mm, L = 37.5 mm, F = 13.5 N, E = 200 GPa, ν = 0.3, 

Sy = 317 MPa (from Table B.4).
 8.14 A ball of radius r1 is pressed into a spherical seat of radius r2 by a force F. Both ball and 

seat are made of steel. Find:
 a. The maximum radius of contact area.
 b. The largest contact pressure.
 c. The relative displacement of centers of the ball and seat.
 d. The maximum value of the subsurface shear stress.
  Given: r1 = 50 mm, r2 = 55 mm, F = 560 N, E = 200 GPa, ν = 0.3.

F F

Tappet

++

Cam

w

r2 r'2

r1

FIGURE P8.10 Valve tappet and cam shaft.
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 8.15 Determine the largest contact pressure in Problem 8.14 for cases in which the 50 mm 
radius ball is pressed against:

 a. A flat surface.
 b. An identical ball of 100 mm radius.
 8.16 Consider a concentrated load of F = 1.8 kN at the center of a deep steel beam is applied 

through a steel rod of radius r1 = 12.5 mm laid across the 100 mm beam width. Both mem-
bers are made of hardened steel with E = 200 GPa and ν = 0.3. What are the width of the 
contact, and the deflection between rod and beam surface?

 8.17 What are the size of contact area and the largest pressure between two identical circular 
cylinders with mutually perpendicular axes?

  Given: r1 = r2 = 220 mm, F = 2 kN, E = 206 GPa, ν = 0.25.
 8.18 A train wheel of radius r1 runs slowly over a steel rail of crown radius r2 (Figure 8.11b). 

What is the maximum contact pressure?
  Given: r1 = 500 mm, r2 = 300 mm, F = 5 kN.
  Assumption: Both wheel and rail are made of steel of E = 206 GPa and ν = 0.3.
 8.19 Redo Example 8.3 for a double-row ball bearing having r1 = r1′ = 5 mm, r2 = −5.2 mm, 

r2′ = −30 mm, F = 600 N, and Sy = 1500 MPa.
  Assumptions: The remaining data are unchanged. The factor of safety is based on the 

yield strength.
 8.20 Redo Problem 8.18, for a case in which the rail is 25 mm wide and flat. Assume the remain-

ing data to be the same.
 8.21 A steel cylindrical roller of radius r1 runs on the inside of a steel ring of inner radius r2. 

Compute:
 a. The width a of the contact area.
 b. The largest contact pressure.
 c. The largest value of the subsurface shear stress.
  Given: r1 = 10 mm, r2 = 62.5 mm, the roller load F = 300 kN per meter of axial length, 

E = 200 GPa, ν = 0.3.
 8.22 What is the maximum pressure at the contact point between the outer race and a ball in 

the single-row steel ball bearing assembly illustrated in Figure 8.11a? The ball radius is 
20 mm; the radius of the grooves, 25 mm; the radius of the outer race, 200 mm; and the 
maximum compressive load on the ball F = 1.2 kN.

  Given: E = 210 GPa and ν = 0.3.
 8.23 Reconsider Problem 8.22, but use a ball radius of 36 mm and a groove radius 20 mm, with 

the highest compressive load F = 900 N. Assume the remaining data to be unchanged.

r1
r2

F

L

FIGURE P8.13 
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Section III

Machine Component Design

Partial view of a motorcycle engine, BMW R1200GS (www.google.com). Section III discusses 
the design of many components, some of which may be contained in this machine, such as shafts, 
bearings, gears, belts, chains, springs, clutches, brakes, and others. The main function of these ele-
ments is, of course, to serve as parts of a system. In the final chapter, we will present case studies in 
preliminary design of two complete machines.
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9 Shafts and Associated Parts

9.1  INTRODUCTION

Shafts are used in a variety of ways in all types of mechanical equipment. A shaft, usually a slender 
member of round cross-section, rotates and transmits power or motion. However, a shaft can have 
a noncircular cross-section and need not be rotating. An axle, a nonrotating member that carries 
no torque, is used to support rotating members. A spindle designates a short shaft. A flexible shaft 
transmits motion between two points (e.g., motor and machine), where the rotational axes are at 
an angle with respect to one another. The customary shaft types are straight shafts of constant or 
stepped cross-section and crankshafts (Figure 9.1). The former two carry rotating members such as 
gears, pulleys, grooved pulleys (sheaves), or other wheels. The latter are used to convert reciprocat-
ing motion into rotary motion or vice versa.

Most shafts are under fluctuating loads of combined bending and torsion with various degrees 
of stress concentration. Many shafts are not subjected to shock or impact loading; however, 
some applications arise where such load takes place (Section 9.5). Thus, the associated con-
siderations of static strength, fatigue strength, and reliability play a significant role in shaft 
design. A shaft designed from the preceding viewpoint satisfies strength requirements. Usually, 
the shaft geometry is such that the diameter will be the variable used to satisfy the design. Of 
equal importance in design is the consideration of shaft deflection and rigidity requirements. 
Excessive lateral shaft deflection can cause bearing wear or failure and objectionable noise. The 
operating speed of a shaft should not be close to a critical speed (Section 9.7), or large vibrations 
are likely to develop.

In addition to the shaft itself, the design usually must include calculation of the necessary keys 
and couplings. Keys, pins, snap rings, and clamp collars are used on shafts to secure rotating ele-
ments. The use of a shaft shoulder is an excellent means of axially positioning the shaft elements. 
Figure 9.2 shows a stepped shaft supporting a gear, a crowned pulley, and a sheave. The mounting 
parts, discussed in Section 9.8, as well as shaft shoulders, are a source of stress raisers, and they 
must be properly selected and located to minimize the resulting stress concentrations. Press and 
shrink fits (Section 9.6) are also used for mounting. Shafts are earned in bearings, in a simply sup-
ported form, cantilevered or overhang, depending on the machine configuration. Couplings connect 
a shaft to a shaft of power source or load. Parameters that must be considered in the selection of a 
coupling to connect two shafts include the angle between the shafts, transmitted power, vibrations, 
and shock loads. The websites www.pddnet.com, www.powertransmission.com, and www.grainger 
.com present general information on shaft couplings.

9.2  MATERIALS USED FOR SHAFTING

To minimize deflections, shaft materials are generally cold drawn or machined from hot-rolled, 
plain carbon steel. The shaft ends should be made with chamfers to facilitate forcing on the mounted 
parts and to avoid denting the surfaces. Cold drawing improves the physical properties. It raises 
considerably the values of the ultimate tensile and yield strengths of steel. Where toughness, shock 
resistance, and greater strength are needed, alloy steels are used. The foregoing materials can be 
heat-treated to produce the desired properties. If the service requirements demand resistance to 
wear rather than extreme strength, it is customary to harden only the surface of the shaft, and a 
carburizing grade steel can be used. Note that the hardening treatment is applied to those surfaces 
requiring it; the remainder of the shaft is left in its original condition.
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Thick-walled seamless tubing is available for simpler, smaller shafts. Large-diameter members 
(> about 75 mm diameter), such as railroad axles and press cranks, are usually forged and machined 
to the required size. In addition to steels, high-strength nodular cast iron is used to make shaped 
shafts, for example, automotive engine crankshafts. Bronze or stainless steel is sometimes used for 
marine or other corrosive environments. Because keys and pins are loaded in shear, they are made 
of ductile materials. Soft, low-carbon steel is in widespread usage. Most keys and pins are usually 
made from cold-rolled bar stock, cut to length, and tapered if needed.

9.3  DESIGN OF SHAFTS IN STEADY TORSION

In the design of circular slender shafts that transmit power at a specified speed, the material and 
the dimensions of the cross-section are selected to not exceed the allowable shearing stress or a 
limiting angle of twist when rotating. Therefore, a designer needs to know the torque acting on the 
power-transmitting shaft (see Section 1.11). Equations (1.15) through (1.17) may be used to convert 
the power supplied to the shaft into a constant torque exerted on it during rotation. After having 
determined the torque to be transmitted, the design of circular shafts to meet strength requirements 
can be accomplished by using the process outlined in Section 3.2:

 1. Assume that, as is often the case, shear stress is closely associated with failure. Note, how-
ever, that in some materials, the maximum tensile and compression stresses occurring on 
planes at 45° (see Figure 3.24) to the shaft axis may cause the failure.

 2. An important value of the shear stress is defined by τmax = Tc/J.
 3. The maximum usable value of τmax without failure is the yield shear strength Sys or ultimate 

shear strength Sus.

(a)

(b)

(c)

FIGURE 9.1 Common shaft types: (a) constant diameter, (b) stepped, and (c) crankshaft.

Frame

Pulley

Shaft

Gear

Bearing

Frame
Sheave

FIGURE 9.2 A stepped shaft with various elements attached.
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 4. A factor of safety n is applied to τmax to determine the allowable stress τall = Sys/n or 
τall = Sus/n. The required parameter J/c of the shaft based on the strength specification is

 
J

c

T

all

=
τ

 (9.1)

For a given allowable stress, Equation (9.1) can be used to design both solid and hollow circular 
shafts carrying torque only.

Example 9.1: Design of a Shaft for Steady Torsion Loading

A solid circular shaft is to transmit 500 kW at n = 1200 rpm without exceeding the yield strength in 
shear of Sys or a twisting through more than 4° in a length of 2 m. Calculate the required diameter of 
the shaft.

Design Decisions: The shaft is made of steel having Sys = 300 MPa and G = 80 GPa.
A safety factor of 1.5 is used.

Solution

The torque, applying Equation (1.15),

 T
n

9549 kW 9549 500
1200

3979 N m
( )= = = ⋅  

Strength specification. Through the use of Equation (9.1), we have

 
.

c
2

3979 1 5

300 10
3

6( )
( )π =  

The foregoing gives c = 23.3 mm.
Distortion specification. The size of the shaft is now obtained from Equation (4.9):

 
L

T

GJ
allφ =  (9.2)

Substituting the given numerical values,

 
/

/c

4 180

2
3979

80 10 29 4( )
( )° π =

× π
 

This yields c = 30.9 mm.

Comment: The minimum allowable diameter of the shaft must be 61.8 mm. A 62 mm shaft should be 
used.

9.4  COMBINED STATIC LOADINGS ON SHAFTS

The shaft design process is far simpler when only static loads are present than when the loading 
fluctuates. However, even with the fatigue loading, a preliminary estimate of shaft diameter may 
be needed many times, as is observed in the next section. Hence, the results of the rational design 
procedure of Section 3.2, presented here, is useful in getting the first estimate of shaft diameter for 
any type of combined static loading conditions.
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9.4.1  Bending, torsion, and axial loads

Consider a solid circular shaft of diameter D, acted on by bending moment M, torque T, and axial 
load P. To begin with, we determine the maximum normal and shear stresses occurring in the outer 
fibers at a critical section:

 

M

D

P

D

T

D

32 4

16

x

xy

3 2

3

σ =
π

+
π

τ =
π

 (9.3)

in which the axial component of σx may be either additive or subtractive. The foregoing equations 
are used with a selected design criterion. Note that, for a hollow shaft, the preceding expressions 
become

 
/

/

M

D d D

P

D d

T

D d D

32

1

4

16

1

x

xy

3 4 2 2

3 4

( )( )

( )

σ =
π − 

+
π −

τ =
π − 

 (9.4)

The quantities D and d represent the outer and inner diameters of the shaft, respectively.
Substituting Equation (9.3) into Equation (6.11), a shaft design formula based on the maximum 

shear theory of failure is

 
/S

n D
M PD T

4
8 8y

3
2 2 1 2

( ) ( )=
π

+ +   (9.5)

Similarly, carrying Equation (9.3) into Equation (6.16), the maximum energy of distortion theory 
of failure results in

 
/S

n D
M PD T

4
8 48y

3
2 2

1 2
( )=

π
+ +   (9.6)

where Sy represents the yield strength in tension.

9.4.2  Bending and torsion

Under many conditions, the axial force P in the preceding expressions is either 0, or so small that 
it can be neglected. Substituting P = 0 into Equations (9.5) and (9.6), we have the following shaft 
design equations based on the maximum shear stress theory of failure:

 
/S

n D
M T

32y
3

2 2 1 2
−

π
+   (9.7)

and the maximum energy of distortion theory of failure is

 
/S

n D
M T

32 3
4

y
3

2 2
1 2

=
π

+





 (9.8)
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Likewise, another expression based on the maximum principal stress theory of failure may be 
 written as

 
S

n D
M M T

16u
3

2 2=
π

+ +



 (9.9)

in which Su is the ultimate tensile strength.
Equations (9.5) through (9.9) can be used to determine the factor of safety n if the diameter D is 

given, or to find the diameter if a safety factor is selected.

Example 9.2: Shaft Design for Combined Bending and Torsion

The gear A is attached to the AISI 1010 CD steel shaft AB of yield strength Sy that carries a vertical load 
of 1.62 kN (Figure 9.3(a)). The shaft is fitted with gear D that forms a set with gear E.

Find: (a) The value of the torque TE applied on the gear E to support the loading and reactions at the 
bearings, and (b) the required shaft diameter D, applying the maximum shear stress failure criterion.

Given: Sy = 300 MPa (from Table B.3).

Assumptions: The bearings at B and C are taken as simple supports. A safety factor of n = 1.6 is to be 
used with respect to yielding.

Solution

 a. Conditions of equilibrium are applied to Figure 9.3(b) to find tangential force FD acting on 
gear D. Then support reactions are determined using equilibrium conditions and marked on 
the figure. Referring to Figure 9.3(a), we thus have TE = FD(0.05) = 2160(0.05) = 108 N ⋅ m.

 b. Observe from Figure 9.3(c) through Figure 9.3(e) that, since MC > MD, the critical section 
where largest value of the stress is expected to occur is at C. Through the use of Equation 
(9.7), we have

 

/

D
n

S
M T

32

y
C C
2 2

1 3

=
π

+








  (a)

 Substituting the numerical values results in

 
. . .

/

D
32 1 6

300 10
202 3 162 24 2 mm

6

2 2

1 3

( )
( ) ( ) ( )=

π ×
+













=  

Comment: It is interesting to note that, similar to the distortion energy criterion, Equation (9.8) gives 
D = 23.7 mm. Thus, a standard diameter of 25 mm shaft can be safely used.

Case Study 9.1 Motor-Belt-Drive Shaft Design for Steady Loading

A motor transmits the power P at the speed of n by a belt drive to a machine (Figure 9.4(a)). 
The maximum tensions in the belt are designated by F1 and F2 with F1 > F2. The shaft will be 
made of cold-drawn AISI 1020 steel of yield strength Sy. Note that the design of main and drive 
shafts of a gear box will be considered in Case Study 18.5. Belt drives are discussed in detail 
in Chapter 13.
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Find: Determine the diameter D of the motor shaft according to the energy of distortion theory 
of failure, based on a factor of safety n with respect to yielding.

Given: Prescribed numerical values are

 L a r P230 mn 70 mm 51 mm 55 kW= = = =  

 . .n S n4500 rpm 390 MPa from Table B 3 3 5y0 ( )= = =  

Assumptions: Friction at the bearings is omitted; bearings act as simple supports. At maximum 
load F1 = 5F2.

Solution

Reactions at bearings. From Equation (1.15), the torque applied by the pulley to the motor shaft 
equals

 .T
P

n

9549 9549 55
4500

116 7 N mAC
0

( )= = = ⋅  

The force transmitted through the belt is therefore

r
n0

2w

L
F1 F2

Belt

Pulley

A

(a)

Shaft

Motor

Bearing

B

(b)

(c)

a w

C

y

x

RA = 1044.5 N

M
(N · m)

RB = 4476.5 N

TAC = 116.7 N · m F1 + F2 = 3432 N

230 mm

D

70 mm

240.2

CBA 

A
B C

x

FIGURE 9.4 Motor belt drive: (a) assembly, (b) load diagram of the shaft, and (c) moment diagram of the 
shaft.
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.

.
F

F T

r5
116 7
0 051

2288 NAC
2

1− = − =  

or

 F F2860 N and 572 N1 2= =  

Applying the equilibrium equations to the free-body diagram of the shaft (Figure 9.4(b)), we 
have

 . . , .M R R3432 0 3 0 23 0 4476 5 NA B B( ) ( )Σ = − = =  

 , .F R R R3432 0 1044 5 Ny A B AΣ = + − = =  

The results indicate that RA and RB act in the directions shown in the figure.
Principal stresses. The largest moment takes place at support B (Figure 9.4(c)) and has a 

value of

 . .M 3432 0 07 240 2 N mB ( )= = ⋅  

Inasmuch as the torque is constant along the shaft, the critical sections are at B. It follows that

 
. .T

D D D

16 16 116 7 1867 2
3 3 3

( )τ =
π

=
π

=
π

 

 
. .M

D D D

32 32 240 2 7686 4
x 3 3 3

( )σ =
π

=
π

=
π

 

and σy = 0. For the case under consideration, Equation (3.33) reduces to

 
. . .

. .

,

D D

D

2 2

3843 2 1 7686 4
4

1867 2

1
3843 2 4272 8

x x
1 2

2
2

3 3

2
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( ) ( )

( )

σ = σ ± σ



 + τ

=
π

±
π

+

=
π

±

 

from which

 , .
D D

8116 429 6
1 3 2 3σ =

π
σ = −

π
 (b)

Energy of distortion theory of failure. Through the use of Equation (6.14),

 
/ S

n
y

1
2

1 2 2
2 1 2

σ − σ σ + σ  =  

This, after introducing Equation (b), leads to
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 . .
.

/

D

1
8116 8116 429 6 429 6

390 10

3 53
2 2 1 2

6( )( ) ( )( ) ( )
π

− − + −  =  

Solving,

 . .D 0 0288 m 28 8 mm= =  

Comment: A commercially available shaft diameter of 30 mm should be selected.

9.5  DESIGN OF SHAFTS FOR FLUCTUATING AND SHOCK LOADS

Shafts are used in a wide variety of machine applications. The design process for circular torsion 
members is described in Section 9.3. We are now concerned with the members carrying fluctuating 
and shock loads of combined bending and torsion, which is the case for most transmission shafts 
[1, 2]. Referring to Section 7.8, the definitions of the mean and alternating moments and torques are

 
M M M

T T T

M M M

T T T

1 2

1 2
and

1 2

1 2

m

m

a

a

max min

max min

max min

max min

( )
( )

( )
( )

= +

= +

= −

= −
 (9.10)

Although in practice, design usually includes considerations for associated keys and couplings, 
these are neglected in the ensuing procedure. We note that all the shaft design formulas to be pre-
sented assume an infinite life design of a material with an endurance limit.

For a solid round shaft of diameter D subjected to bending moment M and torsion T, we have on 
an outermost element

 
M

D

T

D

32
and

16
x xy3 3σ =

π
τ =

π
 

We can replace σxm, σxa, τxym, and σxya by these formulas (using the appropriate subscripts on σ, τ, 
M, and T) to express the equations developed in Section 7.12 in terms of the bending moment and 
torque.

The maximum shear stress theory combined with the Goodman fatigue criterion, applying 
Equation (7.28), is thus obtained as
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 (9.11)

In a similar manner, the maximum energy of distortion theory incorporated with the Goodman 
fatigue criterion, from Equation (7.32), is
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 (9.12)

The quantities Su and Se represent the ultimate strength and endurance limit, respectively.
Note that an alternate form of the maximum energy of distortion theory associated with the 

Goodman fatigue relation, through the use of Equation (7.35), may be expressed in the following form:
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 (9.12')
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Alternatively, the maximum shear stress criterion, Equation (9.11), may also be readily written.

9.5.1  shoCk FaCtors

The effect of a shock load on a shaft has been neglected in the preceding derivation. For some 
equipment, where operation is jerky, this condition requires special consideration. To account for a 
shock condition, multiplying coefficients (i.e., correction factors Ksb in bending and Kst in torsion) 
may be used in the foregoing equations. Thus, the maximum shear stress theory is associated with 
Goodman fatigue relation. Equation (9.11) becomes

 

/
S

n D
K M
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S
M K T

S

S
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32u
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u

e
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u

e
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2 2 1 2

=
π

+





+ +

















 (9.13)

Likewise, the maximum energy of distortion theory combined with the Goodman criterion through 
the use of Equation (9.12) is
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 (9.14)

The values for Ksb and Kst are listed in Table 9.1. Equations (9.13) and (9.14) represent the general 
form of design formulas of solid transmission shafts. As shown previously, for hollow shafts of outer 
diameter D and inner diameter d, D3 is replaced by D3[1 − (d/D)4] in these equations.

9.5.2  steady-state oPeration

Operation of shafts under steady loads involves a completely reversed alternating bending stress 
(σa) and an approximate torsional mean stress (τm). This is the case of a rotating shaft with constant 
moment M = Mmax = −Mmin and torque T = Tmax = Tmin. Therefore,

Equation (9.10) gives

 

M M M M M M M

T T T T T T T

1
2

0
1
2

1
2

1
2

0

m a

m a

[ ] [ ]( ) ( )

( ) ( )

= + − = = − − =

= + = = − =
 (9.15)

and Equations (9.11) through (9.14) are simplified considerably. Then, Equation (9.12) results in
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 (9.16a)

TABLE 9.1
Shock Factors in Bending and Torsion
Nature of Loading Ksb, Kst

Gradually applied or steady 1.0

Minor shocks 1.5

Heavy shocks 2.0
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The preceding expressions could also be written on the basis of the Soderberg criterion, replac-
ing the quantity Su by the yield strength Sy, as needed. In so doing, for instance, Equation (9.16a) 
becomes
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32 3
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e
a m
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=
π







+












 (9.16b)

This is essentially the ASME shaft design equation [1]. Note that, for a shaft with varying diameters 
or other causes of stress concentration, the section of the worst combination of moment and torque 
may not be obvious. It might therefore be necessary to apply design equations at several locations. 
Clearly, unsteady operation produces fluctuations on the shaft torque (Example 9.3); hence, Ta ≠ 0 
in Equation (9.15).

The foregoing discussion shows that the design of shafts subjected to fluctuating and shock loads 
cannot be carried out in a routine manner, as in the case of static loads. Usually, the diameter of a 
shaft must be assumed and a complete analysis performed at a critical section where the maximum 
stress occurs. A design of this type may require several revisions. The FEA is in widespread use for 
such cases for final design. Alternatively, experimental methods are used, since formulas of solid 
mechanics may not be sufficiently accurate.

9.5.3  disPlaCements

Shaft deflections frequently can be a critical factor, since excessive displacements cause rapid wear 
of shaft bearings, misalignments of gears driven from the shaft, and shaft vibrations (see Section 
9.6). Deflection calculations require that the entire shaft geometry be defined. Hence, a shaft typi-
cally is first designed for strength, then the displacements are calculated once the geometry is com-
pletely prescribed. Both transverse and twisting displacements must be analyzed. Approaches used 
in obtaining the deflections of a shaft include the methods of Chapters 4, 5, and 17.

Example 9.3: Shaft Design for Repeated Torsion and Bending

Power is transmitted from a motor through a gear at E to pulleys at D and C of a revolving solid shaft 
AB with ground surface. Figure 9.5(a) shows the corresponding load diagram of the shaft. The shaft is 
mounted on bearings at the ends A and B. Determine the required diameter of the shaft by employing 
the maximum energy of distortion theory of failure incorporating the Soderberg fatigue relation.

Given: The shaft is made of steel with an ultimate strength of 810 MPa and a yield strength of 605 MPa. 
Torque fluctuates 10% each way from the mean value. The fatigue stress-concentration factor for bend-
ing and torsion is equal to 1.4. The operating temperature is 500°C maximum.

Design Assumptions: Bearings act as simple supports. A factor of safety of n = 2 is used. The survival 
rate is taken to be 50%.

Solution

The reactions at A and B, as obtained from the equations of statics, are noted in Figure 9.5(a). The deter-
mination of the resultant bending moment of ( ) /M My z

2 2 1 2+  is facilitated by using the moment diagrams 
(Figure 9.5(b) and (c)). At point C, we have

 . . .
/

M 0 1 1 5 1 503 kN mC
2 2

1 2
( ) ( )= +  = ⋅  

Similarly, at D and E,

 . .M M2 121 kN m 1 304 kN mD E= ⋅ = ⋅  
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The maximum bending moment is a D. Note from Figure 9.5(d) that the torque is also maximum at D, 
TD = 1 kN ⋅ m. The exact location along the shaft where the maximum stress occurs, the critical section, 
is therefore at D. Hence, at point D,

 
.

. .

M M

T T

0 2 121 kN m

1 kN m 0 1 1 0 1 kN m

m a

m a ( )
= = ⋅

= ⋅ = = ⋅
 

Using Equation (7.1), the endurance limit of the material is

 . .S S0 5 0 5 810 405 MPae u( ) ( )′ = = =  

By Equation (7.7) and Table 7.2, we determine that, for a ground surface,

 . ..C AS 1 58 810 0 894f u
b 0 085( )= = =−  

For reliability of 50%, we have Cr = 1 from Table 7.3. Assuming that the shaft diameter will be larger 
than 51 mm, Cs = 0.70 by Equation (7.9). The temperature factor is found applying Equation (7.11):

 . . .C T1 0 0058 450 1 0 0058 500 450 0 71t ( ) ( )= − − = − − =  

We can now determine the modified endurance limit by Equation (7.6):

 
. . . / .

.

S C C C C K S1/ 0 894 1 0 70 0 71 1 1 4 405 10

128 5 MPa

e f r s t f e
6( )( ) ( )( )( )( )( )= ′ = ×

=
 

Because the loading is smooth, Ksb = Kst = 1 from Table 9.1.
Substituting the Sy = 605 MPa for Su and the numerical values obtained into Equation (9.14), 

we have

600

(d)

T
(N  m)

My
(N  m)

Mz
(N  m)

z

A

y

RAy = 7.5 kN

RAz = 0.5 kN

RBy = 3.5 kN

RBz = 5.5 kN

B

E

D x
TC = 600 N · m TD = 400 N · m TE = 1000 N · m

6 kN
5 kN

4 kN 9 kN

C

(c)

(b)

(a)

–100 –300

1000

1100

700

2100
1500

0.2 m0.4 m0.4 m0.2 m

x

x

x

 

FIGURE 9.5 Example 9.3. (a) FBD of the shaft, (b) moment diagram in xy plane, (c) moment diagram in xz 
plane, and (d) torque diagram.
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2
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1 0
605 2121

128 5
1

3
4

1000
605 100

128 5

6

3

2 2 1 2( ) ( ) ( )=
π

+ ×



 + 



 + ×













  

Solving,

 . .D 0 0697 m 69 7 mm= =  

Comment: Since this is larger than 51 mm, our assumptions are correct. A diameter of 70 mm is there-
fore quite satisfactory.

Example 9.4: Factor of Safety for a Stepped Shaft under Torsional Shock Loading

A stepped shaft of diameters D and d with a shoulder fillet radius r has been machined from AISI 1095 
annealed steel and fixed at end A (Figure 9.6). Determine the factor of safety n, using the maximum 
shear stress theory incorporated with the Goodman fatigue relation.

Given: The free end C of the shaft is made to rotate back and forth between 1.0° and 1.5° under torsional 
minor shock loading. The shaft is at room temperature.

Data:

 , , , ,L d D r300 mm 30 mm 60 mm 2 mm= = = =  

 . . , .K G1 5 by Table 9 1 79 GPa from Table B 1st ( ) ( )= =  

 .S H658 MPa and 192 by Table B 4u B ( )= =  

Design Assumption: A reliability of 95% is used.

Solution
From the geometry of the shaft, D = 2d and LAB = LBC = L. The polar moment of inertia of the shaft seg-
ments are

 J
d

J
D

J
32 32

16BC AB BC

4 4

= π = π =  

in which

 . .J
32

0 030 79 52 10 mBC
4 9 4( )( )= π = −  

The total angle of twist is

 
TL

G J J

1
16

1

BC BC

φ = +





 

D
A B C

dr

T
L L

FIGURE 9.6 Example 9.4.
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or

 T
GJ

L

16
17

BC= φ
 

Substituting the numerical data, this becomes T = 19,708.5ϕ. Accordingly, for ϕmax = 0.0262 rad and 
ϕmin = 0.0175 rad, it follows that Tmax = 516.4 N ⋅ m and Tmin = 344.9 N ⋅ m. Hence,

 . .T T430 7 N m 85 8 N mm a= ⋅ = ⋅  

The modified endurance limit, using Equation (7.6), is

 S C C C C
K

S
1

e f r s t
f

e=






′ 

where
Cf = Au

b = 4.51(658−0265) = 0.808 (by Equation (7.7) and Table 7.2)
Cr = 0.87 (from Table 7.3)
Cs = 0.85 (by Equation (7.9))
Ct = 1 (for normal temperature)
Se′ = 0.29Su = 190.8 MPa (applying Equation (7.4))

and
Kt = 1.6 (from Figure C.8, for D/d = 2 and r/d = 0.067)
q = 0.92 (from Figure 7.9, for r = 2 mm and HB = 192 annealed steel)
Kf = 1 + 0.92(1.6 − 1) = 1.55 (using Equation (7.13b))

Therefore,

 . . . / . . .S 0 808 8 87 0 85 1 1 1 55 190 8 73 55 MPae ( )( )( )( )( )( )= =  

We now use Equation (9.13) with Mm = Ma = 0 to estimate the factor of safety:

 

/
S

n d
K T

S

S
T

32u
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e
a3

2 1 2

=
π

+

















 (9.17)

Introducing the numerical values,

 
.

. .
.

.
/

n

658 10 32

0 03
1 5 430 2

658
73 55

86 2
6

3

2 1 2( )
( )

=
π

+













  

This results in n = 1.19.

9.6  INTERFERENCE FITS

Fits between parts, such as a shaft fitting in a hub, affect the accuracy of relative positioning of 
the components. Press or shrink fit, also termed interference fit, can sustain a load without relative 
motion between the two mating parts. A clearance fit provides the ease with which the members can 
slide with respect to one another. Tolerance is the difference between the maximum and minimum 
size of a part. It affects both function and fabrication cost. Proper tolerancing of the elements is 
required for a successful design. Table 9.2 lists the eight classes of clearance and interference fits, 
together with their brief descriptions and applications.

The preferred limits and fits for cylindrical parts are given by the American National Standards 
Institute (ANSI) Standard B4.1–1967. This is widely used for establishing tolerances for various fits. 
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The American Gear Manufacturers Association (AGMA) Standard 9003-A91, Flexible Couplings—
Keyless Fits, contains formulas for the calculation of interference fits.

The interference fits are usually characterized by maintenance of constant pressures between two 
mating parts through the range of sizes. The amount of interference needed to create a tight joint 
varies directly with the diameter of the shaft. A simple rule of thumb is to use 0.001 in. (0.025 mm), 
of interference for diameters up to 1 in. (25 mm), and 0.002 in. (0.05 mm), for diameters between 1 
and 4 in. A detailed discussion of the state of stresses in shrink fits is found in Chapter 16, where we 
consider applications to various members.*

9.7  CRITICAL SPEED OF SHAFTS

A rotating shaft becomes dynamically unstable at certain speeds, and large amplitudes of lateral 
vibration develop stresses to such a value that rupture may occur. The speed at which this phenom-
enon occurs is called a critical speed. Texts on vibration theory show that the frequency for free 
vibration when the shaft is not rotating is the same as its critical speed. That is, the critical speed 
of rotation numerically corresponds to the lateral natural frequency of vibration, which is induced 
when rotation is stopped and the shaft center is displaced laterally, then suddenly released. Hence, a 
natural frequency is also called a critical frequency or critical speed [3]. We shall here consider two 
simple approaches of obtaining the critical speed of shafts due to Rayleigh and Dunkerley.

9.7.1  rayleigh method

Equating the kinetic energy due to the rotation of the mounted shaft masses to the potential energy 
of the deflected shaft results in an expression called the Rayleigh equation. This expression defines 
the critical speed of the shaft. A shaft has as many critical speeds as there are rotating masses. 
Unless otherwise specified, the term critical speed is used to refer to the lowest or the fundamental 
critical speed. The critical speed ncr (in cycles per second (cps)) for a shaft on two supports and car-
rying multiple masses is defined as follows:

 




/

n
g W W W

W W W

g W

W

1
2

1
2

cr
m m

m m

1 1 2 2

1 1
2

2 2
2 2

1 2

2

( )=
π

δ + δ + + δ
δ + δ + + δ









 =

π
Σ δ

Σ δ
 (9.18)

* Some readers may prefer to study Sections 16.3 and 16.4 as a potential assembly method.

TABLE 9.2
Various Fits for Holes and Shafts
Type Class Some Common Applications

Clearance 1—loose fit Road building and mining equipment, where accuracy is not essential

2—free fit Machines and automotive parts, with journal speeds of 600 rpm or higher

3—medium fit Precise machine tools and automotive part, with speeds under 600 rpm

4—snug fit Stationary parts, but can be freely assembled and disassembled

Interference 5—wringing Parts requiring rigidity, but can be assembled by light tapping with a hammer

6—tight fit Semipermanent assemblies for shrink fits on light sections

7—medium-force Generator or motor armatures and car wheels press or shrink fits on

fit medium sections

8—high-force and Locomotive wheels and heavy-crankshaft disks, where shrink fit parts

shrink fit can be highly stressed
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360 Mechanical Engineering Design

The quantity Wm represents the concentrated weight (including load) of a rotating mass and δm is 
the respective static deflection of the weight, as shown in Figure 9.7. The acceleration of gravity is 
represented by g as 9.81 m/s2 or 386 in./s2.

Note that the Rayleigh equation only estimates the critical speed. It ignores the effects of the 
weight of the shaft, self-damping of the material, and the flexibility of the bearings or supports, and 
assumes that all weights are concentrated. Tests have shown that the foregoing factors tend to lower 
the calculated critical speed. Thus, the approximate values of ncr calculated from Equation (9.18) 
are always higher than the true fundamental frequency. More accurate approaches for determining 
the critical frequency, such as a modified Rayleigh’s method (Rayleigh–Ritz) and Holzer’s method, 
exist but are somewhat more complicated to implement [4, 5].

9.7.2  dunkerley’s method

The approach consists of reducing the actual multimass system into a number of simple subsystems, 
then calculating the critical speeds of each by a direct formula, and combining these critical speeds. 
Accordingly, the actual critical speed ncr of the system is

 

n n n n

1 1 1 1

cr m
2

1
2

2
2 2= + + +  (9.19)

Here, n1, n2, and nm represent critical speeds if only mass 1, only mass 2, and only mass mth exists, 
respectively. Thus, referring to Equation (9.18), we have

 n
g1

2 i
1 =

π δ
 (9.20)

The approximate values of ncr calculated from Equation (9.19) are always lower than the true fun-
damental frequency.

The main advantages of Dunkerley’s and Rayleigh’s approaches are that they use simple mechan-
ics of materials formulas for beams. The exact range where the critical speed lies is well established 
by these two approaches taken together, and thus they are very popular. Observe that the major 
difference between the Rayleigh and Dunkerley equations is in the deflections. In the former, the 
deflection at a specific mass location considers the deflections due to all the masses on the system; 
in the latter, the deflection is owing to the individual mass being evaluated.

Only rotations sufficiently below or above the critical speed result in dynamic stability of the 
shafts. In unusual situations, in very high-speed turbines, sometimes a satisfactory operation is 
provided by quickly going through the critical speed and then running well above the critical speed. 
This practice is to be avoided if possible, as vibration may develop from other causes in the opera-
tion above critical speeds, even though the operation is stable. Interestingly, the critical speed of 
a shaft on three supports is also equal to the natural frequency of the shaft in lateral vibration [4].

Shaft critical speeds may readily be estimated by calculating static deflections at one or several 
points. The maximum allowable deflection of a shaft is usually determined by the critical speed and 
gear or bearing requirements. Critical speed requirements vary greatly with the specific application.

W1 W3

δ3δ1 δ2

W2

FIGURE 9.7 Simply supported shaft with concentrated loads (deflection greatly exaggerated).
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9.7.3  shaFt whirl

Often shafts cannot be perfectly straight; also, when a rotor is mounted on a shaft, its center of mass 
does not often coincide with the center of the shaft. In such cases, during rotation, the shaft is sub-
jected to a centrifugal force that tends to bend it in the direction of the eccentricity of the mass cen-
ter. This further increases eccentricity and hence the centrifugal force. Shaft whirl is a self-excited 
vibration caused by the speed of the rotation acting on an eccentric mass. This will always occur 
when both rotation and eccentricity are present. Whirling or whipping speed is the speed at which 
the shaft tends to vibrate violently in transverse direction. When the rotation frequency is equal to 
one of the resonant frequencies of the shaft, whirling will take place. To prevent the shaft failure, 
operation at such whirling speeds must be avoided.

Example 9.5: Determining Critical Speed of a Hollow Shaft

A shaft with inner and outer diameters of d and D, respectively, is mounted between bearings and 
supporting two wheels, as shown in Figure 9.8. Calculate the critical speed in rpm, applying (a) the 
Rayleigh method and (b) the Dunkerley method.

Given: d = 30 mm, D = 50 mm.

Assumptions: The shaft is made of L = 1.5 m long steel having E = 210 GPa. The weight of the shaft is 
ignored. Bearings act as simple supports.

Solution

The moment of inertia of the cross-section is I
4

25 15 267 10 mm4 4 3 4( )= π − = × . The concentrated 

forces are WC = 20 × 9.81 = 196.2 N and WD = 30 × 9.81 = 294.3 N. Static deflections at C and D can be 
obtained by the equations for Case 6 of Table A.8:

 
Wbx

LEI
L b x x a

6
02 2 2 ( )δ = − −  ≤ ≤  (a)

 
Wa L x

LEI
Lx a x a x L

6
2 2 2( ) ( )δ = − − −  ≤ ≤  (b)

Deflection at C. Due to the load at C, [L = 1.5 m, b = 1 m, and x = 0.5 m, Equation (a)],

 
. . . .
.

.
196 2 1 0 5 1 5 1 0 5

6 1 5 267 10 210 10
0 194 mmC

2 2 2

9 9

( )
( )( )

( )( )
( )

′δ =
− −

× ×
=−  

Owing to the load at D [L = 1.5 m, b = 0.4 m, and x = 0.5 m, Equation (a)],

 
. . . . . .

.
.

294 3 0 4 0 5 1 5 0 4 0 5

6 1 5 267 210
0 215 mmC

2 2 2( )( )( )
( )( )δ =

− −
×

=″  

A

y

xDC B

0.4 m0.6 m0.5 m

20 kg 30 kg

FIGURE 9.8 Example 9.5.
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The total deflection is then

 . . .0 194 0 215 0 409 mmCδ = + =  

Deflection at D. Due to the load at C, [a = 0.5 m, x = 1.1 m, Equation (b)],

 
. . . . . . .

.
.

196 2 0 5 15 1 1 2 1 5 1 1 0 5 1 1

6 1 5 267 210
0 143 mmD

2 2( )( ) ( )( )
( )( )′δ =

− − − 
×

=  

Owing to the load at D [b = 0.4 m, x = 1.1 m, Equation (a)],

 
. . . . . .

.
.

294 3 0 4 1 1 1 5 0 4 1 1

6 1 5 267 210
0 226 mmD

2 2 2( )( )( )
( )( )δ =

− −
×

=″  

and hence,

 . . .0 143 0 226 0 369 mmDδ = + =  

a. Using Equation (9.18) with m = 2, we have

 

. . . . .

. . . .

.

/

n
1

2

9 81 196 2 0 409 10 294 3 0 369 10

196 2 0 409 10 294 3 0 369 10

25 37 cps 1522 rpm

cr

3 3

3 2 3 2

1 2

( )
( ) ( )

=
π

× × + × ×

× + ×













= =

− −

− −  

b. Equation (9.19) may be rewritten as

 
, ,n n n

1 1 1

cr cr C cr D
2 2 2= +  (c)

Solving,

 , ,

, ,

n
n n

n n
cr

cr C cr D

cr C cr D
2 2

= ⋅
+

 (9.21)

where

 
.

.
.,n

g1
2

1
2

9 81

0 194 10
35 79 cps 2147 rpmcr C

C
3( )=

π ′δ
=

π
= =−  

 
.

.
.,n

g1
2

1
2

9 81

0 226 10
33 16 cps 1990 rpmcr D

D
3( )=

π δ
=

π
= =″ −  

Equation (9.21) is therefore

 n
2147 1990

2147 1990
1459 rpmcr 2 2

( )( )
( ) ( )

=
+

=  

Comments: A comparison of the results obtained shows that the Rayleigh’s equation overestimates and 
the Dunkerley’s equation underestimates the critical speed. It follows that the actual critical speed is 
between 1459 and 1522 rpm. The design of the shaft should avoid this operation range.
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Example 9.6: Critical Speed of a Stepped Shaft

Figure 9.9(a) shows a stepped round shaft supported by two bearings and carrying the flywheel weight 
W. Calculate the critical speed in rpm.

Given: The moment of inertia (2I) of the shaft in its central region is twice that of the moment of inertia 
(I) in the end parts and:

 , , . .W L I400 N 1 m 0 3 10 m6 4= = = × −  

Assumptions: The shaft is made of steel with E = 200 GPa. The shaft weight is ignored. Bearings act 
as simple supports.

Solution

The application of the moment-area method (Section 4.6) to obtain the static deflection at the midspan 
C is illustrated in Figure 9.9. The bending moment diagram is given in Figure 9.9(b) and the M/EI dia-
gram in Figure 9.9(c). Note that, in the latter figure, C1 and C2 denote the centroids of the triangular and 
trapezoidal areas, respectively.

The first moment of the various parts of the M/EI diagram are used to find the deflection. From 
the symmetry of the beam, the tangent to the deflection curve at C is horizontal. Hence, according 
to the second moment-area theorem defined by Equation (4.24), the deflection δC is obtained by taking 
the moment of the M/EI area diagram between A and C about point A. That is,
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L L WL
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5
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3
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x

(b)
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FIGURE 9.9 Example 9.6. Calculation of deflections of a stepped shaft by the moment-area method.
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Substituting this, m = 1, and δ1 = δC into Equation (9.18), we have

 
. .

.

/

n
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2

1
2

9 81 256 200 10 0 3 10

3 400 1

56 40 cps 3384 rpm

cr
C

9 6

3

1 2( )( )( )
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π δ

=
π
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= =

−

 

9.8  MOUNTING PARTS

Mounting parts, such as keys, pins, screws, ring, collars, and splines, are usually used on shafts to 
attach the hub of rotating members such as gears, pulleys, sprockets, cams, and flywheels. Note that 
the portion of the mounted members in contact with the shaft is the hub. The hub is attached to the 
shaft in variety of ways, using one of the foregoing mounting elements. Each mounting configura-
tion has its own advantages and disadvantages. Tables of dimensions for the mounting parts may be 
found in engineering handbooks and manufacturer’s catalogs.

9.8.1  keys

A key enables the transmission of torque from the shaft to the hub. Numerous kinds of keys are used 
to meet various design requirements. They are standardized as to size and shape in several styles. 
Figure 9.10 illustrates a variety of keys. The grooves in the shaft and hub into which the key fits form 
the keyways or key seats. The square, flat type of keys is most common in machine construction.

The gib-head key is tapered so that, when firmly driven, it prevents relative axial motion. Another 
advantage is that the hub position can be adjusted for the best location. A tapered key may have no 
head or a gib head (as in Figure 9.10(d)) to facilitate removal. The Woodruff key is semicircular in 
plan and of constant width (w). It is utilized widely in the automotive and machine tool industries. 
Woodruff keys yield better concentricity after assembly of the hub and shafts. They are self-align-
ing and accordingly preferred for tapered shafts.

9.8.2  Pins

A pin is employed for axial positioning and the transfer of relatively light torque or axial load (or 
both) to the hub. Some types of shaft pins are the straight round pin, the tapered round pin, and the 
roll pin (Figure 9.11). The so-called roll pin is a split-tubular spring pin. It has sufficient flexibility 
to accommodate itself to small amounts of misalignment and variations in hole diameters, so it does 
not come loose under vibrating loads.

9.8.3  sCrews

Very wide keys can be held in place with countersunk flat head or cap screws if the shaft is not 
weakened. In addition to a key or pin, setscrews are often employed to keep the hub from shifting 
axially on the shaft. For light service, the rotation between shaft and hub also may be prevented by 
setscrews alone. Setscrews are sometimes used in combination with keys. Various types of screws 
and standardized screw threads are discussed in Chapter 15.

9.8.4  rings and Collars

Retaining rings, commonly referred to as snap rings, are available in numerous varieties and require 
that a small groove of specific dimensions be machined in the shaft. Keys, pins, and snap rings can 
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365Shafts and Associated Parts

be avoided by the use of clamp collars that squeeze the outside diameter of the shaft with high 
pressure to clamp something to it. The hub bore and clamp collar have a matching slight taper. The 
clamp collar with axial slits is forced into the space between hub and shaft by tightening the bolts.

9.8.5  methods oF axially Positioning oF huBs

Figure 9.12 shows common methods of axially positioning and retaining hubs into shafts. Axial 
loads acting on shafts or members mounted on the shaft are transmitted as follows: light loads by 
clamp joints, setscrews, snap rings, and tapered keys (Figure 9.10); medium loads by nuts, pins, and 

w
2

(a)
D

w

w h
2

(b)
D

h

w

(c)

rw

w

(e)

(d)

FIGURE 9.10 Common types of shaft keys: (a) square key (w ≈ D/4), (b) flat key (w ≈ D/4, h ≈ 3w/4), 
(c) round key (often tapered), (d) gib-head key, and (e) Woodruff key.

(a) (b) (c)

FIGURE 9.11 Some types of pins: (a) straight round pin, (b) tapered round pin, and (c) cross-section of a 
split-tubular pin or so-called roll pin.
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clamp joints; and heavy loads by press or shrink fits. Interference fits are also used to position and 
retain bearings into hubs.

9.9  STRESSES IN KEYS

The distribution of the force on the surfaces of a key is very complicated. Obviously, it depends on 
the fit of the key in the grooves of the shaft and hub. The stress varies nonuniformly along the key 
length; it is highest near the ends.

Owing to many uncertainties, an exact stress analysis cannot be made. However, it is commonly 
assumed in practice that a key is fitted as depicted in Figure 9.13. This implies that the entire torque 
T is carried by a tangential force F located at the shaft surface and uniformly distributed along the 
full length of the key:

 T Fr=  (9.22)

where r is the shaft radius.
Shear and compressive or bearing stresses are calculated for the keys from force F, using a suf-

ficiently large factor of safety. For steady loads, a factor of safety of 2 is commonly applied. On the 
other hand, for minor to high shock loads, a factor of safety of 2.5–4.5 should be used.

For keyways, the concentration of stress depends on the values of the fillet radius at the ends and 
along the bottom of the keyways. For end-milled key seats in shafts under either bending or torsion 

F
F

r

T

FIGURE 9.13 Forces on a key tightly fitted at the top and bottom.

(a) (b) (c)

(d) (e) (f )

FIGURE 9.12 Various means of securing hubs for axial motion: (a) clamp collar, (b) setscrew, (c) snap rings, 
(d) nut, (e) tapered pin, and (f) interference fit.
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loading, the theoretical stress-concentration factors range from 2 to about 4, contingent on the ratio 
r of r/D [6]. The quantity r represents the fillet radius (see Figure 9.10(d)) and D is the shaft diam-
eter. The approximate values of the fatigue stress-concentration factor range between 1.3 and 2.

Example 9.7: Design of a Shaft Key

A shaft of diameter D rotates at 600 rpm and transmits 100 hp through a gear. A square key of width w 
is to be used (Figure 9.10(a)) as a mounting part. Determine the required length of the key.

Given: D = 50 mm, w = 12 mm.

Design Decisions: The shaft and key will be made of AISI 1035 cold-drawn steel having the same ten-
sile and compressive yield strength and that yield strength in shear is Sys′ = Sy/2. The transmitted power 
produces intermittent minor shocks and a factor of safety of n = 2.5 is used.

Solution

From Table B.3, for AISI 1035 CD steel, we find Sy = 460 MPa. Through the use of Equation (1.16),

 .T
7121 100

600
1 187 kN m

( )= = ⋅  

The force F at the surface of the shaft (Figure 9.13) is

 
.
.

.F
T

r

1 187
0 025

47 48 kN= = =  

On the basis of shear stress in the key,

 
S

n

F

wL
L

Fn

S w2
or

2y

y

= =  (9.23)

Substitution of the given numerical values yields

 
.

.
L

2 47,480 2 5

460 10 0 012
43 mm

6( )
( )( )

( )
= =  

Based on compression or bearing on the key or shaft (Figure 9.10(a)),

 
S

n

F

w
L

Fn

S w/2
or

2yc

yc( )= =  (9.24)

Inasmuch as Sy = Syc′ this also results in L = 43 mm.

9.10  SPLINES

When axial movement between the shaft and hub is required, relative rotation is prevented by means 
of splines machined on the shaft and into the hub. For example, splines are used to connect the 
transmission output shaft to the drive shaft in automobiles, where the suspension movement causes 
axial motion between the components. Splines are essentially built-in keys. They can transform 
more torque than can be handled by keys. There are two forms of splines (Figure 9.14): straight or 
square tooth splines, and involute tooth splines. The former is relatively simple and employed in 
some machine tools, automatic equipment, and so on. The latter has an involute curve in its outline, 
which is in widespread use on gears. The involute tooth has less stress concentration than the square 
tooth and, hence, is stronger. Also easier to cut and fit, involute splines are becoming the prominent 
spline form.
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Formulas for the dimensions of splines are based on the nominal shaft diameter. Figure 9.14(a) 
shows the standard SAE 6 and 10 straight spline fittings. Note that the values of root diameter d, 
width w, and depth h of the internal spline are based on the nominal shaft diameter D or about 
the root diameter of the external spline. According to the SAE, the torque capacity (in lb ⋅ in.) of 
straight-sided splines with sliding is

 T pnr hLm c=  (9.25)

where
T = the theoretical torque capacity
n = the number of splines
rm = (D + d)/4, mean or pitch radius (see Figure 9.14)
h = the depth of the spline
Lc = the length of the spline contact
p = the spline pressure

The SAE states that, in actual practice, owing to the inaccuracies in spacing and tooth form, the 
contact length Lc is about 25% of the spline length.

Involute splines (Figure 9.14(b)) have a general form of internal and external involute gear teeth, 
discussed in detail in Chapter 11, with modified dimensions. The length Lc of spline contact required 
to transmit a torque, as suggested by the SAE, is

 L
D d D

d

1 /
c

i

m

2 4 4

3

( )
=

−
 (9.26)

where
D = the nominal shaft diameter
dm = the mean or pitch diameter
di = the internal diameter (if any) of a hollow shaft

The shear area at the mean diameter of the spline is As = πdmLc/2. By the SAE assumption, only one-
quarter of the shear area is to be stressed. The shear stress is estimated as

 
T

d A

T

d A/2 /4
8

m s m s( )( )τ = =  

or

 
T

d L

16

m c
2τ =

π
 (9.27)

d

h

w

D

(a)
6 spline

(b)
10 spline

d

h

D

FIGURE 9.14 Some common types of splines: (a) straight-sided and (b) involute.
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Here, T represents the torque on the shaft and Lc is given by Equation (9.25) or Equation (9.26). If 
bending is present, the flexure stress in the spline must also be calculated.

9.11  COUPLINGS

Couplings are used semipermanently to connect two shafts. They allow machines and shafts to be 
manufactured in separate units, followed by assembly. A wide variety of commercial shaft couplings 
are available. They may be grouped into two broad classes: rigid and flexible. A rigid coupling locks 
the two shafts together, allowing no relative motion between them, although some axial adjustment 
is possible at assembly. No provision is made for misalignment between the two shafts connected, 
nor does it reduce shock or vibration across it from one shaft to the other. However, shafts are often 
subject to some radial, angular, and axial misalignment. In these situations, flexible couplings must 
be used. Severe misalignment must be corrected; slight misalignment can be absorbed by flexible 
couplings. This prevents fatigue failure or destruction of bearings.

9.11.1  ClamPed rigid CouPlings

Collinear shafts can be connected by clamp couplings that are made in several designs. The most 
common one-piece split coupling clamps around both shafts by means of bolts and transmits torque. 
It is necessary to key the shafts to the coupling (Figure 9.15). The torque is transmitted mainly by 
friction due to the clamping action and partially by the key. Clamp couplings are widely used in 
heavy-duty service.

9.11.2  Flanged rigid CouPlings

Collinear shafts can also be connected by flanged couplings, similar to those shown in Figure 9.16. 
The flanged portion at the outside diameter serves a safety function by shielding the bolt heads and 
nuts. The load is taken to be divided equally among the bolts. Rigid couplings are simple in design. 
They are generally restricted to relatively low-speed applications where good shaft alignment or 
shaft flexibility can be expected.

Keyed couplings are the most widely used rigid couplings (Figure 9.16(a)). They can transmit 
substantial torques. The coupling halves are attached to the shaft ends by keys. As can be seen in the 
figure, flange alignment is obtained by fitting a shallow machined projection on one flange face to 
a female recess cut in the face of the other flange. Another common way to obtain flange alignment 

FIGURE 9.15 A rigid coupling: one-piece clamp with keyway.
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is to permit one shaft to act as a pilot and enter the mating flange. Keyed couplings employ standard 
keys as discussed in Section 9.8.

Compression couplings have a split double cone that does not move axially, but is squeezed 
against the shaft by the wedging of the flanges, as shown in Figure 9.16(b). This kind of coupling 
transmits torque only by the frictional force between the shaft and the split double cone, eliminating 
the need for a key and keyway in the coupling.

In specifying a rigid coupling using ground and fitted flange bolts, the designer should check 
the strength of various parts. These include direct shear failure of the bolts, bearing of the pro-
jected area of the bolt in contact with the side of the hole, shear of the flange at the hub, and 
shear or crushing of the key. Note that, in contrast to fitted bolts, a flange coupling designed on 
the basis of the friction-torque capacity requires a somewhat different analysis than that just 
described.

For flanged rigid couplings, it is usually assumed that shear stress in any one bolt is uniform and 
governed by the distance from its center to the center of the coupling. Friction between the flanges 
is disregarded. Then, if the shear stress in a bolt is multiplied by its cross-sectional area, the force in 
the bolt is ascertained. The moment of the forces developed by the bolts around the axis of a shaft 
estimates the torque capacity of a coupling.

Example 9.8: Torque Capacity of a Rigid Coupling

A flanged keyed coupling is keyed to a shaft (Figure 9.16(a)). Calculate the torque that can be transmitted.

Given: There are 6 bolts of 25 mm diameter. The bolt circle diameter is Db = 150 mm.

Assumptions: The torque capacity is controlled by an allowable shear strength of 210 MPa in the bolts.

Solution

Area in shear for one bolt is

 A
1
4

25 491 mm2 2( )= 



 π =  

Allowable force for one bolt is

 .P AS 491 210 103 1 kNysall ( )= = =  

Db

(a) (b)

D

tf

Dh
L

FIGURE 9.16 Flanged rigid couplings: (a) keyed type and (b) compression type.
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Inasmuch as six bolts are available at a 75 mm distance from the central axis, we have

 . . .T 103 1 10 0 075 6 46 4 kN mall
3= × × × = ⋅  

9.11.3  FlexiBle CouPlings

Flexible couplings are employed to connect shafts subject to some small amount of misalignment. 
One class of flexible couplings contains a flexing insert such as rubber or a spring. The insert cush-
ions the effect of shock and impact loads that could be transferred between shafts. A shear type of 
rubber-inserted coupling can be used for higher speeds and horsepowers. A chain coupling type 
consists of two identical sprockets coupled by a roller chain.

Figure 9.17 shows the two identical hubs of a square-jawed coupling with an elastomer (i.e., 
rubber) insert. In operation, the halves slide along the shafts on which they are mounted until they 
engage with the elastomer. The clearances permit some axial, angular, and parallel misalignment. 
Clearly, the jaws are subjected to bearing and shear stresses. The force acting on the jaw producing 
these stresses depends on the horsepower and speed that the coupling is to transmit.

Many other types of flexible couplings are available. Examples include helical and bellow 
couplings. Both are one-piece designs that use their elastic deflections to allow axial and parallel 
misalignments. Details, dimensions, and load ratings may be found in the catalogs of various manu-
facturers or mechanical engineering handbooks.

9.12  UNIVERSAL JOINTS

A universal joint (U-joint) is a kinematic linkage used to connect two shafts that have permanent inter-
secting axes. U-joints permit substantial misalignment of shafts. They come in two common types: the 
Hooke or Cardan coupling, which does not have constant velocity across a single joint, and the Rzeppa, 
Bendix-Weiss, or Thompson coupling, which does. Both types can deal with very large angular mis-
alignment. Shaft angles up to 30° may be used [7]. Typical applications for U-joints include automo-
tive drive shafts, mechanical control mechanisms, rolling mill drives, and farm tractors.

Hooke’s coupling is the simplest kind of U-joint. It consists of a yoke on each shaft connected 
by a central cross-link. Figure 9.18 depicts a double-Hooke joint, where plain bearings are used at 
the yoke-to-cross connections. These joints are employed mostly with equal yoke alignment angles 

FIGURE 9.17 A jaw coupling showing jaws and an elastomer insert (Courtesy: Magnaloy Coupling Co., 
Alpena, MI).
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372 Mechanical Engineering Design

(α) in the two joints, as shown in the figure. The use of equal angles provides uniform angular 
velocity in the driven shaft. A pair of Hooke’s couplings is often used in a rear-drive automobile 
drive shaft. Note that a familiar application of the Rzeppa-type constant velocity (CV) ball joint is 
in front-wheel-drive automobiles, where the drive shaft is short and shaft angles can be large. For 
further information, see texts on mechanics of machinery [3] and manufacturers’ product literature 
on U-joints.

PROBLEMS

The bearings of the shafts described in the following problems act as simple supports.

Sections 9.1 through 9.4
 9.1 Design a solid shaft for a 15 hp motor operating at a speed n.
  Given: G = 80 GPa, Sys = 150 MPa, n = 2500 rpm.
  The angle of twist is limited to 2° per meter length.
  Design Assumptions: The shaft is made of steel. A factor of safety of 3 is used.
 9.2 Repeat Example 9.1, assuming that the shaft is made of an ASTM-50 gray cast iron (see 

Table B.2) and applying the maximum principal stress theory of failure based on a safety 
factor of n = 2.5.

 9.3 A 40 hp motor, through a set of gears, drives a shaft at a speed n, as shown in Figure P9.3.
 a. Based on a safety factor of 2, design solid shafts AC and BC.

(a)

Cross link
Splined

hub

Yoke

Section A–B

Needle
bearing

A

B

Yoke

(b)

Cross-link

α

α

α α

FIGURE 9.18 Simple U-joints: (a) Hooke’s coupling and (b) two arrangements of a pair of Hooke’s couplings 
for achieving constant velocity ratio.
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 b. Determine the total angle of twist between A and B.
  Given: G = 82 GPa, Sys = 210 MPa, n = 1200 rpm.
 9.4 Because of atmospheric corrosion, an ASTM-A36 steel shaft of diameter Ds is to be 

replaced by an aluminum alloy 2014–T6 shaft. Determine the diameter of aluminum shaft 
Da in terms of Ds. What is the weight ratio of the shafts?

  Assumption: Both shafts have the same angular stiffness.
 9.5 A solid steel shaft of diameter D carries end loads P, M, and T. Determine the factor of 

safety n, assuming that failure occurs according to the following criteria:
 a. Maximum shear stress.
 b. Maximum energy of distortion.
  Given: Sy = 260 MPa, D = 100 mm, P = 50 kN, M = 5 kN ⋅ m, T = 8 kN ⋅ m.
 9.6 An ASTM-A242 high-strength steel circular shaft AB having a diameter D, simply sup-

ported on bearings at its ends, carries a torque (T) and two loads (Fy, Fz) as illustrated in 
Figure P9.6. Find the safety factor of n on the basis of:

 a. Tensile yield strength.
 b. Shear yield strength.
  Given: a = 0.6 m, D = 45 mm, Fy = 2.4 kN, F = 1.5 kN, T = 1.25 kN ⋅ m. Sy = 345 MPa, 

Sys = 210 MPa (Table B.1).
 9.7 A solid steel shaft carries belt tensions (at an angle α from the y axis in the yz plane) at 

pulley C, as shown in Figure P9.7. For α = 0 and a factor of safety of n, design the shaft 
according to the following failure criteria:

 a. Maximum shear stress.
 b. Maximum energy of distortion.
  Given: Sy = 250 MPa, n = 1.5.

10 hp 30 hp

2 m

A C C B

4 m

Motor

40 hp

FIGURE P9.3 
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 9.8 A circular shaft–pulley assembly is supported at A and D and subjected to tensile forces 
through belts at B and C, as illustrated in Figure P9.8. Compute the required minimum 
shaft diameter D on the basis of the maximum shear stress theory of failure based on a 
safety factor of n = 1.5 against the yielding.

  Assumption: The shaft is made of an AISI 1050HR steel (Table B.3).
 9.9 Reconsider Problem 9.8, but applying the maximum energy of distortion theory of failure 

with a factor of safety n = 1.2 against the yielding.
 9.10 A solid shaft is used to transmit 70 kW to a series of chemical mixing vats at a speed of n. 

Calculate the shaft diameter according to the following failure criteria:
 a. Maximum shear stress.
 b. Maximum energy of distortion.
  Given: n = 110 rpm.
  Design Decisions: The shaft is made of type 302 cold-rolled stainless steel. Since the 

atmosphere may be corrosive, a safety factor of 4 is used.
 9.11 A shaft–pulley assembly is supported and loaded as shown in Figure P9.11. What is the 

diameter D of the shaft, through the use of the maximum principal stress theory of failure 
with a factor of safety n = 1.4?

  Assumption: The shaft is made of AISI 1040 CD steel (see Table B.3).
 9.12 Resolve Problem 9.11 for a case in which the tensions on pulley C are in the horizontal (z) 

direction and the factor of safety is n = 1.5.

0.3 m

1 kN

5 kN

α

y

A

D T

B

x

z

0.5 m
0.15 m

C

FIGURE P9.7 
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Section 9.5
 9.13 A revolving solid steel shaft AB with a machined surface carries minor shock belt tensions 

(in the yz plane) for the case in which α = 30° (Figure P9.7). Design the shaft segment BC 
by using the maximum shear stress theory incorporated with the Goodman failure relation.

  Given: Su = 520 MPa, n = 1.5, and Kf = 1.2.
  The operating temperature is 500°C maximum.
  Assumptions: The survival rate is 90%.
 9.14 A solid shaft of diameter D rotates and supports the loading depicted in Figure P9.14. 

Determine the factor of safety n for the shaft on the basis of maximum energy of distortion 
theory of failure combined with the Goodman criterion.

  Given: D = 62.5 mm and Su = 1260 MPa. The torque fluctuates 10% each way from mean 
value, and the survival rate is 99%.

  Design Decision: The shaft is ground from unnotched steel.
 9.15 A solid shaft of diameter D rotates and supports the loading shown in Figure P9.15. 

Calculate the factor of safety n for the shaft using the maximum shear stress theory of 
failure incorporated with the Soderberg criterion.

120 mm

y
A

D

B

x6 kN

C

D

6 kN

2 kN

2 kN

z
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FIGURE P9.11 
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  Given: D = 87.5 mm, Sy = 910 MPa, and Su = 1400 MPa. The torque involves heavy shocks 
and fluctuates 20% each way from the mean value, and the survival rate is 90%. The maxi-
mum operating temperature is 950°F.

  Design Decision: The shaft is to be hot rolled from an unnotched steel.
 9.16 A 40 mm diameter shaft, made of AISI 1060 HR steel that has a 5 mm diameter hole 

drilled transversely through it, carries a steady torque of 600 N ⋅ m and in phase with a 
completely reversed bending moment of 120 N ⋅ m. Applying the maximum energy of dis-
tortion theory of failure combined with Goodman criteria, what is the factor of safety n?

  Given: Su= 520 MPa, Sy= 440 MPa, 149 Bhn (from Table B.3).
  Assumption: The operating temperature will be 480°C maximum at a survival rate of 

99%.
 9.17 Repeat Problem 9.16, through the use of the Soderberg criterion.
 9.18 A rotating solid shaft is acted on by repetitive steady moments M and heavy shock torques 

T at its ends. Calculate, on the basis of the maximum energy of distortion failure criterion 
associated with the Goodman theory, the required shaft diameter D.

  Given: M = 200 N · m, T = 500 N · m, Su = 455 MPa, n = 1.5, Kf = 2.2.
  Design Decisions: The shaft is machined from 1020 HR steel. A survival rate of 95% is 

used.
 9.19 Figure P9.19 shows a rotating stepped shaft supported in (frictionless) ball bearings at A 

and B and loaded by nonrotating force P and torque T. All dimensions are in millimeters. 
Determine the factor of safety n for the shaft, based on the maximum shear stress theory 
of failure incorporated with the Soderberg fatigue relation.

  Given: P = 5 kN, T = 600 kN ⋅ m, Sy = 600 MPa, Su = 1000 MPa, Kt = 1.8.
  The torque fluctuates 15% each way from mean value, and the survival rate is 98%.
  Assumption: The shaft is to be hot rolled from steel.
 9.20 When it accelerates through a bend at high speeds, an AISI 1050 CD steel drive shaft of a 

sports car is subjected to minor shocks to a mean moment Mm, alternating bending moment 
Ma, and a steady torque Tm. What is the shaft diameter D according to the maximum shear 
stress theory combined with Goodman fatigue criterion?

  Given: Mm = 200 N · m, Ma = 600 N · m, Tm = 360 N · m, Ks = 1.5 (by Table 9.1), Su = 690 
MPa, Sy = 580 MPa (from Table B.3).

  Assumptions: A factor of safety of n = 3.5 is used. The reliability will be 95% at an operat-
ing temperature of 800°F maximum. Fatigue stress-concentration factor for bending and 
torsion is Kf = 1.2.

 9.21 Reconsider Problem 9.20, with the exceptions that the drive shaft of the car is under heavy 
shocks and use the maximum energy of distortion theory combined with the Soderberg 
criterion.

 9.22 A solid shaft of diameter D rotates and carries the minor shock loading, as shown in Figure 
P9.22. Calculate the factor of safety n for the shaft using the maximum energy of the dis-
tortion theory of failure combined with the Goodman criterion.

  Given: D = 75 mm, Sy = 550 MPa, Su = 660 MPa. The torque fluctuates 5% each way from 
the mean value, and the shaft is to be machined from unnotched steel.

T

50 P P

r r = 3.5
100 100

C DA

100 100 300

B T

FIGURE P9.19 Dimensions are in millimeters.
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377Shafts and Associated Parts

 9.23 Redo Problem 9.22 using the maximum shear stress theory of failure incorporated with the 
Soderberg fatigue relation and a survival rate of 90%.

 9.24 A revolving shaft, made of solid AISI 1040 cold-drawn steel, supports the loading depicted 
in Figure P9.24. The pulley weighs 1.35 kN and the gear weighs 450 N. Design the shaft by 
using the maximum energy of distortion theory of failure incorporated with the Goodman 
fatigue criterion.

  Given: Kf = 1.8, n = 1.6.
  Assumption: A survival rate of 95% is used.
 9.25 Redo Problem 9.24 using the maximum shear stress theory of failure incorporated with the 

Soderberg criterion, a survival rate of 99.9%, Kf = 1.2, n = 2, and neglecting the weights of 
pulley and gear.

Sections 9.6 through 9.12
 9.26 A solid steel shaft of diameter D is supported and loaded as shown in Figure P9.26. 

Determine the critical speed ncr in rpm.
  Given: D = 25 mm, E = 210 GPa.
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 9.27 Calculate the critical speed ncr in rpm of the steel shaft of Figure P9.26, if the maximum 
allowable static deflection is 0.5 mm.

  Given: E = 200 GPa.
 9.28 A uniform steel shaft with an overhang is loaded as shown in Figure P9.28. Determine the 

critical speed ncr in rpm.
  Given: E = 210 GPa.
 9.29 Determine the value of the critical speed of rotation for the simply supported shaft carry-

ing two loads at D and C as illustrated in Figure P9.29, applying:
 a. The Rayleigh method.
 b. The Dunkerley method.
  Given: The shaft is made of D = 56.25 mm diameter a cold-rolled steel with E = 200 GPa.
 9.30 Compute the value of the critical speed of rotation for the simply supported and loaded 

shaft as illustrated in Figure P9.29, through the use of:
 a. The Rayleigh method.
 b. The Dunkerley method.
  Given: The shaft is constructed of D = 87.5 mm diameter wrought steel having E = 200 GPa.
 9.31 Determine the value of the critical speed of rotation for the outboard motor shaft loaded as 

illustrated in Figure P9.31, using:
 a. The Rayleigh method.
 b. The Dunkerley method.
  Given: The shaft is made of D = 46.9 mm diameter cold-rolled bronze of E = 105 GPa.
 9.32 A motor drive shaft of diameter D that is made of AISI 1050 CD steel transmits 90 kW at 

a speed of 900 rpm through a keyed coupling, similar to that shown in Figure 9.16, to the 
transmission input shaft of a driven machine (Figure P9.32). Find the length L of the key 
on the basis of:

 a. Bearing on shaft.
 b. Bearing on key.
 c. Shear in key.
  Given: Shaft: D = 37.5 mm, Sy = 580 MPa (see Table B.3).

30 mm diameter

A B C x
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  Key: Square steel key of width w = 9.35 mm (Figure 9.10(a)) with Sy = 308 MPa, and 
Sys = Sy/2 = 154 MPa is used.

  Assumption: Safety factor of n = 2.3 will apply.
 9.33 A solid shaft of diameter D has a 18.75 × 9.375 mm, flat key. Determine the required length 

L of key based on the maximum steady torque that can be transmitted by the shaft.
  Given: D = 75 mm, Sys = 0.58 Sy, n = 2.
  Design Decision: The shaft and key are made of cold-drawn steels of AISI 1030 and AISI 

1020, respectively.
 9.34 A 9.375 × 9.375 × 75 mm key is used to hold a 75 mm long hub in a 37.5 mm diameter 

shaft. What is the factor of safety against shear failure of the key if the torque transmitted 
is 0.4 kN · m.

  Assumption: Key and shaft are of the same material with an allowable stress in shear of 
70 MPa.

 9.35 A 20 × 20 mm square key made of AISI 1050 HR steel is used on a 60 mm diameter shaft 
constructed of AISI 1095 HR steel to attach a hub of a rotating pulley as illustrated in 
Figure 9.10(a). Compute the required key length on the basis of shock torque loading:

 a. Bearing on the shaft.
 b. Bearing on key.
 c. Shear in key.
  Given: Sy = 460 MPa for shaft and Sy = 340 MPa for key (from Table B.3).
  Assumption: A factor of safety n = 4 will be used. Yield strength in shear of both materials 

is taken as Sys = Sy/2.
 9.36 Figure P9.36a shows the free-body diagram of a shaft coupling. Observe that the flanges 

of this coupling are joined by N = 6 bolts with a bolt circle of radius R = 80 mm and shear 
force in each bolt is denoted by F (Figure P9.36b). What is the allowable bolt diameter db 
so that the bolts supply the same torque capacity T = 5 kN ⋅ m of the shaft?

625 mm 750 mm 375 mm
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  Assumption: Bolts are made of AISI 1030 HR steel with Sy = 260 MPa (see Table B.3). 
A factor of safety n = 1.2 applies.

 9.37 A w × w square key of length L will be used on a shaft of diameter D to attach a hub of a 
rotating coupling as illustrated in Figure 9.16(a). The shaft is subjected to a steady load of 
30 kW at no = 120 rpm. Determine the following stresses and the factor of safety n against 
yielding:

 a. Bearing and shear in key.
 b. Shear in bolts.
 c. Bearing on bolts in flange.
  Given: D = 60 mm, w = 10 mm, L = 75 mm, bolt diameter db = 15 mm, Db = 144 mm, flange 

thickness tf = 15 mm.
  Assumption: All parts are constructed of AISI 1080 HR steel with yield strength in ten-

sion Sy = 420 MPa (by Table B.3) and yield strength in shear Sys = 420/2 = 210 MPa.
 9.W Through the use of the website at www.grainger.com, conduct a search for flexible cou-

plings, both rated for 1/2 kW at 1725 rpm:
 a. 12.5 mm bore, 62.5 mm long.
 b. 12.5 mm bore, 87.5 mm long.
  List the manufacturer and description in each case.
 9.38 For the coupling shown in Figure 9.16(a), the key is 14.0625 × 14.0625 × 87.5 mm, bolt 

diameter Db = 150 mm, hub diameters Dh = 100 mm, and D = 50 mm. Six 9.375 mm bolts 
are used and flange thickness is tf = 21.875 mm. Determine:

 a. The shear and bearing stresses in the key.
 b. The shear stress in the bolts.
 c. The bearing stress on bolts in the flange.
 d. The shear stress in the flange at the hub or web. 
  Given: The shaft carries a steady load of 45 kW at 200 rpm.
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10 Bearings and Lubrication

10.1  INTRODUCTION

The goal of a bearing is to provide relative positioning and rotational freedom while transmitting 
a load between two parts, commonly a shaft and its housing. The object of lubrication is to reduce 
the friction, wear, and heating between two surfaces moving relative to each other. This is done by 
inserting a substance, called a lubricant, between the moving surfaces. The study of lubrication 
and the design of bearings are concerned mainly with phenomena related to the oil film between 
the moving parts. Note that tribology may be defined as the study of the lubrication, friction, and 
wear of moving or stationary parts. The literature on this complex subject is voluminous. Much is 
collected in the CRC Handbook of Lubrication, sponsored by the American Society of Lubrication 
Engineers [1]. Also see [2]. The website www.machinedesign.com includes general information on 
bearings and lubrication.

There are two parts in this chapter. In Part A, the fundamentals of lubrication with particular 
emphasis on the design of journal (the so-called sleeve or sliding) bearings is discussed. The basic 
forms of journal bearings are simple. In Part B, the concern is with rolling bearings, also known as 
rolling-element bearings, and anti-friction bearings. We describe the most common types of roll-
ing bearings, bearing dimensions, bearing load, and bearing life. There is also a brief discussion 
on materials, mounting, and lubricants of rolling bearings. Rolling-element bearings are employed 
to transfer the main load through elements in rolling contact, and they have been brought to their 
present state of perfection only after a long period of development. Either ball bearings or roller 
bearings, they are made by all major bearing manufacturers worldwide.

Part A: Lubrication and Journal Bearings
Journal bearings support loads perpendicular to the shaft axis by pressure developed in the liquid. 
A journal bearing is a typical sliding bearing requiring sliding of the load-carrying member on its 
support. Sleeve thrust bearings support loads in the direction of the shaft axis. We begin with a 
description of the lubrications and journal bearings. The general relationship between film velocity 
rate, viscosity, coefficient of friction, and load is then developed. This is followed by discussions of 
the hydrodynamic lubrication theory, design, and heat balance of bearings. Techniques for supply-
ing oil to bearings and bearing materials are also considered.

10.2  LUBRICANTS

As noted previously, the introduction of a lubricant to a sliding surface reduces the coefficient of 
friction. In addition, lubricants can act as contaminants to the metal surfaces and coat them with 
monolayers of molecules that inhibit adhesion between metals. Although usually in the liquid state, 
solids and gases are also used as lubricants. A brief description of the classification and characteris-
tics of lubricants follows. Lubricant manufacturers should be consulted for particular applications.

10.2.1  liquid luBriCants

Liquid lubricants are largely petroleum-based or synthetic oils. They are characterized by their 
viscosity, but other properties are also important. Characteristics such as acidity, resistance to oxi-
dation, antifoaming, pour, flash, and fire deterioration are related to the quality of oil needed for a 
particular operation. Many oils are marketed under the name of application, such as compressor or 
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turbine oils. Oils for vehicle engines are classified by their viscosity as well as by the presence of 
additives for various service conditions (see Section 10.5).

Synthetic lubricants are mainly silicones. They have high-temperature stability, low-temperature 
fluidity, and high-internal resistance. Because of their higher cost, synthetic lubricants are used only 
when their special properties are needed, for instance, in the hydraulic control systems of aircraft. 
Water and air are used as lubricants where contamination by oil is prohibitive. In addition, often 
the lubricant is the water or air in which the machine is immersed. Air or an inert gas has very low 
internal resistance. It operates well from low to high temperatures. Gas lubricants are necessary at 
extremely high speeds involving low loading conditions.

Greases are liquid lubricants that have been thickened (by mixing with soaps) to provide prop-
erties not available in the liquid lubricant alone. Mineral oils are the most commonly used liquid 
for this purpose. Greases are often used where the lubricant is required to stay in position. Unlike 
oils, greases cannot circulate and thereby serve a cooling and cleaning function; however, they are 
expected to accomplish all functions of fluid lubricants. The many types of greases have properties 
suitable for a wide variety of operating conditions. Typical uses of greases include vehicle suspen-
sion and steering, for gears and bearings in lightly loaded and intermittent service, with infrequent 
lubrication by hand or grease gun.

10.2.2  solid luBriCants

Solid lubricants are of two types: graphite and powdered metal. They are used for bearing operat-
ing at high temperatures (e.g., in electric motors). Other kinds include Teflon and some chemical 
coatings. Solid lubricants may be brushed or sprayed directly into the bearing surfaces. To improve 
retention, they are mixed with adhesives. Determination of composite bearing materials with low 
wear rates as well as frictional coefficients is an active area of contemporary design and research.

10.3  TYPES OF JOURNAL BEARINGS

The journal bearing or sleeve bearing supports a load in the radial direction. It has two main parts: 
a shaft called the journal and a hollow cylinder or sleeve that carries the shaft, called the bearing 
(Figure 10.1). When assembly operations do not require that a bearing be of two pieces, the bearing 
insert can be made as a one-piece cylindrical shell pressed into a hole in the housing. This insert is 
also called a bushing.

A full-journal bearing, or so-called 360° journal bearing, is made with the full bearing thickness 
around the whole circumference, as depicted in Figure 10.1a. Circumferential or any (usually axial 
or diagonal) grooving may be cut in the two-piece and one-piece bearings, respectively. Preferably, 
the oil is brought at the center of the bearing so that it will flow out both ends, thus increasing the 
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FIGURE 10.1 (a) Full-journal bearing and (b) partial-journal bearing. Notes: W, load; L, bearing length; D, 
journal diameter; n, journal rotational speed; θ, angle of partial bearing.
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flow and cooling action. In most applications, the journal rotates (with a speed n) within a station-
ary bearing and the relative motion is sliding. However, the journal may remain stationary and the 
bearing rotates or both the journal and bearing rotate. All situations require an oil film between 
the moving parts to minimize friction and wear. The pressure distribution around a bearing varies 
greatly. The coefficient of friction, f, is the ratio of the tangential friction force, discussed in Section 
10.6, to the load carried by the bearing.

Sleeve bearings are employed in numerous fields. Two typical services a bearing is to perform 
are as follows. The crankshaft and connecting rod bearings of an automobile engine must operate 
for thousands of miles at high temperatures and under variable loading. The journal bearings used 
in the steam turbines and power generator sets must have very high reliability. Gas bearings using 
air or more inert gases as the lubricant and film find applications for lightly loaded, high-speed 
shafts, such as in gas-cycle machinery, gyros, and high-speed dental drills. Also, when the loads 
are light and the service relatively unimportant, a nylon bearing that requires no lubrication may 
be used.

A partial bearing is used when the radial load on a bearing always acts in one direction; hence, 
the bearing surface needs to extend only part way around the periphery. Often, an oil cap is placed 
around the remainder of the circumference. An angle (e.g., θ = 60°) describes the angular length 
of a partial bearing (Figure 10.1b). Rail freight car axle bearings are an example. A partial bearing 
having zero clearance is known as a fitted bearing. Zero clearance means that the radii of the journal 
and bearing are equal. We consider only the more common full bearing.

10.4  FORMS OF LUBRICATION

Lubrications are commonly classified according to the degree with which the lubricant separates 
the sliding surfaces. Five distinct forms or types of lubrication occur in bearings: hydrodynamic, 
mixed, boundary, elastohydrodynamic, and hydrostatic. The bearings are often designated accord-
ing to the form of lubrication used.

Let us reconsider a journal bearing with a load W, as depicted in Figure 10.1a. The bearing clear-
ance space is filled with oil; however, when the journal is not rotating, the load squeezes out the oil 
film at the bottom. Slow clockwise rotation of the shaft causes it to roll to the right. As the rotating 
speed rises, oil adhering to the journal surface comes into the contact zone and pressure builds up 
just ahead of the contact zone to float the shaft. The high pressure of the oil flow to the right moves 
the shaft slightly to the left of center. Equilibrium is obtained with the full separation of the journal 
and bearing surfaces with an eccentricity (e) of the journal in the bearing.

To gain insight into the possible lubrication states, consider the experimentally determined curve 
between the shaft speed n and the coefficient of friction f in a journal bearing (Figure 10.2). Clearly, 
the numerical values for the curve in the figure depend on the features of the particular bearing 
design. Note that bearings operate under boundary conditions at start-up or shutdown. At slow 
speeds, the coefficient of friction remains about the same in the region of boundary lubrication. As 
n is increased, a mixed lubrication situation is initiated (point A), and f drops rapidly until hydro-
dynamic lubrication is established (point B). At higher speeds, f rises slowly. For extremely large 
velocities (beyond point C), instability and turbulence may be established in the lubricant. Note that 
regions to the left and right of point B represent thin-film and thick-film lubrications, respectively. 
We now briefly discuss the conditions that induce the foregoing lubrication states.

In addition to the shaft speed (n), two other parameters that influence the type of lubrication 
and resulting coefficient of friction are oil viscosity (η) and the bearing unit load (P). Viscosity is 
discussed in the next section. The bearing unit load is defined as follows:

 P
W

A

W

DLp

= =  (a)
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where W, Ap, D, and L denote the unit load and projected area, diameter, and length of the bearing, 
respectively. Interestingly, the higher the viscosity, the lower the rotating speed required to float the 
journal at a prescribed unit load. Also, the smaller the bearing unit load, the lower the rotating speed 
(and the viscosity) required to float the journal.

10.4.1  hydrodynamiC luBriCation

Hydrodynamic lubrication means that load-carrying surfaces of the bearing are separated by a (rela-
tively thick) layer of fluid, called a fluid film. For this condition to occur, a relative motion must exist 
between the two surfaces and a pressure must be developed. The pressure is created internally by 
the relative velocity, viscosity of the fluid, and the wedging action that results when the two surfaces 
are not parallel. This technique does not depend on the introduction of the lubricant under pressure. 
It does require, however, the existence of an adequate fluid supply at all times.

In a journal bearing at rest, the shaft sits in contact with the bottom of the bearing. As soon as 
the shaft rotates, its centerline shifts eccentrically within the bearing. Thus, a flow is set up within 
the small thickness of the oil film. When the rotating speed increases sufficiently, the shaft moves 
up on a wedge of pumped oil and ends its metal contact with the bearing; hydrodynamic lubrica-
tion is established. In a hydrodynamically lubricated sleeve-bearing surface, wear does not occur. 
Friction losses originate only within the lubricant film. Typical minimum film thickness (denoted 
ho) ranges from 0.008 to 0.020 mm. Coefficients of friction f commonly range from 0.002 to 0.010. 
Hydrodynamic lubrication is also known as fluid film or fluid lubrication. The design of journal 
bearings is based on this most desirable type of lubrication.

10.4.2  mixed luBriCation

Mixed lubrication describes a combination of partial lubricant film plus intermittent contact between 
the surfaces. Under this condition, the wear between the surfaces depends on the properties of the 
surfaces and the lubricant viscosity. Typical values of the coefficient of friction are 0.004–0.10.

For example, if the lubricant is supplied by hand oiling and by drop or mechanical feed (see 
Section 10.9), the bearing is operating under mixed oil-film conditions. This lubricating condi-
tion may also be present where the lubrication is deficient, the viscosity is too low, the bearing is 
overloaded, the clearance is too tight, the bearing speed is too low, and the bearing assembly is 
misaligned.

Boundary
lubrication

Mixed
lubrication
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FIGURE 10.2 The change in the coefficient of friction f with shaft speed n in a journal bearing.
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10.4.3  Boundary luBriCation

Boundary lubrication refers to the situations in which the fluid film gets thinner and partial metal-
to-metal contact can occur. This depends on such factors as surface finish and wear-in and surface 
chemical reaction. Boundary lubrication occurs in journal bearings at low speeds and high loads, 
such as when starting or stopping a rotating machinery. The properties of the sliding metallic sur-
faces and the lubricant are significant factors in limiting wear. The coefficient of friction is about 
0.10. Boundary lubrication is less desirable than the other types, inasmuch as it allows the sur-
face asperities to contact and wear rapidly. Design for this type of lubrication is largely empirical. 
Electric motor shaft bearings, office machinery bearings, power screw support bearings, and elec-
tric fan bearings represent some examples of boundary lubrication bearings.

Note that the initial boundary lubrication can be avoided by the introduction of pressurized oil 
on the loaded side of the journal, thereby hydraulically lifting it at start-up and again at shutdown. 
This is a common practice on large machines (e.g., power turbines), to provide sleeves and shaft a 
wear-free long life. The foregoing, called hydrostatic lubrication, is discussed later.

10.4.4  elastohydrodynamiC luBriCation

Elastohydrodynamic lubrication is concerned with the interrelation between the hydrodynamic 
action of full-fluid films and the elastic deformation of the supporting materials. It occurs when the 
lubricant is introduced between surfaces in rolling contact, such as mating gears and rolling bear-
ings. Under loaded contact, balls and rollers, as well as cams and gear teeth, develop a small area 
of contact because of local elastic deformation owing to high stress (e.g., 700–3500 MPa). Factors 
that have a major effect on creating elastohydrodynamic lubrication are: increased relative velocity, 
increased oil viscosity, and increased radius of curvature at the contact. The mathematical explana-
tion requires the Hertz contact stress analysis, as discussed in Chapter 3, and fluid mechanics [1].

10.4.5  hydrostatiC luBriCation

Hydrostatic lubrication refers to the continuous supply of flow of lubricant to the sliding inter-
face at some elevated hydrostatic pressure. It does not require motion of the surfaces relative to 
another. This mechanism creates full-film lubrication. Some special applications involving hydro-
static lifts, thrust bearings, and oil lifts needed during the start-up of heavily loaded bearings are 
of the hydrostatic forms. Obviously, in hydrostatic lubrication, the pressure is developed externally 
by a pump, and the fluid (typically oil) enters the bearing opposite the load. The advantages of this 
technique include notably low friction and high load-carrying capacity at low speeds at all times. 
Disadvantages are the cost and the need for an external source of fluid pressurization.

Consider the simplified sketch of a vertical shaft hydrostatic thrust bearing shown in Figure 
10.3. The rotating shaft supports a vertical load W. High-pressure oil at p is supplied into the recess 
of radius ro at the center of the bearing from an external pump. Oil flows radially outward the annu-
lus of depth h, finally escapes at the periphery of the shaft, and then finally returns through a system 
of piping to the reservoir at about atmospheric pressure. The oil film is present whether the shaft 
rotates or not. It can be shown that [3] the load-carrying capacity is given in the following form:

 
ln

W
p r r

r r2 /
o

o

2 2

( )= π −







 (10.1)

The preceding is applicable even if the recess is eliminated. In this case, ro becomes the radius of the 
inlet oil-supply pipe. Hydrostatic bearings are used in various special applications. Some examples 
are telescopes and radar tracking units subjected to heavy loads at very low speeds, as well as the 
machine tools and gyroscopes under high speed but light loads.
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Finally, we note that friction and wear (discussed in Sections 8.3 through 8.6) are significant 
considerations when boundary lubrication or metal-to-metal contact occurs. Recall that the depth of 
wear δ (by letting Aα = Ap and P = W) is given by

 K
Wl

HAp

δ =  (8.3)

The quantities K, l, and H represent the wear coefficient, length of sliding, and Brinell hardness 
of bearing material, respectively. As noted previously, W and Ap designate the load and projected 
area (DL) of the bearing. Practically, it is useful to include in this relationship motion-related and 
environmental factors depending upon motion type, load, and speed [4]. Observe that the proper-
ties of the sliding surfaces of the lubricant are important factors in limiting wear under lubrication 
conditions.

Table 10.3 of Section 10.11 furnishes the designer limits of the unit bearing load P and sliding 
velocity V, as well as PV for various materials. Sliding velocity for continuous motion is V = Dn. 
Clearly, for an acceptable bearing design configuration, operating values of the preceding quantities 
must be less than the values listed in the table. An application of Equation (8.3) is illustrated in the 
following numerical problem.

Example 10.1: Preliminary Design of a Boundary-Lubricated Journal Bearing

A 31.25 mm steel shaft having 450 Bhn with an excellent lubrication rotates continuously at a load of 
180 N at 20 rpm for 3.5 years in a sleeve of bronze–lead having 170 Bhn (Figure 10.4). Estimate the 
largest length L of the sleeve.

Given: D = 31.25 mm, H = 450 Bhn, n = 30 rpm, W = 180 N, t = 2 years.

Assumptions: Maximum wear of the bearing is to be δ = 0.05 mm. Bronze is partially compatible with 
steel, and lead is incompatible.

Solution

A conservative value of K = 1 × 10−7 will be taken for partially compatible materials and excellent lubri-
cation from Table 8.3. The hardness of sleeve, softer material in bearing, must be used (see Section 8.5) 
and thus

 . .H 9 81 170 1668 MPa( )= =  

Sealer

h

Rotating
shaft

Recess

To reservoir Oil inlet p To reservoir

W

ro
r

FIGURE 10.3 Schematic representation of a hydrostatic thrust bearing.
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The length of sliding equals

 . .l n Dt 30 0 03125 60 24 365 2 3096 10 m3( )( )= π = π × × × = ×  

The bearing length, from Equation (8.3), is given by

 L
KWl

HD
=

δ
 (b)

Substituting the data, we have

 
. .

L
1 10 180 3096 10

1668 31 25 0 05
0.0214 m = 21.4 mm

7 3( )( )( )
( )( )=

× ×
=

−

 

Comments: The next largest available standard length, probably L = 22 mm, should be used. Note, as 
a check, that

 .P
W

DL

180
(0.03125)(0.0214)

269 2 kPa= = =  

 
. .V

Dn

12

0 03125 30

60
0 0491 m/s

( )( )= π = π =  

and

 . . .PV 269 2 0 0491 13 22 kPa m/s( )( )= = ⋅  

The foregoing results are well below the maximum allowable values given in Table 10.1 for bronze–lead 
[4, 5].

10.5  LUBRICANT VISCOSITY

When two plates having relative motions are separated by a lubricant (e.g., oil), a flow takes place. 
In most lubrication problems, conditions are such that the flow is laminar. In laminar flow, the fluid 
is in layers that are maintained as the flow progresses. When this condition is not met, the flow is 
called turbulent. The laminar flow and internal resistance to shear of the fluid can be demonstrated 
by referring to the system depicted in Figure 10.5(a). The figure shows that the lower plate is sta-
tionary, while the upper plate moves to the right with velocity U under the action of the force F. 
Inasmuch as most fluids tend to wet and adhere to solid surfaces, it can be taken that, when the plate 

n

Shaft

L

W
D

Bushing

FIGURE 10.4 Example 10.1. Bushing of bronze–lead with steel shaft.
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moves, it does not slide along on top of the film (Figure 10.5(b)). The plot of fluid velocity u against 
y across the film (shown in the figure) is known as the velocity profile.

Newton’s law of viscous flow states that the shear stress in the fluid is proportional to the rate of 
change of velocity with respect to y (Figure 10.5(a)), That is,

 
du

dy
τ = η  (10.2)

The factor of proportionality η is called the absolute viscosity or simply the viscosity. The viscosity 
is a measure of the ability of the fluid to resist shear stress. Newtonian fluids include air, water, and 
most oils. Those fluids to which Equation (10.2) does not apply are called non-Newtonian. Examples 
are lubricating greases and some oils with additives. Let the distance between the two plates, the film 
thickness, be denoted by h, as shown in Figure 10.5. Because the velocity varies linearly across the 
film, we have du/dy = U/h and τ = F/A. Substitution of these relations into Equation (10.2) results in

 F
AU

h
= η  (10.3)

In the foregoing, A represents the area of the upper plate.

F

Stationary Velocity
profile

y h
U

U

h

τ

x
u

(a) (b)

FIGURE 10.5 Laminar flow: (a) flat plate moving on fluid film and (b) a fluid element.

TABLE 10.1
Average Sleeve Bearing Pressures in Current Practice

Application

Average Pressure P = W/DL

MPa (psi)

Relatively steady loads

 Centrifugal pumps 0.7–1.3 (100–180)

 Gear reducer 0.8–1.7 (120–250)

 Steam turbines 1.0–2.1 (150–300)

 Electric motors 0.8–1.7 (120–250)

Rapidly fluctuating loads

 Automotive gasoline engines

  Main bearings 4–5 (600–750)

  Connecting rod bearings 12–16 (1700–2300)

 Diesel engines

  Main bearings 6–12 (900–1700)

  Connecting rod bearings 8–16 (1150–2300)
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10.5.1  units oF visCosity

In SI, viscosity is measured in newton-second per square meter (N · s/m2) or pascal-seconds. The 
US customary unit of viscosity is the pound-force-second per square inch (lb · s/in.2), called the 
reyn. The conversion between the two units is the same as stress:

 1 reyn 6890 Pa s= ⋅  

The reyn and pascal-second are such large units that microreyn (μreyn) and millipascal-second 
(mPa · s) are more commonly used.

In the former metric system, centimeter–gram–second (cgs), the unit of viscosity, is poise (p), 
having dimensions of dyne-second per square centimeter (dyne · s/cm2). Note that 1 centipoise (cp) 
is equal to 1 millipascal-second (1 cp = 1 mPa · s). It has been customary to use the cp, which is 
1/100 of a poise. The conversion from cgs units to US customary units is as follows: 1 reyn = 6.89 
(106) cp. To obtain viscosity in μreyn, multiply the cp value by 0.145.

10.5.2  visCosity in terms oF sayBolt universal seConds

The American Society for Testing and Materials (ASTM) standard method for determining viscos-
ity employs an instrument known as the Saybolt universal viscometer. The approach consists of 
measuring the time in seconds needed for 60 cm3 of oil at a specified temperature to flow through a 
capillary tube 17.6 mm diameter and 12.25 mm long (Figure 10.6). The time, measured in seconds, 
is known as Saybolt universal seconds, S.

Kinematic viscosity, also called Saybolt universal viscosity (SUV) in seconds, is defined by

 
Absolute viscosity

Mass density
ν = = η

ρ
 (10.4)

The mass density ρ is in g/cm3 of oil (which is numerically equal to the specific gravity). In SI, η and 
ρ have units N · s/m2 and N · s4/m4, respectively. Thus, the kinematic viscosity ν has the unit of m2/s. 
In the former metric system, a unit of cm2/s was named a stoke, abbreviated St.

Absolute viscosity is needed for calculation of oil pressure and flows within a bearing. It can be 
found from Saybolt viscometer measurements by the following formulas:

Oil
Constant

temperature
bath

Saybolt universal viscosimeter

Capillary
tube

FIGURE 10.6 Saybolt universal viscometer.
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 . ,S
S

0 22
180

mPa s or cp( )η = −



 ρ ⋅  (10.5a)

 . . S
S

0 145 0 22
180

reyn( )η = −



 ρ µ  (10.5b)

Here, Saybolt time S is in seconds. Interestingly, for petroleum oils, the mass density at 60°F (15.6°C) 
is approximately 0.89 g/cm3. The mass density, at any other temperature, is given by

 . . .0 89 0 00063 C 15 6( )ρ = − ° −  (10.6a)

 . .0 89 0 00035 F 60( )ρ = − ° −  (10.6b)

both in g/cm3.

10.5.3  eFFeCts oF temPerature and Pressure

The viscosity of a liquid varies inversely with temperature and directly with pressure, both nonlin-
early. In contrast, gases such as air have an increased viscosity with increased temperature. Figure 
10.7 shows the absolute viscosity of various fluids and how they vary. The Society of Automotive 
Engineers (SAE) and the International Standards Organization (ISO) classify oils according to 
viscosity. Viscosity–temperature curves for typical SAE numbered oils are given in Figure 10.8. 
These oil types must exhibit particular viscosity behavior at 100°C. In addition, the SAE classi-
fies identifications such as 10 W, 20 W, 30 W, and 40 W. Accordingly, for instance, a 20 W-40 
multigrade, also called multiviscosity, oil must satisfy the 20 W behavior at −18°C and the SAE 40 
viscosity behavior at 100°C. The viscosity of multigrade oils varies less with temperature than that 
of single-grade oils.
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FIGURE 10.7 Variation in viscosity with temperature of several fluids. To convert from °F to °C, use 
Equation (1.3).
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A widely used means for specifying the rate of change of viscosity with temperature is known 
as the viscosity index, abbreviated VI. It compares an oil to oils with very small and very large rates 
of change in viscosity. A contemporary basis for viscosity index rating is given in the American 
National Standards Institute (ANSI)/ASTM Specification D2270.

Example 10.2: Viscosity and SAE Number of an Oil

An engine oil has a kinematic viscosity at 80°C corresponding to 62 s as found from a Saybolt viscom-
eter. Calculate the absolute viscosity in millipascal-second and microreyns. What is the corresponding 
SAE number?
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FIGURE 10.8 Viscosity versus temperature curve for typical SAE-graded oils.
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Solution

Through the use of Equation (10.6a), we have

 . . . .0 89 0 00063 80 15 6 0 849 g/cm3( )ρ = − − =  

Then, applying Equation (10.5a),

 . . .0 849 0 22 62
180
62

9 116 mPa s( )η = −





= ⋅  

Equation (10.5b) gives

 . . .0 145 9 116 1 322 reyn[ ]η = = µ  

Referring to Figure 10.8, the viscosity at 80°C is near to that of an SAE 20 oil.

10.6  PETROFF’S BEARING EQUATION

The phenomenon of bearing friction was first explained by N. Petroff in 1883. He analyzed a journal 
bearing based on the assumption that the shaft is concentric in bearing. Obviously, this operation 
condition could not occur in an actual journal bearing. However, by Petroff’s approach, if the load 
applied is very low and the speed and viscosity are fairly high, approximate results are obtained. 
Usually, Petroff’s equation is applied in preliminary design calculations.

10.6.1  FriCtion torque

Let us assume that the moving flat plate shown in Figure 10.5a is wrapped in a cylindrical shaft 
(Figure 10.9). Now the thickness h becomes the radial clearance c that is taken to be completely 
filled with lubricant and from which leakage is negligible. Note that the radial clearance represents 
the difference in radii of the bearing and journal.

The developed journal area A is 2πrL. Carrying A and h into Equation (10.3) yields the tangential 
friction force F = 2πηUrL/c, in which the tangential velocity U of the journal is 2πrn. The frictional 
torque owing to the resistance of fluid equals Tf = Fr. Equation for no-load torque is then

 T
Lr n

c

4
f

2 3

= π η
 (10.7)

where
Tf = the frictional torque
η = the absolute viscosity
L = the length of bearing
r = the journal radius
n = the journal speed, revolutions per second, rps
c = the radial clearance or film thickness

When a small load W is supported by the bearing, the pressure P of the projected area equals 
P = W/2rL (Figure 10.10). The frictional force is fW, where f represents the coefficient of friction. 
Hence, the friction torque due to load is

 T fWr r fLP2f
2= =  (10.8)

Clearly, load W will cause the shaft to become somewhat eccentric in its bearing.

ISTUDY

www.konkur.in

Telegram: @uni_k



393Bearings and Lubrication

According to Petroff’s approach, the effect of load W in Equation (10.7) can be considered neg-
ligible. Therefore, Equation (10.7) can be equated to Equation (10.8). In so doing, we obtain the 
coefficient of friction in the following form:

 f
n

P

r

c
2 2= π η

 (10.9)

This is known as Petroff’s equation or Petroff’s law. Through the use of Equation (10.9), reason-
able estimates of the coefficient of friction in lightly loaded bearings can be obtained. The two 
dimensionless quantities n/P and r/c are significant parameters in lubrication, as is observed in 
Section 10.8.

10.6.2  FriCtion Power

Having the expression for the friction torque available, friction power for the bearing may be obtained 
from the general relations given in Section 10.11 In the SI units, by Equations (1.15) and (1.16),

 
T n

TkW
159

in N mf
f( )= ⋅  (10.10)

U
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n

FIGURE 10.9 Journal-centered bearing.
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FIGURE 10.10 Lightly loaded journal bearing.
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T n

Thp
119

in N mf
f( )= ⋅  (10.11)

where n is in rps.
In US customary units, using Equation (1.17), we have

 .T n
Thp

1050
in lb inf

f( )= ⋅  (10.12)

As before, journal speed n is in rps.

Example 10.3: Friction Power Using Petroff’s Approach

An 80 mm diameter shaft is supported by a full-journal bearing of 120 mm length with a radial clear-
ance of 0.05 mm. It is lubricated by SAE 10 oil at 70°C. The shaft rotates 1200 rpm and is under a radial 
load of 500 N. Apply Petroff’s equation to determine:

 a. The bearing coefficient of friction.
 b. The friction torque and power loss.

Solution

From Figure 10.8, η = 9.2 mPa · s. We have

 
. .

.P
500

0 08 0 12
52 08 kPa( )( )= =  

 n
1200

60
20 rps= =  

 a. Substitution of the given data into Equation (10.9) gives

 
.

.
.f 2

0 0092 20

52,080
40

0 05
0 05582 ( )( )= π =  

 b. Equations (10.8) and (10.10) are therefore

 . . .T fWD/2 0 0558 500 0 04 1 116 N mf ( )( )( )= = = ⋅  

 
. .kW

1 116 20

159
0 14

( )= =  

10.7  HYDRODYNAMIC LUBRICATION THEORY

Recall from Section 10.4 that in hydrodynamic lubrication, oil is drawn into the wedge-shaped 
opening produced by two nonparallel surfaces having relative motion. The velocity profile of the 
lubricant is different at the wider and narrower sections. As a result, sufficient pressure is built up in 
the oil film to support the applied vertical load without causing metal-to-metal contact. This tech-
nique is utilized in the thrust bearings for hydraulic turbines and propeller shafts of ships, as well 
as in the conventional journal bearings for piston engines and compressors.
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10.7.1  reynolds’s equation oF hydrodynamiC luBriCation

Hydrodynamic lubrication theory is based on Osborne Reynolds’s study of the laboratory inves-
tigation of railroad bearings by Beauchamp Tower in the early 1880s in England [6]. The initial 
Reynolds’s differential equation for hydrodynamic lubrication was used by him to explain Tower’s 
results. A simplifying assumption of Reynolds’s analysis was that the oil films were so thin in 
comparison with the bearing radius that the curvature could be disregarded. This enabled him to 
replace the curved partial bearing with a flat bearing. Other presuppositions include those discussed 
in Section 10.5. The following is a brief outline of the development of Reynolds’s fluid flow equation 
for two typical bearings.

10.7.1.1  Long Bearings
Consider a journal rotating in a clockwise direction supported by a lubricant film of variable thick-
ness h on a fixed sleeve (Figure 10.11(a)). Assume that the lubricant velocity u and shear stress τ 
vary in both the x and y directions, while pressure p depends on the x direction alone and bear-
ing side leakage is neglected. The summation of the x-directed forces on the fluid film (Figure 
10.11(b)) gives

 pdydz dxdz p
dp

dx
dx dydz

y
dy dxdz 0+ τ − +



 − τ + ∂τ

∂






=  

This reduces to

 
dp

dx y
= ∂τ

∂
 (a)

From Newton’s law of flow,

 
u

y
τ = −η ∂

∂
 (b)

in which the minus sign indicates a negative velocity ingredient.
Carrying Equation (b) into Equation (a) and rearranging, we obtain

 
u

y

dp

dx

12

2

∂
∂

=
η

 

W

h

Journal

Fluid
flow

Stationary
bearing

y

x
dx

dx
dy

p dy dz
τ dx dz

dy
dx

p + dp dx   dy dz

∂y
τ + ∂τ dy  dy dz

(a) (b)

FIGURE 10.11 (a) An eccentric journal and (b) pressure and viscous forces acting on an oil fluid element of 
sides dx, dy, and dz, isolated from part (a).
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Integrating twice with respect to y results in

 u
dp

dx

y
c y c

1
2

2

1 2=
η

+ +




  (c)

Assuming that no slip occurs between the lubricant and the boundary surfaces (Figure 10.12), this 
leads to

 ,u y u U y h0 at 0 at( ) ( )= = = =  

The quantity U represents the journal surface velocity. The constants c1 and c2 are evaluated by 
introducing these conditions into Equation (c):

 ,c
U

h

h dp

dx
c

2
01 2= η − =  

Hence,

 u
dp

dx
y hy

U

h
y

1
2

2( )=
η

− +  (10.13)

It is interesting to observe from this equation that the velocity distribution across the film is obtained 
by superimposing a parabolic distribution (the first term) onto a linear distribution (the second term). 
The former and the latter are indicated by the solid and dashed lines in Figure 10.12, respectively.

Let the volume of the lubricant per unit time flowing (in the x direction) across the section con-
taining the element in Figure 10.11 be denoted by Q. For a width of unity in the z direction, using 
Equation (10.13), we have

 Q udy
Uh h dp

dx2 12

h

0

3

∫= = −
η  (d)

Based on the assumptions of lubricant incompressibility and no side leakage, the flow rate must be 
identical for all sections: dQ/dx = 0. So, differentiating Equation (d) and setting the result equal to 
0 yield

 
d

dx

h dp

dx
U

dh

dx
6

3

η






=  (10.14)

This is Reynolds’s equation for 1D flow.
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FIGURE 10.12 Velocity profile of the oil.
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For a case in which the axial (z-directed) fluid flow includes leakage, the preceding expression 
may be generalized to obtain the 2D Reynolds’s equation:
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∂ η
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= ∂
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 (10.15)

The solutions of Equations (10.14) and (10.15) provide reasonable approximations for bearings of 
L/D > 1.5. Here, L and D represent the length and diameter of the bearing, respectively. Long bear-
ings are sometimes used to restrain a shaft from vibration and position the shaft accurately in trans-
mission shafts and machine tools, respectively.

10.7.1.2  Short Bearings
The circumferential flow of oil around the bearing may be taken to be negligible in comparison to 
the flow in the z direction for a short bearing. On the basis of this premise, F.W. Ocvirk and G.B. 
Dubois [7] proposed that the x term in Equation (10.15) may be omitted. In so doing, we obtain
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= ∂
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 (10.16)

The foregoing equation can readily be integrated to give an expression for pressure in the oil film. 
Often, this procedure is referred to as Ocvirk’s short bearing approximation. The solution of 
Equation (10.16) has moderate accuracy for bearings of L/D ratios up to about 0.75. In modern 
power machines, the trend is toward the use of short bearings.

We should mention that the exact solution of Reynolds’s equation is a challenging problem that 
has interested many investigators ever since then, and it is still the starting point for lubrication 
studies. A mathematical treatment of hydrodynamic lubrication is beyond the scope of this volume. 
Fortunately, it is possible to make design calculations from the graphs obtained by mathematical 
analysis, as will be observed in the next section.

10.8  DESIGN OF JOURNAL BEARINGS

In actual bearings, a full continuous fluid film does not exist. The film ruptures, and bearing load W 
is supported by a partial film located beneath the journal. Petroff’s law may be applied only to esti-
mate the values of coefficient of friction. As noted previously, mathematical solutions to Reynolds’s 
equations give reasonably good results for hydrodynamic or journal bearings of some commonly 
encountered proportions.

The design of journal bearings usually involves two suitable combinations of variables: variables 
under control (viscosity, load, radius and length of bearing, and clearance) and dependent variables 
or performance factors (coefficients of friction, temperature rise, oil flow, and minimum oil-film 
thickness). Essentially, in bearing design, limits for the latter group of variables are defined. Then, 
the former group is decided on so that these limitations are not exceeded. The following is a brief 
discussion of the quantities under control.

10.8.1  luBriCants

Recall that lubricants are characterized by their viscosity (η). Their choice is based on such factors 
as the type of machine, method of lubrication, and load features.

10.8.2  Bearing load

Usually, the load acting on a bearing is particularized. The value of the load per projected area, P, depends 
on the length and diameter of the bearing. Obviously, the smaller P is, the greater the bearing life.
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10.8.3  length–diameter ratio

Various factors are considered in choosing proper length-to-diameter ratios, or L/D values. Bearings 
with a length-to-diameter ratio less than 1 (short bearings) accommodate the shaft deflections and 
misalignments that are expected to be severe. Long bearings (L/D > 1) must be used in applications 
where shaft alignment is important.

10.8.4  ClearanCe

The effects of varying dimensions and clearance ratios are very significant in a bearing design. The 
radial clearance c (Figure 10.10) is contingent to some extent on the desired quality. Suitable values 
to be used for radial bearing clearance rely on factors that include materials, manufacturing accuracy, 
load-carrying capacity, minimum film thickness, and oil flow. Furthermore, the clearance may increase 
because of wear. The clearance ratios (c/r) typically vary from 0.001 to 0.002 and occasionally as high 
as 0.003. It would seem that large clearances increase the flow that reduces film temperature and hence 
increase bearing life. However, very large clearances result in a decrease in minimum film thickness. 
Therefore, some iteration is ordinarily needed to obtain a proper value for the clearance.

10.8.5  design Charts

A.A. Raimondi and J. Boyd applied digital computer techniques toward the solution of Reynolds’s 
equation and present the results in the form of design charts and tables [8]. These provide accurate 
results for bearings of all proportions. Most charts utilize the bearing characteristic number, or the 
Sommerfeld number:

 S
r

c

n

P

2

= 





η
 (10.17)

where
S = the bearing characteristic number, dimensionless
r = the journal radius
c = the radial clearance
η = the viscosity, reyns
n = the relative speed between journal and bearing, rps
P = the load per projected area

Notations used in the charts are illustrated in Figure 10.13. The center of the journal is shown at O 
and the center of the bearing is at O′. The minimum oil-film thickness h0 occurs at the line of the 
centers. The distance between these centers represents the eccentricity, denoted by e. The eccentric-
ity ratio ϵ is defined by

 
e

c
=  (10.18)

The minimum film thickness is then

 h c e c 10 ( )= − = −  (10.19)

The foregoing gives

 
h

c
1 0= −  (10.20)
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As depicted in the figure, the angular location of the minimum oil-film thickness is designated by Φ. 
The terminating position and position of maximum film pressure pmax of the lubricant are denoted 
by ϕ0 and ϕmax, respectively.

Load per projected area, the average pressure, or the so-called unit loading, is

 P
W

DL
=  (10.21)

where
W = the load
D = the journal diameter
L = the journal length

Note that L and D are also referred to as the bearing length and diameter, respectively. Table 10.1 
furnishes some representative values of P in common use.

Design charts by Raimondi and Boyd provide solutions for journal bearings having various length–
diameter (L/D) ratios. Only portions of three selected charts are reproduced in Figures 10.14 through 
10.16, for full bearings. All charts give the plots of dimensionless bearing parameters as functions of 
the dimensionless Sommerfeld variable, S. Note that the S scale on the charts is logarithmic except 
for a linear portion between 0 and 0.01. Space does not permit the inclusion of charts for partial bear-
ings and thrust bearings. Those seeking more complete information can find it in the references cited.

The use of the design charts is illustrated in the solution of the following numerical problem.

Example 10.4: Performance Factors of Journal Bearings Using the Design Charts

A full-journal bearing of diameter D, length L, with a radial clearance c, carries a load of W at a speed 
of n. It is lubricated by SAE 30 oil, supplied at atmospheric pressure, and the average temperature of 
the oil film is t (Figure 10.17). Using the design charts, analyze the bearing.

n

W

Line of centers

Oil

Film pressure

P max

φmax

φ0

Φ

h0

O O΄
e

r = D
2

FIGURE 10.13 Radial pressure distribution in a journal bearing.
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FIGURE 10.14 Chart for minimum film-thickness variable. (From Raimondi, A.A. and Boyd, J., Trans. 
ASLE I, 1, 159, 1958.)
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FIGURE 10.15 Chart for coefficient of friction variable. (From Raimondi, A. A. and Boyd, J., Trans. ASLE 
I, 1, 159, 1958.)
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Given: The numerical values are (see Figure 10.17)
D = 60 mm, r = 30 mm, L = 30 mm, c = 0.05 mm, n = 30 rps, W = 3.6 kN, t = 60°C

Solution

The variables under control of the designer are
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FIGURE 10.16 Chart for film maximum pressure. (From Raimondi, A.A. and Boyd, J., Trans. ASLE I, 1, 
159, 1958.)
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FIGURE 10.17 Example 10.4. A journal bearing.
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The determination of the dependent variables proceeds as described in detail in the following para-
graphs. Note that the procedure can also be carried out conveniently in tabular form.

Minimum film thickness (Figure 10.14). Use S = 0.146 with L/D = 1/2 to enter the chart in this figure:

 . .h

c
h0 25 or 0 0125 mm0

0= =  

Then, by Equation (10.19),

 . . .e c h 0 05 0 0125 0 0375 mm= − = − =  

The eccentricity ratio is then ϵ = e/c = 0.0375/0.05 = 0.75.

Comment: The permissible oil-film thickness depends largely on the surface roughness of the journal 
and bearing. The surface finish should therefore be specified and closely controlled if the design calcu-
lations indicate that the bearing operates with a very thin oil film.

Coefficient of friction (Figure 10.15). Use S = 0.146 with L/D = 1/2. Hence, from the chart in this 
figure,

 . .r

c
f f4 8 or 0 008= =  

Applying Equation (10.8), the friction torque is then,

 . . .T fWr 0 008 3600 0 03 0 864 N mf ( )( )= = = ⋅  

The frictional power lost in the bearing, from Equation (10.10), is

 
. .T n

kW
159

0 864 30

159
0 163f ( )( )= = =  

Film pressure (Figure 10.16). Use S = 0.146 with L/D = 1/2 to enter the chart in this figure:

 .
max

P

p
0 32=  

The foregoing gives pmax = 2/0.32 = 6.25 MPa.

Comments: A temperature rise ∆t in the oil film owing to the fluid friction can be determined based on 
the assumption that the oil film carries away all the heat generated [9]. The Raimondi–Boyd papers also 
contain charts to obtain oil flow Q, side leakage Qs, and conservative estimates of the ∆t. In addition, 
they include charts to find the angular locations of the minimum film thickness, maximum pressure, and 
the terminating position of the oil. These charts are not presented in this book.

10.9  LUBRICANT SUPPLY TO JOURNAL BEARINGS

The hydrodynamic analysis assumes that oil is available to flow into the journal bearing at least as 
fast as it leaks out at the ends. A variety of methods of lubrication are used for journal bearings. The 
system chosen for a specific problem depends to a large extent on the type of service the bearing is 
to perform. Some typical techniques for supplying oil to the bearing are briefly described as follows.

10.9.1  sPlash method

The splash system of lubrication is used effectively when a machine has a rotating part, such as a 
crank or gear enclosed in a housing. The moving part runs through a reservoir of oil in the enclosed 
casing. This causes a spray of oil to soak the casing, lubricating the bearing. The term oil bath refers 
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to a system where oil is supplied by partially submerging the journal into the oil reservoir, as in the 
railroad partial bearings.

10.9.2  misCellaneous methods

A number of simple methods of lubrication also are used. Bearings that are used in low-speed, light-
load applications can be lubricated by hand oiling. A wick-feed oiler, as the name implies, depends 
on an absorbent material serving as a wick to supply oil to the bearing. A drop-feed oiler permits oil 
from a reservoir to flow through a needle valve to the bearing. A ring-oiled bearing uses a ring that 
is often located over the journal at the center of the bearing.

Self-contained bearings contain the lubricant in the bearing housing, which is sealed to prevent 
oil loss. Oil may be gravity fed from a reservoir or cup above the bearing. Obviously, a bearing 
of this type is economically more desirable because it requires no expensive cooling or lubricant-
circulating system. Self-contained bearings are known as pillow-block or pedestal bearings.

10.9.3  Pressure-Fed systems

In the pressure-fed lubrication systems, a continuous supply of oil is furnished to the bearing by a 
small pump. The oil is returned to a reservoir after circulating through the bearing. The pump may 
be located within the machine housing above the sump and driven by one of the shafts. This com-
plete system is the commonly used method. An example is the pressure-fed lubrication system of a 
piston-type engine or compressor. Here, oil supplied by the pump fills grooves in the main bearings. 
Holes drilled in the crankshaft transfer oil from these grooves to the connection rod sleeve bearings. 
Note that, in most automotive engines, the piston pins are splash lubricated.

10.9.4  methods For oil distriBution

Figure 10.18(a) illustrates a bearing with a circumferential groove used to distribute oil in a tangen-
tial direction. The oil flows either by gravity or under pressure into the groove through an oil supply 

Oil inlet hole

(b)(a)
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Grooved
bearing

Ungrooved
bearing

D

L
2

L
2
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FIGURE 10.18 Common methods used for oil distribution: (a) bearing with circumferential groove and 
comparison of the axial pressure distribution with or without a groove and (b) bearing with axial groove.

ISTUDY

www.konkur.in

Telegram: @uni_k



404 Mechanical Engineering Design

hole placed in the groove opposite the portion of the oil film supporting the load. The effect of the 
groove is to create two half bearings, each having a smaller L/D ratio than the original. As a result, 
the pressure distribution does not vary, as the smooth curve shown by the dashed line indicates; 
hydrodynamic pressure drops to nearly 0 at the groove. Although the oil film is broken in half, the 
efficient cooling obtained allows these bearings to carry larger loads without overheating.

An axial groove fed by the oil hole (Figure 10.18b) generally gives sufficient flow at low or 
ambient oil pressure. A wide variety of groove types give even better oil distribution. In all flow 
problems, it is assumed that provision has been made to keep the entrance full.

10.10  HEAT BALANCE OF JOURNAL BEARINGS

The frictional loss of energy in a bearing is transferred into heat, raising the temperature of the 
lubricant and the adjacent parts in a bearing. The heat balance of a bearing refers to the balance 
between the heat developed and dissipated in a bearing. The usual desired value for the average oil 
temperature is about 70°C for a satisfactory balance. If the average temperature rises above 105°C, 
deterioration of the lubricant as well as the bearing material can occur [9].

In a pressure-fed system, as the oil flows through the bearing, it absorbs heat from the bear-
ing. The oil is then returned to a sump, where it is cooled before being recirculated. Based on this 
method, the lubricant carries most of the generated heat, and hence, design charts give a reasonably 
accurate value of a temperature rise in the oil.

10.10.1  heat dissiPated

Here, we consider heat balance in self-contained bearings, where the lubricant is stored in the bearing 
housing itself. Bearings of this type dissipate heat to the surrounding atmosphere by conduction, con-
vection, and radiation heat transfer. Practically, a precise value of the rate of heat flow cannot be cal-
culated with any accuracy. The heat dissipated from the bearing housing may only be approximated by

 H CA t to a( )= −  (10.22)

The foregoing gives

 t t
H

AC
o a= +  (10.23)

where
H = the time rate of heat lost, W
C = the overall heat transfer coefficient, W/m2 · °C
A = the surface area of housing, m2

to = the average oil-film temperature, °C
ta = the temperature of surrounding air, °C

Rough estimates of values for coefficient C are given in Table 10.2. For simple ring-oiled bear-
ings, the bearing housing area may be estimated as 12.5 times the bearing projected area (i.e., 
12.5DL). It is to be emphasized that Equation (10.23) should be used only when ballpark results 
are sufficient.

10.10.2  heat develoPed

Under equilibrium conditions, the rate at which heat develops within a bearing is equal to the rate 
at which heat dissipates:
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 fW rn H2( )π =  (10.24)

where
f = the coefficient of friction
W = the load
r = the journal radius
n = the journal speed (as defined in Section 10.5)
H = given by Equation (10.22)

A heat-balance computation, involving finding average film temperature at the equilibrium, is a 
trial-and-error procedure.

10.11  MATERIALS FOR JOURNAL BEARINGS

The operating conditions for journal bearing materials are such that rather strict requirements must 
be placed on the material to be used. For instance, in thick-film lubrication, any material with 
sufficient compressive strength and a smooth surface is an adequate bearing material. Small bush-
ings and thrust bearings are often expected to run with thin-film lubrication. Any foreign particles 
larger than the minimum film thickness present in the oil damage the shaft surface unless they can 
become embedded in a relatively soft bearing material.

In this section, we discuss some of the types of bearing materials in widespread usage. Special 
uses are for many other materials, such as glass, silver, ceramics, and sapphires. The pressure P, 
velocity V, or the PV product serves as an index to temperature at the sliding interface, and it is 
widely used as a design parameter for boundary-lubricated bearings. Table 10.3 lists design limit 
values of these quantities for a variety of journal bearing materials.

10.11.1  alloys

Babbitt alloys are the most commonly used materials, usually having a tin or lead base. They pos-
sess low melting points, moduli of elasticity, yield strength, and good plastic flow. In a bearing, the 
foregoing gives good conformability and embeddability characteristics. Conformability measures 
the capability of the bearing to adapt to shaft misalignment and deflection. Embeddability is the 
bearing’s capability to ingest harder, foreign particles. Shafts for Babbitt bearings should have a 
minimum hardness of 150–200 Bhn and a ground surface finish.

Compressive and fatigue strengths of babbitts are low, particularly above about 77°C. Babbitts 
can rarely be used above about 121°C. However, these shortcomings are improved by using a thin 
internal Babbitt surface on a steel (or aluminum) backing. For small and medium bearings under 
higher pressure (as in internal combustion engines), Babbitt layers 0.025–2.5 mm thick are used, 

TABLE 10.2
Heat Transfer Coefficient c for Self-Contained Bearings
Lubrication System Conditions C

Oil ring Still air 7.4

Average air circulation 8.5

Oil bath Still air 9.6

Average air circulation 11.3
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while in medium and large bearings under low pressure, the Babbitt is often cast in thicknesses of 
3–13 mm into a thicker steel shell (Figure 10.19).

Copper alloys are principally bronze and aluminum alloys. They are generally stronger and 
harder, have greater load capacity and fatigue strength, but less compatible (i.e., anti-weld and 
antiscoring) than Babbitt bearings. Owing to their thermal conductivity, corrosion resistance,  
and low cost, aluminum alloys are in widespread usage for bearings in internal combustion engines. 
A thin layer of Babbitt is placed inside an aluminum bearing to improve its conformability and 
embeddability.

TABLE 10.3
Design Limits of Boundary-Lubricated Sleeve Bearings Operating in Contact with Steel 
Shafts

Sleeve Material

Unit Load P Temperature t Velocity V PV

MPa (ksi) °C (°F) m/s (fpm)
MPa · 

m/s
(ksi · 
fpm)

Porous metals

 Bronze 14 (2) 232 (450) 6.1 (1200) 1.8 (50)

 Lead–bronze 5.5 (0.8) 232 (450) 7.6 (1500) 2.1 (60)

 Copper–iron 28 (4) — — 1.1 (225) 1.2 (35)

 Iron 21 (3) 232 (450) 2.0 (400) 1.0 (30)

 Bronze–iron 17 (2.5) 232 (450) 4.1 (800) 1.2 (35)

 Lead–iron 7 (1) 232 (450) 4.1 (800) 1.8 (50)

 Aluminum 14 (2) 121 (250) 6.1 (1200) 1.8 (50)

Nonmetals

 Phenolics 41 (6) 93 (200) 13 (2500) 0.53 (15)

 Nylon 14 (2) 93 (200) 3.0 (600) 0.11 (3)

 Teflon 3.5 (0.5) 260 (500) 0.25 (50) 0.035 (1)

 Teflon fabric 414 (60) 260 (500) 0.76 (150) 0.88 (25)

 Polycarbonate 7 (1) 104 (220) 5.1 (1000) 0.11 (3)

 Acetal 14 (2) 93 (200) 3.0 (600) 0.11 (3)

 Carbon graphite 4 (0.6) 400 (750) 13 (2500) 0.53 (15)

 Rubber 0.35 (0.05) 66 (150) 20 (4000) — —

 Wood 14 (2) 71 (160) 10 (2000) 0.42 (12)

Sources: Based on [4] and [5].

A

B

Section A–B

FIGURE 10.19 Babbitt metal bearing cast into a steel shell.
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10.11.2  sintered materials

Sintered materials, porous metal bearings or insertable powder-metallurgy bushings, have found 
wide acceptance. These self-lubricated bearings have interconnected pores in which oil is stored in 
the factory. The pores act as a reservoir for oil, expelling it when heated by shaft rubbing, reabsorb-
ing it when inactive. The low cost and lifetime use in a machine, without further lubrication, are 
their prime advantages.

10.11.3  nonmetalliC materials

A variety of plastics are used as bearing materials. No corrosion, quiet operation, moldability, and 
excellent compatibility are their advantages. The last characteristic often implies that no lubrica-
tion is required. Carbon-graphite bearings can be used at high temperatures. They are chemically 
inert. These bearings are useful in ovens and in pumps for acids and fuel oils. Rubber and other 
elastomers are excellent bearing material for water pumps and propellers. They are generally placed 
inside a noncorrodible metal shell and can provide vibration isolation, compensate for misalign-
ment, and have good conformability.

Part B: Rolling-Element Bearings
Recall from Section 10.1 that rolling-element bearings are also known as rolling bearings or anti-
friction bearings. The Anti-friction Bearing Manufacturing Association (AFBMA) and the ISO 
standardized bearing dimensions and the basis for their selection. The load, speed, and operating 
viscosity of the lubricant affect the friction characteristics of a rolling bearing. These bearings pro-
vide coefficients of friction between 0.001 and 0.002. The designer must deal with such matters as 
fatigue, friction, heat, lubrication, kinematic problems, material properties, machining tolerances, 
assembly, use, and cost. A complete history of the rolling-element bearings is given in [10]. The fol-
lowing is a comparison of rolling and sliding bearings.

Some advantages of rolling-element bearings over the sliding or journal bearings are:

 1. Low starting and good operating friction torque.
 2. Ease of lubrication.
 3. Requiring less axial space.
 4. Generally, taking both radial and axial loads.
 5. Rapid replacement.
 6. Warning of impending failure by increasing noisiness.
 7. Good low-temperature starting.

The disadvantages of rolling-element bearings compared to sliding bearings include:

 1. Greater diametral space.
 2. More severe alignment requirements.
 3. Higher initial cost.
 4. Noisier normal operation.
 5. Finite life due to eventual failure by fatigue.
 6. Ease of damage by foreign matter.
 7. Poor damping ability.

10.12  TYPES AND DIMENSIONS OF ROLLING BEARINGS

Rolling bearings can carry radial, thrust, or combinations of the two loads, depending on their 
design. Accordingly, most rolling bearings are categorized in one of the three groups: radial for 
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carrying loads that are primarily radial, thrust or axial contact for supporting loads that are primar-
ily axial, and angular contact for carrying combined axial and radial loads. As noted earlier, the 
rolling-element bearings are of two types: ball bearings and roller bearings. The former are capable 
of higher speeds, and the latter can take greater loads. The rolling bearings are precise, yet simple 
machine elements. They are made in a wide variety of types and sizes (Figure 10.20). Most bearing 
manufacturers provide engineering manuals and brochures containing descriptions of the various 
kinds available. Only some common types are considered here.

10.12.1  Ball Bearings

A ball bearing is employed in almost every type of machine or mechanism with rotating parts. 
Figure 10.21 illustrates the various parts, surfaces, and edges of a ball bearing. Observe that the 
basic bearing consists of an inner ring, an outer ring, the balls, and the separator (also known as 
the cage or retainer). To increase the contact area and hence permit larger loads to be carried, the 
balls run in curvilinear grooves in the rings called raceways. The radius of the raceway is very little 
larger than the radius of the ball.

The deep-groove (Conrad-type) bearing (Figure 10.22(a)) can stand a radial load as well as some 
thrust load. The balls are inserted into grooves by moving the inner ring to an eccentric position. 
They are separated after loading, and then the retainers are inserted. Obviously, an increase in 
radial load capacity may be obtained by using rings with deep grooves or by employing a double-
row radial bearing (Figure 10.22(b)).

The angular-contact bearing (Figure 10.22(c)) has a two-shouldered ball groove in one ring and 
a single-shouldered ball groove in the other ring. It can support greater thrust capacity in one direc-
tion as well as radial loads. The cutaway shoulder allows bearing assembly and use of a one-piece 
machined cage. The contact angle α is defined in the figure. Typical values of α for angular ball 
bearings vary from 15° to 40°.

The self-aligning bearing has an outer raceway ball path ground in a spherical shape so it can 
accommodate large amounts of angular misalignments or shaft deflections. These bearings can 
support both radial and axial loads and are available in two types: self-aligning external (Figure 
10.22(d)) and self-aligning internal. Thrust bearings are designed to carry a pure axial load only, as 

FIGURE 10.20 Various rolling-element bearings (Courtesy: SKF, Lansdale, PA).
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409Bearings and Lubrication

FIGURE 10.21 Ball bearing geometry and nomenclature (Courtesy: New Departure-Hyatt Division, 
General Motors Corporation, Detroit, MI).

(a)

(d) (e) (f )

(b () c)

α

FIGURE 10.22 Some types of ball bearings: (a) deep groove (Conrad), (b) double row, (c) angular con-
tact, (d) external self-aligning, (e) thrust, and (f) self-aligning thrust (Courtesy: the Timken Company, 
Canton, OH).
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410 Mechanical Engineering Design

shown in Figure 10.22(e) and (f). They are made exclusively for machinery with vertically oriented 
shafts and have modest speed capacity.

It should be noted that, although separators do not support load, they can exert an essential 
influence on bearing efficiency. Without a separator in a bearing, the rolling elements contact one 
another during operation and undergo rigorous sliding friction. The main role of a separator is to 
keep the proper distance between the rolling elements and secure proper load distribution and bal-
ance within the bearing. Obviously, the separator also maintains control of the rolling elements, 
preventing them from falling out of the bearing during handling.

10.12.2  roller Bearings

A roller bearing uses straight, tapered, or contoured cylindrical rollers. When shock and impact 
loads are present or when a large bearing is needed, these bearings are usually employed. Roller 
bearings can support much higher static and dynamic (shock) loads than comparably sized ball 
bearings, since they have line contact instead of point contact. A roller bearing generally consists of 
the same elements as a ball bearing. These bearings can be grouped into five basic types: cylindrical 
roller bearings, spherical roller bearings, tapered thrust roller bearings, needle roller bearings, and 
tapered roller bearings (Figure 10.23). Straight roller bearings provide purely radial load support in 
most applications; they cannot resist thrust loads. The spherical roller bearings have the advantage 
of accommodating some shaft misalignments in heavy-duty rolling mill and industrial gear drives. 
Needle bearings are in widespread usage where radial space is limited.

Tapered roller bearings combine the advantages of ball and straight roller bearings, as they 
can stand either radial or thrust loads or any combination of the two. The centerlines of the coni-
cal roller intersect at a common apex on the centerline of rotation. Tapered roller bearings have 
numerous features that make them complicated [4], and space does not permit their discussion in 
this text. Note that pairs of single-row roller bearings are usually employed for wheel bearings 
and some other applications. Double-row and four-row roller types are used to support heavier 
loads. Selection and analysis of most bearing types are identical to that presented in the following 
sections.

10.12.3  sPeCial Bearings

Rolling-element bearings are available in many other types and arrangements. Detailed informa-
tion is available in the literature published by several manufacturers and in other references. Two 

(a) (b) (c) (d) (e)

FIGURE 10.23 Some types of roller bearings: (a) straight cylindrical, (b) spherical, (c) tapered thrust, (d) 
needle, and (e) tapered (Courtesy: the Timken Company, Canton, OH).
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411Bearings and Lubrication

common samples are shown in Figure 10.24. Note that these bearings package standard ball or 
roller bearings in cast-iron housings. They can be readily attached to horizontal or vertical surfaces.

10.12.4  standard dimensions For Bearings

The AFBMA established standard boundary dimensions for the rolling-element bearings, shafts, 
and housing shoulders. These dimensions are illustrated in Figure 10.25: D is the bearing bore, 
Do is the outside diameter (OD), w is the width, ds is the shaft shoulder diameter, dh is the housing 
diameter, and r is the fillet radius. For a given bore, there are various widths and ODs. Similarly, for 
a particular OD, we can find many bearings with different bores and widths.

In basic AFBMA plan, the bearings are identified by a two-digit number, called the dimension 
series code. The first and second digits represent the width series and the diameter series, respec-
tively. This code does not disclose the dimensions directly, however, and it is required to resort 
to tabulations. Tables 10.4 and 10.5 furnish the dimensions of some 02- and 03-series of ball and 
cylindrical roller bearings. The load ratings of these bearings, discussed in the next section, are also 
included in the table. More detailed information is readily available in the latest AFBMA Standards 
[11], engineering handbooks, and manufacturers’ catalogs and journals.

10.13  ROLLING BEARING LIFE

When the ball or roller of an anti-friction bearing rolls into a loading region, contact (i.e., Hertzian) 
stresses occur on the raceways and on the rolling element. Owing to these stresses, which are higher 

FIGURE 10.24 Special bearings: (a) pillow block and (b) flange (Courtesy: Emerson Power Transmission, 
Sealmaster Bearings, Aurora, IL).

Do dh

w

D ds

r

FIGURE 10.25 Dimensions of ball bearing, shaft, and housing.
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412 Mechanical Engineering Design

than the endurance limit of the material, the bearing has a limited life. If a bearing is well-main-
tained and operating at moderate temperatures, metal fatigue alone is the cause of failure. Failure 
consists of pitting, spalling, or chipping load-carrying surfaces, as discussed in Section 8.9.

Practically, the life of an individual bearing or any one group of identical bearings cannot be 
accurately predicted. Hence, the AFBMA established the following definitions associated with 
the life of a bearing. We note that bearing life is defined as the number of revolutions or hours at 
some uniform speed at which the bearing operates until fatigue failure. 

Rating life L10 refers to the number of revolutions (or hours at a uniform speed) that 90% of 
a group of identical roller bearings will complete or exceed before the first evidence of fatigue 
develops. The term minimum life is also used to denote the rating life. Median life refers to the 
life that 50% of the group of bearings would complete or exceed. Test results show that the 
median life is about five times the L10 life.

Basic dynamic load rating C is the constant radial load that a group of apparently identical bear-
ings can take for a rating life of 1 million (i.e., 106) revolutions of the inner ring in a stationary load 
(the outer ring does not rotate).

Basic static load rating Cs refers to the maximum allowable static load that does not impair 
the running characteristics of the bearing. The basic load ratings for different types of bearings 

TABLE 10.4
Dimensions and Basic Load Ratings for 02-Series Ball Bearings

Bore, 
D 
(mm)

OOD, 
Do 

(mm)

Width, 
w 

(mm)

Fillet 
Radius, 
r (mm)

Load Ratings (kN)

Deep Groove Angular Contact

C Cs C Cs

10 30 9 0.6 5.07 2.24 4.94 2.12

12 32 10 0.6 6.89 3.10 7.02 3.05

15 35 11 0.6 7.80 3.55 8.06 3.65

17 40 12 0.6 9.56 4.50 9.95 4.75

20 47 14 1.0 12.7 6.20 13.3 6.55

25 52 15 1.0 14.0 6.95 14.8 7.65

30 62 16 1.0 19.5 10.0 20.3 11.0

35 72 17 1.0 25.5 13.7 27.0 15.0

40 80 18 1.0 30.7 16.6 31.9 18.6

45 85 19 1.0 33.2 18.6 35.8 21.2

50 90 20 1.0 35.1 19.6 37.7 22.8

55 100 21 1.5 43.6 25.0 46.2 28.5

60 110 22 1.5 47.5 28.0 55.9 35.5

65 120 23 1.5 55.5 34.0 63.7 41.5

70 125 24 1.5 61.8 37.5 68.9 45.5

75 130 25 1.5 66.3 40.5 71.5 49.0

80 140 26 2.0 70.2 45.0 80.6 55.0

85 150 28 2.0 83.2 53.0 90.4 63.0

90 160 30 2.0 95.6 62.0 106 73.5

95 170 32 2.0 108 69.5 121 85.0

Source: Bamberger, E. N. et al., Life Adjustment Factors for Ball and Roller Bearings: 
An Engineering Design Guide, New York, ASME, 1971.

Note: Bearing life capacities, C, for 106 revolution life with 90% reliability. To con-
vert from kN to kips, divide the given values by 4.448.
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413Bearings and Lubrication

are listed in Tables 10.4 and 10.5. The value of Cs depends on the bearing material, the number of 
rolling elements per row, the bearing contact angle, and the ball or roller diameter. Except for an 
additional parameter relating to the load pattern, the value of C is based on the same factors that 
determine Cs.

10.14  EQUIVALENT RADIAL LOAD

Catalog ratings are based only on the radial load. However, with the exception of thrust bear-
ings, bearings are usually operated with some combined radial and axial loads. It is then neces-
sary to define an equivalent radial load that has the same effect on bearing life as the applied 
loading. The AFBMA recommends, for rolling bearings, the maximum of the values of these 
two equations:

 P XVF YFr a= +  (10.25)

 P VFr=  (10.26)

where
P = the equivalent radial load
Fr = the applied radial load
Fa = the applied axial load (thrust)
V = a rotational factor

TABLE 10.5
Dimensions and Basic Load Ratings for Straight Cylindrical Bearings

Bore, D 
(mm)

02-Series 03-Series

OD, Do 
(mm)

Width, w 
(mm)

Load Rating, C 
(kN)

OD, Do 
(mm)

Width, w 
(mm)

Load Rating, 
C (kN)

25 52 15 16.8 62 17 28.6

30 62 16 22.4 72 19 36.9

35 72 17 31.9 80 21 44.6

40 80 18 41.8 90 23 56.1

45 85 19 44.0 100 25 72.1

50 90 20 45.7 110 27 88.0

55 100 21 56.1 120 29 102

60 110 22 64.4 130 31 123

65 120 23 76.5 140 33 138

70 125 24 79.2 150 35 151

75 130 25 91.3 160 37 183

80 140 26 106 170 39 190

85 150 28 119 180 41 212

90 160 30 142 190 43 242

95 170 32 165 200 45 264

Source: Bamberger, E.N. et al., Life Adjustment Factors for Ball and Roller Bearings: An Engineering Design Guide, New 
York, ASME, 1971.

Note: Bearing life capacities, C, for 106 revolution life with 90% reliability. To convert from kN to kips, divide the given 
values by 4.448.
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.

.

1 0 for inner-ring rotation

1 2 for outer-ring rotation

( )
( )

=





X = a radial factor
Y = a thrust factor

The equivalent load factors X and Y depend on the geometry of the bearing, including the number 
of balls and the ball diameter. The AFBMA recommendations are based on the ratio of the axial 
load Fa to the basic static load rating Cs and a variable reference value e. For deep-groove (single-
row and double-row) and angular-contact ball bearings, the values of X and Y are given in Tables 
10.6 and 10.7. Straight cylindrical roller bearings are very limited in their thrust capacity because 
axial loads produce sliding friction at the roller ends. So, the equivalent load for these bearings can 
also be estimated using Equation (10.26).

10.14.1  equivalent shoCk loading

Some applications have various degrees of shock loading, which has the effect of increasing the equiv-
alent radial load. Therefore, a shock or service factor, Ks, can be substituted into Equations (10.25) 
and (10.26) to account for any shock and impact conditions to which the bearing may be subjected. 
In so doing, the equivalent radial load becomes the larger of the values given by the two equations:

 P K XVF YFs r a( )= +  (10.27)

 P K VFs r=  (10.28)

Values to be used for Ks depend on the judgment and experience of the designer, but Table 10.8 may 
serve as a guide.

TABLE 10.6
Factors for Deep-Groove Ball Bearings

Fa/Cs e

Fa/VFr ≤ e Fa/VFr > e

X Y X Y

0.014a 0.19 2.30

0.21 0.21 2.15

0.028 0.22 1.99

0.042 0.24 1.85

0.056 0.26 1.71

0.070 0.27 1.0 0 0.56 1.63

0.084 0.28 1.55

0.110 0.30 1.45

0.17 0.34 1.31

0.28 0.38 1.15

0.42 0.42 1.04

0.56 0.44 1.00

Source: Based on Bamberger, E.N. et al., Life Adjustment Factors 
for Ball and Roller Bearings: An Engineering Design 
Guide, New York, ASME, 1971.

a Use 0.014 if Fa/Cs < 0.014.
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415Bearings and Lubrication

10.15  SELECTION OF ROLLING BEARINGS

Each group of seemingly identical bearings may differ slightly metallurgically, in surface finish, 
in roundness of rolling elements, and so on. Consequently, no two bearings within the same family 
will have the exact number of operating hours to fatigue failure after having been subjected to the 
identical speed and load condition. Therefore, the selection of rolling bearings is often made from 
tables of standard types and sizes containing data on their load and life ratings.

Usually, the basic static load rating Cs has little effect in the ball or roller bearing selection. 
However, if a bearing in a machine is stationary over an extended period of time with a load higher 
than Cs, local permanent deformation can occur. In general, the bearings cannot operate at very low 
speeds under loading that exceeds the basic static load rating.

The basic dynamic load rating C enters directly into the process of selecting a bearing, as is 
observed in the following formulation for a bearing’s life. Extensive testing of rolling bearings and 

TABLE 10.7
Factors for Commonly Used Angular-Contact Ball Bearings

Contact 
Angle (α) e

iF
C

a

s

a

Single-Row Bearing Double-Row Bearing

Fa/VFr > e Fa/VFr ≤ e Fa/VFr > e

X Y X Y X Y

0.38 0.015 1.47 1.65 2.39

0.40 0.029 1.40 1.57 2.28

0.43 0.058 1.30 1.46 2.11

0.46 0.087 1.23 1.38 2.00

15° 0.47 0.12 0.44 1.19 1.0 1.34 0.72 1.93

0.50 0.17 1.12 1.26 1.82

0.55 0.29 1.02 1.14 1.66

0.56 0.44 1.00 1.12 1.63

0.56 0.58 1.00 1.12 1.63

25° 0.68 0.41 0.87 1.0 0.92 0.67 1.41

35° 0.95 0.37 0.66 1.0 0.66 0.60 1.07

Source: Adapted from Bamberger, E.N. et al., Life Adjustment Factors for Ball and Roller Bearings: An Engineering 
Design Guide, New York, ASME, 1971.

a Number of rows of balls.

TABLE 10.8
Shock or Service Factors Ks

Type of Load Ball Bearing Roller Bearing

Constant or steady 1.0 1.0

Light shocks 1.5 1.0

Moderate shocks 2.0 1.3

Heavy shocks 2.5 1.7

Extreme shocks 3.0 2.0
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subsequent statistical analysis has shown that the load and life of a bearing are related statistically. 
This relationship can be expressed as

 L
C

P

a

10 = 



  (10.29)

where
L10 = the rating life, in 106 revolution
C = the basic load rating (from Tables 10.4 and 10.5)
P = the equivalent radial load (from Section 10.14)

 a
3 for ball bearings

10/3 for roller bearings

( )
( )

=





 

We note that the load C is simply a reference value (see Section 10.13) that permits bearing life to 
be predicted at any level of actual load applied. Alternatively, the foregoing equation may be written 
in the following form:

 L
n

C

P

10
60

a

10

6

= 



  (10.30)

where
 L10 represents the rating life, in h
 n is the rotational speed, in rpm

When two groups of identical bearings are run with different loads P1 and P2, the ratio of their 
rating lives L′10 and L″10, by Equation (10.29), is

 
L

L

P

P

a
10

10

2

1

′ = 



″  (10.31)

Good agreement between this relation and experimental data has been realized. Rearranging the 
foregoing, we have

 L P L P C10a a a
10 1 10 2

6′ = =″  (10.32)

Clearly, the terms in Equation (10.32) are constant 106Ca, as previously defined.

10.15.1  reliaBility requirement

Recall from Section 10.13 that the definition of rating life L10 is based on a 90% reliability (or 10% 
failure). In some applications, the foregoing survival rate cannot be tolerated (e.g., nuclear power 
plant controls, medical and hospital equipment). As mentioned in Section 6.14, the distribution of 
bearing failures at a constant load can be best approximated by the Weibull distribution.

Using the general Weibull equation [12] together with extensive experimental data, the AFBMA 
formulated recommended life adjustment factors, Kr, plotted in Figure 10.26. This curve can be 
applied to both ball and roller bearings, but is restricted to reliabilities no greater than 99%. The 
expected bearing life is the product of the rating life and the adjustment factor. Combining this fac-
tor with Equation (10.29), we have

 L K
C

P
r

a

5 = 



  (10.33)

ISTUDY

www.konkur.in

Telegram: @uni_k



417Bearings and Lubrication

The quantity L5 represents the rating life for any given reliability greater than 90%.
Most manufacturers’ handbooks contain specific data on bearing design lives for many classes of 

machinery. For reference, Table 10.9 may be used when such information is unavailable.

Example 10.5: Median Life of a Deep-Groove Ball Bearing

A 50 mm bore (02-series) deep-groove ball bearing, such as shown in Figure 10.22(a), carries a com-
bined load of 9 kN radially and 6 kN axially at 1200 rpm. Calculate:

 a. The equivalent radial load.
 b. The median life in hours.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Li
fe

 ad
ju

st
m

en
t f

ac
to

r, 
K r

0.3

0.2

0.1

090 91 92 93 94
Reliability (%)

95 96 97 98 99

FIGURE 10.26 Reliability factor Kr.

TABLE 10.9
Representative Rolling Bearing Design Lives
Type of Application Life (kh)

Instruments and apparatus for infrequent use Up to 0.5

Aircraft engines 0.5–2

Machines used intermittently

 Service interruption is of minor importance 4–8

 Reliability is of great importance 8–14

Machines used in an 8 h service working day

 Not always fully utilized 14–20

 Fully utilized 20–30

Machines for continuous 24 h service 50–60

 Reliability is of extreme importance 100–200
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Assumptions: The inner ring rotates and the load is steady.

Solution

Referring to Table 10.4, we find that, for a 50 mm bore bearing, C = 35.1 kN and Cs = 19.6 kN.

 a. To determine the values of the radial load factors X and Y, it is necessary to obtain

 
.

. , . .F

C

F

VF

6
19 6

0 306
6

1 9
0 667a

s

a

r ( )= = = =  

 We find from Table 10.6 that Fa/VFr > e: X = 0.56 and Y = 1.13 by interpolation. Applying 
Equation (10.25),

 . . .P XVF YF 0 56 1 9 1 13 6 11 82 kNr a ( )( )( ) ( )( )= + = + =  

 Through the use of Equation (10.26), P = VFr = 1(9) = 9 kN.
 b. Since 11.95 > 9 kN, the larger value is used for life calculation. The rating life, from Equation 

(10.29), is

 
.

.
.L

C

P

35 1
11 82

26 19 10 rev
a

10

3
6( )= 



 = 



 =  

 By Equation (10.30),

 
.

L
n

C

P

10
60

10 26 19

60 1200
364 h

a

10

6 6 ( )
( )=











 = =  

 The median life is therefore 5L10 = 1820 h.

Example 10.6: The Median Life of a Deep-Groove Ball Bearing under  
Moderate Shock

Redo Example 10.5, but the outer ring rotates, and the bearing is subjected to a moderate shock  
load.

Solution

We now have V = 1.2; hence,

 
.

.F

VF

6
1 2 9

0 556a

r ( )= =  

Table 10.6 shows that still Fa/VFr > e; therefore, X = 0.56 and Y = 1.13, as before.

 a. Applying Equation (10.27),

 . . . .P K XVF YF 2 0 56 1 2 9 1 13 6 25 66 kNs r a( ) ( )= + = × × + × =  

 From Equation (10.28), P = KsVFr = 2(1.2 × 9) = 21.6 kN.
 b. Inasmuch as 25.66 > 21.6 kN, we use the larger value for calculating the rating life through 

the use of Equation (10.30),
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 and the median life is 5L10 = 177.5 h.

Example 10.7: Extending a Ball Bearing’s Expected Life

What change in the loading of a ball bearing will increase the expected life by 25%?

Solution

Let L10′  and P1 be the initial life and load L″10 and P2 be the new life and load. Then, Equation (10.32) 
with a = 3 and .L L1 2510 10= ′″  gives

 
.

.'P
L P

L
P

1 25
0 82

3 10 1
3

10
1
3= ′ =  

from which P2 = 0.928 P1.

Comment: A reduction of the load to about 93% of its initial value causes a 25% increase in the 
expected life of a ball bearing.

Example 10.8: Expected Life of a Ball Bearing with a Low Rate of Failure

Determine the expected life of the bearing in Example 10.5, if only a 6% probability of failure can be 
permitted.

Solution

From Figure 10.26, for a reliability of 94%, Kr = 0.7. Using Equation (10.33), the expected rating life is

 . .L K
n

C

P

10
60

0 7 364 254 8 hr

a

5

6

( )= 



 = =  

Comment: To improve the reliability of the bearing in Example 10.5 from 90% to 94%, a reduction of 
median life from 1820 h to 5L10 = 1274 h is required.

10.16  MATERIALS AND LUBRICANTS OF ROLLING BEARINGS

Most balls and rings are made from high-carbon chromium steel (SAE 52100) and heat-treated to 
high strength and hardness, and the surfaces smoothly ground and polished. Separators are usually 
made of low-carbon steel and copper alloy, such as bronze. Unlike ball bearings, roller bearings are 
often fabricated of case-hardened steel alloys. Modern steel manufacturing processes have resulted 
in bearing steels with reduced level of impurities.

The most usual kind of separator is made from two strips of carbon steel that are pressed and 
riveted together. These, termed ribbon separators, are the least expensive to manufacture and 
are well suited for most applications. In addition, they are lightweight and often require small 
space. Angular-contact ball bearings permit the use of a one-piece separator. The simplicity 
and strength of one-piece separators allow their lubrication from various desirable materials. 
Reinforced phenolic and bronze represent the two most ordinarily employed materials. Bronze 
separators have considerable strength with low-friction characteristics and can be operated at 
temperatures to 230°C.

As pointed out in Section 10.4, elastohydrodynamic lubrication occurs in rolling bearings in 
which deformation of the parts must be taken into account as well as increased viscosity of the 
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oil owing to the high pressure. This small elastic flattening of parts, together with the increase in 
viscosity, provides a film, although very thin, that is much thicker than would prevail with complete 
rigid parts. In addition to providing a film between the sliding and rolling parts, a lubricant may help 
distribute and dissipate heat, prevent corrosion of the bearing surfaces, and protect the parts from 
the entrance of foreign particles.

Depending on the load, speed, and temperature requirements, bearing lubricants are either 
greases or oils. Where bearing speeds are higher or loading is severe, oil is preferred. Synthetic 
and dry lubricants are also widely used for special applications. Greases are suitable for low-speed 
operation and permit bearings to be prepacked.

10.17  MOUNTING AND CLOSURE OF ROLLING BEARINGS

Rolling-element bearings are generally mounted with the rotating inner or outer ring with a press 
fit. Then the stationary ring is mounted with a push fit. Bearing manufacturers’ literature contains 
extensive information and illustrations on mountings. Here, we discuss only the basic principle of 
mounting ball bearings properly.

Figure 10.27 shows a common method of mounting, where the inner rings are backed up against 
the shaft shoulders and held in position by round nuts threaded into the shaft. As noted, the outer 
ring of the left-hand bearing is backed up against a housing shoulder and retained in position, but 
the outer ring of the right-hand bearing floats in the housing. This allows the outer ring to slide both 
ways in its mounting to avoid thermal-expansion-induced axial forces on the bearings, which would 
seriously shorten their life. An alternative bearing mounting is illustrated in Figure 10.28. Here, the 
inner ring is backed up against the shaft shoulder, as before; however, no retaining device is needed 
and threads are eliminated. With this assembly, the outer rings of both bearings are completely 
retained. As a result, accurate dimensions in the axial direction or the use of adjusting devices is 
required.

Duplexing of the angular contact ball bearings arises when maximum stiffness and resistance 
to shaft misalignment is required, such as in machine tools and instruments. Bearings for duplex 
mounting have their rings ground with an offset, so that when a pair of bearings is rigidly assem-
bled, a controlled axial preload is automatically achieved. Figure 10.29(a) and 10.29(b) show face-
to-face (DF) and back-to-back (DB) mounting arrangements, respectively, which take heavy radial 
and thrust loads from either direction. The latter has greater mounting stiffness. Clearly, a tandem 
(DT) mounting arrangement is employed when the thrust is in the same direction (Figure 10.29(c)). 
Single-row ball bearings are often loaded by the axial load built in during assembly, as shown in 
Figure 10.27. Preloading helps to remove the internal clearance often found in bearings to increase 
the fatigue life and decrease the shaft slope at the bearings.

FIGURE 10.27 A common bearing mounting (Courtesy: the Timken Company, Canton, OH). Note: The 
outer ring of the left-hand bearing is held in position by a device (not shown).
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Note that the majority of bearings may be supplied with side shields. The shields are not com-
plete closures, but they offer a measure of protection against dust or dirt. A sealed bearing is gener-
ally to be lubricated for life. The roller bearings are rarely supplied in a sealed and self-lubricated 
form, as with most ball bearing types.

PROBLEMS

Sections 10.1 through 10.6
 10.1 In a journal bearing, a 24 mm diameter steel shaft is to operate continuously for 1500 h 

inside a bronze sleeve having a Brinell hardness of 65 (Figure P10.1). Bearing metals are 
taken to be partially compatible (Table 8.3). Estimate the depth of wear for two conditions:

 a. Good boundary lubrication.
 b. Excellent boundary lubrication.
  Given: D = 24 mm, L = 12 mm, W = 150 N, n = 18 rpm, t = 1200 h, H = 9.81 × 65 = 638 MPa.
 10.2 Reconsider Problem 10.1, for a case in which a sleeve made of 2014-T4 wrought aluminum 

alloy (see Table B.6) with the following data: D = 25 mm, L = 25 mm, W = 115 N, n = 1500 h.
 10.3 The allowable depth of wear of a 25 mm diameter and 25 mm long brass bushing with 

a Brinell hardness of 60 is 0.15 mm. The bearing is to operate 1.2 years with excellent 
boundary lubrication at a load of 450 N, and the bearing metals are partially incompatible 
(Table 8.3). What is the number of revolutions of the shaft?

(a) (b () c)

FIGURE 10.29 Mounting arrangements of angular ball bearings: (a) face to face, (b) back to back, and (c) 
tandem (Courtesy: the Timken Company, Canton, OH).

FIGURE 10.28 An alternative bearing mounting (Courtesy: the Timken Company, Canton, OH). Note: The 
outer rings of both bearings are held in position by devices (not shown).
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422 Mechanical Engineering Design

 10.4 A lightly loaded journal bearing 220 mm in length and 160 mm in diameter consumes 
2 hp in friction when running at 1200 rpm. Diametral clearance is 0.18 mm, and SAE 
30 oil is used. Find the temperature of the oil film.

 10.5 A journal bearing has a 100 mm length, a 75 mm diameter, and a c/r ratio of 0.002, car-
ries a 2.25 kN radial load at 24,000 rpm, and is supplied with an oil having a viscosity of 
4.14 mPa · s. Using the Petroff approach, estimate:

 a. The frictional torque developed.
 b. The frictional horsepower.
 c. The coefficient of friction.
 10.6 A Petroff bearing has a 120 mm length, a 120 mm diameter, a 0.05 mm radial clearance, 

a speed of 600 rpm, and a radial load of 8 kN Assume that the coefficient of friction is 
0.01 and the average oil-film temperature is 70°C. Determine:

 a. The viscosity of the oil.
 b. The approximate SAE grade of the oil.
 10.7 A journal bearing having a 125 mm diameter, a 125 mm length, and c/r ratio of 0.0004 

carries a radial load of 12 kN. A frictional force of 80 N is developed at a speed of 
240 rpm. What is the viscosity of the oil according to the Petroff approach?

 10.8 A journal bearing 150 mm in diameter and 37.5 mm long carries a radial load of 2.25 kN 
at 1500 rpm; c/r = 0.001. It is lubricated by SAE 30 oil at 180°F. Estimate, using the 
Petroff approach:

 a. The bearing coefficient of the friction.
 b. The friction power loss.
 10.9 A 150 mm diameter and 200 mm long journal bearing under a 2 kN load consumes 1.4 kW 

in friction at 2100 rpm. Diametral clearance equals 0.175 mm, and SAE 30 oil is used.
  Find:
 a. The temperature of the oil film.
 b. The coefficient of friction.

Sections 10.7 through 10.11
 10.10 A 100 mm diameter × 50 mm long bearing turns at 1800 rpm; c/r = 0.001; h0 = 0.025 mm 

SAE 30 oil is used at 95°C. Through the use of the design charts, find the load W.
 10.11 Redo Problem 10.7 employing the design charts.
 10.12 Resolve Problem 10.8 using the design charts.
 10.13 A shaft of diameter D is supported by a bearing of length L with a radial clearance c. The 

bearing is lubricated by SAE 60 oil of viscosity of 20.7 mPa · s (Figure P10.13). Compute, 
using the design charts:

 a. The eccentricity.

n

Shaft

L

W
D

Bushing

FIGURE P10.1 
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423Bearings and Lubrication

 b. The friction power loss.
 c. Maximum film thickness.
  Given: D = 30 mm, L = 30 mm, c = 0.03 mm, n = 40 rps, W = 1.45 kN.
 10.14 A 120 mm diameter and 60 mm long journal bearing supports a weight W at a speed of n 

(Figure P10.13). It is lubricated by SAE 40 oil, and the average temperature of the oil film 
equals 80°C. What is the minimum oil-film thickness?

  Given: n = 1500 rpm, W = 15 kN, S = 0.15.
 10.15 A 100 mm diameter shaft is supported by a bearing 100 mm long with a minimum oil-

film thickness of 0.025 mm and radial clearance of 0.0625 mm. It is lubricated by SAE 
20 oil. The bearing carries a load of 700 kPa of projected area at 900 rpm. Employing the 
design charts, determine:

 a. The temperature of the oil film.
 b. The coefficient of friction.
 c. The friction power.
 10.16 A 25 mm diameter × 25 mm long bearing carries a radial load of 1.5 kN at 1000 rpm; 

c/r = 0.0008; η = 50 mPa ⋅ s. Using the design charts, determine:
 a. The minimum oil-film thickness.
 b. The friction power loss.
 10.17 An 80 mm diameter × 40 mm long bearing supports a radial load of 4 kN at 600 rpm; 

c/r = 0.002. SAE 40 oil is used at 65°C. Employing the design charts, determine
 a. The minimum oil-film thickness.
 b. The maximum oil pressure.
 10.18 A 50 mm diameter × 50 mm long bearing having a c/r ratio of 0.001 consumes 0.16 hp in 

friction at an operating speed of 1630 rpm. It is lubricated by SAE 20 oil at 83°C. (Hint: 
Try S = 0.03.) Using the design charts, determine:

 a. The radial load for the bearing.
 b. The minimum oil-film thickness.
 c. The eccentricity ratio.
 10.19 A journal bearing having an L/D ratio of ½, a 100 mm diameter, a c/r ratio of 0.0015, 

and an operating speed of 900 rpm carries a radial load of 8 kN. The minimum oil-film 
thickness is to be 0.025 mm. Using the design charts, determine:

 a. The viscosity of the oil.
 b. The friction force and power developed.
 10.20 A 100 mm diameter × 50 mm long ring-oiled bearing supports a radial load 6 kN at 300 

rpm in still air; c/r = 0.001, and η = 20 mPa · s. If the temperature of the surrounding air 
of the housing is 20°C, estimate the average film temperature.

 10.21 Redo Problem 10.20 for an oil-bath lubrication system in an average air circulation condi-
tion when the temperature of the air surrounding air of the housing is ta = 30°C.

n

L

c

r
D

SAE 60
oil

W

FIGURE P10.13 
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Sections 10.12 through 10.17
 10.W Use the website at www.grainger.com to conduct a search for roller bearings. Locate a 

thrust ball bearing 6.25 mm bore, 14 mm OD, and 5.5 mm width. List the manufacturer 
and description.

 10.22 A 25 mm (02-series) deep-groove ball bearing carries a combined load of 2 kN radially 
and 3 kN axially at 1500 rpm. The outer ring rotates and the load is steady. Determine 
the rating life in hours.

 10.23 Resolve Problem 10.22, for a single-row, angular-contact ball bearing having a 35° con-
tact angle.

 10.24 Redo Problem 10.22, if the inner ring rotates and the bearing is subjected to a light shock 
load.

 10.25 A 50 mm bore (02-series) double-row angular-contact ball bearing supports a combined 
load of 6.75 kN axially and 22.5 kN radially. The contact angle is 25°, the outer ring sta-
tionary, and the load steady. What is the median life in hours at the speed of 700 rpm?

 10.26 A 25 mm bore (02-series) deep-groove ball bearing carries 4 kN radially and 2 kN  axially 
at 3500 rpm with internal ring rotating. Compute the rating life in hours with a survival 
rate of 95%.

 10.27 A 30 mm Conrad-type deep-groove ball bearing is under a combined load of 4.5 kN radi-
ally and 1.7 kN axially at a speed of 600 rpm. If the outer ring is stationary, what is the 
rating life in hours?

 10.28 Redo Problem 10.27, if the outer ring rotates and the bearing carries a heavy shock load 
with a reliability of a 94% survival rate.

 10.29 What percentage change in the loading of a ball bearing causes the expected life be 
doubled?

 10.30 Resolve Problem 10.29 for a roller bearing.
 10.31 A 60 mm bore (02-series) double-row, angular-contact ball bearing has a 15° contact 

angle. The outer ring rotates, and the bearing carries a combined steady load of 5 kN 
radially and 1.5 kN axially at 1000 rpm. Calculate the median life in hours.

 10.32 Determine the expected rating lives in hours of a 35 mm bore (02- and 03-series) straight 
cylindrical bearings operating at 2400 rpm. Radial load is 5 kN, with heavy shock, and 
the outer rings rotate.

 10.33 Calculate the median lives in hours of a 75 mm bore (02- and 03-series) straight cylin-
drical bearings operating at 2000 rpm. Radial load is 25 kN, with light shock, and inner 
rings rotate.

 10.34 Select two (02- and 03-series) straight cylindrical bearings for an industrial machine 
intended for a rating life of 24 h operation at 2400 rpm. The radial load is 12.5 kN, with 
extreme shock, and the inner rings rotate.

 10.35 Select a (02-series) deep-groove ball bearing for a machine intended for a median life of 
40 h operation at 900 rpm. The bearing is subjected to a radial load of 8 kN, with heavy 
shock, and the outer ring rotates.

 10.36 Determine the expected rating life of the deep-groove ball bearing in Problem 10.22, if 
only a 5% probability of failure can be permitted at 1200 rpm.

 10.37 Calculate the expected median life of the straight cylindrical bearing in Problem 10.32, 
if only a 2% probability of failure can be permitted.

ISTUDY

www.konkur.in

Telegram: @uni_k

http://www.grainger.com


DOI: 10.1201/9781003251378-14

11 Spur Gears

11.1  INTRODUCTION

Gears are used to transmit torque, rotary motion, and power from one shaft to another. They have a 
long history. In about 2600 bc, the Chinese used primitive gear sets, most likely made of wood and 
their teeth merely pegs inserted in wheels. In the fifteenth century ad, Leonardo da Vinci showed 
many gear arrangements in his drawings. Presently, a wide variety of gear types have been devel-
oped that operate quietly and with very low friction losses. Smooth, vibrationless action is secured 
by giving the proper geometric form to the outline of the teeth.

Compared to various other means of power transmission (e.g., belts and chains), gears are the 
most rugged and durable. They have transmission efficiency as high as 98%. However, gears are 
generally more costly than belts and chains. As we shall see, two modes of failure affect gear teeth: 
fatigue fracture owing to fluctuating bending stress at the root of the tooth and fatigue (wear) of 
the tooth surface. Both must be checked when designing the gears. The shapes and sizes of the 
teeth are standardized by the American Gear Manufacturers Association (AGMA). The methods 
of AGMA are widely employed in design and analysis of gearing. Selection of the proper materi-
als to obtain satisfactory strength, fatigue, and wear properties is important. The AGMA approach 
requires extensive use of charts and graphs accompanied by equations that facilitate the application 
of computer-aided design. Gear design strength and life rating equations have been computer mod-
eled and programmed by most gear suppliers. It is not necessary for designers to create their own 
computer programs [1–3].

There are four principal types of gearing: spur, helical, bevel, and worm gears (Figure 11.1). Note 
that spur and helical gears have teeth parallel and inclined to the axis of rotation, respectively. Bevel 
gears have teeth on conical surfaces. The geometry of a worm is similar to that of a screw. Of all 
types, the spur gear is the simplest. Here, we introduce the general gearing terminology, develop 
fundamental geometric relationships of the tooth form, and deal mainly with spur gears. A review 
of the nomenclature and kinematics is followed by a detailed discussion of the stresses and a number 
of factors influencing gear design. The basis of the AGMA method and its use is illustrated. Other 
gear types are dealt with in the next chapter. For general information on gear types, gear drives, and 
gearboxes, see the website at www.machinedesign.com. The site at www.powertransmission.com 
lists websites for numerous manufacturers of gears and gear drives.

11.2  GEOMETRY AND NOMENCLATURE

Consider two virtual friction cylinders (or disks) having no slip at the point of contact, represented 
by the circles in Figure 11.2(a). A friction cylinder can be transformed into a spur gear by placing 
teeth on it that run parallel to the axis of the cylinder. The surfaces of the rolling cylinders, shown by 
the dashed lines in the figures, then become the pitch circles. The diameters are the pitch diameters, 
and the cylinders represent the pitch cylinders. The teeth, which lie in axial paths on the cylinder, 
are arranged to extend both outside and inside the pitch circles (Figure 11.2(b)). All calculations are 
based on the pitch circle. Note that spur gears are used to transmit rotary motion between parallel 
shafts.

A pinion is the smaller of the two mating gears, which is also referred to as a pair of gears or 
gear set. The larger is often called the gear. In most applications, the pinion is the driving element, 
whereas the gear is the driven element. This reduces speed, but increases torque, from the power 
source (engine, motor, turbine): machinery being driven runs slower. In some cases, gears with teeth 
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426 Mechanical Engineering Design

cut on the inside of the rim are needed. Such a gear is known as an internal gear or an annulus 
(Figure 11.3(a)). A rack (Figure 11.3(b)) can be thought of as a segment of an internal gear of infinite 
diameter.

11.2.1  ProPerties oF gear tooth

The face and flank portion of the tooth surface are divided by the pitch cylinder. The circular pitch 
p is the distance, on the pitch circle, from a point on one tooth to a corresponding one on the next. 
This leads to the definition, in US customary system (USCS) of units:

 = π
p

d

N
 (11.1)

FIGURE 11.1 A variety of gears, including spur gears, rack and pinion, helical gears, bevel gears, worm, and 
worm gear (Courtesy: Quality Transmission Components, www.qtcgears.com).

Driver

Driven
(a) (b)

r1 r1
r2 r2

P
Pω1

ω1ω2 ω2

Pinion
(driver)

Gear
(driven)

Pitch
circle

FIGURE 11.2 Spur gears are used to connect parallel shafts: (a) friction cylinders and (b) an external 
gear set.
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427Spur Gears

where
p = the circular pitch, in.
d = the pitch diameter, in.
N = the number of teeth

The diametral pitch P is defined as the number of teeth in the gear per inch of pitch diameter 
Therefore,

 =p
N

d
 (11.2)

This measure is used in the US specification of gears. The units of P are teeth/in. or in.−1. Both 
circular and diametral pitches prescribe the tooth size. The latter is a more convenient definition. 
Combining Equations (11.1) and (11.2) yields the useful relationship:

 = πpP  (11.3)

For two gears to mesh, they must have the same pitch.
In SI units, the size of teeth is specified by the module (denoted by m) measured in millimeters. 

We have

 =m
d

N
 (11.4)

where pitch diameter d and pitch radius r must be in millimeters and N is the number of teeth. 
Carrying the foregoing expression into Equation (11.1) results in the circular pitch in millimeters:

 = πp m (11.5a)

The diametral pitch, using Equation (11.3), is then

 =P
m

1
 (11.5b)

It is measured in teeth/mm or mm−1. Note that metric gears are not interchangeable with US gears, 
as the standards for tooth sizes are different.

The addendum a is the radial distance between the top land and the pitch circle, as shown in 
Figure 11.4. The dedendum bd represents the radial distance from the bottom land to the pitch 

Internal
gear

(a) (b)

Pinion
Pinion

ω1

ω2

r1

r

cr2
Rack

FIGURE 11.3 Gear sets: (a) internal gear and pinion and (b) rack and pinion.
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428 Mechanical Engineering Design

circle. The face width b of the tooth is measured along the axis of the gear. The whole depth 
h is the sum of the addendum and dedendum. The clearance circle represents a circle tangent 
to the addendum circle of the mating gear. The clearance f represents the amount by which the 
dedendum in a given gear exceeds the addendum of the mating gear. Clearance is required to 
prevent the end of the tooth of one gear from riding on the bottom of the mating gear. The dif-
ference between the whole depth and clearance represents the working depth hk. The distance 
between the centers of the two gears in mesh is called the center distance c. Using Equation 
(11.2) with d = 2r,

 = + = +
c r r

N N

P
N N m

2
= 1/2 ( + )1 2

1 2
1 2

 (11.6)

Here, subscripts l and 2 refer to the driver and the driven gears, respectively.
The width of space between teeth must be made slightly larger than the gear tooth thickness t, 

both measured on the pitch circle. Otherwise, the gears cannot mesh without jamming. The dif-
ference between the foregoing dimensions is known as backlash. That is, the backlash is the gap 
between mating teeth measured along the circumference of the pitch circle, as schematically shown 
in Figure 11.5. Manufacturing tolerances preclude a 0 backlash, since all teeth cannot be exactly 

Pitch circle

Pitch circle

Backlash

P

FIGURE 11.5 Depiction of backlash in meshing gears.

Dedendum circle

Fillet radius
Clearance
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space
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Botto
m lan

dFlan
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d

Addendum circle
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d

FIGURE 11.4 Nomenclature of the spur gear teeth.
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429Spur Gears

to the minimum amount necessary to ensure satisfactory meshing of gears. Excessive backlash 
increases noise and impact loading whenever torque reversals occur.

Example 11.1: Geometric Properties of a Gearset

A diametral pitch P set of gears consists of an N1 tooth pinion and N2 tooth gear (Figure 11.2(b)).

Find: The pitch diameters, module, circular pith, and center distance.

Given: N1 = 19, N2 = 124, P = 16 in.−1.

Solution

Through the use of Equation (11.4), diameters of pinion and gear are

 = = = =. . .d
N

P

19

16
1 1875 in 30 16 mm1

1  

 = = = =. . .d
N

P

124

16
7 75 in 196 85 mm2

2  

Note that in SI units, from Equation (11.5b), the module is

 ( ) ( )= = =. . .m
P

1
25 4

1

16
25 4 1 5875 mm 

and alternatively, Equation (11.4) gives the preceding result for the diameters.

Applying Equation (11.3), the circular pitch equals

 = π = π = =. . .p
P 16

0 1963 in 4 99 mm 

The center distance, by Equation (11.6), is therefore

 ( ) ( )= + = + = =. . . . .c d d
1

2

1

2
1 1875 7 75 4 4688 in 113 51 mm1 2

 

11.3  FUNDAMENTALS

The main requirement of gear tooth geometry is the provision that angular ratios are exactly 
constant. We assume that the teeth are perfectly formed, perfectly smooth, and absolutely rigid. 
Although manufacturing inaccuracies and tooth deflections induce slight deviations in velocity 
ratio, acceptable tooth profiles are based on theoretical curves that meet this criterion.

11.3.1  BasiC law oF gearing

For quiet, vibrationless operation, the velocities of two mating gears must be the same at all times. 
This condition is satisfied when the pitch circle of the driver is moving with constant velocity and 
the velocity of the pitch circle of the driven gear neither increases nor decreases at any instant while 
the two teeth are touching. The basic law of gearing states that as the gears rotate, the common 
normal at the point of contact between the teeth must always pass through a fixed point on the line 
of centers. The fixed point is called the pitch point P (Figure 11.2). If two gears in mesh satisfy the 
basic law, the gears are said to produce conjugate action.

According to the fundamental law, when two gears are in mesh, their pitch circles roll on one 
another without slipping. Denoting the pitch radii by r1 and r2 and angular velocities as ω1 and ω2, 
respectively, the pitch-line velocity is then
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 = ω = ωV r r1 1 2 2
 (11.7)

Several useful relations for determining the speed ratio may be written as follows:

 = ω
ω

= = =r
n

n

N

N

d

d
s

2

1

2

1

1

2

1

2

 (11.8)

where
rs = the speed or velocity ratio
ω = the angular velocity, rad/s
n = the speed, rpm
N = the number of teeth
d = the pitch circle diameter

Subscripts 1 and 2 refer to the driver and the driven gears, respectively.

11.3.2  involute tooth Form

To obtain conjugate action, most gear profiles are cut to conform to an involute curve. Our discus-
sions are limited to toothed wheel gearing of the involute form. The involute curve may be gener-
ated graphically by wrapping a string around a fixed cylinder, then tracing the path a point on the 
string (kept taut) makes as the string is unwrapped from the cylinder. When the involute is applied to 
gearing, the cylinder around which the string is wrapped is defined as the base circle (Figure 11.6).

Gear teeth are cut in the shape of an involute curve between the base and the addendum circles, 
while that part of the tooth between the base and dedendum circles is generally a radial line. Figure 
11.7 shows two involutes, on separate cylinders in mesh, representing the gear teeth. Note especially 
that conjugate involute action can occur only outside both base circles.

11.4  GEAR TOOTH ACTION AND SYSTEMS OF GEARING

To illustrate the action occurring when two gears are in mesh, consider Figure 11.7. The pitch radii 
r1 and r2 are mutually tangent along the line of centers O1O2, at the pitch point P. Line ab is the com-
mon tangent through the pitch point. Note that line cd is normal to the teeth that are in contact and 
always passes through P at an angle ϕ to ab. Line cd is also tangent to both base circles. This line, 
called the line of action or the pressure line, represents (neglecting the sliding friction) the direction 
in which the resultant force acts between the gears.

Involute curve

Base circle

FIGURE 11.6 Development of the involute curve.
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The angle ϕ is known as the pressure angle, which is measured in a direction opposite to the 
direction of rotation of the driver. The involute is the only geometric profile satisfying the basic law 
of gearing that maintains a constant-pressure angle as the gears rotate. Gears to be run together 
must be cut to the same nominal-pressure angle.

As pointed out, the base circle is tangent to the pressure line. Referring to Figure 11.7, the radius 
of the base circle is then

 = φcosr rb
 (11.9)

where r represents the pitch circle radius. The base pitch pb refers to the distance measured on the 
base circle between corresponding adjacent teeth:

 = φcosp pb
 (11.10)

where p is the circular pitch.
Note that changing the center distance has no effect on the base circle, because this is used to 

generate the tooth profiles. That is, the base circle is basic to a gear. Increasing the center c distance 
increases the pressure angle ϕ, but the teeth are still conjugate; the requirement for uniform motion 
transmission is still satisfied. Therefore, with an involute tooth form, center distance errors do not 
affect the velocity ratio.

11.4.1  standard gear teeth

Most gears are cut to operate with standard pressure angles of 20° or 25°. The tooth proportions for 
some involute, spur gear teeth are given in Table 11.1 in terms of the diametral pitch P. Full-depth 
involute is a commonly used system of gearing. The table shows that the 20° stub-tooth involute 
system has shorter addenda and dedenda than the full-depth systems. The short addendum reduces 
the duration of contact. Because of insufficient overlap of contact, vibration may occur, especially 
in gears with few stub teeth.

Pressure
angle (  )

Pinion

Common
tangent

Addendum
circle

Pitch circle

Pressure
line

Base circle

Dedendum
circle

Gear

Involute

d

r1

r2

a

O1

O2

bP

c

rb1

rb2

Center
distance

(c)

FIGURE 11.7 Involute gear teeth contact form and pressure angle.
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As a general rule, spur gears should be designed with a face width b greater than 9/P and less 
than 13/P. Unless otherwise specified, we use the term pressure angle to refer to a pressure angle of 
full-depth teeth.

We observe from Table 11.1 the following relationship for all standard pressure angles:

 = −f b ad
 (11.11)

Having the addendum a, dedendum bd, and hence clearance f available, some other gear dimensions 
can readily be found. These include (Figures 11.4 and 11.7)

 

= +
= −
= +
= −

r r a

r r b

h a b

h h f

Outside radius:

Root radius:

Total depth:

Working depth:

o

r d

r d

w t

 (11.12)

Clearly, the foregoing formulas may also be written in terms of diametral pitch and number of teeth 
using Equation (11.2).

Figure 11.8 depicts the actual sizes of 20° pressure angle, standard, full-depth teeth, for several 
standard pitches from P = 4 to P = 80. Note the inverse relationship between P and tooth size. With 
SI units, the standard values of metric module mm are listed in the following:

0.3 0.4 0.5 0.8 1 1.25

1.5 2 3 4 5 6

8 10 12 16 20 25

The conversion from one standard to the other is m = 25.4/P. The most widely used pressure angle 
ϕ, in both US customary and SI units, is 20°.

Example 11.2: Gear Tooth and Gear Mesh Parameters

Two parallel shafts A and B with center distance c are to be connected by 12.7 mm module, 20° pressure 
angle, and spur gears l and 2 providing a velocity ratio of rs (Figure 11.9). Determine, for each gear:

 a. The number of teeth N.
 b. The radius of the base circle rb and outside diameter do.

TABLE 11.1
Commonly Used Standard Tooth Systems for Spur Gears

Item 20° Full Depth 20° Stub 25° Full Depth

Addendum a 1 m 0.8 m 1 m

Dedendum bd 1.25 m l m 1.25 m

Clearance f 0.25 m 0.2 m 0.25 m

Working depth hk 2 m 1.6 m 2 m

Whole depth h 2.25 m 1.8 m 2.25 m

Tooth thickness t 1.571 m 1.571 m 1.571 m

Note: m = 1/P
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433Spur Gears

 c. Clearance f.
 d. The pitch-line velocity V, if gear 2 rotates at speed n2.

Given: n2 = 500 rpm, rs = 1/3, c = 355.6 mm, m = 12.7 mm, ϕ = 20°.

Design Decision: Common stock gear sizes are considered.

Solution

 a. Using Equation (11.6), we have r1 + r2 = c = 355.6 mm, r1/r2 = 1/3. Hence, r1 = 88.9 mm, 
r2 = 266.7 mm, or d1 = 177.8 mm, d2 = 533.4 mm. Equation (11.2) leads to

7

20
18

16

6

5

14
8

10

9

11

26

80
32

64

40

30

48

36

24

22

412

28

FIGURE 11.8 Actual size gear teeth of various diametral pitches (Courtesy: Bourn & Koch Machine Tool 
Co., Rockford, IL).
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Gear 1
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Gear 2

n2

FIGURE 11.9 Example 11.2.
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 ,N N177.8/12.7 14 533.4/12.7 = 421 2= = =  

 b. Base circle radii, applying Equation (11.9), are

 
cos .

. cos

r

r

88.9 20 83 54 mm

266 7 20 250.61 mm

b

b

1

2

= ° =

= ° =
 

 From Table 11.1, the addendum a = 12.7 mm. Then

 d

d

177.8 + 2(12.7) = 203.2 mm

533.4 + 2(12.7) = 558.8 mm

o

o

1

2

=

=
 

 c. We have f = bd − a. Table 11.1 gives the dedendum bd = 1.25(12.7) = 15.875 mm, and hence,

 f = 15.875 12.7 = 3.175 mm−  

 for the pinion and gear. Note as a check that from Table 11.1, f = 0.25(12.7) = 3.175 mm.

 d. Substituting the given data, Equation (11.7) results in

 = ω = × π





=V r 0.2667 500
2

60
13.96 m/s2 2

 

11.5  CONTACT RATIO AND INTERFERENCE

Inasmuch as the tips of gear teeth lie on the addendum circle, contact between two gears starts 
when the addendum circle of the driven gear intersects the pressure line and ends when the adden-
dum circle of the driver intersects the pressure line. The length of action or length of contact Lc can 
be derived from the mating gear and pinion geometry [4, 5] in the form

 ( ) ( ) ( ) ( )= + − φ + + − φ − φcos cos sinL r a r r a r cc p p p g g g
2 2 2 2

 (11.13)

where
r = the pitch radius
a  = the addendum
c = the center distance
ϕ = the pressure angle

The subscripts p and g present pinion and gear, respectively. When two gears are in mesh, it is desir-
able to have at least one pair of teeth in contact at all times.

The method often used to show how many teeth are in contact at any time represents thus the 
contact ratio Cr, which is defined as the length of contact divided by the base pitch:

 =C
L

p
r

c

b

 (a)

Thus, inserting Equations (11.13) and (11.10) into Equation (a) defines the contact ratio in terms of 
circular pitch:

 ( ) ( ) ( ) ( )=
φ

+ − φ + + − φ





− φ
cos

cos cos tan
C

p
r a r r a r

c

p

1
r p p p g g g

2 2 2 2
 (11.14)
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Obviously, the length of contact must be somewhat greater than a base pitch, so that a new pair 
of teeth comes into contact before the pair that had been carrying the load separates. Observe from 
Equation (11.14) that for smaller teeth (larger diametral pitch) and larger pressure angle, the con-
tact ratio will be larger. If the contact ratio is 1, then one tooth is leaving contact just as the next is 
beginning contact. The minimum acceptable contact ratio for smooth operation equals 1.2. Most 
gears are designed with contact ratios between 1.4 and 2. For instance, a ratio of 1.5 indicates that 
one pair of teeth is always in contact and the second in contact 50% of the time. Contact ratio of 2 
or more indicates that at least two pairs of teeth are theoretically in contact at all times. It is obvi-
ous that their actual contact relies upon the precision of manufacturing, tooth stiffness, and applied 
loading. Generally, the greater the contact ratio or the more considerable the overlap of gear actions, 
the smoother and quieter the operation of gears.

Since the part of a gear tooth below the base line is cut as a radial line and not an involute curve, 
if contact should take place below the base circle, nonconjugate action would result. Hence, the 
basic law of gearing would not hold. The contact of these portions of tooth profiles that are not con-
jugate is called interference. When interference occurs, the gears do not operate without modifica-
tion. Removal of the portion of tooth below the base circle and cutting away the interfering material 
result in an undercut tooth. Undercutting causes early tooth failure. Interference and its attendant 
undercutting can be prevented as follows: remove a portion of the tips of the tooth, increase the pres-
sure angle, or use minimum required tooth numbers. The method to be used depends largely on the 
application and the designer’s experience.

Example 11.3: Contact Ratio of Meshing Gear and Pinion

A gear set has N1 tooth pinion, N2 tooth gear, pressure angle ϕ, and module m (Figure 11.7).

Find:

 a. The contact ratio.
 b. The pressure angle and contact ratio, if the center distance is increased by 5 mm.

Given: N1 = 15, N2 = 45, ϕ = 20°, m = 10 mm.

 .a m= 1 = 10 mm by Table 11 1( ) 

Assumption: Standard gear sizes are considered.

Solution

Applying Equation (11.2), the pitch diameter for the pinion and gear are found to be

 
d d= 15(10) = 150 mm and = 45(10) = 450 mm1 2

 

Hence, the gear pitch radii are

 = =r r75mm and 225 mm1 2  

 a. The center distance c is the sum of the pitch radii. So

 c = 75 + 225 = 300 mm 

 The radii of the base circle, using Equation (11.9), are

 
= ° =

= ° =

cos

cos

r

r

75 20 70.477 mm

225 20 211.431 mm

b

b

1

2
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 Substitution of the numerical values into Equation (11.14) gives the contact ratio as

 
( ) ( ) ( ) ( )=

π °
+ − + + −





− °
π

=

cos
. . tan

.

C
1

10 20
75 10 70 477 225 10 211 431

300 20

/10

1 61

r
2 2 2 2

 

 Comment: The result, about 1.6, represents a suitable value.

 b. For a case in which the center distance is increased by 0.2 in., we have c = 12.2 in. It follows 
that

 ,c d d d d
1
2

22 (305) = 610 mm1 2 1 2( )= + + =  (b)

 By Equation (11.2),

 = =,N

d

N

d d d

15 451

1

2

2 1 2

 (c)

 Solving Equations (b) and (c), we have d1 = 152.5 mm and d2 = 457.5 mm or r1 = 76.25 mm and 
r2 = 228.75 mm.

  The module becomes m = d1/N1 = 152.5/15 = 10.167 mm in.−1. The addendum is therefore 
a = a1 = a2 = 1(10.167) = 10.167 mm. Base radii of the gears will remain the same. The new 
pressure angle can now be obtained from Equation (11.9):

 φ = 





= 





=− −cos cos .r

r

70.477

76.75
22 44b

new
1 1

1

1  

 Through the use of Equation (11.14), the new contact ratio is then

 

( ) ( ) ( ) ( )=
π °

+ − + + −





− °
π

=

cos .
. . . . .

tan .

.

,C
1

10.167 22 44
76 25 10 167 70 477 228 10 167 211 431

305 22 44

/10.617

1 52

r new
2 2 2 2

 

 Comment: Results show that increasing the center distance leads to an increase in pressure 
angle, but a decrease in the contact ratio.

11.6  GEAR TRAINS

Up to now in our discussion of gears, we have been concerned with no more than a pair of gears in 
mesh. Various applications exist where many pairs of gears are in mesh. Such a system is generally 
called a gear train. Typical examples include the gear trains in odometers and mechanical watches 
or clocks. A gear set, the simplest form of gear train, is often limited to a ratio of 10:1. Gear trains 
are used to obtain a desired velocity or speed of an output shaft while the input shaft runs at dif-
ferent speed. The velocity ratio between the input and output gears is constant. Detailed kinematic 
relationships for gear trains may be found in [3]. AGMA suggests equations that can be used to 
determine thermal capacity for gear trains (see also Section 12.11).

The speed ratio of a conventional gear train can be readily obtained from an expanded version of 
Equation (11.8), if the number of teeth in each driver and driven gear is known. Consider, for exam-
ple, a gear train made of five gears, with gears 2 and 3 mounted on the same shaft (Figure 11.10). 
The speed ratio between gears 5 and 1 is given by
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 =e
n

n
51

5

1

 (11.15)

The speed ratio is equal to the so-called gear value:

 = −





−





−





e
N

N

N

N

N

N
51

1

2

3

4

4

5

 (11.16)

In the foregoing expression, the minus signs indicate that the pinion and gear rotate in opposite 
directions, as depicted in the figure. The intermediate gears, called idler gears, do not influence the 
overall speed ratio. In this case, gear 4 is an idler (its tooth numbers cancel in the preceding equa-
tion); hence, it affects only the direction of rotation of gear 5.

Consider, for example, pinion 1 in a gear train is driven 800 rpm by a motor (Figure 11.10). Let 
N1 = 18, N2 = 64, N3 = 24, N4 = 36, and N5 = 20. Then Equation (11.16) results in

 
( )( )
( )( )= − = − = .e

N N

N N

18 24

64 20
0 337551

1 3

2 5

 

The output speed, using Equation (11.15), is thus

 ( )( )= = − = −.n e n 0 3375 800 270 rpm5 51 1
 

The negative sign means that the direction is counterclockwise, as shown in the figure.
Additional ratios can be inserted into Equation (11.16) if the train consists of a larger number of 

gears. This equation can be generalized for any number of gear sets in the train to obtain the gear 
value:

 = ±e
Product of number of teeth on driver gears
Product of number of teeth on driven gears

 (11.17)

Input shaft

Output shaft

N3

N2

N4

N5

5

N1

4

1

2

3

FIGURE 11.10 Gear train: a two-stage gear reducer.
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Clearly, to ascertain the correct algebraic sign for the overall train ratio, the signs of the ratios of the 
individual pairs must be indicated in this expression. Note also that pitch diameters can be used in 
Equation (11.17) as well. For spur gears, e is positive when the last gear rotates in the identical sense 
as the first; it is negative when the last rotates in the opposite sense. If the gear has internal teeth, its 
diameter is negative and the members rotate in the same direction.

11.6.1  Planetary gear trains

Also referred to as the epicyclic trains, planetary gear trains permit some of the gear axes to rotate 
about one another. Such trains always include a sun gear, an arm, and one or more planet gears 
(Figure 11.11). It is obvious that the maximum number of planets is limited by the space available 
and the teeth of each planet must align simultaneously with the teeth of the sun and the ring.

A planetary train must have two inputs: the motion of any two elements of the train. For example, the 
sun gear rotates at a speed of ns (CW) and that the ring rotates at nr (CCW) in Figure 11.11. The output 
would then be the motion of the arm. While power flow through a conventional gear train and the sense 
of motion for its members may be seen readily, it is often difficult to ascertain the behavior of a planetary 
train by observation. Planetary gear trains are thus more complicated to analyze than ordinary gear trains.

However, planetary gear trains have several advantages over conventional trains. These include 
higher train ratios obtainable in smaller packages and bidirectional outputs available from a single 
unidirectional input. The foregoing features make planetary trains popular as automatic transmis-
sions and drives in motor vehicles [3], where they provide desired forward gear reductions and a 
reverse motion. Manufacturing precision and the use of the helical gears contribute greatly to the 
quietness of planetary systems.

It can be shown that [6] the gear value of any planetary train is given in the following convenient 
form:

 = −
−

e
n n

n n
L A

F A

 (11.18)

where
e = the gear value, defined by Equation (11.17)
nF = the speed of the first gear in the train
nL = the speed of the last gear in the train
nA = the speed of the arm

Note that both the first and last gears chosen must not be orbiting when two of the velocities are 
specified. Equation 11.18 can be used to compute the unknown velocity. That is, either the velocities 
of the arm and one gear or the velocities of the first and last gears must be known.

Planet gear

Sun gear

Arm
1

3
4

Ring gear

2

FIGURE 11.11 A planetary gear train.
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Example 11.4: Analysis of a Planetary Gear Train

In the epicyclic gear train illustrated in Figure 11.11, the sun gear is driven clockwise at 60 rpm and has 
N1 teeth, the planet gear N3 teeth, and the ring gear N4 teeth. The sun gear is the input and the arm is the 
output. The ring gear is held stationary. What is the velocity of the arm?

Given: N1 = 30, N3 = 20, N4 = 80.

Assumption: The sun gear is the first gear in the train and the ring gear is the last.

Solution

Refer to Figure 11.11.
The gear value, through the use of Equation (11.17), is

 = −






+





= −





+





= − .e
N

N

N

N

30

20

20

80
0 3751

3

3

4

 

Observe the signs on the gear set ratios: one is an external set (−) and one an internal set (+). Substitution 
of this equation together with nF = n1 = 60 rpm and nL = n4 = 0 into Equation (11.18) gives

 − = −
−

= −
−

. n n

n n

n

n
0 375

0

60
4 2

1 2

2

2

 

from which n2 = 16.4 rpm.

Comment: The sun gear rotates 3.66 times as fast and in the same direction as the arm.

11.7  TRANSMITTED LOAD

With a pair of gears or gear set, power is transmitted by the load that the tooth of one gear exerts 
on the tooth of the other. As pointed out in Section 11.4, the transmitted load Fn is normal to 
the tooth surface; therefore, it acts along the pressure line or the line of action (Figure 11.12). 
This force between teeth can be resolved into tangential force and radial force components, 
respectively:

Pitch circle

Pressure line

Base circle
φ

φ

Fr

P

Fn

Ft

r rb

FIGURE 11.12 Gear tooth force Fn, shown resolved at pitch point P.
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= φ

= φ = φ

cos

sin tan

F F

F F F

t n

r n t

 (11.19)

The quantity ϕ is the pressure angle in degrees. The tangential component Ft, when multiplied by 
the pitch-line velocity, accounts for the power transmitted, as is shown in Section 1.10. However, 
radial component Fr does no work, but tends to push the gears apart.

The velocity along the pressure line is equal to the tangential velocity of the base circles. The 
tangential velocity of the pitch circle (in feet per minute, fpm) is given by

 = π
V

dn

12  (11.20)

where
 d represents the pitch diameter in in.
 n is the speed in rpm

In design, we assume that the tangential force remains constant as the contact between two teeth 
moves from the top of the tooth to the bottom of the tooth. The applied torque and the transmitted 
load are related by

 = φ =cosT
d

F
d

F
2 2

n t
 (11.21)

The horsepower is defined by

 = Tn
hp

63,000
 (1.17)

in which the torque T is in lb in. and n is in rpm. Carrying Equations (11.20) and (11.21) into the 
preceding expression, we obtain the tangential load transmitted:

 =F
V

33,000 hp
t

 (11.22)

where V is given by Equation (11.20). Recall from Section 1.11 that 1 hp equals 0.7457 kW. 
In SI units, the preceding equations are given by the relationships

 = =FV Tn
kW

1000 9549
t  (1.15)

 = =
.

FV Tn
hp

745 7 7121
t  (1.16)

 = = .
F

V V

1000 kW 745 7 hp
t

 (11.23)

In the foregoing, we have
Ft = the transmitted tangential load (N)
d = the gear pitch-diameter
n = the speed (rpm)
T = the torque (N · m)
V = πdn/60 = pitch-line velocity (in meters per second, m/s)
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11.7.1  dynamiC eFFeCts

The tangential force Ft is readily obtained by Equation (11.22). However, this is not the entire force 
that acts between the gear and teeth. Tooth inaccuracies and deflections, misalignments, and the 
like produce dynamic effects that also act on the teeth. The dynamic load Fd or total gear tooth load, 
in US customary units, is estimated using one of the following formulas:

 ( )= + < ≤.
.

F
V

F V
3 05

3 05
for 0 10.16 m/sd t

 (11.24a)

 ( )= + < ≤.
.

� .F
V

F V
6 1

6 1
for 10 16 20.32 m/sd t

 (11.24b)

 ( )= + >.
.

F
V

F V
5 56

5 56
for 20.32 m/sd t

 (11.24c)

where V is the pitch-line velocity in meters per second (m/s). Clearly, the dynamic load occurs in 
the time that a tooth goes through the mesh. Note that the preceding relations form the basis of the 
AGMA dynamic factors, discussed in Section 11.9.

Example 11.5: Gear Force Analysis

The three meshing gears shown in Figure 11.13a have a module of 5 mm and a 20° pressure angle. 
Driving gear 1 transmits 40 kW at 2000 rpm to idler gear 2 on shaft B. Output gear 3 is mounted to shaft 
C, which drives a machine. Determine and show, on a free-body diagram:

 a. The tangential and radial forces acting on gear 2.
 b. The reaction on shaft B.

Assumptions: The idler gear and shaft transmit power from the input gear to the output gear. No idler 
shaft torque is applied to the idler gear. Friction losses in the bearings and gears are omitted.

Solution

The pitch diameters of gears 1 and 3, from Equation (11.4), are d1 = N1m = 20(5) = 100 mm and 
d3 = N3m = 30(5) = 150 mm.

Gear 2
(idler)
N2 = 40

Gear 1
(pinion)
N1 = 20

Gear 3
N3 = 30

2000 rpm

7.37 kN
Gear 2

1.39 kN

3.82 kN

3.82 kN

1.39 kN

(a) (b)

45°

B C B

A

FIGURE 11.13 Example 11.5. (a) A gear set and (b) free-body diagram of the forces acting on gear 2 and 
reaction on shaft B.

ISTUDY

www.konkur.in

Telegram: @uni_k



442 Mechanical Engineering Design

 a. Through the use of Equation (1.15),

 ( )
= = = ⋅T

n

9549 kW 9549 40

2000
191 N m 

 By Equation (11.21) and Equation (11.19), the tangential and radial forces of gear 1 on gear 2 
are then

 = = = = ° =
.

. . tan ., ,F
T

r
F

191

0 05
3 82 kN 3 82 20 1 39 kNt r12

1

1
12  

 Inasmuch as gear 2 is an idler, it carries no torque, so the tangential reaction of gear 3 on 2 is 
also equal to Ft,12. Accordingly, we have

 = =. , ., ,F F3 82 kN 1 39 kNt r32 32  

 The forces are shown in the proper directions in Figure 11.13(b).
 b. The equilibrium of x- and y-directed forces acting on the idler gear gives 

RBx = RBy = 3.82 + 1.39 = 5.21 kN. The reaction on the shaft B is then

 = + =. . .R 5 21 5 21 7 37 kNB
2 2  

 acting as depicted in Figure 11.13(b).

Comments: When a combination of numerous gears is used as in a gear train, usually the shafts sup-
porting the gears lie in different planes and the problem becomes a little more involved. For this case, 
the tangential and radial force components of one gear must be further resolved into components in the 
same plane as the components of the meshing gear. Hence, forces along two mutually perpendicular 
directions may be added algebraically.

11.8  BENDING STRENGTH OF A GEAR TOOTH: THE LEWIS FORMULA

Wilfred Lewis was the first to present the application of the bending equation to a gear tooth. The 
formula was announced in 1892, and it still serves the basis for gear tooth bending stress analysis. 
Simplifying assumptions in the Lewis approach are as follows [9]:

 1. A full load is applied to the tip of a single tooth.
 2. The radial load component is negligible.
 3. The load is distributed uniformly across the full-face width.
 4. The forces owing to tooth sliding friction are negligible.
 5. The stress concentration in the tooth fillet is negligible.

To develop the basic Lewis equation, consider a cantilever subjected to a load Ft, uniformly distrib-
uted across its width b (Figure 11.14(a)). We have the section modulus I/c = bt2/6. So, the maximum 
bending stress is

 σ = =Mc

I

F L

bt

6 t
2

 (a)

This flexure formula yields results of acceptable accuracy at cross-sections away from the point of 
load application (see Section 3.1).

We now treat the tooth as a cantilever fixed at BD (Figure 11.14(b)). It was noted already that 
the normal force Fn is considered as acting through the corner tip of the tooth along the pressure 
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line. The radial component Fr causes a uniform compressive stress over the cross-section. This 
compressive stress is small enough compared to the bending stress, due to the tangential load Ft, 
to be ignored in determining the strength of the tooth. Clearly, the compressive stress increases the 
bending stress on the compressive side of the tooth and decreases the resultant stress on the tensile 
side. Therefore, for many materials that are stronger in compression than in tension, the assumption 
made results in a stronger tooth design. Also note that because gear teeth are subjected to fatigue 
failures that start on the tension side of the tooth, the compressive stress reduces the resultant tensile 
stress and thus strengthens the tooth.

11.8.1  uniForm strength gear tooth

In a gear tooth of constant strength, the stress is uniform; hence, b/6Ft = constant = C, and Equation 
(a) then leads to L = Ct2. The foregoing expression represents a parabola inscribed through point A, 
as shown by the dashed lines in Figure 11.14(b). This parabola is at a tangent to the tooth profile at 
points B and D, where the maximum compressive and tensile stresses occur, respectively. The ten-
sile stress is the cause of fatigue failure in a gear tooth. Referring to the figure, by similar triangles 
ABE and BCE, we write (t/2)/x = L/(t/2) or L = t2/4x. Carrying this into Equation (a) and multiplying 
the numerator and denominator by the circular pitch p, we have

 
( )σ = F p

b xp2/3
t  (b)

The Lewis form factor is defined as

 =y
x

p

2
3

 (11.25)

Finally, substitution of the preceding into Equation (b) results in the original Lewis formula:

 σ = F

bpy
t  (11.26)

Because the diametral pitch rather than the circular pitch is often used to designate gears, the 
following substitution may be made: p = π/P and Y = πy. Then the Lewis form factor is expressed as

 =Y
xp2
3

 (11.27)

Constant strength
parabola

φ

(a) (b)

L

B

Ft

Ft

rf

Fn
Fr

E D
x

C

t

L

b

t

A

FIGURE 11.14 Beam strength of a gear tooth: (a) cantilever beam and (b) gear tooth as cantilever.
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Similarly, the Lewis formula becomes

 σ = F p

bY
t  (11.28)

When using SI units, in terms of module m = 1/P,

 σ = F

mbY
t  (11.29)

Both Y and y are the functions of tooth shape (but not size), and thus vary with the number of 
teeth in the gear. Some values of Y determined from Equation (11.27) are listed in Table 11.2. For 
nonstandard gears, the factor Y (or y) can be obtained by a graphical layout of the gear or digital 
computation.

Let bending stress σ in Equation (11.28) be designated by the allowable static bending stress σo 
and so tangential load Ft by the allowable bending load Fb. Then this equation becomes

 = σF b
Y

P
b o

 (11.30)

or, in SI units,

 = σF bYmb o
 (11.31)

The values of σo for some materials of different hardness are listed in Table 11.3. Note that the tip-load 
condition assumed in the preceding derivation occurs when another pair of the teeth is still in contact. 
Actually, the heaviest loads occur near the middle of the tooth while a single pair of teeth is in contact. 
For this case, the derivation of the Lewis equation would follow exactly as in the previous case.

11.8.2  eFFeCt oF stress ConCentration

The stress in a gear tooth is greatly influenced by size of the fillet radius rf (Figure 11.14(b)). It is 
very difficult to obtain the theoretical values of the stress-concentration factor Kt for the rather com-
plex shape of the gear tooth. Experimental techniques and the finite element method are used for 

TABLE 11.2
Values of the Lewis Form Factor for Some Common Full-Depth Teeth

No. of Teeth 20°Y 25° Y No. of Teeth 20° Y 25° Y

12 0.245 0.277 26 0.344 0.407

13 0.264 0.293 28 0.352 0.417

14 0.276 0.307 30 0.358 0.425

15 0 289 0.320 35 0.373 0.443

16 0.295 0.332 40 0.389 0.457

17 0.302 0.342 50 0.408 0.477

18 0.308 0.352 60 0.421 0.491

19 0.314 0.361 75 0.433 0.506

20 0.320 0.369 100 0.446 0.521

21 0.326 0.377 150 0.458 0.537

22 0.330 0.384 200 0.463 0.545

24 0.337 0.396 300 0.471 0.554

25 0.340 0.402 Rack 0.484 0.566
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this purpose [7, 8]. Since the gear tooth is subjected to fatigue loading, the factor Kt should be modi-
fied by the notch sensitivity factor q to obtain the fatigue stress-concentration factor Kf. The Lewis 
formula can be modified to include the effect of the stress concentration. In so doing, Equations 
(11.28) and (11.30) become, respectively,

 σ =
K F P

bY
f t  (11.32)

 = σ
F

b

K

Y

P
b

o

f

 (11.33)

As a reasonable approximation, Kf = 1.5 may be used in these equations.

11.8.3  requirement For satisFaCtory gear PerFormanCe

The load capacity of a pair of gears is based on either the bending or wear (Section 11.10) capac-
ity, whichever is smaller. For satisfactory gear performance, it is necessary that the dynamic load 
should not exceed the allowable load capacity. That is,

 ≥F Fb d
 (11.34)

in which the dynamic load Fd is given by Equation (11.24). Note that this dynamic load approach 
can be used for all gear types [4].

The Lewis equation is important, since it serves as the basis for the AGMA approach to the 
bending strength of the gear tooth, discussed in the next section. Equations (11.33) and (11.34) are 
quite useful in estimating the capacity of gear drives when the life and reliability are not significant 
considerations. They are quite useful in preliminary gear design for a variety of applications. When 
a gear set is to be designed to transmit a load Fb, the gear material should be chosen so that the 
values of the product σoY are approximately the same for both gears.

Example 11.6: Power Transmitted by a Gear Based on 
Bending Strength and Using the Lewis Formula

A 25° pressure angle, 25-tooth spur gear having a module of 2 mm, and a 45 mm face width are to 
operate at 900 rpm. Determine:

 a. The allowable bending load applying the Lewis formula.
 b. The maximum tangential load and power that the gear can transmit.

Design Decisions: The gear is made of SAE 1040 steel. A fatigue stress-concentration factor of 1.5 is 
used.

Solution

We have Y = 0.402 for 25 teeth (Table 11.2) and σo = 172 MPa (Table 11.3). The pitch diameter is 
d = mN = 2(25) = 50 mm and V = πdn = π (0.05)(15) = 2.356 m/s = 463.7 fpm.

 a. Using Equation (11.33) with 1/P = m, we have

 ( )= σ = × × =
.

. .F
bYm

K

1

1 5
172 0 402 2 4 149 kNb

o

f

 

 b. From Equation (11.24a), the dynamic load is
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 = + =. .F F F
600 463 7

600
1 77d t t

 

 The limiting value of the transmitted load, applying Equation (11.34), is

 = =. . .F F4 149 1 77 or 2 344 kNt t  

 The corresponding gear power, by Equation (1.15), is

 
( ) ( )

= π

=
π

=
. .

.

F dn
kW

60

2 344 0 05 900

60
5 52

t

 

11.9  DESIGN FOR THE BENDING STRENGTH OF A 
GEAR TOOTH: THE AGMA METHOD

The fundamental formula for the bending stress of a gear tooth is the AGMA modification of the Lewis 
equation. This formula applies to the original Lewis equation correction factors that compensate for 
some of the simplifying presuppositions made in the derivation as well as for important factors not 
initially considered. In the AGMA method for the design and analysis of gearing, the bending strength 
of a gear tooth is also modified by various factors to obtain the allowable bending stress.

In this section, we present selective AGMA bending strength equations for a gear tooth. They 
are based on certain assumptions about the tooth and gear tooth geometry. It should be mentioned 
that some definitions and symbols used are different than those given by the AGMA. Nevertheless, 

TABLE 11.3
Allowable Static Bending Stresses for Use in the Lewis Equation

Material Treatment σo Average Bhn

ksi (MPa)

Cast iron

 ASTM 35 12 (82.7) 210

 ASTM 50 15 (103) 220

Cast steel

 0.20% C 20 (138) 180

 0.20% C WQ&T 25 (172) 250

Forged steel

 SAE 1020 WQ&T 18 (124) 155

 SAE 1030 20 (138) 180

 SAE 1040 25 (172) 200

 SAE 1045 WQ&T 32 (221) 205

 SAE 1050 WQ&T 35 (241) 220

Alloy steels

 SAE 2345 OQ&T 50 (345) 475

 SAE 4340 OQ&T 65 (448) 475

 SAE 6145 OQ&T 67 (462) 475

SAE 65 (phosphor bronze) 12 (82 7) 100

Note: WQ&T, water-quenched and tempered; OQ&T, oil-quenched and tempered.
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procedures introduced here and in Section 11.11 are representative of current practice [9]. For fur-
ther information, see the latest AGMA standards and the relevant literature.

Bending stress is defined by the formula

 
( )

( )

σ =

σ =

υ

υ
.

F K K
P

b

K K

J

F K K
bm

K K

J

US customary units

1 0
SI units

t o
s m

t o
s m

 (11.35)

where
σ = the calculated bending stress at the root of the tooth
Ft = the transmitted tangential load
Ko = the overload factor
Kυ = the velocity or dynamic factor
P = the diametral pitch
b = the face width
m = the metric module
Ks = the size factor
Km = the mounting factor
J = the geometry factor

Allowable bending stress, or the design stress value, is

 σ = S K

K K
t L

T R
all

 (11.36)

where
σall = the allowable bending stress
St = the bending strength
KL = the life factor
KT = the temperature factor
KR = the reliability factor

As a design specification, the bending stress must not exceed the design stress value:

 σ ≤ σall
 (11.37)

Note that there are three groups of terms in Equation (11.35): the first refers to the loading charac-
teristics, the second to the gear geometry, and the third to the tooth form. Obviously, the essence 
of this equation is the Lewis formula with the updated geometry factor J introduced for the form 
factor Y. The K factors are modifiers to account for various conditions. Equation (11.36) defines 
the allowable bending stress. The specification in the AGMA approach for designing for strength 
is given by Equation (11.37). That is, the calculated stress σ of Equation (11.35) must always be 
less than or equal to the allowable stress σall, as determined by Equation (11.36). To facilitate the 
use of Equation (11.35) through Equation (11.37), the following concise description of the correc-
tion factors is given.

The overload factor Ko is used to compensate for situations in which the actual load exceeds the 
transmitted load Ft. Table 11.4 gives some suggested values for Ko. The velocity or dynamic factor 
Kυ shows the severity of impact as successive pairs of teeth engage. This depends on pitch velocity 
and manufacturing accuracy. Figure 11.15 depicts some commonly employed approximate factors 
pertaining to representative gear manufacturing processes. It is seen from the figure that dynamic 

ISTUDY

www.konkur.in

Telegram: @uni_k



448 Mechanical Engineering Design

TABLE 11.4
Overload Correction Factor Ko

Source of Power

Load on Driven Machine

Uniform Moderate Shock Heavy Shock

Uniform 1.00 1.25 1.75

Light shock 1.25 1.50 2.00

Medium shock 1.50 1.75 2.25

factors become higher when hobs or milling cutters are used to form the teeth, or inaccurate teeth 
are generated. For more detailed information, consult the appropriate AGMA standard.

The size factor Ks attempts to account for any nonuniformity of the material properties. It 
depends on the tooth size, diameter of parts, and other tooth and gear dimensions. For most stan-
dard steel gears, the size factor is usually taken as unity. A value of 1.25−1.5 would be a conserva-
tive assumption in cases of very large teeth. The mounting factor Km reflects the accuracy of mating 
gear alignment. Table 11.5 is used as a basis for rough estimates. The geometry factor J relies on 
the tooth shape, the position at which the highest load is applied, and the contact ratio. The equation 
for J includes a modified value of the Lewis factor Y and a fatigue stress-concentration factor Kf. 
Figure 11.16 may be used to estimate the geometry factor for only 20° and 25° standard spur gears.
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FIGURE 11.15 Dynamic factor Kυ (From AGMA, Standards of the American Gear Manufacturers 
Association, Alexandria, VA, ANSI/AGMA 2001−C95, revised AGMA 2001−C95).
Notes:
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where V is in feet per minute, fpm. To covert to meters per second (m/s), divide the given values by 196.8.
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TABLE 11.5
Mounting Correction Factor Km

Condition of Support

Face Width (mm)

0–51 152 223 406 up

Accurate mounting, low bearing clearances, maximum deflection, precision 
gears 

Less rigid mountings, less accurate gears, contact across the full face 
Accuracy and mounting such that less than full-face contact exists

1.3

1.6
Over 2.2

1.4

1.7

1.5

1 8

1.8

2.2
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35 54 06 521
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FIGURE 11.16 Geometry factors for spur gears (based on tooth fillet radius of 0.35/P): (a) 20° full-depth 
teeth and (b) 25° full-depth teeth (From ANSI/AGMA Standard 218.01).
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TABLE 11.6
Bending Strength St of Spur, Helical, and Bevel Gear Teeth

Material Heat Treatment
Minimum Hardness or 
Tensile Strength

St

ksi (MPa)

Steel Normalized 140 Bhn 19−25 (131−172)

Q&T 180 Bhn 25−33 (172−223)

Q&T 300 Bhn 36−47 (248−324)

Q&T 400 Bhn 42−56 (290−386)

Case carburized 55 RC 55−65 (380−448)

60 RC 55−70 (379−483)

Nitrided AISI-4140 48 RC case 34−45 (234−310)

300 Bhn core

Cast iron

 AGMA grade 30 175 Bhn 8.5 (58.6)

 AGMA grade 40 200 Bhn 13 (89.6)

Nodular iron ASTM grade

 60–40–18 15 (103)

 80–55–06 Annealed 20 (138)

 100–70–18 Normalized 26 (179)

 120–90–02 Q&T 30 (207)

Bronze, AGMA 2C Sand cast 40 ksi (276 MPa) 5.7 (39.3)

Source: ANSI/AGMA Standard 218.01.
Note: Q&T, quenched and tempered.

TABLE 11.7
Life Factor KL for Spur and Helical Steel Gears
Number of Cycles 160 Bhn 250 Bhn 450 Bhn Case Carburized (55–63 RC)

103 1.6 2.4 3.4 2.7–4.6

104 1.4 1.9 2.4 2.0–3.1

105 1.2 1.4 1.7 1.5–2.1

106 1.1 1.1 1.2 1.1–1.4

107 1.0 1.0 1.0 1.0

Source: ANSI/AGMA Standard 218.01.

The bending strength St for standard gear materials varies with such factors as material quality, 
heat treatment, mechanical treatment, and material composition. Some selected values for AGMA 
fatigue strength for bending are found in Table 11.6. These values are based on a reliability of 99%, 
corresponding to 107 tooth load cycles. Note that in the table, Bhn and Rc denote the Brinell and 
Rockwell hardness numbers, respectively.

The life factor KL rectifies the allowable stress for the required number of stress cycles other than 
107. Values of this factor are furnished in Table 11.7. The temperature factor KT is applied to adjust 
the allowable stress for the effect of operating temperature. Usually, for gear lubricant temperatures 
up to T < 71°C, KT = 1 is used. For T > 71°C, use KT = ( = (238 + T)/327. The reliability factor KR 
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corrects the allowable stress for the reliabilities other than 99%. Table 11.8 lists some KR values 
applied to the fatigue strength for bending of the material.

The use of the AGMA formulas and graphs is illustrated in the solution of the following numeri-
cal problem.

Case Study 11.1 Design of a Speed Reducer for Bending Strength by the AGMA Method

A conveyor drive involving heavy shock torsional loading is to be operated by an electric motor 
turning at a speed of n, as shown schematically in Figure 11.17. The speed ratio of the spur gears 
connecting the motor and conveyor or speed reducer is to be rs = 1:2. Determine the maximum horse-
power that the gear set can transmit, based on bending strength and applying the AGMA formulas.

Given: Both gears are of the same 300 Bhn steel and have a face width of b = 38 mm. The pinion 
rotates at n = 1600 rpm, m =2.5 mm, and Np = 18.

Design Decisions: Rational values of the factors are chosen, as indicated in the parentheses in 
the solution.

Solution
The pinion pitch diameter and number of teeth of the gear are

 ,d N m N N
r

= = 18(2.5)= 45 mm
1

45(2) = 90p g p
s

p = 





=  

The pitch-line velocity, using Equation (11.20), is

 ( )( )=
π

=
π

=
.

V
d n

60

0 045 1600

60
3.77 m/sp p  

TABLE 11.8
Reliability Factor KR

Reliability (%) 50 90 99 99.9 99.99

Factor KR 0.70 0.85 1.00 1.25 1.50

Source: From ANSI/AGMA Standard 2001-C95.

Electric motor

n
Pinion

CouplingGear

Conveyor
drive

FIGURE 11.17 Schematic arrangement of motor, gear, and conveyor drive.
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The allowable bending stress is estimated from Equation (11.36):

 σ = S K

K K
t L

T R
all

 (a)

where
St  = 286 MPa (from Table 11.6, for average strength)
KL = 1.0 (from Table 11.7, for indefinite life)
KT = 1 (oil temperature should be < 70°C)
KR = 1.25 (by Table 11.8, for 99.9% reliability)

Carrying the foregoing values into Equation (a) results in

 ( )
( )σ = =

.
286 1

1 1 25
228.8 MPaall

 

The maximum allowable transmitted load is now obtained, from Equation (11.35) by setting 
σall = σ, as

 =
υ

.
F

K K

bm J

K K

228 8
1

t
o s m

 (b)

In the foregoing, we have
m   = 2.5 mm
b   = 38 mm
Kυ  = 1.55 (from curve C of Figure 11.15)
J   = 0.235 (from Figure 11.16(a), the load acts at the tip of the tooth, Np = 18)
Ko  = 1.75 (by Table 11.4)
Ks  = 1.0 (for standard gears)
Km = 1.6 (from Table 11.5)

Equation (b) yields

 ( )( )
( )( )( )( )( )= =

. .
. . . .

F
228 8 38 2 5

1 75 1 55 10 1 0 1 6
1177 Nt

 

The allowable power is then, by Equation (11.22),

 = = = .FV
kW

1000
1177(3.77)

1000
4 44t  

11.10  WEAR STRENGTH OF A GEAR TOOTH: THE BUCKINGHAM FORMULA

The failure of the surfaces of gear teeth is called wear. As noted in Section 8.9, wear is a broad 
term, which encompasses a number of kinds of surface failures. So it is evident that gear tooth sur-
face durability is a more complex matter than the capacity to withstand gear tooth bending failure. 
Tests have shown that pitting, a surface fatigue failure due to repeated high contact stress, occurs 
on those portions of a gear tooth that have relatively little sliding compared with rolling. Clearly, 
spur gears and helical gears have pitting near the pitch line, where the motion is almost pure rolling. 
We therefore are concerned only with gear tooth surface fatigue failure or pitting, and designate it 
“wear” [10].
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453Spur Gears

As was the case with the rolling bearings, gear teeth are subjected to Hertz contact stresses, 
and the lubrication is often elastohydrodynamic (Section 10.16). The gear teeth must be sufficiently 
strong to carry the wear load. The surface stresses in gear teeth were first investigated in a system-
atic way by Buckingham [4], who considered the teeth as two parallel cylinders in contact. The radii 
of the teeth as two parallel cylinders are taken as the radii of curvature for the involutes when the 
teeth make contact at pitch point P (Figure 11.18). Hence,

 = φ = φ = φsin , sin sinR
d

R
d N d

N2 2 2
p g g p

p
1 2  (a)

where
ϕ represents the pressure angle
dp and dg are the pitch diameters of the pinion and gear, respectively

The last form in the second of these equations is from the relationship dp/Np = dg/Ng.
Generally, good correlation has been observed between spur gear surface fatigue failure and the 

computed elastic contact stress (see Section 8.7). The maximum contact pressure po between the two 
cylinders may be computed from the equation given in Table 8.4, for v = 0.3:

 =
+

+













.
/

p
F E E

E E R R
0 592

1 1
o

a p g

p g 1 2

1 2

 (b)

where
Fa is the load per axial length pressing the cylinders together
Ep and Eg are the moduli of elasticity for the materials composing the gears

We observe from this equation that stress increases only as the square root of the load Fa. Likewise, 
stress decreases with decreased moduli of elasticity Ep and Eg. Moreover, larger gears have greater 
radii of curvature, and hence lower stress.

Base circle

Base circle

+

+

Pitch circle

Pitch circle

rp

rg

R2

R1

P
φ

φ

FIGURE 11.18 Radii of curvature R1 and R2 for tooth surfaces at pitch point P.
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We now let the maximum contact pressure po represent the surface endurance limit in compres-
sion, Se, for the pinion and gear material. Substituting Equation (a) into Equation (b), we have

 =
+ φ

+






.
sin

S
F E E

E E d

N

N
0 35

2
1e

a p g

p g p

p

g

2  (c)

Usually, both sides of this expression are multiplied by gear width b, and the total load Fab denoted 
by Fw. In so doing and solving Equation (c), we obtain the allowable wear load:

 =F d bQKw p  (11.38)

where

 = φ +






sin
.

K
S

E E1 4
1 1e

p g

2

 (11.39)

 =
+

Q
N

N N

2 g

p g

 (11.40)

Equation (11.38) is known as the Buckingham formula. The typical values of Se and wear load fac-
tor K for materials of different Brinell surface hardnesses Bhn, recommended by Buckingham, are 
shown in Table 11.9. Note that the values of K are obtained from Equation (11.39) for pressure angles 

TABLE 11.9
Surface Endurance Limit Se and Wear Load Factor K for Use in the Buckingham Equation

Materials in Pinion and Gear

K

Se ϕ = 20° Φ = 25°

ksi (MPa) psi (MPa) psi (MPa)

Both steel gears, with average
Bhn of pinion and gear
 150

50 (345) 41 (0.283) 51 (0.352)

 200 70 (483) 79 (0.545) 98 (0.676)

 250 90 (621) 131 (0.903) 162 (1.117)

 300 110 (758) 196 (1.352) 242 (1.669)

 350 130 (896) 270 (1.862) 333 (2.297)

 400 150 (1034) 366 (2.524) 453 (3.124)

Steel (150 Bhn) and cast iron 50 (354) 60 (0.414) 74 (0.510)

Steel (200 Bhn) and cast iron 70 (483) 119 (0.821) 147 (1.014)

Steel (250 Bhn) and cast iron 90 (621) 196 (1.352) 242 (1.669)

Steel (150 Bhn) and phosphor 
bronze

59 (407) 62 (0.428) 77 (0.531)

Steel (200 Bhn) and phosphor 
bronze

65 (448) 100 (0.690) 123 (0.848)

Steel (250 Bhn) and phosphor 
bronze

85 (586) 184 (1.269) 228 (1.572)

Cast iron and cast iron 90 (621) 264 (1.821) 327 (2.555)

Cast iron and phosphor bronze 83 (572) 234 (1.614) 288 (1.986)
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of 20° and 25° full-depth teeth only. The allowable wear load serves as the basis for analyzing gear 
tooth surface durability.

For satisfactory gear performance, the usual requirement is that

 ≥F Fw d (11.41)

Here, the dynamic load Fd is defined by Equations (11.24). To prevent too much pinion wear, par-
ticularly for high-speed gearing, a medium-hard pinion with low hardness gear is often used. This 
has the advantage of giving some increase in load capacity and slightly lower coefficient of friction 
on the teeth.

Example 11.7: Maximum Load Transmitted by a Gear Based 
on Wear Strength and Using the Buckingham Formula

The pinion of Example 11.6 is to be mated with a gear. Determine:

 a. The allowable load for wear for the gear set using the Buckingham formula.
 b. The maximum load that can be transmitted.

Given: Np = 25, dp = 50 mm, b = 45 mm, Ng = 60.

Design Decision: The mating gear is made of 60-tooth cast iron.

Solution

 a. Using Equation (11.40),

 =
+

= =Q
N

N N

2 120

85

24

17
g

p g
 

 By Table 11.9, K = 1. 014 MPa for 200 Bhn. Applying Equation (11.38),

 ( )( ) ( )= = 





=. .F d bQK 50 45
24

17
1 014 3 221 kNw p  

 b. The dynamic load, from Example 11.6, is 1.77Ft. The wear-limiting value of the transmitted 
load, using Equation (11.41), is then

 = =. . .F F3 221 1 77 or 1 82 kNt t  

11.11  DESIGN FOR THE WEAR STRENGTH OF A 
GEAR TOOTH: THE AGMA METHOD

The Buckingham equation serves as the basis for analyzing only the contact stress on the gear tooth. 
The AGMA formula applies several factors, influencing the actual state of stress at the point of 
contact, not considered in the previous section. Similarly, in the AGMA method, the surface fatigue 
strength of the gear tooth is modified by a variety of factors to determine the allowable contact 
stress. The selective AGMA wear formulas for gears are as follows [1]:

Contact stress is defined by the formula

 σ = 



υ

/

C F K K
K

bd

K C

I
c p t o

s m f
1 2

 (11.42)
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where

 =
− ν

+
− ν
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 (11.43a)

 = φ φ
+

sin cos
I

m

m

m2 1N

G

G

 (11.43b)

In the foregoing,
σc = the calculated contact stress
Cp = the elastic coefficient
Kυ = the velocity or dynamic factor
Ks = the size factor
b = the face width
d = the pitch diameter
Km = the load distribution factor
Cf = the surface condition factor
I = the geometry factor
mG = the gear ratio = dg/dp = Ng/Np (for internal gears mG is negative)
mN = the load sharing ratio = 1 (for spur gears)
E = the modulus of elasticity
ν = the Poisson’s ratio
ϕ = the pressure angle

Allowable contact stress or the design stress value is

 σ =,
S C C

K K
c

C L H

T R
all

 (11.44)

where
σc,all = the allowable contact stress
Sc = the surface fatigue strength
CL = the life factor
CH = the hardness ratio factor
KT = the temperature factor
KR = the reliability factor

As a design specification, the contact stress must not exceed the design stress value:

 σ ≤ σ ,c c all
 (11.45)

A comparison of the foregoing fundamental equations with those given in Section 11.9 shows that 
some bending factors and wear factors are equal and so indicated by the same symbols. A brief 
description of the new wear factors follows.

The elastic coefficient Cp, defined by Equation (11.43a), accounts for differences in tooth mate-
rial. In this expression, Ep and Eg are the moduli of elasticity for, respectively, pinion and gear, and 
vp and vg are their respective Poisson’s ratios. The units of Cp are psi  or MPa , depending on the 
system of units used. For convenience, rounded values of Cp are given in Table 11.10, where v = 0.3 
in all cases.
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The surface condition factor Cf is used to account for such considerations as surface finish, 
residual stress, and plasticity effects. The Cf is usually taken as unity for a smooth surface finish. 
When rough finishes are present or the possibility of high residual stress exists, a value of 1.25 is 
reasonable. If both rough finish and residual stress exist, 1.5 is the suggested value.

The surface fatigue strength Sc represents a function of such factors as the material of the pinion 
and gear, number of cycles of load application, size of the gears, type of heat treatment, mechanical 
treatment, and the presence of residual stresses Table 11.11 may be used to estimate the values for 
Sc. The life factor CL accounts for the expected life of the gear. Figure 11.19 can be used to obtain 
approximate values for CL.

The hardness ratio factor CH is used only for the gear. Its intent is to adjust the surface strengths 
for the effect of the hardness. The values of CH are calculated from the expression

 = + −






<






. . ��� .C A
N

N

H

H
1 0 1 0 for 1 70H

g

p

Bp

Bg

 (11.46)

where

 ( ) ( )=






−− −. .A
H

H
8 98 10 8 29 10Bp

Bg

3 3
 

The quantities HBp and HBg represent the Brinell hardness of the pinion and gear, respectively.

Example 11.8: Design of a Speed Reducer for Wear by the AGMA Method

Determine the maximum horsepower that the speed reducer gear set in Example 11.7 can transmit, 
based on wear strength and applying the AGMA method.

Given: Both gears are made of the same 300 Bhn steel of E = 207 GPa, psi, v = 0.3, and have a face width 
of b = 38 mm, m = 2.5 mm, and Np = 18.

Design Decisions: Rational values of the factors are chosen, as indicated in the parentheses in the 
solution.

Solution

Allowable contact stress is estimated from Equation (11.44) as

TABLE 11.10
AGMA Elastic Coefficients cp for Spur Gears, in psi  and ( MPa )

Pinion Material E, ksi (GPa)

Gear Material

Steel Cast Iron Aluminum Bronze Tin Bronze

Steel 30,000 2300 2000 1950 1900

(207) (191) (166) (162) (158)

Cast iron 19,000 2000 1800 1800 1750

(131) (166) (149) (149) (145)

Aluminum bronze 17,500 1950 1800 1750 1700

(121) (162) (149) (145) (141)

Tin bronze 16,000 1900 1750 1700 1650

(110) (158) (145) (141) (137)
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FIGURE 11.19 Life factor for steel gears (From ANSI/AGMA Standard 218.01).

TABLE 11.11
Surface Fatigue Strength or Allowable Contact Stress Sc

Material
Minimum Hardness or 
Tensile Strength

Sc

ksi (MPa)

Steel Through hardened 180 Bhn 85–95 (586–655)

240 Bhn 105–115 (724–793)

300 Bhn 120–135 (827–931)

360 Bhn 145–160 (1000–1103)

400 Bhn 155–170 (1069–1172)

Case carburized
55 RC

180–200 (1241–1379)

60 RC 200–225 (1379–1551)

Flame or induction 
hardened

50 RC

170–190 (1172–1310)

Cast iron

 AGMA grade 20 50–60 (345–414)

 AGMA grade 30 175 Bhn 65–75 (448–517)

 AGMA grade 40 200 Bhn 75–85 (517–586)

Nodular (ductile) iron 
Annealed

165 Bhn 90–100% of the Sc 
Value of steel with the 
same hardness

 Normalized
 OQ&T

210 Bhn
255 Bhn

Tin bronze

 AGMA 2C (10–12% tin) 40 ksi (276 MPa) 30 (207)

Aluminum bronze 
ASTM B 148–52 (alloy 
9C-HT)

90 ksi (621 MPa 65 (448)

Source: ANSI/AGMA Standard 218.01.
Note: OQ&T, oil-quenched and tempered; HT, heat-treated.
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 σ =,
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In the preceding,

Sc = 879 MPai (from Table 11.11, for average strength)
CL = 1.0 (from Figure 11.19, for indefinite life)

 ( )= + −
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KT = 1.0 and KR = 1.25 (both from Example 11.7)

Hence,
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The maximum allowable transmitted load is now determined, from Equation (11.42), setting 
σc,all = σc, as
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where
Cp  = 191 MPa  (by Table 11.10)
b = 38 mm, dp = 45 mm
Kυ = 1.55, Ko = 1.75, Ks = 1, Km = 1.6 (all from Example 11.7)
Cf  = 1.0 (for smooth surface finish)
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This value applies to both mating gear tooth surfaces. The corresponding power, using Equation (11.22) 
with V = 3.77 m/s fpm (from Case Study 11.1), is

 = = = .FV
kW

1000

571.5(3.77)

1000
2 15t  

11.12  MATERIALS FOR GEARS

Gears are made from a wide variety of materials, both metallic and nonmetallic, covered in 
Chapter 2. The material used depends on which of several criteria is the most important to the 
problem at hand. When high strength is the prime consideration, steel should be chosen rather than 
cast iron or other materials. Test data for fatigue strengths of most materials can be found in con-
temporary technical literature and current publications of the AGMA (see Tables 11.6 and 11.11). 
For situations involving noise abatement, nonmetallic materials perform better than metallic ones. 
The characteristics of some common gear materials follow.

Cast irons have low cost, ease of casting, good machinability, high wear resistance, and good 
noise abatement, which make them one of the most commonly used gear materials. Cast iron gears 
typically have greater surface fatigue strength than bending fatigue strength. Nodular cast iron 
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gears, containing a material such as magnesium or cerium, have higher bending strength and good 
surface durability. The combination of a steel pinion and cast iron gear represents a well-balanced 
design.

Steels usually require heat treatment to produce a high surface endurance capacity. Heat-treated 
steel gears must be designed to resist distortion; hence, alloy steels and oil quenching are often pre-
ferred. Through-hardened gears usually have 0.35–0.6% carbon. Case-hardened gears are generally 
processed by flame hardening, induction hardening, carburizing, or nitriding. When gear accuracy 
is required, the gear must be ground.

Nonferrous metals such as the copper alloys (known as bronzes) are most often used for gears. 
They are useful in situations where corrosion resistance is important. Owing to their ability to 
reduce friction and wear, bronzes are generally employed for making worm wheels in a worm 
gear set. Aluminum, zinc, and titanium are also used to obtain alloys that are serviceable for gear 
materials.

Plastics such as acetal, polypropylene, nylon, and other nonmetallic materials have often been 
used to make gears. Teflon is sometimes added to these materials to lower the coefficient of friction. 
Plastic gears are generally quiet, durable, reasonably priced, and can operate under light loads with-
out lubrication. However, they are limited in torque capacity by their low strength. Furthermore, 
plastics have low heat conductivity, resulting in heat distortion and weakening of the gear teeth.

Reinforced thermoplastics, formulated with fillers such as glass fiber, are desirable gear materi-
als owing to their versatility. For best wear resistance, nonmetallic gears are often mated with cast 
iron or steel pinions having a hardness of at least 300 Bhn. The composite gears of thermosetting 
phenolic have been used in applications such as the camshaft drive gear driven by a steel pinion in 
some gasoline engines. Design procedures of gears made of plastic are identical to those of metal 
gears, but not yet as reliable. Prototype testing is therefore more significant than for gears made of 
metals.

11.13  GEAR MANUFACTURING

Various methods are employed to manufacture gears. These can be divided into two classes: form-
ing and finishing. Gear teeth are formed in numerous ways by milling and generating processes. 
For high speed and heavy loads, a finishing operation may be required to bring the tooth outline to 
a sufficient degree of accuracy and surface finish. Finishing operations typically remove little or no 
material. Gear errors may be diminished somewhat by finishing the tooth profiles. A general discus-
sion of some manufacturing processes is found in Chapter 2. This section can provide only a brief 
description of gear forming and finishing methods.

11.13.1  Forming gear teeth

Milling refers to removal of the material between the teeth from a blank on a milling machine that 
uses a formed circular cutter. The cutter must be made to the shape of the gear tooth for the tooth 
geometry and the number of teeth of each particular gear. Gears having large-size teeth are often 
made by formed cutters. Shaping is the generation of teeth with a rack cutter or with a pinion cutter 
called a shaper (i.e., a small circular gear). The cutter works in a rapid reciprocating motion parallel 
to the axis of the gear blank while slowly translating with and into the blank, as depicted in Figure 
11.20. When the blank and cutter have rolled a distance equal to the circular pitch, the cutter is 
returned to the starting point and the process is continued until all the teeth have been cut.

The process requires a special cutting machine that translates the tool and rotates the gear blank 
with the same velocity as though a rack were driving a gear. Internal gears can be cut with this 
method as well. Hobbing refers to a process that accounts for the major portion of gears made in 
high-quantity production. A hob is a cutting tool shaped like a worm or screw. Both the hob and 
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blank must be rotated at the proper angular velocity ratio. The hob is then fed slowly across the face 
of the blank until all the teeth have been cut.

Other gear forming methods include die casting, drawing, extruding, sintering, stamping, and 
injection molding. These processes produce large volumes of gears that are low in cost, but poor 
in quality. Gears are die cast by forcing molten metal under pressure into a form die. In a cold 
drawing process, the metal is drawn through several dies and emerges as a long piece of gear from 
which gears of smaller widths can be sliced. On the other hand, in an extruding process, the metal 
is pushed rather than pulled through the dies.

Nonferrous materials such as copper and aluminum alloys are usually extruded. A sintering 
method consists of applying pressure and heat to a powdered metal (PM) to form the gear. A stamp-
ing process uses a press and a die to cut out the gear shape. An injection molding method is applied 
to produce nonmetallic gears in a variety of thermoplastics such as nylon and acetal.

11.13.2  Finishing ProCesses

Grinding is accomplished by the use of some form of abrasive grinding wheel. It can be used to 
give the final form to teeth after heat treatment. Shaving refers to a machine operation that removes 
small amounts of material. It is done prior to hardening and is widely used for gears made in large 
quantities. Burnishing runs the gear to be smoothed against a specially hardened gear, which flat-
tens and spreads minute surface irregularities only. Honing employs a tool, known as a hone, to 
drive the gear to be finished. It makes minor tooth-form corrections and improves the smoothness 
of the surface of the hardened gear surface. Lapping runs a gear with another that has some abrasive 
material embedded in it. Sometimes two mating gears are similarly run.

PROBLEMS

Sections 11.1 through 11.7
 11.W1 Use the website at www.grainger.com to conduct a search for spur gears. Select and list 

the manufacturer and description of spur gears with:
 a. 1.5 mm module, 14½° pressure angle, and 48 teeth.
 b. A 1 mm module, 14½° pressure angle, and 12 teeth.

Gear blank

Rack
cutter

Cutting
motion

FIGURE 11.20 The generating action of a cutting tool, a rack cutter reciprocating in the direction of the axis 
of a gear blank.
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 11.W2 Search the website at www.powertransmission.com. List ten websites for manufacturers 
of gears and gear drives.

 11.1 A 20° pressure angle gear has 32 teeth and a module of 6 mm. Determine the whole 
depth, working depth, base circle radius, and outside radius.

 11.2 Two modules of 3 mm gears are to be mounted on a center distance of 360 mm. The 
speed ratio is 1/3. Determine the number of teeth in each gear.

 11.3 A 10 mm module gear set consists of an 18-tooth pinion and a 42-teeth gear. The gears 
are cut using a pressure angle of 20°. Find:

 a. The circular pitch, center distance, and radii of the circles.
 b. The new values of the pressure angle and the pitch circle diameters, if the center dis-

tance is increased by 8 mm.
 11.4 A 20° full-depth spur gear tooth has a  module of 4 mm, measured along the pitch circle. 

What are the circular pitch and the tooth thickness?
 11.5 Determine the dedendum, clearance, working depth, thickness, and circular pitch of a 

20° full-depth spur gear tooth with a module of 12 mm.
 11.6 A gear set with 1/4 speed ratio and 200 mm center distance has a module of 5 mm (see 

Figure 11.9). Compute the number of teeth in each gear.
 11.7 An 18-tooth pinion with a 3 mm module rotates 2400 rpm and drives a gear at 1200 rpm. What 

are the number of teeth in the gear, the center distance, and the pitch diameters of the gears?
 11.8 Determine the approximate center distance for an external 25° pressure angle gear hav-

ing a circular pitch of 13.1947 mm that drives an internal gear having 84 teeth, if the 
speed ratio is to be 1/4.

 11.9 A gear set of 60-teeth driven gear and 24-tooth pinion has an 8 mm module and a pres-
sure angle of 20°. Determine:

 a. The circular pitch, center distance, and base radius for the pinion gear and the gear.
 b. For a case in which the center distance is increased by 6 mm, the pitch diameters for 

the pinion and the gear.
 11.10 A gear set has a module of 4 mm and a speed ratio of 1/4. The pinion has 22 teeth. 

Determine the number of teeth of the driven gear, gear and pinion diameters, and the 
center distance.

 11.11 A 3 mm module gear set of 25-tooth pinion that rotates at 3400 rpm and 48-tooth gear. 
The gears are cut using a pressure angle of 20°. What is the speed of the gear?

 11.12 A 2 mm module gear set consists of 30-tooth pinion and 100-tooth gear. The gears are 
cut using a pressure angle of 20°. Determine the outside radii for the pinion and the gear.

 11.13 What is the contact ratio of the gear set described in Problem 11.9?
 11.14 The sun gear in Figure 11.11 is the input and driven clockwise at 120 rpm. If the ring gear 

is held stationary, determine the rotation speed and direction of the arm.
  Given: N1 = 24 and N4 = 96.
 11.15 The gears shown in Figure P11.15 have a module of 8 mm and a 25° pressure angle. 

Determine and show on a free-body diagram:
 a. The tangential and radial forces acting on each gear.
 b. The reactions on shaft C.
  Given: Driving gear 1 transmits 22 kW at 4000 rpm through the idler to gear 3 on shaft C.
 11.16 Redo Problem 11.15 for gears having a module of 5 mm, a 20° pressure angle, and a 

clockwise rotation of the driving gear 1.
 11.17 The gears shown in Figure P11.17 have a module of 6 mm and a 20° pressure angle. 

Determine and indicate on a free-body diagram:
 a. The tangential and radial forces on each gear.
 b. The reaction on shaft B.
  Design Decision: Driving gear 1 transmits 37 kW at 1200 rpm through the idler pair 

mounted on shaft B to gear 4.
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 11.18 The gears shown in Figure P11.18 have a module of 6 mm and a 20° pressure angle. 
Determine and show on a free-body diagram:

 a. The tangential and radial loads on each gear.
 b. The reactions on shaft C.
  Given: Driving gear 1 transmits 80 kW at 1600 rpm through the idler to gear 3 mounted 

on shaft C.
 11.19 Resolve Problem 11.18 for gears having a module of 8 mm and a 25° pressure angle.
 11.20 The gears shown in Figure P11.20 have a module of 5.2 mm and 25° pressure angle. 

Determine and indicate on free-body diagrams:
 a. The tangential and radial forces on gears 2 and 3.
 b. The reactions on shaft C.
  Design Decision: Driving gear 1 transmits 7.5 kW at 1500 rpm through an idler pair 

mounted on shaft B to gear 4.

Gear 1
(pinion)
N1 = 27

Gear 2
N2 = 48

Gear 3
N3 = 36

45°

4000 rpm

A B

C

FIGURE P11.15 

Gear 2
N2 = 40

Gear 1
(pinion)
N1 = 201200 rpm

Gear 3
N3 = 20 Gear

N4 = 60

A

B C

FIGURE P11.17 
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 11.21 The gears shown in Figure P11.21 have a module of 4 mm and a 25° pressure angle. 
Determine and show on a free-body diagram:

 a. The tangential and radial forces on gears 2 and 3.
 b. The reactions on shaft B.
  Given: Driving gear 1 transmits 15 kW at 1800 rpm through an idler pair mounted on 

shaft B to gear 4.

Gear 4
N4 = 40

Gear 3
N3 = 20

Gear 1
(pinion)
N1 = 15

Gear 2
N2 = 35

1500 rpm

A B C

FIGURE P11.20 

Gear 2
N2 = 36

1800 rpm

A

B C

Gear 3
N3 = 18 Gear 4

N4 = 42

Gear 1
(pinion)
N1 = 24

FIGURE P11.21 

Gear 2
N2 = 30

1600 rpm

A B C

Gear 3
N3 = 50Gear 1

(pinion)
N1 = 18

FIGURE P11.18 
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Sections 11.8 through 11.13
 11.22 The gears shown in Figure P11.20 have a module of 5.2 mm, 25° pressure angle, and a 

tooth width of 12 mm. Determine:
 a. The allowable bending load, using the Lewis equation and Kf = 1.6, for the tooth of 

gear 2.
 b. The allowable load for wear, applying the Buckingham equation, for gears 1 and 2.
 c. The maximum tangential load that gear 2 can transmit.
  Design Decisions: All gears are made of cast steel (0.20% C WQ&T, Table 11.3); gears 2 

and 3 are mounted on shaft B.
 11.23 The gears shown in Figure P11.20 have a module of 5 mm, tooth width of 15 mm, and a 

20° pressure angle. Determine:
 a. The allowable bending load, applying the Lewis equation and Kf = 1.5, for the tooth of 

gear 3.
 b. The allowable load for wear, using the Buckingham equation, for gears 3 and 4.
 c. The maximum tangential load that gear 3 can transmit.
  Design Decisions: All gears are made of cast steel (0.20% C WQ&T, Table 11.3); gears 2 

and 3 are mounted on shaft B.
 11.24 Reconsider Problem 11.23, but to find the allowable bending load for gear 1, the allow-

able bending load for gears 1 and 2, and the maximum tangential load that gear 2 can 
transmit.

 11.25 A 20° pressure angle, 22-tooth spur gear with a module of 2.5 mm and a 30 mm face 
width is to operate at 1500 rpm. Find:

 a. The allowable bending load by the Lewis formula.
 b. The maximum tangential load and power that the gear can transmit.
  Assumption: The gear is made of AISI 1045 WQ&T steel (see Table 11.3).
 11.26 The gears shown in Figure P11.21 have a module of 4 mm, a 25° pressure angle, and a 

tooth width 10 mm. Determine:
 a. The allowable bending load, applying the Lewis equation and Kf = 1.4, for the tooth of 

gear 2.
 b. The allowable load for wear, using the Buckingham equation, for gears 3 and 4.
 c. The maximum tangential load that gear 2 can transmit, based on bending strength.
  Design Decisions: All gears are made of steel hardened to 200 Bhn; gears 2 and 3 are 

mounted on shaft B.
 11.27 The gears shown in Figure P11.21 have a module of 10 mm, a 20° pressure angle, and a 

tooth width of 15 mm. Determine:
 a. The allowable bending load, using the Lewis equation and Kf = 1.5, for the tooth of 

gear 4.
 b. The allowable load for wear, applying the Buckingham equation, for gears 1 and 2.
  Design Decisions: All gears are made of hardened steel (200 Bhn), and gears 2 and 3 are 

mounted on shaft B.
 11.28 Reconsider Problem 11.27, except to determine bending load of gear 1 and the allowable 

load for wear for gears 3 and 4.
 11.29 The 20° pressure angle and tooth width of 15 mm gears in a speed reducer are specified 

as follows:
  Pinion: 1600 rpm, 24 teeth, 180 Bhn steel, kW = 0.9, m = 2 mm, CL = Cf = 1, Km = 1.6, 

Ko = Ks = KT = KL = 1, KR = 1.25.
  Gear: 60 teeth, AGMA 30 cast iron.
  Are the gears safe with regard to the AGMA bending strength?
  Assumption: The manufacturing quality of the pinion and gear corresponds to curve D 

of Figure 11.15.
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 11.30 Determine whether the gears in Problem 11.29 are safe with regard to the AGMA wear 
strength.

 11.31 The 20° pressure angle and tooth width of 15 mm gears in a gearbox are specified with 
the following data:

  Pinion: 1200 rpm, 20 teeth, 300 Bhn, kW = 1.0 m = 3 mm, CL = Cf = 1, Km = 1.7, Ko =  
Ks = KT = KL = 1, KR = 1.3.

  Gear: 50 teeth, AGMA 40 cast iron.
  Determine whether the gears are safe on the basis of the AGMA bending strength.
  Assumption: The manufacturing quality of the pinion and the gear correspond to curve 

D of Figure 11.15.
 11.32 Find whether the gears described Problem 11.31 are safe with regard to the AGMA wear 

strength.
 11.33 A pair of cast iron (AGMA grade 40) gears has a module of 5 mm, a 20° pressure angle, 

and a width of 50 mm. A 20-tooth pinion rotating at 90 rpm drives a 40-tooth gear. 
Determine the maximum (in kW) power that can be transmitted, based on wear strength, 
and using the Buckingham equation.

 11.34 Resolve Problem 11.33 using the AGMA method, if the life is to be no more than 106 
cycles corresponding to a reliability of 99%.

  Given: E = 131 GPa and v = 0.3.
  Assumption: The gears are manufactured with precision.
 11.35 A gear set of cast iron (AGMA grade 30) has a 5 mm module and a width of 40 mm. A 

25-tooth pinion rotates at 120 rpm and drives a 50-tooth gear. The gears are cut using a 
pressure angle of 20°. What is the maximum horsepower that can be transmitted on the 
basis of wear strength by applying the Buckingham formula?

 11.36 A pair of gears has a 20° pressure angle and a module of 4 mm. Determine the maximum 
power (in kW) that can be transmitted, based on bending strength and applying the Lewis 
equation and Kf = 1.4.

  Design Decisions: The gear is made of phosphor bronze, has 60 teeth, and rotates at 240 
rpm. The pinion is made of SAE 1040 steel and rotates at 600 rpm.

  Given: Both gears have a width of 90 mm.
 11.37 Redo Problem 11.36 for two meshing gears that have widths of 80 mm and a module of 4 

mm.
 11.38 Resolve Problem 11.36, based on a reliability of 90% and moderate shock on the driven 

machine. Apply the AGMA method for KL = KT = Ks = 1.
  Assumption: The manufacturing quality of the gear set corresponds to curve C of 

Figure 11.15.
 11.39 Two meshing gears have face widths of 50 mm and a module of 6 mm. The pinion is 

rotating at 600 rpm and has 28 teeth, and the velocity ratio is to be 4/5. Determine the 
horsepower that can be transmitted, based on wear strength, and using the Buckingham 
equation.

  Design Decisions: The gears are made both of steel hardened to a 350 Bhn and have a 
20° pressure angle.

 11.40 Resolve Problem 11.39 for a gear set that has a width of 60 mm and a module of 6 mm.
 11.41 Redo Problem 11.39 based on a reliability of 99.9% and applying the AGMA method.
  Given: CL = Cf = 1, Ko = Ks = KT = 1, E = 210 GPa, v = 0.3.
  Assumption: The gear set is manufactured with high precision, shaved, and ground.
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12 Helical, Bevel, and 
Worm Gears

12.1  INTRODUCTION

In Chapter 11, the kinematic relationships and factors that must be considered in designing straight-
toothed or spur gears were presented. Several specialized forms of gears exist. We now deal with 
the three principal types of nonspur gearing: helical, worm, and bevel gears.* The geometry of these 
different types of gearing is considerably more complicated than for spur gears (see Figure 11.1). 
However, much of the discussion of the previous chapter applies equally well to the present chap-
ter. Therefore, the treatment here of nonspur gears is relatively brief. As noted in Section 11.9, the 
reader should consult the American Gear Manufacturing Association (AGMA) standards for more 
information when faced with a real design problem involving gearing.

Helical, bevel, and worm gears can meet specific geometric or strength requirements that cannot 
be obtained from spur gears. Helical gears are very similar to spur gears. They have teeth that lie in 
helical paths on the cylinders instead of teeth parallel to the shaft axis. Bevel gears, with straight or 
spiral teeth cut on cones, can be employed to transmit motion between intersecting shafts. A worm 
gearset, consisting of screw meshing with a gear, can be used to obtain a large reduction in speed. 
The analysis of power screw force components, to be discussed in Section 15.3, also applies to worm 
gears. By noting that the thread angle of a screw corresponds to the pressure angle of the worm, 
expressions of the basic definitions and efficiency of power screws are directly used for a wormset 
in Sections 12.9 and 12.11.

12.2  HELICAL GEARS

Like spur gears, helical gears are cut from a cylindrical gear blank and have involute teeth. The 
difference is that their teeth are at some helix angle to the shaft axis. These gears are used for trans-
mitting power between parallel or nonparallel shafts. The former case is shown in Figure 12.1(a). 
The helix can slope in either the upward or downward direction. The terms right-hand (RH) and 
left-hand (LH) helical gears are used to distinguish between the two types, as indicated in the fig-
ure. Note that the rule for determining whether a helical gear is right- or left-handed is the same as 
that used for determining RH and LH screws.

Herringbone gear refers to a helical gear having half its face cut with teeth of one hand and 
the other half with the teeth of opposite hand (Figure 12.2). In nonparallel, nonintersecting shaft 
applications, gears with helical teeth are known as crossed helical gears, as shown in Figure 12.1b. 
Such gears have point contact, rather than the line contact of regular helical gears. This severely 
reduces their load-carrying capacity. Nevertheless, crossed helical gears are frequently used for the 
transmission of relatively small loads, such as distributor and speedometer drives of automobiles. 
We consider only conventional helical gears on parallel shafts.

Figure 12.3 illustrates the thrust, rotation, and hand relations for some helical gearsets with par-
allel shafts. Note that the direction in which the thrust load acts is determined by applying the RH or 
LH rule to the driver. That is, for the RH driver, if the fingers of the RH are pointed in the direction 

* For variations of the foregoing basic gear types and further details, see, for example, [1–8] and the websites  
www.machinedesign.com and www.powertransmission.com.
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of rotation of the gears, the thumb points in the direction of the thrust. The driven gear then has a 
thrust load acting in the direction opposite to that of the driver, as shown in the figure.

The advantages of helical gears over other basic gear types include more teeth in contact simul-
taneously, and the load transferred gradually and uniformly as successive teeth come into engage-
ment. Gears with helical teeth operate more smoothly and carry larger loads at higher speeds than 
spur gears. The line of contact extends diagonally across the face of mating gears. When employed 
for the same applications as spur gears, these gears have quiet operation. The disadvantages of 
helical gears are a greater cost than spur gears and the presence of an axial force component that 
requires thrust bearings on the shaft.

12.3  HELICAL GEAR GEOMETRY

Helical gear tooth proportions follow the same standards as those for spur gears. The teeth form 
the helix angle ψ with the gear axis, measured on an imaginary cylinder of pitch diameter d. The 
usual range of values of the helix angle is between 15° and 30°. Various relations may readily be 

FIGURE 12.1 Helical gears: (a) opposite-hand pair meshed on parallel axes (most common type) and 
(b) same-hand pair meshed on crossed axes (Courtesy: Boston Gear, Boston, MA).

c

FIGURE 12.2 A typical herringbone gearset.
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developed from geometry of a basic rack. Figure 12.4 illustrates dimensions in transverse plane (At), 
normal plane (An), and axial plane (Ax). The distances between similar pitch lines from tooth to 
tooth are the circular pitch p, the normal circular pitch pn, and the axial (circular) pitch pa.

Observe from the figure that the p and the pressure angle ϕ are measured in the transverse plane 
or the plane of rotation, as with spur gears. Hence, the p and the ϕ are also referred to as the trans-
verse circular pitch and transverse pressure angle, respectively. The quantities pn and normal pres-
sure angle ϕn are measured in a normal plane. Referring to the triangles ABC and ADC, we write

 = ψ = ψ =
ψ

cos , cot
sin

p p p p
p

n a
n  (12.1)

Diametral pitch is more commonly employed than circular pitch to define tooth size. The product of 
circular and diametral pitch equals π for normal as well as transverse plane. Therefore,

 = π = π =
ψ

=, ,
cos

,Pp P p P
P

P
N

d
n n n  (12.2)

In SI units, we have

 m P m P= 1/ , = 1/n n  (12.2')

R.H. driver R.H. driver

L.H. driven L.H. driverL.H. driven

R.H. driven

FIGURE 12.3 Direction, rotation, and thrust load for three helical gearsets with parallel shafts.
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FIGURE 12.4 Portion of a helical rack displaying transverse and normal planes and resolution of forces.
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where
P = the diametral pitch
Pn = the normal diametral pitch
N = the number of teeth
m = the module 
mn = the normal module

In the triangles EGH and EGI (Figure 12.4), EG = h; however, GH/GI = p/pn = 1/cos ψ from the first 
of Equations (12.1). Here, h is the whole depth of the gear teeth. We also have tan ϕ = GH/h, tan 
ϕn = GI/h, or tan ϕ/tan ϕn = GH/GI. Hence, pressure angles are related by

 φ = φ ψtan tan cosn
 (12.3)

Other geometric quantities are expressed similarly to those for spur gears:

 =
π

=
π ψ

=
ψcos cos

d
Np Np N

P
n

n

 (12.4)

 ( )= + =
π

+ = +
ψcos �

c
d d p

N N
N N

P2 2 2 n

1 2
1 2

1 2  (12.5)

where c represents the center distance of mating gears (1 and 2).

12.3.1  virtual numBer oF teeth

Intersection of the normal plane N–N and the pitch cylinder of diameter d is an ellipse (Figure 12.4). 
The shape of the gear teeth generated in this plane, using the radius of curvature of the ellipse, 
would be a nearly virtual spur gear having the same properties as the actual helical gear. From ana-
lytic geometry, the radius of curvature rc at the end of a semi-minor axis of the ellipse is

 =
ψcos

r
d /2

c 2
 (12.6)

The number of teeth of the equivalent spur gear in the normal plane, known as either the virtual or 
equivalent number of teeth, is then

 ′ = π =
ψcos

N
r

p

rd

p

2 c

n n
2

 (12.7a)

Carrying the values for πd/pn from Equation (12.4) into Equation (12.7a), the virtual number of teeth 
N′ may be expressed in the following convenient form:

 ′ =
ψcos

N
N

3
 (12.7b)

As noted previously, N is the number of actual teeth.
It is necessary to know the virtual number of teeth in design. This is considered in finding the 

appropriate values of the geometric factors Y and J for helical gears, as discussed in Section 12.5.

12.3.2  ContaCt ratios

The total contact ratio Crt of helical gears is the sum of transverse and axial contact ratios. That is,

 = +C C Crt r ra
 (12.8)
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471Helical, Bevel, and Worm Gears

The transverse contact ratio Cr is the same as defined for spur gears by Equation (11.14). Owing to 
the helix angle, the axial contact ratio Cra is given by

 = = ψtan
C

b

p

b

p
ra

a

 (a)

The quantities b and pa represent the face width and axial pitch, respectively. The preceding ratio, 
indicating the degree of helical overlap in the mesh, should be higher than 1.15. Clearly, larger trans-
verse contact ratio Cr and face width b will increase the overlapping of teeth and hence promote 
load sharing.

Example 12.1: Geometric Quantities for Helical Gears

Two helical gears have a center distance of c = 252 mm, width b = 47.5 mm, a pressure angle of ϕ = 25°, 
a helix angle of ψ = 30°, and a module of m = 4.2 mm. If the speed ratio is to be rs = 1/3, calculate:

 a. The (transverse) circular, normal circular, and axial pitches.
 b. The number of teeth of each gear.
 c. The normal diametral pitch and normal pressure angle.
 d. The total contact ratio.

Solution

 a. Applying Equations (12.1) and (12.2),

 
= π = π( . )p m 4 2 = 13.195 mm

 

 = ° =. cos .p 13 195 30 11 427 mmn
 

 = ° =. cotp 13 195 30 22.854 mma
 

 b. Through the use of Equation (11.8),

 = = =r
N

N
N N

1

3
or 3s

1

2
2 1 

 Equation (12.5) gives then

 ( )=
π

+ =.
N N N252

13 195

2
3 or 301 1 1  

and hence, N2 = 90. Thus, d1 = = N1m = 30(4.2) = 126 mm and d2 = 378 mm.
 c. From Equation (12.2), we have

 
°m = 4.2 cos 30 = 3.64 mmn

 

 By Equation (12.3),

 φ = ° °tan tan cos25 30n  

 from which

 φ = °22n  
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 d. The addendum equals a = a1 = a2 = m = 4.2 mm. Applying Equation (11.14), the contact ratio of 
spur gear is

 ( ) ( ) ( ) ( )=
φ

+ − φ + + + φ





− φ
cos

cos cos tan
C

p
r a r r a r

c

p

1
r 1

2
1

2
2

2
2

2  

 Introducing the data

 

( ) ( )

( ) ( )

=
°

+ − °


+ + − ° 


− °

=

. cos
. cos

. cos tan
.

.

C
1

13 195 25
63 4 2 63 25

189 4 2 189 25
252 25

13 195

1 53

r
2 2

2 2  

 The total contact ratio for the helical gear, by Equation (12.8), is

 = + = + ° =. . tan
.

.C C C 1 53
47 5 30

13 195
3 61rt r ra

 

Comment: The result, about 3.61, is a reasonable value.

12.4  HELICAL GEAR TOOTH LOADS

This section is concerned with the applied forces or loads acting on the tooth of a helical gear. As in 
the case of spur gears, the points of application of the force are in the pitch plane and in the center 
of the gear face. Again, the load is normal to the tooth surface and indicated by Fn. The transmitted 
load Ft is the same for spur or helical gears.

Figure 12.5 schematically shows the three components of the force acting against a helical gear 
tooth. Obviously, the inclined tooth develops the axial component, which is not present with spur 
gearing. We see from Figure 12.5 that the normal load Fn is at a compound angle defined by the 
normal pressure angle ϕn and the helix angle ψ in combination. The projection of Fn on the plane 

Ft

Fr

Fa

y

x

z

Pitch
circle

ψ

ψ

n

Fn

FIGURE 12.5 Components of tooth force acting on a helical gear.
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of rotation is inclined at an angle ϕ to the radial force component. Hence, the values of components 
of the tooth force are

 

= φ

= φ ψ

= φ ψ

sin

cos cos

cos sin

F F

F F

F F

r n n

t n n

a n n

 (12.9)

where
Fn = the normal load or applied force
Fr = the radial component
Ft = the tangential component, also called the transmitted load
Fa = the axial component, also called the thrust load

Usually, the transmitted load Ft is obtained from Equation (11.22), and the other forces are 
desired. It is therefore convenient to rewrite Equations (12.9) as

 

= φ

= ψ

=
φ ψ

tan

tan

cos cos

F F

F F

F
F

r t

a t

n
t

n

 (12.10)

In the foregoing, the pressure angle ϕ is related to the helix angle ψ and normal pressure angle ϕn 
by Equation (12.3).

The thrust load requires the use of bearings that can resist axial forces as well as radial loads. 
Sometimes, the need for a thrust-resistant bearing can be eliminated by using a herringbone gear. 
Obviously, the axial thrust forces for each set of teeth in a herringbone gear cancel each other.

12.5  HELICAL GEAR TOOTH BENDING AND WEAR STRENGTHS

The equations for the bending and wear strengths of helical gear teeth are similar to those of spur 
gears. However, slight modifications must be made to take care of the effects of the helix angle 
ψ. The discussions of the factors presented in Chapter 11 on spur gears also apply to the helical 
gearsets. Adjusted forms of the fundamental equations are introduced in the following discussion.

12.5.1  lewis equation

The allowable bending load of the helical gear teeth is given by the following expression:

 = σ
F

b

K

Ym

1
b

o

f

n  (11.33, modified)

The value of Y is obtained from Table 11.2 using the virtual teeth number N′.

12.5.2  BuCkingham equation

The limit load for wear for helical gears on parallel shafts may be written in the following form:

 =
ψω cos

F
d bQKp

2
 (11.38, modified)
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where

 =
+

Q
N

N N

2 g

p g

 (11.40)

The wear load factor K can be taken from Table 11.9 for the normal pressure angle ϕn.
For satisfactory helical gear performance, the usual requirement is that Fb ≥ Fd and Fw ≥ Fd. The 

dynamic load Fd acting on helical gears can be estimated by the following formula:

 ( )= +.
.

F
V

F V
5 56

5 56
for 0 < > 20.32 m/sd t  (11.24c, modified)

in which the pitch-line velocity, V in m/s, is defined by Equation (11.20′).

12.5.3  agma equations

The formulas used for spur gears also apply to the helical gears. They were presented in Sections 
11.9 and 11.11 with explanation of the terms. So the equation for bending stress is

 
( )σ =

σ =

υ

υ
. ( )

F K K
P

b

K K

J

F K K
bm

K K

J

US customary units

1 0
SI units

t o
s m

t o
s m

 (11.35)

Similarly, for wear strength, we have

 σ = 



υ

/

C F K K
K

bd

K C

I
c p t o

s m f
1 2

 (11.42)

where

 = φ φ
+

sin cos
I

m

m

m2 1N

G

G

 (11.43b)

The charts and graphs previously given in Chapter 11 are valid equally well. The values of the 
geometry factor J for helical gears are obtained from Figure 12.6. The size factor Ks = 1 for helical 
gears.

The calculation of the geometry factor I through the use of Equation (11.43b), for helical gears, 
requires the values of the load-sharing factor:

 =
.

m
p

Z0 95
N

nb  (12.11)

Here
 pnb represents the normal base pitch = pn cos ϕn

 Z is the length of action in transverse plane

Equation (11.13) may be used to compute the value for Z, in which the addendum equals 1/Pn. 
Consult the appropriate AGMA standard for further details.

Allowable bending and surface stresses are calculated from equations given in Sections 11.9 and 
11.11, repeated here, exactly as with spur gears:
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 σ = S K

K K
t L

T R
all

 (11.36)

 σ =,
S C C

K K
c

c L H

T R
all

 (11.44)

The design specifications and applications are the same as discussed in Chapter 11 for spur gears. 
Examples 12.2 and 12.3 further illustrate the analysis and design of helical gears.

Example 12.2: Electric Motor Geared to Drive a Machine

A motor at about n = 2400 rpm drives a machine by means of a helical gearset as shown in Figure 12.7. 
Calculate:

 a. The value of the helix angle.
 b. The allowable bending and wear loads using the Lewis and Buckingham formulas.
 c. The horsepower that can be transmitted by the gearset.

Given: The gears have the following geometric quantities:

 . , , , , ,m c N N b5 1 mm 20 228.6 mm 30 42 50 mmn 1 2= φ = ° = = = =  

0.30

1.05

1.00

0.95

0.90

0° 5° 10° 15° 20° 25°
Helix angle, ψ(a)

(b) Helix angle, ψ
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, J

Te
et

h 
in

 m
at

in
g 

ge
ar

N
um

be
r o

f t
ee

th

30° 35°
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0° 5° 10° 15° 20° 25° 30° 35°

0.40

0.50

0.60
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FIGURE 12.6 Helical gears with normal pressure angle ϕn = 20°: (a) AGMA helical gear geometry factor J; 
(b) J-factor multipliers for use when the mating gear has other than 75 teeth (ANSI/AGMA Standard 218.01).
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Design Assumptions: The gears are made of SAE 1045 steel, water-quenched and tempered (WQ&T), 
and hardened to 200 Bhn.

Solution

 a. From Equations (12.1) through (12.5), we have

 ( )= + =/ m
c

N N m1
1

2
0.1575, = 6.35 mm1 2

 

 
d N m= = 30(6.35) = 190.5 mm1

 

 
=d N m = 42(6.35) = 266.7 mm2 2

 

 
ψ = = ψ = ψ = °cos . .N m d/ =30(5.1)/190.5 0 8 or 36 9n1 1 1 1 2

 

 b. The virtual number of teeth, using Equation (12.7b), is

 
( )

′ =
ψ

= =
cos .

.N
N 30

0 8
58 63 3

 

 Hence, interpolating in Table 11.2, Y = 0.419. By Table 11.3, σo = 221 MPa. Applying the Lewis 
equation (Equation (11.33), modified) with Kf = 1,

 
= σF b mY = 221(50)(0.419)(5.1) = 23.6 kNb o n

 

 By Table 11.9, K = 0.545 MPa. From Equation (11.40),

 ( )
=

+
= =Q

N

N N

2 2 42

72

7

6
g

p g

 

 The Buckingham formula, Equation ((11.38), modified), yields

 
( )

=
ψ

= =
cos .

F
d bQK 190.5(50)(7)(0.545)

6 0 8
9.463 kNw

1
2 2

 

Electric
motor

Gear 2 Coupling

Gear 1
(pinion)

ψ

Driven
machine

n

b
c

FIGURE 12.7 Example 12.2. Schematic arrangement of motor, gear, and driven machine.
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 c. The horsepower capacity is based on Fw since it is smaller than Fb. The pitchline velocity 
equals

 ( )( )
= π =

π
=V

d n

60

0.1905 2400

60
23.94 m/s1 1  

 The dynamic load, using Equation ((11.24c), modified), is

 = + = .F F F
5.56 23.94

5.56
1 88d t t

 

 Equation (11.41), Fw ≥ Fd, results in

 = . F F9.463 1 88 or = 5.034 kNt t  

 The corresponding gear power is therefore

 = = = .FV
kW

1000

5034(23.94)

1000
120 5t  

Comment: Observe that the dynamic load is about twice the transmitted load, as expected for reliable 
operation.

Case Study 12.1 High-Speed Turbine Geared to Drive a Generator

A turbine rotates at about n = 8000 rpm and drives, by means of a helical gearset, a 250 kW (335 
hp) generator at 1000 rpm, as depicted in Figure 12.8. Determine:

 a. The gear dimensions and the gear tooth forces.
 b. The load capacity based on the bending strength and surface wear using the Lewis and 

Buckingham equations.
 c. The AGMA load capacity on the basis of strength only.

b

Gear Coupling

Generator
ψ

Pinion

Turbine

c
n

FIGURE 12.8 Schematic arrangement of turbine, gear, and generator.
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Given: Gearset helix angle ψ = 30° and

 = φ = °, ,N mPinion: 35 20 = 3.3 mmp n n
 

Design Assumptions:

 1. Moderate shock load on the generator and a light shock on the turbine.
 2. Mounting is accurate.
 3. Reliability is 99.99%.
 4. Both pinion and gear are through hardened, precision shaped, and ground to permit to run 

at high speeds.
 5. The pinion is made of steel with 150 Bhn, and gear is cast iron.
 6. The gearset goes on a maximum of =c 470 mm center distance. However, to keep pitch-line 

velocity down, gears are designed with as small a center distance as possible.
 7. To keep stresses down, a wide face width b = 20 mm. large gearset is used.
 8. The generator efficiency is 95%.

Solution

See Figures 12.6 and 12.8 and Tables 11.5 through 11.9.

 a. The geometric quantities for the gearset are obtained by using Equations (12.1) through 
12.5. Therefore,

 φ = φ
ψ

= °
°

= °− −tan tan
cos

tan tan
cos

.20
30

22 8n1 1  

 cos . cos .m m 3 3 30 2 86 mmn= ψ = ° =  

 
=d N m = 35(2.86) = 100 mmp p

 

 =






= 





=N N
n

n
35

8000
1000

280g p
p

g

 

 
d N m= = 280(2.86) = 801 mmg p

 

It follows that

 
( )= +

=

c d d
1
2

1
2

(100 + 801) = 450.5 mm

p g

 

Comment: The condition that the center distance is not to exceed 470 mm is satisfied.
The pitch-line velocity equals

 ( )= π =
π

=
.

V
dn

60

0 1 8000

60
41.9 m/s 
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The power that the gear must transmit is about 250/0.95 = 263 kW. The transmitted load is 
then

 = = =
.

.F
V

1000 kW 1000(263)
41 9

6 28 kNt
 

As a result, the radial, axial, and normal components of tooth force are, using Equation 
(12.10),

 = φ = ° =tan tan .F F 6.28 22 8 2.64 kNr t
 

 tan . tanF F 6 28 30 3.63 kNa t= ψ = ° =  

 =
φ ψ

=
° °

=
cos cos

.
cos cos

F
F 6 28

20 30
7.72 kNn

t

n

 

 b. From Equation (12.7b), we have

 ′ =
ψ

=
°

=
cos cos

.N
N 35

30
53 93 3  

Then, for 53.9 teeth and ϕ = 22.8° by interpolation from Table 11.2, Y = 0.452. Using 
Table 11.3, σo ≈ 124 MPa. Applying Equation ((11.33), modified) with Kf = 1,

 
= σF b Ym = 124(200)(0.452)(3.3) = 37 kNb o n

Corresponding to ϕ = 22.8°, interpolating in Table 11.9, K ≈ 469 kPa. Through the use of 
Equation (11.40),

 ( )=
+

=
+

=Q
N

N N

2 2 280

35 280
112
63

g

p g

 

The limit load for wear, by Equation ((11.38), modified), is

 
cos

F
d bQK

100(200)(469)(112)

63 cos 30
22.23 kN

w
p

2

2( )

=
ψ

=
°

=

 

Because the permissible load in wear is less than that allowable in bending, it is used as 
the dynamic load Fd. So from Equation ((11.24c), modified),

 
= +

= +

.
.

. .
.

F
V

F

F F

5 56
5 56

22 23
5.56 41 9

5 56
=2.16

d t

t t
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or

 F = 10.29 kNt
 

 c. Application of Equation (11.36) leads to

 σ = S K

K K
t L

T R
all

 

where
St = 143 MPa (interpolating, Table 11.6 for a Bhn of 150)

KL = 1.0 (indefinite life, Table 11.7)
KT = 1.0 (from Section 11.9)
KR = 1.25 (by Table 11.8)

The preceding equation is therefore

 ( )
( )( )σ = =

.
. .

143 MPa 1 0

1 0 1 25
114.4 MPaall

 

The tangential force, by Equation (11.35) with σ = σall, is

 = σ
υ

F
K K

bm J

K K1
t

o s m

all  (a)

Here, we have
Ko = 1.5 (Table 11.4)
Kv = 2.18 (from curve B of Figure 11.15)
Ks = 1.1 (from Section 12.5)
Km = 1.5 (by Table 11.5)
J = 0.47 (for Np = 35 and ψ = 30°, Figure 12.6(a))
J − multiplier = 1.02 (for Ng = 280 and ψ = 30°, Figure 12.6(b))
J = 1.02 × 0.47 = 0.48

Equation (a) is then

 
( )( )( )( )( )= =

. . . . .
F

114.4(200)(2.86)(0.48)
1 5 2 18 8 66 1 1 1 5

6.4 kNt
 

compared to the approximate result 10.29 kN for part b.

Comments: The tangential load capacity of the gearset, 6.4 kN, is larger than the force to be 
transmitted, 6.28 kN (allowance is made for 95% generator efficiency); the gears are safe. Since 
a wide face width is used, the design should be checked for combined bending and torsion at 
the pinion [1].

Remarks: A turbine is a rotary mechanical device that extracts energy from a fluid flow and 
converts it into work. This work created by a turbine-generator assembly can be used for gen-
erating electrical power. A turbine is a turbomachine with at least one moving part termed a 
rotor assembly, that is, a shaft with blades attached. Moving fluid acts on the blades so that they 
move and transmit rotational energy to the rotor. Basic types of turbines are water, steam, gas, 
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and wind turbines. The identical principles apply to all turbines; however, their specific designs 
differ sufficiently to merit separate descriptions.

Turbines are often part of a large machine. Almost all electric power on earth is generated 
with a turbine of some type. Gas, steam, and water turbines have a casing around the blades 
that contains and controls the working fluid. A steam turbine is used for the generation of elec-
tricity in thermal power plants, such as plants using coal, fuel oil, or nuclear fuel. Gas turbines 
are sometimes referred to as turbine engines. Such engines usually include an inlet, fan, com-
pressor, combustor, and nozzle in addition to one or more turbines. Water turbines convert the 
potential energy of water on an upstream level into kinetic energy.

A wind turbine, illustrated in the following photo, is designed to convert the wind energy 
that exists at a location to electricity. We observe that, in this turbine there are three compo-
nents: the blades converting wind energy to low speed rotational energy; the housing (includ-
ing a drive shaft, gear train, high speed shaft, couplings, and generator); the structural support 
consisting of tower, rotating thrust bearing, and rotor yaw mechanism. Aerodynamic modeling 
is used to find the optimum tower height, control systems, number of blades, and blade shape.

Cutaway of a typical wind turbine.

12.6  BEVEL GEARS

Bevel gears are cut on conical blanks to be used to transmit motion between intersecting shafts. The 
simplest bevel gear type is the straight-tooth bevel gear or straight bevel gear (Figure 12.9). As the 
name implies, the teeth are cut straight, parallel to the cone axis, like spur gears. Clearly, the teeth 
have a taper and, if extended inward, would intersect each other at the axis. Although bevel gears 
are usually made for a shaft angle of 90°, the only type we deal with here, they may be produced for 
almost any angle as well as with teeth lying in spiral paths on the pitch cones. When two straight 
bevel gears intersect at right angles and the gears have the same number of teeth, they are called 
miter gears.

Spiral teeth bevel gears, called just spiral bevel gears or hypoid gears, have shafts that do not 
intersect, as shown in Figure 11.1. We see that the teeth are cut at a spiral angle to the cone axis, 
analogous to helical gears. It is therefore possible to connect continuous nonintersecting shafts 
by such gears. Often spiral gears are most desirable for those applications involving large speed-
reduction ratios and those requiring great smoothness and quiet operation. These gears are in wide-
spread usage for automotive applications. Zerol bevel gears have curved teeth like spiral bevels; 
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however, they have a 0 spiral angle similar to straight bevel gears. Bevel gears are noninterchange-
able. Usually, they are made and replaced as matched pinion gearsets.

12.6.1  straight Bevel gears

Straight bevel gears are the most economical of the various bevel gear types. These gears are used 
primarily for relatively low-speed applications with pitch-line velocities up to 1000 fpm, where 
smoothness and quiet are not significant considerations. However, with the use of a finishing opera-
tion (e.g., grinding), higher speeds have been successfully handled by straight bevel gears.

12.6.1.1  Geometry
The geometry of bevel gears is shown in Figure 12.10. The size and shape of the teeth are defined at 
the large end on the back cones. They are similar to those of spur gear teeth. Note that the pitch cone 
and (developed) back cone elements are perpendicular. The pitch angles (also called pitch cone angles) 
are defined by the pitch cones joining at the apex. Standard straight bevel gears are cut by using a 20° 
pressure angle and full-depth teeth, which increase the contact ratio and the strength of the pinion.

The diametral pitch refers to the back cone of the gear. Therefore, the relationships between the 
geometric quantities and the speed for bevel gears are given as follows:

 = =,d
N

P
d

N

P
p

p
g

g  (12.12a)

FIGURE 12.9 Bevel gears (Courtesy: Boston Gear, Boston, MA).
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 α = α =tan , tanN

N

N

N
p

p

g
g

g

p
 (12.12b)

 =
ω
ω

= = = α = αtan cotr
N

N

d

d
s

g

p

p

g

p

g
p g

 (12.13)

where
d = the pitch diameter
P = the diametral pitch
N = the number of teeth
α = the pitch angle
ω = the angular speed
rs = the speed ratio

In the preceding equations, the subscripts p and g refer to the pinion and gear, respectively.
It is to be noted that, for 20° pressure angle straight bevel gear teeth, the face width b should be 

made equal to

 = =b
L

b m
3

or 10  (a)

whichever is smaller. The uniform clearance is given by the following formula:

 c m0.188 + 0.05 mm=  (b)

The quantities L and c represent the pitch cone length and clearance, respectively (Figure 12.10).

Back cone
radius rbg

Uniform
clearance

Cone length L

Pitch
angles

Gear
back
cone

c

b

Pitch diameter dg

αg
αp

FIGURE 12.10 Notation for bevel gears.
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12.6.2  virtual numBer oF teeth

In the discussion of helical gears, it was pointed out that the tooth profile in the normal plane is a 
spur gear having an ellipse as its radius of curvature. The result is that the form factors for spur gears 
apply, provided the equivalent or a virtual number of teeth N′ are used in finding the tabular values. 
The identical situation exists with regard to bevel gears.

Figure 12.10 depicts the gear teeth profiles at the back cones. They relate to those of spur gears 
having radii of rbg (gear) and rbp (pinion). The preceding is referred to as the Tredgold’s approxima-
tion. Accordingly, the virtual number of teeth N′ in these imaginary spur gears

 ′ = ′ =,���N r P N r P2 2p bp g bg  (12.14)

This may be written in the following convenient form:

 ′ =
α

′ =
αcos

,
cos

N
N

N
N

p
p

p
g

g

g
 (12.15)

in which rbg is the back cone radius and N represents the actual number of teeth of bevel gear.

12.7  TOOTH LOADS OF STRAIGHT BEVEL GEARS

In practice, the resultant tooth load is taken to be acting at the midpoint of the tooth face (Figure 
12.11(a)). While the actual resultant occurs somewhere between the midpoint and the large end of 
the tooth, there is only a small error in making this simplifying assumption. The transmitted tan-
gential load or tangential component of the applied force, acting at the pitch point P, is then

 =F
T

r
t

avg

 (12.16)

Here
T represents the torque applied
ravg is the average pitch radius of the gear under consideration

Fn = Ft sec

Fa Fr

(b)

Ft

Ft tan

P

α
Fa

Fr

Ft

(a)

Travg

P

FIGURE 12.11 Forces at midpoint of bevel gear tooth: (a) three mutually perpendicular components; (b) the 
total (normal) force and its projections.
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485Helical, Bevel, and Worm Gears

The resultant force normal to the tooth surface at point P of the gear has value Fn = Ftsecϕ 
(Figure 12.11b). The projection of this force in the axial plane, Ft tan ϕ, is divided into the axial and 
radial components:

 
= φ α

= φ α

tan sin

tan cos

F F

F F

a t

r t

 (12.17)

where
Ft = the tangential force
Fa = the axial force
Fr = the radial force
ϕ = the pressure angle
α = the pitch angle

It is obvious that the three components Ft, Fa, and Fr are at right angles to each other. These forces 
can be used to ascertain the bearing reactions, by applying the equations of statics.

Example 12.3: Determining the Tooth Loads of a Bevel Gearset

A set of 20° pressure angle straight bevel gears is to be used to transmit 15 kW from a pinion operat-
ing at 500 rpm to a gear mounted on a shaft that intersects the shaft at an angle of 90° (Figure 12.12a). 
Calculate:

 a. The pitch angles and average radii for the gears.
 b. The forces on the gears.
 c. The torque produced about the gear shaft axis.

Solution

 a. Equation (12.13) gives

 .
.r d d

200
500

1
2 5

or 2 5 625 mms g p= = = =  

 α = 





= ° α = ° − α = °−tan
.

. .1

2 5
21 8 and 90 68 2p g p

1  

 Hence,

 sin sin .,r r
b

2
= 312.5 (25) 68 2 289.3 mmg g gavg = − α = − ° =  

15 kW
at

500 rpm

(a) (b)

833 N

833 N

2466 N

333 N

Pinion
dp = 250 mm

b = 50 mm
= 20°n

200 rpm

αg

αp

b

Gear

FIGURE 12.12 Example 12.3. Pitch cones of bevel gearset: (a) data; (b) axial and radial tooth forces.
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 sin sin .,r r
b

2
125 5 21 8 115.7 mmp p pavg ( )= − α = − ° =  

 b. Through the use of Equation (11.22),

 
( )=

π
=

π
=

,
F

d n

1000 kW

/60

1000(15)(60)

0.2314 500
= 2.476 kNt

p pavg

 

 From Equations (12.17), the pinion forces are

 ( )( )= φ α = ° ° =tan sin tan sin .F F 2476 20 21 8 335 Na t p
 

 ( )( )= φ α = ° ° =tan cos tan cos .F F 247 20 21 8 837 Nr t p
 

 As shown in Figure 12.12(b), the pinion thrust force equals the gear radial force, and the 
pinion radial force equals the gear thrust force.

 c. Torque, T = Ft(dg/2) = 2476(0.3125) = 774 N ∙ m.

12.8  BEVEL GEAR TOOTH BENDING AND WEAR STRENGTHS

The expressions for bending and wear strengths are analogous to those for spur gears. However, 
slight modifications must be made to take care of the effects of the cone angle α. The adjusted forms 
of the basic formulas are introduced in the following paragraphs.

12.8.1  lewis equation

It is assumed that the bevel gear tooth is equivalent to a spur gear tooth whose cross-section is the 
same as the cross-section of the bevel tooth at the midpoint of the face b. The allowable bending 
load is given by

 = σ
F

b

K

Ym

1
b

f

0  (11.33)

The factor Y is read from Table 11.2, for a gear of N′ virtual number of teeth.

12.8.2  BuCkingham equation

Due to the difficulty in achieving a bearing along the entire face width b, about three-quarters of b 
alone is considered as effective. So the allowable wear load can be expressed as

 =
′

α
.
cos

F
d bKQ0 75

w
p

p

 (11.38, re-modified)

where

 ′ =
′

′ + ′
Q

N

N N

2 g

p g

 (11.40, modified)

In the preceding, we have
dp = the diameter measured at the back of the tooth

ISTUDY

www.konkur.in

Telegram: @uni_k



487Helical, Bevel, and Worm Gears

N′ = the virtual tooth number
αp = the pitch angle
K = the wear load factor (from Table 11.9)

For the satisfactory operation of the bevel gearsets, the usual requirement is that Fb ≥ Fd and Fw ≥ Fd 
where the dynamic load Fd is given by Equation (11.24).

12.8.3  agma equations

The formulas are the same as those presented in the discussions of the spur gears. But only some 
of the values of the correction factors are applicable to bevel gears [2]. For a complete treatment, 
consult the appropriate AGMA publications and the references listed [4]. We present only a brief 
summary of the method to bevel gear design as an introduction to the subject.

The equation for the bending stress at the root of bevel gear tooth is the same as for spur or heli-
cal gears. Therefore,

 
( )

( )

σ =

σ =

υ

υ

F K K
P

b

K K

J

F K K
bm

K K

J

US customary units

1
SI units

t o
s m

t o
s m

 (11.35)

The tangential load Ft is obtained from Equation (12.16). Figure 12.13 gives the values for the fore-
going geometry factor J for straight bevel gears. The AGMA standard also provides charts of the 
factors for zerol and spiral bevel gears. The remaining factors in Equation (11.35) can be taken to be 
the same as defined in Section 11.9. The allowable bending stress of bevel gear tooth is calculated 
from Equation (11.36), exactly as for spur and helical gears.
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FIGURE 12.13 Geometry factors J for straight bevel gears. Pressure angle of 20° and shaft angle of 90° 
(AGMA Information Sheet 226.01).
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488 Mechanical Engineering Design

Surface stress for the wear of a bevel gear tooth is computed in a manner like that of spur or 
helical gears. Hence,

 σ = 



υ

/

C F K K
K

bd

K C

I
c p t o

s m f
1 2

 (11.42)

Only two modifications are required: Values of Cp are 1.23 times the values listed in Table 11.10, 
and values of I are taken from Figure 12.14. The allowable surface stress of a bevel gear tooth is 
obtained by Equation (11.44), exactly as for spur or helical gears.

12.9  WORM GEARSETS

Worm gearing can be employed to transmit motion between nonparallel nonintersecting shafts, as 
shown in Figures 11.1, 12.15, and 12.18. A worm gearset, or simply called a wormset, consists of a 
worm (resembles a screw) and the worm gear (a special helical gear). The shafts on which the worm 
and gear are mounted are usually 90° apart. The meshing of two teeth takes place with a sliding 
action, without shock relevant to spur, helical, or bevel gears. This action, while occurring in quiet 
operation, may generate overheating, however. It is possible to obtain a large speed reduction (up to 
360:1) and a high increase of torque by means of wormsets. Typical applications of worm gearsets 
include positioning devices that take advantage of their locking property (see Section 15.3).

Only a few materials are available for wormsets. The worms are highly stressed and usually 
made of case-hardened alloy steel. The gear is customarily made of one of the bronzes. The gear is 
hobbed, while the worm is ordinarily cut and ground or polished. The teeth of the worm must be 
properly shaped to provide conjugate surfaces. Tooth forms of worm gears are not involutes, and 
there are large sliding-velocity components in the mesh.

12.9.1  worm gear geometry

Worms can be made with single, double, or more threads. Worm gearing may be either single 
enveloping (commonly used) or double enveloping. In a single-enveloping set (Figures 12.15 and 
12.16(b)), the helical gear has its width cut into a concave surface, partially enclosing the worm 
when in mesh. To provide more contact, the worm may have an hourglass shape, in which case, 
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FIGURE 12.14 Geometry factors I for straight bevel gears. Pressure angle of 20° and shaft angle of 90° 
(AGMA Information Sheet 215.91).
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489Helical, Bevel, and Worm Gears

the set is referred to as double enveloping. That is, with the helical gear cut concavely, the double-
enveloping type also has the worm length cut concavely: both the worm and the gear partially 
enclose each other. The geometry of the worm is very complicated, and reference should be made 
to the literature for details.

The terminology used to describe the worm (Figure 12.16(a)) and power screws (see Section 15.3) 
is very similar. In general, the worm is analogous to a screw thread and the worm gear is similar 
to its nut. The axial pitch of the worm gear pw is the distance between corresponding points on 
adjacent teeth. The lead L is the axial distance the worm gear (nut) advances during one revolution 
of the worm. In a multiple-thread worm, the lead is found by multiplying the number of threads (or 
teeth) by the axial pitch.

The pitch diameter of a worm dw is not a function of its number of threads Nw. The speed ratio of 
a wormset is obtained by the ratio of gear teeth to worm threads:

 =
ω
ω

= =
π

r
N

N

L

d
s

g

w

w

g g
 (12.18)

As in the case of a spur or helical gear, the pitch diameter of a worm gear is related to its circular 
pitch and number of teeth using Equation (12.1):

Worm
Gear

FIGURE 12.15 A single-enveloping wormset (Courtesy: Martin Sprocket and Gear Co., Arlington, TX).

Center
distance
Center

distance

GearGear

λ = ψλ = ψ
WidthWidth

WormWorm

(a)(a) (b)(b)

Pitch diameter, dwPitch diameter, dw

Pitch
radius, rg

Pitch
radius, rg

bb

cc

pw

dwo

L

FIGURE 12.16 Notation for a worm gearset: (a) double-threaded worm; (b) worm gear (shown in a half-
section view).
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 =
π

d
N p

g
g  (12.19)

The center distance between the two shafts equals c = (dw + dg)/2, as shown in the figure.
The lead angle of the worm (which corresponds to the screw lead angle) is the angle between a 

tangent to the helix angle and the plane of rotation. The lead and the lead angle of the worm have 
the following relationships:

 =L p Nw w
 (12.20)

 λ =
π

=tan L

d

V

Vw

g

w
 (12.21)

where
L = the lead
pw = the axial pitch
Nw = the number of threads
λ = the lead angle
dw = the pitch diameter
V = the pitch line velocity

For a 90° shaft angle (Figure 12.16), the lead angle of the worm and helix angle of the gear are 
equal:

 λ = ψ  

Note that λ and ψ are measured on the pitch surfaces.
We show in Section 15.3 that the normal pressure angle ϕn of the worm corresponds to the thread 

angle αn of a screw. Normal pressure angles are related to the lead angle and the Lewis form factor 
Y, as shown in Table 12.1.

In conclusion, we point out that worm gears usually contain no less than 24 teeth, and the number 
of gear teeth plus worm threads should be more than 40. The face width b of the gear should not 
exceed half of the worm outside diameter dwo. AGMA recommends the magnitude of the minimum 
and maximum values for worm pitch diameter dW as follows:

 ≤ ≤
.

. .c
d

c

3 1 6
W

0 875 0 875

  (a)

Here, c represents the distance between the centers of the worm and the gear.

TABLE 12.1
Various Normal Pressure Angles for Wormsets

Pressure Angle, ϕn (°) Maximum Lead Angle, λ (°) Lewis Form Factor, Y

14 1
2

15 0.314

20 25 0.392

25 35 0.470

30 45 0 550
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491Helical, Bevel, and Worm Gears

Example 12.4: Geometric Quantities of a Worm

A triple-threaded worm has a lead L of 75 mm. The gear has 48 teeth and is cut with a hob of modulus 
mn = 7 mm perpendicular to the teeth. Calculate:

 a. The speed ratio rs.
 b. The center distance c between the shafts if they are 90° apart.

Solution

For a 90° shaft angle, we have λ = ψ.

 a. The velocity ratio of the worm gearset is

 = = =r
N

N

3

48

1

16
s

w

g

 

 b. Using Equation (12.20),

 = = =p
L

N

75

3
25 mmw

w

 

 From Equation (12.2) with mn = 1/pn, we obtain

 = π = π = .p m 7 21 99 mmn n  

 Equation (12.1) results in

 λ = = = λ = °cos . . .p

p

21 99

25
0 88 or 28 4n

w

 

  Application of Equation (12.21) gives

 =
π λ

=
π °

=
tan tan .

.d
L 75

28 4
44 15 mmw

 

 Through the use of Equation (12.18),

 =
π

=
π

= .d
L

r

75

/16
381 97 mmg

s

 

 We then have

 ( ) ( )= + = + =. . .c d d
1

2

1

2
44 15 381 97 213 1 mmw g

 

12.10  WORM GEAR BENDING AND WEAR STRENGTHS

The approximate bending and wear strengths of worm gearsets can be obtained by equations analo-
gous to those used for spur gears. Nevertheless, adjustments are made to account for the effects of 
the normal pressure angle ϕn and lead angle λ of the worm. The fundamental formulas for the allow-
able bending and wear loads for the gear teeth are as follows.
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12.10.1  lewis equation

The bending stresses are much higher in the gear than in the worm. The following slightly modified 
Lewis equation is therefore applied to worm gear:

 = σ
F

b

K

Ym

1
b

o

f

n  (11.33, modified)

The value of Y can be taken from Table 12.1. It is to be noted that the normal module mn is defined 
by Equation (12.2).

12.10.2  limit load For wear

The wear equation by Buckingham, frequently used for rough estimates, has the following form:

 =F d bKw g w
 (12.22)

where
Fw = the allowable wear load
dg = the pitch diameter
b = the face width of the gear
Kw = a material and geometry factor, obtained from Table 12.2

For a satisfactory worm gearset, the usual requirement is that Fb ≥ Fd and Fw ≥ Fd. The dynamic 
load Fd acting on worm gears can be approximated by

 ( )= +.
.

F
V

F V
6 1

6 1
for 0 < > 20.32 m/sd t  (11.24b, modified)

As earlier, the pitch-line velocity V is in m/s in this formula.

12.10.3  agma equations

The design of worm gearsets is more complicated and dissimilar to that of other gearing. The 
AGMA prescribes an input power rating formula for wormsets. This permits the worm gear dimen-
sions to be obtained for a given power or torque-speed combination [5]. A wider variation in proce-
dures is employed for estimating bending and surface strengths. Moreover, worm gear capacity is 

TABLE 12.2
Worm Gear Factors Kw

Material Kw (kPa)

Worm Gear λ < 10° λ < 25° λ > 25°

Steel, 250 Bhn Bronzea 420 525 630

Steel, 500 Bhn Bronzea 560 700 840

Hardened steel Chilled bronze 840 1050 1260

Cast iron Bronzea 1050 1295 1575

a Sand cast.
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493Helical, Bevel, and Worm Gears

frequently limited not by fatigue strength, but by heat-dissipation or cooling capacity. The latter is 
discussed in the next section.

12.11  THERMAL CAPACITY OF WORM GEARSETS

The power capacity of a wormset in continuous operation is often limited by the heat- dissipation 
capacity of the housing or casing. Lubricant temperature commonly should not exceed about 93°C 
(200°F). The basic relationship between temperature rise and heat dissipation can be expressed as 
follows:

 = ∆H CA t  (12.23)

where
H = the time rate of heat dissipation, lb. ft/min
C = the heat transfer, or cooling rate, coefficient (lb · ft per minute per square foot of housing 

surface area per °F)
A = the housing external surface area, ft2

Δt = the temperature difference between oil and ambient air, °F

The values of A for a conventional housing, as recommended by AGMA, may be estimated [7] 
by the following formula:

 = . .A c0 3 1 7 (12.24)

Here, A is in square feet and c represents the distance between shafts (in inches). The approximate 
values of heat transfer rate C can be obtained from Figure 12.17. Note from the figure that C is 
greater at high velocities of the worm shaft, which causes a better circulation of the oil within the 
housing.
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FIGURE 12.17 Heat transfer coefficient C for worm gear housing.
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The manufacturer usually provides the means for cooling, such as external fins on housing and 
a fan installed on the worm shaft, as shown in Figure 12.18. It is observed from the figure that the 
worm gear has spiral teeth and a shaft at right angle to the worm shaft. Clearly, an extensive sump 
and corresponding large quantity of oil help increase heat transfer, particularly during overloads. In 
some warm gear reduction units, oil in the sump may be externally circulated for cooling.

The heat-dissipation capacity H of the housing, as determined by Equation (12.23), in terms of 
horsepower is given in the following form:

 = ∆CA t
hp

33,000
d  (12.25)

This loss of horsepower equals the difference between the input horsepower hpi and output horsepower 
hpo. Inasmuch as e = hpo/hpi, we have hpd = hpi − e(hpo). The input horsepower capacity is therefore

 =
− e

hp
hp
1

i
d  (12.26)

The quantity e represents the efficiency.

12.11.1  worm gear eFFiCienCy

The expression of the efficiency e for a worm gear reduction is the same as that used for a power 
screw and nut, developed in Section 15.4. In the notation of this chapter, Equation (15.13) is written 
as follows:

 = φ − λ
φ − λ

cos tan
cos cot

e
f

f
n

n

 (12.27)

FIGURE 12.18 Worm gear speed reducer (Courtesy: Cleveland Gear Company, Cleveland, OH).
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where
 f is the coefficient of friction
 ϕn represents the normal pressure angle

The value of f depends on the velocity of sliding Vs between the teeth:

 =
λcos

V
V

s
w

 (12.28)

The quantity Vs is the pitch-line velocity of the worm. Table 12.3 furnishes the values of the coef-
ficient of friction.

Example 12.5: Design Analysis of a Worm Gear Speed Reducer

A worm gearset and its associated geometric quantities are schematically shown in Figure 12.19. 
Estimate:

TABLE 12.3
Worm Gear Coefficient of Friction f for Various Sliding Velocities Vs

Vs (fpm) f Vs (fpm) f Vs (fpm) f

0 0.150 120 0.0519 1200 0.0200

1 0.115 140 0.0498 1400 0.0186

2 0.110 160 0.0477 1600 0.0175

5 0.099 180 0.0456 1800 0.0167

10 0.090 200 0.0435 2000 0.0160

20 0.080 250 0.0400 2200 0.0154

30 0.073 300 0.0365 2400 0.0149

40 0.0691 400 0.0327 2600 0.0146

50 0.0654 500 0.0295 2800 0.0143

60 0.0620 600 0.0274 3000 0.0140

70 0.0600 700 0.0255 4000 0.0131

80 0.0580 800 0.0240 5000 0.0126

90 0.0560 900 0.0227 6000 0.0122

100 0.0540 1000 0.0217 — —

Source: From ANSI/AGMA Standard 6034-A87.

Gear

n = 1000 rpm

c = 8 in. (203 mm)

Worm
λ = 15°

Ng = 60

Nw = 4
dw = 3 in. (76 mm)

n = 25°

FIGURE 12.19 Example 12.5.
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 a. The heat-dissipation capacity.
 b. The efficiency.
 c. The input and output horsepower.

Assumptions: The gearset is designed for continuous operation based on a limiting 100°F temperature 
rise of the housing without fan.

Solution

The speed ratio of the worm gearset is

 = = =r
N

N

4

60

1

15
s

w

g
 

 a. Through the use of Equation (12.24),

 ( )= = =. . .. .
A c0 3 0 3 8 10 29 ft1 7 1 7 2

 

 From Figure 12.17, we have

 ( )= ⋅ ⋅ ⋅°C 42 lb ft / min ft F2
 

 Carrying the data into Equation (12.25),

 
,

.
,

.CA t
hp

33 000

42 10 29 100

33 000
1 31 or (kW) = 0.98d d

( )( )= ∆ = =  

 b. The pitch-line velocity of the worm is

 . .V
d n

12

3 1000

12
785 4 fpm 3 99 m/sw

w w ( )( )= π = π = =  

 Applying Equation (12.28),

 
cos

.
cos

V
V 785 4

15
813 fpm 4.13 m/ss

w=
λ

=
°

= =  

 By Table 12.3, f = 0.0238. Introducing the numerical values into Equation (12.27),

 
( )
( )=

° − °
° + °

=
cos . tan
cos . cot

. . %e
25 0 0238 15

25 0 0238 15
0 904 or 90 4  

 c. Using Equation (12.26), the input horsepower is equal to

 =
−

=
−

=.
.

.
e

hp
hp

1

1 31

1 0 0904
13 65 or kW = 10.18i

d
i

 

 The output horsepower is then

 = − =. . .hp 13 65 1 31 12 3 or kW = 9.2o o
 

Comments: Because of the sliding friction inherent in the tooth action, usually worm gearsets have 
significantly lower efficiencies than those of spur gear drives. The latter can have efficiencies as high 
as 98% (Section 11.1).

ISTUDY

www.konkur.in

Telegram: @uni_k



497Helical, Bevel, and Worm Gears

PROBLEMS

Sections 12.1 through 12.5
 12.1 A helical gearset consists of a 20-tooth pinion rotating in a counterclockwise direction 

and driving a 40-tooth gear. Determine:
 a. The normal, transverse, and axial circular pitches.
 b. The diametral pitch and pressure angle.
 c. The pitch diameter of each gear.
 d. The directions of the thrusts and show these on a sketch of the gearset.
  Given: The pinion has a right-handed helix angle of 30°, a normal pressure angle of 25°, 

and a normal module mn  of 4 mm.
 12.2 Redo Problem 12.1 for a helical gearset that consists of an 18-tooth pinion having a ψ of 

20° LH, a ϕn of 14½°, a mn of 3.175 mm, and driving a 55-tooth gear.
 12.3 A helical gear has a 14½°, normal pressure angle, a 40° helix angle, a circular diametral 

pitch of 8, and 30 teeth. Determine:
 a. The pitch diameter and the circular, the normal, and the axial pitches.
 b. The normal diametral pitch and the pressure angle.
 12.4 A helical gearset has a normal circular pitch of 15.625 mm. The gear center distance is 

250 mm, the speed ratio equals ¼, and the pinion has 18 teeth. What is the required helix 
angle?

 12.5 A 32-tooth gear has a pitch diameter of 260 mm, a normal module of mn = 6 mm, and a 
normal pressure angle of 20°. Calculate the kW transmitted at 800 rpm.

  Given: The force normal to the tooth surface is 10 N.
 12.6 A 35-tooth helical gear has a helix angle of ψ = 30° and a pressure angle of ϕ = 20°. Determine:
 a. The pressure angle in the normal plane and the equivalent number of teeth.
 b. The pressure angle and teeth number on an equivalent strength spur gear.
 12.7 Determine the center distance for a helical gearset with a normal circular pitch of 14 mm. 

The helix angle is 15°, the speed ratio equals ⅓, and the pinion has 40 teeth.
 12.8 A 35-tooth helical gear with ψ = 22° has a pressure angle of ϕ = 20°. Compute:
 a. The pressure angle in the normal plane and the equivalent number of teeth.
 b. The pressure angle and teeth number on an equivalent strength spur gear.
 12.9 A helical gearset has 1.5 mm module and a pressure angle of 20°. The width of gears is 

40 mm, the pinion has 20 teeth, and the gear has 120 teeth. Determine:
 a. The total contact ratio for the gears.
 b. The helix angle for the case in which the total contact ratio for gears equals 4.0.
 12.10 A left-handed helical pinion has a ϕn of 20°, an mn of 2.5 mm, a ψ of 45°, an Np of 32, and 

an Fn of 450 N and runs at 2400 rpm in the counterclockwise direction. The driven gear 
has 60 teeth. Determine and show on a sketch:

 a. The tangential, axial, and radial forces acting on each gear.
 b. The torque acting on the shaft of each gear.
 12.11 The helical gears depicted in Figure P12.11 have a normal module of 6.35 mm, a 25° pres-

sure angle, and a helix angle of 20°. Calculate and show on a sketch:
 a. The tangential, radial, and axial forces acting on each gear.
 b. The torque acting on each shaft.
  Given: Gear 1 transmits 15 kW at 1500 rpm through the idler to gear 3 on shaft C; the 

speed ratio for gears 3–1 is to be ½.
 12.12 A 22-tooth helical pinion has a normal pressure angle of 20°, a normal module of 

3.12 mm, a face width of 50 mm, and a helix angle of 25°; it rotates at 1800 rpm and 
transmits 22 kW to a 40-tooth gear. Determine the factor of safety based on bending 
strength, employing the Lewis equation.

  Given: Fatigue stress-concentration factor Kf = 1.5.
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  Assumption: The pinion and gear are both steel, hardened to 250 Bhn.
 12.13 A double-reduction helical gear train has in the normal plane 4 and 5.5 mm moduli for 

the high- and low-speed gears, respectively (Figure P12.13). The helix angles are differ-
ent for these gearsets. Find:

 a. The total speed reduction produced by the four gears and the helix angle of the low-
speed gears.

 b. The helix angle, for the case in which the low-speed gears are replaced by 20- and 
32-tooth gears of the same modulus.

  Given: The helix angle of the high-speed gears is 29.8°, N1 = 30, N2 = 75, N3 = 25, and 
N4 = 50.

 12.14 A 2 hp electric motor runs at 2400 rpm and drives a machine by means of a 25° normal 
pressure angle helical gearset with a normal module of mn = 4 mm (see Figure 12.7). The 
helix angle is equal to 30°, and the pinion has 22 teeth. Find:

 a. The pressure angle and pitch diameter of the pinion.
 b. The pinion velocity V and transmitted load Ft from the motor.
 c. The radial, axial, normal, and normal loads.
 12.15 Resolve Problem 12.12 based on wear strength and using the Buckingham equation.
 12.16 Two meshing helical gears are both made of SAE 1020 (WQ&T) steel, hardened to 150 

Bhn, and are mounted on (parallel) shafts. Calculate the horsepower capacity of the 
gearset.

  Requirement: Use the Lewis equation for bending strength and the Buckingham equa-
tion for wear strength.

Gear 2
N2 = 36

Gear 1 (pinion)
N1 = 24, L.H.

1500 rpm

A

B C

Gear 3

FIGURE P12.11 

c

Gear 2

Gear 1
(pinion)

Gear 3

Gear 4

FIGURE P12.13 
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499Helical, Bevel, and Worm Gears

  Given: The number of teeth is 30 and 65, ϕn = 25°, ψ = 35°, mn = 4.2 mm, and b = 38 mm; 
the pinion rotates at 2400 rpm.

 12.17 Two meshing helical gears are made of SAE 1040 steel hardened to about 200 Bhn and 
are mounted on parallel shafts 150 mm apart. Determine the horsepower capacity of the 
gearset:

 a. Applying the Lewis equation and Kf = 1.4 for bending strength and the Buckingham 
equation for wear strength.

 b. Applying the AGMA method on the basis of strength only.
  Given: The gears are to have a speed ratio of ⅓. A ϕn of 20°, a ψ of 30°, an m of 1.7 mm, 

and a b of 64 mm; the pinion rotates at 900 rpm.
  Design Assumptions:
 1. The mounting is accurate.
 2. Reliability is 90%.
 3. The gearset has indefinite life.
 4. Light shock loading acts on the pinion and uniform shock loading on the driven gear.
 5. The pinion and gear are both high-precision ground.
 12.W Review the website at www.bisonger.com and select a ¼ horsepower (or 0.1875 kW) 

motor for:
 a. A single-speed reduction unit.
 b. A double-speed reduction unit.

Sections 12.6 through 12.8
 12.18 A 20° pressure angle straight bevel pinion having 20 teeth and a module of 3 mm, drives 

a 42-tooth gear. Determine:
 a. The pitch diameters.
 b. The pitch angles.
 c. The face width.
 d. The clearance.
 12.19 A pair of bevel gears is to transmit 11 kW at 500 rpm with a speed ratio of ½. The 20° pres-

sure angle pinion has an 200 mm back cone pitch diameter, 65 mm face width, and a module 
of 3.5 mm. Calculate and show on a sketch the axial and radial forces acting on each gear.

 12.20 If the gears in Problem 12.19 are made of SAE 1020 steel (WQ&T), will they be satisfac-
tory from a bending viewpoint? Employ the Lewis equation and Kf = 1.4.

 12.21 If the pinion and gear in Problem 12.19 are made of steel (200 Bhn) and phosphor bronze, 
respectively, will they be satisfactory from wear strength viewpoint? Use the Buckingham 
equation.

 12.22 A pair of 20° pressure angle bevel gears of N1 = 30 and N2 = 60 has a module m of 8 mm 
at the outside diameter. Calculate the horsepower capacity of the pair, based on the Lewis 
and Buckingham equations.

  Given: Width of face b is 70 mm, Kf = 1.5, and the pinion runs at 720 rpm.
  Design Assumption: The gears are made of steel and hardened to about 200 Bhn.
 12.23 A bevel gearset transmits 30 kW at 1500 rpm of 30-tooth pinion as shown in Figure P12.23. 

The gear speed is 500 rpm, face width equals 45 mm, m = 4 mm, and ϕ = 20°. Determine:
 a. The pinion velocity V and transmitted load Ft.
 b. The axial and radial pinion forces and torques of pinion and gear shafts.
 12.24 A pair of 20° pressure angle bevel gears of N1 = 30 and N2 = 60 has a module m of 8.5 mm 

at the outside diameter. Determine the power capacity of the pair, using the Lewis and 
Buckingham equations.

  Given: Face width b is 70 mm, Kf = 1.5, and the pinion rotates at 720 rpm.
  Design Assumption: The gears are made of steel and hardened to about 200 Bhn.
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500 Mechanical Engineering Design

Sections 12.9 through 12.11
 12.25 Two shafts at right angles, with center distance of 150 mm, are to be connected by worm 

gearset. Determine the pitch diameter, lead, and number of teeth of the worm.
  Given: A speed ratio of 0.025, lead angle of worm of 35°, and a normal pitch of pn = 9.4 

mm for the worm gear.
 12.26 A double-threaded, 75 mm diameter worm has an input of 30 kW at 1800 rpm. The worm 

gear has 80 teeth and is 250 mm. Calculate the tangential force on the gear teeth if the 
efficiency is 90%.

 12.27 A bevel and a worm gearsets and their corresponding geometric properties are illustrated 
in Figure P12.27. Gear 1 rotates clockwise with a speed of k1. Determine the speed and 
direction of rotation of the worm gear.

  Given: N1 = 20, N2 = 20, NW = 5, N3 = 50, n1 = 250 rpm.
 12.28 A worm gearset is schematically illustrated in Figure P12.28. Find:
 a. The gear ratio, gear diameter, and lead of worm.
  The helix angle and center distance of gears.
  Given: NW = 2, Ng = 40, m = 3.2 mm.
  Assumption: The worm diameter will be dW = 3.5p, where p is the circular pitch of the gear.

500 rpm

30 kW
at

1500 rpm

Pinion
Np = 30

Gear

FIGURE P12.23 

Gear 2

Gear 3
Gear 1

(pinion)

Worm

y

x

FIGURE P12.27 
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501Helical, Bevel, and Worm Gears

 12.29 A worm gearset consists of gear with 45 teeth and a double-threaded worm (Figure 
P12.28). Compute:

 a. The worm diameter dW, gear pitch diameter dg, and lead angle λ.
 b. Limit load for wear through FW, according to the Buckingham formula.
  Given: b = 25 mm, c = 210 mm, Ng = 65, NW = 3, m = 6 mm, nW = 1200 rpm.
  Assumptions: The worm diameter will be dW = c0.875/2 (see Section 12.9). Gear and worm 

are made of bronze and cast iron, respectively.
 12.30 A quadruple-threaded worm having 60 mm diameter meshes with a worm gear with a 

module of 4 mm and 90 teeth. Find:
 a. The lead.
 b. The lead angle.
 c. The center distance.
 12.31 A 7.5 kW, 1000 rpm electric motor drives a 50 rpm machine through a worm gear reducer 

with a center distance of 175 mm (Figure P12.31). Determine:
 a. The value of the helix angle
 b. The transmitted load
 c. The power delivered to the driven machine
 12.32 If the gears of Figure P12.31 are made of cast steel (WQ&T), will they be satisfactory 

from the bending strength viewpoint? Use the modified Lewis equation and Kf = 1.4.
 12.33 If the worm and gear of Figure P12.31 are made of cast iron and bronze, respectively, will 

they be satisfactory from the wear viewpoint? Employ Equation (12.22) by Buckingham.
 12.34 The worm gear reducer of Figure P12.31 is to be designed for continuous operation and 

a limiting 40°C temperature rise of the housing with a fan. Estimate the heat-dissipation 
capacity. Will overheating be a problem?

50 rpm

Worm

Gear

b = 38 mm

c = 175 mm

Nw = 3

dw = 75 mm
n = 1000 rpm

n = 20°

FIGURE P12.31 

Gear

Worm

c
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13 Belts, Chains, Clutches, 
and Brakes

13.1  INTRODUCTION

In contrast with bearings, friction is a useful and essential agent in belts, clutches, and brakes. 
Frictional forces are commonly developed on flat or cylindrical surfaces in contact with shorter pads 
or linkages or longer bands or belts. A number of these combinations are employed for brakes and 
clutches, and the band (chain) and wheel pair is used in belt (chain) drives as well. Hence, only a few 
different analyses are required, with surface forms affecting the equations more than the functions 
of the elements. Also, common operating problems relate to pressure distribution and wear, tem-
perature rises and heat dissipation, and so on. The foregoing devices are thus effectively analyzed 
and studied together.

A belt or chain drive provides a convenient means for transferring motion from one shaft to 
another by means of a belt or chain connecting pulleys on the shafts. Part A of this chapter is 
devoted to the discussion of the flexible elements: belts and chains. In many cases, their use reduces 
vibration and shock transmission, simplifies the design of a machine substantially, and reduces 
the cost. Power is to be transferred between parallel or nonparallel shafts separated by a consid-
erable distance. Thus, the designer is provided considerable flexibility in location of driver and 
driven machinery [1–8]. The websites www.machinedesign.com and www.powertransmission.com 
on mechanical systems include information on belts and chains as well as on clutches and brakes.

Brakes and clutches are essentially the same devices. Each is usually associated with rotation. 
The brake absorbs the kinetic energy of moving bodies and thus controls the speed. The function of 
the brake is to turn mechanical energy into heat. The clutch transmits power between two shafts or 
elements that must be frequently connected and disconnected. A brake acts likewise, with the excep-
tion that one element is fixed. Clutches and brakes, treated in Part B of the chapter, are all of the 
friction type that relies on sliding between solid surfaces. Other kinds provide a magnetic, hydraulic, 
or mechanical connection between the two parts. The clutch is in common use to maintain constant 
torque on a shaft and serve as an emergency disconnection device to decouple the shaft from the motor 
in the event of a machine jam. In such cases, a brake is also fitted to bring the shaft (and machine) to 
a rapid stop in urgency. Brakes and clutches are used extensively in production machines of all types, 
as well as in vehicle applications. They are classified as follows: disk or axial types, cone types, drum 
types with external shoes, drum types with internal shoes, and miscellaneous types [9–11].

Part A: Flexible Elements
In addition to gears (Chapters 11 and 12), belts and chains are in widespread use. Belts are fre-
quently necessary to reduce the higher relative speeds of electric motors to the lower values required 
by mechanical equipment. Chains can also be employed for a large reduction in speed if required. 
Belt drives are relatively quieter than chain drives, while the latter have greater life expectancy. 
However, neither belts nor chains have an infinite life and should be replaced at the first sign of wear 
or lack of elasticity.

13.2  BELTS

There are four main belt types: flat, round, V, and timing. Flat and round belts may be used for 
long center distances between the pulleys in a belt drive. On the other hand, V and timing belts are 
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504 Mechanical Engineering Design

employed for limited shorter center distances. Excluding timing belts, there is some slip and creep 
between the belt and the pulley, which is usually made of cast iron or formed steel. Characteristics 
of the principal belt types are furnished in Table 13.1. Catalogs of various manufacturers of the belts 
contain much practical information.

13.2.1  Flat and round Belts

Flat belts and round belts are made of urethane or rubber-impregnated fabric reinforced with steel 
or nylon cords to take the tension load. One or both surfaces may have friction surface coating. Flat 
belts find considerable use in applications requiring small pulley diameters. Most often both driver 
and driven pulleys lie in the same vertical plane. Flat belts are quiet and efficient at high speeds, 
and they can transmit large amounts of power. However, a flat belt must operate with higher tension 
to transmit the same torque as a V belt. Crowned pulleys are used for flat belts. Round belts run in 
grooved pulleys or sheaves. Deep-groove pulleys are employed for the drives that transmit power 
between horizontal and vertical shafts, or so-called quarter-turn drives, and for relatively long cen-
ter distances.

13.2.2  v Belts

A V belt is a rubber covered with impregnated fabric and reinforced with nylon, Dacron, rayon, 
glass, or steel tensile cords. V belts are the most common means of transmitting power between 
electric motors and driven machinery. They are also used in other household, automotive, and 
industrial applications. Usually, V belt speed should be in the range of about 20 m/s. These belts are 
produced in two series: the standard V belt, as shown in Figure 13.1, and the high-capacity V belt. 
Note that each standard section is designated by a letter for sizes in inch dimensions. Metric sizes 
are identified by numbers. V belts are slightly less efficient than flat belts. The included angle 2β for 
V belts, defined in the table, is usually from 34° to 40°.

Crowned pulleys and sheaves are also employed for V belts. The wedging action of the belt in the 
groove leads to a large increase in the tractive force produced by the belt, as discussed in Section 
13.4. Variable-pitch pulleys permit an adjustment in the width of the groove. The effective pitch 
diameter of the pulley is thus varied. These pulleys are employed to change the input to output 
speed ratio of a V belt drive. Some variable-pitch drives can change speed ratios when the belt is 

TABLE 13.1
Characteristics of Some Common Belts
Belt Type Geometric Form Size Range Center Distance between Pulleys

Flat

t

t = 0.75–5 mm No upper limit

Round d d = 3–19 mm No upper limit

V a

b

2β

a = 13–38 mm
b = 8–23 mm
2β = 34°–40°

Limited

Timing

p

p = 2 mm and up Limited
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505Belts, Chains, Clutches, and Brakes

transmitting power. As for the number of V belts, as many as 12 or more can be used on a single 
sheave, making it a multiple drive. All belts in such a drive should stretch at the same rate to keep 
the load equally divided among them. A multiple V belt drive (Figure 13.2) is used to satisfy high-
power transmission requirements.

13.2.3  timing Belts

A timing belt is made of rubberized fabric and steel wire and has evenly spaced teeth on the inside 
circumference. Also known as a toothed or synchronous belt, a timing belt does not stretch or 
slip and hence transmits power at a constant angular velocity ratio. This permits timing belts to 
be employed for many applications requiring precise speed ratio, such as driving an engine cam-
shaft from the crankshaft. Toothed belts also allow the use of small pulleys and small arcs of 
contact. They are relatively lightweight and can operate efficiently at speeds up to at least 80 m/s.  

12

30
38

19

8

16
22

1311

25

B

D E

CA

FIGURE 13.1 Standard cross-sections of V belts. All dimensions are in millimeters.

FIGURE 13.2 Multiple V belt drive (Courtesy: T.B. Wood’s Incorporated, Chambersburg, PA).
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 A timing belt fits into the grooves cut on the periphery of the wheels or sprockets, as shown in 
Figure 13.3. The sprockets come in sizes from 15 mm diameter to 910 mm and with teeth numbers 
ranging from 10 to 120. The efficiency of a toothed belt drive ranges from about 97% to 99%.

Figure 13.4 illustrates a portion of the timing belt drive. The teeth are coated with nylon fabric. 
The tension member, usually steel wire, of a timing belt is positioned at the belt pitch line. The 
pitch length therefore is the same regardless of the backing thickness. Note that, as in the case 
of gears, the circular pitch p is the distance, measured on the pitch circle, from a point on the 
tooth to a corresponding point on an adjacent tooth. Since timing belts are toothed, they provide 
advantages over ordinary belts; for example, for a timing belt, no initial tension is necessary and 
a fixed center drive may be used at any slow or fast speed. The disadvantages are the cost of the 
belt, the necessity of grooving the sprocket, and the dynamic fluctuations generated at the belt-
tooth meshing frequency.

FIGURE 13.3 Toothed or timing-belt drive for precise speed ratio (Courtesy: T.B. Wood’s Incorporated, 
Chambersburg, PA).

Tooth included
angle

Tooth cord

Circular
pitch

Backing

Facing

Pulley

Outside radius

Pulley pitch radius

Belt
pitch line

Tension member

FIGURE 13.4 Timing-belt drive nomenclature.
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13.3  BELT DRIVES

As noted previously, a belt drive transfers power from one shaft to another by using a belt and con-
necting pulleys on the shafts. Flat belt drives produce very little noise and absorb more torsional 
vibration from the system than either V belt or other drives. A flat belt drive has an efficiency of 
around 98%, which is nearly the same as for a gear drive. A V belt drive can transmit more power 
than a flat belt drive, as will be shown in the next section. However, the efficiency of a V belt drive 
varies between 70% and 96% [1, 2].

We present a conventional analysis that has long been used for the belt drives. Note that a number 
of theories describe the mechanics of the belt drives in more detailed mathematical forms [3]. Figure 
13.5(a) illustrates the usual belt drive, where the belt tension is such that the sag is visible when the 
belt is running. The friction force on the belt is taken to be uniform throughout the entire arc of 
contact. Due to friction of the rotation of the driver pulley, the tight-side tension is greater than the 
slack-side tension. Referring to the figure, the following basic relationships may be developed.

13.3.1  transmitted Power

For belt drives, the torque on a pulley is given as follows:

 ( )= −T F F r1 2  (13.1)

in which
r = the pitch radius
F1 = the tension on the tight side
F2 = the tension on the slack side

We have F1 > F2. Note that the pitch radius is approximately measured from the center of the pulley 
to the neutral axis of the belt. The required initial tension Fi depends on the elastic characteristics 
of the belt. However, it is usually satisfactory to take

 ( )= +F F F
1
2

i 1 2
 (13.2)

The transmitted power, through the use of Equation (1.15), is

 ( )=
−

=
F F V Tn

kW
1000 9549

1 2  (13.3)

r1

r1

r2
F + dF fdN

dN

dθ/2 dθ/2

Fcdθ

F
F2

F1

α

α

α

c

Driver

(a) (b)

s

ω1 ω2

O1
φ

O1

O2

s

dθ

FIGURE 13.5 Belt drive: (a) forces in moving belt; (b) belt element on the verge of slipping on the small 
pulley.
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where

 = π
V

dn

60
 (13.4)

In the foregoing, we have
T = the torque, N · m
V = the belt velocity, m/s
n = the speed of the pulley, rpm
d = the pitch diameter of the pulley, m

The speed ratio of the belt drive is given by

 =n

n

n

n
1

2

2

1

 (13.5)

The numbers 1 and 2 refer to input and output, or small and large, pulleys, respectively.

13.3.2  ContaCt angle

From the geometry of the drive (Figure 13.5(a)), angle α is found to be

 α = −sin r r

c
2 1  (13.6)

The contact angle on the small pulley ϕ or the so-called angle of wrap is therefore

 φ = π − α2  (13.7)

where
r1 = the pitch radius of the small pulley
r2 = the pitch radius of the large pulley
c = the center distance

The capacity of the belt drive is determined by the value of ϕ. This angle is particularly critical with 
pulleys of greatly differing size and shorter center distances.

13.3.3  Belt length and Center distanCe

The wrap angles on the small and large pulleys are π − 2α and π + 2α, respectively. The distance 
between the beginning and end of contact, or span, s = [c2 − (r2 − r1)2]1/2. The pitch length of the belt 
is obtained by the summation of the two arc lengths, r1(π − 2α) + r2(π + 2α), with twice the span, 2s. 
In so doing, we have

 ( ) ( ) ( )= − −



 + π − α + π + α

/
L c r r r r2 2 22

2 1
2 1 2

1 2
 (13.8)

The span, the term in brackets on the right-hand side of this expression, can be approximated by two 
terms of a binomial expression and sin α from Equation (13.6) substituted for α. Then, we have the 
belt pitch length estimated by [4]

 ( ) ( )= + π + + +L c r r
c

r r2
1

1 2 2 1
2 (13.9)
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This gives the approximate center distance:

 ( )= + − −





c b b r r
1
4

82
2 1

2  (13.10)

in which

 ( )= − π +b L r r2 1
 (13.11)

The values of actual pitch lengths of some standard V belts are listed in Table 13.2. These values 
are substituted into Equation (13.11) to obtain the actual center distances. Observe from the table 
that long center distances are not recommended for the V belt, since the excessive vibration of the 
slack side shortens the material life. In the case of flat belts, there is virtually no limit to the center 
distance, as noted in Table 13.1. Table 13.3 shows standard pitches with their letter identifications 
for toothed belts.

TABLE 13.2
Pitch Lengths (in Meters) of Standard V Belts

Cross-Section

A B C A B C D E

0.693 2.878 2.891 2.918

0.922 0.935 3.081 3.094 3.122 2.887

1.100 1.113 3.703 3.731 3.741

1.328 1.341 1.369 4.059 4.087 4.097

1.557 1.570 1.598 4.440 4.466 4.402

7.760 1.773 1.800 4.618 4.646 4.656 4.684

1.938 1.950 1.979 5.388 5.408 5.423 5.448

2.192 2.204 2.233 6.104 6.119 6.116 6.121

2.319 2.332 2.360 6.866 6.881 6.878 6.883

2.700 2.713 2.740 7.628 7.637 7.640 7.645

TABLE 13.3
Standard Pitches of Typical Timing Belts
Service Designation Pitch, p (mm)

Extra light XL 5.1

Light L 9.5

Heavy H 12.7

Extra heavy XH 22.7

Double extra heavy XXH 31.8
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For nonstandard V belts, sometimes the center distance is given by the larger of

 = + =c r r c r3 or 21 2 2  (13.12)

This value of c may be used in Equation (13.9) to estimate the belt pitch length L. It is important to 
note that belt drives should be designed with provision for center distance adjustments, unless an 
idler pulley is employed, since belts tend to stretch in application.

Example 13.1: Geometric Quantities of a V Belt Drive

A V belt is to operate on sheaves of 200 and 300 mm pitch diameters (Figure 13.5(a)). Calculate:

 a. The center distance.
 b. The contact angle.

Assumption: A B-section V belt is used, having the actual pitch length of 1.77 mm (Table 13.2).

Solution

 a. Through the use of Equation (13.11),

 ( ) ( )= − π + = − π + =b L r r 1770 150 100 985 mm1 2
 

 Equation (13.10) is therefore

 ( )= + − −





=c
1

4
985 985 8 150 100 490 mm2 2  

 b. Applying Equation (13.7),

 φ = π − α = ° − −





= °−sin .2 180 2
150 100

490
168 31  

13.3.4  maintaining the initial tension oF the Belt

A flat belt stretches over a period of time, and some initial tension is lost. Of course, the simplest 
solution is to have excessive initial tension. However, this would overload the shafts and bearings 
and shorten the belt life. A self-tightening drive that automatically maintains the desired tension is 
illustrated in Figure 13.6. Note that a third pulley is forced against the slack side of the belt on top 
by weights (as in the figure) or by a spring. The extra pulley that rotates freely is termed an idler 

r
Idler

Weights

Tight side

φ

Pivot

Moto

FIGURE 13.6 Weighed idler used to maintain slack-side tension.
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pulley or simply an idler. The idler is positioned so that it increases the contact angle ϕ and thus the 
capacity of the drive.

There are various other approaches to maintaining the necessary belt tension. These include 
using a pivoted-overhung motor drive, changing the belt and pulley materials to increase the coef-
ficient of friction, and increasing the center distance during operation by employing a drive with an 
adjustable center distance. We note that, because of the resistance to stretch of their interior tension 
cords, timing and V belts do not require frequent adjustment of initial tension.

13.4  BELT TENSION RELATIONSHIPS

The discussion of the preceding section pertains to belts that run slowly enough that centrifugal 
loading can be disregarded. We now develop a relationship between the tight- and slack-side ten-
sions for the belt operating at maximum capacity. For this purpose, we first define the centrifugal 
force Fc, representing the inertia effect of the belt, in the following form:

 =F
w

g
Vc

2 (13.13)

where
w = the belt weight per unit length
V = the belt velocity
g = the acceleration of gravity

In SI units, Fc is expressed in N, w in N/m, V in m/s, and g in 9.81 m/s2; in US customary units, Fc 
is measured in lb, w in lb/ft, V in fps, and g in 32.2 ft/s2.

13.4.1  Flat or round Belt drives

Reconsider the belt drive of Figure 13.5(a), running at its largest capacity. The free-body diagram of 
a belt element on the verge of slipping on a small pulley is depicted in Figure 13.5(b). The element is 
under normal force dN, tension F, centrifugal force Fc dθ, and friction force f dN, where f represents 
the coefficient of friction. Equilibrium of the forces in the horizontal direction is satisfied by

 ( )+ θ − − θ =cos cosF dF
d

fdN F
d

2 2
0 

Simplifying, and noting for small angles cos(dθ/2) = 1, we have

 =dF fdN (13.14)

Likewise, equilibrium of the vertical forces gives

 ( )+ θ − + + θ =sindN F d F dF F
d

2
0c

 

We can take sin(dθ/2) = dθ/2, since dθ is a small angle, and neglect the higher-order term dF dθ. 
In so doing and introducing the value of dN from Equation (13.14), the preceding equation becomes

 
−

= θdF

F F
fd

c

 

The solution of this expression is obtained by integrating from minimum tension F2 to maximum 
tension F1 through the angle of contact ϕ of the belt (Figure 13.5a). Hence,
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 ∫ = −
−







= φlndF

F F

F F

F F
f

F

F

c

c

c1

1

2
2

1

 (13.15)

This may be written in the following convenient form:

 
−
−

= φF F

F F
ec

c

f1

2

 (13.16)

We see from this relation that centrifugal force tends to reduce the angles of contact ϕ.

Example 13.2: Maximum Tension of Flat-Belt Drive

A 9 kW, 2200 rpm electric motor drives a machine through the flat belt (Figure 13.7). The size of the 
belt is 125 mm wide and 7.5 mm thick and weighs 10.8 kN/m3. The center distance is equal to 1.95 m. 
The pulley on the motor shaft has an r1 = 62 mm radius and the driven pulley is r2 = 188 mm in radius.

Find: The belt tensions.

Assumption: The coefficient of friction will be f = 0.2.

Solution

The cross-sectional area of the belt is 125(7.5) = 937.5 mm2 and its unit weight equals w = 10800(937.5) 
= 10.125 N/m. The belt velocity, using Equation (13.4),

 ( )( )
= π =

π
=

.
V

d n

60

0 125 2200

60
14.4 m/s1 1  

By Equation (13.3),

 − = = =
.

F F
V

1000 kW 1000(9)

14 4
625 N1 2

 (a)

Centrifugal force acting on the belt, applying Equation (13.13),

 ( )= = =.
.

.F
w

g
V

10 125

9 81
14 4 214 Nc

2 2  

Through the use of Equation (13.6), we find

 α = −





= −





= °− −sin sin .r r

c

188 62

1950
3 71 2 2 1  

Driving
pulley

Driven
pulley

c = 1.95 m

r1

n1

r2

FIGURE 13.7 Example 13.2. A flat-belt drive.

ISTUDY

www.konkur.in

Telegram: @uni_k



513Belts, Chains, Clutches, and Brakes

Then the angle of wrap, ϕ = π − 2α, equals

 φ = ° − ° °180 2 = 2(3.7 ) = 172.6  

We have efϕ = e(0.2)(172.65)(π/180) = 1.827. Substituting these into Equation (13.16) leads to

 −
−

= .F

F

214

214
1 8271

2

 

or

 = −.F F1 827 1771 2
 (b)

Solving Equations (a) and (b) results in

 = =F F1594.8 N and 969.8 N1 2  

Comment: Equation (13.2) estimates the initial tension as (1594.8 + 969.8)/2 = 1282.3 N and so the larg-
est belt tension in the belt drive is F1 = 1594.8 N.

13.4.2  v Belt drives

Figure 13.8 illustrates how a V belt rides in the sheave groove: with contact on the sides and clear-
ance at the bottom. Obviously, this wedging action increases the normal force on the belt element 
from dN (Figure 13.5(b)) to dN/sin β. Following a procedure similar to that used in the preceding 
discussion, for a V belt drive, we therefore obtain

 −
−

= φ β/sinF F

F F
ec

c

f1

2

 (13.17)

The quantity β is half the included angle of the V belt. It is interesting to observe that the (smaller) 
contact angle ϕ of the driver pulley leads to larger belt tension and hence is critical. Hence, the 
design of the belt drive is on the basis of small pulley geometry.

13.5  DESIGN OF V BELT DRIVES

Of special concern is the design of belt drives for maximum tension and expected life or durability. 
In this section, attention is directed mainly to the former. Inasmuch as V belt cross-sections vary 

V belt

dN/2

dN

Sheave
2

2β

sin β

FIGURE 13.8 V belt in a sheave groove.
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514 Mechanical Engineering Design

considerably, a rational design of belt drive usually relies on tables, charts, and guidelines given 
by the manufacturers. Design data are based on theory, as well as results of extreme testing [4, 5].

During a circuit around the sheaves, the force on the belt varies considerably, as depicted in 
Figure 13.9. Note the additional equivalent tension forces Fb1 and Fb2 in the cord due to bending 
around the pulleys. The peak or total force FB in the belt at point B is the sum of the tight-side ten-
sion and the equivalent tension force owing to the bending around the small pulley. Therefore,

 = +F F FB b1 1
 

Likewise, at point E, the total force may be expressed as FE = F2 + Fb2. The tensions F1 and F2 are 
obtained from Equation (13.3). For standard V belts, the bending and centrifugal forces are given 
by empirical formulas. The peak forces FB and FE are key to the design of V belt drives. Durability 
design is somewhat complicated by the induced flexure stresses in the belt. Expected V belt life 
refers to a certain number of peak forces a belt can sustain before failure by fatigue. The fatigue 
performance of a V belt drive is best obtained by experimental tests.

We now develop an approximate design equation for maximum tension in the belt. Let the speed 
and power of the belt drive be prescribed. Then, from Equation (13.3), the torque at the smaller 
pulley is

 =T
n

9549 kW

1

 (13.18)

in which n1 represents the speed of the smaller pulley in revolutions per minute (rpm). The slack-side 
tension, as obtained from Equation (13.1), is

 = −F F
T

r
2 1

1

1

 (13.19)

The quantity r1 is the pitch radius of the smaller pulley. Substituting Equation (13.19) into Equation 
(13.17), after rearrangement, the tight-side tension may be expressed in the convenient form

 = + γ
γ −







F F
T

r1
c1

1

1

 (13.20)

where

 γ = φ β/sine f  (13.21)

FB

Fc

A B C D
Location along belt

E A

F1
Be

lt 
fo

rc
e

Fb1 Fb2

F1

F1

F2

B

C

A

D

E

Fb1 Fb2

F2

FE

++

FIGURE 13.9 Forces in moving V belt.
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Here the coefficient of friction f between rubber and dry steel is usually taken to be about 0.3.
In the case of a flat belt (β = 90°), sin β = 1. We therefore see from Equation (13.20) that, for a 

given maximum tension F1, a V belt can transmit more torque (and power). Consequently, V belts 
are usually preferred over flat belts. Table 13.4 may be used to estimate V belt tensions. Note that, 
if the sheave diameters are equal, the contact angle is 180° and hence tight-side tension is five 
times as great as the slack-side tension F2. Practically, the minimum contact angle is 90°, for which 
F1 = 2.24F2.

Since V belts are usually made from reinforced rubber, the required belt strength is governed 
mainly by the tension; that is, the effect of the additional force in the belt due to bending around the 
pulley may be neglected. However, the tight-side tension should be multiplied by a service factor Ks. 
The maximum tension is then

 =maxF k Fs 1  (13.22)

Service factors are listed by the manufacturers in great detail, usually based on the number 
of hours per day of overload, variations in loading the driving and driven shafts, starting over-
load, and variations in environmental conditions. Examples of the driven equipment in V belt 
drives are blowers, pumps, compressors, fans, light-duty conveyors, dough mixers, generators, 
laundry machinery, machine tools, punches, presses, shears, printing machinery, bucket eleva-
tors, textile machinery, mills, and hoists. Typical service factors, relying on the characteristics of 
the driving and driven machinery, are given in Table 13.5. The horsepower should be multiplied 
by a service factor when selecting belt sizes. The design of a V belt drive should use the larg-
est possible pulleys. As the sheave sizes become smaller, the belt tension increases for a given 
horsepower output. Recommended pulley diameters for use with three electric motor sizes are 
given in Table 13.6.

TABLE 13.4
Ratios of V Belt Tensions for Various Contact Angles

Contact Angle, ϕ F1/F2 Contact Angle, ϕ F1/F2 Contact Angle, ϕ F1/F2

180° 5.00 150° 3.82 120° 2.92

175° 4.78 145° 3.66 115° 2.80

170° 4.57 140° 3.50 110° 2.67

165° 4.37 135° 3.34 105° 2.56

160° 4.18 130° 3.20 100° 2.44

155° 4.00 125° 3.06 90° 2.24

TABLE 13.5
Service Factors Ks for V Belt Drives

Driven Machine

Driver (Motor or Engine)

Normal Torque Characteristic High or Nonuniform Torque

Uniform 1.0–1.2 1.1–1.3

Light shock 1.1–1.3 1.2–1.4

Medium shock 1.2–1.2 1.4–1.6

Heavy shock 1.3–1.5 1.5–1.8
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516 Mechanical Engineering Design

Finally, we note that the shaft load at the pulley consists of torque T and force Fs. The latter is 
the vector sum of tensions F1 and F2. Referring to Figure 13.5(a), the shaft force may therefore be 
expressed as

 ( ) ( )= + α + α



cos sin
/

F F F F2 2s 1 2
2

2
2 1 2

 (13.23)

The angle α is defined by Equation (13.6). Equation (13.23) yields results approximately equal to the 
scalar sum F1 + F2 in most cases. The designer will find it useful to have the shaft load for determin-
ing the reactions at the shaft bearings.

Example 13.3: Design Analysis of a V Belt Drive

The capacity of a V belt drive is to be 10 kW, based on a coefficient of friction of 0.3. Determine the 
required belt tensions and the maximum tension.

Given: A driver sheave has a radius of r1 = 100 mm, a speed of n1 = 1800 rpm, and a contact angle of 
ϕ = 153°. The belt weighs 2.25 N/m and the included angle is 36°.

Assumptions: The driver is a normal torque motor and the driven machine involves light shock load.

Solution

We have ϕ = 153° = 2.76 rad and β = 18°. The tight-side tension is estimated from Equation (13.20) as

 = + γ
γ −







F F
T

r1
c1

1

1

 (a)

where

 = = π × ×





=.
.

. .F
w

g
V

2 25

9 81

0 2 1800

60
81 5 Nc

2
2

 

 γ = = =( )φ β ° ./sin . . /sine e 13 36f 0 3 2 67 18
 

 ( )
= = = ⋅.T

n

9549 kW 9549 10

1800
53 05 N m1

1

 

TABLE 13.6
Recommended Sheave Pitch Diameters (in.) 
for V Belt Drives

Motor kW

Motor Speed, rpm

575 695 870 1160 1750

0.4 2.5 2.5 2.5 — —

0.6 3.0 2.5 2.5 2.5 —

0.8 3.0 3.0 2.5 2.5 2.25
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Carrying the preceding values into Equation (a), we have

 = +
−







=. .
.

.

.
F 81 5

13 36

13 36 1

53 05

0 1
655 N1

 

Then, by Equation (13.19), the slack-side tension is

 = − =.
.

.F 655
53 05

0 1
124 5 N2

 

Based upon a service factor of 1.2 (Table 13.5) to F1, Equation (13.22) gives a maximum tensile force:

 ( )= =.F 1 2 655 786 Nmax
 

applied to the belt.
The design of timing-belt drives is the same as that of flat belt or V belt drives. The manufacturers 

provide detailed information on sizes and strengths. Case Study 18.10 illustrates an application.

13.6  CHAIN DRIVES

As pointed out in Section 13.1, chains are used for power transmission between parallel shafts. They 
can be employed for high loads and where precise speed ratios must be sustained. While precise 
location and alignment tolerances are not required, such as with gear drives, the best performance 
can be expected when input and output sprockets lie in the same vertical plane [6, 7]. Chain drives 
have shorter service lives than typical gear drives. They present no fire hazard and are unaffected 
by relatively high temperatures. Sometimes, an adjustable idler sprocket (toothed wheel) is placed 
on the outside of the chain near the driving sprocket to remove sag on the loose side and increase 
the number of teeth in contact. The only maintenance required after careful alignment of the ele-
ments is proper lubrication. Usually, a chain should have a sheet of metal casing for protection from 
atmospheric dust and to facilitate lubrication. Chains should be washed regularly in kerosene and 
then soaked in oil.

The speed ratio of a chain drive is expressed by the equation

 =n

n

N

N
2

1

1

2

 

In the preceding, we have
n2 = the output speed
n1 = the input speed
N2 = the number of teeth in the output sprocket
N1 = the number of teeth in the input sprocket

An odd number of teeth on the driving sprocket (17, 19, 21, …) is recommended, typically 17 and 
25. Usually, an odd number of sprocket teeth causes each small sprocket tooth to contact many or all 
chain links, minimizing wear. The larger sprocket is ordinarily limited to about 120 teeth.

Center distance c should be greater than a value that just allows the sprockets to clear. It is 
c = 2(r1 + r2); for smaller speed ratios, n1/n2 < 3. Here, r1 and r2 refer to pitch radii of the input and 
output sprockets, respectively. When longer chains are used, idlers may be required on the slack side 
of the chain. For the cases in which speed ratios n1/n2 ≥ 3, the center distance should be c = 2(r2 − r1). 
Having a tentative center distance c between shafts selected, chain length L may be estimated 
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518 Mechanical Engineering Design

applying Equation (13.9). Finally, the center distance is recalculated through the use of Equation 
(13.10). The angle of contact for the chain drive is given by Equation (13.7). Note that, for a small 
sprocket, the angle of contact should not be less than 120°.

Chain pitch p represents the length of an individual link from pin center to pin center. The pitch 
radius of a sprocket with N teeth may be defined as

 =
π

r
Np

2
 

An even number of pitches in the chain is preferred to avoid a special link. Chain velocity V is 
defined as the number of feet coming off the sprocket in unit time. Therefore,

 =V
Npn

12
 (13.24)

The tensile force that a chain transmits F1 may be obtained from Equation (1.17) in the form

 = =F
V pNn

1000 kW 60,000 kW
1

 (13.25)

In Equations (13.24) and (13.25), the chain pitch p is measured in inches and the sprocket speed n is 
in rpm. The total force or tension in the chain includes transmitted force F1, a centrifugal force Fc, a 
small catenary tension, and a force from link action. There are also impact forces when link plates 
engage sprocket teeth, discussed in the next section.

13.7  COMMON CHAIN TYPES

There are various types of power transmission chains; however, roller chains are the most widely 
employed. Types of driven equipment with roller-chain drives include bakery machinery, blowers 
and fans, boat propellers, compressors, conveyors, clay-working machinery, crushers, elevators, 
feeders, food processors, dryers, machine tools, mills, pumps, pulp grinders, printing presses, card-
ing machinery, and woodworking machinery. In some of these applications as well as in cranes, 
hoists, generators, ice machines, and a variety of laundry machinery, inverted chains are also 
used. Both common chain types are used on sprockets, well suited for heavy loads, and have high 
efficiency.

13.7.1  roller Chains

Of its diverse applications, the most familiar is the roller chain drive on a bicycle. A roller chain is 
generally made of hardened steel and sprockets of steel or cast iron. Nevertheless, stainless steel and 
bronze chains are obtainable where corrosion resistance is needed. The geometry of a roller chain 
is shown in Figure 13.10. The rollers rotate in bushings that are press fitted to the inner link plates. 
The pins are prevented from turning by the outer links’ press fit assembly. Roller chains have been 
standardized according to size by the American National Standards Institute (ANSI) [7]. The char-
acteristics of representative standard sizes are listed in Table 13.7. These chains are manufactured 
in single (Figure 13.10(a)), double (Figure 13.10(b)), triple, and quadruple strands. Clearly, the use of 
multistrands increases the load capacity of a chain and sprocket system.
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519Belts, Chains, Clutches, and Brakes

13.7.1.1  Chordal Action
The instantaneous chain velocity varies from the average velocity given by Equation (13.24). 
Consider a sprocket running at constant speed n and driving a roller chain in a counterclockwise 
direction, as illustrated in Figure 13.11. A chord representing the link between centers has the pitch 

Pin
diameter, dp

Roller
diameter, d

d

b

p

Pitch, p Plate link

(a) (b)

Width, b

Bushing

Roller

FIGURE 13.10 Portion of a roller chain: (a) single strand and (b) double strand.

TABLE 13.7
Sizes and Strengths of Standard Roller Chains

Chain 
No.

Roller

Pin Diameter, 
dp (mm)

Link Plate 
Thickness, t 

(mm)
Minimum Ultimate 

Strength (kN)
Pitch, p 
(mm)

Diameter, d 
(mm)

Width, b 
(mm)

25 6.35 3.30 3.18 2.30 0.76 3.47

35 9.52 5.08 4.76 3.58 1.27 7.83

41 12.70 7.77 6.35 3.58 1.27 6.67

40 12.70 7.92 7.94 3.96 1.52 13.92

50 15.88 10.16 9.52 5.08 2.03 21.7

60 19.05 11.91 12.7 5.94 2.39 31.3

80 25.40 15.87 15.88 7.92 3.18 55.6

100 31.75 19.05 19.05 9.53 3.96 86.7

120 38.10 22.22 25.40 11.10 4.75 124.5

140 44.45 25.40 25.40 12.70 5.56 169

160 50.80 28.57 31.75 14.27 6.35 222

180 57.15 35.71 35.71 17.45 7.14 280

200 63.50 39.67 38.10 19.84 7.92 347

240 76.70 47.62 47.63 23.80 9.53 498

Source: ANSI/ASME Standard B29.1M-1993.
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520 Mechanical Engineering Design

length of p. The chord subtends the pitch angle of the sprocket, 360°/N. From the geometry, sin 
(180°/2) = (p/2)/r. We therefore have

 
sin

r
p

N2 180 /( )=
°

 

where
r = the radius of the sprocket
p = the chain pitch
N = the number of teeth in the sprocket

The angle 180°/N through which the link (AB) swings until the roller (B) sits on the sprocket is 
referred to as the angle of articulation. When the sprocket is in the position shown in the figure, the 
chain velocity is 2πrn. This velocity changes to 2πr1n, where r1 = r cos(180°/N), after the sprocket is 
turned to the angle of articulation. The change of velocity ΔV is called the chordal action:

 cosV rn N2 1 180 /[ ]( )∆ = π − °  

Rotation of the link through the angle of articulation causes impact among the rollers and the 
sprocket teeth as well as wear in the chain joint. The movement of the link up and down with rota-
tion through the articulation angle develops an uneven chain exit velocity. Consequently, the driven 
shaft of a roller chain drive may be given a pulsating motion, particularly at high-speed operation. 
The angle of articulation (hence the impact and chordal action) should be reduced as much as prac-
ticable, by increasing the number of sprocket teeth.

13.7.2  Power CaPaCity oF roller Chains

Equations and tables for roller chain power capacity and selection were developed through the 
American Chain Association (ACA), as the result of many years of laboratory testing and field 
observation. Rated horsepower capacities are usually given in tabular form for each type of sin-
gle-strand chain corresponding to a life expectancy of 15 kh for a variety of sprocket speeds. 
Table 13.8 is an example for ANSI No. 60 roller chains. Listed in Table 13.9 are the service fac-
tors that account for the abruptness associated with load application. Table 13.10 shows multiple-
strand factors.

At lower speeds, the power capacity of roller chains is based upon the fatigue strength of the link 
plate. On the other hand, at higher speeds, the power relies on roller and bushing impact life. At 

Pitch
circleSprocket

180°/N

B

r
n

N

A
p

360°

FIGURE 13.11 A roller chain and sprocket engagement.
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522 Mechanical Engineering Design

extremely high speeds, the power capacity is on the basis of the galling or welding between pin and 
bushings. The design power capacity may be expressed as follows:

 =H H K Kd r 1 2  (13.26)

where
Hr = the horsepower rating (from Table 13.8)
K1 = the service factor (from Table 13.9)
K2 = the multiple-strand factor (from Table 13.10)

Usually, a medium or light mineral oil is used as the lubricant. We observe from Table 13.8 that 
the proper lubrication of roller chains is essential to their performance. As speed increases, this 
requirement becomes more rigorous. The following types of lubrication systems are satisfactory:

Type A. Manual or drip lubrication; oil is applied periodically with brush or spout can.
Type B. Bath or disk lubrication; oil level is maintained in the casing at a predetermined 

height.
Type C. Oil stream lubrication; oil is supplied by circulating pump inside chain loop or lower 

span.

Note that the limiting rpm for each lubrication type is read from the column to the left of the bound-
ary line shown in the table. The chain manufacturer should be consulted for drives that exceed the 
speed and power requirements for the preceding lubrication kinds.

TABLE 13.9
Service Factors (K1) for Single-Strand Roller Chains

Type of Driven 
Load

Type of Input Power

IC Engine 
Hydraulic Drive

Electric Motor 
or Turbine

IC Engine 
Mechanical Drive

Smooth 1.0 1.0 1.2

Moderate shock 1.2 1.3 1.4

Heavy shock 1.4 1.5 1.7

Source: ANSI/ASME Standard B29.1M-1993.

TABLE 13.10
Multiple-Strand Factors (K2) for Roller 
Chains
Number of Strands Multiple-Strand Factor

2 1.7

3 2.5

4 3.3

Source: ANSI/ASME Standard B29.1M-1993.
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523Belts, Chains, Clutches, and Brakes

Example 13.4: Analysis of a Roller Chain Drive

A three-strand ANSI No. 60, ¾ in. pitch roller chain transmits power from an N1-tooth driver sprocket 
operating at n1 rpm. Determine:

 a. The design power capacity.
 b. The tension in the chain.
 c. The factor of safety n of the chain on the basis of ultimate strength.

Given: N1 = 19, p = 3/4 in. (19.05 mm), n1 = 1000 rpm.

Assumptions: The input power type is an internal combustion (IC) engine, mechanical drive. The 
type of driven load is moderate shock. With the exception of the tensile force, all forces are taken to be 
negligible.

Solution

See Tables 13.7 through 13.10.

 a. For driver sprocket Hr = 206 hp (15.36 kW), type B lubrication is required (Table 13.8). Service 
factor K1 = 1.4 (Table 13.9). From Table 13.10 for three strands, K2 = 2.5. Applying Equation 
(13.26), we have

 ( )( )= . . .H 15 36 1 4 2 5 = 53.8 kWd
 

 b. The average chain velocity, by Equation (13.24), is

 ( )( )
= =V

19 0.01905 1000

60
6.03 m/s1

 

 Equation (13.25) results in

 = =
.

F
1000(53.8)

6 03
8.92 kN1

 

 c. The ultimate strength, for a single-strand chain, is 31.3 kN (Table 13.7). The allowable 
load for a three-strand chain is then Fall = 31.3(3) = 93.9 kN. Hence, the factor of safety is

 = = =.
.

.n
F

F

93 9

8 92
10 5all

1

Comment: The analysis is based on 15 kh of chain life, since other estimates are not available.

13.7.3  inverted tooth Chains

The inverted tooth chain, also referred to as the silent chain, is composed of a series of toothed link 
plates that are pin connected to allow articulation. The chain pitch is defined in Figure 13.12. An 
inverted tooth chain ordinarily has guide links on the sides or in the center to keep it on the sprocket. 
To increase the chain life, different details of joint construction are used. Enclosures for the chain 
are customarily needed. Therefore, silent chains are more expensive than roller chains. Usually, 
when properly lubricated, at full load, drive efficiency is as high as 99%.
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524 Mechanical Engineering Design

As the name suggests, these chains are quieter than roller chains. They may be run at higher 
speeds, because there is minor impact force when the chain link engages the sprocket. The inverted 
tooth chain has a smooth flat surface, which can be conveniently used for conveying items. Power 
capacities of silent chains are listed in tables analogous to those for roller chains. However, these 
chains reach maximum power at maximum speed, while roller chains reach highest power far below 
their maximum speed. Most of the remarks in the foregoing paragraphs relate as well to inverted 
tooth chains and sprockets, which are also standardized by ANSI [8]. Regular pitches vary between 
⅜ in. and 2 in. Sprockets may have 21–150 teeth. Center distance adjustment is periodically needed 
to compensate for wear.

Part B: High-Friction Devices
Our concern was with two flexible elements in the preceding sections. In Part B, we turn to clutches 
and brakes, which are high-friction devices. We consider the most commonly used types, having 
two or more surfaces pressed together with a normal force to produce a friction torque. Performance 
analysis of clutches and brakes involves the determination of the actuating force, torque transmit-
ted, energy absorption, and temperature rise. The transmitted torque is associated with the actuating 
force, the coefficient of friction, and the geometry of the device. The temperature rise is related to 
energy absorbed in the form of friction heat during braking or clutching.

13.8  MATERIALS FOR BRAKES AND CLUTCHES

The materials used for clutches and brakes are of two types, those used for the disk or drums and 
those used for friction materials or linings. In the design of these devices, the selection of the fric-
tion materials is critical. Most linings are attached to the disks or drums by either riveting or bond-
ing. The former has the advantage of low cost and relative ease in installation. The latter affords 
more friction area and greater effective thickness, but is more expensive.

Drums are ordinarily made of cast iron with some alloying material added. Materials like stain-
less steel and Monel are used when good heat conduction is important. Many railroad brakes employ 
cast iron shoes, which are bearings on cast iron wheels or drums. Friction, thermal conductivity, 
resistance to wear, and thermal fatigue characteristics of drums are very important. They must have 
a sufficiently smooth surface finish to minimize wear of the lining.

Linings are often made of molded, woven, sintered, or solid materials. They are composed 
mainly of reinforcing fibers (to render strength and ability to resist high temperatures), metal parti-
cles (to obtain wear resistance and higher coefficient of friction), and bonding materials. The binder 
is ordinarily a thermosetting resin or rubber. In addition, a friction material should have good heat 

Sprocket

Link

Pitch, p

FIGURE 13.12 Portion of an inverted-tooth or silent chain.
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conductivity and impenetrability to moisture. Because of health hazards associated with asbestos, it 
is banned on all current production, and alternative reinforcing materials are now in use.

A woven (cotton) lining is made as a fabric belt impregnated with metal particles and polymer-
ized. These belts have flexibility, as required by band brakes. Molded linings typically use polymeric 
resin to bind a variety of powdered fillers or fibrous materials. Brass or zinc chips are sometimes 
added to improve heat conduction and wear resistance and reduce scoring of the drum and disks. 
These materials are the most commonly used in drum brakes and the least costly. Sintered metal 
pads are made of a mixture of copper and iron particles having friction modifiers molded, then 
heated to blend the material. They are the most costly, but also the best suited for heavy-duty appli-
cations. Sintered metal-ceramic friction pads are similar, except that ceramic particles are added 
prior to sintering.

For sufficient performance of the brake or clutch, the requirements imposed on friction materials 
include the following: a high coefficient of friction having small variation on changes in pressure, 
velocity, and temperature; resistance to wear, seizing, and the tendency to grab; and heat and ther-
mal fatigue resistance. Tables 13.11 and 13.12 list approximate data related to allowable pressures 
and the coefficient of friction for a few linings [9]. For longer life, the lower values of the maximum 

TABLE 13.11
Properties of Common Brake and Clutch Friction Materials, Operating Dry

Materiala

Dynamic 
Coefficient 

of Friction, f

Maximum Pressure pmax Maximum Drum Temperature

MPa psi °C °F

Molded 0.25–0.45 1.03–2.07 150–300 204–260 400–500

Woven 0.25–0.45 0.35–0.69 50–100 204–260 400–500

Sintered metal 0.15–0.45 1.03–2.07 150–300 232–677 450–1250

Cork 0.30–0.50 0.06–0.10 8–14 82 180

Wood 0.20–0.25 0.35–0.63 50–90 93 200

Cast iron, hard steel 0.15–0.25 0.70–0.17 100–250 260 500

a When rubbing against smooth cast iron or steel.

TABLE 13.12
Values of Friction Coefficients of 
Common Brake/Clutch Friction 
Materials, Operating in Oil

Materiala

Dynamic Coefficient of 
Friction, f

Molded 0.06–0.09

Woven 0.08–0.10

Sintered metal 0.05–0.08

Cork 0.15–0.25

Wood 0.12–0.16

Cast iron, hard steel 0.03–0.06

a When rubbing against smooth cast iron or steel.
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pressure given should be used. As seen from the tables, the coefficients of friction are much smaller 
in oil than under dry friction, as expected. For more accurate information, consult the manufacturer 
or obtain test data.

13.9  INTERNAL EXPANDING DRUM CLUTCHES AND BRAKES

Drum or rim clutches and brakes consist of three parts: the mating frictional surfaces, the means 
of transmitting the torque to and from the surfaces, and the actuating mechanism. Often, they are 
classified according to the operating mechanism. Figure 13.13 shows an internal expanding drum 
centrifugal clutch that engages automatically when the shaft speed exceeds a certain magnitude. 
The friction material is placed around the outer surface of the drum to engage the clutch.

The centrifugal clutch is in widespread use for automatic operation, such as to couple an engine 
to the drive train. When the engine speed increases, it automatically engages the clutch. This is 
particularly practical for electric motor drives, where during starting, the driven machine comes up 
to speed without shock. Used in chainsaws for the same purpose, centrifugal clutches serve as an 
overload release that slips to allow the motor to continue running when the chain jams in the wood.

Magnetic, hydraulic, and pneumatic drum clutches are also useful in drives with complex loading 
cycles and in automatic machinery or robots. The expanding drum clutch is frequently used in textile 
machinery, excavators, and machine tools. Inasmuch as the analysis of drum clutch is similar to that 
for drum brakes, to be taken up in Sections 13.13 and 13.14, we will not discuss them at this time.

13.10  DISK CLUTCHES AND BRAKES

Basic disk clutches and brakes are considered in this section. The former transmits torque from the 
input to the output shaft by the frictional force developed between the two disks or plates when they 
are pressed together. The latter is basically the same device, but one of the shafts is fixed. One of the 
friction surfaces of the clutch or brake is typically metal (cast iron or steel) and the other is usually 
a friction material or lining. Magnetic, hydraulic, and pneumatic operating mechanisms are also 
available in disk, cone, and multiple-disk clutches and brakes.

Uniform pressure and uniform wear are two basic conditions or assumptions that may occur 
at the interface of the friction surfaces. The designer must decide which assumption more closely 
approximates the particular clutch or brake being analyzed. The uniform wear assumption leads to 

FIGURE 13.13 An internal expanding centrifugal-acting drum clutch (Courtesy: Hilliard Corporation, 
Elmira, NY).
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lower calculated clutch or brake capacity than the assumption of uniform pressure, as observed in 
Example 13.5. Hence, disk clutches and brakes are ordinarily designed on the basis of uniform wear 
that gives conservative results. The following analysis can be used as a guide. Design considerations 
also include the characteristics of the machine of which the brakes or clutches will be a part, and the 
environment in which the machine operates.

13.10.1  disk ClutChes

Friction clutches reduce shock by slipping during the engagement period. The single-plate or disk 
clutch, shown schematically in Figure 13.14, is employed in both automotive and industrial service. 
These devices are larger in diameter to give adequate torque capacity. Note that, in an automotive-
type disk clutch, the input disk (flywheel) rotates with the crankshaft. The hub of the clutch output 
disk is spline-connected to the transmission shaft. Clearly, the device is disengaged by depress-
ing the clutch pedal. The torque that can be transferred depends on the frictional force developed 
between the disks, the coefficient of friction, and the geometry of the clutch. The axial force is 
typically quite large and can be applied mechanically (by spring, as in the figure), hydraulically, or 
electromagnetically. An advantage of the disk clutch over the drum clutch is the absence of centrifu-
gal effects and efficient heat dissipation surfaces.

Multiple-disk clutches can have the friction lining on facing sides of a number (as many as 24) of 
alternative driving and driven disks or plates. The disks are usually thin (about 1.5 mm), with small 
diameters. Thus, additional torque capacity with only a small increase in axial length is obtained. 
When the clutch is disengaged, the alternate disks are free to slide axially to disjoin. After the clutch 
is engaged, the disks are clamped tightly together to provide a number of active friction surfaces N. 
Disk clutches can be designed to operate either dry or wet with oil. The advantages of the latter are 
reduced wear, smoother action, and lower operating temperatures. As a result, most multiple-disk 
clutches operate either immersed in oil or in a spray. Multiple-disk clutches are compact and suitable 
for high-speed operations in various machineries. They are often operated automatically by either 
air or hydraulic cylinders (e.g., in automotive automatic transmissions).

Figure 13.15 shows a hydraulically operated clutch. In this device, the axial piston motion and 
force are produced by oil in an annular chamber, which is connected by an oil passage to an external 
pressure source. We see from the figure that, with the housing keyed to the input shaft, two disks 
and the piston are internally splined and an end plate is fastened. These are the driving disks. The 
three driven disks are externally splined to the housing keyed to the output shaft.

We develop the torque capacity equations for a single pair of friction surfaces, as in Figure 13.14. 
However, they can be modified for multiple disks by merely multiplying the values obtained by the 
number of active surfaces N. For example, N = 6 in the device depicted in Figure 13.15.

Lining

Disk
Spring Output

shaft

Splined

D

dr

d
r

γ

Shifting grooveDisk

Input
shaft

FIGURE 13.14 Basic disk clutch, shown in a disengaged position (for a brake, the output member is 
stationary).
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13.10.1.1  Uniform Wear
When the clutch disks are sufficiently rigid, it can be assumed that wear over the lining is uniform. 
This condition applies after an initial wearing-in has occurred. The uniform wear rate, which is 
taken to be proportional to the product of pressure and velocity pV, is constant. Note that the velocity 
at any point on the clutch surface varies with the radius and the angular velocity. Therefore, assum-
ing a uniform angular velocity,

 =pr C  

where
p = the pressure
r = the radius
C = the constant

This equation indicates that the maximum pressure pmax takes place at the inside radius r = d/2 
(Figure 13.14). Hence,

 = =pr C p
d

2
max

 (13.27)

The total normal force that must be exerted by the actuating spring in Figure 13.14 is found by 
multiplying the area 2πr dr by the pressure p = pmax d/2r and integrating over the friction surface. 
Hence, the actuating force Fa required equals

 ∫ ( )= π = π −
/

/

max maxF p d dr p d D d
1
2

a

d

D

2

2

 (13.28)

The friction torque or torque capacity is obtained by multiplying the force on the element by the 
coefficient of friction f and the radius and integrating over the area. It follows that

 ∫ ( )( )= π = π −
/

/

max maxT p d frdr fp d D d
1
8

d

D

2

2

2 2  (13.29)

An expression relating the torque capacity to actuating force is obtained by solving Equation (13.28) 
for pmax and inserting its value into Equation (13.29). In so doing, we have

Driven disks

Driven disks

Bushing
Output

shaft

Splines

Oil chamber
Piston

Input
shaft

Oil passage

Oil passage

Key

d D

Seals (“O” rings)

FIGURE 13.15 Half-section view of a multiple-disk clutch, hydraulically operated.
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 ( )= + =T F f D d F fr
1
4

a a avg
 (13.30)

where ravg is the average disk radius. Note the simple physical interpretation of this equation. As 
previously pointed out, for a multiple-disk clutch, Equations (13.29) and (13.30) must be multiplied 
by the number of active surfaces N.

In the design of clutches, the ratio of inside to outside diameters is an important parameter. It can 
be verified, applying Equation (13.29), that the maximum torque capacity for a prescribed outside 
diameter is attained when

 = = .d
D

D
3

0 577  (13.31)

Usually employed proportions vary between d = 0.45D and d = 0.80D.

13.10.1.2  Uniform Pressure
If the clutch disks are relatively flexible, the pressure pmax can approach a uniform distribution over 
the entire lining surface. For this condition, the wear is not constant. Referring to Figure 13.14, we 
readily obtain the actuating force and the torque capacity as follows:

 ∫ ( )= π = π −
/

/

max maxF p rdr p D d2
1
4

a

d

D

2

2

2 2  (13.32)

 ∫ ( )( )= π = π −
/

/

max maxT p r frdr fp D d2
1

12
d

D

2

2

3 3  (13.33)

These can be combined to yield the torque as a function of actuating force:

 = −
−

T F f
D d

D d

1
3

a

3 3

2 2
 (13.34)

The torque capacity for a multiple-disk clutch is obtained by multiplying Equations (13.33) and 
(13.34) by the number of active surfaces N.

Example 13.5: Design of a Disk Clutch

A disk clutch with a single friction surface has an outer diameter D and inner diameter d (Figure 13.14). 
Determine the torque that can be transmitted and the actuating force required of the spring, on the 
basis of:

 a. Uniform wear.
 b. Uniform pressure.

Given: D = 500 mm, d = 200 mm.

Design Decisions: Molded friction material and a steel disk are used, having f = 0.35 and pmax = 1.5 MPa 
(see Table 13.11).

Solution

 a. Through the use of Equation (13.29), we have

 ( )( )( )( )= π − = ⋅. . . . .T
1

8
0 35 1500 0 2 0 5 0 2 8 659 kN m2 2  
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 From Equation (13.28),

 ( )( )( )= π − =. . . .F
1

2
1500 0 2 0 5 0 2 141 4 kNa

 

 b. Applying Equation (13.33),

 ( )( )( )= π − = ⋅. . . .T
1

12
0 35 1500 0 5 0 2 16 08 kN m3 3  

 By Equation (13.32),

 ( )( )= π − =. . .F
1

2
1500 0 5 0 2 247 4 kNa

2 2  

Comment: The preceding results indicate that the uniform wear condition yielded a smaller torque and 
actuating force; it is therefore the more conservative of the two assumptions in terms of clutch capacity.

13.10.2  disk Brakes

A disk brake is very similar to the disk clutch shown in Figure 13.14, with the exception that one 
of the shafts is replaced by a fixed member. Loads are balanced by locating friction linings or pads 
on both sides of the disk. Servo action can be obtained by addition of several machine parts. The 
torque capacity and actuating force requirements of disk brakes may readily be ascertained through 
the use of the foregoing procedures. The equations for the disk clutch can be adapted to the disk 
brake, if the brake pad is shaped like a sector of a circle and calculations are made accordingly, as 
illustrated in the next example.

13.10.2.1  Caliper-Type Disk Brakes
Usually, a caliper disk brake includes a disk-shaped rotor attached to the machine to be controlled 
and friction pads. The latter cover only a small portion of the disk surface, allowing the remainder 
to be left exposed to dissipate heat. Figure 13.16 shows the geometry of contact area of an annular 
pad segment of a caliper-type disk brake. Observe that the lining pads (one each side) is squeezed 
against both sides of the rotating disk by actuating force Fa. The expressions for this force and brak-
ing torque T may be readily obtained from Equations (13.28), (13.29), (13.32), or (13.33) by simply 
multiplying the selected equation by the ratio γ/360°, in which the angle γ represents the angle 
subtending the brake pad sector. Also called the included angle, the γ often lies in the range from 
45° to 90°.

The linings are contained in a fixed-caliper assembly and are forced against the disk by air pres-
sure or hydraulically (Figure 13.17). Disk brakes have been employed in automotive applications, 
due to their equal braking torque for either direction of rotation as well as greater cooling capacity 
than drum brakes (see Section 13.14). Most modern cars have disk brakes on the front wheels, and 
some have disk brakes on all four wheels. A disk brake of the brake system does the actual work of 
stopping the car. Disk brakes are also often preferred in heavy-duty industrial applications. Caliper 
disk brakes are widely used on the front wheel of most motorcycles. The common bicycle is another 
example, where the wheel rim forms the disk.

Example 13.6: Design of a Disk Brake

A disk brake has two pads of included angle γ = 60° each, D = 250 mm and d = 125 mm (Figure 13.14). 
Determine:

 a. The actuating force required to apply one shoe.
 b. The torque capacity for both shoes.
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Design Decision: Sintered metal pads and cast iron disk are used with f = 0.2 and pmax = 1.4 kPa.

Solution

 a. Equation (13.28) may be written in the form:

 ( )γ π −





maxF p d D d
360

1

2
a  (13.35)

(a)

D/2
γ

Disk

(b)

Rotation

Lining pad

+

Fa Fa

Caliper

d/2

FIGURE 13.16 (a) A typical disk brake and (b) its schematic representation.

FIGURE 13.17 Caliper disk brake, hydraulically operated (Courtesy: Ausco Products, Inc., Benton Harbor, MI).
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 Introducing the given numerical values,

 ( )( )( )π −





=.F
60

360

1

2
1 4 125 250 125 5.73 kNa

 

 b. From Equation (13.30), we obtain

 
( )

( )( )( )

= +

= + = ⋅. .

T F f D d
1

4

1

4
5 73 0 2 250 125 107.4 N m

a

 

13.11  CONE CLUTCHES AND BRAKES

The cone clutch, Figure 13.18, can be considered as a general case of a disk clutch having a cone 
angle of 90°. Due to the increased frictional area and the wedging action of the parts, cone clutches 
convey a larger torque than disk clutches with identical outside diameters and actuating forces. 
Practically, a cone clutch can have no more than one friction interface, hence, N = 1. Cone clutches 
are often used in low-speed applications. They could also be employed as cone brakes with some 
slight modifications.

13.11.1  uniForm wear

The presupposition is made that the normal wear is proportional to the product of the normal pres-
sure p and the radius. Let the radius r in Figure 13.18 locate the ring element running around the 
cone. The differential area is then equal to dA = 2πr dr/sin α. The normal force in the element equals 
dFn = pdA, in which p = pmaxd/2r. As before, pmax represents the maximum pressure. Hence, the total 
normal force is

 ∫ ( )= π
α

= π
α

−
sin sin

/

/
max maxF

p d

r

rdr dp
D d

2
2

n

d

D

2

2

 (13.36)

The corresponding axial force is Fn sin α. The actuating force is then

Cup Cone
Spring

Splined
Shifting groove

αp

dFn
dr/sinα

Output
shaft

D
d

w

r

Input
shaft

FIGURE 13.18 Cone clutch.
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 ( )= π −maxF p d D d
1
2

a
 (13.37)

which is the same as for a disk clutch (Equation (13.28)).
The torque that can be transmitted by the ring element is equal to dT = dFnfr = 2πpfr2 dr/sin α. 

The torque capacity of the clutch T is obtained by integrating the forgoing expression over the coni-
cal surface. In so doing, we obtain

 ∫ ( )= π
α

= π
α

−
sin sin
max

/

/
maxT

fp d
rdr

fp d
D d

8
d

D

2

2

2 2  (13.38)

In terms of the actuating force, we have

 ( )=
α

+
sin

T
F f

D d
4

a  (13.39)

13.11.2  uniForm Pressure

An analysis analogous to the uniform pressure made for disk clutches in Section 13.10 results in the 
following equations (Problem 13.28):

 ( )= π −maxF p D d
1
4

a
2 2  (13.40)

 ( )= π
α

− =
α

−
−sin sin

maxT
fp

D d
F f D d

D d12 3
a3 3

3 3

2 2
 (13.41)

The cone angle α, cone diameter, and cone face width w are essential design parameters. The 
smaller the cone angle, the less actuating force is needed. This angle has a minimum value of 8°. It 
is because the clutch may bind or lock up if smaller angles are used. An angle of 12° is ordinarily 
regarded as about optimum. The generally used values of α are in the range of 8°–15°.

Example 13.7: Pressure Capacity of a Cone Clutch

A cone clutch having an outside diameter D, inner diameter d, and width w (Figure 13.18) transmits a 
torque T.

Find: The contact pressure and the actuating force on the basis of:

 a. The uniform wear.
 b. The uniform pressure.

Given: D = 300 mm, d = 280 mm, w = 50 mm, T = 150 N · m.

Assumption: Coefficient of friction will be taken to be f = 0.24.

Solution

 a. The half-cone angle of the clutch equals (Figure 13.18)

 
( )α = − = − =sin .D d

w2

300 280

2 50
0 2 
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 or

 α = °.11 54  

 From Equation (13.38), the maximum pressure is found as

 
( )= α

π −
sin

maxp
T

fd D d

8
2 2

 (a)

 Inserting the given data, we have

 
( )

( )( )
( )( )

=
π −

=
.

. . . .
p

8 150 0 2

0 24 0 28 0 3 0 28
98 kPamax 2 2

 

 The actuating force, applying Equation (13.37), is then

 

( )

( )

( )( )

= π −

= π × − =. . .

maxF p d D d
1

2

1

2
98 10 0 28 0 3 0 28 862 Pa

a

3

 

 b. Making use of Equation (13.41), the maximum pressure is

 

( )

( )
( )( )

( )

= α
π −

=
π −

=

sin

.
. . .

.

p
T

f D d

12

12 150 0 2

0 24 0 3 0 28
94 6 kPa

max 3 3

3 3

 (b)

 The actuating force, from Equation (13.40), is

 ( )( )= π × − =. . .F
1

4
94 6 10 0 3 0 28 862 Paa

3 2 2  

Comment: The results show that uniform wear condition gives a pressure capacity of about 3.5% larger 
than that of uniform rate.

13.12  BAND BRAKES

The band brake, the simplest of many braking devices, is employed in power excavators and hoist-
ing and other machinery. Usually, the band is made of steel and lined with a woven friction material 
for flexibility. The braking action is secured by tightening the band wrapped around the drum that 
is to be slowed or halted. The difference in tensions at each end of the band ascertains the torque 
capacity.

Figure 13.19 shows a band brake with the drum rotating clockwise. For this case, friction forces 
acting on the band increase the tight-side tension F1 and decrease the slack-side tension F2. Consider 
the drum and band portion above the sectioning plane as a free body. Then, summation of the 
moments about the center of rotation of the drum gives the torque capacity, which is the same as 
for a belt drive:

 ( )= −T F F r1 2
 (13.42)

The quantity r is the radius of the drum. Likewise, considering the lever and hand portion below the 
sectioning plane as free body, the actuating force is
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 =F F
c

a
a 2

 (13.43)

The brake is actuated by the application of force Fa at the free end of the lever. It is obvious that a 
smaller force Fa is needed for operation when the tight side of the band is connected to the fixed 
support and the slack side attached to the lever, as shown in the figure.

An expression relating band tensions F1 and F2 is derived by following the same procedure used 
for flexible belts, with the exception that the centrifugal force acting on belts does not exist. Hence, 
referring to Section 13.3, the band tension relationship has the form

 = φF

F
e f1

2

 (13.44)

Here,
F1 = the larger tensile force
F2 = the smaller tensile force
f = the coefficient of friction
ϕ = the angle of contact between band and drum or the angle of wrap

Let the analysis of the belt shown in Figure 13.5(b) be applied to the band at the point of tangency 
for F1. We now have Fc = 0 and dN = pmaxwr · dθ. The inward components of the band forces are equal 
to dN = F1dθ. These two forces are set equal to each other to yield

 =F wrp1 max
 (13.45)

The quantity pmax is the maximum pressure between the drum and lining, and w represents the 
width of band. An expression similar to this can also be written for the slack side.

The differential band brake is analogous to the simple band brake, with the exception that the 
tight-side tension helps the actuating force (Figure 13.20). A brake of this type is termed self-
energized, since the friction force assists in applying the band. For a differential brake, Equation 
(13.43) becomes

 ( )= −F
a

cF sF
1

a 2 1
 (13.46)

In the case of a self-locking brake, the product sF1 is greater than cF2. Note that, when a brake is 
designed to be self-locking for one direction of rotation, it can be free to rotate in the opposite direc-
tion. A self-locking brake can then be employed when rotation is in one direction only.

Band of width, w

Rotation
φ

Drum
Fa

c

F2

F1

Sectioning
plane

+

+

a

r

FIGURE 13.19 Simple band brake.
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Example 13.8: Design of a Differential Band Brake

A differential band brake similar to that in Figure 13.20 uses a woven lining having design values of 
f = 0.3 and pmax = 375 kPa. Determine:

 a. The torque capacity.
 b. The actuating force.
 c. The power capacity.
 d. The value of dimension s that would cause the brake to be self-locking.

Given: The speed is 250 rpm, a = 500 mm, c = 150 mm, w = 60 mm, r = 200 mm, s = 25 mm, and ϕ = 270°.

Solution

 a. Through the use of Equation (13.45), we obtain

 ( )( )( )= = =. . .F wrp 0 06 0 2 375 4 5 kN1 max
 

 Applying Equation (13.44),

 = = =( )φ π

. .. .F
F

e e

4 5
1 095 kNf2

1

0 3 1 5
 

 Then, Equation (13.42) gives T = (4.5 − 1.095)(0.2) = 0.681 kN · m.
 b. By Equation (13.46),

 ( ) ( )
=

−
=

. .
.

.F
150 1 095 25 4 5

0 5
103 5 Na

 

 c. From Equation (1.15),

 ( )
= = = .Tn

kW
9549

681 250

9549
17 8 

 d. Using Equation (13.46), we have Fa = 0 for s = 150(1.095)/4.5 = 36.5 mm.

Comment: The brake is self-locking if s ≥ 36.5 mm.

13.13  SHORT-SHOE DRUM BRAKES

A short-shoe drum brake consists of a short shoe pressed on the revolving drum by a lever. The 
schematic representation of a brake of this type is depicted in Figure 13.21. Inasmuch as the shoe is 

Band of width, w

Rotation
φ

Fa

s
c F2

F1

a

+

+
+

r
Drum

FIGURE 13.20 Differential brake.
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relatively short (i.e., the angle of contact is small, ϕ < 45°), a uniform pressure distribution may be 
taken between drum and shoe. Accordingly, the resultant normal force and the friction force act at 
the center of contact.

The projected area A of the shoe is the width multiplied by the chord length subtended by a ϕz 
arc of the radius of the drum. From the geometry of the figure, A = wL = 2[r sin(ϕ/2)]w. Hence, the 
normal force on the shoe is

 = φ











sinF p r w2

2
n max

 (13.47)

In the foregoing, we have
Fn  =  the normal force
pmax =  the maximum pressure between the drum and shoe
r  =  the radius of the drum
ϕ  =  the angle of contact
w  =  the width of the shoe

The value of the friction force is fFn. The sum of moments about point O for the free-body diagram 
of the drum yields the torque capacity of the brake as

 =T fF rn
 (13.48)

The quantity f represents the coefficient of friction.
We now consider the lever as the free body. Then taking moments about the pivot A, we have

 + − =F a fF c bF 0a n n
 

The preceding leads to the actuating force

 ( )= −F
F

a
b fca

n  (13.49)

in which a, b, and c represent the distances shown in Figure 13.21.

13.13.1  selF-energizing and selF-loCking Brakes

For the brake with the direction of the rotation shown in the figure, the moment of the friction force 
assists in applying the shoe to the drum; this makes the brake self-energizing. If b = fc or b < fc, the 

Rotation

L

Drum
r

c΄

A
b

a

Fa

f Fn Fn

Shoe

O

φ

c

+

FIGURE 13.21 Short-shoe drum brake.
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force Fa required to actuate the brake becomes 0 or negative, respectively. The brake is then said to 
be self-locking when

 ≤b fc  (13.50)

A self-locking brake requires only that the shoe be brought in contact with the drum (with Fa = 0) for 
the drum to be loaded against rotation in one direction. The self-energizing feature is useful, but the 
self-locking effect is generally undesirable. To secure proper utilization of the self-energizing effect 
while avoiding self-lock, the value of b must be at least 25–50% greater than fc.

Note that, if the brake drum rotation is reversed from that indicated in Figure 13.21, the sign of 
fc in Equation (13.49) becomes negative and the brake is then self-de-energized. Also, if the pivot is 
located on the other side of the line of action of fFn, as depicted by the dashed lines in the figure, the 
friction force tends to unseat the shoe. Then, the brake would not be self-energizing. Clearly, both 
pivot situations discussed are reversed if the direction of rotation is reversed.

Example 13.9: Design of a Short-Shoe Drum Brake

The brake shown in Figure 13.21 uses a sintered metal lining having design values of f = 0.4 and 
pmax = 1.03 MPa. Determine:

 a. The torque capacity and actuating force.
 b. The reaction at pivot A.

Given: a = 300 mm, w = 75 mm, b = 125 mm, c = 50 mm, r = 100 mm, ϕ = 30°.

Solution

 a. From Equation (13.47), we have

 = °













 =. sinF 1 03 2 100

30

2
75 4 kNn

 

 Equation (13.48) yields

 ( )( )( )= = ⋅. .T 0 4 4000 0 1 160 N m 

 Applying Equation (13.49),

 . .F
4 125 0 4 50

300
1 4 kNa

( )= − × =  

 b. The conditions of equilibrium of the horizontal (x) and vertical (y) forces give

 ( )= = =. . .R R4 0 4 1 6 kN 2 6 kNAx Ay  

 The resultant radial reactional force is

 = + =. . .R 1 6 2 6 3 05 kNA
2 2  

13.14  LONG-SHOE DRUM BRAKES

When the angle of contact between the shoe and the drum is about 45° or more, the short-shoe 
equations can lead to appreciable errors. Most shoe brakes have contact angles of 90° or greater, so 
a more accurate analysis is needed. The obvious problem relates the determination of the pressure 
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distribution. The analysis that includes the effects of deflection is complicated and not warranted 
here. In the following development, we make the usual simplifying assumption: the pressure varies 
directly with the distance from the shoe pivot point. This is equivalent to the presupposition made 
earlier that the wear is proportional to the product of pressure and velocity.

13.14.1  external long-shoe drum Brakes

Figure 13.22 illustrates an external long-shoe drum brake. The pressure p at some arbitrary angle θ 
is proportional to c sin θ. However, since c is a constant, p varies directly with sin θ.

As a result,

 
( )= θ

θ
sin
sin

p p
m

max
 (13.51)

Here,
pmax is the maximum pressure between the lining and the drum (sin θ)m is the maximum value 

of sin θ

Based on the geometry,

 
( )
( )( )θ =

θ > °

θ θ ≤ °






sin

.

sin

1 0 if 90

if 90m

2

2 2
 (13.52)

Note from Equation (13.52) that the maximum pressure takes place at the location having the value 
of (sin θ)m. External long-shoe brakes are customarily designed for θ1 ≥ 5°, θ2 < 120°, and ϕ = 90°, 
where ϕ is the angle of contact.

Let w represent the width of the lining. Then, the area of a small element, cut by two radii an 
angle dθ apart, is equal to wrdθ. Multiplying by the pressure p and the arm c sin θ and integrating 
over the entire shoe, the moment of normal forces, Mn, about pivot A results:

 
∫

∫

( )

( )

= θ θ

=
θ

θ θ

θ

θ

θ

θ

sin

sin
sinmax

M p wrd c

wrcp
d

n

m

2

1

2

1

2

 

from which
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θ
φ
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r

FIGURE 13.22 External long-shoe drum brake.
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 [ ]( )=
θ

φ − θ + θ
sin

sin sinmaxM
wrcp

4
2 2 2n

m

2 1  (13.53)

In a like manner, the moment of friction forces, Mf about A is written in the form

 
∫

∫

( )

( )

= θ − θ

=
θ

θ − θ





θ

θ

θ

θ

θ

cos

sin
sin sinmax

M fpwrd r c

fwrp
r

c
d

2
2

f

m

1

2

1

2

 

or

 
( ) ( ) ( )=

θ
θ − θ − θ − θ sin

cos cos cos cosmaxM
fwrp

c r
4

2 2 4f

m

2 1 2 1
 (15.54)

Now, summation of the moments about the pivot point A results in the actuating force

 
( )=F

a
M M

1
a n f

 (13.55)

In this equation, the upper sign is for a self-energizing brake and the lower one for a self-de-ener-
gizing brake. Self-locking occurs when

 ≥M Mf n
 (13.56)

As noted previously, it is often desirable to make a brake shoe self-energizing but not self-locking. 
This can be accomplished by designing the brake so that the ratio Mf/Mn is no greater than about 0.7.

The torque capacity of the brake is found by taking moments of the friction forces about the 
center of the drum O. In so doing, we have

 
∫

∫( )

= θ

=
θ

θ θ

θ

θ

θ

θ

sin
sinmax

T fpwrd r

fwr p
d

m

2

1

2

1

2

 

from which

 
( ) ( )=

θ
θ − θ

sin
cos cosmaxT

fwr p

m

2

1 2
 (13.57)

Finally, pin reactions at A and O can readily be obtained from horizontal and vertical force equi-
librium equations. Note that reversing the direction of the rotation changes the sign of the terms 
containing the coefficient of friction in the preceding equations.

Example 13.10: Design of a Long-Shoe Drum Brake

The long-shoe drum brake is actuated by a mechanism that exerts a force of Fa = 4 kN (Figure 13.23). 
Determine:
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 a. The maximum pressure.
 b. The torque and power capacities.

Design Decision: The lining is a molded material having a coefficient of friction f = 0.35 and a width 
w = 75 mm.

Solution

The angle of contact is ϕ = 90° or π/2 rad. From the geometry, α = tan−1 (200/150) = 53.13°. Hence,

 θ = ° θ = °. , .8 13 98 131 2  

 = + =c 200 150 250 mm2 2  

Inasmuch as θ2 > 90°, (sin θ)m = 1.

 a. Through the use of Equation (13.53),

 

( )

( )( )( )
( )= π





− ° + °










= −

. . .
sin . sin .

. max

M
p

p

0 075 0 15 0 25

4 1
2

2
196 26 16 26

2 6 10

n
max

3

 

 From Equation (13.54),

 

( )

( )( )

( )( ) ( )( )

=

° − ° − ° − ° 

= −

. . .

. cos . cos . . cos . cos .

.

M
p

p

0 35 0 075 0 15

4

0 25 196 26 16 26 4 0 15 98 13 8 13

0 196 10

f
max

3
max

 

 Applying Equation (13.55), we then have

 ( )( ) ( )= + −. . . p4000 0 45 2 6 0 196 10 3
max

 

 or

 =p 644 kPamax
 

250 rpm

150 mm

w = 75 mm
f = 0.35

45° 45°

c

A

θ2

θ1

O

Fa

α

200 mm 250 mm

B

FIGURE 13.23 Example 13.10.
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 b. Using Equation (13.57),

 
( )( )( )( ) ( )=

×
° − °

= ⋅

. . . .
cos . cos .

.

T
0 35 0 075 0 15 0 644 10

1
8 13 98 13

430 3 N m

2 2

 

 By Equation (1.15), the corresponding power is

 ( )
= = =

.
.Tn

kW
9549

430 3 250

9549
11 28 

13.14.1.1  Symmetrically Loaded Pivot-Shoe Brakes
A special case where the pivot is symmetrically located is illustrated in Figure 13.24. Observe from 
the figure that the magnitude of the friction forces with respect to the pivot A is zero. The largest 
pressure occurs at θ = 0° and the pressure variation can be expressed as:

 = θcosmaxp p  (a)

At any value of θ from the pivot, a differential normal force dFn on the shoe is equal to

 ( )= θ = θ θcosmaxdF pw rd p wr dn
 (b)

in which w is the face width (perpendicular to the paper) of the friction material or the brake lining.
The distance a to the pivot is chosen such that the moment of friction forces Mf is zero. That is,

 ∫ ( )( )= θ − =
θ

cosM fdF a r2 0f n

0

2

 

Carrying Equation (b) into this expression leads to

 ∫ ( )θ − θ θ =
θ

cos cosmaxfp wr a r d2 0
0

2

2

 

Brake
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θ

dF
n s

in
 θ

fdFn cos θ
fdFn sin θ
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FIGURE 13.24 Brake with symmetrical pivoted shoe.
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from which

 = θ
θ + θ

sin
sin

a
r4

2 2
2

2 2

 (13.58)

Referring to Figure 13.24, the horizontal reaction may be expressed as

 ∫= θ
θ

cosR dF2Ax n

0

2

 

This becomes, inserting Equations (b) and (13.58):

 ( )= θ + θ = θsin sinmax
maxR

p wr

a
p

2
2 2

2
Ax 2 2

2

2
 (13.59)

Here, owing to symmetry, ∫fdFnsinθ = 0. In a like manner, the vertical reaction has the form

 ∫= θ
θ

cosR fdF2Ay n

0

2

 

We thus have

 =R fRAy x
 (13.60)

in which, due to symmetry, ∫dFnsinθ = 0. The resultant pivot reaction is = + 
/

R R RA Ax Ay
2 2 1 2

.
In addition, a final point is to be noted that

 = − = −R F R fFandAx n Ay n  (13.61a)

where Fn represents the resultant normal force on the shoe. The torque therefore is equal to

 = =T R a afFAy n
 (13.61b)

The preceding is valid for the particular choice of the dimension a, defined by Equation (13.58).

13.14.2  internal long-shoe drum Brakes

Figure 13.25 shows an internal long-shoe drum brake. A brake of this type is widely used in auto-
motive services. We see from the figure that both shoes pivot about anchor pins (A and B) and are 
forced against the inner surface of the drum by a piston in each end of the hydraulic wheel cylinder. 
The actuating forces are thus exerted hydraulically by pistons. The light return spring applies only 
enough force to take in the shoe against the adjusting cams. Each adjusting cam functions as a stop 
and is utilized to minimize the clearance between the shoe and drum.

The method of analysis and the resulting expressions for the internal brakes are identical with 
those of long-shoe external drum brakes just discussed. That is, Equations (13.51) through (13.54) 
apply as well to internal-shoe drum brakes. Note that, now, a positive result for Mn indicates clock-
wise moment about A of the left shoe or counterclockwise moment about B of the right-side shoe. A 
positive or negative result for friction moment Mf should be interpreted in the same manner as for a 
brake with external shoe.

Typically, in Figure 13.25, the left shoe is self-energizing and the right shoe is de-energizing. 
Should the direction of the rotation be reversed, the right shoe would be self-energizing and the 
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left shoe would not. For a prescribed actuating force, the braking capacity with both shoes self-
energizing is clearly higher than if only one were. Interestingly, automotive brakes are also made 
using two hydraulic wheel cylinders with both shoes self-energizing. Of course, this results in a 
braking ability in reverse that is much less than for forward motion. Recently, the caliper-type disk 
brakes discussed in Section 13.10 have replaced front drum brakes on most passenger cars due to 
their greater cooling capacity and other good qualities.

13.15  ENERGY ABSORPTION AND COOLING

The primary role of a brake is to absorb energy and dissipate the resulting heat without developing 
high temperatures. Clutches also absorb energy and dissipate heat, but at a lower rate, since they 
connect two moving elements. The quality of heat dissipation depends on factors such as the size, 
shape, and condition of the surface of the various parts. Obviously, by increasing exposed surface 
areas (such as by fins and ribs) and the flow of the surrounding air, these devices can be cooled more 
conveniently. In addition, the length of time and the interval of brake application affect the tempera-
ture. With an increase of the temperature of the brake (or clutch), its coefficient of friction decreases. 
The result is fading; that is, the effectiveness of the device may sharply deteriorate. The torque and 
power capacity of a brake or clutch is thus limited by the characteristics of the material and the abil-
ity of the device to dissipate heat. A satisfactory braking or clutching performance requires that the 
heat generation should not exceed the heat dissipation.

13.15.1  energy sourCes

The energy equation depends on the type of motion a body is going under. Let us consider a body of 
weight W, mass m, and mass moment of inertia about its axis of rotation I. The sources of energy to 
be absorbed from the body by the clutch or brake are mainly as follows: kinetic energy of transla-
tion is

 = υE m
1
2

k
2 (13.62)
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Brake
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FIGURE 13.25 Brake with internal long shoe, automotive-type brake.

ISTUDY

www.konkur.in

Telegram: @uni_k



545Belts, Chains, Clutches, and Brakes

Kinetic energy of rotation is

 = ωE I
1
2

k
2 (13.63)

Potential energy is

 =E Whp
 (13.64)

In the foregoing
υ = the velocity
ω = the angular velocity
h = the vertical distance

To clarify the relevance to brakes of the kinetic and potential energies, refer to a winch crane 
(Figure 18.1). Suppose that the crane lowers a mass m of weight W translating at time t1 with a veloc-
ity υ1 at elevation h1 and the gear shafts with mass moments of inertia I rotating at angular veloci-
ties ω1. Shafts may be rotating at different speeds. If at time t1 the internal brake (in the motor) is 
applied, then, at time t2, quantities will have reduced to υ2, ω2, and h2. Therefore, during the time 
interval t2 − t1, we have [4]: Wb as the work done by the brake; Wr as the work done by rolling friction, 
bearing friction, and air resistance; and Wm as the work done by the drive motor. The conservation 
of energy requires that the total work equals the change in energy:

 ( ) ( )+ + = υ − υ + ∑ ω − ω + −





W W W m I W h h
1
2

1
2

b r m 1
2

2
2

1
2

2
2

1 2
 

Here, the summation consists of multiplications made for different mass moments of inertia at their 
corresponding angular velocities.

The work required of the brake to stop, slow, or maintain speed is obtained by the solution of the 
preceding equation for Wb. This presents the mechanical energy transformed into heat at the brake 
and can be used to predict the temperature rise. Note that, in many machines such as slow speed 
hoists and winch cranes, Wr and Wm are negligible. Clearly, omitting these quantities results in a 
safer brake design.

13.15.2  temPerature rise

When the motion of the body is halted or transmitted by a braking or clutching operation, the fric-
tional energy E developed appears in the form of heat in the device. The temperature rise may be 
related to the energy absorbed in the form of friction heat by the familiar formula

 ∆ =t
E

Cm
 (13.65)

where
Δt = the temperature rise, °C
E = the frictional energy the brake or clutch must absorb, J
C = the specific heat (use 500 J/kg°C for steel or cast iron)
m = the mass of brake or clutch parts, kg

The frictional energy E is ascertained as briefly discussed in the preceding. Then, through the use 
of Equation (13.65), the temperature rise of the brake or clutch assembly is obtained. The limiting 
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546 Mechanical Engineering Design

temperatures for some commonly used brake and clutch linings are furnished in Table 13.11. These 
temperatures represent the largest values for steady operation.

Equations (13.62) through (13.65) illustrate what happens when a brake or clutch is operated. Many 
variables are involved, however, and such an analysis may only estimate experimental results. In prac-
tice, the rate of energy absorption and heat dissipated by a brake or clutch is of the utmost importance. 
Brake and lining manufacturers include the effect of the rate of energy dissipation by assigning the 
appropriate limiting values of pV, a product of pressure and velocity, for specific kinds of brake design 
and service conditions [10, 11]. Typical values of pV used in industry are given in Table 13.13.

PROBLEMS

Sections 13.1 through 13.7
 13.1 A flat belt 100 mm wide and 5 mm thick operates on pulleys of diameters 125 and 375 

mm and transmits 7.5 kW. Determine:
 a. The required belt tensions.
 b. The belt length.
  Given: Speed of the small pulley is 1500 rpm, the pulleys are 1.525 mm apart, the coef-

ficient of friction is 0.30, and the weight of the belt material is 10.8 kN/m3.
 13.2 A plastic flat belt 60 mm wide and 0.5 mm thick transmits 10 kW. Calculate:
 a. The torque at the small pulley.
 b. The contact angle.
 c. The maximum tension and stress in the belt.
  Given: The input pulley has a diameter of 300 mm, and it rotates at 2800 rpm, and the 

output pulley speed is 1600 rpm: the pulleys are 700 mm apart, the coefficient of friction 
is 0.2, and belt weight is 25 kN/m3.

  Assumptions: The driver is a high torque motor and the driven machine is under a 
medium shock load.

 13.3 Rework Example 13.2 for the case in which the radius of the driven pulley equals r2 = 200 
mm and the coefficient of friction is changed to 0.25. Also find the length of the belt using 
Equation (13.9).

 13.4 Figure P13.4 shows a flat-belt drive, where pulley B runs a machine tool and pulley A 
attached to the shaft of an electric motor. What is the largest torque that can be exerted 
by the belt on each pulley?

  Given: f = 0.15, F1 = 2.5 kN, r1 = 20 mm, r2 = 150 mm, ϕ = 120°.
  Assumption: The belt runs slowly, so the centrifugal force may be neglected.
 13.5 A 1.5 kW 2500 rpm electric motor drives a machine through a flat belt. The driven shaft 

speed requirement equals 1000 rpm. Find:
 a. The pitch line velocity.
 b. The radius of the driven pulley r2 and the angle ϕ wrap of the driving pulley.

TABLE 13.13
Representative pV Values for Shoe Brakes

Operation

pV

Heat Dissipation (MPa) (m/s) (ksi) (ft/min)

Continuous Poor 1.05 30

Occasional Poor 2.10 60

Continuous Good 3.00 85
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547Belts, Chains, Clutches, and Brakes

 c. The values of tension forces F1 and F2.
  Given: c = 625 mm, r1 = 37.5 mm, f = 0.35, w = 1.75 N/m.
 13.6 A timing belt similar to that shown in Figure P13.4 having 8.8 N/m weight is used to 

transfer power from an engine to a grinding wheel. The largest permissible force in the 
belt equals F1 = 2.5 kN, and both engine and wheel rotate at the same speed of n = 4200 
rpm. What is the optimum pulley pitch radius r for the largest power transfer? Hint: max-
imum power, P = V(F1 − Fc), transfer occurs when ∂P/∂V = 0, where Fc is the centrifugal 
force.

 13.7 What is the largest power that can be transmitted by the pulley A of a V belt drive illus-
trated in Figure P13.7?

  Given: n1 = 3000 rpm, r1 = 80 mm, β = 18°, ϕ = 160°, f = 0.25, F1 = 1100 N, w = 1.4 N/m.
 13.8 A V belt drive has a 200 mm diameter small sheave with a 170° contact angle, 38° 

included angle, 0.15 coefficient of friction, 1600 rpm driver speed, belt weight of 8 N/m, 
and a tight-side tension of 3 kN. Determine the power capacity of the drive.

 13.9 A V belt drive has an included angle of 38°, belt weight of 3 N/m, belt cross-sectional 
area of 145 mm2, coefficient of friction of 0.25, r1, = 150 mm, ϕ = 160°, n1 = 3000 rpm, and 
F2 = 800 N. Calculate:

 a. The maximum power transmitted.
 b. The maximum stress in the belt.
 13.10 A V belt drive with an included angle of 34° is to have a capacity of 15 kW based on a 

coefficient of friction of 0.2 and a belt weight of 2.5 N/m. Determine the required maxi-
mum belt tension at full load.

  Assumptions: The driver is a normal torque motor and the driven machine involves 
heavy shocks.

  Design Decision: Speed is to be reduced from 2700 rpm to 1800 rpm using a 200 mm 
diameter small sheave: shafts are 500 mm apart.

 13.11 A two-strand ANSI No. 60, 19 mm (¾ in.) pitch roller-chain drive transmits power from 
a 22-tooth driver operating at 1400 rpm using an electric motor. The driven sprocket of a 
helicopter transmission rotates at 700 rpm under heavy shock. Find:

F1

F2

r1
n1

A

B+

r2

FIGURE P13.4 

++

F2

F1

r1
n1

AB

r2
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 a. The number of teeth on the driven sprocket.
 b. The design horsepower.
 c. The safety factor n of the chain based on ultimate strength.
 13.12 A two-strand ANSI No. 60, 19 mm (¾ in.) pitch roller-chain drive transmits power from 

an 18-tooth driver operating at 1600 rpm using an IC engine (hydraulic drive). The driven 
sprocket of a helicopter transmission rotates at 640 rpm under moderate shock. Calculate:

 a. The number of teeth on the driven sprocket.
 b. The design power in kW.
 c. The factor of safety n of the chain based on ultimate strength.
 13.13 A 16 mm pitch roller chain operates on a 22-tooth drive sprocket rotating at 4000 rpm 

and a driven sprocket rotating at 1000 rpm. Calculate the minimum center distance.
 13.14 A 16 mm pitch inverted chain operates on a 14-tooth drive sprocket rotating at 4600 rpm 

and a driven sprocket at 2100 rpm. Determine the minimum center distance.
 13.15 A four-strand ANSI No. 60, 19.05 mm pitch roller-chain drive, under a moderate shock, 

transmits power from a 23-tooth driver operating at 1800 rpm using a turbine. The speed 
ratio is 3:1. Find:

 a. The number of teeth on the driven sprocket.
 b. The design power capacity.
 c. The tension in the chain.
 d. The safety factor n of the chain based on ultimate strength.
 13.16 Reconsider Problem 13.15, for a case in which a three-strand roller chain transmits power 

from a 32-tooth driving sprocket operating at 900 rpm.

Sections 13.8 through 13.11
 13.W Search the website at www.sepac.com. List the selection (application procedure and 

application) factors to consider prior to choosing a brake or clutch.
 13.17 A disk clutch has a single pair of friction surfaces of 250 mm outside diameter × 150 mm 

inside diameter. Determine the maximum pressure and the torque capacity, using the 
assumption of:

 a. Uniform wear.
 b. Uniform pressure.
  Given: The coefficient of friction is 0.3 and the actuating force equals 6 kN.
 13.18 A disk clutch with both sides effective and an outside diameter four times the inside 

diameter, used in an application where 30 kW is to be developed at 500 rpm. Determine, 
based on uniform pressure condition:

 a. The inside and outside diameters.
 b. The actuating force required.
  Design Decisions: A friction material with f = 0.25 and pmax = 140 kPa is used.
 13.19 Resolve Problem 13.18 based on the assumption of uniform wear.
 13.20 A disk clutch with a single pair of friction surfaces is to be used in a turbine with a maxi-

mum torque of 135.6 N ∙ m. A sintered metal will contact steel in a dry environment. A 
safety factor of n = 1.6 is taken to consider for slippage at full turbine torque. Find, on the 
basis of uniform wear conditions:

 a. The outer diameter of the disk.
 b. The actuating force.
  Given: d = 50 mm, f = 0.3, pmax = 1.6 MPa (by Table 13.11).
 13.21 A multiple-disk clutch having four active faces, 300 mm outer diameter, 150 mm inner 

 diameter, and f = 0.2 is to carry 37.5 kW at 400 rpm. Determine, using the condition of 
uniform wear:

 a. The actuating force required.
 b. The average pressure between the disks.
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 13.22 A caliper brake has two annular pads, subtends an angle of 80° (Figure 13.16), and is actu-
ated by a pair of hydraulic 40 mm cylinders. Determine, for the uniform wear condition:

 a. The maximum pressure pmax.
 b. The actuating force Fa.
 c. The required hydraulic cylinder pressure phyd.
  Given: f = 0.3, T = 1.8 kN · m, d = 200 mm, D = 280 mm, γ = 80°.
 13.23 Redo Problem 13.22, on the basis of the uniform pressure assumption.
 13.24 A 250 mm outside diameter cone clutch with 8° cone angle is to transmit 35 kW at 

800 rpm. Calculate the face width w of the cone, on the basis of the uniform pressure 
assumption.

  Design Decision: The maximum lining pressure will be 420 kPa and the coefficient of 
friction f = 0.3.

 13.25 Redo Problem 13.24 using the condition of uniform wear.
 13.26 A cone clutch has a mean diameter of 500 mm, a cone angle of 10°, and a cone face width 

of w = 80 mm. Determine, using the uniform wear assumption,
 a. The actuating force and torque capacity.
 b. The power capacity for a speed of 500 rpm.
  Design Decision: The lining has f = 0.2 and pmax = 0.5 MPa.
 13.27 A cone clutch has an average diameter of 250 mm, a cone angle of 12°, and f = 0.2. 

Calculate the torque that the brake can transmit.
  Assumptions: A uniform pressure of 400 kPa. Actuating force equals 5 kN.
 13.28 Verify, based on the assumption of uniform pressure, that the actuating force and torque 

capacity for a cone clutch (Figure 13.18) are given by Equations (13.40) and (13.41).

Section 13.12
 13.29 A band brake uses a 100 mm wide woven lining having design values of f = 0.3 and 

pmax = 0.7 MPa (Figure P13.29). Determine band tensions and power capacity at 150 rpm.
  Given: ϕ = 240° and r = 200 mm.
 13.30 The drum of the band brake depicted in Figure P13.30 has a moment of inertia of I = 2.3 

N ∙ m · s2 about point O. Calculate the actuating force Fa necessary to decelerate the drum 
at a rate of α = 200 rad/s2. Note that the torque is expressed by T = Ια.

  Given: ϕ= 210°, a = 300 mm, r = c = 125 mm, and f = 0.3.
 13.31 The band brake shown in Figure P13.30 has a power capacity of 40 kW at 600 rpm. 

Determine the belt tensions.
  Given: ϕ = 250°, r = 250 mm, a = 500 mm, and f = 0.4.
 13.32 The band brake depicted in Figure P13.30 uses a woven lining having design values of 

pmax = 0.6 MPa and f = 0.4. Calculate:
 a. The band tensions and the actuating force.
 b. The power capacity at 200 rpm.
  Given: The band width w = 75 mm, ϕ = 240°, r = 150 mm, and a = 400 mm.
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 13.33 The differential brake depicted in Figure P13.33 is to absorb 10 kW at 220 rpm. Determine:
 a. The angle of wrap.
 b. The length of arm s from the geometry of the brake.
  Given: The maximum pressure between the lining and the drum is 0.8 MPa, f = 0.14, and 

w = 60 mm.
 13.34 The differential brake depicted in Figure 13.20 has a = 300 mm, c = 50 mm, s = 80 mm, 

r = 100 mm, n = 300 rpm, ϕ = 210°, f = 0.12, and Fa = 1.5 kN. If Fa is acting upward, deter-
mine the power capacity in kW.

 13.35 The differential band brake shown in Figure 13.20 has a = 250 mm, c = 100 mm, s = 50 
mm, r = 200 mm, ϕ = 210°, and a woven lining material with f = 0.4. Determine the actuat-
ing force Fa required. Will the brake be self-locking?

  Requirement: A power of 15 kW is to be developed at 900 rpm.
 13.36 Redo Problem 13.35 for counterclockwise rotation of the drum.
 13.37 The differential band brake shown in Figure 13.20 has the given dimensions r = 100 mm, 

w = 20 mm, a = 200 mm, c = 40 mm, s = 10 mm, wrap angle ϕ = 265°, lining coefficient of 
friction f = 0.25, and pmax = 500 kPa. Find:

 a. The torque capacity.
 b. Actuating force and value of distance s, if the brake force locks.
 13.38 Figure 13.20 illustrates a differential band brake that uses a lining with a design coef-

ficient of friction f = 0.25 and maximum pressure pmax = 490 kPa. Determine:
 a. The torque capacity.
 b. The actuating force.
 c. The value of the dimension s causing self-locking.
  Given: a = 625 mm, c = 150 mm, r = 250 mm, s = 35 mm, w = 75 mm, ϕ = 260°.

r
O +

Fa

φ

a

FIGURE P13.30 
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Sections 13.13 through 13.15
 13.39 A short-shoe drum brake having f = 0.25, a = 1 m, b = 0.4 m, c = 50 mm, and r = 0.3 m is to 

absorb 25 kW at 800 rpm (Figure 13.21). Determine:
 a. The actuating force, and whether the brake is self-locking.
 b. The pin reaction at A.
 13.40 Resolve Problem 13.39 for clockwise rotation of the drum.
 13.41 Redo Example 13.10 using short-shoe analysis, that is, assuming that the total normal 

and friction forces are concentrated at point B. Compare the results with the more exact 
results of Example 13.10.

 13.42 Shown in Figure P13.42 is a short-shoe external drum brake. The material of the shoe and 
drum produces a coefficient of friction 0.25 and a maximum pressure of 800 kPa. Find:

 a. The limiting lever force Fa and the braking torque T. Is the brake self-energizing or 
de-energizing for the direction shown?

 b. The radial force on the lever pivot A.
  Given: a = 500 mm, b = 200 mm, r = 150 mm, d = 175 mm, w = 50 mm, ϕ = 44°, f = 0.25, 

pmax = 800 kPa.
 13.43 A short-shoe brake in Figure 13.21 sustains 250 N · m of torque at a drum rotation 600 

rpm. Find:
 a. The normal force Fn acting on the shoe.
 b. The actuating force Fa.
  Given: a = 900 mm, b = 320 mm, c = 34 mm, r = 350 mm, f = 0.4.
 13.44 A short-shoe drum brake illustrated in Figure 13.21 uses a lining material having 

pmax = 700 kN and the coefficient of friction of f = 0.2. What is the maximum value of the 
actuating force Fa?

  Given: a = 200 mm, b = 120 mm, c = 30 mm, r = 100 mm, w = 40 mm, ϕ = 36°.
 13.45 An external, long-shoe drum brake has a torque capacity T = 136 N ∙ m (Figure 13.22). 

The lining is a woven material with coefficient of friction f = 0.35. Determine the maxi-
mum pressure pmax between the lining and drum for two cases:

 a. The contact angle is ϕ = 90° (θ1 = 0°, θ2 = 90°).
 b. The contact angle equals ϕ = 45° (θ1 = 20°, θ2 = 65°).
  Given: r = 75 mm, w = 25 mm.
 13.46 Figure P13.46 depicts a long-shoe drum brake. Determine the value of dimension b in 

terms of the radius r so that the friction forces neither assist nor resist in applying the shoe 
to the drum.

 13.47 The long-shoe brake shown in Figure P13.47 has pmax = 900 kPa, f = 0.3, and w = 50 mm. 
Calculate:

 a. The actuating force.
 b. The power capacity at 600 rpm.
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 13.48 A long-shoe brake is shown in Figure P13.48. Determine:
 a. The actuating force.
 b. The power capacity at 500 rpm.
  Given: b = 150 mm, d = 250 mm, r = 200 mm, w = 60 mm, f = 0.3, and pmax = 800 kPa.
 13.49 Consider a symmetrically loaded pivoted shoe brake similar to that illustrated in Figure 

13.24 with a sintered metal friction material. Find:
 a. The distance a between the pivot A and the center of drum.
 b. Reactions at pivot A.
 c. The torque capacity of the brake.
  Given: r = 125 mm, w = 50 mm, ϕ = 90°, pmax = 1.55 MPa, and f = 0.3 (from Table 13.11).

A
b

O r

90°

b

FIGURE P13.46 

A

175 mm

250 mm 300 mm

200 mm

Fa

45°

O

45°

FIGURE P13.48 

A

o

a
d

b

c

Fa

45°

15°

30°

r

60°

FIGURE P13.48 

ISTUDY

www.konkur.in

Telegram: @uni_k



DOI: 10.1201/9781003251378-17

14 Springs

14.1  INTRODUCTION

Springs are used to exert forces or torques in a mechanism or primarily to store the energy of impact 
loads. These flexible members often operate with high values for the ultimate stresses and with varying 
loads. Helical springs are round or rectangular wire, and flat springs (cantilever or simply supported 
beams) are in widespread usage. Springs come in a number of other kinds, such as disk, ring, spiral, 
and torsion bar springs. Numerous standard spring configurations are available as stock catalog items 
from spring manufacturers. Figure 14.1 shows various compression, tension, and torsion springs. The 
designer must understand and appropriately apply spring theory to specify or design a component.

Pneumatic springs of diverse types take advantage of the elastic compressibility of gases as 
compressed air in automotive air shock absorbers. For applications involving very large forces 
with small displacements, hydraulic springs have proven very effective. Our concern in this text is 
only with mechanical springs of common geometric form made of solid metal or rubber. For more 
information on others, see [1–4]. As discussed in Section 1.4, mechanical components are usually 
designed on the basis of strength. Generally, displacement is of minor significance. Often deflec-
tion is checked to see whether it is reasonable. However, in the design of springs, displacement is as 
important as strength. A notable deflection is essential to most spring applications.

14.2  TORSION BARS

A torsion bar is a straight hollow or solid bar fixed at one end and twisted at the other, where it is 
supported. This is the simplest of all spring forms, as shown by the portion AB in Figure 14.2(a). 
Typical applications include counterbalancing for automobile hoods and trunk lids. A torsion bar 
with splined ends (Figure 14.2(b)) is used for a vehicle suspension spring or sway bar. Usually, one 
end fits into a socket on the chassis, and the other into the pivoted end of an arm. The arm is part 
of a linkage, permitting the wheel to rise and fall in approximately parallel motion. Note that in a 
passenger car, the bar may be about ¾ m length, 25 mm diameter, and twist 30°–45°.

The stress in a torsion bar is mainly one of torsional shear. Hence, the equations for stress, angular 
displacement, and stiffness are given in Sections 3.5 and 4.3. Referring to Figure 14.2(a), we can write

 = δ = φ =
φ

, ,T PR R k
T

 

in which the angle of twist ϕ = TL/GJ. For the solid round torsion bar, the moment of inertia is 
J = πd4/32. We therefore have the formulas

 τ =
π

PR

d

16
3

 (14.1)

 δ = =
π

TLR

GJ

PLR

d

32 2

3
 (14.2)

and

 = π
k

d G

L32

4

 (14.3)
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Here,
τ = the torsional shear stress
P = the load
δ = the relative displacement between ends
G = the modulus of rigidity

FIGURE 14.1 A collection of wire springs (Courtesy: Rockford Spring Co.).
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FIGURE 14.2 Torsion bar springs: (a) rod with bent ends and (b) rod with splined ends.
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d = the bar diameter
R = the moment arm
L = the bar length
k = the spring rate

The foregoing basic equations are supplemented, in the case of torsion springs with noncircular cross-
sections, by Table 3.1. Note that at the end parts of the spring that do not lie between supports A and B, 
there is a shear load P and an associated direct shear stress acting on cross-sectional areas. Usually, the 
effects of the curvature and the effect of bending are neglected at these portions of the bar. When design-
ing a torsion bar, the required diameter d is obtained by Equation (14.1). Then based on the allowable 
shear strength, Equation (14.2) gives the bar length L necessary to provide the required deflection δ.

14.3  HELICAL TENSION AND COMPRESSION SPRINGS

In this section, attention is directed to closely coiled standard helical tension and compression 
springs. They provide a push or pull force and are capable of large deflection. The standard form has 
constant coil diameter, pitch (axial distance between coils), and spring rate (slope of its deflection 
curve). It is the most common spring configuration. Variable-pitch, barrel, and hourglass springs are 
employed to minimize resonant surging and vibration.

A helical spring of circular cross-section is composed of a slender wire of diameter d wound into 
a helix of mean coil diameter D, coil pitch p, and pitch angle λ. The top portion, isolated from the 
compression spring of Figure 14.3(a), is shown in Figure 14.3(b). A section taken perpendicular to 
the axis of the spring wire can be considered nearly vertical. Hence, centric load P applied to the 
spring is resisted by a transverse shear force P and a torque T = PD/2 acting on the cross-section of 
the coil, as depicted in the figure. Figure 14.3(c) shows a helical tension spring.

For a helical spring, the ratio of the mean coil diameter to wire diameter is termed the spring 
index C:

 =C
D

d
 (14.4)

The springs of ordinary geometry have C > 3 and λ < 12°. In the majority of springs, C varies from 
about 6 to 12. At C > 12, the spring is likely to buckle and also tangles readily when handled in bulk. 
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FIGURE 14.3 Helical springs: (a) compression spring, (b) free body of top portion of compression spring, 
and (c) tension spring.
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The outside diameter Do = D + d and the inside diameter Di = D − d are of interest primarily to define 
the smallest hole in which the spring will fit or the largest pin over which the spring can be placed. 
Usually, the minimum diametral clearance between the Do and the hole or between Di and a pin is 
about 0.1D for D < 13 mm or 0.05 D for D > 13 mm.

14.3.1  stresses

An exact analysis by the theory of elasticity shows that the transverse or direct shear stress acting 
on an element at the inside coil diameter has the value

 τ = =
π

. .
/

P

A

P

d
1 23 1 23

4
d 2

 (14.5)

This expression may be rewritten in the form

 τ =
π

× .PD

d C

8 0 615
d 3

 

The torsional shear stress, by neglecting the initial curvature of the wire, is

 τ =
π

=
π

T

d

PD

d

16 8
t 3 3

 

The superposition of the preceding stresses gives the maximum or total shear stress in the wire 
on the inside of the coil:

 τ =
π

=
π

K
PD

d
K

PC

d

8 8
t s s3 2

 (14.6)

In the foregoing,

 = + . .
K

C
1

0 61 5
s

 (14.7)

is called the direct shear factor.
For a slender wire, the C has large values, and clearly, the maximum shear stress is caused pri-

marily by torsion. In this case, a helical compression or tension spring can be thought of as a torsion 
bar wound into a helix. On the other hand, in a heavy spring, where C has small values, the effect 
of direct shear stress cannot be disregarded.

The intensity of the torsional stress increases on the inside of the spring because of the curvature. 
The following more accurate relationship, known as the Wahl formula, includes the curvature effect [2]:

 τ =
π

=
π

K
PD

d
K

PC

d

8 8
t w w3 2

 (14.8)

The Wahl factor Kw is defined by

 = −
−

+ .
K

C

C C

4 1
4 4

0 615
w

 (14.9)

The first term in Equation (14.9), which accounts for the effect of curvature, is basically a stress-
concentration factor. The second term gives a correction factor for direct shear only. The Wahl fac-
tor may be used for most calculations. A more exact theory shows that it is accurate within 2% for 
C ≥ 3. Figure 14.4 illustrates the variation of the Kw as a function of C.
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After some minor local yielding under static loading, typical spring materials relieve the local 
stress concentration due to the curvature (see Section 8.8). Therefore, we use Equations (14.8) and 
(14.6) for alternating loading and static or mean loading, respectively. We note that, occasionally,

 = + .
K

C
1

0 5
s

 (14.7ʹ)

is used in static applications for compression springs, instead of Equation (14.7). This is based on the 
assumption that the transverse shear stresses are uniformly distributed subsequent to some yielding 
under static loading.

Interestingly, the free-body diagram of Figure 14.3(b) contains no bending loading for closely 
coiled springs. However, for springs with a pitch angle of λ greater than 15° and deflection of each 
coil greater than D/4, bending stresses should be taken into account [2]. In addition, it is rarely pos-
sible to have exactly centric axial loading P, and any eccentricity introduces bending and changes 
the torsional moment arm. This gives rise to stresses on one side of the spring higher than indicated 
by the foregoing equations. Also observe from Figure 14.3(b) that in addition to creating a trans-
verse shear stress, a small component of force P produces axial compression of the spring wire. In 
critical spring designs involving relatively large values of λ, this factor should be considered.

14.3.2  deFleCtion

In determining the deflection of a closely coiled spring, it is common practice to ignore the effect of 
direct shear. Therefore, the twist causes one end of the wire segment to rotate an angle dϕ relative 
to the other, where ϕ = TL/GJ. This corresponds to a deflection dδ, at the axis of the spring:

 δ = φ = 





d
D

d
D

d
TL

GJ2 2
 

The total deflection δ, of spring of length L = πDNa, is then

21.0
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FIGURE 14.4 Stress correction factors for curvature and direct shear for helical springs.
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 δ = =PD N

Gd

PC N

Gd

8 8s a
3

4

3
 (14.10)

in which
Na is the number of active coils
G represents the modulus of rigidity

An alternative derivation of this equation may readily be accomplished using Castigliano’s 
theorem.

14.3.3  sPring rate

The elastic behavior of a spring may be expressed conveniently by the slope of its force–deflection 
curve or spring rate k. Through the use of Equation (14.10), we have

 =
δ

= =k
P Gd

D N

dG

C N8 8s a

4

3 3
 (14.11)

Also referred to as the spring constant or spring scale, the spring rate has units of N/m in SI and lb/
in. in the US customary system. The standard helical spring has a spring rate k that is basically lin-
ear over most of its operating range. The first and last few percent of its deflection have a nonlinear 
rate. Often, in spring design, the spring rate is defined between about 15% and 85% of its total and 
working deflections.

Occasionally, helical compression springs are wound in the form of a cone (Figure 14.5), where 
the coil radius and hence the torsional stresses vary throughout the length. The maximum stress in 
a conical spring is given by Equation (14.8). The deflection and spring rate can be estimated from 
Equations (14.10) and (14.11), using the average value of mean coil diameter for D.

Example 14.1: Finding the Spring Rate

A helical compression spring of an average coil diameter D, wire diameter d, and number of active coils 
Na supports an axial load P (Figure 14.3a). Calculate the value of P that will cause a shear stress of τall, 
the corresponding deflection, and rate of the spring.

Given: D = 48 mm, d = 6 mm, Na = 5, τall = 360 MPa.

Design Decisions: A steel wire of G = 79 GPa is used.

P

P 2
D

d

FIGURE 14.5 Conical-helical compression spring.
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Solution

The mean diameter of the spring is D = 48 − 6 = 42 mm. The spring index is equal to C = 42/6 = 7. 
Applying Equation (14.6), we have

 ( )
( )

=
π

+





=. .
P

P360
8 42

6
1

0 615

7
0 5393

 

Solving

=P 668 N 

From Equation (14.10),

 
( )
( )( ) ( )

( )
δ =

×
= .

8 668 7 5

79 10 6
19 34 mm

3

3
 

The spring rate is therefore k = 668/0.01934 = 34.54 kN/m.

14.4  SPRING MATERIALS

Springs are manufactured either by hot- or cold-working processes, depending on the size 
and strength properties needed. Ordinarily, preheated wire should not be used if spring index 
C < 100 mm or if diameter d > 6.25 mm; that is, small sizes should be wound cold. Heavy-duty 
springs (e.g., vehicle suspension parts) are usually hot worked. Winding of the springs causes 
residual stresses owing to bending. Customarily, in spring forming, such stresses are relieved 
by heat treatment.

A limited number of materials are suitable for usage as springs. These include carbon steels, 
alloy steels, phosphor bronze, brass, beryllium copper, and a variety of nickel alloys. Plastics are 
used when loads are light. Blocks of rubber often form springs, as in bumpers and vibration iso-
lation mountings of various machines such as electric motors and internal combustion engines. 
The UNS steels (see Section 2.12) listed in Table B.3 should be used in designing hot-rolled or 
forged heavy-duty coil springs, as well as flat springs, leaf springs, and torsion bars. The typical 
spring material has high ultimate and yield strengths to provide maximum energy storage. For 
springs under dynamic loading, the fatigue strength properties of the material are of the main 
significance. The website www.acxesspring.com includes information on commonly used spring 
materials.

Experiment shows that for common spring materials, the ultimate strength obtained from a tor-
sion test can be estimated in terms of the ultimate strength determined from a simple tension test, 
as noted in Section 7.5. The ultimate strength in shear is then

 = .S S0 67us u
 (7.5a)

Similarly, yield strength in shear is

 = .S S0 577ys u
 (7.5b)

Here, the quantities Su and Sy are the ultimate strength or tensile strength and the yield strength in 
tension, respectively.
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14.4.1  sPring wire

Round wire is the most often utilized spring material. It is readily available in a selection of alloys 
and wide range of sizes. Rectangular wire is also attainable, but only in limited sizes. A brief 
description of commonly used high-carbon (C) and alloy spring steels is given in Table 14.1.

14.4.1.1  Ultimate Strength in Tension
Spring materials may be compared by examining their tensile strengths varying with the wire size. 
The material and its processing also have an effect on tensile strength. The strength properties for 
some common spring steels may be estimated by the formula

 =S Adus
b (14.12)

where
Su = the ultimate tensile strength (ksi or MPa)
A = a coefficient
b = an exponent
d = the wire diameter (in. or mm)

Values of coefficient A and exponent b pertaining to the materials presented in Table 14.1 are fur-
nished in SI and US customary units in Table 14.2. Likewise, the strengths of stainless steel wire 
and hard phosphor bronze wire are given in the form of graphs, tables, and formulas. The preceding 
equation provides a convenient means to calculate steel wire tensile strength within a spring-design 
computer program and allows fast iterating to a proper design solution.

14.4.1.2  Yield Strength in Shear and Endurance Limit in Shear
Data of extensive testing [4] indicate that a semilogarithmic plot of torsional yield strength Sys (and 
hence Su) versus wire diameter is almost a straight line for some materials (Figure 14.6). Note from 
the figure that the strength increases with a reduction in diameter. There is also ample experimental 
evidence that the relationships between the ultimate strength in tension, the yield strength in shear, 
and the endurance limit in shear ′Ses are as given in Table 14.3. Observe that the test data values of 

TABLE 14.1
Some Common Spring-Wire Materials
Material ASTM No. Description

Hard-drawn wire 
0.60–0.70C

A227 Least-expensive general purpose spring steel. Suitable for static loading only and in 
temperature range of 0°C–120°C. Available in diameters 0.7–16 mm.

Music wire 
0.80–0.95C

A228 Toughest high-carbon steel wire widely used in the smaller coil diameters. It has the 
highest tensile and fatigue strengths of any spring material. The temperature 
restrictions are the same as for hard-drawn wire. Available from 0.1 to 6.5 mm in 
diameter.

Oil-tempered 
wire 
0.60–0.70C

A229 Used for many types of coil springs and less expensive than music wire. Suitable for 
static loading only and in the temperature range of 0°C–180°C. Available in 
diameters 0.5–16 mm.

Chrome-
vanadium

A232 Suitable for severe service conditions and shock loads. Widely used for aircraft 
engine valve springs, where fatigue resistance and long endurance needed, and for 
temperatures to 220°C. Available in diameters from 0.8 to 11 mm.

Chrome-silicon A401 Suitable for fatigue loading and in temperatures up to 250°C. Second highest in 
strength to music wire. Available from 1.6 to 9.5 mm in diameter.
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′Ses were developed with actual conditions of surface and size factors of the wire materials, to be 
discussed in Section 14.7. We use these values, assuming 50% reliability.

Example 14.2: Allowable Load of a Helical Compression Spring

A helical compression spring for mechanical device is subjected to an axial load P. Determine:

 a. The yield strength in the shear of the wire.
 b. The allowable load P corresponding to yielding.

Design Decisions: Use a 1.5625 mm music wire. The mean diameter of the helix is D = 12.5 mm. 
A safety factor of 1.5 is applied due to uncertainty about the yielding.

Solution

The spring index is C = D/d = 12.5/1.5625 = 8.

TABLE 14.2
Coefficients and Exponents for Equation (14.12)

Material ASTM No. b

A

MPa ksi

Hard-drawn wire A227 −0.201 1510 137

Music wire A228 −0.163 2060 186

Oil-tempered wire A229 −0 193 1610 146

Chrome-vanadium wire A232 −0.155 1790 173

Chrome-silicon wire A401 −0 091 1960 218

Source: Associated Spring-Barnes Group, Design Handbook, Associated 
Spring-Barnes Group, Bristol, CN, 1987.
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FIGURE 14.6 Yield strength in shear of spring wire.
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 a. Through the use of Equation (14.12) and Table 14.2, we have

 ( )= = =− .S Ad 2060 1.5625 1915 MPau
b 0 163  

 Then, by Table 14.3, Sys = 0.4(1915)= 766 MPa.

 b. The allowable load is obtained by applying Equation (14.6) as

 = τ π
P

d

K C8 s
all

all
2

 

 where

    τ = = =
.

S

n

766
1 5

510.7 MPays
all

 

    ( )( )= + =. . .K 1
0 615

8
1 077 from Equation 14 7s  

 Hence,

 ( )( )
( )( )=

π
=

.
P

510.7 1.5625

8 1 077 8
56.8 Nall

2

 

14.5  HELICAL COMPRESSION SPRINGS

End details are four standard types on helical compressive springs. They are plain, plain–ground, 
squared, and squared–ground, as shown in Figure 14.7. A spring with plain ends has ends that are 
the same as if a long spring had been cut into sections. A spring with plain ends that are squared, or 
closed, is obtained by deforming the ends to 0° helix angle. Springs should always be both squared 
and ground for significant applications, because a better transfer of load is obtained. A spring with 

TABLE 14.3
Approximate Strength Ratios of Some 
Common Spring Materials

Material Sys/Su ′′S S/es u

Hard-drawn wire 0.42 0.21

Music wire 0.40 0.23

Oil-tempered wire 0.45 0.22

Chrome-vanadium wire 0.52 0.20

Chrome-silicon wire 0.52 0.20

Source: Associated Spring-Barnes Group, Design 
Handbook, Associated Spring-Barnes 
Group, Bristol, CN, 1987.

Notes: Sys, yield strength in shear; Su, ultimate 
strength in tension; ′Ses, endurance limit (or 
strength) in shear.
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squared and ground ends compressed between rigid plates can be considered to have fixed ends. 
This represents the most common end condition.

Figure 14.7 shows how the type of end used affects the number of active coils Na and the solid 
height of the spring. Square ends effectively decrease the number of total coils Nt by approximately 
two; that is,

 = +N N 2t a
 (14.13)

Grinding by itself removes one active coil. To obtain basically uniform contact pressure over the full 
end turns, special end members must be used (such as countered end plates) for all end conditions, 
except squared and ground.

Working deflection corresponds to the working load Pw on a compression spring. Referring to 
Figure 14.8, the solid deflection δs is defined as follows:

 δ = −h hs f s
 (14.14)

where
 hf represents the free (no load) height
 hs is the solid height or shut height under solid load Ps

For special applications where space is limited, solid height of ground springs can be obtained by 
the expression

 ( )( )= − . .h N d0 5 1 01s t
 (14.15)

Clash allowance (rc) refers to the difference in spring length between maximum load and spring 
solid position. It is defined as a ratio of margin of extra deflection or clash deflection δc to the work-
ing deflection δw:

Na = Nt

(a) (b)

(c) (d)

hs = (Nt + 1) d
p = (hf – d)/Na

Na = Nt  – 1
hs = Ntd
p = hf /(Na + 1)

Na = Nt – 2
hs = (Nt + 1) d
p = (hf – 3d)/Na

Na = Nt – 2
hs = Nt d
p = (hf – 2d)/Na

FIGURE 14.7 Common types of ends for helical compression springs and corresponding spring solid height 
equations: (a) plain ends, (b) plain-ground ends, (c) squared or closed ends, and (d) squared-ground ends. Note: 
p, pitch; hf, free height (Figure 14.8).
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 = δ
δ

rc
c

w

 (14.16)

Usually, a minimum clash allowance of 10–15% is used to avoid reaching the solid height in service. 
A maximum clash allowance of 20% is satisfactory for most applications. Based on this value, an 
overload Ps of 20% deflects the spring to its maximum deflection δs, and a higher overload has no 
effect on deflection or stress. Hence, with a sufficient safety factor, a compression spring is protected 
against failure after it reaches its solid deflection.

14.5.1  design ProCedure For statiC loading

The two basic requirements of a helical spring design are an allowable stress level and the desired 
spring rate. The stress requirement can be fulfilled by many combinations of D and d. Having D and 
d selected, Na is determined on the basis of the required spring rate. Finally, the free height can be 
obtained for a prescribed clash allowance. Note that in some situations, the outside diameter, inside 
diameter, or working deflection may be limited. Clearly, when the spring comes out too large or too 
heavy, a stronger material must be used.

If the resulting design is likely to fail by buckling (Section 14.6), the process would be repeated 
with another combination of D and d. In any case, spring design is essentially an iterative problem. 
Some assumptions must be made to prescribe the values of enough variables to calculate the stresses 
and deflections. Usually, charts, nomographs, and computer programs have been used to simplify 
the spring design problem [5, 6].

Example 14.3: Design of a Hard-Drawn Wire Compression Spring

A helical compression coil spring made of hard-drawn round wire with squared and ground ends 
(Figure 14.7d) has spring rate k, diameter d, and spring index C. The allowable force associated with a 
solid length is Pall.

Find: The wire diameter and the mean coil diameter for the case in which the spring is compressed 
solid.

Given: C = 9, Pall = 45 N.

Assumptions: Static loading conditions will be considered. Factor of safety based on yielding is 
n = 1.8.

hf

(a) (b) (c)

δw δs

δc

Pw
Ps

hs

FIGURE 14.8 Deflections of a helical compression spring: (a) free height, (b) working deflection, and (c) 
solid deflection.
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Solution

The direct shear factor, from Equation (14.7), is Ks = 1 + (0.615/9) = 1.068. The ultimate strength is esti-
mated using Equation (14.12) and Table 14.2 as

 ( )= = −. .S Ad d1 51 10u
b 9 0 201 

in which d is in millimeters. Expressing d in meters, the foregoing becomes

 ( ) ( )( )= =− − −. .. . .S d d1 51 10 1000 376 7 10u
9 0 201 0 201 6 0 201 

The yield strength in shear, referring to Table 14.3, is then

 ( )= = −. � . .S S d0 42 158 2 10u u
6 0 201 (a)

Substitution of the given numerical values into Equation (14.6) together with τall/n, the maximum 
design shear stress is expressed as

 
( )( )( )

τ =
π

=
×

π
=

. . .

nK CP

d

d d

8

8 1 8 1 068 9 45 1982 6

s all
all 2

2 2

 (b)

Finally, equating Equations (a) and (b) results in

 ( ) =− −. . �.d d158 2 10 1982 6
6 0 201 2 

from which

 = =. .d 0 00188 m 1 88 mm 

Thus, the mean coil diameter equals

 ( )= = =. .D Cd 9 1 88 16 92 mm 

Comment: A standard 1.9 mm diameter hard-drawn wire should be used.

14.6  BUCKLING OF HELICAL COMPRESSION SPRINGS

A compression spring is loaded as a column and can buckle if it is too slender. In this section, we 
examine the problem of the buckling of springs due to their resistance to bending. For this pur-
pose, consider a spring of length L and coil radius D/2 subjected to bending moment M (Figure 
14.9(a)). The effect is an angular rotation θ. The bending and twisting moments at any section are 
(Figure 14.9(b))

 = α = αα αsin , cosM M T M  (a)

Derivation of the equation for helical spring deflection is readily accomplished using Castigliano’s 
theorem as follows. Application of Equation (5.35) gives

 ∫ ∫θ = ∂
∂

+ ∂
∂α

α
α

α

EI
M

M

C
dx

GJ
T

T

C
dx

1 1
L L

0 0

 (b)
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in which C = M. Introducing Equations (a) into (b) together with dx = ds = (D/2) dα, we obtain

 ∫θ = α + α





α





π
sin cos

M
EI GJ

D
d

2

N

0

2
2 2a

 

Here, G = E/2(l + v), and for a round wire, J = 2I = πd4/32. Hence, the angular rotation of the entire 
spring is, after integrating,

 θ = + ν





MDN

Ed

64
1

2
a

4
 (14.17)

By analogy to a simple beam in pure bending, we may write, using Equations (4.14) and (4.15),

 θ = ML

EIe

 (c)

The equivalent moment of inertia of the spring coil Ie is obtained by eliminating θ from Equations 
(14.17) and (c). In so doing, we have

 
( )=

+ ν
I

Ld

DN64 1 /2
e

a

4
 (14.18)

The preceding result may be used directly in Equation (5.58) to ascertain the Euler buckling load 
of the spring in the form

 = π
P

EI

L
cr

e

e

2

2
 (14.19)

The quantity Le denotes the effective column length (see Figure 5.17). The allowable value of the 
compressive load is then found from Pall = Pcr/n, in which n represents a factor of safety.

14.6.1  asPeCt ratio

It is important to point out that the measure of slenderness ratio for solid columns is not directly 
applicable to springs due to their much different form. An identical slenderness ratio is established 
as the aspect ratio of free length to mean coil diameter, h/D. In compression springs, it is important 
that the aspect ratios be not so great that buckling occurs. Figure 14.10 shows the results for the two 
end conditions given in Figure 5.17(c) and 5.17(d) [1, 7].

Curve A in Figure 14.10 represents the springs supported between flat surfaces, a commonly used 
case. Observe from the figure that buckling occurs for conditions above and to the right of each 

M

M

M

Tα

D/2
(a) (b)

Mα

α

s

θ

FIGURE 14.9 (a) Bending and (b) moment resultants at a cut section of a helical compression spring.
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curve. Clearly, as in the case of solid columns, the end conditions of the spring affect its tendency 
to buckle. Curve B renders the springs having one end free to tip. In these cases, the springs will 
buckle with smaller aspect ratios, as depicted in the figure.

We use Figure 14.10, rather than Equation (14.19), to check readily for possible buckling of the 
spring. Note that if buckling is indicated, the preferred solution is to redesign the spring. Otherwise, 
the buckling can be avoided by placing the spring either inside or outside a tube that provides a 
small clearance.

Example 14.4: Stability of a Hard-Drawn Wire Compression Spring

Reconsider the hard-drawn compression spring discussed in Example 14.3.

Find:

 a. The solid length.
 b. Whether the spring will buckle in service.
 c. The pitch of the body coil.

Assumptions: The modulus of rigidity of the wire will be G = 79 GPa. The spring rate equals k = 1.4 
kN/m.

Solution

Refer to the numerical values given in Example 14.3. The solid deflection is:

 δ = = = =. .P

k

45

100
0 03214 m 32 14 mms

all  

 a. The number of active coils, by Equation (14.11), is

 ( )( )
( )( )

= =
× ×

=
−.

.N
Gd

kC8

79 10 1 88 10

8 1400 9
18 19a 3

9 3

3
 

 For the squared and ground ends, observe from Figure 14.7(d) that

A

0.10

2 3 4 5 6
Ratio, free height-mean diameter, hf /D

Stable

Unstable
he

ig
ht

, δ
/h

f

7 8 9 10

0.20

0.30

0.40

0.50

0.60

0.70

B

FIGURE 14.10 Buckling conditions for helical springs: (A) with parallel end plates (depicts the case of 
Figure 5.14(d)) and (B) one end plate is free to tip (depicts the case of Figure 5.14(c)).
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 = + .N N 20 19t a
 

 and the solid length

 ( )( )= = =. . .h N d 20 19 1 88 37 96 mms t
 

 b. Applying Equation (14.14), the free length is equal to

 = + δ = + =. . .h h 37 96 32 14 70 1 mmt s s
 

 For the case under consideration, we have

 
δ = = = =.

.
. � .

.
.

h

h

D

32 14

70 1
0 46 and

70 1

16 92
4 14s

f

f
 

 Case A in Figure 14.10 illustrates that the spring is far outside of the buckling zone and obvi-
ously safe.

 c. From Figure 14.7(d), the pitch is

 ( ) ( )= − = −  =
.

. . .p
N

h d
1

2
1

18 19
70 1 2 1 88 3 647 mm

a
f

 

Comment: With the values of D, Nt, and hf obtained here and in the previous example, a compression 
spring can be drawn or made.

14.7  FATIGUE OF SPRINGS

Spring failures under fatigue loads are typical of that in torsional shear. A crack initiates at the sur-
face on the inside of the coil and acts at 45° to the radial shear plane in the direction perpendicular to 
the tensile stress (see Figure 3.27). We note that helical springs are never used as both compression 
and extension springs: they do not normally experience a stress reversal. Moreover, these springs are 
assembled with a preload in addition to the working stress. The stress is thus prevented from being 0.  
The extreme case occurs if the preload drops to 0; that is, minimum shear τmin stress equals 0.

Inasmuch as most failures are caused by fatigue, a poor surface is the worst disadvantage of hot-
formed springs. Presetting refers to a process used in the manufacture of compression springs to 
produce residual stresses (see Section 3.14). This is done by making the spring longer than required 
and then compressing it to its solid height. Shot peening, discussed in Section 2.11, and presetting 
are two operations that add to the strength and durability of steel springs. The former, done after 
cooling, introduces a layer of compressive residual stresses. In a like manner, the latter always initi-
ates surface residual stresses opposite to those caused by subsequent load application in the same 
direction as the presetting load. Maximum fatigue strengthening can be acquired using both the 
foregoing operations. The set spring loses some free length, but gains the benefits described in the 
preceding. On the other hand, shot peening is most effective against cyclic loading in fatigue, while 
it has little benefit for statically loaded springs.

Data on fatigue strengths of round-wire helical springs are voluminous. Note that Equation (7.1)  
defines the uncorrected endurance limit for fully reversed bending of steels as ′ =S 700e  MPa for 
Su ≥ 1400 MPa. It can readily be verified by Equation (14.12) and Table 14.2 that most spring wires 
smaller than 10 mm diameter are in this strength category. We conclude therefore that the torsional 
endurance limit of these spring-wire materials may be regarded as independent of size or their 
particular alloy composition. On this basis, the best data for the torsional endurance limit of spring 
steel wire of d < 10 mm are by [1]:
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( )

( )

′ =

′ = .

S

S

45 ksi 310 MPa for shot unpeened springs

67 5 ksi 465 MPa for shot unpeened springs

es

es

 (14.20)

Equation (14.20) apply for infinite life with τmin = 0. As in the case of Table 14.2, the foregoing values 
were corrected for surface condition and size. 

It should be mentioned that corrosion, even in a mild form, greatly reduces the fatigue strength. 
Also, if the spring operates under conditions of elevated temperature, there is a danger of creep or 
permanent deformation unless very low fluctuating stress values are used. Such effects become 
noticeable above 350°C, and the ordinary spring steels cannot be used, as noted in Table 14.1.

14.8  DESIGN OF HELICAL COMPRESSION SPRINGS FOR FATIGUE LOADING

Springs are almost always subject to fluctuating or fatigue loads. The design process for dynamic 
loading is analogous to that for static loading, with some significant variations. It is still an iterative 
problem. The design of helical springs for both static and fatigue loading can be readily computerized.

As pointed out in the preceding section, the stress–time diagram of Figure 14.11(a) expresses the 
worst condition that could occur for helical springs for pulsating shear when there is no preload; 
that is, when τmin = 0. We assume that the endurance limit in shear ′Ses is the value of shear (see Table 
14.3) for which a part is on the verge of failure after an infinite number of cycles. In many cases, ′Ses 
may be based on 1 million or 10 million cycles per shear loading.

A dynamically loaded spring operates between two force levels, Pmax and Pmin. Therefore, refer-
ring to Section 7.8, we define the mean and alternating axial spring forces as

 ( ) ( )= + = −,P P P P P P
1
2

1
2

m amax min max min  

The most common spring-loading situation may involve both positive Pmax and Pmin. The direct 
shear factor Ks is used for the mean stress τm only (see Section 14.3). We apply the Wahl factor Kw 
to the alternating stress τa. Equations (14.6) and (14.8) become then

 τ =
π

K
P C

d

8
m s

m
2

 (14.21)

 τ =
π

K
P C

d

8
a w

a
2

 (14.22)
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FIGURE 14.11 Fatigue loading: (a) endurance limit in pulsating shear test and (b) modified Goodman cri-
teria for spring.
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The factors Ks and Kw are given by Equations (14.7) and (14.9), respectively. The notch sensitivity 
of high-hardness steels is near unity, q ≈ 1. Hence, for analyzing fatigue loading, there is no need 
to correct Kw to the fatigue stress-concentration factor Kf. Note that the clash allowance for fatigue 
design should be based on the maximum load.

14.8.1  goodman Criteria heliCal sPrings

When the shear endurance limit ′Ses of a spring wire is given, the Goodman or other fatigue failure 
criteria listed in Table 7.4 may be used. A torsional Goodman diagram can be constructed for any 
spring-loading situation. For τmin = 0, the alternating stress is equal to the mean stress or ′S /2es . Hence, 
the line of failure can be drawn from point A to ultimate strength in shear Sus on the τm axis shown 
in Figure 14.11(b). The line representing the safe stress is parallel to the line of failure and can be 
drawn (from point B) after dividing the endurance limit in shear by the factor of safety n. Recall from 
Chapter 7 that the stress points (τm, τa) falling on or below the safe stress line constitute a satisfactory 
spring design. The modified Goodman criterion includes another line (shown dashed in the figure), 
drawn from the yield strength in shear Sys on the τm axis with a slope upward and to the left at 45°.

The equation of the safe stress line is found by substituting the two stress points in the general 
equation of a line. In so doing, for the Goodman criterion,

 
( )

τ =
′ − τ

− ′

S S n

S S

1
2

/

1
2

a

es us m

us es

 (14.23)

From Section 14.4, the ultimate strength in shear is given by Sus = 0.67Su, in which Su represents the 
ultimate tensile strength. When the ratio of range to mean stress is known, it may be convenient to 
rewrite. Equation (14.23) as follows:

 
( )( )τ =
τ τ − ′

′
+

S n
S S

S

/
/ 2

1
a

us

a m us es

es

 (14.24)

An alternative form of Equation (14.23) gives the factor of safety guarding against a failure:

 
( )τ = ′

τ − ′ + τ ′
S S

S S S2
a

us es

a us es m es

 (14.25)

We note that Equations (14.23) through (14.25) could also be written based on the Soderberg 
criterion by replacing Sus by Sys. Having found the mean shear stress τm, we may use it and the mean 
load Pm to obtain wire diameter d. Hence, through the use of Equation (14.21),

 =
πτ

=
πτ

d K
P D

d K
P C8

or
8

s
m

m
s

m

m

3 2  (14.26)

When the safety factor is too low, the wire diameter, spring index, or the material can be altered to 
improve the result. The complete design includes consideration of the buckling discussed in Section 
14.6 and surging of the springs, as is illustrated in the next example. Subsequent to several iterations, 
a reasonable combination of parameters can often be obtained.

14.8.2  ComPression sPring surge

A sudden compression of the end of a helical spring may form a compression wave that travels along 
the spring and is reproduced at the far end. This vibration wave, when it approaches resonance, is 
termed surging. It causes the coils to impact one another. The large forces due to both the excessive 
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coil deflection and impacts fail the spring. To prevent this condition, the spring should not be cycled 
at a frequency close to its natural frequency. Typically, the natural frequency of the spring should be 
greater than about 13 times that of any applied forcing frequency.

The natural frequency fn of a helical compression spring depends on its end conditions. It can be 
shown that [2] for a spring with fixed–fixed ends,

 =
π γ

f
d

D N

Gg

2 2
Hzn

a
2  (14.27)

This is twice that of a spring with fixed–free ends. Here, g is the acceleration of gravity and y 
represents the weight per unit volume of the spring material. When d and D are in inches, we have  
g ≈ 386 in./s2. For steel spring, G = 11.5 × 106 psi and γ = 0.285 lb/in.3 Equation (14.27) then becomes

 =f
d

D N

14,040
Hzn

a
2  (14.28)

In SI units, when d and D are in millimeters,

 =f
d

D N

356,620
Hzn

a
2  (14.29)

The surge of a spring decreases the ability of the spring to control the motion of the machine part 
involved. For example, the engine valve (shown in a closed position in Figure P14.25) might tend to 
oscillate rather than to operate properly. In addition, the spring material under a compression wave 
is subjected to higher stresses, which may cause early fatigue failure. It is obvious therefore that 
springs used in high-speed machinery must have natural frequencies of vibration considerably in 
excess of the natural frequency of the motion they control.

Example 14.5: Helical Compression Spring: Design for Cyclic Loading

A helical compression spring for a cam follower is subjected to the load that varies between Pmin and 
Pmax. Apply the Goodman criterion to determine:

 a. The wire diameter.
 b. The free height.
 c. The surge frequency.
 d. Whether the spring will buckle in service.

Given: Pmin = 300 N, Pmax = 600 N.

Design Decisions: We use a chrome-vanadium ASTM A232 wire of G = 79 GPa; rc = 20%, Na = 10, and 
C = 7. Both ends of the spring are squared and ground. A safety factor of 1.3 is used due to uncertainty 
about the load.

Solution

The mean and alternating loads are

 ( ) ( )= + = = − =, �P P
1

2
600 300 450 N

1

2
600 300 150 Nm a  

Equations (14.7) and (14.9) give

 = + = = −
−

+ =. . , . .K K1
0 615

7
1 088

28 1

28 4

0 615

7
1 213s w  
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So we have, using Equations (14.21) and (14.22), τa/τm = KwPa/KsPm = 0.372.

 a. Tentatively select a 6 mm wire diameter. Then from Equation (14.12) and Table 14.2, we have

 ( )= = =− .S Ad 1790 6 1356 MPau
b 0 155  

 By Equation (7.5) and Table 14.3, Sus = 0.67(1356) = 908.5 MPa and S'es = 0.2(1356) = 271 MPa. 
Substitution of the numerical values into Equation (14.24) results in

 
( )( )τ =

× −
+

=. / .
. .

908 5 1 3
0 372 2 908 5 271

271
1

224 MPam
 

 Applying Equation (14.26),

 
( ) ( )( )( )

=
πτ

=
π ×

= −. , .d K
P C

d
8

1 088
8 450 7

224 10
6 24 10 ms

m

m

2

6

3  

 Hence, D = 7(6.24) = 43.68 mm. Inasmuch as Su = 1790(6.24−0155) = 1348 < 1356 MPa, d = 6.24 
mm is satisfactory.

 b. From Figure 14.7(d), hs = (Na + 2)d = 74.88 mm. Using Equation (14.11),

 ( )( )
( ) ( )

= = =
.

.k
dG

C N8

6 24 79,000

8 7 10
17 97 N/mm

a
3 3

 

 With a 20% clash allowance,

 ( )δ = = =. . . .P

k
1 2 1 2 33 39 40 07 mms

max  

 Thus,

 = + =. .h 74 88 40 07 115 mmf
 

 c. Through the use of Equation (14.29),

 

( )
( ) ( )

= =

= =

.

.

.

f
d

D N

356,620 356,620 6 24

43 68 10

116 6 cps 6996 cpm

n
a

2 2  

 Comment: If this corresponds to operating speeds (for equipment mounted on this spring), it 
may be necessary to redesign the spring.

 d. Check for the buckling for extreme case of deflection (δ = δs):

 
δ = = = =. . ,

.
.

h

h

D

40 07

115
0 35

115

43 68
2 63s

f

f
 

 Since (2.63, 0.35) is inside of the stable region of curve A in Figure 14.10, the spring will not 
buckle.

14.9  HELICAL EXTENSION SPRINGS

Figure 14.3(c) illustrates a round-wire helical extension spring. Observe that a hook and loop are 
provided to permit a pull force to be applied. The significant dimensions of a standard end hook or 
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loop are shown in Figure 14.12. Most of the preceding discussion of compression springs applies 
equally to helical extension springs. The natural frequency of a helical extension spring with both 
ends fixed against axial deflection is the same as that for a helical spring in compression.

In extension springs, however, the coils are usually close wound so that there is an initial ten-
sion, termed the preload Pi. No deflection therefore occurs until the initial tension built into the 
spring is overcome; that is, the applied load P becomes larger than initial tension (P > Pi). It is 
recommended that [1] the preload be built so that the resulting initial torsional shear stress can be 
estimated as

 τ = . S

C
0 7i

u  (a)

Here, Su and C present ultimate strength and spring index, respectively

14.9.1  Coil Body

Coil deflection of helical extension springs, through the use of Equation (14.10) with P = P − Pi, is 
given as follows:

 ( )δ =
−N C P P

dG

8 a i
3

 (14.30)

The reduced coil diameter results in a lower stress because of the shorter moment arm. Hence, 
hook stresses can be reduced by winding the last few coils with a decreasing diameter D. No stress-
concentration factor is needed for the axial component of the load.

Active coils refer to all coils in the spring, not counting the end coils, which are bent to form a 
hook (Figure 14.3(c)). Depending on the details of the design, each end hook adds the equivalent of 
a 0.1–0.5 helical coil. For an extension spring with two end hooks, the total number of coils is then

 . .N N 2 0 1 to 0 5t a ( )= +  (14.31)

As earlier, Na represents the number of active coils.
The spring rate is expressed, by the application of Equation (14.30), in the form

d

B

rm
ri

P

d

Arm

ri

P

D
(b)(a)

FIGURE 14.12 Front view and side viewpoints of maximum stress in hook in conventional extension 
springs: (a) stress at the cross-section through A is due to axial force and bending and (b) stress at the cross-
section through B is due primarily to torsion.
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 = −
δ

=k
P P dG

N C8
i

a
3

 (14.32)

The spring load is therefore

 = + δP P ki
 (14.33)

The quantities k and δ are given by Equations (14.30) and (14.32), respectively.

14.9.2  end hook Bending and shear

Critical stresses occur in the end hooks or end loops of extension springs. The hooks must be 
designed so that the stress-concentration effects produced by the presence of bends are decreased 
as much as possible. It is obvious that sharp bends should be avoided, since the stress-concentration 
factor is higher for sharp bends. Maximum bending stress at section A (Figure 14.12(a)) and maxi-
mum torsional stress at section B (Figure 14.12(b)) in the bend of the end coil may be approximated, 
respectively, by the formulas

 σ =
π

K
PD

d

16
A 3

 (14.34a)

 τ =
π

K
PD

d

8
B 3

 (14.34b)

In each case, the stress-concentration factor K is given by

 =K
r

r
m

i

 (b)

where
 rm is the mean radius
 ri represents the inside radius

The estimated permissible normal stress value in Equation (14.34a) is the yield strength in tension, 
defined by Equation (7.5a). Recall that the allowable shear stress in Equation (14.34b) is given by 
Table 14.3.

The stresses in coils are obtained from the same formulas as used in compression springs. In 
extension springs, a mechanical stop is desirable to limit deflection to an allowable value, while in 
compression springs, deflection is restricted by the solid deflection. Maximum stress values may be 
70% of those used for extension springs of the identical compression springs.

Example 14.6: Load-Carrying Capacity of a Helical Extension Spring Hook

A helical extension spring with hook ends is made of a music wire of mean coil radius D, wire 
diameter d, mean hook radius rm, and inner hook radius ri (Figure 14.12). The preload is Pi and the 
free end is hf

Find:

 a. The material properties and initial torsional stress in the wire using Equation (a).
 b. Maximum load when yielding in tension impends at section A.
 c. Distance between the hook ends.
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Given: d = 2.5 mm, D = 12.5 mm, (rm)A = 6.25 mm, (rm)B = 3.75 mm.

 = = =, ,N P h150 50 N 290 mma f  

 ( )= = − . ��������� .A b2060 and 0 163 from Table 14 2  

Assumption: Modulus of rigidity will be G = 79 GPa.

Solution

 a. Ultimate tensile strength, estimated from Equation (14.12),

 ( )= =−. .
S Ad 2060 2 5 1774 MPau

b 0 163  

 By Equation (7.5b) and Table 14.3, we obtain Sy = Sys/0.577 = (0.40/0.577) Sy = 0.693Su. The 
yield strength is thus

 ( ) ( )= × =. .S 0 693 1774 10 1229 4 10y
6 6  

 The spring index equals C = D/d = 12.5/2.5 = 5. Equation (a) results in then

 τ = = =. . � .S

C
0 7 0 7

1774

5
248 4 MPai

u  

 b. Combined normal stress at section A in the hook is obtained by superimposing bending and 
axial stresses. The former is defined by Equation (14.34a), and the latter equals P/(πd2/4). At 
the onset of yield, we therefore have

 σ =
π

+
π

=K
PD

d

P

d
S

16 4
A y3 2

 (14.35)

 where K = rm/ri with rm = 6.25 mm and ri = 6.25–2.5/2 = 5 mm. Introducing the given data, 
Equation (14.34a) leads to

 

( ) ( ) ( )( )
( ) ( )

σ = 



 π













+
π

=
− −

. .

. .
.

P P6 25

5

16 12 5

2 5 10

4

2 5 10
1229 4 10A 3 6 2 6

6  

 or

 ( )( ) ( )+ =. . .P P5 09296 0 2037 10 1229 4 106 6  

 Solving the maximum load when yielding begins in the hook gives P = 232.1 N
 c. Inserting the given data into Equation (14.11), we obtain the spring rate as

 ( )( )
( )( )

= =
× ×

=
−.

k
dG

N C8

2 5 10 79 10

8 150 5
1317 N/m

a
3

3 9

3
 

 The deflection from Equation (14.32) is then

 δ = − = − = =.P P

k

232 1 50

1317
01383 m 1383 mmi  

 The distance between hook ends equals
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 + δ = + =. .h 290 138 3 428 3 mmf
 

Comments: Force P required to cause the torsional stress at section B in the hook may also readily 
be determined, using Equation (14.34b) and Table 14.3. In so doing, a smaller load is obtained (see 
Problem 14.27), which shows that failure by yielding first takes place by shear stress in the hook.

14.10  TORSION SPRINGS

Torsion springs are of two general types: helical and spiral. The primary stress in a torsion spring 
is bending, with a moment being applied to each end of the wire. The analysis of curved beams 
discussed in Sections 3.7 and 16.7 is applicable. Springs of this kind are employed in door hinges, 
automotive starters, and so on, where torque is needed.

The yield strength Sy for torsion springs can be estimated from Table 14.3. Based on the energy 
of distortion criterion, we divide the Sys in each part in Table 14.3 by the quantity 0.577. The endur-
ance limit Se for torsion springs can be found in a like manner: the S'es in each part in Table 14.3 is 
divided by 0.577. The process of designing of torsion springs is very similar to that of the helical 
compression springs.

14.10.1  heliCal torsion sPrings

As depicted in Figure 14.13, helical torsion springs are wound in a way similar to extension or com-
pression springs, but with the ends shaped to transmit torque. These coil ends can have a variety of 
forms to suit the application. The coils are usually close wound like an extension spring, but have 
no initial tension. We note that forces (P) should always be applied to arms of helical torsion springs 
to close the coil, as shown in the figure, rather than open it. The spring is usually placed over a sup-
porting rod. The rod diameter is about 90% smaller than the inside diameter of the spring. Square 
or rectangular wire is in widespread use in torsion springs. However, round wire is often used in 
ordinary applications, since it costs less. The torque about the axis of the helix acts as a bending 
moment on each section of the wire. The material is therefore stressed in flexure. The bending stress 
can be obtained from curved beam theory. It is convenient to write the flexure formula in the form

 σ = K
Mc

I
 (a)

where
σ = the maximum bending stress
M = the bending moment
c = the distance from the neutral axis to the extreme fiber

a

P P

d or h

D

FIGURE 14.13 Helical torsion spring.
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I  = the moment of inertia about the neutral axis
K = the stress-concentration factor

Wahl analytically determined the values for the stress-concentration factors [2]. For round wire,

 
( )

( )

= − −
−

= + −
+

K
C C

C C

K
C C

C C

4 1
4 1

4 1
4 1

i

o

2

2

 (14.36)

In the foregoing, the spring index C = D/d: the subscripts i and o refer to the inner and outer fibers, 
respectively. For rectangular wire,

 
( )

( )

= − −
−

= + −
+

.

.

K
C C

C C

K
C C

C C

3 0 8
3 1

3 0 8
3 1

i

o

2

2

 (14.37)

where C = D/h. The quantity h represents the depth of the rectangular cross-section. We see from 
these expressions that Ki > Ko, as expected.

The maximum compressive bending stress at the inner fiber of the helical torsion spring is 
therefore

 σ = K
Mc

I
i i

 (14.38)

Carrying the bending moment M = Pa and the section modulus I/c of round and rectangular wires 
into Equation (14.38) gives the bending stress. In so doing, stress on the inner fiber of the coil is

 ( )σ =
π

Pa

d
K

32
round wirei i3  (14.39)

 ( )σ = Pa

bh
K

6
rectangular wirei i2  (14.40)

The quantity b is the width of rectangular cross-section.
For commonly employed values of the spring index, k = M/θrev, the curvature has no effect on the 

angular deflection. Through the use of Equations (4.14) and (4.15), we have

 θ =
π

θ =
π

ML

EI

1
2

1
2

w
rev rad

 (14.41)

where
θ = the angular deflection
Lw = the length of wire = πDNa

EI = the flexural rigidity

For springs of round wire, to account for the friction between coils, based on experience [1], Equation 
(14.41) is multiplied by the factor of 1.06. Interestingly, angle θ in some cases can be many complete 
turns, as in Example 14.7.
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14.10.2  Fatigue loading

A dynamically loaded torsion spring operates between two moment levels Mmax and Mmin. The ten-
sile stress components occurring at the outside coil diameter of a round-wire helical torsion are then

 σ =
π

σ =
π

,,max
max

,min
minK

M

d
K

M

d

32 32
o o o o3 3  

Hence, the mean and alternating stresses are

 σ = σ + σ σ = σ − σ,,
,max ,min

,
,max ,min

2 2
o m

o o
o a

o o
 

Having the mean and alternating stresses available, helical torsion springs are designed by follow-
ing a procedure similar to that of helical compression springs.

14.10.3  sPiral torsion sPrings

A spiral torsion spring (Figure 14.14) can also be analyzed by the foregoing procedure. Therefore, 
the highest stress occurring on the inner edge of the wire is given by Equations (14.39) and (14.40). 
Likewise, Equation (14.41) can be applied directly to ascertain the angular deflection. Spiral springs 
are usually made of thin rectangular wire.

Example 14.7: Spiral Torsion Spring: Design for Static Loading

For a torsional window-shade spring (Figure 14.14), determine the maximum operating moment and 
corresponding angular deflection.

Design Decisions: We select a music wire of E = 207 GPa; d = 1.625 mm, D = 25 mm, and Na = 350. A 
safety factor of 1.5 is used.

Solution

By Equation (14.12) and Table 14.2,

 ( )= =−. .S Ad 2060 1 625 1903 MPau
b 0 163  

From Equation (7.5b) and Table 14.3,

 = = =
.

.
.

S
S

0 577
0 4

1903

0 577
1319 MPay

ys  

b

P

P

, h

a

FIGURE 14.14 Spiral torsion spring.
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Applying Equation (14.36) with C = 25/1.625 = 15.38,

 ( )
( )( )=

− −
−

=
. .
. .

.K
4 15 38 15 38 1

4 15 38 15 38 1
1 051i

2

 

Through the use of Equation (14.39), we have

 
( ) ( )

( )= =
π

=
π

= ⋅

. .
.

.

M Pa
d S n

K

/

32

1 625 1319/1 5

32 1 051

352 5 N mm

y

i

3 3

 

The geometric properties of the spring are Lw = πDNa = π(25)(350) = 27,489 mm and I = π 
(1.625)4/64 = 0.342 mm4. Equation (14.41) results in

 
( )

( )
( )

θ = =
×

=
.

.
.ML

EI

352 5 27,489

207 10 0 342
136 9 radw

rad 3
 

Comment: The maximum moment winds the spring 136.9/2π = 21.8 turns.

14.11  LEAF SPRINGS

A leaf spring is usually arranged as a cantilever or simply supported member. This thin beam or 
plate is also known as a flat spring, although it usually has some initial curvature. Springs in the 
form of a cantilever are often used as electrical contacts. For springs with uniform sections, we may 
use the results of Chapters 3 and 4. Recall from Section 4.4 that when the width of the cross-section 
is large compared with the depth, it is necessary to multiply the deflection as given by the formula 
for a narrow beam section by (1 − v2), where v is the Poisson’s ratio.

A cantilever spring of uniform stress a with a constant depth h and length L in a plan view looks 
like the triangle depicted in Figure 14.15 (see Section 3.8). However, near the free end, the wedge-
shaped profile must be modified to have adequate strength to resist the shear force as depicted by 
the dashed lines in the figure. From the flexure formula, due to a concentrated load P applied at the 
free end, we have

 σ = PL

b h

6

1
2

 (a)

As the cross-section varies, end deflection δ may conveniently be obtained using Castigliano’s 
theorem (see Section 5.5). It can be shown that

b1

P
L

h

FIGURE 14.15 Cantilever spring of uniform stress.
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 ( )δ = − ν 





P

Eb

L

h
1

62

1

3

 (b)

The corresponding spring rate is

 
( )=

δ
=

− ν






k
P Eb h

L6 1
1

2

3

 (c)

The quantity E represents the modulus of elasticity.

14.11.1  multileaF sPrings

Springs of varying width present a space problem. Multileaf springs are in widespread usage, par-
ticularly in automotive and railway services. An exact analysis of these springs is mathematically 
complex. For small deflections, an approximate solution can be obtained by the usual equations of 
beams, as shown in the following brief discussion.

A multileaf spring, approximating a triangular spring of uniform strength, is shown in 
Figure 14.16. Note that each half of the spring acts as a cantilever of length L. We observe from the 
figure that a constant strength triangle is cut into a series of leaves of equal width and rearranged in 
the form of a multileaf spring. Therefore, letting b1 = nb, the stress and deflection for the ideal leaf 
spring are

 σ = PL

nbh

6
2

 (14.42)

(a) n leaves

PP

2P

h

LL

(b)

b

Half of the nth leaf

Half of the nth leaf

b1 = nb

b

(c)

FIGURE 14.16 Multileaf spring: (a) front view of actual spring, (b) top view of approximation, and (c) top 
view of equivalent spring.
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 ( )δ = − ν 





PL

Enb

L

h
1

62
3

 (14.43)

The spring rate is then

 
( )=

δ − ν






k
P Enb h

L6 1 2

3

 (14.44)

In the preceding equations, the quantity n represents the number of leaves.
A central bolt or clamp, used to hold the leaves together, causes a stress concentration. The 

triangular spring and equivalent multileaf spring have the identical stress and deflection character-
istics, with the exception that the interleaf friction provides damping in the multileaf spring. Also, 
the multileaf spring can resist full load in only one direction; that is, leaves tend to separate when 
loaded in opposite direction. However, this is partially overcome by clips, as in vehicle suspension 
springs (Figure 14.17).

Example 14.8: Design of a Nine-Leaf Cantilever Spring

A steel 0.9 m long cantilever spring has 80 mm wide nine leaves. The spring is subjected to a concen-
trated load P at its free end.

Find: The depth of the leaves and the largest bending stress.

Given: b = 80 mm, L = 0.9 m, P = 2.5 kN, n = 9 E = 200 GPa, v = 0.3.

Assumption: Maximum vertical deflection caused by the load will be limited to 50 mm.

Solution

Equation (14.43) may be rearranged into the form

 ( )= − ν
δ

h
PL

En
1

63 2  (d)

Inserting the given data, we have

 ( ) ( ) ( )( )( )
( )( )( )

= −
×

= −.
.
. .

.h 1 0 3
6 2500 0 9

200 10 9 0 08 0 05
1 382 103 2

3

9

6  

or

 = =. .h 0 0111 m 11 1 mm 

Equation (14.42) results in the maximum stress as

 ( )( )
( )( )

σ = = =
.

. .
.PL

nbh

6 6 2500 0 9

9 0 08 0 0111
152 2 MPamax 2 2

 

The Goodman criterion may be used in the design of leaf springs subject to cyclic loading, as illustrated 
in the solution of the following numerical problem.
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582 Mechanical Engineering Design

Example 14.9: Automotive-Type Multileaf Spring: Design for Fatigue Loading

A six-leaf spring is subjected to a load at the center that varies between Pmax and Pmin (Figure 14.17). 
Estimate the total length 2L and width of each leaf.

Given: Pmin = 720 N, Pmax = 3600 N, n = 6.

Assumptions: Stress concentration at the center is such that Kf = 1.2. Use a survival rate of 50% and 
Cf = Ce = 1.

Design Decisions: We use a steel alloy spring of Su = 1400 MPa, ′ =S 546 MPae , E = 210 GPa, v = 0.3, 
h = 6.25 mm, and k = 25 kN/m. The material is shot peened. A safety factor of ns = 1.4 is applied.

Solution

From Table 7.3, Cr = 1. The modified endurance limit, by Equation (7.6), Se = (1)(1)(1)(1/1.2)546 = 455 MPa. 
Each half of a spring acts as a cantilever supporting half of the total load. The mean and the alternating 
loads are therefore

 = + = = − =,P P
1800 360

2
1080 N

1800 360
2

720 Nm a  

Inasmuch as bending stress is directly proportional to the load, we have σa/σm = Pa/Pm = 2/3.
The mean stress, using Equation (14.42), is

 ( )
( )

σ = = =P L

nbh

L

b

L

b

6 6 1080

6 0.00625
27.648(10 )m

m
2 2

6  (e)

Substituting the given numerical values into Equation (7.20), we have

 σ = σ
σ

+
=

+
=.S n

S

S

/

1

1400/1 4
2

3

1400

455
1

327.7 MPam
u s

a

m

u

e

 

From Equation (e),

 = =L

b
b L327.7 27.648 or 0.084  (f)

n leaves

PP

b

2P

Clip

h

L L

FIGURE 14.17 Example 14.9. Automotive-type leaf spring.
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Because the spring is loaded at the center with 2P, Equation (14.44) becomes k = Enbh3/3L3(1 − v2). 
Introducing the given data results in

 ( )( )( )( )
( )=
. .

.
L

L
25(10 )

210 6 0 084 6 25

3 0 91
3

3

3
 

 =L 0.615 m = 615 mm 

Hence, the overall length is 2L = 1.23 m. The width of each of the six leaves using Equation (f) equals 
b = (0.084(615) = 51.7 mm.

14.12  MISCELLANEOUS SPRINGS

Many spring functions may also be acquired by the elastic bending of thin plates and shells of 
various shapes and by the blocks of rubber. Hence, there are spring washers, clips, constant-force 
springs, volute springs, rubber springs, and so on. A volute spring is a wide, thin strip of steel wound 
flat so that the coils fit inside one another, as shown in Figure 14.18. These springs have more lateral 
stability than helical compression springs, and rubbing of adjacent turns provides high damping. 
Here, we briefly discuss three commonly encountered types of miscellaneous springs.

14.12.1  Constant-ForCe sPrings

The constant-force (Negator) spring is a prestressed strip of flat spring stock that coils around a 
bushing, or successive layers of itself (Figure 14.19). Usually, the inner coil is fastened to a flanged 
drum. When the spring is deflected by pulling on the outer end of the coil, a nearly constant resist-
ing force develops, and there is a tendency for the material to recoil around itself. A uniform-force 
spring is widely employed for counterbalancing loads (such as in a window sash), cable retractors, 
returning typewriter carriages, and making constant-torque spring motors. It provides very large 
deflection at about a constant pull force.

FIGURE 14.18 Volute spring.

Drum

FIGURE 14.19 Constant-force spring.
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14.12.2  Belleville sPrings

Belleville springs or washers, also known as coned-disk springs (Figure 14.20), patented by 
Belleville in 1867, are often used for supporting very large loads with small deflections. Some 
applications include various bolted connections, clutch plate supports, and gun recoil mechanisms. 
On loading, the disk tends to flatten out, spring action being obtained thus. The load–deflection 
characteristics are changed by varying the ratio h/t between cone height h and thickness t. Belleville 
springs are extremely compact and may be used singly or in combination of multiples of identical 
springs to meet needed characteristics. The forces associated with a coned-disk spring can be mul-
tiplied by stacking them in parallel (Figure 14.21(a)). On the other hand, the deflection correspond-
ing to a given force can be increased by stacking the springs in series, as shown in Figure 14.21(b).

The theory of the Belleville springs is complicated. The following formulas are based on the 
simplifying assumption that radial cross-sections of the spring do not distort during deflection. The 
results are in approximate agreement with available test data [1, 2]. As is the case for a truncated 
cone shell, the upper edge of the spring is in compression, and the lower edge is in tension [8].

The load–deflection relationship can be expressed in the form

 
( ) ( )= δ

− ν
− δ





− δ +





P

E

kb
h h t t

1 22 2
3  (14.45a)

where

 =
π α

α −
α





ln

K
6 1

2

 (14.45b)

The load at the flat position (δ = h) is given by

 
( )=

− ν
P

Eht

Kb1
flat

3

2 2
 (14.45c)

P b

δ

a

h

t

P

A

B

FIGURE 14.20 Cross-section through a Belleville spring.

(b)(a)

FIGURE 14.21 Belleville springs or washers: (a) in parallel stack and (b) in series stack.
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where
P = the load
δ = the deflection
a = the inside radius
b = the outside radius
h = the cone height
t = the thickness
α = the radius ratio = b/a

Zero deflection and load (δ = 0 and P = 0) are taken at the free position depicted in Figure 14.20.
Load–deflection characteristics are changed by varying the ratio between cone height and thick-

ness, h/t. Figure 14.22 illustrates force-deflection curves for Belleville washers with four different 
h/t ratios. These curves are generated by applying Equation (14.45), where 1.0 deflection and 1.0 
force refer to the deflection at the flat condition and the force at the flat condition, respectively 
[9]. We see from the figure that coned-disk springs have nonlinear P–δ properties. For low values 
(h/t = 0.4), the spring acts almost linearly, and large h/t values result in prominent nonlinear behav-
ior. At =h t/ 2 , the central portion of the curve approximates a horizontal line; that is, the load is 
nearly constant over a considerable deflection range. In the range < ≤h t2 / 8, a prescribed force 
corresponds to more than one deflection. A phenomenon occurring at >h t/ 2 , is termed snap-
through buckling, at which the spring deflection becomes unstable.

Interestingly, in snap-through buckling, the spring quickly deflects or snaps to the next stable 
position. It can be shown that if >h t/ 8, the spring can snap into a deflection position for which the 
calculated force becomes negative. Then a load in the direction opposite to the initial load will be 
required to return the spring to its unloaded configuration.

Stress distribution in the washer is nonuniform. The largest stress σA occurs at the upper inner 
edge A (convex side) at deflection δ, and is compressive. The outside lower edge B (concave side) has 
the largest tensile stress δB. The expressions for the foregoing stresses are

 ( )σ = − δ
− ν

− δ





+







E

Kb
c h c t

1 2
A 2 2 1 2  (14.46a)

 ( )σ = − δ
− ν

− δ





+







E

Kb
c h c t

1 2
B 2 2 3 4  (14.46b)

h/t = 1.0

h/t = 0.4
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FIGURE 14.22 Force-deflection curves for Belleville springs.

ISTUDY

www.konkur.in

Telegram: @uni_k



586 Mechanical Engineering Design

where

 

( )
( )

( )
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1

2

3 2

4

 (14.46c)

Stresses are highly concentrated at the edges of Belleville springs. When the yield strength is 
exceeded, a redistribution of the stresses occurs due to localized yielding. The compressive stress 
σA given by Equation (14.46a) controls the design for static loading. If the spring is under dynamic 
loading, the alternating and mean stresses are determined from tensile stress defined by Equation 
(14.46b). The factor of safety, according to the Goodman criterion, is found from Equation (7.22).

14.12.3  ruBBer sPrings

A rubber spring and cushioning device is referred to as a rubber mount (Figure 14.23). Springs of 
this type are widely used due to their essential shock and vibration damping qualities and low elastic 
moduli. The foregoing properties help dissipate energy and prevent sound transmission. Stresses 
and deformations in the rubber mounts for small deflections can be derived by the use of appropriate 
equations of mechanics of materials.

A cylindrical rubber spring with direct shear loading is shown in Figure 14.23(a). The rubber is 
bonded to a steel ring on the outside and a steel shaft in the center. The shear stress τ at radius r is

 τ =
π
P

rh2
 (14.47)

Maximum deflection δ occurs at inner edge (r = d/2):

 δ =
π

lnP

hG

D

a2
 (14.48)

(b)(a)

D

h

d

Rubber

Steel ring

T

h

d

D
r

Steel ring

Rubber

P

FIGURE 14.23 Cylindrical rubber mounts: (a) with shear loading and (b) with torsion loading.
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where
P = the load
d = the inner radius
h = the depth of mount
D = the outer radius

A cylindrical spring with torsional shear loading is depicted in Figure 14.23(b). The maximum 
shear stress taking place at the inner edge (r = d/2) is given by

 τ =
πmax

T

d h

2
2

 (14.49)

The angular rotation of the shaft, or maximum angle of twist ϕ, is

 φ =
π

=





T

hG d D

1 1
2 2

 (14.50)

The quantity T represents the torque.
Note that rubber does not follow Hooke’s law but becomes increasingly stiff as the deformation is 

increased. The modulus of elasticity is contingent on the durometer hardness number of the rubber 
chosen for the mount. The results of calculations must therefore be considered only approximate.

PROBLEMS

Sections 14.1 through 14.6
 14.1 A steel torsion bar is used as a counterbalance spring for the trunk lid of an automobile 

(Figure 14.2(a)). Determine, when one end of the bar rotates 80° relative to the other end:
 a. The change in torque.
 b. The change in shear stress.
  Given: L = 1.25 m, d = 8 mm, G = 79 GPa.
 14.2 A steel bar supports a load of 2 kN with a moment arm R = 150 mm (Figure 14.2(a)). 

Calculate:
 a. The wire diameter.
 b. The length for a deflection of 40 mm.
  Given: n = 1.5, Sys = 350 MPa, G = 79 GPa.
 14.3 A high-strength ASTM A242 steel torsion bar (G = 79 GPa) with splined ends shown in 

Figure 14.2(b) has a length L = 1.2 m and diameter d = 12 mm. Find, if relative rotation 
between the ends is changed by 20°, the torque and the shear stress.

 14.4 A helical spring must exert a force of 1 kN after being released 20 mm from its most 
highly compressed position. Determine the number of active coils.

  Design Assumptions: The loading is static. τall = 450 MPa, G = 79 GPa, d = 7 mm, and 
C = 5.

 14.5 A helical coil spring of mean diameter D = 50 mm and wire diameter d =9.5 mm, wound 
with a coil pitch p = 12.5 mm (Figure 14.3(a)), is compressed solid. The material is ASTM 
A229 oil-tempered steel (G = 79 GPa). Determine the force required to compress the 
spring to solid and the corresponding shear stress. Will the spring return to its original 
free length after the force is removed?

 14.6 Figure 14.5 illustrates a conical-helical compression spring of five active coils fabricated 
of ASTM A232 hard-drawn steel wire. Find which coil will deflect to zero pitch first and 
the corresponding force required. What is the total spring deflection?

  Given: Dmax = 60 mm, Dmin = 25 mm, d = 4 mm, p = 6 mm.
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 14.7 A pair of concentric helical compression springs made of structural steel supports weight 
W = 2 kN of an equipment (Figure P14.7). Both springs are made of a structural steel with 
the modulus of rigidity G = 79 GPa and have the same length. Find, in each spring:

 a. The deflection.
 b. The largest stress.
  Given:

Outer spring: Do = 40 mm, do = 7 mm, No = 4.
Inner spring: Di = 22 mm, di = 4.5 mm, Ni = 8.

 14.W1 Using the website at www.leesspring.com, rework Example 14.1.
 14.W2 Check the site at www.acxesspring.com to review the common spring materials presented. 

List five commonly employed wire spring materials and their mechanical properties.
 14.8 A helical compression spring used for static loading has d = 3 mm, D = 15 mm, Na = 10, 

and squared ends. Determine:
 a. The spring rate and the solid height.
 b. The maximum load that can be applied without causing yielding.
  Design Decision: The spring is made of ASTM A227 hard-drawn steel wire of G = 79 

GPa.
 14.9 A helical compression spring is to support a 2 kN load. Determine:
 a. The wire diameter.
 b. The free height.
 c. Whether buckling will occur in service.
  Given: The spring has rc = 10%, C = 5, and k = 90 N/mm.
  Assumptions: Both ends are squared and ground and constrained by parallel plates.
  Design Decisions: The spring is made of steel of Sys = 500 MPa, ′Ses MPa, and G = 79 GPa. 

Use a safety factor of 1.3.
 14.10 A helical compression spring with ends squared and ground has d = 1.8 mm, D = 15 mm, 

rc = 15%, and hs = 21.6 mm. Determine, using a safety factor of 2:
 a. The free height.
 b. Whether the spring will buckle in service, if one end is free to tip.
  Design Decision: The spring is made of steel having Sys = 900 MPa and G = 79 GPa.
 14.11 Design a helical compression spring with squared and ground ends for a static load of 

200 N, C = 8, k = 9 kN/m, rc = 20%, and n = 2.5. Also check for possible buckling.
  Assumption: The ends are constrained by parallel plates.
  Design Decision: The spring is made of steel of Sys = 420 MPa and G = 79 GPa.
 14.12 A machine that requires a helical compression spring of k = 21 kN/m, τall = 525 MPa, 

rc = 10%, D = 75 mm, and it is to support a static load of 2 kN. Determine:
 a. The wire diameter.

W

A B

Section A–B

di Di

do

Do

FIGURE P14.7 

ISTUDY

www.konkur.in

Telegram: @uni_k

http://www.leesspring.com
http://www.acxesspring.com


589Springs

 b. The free height.
 c. Whether the spring will buckle in service, if one end is free to tip.
  Assumption: The ends are squared.
  Design Decision: The spring is made of steel having G = 79 GPa.
 14.13 A helical compression spring has a mean coil diameter D = 20 mm, wire diameter d = 2.5 

mm, and the number of active coils Na = 11 (Figure 14.8(a)). The material is ASTM A228 
music wire (G = 79 GPa). Find:

 a. The largest static load and the spring rate.
 b. The free length, for which spring would become solid under the load found in a.
 c. Whether the buckling occurs, for the case in which one end plate is free to tilt.
 14.14 A helical compression spring is fabricated from ASTM A229 oil-tempered wire (Figure 

14.3(a)) and has the mean coil diameter D = 10 mm, wire diameter d = 0.9 mm, total num-
ber of active coils Na = 14.5, and the modulus of rigidity G = 79 GPa. Find:

 a. The torsional yield strength of the wire.
 b. The static load corresponding to the yield strength and spring constant.
 c. The solid and free heights and the pitch of the body coil of the spring.
 d. Whether buckling will be possible, if the ends are squared-ground.
 14.15 A helical compression spring has Na = 16 active coils, a free length of hf = 35 mm, mean 

coil diameter D = 14 mm, and wire diameter d = 1.5 mm. The spring is made of ASTM 
A229 oil-tempered steel wire of G = 79 GPa. Determine, for the static conditions:

 a. The spring rate, the solid height, pitch, and the solid deflection.
 b. The force required to compress the coils to solid height, corresponding shear stress, 

and the safety factor against yielding.
 c. Whether buckling will occur in service, if the ends are constrained by parallel plates.

Sections 14.7 and 14.8
 14.16 Redo Problem 14.9 for a load that varies between 2 and 4 kN, using the Soderberg rela-

tion. Also determine the surge frequency.
 14.17 A helical compression spring with squared ends operates under a fluctuating load between 

Pmin = 0 N and Pmax = 400 N with the deflection varying by 10 mm. A shot peened steel 
spring wire is used (see Equation (14.20)). Compute the wire diameter d, the number of 
active coils Na, and free height hf.

  Assumptions: A clash allowance of 15% of the maximum deflection will be used.
  Given: D = 40 mm, = 465 MPa, Kw = 1.3, G = 79 GPa.
 14.18 Redo Problem 14.17, for a wire without shot peening (see Equation (14.20)) based on a 

clash allowance of 8% of the maximum deflection.
 14.19 Reconsider Problem 14.15, for dynamic condition, with minimum load Pmin = 4 N and 

maximum load Pmax = 14 N. Compute:
 a. The alternating and mean stresses.
 b. The factor of safety against torsional yielding.
 c. The factor of safety against torsional endurance limit fatigue.
 14.20 A helical compression spring for a cam follower supports a load that varies between 30 

and 180 N. Determine:
 a. The factor of safety, according to the Goodman criterion.
 b. The free height.
 c. The surge frequency.
 d. Whether the spring will buckle in service.
  Design Decisions: The spring is made of music wire. Both ends are squared and ground; 

one end is free to tip.
  Given: d = 3 mm, D = 15 mm, Na = 22, rc = 10%, G = 79 GPa.
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 14.21 A helical compression spring, made of 5 mm diameter music wire, carries a fluctuating 
load. The spring index is 8 and the factor of safety is 1.2 If the average load on the spring 
is 500 N determine the allowable values for the maximum and minimum loads. Employ 
the Goodman theory.

 14.22 A helical compression spring made of a music wire has d = 5 mm, D = 24 mm, and 
G = 79 GPa. Determine:

 a. The factor of safety, according to the Goodman relation.
 b. The number of active coils.
  Requirements: The height of the spring varies between 65 and 72 mm with correspond-

ing loads of 400 and 240 N.
 14.23 A steel helical compression spring is to exert a force of = 20 N when its height is 75 mm 

and a maximum load of 90 N when compressed to a height of 65 mm. Determine, using 
the Soderberg criterion with a safety factor of 1.6:

 a. The wire diameter.
 b. The solid deflection.
 c. The surge frequency.
 d. Whether the spring will buckle in service, if the ends are constrained by parallel 

plates.
  Given: The spring has C = 6, Sys = 560 MPa, S'es = 315 MPa, G = 79 GPa, rc = 10%.
  Design Assumption: Ends will be squared and ground.
 14.24 Resolve Problem 14.23 for the case in which the helical spring is to exert a force of 10 N 

at 125 mm height and a maximum load of 50 N at 105 mm height.
 14.25 An engine valve spring must exert a force of 300 N when the valve is closed (as shown 

in Figure P14.25) and 500 N when the valve is open. Apply the Goodman theory with a 
safety factor of 1.6 to calculate:

 a. The wire diameter.
 b. The number of active coils.
  Given: The lift is 8 mm.
  Design Decisions: The spring is made of steel having Sus = 720 MPa, ′Ses  MPa, G = 79 

GPa, and C = 6.
 14.26 A helical spring, made of hard-drawn wire having G = 79 GPa, supports a continuous 

load. Determine:
 a. The factor of safety based on the Soderberg criterion.
 b. The free height.

Spring

Valve

FIGURE P14.25 
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 c. The surge frequency.
 d. Whether the spring will buckle in service.
  Given: d = 6 mm, D = 30 mm, rc = 20%.
  Design Requirements: The ends are squared and ground; one end is free to tip. In the 

most-compressed condition, the force is 600 N: after 13 mm of release, the minimum 
force is 340 N.

Sections 14.9 through 14.12
 14.27 What is the value of the force required to cause the torsional stress (at point B) in the hook 

to reach shear yield strength in the hook of the extension spring discussed in Example 
14.6?

 14.28 A helical tension spring has d1 = 3 mm and D1 = 30 mm. If a second spring is made of the 
same material and the same number of coils with D2 = 240 mm, find the wire diameter d2 
that would be required to give the same spring rate as the first spring.

 14.29 An extension coil spring is made of 0.5 mm music wire and has a mean diameter of coil 
of 5 mm. The spring is wound with a pretension of 1 N, and the load fluctuates from this 
value up to 5 N. Determine the factor of safety guarding against a fatigue failure. Use the 
Goodman criterion.

 14.30 Consider a helical extension spring (Figure 14.12) of a shutter return of a small camera 
made of ASTM A228 music wire with the following given numerical values: d = 0.6 mm, 
D = 2.4 mm, P = 6 N, G = 79 GPa, (rm)A = 1.2 mm. Find:

 a. The maximum shear stress in the spring body away from the loop.
 b. The factor of safety with respect to the yielding (at point A) in the end loop.
 14.31 Design a window-shade spring similar to that depicted in Figure 14.14. Determine:
 a. The number of active coils, if a pull-on shade of 15 N is exerted after being wound up 

to 16 revolutions.
 b. The maximum bending stress.
  Assumptions: The spring will be made of 1.2 mm square wire having E = 207 GPa, 

D = 18 mm, and a roller diameter of 32 mm.
 14.32 Consider a torsion spring made of ASTM A227 hard-drawn steel wire (Figure 14.13) with 

the following given data: a = 54 mm, d = 1.5 mm, D = 15 mm, Na = 10, and E = 210 GPa. 
Find the maximum operating moment and corresponding number of active coils.

  Assumption: The largest angular deflection will be limited to 1.2 rad.
 14.33 A torsion spring such as shown in Figure 14.14, made of ASTM 229 oil-tempered 

steel wire, has a diameter d = 2 mm, mean coil diameter D = 12.5 mm, the arm length 
a = 28 mm, the number of active coils Na = 3.5, and modulus of elasticity E = 200 GPa. 
Find:

 a. The maximum load P that can be applied, based on a safety factor of n = 1.8 against 
yielding.

 b. The corresponding angle of rotation in radians.
 14.34 A multileaf steel spring (E = 200 GPa, v = 0.3) for a truck wheel set having a maximum 

bending strength of 800 MPa supports a weight of 40 kN. Determine:
 a. The width b of the spring based on a safety factor of 2.5.
 b. The largest deflection of the spring.
  Given: h = 22 mm, L = 0.7 m, P = 40 kN, n = 8.
 14.35 Design a helical torsion spring similar to that shown in Figure 14.13. Calculate:
 a. The maximum operating moment.
 b. The maximum angular rotation.
  Assumptions: A safety factor of 1.4 is used. The spring is made of oil-tempered steel 

wire.
  Given: E = 200 GPa, d = 2 mm, D = 15 mm, Na = 6.

ISTUDY

www.konkur.in

Telegram: @uni_k



592 Mechanical Engineering Design

 14.36 A multileaf steel spring is to support a center load that varies between 300 and 1100 N 
(Figure 14.16). Estimate, using the Goodman criterion with a safety factor of 1.2:

 a. The appropriate values of h and b for a spring of proportions b = 40h.
 b. The spring rate.
  Given: Su = 1400 MPa, ′ =S 500e  MPa, E = 207 GPa, and v = 0.3. The total length 2L is to 

be 800 mm.
  Assumptions: Use Cr = Cf = Cs = 1. Stress concentration at the center is such that Kf = 1.4.
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15 Power Screws, Fasteners, 
and Connections

15.1  INTRODUCTION

This chapter is devoted to the analysis and design of power screws, threaded fasteners, bolted joints 
in shear, and permanent connectors such as rivets and weldments. Adhesive bonding, brazing, and 
soldering are also discussed briefly. Power screws are threaded devices used mainly to move loads 
or accurately position objects. They are employed in machines for obtaining the motion of transla-
tion and also for exerting forces. The kinematics of power screws is the same as that for nuts and 
screws, the only difference being the geometry of the threads. Power screws find applications as 
motion devices.

The success or failure of a design can depend on the proper selection and use of its fasteners. 
A fastener is a device to connect or join two or more members. Many varieties of fasteners are 
available commercially. The threaded fasteners are used to fasten the various parts of an assembly 
together. We limit our consideration to detachable threaded fasteners such as bolts, nuts, and screws 
(Figure 15.1). General information for threaded fasteners as well as for other methods of joining is 
presented in some references listed at the end of this chapter, and at the websites www.americanfas-
tener.com and www.machinedesign.com. Listings of a variety of nuts, bolts, and washers are found 
at www.nutty.com. For bolted joint technology, see the website at www.boltscience.com.

An analysis of riveted, welded, and bonded connections cannot be made on as rigorous a basis 
as used for most structural and machine members. Their design is largely empirical and relies on 
available experimental results. As with the threaded fasteners, rivets exist in great variety. Note 
that while welding has replaced riveting and bonding to a considerable extent, rivets are customar-
ily employed for certain types of joints. Often, rivets are used in joining smaller components in 
products associated with the automotive, business machines, appliances, and other fields. Welding 
speeds the manufacturing of parts and assembly of these components into structures and reduces 
the cost compared to casting and forging. Soldering, brazing, cementing, and adhesives are all 
means of bonding parts together. Other popular fastening and joining methods include snap fasten-
ers, which greatly simplify the assembly of mechanical components.

15.2  STANDARD THREAD FORMS

Threads may be external on the screw or bolt and internal on the nut or threaded hole. The thread 
causes a screw to proceed into the nut when rotated. The basic arrangement of a helical thread cut 
around a cylinder or a hole, used as screw-type fasteners, power screws, and worms, is as shown in 
Figure 15.2. Note that the length of unthreaded and threaded portions of shank is called the shank 
or bolt length. Also, observe the washer face, the fillet under the bolt head, and the start of the 
threads. Referring to the figure, some terms from geometry that relate to screw threads are defined 
as follows.

Pitch p is the axial distance measured from a point on one thread to the corresponding point 
on the adjacent thread. Lead L represents the axial distance that a nut moves, or advances, for one 
revolution of the screw. Helix angle λ, also called the lead angle, may be cut either right-handed (as 
in Figure 15.2) or left-handed. All threads are assumed to be right-handed, unless otherwise stated.

A single-threaded screw is made by cutting a single helical groove on the cylinder. For a single 
thread, the lead is the same as the pitch. Should a second thread be cut in the space between the 
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grooves of the first (imagine two strings wound side-by-side around a pencil), a double-threaded 
screw would be formed. For a multiple (two or most)-threaded screw,

 =L np (15.1)

where
L = the lead
n = the number of threads
p = the pitch

We observe from this relationship that a multiple-threaded screw advances a nut more rapidly than a 
single-threaded screw of the same pitch. Most bolts and screws have a single thread, but worms and 
power screws sometimes have multiple threads. Some automotive power-steering screws occasion-
ally use quintuple threads.

15.2.1  uniFied and iso thread Form

For fasteners, the standard geometry of screw thread shown in Figure 15.3 is used. This is essentially 
the same for both the Unified National Standard (UNS), or the so-called unified, and International 
Standards Organization (ISO) threads. The UNS (inch series) and ISO (metric series) threads are 
not interchangeable. In both systems, the thread angle is 60°, and the crests and roots of the thread 
may be either flat (as depicted in the figure) or rounded. The major diameter d and root (minor) 

FIGURE 15.1 An assortment of threaded fasteners (Courtesy: Clark Craft Fasteners).
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595Power Screws, Fasteners, and Connections

diameter dr refer to the largest and smallest diameters, respectively. The diameter of an imaginary 
cylinder, coaxial with the screw, intersecting the thread at the height that makes width of thread 
equal to the width of space, is called the pitch diameter dp.

Tables 15.1 and 15.2 furnish a summary of the various sizes and pitches for the UNS and ISO 
systems. We see from these listings that the thread size is specified by giving the number of threads 
per inch N for the unified sizes and giving the pitch p for the metric sizes. The tensile stress area 
tabulated is on the basis of the average of the pitch and root diameters. This is the area used for 
calculation of axial stress (P/A). Extensive information for various inch-series threads may be found 
in the ANSI Standards [1].

Coarse thread (designated as UNC) is most common and is recommended for ordinary applica-
tions, where the screw is threaded into a softer material. It is used for general assembly work. Fine 
thread (denoted by UNF) is more resistant to loosening, because of its smaller helix angle. Fine 
threads are widely employed in automotive, aircraft, and other applications where vibrations are 
likely to occur. In identifying threads, the letter A is used for external threads, and B is used for 
internal threads. The UNS defines the threads according to fit. Class 1 fits have the widest tolerances 
and so are the loosest fits. Class 2 fits are most commonly used. Class 3 fit is the one having the least 
tolerance and is utilized for the highest precision applications. Clearly, cost increases with higher 
class of fit. An example of approved identification symbols is as follows:

 − − −.1 in 12 UNF 2A LH 

This defines 1 in. diameter × 12 threads per inch, unified fine-thread series, class 2 fit, external, and 
left-handed thread.

Head
Washer face

Unthreaded
shank Crest

Root
p

d
dp

dr

read length
2αλ

Ln

Shank or bolt length
Nut

FIGURE 15.2 Hexagonal bolt and nut illustrate the terminology of threaded fasteners. Notes: P, the pitch; λ, 
the helix or lead angle; α, the thread angle; d, the major diameter; dp, the pitch diameter; dr, the root diameter; 
and Ln, the nut length.

p p

h

dp

dr

d

8

p
b 4

30°

Root

30°
Crest

FIGURE 15.3 Unified and ISO thread forms. The portion of basic profile of the external thread is shown: h 
is the depth of thread, and b is the thread thickness at the root.
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596 Mechanical Engineering Design

The ISO metric threads are worldwide extensively used type of general purpose screw threads. A 
metric ISO screw thread is designated by letter “M” followed by the value of the nominal diameter 
and pitch in millimeters, and coarseness. Thus, for instance:

 M8 × 1.25 – C

means an M thread profile with a nominal diameter of 8 mm, a pitch distance of 1.25 m, and a 
coarse (C) thread. Similar to UNS Inch series, for metric thread profiles the coarseness identifica-
tion is often considered as coarse and fine (F).

15.2.2  Power sCrew thread Forms

Figure 15.4 depicts some thread forms used for power screws. The Acme screw is in widespread 
usage. They are sometimes modified to a stub form by making the thread shorter. This results in 
a larger minor diameter and a slightly stronger screw. A square thread provides somewhat greater 
strength and efficiency, but is rarely used, due to difficulties in manufacturing the 0° thread angle. 
The 5° thread angle of the modified square thread partially overcomes this and some other objec-
tions. Standard sizes for three power screw thread forms are listed in Table 15.3. The reader is 
referred to the ANSI Standards for further details.

15.3  MECHANICS OF POWER SCREWS

As noted previously, a power screw, sometimes called the linear actuator or translation screw, is 

TABLE 15.1
Dimensions of Unified Screw Threads

Course Threads—UNC Fine Threads—UNF

Size

Major 
Diameter, d 

(in.)

Threads 
per Inch, 

N = 1/p

Minor 
Diameter dr 

(in.)
Tensile Stress 
Area, At (in.2)

Threads 
per Inch, 

N = l/p

Minor 
Diameter,  

dr (in.)
Tensile Stress 
Area, At (in.2)

1 0.073 64 0.0538 0.00263 72 0.0560 0.00278

2 0.086 56 0.0641 0.00370 64 0.0668 0.00394

3 0.099 48 0.0734 0.00487 56 0.0771 0.00573

4 0.112 40 0.0813 0.00604 48 0.0864 0.00661

5 0.125 40 0.0943 0.00796 44 0.0971 0.00830

6 0.138 32 0.0997 0.00909 40 0.1073 0.01015

8 0.164 32 0.1257 0.0140 36 0.1299 0.01474

10 0.190 24 0.1389 0.0175 32 0.1517 0.0200

12 0.216 24 0.1649 0.0242 28 0.1722 0.0258

1/4 0.250 20 0.1887 0.0318 28 0.2062 0.0364

3/8 0.375 16 0.2983 0.0775 24 0.3239 0.0878

1/2 0.500 13 0.4056 0.1419 20 0.4387 0.1599

5/8 0.625 11 0.5135 0.226 18 0.5368 0.256

3/4 0.750 10 0.6273 0.334 16 0.6733 0.373

7/8 0.875 9 0.7387 0.462 14 0.7874 0.509

1 1.000 8 0.8466 0.606 12 0.8978 0.663

Source: ANSI/ASME Standards, B1.1–2014, B1.13–2005, New York, American Standards Institute, 2005.
Note: The pitch or mean diameter dm ≈ d − 0.65p.
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597Power Screws, Fasteners, and Connections

to transmit power. Applications include the screws for vises, C-clamps, presses, micrometers, jacks 
(Figure 15.5), valve stems, and the lead screws for lathes and other equipment. In the usual configu-
ration, the nut rotates in place, and the screw moves axially. In some designs, the screw rotates in 
place, and the nut moves axially. Forces may be large, but motion is usually slow and the power is 
small. In all the foregoing cases, power screws operate on the same principle.

A simplified drawing of a screw jack having the Acme thread is shown in Figure 15.6. The load 
W

TABLE 15.2
Basic Dimensions of ISO (Metric) Screw Threads

Coarse Threads Fine Threads

Nominal Diameter, d 
(mm) Pitch, p (mm)

Tensile Stress Area, At 
(mm2)

Pitch, p 
(mm)

Tensile Stress 
Area, At (mm2)

2 0.4 2.07

3 0.5 5.03

4 0.7 8.78

5 0.8 14.2

6 1 20.1

7 1 28.9

8 1.25 36.6 1.25 39.2

10 1.5 58.0 1.25 61.2

12 1.75 84.3 1.25 92.1

14 2 115 1.5 125

16 2 157 1.5 167

18 2.5 192 1.5 216

20 2.5 245 1.5 272

24 3 353 2 384

S0 3.5 561 2 621

S6 4 817 2 915

42 4.5 1120 9 1260

48 5 1470 2 1670

56 5.5 2680 2 2300

64 6 2680 2 3030

Source: ANSI/ASME Standards, B1.1–2014, B1.13–2005, New York, American Standards Institute, 2005.
Notes: Metric threads are specified by nominal diameter and pitch in millimeters, for example, M10 × 1.5. The 

letter M, which proceeds the diameter, is the clue to the metric designation; root or minor diameter dr 
≈ d − 1.227p.

p p p
pp

d dm dr

p

p

2 2 2 5°14.5°

2

(a) (b) (c)

FIGURE 15.4 Typical power screw thread forms. All threads shown are external, dm = (d + dr)/2: (a) Acme, 
(b) square, and (c) modified square.
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598 Mechanical Engineering Design

collar (or a thrust bearing). It is, of course, assumed that the load and screw are prevented from 
turning when the nut rotates. Hence, there needs to be some friction at the load surface to prevent 
the screw from turning with the nut. Alternatively, the power screw could be turned against a nut 
that is prevented from turning to lift or lower the load. In either case, there is significant friction 
between the screw and nut as well as between the nut and the collar. Ordinarily, the screw is a hard 
steel, while the nut is made of a softer material (e.g., an alloy of aluminum, nickel, and bronze) to 
allow the parts to move smoothly.

In this section, we develop expressions for ascertaining the values of the torque needed to lift 
and lower the load using a jack. We see from Figure 15.6 that turning the nut forces each portion of 

TABLE 15.3
Standard Sizes of Power Screw Threads
Major Diameter, d Threads per Inch (25.4 mm)

(in.) (mm) Acme, Acme Stub Square and Modified Square

1

4
(6.35) 16 10

1

2
(12.7) 10 6

1

2

5

8
(15.9) 8 5

1

2
3

4
(19.1) 6 5

7

8
(22.2) 6 4

1

2

1 (25.4) 5 4

1
1

4
(31.2) 5 3

1

2

1
1

2
(38.1) 4 2

1
3

4
(44.5) 4 2

1

2

2 (50.8) 4 2
1

4

2
1

4
(57.8) 3 2

1

4

2
1

2
(63.5) 3 2

2
3

4

(69.8)
3 2

3 (76.2) 2 2

3 (76.2) 2 1
3

4

4 (102) 2 1
1

2

5 (127) 2

Source: James, F.D. et al. eds., Machinery’s Handbook, 29th ed., Industrial Press, New 
York, 2012.
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FIGURE 15.5 Worm gear screw jack (Courtesy: Joyce/Dayton Corp.).

W

Nut

collar

Screw

Force F

α

dc

dm

aBase

λ

FIGURE 15.6 Schematic representation of power screw used as a screw jack. Notes: Only the nut rotates in 
this model: dm represents the mean thread diameter and dc is the mean collar diameter.
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600 Mechanical Engineering Design

the nut thread to climb an inclined plane. This plane is depicted by unwrapping or developing one 
revolution of the helix in Figure 15.7(a), which includes a small block representing the nut being slid 
up the inclined plane of an Acme thread. The forces acting on the nut as a free-body diagram are 
also noted in the figure. Clearly, one edge of the thread forms the hypotenuse of the right triangle, 
having a base as the circumference of the mean-thread-diameter circle and as the lead. Therefore,

 λ =
π

tan L

dm

 (15.2)

where
λ = the helix or lead angle
L = the lead
dm = the mean diameter of thread contact surface

The preceding notation is the same as for worms (see Section 12.9) except that unnecessary sub-
scripts are omitted.

15.3.1  torque to liFt the load

The sum of all loads and normal forces acting on the entire thread surface in contact are denoted by 
W and N, respectively. To lift or raise the load, a tangential force Q acts to the right, and the friction 
force fN acts to oppose the motion (Figure 15.7). The quantity f represents the coefficient of sliding 
friction between the nut and screw or the coefficient of thread friction. The thread angle increases 
the frictional force by the wedging action of the threads. The conditions of equilibrium of the hori-
zontal and vertical forces give

 
( )

( )

Σ = − λ + α λ =

Σ = + λ − α λ =υ

: cos cos sin

: sin cos cos

F Q N f

F W N f

0 0

0 0

h n

n

 (a)

where αn is the normal thread angle and the other variables are defined in the figure. Inasmuch as 
we are not interested in the normal force N, we eliminate it from the foregoing equations and solve 
the result for Q. In so doing, we have

 = = λ + α λ
α λ − λ
cos cos sin

cos cos sin
Q W

f

f
n

n

 (15.3)

The screw torque required to move the load up the inclined plane, after dividing the numerator and 
denominator by cos λ, is then

W

Q

f N W

N

Section A–B

W

N cos αn

αn

αn

Q

B
(a) (b) (c)

A f N

L

Nλ

λ
πdm

FIGURE 15.7 Forces acting on an Acme screw–nut interface when lifting load W: (a) a developed screw 
thread, (b) a segment of the thread, and (c) thread angle measured in the plane normal to thread, αn.
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 = = + α λ
α − λ
cos tan

cos tan
T Qd

Wd f

f

1
2 2

m
m n

n

 (15.4)

But the thrust collar also contributes a friction force. That is, the normal reactive force acting 
on contact surface due to W results in an additional force fcW. Here, fc is the sliding coefficient of 
the collar friction between the thrust collar and the surface that supports the screw. It is assumed 
that this frictional force acts at the mean collar diameter dc (Figure 15.6). The torque needed to 
overcome collar friction is

 =T
Wf d

2
c c  (15.5)

The required total torque Tu to lift the load is found by addition of Equations (15.4) and (15.5):

 = + α λ
α − λ

+cos tan
cos tan

T
Wd f

f

Wf d

2 2
u

m n

n

c c  (15.6)

15.3.2  torque to lower the load

The analysis of lowering a load is exactly the same as that just described, with the exception that the 
directions of Q and fN (Figure 15.7b) are reversed. This leads to the equation for the total required 
torque Td to lower the load as

 = − α λ
α + λ

+cos tan
cos tan

T
Wd f

f

Wf d

2 2
d

m n

n

c c  (15.7)

15.3.3  values oF FriCtion CoeFFiCients

When a plain thrust collar is used, as shown in Figure 15.6, values of f and fc vary customarily between 
0.08 and 0.20 under conditions of ordinary service, lubrication, and the common materials of steel and 
cast iron or bronze. The lowest value applies for good workmanship, the highest value for poor workman-
ship, and some in between value for other work quality. The preceding range includes both starting and 
running frictions. Starting friction can be about 4/3 times the running friction. Should a rolling thrust 
bearing be used, fc would usually be low enough (about 0.008–0.02) that collar friction can be omitted. 
For this case, the second term in Equations (15.6) and (15.7) is eliminated.

15.3.4  values oF thread angle in the normal Plane

A relationship between normal thread angle αn, thread angle α, and helix angle λ can be obtained 
from a comparison of thread angles measured in the axial plane and the normal plane. Referring to 
Figures 15.6 and 15.7(c), it can readily be verified that

 α = λ αtan cos tann  (15.8)

In most applications, λ is relatively small, and hence, cos λ ≈ 1. So, we can set αn ≈ a and 
Equation (15.6) becomes

 = + α λ
α − λ

+cos tan
cos tan

T
Wd f

f

Wf d

2 2
u

m c c  (15.9)

Obviously, for the case of the square thread, α = αn = 0, and cos α = 1 in the preceding expressions.
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15.4  OVERHAULING AND EFFICIENCY OF POWER SCREWS

A self-locking screw requires a positive torque to lower the load. This is a useful provision, par-
ticularly in screw jack applications. Self-locking refers to a condition in which the screw cannot 
be turned by applying an axial force of any magnitude to the nut. If collar friction is neglected, 
Equation (15.7) shows that the condition for self-locking is

 ≥ α λcos tanf n  (15.10)

For a square thread, the foregoing equation reduces to

 ≥ λtanf  (15.10a)

In other words, self-locking is obtained when the coefficient of thread friction is equal to or greater 
than the tangent of the thread helix angle. Note that Equation (15.10) presumes a static situation and 
most power screws are self-locking.

An overhauling or back-driving screw is one that has low enough friction to enable the load to 
lower itself, by causing the screw to spin. In this situation, the inclined plane in Figure 15.7(b) moves 
to the right, and the force Q must act to the left to preserve uniform motion. It can be shown that the 
torque To of the overhauling screw is

 = − + α λ
α + λ

−cos tan
cos tan

T
Wd f

f

Wf d

2 2
o

m n

n

c c  (15.11)

A negative external lowering torque must now be maintained to keep the load from lowering.

15.4.1  sCrew eFFiCienCy

Screw efficiency is the ratio of the torque required to raise a load without friction to the torque 
required with friction. Using Equation (15.6), efficiency is expressed in the form

 = λ
+ α λ

α − λ
+

tan
cos tan

cos tan

e
d

d
f

f
d f

m

m
n

n
c c

 (15.12)

We observe from this equation that efficiency depends on only the screw geometry and the coef-
ficient of friction. If the collar friction is neglected, the efficiency becomes

 = α − λ
α + λ

cos tan
cos cot

e
f

f
n

n

 (15.13)

For a square thread, αn = 0 and Equation (15.13) simplifies to

 = − λ
+ λ

tan
cot

e
f

f

1
1

 (15.13a)

Equation (15.13) with αn substituted from Equation (15.8) and α = 14.5° is plotted in Figure (15.8) for 
five values of f. We see from the curves that the power screws have very low mechanical efficiency 
when the helix angle is in the neighborhood of either 0° or 90°. They generally have an efficiency 
of 30–90%, depending on the λ and f. We mention that values for square threads are higher by less 
than 1% over those for Acme screws in the figure.
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Example 15.1: Quadruple-Threaded Power Screw

A screw jack with an Acme thread of diameter d, similar to that illustrated in Figure 15.6, is used to lift 
a load of W. Determine:

 a. The screw lead, mean diameter, and helix angle.
 b. The starting torque for lifting and for lowering the load.
 c. The efficiency of the jack when lifting the load, if collar friction is neglected.
 d. The length of a crank required, if F = 150 N is exerted by an operator.

Design Assumptions: The screw and nut are lubricated with oil. Coefficients of friction are estimated 
as f = 0.12 and fc = 0.09.

Given: d = 30 mm and W = 6 kN. The screw is quadruple threaded having a pitch of p = 4 mm. The mean 
diameter of the collar is dc = 40 mm.

Solution

 a. From Figure 15.4, dm = d − p/2 = 30 − 2 = 28 mm. Through the use of Equations (15.1) and 
(15.2), we have

 ( )= = =L np 4 4 16 mm 

 ( )λ =
π

=−tan .16

28
10 311  

 b. The coefficients of friction for starting are ( )= =. .f
4

3
0 12 0 16 and ( )= =. .f

4

3
0 09 0 12c . For 

an Acme thread, α = 14.5° (Figure 15.4(a)), by Equation (15.8).

 
( )
( )

α = λ α

= ° ° = °

−

−

tan cos tan

tan cos . tan . .10 31 14 5 14 28

n
1

1
 

 Then, application of Equations (15.6) and (15.7) results in
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FIGURE 15.8 The efficiency of Acme screw threads (neglecting thrust collar friction).
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( )
( )

( )
= + ° °

° − °
+

= + = ⋅

. cos . tan .
cos . . tan .

.

. . .

T
6 28

2

0 16 14 28 10 31

14 28 0 16 10 31

6 0 12 40

2

30 05 14 4 44 45 N m

u

 

 

( )
( )= − ° °

° + °
+

= − + = ⋅

. cos . tan .
cos . . tan .

.

. . .

T
6 28

2

0 16 14 28 10 31

14 28 0 16 10 31
14 4

1 37 14 4 13 03 N m

d

 

 Comment: The minus sign in the first term of Td means that the screw alone is not self-
locking and would rotate under the action of the load, except that the collar friction must be 
overcome too. Since Td is positive, the screw does not overhaul.

 c. The running torque needed to lift the load is based on f = 0.12. Using Equation (15.13), we 
have

 

( )
( )=

° − °
° + °

= =

cos . . tan .
cos . . cot .

. . %

e
14 28 0 12 10 31

14 28 0 12 10 31

0 582 58 2

 

 d. The length of the crank arm is

 = = = =. .a
T

F

44 45

150
0 296 m 296 mmn  

Example 15.2: Single-Threaded Power Screw

Given: The screw jack (Figure 15.6) discussed in the previous example has a single-threaded Acme 
screw instead of a quadruple thread.

Find: The torque required for lifting the load and efficiency of the jack.

Solution

Refer to Example 15.1.
Now the lead is equal to the pitch, L = p = 4 mm. The helix angle is therefore

 λ =
π







=
π







= °− −tan tan .
d

1 4

28
2 604

m

1 1  

Through the use of Equation (15.8), we have

 ( )α = λ α = ° ° = °− −tan cos tan tan (cos . tan . ) . �2 604 14 5 14 49n
1 1  

Then, applying Equation (15.6), the torque required to raise the load is equal to

 

( )
( )

( )
= + ° °

° − °
+

= + = ⋅

. cos . tan .
cos . . tan .

.

. . .

T
6 28

2

0 16 14 49 2 604

14 49 0 16 2 604

6 0 12 40

2

17 84 14 4 32 24 N m

u

 

Equation (15.13) results in the efficiency in lifting the load as follows:

 

( )
( )=

° − °
° + °

= =

cos . . tan .
cos . . cot .

. . %

e
14 49 0 12 2 604

14 49 0 12 2 604

0 267 26 7
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Comments: A comparison of the results obtained here with those of Example 15.1 shows that to lift the 
load, the single-threaded screw requires lower torque than the quadruple. However, the former is less 
efficient than the latter by 54.1%.

Example 15.3: Self-Locking of Quadruple- and Single-Threaded Screws

Given: The quadruple-threaded and single-threaded screws discussed in the preceding two examples.

Find: The thread coefficient of friction necessary to ensure that self-locking takes place.

Assumption: Rolling element bearings have been installed at the collar, so the collar friction can be 
disregarded.

Solution

Refer to Examples 15.1 and 15.2.
Coefficient of friction for self-locking is specified by Equation (15.10) as

 ≥ α λcos tanf n  

Therefore, for the quadruple-threaded screw, self-locking does not occur since

 < ° ° =. cos . tan . .0 12 14 28 10 31 0 176 

But, for the single-threaded screw, self-locking occurs since

 > ° ° =. cos . tan . .0 12 14 49 2 604 0 044 

Comment: The foregoing results indicate that the quadruple-threaded screw requires four times the 
friction coefficient of friction of the single-threaded screw.

15.5  BALL SCREWS

A ball screw, or so-called ball-bearing screw, is a linear actuator that transmits force or motion 
with minimum friction. A cutaway illustration of a ball screw, and two of its precision assemblies 
supported by ball bearings at the ends are shown in Figure 15.9. Note that a circular groove is cut to 
proper conformity with the balls. The groove has a thread helix angle matching the thread angle of 
the groove within the nut. The balls are contained within the nut to produce an approximate rolling 
contact with the screw threads. The rotation of the screw (or nut) is converted into a linear motion 
and force with very little friction torque. During the motion, the balls are diverted from one end and 
the middle of the nut and carried by two ball-return tubes (or ball guides) located outside of the nut 
to the middle and opposite end of the nut. Such recirculation allows the nut to travel the full length 
of the screw.

A ball screw can support greater loads than that of ordinary power screws of identical diam-
eter. The smaller size and lighter weight are usually an advantage. A thin film lubricant is 
required for these screws. Certain dimensions of ball screws have been standardized by ANSI 
[2], but mainly for use in machine tools. Capacity ratings for ball screws are obtained by meth-
ods and equations identical to those for ball bearings, which can be found in manufacturers’ 
catalogs.

Efficiencies of 90% or greater are possible with ball screws over a wide range of helix angles 
when converting rotary into axial motion. Ball screws may be preferred by the designers if higher 
screw efficiencies are required. As a positioning device, these screws are used in many applications. 

ISTUDY

www.konkur.in

Telegram: @uni_k



606 Mechanical Engineering Design

Examples include the steering mechanism of automobiles, hospital bed mechanisms, automatic 
door closers, antenna drives, aircraft controls (e.g., a ball or jack screw and gimbal nut assembly as 
an actuator on a linkage for extending and retracting the wing flaps) and landing-gear actuator, jet 
aircraft engine thrust reverser actuators, and machine tool controls. Because of the low friction of 
ball screws, they are not self-locked. An auxiliary brake is required to hold a load driven by a ball 
screw for some applications.

15.6  THREADED FASTENER TYPES

The common element among screw fasteners used to connect or join two or more parts is their 
thread. Screws and bolts are the most familiar threaded fastener types. The only difference between 
a screw and a bolt is that the bolt needs a nut to be used as a fastener (Figure 15.10(a)). On the other 
hand, a screw fits into a threaded hole. The same fastener is termed a machine screw or cap screw 
when it is threaded into a tapped hole rather than used with a nut, as shown in Figure 15.10(b). Stud 
refers to a headless fastener, threaded on both ends, and screwed into the hole in one of the members 
being connected (Figure 15.10(c)).

Hexagon-head screws and bolts as well as hexagon nuts (see Figures 15.1 and 15.2) are com-
monly used for connecting machine components. Screws and bolts are also manufactured with 
round heads, square heads, oval heads, and various other head styles. Conventional bolts and nuts 
generally use standard threads, defined in Section 15.2. An almost endless number of threaded (and 
other) fasteners exist; many new types are constantly being developed [3–6]. Threaded fasteners 
must be designed so that they are lighter in weight, less susceptible to corrosion, and more resilient 
to loosening under vibration.

Ball nut Bearing balls

Ball screw

Return tubes

(a)

(b)

FIGURE 15.9 Ball screw used as a positioning device: (a) cutaway of a ball screw and (b) two assemblies 
(Courtesy: Thomson Industries, Inc.).
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Flat or plain washers (Figure 15.1) are often used to increase the area of contact between the bolt 
head or nut and clamped part in a connection, as shown in Figure 15.10. They prevent stress concen-
tration by the sharp edges of the bolt holes. Flat washer sizes are standardized to bolt size. A plain 
washer also forestalls marring of the clamped part surface by the nut when it is tightened. Belleville 
washers, discussed in Section 14.12, provide a controlled axial force over changes in bolt length.

Lock washers help prevent spontaneous loosening of standard nuts. The split lock washer acts as 
a spring under the nut. Lock nuts prevent too-spontaneous loosening of nuts due to vibration. Simply, 
two nuts jammed together on the bolt or a nut with a cotter pin serve for this purpose as well. The 
cotter pin is a wire that fits in diametrically opposite slots in the nut and passes through a drilled hole 
in the bolt. Lock nuts are considered to be more effective in preventing loosening than lock washers.

15.6.1  Fastener materials and strengths

A fastener is classified according to a grade or property class that defines its strength and material. 
Most fasteners are made from steel of specifications standardized by the SAE, ASTM, and ISO. 
The SAE grade (inch series) and SAE class (metric series) of steel-threaded members are numbered 
according to tensile strength. The proof strength Sp corresponds to the axial stress at which the bolt 
or screw begins to develop a permanent set. It is close to but lower than the material yield strength. 
The proof load Fp is defined by

 =F S Ap p t  (15.14)

Here, the tensile stress area, A, represents the minimum radial plane area for fracture through the 
threaded part of a bolt or screw. Numerical values of At are listed in Tables 15.1 and 15.2. The proof 
strength is obtained from Tables 15.4 or 15.5. For other materials, an approximate value is about 
10% less than for yield strength, that is, Sp = 0.9Sy based on a 2% offset.

Threads are generally formed by rolling and cutting or grinding. The former is stronger than the 
latter in fatigue and impact because of cold working. Hence, high-strength screws and bolts have 
rolled threads. The rolling should be done subsequent to hardening the bolt. The material of the nut 
must be selected carefully to match that of the bolt. The washers should be of hardened steel, where 
the bolt or nut compression load needs to be distributed over a large area of clamped part.

A soft washer bends rather than uniformly distributing the load. Fasteners are also made of a 
variety of materials, including aluminum, brass, copper, nickel, Monel, stainless steel, titanium, 
beryllium, and plastics. Appropriate coatings may be used in special applications in place of a more 
expensive material, for corrosion protection and to reduce thread friction and wear. Obviously, a 
designer has many options in selecting the fastener’s material to suit the particular application.

Parts

Washer

(a) (b) (c)

FIGURE 15.10 Typical threaded fasteners: (a) bolt and nut, (b) cap screw, and (c) stud.
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TABLE 15.4
SAE Specifications and Strengths for Steel Bolts
SAE 
Grade

Size Range 
Diameter, d (in.)

Proof Strength,a 
Sp (ksi)

Yield Strength,b 
Sy (ksi)

Tensile Strength,b 
Su (ksi)

Material Carbon 
Content

1 −1

4
1

1

2
33 36 60 Low or medium

2 −1

4

3

4
55 57 74 Low or medium

2 −7

8
1

1

2
33 36 60 Low or medium

5 −1

4
1 85 92 120 Medium, CD

5 −1
1

8
1

1

2
74 81 105 Medium, CD

7 −1

4
1

1

2
105 115 133 Medium, alloy, 

Q&T

8 −1

4
1

1

2
120 130 150 Medium, alloy, 

Q&T

Source: Society of Automotive Engineers Standard J429k, 2011.
a Corresponds to permanent set not over 0.0001 in.
b Offset of 0.2%.
Note: Q&T, quenched and tempered.

TABLE 15.5
Metric Specifications and Strengths for Steel Bolts

Class 
Number

Size Range 
Diameter, d (mm)

Proof 
Strength, Sp 

(MPa)
Yield Strength, 

Sy (MPa)

Tensile 
Strength, Su 

(MPa)
Material Carbon 

Content

4.6 M5–M36 225 240 400 Low or medium

4.8 M1.6–M16 310 340 420 Low or medium

5.8 M5–M24 380 420 520 Low or medium

8.8 M3–M36 600 660 830 Medium, Q&T

9.8 M1.6–M16 650 720 900 Medium, Q&T

10.9 M5–M36 830 940 1040 Low, martensite, Q&T

12.9 M1.6–M36 970 1100 1220 Alloy, Q&T

Source: Society of Automotive Engineers Standard J429k, 2011.

ISTUDY

www.konkur.in

Telegram: @uni_k



609Power Screws, Fasteners, and Connections

15.7  STRESSES IN SCREWS

Stress distribution of the thread engagement between the screw and the nut is nonuniform. In real-
ity, inaccuracies in thread spacing cause virtually all the load to be taken by the first pair of con-
tacting threads, and a large stress concentration is present here. While the stress concentration is to 
some extent relieved by the bending of the threads and the expansion of the nut, most bolt failures 
occur at this point. A concentration of stress also exists in the screw where the load is transferred 
through the nut to the adjoining member. Obviously, factors such as fillet radii at the thread roots 
and surface finish have significant effects on the actual stress values. For ordinary threads, the stress 
concentration factor Kt varies between 2 and 4 [7].

Note that the screws should always have enough ductility to permit local yielding at thread 
roots without damage. For static loading, it is commonly assumed that the load carried by a 
screw and nut is uniformly distributed throughout thread engagement. The stress distribution 
for threads with steady loads is usually determined by photoelastic analysis. A variety of meth-
ods are used to obtain a more nearly equal distribution of loads among the threads, including 
increasing the flexibility of the nut (or bolt), making the nut from a softer material than the bolt, 
and cutting the thread of the nut on a very small taper. A rule of thumb for the length of full 
thread engagement is 1.0d in steel, 1.5d in gray cast iron, and 2.0d in aluminum castings, where 
d is the nominal thread size.

The following expressions for stresses in power screws and threaded fasteners are obtained 
through the use of the elementary formulas for stress. They enable the analyst to achieve a reason-
able design for a static load. When bolts are subjected to fluctuating loads, stress concentration is 
very important.

15.7.1  axial stress

Power screws may be under tensile or compressive stress; threaded fasteners normally carry only 
tension. The axial stress σ is then

 σ = P

A
 (15.15)

where
P represents the tensile or compressive load

 
( )

( )π







. .

,
A

A

d d
is the

from Tables15 1 and 15 2 threaded fasteners

is the root diameter power screws

t

r r
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15.7.2  torsional shear stress

Power screws in operation and threaded fasteners during tightening are subject to torsion. The shear 
stress τ is given by

 τ = =
π

Tc

J

T

d

16

r
3  (15.16)

In the foregoing, we have
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from Figure 15 4 power screws

from Tables 15 1 and 15 2 threaded screws
 

15.7.3  ComBined torsion and axial stress

The combined stress of Equations (15.15) and (15.16) can be treated as in Section 6.7, with the 
energy of distortion theory employed as a criterion for yielding.

15.7.4  Bearing stress

The direct compression or bearing stress σb is the pressure between the surface of the screw thread 
and the contacting surface of the nut:

 σ =
π

=
π

P

d hn

Pp

d hL
b

m e m n

 (15.17)

where
P = the load
dm = the pitch or mean screw thread diameter
h = the depth of thread (Figure 15.3)
ne = the number of threads in engagement (= Ln/p)
Ln = the nut length
p = the pitch

Exact values of σb are given in ANSI B 1.1-1989 and various handbooks.

15.7.5  direCt shear stress

The screw thread is considered to be loaded as a cantilevered beam. The load is assumed to be 
uniformly distributed over the mean screw diameter. Hence, both the threads on the screw and the 
threads on the nut experience a transverse shear stress τ = 3P/2A at their roots. Here, A is the cross-
sectional area of the built-in end of the beam: A = πdrbne for the screw and A = πdbne for the nut. 
Therefore, shear stress, for the screw, is

 τ =
π

P

d bn

3
2 r e

 (15.18)

and, for the nut, is

 τ =
π

P

dbn

3
2 e

 (15.19)

in which
dr = the diameter of the screw
d = the major diameter of the screw
b = the thread thickness at the root (Figure 15.3)

The remaining terms are as defined earlier.
The design formulas for screw threads are obtained by incorporating Kt and replacing σ or σb by 

Sy/n and τ by Sys/n in the preceding equations. For the nut, for example, Equations (15.17) and (15.19) 
with ne = Ln/p may be written as follows:
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 =
π

S

n

K Pp

d hL
y t

m n

 (15.17a)

and

 =
π

S

n

K Pp

dbL

3
2

ys t

n

 (15.19a)

Here, Sy, Sys, and n represent the yield strength in tension, the yield strength in shear, and the safety 
factor, respectively. The application of such formulas is illustrated in Case Study 18.7.

15.7.6  BuCkling stress For Power sCrews

For a case in which the unsupported screw length is equal to or larger than about eight times the 
root diameter, the screw must be treated as a column. So, critical stresses are obtained as discussed 
in Sections 5.10 and 5.13.

15.8  BOLT TIGHTENING AND PRELOAD

Bolts are commonly used to hold parts together in opposition to forces likely to pull, or some-
times slide, them apart. Typical examples include connecting rod bolts and cylinder head bolts. 
Bolt tightening is prestressing at assembly. In general, bolted joints should be tightened to 
produce an initial tensile force, usually the so-called preload Fi. The advantages of an initial 
tension are especially noticeable in applications involving fluctuating loading, as demonstrated 
in Section 15.12, and in making a leakproof connection in pressure vessels. An increase of 
fatigue strength is obtained when initial tension is present in the bolt. The parts to be joined 
may or may not be separated by a gasket. In this section, we consider the situation when no 
gasket is used.

The bolt strength is the main factor in the design and analysis of bolted connections. Recall from 
Section 15.6 that the proof load Fp is the load that a bolt can carry without developing a permanent 
deformation. For both static and fatigue loading, the preload is often prescribed by

 
( )
( )

=






.

.
F

F

F

0 75 reused connections

0 9 permanent connections
i

p

p

 (15.20)

where the proof load Fp = SpAt from Equation (15.14). The amount of initial tension is clearly a sig-
nificant factor in bolt design. It is usually maintained fairly constant in value.

15.8.1  torque requirement

The most important factor determining the preload in a bolt is the torque required to tighten the 
bolt. The torque may be applied manually by means of a wrench that has a dial attachment indicat-
ing the magnitude of the torque being enforced. Pneumatic or air wrenches give more consistent 
results than a manual torque wrench and are employed extensively.

An expression relating applied torque to initial tension can be obtained using Equation (15.6) 
developed for power screws. Observe that load W of a screw jack is equivalent to Fi, for a bolt and 
that collar friction in the jack corresponds to friction on the flat surface of the nut or under the 
screwhead. It can readily be shown that [5] for standard screw threads, Equation (15.6) has the form

 =T KdFi (15.21)
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where
T = the tightening torque
d = the nominal bolt diameter
K = the torque coefficient
Fi = the initial tension or preload

For dry surface and unlubricated bolts or average condition of thread friction, taking f = fc = 0.15, 
Equation (15.6) results in K = 0.2. It is suggested that, for lubricated bolts, a value of 0.15 be used 
for torque coefficient.

Note that Equation (15.21) represents an approximate relationship between the induced initial 
tension and applied torque. Tests have shown that a typical joint loses about 5% or more of its pre-
load owing to various relaxation effects. The exact tightening torque needed in a particular situation 
can likely be best ascertained experimentally through calibration. That is, a prototype can be built 
and accurate torque testing equipment used on it. Interestingly, bolts and washers are available with 
built-in sensors indicating a degree of tightness. Electronic assembly equipment is available [7].

15.9  TENSION JOINTS UNDER STATIC LOADING

A principal utilization of bolts and nuts is clamping parts together in situations where the applied 
loads put the bolts in tension. Attention here is directed toward preloaded tension joints under static 
loading. We treat the case of two plates or parts fastened with a bolt and subjected to an external 
separating load P, as depicted in Figure 15.11(a). The preload Fi, an initial tension, is applied to the 
bolt by tightening the nut prior to the load P. Clearly, the bolt axial load and the clamping force 
between the two parts Fp, are both equal to Fi.

To determine what portion of the externally applied load is carried by the bolt and what portion 
by the connected parts in the assembly, refer to the free-body diagram shown in Figure 15.11(b). The 
equilibrium condition of forces requires that

 = +P F Fb p (a)

The quantity Fb is the increased bolt (tensile) force, and Fp represents the decreased clamping (com-
pression) force between the parts. It is taken that the parts have not been separated by the application 
of the external load. The deformation of the bolt and the parts are defined by

P

d

Plates

Fi

Fi + Fb
Fi – Fp

L Ls

Lt

P PBolt
(a) (b)

FIGURE 15.11 A bolted connection: (a) complete joint with preload Fi and external load P and (b) isolated 
portion depicting increased bolt force Fb and decreased force on parts or plates Fp.
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 δ = δ =,F

k

F

k
b

b

b
p

p

p

 (b)

Here, kb and kp represent the stiffness constants for the bolt and parts, respectively.
Because of the setup of the members in Figure 15.11(a), the deformations given by Equation (b) 

are equal. The compatibility condition is then

 =F

k

F

k
b

b

p

p

 (c)

Combining Equations (a) and (c) yields

 ( )=
+

= =
+

= −,F
k

k k
P CP F

k

k k
P C P1b

b

b p
p

p

b p

 (d)

The term C, called the joint’s stiffness factor or simply the joint constant, is defined in Equation 
(d) as

 =
+

C
k

k k
b

b p

 (15.22)

Note that, typically, kb is small in comparison with kp, and C is a small fraction.
The total forces on the bolt and parts are, respectively,

 ( )= + <F CP F Ffor 0b i p  (15.23)

 ( )( )= − − <F C P F F1 for 0p i p  (15.24)

where
Fb = the bolt axial tensile force
Fp = the lamping force on the two parts
Fi = the initial tension or preload

A graphical representation of Equations (15.23) and (15.24) is given in Figure 15.12(a). Clearly, if 
load P is sufficient to bring the clamping force Fp to zero (point A), we have bolt force Fb = P (point 
B). As indicated in the expressions, the foregoing results are valid only as long as some clamping 
force prevails on the parts: with no preload (loosened joint), C = 1, Fi = 0. We see that the ratios C 
and 1 − C in Equations (15.23) and (15.24) describe the proportions of the external load carried by 
the bolt and the parts, respectively. In all situations, the parts take a greater portion of the external 
load. This is significant when fluctuating loading is present, where variations in Fb and Fp are read-
ily found from Figure 15.12(a) and (b), as indicated. We shall discuss this loading situation in detail 
in Section 15.12.

15.9.1  deFleCtions due to Preload

Figure 15.13 illustrates the load–deflection behavior of both bolt and parts on force (F)–deflection 
(δ) axes. Observe that the slope of the bolt line is positive, since its length increases with increas-
ing force. On the contrary, the slope of the parts is negative, because its length decreases with the 
increasing force. As is often the case, the figure shows that kp > kb. It is obvious that the force in 
both bolt and parts is identical as long as they remain in contact. A preload force Fi is applied by 
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tightening the bolt and Fb = Fp = Fi. The deflections of the bolt δb and parts δp are controlled by the 
spring rates of reach points A and B on their respective load–deflection lines.

For the case in which an external load P is applied to the joint, there will be an additional deflec-
tion added to both bolt and parts. Although the quantitative amount is the same, Δδ, for the bolt, the 
deflection is an increased elongation, while for the parts the contraction is decreased. The deflec-
tion Δδ causes a new load situation in both bolt and parts. As a result, the applied load is split into 
two components, one taken by the parts and one taken by the bolt. It will be seen in Section 15.12 
that the preload effect is even greater for joints under dynamic loads than for statically loaded joints.

15.9.2  FaCtors oF saFety For a Joint

The tensile stress σb in the bolt can be found by dividing both terms of Equation (15.24) by the 
tensile stress area At:

 σ = +CP

A

F

A
b

t

i

t

 (15.25)

A means of ensuring a safe joint requires that the external load be smaller than that needed to cause 
the joint to separate. Let nP be the value of the external load that would cause bolt failure and the 
limiting value of σb be the proof strength Sp. Substituting these, Equation (15.25) becomes

Force
F

Fi

Fb = Fi + CP

Fp = 0

Fb = PB

Fi

Fb

Fp

D A Load, P
(a) (b)

Fp = Fi –(1 – C)P

0

FIGURE 15.12 Preload in a bolted connection: (a) force relationship and (b) variations in Fb and Fp related 
to variations in P between 0 and D.

F
A B

Fp Fi Fb

kp kb

δp δb
δ0

FIGURE 15.13 Preload versus initial deflections.
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 + =CP

A

F

A
Sn

t

i

t
p (15.26)

It should be mentioned that the factor of safety is not applied to the preload. The foregoing can be 
rewritten to give the bolt safety factor:

 =
−

n
S A F

CP
p t i  (15.27)

As noted earlier, the tensile stress area At is furnished in Tables 15.1 and 15.2, and Sp is listed in 
Tables 15.4 and 15.5.

15.9.3  Joint-seParating ForCe

Equation (15.27) suggests that the safety factor n is maximized by having no preload on the bolt. We 
also note that for n > 1, the bolt stress is smaller than the proof strength. Separation occurs when in 
Fp = 0 in Equation (15.24):

 ( )=
−

P
F

C1
s

i  (15.28a)

Therefore, the load safety factor guarding against joint separation is

 ( )= =
−

n
P

P

F

P C1
s

s i  (15.28b)

Here, P is the maximum load applied to the joint.

Example 15.4: Load-Carrying Capacity of a Bolted Joint

Given: An M12 × 175-C grade 8.8 steel bolt clamps two steel plates and loaded as shown in Figure 15.11(a).

Find: The maximum load based on a safety factor of 2.

Assumption: The connection will be permanent. Joint stiffness is taken as C = 0.35 (there is a detailed 
discussion about this in Section 15.11).

Solution

For the M12 × 175-C grade 8.8 steel bolt, we have
At = 84.3 mm2 (by Table 15.2)
Sp = 600 MPa (from Table 15.5)
Applying Equation (15.27), the maximum load that the bolt can safely support is then

 
( )( )

( )=
−

= − =. ,
.

.max,P
S A F

nC

600 84 3 45 520

2 0 35
7 23 kNb

p t i  

By Equation (15.28b), the maximum load before separation takes place equals

 ( ) ( )=
−

=
−

=.
.max,P

F

n C1
45 52

2 1 0 35
35 kNp

i  

Comment: Failure owing to separation of art will not take place prior to bolt failure.
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15.10  GASKETED JOINTS

Sometimes, a sealing or gasketing material must be placed between the parts connected. Gaskets 
are made of materials that are soft relative to other joint parts. Obviously, the stiffer and thinner the 
gasket, the better. The stiffness factor of a gasketed joint can be defined as

 =
+

C
k

k k
b

b c

 (15.29a)

The quantity kc represents the combined constant found from

 = +
k k k

1 1 1

c g p

 (15.29b)

where kg and kp are the spring rates of the gasket and the connected parts, respectively.
When a full gasket extends over the entire diameter of a joint, the gasket pressure is

 =p
F

A
p

g

 (a)

in which Ag is the gasket area per bolt and Fp represents the clamping force on parts. For a load fac-
tor ns, Equation (15.24) becomes

 ( )= − −F C n P F1p s i  (b)

Carrying Equation (a) into (b), gasket pressure may be expressed in the form

 ( )= − − p
A

F n P C
1

1
g

i s  (15.30)

We point out that to maintain the uniformity of pressure, bolts should not be spaced more than six 
bolt diameters apart.

15.11  DETERMINING THE JOINT STIFFNESS CONSTANTS

Application of the equations developed in Section 15.9 requires a determination of the spring rates 
of bolt and parts, or at least a reasonable approximation of their relative values. Recall from Chapter 
4 that the axial deflection is found from the equation δ = PL/AE and the spring rate by k = P/δ. Thus, 
we have for the bolt and parts, respectively,

 =k
A E

L
b

b b  (15.31a)

 =k
A E

L
p

p p  (15.31b)

where
kb = the stiffness constant for bolt
kp = the stiffness constant for parts
Ab = the cross-sectional area of bolt
Ap = the effective cross-sectional area of parts
E = the modulus of elasticity
L = the grip, which represents approximate length of clamped zone

ISTUDY

www.konkur.in

Telegram: @uni_k



617Power Screws, Fasteners, and Connections

15.11.1  Bolt stiFFness

When the thread stops immediately above the nut as shown in Figure 15.11, the gross cross-sectional 
area of the bolt must be used in approximating kb, since the unthreaded portion is stretched by the 
load. Otherwise, a bolt is treated as a spring in series when considering the threaded and unthreaded 
portions of the shank. For a bolt of axially loaded thread length Lt and the unthreaded shank length 
Ls (Figure 15.11a), the spring constant is

 = +
k

L

A E

L

A E

1

b

t

t b

s

b b

 (15.32)

Here Ab is the gross cross-sectional area and At represents the tensile stress area of the bolt. Note 
that, ordinarily, a bolt (or cap screw) has as little of its length threaded as practicable to maximize 
bolt stiffness. We then use Equation (15.31a) in calculating the bolt spring rate kb.

We note that a bolt or cap screw ordinarily has as little of its length threaded as practicable to 
increase bolt stiffness. Nevertheless, for standardized threads, the thread length is prescribed, as 
shown in the following expressions:

Metric threads (in mm)

 =
+ ≤
+ < ≤
+ >






L

d L
d L
d L

2 6 125
2 12 125 200
2 25 200

t  (15.33a)

Inch series

 =
+ ≤
+ >







. . .

. . .
L

d L

d L

2 0 25 in 6 in

2 0 50 in 6 in
t  (15.33b)

where (see Figure 15.11a), Lt is the threaded length, L represents the total bolt length, and d is the 
diameter.

15.11.2  stiFFness oF ClamPed Parts

The spring constant of clamped parts is seldom easy to ascertain and frequently approximated 
by employing an empirical procedure. Accordingly, the stress induced in the joint is assumed 
to be uniform throughout a region surrounding the bolt hole [8]. The region is often represented 
by a  double-cone-shaped barrel geometry of a half-apex angle 30°, as depicted in Figure 15.14. 

d2

L/2
30°

d

L

dw Ep

FIGURE 15.14 A method for estimating the effective cross-sectional area of clamped parts Ap.
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The stress is taken to be 0 outside the region. The effective cross-sectional area Ap is equal to about 
the average area of the shaded section shown in the figure:

 = π −



 −









A

d d
d

4 2
p

w 2
2

2  

The quantities d2 = dw + L tan 30° and dw represent the washer (or washer face) diameter. Note that 
dw = 1.5d for standard hexagon-headed bolts and cap screws. The preceding expression of Ap is used 
for estimating kp from Equation (15.31). It can be shown that [9], for connections using standard 
hexagon-headed bolts, the stiffness constant for parts is given by

 =
π

+
+







.

ln . .
. .

k
E d

L d

L d

0 58

2 5
0 58 0 5
0 58 2 5

p
p  (15.34)

where
d = the bolt diameter
L = the grip
Ep = the modulus of elasticity of the single or two identical parts

We should mention that the spring rate of clamped parts can be determined with good accuracy 
by experimentation or finite element analysis [10]. Various handbooks list rough estimates of the 
stiffness constant ratio kp/kb for typical gasketed and ungasketed joints. Sometimes, kp = 3 kb is used 
for ungasketed ordinary joints.

Example 15.5: Preloaded Bolt Connecting the Head and Cylinder of a Pressure Vessel

Figure 15.15 illustrates a portion of a cover plate bolted to the end of a thick-walled cylindrical pressure 
vessel. A total of Nb bolts are to be used to resist a separating force P. Determine:

 a. The joint constant.
 b. The number Nb for a permanent connection.
 c. The tightening torque for an average condition of thread friction.

Given: The required joint dimensions and materials are shown in the figure. The applied load 
P = 380 kN.

Steel bolt, Es
M20 x 2.5-C
SAE grade 10.9

25 mm

Ec = ½  ES

25 mm

Cast iron

FIGURE 15.15 Example 15.5. Portion of a bolted connection subjected to pressure.
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619Power Screws, Fasteners, and Connections

Design Assumptions: The effects of the flanges on the joint stiffness are omitted. The connection is 
permanent. A bolt safety factor of n = 1.5 is used.

Solution

 a. Referring to Figure 15.15, Equation (15.34) gives

 
( )( )
( ) ( )
( ) ( )

=
π

+
+











=
. / .

ln . . . .
. . . .

.k
E

E
0 58 2 0 02

2 5
0 58 0 05 0 5 0 02

0 58 0 05 2 5 0 02

0 01p
s

s 

 Through the use of Equation (15.31a),

 
( )

( )= = π = π =.
.

.k
AE

L

d E

L

E
E

4

0 02

4 0 05
0 006b

s s s
s

2 2

 

 Equation (15.22) is therefore

 =
+

=
+

=.
. .

.C
k

k k

0 006
0 006 0 01

0 375b

b p

 

 b. From Tables 15.2 and 15.5, we have At = 245 mm2 and Sp = 830 MPa. Applying Equation (15.20),

 ( )( )= = =. .F S A0 9 0 90 830 245 183 kNi p t  

 For Nb bolts, Equation (15.26) can be written in the form

 
( )

+ =
/C P N n

A

F

A
S

b

t

i

t
p 

 from which

 =
−

N
CPn

S A F
b

p t i

 

 Substituting the numerical values, we have

 
( )( ) ( )

( )=
×

− ×
=

. .
.N

0 375 380 10 1 5

830 235 183 10
10 5b

3

3  

 Comment: Nine bolts should be used.

 c. By Equation (15.21),

 . .T dF0 2 0 2 20 183 732 N mi ( )( )= = = ⋅  

Example 15.6: Preloaded Bolt Clamping of a Cylinder under External Load

A steel bolt-and-nut clamps a steel cylinder of known cross-section and length subjected to an external 
load P, as illustrated in Figure 15.16.
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620 Mechanical Engineering Design

Given: D = 20 mm, L = 65 mm, d = 10 mm, E = Eb = Ep = 200 GPa.

 ( )= = .P A8 kN 58 mm from Table 15 2t
2  

 ( )= = .S S380 MPa and 420 MPa by Table 15 5p y  

Find:

 a. Preload and bolt tightening torque.
 b. Joint stiffness factor.
 c. Maximum tensile stress in the bolt.
 d. Factors of safety against yielding and separation.

Assumptions: Connection is reused. The effects of the flanges on the joint stiffness will be omitted.

Solution

See Figures 15.11 and 15.16.
The cross-sectional area of the parts is equal to Ap = π(D2 − d2)/4 = π(202 − 102)/4 = 235.6 mm2.

 a. Through the use of Equation (15.20), the preload is

 ( )( )= = = =. . . .F F S A0 75 0 75 0 75 380 58 16 53 kNi p p t  

 This corresponds to an estimated bolt tightening torque (see Section 15.8) of

 ( )( )= = = ⋅. . . .T F d0 2 0 2 16 53 10 33 06 N mi  

 b. From Equation (15.33a), the lengths of thread Lt and shank Ls of the bolt (Figure 15.12) are

 ( )= + = + =L d2 6 2 10 6 26 mmt  

 = − = − =L L L 65 26 39 mms t  

 The stiffness constant for the bolt, by Equation (15.32), is

 ( ) ( )( )
( )

= + = +
π













=, .
k

L

A E

L

A E
k

1 1

200 10

26

58

29 4

10
2 117 10 N/m

b

t

t

s

s
b6 2

8  

Steel bolt
M10 × 1.5–C

Grade 5.8

P

L

D

Pd

FIGURE 15.16 Example 15.6. A bolted bolt tightening torque.
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621Power Screws, Fasteners, and Connections

 By Equation (15.31b), the stiffness constant for the parts is

 
( ) ( )= =

× ×

×
=

−

−

.
.k

A E

L

235 6 10 200 10

65 10
7 249 10 N/mp

p
6 9

3
8  

 The joint stiffness factor, using Equation (15.22), is therefore

 =
+

=
+

=.
. .

.C
k

k k

2 117

7 249 2 117
0 226b

p b

 

 Comment: The results indicate that kp ≈ 3.4 kb

 c. From Equations (15.23) and (15.24), the forces on the bolt and parts are

 ( )= + = + =. . .F F CP 16 53 0 226 8 18 34 kNb i  

 ( ) ( )( )= − − = − − =. . .F F C P1 16 53 1 0 226 8 10 34 kNp i  

 The largest tensile stress in the bolt equals

 
( )

( )σ = = =
−

.F

A

18 34 10

58 10
316 MPab

b

t

3

6
 

 Comment: No stress-concentration factor applies for a statically loaded ductile material.

 d. The factor of safety with respect to onset of yielding is equal to

 =
σ

= = .n
S 420

316
1 33y

b

 

 Applying Equation (15.28), the load required to separate the joint and factor of safety against 
joint separation are

 ( ) ( )=
−

=
−

=.
.

.P
F

C1

16 53

1 0 226
21 36 kNs

i  

 = = =. .n
P

P

21 36

8
2 67s

s  

 Comment: Both safety factors found against yielding and separation are acceptable.

15.12  TENSION JOINTS UNDER DYNAMIC LOADING

Bolted joints with preload and subjected to fatigue loading can be analyzed directly by the methods 
discussed in Chapter 7. Since failure owing to fluctuating loading is more apt to occur to the bolt, 
our attention is directed toward the bolt in this section. As previously noted, the use of initial tension 
is important in problems for which the bolt carries cyclic loading. The maximum and minimum 
loads on the bolt are higher because of the initial tension. Consequently, the mean load is greater, 
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622 Mechanical Engineering Design

but the alternating load component is reduced. Therefore, the fatigue effects, which depend primar-
ily on the variations of the stress, are likewise reduced.

Reconsider the joint shown in Figure 15.11a, but let the applied force P vary between some mini-
mum and maximum values, both positive. The mean and alternating loads are given by

 ( ) ( )= + = −,P P P P P P
1
2

1
2

m amax min max min  

Substituting Pm and Pa in place of P in Equation (15.23), the mean and alternating forces felt by the 
bolt are

 = +F CP Fbm m i (15.35a)

 =F CPba a  (15.35b)

The mean and range stresses in the bolt are then

 σ = +CP

A

F

A
bm

m

t

i

t

 (15.36a)

 σ = CP

A
ba

a

t

 (15.36b)

in which C represents the joint constant and At is the tensile stress area. We observe from Equation 
(15.36) that as long as separation does not occur, the alternating stress experienced by the bolt is 
reduced by the joint stiffness rate C. The mean stress is increased by the bolt preload.

For the bolted joints, the Goodman criterion given by Equation (7.16) may be written as follows:

 
σ + σ =
S S

1ba

e

bm

u

 

As before, the safety factor is not applied to the initial tension. Hence, introducing Equation (15.36) 
into this equation, we have

 + + =CP n

A S

CP n F

A S
1a

t e

m i

t u

 

The preceding is solved to give the factor of safety guarding against fatigue failure of the bolt:

 = −






+










n
S A F

C P
S

S
P

u t i

a
u

e
m

 (15.37)

Alternatively,

 = − σ

σ 





+ σ










n
S

C
S

S

u i

a
u

e
m

 (15.38)

Here, σa = Pa/At, < σm = Pm/At, and σi = Fi/At. Recall from Section 7.9 that this equation represents the 
Soderberg criterion when ultimate strength Su is replaced by the yield strength Sy.
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The modified endurance limit Se is obtained from Equation (7.6). For threaded finishes having 
good quality, a surface factor of Cf = 1 may be applicable. The size factor Cs = 1 (see Section 7.7), and 
by Equation (7.3), we have ′ = .S S0 45e u for reversed axial loading. As a result,

 ( )=






.S C C
K

S
1

0 45e r t
f

u  (15.39)

where Cr and Ct are the reliability and temperature factors. Table 15.6 gives average stress-concen-
tration factors for the fillet under the bolt and also at the beginning of the threads on the shank [9]. 
Cutting is the simplest method of producing threads. Rolling the threads provides a smoother thread 
finish than cutting. The fillet between the head and the shank reduces the Kf, as shown in the table. 
Unless otherwise specified, the threads are usually assumed to be rolled.

A very common case is that the fatigue loading fluctuates between 0 and some maximum value, 
such as in a bolted pressure vessel cycled from 0 to a maximum pressure. In this situation, the mini-
mum tensile loading Pmin = 0. The effect of initial tension with regard to fatigue loading is illustrated 
in the solution of the following sample problem.

Example 15.7: Preloaded Fasteners in Fatigue Loading

Figure 15.17a illustrates the connection of two steel parts with a single M16 × 2-C grade 8.8 bolt  having 
rolled threads. Determine

 a. Whether the bolt fails when no preload is present.
 b. If the bolt is safe with preload.
 c. The fatigue factor of safety n when preload is present.
 d. The static safety factors n and ns.

Design Assumptions: The bolt may be reused when the joint is taken apart. Survival rate is 90%. 
Operating temperature is normal.

Given: The joint is subjected to a load P that varies continuously between 0 and 34 kN (Figure 15.17b).

Solution

See Figure 15.17.
From Table 7.3, the reliability factor is Cr = 0.89. The temperature factor is Ct = 1 (Section 7.7). Also, 

Sp = 600 mm MPa, Sy = 650 MPa, Su = 830 MPa (from Table 15.5), Kf = 3 (by Table 15.6), and

 ( )= .A 157 mm from Table 15 2t
2  

Equation (15.39) results in

TABLE 15.6
Fatigue Stress-Concentration Factors Kf for Steel-Threaded Members
SAE Grade 
(Unified Thread)

Metric Grade (ISO 
Thread) Rolled Threads Cut Threads Fillet

0–2 3.6–5.8 2.2 2.8 2.1

4–8 6.6–10.9 3.0 3.8 2.3
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σa

σa

σba

σm σbm

σm (MPa)

SuSy

(MPa)

140
Se

105

70

35

0 70 140 210 280 350 420 490 560 630 700 770 840

(b) With preload
45°

Goodman line
Soderberg line

Goodman line

(a) No preload

(b)

Load

(c)

P

O Time
t

Pmax

P

P

Steel parts

Steel bolt, M16 x 2-C
SAE grade 8.8
with rolled threads

(a)

L = 64 mm

FIGURE 15.17 Example 15.7. (a) Bolted parts carrying fluctuating loads, (b) alternating separating load as 
function of time, and (c) fatigue diagram for bolts.
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 ( )( ) ( )= 



 × =. . .S 0 89 1

1
3

0 45 830 110 8 MPae  

The Soderberg and Goodman fatigue failure lines are shown in Figure 15.17(c).

 a. For loosely held parts, when Fi = 0, the load on the bolt equals the load on parts:

 P P
1
2

34 0 17 kN
1
2

34 0 17 kNm a( ) ( )= + = = − =  

 σ = σ = =
.

.17
0 157

108 3 MPaa m  

 A plot of the stresses shown in Figure 15.17(c) indicates that failure will occur.

 b. Through the use of Equation (15.20),

 ( )( )= = =. . .F S A0 75 0 75 600 157 70 7 kNi p t  

 The grip is L = 64 mm. By Equations (15.31a) and (15.34) with Eb = Ep = E, we obtain

 
( )

( )= π = π =.
.

.k
d E

L

E
E

4

0 016

4 0 064
0 0031b

2 2

 

 
( )

( ) ( )
( ) ( )

= π
+
+











=. .

ln . . . .
. . . .

.k
E

E
0 58 0 016

2 5
0 58 0 064 0 5 0 016

0 58 0 064 2 5 0 016

0 0136p  

 The joint constant is then

 =
+

=
+

=.
. .

.C
k

k k

0 0031
0 0031 0 0136

0 186b

b p

 

 Comment: The foregoing means that only about 20% of the external load fluctuation is felt 
by the bolt and hence about 80% goes to decrease clamping pressure.

 Applying Equations (15.35) and (15.36),

 
= +

= + =

F CP F

0.186(17) 70.7 73.9 kN

bm m i

 

 σ = =.
.
73 9
0 157

471 MPabm  

 = = =F CP 0.186(17) 3.16 kNba a  

 σ = =.
.

.3 16
0 157

20 1 MPaba  

 A plot on the fatigue diagram shows that failure will not occur (Figure 15.17(c)).
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 c. Equation (15.37) with Pa = Pm becomes

 = −






+










n
S A F

CP
S

S
1

u t i

a
u

e

  (15.40)

 Introducing the given numerical values,

 
( )( )

( )( )
= −





 +





. .

.
.

n
830 0 157 70 7

0 186 17
830

110 8
1

 

 from which n = 2.22.

 Comment: This is the factor of safety guarding against the fatigue failure. Observe from 
Figure 15.17(c) that the Goodman criteria led to a less conservative (higher) value for n.

 d. Substitution of the given data into Equations (15.27) and (15.28) gives

 ( )
( )

( )
= − =. .

.
.n

600 0 157 70 7

0 186 34
3 72 

 ( )=
−

=.
.

.n
70 7

34 1 0 186
2 55s  

 Comments: The factor of 3.72 prevents the bolt stress from becoming equal to proof strength. 
On the other hand, the factor of 2.55 guards against joint separation and the bolt taking the 
entire load.

15.13  RIVETED AND BOLTED JOINTS LOADED IN SHEAR

A rivet consists of a cylindrical body, known as the shank, usually with a rounded end called the 
head. The purpose of the rivet is to join together two plates while securing proper strength and 
tightness. If the rivet is heated prior to being placed in the hole, it is referred to as a hot-driven 
rivet, while if it is not heated, it is referred to as a cold-driven rivet. Rivets and bolts are ordinar-
ily used in the construction of buildings, bridges, aircraft, and ships. The design of riveted and 
bolted connections is governed by construction codes formulated by such societies as the AISC 
and the ASME.

Riveted and bolted joints loaded in shear are treated exactly alike in design and analysis. 
Figure 15.18 illustrates a simple riveted connection loaded in shear. It is obvious that the loading is 
eccentric and an unbalanced moment Pt exists. Hence, bending stress will be present. However, the 
usual procedure is to ignore the bending stress and compensate for its presence by a larger factor of 
safety. Table 15.7 lists various types of failure of the connection shown in the figure.

The effective diameters in a riveted joint are defined as follows. For a drilled hole, = + /d d 1 16e  in.  
(about 1.5 mm), and for a punched hole, = + /d d 1 8e  in. (about 3 mm). Here, d represents the diam-
eter of the rivet. Unless specified otherwise, we assume that the holes have been punched. Usually, 
shearing, or tearing, failure is avoided by spacing the rivet at least 1.5d away from the plate edge. 
To sum up: essentially, three modes of failure must be considered in determining the capacity of a 
riveted or bolted connection: shearing failure of the rivet, bearing failure of the plate or rivet, and 
tensile failure of the plate. The associated normal and shear equations are given in the table.
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Example 15.8: Capacity of a Riveted Connection

The standard AISC connection for the W310 × 52 beam consists of two 102 × 102 × 6.4 mm angles, each 
215 mm long. 22 mm rivets spaced 75 mm apart are used in 24 mm holes (Figure 15.19). Calculate the 
maximum load that the connection can carry.

Design Decisions: The allowable stresses are 100 MPa in shear and 335 MPa in bearing of rivets. Tensile 
failure cannot occur in this connection; only shearing and bearing capacities need to be investigated.

Solution

The web thickness of the beam is tw = 7.6 mm (from Table A.6), and the cross-sectional area of one rivet 
is Ar = π(22)2/4 = 380 mm2.

P

P P

t

d

w

t P

FIGURE 15.18 Riveted connection loaded in shear.

TABLE 15.7
Types of Failure for Riveted Connections (Figure 15.18)
A. Shearing Failure of Rivet B. Tensile Failure of Plate

P P
τ=4P/πd2 P P

σt = P/(w – de)t

C. Bearing Failure of Plate or Rivet D. Shearing Failure of Edge of Plate

σb = P/dt

PP

τt=P/2at

P P

a

Notes: P, applied shear load; d, diameter of rivet; w, width of plate; t, thickness of the 
thinnest plate; de, effective hole diameter; a, the closest distance from rivet to 
the edge of plate.
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Bearing on the web of the beam:

 ( )( )( ) ( )= =.P 3 7 6 22 335 168 kN governsb  

Shear of six rivets:

 ( )( )= =P 6 380 100 228 kNb  

Bearing of six rivets on angles:

 ( )( )( )= =.P 6 22 6 4 335 283 kNb  

Comment: The capacity of this connection, the smallest of the above forces, is 168 kN.

*15.13.1  Joint tyPes and eFFiCienCy

Most connections have many rivets or bolts in a variety of models. Riveted or bolted connections 
loaded in shear are of two types: lap joints and butt joints. In a lap joint, sometimes called a single-
shear joint, the two plates to be jointed overlap each other (Figure 15.20(a)). On the other hand, in 
a butt, also termed a double-shear joint, the two plates to be connected (main plates) butt against 
one other (Figure 15.20b). Pitch is defined as the distance between adjacent rivet centers. It rep-
resents a significant geometric property of a joint. The axial pitch p for rivets is measured along a 
line parallel to the edge of the plate, while the corresponding distance along a line perpendicular 
to the edge of the plate is known as the transverse pitch pt. Both kinds of pitch are depicted in the 
figure. The smallest symmetric group of rivets that repeats itself along the length of a joint is called 

W310 × 52

FIGURE 15.19 Example 15.8.

1 2 3 4 5

1 2 3 4 5

pt

PP

P P P P

p
1 2 3 4 5 6

1 2 3 4 5 6

pt

PP

p

(a) (b)

FIGURE 15.20 Types of riveted connections: (a) lap joint and (b) butt joint.
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a repeating section. The strength analysis of a riveted connection is based on its repeated section 
(see Example 15.9).

The efficiency of joints is defined as follows:

 =e
P

Pt

all  (15.41)

In the foregoing equation, Pall is the smallest of the allowable loads in shear, bearing, and tension; 
Pt represents the static tensile yield load (strength) of the plate with no hole. The most efficient joint 
would be as strong in tension, shear, and bearing as the original plate to be joined is in tension. This 
can never be realized, since there must be at least one rivet hole in the plate; the allowable load of 
joint in tension therefore always is less than the strength of the plate with no holes.

For centrally applied loads, it is often assumed that the rivets are about equally stressed. In many 
cases, this cannot be justified by elastic analysis; however, ductile deformations permit an equal 
redistribution of the applied force, before the ultimate capacity of connection is reached. Also, it is 
usually taken that the row of rivets immediately adjacent to the load carries the full load. Thus, the 
maximum load supported by such a row occurs when there is only one rivet in that row. The actual 
load carried by an interior row can be obtained from

 = − ′
P

n n

n
Pi  (15.42)

where
P = the externally applied load
Pi = the actual load, or portion of P, acting on a particular row i
n = the total number of rivets in the joint
n′ = the total number of rivets in the row between the row being checked and the external load

For instance, load on row 3 of the joint in Figure 15.20(a) equals P3 = (9 − 3)P/9 = 2P/3. Likewise, 
load on row 2 or 5 of the joint in Figure 15.20(b) equals P2 = P5 = (12 − 1)P/12 = 11P/12.

Example 15.9: Strength Analysis of a Multiple-Riveted Lap Joint

Figure 15.21(a) shows a multiple-riveted lap joint subjected to an axial load P. Calculate the allowable 
load and efficiency of the joint.

Given: All rivets are 20 mm in diameter.

Design Assumptions: The allowable stresses are 140 MPa in tension, 105 MPa in shear, and 210 MPa 
in bearing.

P

P
P

P P PL = 150
L

150 150
1515

75 mm
1

37.5

37.5

2 3

75

1 2 3

75 mm
75 mm

(a) (b)

75 mm

FIGURE 15.21 Dimensions are in millimeters. Example 15.9. (a) A riveted lap joint and (b) enlarged view 
of a repeating group of rivets.
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Solution

The analysis is on the basis of the repeating section, which has four rivets and L = 150 mm (Figure 15.21b).
The plate in tension, without holes:

 = × =P 140(150 15) 315 kNt  

The rivet shear:

 ( )( ) ( )= π





= .P 4
4

20 105 131 9 kN governss
2  

The plate bearing:

 = × =P 4(15 20)(210) 252 kNb  

The tension across sections 1–1 through 3–3 of the bottom plate, using Equation (15.42):

 ( ) ( )− = − +  =;P P
4 3

4
15 150 20 3 140 1067 kN1 1  

 ( ) ( )− = − +  =; .P P
4 1

4
15 150 2 20 3 140 291 2 kN2 2  

 ( ) ( )= − +  =; .P P15 150 20 3 140 266 7 kN3 3  

The maximum allowable force that the joint can safely carry is the smallest of the force obtained in 
the preceding, Pall = 131.9 kN. The efficiency of this joint, from Equation (15.41), is then

 = × =. . %e
131 9
315

100 41 9  

15.14  SHEAR OF RIVETS OR BOLTS DUE TO ECCENTRIC LOADING

For the case in which the load is applied eccentrically to a connection having a group of bolts or 
rivets, the effects of the torque or moment, as well as the direct force, must be considered. A typical 
structural problem is the situation that occurs when a horizontal beam is supported by a vertical 
column (Figure 15.22(a)). In this case, each bolt is subjected to a twisting moment M = Pe and a 
direct shear force P. An enlarged view of a bolt group with loading (P and M) acting at the centroid 
C of the group and the reactional shear forces acting at the cross-section of each bolt are shown in 
Figure 15.22(b).

Let us assume that the reactional tangential force due to moment, the so-called moment load or 
secondary shear, on a bolt varies directly with the distance from the centroid C of the group of bolts 
and is directed perpendicular to the centroid. As a result,

 = = =F

r

F

r

F

r

F

r
1

1

2

2

3

2

4

4
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In the preceding, Fi and ri (i = 1, …, 4) are the tangential force and radial distance from C to the 
center of each bolt, respectively. The externally applied moment and tangential forces are related 
as follows:

 = = + + +M Pe F r F r F r F r1 1 2 2 3 3 4 4 

Solving these equations simultaneously, we obtain

 =
+ + +

F
Per

r r r r
1

1

1
2

2
2

3
2

4
2  

This expression can be written in the following general form:

 

∑
=

=

F
Mr

r
i

j

j

n

j
1

2
 (15.43)

where
Fi = the tangential force
M = Pe, externally applied moment
n = the number of bolts in the group
i = the particular bolt whose load is to be found

It is customary to assume that the reactional direct force F/n is the same for all bolts of the joint. 
The vectorial sum of the tangential force and direct force is the resultant shear force on the bolt 
(Figure 15.22(b)). Clearly, only the bolt having the maximum resultant shear force needs to be con-
sidered. An inspection of the vector force diagram is often enough to eliminate all but two or three 
bolts as candidates for the worst-loaded bolt.

Example 15.10: Bolt Shear Forces due to Eccentric Loading

A gusset plate is attached to a column by three identical bolts and vertically loaded, as shown in 
Figure 15.23(a). Calculate the maximum bolt shear force and stress.

Assumption: The bolt tends to shear across its major diameter.

P

Direct shear P/4

4

1 2

M = Pe

Tangential
force F1

r1

F3

F4

r3
r4

r2
F2P

C

P/4 P/4

P/4

Column

(a) (b)

3

e

1 2

3 C 4
Beam

FIGURE 15.22 (a) Bolted joint with eccentric load. (b) Bolt group with loading and reactional shear forces (15.43).
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Solution

For the bolt group, point C corresponds to the centroid of the triangular pattern, as shown in Figure 
15.23(b). This free-body diagram illustrates the bolt reactions and the external loading replaced at the 
centroid. Each bolt supports one-third of the vertical shear load, 4 kN, plus a tangential force Fi. The 
distances from the centroid to bolts are

 ( ) ( )= = + = =. ,r r r40 75 85 0 mm 80 mm1 2
2 2

3  

Equation (15.43) then results in

 

( )
( ) ( )

= =
+ +

=
+

= =,
,

.

F F
Mr

r r r

4500 85

2 85 80

382 500

20 850
18 35 kN

1 2
1

1
2

2
2

3
2 2 2

 

 
( )

= =
,
,

.F
4 500 80

20 850
17 27 kN3  

The vector sum of the two shear forces, obviously greatest for bolt 2, can be obtained algebraically 
(or graphically):

 = × +





+ ×

















=. . .
/

V
15

17
18 35 4

8

17
18 35 21 96 kN2

2 2 1 2

 

The bolt shear stress area is As = πd2/4 = π(14)2/4 = 153.9 mm2. Hence,

 ( )τ = = =
−

,
.

.V

A

21 960

153 9 10
142 7 MPa

s

2

6
 

Example 15.11: Shear Stress in Rivets Owing to Eccentric Loading

A riveted joint is under an inclined eccentric force P, as indicated in Figure 15.24(a). Calculate the 
maximum shear stress in the rivets.

Given: The rivets are 1 in. in diameter. P = 50 kN.

120

1

F1

F2

F3

V

12 kN

4 kN

12 kN

4 kN

4 kN

2

15 17
8

3

4.5 kN · m

M14 × 2
steel boltColumn

(a) (b)

2
+ +

+
3

1

75

Gusset
plate

300150
85

80

85

75

40
C

FIGURE 15.23 Dimensions are in millimeters. Example 15.10. (a) Bolted connection and (b) bolt shear force 
and moment equilibrium.
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Solution

For simplicity in computations, the applied load P is first resolved into horizontal and vertical com-
ponents. Each rivet carries one-half of the load. The centroid of the rivet group is between the top and 
bottom rivets at C. An inspection of Figure 15.24(a) shows that the top rivet 1 is under the highest stress 
(Figure 15.24(b)). Through the use of Equation (15.43),

 
. .

. .
.F

Mr

r r r r

10 5 0 15

2 0 15 2 0 05
31 5 kN1

1

1
2

2
2

3
2

4
2 2 2

( )
( ) ( )

=
+ + +

=
+

=  

The vector sum of the shear forces is

 ( )= + +  =. . .
/

V 7 5 31 5 10 40 26 kN1
2 2

1 2
 

We then have

 
( )
( )

τ =
π

=
π

=
/

.
.

V

d 4

4 40 26

0 025
82 MPa1

2 2  

15.15  WELDING

A weld is a joint between two surfaces produced by the application of localized heat. Here, we 
briefly discuss only welding between metal surfaces; thermoplastics can be welded much like met-
als. A weldment is fabricated by welding together a variety of metal forms cut to a particular config-
uration. Nearly all wielding is by fusion processes. Establishment of a metallurgical bond between 
two parts by melting together the base metals with a filler metal is called the fusion process. Heat is 
brought about usually by an electric arc, electric current, or gas flame. Metals and alloys to arc and 
gas welding must be properly selected. Properties of welding filler material must be matched with 
those of base metal when possible. The joint strength would then be equal to the strength of the base 
metal, giving an efficiency of almost 100% for static loads.

15.15.1  welding ProCesses and ProPerties

Metallic arc welding, the so-called shielded metal arc welding (SMAW), refers to a process where 
the heat is applied by an arc passing between an electrode and the work. The electrode is com-
posed of suitable filler material with a coating ordinarily similar to that of base metal. It is melted 
and fed into the joint as the weld is being formed. The coating is vaporized to provide a shielding 
gas-preventing oxidation at the weld as well as acting as a flux and directing the arc. Either direct 

300
30 kN

50 150
10 kN

40 kN

30 kN C
M = 40(300) - 30(50)
 = 10.5 kN ∙ m

1

V1

1.5 + F1

4
340 kN

(a) (b)
50 kN

100
100
100

C

4

+
+
+
+

1

3
2

FIGURE 15.24 Dimensions are in millimeters. Example 15.11. (a) Riveted connection and (b) enlarged view 
showing loading acting at the centroid and reactions on rivet 1.
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or alternating current can be used with this process. A weld thickness greater than about ⅜ A in. 
is often produced on successive layers. In metal inert gas arc welding or gas–metal arc welding 
(GMAW), heat is applied by a gas flame. In this process, a bare or plated wire is continuously fed 
into the weld from a large spool. The wire serves as an electrode and becomes the filler in the union. 
Uniform-quality welds are attainable with metal–gas welding.

Resistance welding uses electric-current-generated heat that passes through the parts to be 
welded while they are clamped together firmly. Filler material is not ordinarily employed. Usually, 
thin metal parts may be connected by spot or continuous resistance welding. A spot weld is made 
by a pair of electrodes that apply pressure to either side of a lap joint and devise a complete circuit. 
Laser beam welding, plasma arc welding, and electron beam welding are utilized for special appli-
cations. The suitability of several metals and alloys to arc and gas welding is very important.

Materials and symbols for welding have been standardized by the ASTM and the American 
Welding Society (AWS). Numerous different kinds of electrodes have been standardized to fit a 
variety of conditions encountered in the welding of machinery and structures. Table 15.8 presents 
the characteristics for some E60 and E70 electrode classes. Note that the AWS numbering system 
is based on the use of an E prefix followed by four digits. The first two numbers on the left iden-
tify the approximate strength in ksi. The last digit denotes a group of welding technique variables, 
such as current supply. The next to last digit refers to a welding position number (1 for all and 2 for 
horizontal positions, respectively). Welding electrodes are available in diameters from 1

16 to 5
16 in. It 

should be mentioned that the electrode material is often the strongest material present in a joint [11].

15.15.2  strength oF welded Joints

Among numerous configurations of welds, we consider only two common butt and fillet types. The 
geometry of a typical butt weld loaded in tension and shear is shown in Figure 15.25. The equations 
for the stresses due to the loading are also given in the figure. Note that the height h for a butt weld 
does not include the bulge or reinforcement used to compensate for voids or inclusions in the weld 
metal. Plates of ¼ in. and heavier should be beveled before welding as indicated.

Figure 15.26 illustrates two fillet welds loaded in shear and transverse tension. The correspond-
ing average stress formula is written under each figure. The size of the fillet weld is defined as 
the leg length h. Normally, the two legs are of the same length h. In welding design, stresses are 
calculated for the throat section: minimum cross-sectional area A, located at 45° to the legs. We 
have At = tL = 0.707 hL, where t and L represent the throat length and the length of weld, respectively 
(Figure 15.26(a)). We note that actual stress distribution in a weld is somewhat complicated, and 
the design depends on the stiffness of the base material and other factors that have been neglected. 
Particularly for stress situation on the throat area in Figure 15.26(b), no exact solutions are available.

TABLE 15.8
Typical Weld-Metal Properties

Ultimate Strength Yield Strength

AWS Electrode Number ksi (MPa) ksi (MPa) Percent Elongation

E6010 62 (427) 50 (345) 22

E6012 67 (462) 55 (379) 17

E6020 62 (427) 50 (345) 25

E7014 72 (496) 60 (414) 17

E7028 72 (496) 60 (414) 22

Source: American Welding Society Code AWSD. 1.77, American Welding Society, Miami, FL.
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The foregoing average results are valid for design, however, because weld strengths are on the 
basis of tests on joints of these types. Having the material strengths available for a welded joint, the 
required weld size h can be obtained for a prescribed safety factor. The usual equation of the factor 
of safety n applies for static loads:

 =
τ

=
τ

.
n

S S0 5ys y  (15.44)

The quantities Sy and Sys represent tensile yield and shear yield strengths of weld material, 
respectively.

15.15.3  stress ConCentration and Fatigue in welds

Abrupt changes in geometry take place in welds, and hence, stress concentrations are present. The 
weld and the plates at the base and reinforcement should be thoroughly blended together (Figure 
15.25). The stresses are highest in the immediate vicinity of the weld. Sharp corners at the toe and 
heel, points A and B in Figure 15.26, should be rounded. Since welds are ductile materials, stress 
concentration effects are ignored for static loads. As has always been the case, when the loading 
fluctuates, a stress concentration factor is applied to the alternating component. Approximate values 
for fatigue strength reduction factors are listed in Table 15.9.

Under cyclic loading, the welds fail long before the welded members. The fatigue factor of safety 
and working stresses in welds are defined by the AISC as well as AWS codes for buildings and 
bridges [12]. The codes allow the use of a variety of ASTM structural steels. For ASTM steels, 
tensile yield strength is one-half of the ultimate strength in tension, Sy = 0.5Su for static or fatigue 
loads. Unless otherwise specified, an as-forged surface should always be used for weldments. 

Reinforcement

(a) (b)

hP P

P

L

h

P

τavg=P/hLσ=P/hL

L

FIGURE 15.25 Butt weld: (a) tension loading and (b) shear loading.

P

A

C

h
σ = P/0.707 hL(a)

τ = P/0.707hL
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FIGURE 15.26 Fillet weld: (a) shear loading and (b) transverse tension loading. Notes: h is the length of weld 
leg, t is the throat length, and L is the weld length.
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Also, prudent design would suggest taking the size factor Cs = 0.7. Design calculations for fatigue 
loading can be made by the methods described in Section 7.11, as illustrated in the following sample 
problem.

Example 15.12: Design of a Butt Welding for Fatigue Loading

The tensile load P on a butt weld (Figure 15.25a) fluctuates continuously between 20 and 100 kN. Plates 
are 20 mm thick. Determine the required length L of the weld, applying the Goodman criterion.

Assumptions: Use an E6010 welding rod with a factor of safety of 2.5.

Solution

By Table 15.8 for E6010, Su = 427 MPa. The endurance limit of the weld metal, from Equation (7.6), is

 ( )= ′/S C C C C K S1e f r s t f e  

Referring to Section 7.7, we have
Cr = 1 (based on 50% reliability)
Cs = 0.7 (lacking information)
Cf = ASu

b = 272(427)−0995 = 0.657 (by Equation 7.7)
Ct = 1 (normal room temperature)
Kf = 1.2 (from Table 15.9)

′Se  = 0.5 Su = 0.5(427) = 213.5 MPa

Hence,

 ( )( )( )( )( )( )= =. . / . . .S 1 0 7 0 657 1 1 1 2 213 5 81 82 MPae  

The mean and alternating loads are given by

 = + = = − =,P P
100 20

2
60 kN

100 20

2
40 kNm a  

Corresponding stresses are

 σ = =,
L L

60 000

20

3000
m  

TABLE 15.9
Fatigue Stress-Concentration Factors Kf for Welds
Type of Weld Kf

Reinforced butt weld 1.1

Toe of transverse fillet weld 1.5

End of parallel fillet weld 2.7

T-butt joint with sharp corners 2.0

Source: American Welding Society Code AWSD. 1.77, American 
Welding Society, Miami, FL.
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 σ = =,
L L

40 000

20

2000
a  

Through the use of Equation (7.16), we have

 = σ + σ = + 





;
. .

S

n

S

S L L

427

2 5

3000 427

81 82

2000u
m

u

e
a  

Solving,

 = .L 78 67 mm 

Comment: A 79 mm long weld should be used.

15.16  WELDED JOINTS SUBJECTED TO ECCENTRIC LOADING

When a welded joint is under eccentrically applied loading, the effect of torque or moment must be 
taken into account as well as the direct load. The exact stress distribution in such a joint is compli-
cated. A detailed study of both the rigidity of the parts being joined and the geometry of the weld is 
required. The following procedure, which is based on simplifying assumptions, leads to reasonably 
accurate results for most applications.

15.16.1  torsion in welded Joints

Figure 15.27 illustrates an eccentrically loaded joint, with the centroid of all the weld areas or weld 
group at point C. The load P is applied at a distance e from C, in the plane of the group.

As a result, the welded connection is under torsion T = Pe and the direct load P. The latter force 
causes a direct shear stress in the welds:

 τ = P

A
d  (15.45)

d

e

A

P

Plate
C

B

Column

L2

L1

FIGURE 15.27 Welded joint in plane eccentric loading. Notes: C is the centroid of the weld group.
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in which P is the applied load and A represents the throat area of all the welds. The preceding stress 
is taken to be uniformly distributed over the length of all welds. The torque causes the following 
torsional shear stress in the welds:

 τ = Tr

J
t  (15.46)

where
T = the torque
r = the distance from C to the point in the weld of interest
J  = the polar moment of inertia of the weld group about C (based on the throat area)

Resultant shear stress in the weld at radius r is given by the vector sum of the direct shear stress 
and torsional stress:

 ( )τ = τ + τ
/

d t
2 2 1 2

 (15.47)

Note that r usually represents the farthest distance from the centroid of the weld group.

15.16.2  Bending in welded Joints

Consider an angle welded to a column, as depicted in Figure 15.28. Load P acts at a distance e, out 
of plane of the weld group, producing bending in addition to direct shear. We again take a linear 
distribution of shear stress due to moment M = Pe and a uniform distribution of direct shear stress. 
The latter stress τd is given by Equation (15.45). The moment causes the shear stress:

 τ = Mc

I
m  (15.48)

Here, the distance c is measured from C to the farthest point on the weld. As in the previous case, 
the resultant shear stress τ in the weld is estimated by the vector sum of the direct shear stress and 
the moment-induced stress:

 ( )τ = τ + τ
/

d m
2 2 1 2

 (15.49)

On the basis of the geometry and loading of Figure 15.28, we note that τd is downward and τm along 
edge AB is outward.

Angle
section

e P

x

A
P

B

L2

L1

Column

C x

FIGURE 15.28 Welded joint under out-of-plane loading.
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15.16.2.1 Centroid of the Weld Group
Let Ai denote the weld segment area and xi and yi the coordinates to the centroid of any (straight line) 
segment of the weld group. Then, the centroid C of the weld group is located at

 = ∑
∑

= ∑
∑

,x
A x

A
y

A y

A
i i

i

i i

i

 (15.50)

in which i = 1.2, …, n for n welds. In the case of symmetric weld group, the location of the centroid 
is obvious.

15.16.2.2 Moments of Inertia of a Weld (Figure 15.29)
For simplicity, we assume that the effective weld width in the plane of the paper is the same as throat 
length t = 0.707h, shown in Figure 15.26(a). The parallel axis theorem can be applied to find the 
moments of inertia about x and y axes through the centroid of the weld group:

 

= + = +

= + = + =

′

′

I I Ay
tL

Lty

I I Ax
Lt

Ltx Ltx

12

12

x x

y y

1
2

3

1
2

1
2

3

1
2

1
2

 (15.51)

Note that t is assumed to be very small in comparison with the other dimensions and hence 
Iy′ = Lt3/12 = 0 in the second of the preceding equations. The polar moment of inertia about an axis 
through C perpendicular to the plane of the weld is then

 ( )= + = + +J I I
tL

Lt x y
12

x y

3

1
2

1
2  (15.52)

The values of I and J for each weld about C should be calculated by using Equations (15.51) 
and (15.52): the results are added to obtain the moment and product of inertia of the entire joint. 
It should be mentioned that the moment and polar moment of inertias for the most common fillet 
welds encountered are listed in some publications [9]. The detailed procedure is illustrated in Case 
Study 18.9 and in the following sample problem.

Example 15.13: Design of a Welded Joint under Out-of-Plane Eccentric Loading

A welded joint is subjected to out-of-plane eccentric force P (Figure 15.28). What weld size is required?

Given: L1 = 60 mm, L2 = 90 mm, e = 50 mm, P = 15 kN.

Assumption: An E6010 welding rod with factor of safety n = 3 is used.

Centroid of 
this weld

Centroid of 
weld group

y΄ y

x
y1

C

C1

x1
t

L/2

L/2
x΄

FIGURE 15.29 Moments of inertia of a weld parallel to the y axis.
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Solution

By Table 15.8, for E6010, Sy = 345 MPa. The centroid lies at the intersection of the two axes of sym-
metry of the area enclosed by the weld group. The moment of inertia is

 ( ) ( ) ( )
= + = ,I t

t
t2 60 45

2 90

12
364 500 mmx

2
3

4 

The total weld area equals A = 2(60t + 90t) = 300t mm2. Moment is M = 15(50) = 750 kN ⋅ mm. The maxi-
mum shear stress, using Equation (15.49), is

 τ = 





+ ×

















=, ,
,

.
/

t t t

15 000

300

750 000 45

364 500

105 2
N/mm

2 2 1 2

2 

Applying Equation (15.44), we have

 ( )τ = 





= =. ; . . .n S
t

t0 5 3
105 2

0 5 345 or 1 83 mmy  

Hence,

 = = =
.

.
.

.h
t

0 707

1 83

0 707
2 59 mm 

Comment: A nominal size of 3 mm fillet welds should be used throughout.

15.17  BRAZING AND SOLDERING

Brazing and soldering differ from welding essentially in that the temperatures are always below the 
melting point of the parts to be united, but the parts are heated above the melting point of the solder. 
It is important that the surfaces be clean initially. Soldering or brazing filler material acts somewhat 
similarly to a molten metal glue or cement, which sets directly on cooling. Brazing or soldering can 
thus be categorized as bonding.

15.17.1  Brazing ProCess

Brazing starts with heating the workpieces to a temperature above 450°C. On contact with the 
parts to be united, the filler material melts and flows into the space between the workpieces. The 
filler materials are customarily alloys of copper, silver, or nickel. These may be handheld and fed 
into the joint (free of feeding) or preplaced as washers, shims, rings, slugs, and the like. Dissimilar 
metals, cast, and wrought metals, as well as nonmetals and metals, can be brazed together. Brazing 
is ordinarily accomplished by heating parts with a torch or in a furnace. Sometimes, other brazing 
methods are used. A brief description of some processes of brazing follows. Note that, in all metals, 
either flux or an inert gas atmosphere is required.

Torch brazing utilizes acetylene, propane, and other fuel gas, burned with oxygen or air. It may 
be manual or mechanized. On the other hand, furnace brazing uses the heat of a gas-fired, electric, 
or other kind of furnace to raise the parts to brazing temperature. A technique that utilizes a high-
frequency current to generate the required heat is referred to as induction brazing. As the name 
suggests, dip brazing involves the immersion of the parts in a molten bath. A method that utilizes 
resistance-welding machines to supply the heat is called resistance brazing. As currents are large, 
water cooling of electrodes is essential.
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15.17.2  soldering ProCess

The procedure of soldering is identical to that of brazing. However, in soldering, the filler metal has 
a melting temperature below 450°C and a relatively low strength. Heating can be done with a torch 
or a high-frequency induction heating coil. Surfaces must be clean and covered with flux that is 
liquid at the soldering temperature. The flux is drawn into the joint and dissolves any oxidation pres-
ent at the joint. When the soldering temperature is reached, the solder replaces the flux at the joint.

Cast iron, wrought iron, and carbon steels can be soldered to each other or to brass, copper, nickel, 
silver, Monel, and other nonferrous alloys. Nearly all solders are tin–lead alloys, but alloys includ-
ing antimony, zinc, and aluminum are also employed. The strength of a soldered union depends on 
numerous factors, such as the quality of the solder, the thickness of the joint, the smoothness of the 
surfaces, the kind of materials soldered, and the soldering temperature. Some common soldering 
applications involve electrical and electronic parts, and sealing seams in radiators and in thin cans.

15.18  ADHESIVE BONDING

Adhesives are substances able to hold materials together by surface attachment. Nearly all struc-
tural adhesives are thermosetting as opposed to thermoplastic or heat-softening types, such as 
rubber cement and hot metals. Epoxies and urethanes are versatile and in widespread use as 
structural adhesives. Numerous other adhesive materials are used for various applications. Some 
remain liquid in the presence of oxygen, but they harden in restricted spaces, such as on bolt 
threads or in the spaces between a shaft and hub. Adhesive bonding is extensively utilized in the 
automotive and aircraft industries. Retaining compounds of adhesives can be employed to assem-
ble cylindrical parts formerly needing press or shrink fits. In such cases, they eliminate press-fit 
stresses and reduce machining costs. Ordinary engineering adhesives have shear strengths vary-
ing from 25 to 40 MPa. The website at www.3m.com/bonding includes information and data on 
adhesives.

The advantages of adhesive bonding over mechanical fastening include the capacity to bond 
both alike and dissimilar materials of different thickness, economic and rapid assembly, insulat-
ing characteristics, weight reduction, vibration dumping, and uniform stress distribution. On the 
other hand, examples of the disadvantages of the adhesive bonding are the preparation of surfaces 
to be connected, long cure times, possible need for heat and pressure for curing, service tempera-
ture sensitivity, service deterioration, tendency to creep under prolonged loading, and question-
able long-term durability. The upper service temperature of most ordinarily employed adhesives is 
restricted to about 400°F. However, simpler, cheaper, stronger, and more easy-to-apply adhesives 
can be expected in the future.

15.18.1  design oF Bonded Joints

A design technique of rapidly growing significance is metal-to-metal adhesive bonding. Organic 
materials can be bonded as well. In cementing together metals, specific adhesion becomes impor-
tant, inasmuch as the penetration of adhesive into the surface is insignificant. A number of metal-
to-metal adhesives have been refined, but their use has been confined mainly to lap or spot joints of 
relatively limited area. Metal-to-metal adhesives, as employed in making plymetal, have practical 
applications.

Three common methods of applying adhesive bonding are illustrated in Table 15.10. Here, 
based on an approximate analysis of joints, stresses are assumed to be uniform over the bonded 
surfaces. The actual stress distribution varies over the area with aspect ratio b/L. The highest 
and lowest stresses occur at the edges and in the center, respectively. Adhesive joints should 
be properly designed to support only shear or compression and very small tension. Connection 
geometry is most significant when relatively high-strength materials are united. Large bond areas 
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are recommended, such as in a lap joint (case A of the table), particularly connecting the metals. 
Nevertheless, this shear joint has a noteworthy stress concentration of about 2 at the ends for an 
aspect ratio of 1.

It should be pointed out that the lap joints may be inexpensive because no preparation is required 
except, possibly, surface cleaning, while the machining of a scarf joint is impractical. The exact 
stress distribution depends on the thickness and elasticity of the joined members and adhesives. 
Stress concentration can arise because of the abrupt angles and changes in material properties. Load 
eccentricity is an important aspect in the state of stress of a single lap joint. In addition, often the 
residual stresses associated with the mismatch in the coefficient of thermal expansion between the 
adhesive and adherents may be significant [13,14].

PROBLEMS

Sections 15.1 through 15.7
 15.1 A power screw is 75 mm in diameter and has a thread pitch of 15 mm. Determine the 

thread depth, the thread width or the width at pitch line, the mean and root diameters, and 
the lead, for a case in which:

 a. Square threads are used.
 b. Acme threads are used.

 15.2 A 38.1 mm diameter, double-thread Acme screw is to be used in an application similar to 
that of Figure 15.6. Determine:

 a. The screw lead, mean diameter, and helix angle.
 b. The starting torques for lifting and lowering the load.
 c. The efficiency, if collar friction is negligible.
 d. The force F to be exerted by an operator, for a = 190 mm.

  Given: f = 0.1, fc = 0.08, dc = 50.8 mm, W = 7.5 kN.

TABLE 15.10
Some Common Types of Adhesive Joints
Configuration Average Stress

A. Lap

P
P

L
τ = P

bL

B. Double lap

P

P/2

P/2
L

τ = P

bL2

C. Scarf Axial Loading

P M

y΄ x΄

x t
P

θ
σ = θ τ = − θ′ ′ ′cos , sinP

bt

P

bt2
2x x y

2

Bending

σ = θ τ = − θ′ ′ ′cos , sinM

bt

M

bt

6 3
2x x y2

2
2

Notes: P, centric load; M, moment; b, width of plate; t, thickness of thinnest plate; and L, length of lap.
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643Power Screws, Fasteners, and Connections

 15.3 What helix angle would be required so that the screw of Problem 15.2 would just begin 
to overhaul? What would be the efficiency of a screw with this helix angle, for a case in 
which the collar friction is negligible?

 15.4 A 32 mm diameter power screw has a double-square thread with a pitch of 4 mm. 
Determine the power required to drive the screw.

  Design Requirement: The nut is to move at a velocity of 40 mm/s and lift a load of W = 6 kN.
  Given: The mean diameter of the collar is 50 mm. Coefficients of friction are estimated 

as f = 0.1 and fc = 0.15.
 15.5 A square-thread screw has a mean diameter of 45 mm and a lead of L = 25 mm. Determine 

the coefficient of thread friction.
  Given: The screw consumes 4 kW when lifting a 10 kN weight at the rate of 0.15 m/s.
  Design Assumption: The collar friction is negligible.
 15.6 A 70 mm diameter square-thread screw is used to lift or lower a load of W = 250 kN at a 

rate of 0.01 m/s. Determine:
 a. The revolutions per minute of the screw.
 b. The motor power (in kW) required to lift the weight, if the screw efficiency is e = 85% 

and f = 0.15.
  Design Assumption: Because the screw is supported by a thrust ball bearing, the collar 

friction can be neglected.
 15.7 A square-threaded power screw (Figure 15.4(b)) with a single thread lifts a load. The 

given numerical values are as follows: the mean screw diameter is d = 24 mm, the pitch 
is p = 6 mm, the collar diameter is dc = 36 mm, the coefficient of friction for thread and 
collar is fc = f = 0.11, and the load is W = 100 kN. Find:

 a. The major diameter of the screw and the value of the screw torque needed to lift the 
load.

 b. For a case in which fc = 0, the minimum value of the f to prevent the screw from 
overhauling.

 15.8 A triple-threaded Acme screw of the major diameter d = 50 mm and pitch p = 8 mm is 
used in a jack with a plain thrust collar of mean diameter dc = 68 mm (Figure 15.6). Find:

 a. The lead, thread depth, mean pitch diameter, and helix angle of the screw.
 b. The starting torque for lowering a load of W = 15 kN.

  Assumption: Coefficients of running friction are fc = 0.12 and f = 0.13.
 15.9 Reconsider Problem 15.8, knowing that the screw is lifting a load of W = 15 kN at a rate 

of 0.02 mps. Find:
 a. The efficiency of the jack in this situation.
 b. Whether the screw overhauls when a ball thrust bearing with fc = 0 is used in place of 

the plain thrust bearing.
 15.10 A square-thread screw has an efficiency of 70% when lifting a weight. Determine the 

torque that a brake mounted on the screw must exert when lowering the load at a uniform 
rate.

  Given: The coefficient of thread friction is estimated as f = 0.12 with collar friction 
 negligible; the load is 50 kN and the mean diameter is 30 mm.

 15.11 Determine the pitch that must be provided on a square-thread screw to lift a 12 kN weight 
at 0.2 m/s with power consumption of 3.75 kW.

  Given: The mean diameter is 46.8 mm and f = 0.15.
  Design Assumption: The collar friction is negligible.
 15.12 An M24 × 3-C screw supports a tensile of 60 kN. Determine:

 a. The axial stress in the screw.
 b. The minimum length of nut engagement, if the allowable bearing stress is not to 

exceed 70 MPa.
 c. The shear stresses in the nut and screw.
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644 Mechanical Engineering Design

 15.13 A 50 mm diameter square-thread screw having a pitch of 8 mm carries a tensile load of 
15 kN. Determine:

 a. The axial stress in the screw.
 b. The minimum length of nut engagement needed, if the allowable bearing stress is not 

to exceed 10 MPa.
 c. The shear stresses in the nut and screw.

Sections 15.8 through 15.12
 15.W1 Search the website at www.nutty.com. Perform a product search for various types of nuts, 

bolts, and washers. Review and list 15 commonly used configurations and descriptions of 
each of these elements.

 15.W2 Use the site at www.boltscience.com to review the current information related to bolted 
joint technology. List three usual causes of relative motion of threads.

 15.14 The joint shown in Figure P15.14 has a 15 mm diameter bolt and a grip length of 
L = 50 mm. Calculate the maximum load that can be carried by the part without losing all 
the initial compression in the part.

  Given: The tightening torque of the nut for average condition of thread friction is 
72 N · m by Equation (15.21).

 15.15 The bolt of the joint shown in Figure P15.14 is an M24 × 3-C grade 5.8, with a rolled 
thread. Apply the Goodman criterion to determine:

 a. The permissible value of preload Fi if the bolt is to be safe for continuous operation 
with n = 2.

 b. The tightening torque for an average condition of thread friction.
  Given: The value of load P on the part ranges continuously from 40 to 80 kN; the grip is 

L = 50 mm. The survival rate is 95%.
 15.16 The bolt of the joint depicted in Figure P15.14 is M20 × 2.5-C, grade 10.9, with cut thread, 

Sy = 620 MPa, and Su = 750 MPa. Calculate:
 a. The maximum and minimum values of the fluctuating load P on the part, on the basis 

of the Soderberg theory.
 b. The tightening torque, if bolt is lubricated.

  Given: The grip is L = 50 mm; the preload equals Fi = 25 kN; the average stress in the root 
of the screw is 160 MPa; the survival rate equals 90%.

  Design Requirement: The safety factor is 2.2. The operating temperature is not elevated.
 15.17 A bolted connection has been tightened by applying torque T to the nut to produce an 

initial preload force F = 4.2 kN in the M5 × 0.8-C, ISO grade 4.6 steel bolt, and resists an 

Aluminum
part

Steel bolt Es

P

L

Ea=     Es
1
3

FIGURE P15.14 
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external load of P = 5 kN (Figure P15.17). The clamped parts each is L/2 = 20 mm thick. 
Stiffness of parts kp is four times the bolt stiffness kb.

  Determine:
 a. The tension in the bolt and compression in the parts when the load is applied.
 b. Whether the parts will separate or remain in contact under the load.

 15.18 A bolted joint with two class number 4.8 steel bolts is to support an external load of 
P = 11.6 kN, and the stiffness constant ratio is to be kp/kb = 3 (Figure P15.18). Determine:

 a. The required bolt preload.
 b. The thread size of the bolt.

 15.19 Figure P15.19 depicts a partial section from a permanent connection. Determine:
 a. The total force and stress in each bolt.

P

P

Steel bolt

Parts

L

L/2

FIGURE P15.17 

P

P

FIGURE P15.18 
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646 Mechanical Engineering Design

 b. The tightening torque for an average condition of thread friction.
  Given: A total of six bolts are used to resist an external load of P = 80 kN.
 15.20 A section of the connection illustrated in Figure P15.19 carries an external load that fluc-

tuates between 0 and 20 kN. Using the Goodman criterion, determine the factor of safety 
n guarding against the fatigue failure of the bolt.

 15.21 A joint of two steel parts with a single cold-rolled steel bolt supports an external load P 
that alternates continuously between 0 and 35 kN (Figure P15.17). Find:

 a. The minimum required preload when compression of the two parts is lost.
 b. The minimum force in the parts for the alternating load, knowing that the preload 

equals Ft = 38 kN.
  Assumption: Clamped parts have stiffness kp four times the bolt stiffness kb.
 15.22 Redo Problem 15.21 for the case in which the clamped parts have stiffness kp three times 

the bolt stiffness kb.
 15.23 A connection of two steel plates and a steel bolt has an initial compression force of 

Fi = 13 kN (Figure P15.17). Clamping plates have stiffness kp three times the bolt stiffness 
kb. Determine:

 a. The external force P that would reduce the clamping force to 2.5 kN.
 b. Knowing that P is repeatedly applied and removed, the mean force Pm and alternating 

force Pa applied on the bolt.
 15.24 A joint of two steel plates and a steel bolt has an initial compression force Fi = 8000 N 

(Figure P15.17). The clamped plates have stiffness kp two times the bolt stiffness kb. Find:
 a. The external separating force that would reduce the clamping force to 600 N.
 b. When the force P is repeatedly applied and removed, the mean force Pm and alternat-

ing force Pa on the bolt.
 15.25 Figure P15.17 shows a connection of two plates and a steel bolt with initial compression 

force of Fi = 6000 N. The clamped plates have stiffness kp four times the bolt stiffness kb. 
Find:

 a. The external separating force P that would reduce the clamping force to 1800 N.
 b. For a case in which the force P is repeatedly applied and removed, the mean force Pm 

and alternating force Pa applied to the bolt.
 15.26 The bolt of connection shown in Figure P15.26 is M20 × 2.5. ISO course thread having 

Sy = 630 MPa. Determine:
 a. The total force on the bolt, if the joint is reusable.
 b. The tightening torque, if the bolts are lubricated.

  Given: The grip is L = 60 mm; the joint carries an external load of P = 40 kN.

Cast iron

Steel bolt

SAE grade 8.8

E = 165 GPa

E = 200 GPa

M18 x 2.5-F

32mm

FIGURE P15.19 
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647Power Screws, Fasteners, and Connections

  Design Assumption: The bolt will be made of steel of modulus of elasticity Es, and the 
parts are cast iron with modulus of elasticity Ec = Es/2.

 15.27 The connection shown in Figure P15.26 carries an external loading P that value ranges 
from 4 to 20 kN. Determine:

 a. If the bolt fails without preload.
 b. Whether the bolt is safe when preload present.
 c. The fatigue factor of safety n when preload is present d. The load factor ns guarding 

against joint separation.
  Design Assumptions: The bolt is made of steel (Es), and the parts are cast iron with 

modulus of elasticity Ec = Es/2. The operating temperature is normal. The bolt may be 
reused when the joint is taken apart. The survival rate is 90%.

  Given: The steel bolt is M12 × 1.75-C, grade 5.8, with rolled threads; the grip is L = 50 mm.
 15.28 The assembly shown in Figure P15.26 uses an M114 × 2, ISO grade 8.8 course cut threads. 

Apply the Goodman criterion to determine the fatigue safety factor n of the bolt with and 
without initial tension.

  Given: The joint constant is C = 0.31. The joint carries a load P varying from 0 to 10 kN. 
The operating temperature is 490°C maximum.

  Design Assumptions: The bolt may be reused when the joint is taken apart. Survival 
probability is 95%.

 15.29 Determine the maximum load P the joint described in Problem 15.28 can carry based on 
a static safety factor of 2.

  Design Assumptions: The joint is reusable.
 15.30 Figure P15.30 shows a portion of a high-pressure boiler accumulator having flat heads. 

The end plates are affixed using a number of bolts of M16 × 2-C, grade 5.8, with rolled 
threads. Determine:

 a. The factor of safety n of the bolt against fatigue failure with and without preload.
 b. The load factor ns, against joint separation.

  Given: The fully modified endurance limit is Se = 100 MPa. External load P varies from 
0 to 12 kN/bolt.

  Design Assumptions: Clamped parts have a stiffness kp, five times the bolt stiffness kb. 
The connection is permanent.

Sections 15.13 and 15.14
 15.31 A double-riveted lap joint with plates of thickness t is to support a load P as shown in 

Figure P15.31. The rivets are 19 mm in diameter and spaced 50 mm apart in each row. 
Determine the shear, bearing, and tensile stresses.

  Given: P = 32 kN, t = 10 mm.

P

P

Parts

Steel bolt

L
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ISTUDY

www.konkur.in

Telegram: @uni_k



648 Mechanical Engineering Design

 15.32 A double-riveted longitudinal lap joint (Figure P15.31) is made of plates of thickness t. 
Determine the efficiency of the joint.

  Given: The 18 mm diameter rivets have been drilled 60 mm apart in each row and t = 10 mm.
  Design Assumptions: The allowable stresses are 150 MPa in tension, 105 MPa in shear, 

and 330 MPa in bearing.
 15.33 Figure P15.33 shows a bolted lap joint that uses an M18 × 2.5- C grade 10.9 bolts. 

Determine the allowable value of the load P, for the following safety factors: 2, shear on 
bolts; 3, bearing of bolts; 2.5, bearing on members; and 3.5, tension of members.

  Design Assumption: The members are made of cold-drawn AISI 1035 steel with 
Sys = 0.577Sy.

 15.34 The bolted connection shown in Figure P15.34 uses M14 × 2 course pitch thread bolts 
having Sy = 640 MPa and Sys = 370 MPa. A tensile load P = 20 kN is applied to the connec-
tion. The dimensions are in millimeters. Determine the factor of safety n for all possible 
modes of failure.

  Design Assumption: Members are made of hot-rolled 1020 steel.
 15.35 A machine part is fastened to a frame by means of M12 × 1.75-C (Table 15.2) two rows 

of steel bolts, as shown in Figure P15.35. Each row also has two bolts. Determine the 
maximum allowable value of P.

  Design Decisions: The allowable stresses for the bolts are 140 MPa in tension and 
84 MPa in shear.

P P

P
P

t

FIGURE P15.31 

Cylinder

End plate

Steel bolt
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P P

P

60

M18 x 2.5-C
  grade 10.9

15

10

50

FIGURE P15.33 Dimensions are in millimeters.
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P

6
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M14 × 2

P

P

15
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FIGURE P15.34 Dimensions are in millimeters.

A

75 mm
150 mm

75 mm

Row 1 Row 2

P

250 mm

FIGURE P15.35 

ISTUDY

www.konkur.in

Telegram: @uni_k



650 Mechanical Engineering Design

 15.36 A narrow walkway bracket, bolted to a steel bridge as depicted in Figure P15.36, supports 
a maximum load of P = 25 kN with a safety factor on the basis of proof strength of n = 2.3. 
Find the required thread size of the bolt.

  Given: Three SAE grade 5 steel bolts with proof strength of Sp = 600 MPa (from Table 15.4).
 15.37 A machine bracket is attached with bolts that each must support a static load of P = 2.5 kN. 

Find, based on a safety factor of n = 3:
 a. The size metric grade 4.8 – C thread bolt needed.
 b. The nut length (apply Equation (15.19a) of Case Study 18.7).

  Assumption: The loads are equally distributed between the threads, and a stress concen-
tration factor of Kt = 4 will be used.

 15.38 Repeat Problem 15.37, based on a safety factor of n = 5 on the proof strength and using a 
load of P = 4 kN.

 15.39 Three M20 × 2.5 coarse-thread steel bolts (Table 15.2) are used to connect a part to a 
vertical column, as shown in Figure P15.39. Calculate the maximum allowable value of P.

  Design Decisions: The allowable stresses for the bolt are 145 MPa in tension and 80 MPa 
in shear.

 15.40 A riveted structural connection supports a load of 10 kN, as shown in Figure P15.40. 
What is the value of the force on the most heavily loaded rivet in the bracket? Determine 
the values of the shear stress for 20 mm rivets and the bearing stress if the Gusset plate is 
15 mm thick.

  Given: The applied loading is P = 10 kN.

375
100

A

1000
25 kN 25 kN

2

1                 1

175 175

FIGURE P15.36 Dimensions are in millimeters.
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 15.41 The riveted connection shown in Figure P15.41 supports a load P. Determine the distance d.
  Design Decision: The maximum shear stress on the most heavily loaded rivet is 100 

MPa.
  Given: The applied loading equals P = 50 kN.
 15.42 Determine the value of the load P for the riveted joint shown in Figure P15.41.
  Design Assumption: The allowable rivet stress in shear is 100 MPa.
  Given: d = 90 mm.

Sections 15.15 through 15.18
 15.43 The plates in Figure 15.26a are 10 mm thick × 40 mm wide and made of steel having 

Sy = 250 MPa. They are welded together by a fillet weld with h = 1 mm leg. L = 60 mm 
long, Sy = 350 MPa, and Sys = 200 MPa. Using a safety factor of 2.5 based on yield strength, 
determine the load P that can be carried by the joint.

 15.44 Two 15 mm thick AISI 1050 normalized steel plates are butt welded using AWS, number 
E6020, welding rods (Figure 15.25(a)). The weld length equals L = 87.5 mm. Compute 
the maximum tensile load that can be applied to the connection with a factor of safety of 
n = 4.

5 at 60 = 300 mm

150 mm

20 mm
rivets

Gusset
plate

A
C

D

4
3

P

B
Bracket

FIGURE P15.40 
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652 Mechanical Engineering Design

 15.45 Resolve Problem 15.44, knowing that the plate is in shear loading (as shown in Figure 
15.25(b)) and the factor of safety is n = 3.

 15.46 Two AISI 1035 CD steel plates are double-fillet welded using AWS E6012 steel rods (as 
shown in Figure P15.46). For the weld dimensions of h = 8 mm and L = 70 mm, what is the 
largest tensile load P that can be applied on the basis of a safety factor of n = 3.5?

 15.47 Two AISI 1045 CD steel plates are welded with a double fillet using AWS E7014 steel 
rods (Figure P15.46). The weld dimensions are h = 5 mm and L = 60 mm. Find the largest 
tensile load P that can be applied with a factor of safety of n = 4.

 15.48 Determine the lengths L1 and L2 of welds for the connection of a 75 × 10 mm steel plate 
(σall = 140 MPa) to a machine frame (Figure P15.48).

  Given: 12 mm fillet welds having a strength of 1.2 kN per linear millimeter.
 15.49 Calculate the required weld size for the bracket in Figure 15.28 if a load P = 15 kN is 

applied with eccentricity e = 250 mm.
  Design Assumptions: 55 MPa is allowed in shear: L1 = 100 mm and L2 = 125 mm.
 15.50 Resolve Problem 15.49 if the load P varies continuously from 10 to 20 kN. Apply the 

Goodman criterion.
  Given: Su = 420 MPa, n = 2.5.
 15.51 Determine the required length of weld L in Figure P15.51 if an E7014 electrode is used 

with a safety factor n = 2.5.
  Given: P = 100 kN, a = 60 mm, h = 12 mm.

P

h
P

h

L

FIGURE P15.46 

15 mm

A

D E
P

B
L1

L2

75 mm

FIGURE P15.48 

ISTUDY

www.konkur.in

Telegram: @uni_k
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 15.52 Resolve Problem 15.51 if the load P varies continuously between 80 and 120 kN.
  Design Decision: Use the Soderberg criterion.
 15.53 Load P in Figure P15.51 varies continuously from 0 to Pmax. Determine the value of Pmax 

if an E6010 electrode is used, with a safety factor of 2. Apply the Goodman theory.
  Given: a = 75 mm, L = 250 mm, h = 6.5 mm.
 15.54 Calculate the size h of the two welds required to attach a plate to a frame as shown in 

Figure P15.54 if the plate supports an inclined force P = 50 kN.
  Design Decisions: Use n = 3 and Sy = 350 MPa for the weld material.
 15.55 The value of load P in Figure P15.54 ranges continuously between 10 and 50 kN. Using 

Su = 427 MPa and n = 1.5, determine the required weld size. Employ the Goodman 
criterion.

A

a P

h
B

Fillet
both sides

L/2

L/2

FIGURE P15.51 
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16 Miscellaneous Mechanical 
Components

16.1  INTRODUCTION

In the class of axisymmetrically loaded members, the basic problem may be defined in terms of 
the radial coordinate. Typical examples are thick-walled cylinders, flywheels, press and shrink fits, 
curved beams, and thin-walled cylinders. This chapter concerns mainly exact stress distribution 
in this group of machine and structural members. The methods of the mechanics of materials and 
applied theory of elasticity are applied. The material strength and an appropriate theory of failure 
are used to obtain a safe and reliable design. Various pressure vessels and filament-wound cylinders 
are discussed briefly in the last section.

There are several other problems of practical interest dealing with axisymmetric stress and 
deformation in a member. Among these are a variety of situations involving rings reinforcing a 
juncture, hoses, plates, shells, turbine disks of variable thickness, semicircular barrel vaults, torsion 
of circular shafts of variable diameter, local stresses around a spherical cavity, and pressure between 
two spheres in contact (discussed in Section 8.7). For more detailed treatment of the members with 
axisymmetric loading, see, for example, [1–4].

16.2  BASIC RELATIONS

In the cases of axially loaded members, torsion of circular bars, and pure bending of beams, simplifying 
assumptions associated with deformation patterns are made so that strain (and stress) distribution for a 
cross-section of each member can be ascertained. A basic hypothesis has been that plane sections remain 
plane subsequent to the loading. However, in axisymmetric and more complex problems, it is usually 
impossible to make similar assumptions regarding deformation, so analysis begins with consideration of 
a general infinitesimal element. Hooke’s law is stated, and the solution is found after stresses acting on 
any element and its displacements are known. At the boundaries of a member, the equilibrium of known 
forces (or prescribed displacement) must be satisfied by the corresponding infinitesimal elements.

Here, we present the basic relations of an axially symmetric 2D problem referring to the geom-
etry and notation of the thick-walled cylinder (Figure 16.1). The inside radius of the cylinder is a and 
the outside radius is b. The tangential stresses σθ and the radial stresses σθ in the wall at a distance 
r from the center of the cylinder are caused by pressure. A typical infinitesimal element of unit 
thickness isolated from the cylinder is defined by two radii, r and r + dr, and an angle dθ, as shown 
in Figure 16.2. The quantity Fr represents the radial body force per unit volume. The conditions 
of symmetry dictate that the stresses and deformations are independent of the angle θ and that the 
shear stresses must be 0. Note that the radial stresses acting on the parallel faces of the element dif-
fer by dσr, but the tangential stresses do not vary among the faces of the element. There can be no 
tangential displacement in an axisymmetrically loaded member of revolution; that is, υ = 0. A point 
represented in the element has radial displacement u as a consequence of loading.

It can be demonstrated that [2] Equation (3.53) (in the absence of body forces), Equation (3.55), 
and Equation (2.6) can be written in polar coordinates as given in the following outline.

Equation of Equilibrium

 
σ + σ − σ =θd

dr r
0r r  (16.1)
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Strain–Displacement Relations

 ε = ε =θ,du

dr

u

r
r  (16.2)

and the shear strain γrθ = 0. Here, εθ and εr are the tangential strain and radial strain, respectively. 
Substitution of the second into the first of Equation (16.2) gives a simple compatibility condition 
among the strains. This ensures the geometrically possible form of variation of strains from point 
to point within the member.

Hooke’s Law

 ( ) ( )ε = σ − νσ ε = σ − νσθ θ θ,
E E

1 1
r r r  (16.3)

The quantity E represents the modulus of elasticity, and ν is Poisson’s ratio. The foregoing govern-
ing equations are sufficient to obtain a unique solution to a 2D axisymmetric problem with specific 
boundary conditions. Applications to thick-walled cylinders, rotating disks, and pure bending of 
curved beams are illustrated in sections that follow.

y

a
b

r σr
σθ

pi

po

x

FIGURE 16.1 Thick-walled cylinder.
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θ
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σr
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σθ σr +
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FIGURE 16.2 Stress element of unit thickness.
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657Miscellaneous Mechanical Components

16.3  THICK-WALLED CYLINDERS UNDER PRESSURE

The circular cylinder is usually divided into thin-walled and thick-walled classifications. In a thin-
walled cylinder, the tangential stress may be regarded as constant with thickness, as discussed in 
Section 3.4. When the wall thickness exceeds the inner radius by more than 10%, the cylinder is 
usually considered thick-walled. For this case, the variation of stress with radius can no longer be 
neglected. Thick-walled cylinders, which we deal with here, are used extensively in industry as 
pressure vessels, storage tanks, hydraulic and pneumatic tubes, rolling-element bearings, or gears 
pressed into shafts, pipes, gun barrels, and the like.

16.3.1  solution oF the BasiC relations

In a thick-walled cylinder subjected to uniform internal or external pressure, the deformation is 
symmetrical about the axial (z) axis. The equilibrium condition and strain–displacement relations, 
Equations (16.1) and (16.2), apply to any point on a ring of unit length cut from the cylinder (Figure 
16.1). When the ends of the cylinder are open and unconstrained, so that σz = 0, the cylinder is in a 
condition of plane stress. Then, by Hooke’s law (Equation 16.3), the strains are

 ( )= σ − νσθ
du

dr E

1
r  

 ( )= σ − νσθ
u

r E

1
r  (16.4)

The preceding equations give the radial and tangential stresses, in terms of the radial displacement:

 ( )σ =
− ν

ε + νε =
− ν

+ ν



θ

E E du

dr

u

r1 1
r r2 2  

 ( )σ =
− ν

ε + νε =
− ν

+ ν



θ θ

E E u

r

du

dr1 1
r2 2  (16.5)

Introducing this into Equation (16.1) results in the desired differential equation:

 + − =d u

dr r

du

dr

u

r

1
0

2

2 2  (16.6)

The solution of this equidimensional equation is

 = +u c r
c

r
1

2  (16.7)

The stresses may now be expressed in terms of the constants of integration c1 and c2 by inserting 
Equation (16.7) into (16.5) as

 ( )σ =
− ν

+ ν − − ν











E
c c

r1
1

1
r 2 1 2 2  (a)

 ( )σ =
− ν

+ ν − − ν











θ
E

c c
r1

1
1

2 1 2 2  (b)
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16.3.2  stress and radial disPlaCement For Cylinder

For a cylinder under internal and external pressures pi and po, respectively, the boundary conditions are

 ( ) ( )σ = − σ = −= =,p pr r a i r r b o (16.8)

In the foregoing, the negative signs are used to indicate compressive stress. The constants are ascer-
tained by introducing Equation (16.8) into (a); the resulting expressions are carried into Equations 
(16.7), (a), and (b). In so doing, the radial and tangential stresses and radial displacement are 
obtained in the following forms:

 ( )
( )σ = −

−
−

−
−

a p b p

b a

p p a b

b a r
r

i o i o
2 2

2 2

2 2

2 2 2
 (16.9)

 ( )
( )σ = −

−
−

−
−θ

a p b p

b a

p p a b

b a r
i o i o

2 2

2 2

2 2

2 2 2
 (16.10)

 
( )

( )
( )= − ν −

−
+ + ν −

−
u

E

a p b p

b a E

p p a b

b a r

1 1i o i o
2 2

2 2

2 2

2 2 2
 (16.11)

These equations were first derived by French engineer G. Lamé in 1833, for whom they are named. 
The maximum numerical value of σr occurs at r = a to be pi, provided that pi exceeds po. When 
po > pi, the maximum σr is found at r = b and equals po. On the other hand, the maximum σθ occurs 
at either the inner or outer edge depending on the pressure ratio [1].

The maximum shear stress at any point in the cylinder, through the use of Equations (16.9) and 
(16.10), is found as

 ( )
( )( )τ = σ − σ =

−
−θmax

p p a b

b a r

1
2

r
i o

2 2

2 2 2
 (16.12)

The largest value of this stress corresponds to po = 0 and r = a:

 τ =
−max

p b

b a
i

2

2 2  (16.13)

that occurs on the planes making an angle of 45° with the planes of the principal stresses (σr and σθ). 
The pressure py that initiates yielding at the inner surface, by setting τmax = Sy/2 in Equation (16.13), 
is

 = −
p

b a

b
S

2
y y

2 2

2  (16.14)

where Sy is the tensile yield strength.
In the case of a pressurized closed-ended cylinder, the longitudinal stresses are in addition to σr 

and σθ. For a transverse section some distance from the ends, σz may be taken uniformly distributed 
over the wall thickness. The magnitude of the longitudinal stress is obtained by equating the net force 
acting on an end attributable to pressure loading to the internal z-directed force in the cylinder wall:

 σ = −
−

p a p b

b a
z

i o
2 2

2 2  (16.15)
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where it is again assumed that the ends of the cylinder are not constrained. Also note that Equations 
(16.9) through (16.15) are applicable only away from the ends. The difficult problem of determining 
deformations and stresses near the junction of the thick-walled caps and the thick-walled cylinder 
lies outside of the scope of our analysis. This usually is treated by experimental approaches or by 
the finite element method, since its analytical solution depends on a general 3D study in the theory 
of elasticity. For thin-walled cylinders, stress in the vicinity of the end cap junctions is presented in 
Section 16.12.

16.3.3  sPeCial Cases

16.3.3.1  Internal Pressure Only
In this case, po = 0, and Equations (16.9) through (16.11) become

 σ =
−

−






a p

b a

b

r
1r

i
2

2 2

2

2  (16.16a)

 σ =
−

+




θ

a p

b a

b

r
1i

2

2 2

2

2  (16.16b)

 ( ) ( ) ( )=
−

− ν + + ν








u

a p r

E b r

b

r
1 1i

2

2 2

2

2  (16.16c)

Since b/r ≥ 1, σr is always compressive stress and is maximum at r = a. As for σθ, it is always a tensile 
stress and also has a maximum at r = a:

 σ = +
−θ,max p

b a

b a
i

2 2

2 2  (16.17)

To illustrate the variation of stress and radial distance for the case of no external pressure, 
 dimensionless stress and displacement are plotted against dimensionless radius in Figure 16.3 for 
b/a = 4.

y

σr/pi

σθ/pi

r/api

1.0

0.5

0 1
2

17/15

3

2/15

4 x

–0.5

–1.0

u/umax

FIGURE 16.3 Distribution of stress and displacement in a thick-walled cylinder with b/a = 4 under internal 
pressure.
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16.3.3.2  External Pressure Only
For this case, pi = 0, and Equations (16.9) through (16.11) simplify to

 σ = −
−

−






b p

b a

a

r
1r

o
2

2 2

2

2  (16.18a)

 σ = −
−

+




θ

b p

b a

a

r
1o

2

2 2

2

2  (16.18b)

 ( ) [ ]( ) ( )= −
−

− ν + + νu
b p r

E b a

a

r
1 1o

2

2 2

2

2  (16.18c)

Inasmuch as a2/r2 ≥ 1, the maximum σr occurs at r = b and is always compressive. The maximum σθ 
is found at r = a and is likewise always compressive:

 σ = −
−θ,max p
b

b a
2 o

2

2 2  (16.19)

16.3.3.3  Cylinder with an Eccentric Bore
The problem corresponding to cylinders having eccentric bore was solved by G.B. Jeffrey [3]. For 
the case of po = 0 and the eccentricity e < a/2 (Figure 16.4), the maximum tangential stress takes 
place at the internal surface at the thinnest part (point A). The result is as follows:

 
( )

( )( )σ =
+ − −

+ − − −
−













θ,max p
b b a ae e

a b b a ae e

2 2

2
1i

2 2 2 2

2 2 2 2 2
 (16.20)

When e = 0, this coincides with Equation (16.17).

16.3.3.4  Thick-Walled Spheres
Equations for thick-walled spheres may be derived following a procedure similar to that employed for 
thick-walled cylinders. Clearly, the notation of Figure 16.1 applies, with the sketch now representing 
a diametral cross-section of a sphere. It can be shown that [1] the radial and tangential stresses are

 σ =
−

−






−
−

−






p a

b a

b

r

p b

b a

a

r
1 1r

i o
3

3 3

3

3

3

3 3

3

3  (16.21)

b

e

a
A pi

FIGURE 16.4 Thick-walled cylinder with eccentric bore (with e < a/2) under internal pressure.
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 σ =
−

+






−
−

+




θ

p a

b a

b

r

p b

b a

a

r
1

2
1

2
i o

3

3 3

3

3

3

3 3

3

3  (16.22)

Thick-walled spheres are used as vessels in high-pressure applications (e.g., in deep-sea vehicles). 
They yield lower stresses than other shapes and, under external pressure, the greatest resistance to 
buckling.

16.4  COMPOUND CYLINDERS: PRESS OR SHRINK FITS

A composite or compound cylinder is made by shrink or press fitting an outer cylinder on an inner 
cylinder. Recall from Section 9.6 that a press or shrink fit is also called interference fit. Contact 
pressure is caused by interference of metal between the two cylinders. Examples of compound 
cylinders are seen in various machine (Figure 16.5) and structural members, compressors, extru-
sion presses, conduits, and the like. A fit is obtained by machining the hub hole to a slightly smaller 
diameter than that of the shaft. Figure 16.6 depicts a shaft and hub assembled by shrink fit; after the 
hub is heated, the contact comes through contraction on cooling. Alternatively, the two parts are 
forced slowly in press to form a press fit. The stresses and displacements resulting from the contact 
pressure p may readily be obtained from the equations of the preceding section.

Note from Figure 16.3 that most material is underutilized (i.e., only the innermost layer carries 
high stress) in a thick-walled cylinder subjected to internal pressure. A similar conclusion applies to 
a cylinder under external pressure alone. The cylinders may be strengthened and the material used 
more effectively by shrink or press fits or by plastic flow. Both cases are used in high-pressure tech-
nology. The technical literature contains an abundance of specialized information on multilayered 
cylinders in the form of graphs and formulas [3].

In the unassembled stage (Figure 16.6(a)), the external radius of the shaft is larger than the 
internal radius of the hub by the amount δ. The increase uh in the radius of the hub, using Equation 
(16.16c), is

 = +
−

+ ν






u
bp

E

b c

c b
h

h
h

2 2

2 2  (16.23)

FIGURE 16.5 A bushing press fit into a gear.
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The decrease us in the radius of the shaft, by Equation (16.18c), is

 = − +
−

− ν






u
bp

E

a b

b a
s

s
s

2 2

2 2  (16.24)

In the preceding, the subscripts h and s refer to the hub and shaft, respectively.
Radial interference or so-called shrinking allowance δ is equal to the sum of the absolute values 

of the expansion |uh| and of shaft contraction |us|:

 δ = +
−

+ ν






+ +
−

− ν






bp

E

b c

c b

bp

E

a b

b ah
h

s
s

2 2

2 2

2 2

2 2  (16.25)

When the hub and shaft are composed of the same material (Eh = Es = E, vh = vs), the contact pressure 
from Equation (16.25) may be obtained as (Figure 16.6(b))

 
( )( )

( )= δ − −
−

p
E

b

b a c a

b c a2

2 2 2 2

2 2 2
 (16.26)

The stresses and displacements in the hub are then determined using Equation (16.16) by treating 
the contact pressure as pi. Likewise, by regarding the contact pressure as po, the stresses and defor-
mations in the shaft are calculated, applying Equation (16.18).

An interference fit creates stress concentration in the shaft and hub at each end of the hub, owing 
to the abrupt change from uncompressed to compressed material. Some design modifications are 
often made in the faces of the hub close to the shaft diameter to reduce the stress concentrations at 
each sharp corner. Usually, for a press or shrink fit, a stress concentration factor Kt is used. The 
value of Kt, depending on the contact pressure, the design of the hub, and the maximum bending 
stress in the shaft rarely exceeds 2 [5]. Note that an approximation of the torque capacity of the 
assembly may be made on the basis of a coefficient of friction of about f = 0.15 between shaft and 
hub. The AGMA standard suggests a value of 0.15 < f < 0.20 for shrink or press hubs, based on a 
ground finish on both surfaces.

Example 16.1: Designing a Press Fit

A steel shaft of inner radius a and outer radius b is to be press fit in a cast iron disk having outer radius 
c and axial thickness or length of hub engagement of l (Figure 16.6). Determine:

(a)

Shaft
Es‚ vs

Hub
Eh‚ vh

us

δ

uh

l

p

p
a

b c

(b)

FIGURE 16.6 Notation for shrink and press fits: (a) unassembled parts and (b) after assembly.
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 a. The radial interference.
 b. The force required to press together the parts and the torque capacity of the joint.

Given: a = 25 mm, b = 50 mm, c = 125 mm, and l = 100 mm. The material properties are Es = 210 GPa, 
νs = 0.3, Eh = 70 GPa, and vh = 0.25.

Assumptions: The maximum tangential stress in the disk is not to exceed 30 MPa; the contact pressure 
is uniform; and f = 0.15.

Solution

 a. Through the use of Equation (16.17), with pi = p, a = b, and b = c, we have

 = σ −
+

= −
+

=θ .,maxp
c b

b c
30

125 50
50 125

21 72 MPa
2 2

2 2

2 2

2 2  

 From Equation (16.25),

 

( ) ( )δ =
×

+
−

+






+
×

+
−

−






= + =

. . . . . .

. . .

0 05 21 72

70 10
50 125
125 50

0 25
0 05 21 72

210 10
25 50
50 25

0 3

0 0253 0 0071 0 0324 mm

3

2 2

2 2 3

2 2

2 2
 

 b. The force (axial or tangential) required for the assembly:

 = πF bpfl2  (16.27a)

 Introducing the required numerical values,

 ( )( )( )( )= π =. . .F 2 50 21 72 0 15 100 102 4 kN 

 The torque capacity or torque carried by the press fit is then

 = = πT Fb b fpl2 2  (16.27b)

 Inserting the given data, we obtain

 ( )= = ⋅. . .T 102 4 0 05 5 12 kN m 

Example 16.2: Design of a Duplex Hydraulic Conduit

A thick-walled concrete pipe (Ec, νc) with a thin-walled steel cylindrical liner or sleeve (Es) of outer 
radius a is under internal pressure pi as shown in Figure 16.7. Develop an expression for the pressure p 
transmitted to the concrete pipe.

Design Decision: For practical purposes, we take

 = ν =
−

=, . ,E

E

t

a t

t

a
15 0 2s

c
c  (a)

and a ± t = a, since a/t > 10 for a thin-walled cylinder.

Solution

The sleeve is under internal pressure pi and external pressure p:

 ( )( )σ = − − = − −



θ

p p

t
a t p p

a

t
1i

i  (b)
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Also from Hooke’s law and the second of Equation (16.2) with r = a,

 σ = ε =θ θE E
u

a
s s  (c)

The radial displacement at the bore (r = a) of pipe, using Equation (16.16c), is

 = +
−

+ ν






u
pa

E

a b

b ac
c

2 2

2 2  (d)

Evaluating u from Equations (b) and (c) and carrying into Equation (d) lead to an expression from 
which the interface pressure can be obtained. In so doing, we obtain

 =
+ 



 −







+
−

+ ν






p
p

E

E

t

a t

a b

b a
1

i

s

c
c

2 2

2 2

 (16.28)

A design formula for the interface pressure is obtained upon substitution of Equation (a) into the pre-
ceding equation:

 =
+ 





+
−

+






.
p

p

t

a

R

R
1 15

1
1

0 2

i

2

2

2

 (16.29)

where the pipe radius ratio R = b/a. This formula can be used to prepare design curves for steel-lined 
concrete conduits [3].

Comments: It is interesting to observe from Equation (16.29) that as the sleeve thickness t increases, 
the pressure p transmitted to the concrete decreases. But for any given t/a ratio, the p increases as the 
R increases.

16.5  DISK FLYWHEELS

A flywheel is often used to smooth out changes in the speed of a shaft caused by torque fluctuations. 
Flywheels are therefore found in small and large machinery, such as compressors, punch presses (see 
Example 1.4), rock crushers, and internal combustion engines. Considerable stress may be induced 
in these members at high speed. Analysis of this effect is important, since failure of rotating disks 
is particularly hazardous. Designing of energy-storing flywheels for hybrid electric cars is an active 
area of contemporary research. Disk flywheels, rotating annular disks of constant thickness, are often 
made of various materials, such as ceramics, composites, high-strength steel, aluminum and tita-
nium alloys, inexpensive lead alloys (in children’s toys), and cast iron [6]. In this section, attention 
is directed to the design analysis of these flywheels using both equilibrium and energy approaches.

Steel
lining

Concrete
pipe

a

b

t
pi

FIGURE 16.7 Example 16.2.
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16.5.1  stress and disPlaCement

Figure 16.8 illustrates a flywheel of axial thickness or length of hub engagement l, with inner radius 
a and outer radius b, shrunk onto a shaft. Let the contact pressure between the two parts be desig-
nated by p. An element of the disk is loaded by an outwardly directed centrifugal force Fr = ρω2r 
(Figure 16.2). Here, ρ is the mass density (N · s2/m4 or lb · s2/in.4), and ω represents the angular 
velocity or speed (rad/s). The condition of equilibrium, Equation (16.1), becomes

 
σ + σ − σ + ρω =θd

dr r
r 0r r 2  (16.30)

The boundary conditions are σr = −p at the inner surface (r = a) and σ = 0 at the outer surface (r = b).
The solution of Equation (16.30) is obtained by following a procedure similar to that used in 

Section 16.2. It can be shown that the combined radial stress (σr), tangential stress (σθ), and displace-
ment (u) of a disk due to contact pressure p and angular speed ω are

 ( )σ = σ + + ν + − −






ρωa b
a b

r
r

3
8

r r p
2 2

2 2

2
2 2 (16.31a)

 ( )σ = σ + + ν + − + ν
+ ν

+






ρωθ θ a b r
a b

r

3
8

1 3
3p

2 2 2
2 2

2
2 (16.31b)

 
( )( )( )= + + ν − ν + − + ν

+ ν
+ + ν

− ν






ρωu u
E

a b r
a b

r
r

3 1
8

1
3

1
1p

2 2 2
2 2

2
2  (16.31c)

Here, (σr)p, (σθ)p, and (u)p are given by Equation (16.16) with pi = p. The quantity ν is Poisson’s ratio.
In most cases, tangential stress controls the design. This stress is a maximum at the inner bound-

ary (r = a) and is equal to

 ( ) ( )σ = +
−

+ ρω − ν + + ν θ,max p
a b

b a
a b

4
1 3

2 2

2 2

2
2 2  (16.32)

Clearly, the preceding problem in which pressure and rotation appear simultaneously could also be 
solved by superposition. Note that, due to rotation only, maximum radial stress occurs at =r ab  
and is given by

 ( )σ = + ν − ρω,max b a
3

8
r

2 2 (16.33)

a

l

bω

FIGURE 16.8 A flywheel shrunk onto a shaft.
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Owing to the internal pressure alone, the largest radial stress is at the inner boundary and equals 
σr,max = −p.

Customarily, inertial stress and displacement of a shaft are neglected. Therefore, for a shaft, we 
have approximately

 σ = σ = −θ pr  

 = − − ν
u

E
pr

1

s

 (16.34)

Note, however, that the contact pressure p depends on angular speed ω. For a given contact pressure 
p at angular speed ω, the required initial radial interference δ may be obtained using Equations 
(16.31c) and (16.34) for u. Hence, with r = a, we have

 ( ) ( ) ( )δ = +
−

+ ν






+ − ν + ρω − ν + + ν 
ap

E

a b

b a

ap

E

a

E
a b1

4
1 3

d s d

2 2

2 2

2
2 2  (16.35)

in which Ed and Es represent the moduli of elasticity of the disk and shaft, respectively. The preced-
ing equation is valid as long as a positive contact pressure is maintained.

Example 16.3: Rotating Blade Design Analysis

A disk of uniform thickness is used at 12,000 rpm as a rotating blade for cutting blocks of paper or 
thin plywood. The disk is mounted on a shaft of 25 mm radius and clamped, as shown in Figure 16.9. 
Determine:

 a. The factor of safety n according to the maximum shear stress criterion.
 b. The values of the maximum radial stress and displacement at outer edge.

Assumptions: The cutting forces are relatively small, and speed is steady; loading is considered static. 
The disk outside radius is taken as 125 mm. The stress concentrations due to clamping and sharpening 
at the periphery are disregarded.

Design Decision: The disk material is a high-strength ASTM A242 steel.

Solution

The material properties are (Table B.1)

 ρ = = ν =. , .0 284
386

7860 kN/m 0 33  

8000 rpm

Shaft

Disk

25 mm

125 mm

FIGURE 16.9 Example 16.3. A rotating blade (only a partial view shown) and shaft assembly.
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 = =,E S200 GPa 210 MPays  

We have

 ( )ρω = × π



 =, .7860

12 000 2
60

12 4 102
2

9  

 a. The tangential stress, expressed by Equation (16.31b) with p = 0, has the form

 σ = + ν + − + ν
+ ν

+






ρωθ a b r
a b

r

3
8

1 3
3

2 2 2
2 2

2
2 

 The stresses in the inner and outer edges of the blade are, from the preceding equation,

 
. .

.
. .3 3

8
25 125

1 9 25
3 3

25 125
25

10 12 4 10 161 2 MPar 25
2 2

2 2 2

2
6 9( )( )( )σ = + − × + ×





× =θ =
−  

 ( )( )( )σ = + − × +






× =θ =
−. .

.
. .3 3

8
25 125

1 9 125
3 3

25 10 12 4 10 40 3 MPa
r 125

2 2
2

2 6 9  

 The maximum shear stress occurs at the inner surface (r = 5 mm), where σr = 0:

 τ = σ = =θ . .max
2

161 2
2

80 6 MPa 

 The factor of safety, based on the maximum shear stress theory, is then

 =
τ

= =
.

.
max

n
S 210

80 6
2 6ys  

 Comment: Should there be starts and stops, the condition is one of fatigue failure, and a 
lower value of n would be obtained by the techniques of Section 7.11.

 b. The largest radial stress in the disk, from Equation (16.33), is given by

 

( )

( )

( )

σ = + ν − ρω

= − × =. . .

,max b a
3

8

3 3
8

125 25 12 4 10 51 2 MPa

r
2 2

2 9

 

 The radial displacement of the disk is expressed by Equation (16.31c) with p = 0. Hence,

 
( )( )( )( ) ( )( ) =

× ×
+ − × + ×





×

= × =

=
−

−

. . .
.

.
.

. .

. .

u
3 3 0 7

8 200 10
25 125

1 3 25
3 3

1 3 25
0 7

10 12 4 10 0 125

3 84 10 m 0 038 mm

r 125 9
2 2

2 2
6 9

5

 

 is the radial displacement at the outer periphery.
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Example 16.4: Design of a Flywheel–Shaft Assembly

A 400 mm diameter flywheel is to be shrunk onto a 50 mm diameter shaft. Determine:

 a. The required radial interference.
 b. The maximum tangential stress in the assembly.
 c. The speed at which the contact pressure becomes 0.

Requirement: At a maximum speed of n = 5000 rpm, a contact pressure of p = 8 MPa is to be maintained.

Design Decisions: Both the flywheel and shaft are made of steel having ρ = 7.8 kN · s2/m4, E = 200 GPa, 
and ν = 0.3.

Solution

 a. Applying Equation (16.35), we have

 

( )
( ) ( )

( )

( ) ( ) ( )δ = +
−

+






+ ω
×

+ 

= + ω

−

−

. . . . .

. .

p

p

25 10

200 10

25 200
200 25

1
25 7 8

4 200 10
0 7 0 025 3 3 0 2

0 254 32 282 10

3

9

2 2

2 2

2

9

2 2

2 12

 (a)

 For p = 8 MPa and ω = 5000(2π/60) = 523.6 rad/s, Equation (a) leads to δ = 0.011 mm.
 b. Using Equation (16.32),

 

( ) ( ) ( )σ = +
−

+ + 

= + =

θ
. . . . .

. . .

,max 8
25 200
200 25

7800 523 6

4
0 7 0 025 3 3 0 2

8 254 70 80 79 05 MPa

2 2

2 2

2
2 2

 

 c. Inserting δ = 0.011 × 10−3 m and p = 0 into Equation (a) results in

 ω = ×





=.
.

.
/

0 011 10
32 282

583 7 rad/s
9 1 2

 

 Therefore,

 =
π

=.n 583 7
60
2

5574 rpm 

Comment: At this speed, the shrink fit becomes completely ineffective.

The constant-thickness disks discussed in the foregoing do not make optimum use of the mate-
rial. Often disks are not flat, being thicker at the center than at the rim, such as in turbine applica-
tions. Other types of rotating disks, offering many advantages over flat disks, are variable-thickness 
and uniform-stress disks. For these cases, the procedure outlined here must be modified. A number 
of problems of this type are discussed in [1] and [2].

16.5.2  energy stored

Heavy disks often serve as flywheels designed to store energy to maintain reasonably constant 
speed in a machine in spite of variations in input and output power. A flywheel absorbs and stores 
energy when speeded up and releases energy to the system when needed by slowing its rotational 
speed. The change in kinetic energy ΔΕk stored in a flywheel by a change in speed from ωmax to ωmin 
by Equation (1.10) is
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 ( )∆ = ω − ωmax minE I
1
2

k
2 2  (16.36)

The mass moment of inertia I about the axis of an annular disk flywheel of outer radius b and inner 
radius a (Figure 16.8) is given by

 ( )= π − γI
g

b a l
2

4 4  (16.37)

The weight of the disks is where

 ( )= π − γW b a l2 2  (16.38)

where
l = the length of the hub engagement
γ = ρg is the specific weight
g = the acceleration of gravity

Substitution of Equation (13.38) into (13.37) gives

 ( )= +I
W

g
b a

2
2 2  (16.39)

For a conservative system, the change in the kinetic energy is available as work output:

 ∆ = ∆φE Tk  (16.40)

in which
 T represents the torque
 Δϕ is the change in the angular rotation of the disk in radians

Ordinarily, there are two stages to the flywheel design [6]. First, the amount of energy needed for 
the required degree of smoothing must be found from Equation (16.40) and the moment of inertia 
needed to absorb that energy calculated by Equation (16.36). Then, a flywheel geometry must be 
defined by Equation (16.39).

Example 16.5: Flywheel Braking-Torque Requirement

A flywheel of outer diameter D, inner diameter d, and weight W rotates at speed n. Determine the aver-
age braking torque required to stop the wheel in one-third revolution.

Given: D = 250 mm, d = 50 mm, W = 150 N, n = 3600 rpm.

Solution

From Equations (16.36) and (16.40),

 φ = ωT I
1
2

2 (16.41)

where
ϕ = 2π/3 rad
ω = 3600 (2π/60) = 377 rad/s

( )( )( )= + = ⋅ ⋅−

.
.I

150
2 9 81

125 25 10 0 124 N s m2 2 6 2 4
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Hence,

 
( )

( )=
π

= ⋅.
/

.T
0 124 377

2 2 3
4 21 kN m

2

 

*16.6  THERMAL STRESSES IN CYLINDERS

Here, we are concerned with the stress and displacement associated with an axisymmetric tempera-
ture T(r) dependent on the radial dimension alone. Examples include heat exchanger tubes, chemical 
reaction vessels, clad reactor elements, nozzle sections of rockets, annular fins, and turbine disks. 
The deformation also is symmetrical about the axis, and we may use the method developed in 
Section 16.3. The results of this section are restricted to the static, steady-state problem of a cylinder 
with a central circular hole (Figure 16.10).

16.6.1  steady-Flow temPerature Change T(r)

When the walls of the cylinder are at temperatures Ta and Tb, at the inner (r = a) and outer (r = b) 
surfaces, respectively, the temperature distribution may be represented in the form

 ( )= −
ln /

lnT
T T

b a

b

r
a b  (16.42)

This expression can be used [4] to determine radial, tangential, and axial stress components for 
steady-state temperature distribution in a thick-walled cylinder. The results are

 
( )
( )

( )
( ) ( )σ = α −

− ν
− −

−
−











ln /

ln lnE T T

b a

b

r

a r b

r b a

b

a2 1
r

a b
2 2 2

2 2 2
 (16.43)

 
( )
( )

( )
( ) ( )σ = α −

− ν
− −

+
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θ ln /
ln lnE T T

b a

b

r

a r b

r b a

b

a2 1
1a b

2 2 2

2 2 2
 (16.44)

 ( )
( )

( ) ( )σ = α −
− ν

− −
−











ln /

ln lnE T T

b a

b

r

a

b a

b

a2 1
1 2

2
z

a b
2

2 2
 (16.45)
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FIGURE 16.10 Cross-section of a long circular cylinder under thermal loading.
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The dimensionless distribution of the temperature and stress over the cylinder wall for the particular case 
when b/a = 2 is shown in Figure 16.11. We see from the figure that the tangential σθ and axial σz stresses 
at the outer surface are equal and tensile. This is why internal heating may cause external cracks in 
materials weak in tension, such as in the chimneys and conduits of concrete masonry. On the contrary, 
the radial stress is compressive at all points and becomes 0 at the inner and outer edges of the cylinder.

Note that, in practice, a pressure loading is usually superimposed on the thermal stresses, as 
in chemical reaction pressure vessels. In this case, the internal pressure gives a tangential stress 
(Figure 16.3), causing a partial cancellation of compressive stress due to temperature. Also, when 
a cylinder (or disk) is rotating, stresses owing to the inertia may be superimposed over those due to 
temperature change and pressure.

16.6.2  sPeCial Case

In a thin-walled cylinder, as in the cylinder liner of an engine or compressor, we can simplify 
Equation (16.44). In this situation, it can be readily verified that the temperature distribution is 
nearly linear and the stresses have the values

 

( ) ( )

( ) ( )

( )

( )

σ = − α −
− ν

σ = α −
− ν

θ =

θ =

E T T

E T T

2 1

2 1

r a
a b

r b
a b

 (16.46)

The preceding equations coincide with the stress expressions of an annular plate that is heated on 
sides and its edges are clamped. Equations (16.46) can also be used with sufficient accuracy in the 
case of a thin-walled spherical shell.

*16.7 EXACT STRESSES IN CURVED BEAMS

Curved beams or bars in the form of hooks, C-clamps, press frames, chain links, and brackets are 
often used as machine or structural elements. Stresses in curved beams of rectangular cross-sections 

y

a

T/(Ta –Tb)

σθ/σ

σr /σ

σz /σ

r/a

b
x0

0

–1.0

1.0

1 2

FIGURE 16.11 Thermal stress distribution in a thick-walled cylinder with b/a = 2 and Ta > Tb. Note: σ = α 
E(Ta − Tb)/2(1 – ν).
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already were discussed briefly in Section 3.7. Here, we are concerned with applications of the theory 
of elasticity. The mechanics of materials approaches to initially curved bars or frames is taken up in 
the next section. In both cases, only elastic cases are treated.

Figure 16.12(a) shows a beam of narrow rectangular cross-section and circular axis subjected 
to equal end couples M such that pure bending occurs in the plane of the curvature. Since the 
bending moment is constant throughout the length of the bar, stress distribution is the same in 
all radial cross-sections. This is the case of a plane stress problem with axial symmetry about 
θ. But, unlike the axisymmetrically loaded members of revolution treated in the preceding sec-
tions, there is a θ-dependent tangential displacement [1]. The condition of equilibrium is given 
by Equation (16.1) as

 
σ + σ − σ =θd

dr r
0r r  (a)

The conditions at the curved boundaries are

 ( ) ( )σ = σ == = 0r r a r r b  (b)

The conditions at the straight edges or ends are expressed as

 ∫ ∫σ = σ =θ θ,t dr t r dr M0
a

b

a

b

 (c)

Shear stress is also taken to be 0 throughout the beam.
Solution of Equation (a) is determined by following a procedure somewhat similar to that out-

lined in Section 16.2. It can be shown that the tangential and radial stress distributions in the beam 
are expressed as

 σ = −






− −














ln lnM

tb N

a

b

r

a

a

r

b

a

4
1 1r 2

2

2

2

2  (16.47)

 σ = −
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 − +















θ ln lnM

tb N

a

b

r

a

a

r

b

a

4
1 1 12

2

2

2

2  (16.48)
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FIGURE 16.12 (a) A thin curved beam in pure bending. (b) Distribution of stresses.
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where

 = −






− lnN
a

b

a

b

b

a
1 4

2

2

2 2

2
2  (16.49)

The bending moment is taken as positive when it tends to decrease the radius of curvature of the beam, 
as in Figure 16.12(a). Using this sign convention, σr as determined from Equation (16.47) is always 
negative, meaning that it is compressive. Similarly, when σθ is found to be positive, it is tensile; other-
wise, it is compressive. A sketch of the stresses at section mn is presented in Figure 16.12(b). Observe 
that the maximum stress magnitude is at the extreme fiber of the inner (concave) side.

16.8  CURVED BEAM FORMULA

The approximate approach to the curved beams by E. Winkler (1835–1888) is now explored. The 
fundamental assumptions of the elementary theory of straight beams are also valid for Winkler’s 
theory. Only elastic bending is treated, with the usual condition that the modulus of elasticity is 
identical in tension and compression. Consider the pure bending of a curved beam of uniform cross-
section having a vertical (y) axis of symmetry (Figure 16.13(a)). An expression for the tangential 
stress is derived by applying the three principles of analysis based on the familiar hypothesis: plane 
sections perpendicular to the axis of the beam remain plane after bending. This is depicted by the 
line ef in relation to a beam segment abed subtended by the central angle θ.

Figure 16.13(a) shows that the deformation pattern of curved beams is the same as for straight 
beams. The initial length of a beam fiber such as gh depends on the distance r from the center of 
the curvature O. The total deformation of beam fibers as the beam rotates through a small angle dθ 
follows a linear law. The tangential strain on the fiber gh may be expressed as

 ( )ε = − θ
θθ

R r d

r
 (d)

We see from this expression that εθ does not vary linearly over the depth of the beam as it does 
for straight beams. The tangential stress σθ on an element dA of the cross-sectional area is, using 
Hooke’s law,

 σ = εθ θE  (e)

Centroidal
axis

O

θR

rro

M

d

a
b

h
g

dθ
f

r

e c

θ + dθ
M

y

y
z

C

dA

x e

NA Straight beam

Curved
beam

ri

O΄

(a) (b)

FIGURE 16.13 (a) Pure bending of a beam with a cross-sectional axis of symmetry. (b) Stress distribution.
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Equations of equilibrium, ΣFx = 0 and ΣΜz = 0, respectively, are

 ∫ ∫σ = − σ =θ θ,dA ydA M0  (f)

Integration in these equations extends over the entire cross-sectional area A.
We now substitute Equation (e) together with (d) into Equation (f). After rearrangement, we find 

radius of the neutral axis R as follows:

 

∫
=R

A
dA

r

 (16.50)

Here, A represents the cross-sectional area of the beam. The integral in this expression may be 
evaluated for various cross-sectional forms (see Example 16.6, Case Study 18.8, and Problems 
16.28–16.30). For the purposes of reference, Table 16.1 furnishes some commonly used cases [7, 8].

The distance e between the centroid and the neutral axis of the cross-section (Figure 16.13) is 
equal to

 = −e r R (16.51)

Hence, in a curved member, the neutral axis does not coincide with the centroidal axis. Clearly, this 
conclusion differs from the situation found to be true for straight elastic beams. It can be verified 
that the normal stress acting on a curved beam at a distance r from the center of curvature is

 
( )σ = − −

θ
M R r

Aer
 (16.52)

in which e is given by Equation (16.51). Equation (16.52) is called Winkler’s formula or the curved-beam 
formula. It shows that the stress distribution in a curved beam follows a hyperbolic pattern. The sign 
convention applied to a bending moment is that it is positive when directed toward the concave side of the 
beam, as indicated in Figure 16.13. A positive value found using Equation (16.52) means a tensile stress.

A comparison of this result with one that follows from the formula for straight beams is illus-
trated in Figure 7.13(b). It can be shown that [1], the linear and hyperbolic stress distributions are 
about the same for ro/ri = 1.1. That is, for beams of only slight curvature, the flexure formula provides 
acceptable results, while requiring simple computation. When beam curvature increases (ro/ri > 1.3), 
the stress on the concave side rapidly increases over the one given by the flexure formula.

The tangential stress given by Equation (16.52) may be superimposed to the stress produced by 
a centric normal load P. Hence, the combined stress in a curved beam is

 
( )σ = − −

θ
P

A

M R r

Aer
 (16.53)

As usual, a negative sign is associated with a compressive load. It is obvious that the conditions of 
axisymmetry do not apply for a beam subjected to combined loading.

Example 16.6: Determining Stresses in a Curved Frame Using Various Methods

A circular frame of rectangular cross-section and mean radius r  is subjected to a load P as shown in 
Figure 16.14(a). Compute the tangential stresses at points A and B, using:

 a. Winkler’s curved-beam theory.
 b. The elementary theory.
 c. The elasticity theory.
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Given: P = 200 kN, b = 100 mm, h = 200 mm, =r 300 mm.

Solution

 a. With reference to Figure 16.14, we first derive the expression for the radius R of the neutral 
axis. In this case, A = bh and dA = bdr. Integrating Equation (16.51) between the limits ri and 
ro, readily gives

 

∫ ∫ ∫
= = =R

A
dA

r

bh
bdr

r

h
dr

rA r

r

r

r

i

o

i

o
 

TABLE 16.1
Properties for a Variety of Cross-Sectional Shapes
Cross-Section Radius of Neutral Surface

A. Rectangle

h

b

ro

ri

O

 =
ln

R
h
r

r
o

i

A = bh
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O

r

c

( )=
π − −

R
A

r r c2 2 2

A = πc2
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O

r
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= π − −

R
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b

a
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O
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 Therefore,

 =
ln

R
h
r

r
o

i

 (16.54)

 The given data lead to

 ( )( ) ( )= = =A bh 100 200 20 10 mm3 2 

 = − = − =r r h
1
2

300 100 200 mmi  

 = + = + =r r h
1
2

300 100 400 mmo  

 Equations (16.54) and (16.51) result in yielding, respectively,

 = = =
ln ln

.R
h
r

r

200
2

288 5390 mm
o

i

 

 = − = − =. .e r R 300 288 5390 11 4610 mm 

 Comment: Observe that the radius of the neutral axis R must be calculated with five signifi-
cant figures.

  The tangential stresses are due to the compressive normal load −P and the moment =M Pr  
acting at the centroid C of the cross-section (Figure 16.14c). The maximum compression and 
tension values of σθ occur at points A and B, respectively. Substituting the given numerical 
values, Equation (16.53) then results in 

 

( )

( ) ( ) ( )

( )
( )

σ = − −
−

= − +
−





= − × + −







 = −
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.
.

.
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r R r

er
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20 10
1
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A
i

i

i

i

3

3

 (16.55a)
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FIGURE 16.14 Example 16.6. (a) Curved frame with a vertical load at free end, (b) rectangular cross-
section, and (c) stress resultants at a cross-section A–B.
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(16.55b)

 The negative sign of (σθ)Α means a compressive stress at A. The largest tensile stress is at B.

 Comment: The stress caused by the axial force, P/A = 200(103)/(20 × 10−3) = 10 MPa, 
is negligibly small when compared to the combined stresses at points A and B of the 
cross-section.

 b. Through the use of the flexure formula, with ( )= = = ⋅M Pr 200 300 60 kN m,

 ( ) ( ) ( )
( )( )

σ = − σ = = =θ θ
, .
. . /

Mc

I

60 000 0 1

0 1 0 2 12
90 MPa

B A 3  

 c. From Equation (16.49), with a = 300 − 100 = 200 mm and b = 300 + 100 = 400 mm, we have

 ( ) ( )= −  − =. . ln .N 1 0 5 4 0 5 2 0 0822 2 2 2  

 Superposition of −P/A and Equation (16.48) at r = a gives

 

( )

( ) ( )
( )( ) ( )

( )( ) ( )

( )

σ = − + − + − + 

= − − = −

θ
,
.

,
. . .

. ln

. .

200 000
0 02

4 60 000

0 1 0 4 0 082
1 0 25 1 0 1 1 2

10 116 4 10 126 4 MPa

A 2

6

 

 Likewise, at r = b, we obtain (σθ)B = −10 + 73.8 = 63.8 MPa.

 Comments: The foregoing shows that the results of the Winkler and elasticity theories are 
in good agreement. However, the usual flexure formula provides a result of unacceptable 
accuracy for the tangential stress in this non-slender curved beam.

16.9  VARIOUS THIN-WALLED PRESSURE VESSELS AND PIPING

The discussions in Section 3.4 are limited to the membrane stresses occurring over the entire 
wall thickness of thin-walled (a/t > 10) cylindrical and spherical pressure vessels (Figure 3.5) 
or thin shells. Recall that a and t denote the mean radius and thickness of the vessel. Ever-
broadening use of variously shaped vessels for storage, industrial processing, and power gen-
eration under unique conditions of temperature, pressure, and environment has given special 
emphasis to analytical, numerical, and experimental techniques for determining the appropriate 
working stresses. The finite element method has gained considerable favor in the design of ves-
sels over other methods. A discontinuity of the membrane action in a vessel occurs at all points 
of external constraint or at the junction of the thin-walled cylindrical vessel and its head or end, 
possessing different stiffness characteristics. Any incompatibility of deformation at the joint 
produces bending moments and shear forces. The stresses due to this bending and shear are 
called discontinuity stresses.
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Since the bending is of a local character, the discontinuity stresses become negligibly small 
within a short distance. Cylindrical shell equations can be used to obtain an approximate solution 
applicable at the juncture of vessels having spherical, elliptical, or conical ends. The derivation of 
the discontinuity stresses in pressure vessels, using the bending and membrane theories of shells 
and the method of superposition, is well-known and is not given here. As in thick-walled cylinders, 
the tangential or hoop stress is usually the largest and most critical in the design of the thin-walled 
vessels and piping.

Thin shell equations under uniform pressure apply to internal pressure p. They also pertain to 
cases of external pressure if the sign of p is changed. However, stresses so obtained are valid only 
if the pressure is not significant relative to that which causes failure by elastic instability. A degree 
of caution is necessary when applying the formulas for which there is uncertainty as to applicabil-
ity and restriction of use. Particular emphasis should be given to the fact that high loading, extreme 
temperature, and rigorous performance requirements present difficult design challenges [3, 4]. With 
the advent of nuclear plants and outer space and underseas explorations, much more attention is 
being given to the analysis and design of pressure vessels.

The ASME design code for pressure vessels [9] lists formulas for calculating the required mini-
mum thickness of the shell and the ends. The following factors and a host of others contributing 
to an ideal vessel design are described by the code: approved techniques for joining the head to 
the shell, formulas for computing the thickness of shell and end, materials used in combination, 
temperature ranges, maximum allowable stress values, corrosion, types of closure, and so on. The 
required wall thickness for tubes and pipes under internal pressure is obtained according to the 
rules for a shell in the code. For the complete requirements, reference should be made to the cur-
rent edition of the code. The ASME publishes relevant books, conference papers, and a quarterly 
Journal of Pressure Vessel Technology.

16.9.1  Filament-wound Pressure vessels

A unique class of composites, formed by wrapping of high-strength filaments over a mandrel, fol-
lowed by impregnation of the windings with a plastic binder and removal of the mandrel in pieces, is 
called filament-wound cylinders. A common system is the glass filament/epoxy resin combination. 
Filament structures of this type have an exceptional strength/weight ratio and reliability. They are 
in widespread use as lightweight vessels and thrust chambers in spacecraft, rockets, and airborne 
vehicles. Basic filament vessels contain longitudinal, circumferential, or helical windings. A com-
bination of these windings is used if necessary.

Consider a filament-wound vessel with closed ends subjected to an internal pressure p 
(Figure 16.15). The tangential and axial stresses due to p are, from Equation (3.6),

 σ = σ =θ ,pa

t

pa

t2
x  

t a

p

p

Fθ

F

w

ψψ

FIGURE 16.15 Filament-wrapped cylindrical pressure vessel with flat ends. Notes: F, tension force in the 
filament; ψ, helix angle; w, width of filaments; Fθ, tangential component of filament force; p, pressure.
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Hence,

 
σ
σ

=θ 2
x

 (16.56)

The quantities a and t represent the average radius and wall thickness, respectively, of the vessel 
composed entirely of filament of tensile strength Su and the binder.

The maximum tensile force carried by the filament may be expressed by

 =F S wtu  

where w is the filament width wrapped at angle ψ. The corresponding circumferential force is

 = ψθ sinF F  

The filament cross-sectional area A = wt/sinψ. The tangential stress filament then can carry

 σ = = ψθ
θ sinF

A
Su

2  (16.57)

In a like manner, the axial stress may readily be ascertained in the form

 σ = ψcosSx u
2  (16.58)

The preceding expressions give

 
σ
σ

= ψθ tan
x

2  (16.59)

The optimum helix angle of filament, by Equation (16.56) and (16.59), is

 
σ
σ

= = ψθ tan2
x

2  (16.60)

which yields ψ = 54.7°. This represents the condition of helical wrapping to support an internal 
pressure.

Note that by additional use of circumferential filaments, the helix angle may be decreased for 
convenience in wrapping. Clearly, the preceding analysis applies only to the cylindrical portion 
of the vessel, away from the ends. Filament winding is also accomplished by laying down a pat-
tern over a base material and forming a so-called filament-overlay composite [3, 10], for example, 
thin-walled (polyethylene) pipe overlaid with (nylon) cord or a wire of the same material of the 
shell.

PROBLEMS

Sections 16.1 through 16.6
 16.1 A cylinder of inner radius a and the outer radius 3a is subjected to an internal pressure pi. 

Determine the limiting values of the pi applying:
 a. The maximum shear stress theory.
 b. The maximum energy of distortion theory.
  Design Decision: The cylinder is made of steel of Sy = 260 MPa.
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 16.2 A solid steel shaft of radius b is pressed into a steel disk of outer radius 2b and the length 
of hub engagement l = 3b (Figure 16.6). Determine the value of the radial interference in 
terms of b.

  Given: The shearing stress in the shaft caused by the torque that the joint is to carry 
equals 100 MPa; E = 210 GPa, f = 0.15.

 16.3 For an ASTM A36 structural steel cylinder of inner radius a = 120 mm and outer radius 
b = 180 mm, find:

 a. When po = 0, the largest internal pressure and the maximum displacement.
 b. When pi = 0, the largest external pressure.
  Assumption: Maximum tangential stress is not to exceed the yield strength of the 

material.
 16.4 A cylinder of inner radius a and outer radius 2a is under internal pressure pi. Calculate 

the allowable value of pi using:
 a. The maximum principal stress theory.
 b. The Coulomb–Mohr theory.
  Design Decisions: The cylinder is made of aluminum of Su = 350 MPa and Suc = 650 MPa.
 16.5 A cast iron disk is to be shrunk on a 125 mm diameter steel shaft. Determine:
 a. The contact pressure.
 b. The minimum allowable outside diameter of the disk.
  Requirement: The tangential stress in the disk is not to exceed 60 MPa.
  Given: The radial interference is 0.05 mm, Eh = 100 GPa, Es = 200 GPa, and ν = 0.3.
 16.6 A cast iron pinion with 100 mm dedendum diameter and l = 50 mm hub engagement 

length is to transmit a maximum torque of 150 N · m at low speeds. Calculate:
 a. The required radial interference on a 25 mm diameter steel shaft.
 b. The maximum stress in the gear due to a press fit.
  Given: Ec = 100 GPa, Es = 200 GPa, ν = 0.3, f = 0.15.
 16.7 A bronze bushing 50 mm in outer diameter and 30 mm in inner diameter is to be pressed 

into a hollow steel cylinder of 100 mm outer diameter. Find the tangential stresses for the 
steel and bronze at the boundary between the two parts.

  Given: Eb = 105 GPa, Es = 210 GPa, ν = 0.3.
  Design Requirement: The radial interference is δ = 0.025 mm.
 16.8 A cast iron cylinder of outer radius 150 mm is to be shrink-fitted over a 50 mm radius 

steel shaft. Calculate the maximum tangential and radial stresses in both parts.
  Given: Ec = 120 GPa, νc = 0.25, Es = 210 GPa, νs = 0.3.
  Design Requirement: The radial interference is δ = 0.03 mm.
 16.9 When a steel disk of external diameter 4b is shrunk onto a steel shaft of diameter of 2b, 

the internal diameter of the disk is increased by an amount λ. What reduction occurs in 
the diameter of the shaft?

  Given: v = 0.3.
 16.10 A brass tube of inner radius a and outer radius b is shrink fitted at p = 90 MPa into a brass 

collar of outer radius c (Figure 16.6). Determine the speed at which the contact pressure 
becomes zero.

  Given: a = 20 mm, b = 30 mm, c = 40 mm, ρ = 8.5 kN · s2/m4, ν = 0.34 (Table B.1).
 16.11 A thick-walled disk flywheel has inner and outer radii of b and 4b, respectively. Determine:
 a. The radius b.
 b. The kinetic energy delivered for a 5% drop in speed.
  Given: The maximum speed is 3600 rpm with a maximum stress from rotation equal to 

75 MPa and l = 50 mm.
  Design Decisions: The disk is made of steel having ρ = 7.8 kN · s2/m4 and ν = 0.3.
 16.12 A 200 mm diameter disk is shrunk onto a 40 mm diameter shaft. Find:
 a. The initial contact pressure required if the contact pressure is to be 3.2 MPa at 2400 rpm.
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681Miscellaneous Mechanical Components

 b. The maximum stress when not rotating.
  Design Decision: Both members are made of steel having E = 210 GPa, ν = 0.3, and ρ = 7.8 

kN · s2/m4.
 16.13 A flywheel of 600 mm outer diameter and 100 mm inner diameter is to be press fit on a 

solid shaft with a radial interference of 0.02 mm. Calculate:
 a. The maximum stress in the assembly at standstill.
 b. The speed n in rpm at which the press fit loosens as a result of rotation.
  Design Decision: Both members are made of steel with E = 200 GPa, ν = 0.3, and ρ = 7.8 

kN · s2/m4.
 16.14 A solid steel shaft of radius b is to be press fit into a wrought iron hub of outer radius c 

and length l. Find:
 a. The interface pressure.
 b. The force needed for the press fit.
 c. The torque capacity of the assembly.
  Given: b = 60 mm, c = 120 mm, l = 200 mm, Es = 200 GPa, Ei = 190 GPa, ν = 0.3 

(Table B.1).
  Assumptions: f = 0.18, and the maximum tangential stress will be 30 MPa.
 16.15 A 60 mm thick steel flywheel has inner and outer radii, a and b, respectively. Determine 

the average braking torque required.
  Given: a = 50 mm, b = 200 mm, ρ = 7.8 kN · s2/m4.
  Design Requirement: The flywheel speed must be reduced from 2400 to 1200 rpm in 2 

rev.
 16.16 A rolled steel disk flywheel has inner radius a, outer radius b, and length of hub engage-

ment of l. It rotates on a shaft at a normal speed of 3000 rpm with a 10% drop during 
working cycle. Determine:

 a. The maximum stress.
 b. The energy delivered per cycle.
  Given: a = 25 mm, b = 250 mm, l = 60 mm, ρ = 7.8 kN · s2/m4, ν = 0.3.

Sections 16.7 through 16.9
 16.17 The cross-section of the circular cast iron frame of Figure 16.14a has a channel form, as 

shown in Figure P16.17. Determine the maximum load P.
  Given: rA = ri = 215 mm.
  Design Decisions: Stress does not exceed 100 MPa on the critical section. Winkler’s 

formula is used.
 16.18 A curved wrought iron frame with a rectangular cross-section is acted upon by the 

 bending moment as illustrated in Figure P16.18. Find:
 a. The tangential stresses σi and σo of the inside and outside fibers, respectively, 

 applying the curved-beam formula.

Section A–B

B A

150

25

50
25

50

FIGURE P16.17 Dimensions are in millimeters.
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682 Mechanical Engineering Design

 b. Redo item (a) by the flexure formula.
  Given: M = 900 N · m, b = 20 mm, h = 40 mm, ri = 50 mm.
 16.19 A rectangular aluminum machine frame is curved to a radius r  along the centroidal axis 

and carries end moments M as shown in Figure P16.18. Compute the circumferential 
stresses σi and σo of the inner and outer fibers, respectively.

  Given: = ⋅ = = =, , ,M r b h15 kN m 200 mm 45 mm 65 mm.
 16.20 The allowable stress in compression for the clamp body shown in Figure P16.20 is 120 

MPa. Calculate, applying Winkler’s formula, the maximum permissible load the member 
can carry.

 16.21 A steel frame with a square cross-section is curved to a radius r  along the centroidal axis 
and subjected to end moments M as illustrated in Figure P16.21. Find the largest allow-
able value of the bending moment M, knowing that the permissible stress is σall.

  Given: ri = 220 mm, ro = 280 mm, b = h = 60 mm, σall = 150 MPa.
 16.22 Figure P16.22 shows a beam of channel-shaped cross-section subjected to end moments 

M. What is the dimension b required in order that the tangential stresses at points A and 
B of the beam are equal in magnitude?

 16.23 Calculate, using Winkler’s formula, the maximum distance d for which tangential stress 
does not exceed 80 MPa on the cross-section A–B of the frame shown in Figure P16.23.

  Given: P = 25 kN.
 16.24 Figure P16.24 illustrates a split-ring frame with an inner radius ri, outer radius ro, and 

a trapezoidal cross-sectional area. What are the values of the circumferential stresses at 
points A and B?

  Given: ri = 80 mm, ro = 200 mm, b1 = 75 mm, b2 = 50 mm, P = 75 kN.

B

A

ro ri
M M

h

b

O

Section A–B

FIGURE P16.18 

B A
P

25

45

5

25

5
125

Section A–B

FIGURE P16.20 Dimensions are in millimeters.
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 16.25 For the crane hook of circular cross-section in Figure P16.25, determine
 a. The maximum load P that may be supported without exceeding a stress of 150 MPa 

at point A.
 b. The tangential stress at point B for the load found in part A.
  Design Decision: Use Winkler’s formula.
 16.26 A steel machine frame of an elliptical cross-section is fixed at one end and acted upon a 

concentrated load P at the free end as shown in Figure P16.26. Find the tangential stresses 
at points A and B.

  Given: ri = 125 mm, ro = 229 mm, a = 100 mm, b = 50 mm, P = 125 kN.

b

h

M M

A

B

O

ri
ro

Section A–B
r–

FIGURE P16.21 

O

150 mm

350 mm
A

M M

25 mm 25 mm

150 mm

50 mm

b
B

Section A–B

FIGURE P16.22 

B

200 mm
100 mm

P

d
A B A 50 mm

100 mm

Section A–B

FIGURE P16.23 
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B A O

P

B Ab2 b1

r0

ri

Section A–B

FIGURE P16.24 

50 mm

P

P

150 mm

A
AB

B

Section A–B

FIGURE P16.25 

B A

ri

ro

O

P

2a

2b

AB

Section A–B

FIGURE P16.26 
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 16.27 The allowable stress for the cast iron frame with an elliptical cross-section illustrated in 
Figure P16.26 is σall. What is the maximum load P that can be applied in the frame?

  Given: ri = 130 mm, ro = 200 mm, a = 70 mm, b = 35 mm, σall = 90 MPa.
 16.28 Figure P16.28 illustrates the triangular cross-section of a machine frame. Derive the 

expression for the radius R along the neutral axis and compare the result with that listed 
in Table 16.1.

h ri

b O

ro

FIGURE P16.28 

r0

ri

O
C

c

r–

FIGURE P16.29 

h ri

r

r0

dr

b2 b1 O
w

FIGURE P16.30 
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 16.29 Consider the circular cross-section of a machine frame shown in Figure P16.29. Develop 
the expression for the radius R along the neutral axis and compare the result with that 
furnished in Table 16.1.

 16.30 The trapezoidal cross-section of a structural frame is illustrated in Figure P16.30. 
Determine the expression for the radius R along the neutral axis and compare the result 
with that given in Table 16.1.
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17 Finite Element Analysis 
in Design*

17.1  INTRODUCTION

In real design problems, generally, structures are composed of a large assemblage of various mem-
bers. In addition, the built-up structures or machines and their components involve complicated 
geometries, loadings, and material properties. Given these factors, it becomes apparent that the 
classical methods can no longer be used. For complex structures, the designer has to resort to more 
general approaches of analysis. The most widely used of these techniques is the finite element stiff-
ness or displacement method. Unless otherwise specified, we refer to it as the finite element method 
(FEM).

Finite element analysis (FEA) is a numerical approach and well-suited to digital computers. The 
method is based on the formulations of a simultaneous set of algebraic equations relating forces to 
corresponding displacements at discrete preselected points (called nodes) on the structure. These 
governing algebraic equations, also referred to as force-displacement relations, are expressed in 
matrix notation. With the advent of high-speed, large-storage capacity digital computers, the FEM 
gained great prominence throughout industries in the solution of practical analysis and design prob-
lems of high complexity. The literature related to the FEA is extensive (e.g., [1–5]). Numerous 
commercial FEA software programs are available, including some directed at the learning process. 
Most of the developments have now been coded into commercial programs. The FEM offers numer-
ous advantages, including:

 1. Structural shape of components that can readily be described.
 2. Ability to deal with discontinuities.
 3. Ability to handle composite and anisotropic materials.
 4. Ease of dealing with dynamic and thermal loadings.
 5. Ability to treat combined load conditions.
 6. Ability to handle nonlinear structural problems.
 7. Capacity for complete automation.

The basic concept of the finite element approach is that the real structure can be discretized by a 
finite number of elements, connected not only at their nodes but along the interelement boundar-
ies as well. Usually, triangular or rectangular shapes of elements are used in the FEM. Figure 17.1 
depicts how a structure is modeled using triangular element shapes. The types of elements com-
monly employed in structural idealization are the truss, beam, 2D elements, shell and plate bending, 
and 3D elements. The models of a pipe joint and an aircraft structure [1, 2] created using triangular, 
plate, and shell elements are shown in Figure 17.2.

Note that the network of elements and nodes that discretize the region is termed mesh. The mesh 
density increases as more elements are placed within a given region. Mesh refinement is when the 
mesh is modified from one analysis of a model to the next analysis to give improved solutions. 
Results usually improve when the mesh density is increased in areas of high stress concentrations 

* The material presented in this chapter is optional and the entire chapter can be omitted without destroying the continuity 
of the text.
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688 Mechanical Engineering Design

and when geometric transition zones are meshed smoothly. Generally, but not always, the FEA 
results converge toward the exact solutions as mesh is continuously refined.

To adequately treat the subject of the FEA would require a far more lengthy presentation than 
could be justified here. Nevertheless, the subject is so important that any engineer concerned with 
the analysis and design of members should have at least an understanding of FEA. The funda-
mentals presented can clearly indicate the potential of the FEA as well as its complexities. It can 
be covered as an option, used as a teaser for a student’s advance study of the topic, or as a profes-
sional reference. For simplicity, only three basic structural elements are briefly discussed here: the 
1D axial element or truss element, the beam element or plane frame element, and the 2D element. 
Sections 17.3 and 17.5 present the formulation and general procedure for treating typical problems 
by the FEM. Solutions of axial stress, bending, and plane stress problems are demonstrated in vari-
ous examples and case studies.

17.2  BAR ELEMENT

An axial element, also called a truss bar or simply bar element, can be considered as the simplest 
form of structural finite element. An element of this type with length L, modulus of elasticity E, and 
cross-sectional area A is denoted by e (Figure 17.3). The two ends or joints or nodes are numbered 

FIGURE 17.1 Tapered plate bracket and its triangular finite element model.

Node

Triangular
element

(a) (b)

FIGURE 17.2 Finite element models of some components: (a) pipe connection and (b) fuselage and a wing.

F1, u1 F2, u2

1 x

L

2e

FIGURE 17.3 Axial (truss bar or bar) element.
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1 and 2, respectively. It is necessary to develop a set of two equations in matrix form to relate the 
joint forces (F1 and F2) to the joint displacements (u1 and u2).

17.2.1  direCt equiliBrium method

The following derivation by the direct equilibrium approach is simple and clear. However, this 
method is practically applicable only for truss and frame elements. The equilibrium of the x-directed 
forces requires that = −F F1 2 (Figure 17.3). Because AE/L is the spring rate of the element, we have

 ( ) ( )= − = −,F
AE

L
u u F

AE

L
u u1 1 2 2 2 1  

This may be written in the following matrix form:

 











= −

−
























F

F

AE

L

u

u
1 1
1 1

e e

1

2

1

2

 (17.1a)

or symbolically

 { } { }=  F k u
e e e (17.1b)

The quantity  k
e
 is called the stiffness matrix of the element. Clearly, it relates the joint displace-

ment to the joint forces on the element.

17.2.2  energy method

The energy technique is more general, easier to apply, and powerful than the direct approach just 
discussed, especially for sophisticated types of finite elements. To employ this method, it is neces-
sary to first define a displacement function for the element (Figure 17.3):

 = +u a a x1 2  (17.2)

in which a1 and a2 are constants. Clearly, Equation (17.2) represents a linear continuous displace-
ment variation along the x-axis of the element. The axial displacements of joints 1 (at =x 0) and 2 
(at =x L ), respectively, are therefore

 = = +,u a u a a L1 1 2 1 2  

Solving the preceding expressions, =a u1 1 and ( )= − − / .a u u L2 1 2  Carrying these into Equation 
(17.2), we have

 = −



 +u

x

L
u

x

L
u1 1 2 (17.3)

Then, by Equation (3.54), the strain is

 ( )ε = = − +du

dx L
u u

1
x 1 2  (17.4)

So the element axial force is

 ( ) ( )= ε = − +F E A
AE

L
u ux 1 2  (17.5)
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The strain energy in the element is obtained by substituting Equation (17.5) into Equation (5.10) 
in the following form:

 ∫ ( )= = − +U
F dx

AE

AE

L
u u u u

2 2
2

L

0

2

1
2

1 2 2
2  (17.6)

Applying Castigliano’s first theorem, Equation (5.46), we obtain

 ( )= ∂
∂

= +F
U

u

AE

L
u u1

1
1 2  

 ( )= ∂
∂

= − +F
U

u

AE

L
u u2

2
1 2  

The matrix forms of the preceding equations are the same as those given by Equation (17.1).

17.2.3  gloBal stiFFness matrix

We now develop the global stiffness matrix for an element oriented arbitrarily in a 2D plane. The 
local coordinates are chosen to conveniently represent the individual element, whereas the global 
or reference coordinates are chosen to be convenient for the whole structure. We designate the local 
and global coordinate systems for an axial element by ,x y  and x, y, respectively (Figure 17.4).

The figure depicts a typical axial element e lying along the x  axis, which is oriented at an angle 
θ, measured counterclockwise, from the reference axis x. In the local coordinate system, each joint 
has an axial force Fx , a transverse force Fy , an axial displacement u , and a transverse displacement 
υ. Referring to Figure 17.4, Equation (17.1a) is expanded as
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−

−





















υ
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F

F

F

F

AE

L

u

u

1 0 1 0
0 0 0 0
1 0 0 0

0 0 0 0

x

y

x

y
e

e

1

1

2

2

1

1

2

2

 (17.7a)

or

 { }{ } =   δF k
e e e

 (17.7b)

Clearly, { }δ
e
 represents the nodal displacements in the local coordinate system.

We see from Figure 17.4 that the two local and global forces at joint 1 may be related by the 
 following expressions:

 = θ + θcos sinF F Fx x y1 1 1  

 = θ + θsin cosF F Fy x y1 1 1  

Similar expressions apply at joint 2. For brevity, we designate

 = θ = θcos sinc sand  

ISTUDY

www.konkur.in

Telegram: @uni_k



691Finite Element Analysis in Design

Thus, the local and global forces are related in the following matrix form:
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 (17.8a)

or symbolically

 { } [ ]{ }=F T F
e e (17.8b)

In the foregoing, [T] is the coordinate transformation matrix:

 [ ] = −

−





















T

c s

s c

c s

s c

0 0
0 0

0 0
0 0

 (17.9)

and {F}e represents the global nodal force matrix:

 { } =
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F

F

F
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y
e

1

1

2

2

 (17.10)

In as much as the displacement transforms in the same manner as forces, we have

 [ ]
υ

υ

























=
υ
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u
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u

u

e e

1

1

2

2

1

1

2

2

 (17.11a)

F1x , u1

F2x , u2

F1x , u1

F2x , u2

F2y , υ2

F2y , υ2

F1y , υ1

1

L

θ
θ

y

x

xe
y

2

F1y, υ1

FIGURE 17.4 Local ( ),x y  and global (x, y) coordinates for a typical axial element e. All forces and displace-
ments have a positive sense.
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or

 { } { }[ ]δ = δT
e e

 (17.11b)

Here, {δ}e is the global nodal displacements. Carrying Equations (17.11b) and (17.8b) into (17.7b) 
leads to

 { }[ ] [ ]{ } =   δT F k Te e e
 

or

 { }[ ] [ ]{ } =   δ−F T k Te e e

1  

Note that the transformation matrix [T] is an orthogonal matrix; that is, its inverse is the same as 
its transpose: [T]−1 = [T]T, where the superscript T denotes the transpose. The transpose of a matrix 
is obtained by interchanging the rows and columns. The global force-displacement relations for an 
element e are

 { }[ ]{ } = δF ke e e
 (17.12)

where

 [ ] [ ] [ ]=  k T k Te
T

e
 (17.13)

Finally, to evaluate the global stiffness matrix for the element, we substitute Equation (17.9) and 
[k]e from Equation (17.7a) into Equation (17.13):

  [ ] =

− −
− −

− −
−





















=

− −
− −





















k
AE
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c cs c cs

cs s cs s

c cs c cs

cs s cs s
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c cs c cs

s cs s

c cs

sSymmetric

e

2 2

2 2

2 2

2 2

2 2

2 2

2

2

 (17.14)

This relationship shows that the element stiffness matrix depends on its dimensions, orientation, 
and material property.

17.2.4  axial ForCe in an element

Reconsider the general case of an axial element oriented arbitrarily in a 2D plane, depicted in 
Figure 17.4. It can be shown that equation for the axial force is expressed in the following matrix form:

 [ ]=
−

υ − υ












F

AE

L
c s

u u
12

2 1

2 1

 (17.15)

This may be written for an element with nodes ij as follows:

 [ ]= 





−
υ − υ












F

AE

L
c s

u u
ij

ij
ij

j i

j i

 (17.16)

A positive (negative) value obtained for Fij indicates that the element is in tension (compression). 
The axial stress in the element is given by σij = Fij/A.
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17.3  FORMULATION OF THE FINITE ELEMENT METHOD

Development of the governing equations appropriate to a truss demonstrates the formulation of the 
structural stiffness method, or the FEM. As noted previously, a truss is an assemblage of axial ele-
ments that may be differently oriented. To derive truss equations, the global element relations given 
by Equation (17.12) must be assembled. The preceding leads to the following force-displacement 
relations for the entire truss, the system equations:

 { }[ ]{ } = δF K  (17.17)

The global nodal matrix {F} and the global stiffness matrix [K] are

 ∑{ } { }=F F
n

e

1

 (17.18a)

 ∑[ ][ ] =K k
n

e

1

 (17.18b)

Here, e designates an element and n is the number of elements making up the truss. It is noted that 
[K] relates the global nodal force {F} to the global displacement {δ} for the entire truss.

17.3.1  method oF assemBlage oF the values oF [k]e

The element stiffness matrices in Equation (17.18) must be properly added together or superim-
posed. To carry out proper summation, a convenient method is to label the columns and rows of 
each element stiffness matrix according to the displacement components associated with it. In so 
doing, the truss stiffness matrix [K] is obtained simply by adding terms from the individual element 
stiffness matrix into their corresponding locations in [K]. This approach of assemblage of the ele-
ment stiffness matrix is given in Case Study 17.1. An alternative way is to expand the [k]e for each 
element to the order of the truss stiffness matrix by adding rows and columns of zeros. However, for 
a problem involving a large number of elements, it becomes tedious to apply this approach.

17.3.2  ProCedure For solving a ProBlem

We now illustrate the use of the equations developed in the preceding paragraphs. The general pro-
cedure for solving a structural problem by application of the finite element method may be summa-
rized as shown in Figure 17.5. This outline is better understood when applied to planar structures, 
as shown in the solution of the following sample problem.

Case Study 17.1 Analysis and Design of a Truss

A three-bar truss 123 (Figure 17.6(a)) is subjected to a horizontal force P acting at joint 2. 
Analyze the truss and calculate the required cross-sectional area of each member.

Assumptions: All members will have the same yield strength Sy, length L, and axial rigidity 
AE. Use a factor of safety of n = 1.5 on yielding.

Given: Sy = 240 MPa, P = 200 kN.

Solution: The reactions are noted in Figure 17.6(a). The node numbering is arbitrary for each 
element.
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Input data. At each node, there are two displacements and two nodal force components 
(Figure 17.6(b)). Recall that θ is measured counterclockwise from the positive x-axis to each ele-
ment (Table 17.1). Inasmuch as the terms in [k]e involve c2, s2, and cs, a change in angle from θ to 
θ + π, causing both c and s to change sign, does not affect the signs of the terms in the stiffness 
matrix. For example, in the case of a member, θ = 60° if measured counterclockwise at node 1, 
or 240° if measured counterclockwise at node 3. However, by substituting into Equation (17.14), 
[k]e remains unchanged.

Element stiffness matrix. Using Equation (17.14) and Table 17.1, we have for the elements 1, 
2, and 3, respectively,

 [ ] =

υ υ

−

−





















υ

υ

k
AE

L

u u

u

u

1 0 1 0
0 0 0 0
1 0 1 0

0 0 0 0

1

1 1 2 2

1

1

2

2

 

Define analysis problem
choose a finite element model
plan the mesh for the model

Input data
materials, node and element definition,

boundary conditions, loads

Form element [k]e
calculate element stiffness matrix

Form system [K]
assemble elements [k]e to form

the system stiffness matrix

Form system {F} and {δ}
apply boundary displacement

and force conditions

Compute displacements
solve the system equations

{F} = [K]{δ}
for the displacements 

{δ} = [K]–1{F}

Compute stresses
calculate stresses (or forces)

in elements

Evaluate results

Is refined mesh for
the model required?

No
Yes

Plan refined
mesh for the 

model

Present results

FIGURE 17.5 Finite element block diagram [3].
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Note that the column and row of each stiffness matrix are labeled according to the nodal 
 displacements associated with them.

System stiffness matrix. There is a total of six components of displacement for the truss 
before boundary constraints are imposed. Therefore, the order of the truss stiffness matrix 
must be 6 × 6. Subsequent to addition of the terms from each element stiffness matrices 

R3y

R3x

y
1

L R2

P
2

3

xR1

60°

(a) (b)

60° 60°1 60°

1

23

3

2

L F2y, υ2

F2x, u2

F3x, u3

F3y, υ3

F1y, υ1

F1x , u1

FIGURE 17.6 (a) Basic plane truss and (b) finite element model.

TABLE 17.1
Data for the Truss of Figure 17.6

Element θ c s c2 cs s2

1 0° 1 0 1 0 0

2 120° −1/2 /3 2 1/4 − /3 4 3/4

3 60° 1/2 /3 2 1/4 /3 4 3/4
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into their corresponding locations in [K], we readily obtain the global stiffness matrix for 
the truss:

 [ ] =

υ υ υ

+ + − − −
+ + − −
− + − −

− + −
− − − + −

− − − − +
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System force and displacement matrices. Accounting for the applied load and support con-
straints, with reference to Figure 17.6, the truss nodal force matrix is
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Similarly, accounting for the support conditions, the truss nodal displacement matrix is

 { }δ =
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Displacements. Substituting Equations (a), (b), and (c) into Equation (17.18), the truss force–
displacement relations are given by
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To determine υ1 and u2, only the part of Equation (d) relating to these displacements is consid-
ered. We then have
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Solving preceding equations simultaneously or by matrix inversion, the nodal displacements 
are obtained:
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Reactions. The values of υ1 and u2 are used to determine reaction forces from Equation (d) 
as follows:
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The results may be verified by applying the equations of equilibrium to the free-body diagram 
of the entire truss (Figure 17.6(a)).

Axial forces in elements. Using Equations (17.16) and (e) and Table 17.1, we obtain

 [ ]=
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013  

Stresses in elements Dividing the foregoing element forces by the cross-sectional area, we have 
σ12 = 4P/5A1, σ23 = 2P/5A2, and σ13 = 0.

Required cross-sectional areas of elements. The allowable stress is σall = 240/1.5 = 160 MPa. 
We then have A1 = 0.8(200 × 103)/160 = 1000 mm2, A2 = 500 mm2, and A3 = any area.

17.4  BEAM ELEMENT

Here, we formulate stiffness matrices for flexural or beam elements and axial–flexural or plane frame 
elements. Consider first an initially straight beam element of constant flexural rigidity EI and length 
L, as depicted in Figure 17.7. Such an element has a transverse deflection υ and a slope θ at each end 

y, υ
1 2

e x
LF1y, υ1 F2y, υ2

M2, θ2

M1, θ1

FIGURE 17.7 Beam element; all forces and displacements have a positive sense.
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or node. Corresponding to these displacements, a transverse shear force Fy and a bending moment M  
act at each node. The deflected configuration of the beam element is shown in Figure 17.8.

The linearly elastic behavior of a beam element is governed according to Equation (4.16c) as d4υ/
dx4 = 0. The right-hand side of this equation is 0 because in the formulation of the stiffness matrix 
equations, we assume no loading between nodes. In the elements where there is a distributed load, the 
equivalent nodal load components are used. The solution is taken to be a cubic polynomial function of x:

 υ = + + + +a a x a x a x a x1 2 3 3
2

4
3 (a)

The constant values of a are obtained by using the conditions at both ends. The stiffness matrix can 
again be obtained by the procedure discussed in Section 17.2. It can be verified that [2] the nodal 
force–displacement relations in the matrix form are
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 (17.19a)

or symbolically

 { } { }=   δF k
e e e

 (17.19b)

The matrix { }F
e
 represents the force and moment components. Equation (17.19b) defines the stiff-

ness matrix { }k
e
 for a beam element lying along a local coordinate axis x . Having developed the 

stiffness matrix, formulation and solution of problems involving beam elements proceed as dis-
cussed in Section 17.3.

Example 17.1: Displacements and Forces in a Statically Indeterminate Beam

A propped cantilevered beam of flexural rigidity EI is subjected to end load P as shown in Figure 17.9(a). 
Using the FEM, find:

 a. The nodal displacements.
 b. The nodal forces and moments.

Solution

We discretize the beam into elements with nodes 1, 2, and 3, as shown in Figure 17.9(a). By 
Equation (17.19),

y
M1

M2 F2y

1
F1y

θ1 θ2

x

e
2

υ1 υ2

FIGURE 17.8 Deformed beam element.
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 a. The global stiffness matrix of the beam can now be assembled: [K] = [k]1 + [k]2. The governing 
equations for the beam are then
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 (17.20a)

  or

 { }[ ]{ } = δF K  (17.20b)

 The boundary conditions are υ2 = 0, θ3 = 0, and υ3 = 0. Partitioning the first, second, and fourth 
of these equations associated with the unknown displacements,
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P
1 2

3

3
2

x
2

L L

1

V

M

P

1
2 PL

PL

P

(a)

(b)

(c)

FIGURE 17.9 Example 17.1. (a) Load diagram, (b) shear diagram, and (c) moment diagram.
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 Solving for nodal displacements, we obtain

 , ,PL

EI

PL

EI

PL

EI

7
12

3
4 4

1

3

1

2

2

2

υ = − θ = θ =  

 b. Introducing these equations into Equation (17.20a), after multiplying, the nodal forces and 
moments are found to be

 , ,F P M F P0
5
2

y y1 1 2= − = =  

 ,M F P M PL0
3
2

1
2

y2 3 3= = − =  

  Note that M1 and M2 are 0, since no reactive moments are present on the beam at nodes 1 
and 2.

Comments: In general, it is necessary to determine the local nodal forces and moments associated 
with each element to analyze the entire structure. For the case under consideration, it may readily be 
observed from a free-body diagram of element 1 that (M2)1 = −PL. Hence, we obtain the shear and 
moment diagrams for the beam as shown in Figures 17.9(b) and (c), respectively.

17.5  TWO-DIMENSIONAL ELEMENTS

So far, we have dealt with only line elements connected at common nodes, forming trusses and frames. 
In this section, attention is directed toward the properties of 2D finite elements of an isotropic elastic 
structure and general formulation of the FEM for plane structures. To begin with, the plate shown 
in Figure 17.10(a) is discretized, as depicted in Figure 17.10(b). The finite elements are connected 
not only at their nodes, but also along the interelement boundaries. All formulations are based on 
a counterclockwise labeling of the nodes i, j, and m. The simplest constant strain triangular (CST) 
finite element is used to clearly demonstrate the basic formulative method. The nodal displacements, 
represented by u and υ in the x and y directions, respectively, are the primary unknowns.

17.5.1  disPlaCement FunCtions

Consider a typical finite element e with nodes i, j, and m (Figure 17.10(b)). The nodal displacements 
are expressed in the following convenient matrix form:

 { }δ =

υ

υ

υ































u

u

u

e

i

i

j

j

m

m

 (17.21)

x

m

y

(a) (b)

j i
(e)

FIGURE 17.10 Plate in tension: (a) before and (b) after division into finite elements.
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The displacement functions, describing the displacements at any point within the element, {f}e, are 
represented by

 { }
( )
( )

=
υ













,

,
f

u x y

x ye
 (17.22)

 { }{ } [ ]= δf N
e e

 (17.23)

In the foregoing, the matrix [N] is a function of position, to be obtained in the next section.

17.5.2  strain, stress, and disPlaCement matriCes

The strain and stress are defined in terms of displacement functions. The strain matrix may be 
 written as follows:

 { }ε =
ε
ε
γ
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e

 (17.24)

or

 { }[ ]{ }ε = δBe e
 (17.25)

in which [B] is also obtained in the next section.
In a like manner, the stresses throughout the element are, by Hooke’s law,
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or

 [ ]{ } { }σ = εDe e (17.27)

Clearly, the elasticity matrix is

 [ ]
( )

=
− ν

ν
ν

− ν
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1 0
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0 0 1 2
2  (17.28)

In general, we write

 [ ] = λ
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Recall from Sections 3.9 and 3.11 that 2D problems are of two classes: plane stress and plane strain. 
The constants λ, D12, and D33 for a plane problem are defined in Table 17.2 [3].

17.5.3  governing equations For 2d ProBlems

Through the use of the principle of minimum potential energy, we can develop the expressions 
for a plane stress and plane strain element. For this purpose, the total potential energy Π = U−W 
(see Section 5.7) is expressed in terms of 2D element properties. Then, the minimizing condition, 
∂Π/∂{δ}e = 0, results in

 { }[ ]{ } = δF ke e e
 (17.12)

This is of the same form as obtained in Section 17.2 and {δ}e represents the element nodal displace-
ment matrix. However, the element stiffness matrix [k]e and the element nodal force matrix {F}e are 
now given by

 ∫[ ] [ ] [ ][ ]=k B D B dVe

V

T  (17.30)

 ∫ { }[ ]{ } =F N p sde
T

s

 (17.31)

where
p = the boundary surface force per unit area
s =  the boundary surface over which the forces p act
V = the volume of the element
T = the transpose of a matrix

We next assemble the element stiffness and nodal force matrices. This gives the following global 
governing equations for the entire member, the system equations:

 { }[ ]{ } = δF K  (17.17)

where

 F F K k
n

e

n

e

I I

∑ ∑[ ][ ]{ } { }= =  (17.18)

TABLE 17.2
Elastic Constants for 2D Problems
Quantity Plane Strain Plane Stress

λ
− ν
E

1 2
( )

( )( )
− ν

+ ν − ν
E 1

1 1 2

D12 v
ν
− ν1

D33
− ν1
2 ( )

− ν
− ν

1 2
2 1
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as before. Now, n represents the number of finite elements making up the member. Note that, in the 
preceding formulations, the finite element stiffness matrix has been derived for a general orientation 
of global coordinates (x, y). Equation (17.17) is therefore applicable to all elements. Hence, no trans-
formation from local to global equations is necessary. The general procedure for solving a problem 
by the FEM is already shown in Figure 17.5.

17.6  TRIANGULAR ELEMENT

We now develop the basic CST plane stress and strain element. Boundaries of irregularly shaped 
members can be closely approximated and the expressions related to the triangular elements are 
simple. The treatment given here is brief. Various types of 2D finite elements yield better solutions. 
Examples include linear strain triangular (LST) elements, triangular elements with additional side 
and interior nodes, rectangular elements with corner nodes, and rectangular elements with addi-
tional side modes [1, 4, 5]. The LST element has six nodes: usual corner nodes and three additional 
nodes conveniently located at the midpoints of the sides. Hence, the element has 12 unknown dis-
placements. The procedures for development of the equations for the LST element follow the same 
steps as those of the CST element.

17.6.1  disPlaCement FunCtion

Consider the triangular finite element i, j, m shown in Figure 17.11. The nodal displacement matrix 
{δ}e is given by Equation (17.21). The displacements u and υ throughout the element can be assumed 
in the following linear form:

 { }
( )
( )

=
υ












=

α + α + α
α + α + α













,

,
f

u x y

x y

x y

x ye

1 2 3

4 5 6

 (17.32)

where the α represents constants. The foregoing expressions ensure that the compatibility of 
 displacements on the boundaries of adjacent elements is satisfied.

The nodal displacements of the element are

 

= α + α + α υ = α + α + α

= α + α + α υ = α + α + α

= α + α + α υ = α + α + α

u x y x y

u x y x y

u x y x y

i i i i j j

j j j j i i

m m m m m m

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

 

x, u

y, υ υi

xi

yi

m

j

uii

(e)

FIGURE 17.11 Basic triangular element.
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Solving these equations gives [3]
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The quantity A represents the area of the triangle:

 ( ) ( )( )= − + − + − A x y y x y y x y y
1
2

i j m j m i m i j  (17.33)

and

 

= − = − = −

= − = − = −
= − = − = −

a x y y x a y x x y a x y y x

b y y b y y b y y

c x x c x x c x x

i j m j m j i m i m m i j i j

i j m j m i m i j

i m j j i m m j i

 (17.34)

Substituting Equation (a) into Equation (17.32), the displacement function is provided by

 { }{ } [ ]=












υ

υ

υ































= δf
N N N

N N N

u

u
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N
0 0 0

0 0 0e
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 (17.35)

in which
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( )
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m m m m

 (17.36)

The strain matrix is obtained by carrying Equation (17.35) into Equation (17.24):
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Introducing Equation (17.37) into Equation (17.25), we have
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or

 [ ] [ ][ ] =  B B B Bi j m  (17.38b)

where
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 (17.39)

Clearly, matrix [B] depends only on the element nodal coordinates, as seen from Equation (17.34). 
Hence, the strain (and stress) is observed to be constant, and as already noted, the element of 
Figure 17.11 is called a constant strain triangle.

17.6.2  stiFFness matrix

For an element of constant thickness f, the stiffness matrix can be obtained from Equation (17.30) 
as follows:

 [ ] [ ] [ ][ ]=K B D B tAe
T  (17.40)

This equation is assembled together with the elasticity matrix [D] and [B] given by Equations 
(17.28) and (17.38). Expanding the resulting expression, the stiffness matrix is usually written in a 
partitioned form of order 6 × 6. We point out that the element stiffness matrix is generally developed 
in most computer programs by performing the matrix triple products shown by Equation (17.40). 
The explicit form of the stiffness matrix is rather lengthy and given in the specific publications on 
the subject.
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17.6.3  element nodal ForCes due to surFaCe loading

The nodal force attributable to applied external loading may be obtained either by evaluating the 
static resultants or applying Equation (17.31). An expanded form of Equation (17.40), together with 
those expressions given for the nodal forces, characterizes the CST element. The unknown dis-
placements, strains, and stresses may now be determined, applying the general outline given in 
Figure 17.5. The basic procedure employed in the finite method using CST or any other element is 
illustrated in the next section.

17.7  PLANE STRESS CASE STUDIES

Here, we present four case studies limited to plane stress situations and CST finite elements. A 
plate under tension, a deep beam or plate in pure bending, a plate with a hole subjected to an axial 
loading, and a disk carrying concentrated diametral compression are the members analyzed. There 
are very few elasticity or exact solutions to 2D problems, especially for any but the simplest forms. 
As will become evident from the following discussion, the designer and stress analyst can reach a 
very accurate solution by applying proper techniques and modeling. Accuracy is usually limited 
by the willingness to model all the significant features of the problem and pursue the analysis until 
convergence is reached.

It should be mentioned that an exact solution is unattainable using the FEM, and we seek instead 
an acceptable solution. The goal is then the establishment of a finite element that ensures conver-
gence to the exact solution. The literature contains many comparisons among the various elements. 
The efficiency of a finite element solution can, in certain situations, be enhanced using a mix of 
elements. A denser mesh, for instance, within a region of severely changing or localized stress may 
save much time and effort.

Case Study 17.2 Steel Plate in Tension

A cantilever plate of depth h, length L, and thickness t supports a uniaxial tension load p as 
shown in Figure 17.12(a). Outline the determination of deflections, strains, and stresses.

Given: p = 32 MPa, E = 210 MPa, v = 0.3, t = 12.5 mm, L = 500 mm, h = 250 mm.

Assumption: The plate is divided into two CST elements.

Solution

The discretized plate is depicted in Figure 17.12(b). The origin of coordinates is placed at node 
1, for convenience; however, it may be located at any point in the x, y plane. The area of each 
element is

 ( )( )= = =. . .A hL
1
2

1
2

0 25 0 5 0 0625 m2 

y

4 3

21

F3x = 50 kN
a

b
F2x = 50 kN

x

p

L

h

(a) (b)

250 mm 

 500 mm

FIGURE 17.12 Cantilever plate: (a) before and (b) after being discretized.
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The statically equivalent forces at nodes 2 and 3, [ ]( )× =.32 250 12 5 /2 50 kN, are shown in the 
figure. For plane stress, elasticity matrix [D] is given by Equation (17.28).

Stiffness matrix. For element a, on assigning i = 1, j = 3, and m = 4, Equation (17.34) gives

 

= − = − =
= − = − =
= − = − = −
= − = − = −
= − = − =
= − = − =

. .

. .

. .

. .
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b y y
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0 25 0 0 25
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0 0 5 0 5

0 0 0

0 5 0 0 5

1 3 4

3 4 1

4 1 3

1 3 4

3 1 4

4 3 1

 (a)

Substitution of these and the given data into Equation (17.40), after performing the matrix mul-
tiplications, results in stiffness matrix [k]a. Similarly, for element b, assignment of i = 1, j = 2, and 
m = 3 into Equation (17.34) leads to

 

= − = − = −
= − = − =
= − = − =
= − = − =
= − = − = −
= − = − =

. .
. .

. .
. .

. .

b y y

b y y

b y y

c x x

c x x
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0 0 25 0 25

0 25 0 0 25

0 0 0

0 5 0 5 0

0 0 5 0 5

0 5 0 0 5

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

 

and [k]b is determined. The displacements u2, υ2 and u4, υ4 are not involved in elements a and b, 
respectively. So, before summing [k]a and [k]b to form the system matrix, rows and columns of zeros 
must be added to each element matrix to account for the absence of these displacements, as men-
tioned in Section 17.3. Finally, superimposition of the resulting matrices gives the system matrix [K].

Nodal displacements. The boundary conditions are u1 = υ1 = u4 = υ4 = 0. The force displace-
ment relationship of the system is
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Next, to compare the quantities involved, we introduce the results without going through the 
computation of the [K]. It can be verified [2] that the preceding derivations yield
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Stresses. For element a, carrying Equations (a) and (b) into (17.37), we obtain the strain 
matrix {ε}a. Equation (17.27), [D] {ε}a, then results in

 

σ
σ
τ



















=
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.
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32 16
9 632
0 077

MPa
x

y

xy
a

 

Element b is treated in a like manner.

Comments: Due to constant x-directed stress of 32 MPa applied on the edge of the plate, the 
normal stress is expected to be about 32 MPa in the element a (or b). The foregoing result for 
σx is therefore quite good. Interestingly, the support of the element a at nodes 1 and 4 causes a 
relatively high stress of σy = 9.632 MPa. Also note that the value of shear stress τxy is negligibly 
small, as anticipated.

Case Study 17.3 Stress Concentration in a Plate with a Hole in Uniaxial Tension

A thin plate containing a small circular hole of radius a is subjected to uniform tensile load of 
intensity σ0 at its edges, as shown in Figure 17.13(a). Apply the FEA to determine the theoretical 
stress-concentration factor.

y

Exact
solution

x
3σ0

σ0 = 42 MPa

σ0
202

elements

(c)

y

2a

σ0

σ0

(a)

L

x

h

h

L

σ0

(b)

FIGURE 17.13 (a) Circular hole in a plate under uniaxial tension, (b) one-quadrant plate model, and 
(c)  uniaxial stress (σx) distribution.
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709Finite Element Analysis in Design

Given: L = 6 m, a = 50 mm, h = 500 mm, σ0 = 42 MPa, E = 140 GPa, v = 0.3.

Solution

Owing to the symmetry, only any one-quarter of the plate needs to be analyzed (Figure 17.13(b)). 
The solution for the case in which the quarter plate discretized to contain 202 CST elements 
is given in [1]. The roller boundary conditions are also indicated in the figure. The values 
of the normal edge stress σx obtained by the FEM and the theory of elasticity are plotted in 
Figure 17.13(c) for comparison. We see from the figure that the agreement is reasonably good. 
The stress-concentration factor for σx is Kt ≈ 3σ0/σ0 = 3.

PROBLEMS

Sections 17.1 through 17.3
 17.1 A fixed-end composite rod is acted upon a concentrated load P at node 2 as illustrated in 

Figure P17.1. The aluminum rod 1–3 has cross-sectional area A and modulus of elasticity 
E. The copper rod 3–4 is with cross-sectional area 2A and elastic modulus E/2. Find:

 a. The system stiffness matrix.
 b. The displacements of nodes 2 and 3.
 c. The nodal forces and reactions at the supports.
 17.2 Consider a stepped steel bar 1–4 held between rigid supports and that carries a concen-

trated load P at node 3 as illustrated in Figure P17.2. Determine:
 a. The system stiffness matrix.
 b. The displacements of nodes 2 and 3.
 c. The nodal forces and reactions at supports.
 17.3 A stepped brass rod 1–5 is built in at the left end and given a displacement ∆ at the right 

end as depicted by the dashed lines in Figure P17.3. Find:
 a. The system stiffness matrix.
 b. The displacements of nodes 2, 3, and 4.
 c. The nodal forces and reactions at support.

L/3 L/3 L/3
321

1 2 3 4P

y

x

CopperAluminum

FIGURE P17.1 

A 3A/4 A/2

4321 P

321
L 3L/4 5L/8

FIGURE P17.2 
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710 Mechanical Engineering Design

 17.4 The bar element 1–3 of a plane linkage mechanism shown in Figure P17.4 with length L, 
cross-sectional area A, and modulus of elasticity E is oriented at an angle θ counterclock-
wise from the x-axis. Find:

 a. The global stiffness matrix of the element.
 b. The local displacements υ, ,u u1 1 3 and υ3 of the element.
 c. The axial stress in the element.
  Given: u1 = 1.5 mm, υ1 = 1.2 mm, u3 = −2.2 mm, υ3 = 0, θ = 30°, A = 1200 mm2, L = 1.6 m, 

E = 72 GPa.
  Assumption: The bar is made of a 2014-T6 aluminum alloy.
 17.5 Resolve Problem 17.4, for a case in which an ASTM-A36 structural steel bar element is 

oriented at an angle θ = 60° counterclockwise from the x-axis.
 17.6 Figure P17.6 shows a plane truss containing five members each having axial rigidity AE 

supported at joints 2, 3, and 4. What is the global stiffness matrix for each element?
 17.7 A planar truss consisting of five members is supported at joints 1 and 4 as shown in 

Figure P17.7. Determine the global stiffness matrix for each element.
  Assumption: All bars have the same axial rigidity AE.
 17.8 through 17.10 The plane truss is loaded and supported as shown in Figures P17.8 through 

P17.10. Determine:
 a. The global stiffness matrix for each element.
 b. The system matrix and the system force-displacement equations.
  Assumption: The axial rigidity AE is the same for each element.
 17.11 A vertical load 10 kN acts at joint 2 of the two-bar truss 123 shown in Figure P17.11. 

Determine:
 a. The global stiffness matrix for each member.
 b. The system stiffness matrix.
 c. The nodal displacements.
 d. The reactions.
 e. The axial forces in each member and show the results on a sketch of each member.
  Assumption: The axial rigidity AE = 30 MN is the same for each bar.

A AA/2 A/2

2 3

3
4

∆

54

1

1 2

L L/2 L L/2

FIGURE P17.3 
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F13

1
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3

x

yy–
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711Finite Element Analysis in Design

 17.12 Redo Problem 17.11 for the structure shown in Figure P17.12, with A = 2(103) mm2 and 
E = 200 GPa.

 17.13 Solve Problem 17.11 for the structure shown in Figure P17.13, with AE = 10 MN for 
each bar.
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6 m 4.5 m

FIGURE P17.7 
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713Finite Element Analysis in Design

 17.14 Resolve Problem 17.11 for the truss shown in Figure P17.14, with AE = 125 MN for each 
member.

 17.15 The two-bar plane structure shown in Figure P17.15, due to loading P = 100 kN, settles an 
amount of u1 = 25 mm downward at support 1. Determine:

 a. The global stiffness matrix for each member.
 b. The system matrix.
 c. The nodal displacements.
 d. The reactions.
 e. The axial forces in each member.
  Given: E = 210 GPa, A = 5 × 10−4 m2 for each bar.
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714 Mechanical Engineering Design

 17.16 A plane truss is loaded and supported as shown in Figure P17.16. Determine:
 a. The global stiffness matrix for each member.
 b. The system stiffness matrix.
 c. The nodal displacements.
 d. The reactions.
 e. The axial forces in each member.
  Assumption: The axial rigidity AE = 20 MN is the same for each bar.

Sections 17.4 through 17.7
 17.17 A steel beam supported by a pin, a spring of stiffness k, and a roller at points 1, 2, and 3, 

respectively, is acted upon by a concentrated load P at point 2 as shown in Figure P17.17 
Calculate:

 a. The nodal displacements.
 b. The nodal forces and spring force.
  Given: L = 4 m, P = 20 kN, EI = 12 MN · m2, k = 180 kN/m.
 17.18 A cantilever aluminum beam is supported at its free end by a spring of stiffness k and 

carries a concentrated load P as shown in Figure P17.18. Calculate:
 a. The nodal displacements.
 b. The nodal forces and spring force.
  Given: L = 6.7 m, P = 9 kN, EI = 65 (106) N · m2, k = 210 kN/m.
 17.19 A propped cantilever beam of constant flexural rigidity EI with a vertical load of 50 kN 

at its midspan is shown in Figure P17.19. Determine
 a. The stiffness matrix for each element.
 b. The system stiffness matrix and nodal displacements.
 c. The member end forces and moments.
 d. Sketch the shear and moment diagrams.
  Given: EI = 70 × 104 N · m2, L = 3 m.
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P

k
1

1 2

2
3

LL

FIGURE P17.17 

ISTUDY

www.konkur.in

Telegram: @uni_k



715Finite Element Analysis in Design

 17.20 A prismatic steel beam fixed at end 1, simply supported at point 2, carries a load P at its 
free end 3 where it is supported on a spring of stiffness k (Figure P17.20). Find:

 a. The stiffness matrix for each element.
 b. The system matrix.
 c. The nodal displacements υ3, θ3, and θ2.
 17.21 A fixed-end stepped steel beam is acted upon by a concentrated center load P that causes 

a vertical deflection at the midpoint 2 as shown by the dashed lines in Figure P17.21. Find, 
in terms of EI, L, and ∆, as required:

 a. The load P.
 b. The slope at point 2.
 17.22 Verify the results introduced in Case Study 17.3 using a computer program with CST 

elements.
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716 Mechanical Engineering Design

 17.23 A steel plate with a hole is under a uniform axial tension loading P (Figure P17.23).
 a. Analyze the stresses using a computer program with the CST elements.
 b. Compare the stress-concentration factor Kt, obtained in Part (a) with that found from 

Figure C.5.
  Given: P = 4 kN and plate thickness t = 10 mm.
 17.24 Redo Problem 17.23 for the plate shown in Figure P17.24. Compare the stress- concentration 

factor Kt, determined in Part (a) with that found from Figure C.1.
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FIGURE P17.23 Dimensions are in millimeters.
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18 Case Studies in 
Machine Design

18.1  INTRODUCTION

As observed earlier, design is an iterative process. When presented with a design problem statement, 
some simplifying assumptions are necessary from the start. Engineering software should be used 
for effective component design. A general case study in component or machine design may include 
the following: a step-by-step proposal of the product, the relevant trade study, the configuration 
development, the detailed design and construction process, and the prototype tests. Thus, a case 
study presents a product in action. It covers lessons learned during the development of a device, 
such as product goals, market needs, and engineering/manufacturing relationships. All of these can 
contribute to a continuous improvement program, resulting in a superior product [1, 2].

We shall here present two case studies in preliminary design that are larger scale than those intro-
duced in preceding chapters. These case studies show how the design of any one component may be 
affected by the design of related parts. Because of space limitations, only certain important aspects 
of these studies are discussed. A floor crane with electric winch and a high-speed cutter are the sys-
tems analyzed. Further information on types, pricing, maintenance, and lifespan of these machines 
can be found on manufacturer websites. Clearly, advancing from the design of individual parts to 
the design of a complete machine is a major step. The objective of this chapter is to help prepare the 
reader for attempting this step.

18.2  FLOOR CRANE WITH ELECTRIC WINCH

A crane is a type of machine that is generally equipped with a hoist, winding drum, cable or chain, 
and sheaves. Coming in many forms, cranes can be employed both to lift or lower materials and to 
move them horizontally. A crane creates a mechanical advantage and hence moves loads beyond the 
normal capability of a human. Such machines are often employed in the transport industry for the  
loading/unloading of freight, in the construction industry for the movement of materials, and in  
the manufacturing industry for the assembly of heavy equipment.

The earliest cranes were constructed from wood, with cast iron and steel taking over during the 
Industrial Revolution. They were powered by men or animals and employed for the construction of 
tall buildings. Larger cranes were developed using treadwheels that permitted the lifting of heavier 
weights. In the Middle Ages, harbor cranes were introduced to load and unload ships and assist 
with their construction—some were built into stone towers for extra strength and stability. For many 
centuries, hoists in watermills and windmills were driven by the harnessed natural power. The first 
mechanical power was provided by steam engines, which led to the earliest steam crane in the early 
nineteenth century. Many remained in use well into the late twentieth century.

Modern cranes, which commonly include an electric winch, use internal combustion engines 
or electric motors with hydraulic systems in order to provide a much greater lifting capability than 
was previously possible. Cranes exist in various forms, each tailored to a specific use. The following 
photographs represent some examples of modern cranes. Sizes range from a small overhead crane, 
used in workshops, to a huge tower crane, used for constructing tall structures. Minicranes are 
also employed to facilitate construction of high buildings by reaching tight spaces. Larger floating 
cranes are often used to build oil rigs and salvage sunken ships. They contain a stationary frame 
with an I-beam that is suspended from a trolley, which is designed for easy moving in a straight or 
curvilinear direction.
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718 Mechanical Engineering Design

    

Typical counterbalance floor cranes with electric winches.

This section is concerned with a floor crane with electric winch supported by solid plastic wheels 
and used for lifting and moving loads in the laboratory or machine shop (see Figure 18.1). It has 
electric power capacity to lift a load (P). The concrete or sand counterbalance weight (W) on the 
base prevents the crane from tipping forward when the crane is pushed by a horizontal force (F) 

Pulley

Torque
limiter

Gear
box

Cover

Motor

Concrete or sand
counterbalance

Pillow
block

bearing

Power cord
retractor

Control
switch

Frame

Arm
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Swivel caster
with brake
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D

A

A

B

C

Hook

FIGURE 18.1 Schematic drawing of floor crane with electric winch.
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719Case Studies in Machine Design

acting at a height (H) from the ground. For safety purposes, the drive system includes a torque lim-
iter coupled to a drum and allows the crane to lift no more than the working load (P).

Other key features include the following:

• All welded robust construction.
• Manufactured from hollow steel box sections for combined strength and lightness.
• Heavy-duty swivel hook.
• Fitted with hard wearing polyurethane front wheels and swivel casters on the rear (with 

brakes) for easy movement of the crane.
• Offers added productivity and ergonomic advantages over manual models.
• In addition to precision, allows the operator freedom to work close to machines or over 

obstructions.

Case Study 18.1 Entire Frame Load Analysis

Consider the crane winch depicted in Figure 18.1. The entire frame of this machine is illustrated 
in Figure 18.2. Determine:

 a. The design load on the front and rear wheels.
 b. The factor of safety nt for the crane tipping forward from the loading.

x

y

z

D

P

b

t
h

F

W2L2

W2

L1

C

B

W1

RB
L3/4

L4

WC

W3

W3
L3

W5

W4

A a

RA

L5

RA

RB

A

L3

B
2
1

H

FIGURE 18.2 Simple sketch of the crane winch frame shown in Figure 18.1.
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Given: The geometry of each element is known. The cable and hook are rated at 15 kN, which 
gives a safety factor of 5. The 85 mm diameter drum is about 20 times the cable diameter. The 
crane frame carries the load P, counterweight WC, weights of parts Wi (i = 1, 2, 3, 4, 5), and the 
push force F, as shown in Figure 18.2. The frame is made of b = 50 mm and h = 100 mm struc-
tural steel tubing of t = 6 mm thickness with weight w Newton per meter (Table A.4).

Data:

P = 3 kN F = 100 N WC = 2.7 kN

w ≈ 130 N/m a = 0.8 m H = 1 m

L1 = 1.5 m L2 = 2 m L3 = 1 m

L4 = 0.5 m L5 = 0.65 m

and

 .( )= = = ≈ =W wL W wL130 1 5 195 N 260 N1 1 2 2  

 .= = =W W W130 N 65 N 84 5 N3 4 5  

For dimensions and properties of a selected range of frequently used crane members, refer 
to manufacturers’ catalogs.

Assumptions:

 1. A line speed of 0.12 m/s is used, as suggested by several catalogs for lifting. The efficiency 
of the speed reduction unit or gearbox is 95%. The electric motor has 0.5 hp capacity to 
lift 3 kN load for the preceding line speed and efficiency and includes an internal brake to 
hold the load when it is inoperative. The gear ratios (see Case Study 18.4) satisfy the drive 
system requirements.

 2. Only the weights of concrete counterbalance and main frame parts are considered. All 
frame parts are weld connected to one another.

 3. Compression forces caused by the cable running along the members are ignored. All forces 
are static; F is x directed (horizontal) and remaining forces are parallel to the xy plane. Note 
that the horizontal component of the reaction at B equals F/2, not indicated in Figure 18.2.

Solution

See Figure 18.2; Section 1.9.

 a. Reactional forces RA and RB acting on the wheels are determined by applying conditions of 
equilibrium, Σ Mz = 0 at B and Σ Fy = 0, to the free-body diagram shown in the figure with 
F = 0. Therefore,

 

= + + + +





= − + + + + + + +

R P
L

L
W

L

L
W W W

R R P W W W W W W

1
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1
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1
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1
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1
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1
2

1
2

1
2
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1
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1
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3 5
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 (18.1)

Substitution of the given data into the foregoing results in

 . . .( ) ( )( ) ( ) ( )= + + + +





=R
1
2

3000 1 5
1
2

195 1 5
1
4

2700 130
1
2
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.

( ) ( )

( ) ( ) ( )

= − + + + +

+ + + =

R 2747
1
2

3000
1
2

195 260 130

1
2

65
1
2

2700
1
2

84 5 665 N

B

 

Note that, when the crane is unloaded (P = 0), Equations (18.1) give

 = =R R497 N 1415 NA B  

Comment: Design loads on front and rear wheels are 2747 N and 1415 N, respectively.

 b. The factor of safety nt is applied to tipping loads. The condition ΣMz = 0 at point A is

 

( )

( )

− +  = −



 + + +

+ +

n P L L FH W L L W L W L W L

W W L

1
2

2
3
4

1
2

2

t C1 3 1 3 1 2 3 4 3 3

3 5 3  (18.2)

Introducing the given numerical values,

 

[ ]

[ ]

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

+ = + + +

+ +

. .

.

n 3000 0 5 100 1 195 0 25 2 260 1 65 1
3
4

2700 1

1
2

2 130 84 5 1

t

 

from which nt = 1.77.

Comments: For the preceding forward tipping analysis, the rear wheels are assumed to be 
locked and the friction is taken to be sufficiently high to prevent sliding. Side-to-side tipping 
may be checked similarly.

Case Study 18.2 Design Analysis of Arm CD

The arm CD of a winch crane is represented schematically in Figure 18.2. Determine the maxi-
mum stress and the factor of safety against yielding. What is the deflection under the load using 
the method of superposition?

Given: The geometry and loading are known from Case Study 18.1. The frame is made of 
ASTM-A36 structural steel tubing. From Table B.1,

 = =S E250 MPa 200 GPay  

Assumptions: The loading is static. The displacements of welded joint C are negligibly small; 
hence, part CD of the frame is considered a cantilever beam.

Solution

See Figures 18.2 and 18.3; and Table B.1, Section 3.7.
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We observe from Figure 18.2 that the maximum bending moment occurs at points B and C 
and MB = MC = M. Since two vertical beams resist moment at B, the critical section is at C of 
cantilever CD carrying its own weight per unit length w and concentrated load P at the free end 
(Figure 18.3).

The bending moment M and shear force V at the cross-section through the point C, from 
static equilibrium, have the following values:

 

. .( ) ( )( )

= +

= + = ⋅

M PL wL
1
2

3000 1 5
1
2

130 1 5 4646 N m

1 1
2

2

 

 =V 3 kN 

The cross-sectional area properties of the tubular beam are

 
. ( )

( )( )= − − −

= × − × = −

A bh b t h t2 2

50 100 38 88 1 66 10 m3 2
 

 

.( ) ( )

( )( )

( )( )

= − −

= × −  = −

I bh b t h t
1

12
1

12
2 2

1
12

50 100 38 88 2 01 10 m

3 3

3 3 6 4

 

where I represents the moment of inertia about the neutral axis.
Therefore, the maximum bending stress at the top of outer fiber of section through C equals

 
.

.
.max ( )

( )σ = = =−
Mc

I

4646 0 05

2 01 10
115 6 MPa

6
 

L1 = 1.5 m

Weight per length
w = 130 N/m

b = 50 mm

h = 100 mm

P = 3 kN

t = 6 mm

N.A.

x

y

D
z

C

FIGURE 18.3 Part CD of the crane arm shown in Figure 18.1.
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where the shear strain is zero. The highest value of the shear stress occurs at the neutral axis. 
Referring to Figure 18.3 and Equation (3.21), the first moment of the area about the NA is

 

/

. ( )

( )

( )( ) ( )( )( )

= 









 − − −





−





= − = −

Q b
h h

b t
h

t
h t

2 4
2

2
2
2

50 50 25 38 44 22 25 716 10 m

max

6 3

 
(18.3)

Hence,

 
.

. .
.

max
max

( )

( )
( )

τ =

=
×

=

VQ

I t2

3000 25 716
2 01 2 0 006

3 199 MPa

 

The factor of safety against yielding is then equal to

 
.

.
max

=
σ

= =n
S 250

115 6
2 16y  

This is satisfactory because the frame is made of average material operated in an ordinary envi-
ronment and subjected to known loads.

Comment: At joint C, as well as at B, a thin (about 6 mm) steel gusset should be added at each 
side (not shown in the figure). These enlarge the weld area of the joints and help reduce stress in 
the welds. Case Study 18.9 illustrates the design analysis of the welded joint at C.

When the load P and the weight w of the cantilever depicted in the figure act alone, displace-
ments at D (from cases 1 and 3 of Table A.8) are /PL EI31

3  and /wL EI81
4 , respectively. It follows 

that the deflection υD at the free end owing to the combined loading is

 υ = − −PL

EI

wL

EI3 8
D

1
3

1
4

 

Substituting the given numerical values into the preceding expression, we have

 .
. .

.

( )( )
( ) ( )υ = − +











= −

1

200 10 2 01

3000 1 5
3

130 1 5
8

8 6 mm

D 3

2 4

 

Here, the minus sign means a downward displacement.

Comment: Since υD ≪ h/2, the magnitude of the deflection obtained is well within the accept-
able range (see Section 3.7).

Case Study 18.3 Deflection of Arm cD due to Bending and Shear

A schematic representation of a winch crane arm CD is shown in Figure 18.3. Find the deflec-
tion at the free end D applying the energy method.

Given: The dimensions and loading of the frame are known from Case Study 18.1.
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Data:

 , . ,= =E G200 GPa 76 9 GPa  

 . ( )= −I 2 01 10 m6 4 

Assumption: The loading is static.

Requirement: Deflections owing to the bending and transverse shear are considered.

Solution

See Figure 18.3; Table 5.1; Section 5.5.
The form factor for shear for the rectangular box section, from Table 5.1, is

 α = =A

A

A

htweb

 

Here h is the beam depth and t represents the wall thickness. The moment and shear force, at an 
arbitrary section x distance from the free end of the beam, are expressed as follows:

 ,= − = +M Px wx V P wx
1
2

2  

Therefore,

 ,∂
∂

= − ∂
∂

=M

P
x

V

P
1 

After substitution of all the preceding equations, Equation (5.36) becomes

 

∫ ∫

∫

∫ ( )
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∂

+ α ∂
∂

= +





+ +

EI
M

M

P
dx

AG
V

V

P
dx

EI
Px wx x dx

htG
P wx dx

1 1

1 1
2

1
1

D

L L

L

L

0 0

0

2

0

1 1

1

1

 

Integrating,

 υ = +






+ +




EI

PL wL

htG
PL

wL1
3 8

1
2

D
1
3

1
4

1
1
2

 (18.4)

Substituting the given numerical values into this equation, we obtain

 

.
. .

.
. .

. . .

( )

( )
( ) ( )

( )
( ) ( )

( )

υ =
×

+










+
×

+










= + =−

1
200 10 2 01

3000 1 5
3

130 1 5
8

1

100 6 76 9 10
3000 1 5

130 1 5
2

8 6 0 1 10 8 7 mm

D 3

3 4

3

2

3
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Since P is vertical and directed downward, υD represents a vertical displacement and is positive 
downward.

Comment: If the effect of shear force is omitted, .υ = 8 6 mmD ; the resultant error in deflection 
is about 1.2%. The contribution of shear force to the displacement of the frame can therefore 
be neglected.

Case Study 18.4 Design of the Spur Gear Train

The spur gearbox of the crane winch (Figure 18.1) is illustrated in Figure 18.4. Analyze the 
design of each gear set using the AGMA method and Table 18.1.

Given: The geometry and properties of each element are known. A 0.5 hp (0.354 kW) 1725 rpm 
electric motor at 95% efficiency delivers 0.475 hp to the 85 mm diameter drum. The maximum 
capacity of the crane is P = 3 kN. All gears have ϕ = 20° pressure angle. Shafts 1 or 2, 3, and 4 
are supported by 12, 19, and 25 mm bore flanged bearings, respectively.

Assumptions:

 1. The pinions are made of carburized 55 RC steel. Gears are Q&T, 180 Bhn steel. Hence, by 
Tables 11.6 and 11.11, we have

Pinions: St = 414 MPa, Sc = 1310 MPa

Gears: St = 198 MPa, Sc = 620 MPa

Cover

Gear 4

Shaft 3

Shaft 2

Gear 3

Gear 2 Gear 1

Gear 5

Flanged bearing
19 mm bore

Flanged bearing
25 mm bore

Output shaft 4

Gear 6
Gear housing

Flanged bearing
12 mm bore

A B

Input shaft 1
12 mm OD × 6 mm ID
    hp, 1725 rpm1
2

FIGURE 18.4 Gearbox of the winch crane shown in Figure 18.1.
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726 Mechanical Engineering Design

 2. All gears and pinions are high-precision shaved and ground; manufacturing quality cor-
responds to curve A in Figure 11.15.

 3. Loads are applied at the highest point of single-tooth contact.

Design decisions: The following reasonable values of the bending and wear strength factors for 
pinions and gears are chosen (from Tables 11.4, 11.5, 11.7, 11.8, 11.10):

 . , . .( )= =K K1 5 1 0 from Section 11 9o s  

 . , .= =K K1 6 1 1m L  

 . . , . ,( )= =K K1 0 from Section 11 9 1 25T R  

 . ( . ) ,( )= =C C1 0 by Equation 11 40 191 MPaH p  

 . . ,( )=C 1 25 from Section 11 11f  

 . .( )=C 1 1 from Figure 11 19L  

Solution

See Figures 18.1 and 18.4; and Sections 11.9 and 11.11.
The operating line velocity of the hoist at the maximum load is, by Equation (1.16),

 
. . . .( )= = =V
P

745 7 hp 745 7 0 475
3000

0 12 m/s 

The operating speed of the drum shaft is

 
.

.
( )( )

( )=
π

=
π

≈n
V

d

0 12 60
0 085

27 rpm 

This agrees with the values suggested by several catalogs for light lifting. The gear train in 
Figure 18.4 fits all the parameters in the lifting system.

Gear set I: (Pair of gears 1 and 2. Figure 18.4)
The input torque and the transmitted load on gear 1 are

 
. .( )= = = ⋅T

n

7121 hp 7121 0 5
1725

2 06 N m1
1

 

TABLE 18.1
Data for the Gearbox of Figure 18.4

Module m (mm) Number of Teeth N Pitch Diameter d (mm) Face Width b (mm)

Gear 1 (pinion) 1.3 15 20 14

Gear 2 1.3 60 80 14

Gear 3 (pinion) 1.6 18 28.8 20

Gear 4 1.6 72 115.2 20

Gear 5 (pinion) 2.5 15 37.5 32

Gear 6 2.5 60 150 32
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.

.
( ) ( )= = =F

T

d

2 2 06 2
0 02

206 Nt1
1

1

 

The radial load is then

 tan tan= φ = ° =F F 206 20 75 Nt t1 1  

The pitch-line velocity is determined as

 . .( )= π = π 



 = =V d n 0 02

1725
60

1 81 m/s 356 fpm1 1 1  

Then, from curve A of Figure 11.15, the dynamic factor is

 .= + =υK
78 356

78
1 11 

Equation (11.37b) with mg = 4 gives

 
sin cos .= ° °

+
=I

20 20
2

4
4 1

0 129 

By Figure 11.16(a), we have

 . ,( )= = =J N N0 25 for pinion 15 and 60p g  

 . ,( )= = =J N N0 42 for gear 60 and 15g p  

Gear 1 (pinion). Substituting the numerical values into Equations (11.35) and (11.36)

 

.

. . .
.

. .
.

.

( )( ) ( )
( )

σ =

=

=

υ

−

F K K
bm

K K

J

1 0

206 1 5 1 11
1 0

14 1 3 10
1 0 1 6

0 25

120 6 MPa

t o
s m

1

6  

 
.

. .
.( )

( )( )σ = = =S K

K K

414 1 1
1 0 1 25

364 3 MPat L

T R
all  

Similarly, Equations (11.42) and (11.44) lead to

 . . . . .
.

.

/

/

( ) ( )( ) ( )
( )

σ = 





=










=

υ

−

C F K K
K

bd

K C

I

191 10 206 1 5 1 11
1 0

14 20 10
1 6 1 25

0 129

832 4 MPa

c p tl o
s m f

1 2

3
6

1 2
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. .

. .,
( )( )

( )( )σ = = =C C S

K K

1310 1 1 1 0
1 0 1 25

1153 MPac
L H e

T R
all  

Gear 2. We have Ft2 = Ft1 = 206 N. Substitution of the data into Equations (11.35) and (11.36) 
gives

 

.

. . .
.

. .
.

.

( )( ) ( )
( )

σ =

=

=

υ

−

F K K
bm

K K

J

1 0

206 1 5 1 11
1 0

14 1 3 10
1 0 1 6

0 42

71 79 MPa

t o
s m

2

6  

 
.

. .
.,

( )
( )( )σ = = =S K

K K

1980 1 1
1 0 1 25

174 2 MPac
t L

T R
all  

In a like manner, through the use of Equations (11.42) and (11.44),

 . . . . .
.

.

/

/

( ) ( )( ) ( )
( )

σ = 





=










=

υ

−

C F K K
K

bd

K C

I

191 10 206 1 5 1 11
1 0

14 80 10
1 6 1 25

0 129

416 2 MPa

c p t o
s m f

2

1 2

3
6

1 2

 

 
. .

. .
.

,

( )( )
( )( )

σ =

= =

S C C

K K

620 1 1 1 0
1 0 1 25

545 6 Pa

c
e L H

T R
all

 

Comment: Inasmuch as σ < σall and σc < σc,all, the pair of gears 1 and 2 is safe with regard to the 
AGMA bending and wear strengths, respectively.

Gear sets II and III: (Pairs of gears 3–4 and 5–6. Figure 18.4)
Shaft 2 rotates at the speed

 = = 



 ≈n n

N

N
1725

15
60

431 rpm2 1
1

2

 

Hence, for gear 3 (pinion), we have

 
. .( )= = = ⋅T

n

7121 hp 7121 0 5
431

8 261 N m3
2

 

 
.
.

.( ) ( )= = =T
T

d

2 8 261 2
0 0288

573 7 Nt3
3

3

 

 . tan .= ° =T 573 7 20 208 8 Nr3  
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 . .( )= π = π 



 =V d n 0 0288

431
60

0 65 m/s3 3 3  

Shaft 3 runs at

 = = 



 ≈n n

N

N
431

18
72

1083 2
3

4

 

It follows for gears 5 (pinion) and 6 that

 
. .( )= = ⋅T

7121 0 5
108

32 97 N m5  

 
.
.

( )= = =F F
32 97 2
0 0375

1758 Nt t5 6 

 tan .= ° = =F F1758 20 639 9 Nt r5 6 

 . .( )= π = π 



 = =V d n V0 0375

108
60

0 21 m/s5 5 3 6 

The output shaft rotates at

 = = 



 ≈n n

N

N
108

15
60

27 rpm4 3
5

6

 

The speed ratio between the output and input shafts (or gears 6 and 1) of the spur gear train 
can now be obtained as

 

= = −





−





−





= −



 −



 −



 = −

r
n

n

N

N

N

N

N

N

15
60

18
72

15
60

1
64

s
4

1

1

2

3

4

5

6
 

Here, the minus sign means that the pinion and gear rotate in opposite directions.

Comment: Having the tangential forces and pitch-line velocities available, the design analysis 
for gear sets 2 and 3 can readily be made by following a procedure identical to that described 
for gear set 1.

Case Study 18.5 Gearbox Shafting Design

Figure 18.5 shows the input shaft of the crane gearbox, supported in the gearbox by bearings A 
and B and driven by electric motor. Determine

 a.  The factor of safety n for the shaft using the maximum energy of distortion theory incor-
porated with the Goodman criterion.

 b.  The rotational displacements or slopes at the bearings.
 c.  The stresses in the shaft key.
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Given: The geometry and dimensions of the hollow shaft and square shaft key are known.

Data: Refer to Figure 18.5(a) and Case Study 18.4.

 , . ,F F T206 N 75 N 2 06 N mt r= = = ⋅  

 , , ,= = = ⋅a b L66 mm 84 mm 150 N m  

 , , ,= = =d d D6 mm 20 mm 12 mmp  

 . , ,= =w L2 4 mm 25 mmk  

 .( )= π − =I D d
64

954 3 mm4 4 4 

The operating environment is room air at a maximum temperature of 50°C.

Assumption: Bearings act as simple supports.

Gear 1
(pinion)

84 mm

2.77 N · m

7.62 N · m

2.06 N · m

66 mm

C

TLk

Fr

dp

Ft

B
x

x

x

x

x

T

B

RBz = 90.6 N

RBy = 33 N

206 N75 NRAz = 115.4 N

RAy = 42 N
T = 2.06 N · m

ba

A

y

A

Mz

My

T

C
z

(a)

(b)

(c)

L

y

D
d

w
+

Fr

Input shaft

FIGURE 18.5 Drive shaft supported in the gearbox of the winch crane shown in Figure 18.1: (a) shaft layout, 
(b) loading diagram, and (c) moment and torque diagrams.
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Design Decisions:
 1. The shaft and shaft key are made of 1030 CD steel with machined surfaces:

 , .( )= =S S520 MPa 440 MPa from Table B 3u y  

 =E 210 GPa 

 2. At the keyway, Kf = 2.
 3. The shaft rotates and carries steady loading at normal temperature.
 4. The factor of safety is n = 3 against shear of shaft key.
 5. A survival rate of 99.9% is used.

Solution

See Figure 18.5; Table A.8, Section 9.5.

 a. The reactions at A and B, as determined by the conditions of equilibrium, are indicated 
in Figure 18.5(b). The moment and torque diagrams are obtained in the usual manner and 
drawn in Figure 18.5(c). Observe that the critical section is at point C. We have

 . . .
/

( ) ( )= +  = ⋅M 2 77 7 62 8 11 N mC
2 2 1 2

 

 .= ⋅T 2 06 N mC  

The mean and alternating moments and torques, by Equation (9.10), are then

 .= = ⋅M M0 8 11 N mm a  

 .= ⋅ =T T2 06 N m 0m a  

The modified endurance limit, through the use of Equations (7.1) and (7.6) and referring to 
Section (7.7), is

 =






′S C C C C
K

S
1

e f r s t
f

e  

where
Cf = 4.51(520−0·265) = 0.86
Cr = 0.76 (by Table 7.3)
Cs  ≈ 0.85 (using Equation 7.9)
Ct = 1
Kf = 2

 . ( )′ = =S 0 5 520 260 MPae  (from Equation (7.1))

Hence,

 . . . .( )( )( )( ) ( )= 



 =S 0 86 0 75 0 85 1

1
2

260 71 27 MPae  
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Since the loading is steady, the shock factors Ksb = Kst = 1 by Table 9.1.
Substituting the numerical values into Equation (9.12) and replacing D3 with D3[l – 

(d/D)4], we obtain

 
. /

.
.

.
/

( )
( ) ( )

( )

=
π − 

× + ×



 +











n

520 10 32

0 012 1 6 1

0
520 8 11

71 27
3
4

2 06

6

3 4

2
2

1 2
 

from which

 .=n 1 4 

 b. The slopes at ends A and B (Figure 18.5b) are given by Case 6 of Table A.8. Note that L2 − 
b2 = (L + b)(L − b) = (L + b)a and similarity L2 − a2 = (L + a)b. Introducing the given data, the 
results are

 
.

. .

( )
( )

( )

( )( )( )
( )( )

θ = − +

= − +
×

= − = − °−

F ab L b

EIL6

206 66 84 150 84

6 210 10 954 3 150

1 482 10 rad 0 085

A
t

3

3

 

 
.

. .

( )
( )

( )( )( )
( )( )

( )θ = − +

= +
×

= = °−

F ab L a

EIL6

206 66 84 150 66

6 210 10 954 3 150

1 368 10 rad 0 078

B
t

3

3

 

where a minus sign means a clockwise rotation.

Comments: Inasmuch as the bearing and gear stiffnesses are ignored, the negligibly small 
values of θA and θB estimated by the preceding equations represent higher angles than the 
true slopes. Therefore, self-aligning bearings are not necessary.

 c. The compressive forces acting on the sides of the shaft key equal Ft = 206 N (Figure 18.5). 
The shear stress in the shaft key is

 
. .

.( )( )τ = = =F

wL

206
0 0024 0 025

3 433 MPat

k
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We have, from Equation (6.20),

 . . .( )( )= = =S S0 577 0 577 440 253 9 MPays y  

The allowable shear stress in the shaft key is

 
. .τ = = =S

n

253 9
3

84 63 MPays
all  

Since τall ≫ τ, shear should not occur at shaft key. We obtain the same result on the basis of 
compression or bearing on key (see Section 9.9).

Comment: On following a procedure similar to that in the preceding solution, the design of 
the remaining three shafts and the associated keys in the gearbox of the winch crane can be 
analyzed in a like manner.

Case Study 18.6 Selection of Gearbox Shaft and Bearing

Figure 18.6 shows a flanged ball bearing of the input shaft in the gearbox (see Case Study 18.4) 
of a winch crane. Analyze the load-carrying capacity of the bearing.

Given: The shaft has a 12 mm diameter and operates at 1725 rpm. Rating life is 30 kh.

Assumptions: Thrust loads are negligible. Bearings at both ends of the shaft are taken to be 
identical 02-series deep groove and subjected to light-shock loading. The inner ring rotates.

Solution

See Figures 18.5, 18.6; and 18.4; Tables 10.4, 10.6, and 10.8; Section 10.13.
Referring to Figure 18.5(b), the forces acting on bearings at the shaft end are

 . .
/

( ) ( )= +  =R 42 115 4 122 8 NA
2 2 1 2

 

 . .
/

( ) ( )= +  =R 33 90 6 96 42 NB
2 2 1 2

 

Since RA > RB, we analyze the bearing at the left end A of the shaft. Through the use of Equation 
(10.27) with axial thrust Fa = 0, the equivalent radial load is

12 mm

1725 rpm +

+

FIGURE 18.6 Flanged ball bearing at the left end of the input shaft in the gearbox of a winch crane shown 
in Figure 18.1.
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 =P K XVFs r  

Here,
 .=F 122 8 Nr  

 . .( )=K 1 5 from Table 10 8s  

 . , .( )= =X Y1 0 0 by Table 10 6  

 .( )=V 1 from Section 10 14  

Therefore, we have

 . . . .( )( )( )= =P 1 5 1 0 1 122 8 184 2 N 

The basic dynamic load rating C, applying Equation (10.30), is given by

 
/

= 



C P

nL60
10

a
10

6

1

 

where a = 3 for ball bearings Introducing the given data into this equation,

 . , .
/( )( )= 





=C 184 2
60 1725 30 000

10
2 69 kN6

1 3

 

We see from Table 10.4 that a 02-series deep-groove ball bearing with a bore of 12 mm has a 
load rating of C = 6.89 kN. This is well above the estimated value of 2.69 kN, and the bearing 
is quite satisfactory. Following this procedure, other bearings for the shafts in the gearbox may 
be analyzed in a like manner.

Comment: The final selection of the bearings would be made on the basis of standard shaft and 
housing dimensions.

Case Study 18.7 Screw Design for Swivel Hook

The steel crane hook supported by a trunnion or crosspiece as shown in Figure 18.7 is rated at 
P = 3 kN. Determine the necessary nut length Ln. Observe that a ball-thrust bearing permits 
rotation of the hook for positioning the load. The lower race of the bearing and a third (bottom) 
ring have matching spherical surfaces to allow self-alignment of the hook with the bearing 
load. Usually, bearing size selected for a given load and service has internationally standardized 
dimensions.

Assumption: Both the threaded portion of the shank or bolt and the nut are made of M12 × 1.75 
class 5.8 rolled coarse threads. A stress concentration factor of Kt = 3.5 and a safety factor of 
n = 5 are used for threads.

Given: From Table 15.2,

 . , ,= =p d1 75 mm 12 mm  
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 . , .d d10 925 mm 9 85 mm,m r≈ ≈  

 . ,( )= − =h d d
1
2

1 075 mmr  

 .( )=S 420 MPa from Table 15 5y  

Solution

See Figures 18.1 and 18.7; Section 15.7.
Bearing strength. For the nut, apply the following design formula:

 
π

=K Pp

d hL

S

n
t

m n

y  (15.17a)

Substituting the given numerical values, we have

 
. .

. .
( )( )( )
( )( )π

=
L

3 5 3000 1 75
10 925 1 075

420
5n

 

Solving,

 .=L 5 9 mmn  

P

O

P

Ln

FIGURE 18.7 Swivel hook for the winch crane (Figure 18.1) showing the section of the trunnion with a 
thrust-ball bearing.
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Shear strength. Based on the energy of distortion theory of failure,

 . . .= = × =S S0 577 0 577 420 242 3 MPays y  

From Figure 15.3, the thread thickness at the root is

 tan .= + ° =b
p

h
8

2 30 1 46 mm 

The design formula is

 
π

=K Pp

dbL

S

n

3
2

t

n

ys  (15.19a)

Inserting the data given,

 
. .

.
.( )( )( )

( )( )π
=

L

3 3 5 3000 1 75
2 12 1 46

242 3
5n

 

from which

 .=L 10 3 mmn  

Comment: A standard nut length of 10 mm should be used.

Case Study 18.8 Swivel Hook Design Analysis

A crane hook for the winch crane, shown in Figure 18.8(a), is rated at P = 3 kN. Determine the 
tangential stresses at points A and B using Winkler’s formula. Note that, for a large number of 
manufactured crane hooks, the critical section AB can be closely approximated by a trapezoidal 
area with half an ellipse at the inner radius and an arc of a circle at the outer radius, as shown 
in Figure 18.8(b). The solution for standardized crane hooks is expedited by readily available 
computer programs.

Assumptions: The critical section AB is taken to be trapezoidal. The hook is made of A1SI 
1020-HR steel with a safety factor of n against yielding.

Given:

 , ,r b b20 mm 30 mm 10 mm,i 1 2= = =  

 , ,= =h n42 mm 5  

 .S 210 MPa from Table B 3y ( )=  

Solution

See Figures 18.7 and 18.8; Section 16.8.
Referring to Figure 18.8(b), we obtain the following quantities. The cross-sectional area is

 ( ) ( )( )= + = + =A b b h
1
2

1
2

30 10 42 840 mm1 2
2 
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The distance to the centroid C from the inner edge is

 .( )
( )

( )
( )= +

+
= + ×

+
=y

h b b

b b

2
3

42 30 2 10
3 30 10

17 5 mm1 2

1 2

 

Hence,

 . .= + = + =r r y 20 17 5 37 5 mmi  

By case E of Table 16.1, the radius of the neutral axis, with ro = ri + h = 62 mm, is then

 

ln

ln

.

( ) ( )

( ) ( )

=
− − −





=
× − × − −





=

R
A

h
b r b r

r

r
h b b

1

840
1
42

30 62 10 20
62
20

42 30 10

33 9843 mm

o i
o

i
1 2 1 2

 

Equation (16.51) leads to

 . . .= − = − =e r R 37 5 33 9843 3 5157 mm 

The circumferential stresses are determined through the use of Equations (16.55) with a 
tensile normal load P and bending moment M = −PR. Therefore,

 ( ) ( )σ = + −





θ
P

A

r R r

er
1A

i

i

 

 ( ) ( )σ = + −





θ
P

A

r R r

er
1B

o

0

 

b1
A

O

ri

h

(a) (b)

B

y

b2

P

O AB

ri

h

M
P

C

P

r

C

Section A–B

FIGURE 18.8 Part of the hook for a winch crane (Figure 18.1): (a) stress resultants at cross-section A–B and 
(b) the critically stressed, modified trapezoidal section.
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Introducing the required values into the preceding expression, we have

 

. .
.

.

( )( ) ( )
( )σ = + −









=

θ −
3000

840 10
1

37 5 33 9843 20
3 5157 20

30 21 MPa

A 6
 

 

. .
.

.

( )( ) ( )
( )σ = + −









= −

θ −
3000

840 10
1

37 5 33 9843 62
3 5157 62

13 64 MPa

B 6
 

where a minus sign means compression.

Comment: The allowable stress σall = 210/5 = 42 MPa is larger than the maximum stress of 30.21 
MPa. That is, the crane hook can support a load of 3 kN with a factor of safety of 5 without 
yielding.

Case Study 18.9 Design of Welded Joint C

The welded joint C, with identical fillets on both sides of the vertical frame of the winch crane 
frame, is under in-joint, plane eccentric loading, as shown in Figure 18.9(a). Determine the weld 
size h at the joint.

Given: L1 = 100 mm L2 = 150 mm
e = 1.5 m P = 3 kN

Assumptions: An E6010 welding rod with a factor of safety n = 2.2 is used. The vertical frame 
of the crane is taken to be a rigid column.

Solution

See Figures 18.1 and 18.9; Section 15.16.
Area properties. The centroid of the weld group (Figure 15.29) is given by

(a) (b)

Fillet
both sides

A

C

D
P

e

B

L2

L1

C2
C

τB

τA

T

AC1

–
P

105

T (105)
J

B

T (20) P
A

T (80) P
AJ

J

T (45)
J

–

+

y = 45

x = 20
80

FIGURE 18.9 Dimensions are in millimeters. (a) Welded joint C of the winch crane shown in Figure 18.1 
and (b) enlarged view of the weld group. Loading acts at the centroid C of the group and shear stresses at weld 
ends A and B.
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The torque equals
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The centroidal moments of inertia are
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Since there are fillets at both sides of the column, the area properties are multiplied by 2.
Stresses. From Table 15.8, we have Sy = 345 MPa. By inspection of Figure 18.9(b), either at 

point A or B, the combined torsional and direct shear stresses are greatest. At point A,

 

.
,

.

( )
( )

( ) ( )
( )τ = + = +

= +

υ
P

A

Tr

J t t

t t

3 10
2 250

4 5 10 80
2 852 083

6 211 2

i1
3 6

 

 
.

,
.( ) ( )

( )τ = = =Tr

J t t

4 5 10 45
2 852 083

118 8
h

x
6

 

 
./( )τ = τ + τ =υ

t

247 6
A h

2 2 1 2
 

Similarly, at point B,
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t
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N/mm governsB  

Weld size. Therefore, by Equation (15.44),

 . , . . . ( )τ = 



 =n S

t
0 5 2 2

281 2
0 5 345B y  

from which t = 3.59 mm. Referring to Figure 15.26(a), we obtain

 
.

.
.

.= = =h
t

0 707
3 59
0 707

5 08 mm 

Comment: A nominal size of 5 mm fillet welds should be used in the joint.

18.3  HIGH-SPEED CUTTER

Cutting machines, commonly known as saws, may be movable or stationary. The working member 
of a mechanically powered cutter is a thin steel blade or disk with sharp teeth. Traditional high-
speed cutting machines have three main types as illustrated in the following photos. A circular 
blade saw uses a metal disk that rotates to cut the material and can create narrow slots. While these 
saws are equipped with a blade for cutting wood, masonry, plastic, or metal, there are also purpose-
made circular saws specially designed for particular materials. A reciprocating blade saw uses a 
push-and-pull motion of the blade. It often has a mechanism to lift up the saw blade on the return 
stroke. A continuous band saw, which usually rides on two wheels circulating in the same plane, 
produces a uniform cutting action as a result of an evenly distributed tooth load. This machine also 
provides better cutting quality, and its output averages twice that of a straight-knife cutting machine. 
Band saws are particularly useful for cutting irregular or curved shapes. In addition to these tradi-
tional cutters, modern laser cutting and water cutting machines are increasing in use.

      

In this section, attention is directed to a simple high-speed blade cutter assembly portrayed in 
Figure  18.10, which is used for flexible materials including PVC and other plastics. The unit is 
compact and designed for benchtop installation. The drive wheel is a part of the automatic feeding 
mechanism (not shown in the figure). These wheels drive the material through the feed tube to the 
cutting wheel. The feed mechanism includes a compression spring for smooth operation. The vari-
able cut length and rate of output (as high as 1000 per minute) are accomplished by changing the 
number of blades in the rotary cutting wheel and changing the reduction drive ratio between the 
motor and the shaft on which the cutter is keyed.
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Case Study 18.10 Belt Design

Consider the toothed belt of a high-speed cutter shown in Figure 18.10. Determine:

 a. The belt length.
 b. The maximum center distance.
 c. The maximum belt tension.

Design Requirements: The center distance between the motor (driver) pulley and driven pulley 
should not exceed c = 425 mm. A belt coefficient of friction of f = 1.0 is used.

Given: A 1.5 kW, n1 = 1800 rpm, AC motor is used. The belt weighs w = 1.5 N/m. The driver 
pulley radius =r 32 mm1 . Driven pulley radius =r 56 mm2 .

Assumptions: The driver is a normal torque motor. The cutter, and hence the driven shaft, resists 
heavy shock loads. The machine cuts uniform lengths of flexible materials of cross-sections up 
to 50 mm in diameter. Operation is fully automatic, requiring minimal operator involvement.

Solution

See Figure 18.10 and Table 13.5; Sections 13.3, 13.4, and 13.5.

 a. The appropriate belt pitch length is determined using Equation (13.9):

 ( ) ( )= + π + + −L c r r
c

r r2
1

1 2 2 1
2 (a)

Substitution of the given data yields

 ( ) ( ) ( )= + π + + − = .L 2 425 32 56
1

425
56 32 1127 8 mm2  

Comment: A standard toothed or timing belt with maximum length of 1128 mm is selected.

Spring

Drive
wheel

Drive
wheel

Frame

Driven
pulley

Drum

Cutter
blade

Driver
pulley

Electric
motor

Cutter
hub

Handle

Toothed
belt

r

n

a

Fa

b

A
d

Material

FIGURE 18.10 Schematic drawing of high-speed cutting machine.
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 b. An estimate of the center distance is given by Equation (13.10):

 ( )= + − −



c b b r r

1
4

82
2 1

2  (b)

Here, from Equation (13.11),

 ( )= − π +b L r r2 1  (c)

Carrying the given numerical values into Equation (c), we have

 ( )= − π + =.b 1127 8 56 32 851 mm 

Equation (b) is then

 ( ) ( )= + − −



 = .c

1
4

851 851 8 56 32 424 8 mm2 2  

Comment: The requirement that c < 425 mm is satisfied.

 c. The contact angle ϕ, from Equations (13.7) and (13.6), equals
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The tight-side tension in the belt is calculated, through the use of Equation (13.20) in which, for 
a toothed (or flat) belt, sin β = 1 and
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The service factor, from Table 13.5, Ks = 1.4. The maximum belt tensile load is then obtained by 
Equation (13.22) as

 
. . .

max

( )

=

= =

F K F

1 4 265 6 371 8 N

s 1

 

Comment: Recall from Section 13.2 that toothed belts can provide safe operation at speeds up 
to at least 16,000 fpm. This is well above the belt velocity, V = π(0.56)(1800)/60 = 5.28 m/s, of 
the cutting machine.

Case Study 18.11 Brake Design Analysis

A short-shoe brake is used on the drum, which is keyed to the center shaft of the high-speed 
cutter as shown in Figure 18.10. The driven pulley is also keyed to that shaft. Determine the 
actuating force Fa.

Assumptions: The brake shoe material is molded material. The drum is made of iron. The lin-
ing rubs against the smooth drum surface, operating dry.

Given: The dram radius r = 75 mm, torque T = 30 N · m (CW), a = 300 mm, b = 30 mm, d = 60 mm, 
and the width of shoe w = 40 mm (Figure 18.10). By Table 13.11, pmax = 1.4 kPa and f = 0.35.

Requirement: The shoe must be self-actuating.

Solution

The normal force, through the use of Equation (13.48), is

 

. .
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= =
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The angle of contact, applying Equation (13.47), is then
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The actuating force is obtained from Equation (13.49) with d = c as follows:
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.
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.
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Comment: Since ϕ < 45°, the short-shoe drum brake approximations apply. A positive value of 
Fa means that the brake is not self-locking.
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Case Study 18.12 Spring Design of Feed Mechanism

A helical compression spring of feed mechanism for a high-speed cutter is shown in Figure 18.11. 
The spring is to support a load P without exceeding a deflection δ. Determine a satisfactory 
design. Will the spring buckle in service?

Given: P = 60 N, δ = 15 mm.

Assumptions: Clash allowance rc = 20%, spring index C = 6, and safety factor n = 2.2. Loading 
is applied steadily. Ends are squared-ground and supported between flat surfaces.

Design Decision: Hard-drawn ASTM A227 wire of G = 79 GPa is used.

Solution

See Figures 18.10 and 18.11; Sections 14.4, 14.5, and 14.6.
Arbitrarily select a 2 mm diameter wire. Then, using Equation (14.12) and Table 14.2,

 .( )= = =−S Ad 1510 2 1314 MPau
b 0 201  

Corresponding yield strength in shear is Sys = 0.42(1314) = 552 MPa (from Table 14.3). Stress 
requirement. Rearranging Equation (14.6) and setting τ = Sys/n,

 

.

. .

.
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( )( )( )
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π
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=
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d
PCn

S C

d

8
1

0 615

8 60 6 2 2

552 10
1
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6

2 01 mm
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2

6
 

We then have D = 6(2.01) = 12.06 mm. Since Su = 1510(2.01−0.201) = 1312 < 1314 MPa, d = 2.01 mm 
is satisfactory.

P

FIGURE 18.11 Compression spring for feed mechanism of high-speed cutter shown in Figure 18.10.
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Spring rate requirement. By Equation (14.11),

 , . ,( )
( )

=
δ

= =k
P dG

C N N8
60
15

2 01 79 000

8 6a a
3 3  

Solving, Na = 22.97. From Figure 14.7(d), hs = (Na + 2)d = 50.2 mm. With a 20% clash allowance, 
the solid deflection is 120% of the working deflection. Hence,

 . .δ = = =P

k
1 2 1 2

60
4

18 mms  

The free height is given by hf = hs + δs = 68.2 mm.
Check for buckling. For the extreme case of deflection (δ = δs),

 
.

. , .
.

.δ = = = =
h

h

D

18
68 2

0 26
68 2

12 06
5 66s

f

f  

Curve A in Figure 14.10 shows that the spring is far outside the buckling region and clearly safe.

Comment: Having the foregoing values of D, Na, and hf available, a technician can draw or 
make the compression spring for the high-speed cutter.

PROBLEMS

Sections 18.1 through 18.3
  18.1 A loader, also known as a front loader, bucket loader, scoop loader, or shovel, is a type of trac-

tor. A typical mobile front-end loader truck is used for hydraulically raising or lowering a pipe, 
log, or lumber (Figure P18.1). There are two identical pin-connected arm-linkage-hydraulic 

FOPS

E
F

Link

A

H D
P

CB
Q

a2

Hydraulic
cylinder

40°

80°

70°

60°

Link
Pin

G
Clamp

Arm

Pipe
L

a1

a3

FIGURE P18.1 Schematic of loader truck.
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cylinder systems, one set on each side of a central vertical plane in the fore-and-aft direction. 
The two systems, one of which is shown in the figure, share the load equally. The arm ABD 
is attached to linkages AE and BG at A and B and is controlled by the hydraulic cylinder CF. 
The action of the clamp that grabs, holds firmly, or releases the pipe is also controlled by two 
hydraulic cylinders (not shown). A falling object protective structure (FOPS), which consists 
of welded side supports, is used to keep the operator safe within the cab of the loader.

  The pipe weight exerts a vertical force P at the right end D of the arm, as illustrated in 
Figure P18.1. Each pin is made of steel with a yield shear strength of Sys. The factor of 
safety against shear by yielding of pins is n. Find, for the position shown,

 a. The forces exerted by the hydraulic cylinder (CF) and the links (AE, BG) on the arm.
 b. The required pin diameter at A, B, and C.
  Given: P = 15 kN, a1 = 2.6 m, a2 = 0.16 m, a3 = 1.0 m, L = 2.5 m, Sys = 150 MPa, n = 2.4.
  Assumptions:
 1. Friction in the joints is omitted. The accelerations are insignificant. All forces are 

coplanar, 2D, and static.
 2. Each connection is made with a pin in double shear.
 3. Weights of the members are disregarded compared to the forces they support and so 

can be omitted. For the particular position shown in the figure, part BD of the arm is 
horizontal. Forward or side-to-side tipping of the unit will not occur.

  18.2 The portion of a hydraulically controlled loader arm of Figure P18.1 shown in Figure 
P18.2 carries a concentrated load of P at its free end. The arm is made of ASTM-A242 
high-strength steel circular tubing with the ultimate strengths in tension and shear that 
are Su and Sus, respectively. What are the values of maximum normal stress, maximum 
shear stress, and the factor of safety?

  Given: c2 = 75 mm, c1 = 50 mm, L = 2.5 m, P = 15 kN, Su = 480 MPa, Sus = 280 MPa (by 
Table B.1).

  Assumptions: Part HD of the arm will be modeled as cantilever with the more massive 
portion at its end serving as ground frame. The critical point K is at the fixed end through 
H. The effect of shear in the stress distribution is neglected.

2c2 = 150 mmz

K

D

y

2c1 = 100 mm

P = 15 kN

L = 2.5 m

x

H

FIGURE P18.2 Part of loader arm as a cantilever beam.
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  18.3 At a critical point Q in a loader arm (Figure P18.1), the material is under the state of plane 
stress.

  Given:

 , , .ε = µ ε = − µ γ = µ1000 200 700x y xy  

  Using Mohr’s circle, find the principal strains and the maximum shear strains.
  18.4 Reconsider the state of strain of the loader arm discussed in Problem 18.3, which is made 

of a steel with modulus of elasticity E = 210 GPa and Poisson’s ratio ν = 0.28. Find at point 
Q the principal stresses, maximum shear stress, and their orientations. What is the value 
of the normal stresses that occur on the planes of maximum shear stress?

  18.5 At a critical point Q on the surface of the loader arm illustrated in Figure P18.1, the 60° 
rosette readings show the normal strains during a static test:

 , , .ε = µ ε = µ ε = − µ1104 432 96a b c  

  The forgoing correspond to θa = 0°, θb = −60°, and θc = −120° (Figure P18.5). Find the 
strain components εx, εy, and γxy.

  18.6 A standard 1.0 in. nominal diameter steel pipe link BG of length LBG = 1.6 m with pinned 
ends is subjected to compression load of FBG = 11.34 kN (Figure P18.1). What is the allow-
able stress for the link, using AISC formulas?

  Given:

 . . , . . .= = = =A r0 494 in 318 mm 0 421 in 10 69 mm2 2  

 , .( )= =E S200 GPa 250 MPa by Table B 1y  

  18.7 Find the largest length Lm for which the steel pipe link BG discussed in Problem 18.6 can 
safely support the loading of FBG = 11.34 kN.

  18.8 An idealized FOPS frame of the loader truck discussed in Problem 18.1 and depicted 
in Figure P18.8 carries a load of W at the center C of the assembly. Drive the expressions 
for

 a. The total strain energy U due to bending and shear of the members in the form

 = +






+ +













U W

EI

c b

GA
c

b1
96 384

3
20 2

t
2

3 3

 (P18.8)

Q a

b

60°
60°

c

FIGURE P18.5 A 60° strain rosette.
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 b. The corresponding maximum static deflection at C, using Castigliano’s theorem.
  Assumptions: Each member is made of a square steel tube with the same modulus of 

elasticity E, modulus of rigidity G, cross-sectional area A, and moment of inertia I. Side 
support beams of lengths b are taken to be simply supported and a cross-brace of length 
c is placed and welded at the middle of the side supports. Note that, although a typical 
FOPS frame will usually have a number of cross-braces, for simplicity, here only one 
equivalent cross-brace is considered (Figure P18.8).

  18.9 Reconsider Problem 18.8, with the exception that an object of weight W drops from a 
height h striking at the midspan C of the FOPS (see Figure P18.8). Compute the values of:

 a. The largest static deflection.
 b. The maximum dynamic deflection.
  Given:

b = 1.2 m, c = 0.8 m, h = 250 mm,  W = 15 kN,
E = 200 = GPa,  G = 79 GPa  (by Table B.1)
A = 1.27 in.2 = 819 × 10−6 m2,  I = 0.668 in.4 = 0.278 × 10−6 m4  (from Table A.4)

  Requirement: A 50 mm × 50 mm or 2 in. × 2 in. nominal size steel tube of thickness 
5 mm or 316 in. (see Table A.4) will be used for both the side supports and the cross-brace.

 18.10 Hydraulic cylinders that use extrusion presses are subject to extremely high internal 
pressures, such as p = 25 MPa. Extrusion is a process by which pressure is applied to 
a material (in soft state) in a cylinder causing it to flow through a restricted tapered 
hole or die as depicted in Figure P18.10(a). Usually, cylinder and die are made of 
heat-treated steel. Extrusion is used more commonly with materials that melt at low 
temperatures, such as aluminum, copper, magnesium, lead, tin, and zinc. Using differ-
ent die patterns, extrusion of long tubes, rods, and various shapes (such as channels, 
I-beams, and angles) is often performed hot in hydraulic presses (Figure P18.10(b)). 
The extruded metal then passes through a water-cooling station. Experiments indicate 
that the die shape and die length have considerable effect on the extrusion force P 
required [3, 4].

  Given: The hydraulic cylinder for an extrusion press made of AISI 1040 OQ&T steel 
(at 425°C) is subjected to a high internal pressure p = 20 MPa. The inner and outer radii 
of the cylinder are a = 350 mm and b, respectively (Figure P18.10(a)). From Table B.4, 
Sy = 552 MPa. Factor of safety against yielding is n = 5. Find, applying thin-walled pres-
sure vessel equations:

 a. The outer radius b of the cylinder based on the maximum distortion theory of failure.
 b. Whether the thin-walled analysis applies.

Side support Cross
brace

C

b

b2

W

c

FIGURE P18.8 Idealized FOPS frame of the loader truck shown in Figure P18.1.
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749Case Studies in Machine Design

 18.11 Repeat Problem 18.10, through the use of the thick-walled pressurized cylinder equations.
  Given: a = 350 mm, p = 20 MPa, Sy = 552 MPa, and n = 5.
 18.12 A crane boom or basic plane truss with all members having the same axial rigidity AE 

supports a horizontal force P and a load W acting at joint 2 as illustrated in Figure P18.12. 
Through the use of finite element method:

 a. Drive the stiffness matrix of each element, system stiffness matrix, and force dis-
placement relationships.

 b. Compute the nodal displacements, reactions, stresses, and safety factors against 
yielding of each member.

  Assumptions: All members are made of ASTM A36 structural steel. Friction in the pin 
joints will be neglected. Recall that θ is measured counterclockwise from the positive 
x-axis to each element (see Figure P18.12 and Table P18.12).

  Input data:

 , , ,= = = =P W S E24 kN 36 kN 250 MPa 200 GPay  

 . , . ,= = = = =L L L L A2 4 m 2 4 2 m 480 mm1 2 3
2 

Cylinder Metal Die

pP

Extruded
metal rodPiston

(a) 2b

2a

(b)

FIGURE P18.10 (a) Schematic portion of extrusion process. (b) Typical extruded shapes.
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FIGURE P18.12 A three-bar plane truss.
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TABLE P18.12
Data for the Truss of Figure P18.12

Element θ c s c2 cs s2 AE/L

1 0°  1  0 1 0 0 4(107)

2 270°  0  −1 0 0 1 4(107)

3 225° /−1 2 /−1 2 0.5 0.5 0.5 ( )2 2 107
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Appendix A: Tables

Knowledge of the units of typical quantities and the characteristics of common areas and masses 
is essential in mechanical analysis and design. Quantities given in SI units can be converted to US 
customary units by multiplying with the conversion factors furnished in Table A.1. To reverse the 
process, the number in customary units is divided by the factor. Prefixes can be attached to SI units 
to form multiples and submultiples (see Table A.2). Properties of most standard shapes encountered 
in practice are given in various handbooks. Tables A.3 through A.5 present several typical cases. 
Data for Tables A.4, A.6, and A.7 were compiled from the listings found in the AISC Manual of 
Steel Construction (Chicago, American Institute of Steel Construction, 2019).

Representative expressions for deflection and slope for selected beams are given in Tables A.8 
and A.9. Restrictions on the application of these equations include constancy of the flexural rigidity 
EI, symmetry of the cross-section about the vertical y axis, and the magnitude of displacement υ of 
the beam. In addition, equations apply to beams that are long in proportion to their depth and not 
disproportionally wide. Displacements are restricted to the linearly elastic region, as shown by the 
presence of the elastic modulus E in the formulas.
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TABLE A.2
SI Prefixes
Prefix Symbol Factor

Tera T 1012 = 1.000.000.000.000

Giga G 109 = 1.000.000.000

Mega M 106 = 1.000.000

Kilo k 103 = 1.000

Hecto h 102 = 100

Deka da 101 = 10

Deci d 10−1 = 0.1

Centi c 10−2 = 0.01

Milli m 10−3 = 0.001

Micro μ 10−6 = 0.000.001

Nano n 10−9 = 0.000.000.001

Pico p 10−12 = 0.000.000.000.001

Note: The use of the prefixes hecto, deka, and 
centi is not recommended. However, they 
are sometimes encountered in practice. 

TABLE A.1
Conversion Factors: SI Units to US Customary Units
Quantity SI Unit US Equivalent

Acceleration m/s2 (meter per square second) 3.2808 ft/s2

Area m2 (square meter) 10.76 ft2

Force N (newton) 0.2248 lb

Intensity of force N/m (newton per meter) 0.0685 lb/ft

Length m (meter) 3.2808 ft

Mass kg (kilogram) 2.2051 lb

Moment of a force, torque N · m (newton meter) 0.7376 lb · ft
Moment of inertia of a plane area m4 (meter to fourth power) 2.4025 × 106 in.4

Moment of inertia of a mass kg · m2 (kilogram meter squared) 0.7376 ft · s2

Power W (watt) 0.7376 ft · lb/s

kW (kilowatt) 1.3410 hp

Pressure or stress Pa (pascal) 0. 145 × 10−3 psi

Specific weight kN/m3 (kilonewton per cubic meter) 3.684 × 10−3 lb/in.3

Velocity m/s (meter per second) 3.2808 ft/s

Volume m3 (cubic meter) 35.3147 ft3

Work or energy J (joule, newton meter) 0.7376 ft · lb

Notes: 1 mile, mi = 5280 ft = 1609 m; 1 kilogram, kg = 2.20946 lb = 9.807 N; 1 joule, J = 1 N · m; 1 
inch, in. = 25.4 mm; 1 foot, ft = 12 in. = 304.6 mm; 1 acceleration of gravity, g = 9. 8066 m/
s2 = 32.174 ft/s2.

ISTUDY

www.konkur.in

Telegram: @uni_k



753Appendix A: Tables

TABLE A.3
Properties of Areas
(1) Rectangle

C

(2) Circle

A = bh A = πr2
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.=I r0 110x

4 

( )
=

+
J

bh b h

36
c

2 2

 = π
I

r

8
y

4
 

(5) Ellipse (6) Thin tube

A = πab A = 2πrt

= π
I

ab

4
x

3

 
Ix = πr3t

( )
=

π +
J

ab a b

4
c

2 2

 
Jc = 2πr3t
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TABLE A.3 (continued)
Properties of Areas
(7) Isosceles triangle (8) Half of thin tube

=A
bh

2
 

A = πrt

= =I
bh

I
hb

36 48
x y

3 3

 
Ix ≈ 0.095πr3t

( )= +J
bh

h b
144

4 3c
2 2  

Iy = 0.5πr3t

(9) Triangle (10) Parabolic spandrel (y = kx2)

=A
bh

2
 =A

bh

3
 

( )=
+

x
a b

3
 =x

b3

4
 

(11) Parabola (y = kx2) (12) General spandrel (y = kxn)

=A
bh2
3

 =
+

A
bh

n 1
 

=x
b3

8
 = +

+
x

n

n
b

1

2
 

Notes: A, area; I, moment of inertia; J, polar moment of inertia.
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TABLE A.4
Properties of Some Steel Pipe and Tubing

Standard Weight Pipe Dimensions and Properties

Dimensions Properties

Nominal 
Diameter 
(in.)

Outside 
Diameter 

(in.)

Inside 
Diameter 

(in.)

Wall 
Thickness

(in.)

Weight 
per Foot 

(lb/ft) 
Plain 
Ends

A
(in.2)

I
(in.4)

S
(in.3)

r
(in.)

1

2
 

0.840 0.622 0.109 0.85 0.250 0.017 0.041 0.261

3

4
 

1.050 0.824 0.113 1.13 0.333 0.037 0.071 0.334

1 1.315 1.049 0.133 1.68 0.494 0.087 0.133 0.421

1¼ 1.660 1.380 0.140 2.27 0.669 0.195 0.235 0.540

1½ 1.900 1.610 0.145 2.72 0.799 0.310 0.326 0.623

2 2.375 2.067 0.154 3.65 1.07 0.666 0.561 0.787

2½ 2.875 2.469 0.203 5.79 1.70 1.53 1.06 0.947

3 3.500 3.068 0.216 7.58 2.23 3.02 1.72 1.16

4 4.500 4.026 0.237 10.79 3.17 7.23 3.21 1.51

(Continued )
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TABLE A.4 (continued)
Properties of Some Steel Pipe and Tubing

Square and Rectangular Structural Tubing Dimensions and Properties

Dimensions Propertiesa

Nominalb 
Size (mm)

Wall
Thickness (mm)

Weight per 
Foot (lb/ft)

A
(mm2)

Ix

(mm4)
rx

(mm)
Iy

(mm4)
Sy

(mm3)
ry

(mm)

2 × 2
3

16
4.32 1.27 0.668 0.726

1

4
5.41 1.59 0.766 0.694

2.5 × 2.5 3

16
5.59 1.64 1.42 0.930

1

4
7.11 2.09 1.69 0.899

3 × 2 3

16
5.99 1.64 1.86 1.06 0.977 0.977 0.771

1

4
7.11 2.09 2.21 1.03 1.15 1.15 0.742

3 × 3 3

16
6.87 2.02 2.60 1.13

1

4
8.81 2.59 3.16 1.10

4 × 2 3
16

6.87 2.02 3.87 1.38 1.29 1.29 0.798

1
4

8.81 2.59 4.69 1.35 1.54 1.54 0.770

4 × 4 3
16

9.42 2.77 6.59 1.54

1
4

12.21 3.59 8.22 1.51

Notes: A, area; S, section modulus; I, moment of inertia; r, radius of gyration.
a Properties are based on a nominal outside corner radius equal to two times the wall thickness (t).
b Outside dimensions across flat sides (h × b).
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TABLE A.5
Mass and Mass Moments of Inertia of Solids
(1) Slender rod U

= π ρ
m

d L

4

2
 

= =I I
mL

12
y z

2
 

(2) Thin disk
= π ρ

m
d t

4

2
 

=I
md

8
x

2
 

= =I I
md

16
y z

2
 

(3) Rectangular prism m = abcρ

( )= +I
m

a b
12

x
2 2  

( )= +I
m

a c
12

y
2 2  

( )= +I
m

b a
12

z
2 2  

(4) Cylinder
= π ρ

m
d L

4

2
 

=I
md

8
x

2
 

( )= = +I I
m

a L
48

3 4y z
2 2

(5) Hollow cylinder ( )= π ρ −m
d L

d d
4

3 o i

2
2 2  

( )= +I
m

d d
4

x o i
2 2  

( )= = + +I I
m

d d L
48

3 3 4y z o i
2 2 2  

Notes: ρ, mass density; m, mass; I, mass moment of inertia.
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TABLE A.6
Properties of Rolled-Steel (W) Shapes, Wide-Flange Sections

SI Units

Designationa

Area
(103 

mm2)
Depth
(mm)

Flange

Web
Thickness

(mm)

Axis x–x Axis y–y

Width
(mm)

Thickness
(mm)

I
(106 

mm4)
r

(mm)

S
(103 

mm3)

I
(106 

mm4)
r

(mm)

W 610 × 155 19.7 611 324 19.0 12.7 1290 256 4220 108 73.9

× 125 15.9 612 229 19.6 11.9 985 249 3220 39.3 49.7

W 460 × 158 20.1 476 284 23.9 15.0 795 199 3340 91.6 67.6

× 74 9.48 457 190 14.5 9.0 333 188 1457 16.7 41.9

× 52 6.65 450 152 10.8 7.6 212 179 942 6.4 31.0

W 410 × 114 14.6 420 261 19.3 11.6 462 178 2200 57.4 62.7

×  85 10.8 417 181 18.2 10.9 316 171 1516 17.9 40.6

× 60 7.61 407 178 12.8 7.7 216 168 1061 12 39.9

W 360 × 216 27.5 375 394 27.7 17.3 712 161 3800 282 101.1

× 122 15.5 363 257 21.7 13.0 367 154 2020 61.6 63.0

× 79 10.1 354 205 16.8 9.4 225 150 1271 24.0 48.8

W 310 × 107 13.6 311 306 17.0 10.9 248 135 1595 81.2 77.2

× 74 9.48 310 205 16.3 9.4 164 132 1058 23.4 49.8

× 52 6.65 317 167 13.2 7.6 119 133 748 10.2 39.1

W 250 × 80 10.2 256 255 15.6 9.4 126 111 985 42.8 65

× 67 8.58 257 204 15.7 9.8 103 110 803 22.2 51.1

× 49 6.26 247 202 11.0 7.4 70.8 106 573 15.2 49.3

W 200 × 71 9.11 216 206 17.4 10.2 76.6 91.7 709 25.3 52.8

× 59 7.55 210 205 14.2 9.1 60.8 89.7 579 20.4 51.8

× 52 6.65 206 204 12.6 7.9 52.9 89.2 514 17.7 51.6

W 150 × 37 4.47 162 154 11.6 8.1 22.2 69 274 7.12 38.6

× 30 3.79 157 153 9.3 6.6 17.2 67.6 219 5.54 38.1

× 24 3.06 160 102 10.3 6.6 13.2 66 167 1.84 24.6

× 18 2.29 153 102 7.1 5.8 9.2 63.2 120 1.25 23.3

Notes: t, moment of inertia; S, section modulus; r, radius of gyration.
a A wide-flange shape is designated by letter W followed by the nominal depth in millimeters and the mass in kilogram per 

meter.
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TABLE A.7
Properties of Rolled-Steel (S) Shapes, American Standard I Beams

SI Units

Designationa

Area
(103

mm2)
Depth
(mm)

Flange

Web
Thickness

(mm)

Axis x–x Axis y–y

Width
(mm)

Thickness
(mm)

I
(106 

mm4)
r

(mm)

S
(103 

mm3)

I
(106 

mm4)
r

(mm)

S 610 × 149 19.0 610 184 22.1 19.0 995 229 3260 19.9 32.3

× 119 15.2 610 178 22.1 12.7 878 241 2880 17.6 34.0

S 510 × 141 18.0 508 183 23.3 20.3 670 193 2640 20.7 33.8

× 112 14.3 508 162 20.1 16.3 533 193 2100 12.3 29.5

S 460 × 104 13.3 457 159 17.6 18.1 385 170 1685 10.0 27.4

× 81 10.4 457 152 17.6 11.7 335 180 1466 8.66 29.0

S 380 × 74 9.5 381 143 15.8 14.0 202 146 1060 6.53 26.2

× 64 8.13 381 140 15.8 10.4 186 151 977 5.99 27.2

S 310 × 74 9.48 305 139 16.8 17.4 127 116 833 6.53 256.2

× 52 6.64 305 129 13.8 10.9 95.3 120 625 4.11 24.9

S 250 × 52 6.64 254 126 12.5 15.1 61.2 96 482 3.48 22.9

× 38 4.81 254 118 12.5 7.9 51.6 103 406 2.83 24.2

S 200 × 34 4.37 203 106 10.8 11.2 27 78.7 266 1.79 20.3

× 27 3.5 203 102 10.8 6.9 24 82.8 236 1.55 21.1

S 150 × 26 3.27 152 90 9.1 11.8 11.0 57.9 144 0.96 17.2

× 19 2.36 152 84 9.1 5.8 9.20 62.2 121 0.76 17.9

S 100 × 14 1.80 102 70 7.4 8.3 2.83 39.6 55.5 0.38 14.5

× 11 1.45 102 67 7.4 4.8 2.53 41.6 49.6 0.32 14.8

a An American standard beam is designated by letter S followed by the nominal depth in millimeters and the mass in kilo-
grams per meter.
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TABLE A.8
Deflections and Slopes of Variously Loaded Beams

Load and Support
Maximum
Deflection Slope at End Equation of Elastic Curve

(1)
− PL

EI3

3
 − PL

EI3

2
 ( )υ = −Px

EI
x L

3
3

2
 

(2)
− ML

EI2

2
 − ML

EI
 υ = Mx

EI2

2
 

(3)

w
υ

L

υmax x

− wL

EI8

4
 − wL

EI6

3
 ( )υ = − +wx

EI
x Lx L

24
4 6

2
2 2  

(4)

wo

υ

L

υmax x

− w L

EI30
0

4
 − w L

EI24
0

3
 ( )υ = − +wx

EI
x Lx L

120
4 6

2
2 3  

(5)
− PL

EI48

3
 ± PL

EI16

2
 /( ) ( )υ = − ≤Px

EI
x L x L

48
4 3 22 2  

(6) For a > b:
/( )

−
−Pb L b

EIL9 3

2 2 3 2

 

= −
x

L b

3
m

2 2

( )
θ = −

−Pb L b

EIL6
A

2 2

 

( )
θ = −

−Pa L a

EIL6
B

2 2

 

( ) ( )υ = − + ≤Pbx

EIL
x L b x a

6
2 2 2  

( )( ) ( )υ = − + − ≤ ≤Pb a x

EIL
x a Lx a x L

6
22 2  

(Continued )
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TABLE A.8 (continued)
Deflections and Slopes of Variously Loaded Beams

Load and Support
Maximum
Deflection Slope at End Equation of Elastic Curve

(7)
± ML

EI9 3

3
 θ = − ML

EI6
A

 

θ = − ML

EI3
B

 

( )υ = −Mx

EIL
x L

6
2 2  

(8)

υ

υmax

w

L/2 L/2

x

− wL

EI

5

384

4
 ± wL

EI24

3
 ( )υ = − +wx

EI
x Lx L

24
23 2 3  

(9)
± ML

EI36 12

2
 ± ML

EI24
 /( ) ( )υ = − ≥Mx

EIL
x L x L

24
4 22 2  

(10)
− Pb L

EI3

2
 θ = − Pab

EI6
A

 

( )θ = − +Pb

EI
L b

6
2B

( ) ( )υ = − ≤ ≤Pbx

aEI
a x x a

6
02 2  
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TABLE A.9
Reactions and Deflections of Statically Indeterminate Beams
Load and Support Reactionsa Deflections

(1)
= =R R

P

2
A B

 

= =M M
PL

8
A B

 

maxυ = υ = − PL

EI192
C

3
 

(2)
,( ) ( )= + = +R

Pb

L
a b R

Pb

L
a b3 3A B

2

3

2

3  

,= =M
Pab

L
M

Pa b

L
A B

2

2

2

2

For a > b:

( )υ = − −Pb

EI
L b

48
3 4C

2
 

(3)
,= =R P R P

5

16

5

16
A B  

=M PL
13

16
A

υ = − PL

EL

7

768
C

3
 

(4)

w
= =R R

wL

2
A B

= =M M
wL

12
A B

2

maxυ = υ = − wL

EI384
C

4
 

(5)

L

w

2
L
2

,= =R wL R wL
3

32

13

32
A B

,= =M wL M wL
5

192

11

192
A B

2 2

υ = − wL

EL768
C

4
 

(6)

w
,= =R wL R wL

3

8

5

8
A B

=M wL
1
8

B
2

υ = − wL

EL192
C

4

a For all the cases tabulated, the senses of the reactions and the notations are the same as those shown in case 1.

ISTUDY

www.konkur.in

Telegram: @uni_k



Appendix B: Material Properties

The properties of materials vary widely, depending on numerous factors, including chemical com-
position, manufacturing processes, internal defects, heat treatment, temperature, and dimensions of 
test specimens. Hence, the values furnished in Tables B.1 through B.10 are representative, but are 
not necessarily suitable for a specific application. In some cases, a range of values given in the list-
ings shows the possible variations in characteristics.

Unless otherwise indicated, the modulus of elasticity E and other properties are for materials 
in tension. The specific data were compiled from broad tabulations listed in the references cited. 
For details, see, for example, [1, 2] of Chapter 2. Note that the reference issues of Machine Design 
Materials (Cleveland: Penton/IPC) also constitute an excellent source of data on a great variety of 
materials.
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766 Appendix B: Material Properties

TABLE B.2
Typical Mechanical Properties of Gray Cast Iron

ASTM 
Classa

Ultimate 
Strength
Su (MPa)

Compressive 
Strength 
Suc (MPa)

Modulus of Elasticity 
(GPa)

Brinell 
Hardness 

HB 

Fatigue Stress-
Concentration Factor 

KfTension Torsion

20 150 575 66–97 27–39 156 1.00

25 180 670 79–102 32–41 174 1.05

30 215 755 90–113 36–45 201 1.10

35 250 860 100–120 40–48 212 1.15

40 295 970 110–138 44–54 235 1.25

50 365 1135 130–157 50–54 262 1.35

60 435 1295 141–162 54–59 302 1.50

Note: To convert from MPa to ksi, divide given values by 6.895.
a Minimum values of Su (in ksi) are given by the class number.

TABLE B.3
Mechanical Properties of Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels

UNS 
Number

AISI/ 
SAE 

Number Processing

Ultimate 
Strengtha 
Su (MPa)

Yield 
Strengtha 
Sy (MPa)

Elongation 
in 50 mm 

(%)
Reduction 

in Area (%)

Brinell 
Hardness 

(HB)

G10060 1006 HR 300 170 30 55 86

CD 330 280 20 45 95

G10100 1010 HR 320 180 28 50 95

CD 370 300 20 40 105

G10150 1015 HR 340 190 28 50 101

CD 390 320 18 40 111

G10200 1020 HR 380 210 25 50 111

CD 470 390 15 40 131

G10300 1030 HR 470 260 20 42 137

CD 520 440 12 35 149

G10350 1035 HR 500 270 18 40 143

CD 550 460 12 35 163

G10400 1040 HR 520 290 18 40 149

CD 590 490 12 35 170

G10450 1045 HR 570 310 16 40 163

CD 630 530 12 35 179

G10500 1050 HR 620 340 15 35 179

CD 690 580 10 30 197

G10600 1060 HR 680 370 12 30 201

G10800 1080 HR 770 420 10 25 229

G10950 1095 HR 830 460 10 25 248

Source: ASM Handbook, vol. 1, ASM International, Materials Park, OH, 2020.
Note: To convert from MPa to ksi, divide given values by 6.895.
a Values listed are estimated ASTM minimum values in the size range of 18–32 mm. 
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TABLE B.4
Mechanical Properties of Selected Heat-Treated Steels

AISI 
Number Treatment

Temperature 
(°C)

Ultimate 
Strength 
Su (MPa)

Yield 
Strength 
Sy (MPa)

Elongation 
in 50 mm 

(%)

Reduction 
in Area 

(%)

Brinell 
Hardness 

(HB)

1030 WQ&T 205 848 648 17 47 495

WQ&T 425 731 579 23 60 302

WQ&T 650 586 441 32 70 207

Normalized 925 521 345 32 61 149

Annealed 870 430 317 35 64 137

1040 OQ&T 205 779 593 19 48 262

OQ&T 425 758 552 21 54 241

OQ&T 650 634 434 29 65 192

Normalized 900 590 374 28 55 170

Annealed 790 519 353 30 57 149

1050 WQ&T 205 1120 807 9 27 514

WQ&T 425 1090 793 13 36 444

WQ&T 650 717 538 28 65 235

Normalized 900 748 427 20 39 217

Annealed 790 636 365 24 40 187

1060 OQ&T 425 1080 765 14 41 311

OQ&T 540 965 669 17 45 277

OQ&T 650 800 524 23 54 229

Normalized 900 776 421 18 37 229

Annealed 790 626 372 11 38 179

1095 OQ&T 315 1260 813 10 30 375

OQ&T 425 1210 772 12 32 363

OQ&T 650 896 552 21 47 269

Normalized 900 1010 500 9 13 293

Annealed 790 658 380 13 21 192

4130 WQ&T 205 1630 1460 10 41 467

WQ&T 425 1280 1190 13 49 380

WQ&T 650 814 703 22 64 245

Normalized 870 670 436 25 59 197

Annealed 865 560 361 28 56 156

4140 OQ&T 205 1770 1640 8 38 510

OQ&T 425 1250 1140 13 49 370

OQ&T 650 758 655 22 63 230

Normalized 870 870 1020 18 47 302

Annealed 815 655 417 26 57 197

Source: ASM Metals Reference Book, 3rd ed. Materials Park, OH, American Society for Metals, 1993.
Notes: To convert from MPa to ksi, divide given values by 6.895.
 Values tabulated for 25 mm round sections and of gage length 50 mm. The properties for quenched and tempered steel are 
from a single heat: OQ&T, oil-quenched and tempered; WQ&T, water-quenched and tempered.
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TABLE B.5
Mechanical Properties of Some Annealed (An.) and Cold-Worked (CW) Wrought Stainless 
Steels

AISI Type

Ultimate Strength 

Su (MPa)

Yield Strength 

Sy (MPa)

Elongation 

in 50 mm (%)

Izod Impact J 

(N ∙ m)

An. CW An. CW An. CW An. CW

Austenitic

 302 586 758 241 517 60 35 149 122

 303 620 758 241 552 50 22 115 47

 304 586 758 241 517 60 55 149 122

 347, 348 620 758 241 448 50 40 149 —

Martensitic

 410 517 724 276 586 35 17 122 102

 414 793 896a 620a 862 20 15a 68 —

 431 862 896a 655a 862a 20 15a 68 —

 440 A, B, C 724 796a 414 620a 14 7a 3 3a

Ferritic

 430, 430F 517 572 296 434 27 20 — —

 446 572 586 365 483 23 20 3 —

Sources: Metals Handbook, ASM International, Materials Park, OH, 1985.
Note: To convert from MPa to ksi, divide given values by 6.895.
a Annealed and cold drawn.

TABLE B.6
Mechanical Properties of Some Aluminum Alloys

Alloy

Ultimate Strength Su Yield Strength Sy Elongation in 
50 mm (%) Brinell Hardness (HB)(MPa) (ksi) (MPa) (ksi)

Wrought:

 1100-H14 125 (18) 115 (17) 20 32

 2011-T3 380 (55) 295 (43) 15 95

 2014-T4 425 (62) 290 (42) 20 105

 2024-T4 470 (68) 325 (47) 19 120

 6061-T6 310 (45) 275 (40) 17 95

 6063-T6 240 (35) 215 (31) 12 73

 7075-T6 570 (83) 505 (73) 11 150

Cast

 201-T4a 365 (53) 215 (31) 20 —

 295-T6a 250 (36) 165 (24) 5 —

 355-T6a 240 (35) 175 (25) 3 —

-T6b 290 (42) 190 (27) 4 —

 356-T6a 230 (33) 165 (24) 2 —

-T6b 265 (38) 185 (27) 5 —

 520-T4a 330 (48) 180 (26) 16 —

Sources: Materials Engineering, Materials Selector, Penton Publication, Cleveland, OH, 1991.
a Sand casting.
b Permanent mold casting.
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TABLE B.7
Mechanical Properties of Some Copper Alloys

Alloy UNS Number
Ultimate Strength 

Su (MPa)
Yield Strength 

Sy (MPa)
Elongation 

in 50 mm (%)

Wrought

Leaded

 Beryllium copper C17300 469–1379 172–1227 43–3

 Phos bronze C54400 469–517 393–434 20–15

Aluminum

 Silicon bronze C64200 517–703 241–469 32–22

Silicon bronze C65500 400–745 152–414 60–13

Manganese bronze C67500 448–579 207–414 33–19

Cast

Leaded

 Red brass C83600 255 117 30

 Yellow brass C85200 262 90 35

Manganese bronze C86200 655 331 20

Bearing bronze C93200 241 124 20

Aluminum bronze C95400 586–724 241–372 18–8

Copper nickel C96200 310 172 20

Source: Machine Design, Materials Reference Issue, Penton Publication, Cleveland, OH, 1991.
Note: To convert from MPa to ksi, divide given values by 6.895.

TABLE B.8
Selected Mechanical Properties of Some Common Plastics

Plastic

Ultimate Strength Su Elongation in  
50 mm (%)

Izod Impact Strength

(MPa) (ksi) J (ft · lb)

Acrylic 72 (10.5) 6 0.5 (0.4)

Cellulose acetate 14–18 (2–7) — 1.4–9.5 (1–7)

Epoxy (glass-filled) 69–138 (10–20) 4 2.7–41 (2–30)

Fluorocarbon 23 (3.4) 300 4.1 (3)

Nylon (6/6) 83 (12) 60 1.4 (1)

Phenolic (wood flour-filled) 48 (7) 0.4–0.8 0.4 (0.3)

Polycarbonate 62–72 (9–10.5) 110–125 16–22 (12–16)

Polyester (25% glass-filled) 110–160 (16–23) 1–3 1.4–2.6 (1.0–1.9)

Polypropylene 34 (5) 10–20 0.7–3.0 (0.5–2.2)

Sources: Materials Engineering, Materials Selector, Penton Publication, Cleveland, OH, 1991.
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TABLE B.9
Materials and Selected Members of Each Class
Class Members Abbreviation

Engineering alloys Aluminum alloys Al alloys

(the metals and alloys of engineering) Copper alloys Cu alloys

Lead alloys Lead alloys

Magnesium alloys Mg alloys

Molybdenum alloys Mo alloys

Nickel alloys Ni alloys

Steels Steels

Tin alloys Tin alloys

Titanium alloys Ti alloys

Tungsten alloys W alloys

Zinc alloys Zn alloys

Engineering polymers Epoxies EP

(the thermoplastics and thermosets of engineering) Melamines MEL

Polycarbonate PC

Polyesters PEST

Polyethylene, high density HDPE

Polyethylene, low density LDPE

Polyformaldehyde PF

Polymethylmethacrylate PMMA

Polypropylene PP

Polytetrafluoroethylene PTFE

Polyvinyl chloride PVC

Engineering ceramics Alumina Al2O3

(fine ceramics capable of load-bearing applications) Diamond C

Sialons Sialons

Silicon carbide SiC

Silicon nitride Si3N4

Zirconia ZrO2

Engineering composites Carbon-fiber-reinforced polymer CFRP

(the composites of engineering practice) Glass-fiber-reinforced polymer GFRP

A distinction is drawn between the properties of a ply (uniply) 
and of a laminate (laminates).

Kevlar-fiber-reinforced polymer KFRP

Porous ceramics Brick Brick

(traditional ceramics, cements, rocks, and minerals) Cement Cement

Common rocks Rocks

Concrete Concrete

Porcelain Pcln

Pottery Pot

Glasses Borosilicate glass B-glass

(ordinary silicate glass) Soda glass Na-glass

Silica SiO2

Woods Ash Ash

Separate envelopesa describe properties: parallel to the grain, 
normal to it, and wood products

Balsa Balsa

Fir Fir

Oak Oak

Pine Pine

(Continued )
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TABLE B.9 (continued)
Materials and Selected Members of Each Class

Class Members Abbreviation

Wood products (ply, etc.) Wood products

Elastomers Natural rubber Rubber

(natural and artificial rubbers) Hard butyl rubber Hard butyl

Polyurethanes PU

Silicone rubber Silicone

Soft butyl rubber Soft butyl

Polymer foams Cork Cork

(foamed polymers of engineering) Polyester PEST

Polystyrene PS

Polyurethane PU

Source: Ashby, M.F., Material Selection in Mechanical Design, 5th ed. Butterworth Heinemann, U.K., 2020.
a Data for members of a particular class of material cluster together and are enclosed by envelopes in Ashby’s charts (see 

Figure 2.21).
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Appendix C: 
Stress-Concentration Factors

In the following charts, the theoretical or geometric stress-concentration factors Kt for some com-
mon cases are presented as an aid to the reader in the solution of practical problems. These graphs 
were selected from the extensive charts found in [8, 9] of Chapter 3. Equations to estimate most 
of these curves have been included to allow automatic generation of the Kt during calculations. 
Figures C.1 through C.6 are for flat bars and Figures C.7 through C.13 relate to cylindrical members. 
Note that the results pertain to an isotropic material, and are for use in Equation (3.42).
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Approximate formula K B r
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D/d B a

∞ 1.110 –0.417
1.50 1.133 –0.366
1.15 1.095 –0.325
1.05 1.091 –0.242
1.01 1.043 –0.142

FIGURE C.3 Theoretical stress-concentration factor Kt for a notched bar in axial tension.
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FIGURE C.1 Theoretical stress-concentration factor Kt for a filleted bar in axial tension.
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FIGURE C.2 Theoretical stress-concentration factor Kt for a filleted bar in bending.
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FIGURE C.4 Theoretical stress-concentration factor Kt for a notched bar in bending.
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FIGURE C.5 Theoretical stress-concentration factor Kt: A, for a flat bar loaded in tension by a pin through 
the transverse hole; B, for a flat bar with a transverse hole in axial tension.
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FIGURE C.6 Theoretical stress-concentration factor Kt for a flat bar with a transverse hole in bending.
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FIGURE C.7 Theoretical stress-concentration factor Kt for a shaft with a shoulder fillet in axial tension.
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FIGURE C.8 Theoretical stress-concentration factor Kt for a shaft with a shoulder fillet in torsion.
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FIGURE C.9 Theoretical stress-concentration factor Kt for a shaft with a shoulder fillet in bending.
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FIGURE C.11 Theoretical stress-concentration factor Kt for a grooved shaft in torsion.
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FIGURE C.10 Theoretical stress-concentration factor Kt for a grooved shaft in axial tension.
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FIGURE C.13 Theoretical stress-concentration factor Kt for a shaft with a transverse hole in axial tension, 
bending, and torsion.
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FIGURE C.12 Theoretical stress-concentration factor Kt for a grooved shaft in bending.
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Appendix D: Solution of the 
Stress Cubic Equation

PRINCIPAL STRESSES

Numerous methods for solving a cubic equation are in common use. The following is a practical 
approach for calculating the roots of stress cubic equation (see Section 3.15):

 , ,( )σ − σ + σ − = =I I I i0 1 2 3i i i
3

1
2

2 3  (3.48)

where

 

= σ + σ + σ

= σ σ + σ σ + σ σ − τ − τ − τ

= σ σ σ + τ τ τ − σ τ − σ τ − σ τ
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I 2

x y z

x y x z y z xy yz xz

x y z xy yz xz x yz y xz z xy

1

2
2 2 2

3
2 2 2

 (3.49)

In accordance with the method, expressions that provide direct means for solving both 2D and 3D 
stress problems are (see [3] of Chapter 3):
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Here, the constants are expressed by
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780 Appendix D: Solution of the Stress Cubic Equation

The invariants I1, I2, and I3 are represented in terms of the given stress components by Equation 
(3.49). The principal stresses found from Equation (D.1) are redesignated using numerical sub-
scripts so that algebraically σ1 > σ2 > σ3.

DIRECTION COSINES

The values of the direction cosines of a principal stress are determined using Equations (3.46) and 
(3.44), as already discussed in Section 3.15. However, the following simpler method is preferred:

 ( )
( )

( )σ − σ τ τ

τ σ − σ τ

τ τ σ − σ





































=
l

m

n

0

x i xy xz

xy y i yz

xz yz z i

i

i

i

 (3.46)

The cofactors of the determinant of the preceding matrix on the elements of the first row are 
given by

 
( )

( )
=

σ − σ τ

τ σ − σ
ai

y i yz

yz z i

 

 ( )= −
τ τ

τ σ − σ
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xz z i

 (D.3)

 
( )

=
τ σ − σ

τ τ
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xy y i

xz yz

 

Let us introduce the notation

 /( )
=

+ +
k

a b c

1
i

i i i
2 2 2 1 2  (D.4)

The direction cosines are then expressed in the form

 = = =l a k m bk n c ki i i i i i i i (D.5)

Clearly, Equation (D.5) gives + + =l m n 1i i i
2 2 2 .

The foregoing procedures are well adapted to a quality scientific calculator or digital computer.
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Answers to Selected Problems

CHAPTER 1

 1.4 (a) RCx = 75 kN, RCy = 50 kN,
 RBx = 75 kN, RBy = 10 kN.

 (b) FD = 85 kN, VD = 30 kN,
  MD = 37.5 kN · m.

 1.6 (a) T = 200 N · m, RA = RB = 2 kN.
 1.9 (a) T = 0.6 kN · m.

 (b) RA = 4.427 kN.
  RE = 8.854 kN.

 1.11 Ry = 2 00 N, T = 30 N · m, Mz = 96 N · m.
 1.14 Vy = 64 N, Mz = 31.2 N · m.
 1.16 Td = 0.3 kN · m.
 1.22 F = 5.348 kN, TDE = 401.1 N · m.
 1.23 e = 87%.
 1.27 (a) εc,max = 2000 μ.
  (b) εr = 1000 μ.
 1.31 εx = εy = −363 μ.

  γxy = 1651 μ.

CHAPTER 2

 2.2 E = 214.2 GPa.
 2.5 (a) E = 53 GPa.

 (b) ν = 0.25.
 (c) G = 21.2 GPa.

 2.7 (a) ν = 0.25.
 (b) E = 60 GPa.
 (c) a′ = 74.9625 mm.
 (d) G = 24 GPa.

 2.8 εx = 1327 μ.
 2.12 L′ = 99.96 mm, a′ = 49.98 mm,

  b′ = 9.996 mm.
 2.15 n = 3.16.
 2.20 d = 17 mm.
 2.25 Su = 538 MPa, Sy = 378 MPa.

CHAPTER 3

 3.2 amin = 73 mm.
 3.4 (a) σBD = −1.018 MPa.

 (b) τA = 9.697 MPa.
 3.5 α = 54.7°.
 3.10 (a) d = 26.1 mm.

 (b) d = 18.43 mm.

 3.14 b = 56.5 mm.
 3.19 (a) σx = −37.1 kPa, σy = −2.9 kPa,
 τxy = 47 kPa.

 (b) τmax = 50 kPa.

 3.24 σx′ = 140.3 MPa, σy′ = 1.07 MPa,
  τx′y′ = 12.28 MPa.
 3.35 (a) γmax = 566 μ.
 3.37 pall = 1.281 MPa.
 3.43 pall = 29.3 kN.
 3.47 (a) σ1 = 185.4 MPa, σ2 = 66.6 MPa, 

σ3 = –21 MPa.
 (b) τmax = 103.2 MPa.

 3.53 σ = 174.9 MPa
  τ = 148.9 MPa.

CHAPTER 4

 4.1 (a) d = 8.74 mm.
 (b) k = 2000 kN/m.

 4.5 (a) P = 178.2 kN.
 (b) δa = 0.0653 mm.

 4.10 (a) ϕD = 6.82°.
 (b) τAB = 41.92 MPa.

 4.15 h = 197 mm.

 4.19 .( )
( )=

+
R

P E I

E I E I

5
2

2 2

1 1 2 2

 4.24 ,= = = − =R R
P

M M
PL

2 8
A B A B

  .( )υ = − −Px

EI
L x

48
3 4

2

 4.26 , ,= ↓ = ↑ =R P R P M Pa
3
4

7
4

1
2

A B A

 4.29 (a) δmax = 7.37 mm.
 (b) σmax = 198 MPa.

 4.31 d = 48.5 mm.
 4.33 (a) υmax = 7 mm.

 (b) σmax = 53.1 MPa.
 4.35 (a) ϕmax = 0.17°.

 (b) τmax = 133.3 MPa.

CHAPTER 5

 5.1 = πd a/ 8/ .

 5.8 .=U
w L

AG

1
20

s

2 3

ISTUDY

www.konkur.in

Telegram: @uni_k



782 Answers to Selected Problems

 5.10 .( )υ = + +
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 5.36 .( )υ = −Pc L c
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2 2

 5.37 d = 29 mm.
 5.38 d = 25.7 mm.
 5.41 Qall = 295 N.
 5.44 Pall = 4.5 kN.
 5.46 Fall = 129.2 kN.
 5.62 d = 109 mm.
 5.63 Pall = 2751 kN.
 5.66 a = 48 mm.

CHAPTER 6

 6.1 σ = 231.6 MPa.
 6.3 P = 256 kN.
  σ = 97.5 MPa.
 6.8 M = 2.76 kN · m.
 6.10 P = 2.128 kN.
 6.12 (a) n = 2.86.

 (b) n = 2.61
 6.14 F = 1.163 kN.
 6.19 (a) t = 5.25 mm.

 (b) t = 4.548 mm.
 6.21 (a) n = 1.94.

 (b) n = 1.82.
 6.26 (a) p = 7.44 MPa.

 (b) p = 10.02 MPa.
 6.27 T = 2.025 kN · m.
 6.30 τ = 111.1 MPa.
 6.36 R ≈ 99.94%.
 6.42 10%.

CHAPTER 7

 7.2 (a) D = 48.4 mm.
 (b) D = 45.2 mm.

 7.7 Se = 38.5 MPa.
 7.15 (a) n = 4.64.

 (b) n = 1.57.
 7.19 (a) T = 624.9 N · m.
 7.22 n = 1.89.
 7.26 t = 18.4 mm.
 7.28 h = 1.45 mm.
 7.30 h = 0.534 mm.
 7.32 Po = 30.23 N.
 7.34 n = 1.63.
 7.38 n = 1.4.
 7.40 n = 1.81.

CHAPTER 8

 8.3 Vs = 4.6 mm3, Vf = 1.64 mm3.
 8.7 (a) a = 2.2162 mm.

 (b) δ = 0.00677 mm.
 (c) τmax = 68.48 MPa.

 8.9 (a) a = 0.135 mm.
 (b) po = 943.1 MPa.

 8.12 (a) po = 643.7 MPa.
 (b) δ = 4.751 × 10-3 mm.

 8.18 po = 414.9 MPa.
 8.21 (a) a = 0.2033 mm.

 (b) po = 939.4 MPa.
 (c) τyz, max = 282 MPa.

 8.22 po = 1083 MPa.

CHAPTER 9

 9.3 (a)    DAC = 14.25 mm, DBC = 20.56 mm.
 (b) ϕAB = 7.93°.

 9.4 Wa/Ws = 0.598.
 9.7 (a)    D = 42.71 mm.

 (b) D = 42.3 mm.
 9.13 D = 63.5 mm.
 9.15 n = 1.99.
 9.19 n = 1.93.
 9.24 D = 56.8 mm.
 9.26 ncr = 594 rpm.
 9.28 ncr = 967 rpm.
 9.34 n = 1.15.
 9.37 (a)    n = 1.98.

 (b) n = 6.71.
 (c) n = 17.1.
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CHAPTER 10

 10.3 n = 24.8 rpm.
 10.7 η = 25.95 mPa · s.
 10.10 W = 2.42 kN.
 10.12 (a)   f = 0.02.

 (b) kW = 0.531.
 10.16 (a)   h0 = 0.008 mm.

 (b) kW = 0.017.
 10.17 (a)   h0 = 0.013 mm.

 (b) pmax = 4.808 MPa.
 10.19 (a)   η = 52.8 mPa · s.

 (b) kW = 0.377.
 10.20 t = 85.2°C.
 10.22 L10 = 344.8 h.
 10.24 L10 = 119.2 h.
 10.30 18.8%.
 10.32 L10 = 949.3 h (for 03 series).
 10.36 L5 = 267 h.

CHAPTER 11

 11.2 N1 = 60, N2 = 180.
 11.10 Ng = 88, dp = 88 mm, c = 220 mm.
 11.18 (a)   Ft1 = 8.843 kN, Fr1 = 3.219 kN.

 (b) RC = 9.411 kN, TC = 1.326 kN ⋅ m.
 11.22 (a)   Fb = 2.972 kN.

 (b) Fw = 1.464 kN.
 (c) Ft = 487 N.

 11.23 (a)   Fb = 2.75 kN.
 (b) Fw = 1.81 kN.
 (c) Ft = 617.5 N.

 11.27 (a)   Fb = 6.76 kN.
 (b) Fw = 2.35 kN.

 11.29 No.
 11.33 kW = 4.95.
 11.36 kW = 13.59.
 11.39 kW = 33.6.

CHAPTER 12

 12.1 (a)   pn = 12.566 mm, p = 14.511 mm.
  pa =  25.134 mm.
 12.5 kW = 75.58.
 12.7 c = 369.1 mm.
 12.11 (a)   Ft1 = Ft2 = Ft3 = 1.178 kN.
 12.15 n = 2.02.
 12.17 (a)   kW = 13.02.

 (b) kW = 21.1.
 12.18 (b) αp = 25.46°, αg = 64.54°.

 (c) b = 30 mm.
 (d) c = 0.569 mm.

 12.20 The gears are safe.
 12.24 kW = 29.25.
 12.26 Ft = 45.86 kN.
 12.31 (a) λ = 10.39°.

 (b)  Fwt = Fga = 1.91 kN.

CHAPTER 13

 13.4 TA = 13 N ⋅ m, TB = 101 N ⋅ m.
 13.8 kW = 34.7.
 13.10 Fmax = 1.143 kN.
 13.13 c = 336.12 mm.
 13.17 (a)   pmax = 254.6 kPa, T = 180 N ⋅ m.

 (b) pmax = 191 kPa, T = 183.8 N ⋅ m.
 13.19 (a)   D = 446.4 mm.

 (b) Fa = 8.22 kN.
 13.21 (a)   Fa = 9.89 kN.

 (b) pavg = 186.6 kPa.
 13.24 w = 35.21 mm.
 13.27 T = 602 N ⋅ m.
 13.29 F1 = 14 kN, F2 = 3.983 kN,

 kW = 31.46.
 13.31 F1 = 3,085 N, F2 = 538.6 N.
 13.34 kW = 10.52.
 13.36 Fa = 366.04 N. No.
 13.39 (a)   Fa = 1.542 kN. No.

 (b) RA = 2.632 kN.
 13.46 b = 1.414r.

CHAPTER 14

 14.1 (a)    T = 35.48 N ⋅ m.
 (b) τ = 353 MPa.

 14.4 Na = 20.4.
 14.8 (a)    hs = 39 mm.

 (b) Pmax = 320.4 N.
 14.10 (a)    hf = 45.53 mm.

 (b) The spring is safe.
 14.16 (a)    d = 14.94 mm.

 (b) hf = 274.6 mm.
 (c) The spring is safe.
 fn = 4370 cpm.

 14.21 Pmin = 404.2 N
 Pmax = 595.8 N.

 14.22 (a)    n = 2.49.
 (b) Na = 17.3.

 14.23 (a)    d = 2.75 mm.
 (c) fn = 32,748 cpm.
 (d) The spring is safe.

 14.25 (a)    d = 5.41 mm.
 (b) Na = 9.89.

 14.29 n = 1.13.
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CHAPTER 15

 15.4 kW = 1.23.
 15.10 To = 145.3 N ⋅ m.
 15.13 (a) σ = 10.8 MPa.

 (b) Lne = 20.8 mm.
 (c) Nut: τ = 13.8 MPa,
  screw: τ = 16.4 MPa.

 15.14 P = 54.67 kN.
 15.16 (a) Pmax = 37.27 kN, Pmin = 21.53 kN.

 (b) T = 75 N · m.
 15.20 n = 1.85.
 15.26 (a) Pb = 118.5 kN.

 (b) T = 312.6 N · m.
 15.28 n = 2.07 (with preload).

  n = 1.40 (without preload).
 15.30 (a) n = 4.5 (with preload),

n = 2.19 (no preload).
 (b) ns = 5.37.

 15.32 e = 67.5%.
 15.40 VB = 2.15 kN, τB = 6.844 MPa,

  σB = 7.167 MPa.
 15.41 d = 54.3 mm.
 15.43 P = 23.76 kN.
 15.49 h = 5.52 mm.
 15.51 L = 199.6 mm.
 15.54 h = 4.05 mm.

CHAPTER 16

 16.5 (a) p = 30.71 MPa.
 (b) 2c = 220 mm.

 16.7 Steel: σθ, max = 62.32 MPa,
  bronze: σθ,max = −116.8 MPa.
 16.9 Δds = 0.356λ.
 16.12 (a) p = 5.167 MPa.

 (b) σθ = 5.596 MPa.
 16.13 (a) σθ.max = 41.11 MPa.

 (b) n = 3539 rpm.
 16.14 (a) p = 18 MPa.

 (b) F = 244.3 kN.
 (c) T = 14.66 kN · m.

 16.20 P = 1.922 kN.
 16.22 b = 156 mm.
 16.25 (a) P = 84.58 kN.

 (b) (σθ)B = −50 MPa.

CHAPTER 17
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 (e) F12 = −375.2 kN (C),
  F23 = 180 kN (T).

17.15 (c) υ1 = 8.87 mm.
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CHAPTER 18

 18.1 (a) FCF = −42 kN (C).
     FAE = 45.35 kN (T).
     FBG = −20.08 kN (C).

 18.3 ε1 = 1094.6 μ, ε2 = 294.6 μ, γmax = 1389 μ.
 18.5 εx = 1104 μ, εy = −144 μ, γxy = −610 μ.
 18.7 Lm = 1.814 m.
 18.10 (a)   b = 405 mm.

 (b) No.
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A

Abrasive wear, 322–324
Absolute viscosity, 388
Acme screw, 596
Active coils, 573
Actual load, 447
Actuating force, 528
Addendum, 427
Adhesives, 641

bonding, 641
wear, 322–323

AGMA elastic coefficients (spur gears), 457
AGMA equations

bevel gears, 487–488
helical gears, 474
spur gears, 446–452, 455–459

AISI/SAE numbering system, 71
Allowable bending load, 444, 486
Allowable bending stress, 446–447, 452, 487
Allowable contact stress, 455, 456, 458
Allowable surface stress, 488
Allowable wear load, 454–455
Alloy

aluminum, 72
casting, 71
copper, 72
defined, 66
silicon, 69
steels, 69–72
wrought, 72

Alternating stress, 293
Angle

of articulation, 520
contact, 408, 508
helix, 468
lead, 490, 593
pitch, 482
pressure, 431
thread, 594
of wrap, 508

Angular-contact bearing, 408
Annulus, 426
ASME code for pressure vessels, 13, 678
ASME shaft design equation, 355
Aspect ratio, 225
ASTM numbering system

cast iron, 69–70
steel, 70

Automotive-type multileaf spring, 582–583
AWS numbering system, 634
Axial fatigue strength, 284
Axial pitch, 471, 489, 628
Axial rigidity, 150
Axisymmetric problems, 655–686

compound cylinders, 661–664
cylinder with central hole, 670

disk flywheel, 664–670
filament-wound pressure vessels, 678–679
pressure vessels/piping, 677–678
stresses in curved beams, 671–673
thermal stresses in cylinders, 670–671
thick-walled cylinders under pressure,  

657–661
Winkler’s formula, 674

Axle, 345

B

Babbitt alloys, 405
Back-driving screw, 602
Backlash, 428–429
Back-to-back (DB) mounting arrangements, 420
Ball bearing, 408–410

capacity analysis, 335–336
geometry/nomenclature, 409

Ball screw, 605–606
Band brake, 525, 534–536
Base circle, 430
Basic dynamic load rating, 412
Basic principles of analysis, 8
Basic static load rating, 412
Beam

assumptions in beam theory, 96
built-up, 100
impact loading, 164–165
statically indeterminate, 16, 698–700
strain energy, 185–190

Beam strength of gear tooth, 442–443
Bearings, 381–424; see also Journal bearings; Lubrication; 

Rolling-element bearings
diameter, 399
length, 399
life, 411
mounting, 420–421
stress, 85–87

Belleville, J.F., 584
Belleville springs, 584–586
Belt, 503

flat, 504
round, 504
timing, 505–506
V, 504–505

Belt drives, 507–511
belt pitch length, 508
center distance, 509
contact angle, 508
flat, 511–513
initial tension, 510
round, 511–513
timing, 505–506
transmitted power, 507–508
V-belt, 513, 515

Belt tension relationships, 511–513
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Bending fatigue strength, 283–284
Bevel gears, 481–484

AGMA equations, 487–488
bending/wear strengths, 486–488
Buckingham equation, 486–487
Lewis equation, 486
notation, 483
straight, 484–486
tooth loads, 484–486
virtual number of teeth, 470

Bolt, 611–612; see also Joints
safely factor, 614–615
shear forces—eccentric loading, 630–633
stiffness, 617
strength, 611
tension—static loading, 612–615
tightening, 611–612
twisting-off strength, 271

Bonding, 593; see also Connections
adhesive, 641–642
brazing, 640
soldering, 641

Boundary lubrication, 385
Boyd, J., 398
Brakes and clutches, 503, 524–526

band brakes, 534–536
cone, 532–534
disk brake, 530–532
disk clutch, 527–530
energy absorption and cooling, 544–546
energy sources, 544–545
internal expanding drum, 526
long-shoe drum brakes, 538–544
materials, 524–526
short-shoe drum brakes, 536–538
temperature rise, 545–546

Brazing, 640
Brinell hardness number (HB), 64
Brittle–ductile transition, 60–62
Buckingham, E., 453
Buckingham equation

bevel gears, 486–487
helical gears, 473–474
spur gears, 452–455

Buckling design of members
buckling of columns, 204–207 (see also Column)
compression springs, 565–568
cylindrical/spherical shells, 677–679
rectangular plates, 224–226
secant formula, 214–218

Burnishing, 461
Bushing, 382
Butt joint, 628
Butt weld, 634, 635

C

Caliper disk brake, 530–532
Camshaft torque requirement, 22–23
Cantilever spring of uniform stress, 579
Cap screw, 364, 606
Carbon-graphite bearings, 407
Carburizing, 68, 345, 460

Cardan coupling, 371
Case-hardened gears, 460
Case studies, 19

ball bearing—shaft—gear box—winch crane, 729–734
belt design of high-speed cutting machine, 741–743
bolt cutter

deflection analysis, 159–160
loading analysis, 19–21
stress analysis, 117–118

brake design of high-speed cutting machine, 743
cam and follower analysis of intermittent motion 

mechanism, 332–333
camshaft fatigue design of intermittent motion 

mechanism, 300–303
crane hook—winch crane, 736–738
design of speed reducer, 451–452
high speed turbine, 477–481
machine design, 717–750
rupture of Titanic’s hull, 62–63
screw—winch crane hook, 734–736
spring design—feed mechanism—high speed cutting 

machine, 744–745
spur gear train of winch crane, 725–729
welded joint—winch crane frame, 738–740
winch crane frame loading analysis, 719–721
winch crane gearbox—shafting design, 729–734
finite element analysis

stress concentration—plate with hole—uniaxial 
tension, 708–709

stresses/displacements—plate in tension, 706–708
truss, 693–697

Clash allowance, 563
Castigliano, A., 193
Castigliano’s theorems, 193–196
Cavitation damage, 321
Center distance, 428, 431, 490
Centrifugal clutch, 526
Chain drives, 503, 517–518

inverted tooth chain, 523–524
roller chains, 520–523
types, 518

Chain length, 517
Chain pitch, 518, 523
Chain velocity, 518, 520
Chordal action, 519–520
Circular pitch, 426, 434
Circumferential groove, 403
Clamp collars, 345, 365
Clamped rigid couplings, 369
Clash allowance, 563, 570
Class 1 fit, 595
Class 2 fit, 595
Class 3 fit, 595
Clearance

fit, 358
gears, 428
journal bearings, 398

Clutches, 503, 524–526; see also Brakes and clutches
Coarse thread, 595, 597
Code of Ethics for Engineers, 4
Coefficient of friction, 321, 383, 385

journal bearings, 397–402
worm gear, 488
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Coil deflection, 573
Cold-driven rivet, 626
Collar friction, 601, 602
Column; see also Buckling design of members

buckling, 204–207
classification, 207–212
critical stress, 207–212
slenderness ratio, 207

Combined loading
design—fluctuating loads, 303–305
maximum distortion energy theory, 255–256
maximum shear stress theory, 253–255
shafts, 347–350

Compatibility condition, 613, 656
Completely reversed stress, 283, 293
Compression couplings, 370
Compression springs, see Helical compression springs
Computational tools for design problems, 10
Computer-aided design (CAD) software, 10
Conditions of equilibrium, 15–16
Cone clutch, 532–534
Coned-disk springs, 584, 585
Conformability, 405, 406
Conical-helical compression spring, 558
Conical spring, 558
Conjugate action, 429, 430, 435
Connections, 593–653

adhesive bonding, 641–642
brazing, 640
fasteners, 593
power screws (see Power screws)
rivets (see Riveted connections)
soldering, 640
threaded fasteners, 593–596, 606, 607
welding, 633–637 (see also Welding)

Conrad-type bearing, 408
Constant-force (Negator) spring, 584
Contact angle, 508
Contact ratio, 434–436, 470
Contact stress, 455
Coordinate transformation matrix, 691, 701
Corrosion

fatigue, 287, 319, 320, 339
stress, 67, 319
wear, 319–321

Coulomb, C A., 253
Coulomb-Mohr theory, 264–266
Coupling, 369–371

Cardan, 371
clamped rigid, 369
compression, 370
flanged rigid, 369–370
flexible, 371
Hooke’s, 371
keyed, 369–370
rigid, 369–371
Rzeppa, 371, 372
square-jawed, 371

Crack deformation types, 246
Critical frequency, 359, 360
Critical speed of shafts, 359–364
Critical stresses, 574
Crossed helical gears, 467

Crowned pulleys, 504–505
Cumulative fatigue damage, 305–307
Curved beam formula, 673–677
Cyclic loading, helical compression spring,  

571–572
Cyclic stress-time relations, 293
Cylinders

compound, 661–664
eccentric hole, with, 660
filament-wound, 678
thermal stress, 670–671
thick-walled, under pressure, 657–661
thin-walled, 671

Cylindrical pressure vessels
fluctuating load, 298–299

Cylindrical roller bearings, 410, 411
Cylindrical rubber mounts, 586

D

da Vinci, Leonardo, 425
Dedendum, 427, 428
Deep-groove (Conrad-type) bearing, 408
Deflection and impact, 149–173

Belleville springs, 584–586
bolt cutter deflection analysis, 159–160
freely falling weight, 165–166
horizontally moving weight, 166–167
impact loading, 164–165
longitudinal/bending impact, 165–171
springs, 557–558

Design, 3; see also Introduction to design
analysis, 7–9
decisions, 4
function, 3
and performance requirements, 6
power capacity, 522
and safety codes, 12–13
stress value, 447, 456

Design process, 5–7
analysis, 7
definition of the problem, 6
identification of need, 5–6
presentation, 7
synthesis, 6
testing, 6

Diametral pitch, 427, 431–433, 469, 482
Differential band brake, 535–536
Dip brazing, 640
Direct equilibrium approach, 689
Discontinuity stresses, 677–678
Disk brake, 530–532
Disk clutch, 526–528
Disk flywheels, 664–670
Displacement

disk flywheel, 665–668
truss—Castigliano’s theorem, 197–198
two-dimensional problem, 700–702

Double-enveloping wormset, 489, 490
Double-Hooke joint, 371–372
Double lap joint, 642
Double-row radial bearing, 408
Double shear joint, 628
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Drop-feed oiler, 403
Drum clutch, 526
Drums, 524
DT mounting arrangement, see Tandem (DT) mounting 

arrangement 
Dubois, G B., 397
Duplex hydraulic conduit, 663–664
Duplex mounting, 420
Dynamic loading, tension joints, 621–626

E

Eccentrically loaded columns, 214–222
Eccentric loading, shear of rivets/bolts, 630–633
Effective diameters, 626
Effective slenderness ratio, 207
Efficiency, 23

ball screw, 605–606
joint, 628–629
power screw, 602–605
screw, 602
toothed belt drive, 506
worm gear, 494

Elasticity
defined, 41
matrix, 701, 705
two-dimensional elements, 702–703

Elastohyrodynamic lubrication, 385
Element strain-nodal displacement matrix, 702
Endurance limit defined, 283

estimating, 285–286
fatigue loading, 569
fatigue stress concentration factor, 290–292
modifying factors, 286–287
reliability factor, 289
size factor, 289
surface finish factor, 288–289
temperature factor, 290

Endurance strength, 283
Energy methods, 165, 185–241

buckling of columns, 204–207
Castigliano’s first theorem, 201–202
stiffness matrix, 705
virtual work/potential energy, 201–202
work-energy method, 192–193

Engineering design, 3–4
Epicyclic trains, 438
Equivalent radial load, 413–415
Equivalent shock loading, 414–415
Expanding drum clutch, 526
Expected V belt life, 514
Extension springs, 572–576
External long-shoe drum brakes, 539–542
External self-aligning bearing, 408
Extruding, 461

F

Face-to-face (DF) mounting arrangements, 420
Face width, 428, 432
Factor of safety

fracture mechanics, 247
joint—dynamic loading, 621–626

joint—static loading, 612–613
reliability, 266–267
welding, 635

Fading, 544
Failure criteria; see also Fatigue

Coulomb-Mohr theory, 264–266
fracture toughness, 247–252
maximum distortion energy theory, 255–257
maximum principal stress theory, 261–263
maximum shear stress theory, 253–255
Mohr’s theory, 263–264
octahedral shear stress theory, 257–261
stress-intensity factors, 246–247
yield and fracture criteria, 252–253
yielding theories, compared, 261

Failure of components by yielding, fracture, 317
Fastener; see also Connections

preloaded—fatigue loading, 623–626
preloaded—static loading, 612–621
threaded, 623

Fatigue, 279–315
axial fatigue strength, 284
bending fatigue strength, 283–284
cumulative fatigue damage, 305–307
endurance limit (see Endurance limit)
fatigue strength, 283–285
fatigue tests, 282–283
fracture mechanics approach, 307–309
high-/low-cycle, 285
regimes, 285
reversed bending test, 282–283
simple fluctuating loads, 296–303
S-N diagrams, 283–285
stress concentration factor, 290–292
surface fatigue failure (wear), 336–338
theories of fatigue failure, 294
torsional fatigue strength, 284–285
welding, 633–637
zone, 280

Fatigue failure, 279–281
diagram, 294
theories, 294

Fatigue limit; see also Endurance limit
butt welding, 636–637
preloaded fasteners, 623–626

Filament-wrapped cylindrical pressure vessel, 678
Fillet weld, 634, 635
Film pressure, 402
Fine thread, 595
Finite element analysis (FEA), 687–716

beam/frame elements, 697–700
case studies (see Case studies, finite element analysis)
formulation of finite element method, 693–697
plane stress case studies, 706–709
programs, 10
statically indeterminate beam, 762
triangular element, 703–706
two-dimensional elements, 700–703

Finite element block diagram, 694
Fitted bearing, 383
Flange bearings, 411
Flanged rigid couplings, 369–371
Flat belt drive, 507, 512
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Flat belts, 504
Flat key, 365
Flat spring, 553, 559, 579
Flexible coupling–keyless fits (AGMA 9003-A91), 359
Flexible couplings, 371
Flexible shaft, 345
Fluctuating loads, 296–303

combined, 303–305
simple, 296–303

Fluctuating stress, 292–294
Fluid film, 384, 385
Fluid lubrication, 384
Flywheel, 664–670
Flywheel breaking—torque requirement 669–670
Force-displacement relations, 692
Fracture, 42, 245

mechanics approach to fatigue, 307–309
toughness, 247–252

Free-body diagram, 17–19
Fretting, 321, 339
Friction

coefficient (see Coefficient of friction)
power, 393–394
torque, 392–393

Full-journal bearing, 382
Fully reversed stress, 283
Furnace brazing, 640
Fusion process, 633

G

Gas bearings, 383
Gasketed joints, 616
Gasket pressure, 616
Gas lubricants, 382
Gas-metal arc welding (GMAW), 634
Gauss distribution, 267
Gauss, K.F., 267
Gear force analysis, 441–442
Gear manufacturing, 460–461
Gear materials, 459–460
Gears, 425

bevel, 467–501
helical, 467–501 (see also Helical gears)
spur, 425–466 (see also Spur gears)
train, 436–439
value, 437
worm, 467–501

Gearset, 429, 437
General spandrel, 754
Gerber criterion, 294–295
Gerber (parabolic) line, 294–295
Gib-head key, 364, 365
GMAW, see Gas metal arc welding
Goodman criteria helical springs, 570
Goodman line, 295, 298, 299
Griffith, A.A., 246

H

Hardness, 63–66
Hb, see Brinell hardness number
Heat balance, 404–405

Heat dissipation capacity, 493, 494
Heat-treated steel gears, 460
Heat treatment, 67–68
Helical compression springs

aspect ratio, 566–568
buckling, 565–566
compression spring surge, 570–571
cyclic loading, 571–572
deflection, 563–564
fatigue loading, 569–572
Goodman criteria helical springs, 570
plain ends, 562, 563
plain-ground ends, 563
squared ends, 563
squared-ground ends, 562–563
static loading, 564–565

Helical extension springs, 572–576
Helical gears, 467–481

advantages/disadvantages, 468
AGMA equations, 474–475
bending/wear strengths, 473–475
Buckingham equation, 473–474
contact ratios, 470–471
geometric quantities, 471–472
geometry, 468–472
Lewis equation, 473
thrust load, 473
transmitted load, 473
virtual number of teeth, 470

Helical tension spring, 555
Helical torsion springs, 576–577
Helix angle, 593
Hencky, H., 255
Herringbone gear, 467, 468, 473
Hertz contact stresses, 327, 453
Hertz, H., 327
Hertz problem, 327
Hexagonal bolt/nut, 595
High-cycle fatigue, 285
Hobbing, 460
Holzer’s method, 360
Honing, 461
Hooke’s coupling, 371–372
Hot-driven rivet, 626
Hot working, 66, 67
Hueber, M T, 255
HV, see Vickers hardness number
Hydrodynamic lubrication theory, 394–397
Hydrostatic lubrication, 385–386
Hydrostatic thrust bearing, 385–386
Hypoid gears, 481

I

Idler, 510
Idler gears, 437
Impact

bending, 165
factor, 166, 169, 171
longitudinal, 165
torsional, 172–174

Impact load(ing), 60, 164–165
beam, 168–170
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Impact load(ing) (cont.)
energy method, 165
shaft, 173–174

Improving hardness/strength, 66–69
Indentation hardness, 64
Induction brazing, 640
Inflection points, 205, 206
Initial tensile force, 611
Initial tension, 507, 510, 573
Injection molding, 461
Interference, 269, 359, 434–436
Interference fits, 358–359
Internal expanding centrifugal-acting drum clutch, 526
Internal long-shoe drum brake, 543–544
Introduction to design, 3–39

case studies (see Case studies)
design analysis, 7–9
design process, 5–7
factor of safety, 11–13
power, 21–25
work and energy, 21–25

Inverted-tooth chain, 523–524
Involute gear teeth, 368, 431
Involute splines, 367, 368
Irwin, G R., 246
ISO (metric) screw threads, 594, 597
Izod impact test, 58

J

Johnson formula, 209–211
Johnson–Kendall–Roberts (JKR) Theory, 328
Joints

bolted-loaded in shear, 626–628
butt, 628
constant, 613, 616, 618
double lap, 642
efficiency of, 629
factors of safety, 614–615
gasketed, 616
lap, 628, 642
rivets (see Riveted connections)
scarf, 642
stiffness factor, 613, 616–618
tension-dynamic loading, 621–623
tension-static loading, 612–615
types, 628–630

Journal, 382
diameter, 399
length, 399

Journal bearings, 381–407; see also Lubrication
alloys, 405–406
bearing load, 397
clearance, 398
design, 397–402
heat balance, 404–405
length-to-diameter ratio, 398
long bearings, 395–397
lubricants, 397
lubricant supply, 402–404
materials, 405–407
Petroff’s bearing equation, 392–394
rolling-element bearings, compared, 407
short bearings, 397
types, 382–383

K

Keyed couplings, 369–370
Keyways, 364, 366
Kinematic viscosity, 389
Kinetic energy, 21, 22

of rotation, 545
of translation, 544

L

L10, 416
Laminar flow, 387, 388
Lap joint, 628, 634, 642
Lapping, 461
Lead, 489, 593
Lead angle, 490, 492, 593
Leaf spring, 579–583
Left-hand (LH) helical gears, 467
Lewis equation

bevel gears, 486
helical gears, 473
spur gears, 442–446

Lewis form factor, 443–444
Lewis, W., 442
Life adjustment factors, 416
Lightly loaded journal bearing, 393
Linear actuator screw, 596
Linear cumulative damage rule, 305
Line of action, 430
Linings, 524
Liquid lubricants, 381–382
Load

actual, 629
bending, 416, 447

bending, 486
dynamic, 15, 441
equivalent radial, 413–415
Euler buckling, 205, 566
impact, 60, 164–165
maximum dynamic, 166
proof, 607, 611
safety factor, 615
shock, 60, 164
spring, 574
tangential, 443, 444, 484, 487
thrust, 410, 467–469, 473
wear, 454, 486

Lock nuts, 607
Lock washers, 607
Long bearings, 395–397
Long-shoe drum brakes, 538–544
Low-cycle fatigue, 285
Lubricant, 381–382
Lubricant viscosity, 387–392
Lubrication, 381–420; see also Journal bearings; Rolling-

element bearings
boundary, 385
elastohydrodynamics, 385
hydrodynamic lubrication theory, 394–397
hydrodynamics, 385
hydrostatic, 385–387
mixed, 384
Reynolds’s equation, 395–397
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M

Machine, 4, 17
design, 4
screw, 606

Margin of safety, 12, 268
Materials, 41–82

brakes and clutches, 524–526
brittle-ductile transition, 60–62
bulk modulus, 51
classification, 41
composites, 74–75
creep, 56–57
dilatation, 51
fasteners, 607–608
improving hardness/strength, 66–69
journal bearings, 405–407
modulus of resilience, 57–58
modulus of toughness, 58–60
properties, 41–42
shafts, 345–346
spring, 559–562
spur gears, 459–460
static strength, 42–47
welding, 634

Maximum contact pressure, 328, 330–333
Maxwell, J.C., 255
Mean stress, 293–294
Mean stress-alternating stress relations, 294
Mechanical design, 4
Mechanical design projects, 19; see also  

Case studies
Mechanical forming and hardening, 66
Mechanical prestressing, 337
Median life, 412
Membrane stresses, 88
Metal inert gas arc welding, 634
Metallic arc welding, 633
Method of sections, 16, 197
Midsurface, 225
Mineral oils, 382
Miner’s rule, 305, 306
Minimum film thickness, 384, 398, 

400, 405
Minimum life, 412
Mises criterion, 257
Mises–Hencky criterion, 257
Miter gears, 481
Mixed lubrication, 384
Mode I crack deformation, 246
Mode II crack deformation, 246
Mode III crack deformation, 246
Modified endurance limit, 286–287
Modified Goodman criterion, 294, 295, 570
Modified Goodman line, 295, 299
Modified Rayleigh’s method, 360
Modified square thread, 596
Module, 427
Modulus of volumetric expansion, 51
Mohr envelope, 263
Mohr’s circle, 110

Coulomb-Mohr theory, 264–265
Mohr’s theory of failure, 263–264
triaxial stress, 111

Mohr theory of failure, 263–264

Molded linings, 525
Moment-area theorems, 161–162
Mounting correction factor, 449
Multileaf spring, 580–583
Multiple-disk clutches, 526–527
Multiple-threaded screw, 594
Multiple V-belt drive, 505

N

Natural frequency, 571
Needle roller bearings, 410
Negator spring, 584
Newtonian fluids, 388
Newton’s law of flow, 395
Newton’s law of viscous flow, 388
Nodal displacement matrix, 703
Nodular cast iron gears, 459–460
Non-Newtonian fluids, 388
Normal circular pitch, 469
Normal distributions, 267–268
Notch sensitivity, 290

O

Ocvirk, F.W., 397
Ocvirk’s short bearing

approximation, 397
Offset yield strength, 46
Oil, 381

bath, 402–403
distribution, 403–404

Optimum design, 4
Optimum helix angle of filament, 679
Overhauling screw, 602
Overload correction factor, 448

P

Paris equation, 307, 308
Paris, P.C., 307
Pedestal bearings, 403
Petroff, N., 392
Petroff’s equation, 392–394
Phases of design, 5–7
Pillow-block bearings, 403, 411
Pinion, 425, 426
Pitch, 593, 628

angles, 482
circles, 425
diameter, 425, 438
line velocity, 429, 451, 474
point, 429, 430, 484
radius, 427, 507

Pitting, 321, 336, 337, 452
Planetary gear trains, 438–439
Plastics, 73–74, 407, 559, 740, 769

gears, 460
range, 45, 46

Plate
Bending of thin, 225
buckling of rectangular, 224–226
midsurface, 225
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Power screws, 593–653; see also Connections
axial stress, 609
bearing, 610
buckling stress, 611
combined torsion/axial, 610
direct shear stress, 610–611
efficiency, 605
friction coefficients, 601
mechanics, 596–601
overhauling, 602–605
self-locking, 605
thread angle—normal plane, 601
thread forms, 593–596
torque to lift load, 600–601
torque to lower load, 601
torsional shear stress, 609–610

Preload, 568, 611
Preloaded fasteners

fatigue loading, 623–626
static loading, 612–615

Presetting, 568
Press fit, 321
Pressure angle, 431–432
Pressure-fed lubrication systems, 403
Pressure line, 430, 431, 434, 440
Pressure vessels

cylindrical (see Cylindrical pressure vessels)
filament-wound, 678–679
thin-walled, 88–89

Principal strains—Mohr’s circle, 120
Principal stress

Mohr’s circle, 132–133
three dimensions, 128–130

Principle of superposition, 28, 50, 149, 187
Principle of virtual work

defined, 201
Process of design, 5–7; see also Design process
Proof load, 607, 611
Proof strength, 607, 614
Pulsating stress, 293

Q

Quenching, 67

R

Raceways, 408, 411
Rack, 426, 427
Radial displacement, 655, 657
Radial interference, 662
Radius of curvature, 245
Radius of gyration, 173, 206, 208
Raimondi, A.A., 398
Rankine, W.J.M., 261
Rating life L10, 412
Rational design procedure, 8
Rayleigh equation, 359, 360
RB, 64
RC, 64
Recrystallization temperature, 66
Redistribution of stress-flat bar of mild steel, 125 
Reliability, 12, 245–278

chart, 269
factor of safety, 266–267
margin of safety, 268–271
normal distributions, 267–268
rolling-element bearings, 407
safety index, 268

Repeating section, 628–629
Resistance brazing, 640
Resistance welding, 634
Reversed bending test, 282–283
Reynolds, O., 395
Reynolds’s equation for one-dimensional flow, 396
Reynolds’s equation of hydrodynamic lubrication,  

395–397
Right-hand (RH) helical gears, 467
Rigid coupling, 369–370
Rim clutch, 526
Ring-oiled bearing, 403
Riveted connections

capacity, 627–628
failure, 627
loaded in shear, 626–628
shear stress—eccentric loading, 632–633
strength analysis—multiple-riveted lap joint,  

629–630
Rockwell hardness test, 64
Roller bearings, 410
Roller chains, 518–523
Rolling-element bearings, 407–421; see also Journal 

bearings
ball bearings, 408–410, 419
bearing life, 411–413
dimensions/basic load ratings, 411–413
equivalent radial load, 413–415
equivalent shock load, 414–415
journal bearings, contrasted, 407
materials/lubricants, 419–420
mounting/closure, 420–421
reliability, 416–419
roller bearings, 410
selection of, 415–419
special bearings, 410–411

Rotating-beam fatigue testing machine, 282–283
Round belts, 504

drives, 507–511
Round key, 365
R.R, Moore high-speed rotating-beam machine, 282
Rubber, 407

mount, 586
spring, 586–587

Rzeppa coupling, 371

S

Safe stress line, 297–298, 570
Safety factor, 11–12
Safety index, 268
Saint-Venant’s Principle, 8
Saybolt universal seconds, 389–390
Saybolt universal viscometer, 389
Saybolt universal viscosity (SUV), 389
Scarf joint, 642
Screw; see also Connections
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ball, 605–606
cap, 606
machine, 606
power (see Power screws)
stresses, 609–611
translation, 596
winch crane hook, 734–736

Screw efficiency, 602–603
Sealed bearing, 421
Secant formula, 214–218
Self-aligning bearing, 408–409
Self-contained bearings, 403, 404
Self-de-energized brake, 538, 540
Self-energized brake, 537–538, 540
Self-locking brake

band brake, 534–535
long-shoe drum brake, 538–539
short-shoe drum brake, 536–537

Self-locking screw, 602
Self-tightening drive, 510
Service factors, 415, 515
Setscrews, 364
Shafts, 345–372

angle, 491
axially positioning of hubs, 365–367
bending/torsion/axial loads, 348
collars, 364–365
couplings, 369–371
critical speed, 359–364
customary types, 345
fluctuating/shock loads, 353–358
interference fits, 358–359
keys, 364
materials, 345–346
mounting parts, 364–366
pins, 364
rings, 364–365
splines, 367–369
steady-state operation, 354–355
stress in keys, 366–367
stress-concentration factors, 773–778
universal joints, 371–372

Shank, 593, 626
Shaving, 461
Shielded metal arc welding (SMAW), 633–634
Shock loading, 149, 414–415
Short-shoe drum brake, 536–538
Shrink fit, 339, 358, 641, 661–664
Shrinking allowance, 662
Sign convention

beams, 94
curvature, 333
Mohr’s circle, 111
shear force, 17
stress component, 25–27
Winkler’s formula, 674

Silent chain, 523–524
Single-shear joint, 628
Single thread, 593
Single-enveloping wormset, 489
Single-row roller bearings, 410
Sintered materials, 407
Sintered metal pads, 525

Sintered metal-ceramic friction pads, 525
Sintering, 461
Sleeve bearings, see Journal bearings
Sliding bearings, see Journal bearings
S-N diagrams, see Stress-life diagrams
Snap rings, 364–366
Snap-through buckling, 586
Society of Automotive Engineers (SAE)

criterion, 295
line, 295
number of oil, 390

Soderberg criterion, 296–297, 303, 355
Soldering, 640–642
Solid deflection, 563, 564
Solid lubricants, 382
Sommerfeld number, 398
Spalling, 337
Special bearings, 410–411
Specific Johnson formulas, 210–211
Speed ratio, 430, 437, 517
Spherical pressure vessel, 89, 677
Spherical roller bearings, 410
Spherical shell, 671
Spiral bevel gears, 481, 487
Spiral torsion spring, 578–579
Splash system of lubrication, 402–403
Splines, 367–369
Split-tubular spring pin, 364
Spring constant, 150, 165, 558, 617
Spring index, 555, 559, 570
Spring load, 574
Spring rate, 150
Spring scale, 558
Springs, 553–592

Belleville, 584–586
compression spring (see Helical compression springs) 
constant-force, 584
extension, 572–576
fatigue, 568–569
leaf, 579–583
materials, 559–562
rubber, 586–587
spring rate, 558–559
stresses, 556–557
surge, 570–571
tension, 555–556
torsion, 576–579
torsion bars, 553–555
volute, 583

Spur gears, 425–466
basic law of gearing, 429–430
bending strength of gear tooth (AGMA method), 

446–452
contact ratio, 434–436
finishing processes, 461
forming gear teeth, 460–461
gear trains, 436–438
geometry/nomenclature, 425–429
interference, 434–436
involute tooth form, 430
Lewis formula, 442–446
manufacturing, 460–461
materials, 459–460
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Spur gears (cont.)
planetary gear trains, 438–439
standard gear teeth, 431–434
stress concentration, 444–445
transmitted load, 439–442
wear strength of gear tooth (AGMA method), 455–459
wear strength of gear tooth (Buckingham formula), 

452–455
Square thread, 596, 601
Square tooth splines, 367
Square-jawed coupling, 371
Stamping, 461
Standard deviation, 267–270
Standard normal distribution, 268
Standard thread forms, 593–596
Static loading

preloaded fasteners, 623–626
tension joints, 612–615

Steel numbering systems, 71–72
Stiffness, 149, 617

constants, 616
matrix, 689

Straight bevel gear, 481–483
Straight cylindrical roller bearings, 414
Straight round pin, 364–365
Straight-line Mohr’s envelopes, 264
Straight-sided splines, 368
Strain displacement relations, 134–135

axisymmetric problems, 656
Strain energy, 187–192
Strain matrix, 701, 704
Strength

fatigue, 283–285
improving, 66–69
static, 42–47

Strength (or stress)-strain diagrams
AISI type 304 stainless steel in tension, 56
annealed steel, 67
brittle materials, 46
compression, 46–47
ductile materials, 43–46
gray cast iron in tension, 46, 47
modulus of resilience, 57–58
modulus of toughness, 58
quenched steel, 67
tempered steel, 67

Stress; see also Stress and strain
allowable bending, 446–447
allowable contact, 455, 456
alternating, 293–294
Belleville springs, 584–586
buckling, 611
coils, 574
completely reversed, 282, 283, 293
compressive residual, 337, 339, 568
contact, 455–456
critical, 574
curved beams, 671–673
direct shear, 85–86, 638
discontinuity, 677–678
disk flywheel, 665–666
equivalent normal, 296
equivalent shear, 296
fluctuating, 292–294
helical springs, 557

hoop, 678
keys, 366–367
maximum bending, 574
maximum compressive bending, 577
membrane, 88, 89, 677
principal (see Principal stress)
pulsating, 293
repeated, 293
resultant shear, 638
screws, 609–611
sign convention, 26–27
thick-walled cylinders, 657–661
total shear, 556
von Mises, 256

Stress and strain, 83–148
combined stresses, 114–115
contact stress distributions, 327–328
direct shear stress, 85–86
fatigue loading, 125
invariants, 111
maximum stress in general contact, 333–336
Mohr’s circle (see Mohr’s circle)
plane strain, 118–121
plane stress, 107–113
temperature, 55–57
tensor, 26
thermal stress-strain relations, 55
transformation, 108

Stress-concentration factors, 123–125, 
773–778

Stress-intensity factors, 246, 247
Stress-life (S-N) diagrams, 283–285
Structural stiffness method, 693
Stud, 606, 607
Surface compressive stresses, 337
Surface endurance limit, 454
Surface fatigue failure (wear), 336–338
Surface stress, 488
Surging, 570
SUV, see Saybolt universal viscosity
Synchronous belt, 505
Synthetic lubricants, 382

T

Tandem (DT) mounting arrangement, 420
Tangential force, 439–440
Tangential load, 484

transmitted, 440
Tapered roller bearings, 410
Tapered round pin, 364, 365
Tapered thrust roller bearings, 410
Temperature

lubricant viscosity, 387–388
recrystallization, 66

Tensile link, safety factor, 299–300
Tensile stress area, 595, 607, 614
Tension joints

dynamic loading, 621–626
static loading, 612–615

Tension spring, 555, 556
Theorem of virtual work, 202
Theoretical stress-concentration factors, see Stress-

concentration factors
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Thick-walled cylinders, 89, 655
under pressure, 657–661

Thin-walled cylinder, 655, 671
Thin-walled spherical shell, 671
Thread angle, 594, 600
Threaded fasteners, 593–595, 606–608; see also Bolt 

Screw
Thread forms, 593–596
Thread friction, 600
360° journal bearing, 382
Through-hardened gears, 460
Through hardening, 68
Thrust bearing, 385, 408, 598, 601
Thrust collar, 597–598, 601
Thrust load, 467–469, 473
Timing belt, 505–506, 509

drive, 517
Toothed belt, 505–506, 509
Torch brazing, 640
Torque capacity

band brake, 534–536
cone clutch, 532
disk brake, 530–532
disk clutch, 527
long-shoe drum brake, 540
multiple-disk clutch, 529
short-shoe drum brake, 536–537

Torsion, 89
springs, 576–579

Torsional fatigue failures, 281
Torsional fatigue strength, 284–285
Torsional impact, 172–174
Torsional shear loading, 587
Torsional shear stress, 556, 609–610
Total shear stress, 556
Transformation equations

for plane stress, 110
three-dimensional stress, 128, 131

Translation screw, 596
Transmitted load, 439–442, 473
Transverse circular pitch, 469
Transverse contact ratio, 471
Transverse pitch, 628
Transverse pressure angle, 469
Tredgold’s approximation, 484
Tresca, H.E., 253
Tresca yield criterion, 253
Triangular element, 703–706
Tribology; see also Bearings; Journal bearings; 

Lubrication; Rolling-element bearings
Truss, analysis/design, 693–697
Turbulent, 387
Twisting-off strength of bolts, 271
Two-dimensional Reynolds’s equation, 397

U

UNC coarse threads, 595
Undercut tooth, 435
UNF fine threads, 595
Unified and ISO thread forms, 595
Unified numbering system (UNS), 72
Unified screw threads, 596
Uniform pressure

cone clutch, 533

disk clutch, 529–530
Uniform wear

cone clutch, 532–533
disk clutch, 528–529

Universal joint, 371–372

V

Variable-pitch pulleys, 504
V-belt, 510, 513

drive, 513–517
Vickers hardness number (Hv), 64
Vickers hardness test, 64
Virtual number of teeth

bevel gears, 484
helical gears, 470

Virtual work, 201
Viscosity, 389

index, 391
Volute spring, 583
von Mises-Hencky theory, 255
von Mises, R, 255
von Mises stress, 256
von Mises theory, 255

W

Wahl factor, 556
Wahl formula, 556
Washers, 584
Wave method, 165
Wear, 322–323, 452

equation, 323, 492
load, 486
load factor, 454, 474

Weibull distribution, 267, 416
Weibull, W., 267
Weld(ing), 633–640

AWS numbering system, 634
butt-fatigue loading, 636–637
centroid, 639
eccentric loading, 637–640
factor of safety, 635
GMAW, 634
materials, 634
moments of inertia, 639–640
resistance, 634
SMAW, 633
spot, 634
strength of joints, 634–635
stress concentration/fatigue, 635–637
torsion, 637–638

Weldment, 633
Whole depth, 428, 432
Wick-feed oiler, 403
Wind turbine, 481
Winkler, E., 673
Woodruff key, 364–365
Working depth, 428, 432
Worm gear coefficient of friction, 495
Worm gear efficiency, 494–495
Worm gear geometry, 488–491
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Worm gearset, 488–496
AGMA equations, 493
bending/wear strengths, 492–493
Buckingham equation, 492
coefficient of friction, 495
efficiency, 494–495
geometric quantities, 491–492
heat dissipation, capacity, 493
Lewis equation, 492–493
single-/double-enveloping type, 488–489
thermal capacity, 493–496

Y

Yielding theories, 261
Yield point, 45, 125, 208, 297
Yield strength, 45, 46
Young’s modulus, 47

Z

Zero clearance, 383
Zerol bevel gears, 481
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