CHEMICAL, BIOCHEMICAL, AND ENGINEERING

THERMODYNAMICS

®l>_k}@

Heat Throttling
| | exchanger valve

Cooler
Compressor

(single- or multistage)

X\
AVAVAVAVA'A'AVAVAVAVAVAVAVAVA\\ 02
Y/AYAVAVAVAVAVAVAVAVAVAviar-S-WaWAY,\
SUNININININININININININININININANA

Mole fraction x;

Single liquid phase

The upper consolute temperature
is 163°C

Two liquid phases in equilibrium

The lower consolute temperature
is 42.5°C

800 1000 1200 1400 1600 | L \ |
10 15 20 25

T (K) Mole percent 2.6-dimethyl pyridine

STANLEY |. SANDLER







Chemical, Biochemical,
and Engineering
Thermodynamics

Fifth Edition

Stanley 1. Sandler

University of Delaware

WILEY



VP AND EDITORIAL DIRECTOR Laurie Rosatone

SENIOR DIRECTOR Don Fowley
ACQUISITIONS EDITOR Linda Ratts
EDITORIAL MANAGER Gladys Soto
CONTENT MANAGEMENT DIRECTOR  Lisa Wojcik
CONTENT MANAGER Nichole Urban
SENIOR CONTENT SPECIALIST Nicole Repasky
PRODUCTION EDITOR Ameer Basha

This book was set in 10/12 TimesLTStd by SPi Global and printed and bound by
LSC Communications, Inc. The cover was printed by LSC Communications, Inc.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for
more than 200 years, helping people around the world meet their needs and fulfill their aspirations.

Our company is built on a foundation of principles that include responsibility to the communities we serve
and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to
address the environmental, social, economic, and ethical challenges we face in our business. Among the
issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within
our business and among our vendors, and community and charitable support. For more information, please
visit our website: www.wiley.com/go/citizenship.

Copyright (©) 2017, 2006 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher,
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923 (Web site: www.copyright.com). Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, or online at:
www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use
in their courses during the next academic year. These copies are licensed and may not be sold or transferred
to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return shipping label are available at: www.wiley.com/go/returnlabel.

If you have chosen to adopt this textbook for use in your course, please accept this book as your
complimentary desk copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-0-470-50479-6 (PBK)
Library of Congress Cataloging-in-Publication Data:

Names: Sandler, Stanley 1., 1940- author.

Title: Chemical, biochemical and engineering thermodynamics / Stanley 1.
Sandler, University of Delaware.

Other titles: Chemical and engineering thermodynamics

Description: Fifth edition. | Hoboken, NJ : John Wiley & Sons, Inc., [2016] |
Revised edition of: Chemical and engineering thermodynamics. | Includes
index.

Identifiers: LCCN 2016044996 (print) | LCCN 2016048589 (ebook) | ISBN
9780470504796 (pbk.) | ISBN 9781119343776 (pdf) | ISBN 9781119321286 (epub)

Subjects: LCSH: Thermodynamics—Textbooks. | Chemical engineering—Textbooks.
| Biochemical engineering—Textbooks.

Classification: LCC QD504 .S25 2016 (print) | LCC QD504 (ebook) | DDC
541/.369—dc23

LC record available at https://lccn.loc.gov/2016044996

The inside back cover will contain printing identification and country of origin if omitted from this page.
In addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover

is correct.



To Judith,
Catherine,
Joel,

And Michael

About the Author

STANLEY I. SANDLER earned the B.Ch.E. degree in 1962 from the City College of
New York, and the Ph.D. in chemical engineering from the University of Minnesota in
1966. He was then a National Science Foundation Postdoctoral Fellow at the Institute
for Molecular Physics at the University of Maryland for the 1966—67 academic year.
He joined the faculty of the University of Delaware in 1967 as an assistant professor,
and was promoted to associate professor in 1970, professor in 1973 and Henry Belin du
Pont Professor of Chemical Engineering in 1982. He was department chairman from
1982 to 1986. He currently is also professor of chemistry and biochemistry at the Uni-
versity of Delaware and founding director of its Center for Molecular and Engineering
Thermodynamics. He has been a visiting professor at Imperial College (London), the
Technical University of Berlin, the University of Queensland (Australia), the University
of California, Berkeley and the University of Melbourne (Australia).

In addition to this book, Professor Sandler is the author of over 400 research papers
and a monographs, and he is the editor of a book on thermodynamic modeling and five
conference proceedings. His most recent book is “Using Aspen Plus(R) in Thermody-
namics Instruction: A Step-by-Step Guide” published by AIChE/Wiley in 2015. He was
also the editor of the AIChE Journal. Among his many awards and honors are a Faculty
Scholar Award (1971) from the Camille and Henry Dreyfus Foundation, a Research
Fellowship (1980) and U.S. Senior Scientist Award (1988) from the Alexander von
Humboldt Foundation (Germany), the 3M Chemical Engineering Lectureship Award
(1988) from the American Society for Engineering Education, the Professional Progress
(1984), Warren K. Lewis (1996) and Founders (2004) Awards from the American In-
stitute of Chemical Engineers, the E. V. Murphree Award (1996) from the American
Chemical Society, the Rossini Lectureship Award (1997) from the International Union
of Pure and Applied Chemistry, and election to the U.S. National Academy of Engi-
neering (1996). He is a Fellow of the American Institute of Chemical Engineers and the
Institution of Chemical Engineers (Britian and Australia), and a Chartered Engineer.



Preface

PREFACE FOR INSTRUCTORS

This book is intended as the text for a course in thermodynamics for undergraduate and graduate students in
chemical engineering and also for practicing engineers. Its previous four editions have served this purpose at
the University of Delaware for almost forty years. In writing the first edition of this book I had two objectives
that have been retained in the succeeding editions. The first was to develop a modern applied thermodynamics
text, especially for chemical engineers, relevant to other parts of the curriculum—specifically to courses in sep-
arations processes, chemical reactor analysis, and process design. The other objective was to develop, organize
and present material in sufficient detail for students to obtain a good understanding of the basic principles of
thermodynamics and a proficiency in applying these principles to the solution of a large variety of energy flow
and equilibrium problems.

Since the earlier editions largely met these goals, and since the principles of thermodynamics have not changed
over the past decade, this edition is similar in structure to the earlier ones. During this time, however, important
changes in engineering education have taken place. The first is the increasing availability of powerful desktop
computers and computational software, along with well-developed and easy-to-use process simulation software.
Another is the increasing application of chemical engineering thermodynamics principles and models to new
areas of technology such as polymers, biotechnology, solid-state processing, and the environment. The current
edition of this text includes applications that address each of these changes.

The availability of desktop computers and equation-solving software has now made it possible to closely align
engineering science, industrial practice, and undergraduate education. In their dormitory rooms or at home, stu-
dents can now perform sophisticated thermodynamics and phase equilibrium calculations similar to those they
will encounter in industry. In this fifth edition, I provide several different methods for making such calculations.
The first is to utilize the set of programs I have developed for making specific types of calculations included in
the fourth edition. These programs enable (1) the calculation of thermodynamic properties and vapor-liquid equi-
librium of a pure fluid described by a cubic equation of state; (2) the calculation of the thermodynamic properties
and phase equilibria for a multicomponent mixture described by a cubic equation of state; and (3) the predic-
tion of activity coefficients in a mixture using the UNIFAC group-contribution activity coefficient model. These
programs are available on the website for this book as both program-code and stand-alone executable modules;
they are unchanged from the previous edition of this book. However, I suggest instead the use of the thermody-
namics package in Aspen Plus(R), which is continually updated and has an easy-to-use interface.

The second is to employ the computer algebra/calculus programs for MATHCAD on the website that provides
solutions to many illustrations and homework problems in this edition. Alternatively, students and instructors
could use similar programs such as MATHEMATICA, MAPLE, and MATLAB. Students who develop their
own codes for such computer programs can achieve a thorough understanding of the methods required (and the
computational difficulties involved) in solving complex problems without having to become experts in computer
programming and numerical analysis. Students who use my prepared codes will be able to solve interesting
problems and concentrate on the subject matter at hand, namely, thermodynamics, without being distracted by
computational methods, algorithms, and programming languages. These equation-solving programs are, in my
view, valuable educational tools; but there is no material in this textbook that requires their use. Whether to
implement them or not is left to the discretion of the instructor.

iv
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More recently in engineering practice, these one-off thermodynamics programs written by textbook authors
have been replaced by suites of programs, process simulators, that make it possible to quickly model a whole
chemical plant using current unit operations and thermodynamics models, as well as to access enormous data-
banks of pure fluid and mixture thermodynamic data. A number of such simulators are available, such as ASPEN,
HYSIS, PROSIM, and CAPE-OPEN. In this fifth edition, I have incorporated the ASPEN process simulator by
adding thermodynamics illustrations and homework problems that use ASPEN. I recognize, however, that there
is no universal agreement on the use of a process simulator in, especially, an undergraduate thermodynamics
course. Indeed, there are those in my own department who argue against it. The argument against the use of
prepared computer programs in general, and process simulators in particular, is that students will treat them
as “black boxes” without understanding the fundamentals of thermodynamics or the methods for choosing the
thermodynamic models most appropriate to the problem at hand. My argument for using process simulators in
undergraduate instructional courses is two-fold. First, it allows students to solve with great efficiency more in-
teresting and practical problems than they could, within a reasonable time-frame, solve by hand; and it provides
them an opportunity to ask and answer “what-if”” questions. For example, what happens to the vapor-liquid split
and the compositions of each of the co-existing phases in a multi-component Joule-Thomson expansion if the in-
let temperature or pressure is changed? Answering such what-if questions allows students to quickly develop an
intuitive sense of the way processes behave, an understanding that otherwise might only be attained by repeated,
tedious hand calculations. Second, using a process simulator introduces students to a tool they are likely to em-
ploy in their professional career. Moreover, modern process-simulation software is generally bug-free, providing
an easy-to-use interface that is the same for all problems.

In this argument I have taken the middle road. By means of some of the illustrations and problems provided in
this text, students will initially develop an understanding of the basic applications and methods of thermodynam-
ics by doing hand calculations. Then, once they understand the basic principles and methods, I encourage them
to use process simulators (rather than my previous programs) to explore many additional, and more complicated,
applications of thermodynamic principles. Whereas nothing in this new edition requires students or the instruc-
tor to use a process simulator, the illustrations do contain examples of the results of using a process simulator.
In addition, many opportunities for using process simulator software are provided in the numerous end-of-chapter
problems. Furthermore, by using a process simulator the instructor can easily change the input parameters of a
homework problem and obtain the solution, thereby providing unlimited opportunities for creating new problems.

On the designated website for this new edition, I have, therefore, provided the ASPEN 8.6 input files for nu-
merous illustrations and problems presented in the textbook. I have chosen ASPEN because it appears to be the
process simulator most widely used in industry and at colleges and universities, in the United States at least.
Clearly, any other process simulation software could be employed, but in these cases users will need to develop
their own input files. Since I am introducing ASPEN in this fifth edition, I have not updated the thermody-
namics programs included in previous editions of this textbook, and they remain available on the website. Still,
I encourage the use of Aspen or other process-simulation software rather than these more primitive programs.
(For assistance in employing the thermodynamics packages in Aspen, I suggest consulting my recent book, Using
Aspen Plus in Thermodynamics Instruction, published by Wiley/AIChE in 2015.)

In an effort to make the subject of thermodynamics more accessible to students, the format of this book provides
space for marginal notes. The notes I have added are meant to emphasize important ideas and concepts, as well as
to make it easier for students to locate these concepts at a later time. Since I frequently write notes in the margins
of books I own, I wanted to provide a place for students to add notes of their own. Also, I continue to enclose
important equations in boxes, so that readers can easily identify the equations that are the end results of often
detailed analysis. I hope this will enable students to quickly identify the central tree in what seems like a forest
of equations. I have also provided a short title or description for each illustration to indicate the primary concept
that is to be learned or grasped.

Readers familiar with earlier editions of this book will notice that while the basic structure remains the same,
it contains many internal changes. For example, there are many new illustrative and homework problems.
Illustrations have been added not only to demonstrate new concepts, but also to provide breaks among pages of
mathematical derivations or thermodynamic philosophy. These should make thermodynamics and phase
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equilibria more relevant to the interests of students. There are additional sections on chemical reactions in bio-
chemical systems and I have included additional material on energy and energy-related processes. Furthermore,
the biochemical applications now appear throughout the second half of the book rather than being relegated to
the final chapter, as was the case in the previous edition.

Some of the idiosyncrasies present in earlier editions remain here. For example, I prefer to use the term energy
balance rather than the first law, and to show that the Carnot efficiency easily follows once entropy is defined.
Here I depart from the more common procedure of introducing entropy (and the second law) in terms of the
Carnot cycle. My experience with the latter method is that students then have difficulty making the necessary
generalization if the concept of entropy and the second law are introduced in terms of a specific device. Also,
I continue to prefer the partial molar Gibbs energy, which describes the function precisely, to the term chemical
potential. In most other areas, I employ traditional thermodynamic notation.

It has been a decade since the appearance of the fourth edition of this book. During this time many people
have encouraged me to prepare a new edition and have graciously contributed their views, ideas, and advice. The
most important contributors have been the undergraduate and graduate students I have taught at the University of
Delaware. I have benefited greatly from their inquisitive minds and penetrating questions. I have also benefited
from the helpful comments of colleagues at the University of Delaware and elsewhere who have used earlier
editions of this book, and from the questions and comments of students around the world who have corresponded
with me by email. I do refuse, however, to provide these students with solutions to homework problems assigned
by their instructors, a not infrequent request.

I wish to thank the administration and my colleagues at the University of Delaware, who have provided the
unencumbered time of a sabbatical leave necessary for the completion of this new edition. And I am grateful, as
always, to my family for their support.

Stanley 1. Sandler
Newark, Delaware
January 25, 2016

PREFACE FOR STUDENTS

Thermodynamics is essential to the practice of chemical engineering. A major part of the equipment and operating
costs of processes developed by chemical engineers is based on design methods that apply the principles of
thermodynamics. In courses you will take later in the chemical engineering program—on mass transfer, reaction
engineering, and process design you will discover just how important a foundation thermodynamics provides.

At this point in your education, you have probably been exposed to some aspects of thermodynamics in courses
in general chemistry, physical chemistry, and physics. My recommendation is that you set aside what you have
learned about thermodynamics in those courses and start with a fresh mind. To begin with, the notation in this book
is different from that employed in those courses and more like the notation used in other chemical engineering
courses. In non-engineering courses, thermodynamics is usually applied only to a closed system (for example,
a fixed mass of a substance), while engineering applications generally involve open systems—that is, those with
mass flows into and/or out of the system. Moreover, you may have been introduced to entropy using a device such
as a Carnot cycle. Please expunge from your mind the connection between entropy and such devices. Entropy,
like energy, is a very general concept, independent of any such device. Entropy is different from energy (and mass
and momentum) in that it is not a conserved property. Indeed that is one of its most important characteristics and
allows us to explain why processes go in one direction and not in the reverse.

As you will see (in Chapter 4), even though it is a non-conserved property, entropy is very important.
For example, if two metal blocks, one hot and the other cold, are put into contact with each other, the con-
cept of entropy leads us to the conclusion that heat will be transferred from the hot block to the cold one, and
not the reverse, and that after a while, the two blocks will be at the same temperature. Both of these conclusions
are in agreement with our experience. Note that the principle of energy conservation tells us only that the total
energy of the system will ultimately equal the total initial energy, but not that the blocks need to be at the same
temperature. This is one illustration of the fact that we frequently have to employ the concepts of both energy
conservation and entropy to solve problems in thermodynamics.
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Thermodynamics is applied in two central ways. One is to calculate heat and work (or more generally energy)
flows: for example, to determine the conversion of heat to work in various types of engines; and to determine
the heat flows accompanying chemical reactions or changes from one state of system to another. The second
important type of thermodynamic calculation is to determine the equilibrium state: for example, to calculate the
equilibrium compositions of the vapor and liquid of a complex mixture needed to design a method, such as distilla-
tion, for purifying the components; or to determine the equilibrium composition of a chemically reacting system.
After completing your study of this textbook, you should be able to do all such calculations, as well as some
computations relating to biochemical processing, safety, and the distribution of chemicals in the environment.

Chemical engineering, and the applied thermodynamics presented in this book deals with real substances; and
therein lie two of the difficulties. The first is that the properties of real substances may not be completely known
from an experiment or available in tables at all temperatures and pressures (and for mixtures at all compositions).
These may need to be approximately described by model equations: for example, a volumetric equation of state
that interrelates pressure, volume, and temperature (the ideal gas equation of state applies only to gases at very
low pressures and not to conditions generally of interest to chemical engineers); or equations that relate activity
coefficients to composition. Any one of several different models may be used to describe a pure substance or
mixture, and each will result in slightly different answers when solving a problem. Within the accuracy of the
underlying equations, however, all the solutions are likely to be correct if the appropriate models are used. This
may be disconcerting to you, as in other courses—especially in mathematics and physics—you may be used to
solving problems that have only a single correct answer. The situation here is one that is continually faced by
practicing engineers. They must solve a problem, even though the description of the properties is imperfect, and
choose which equation of state or activity coefficient model to employ. (Some guidance in making such choices
for mixtures is provided in Section 9.11.)

The second problem that arises is that the equations of state and activity coefficient models used in thermody-
namics are not linear algebraic equations, which can make the computations difficult. It is for this reason that I
provide a collection of computer aids on the website for this book. Included are MATHCAD worksheets, VISUAL
BASIC programs (as code and stand-alone executable modules), MATLAB programs (as code and essentially
stand-alone programs), and older DOS BASIC programs (as code and stand-alone executable programs). These
computer aids are described in Appendix B. What I highly recommend, however, is that you use the thermo-
dynamics packages in process simulators such as Aspen. These have the following advantages: they have been
developed over many years by experts, so that they are free of the bugs in programs written by professors; they
have a nice interface that can be used in solving many different problems; they include the most recent thermody-
namic models; and they have large databases with substance-specific parameters for these models. Perhaps most
important, these programs are the ones you are most likely to use in later classes in the chemical engineering
program and throughout your career.

I have also provided several instructional aides to help you in your study of thermodynamics. First, every
chapter of this book begins with a list of Instructional Objectives, indicating important items to be learned.
I suggest reading these objectives before starting a chapter and then reviewing them while preparing for exami-
nations. Second, important equations are displayed in boxes, and some very important ones within those boxes are
indicated by name or description in the margins. Third, at the end of each chapter (and in the case of Chapters 10,
11, and 12, also at the end of each section) you will find many problems to work on to hone your problem-solving
skills. Finally, Appendix C provides answers to selected problems. Only the final answers appear, however, not a
complete solution containing the steps required to arrive at that answer. Keep in mind that you may be solving a
problem correctly but may get a slightly different numerical answer than the one I have provided either because
you read a graph of thermodynamic properties slightly differently than I or because you used a correct but dif-
ferent equation of state or activity coefficient model. If your answer and mine differ only slightly, it is likely that
both are correct.

Good luck in your study of thermodynamics.

Stanley I. Sandler
Newark, Delaware
January 25, 2016
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PROPOSED SYLLABI

Two semester undergraduate chemical engineering thermodynamics course
Cover as much of the book as possible. If necessary, I would omit following material:

Sections 2.4 and 3.6 Chapter 14 (as this material may be covered in the
Section 6.9 reaction engineering course) and perhaps Chapter 15

. if there is no interest in biochemical engineerin
Section 9.9 & &

Sections 12.3, 4 and 5

Two quarter undergraduate chemical engineering thermodynamics course
I suggest omitting the following chapters and sections:

Sections 2.4 and 3.6 Sections 12.3,4 and 5

Section 5.4 Chapter 14 (as this material may be covered in the

Sections 6.6, 6.9 and 10 reaction engineering course) and perhaps Chapter 15
. if there is no interest in biochemical engineering

Section 7.8

Section 9.9

One semester undergraduate chemical engineering thermodynamics course following a one semester
general or mechanical engineering thermodynamics course

I suggest quickly reviewing the notation in Chapters 2, 3 and 4, then start with Chapter 8. With the limited time
available, I suggest omitting the following chapters and sections:

Section 9.9 Chapter 14 (as this material may be covered in the
Sections 12.3, 4 and 5 reaction engineering course) and Chapter 15 if there
is no interest in biochemical engineering

One quarter undergraduate chemical engineering thermodynamics course following a general or mechan-
ical engineering thermodynamics course

Quickly review the notation in chapters 2, 3 and 4, then go directly to Chapter 8. With the very limited time
available, I suggest omitting the following chapters and sections:

Section 9.9 Chapter 14 (as this material may be covered in the
Sections 11.3, 4 and 5 reaction engineering course) and Chapter 15 if there
Chapter 12 is no interest in biochemical engineering
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Chapter 1

Introduction

A major objective of any field of pure or applied science is to summarize a large amount
of experimental information with a few basic principles. The hope is that any new ex-
perimental measurement or phenomenon can be easily understood in terms of the es-
tablished principles, and that predictions based on these principles will be accurate.
This book demonstrates how a collection of general experimental observations can be
used to establish the principles of an area of science called thermodynamics, and then
shows how these principles can be used to study a wide variety of physical, chemical,
and biochemical phenomena.

Questions the reader of this book might ask include what is thermodynamics and
why should one study it? The word thermodynamics consists of two parts: the prefix
thermo, referring to heat and temperature, and dynamics, meaning motion. Initially,
thermodynamics had to do with the flow of heat to produce mechanical energy that
could be used for industrial processes and locomotion. This was the study of heat en-
gines, devices used to operate mechanical equipment, drive trains and cars, and perform
many other functions that accelerated progress in the Industrial Age. These started with
steam engines and progressed to internal combustion engines, turbines, heat pumps, air
conditioners, and other devices. This part of thermodynamics is largely the realm of
mechanical engineers. However, because such equipment is also used in chemical pro-
cessing plants, it is important for chemical engineers to have an understanding of the
fundamentals of this equipment. Therefore, such equipment is considered briefly in
Chapters 4 and 5 of this book. These applications of thermodynamics generally require
an understanding the properties of pure fluids, such as steam and various refrigerants,
and gases such as oxygen and nitrogen.

More central to chemical engineering is the study of mixtures. The production of
chemicals, polymers, pharmaceuticals and other biological materials, and oil and gas
processing, all involve chemical or biochemical reactions (frequently in a solvent) that
produce a mixture of reaction products. These must be separated from the mixture and
purified to result in products of societal, commercial, or medicinal value. It is in these
areas that thermodynamics plays a central role in chemical engineering. Separation pro-
cesses, of which distillation is the most commonly used in the chemical industry, are
designed based on information from thermodynamics. Of particular interest in the de-
sign of separation and purification processes is the compositions of two phases that
are in equilibrium. For example, when a liquid mixture boils, the vapor coming off
can be of a quite different composition than the liquid from which it was obtained.
This is the basis for distillation, and the design of a distillation column is based on
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predictions from thermodynamics. Similarly, when partially miscible components are
brought together, two (or more) liquid phases of very different composition will form,
and other components added to this two-phase mixture will partition differently be-
tween the phases. This phenomenon is the basis for liquid-liquid extraction, another
commonly used separation process, especially for chemicals and biochemicals that can-
not be distilled because they do not vaporize appreciably or because they break down on
heating. The design of such processes is also based on predictions from thermodynam-
ics. Thus, thermodynamics plays a central role in chemical process design. Although
this subject is properly considered in other courses in the chemical engineering curricu-
lum, we will provide very brief introductions to distillation, air stripping, liquid-liquid
extraction, and other processes so that the student can appreciate why the study of ther-
modynamics is central to chemical engineering.

Other applications of thermodynamics considered in this book include the distribu-
tion of chemicals when released to the environment, determining safety by estimating
the possible impact (or energy release) of mechanical and chemical explosions, ana-
lyzing biochemical processes, and product design, that is, identifying a chemical or
mixture that has the properties needed for a specific application.

A generally important feature of engineering design is making estimates when spe-
cific information on a fluid or fluid mixture is not available, which is almost always
the case. To understand why this is so, consider the fact that there are several hun-
dred chemicals commonly used in industry, either as final products or intermediates.
If this number were, say, 200, there would be about 20,000 possible binary mixtures,
1.3 million possible ternary mixtures, 67 million possible four-component mixtures, and
so on. However, in the history of mankind the vapor-liquid equilibria of considerably
fewer than 10,000 different mixtures have been measured. Further, even if we were
interested in one of the mixtures for which data exist, it is unlikely that the measure-
ments were done at exactly the temperature and pressure in which we are interested.
Therefore, many times engineers have to make estimates by extrapolating the limited
data available to the conditions (temperature, pressure, and composition) of interest to
them, or predict the behavior of multicomponent mixtures based only on sets of two-
component mixture data. In other cases predictions may have to be made for mixtures in
which the chemical identity of one or more of the components is not known. One exam-
ple of this is petroleum or crude oil; another is the result of a polymerization reaction or
biochemical process. In these cases, many components of different molecular weights
are present that will not, and perhaps cannot, be identified by chemical analytic meth-
ods, and yet purification methods have to be designed so approximations are made.

Although the estimation of thermodynamic properties, especially of mixtures, is not
part of the theoretical foundation of chemical engineering thermodynamics, it is nec-
essary for its application to real problems. Therefore, various estimation methods are
interspersed with the basic theory, especially in Chapters 6, 8, and 11, so that the theory
can be applied.

This book can be considered as consisting of two parts. The first is the study of pure
fluids, which begins after this introductory chapter. In Chapter 2 is a review of the use
of mass balance, largely for pure fluids, but with a digression to reacting mixtures in
order to explain the idea of nonconserved variables. Although mass balances should be
familiar to a chemical engineering student from a course on stoichiometry or chemi-
cal process principles, it is reviewed here to introduce the different forms of the mass
balance that will be used, the rate-of-change and difference forms (as well as the mi-
croscopic form for the advanced student), and some of the subtleties in applying the
mass balance to systems in which flow occurs. The mass balance is the simplest of
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the balance equations we will use, and it is important to understand its application
before proceeding to the use of other balance equations. We then move on to the devel-
opment of the framework of thermodynamics and its application to power cycles and
other processes involving only pure fluids, thereby avoiding the problems of estimating
the properties of mixtures.

However, in the second part of this book, which begins in Chapter 8 and continues to
the end of the book, the thermodynamic theory of mixtures, the properties of mixtures,
and many different types of phase equilibria necessary for process design are consid-
ered, as are chemical reaction equilibria. It is this part of the book that is the essential
background for chemical engineering courses in equipment and process design. We end
the book with a chapter on the application of thermodynamics to biological and bio-
chemical processes, though other such examples have been included in several of the
preceding chapters.

Before proceeding, it is worthwhile to introduce a few of the terms used in applying
the balance equations; other, more specific thermodynamic terms and definitions appear
elsewhere in this book.

Glossary Adiabatic system: A well-insulated system in which there are no heat flows in or out.

Closed system: A system in which there are no mass flows in or out.
Isolated system: A system that is closed to the flow of mass and energy in the form of
work flows and heat flows (i.e., is adiabatic).

Steady-state system: A system in which flows of mass, heat, and work may be present
but in such a way that the system properties do not change over time.

Cyclic process: A process that follows a periodic path so that the system has the same
properties at any point in the cycle as it did at that point in any preceding or succeeding
cycle.

The chapters in this book are all organized in a similar manner. First, there is a para-
graph or two describing the contents of the chapter and where it fits in to the general
subject of thermodynamics. This introduction is followed by some specific instructional
objectives or desired educational outcomes that the student is expected to develop from
the chapter. Next, is a brief list of the new terms or nomenclature introduced within the
chapter. After these preliminaries, the real work starts.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 1
The goals of this chapter are for the student to:

e Know the basic terminology of thermodynamics, such as internal energy, potential
energy, and kinetic energy; system, phase, and thermal and mechanical contact;
adiabatic and isolated systems; and the difference between a system and a phase

e Be able to use the SI unit system which is used in this book and throughout the
world

e Understand the concepts of absolute temperature and pressure

e Understand the difference between heat and work, and between mechanical and
thermal energies

e Understand the general concept of equilibrium, which is very important in the
application of thermodynamics in chemical engineering

e Understand the difference between intensive and extensive variables

e Understand that total mass and total energy are conserved in any process
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IMPORTANT NOTATION INTRODUCED IN THIS CHAPTER

Mass (g)

Number of moles (mol)

Absolute pressure (kPa or bar)
Gas constant (J/mol K)

Absolute temperature (K)

Internal energy (J)

Internal energy per unit mass (J/g)
Internal energy per mole (J/mol)
Volume (m?)

Specific volume, volume per unit mass (m3/g)
Volume per mole (m?/mol)

R G R i =

1.1 THE CENTRAL PROBLEMS OF THERMODYNAMICS

Thermodynamics is the study of the changes in the state or condition of a substance
when changes in its temperature, state of aggregation, or internal energy are important.
By internal energy we mean the energy of a substance associated with the motions, inter-
actions, and bonding of its constituent molecules, as opposed to the external
energy associated with the velocity and location of its center of mass, which is of pri-
mary interest in mechanics. Thermodynamics is a macroscopic science; it deals with the
average changes that occur among large numbers of molecules rather than the detailed
changes that occur in a single molecule. Consequently, this book will quantitatively
relate the internal energy of a substance not to its molecular motions and interaction,
but to other, macroscopic variables such as temperature, which is primarily related to
the extent of molecular motions, and density, which is a measure of how closely the
molecules are packed and thus largely determines the extent of molecular interactions.
The total energy of any substance is the sum of its internal energy and its bulk potential
and kinetic energy; that is, it is the sum of the internal and external energies.

Our interest in thermodynamics is mainly in changes that occur in some small part of
the universe, for example, within a steam engine, a laboratory beaker, or a chemical or
biochemical reactor. The region under study, which may be a specified volume in space
or a quantity of matter, is called the system; the rest of the universe is its surroundings.
Throughout this book the term state refers to the thermodynamic state of a system as
characterized by its density, refractive index, composition, pressure, temperature, or
other variables to be introduced later. The state of agglomeration of the system (whether
it is a gas, liquid, or solid) is called its phase.

A system is said to be in contact with its surroundings if a change in the surroundings
can produce a change in the system. Thus, a thermodynamic system is in mechanical
contact with its surroundings if a change in pressure in the surroundings results in
a pressure change in the system. Similarly, a system is in thermal contact with its
surroundings if a temperature change in the surroundings can produce a change in the
system. If a system does not change as a result of changes in its surroundings, the
system is said to be isolated. Systems may be partially isolated from their surroundings.
An adiabatic system is one that is thermally isolated from its surroundings; that is, it
is a system that is not in thermal contact, but may be in mechanical contact, with its
surroundings. If mass can flow into or out of a thermodynamic system, the system is
said to be open; if not, the system is closed. Similarly, if heat can be added to the system
or work done on it, we say the system is open to heat or work flows, respectively.!

Both heat and work will be defined shortly.
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An important concept in thermodynamics is the equilibrium state, which will be dis-
cussed in detail in the following sections. Here we merely note that if a system is not
subjected to a continual forced flow of mass, heat, or work, the system will eventually
evolve to a time-invariant state in which there are no internal or external flows of heat
or mass and no change in composition as a result of chemical or biochemical reactions.
This state of the system is the equilibrium state. The precise nature of the equilibrium
state depends on both the character of the system and the constraints imposed on the
system by its immediate surroundings and its container (e.g., a constant-volume con-
tainer fixes the system volume, and a thermostatic bath fixes the system temperature;
see Problem 1.1).

Using these definitions, we can identify the two general classes of problems that are
of interest in thermodynamics. In the first class are problems concerned with comput-
ing the amount of work or the flow of heat either required or released to accomplish a
specified change of state in a system or, alternatively, the prediction of the change in
thermodynamic state that occurs for given heat or work flows. We refer to these prob-
lems as energy flow problems.

The second class of thermodynamic problems are those involving equilibrium. Of
particular interest here is the identification or prediction of the equilibrium state of a
system that initially is not in equilibrium. The most common problem of this type is the
prediction of the new equilibrium state of a system that has undergone a change in the
constraints that had been maintaining it in a previous state. For example, we will want
to predict whether a single liquid mixture or two partially miscible liquid phases will
be the equilibrium state when two pure liquids (the initial equilibrium state) are mixed
(the change of constraint; see Chapter 11). Similarly, we will be interested in predicting
the final temperatures and pressures in two gas cylinders after opening the connecting
valve (change of constraint) between a cylinder that was initially filled and another that
was empty (see Chapters 3 and 4).

It is useful to mention another class of problems related to those referred to in the
previous paragraphs, but that is not considered here. We do not try to answer the ques-
tion of how fast a system will respond to a change in constraints; that is, we do not try to
study system dynamics. The answers to such problems, depending on the system and its
constraints, may involve chemical kinetics, heat or mass transfer, and fluid mechanics,
all of which are studied elsewhere. Thus, in the example above, we are interested in the
final state of the gas in each cylinder, but not in computing how long a valve of given
size must be held open to allow the necessary amount of gas to pass from one cylinder to
the other. Similarly, when, in Chapters 10, 11, and 12, we study phase equilibrium and,
in Chapter 13, chemical equilibrium, our interest is in the prediction of the equilibrium
state, not in how long it will take to achieve this equilibrium state.

Shortly we will start the formal development of the principles of thermodynamics,
first qualitatively and then, in the following chapters, in a quantitative manner. First,
however, we make a short digression to discuss the system of units used in this text.

1.2 A SYSTEM OF UNITS

The study of thermodynamics involves mechanical variables such as force, pressure,
and work, and thermal variables such as temperature and energy. Over the years many
definitions and units for each of these variables have been proposed; for example, there
are several values of the calorie, British thermal unit, and horsepower. Also, whole
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Table 1.2-1 The SI Unit System

Unit Name Abbreviation Basis of Definition

Length meter m The distance light travels in a
vacuum in 1/299 792 458 second

Mass kilogram kg Platinum-iridium prototype at the

International Bureau of Weights
and Measures, Sévres, France

Time second S Proportional to the period of one
cesium-133 radiative transition
Electric current ampere A Current that would produce a

specified force between two
parallel conductors in a specified
geometry

Temperature kelvin K 1/273.16 of the thermodynamic
temperature (to be defined
shortly) of water at its triple
point (see Chapter 7)

Amount of substance mole mol Amount of a substance that
contains as many elementary
entities as there are atoms in
0.012 kilogram of carbon-12
(6.022 x 1023, which is
Avogadro’s number)

Luminous intensity candela cd Related to the black-body radiation
from freezing platinum (2045 K)

systems of units, such as the English and cgs systems, have been used. The problem of
standardizing units was studied, and the Systeme International d’ Unités (abbreviated SI
units) was agreed on at the Eleventh General Conference on Weights and Measures in
1960. This conference was one of a series convened periodically to obtain international
agreement on questions of metrology, so important in international trade. The SI unit
system is used throughout this book, with some lapses to the use of common units such
as volume in liters and frequently pressure in bar.

In the SI system the seven basic units listed in Table 1.2-1 are identified and their
values are assigned. From these seven basic well-defined units, the units of other quan-
tities can be derived. Also, certain quantities appear so frequently that they have been
given special names and symbols in the SI system. Those of interest here are listed in
Table 1.2-2. Some other derived units acceptable in the SI system are given in
Table 1.2-3, and Table 1.2-4 lists the acceptable scaling prefixes. [It should be pointed

Table 1.2-2 Derived Units with Special Names and Symbols Acceptable in SI Units

Expression in

Quantity Name Symbol SI Units Derived Units
Force newton N mkgs 2 Jm™!
Energy, work, or quantity of heat  joule J m? kg 572 Nm

Pressure or stress pascal Pa m ! kgs 2 N/m?

Power watt W 2kgs® J/s

Frequency hertz Hz st
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Table 1.2-3 Other Derived Units in Terms of Acceptable SI Units

Quantity Expression in SI Units Symbol
Concentration of substance mol m—3 mol/m3
Mass density (p = m/V) kg m~3 kg/m?
Heat capacity or entropy m?kgs ' K! J/K
Heat flow rate (Q) m? kg 573 Wor J/s
Molar energy m? kg s72 mol ! J /mol
Specific energy m? 52 J/kg
Specific heat capacity or specific entropy m?s72 K1 J/(kg K)
Specific volume m? kg ! m? /kg
Viscosity (absolute or dynamic) m!kgs! Pas
Volume m? m?
Work, energy (W) m? kg s 2 JorNm

Table 1.2-4 Prefixes for SI Units

Multiplication Factor Prefix Symbol

1012 tera T

10° giga G

106 mega M

103 kilo k (e.g., kilogram)
102 hecto h

10 deka da

1071 deci d

1072 centi c (e.g., centimeter)
1073 milli m

10°¢ micro m

107° nano n

10712 pico p

10715 femto f

out that, except at the end of a sentence, a period is never used after the symbol for an
SI unit, and the degree symbol is not used. Also, capital letters are not used in units that
are written out (e.g. pascals, joules, or meters) except at the beginning of a sentence.
When the units are expressed in symbols, the first letter is capitalized only when the
unit name is that of a person (e.g. Pa and J, but m).]

Appendix A.I presents approximate factors to convert from various common units to
acceptable SI units. In the SI unit system, energy is expressed in joules, J, with 1 joule
being the energy required to move an object 1 meter when it is opposed by a force of
1 newton. Thus, 1 J = 1 N'm = 1 kg m?s~2. A pulse of the human heart, or lifting
this book 0.1 meters, requires approximately 1 joule. Since this is such a small unit
of energy, kilojoules (kJ = 1000 J) are frequently used. Similarly, we frequently use
bar = 10° Pa = 0.987 atm as the unit of pressure.

1.3 THE EQUILIBRIUM STATE

As indicated in Section 1.1, the equilibrium state plays a central role in thermodynam-
ics. The general characteristics of the equilibrium state are that (1) it does not vary with
time; (2) the system is uniform (there are no internal temperature, pressure, velocity,
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or concentration gradients) or is composed of subsystems each of which is uniform;
(3) all flows of heat, mass, or work between the system and its surroundings are zero;
and (4) the net rate of all chemical reactions is zero.

At first it might appear that the characteristics of the equilibrium state are so restric-
tive that such states rarely occur. In fact, the opposite is true. The equilibrium state will
always occur, given sufficient time, as the terminal state of a system closed to the flow
of mass, heat, or work across its boundaries. In addition, systems open to such flows,
depending on the nature of the interaction between the system and its surroundings,
may also evolve to an equilibrium state. If the surroundings merely impose a value of
temperature, pressure, or volume on the system, the system will evolve to an equilib-
rium state. If, on the other hand, the surroundings impose a mass flow into and out
of the system (as a result of a pumping mechanism) or a heat flow (as would occur if
one part of the system were exposed to one temperature and another part of the sys-
tem to a different temperature), the system may evolve to a time-invariant state only
if the flows are steady. The time-invariant states of these driven systems are not equi-
librium states in that the systems may or may not be uniform (this will become clear
when the continuous-flow stirred tank and plug-flow chemical reactors are considered in
Chapter 14) and certainly do not satisfy part or all of criterion (3). Such time-invariant
states are called steady states and occur frequently in continuous chemical and physical
processing. Steady-state processes are of only minor interest in this book.

Nondriven systems reach equilibrium because all spontaneous flows that occur in
nature tend to dissipate the driving forces that cause them. Thus, the flow of heat that
arises in response to a temperature difference occurs in the direction that dissipates the
temperature difference, the mass diffusion flux that arises in response to a concentration
gradient occurs in such a way that a state of uniform concentration develops, and the
flux of momentum that occurs when a velocity gradient is present in a fluid tends to
dissipate that gradient. Similarly, chemical reactions occur in a direction that drives the
system toward equilibrium (Chapter 13). At various points throughout this book it will
be useful to distinguish between the flows that arise naturally and drive the system to
equilibrium, which we will call natural flows, and flows imposed on the system by its
surroundings, which we term forced flows.

An important experimental observation in thermodynamics is that any system free
from forced flows will, given sufficient time, evolve to an equilibrium state. This em-
pirical fact is used repeatedly in our discussion.

It is useful to distinguish between two types of equilibrium states according to their
response to small disturbances. To be specific, suppose a system in equilibrium is sub-
jected to a small disturbance that is then removed (e.g., temperature fluctuation or pres-
sure pulse). If the system returns to its initial equilibrium state, this state of the system
is said to be stable with respect to small disturbances. If, however, the system does not
return to the initial state, that state is said to have been unstable.

There is a simple mechanical analogy, shown in Fig. 1.3-1, that can be used to illus-
trate the concept of stability. Figure 1.3-1a, b, and c represent equilibrium positions of

Figure 1.3-1 Blocks in states (a) and
(b) are stable to small mechanical dis-
turbances; the delicately balanced block
(a) (b) (c) in state (c) is not.
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ablock on a horizontal surface. The configuration in Fig. 1.3-1¢ is, however, precarious;
an infinitesimal movement of the block in any direction (so that its center of gravity is
not directly over the pivotal point) would cause the block to revert to the configuration
of either Fig. 1.3-1a or b. Thus, Fig. 1.3-1¢ represents an unstable equilibrium position.
The configurations of Figs. 1.3-1a and b are not affected by small disturbances, and
these states are stable. Intuition suggests that the configuration of Fig. 1.3-1a is the
most stable; clearly, it has the lowest center of gravity and hence the lowest potential
energy. To go from the configuration of Fig. 1.3-1b to that of Fig. 1.3-1a, the block must
pass through the still higher potential energy state indicated in Fig. 1.3-1c. If we use Ae
to represent the potential energy difference between the configurations of Figs. 1.3-1b
and ¢, we can say that the equilibrium state of Fig. 1.3-15 is stable to energy disturbances
less than Ae in magnitude and is unstable to larger disturbances.

Certain equilibrium states of thermodynamic systems are stable to small fluctuations;
others are not. For example, the equilibrium state of a simple gas is stable to all fluctu-
ations, as are most of the equilibrium states we will be concerned with. It is possible,
however, to carefully prepare a subcooled liquid, that is, a liquid below its normal solid-
ification temperature, that satisfies the equilibrium criteria. This is an unstable equilib-
rium state because the slightest disturbance, such as tapping on the side of the containing
vessel, will cause the liquid to freeze. One sometimes encounters mixtures that, by the
chemical reaction equilibrium criterion (see Chapter 13), should react; however, the
chemical reaction rate is so small as to be immeasurable at the temperature of interest.
Such a mixture can achieve a state of thermal equilibrium that is stable with respect to
small fluctuations of temperature and pressure. If, however, there is a sufficiently large,
but temporary, increase in temperature (so that the rate of the chemical reaction is ap-
preciable for some period of time) and then the system is quickly cooled, a new thermal
equilibrium state with a chemical composition that differs from the initial state will be
obtained. The initial equilibrium state, like the mechanical state in Fig. 1.3-1b, is then
said to be stable with respect to small disturbances, but not to large disturbances.

Unstable equilibrium states are rarely encountered in nature unless they have been
specially prepared (e.g. the subcooled liquid mentioned earlier). The reason for this is
that during the approach to equilibrium, temperature gradients, density gradients, or
other nonuniformities that exist within a system are of a sufficient magnitude to act as
disturbances to unstable states and prevent their natural occurrence.

In fact, the natural occurrence of an unstable thermodynamic equilibrium state is
about as likely as the natural occurrence of the unstable mechanical equilibrium state
of Fig. 1.3-1c¢. Consequently, our concern in this book is mainly with stable equilibrium
states.

If an equilibrium state is stable with respect to all disturbances, the properties of
this state cannot depend on the past history of the system or, to be more specific, on
the path followed during the approach to equilibrium. Similarly, if an equilibrium state
is stable with respect to small disturbances, its properties do not depend on the path
followed in the immediate vicinity of the equilibrium state. We can establish the va-
lidity of the latter statement by the following thought experiment (the validity of the
first statement follows from a simple generalization of the argument). Suppose a sys-
tem in a stable equilibrium state is subjected to a small temporary disturbance of a
completely arbitrary nature. Since the initial state was one of stable equilibrium, the
system will return to precisely that state after the removal of the disturbance. However,
since any type of small disturbance is permitted, the return to the equilibrium state may
be along a path that is different from the path followed in initially achieving the stable
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equilibrium state. The fact that the system is in exactly the same state as before means
that all the properties of the system that characterize the equilibrium state must have
their previous values; the fact that different paths were followed in obtaining this equi-
librium state implies that none of these properties can depend on the path followed.

Another important experimental observation for the development of thermodynam-
ics is that a system in a stable equilibrium state will never spontaneously evolve to a
state of nonequilibrium. For example, any temperature gradients in a thermally con-
ducting material free from a forced flow of heat will eventually dissipate so that a state
of uniform temperature is achieved. Once this equilibrium state has been achieved, a
measurable temperature gradient will never spontaneously occur in the material.

The two observations that (1) a system free from forced flows will evolve to an equi-
librium state and (2) once in equilibrium a system will never spontaneously evolve to
a nonequilibrium state, are evidence for a unidirectional character of natural processes.
Thus we can take as a general principle that the direction of natural processes is such
that systems evolve toward an equilibrium state, not away from it.

1.4 PRESSURE, TEMPERATURE, AND EQUILIBRIUM

Most people have at least a primitive understanding of the notions of temperature, pres-
sure, heat, and work, and we have, perhaps unfairly, relied on this understanding in
previous sections. Since these concepts are important for the development of thermo-
dynamics, each will be discussed in somewhat more detail here and in the following
sections.

The concept of pressure as the total force exerted on an element of surface divided by
the surface area should be familiar from courses in physics and chemistry. Pressure—
or, equivalently, force—is important in both mechanics and thermodynamics because
it is closely related to the concept of mechanical equilibrium. This is simply illustrated
by considering the two piston-and-cylinder devices shown in Figs. 1.4-1a and b. In
each case we assume that the piston and cylinder have been carefully machined so
that there is no friction between them. From elementary physics we know that for the
systems in these figures to be in mechanical equilibrium (as recognized by the absence

(a)

Figure 1.4-1 The piston separating gases A and B and the cylin-
der containing them have been carefully machined so that the
(b) piston moves freely in the cylinder.
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of movement of the piston), there must be no unbalanced forces; the pressure of gas A
must equal that of gas B in the system of Fig. 1.4-1a, and in the system of Fig. 1.4-1b it
must be equal to the sum of the pressure of gas B and the force of gravity on the piston
divided by its surface area. Thus, the requirement that a state of mechanical equilibrium
exists is really a restriction on the pressure of the system.

Since pressure is a force per unit area, the direction of the pressure scale is evident; the
greater the force per unit area, the greater the pressure. To measure pressure, one uses a
pressure gauge. A pressure gauge is a device that produces a change in some indicator,
such as the position of a pointer, the height of a column of liquid, or the electrical
properties of a specially designed circuit, in response to a change in pressure. Pressure
gauges are calibrated using devices such as that shown in Fig. 1.4-2. There, known
pressures are created by placing weights on a frictionless piston of known weight. The
pressure at the gauge P, due to the metal weight and the piston is

M, + M,
A

Here g is the local acceleration of gravity on an element of mass; the standard value is
9.80665 m/s. The position of the indicator at several known pressures is recorded, and
the scale of the pressure gauge is completed by interpolation.

There is, however, a complication with this calibration procedure. It arises be-
cause the weight of the air of the earth’s atmosphere produces an average pressure of
14.696 lbs force per sq in, or 101.3 kPa, at sea level. Since atmospheric pressure
acts equally in all directions, we are not usually aware of its presence, so that in
most nonscientific uses of pressure the zero of the pressure scale is the sea-level at-
mospheric pressure (i.e., the pressure of the atmosphere is neglected in the pressure
gauge calibration). Thus, when the recommended inflation pressure of an automobile
tire is 200 kPa, what is really meant is 200 kPa above atmospheric pressure. We re-
fer to pressures on such a scale as gauge pressures. Note that gauge pressures may
be negative (in partially or completely evacuated systems), zero, or positive, and er-
rors in pressure measurement result from changes in atmospheric pressure from the

P, = (1.4-1)

Weight (mass M)

‘I/ Piston (mass M)

Gauge being tested
or calibrated

Piston
area
A

Figure 1.4-2 A simple deadweight pressure tester. (The purpose
of the oil reservoir and the system volume adjustment is to main-
tain equal heights of the oil column in the cylinder and gauge sec-
tions, so that no corrections for the height of the liquid column
need be made in the pressure calibration.)
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gauge calibration conditions (e.g. using a gauge calibrated in New York for pressure
measurements in Denver).

We define the total pressure P to be equal to the sum of the gauge pressure P, and
the ambient atmospheric pressure P,,,. By accounting for the atmospheric pressure
in this way we have developed an absolute pressure scale, which is a pressure scale
with zero as the lowest pressure attainable (the pressure in a completely evacuated re-
gion of space). One advantage of such a scale is its simplicity; the pressure is always a
positive quantity, and measurements do not have to be corrected for either fluctuations
in atmospheric pressure or its change with height above sea level. We will frequently
be concerned with interrelationships between the temperature, pressure, and specific
volume of fluids. These interrelationships are simplest if the absolute pressure is used.
Consequently, unless otherwise indicated, the term pressure in this book refers to ab-
solute pressure.

Although pressure arises naturally from mechanics, the concept of temperature is
more abstract. To the nonscientist, temperature is a measure of hotness or coldness
and as such is not carefully defined, but rather is a quantity related to such things as
physical comfort, cooking conditions, or the level of mercury or colored alcohol in a
thermometer. To the scientist, temperature is a precisely defined quantity, deeply rooted
in the concept of equilibrium and related to the energy content of a substance.

The origin of the formal definition of temperature lies in the concept of thermal equi-
librium. Consider a thermodynamic system composed of two subsystems that are in
thermal contact but that do not interchange mass (e.g. the two subsystems may be two
solids in contact, or liquids or gases separated by a thin, impenetrable barrier or mem-
brane) and are isolated from their surroundings. When this composite system achieves
a state of equilibrium (detected by observing that the properties of each system are
time invariant), it is found that the property measured by the height of fluid in a given
thermometer is the same in each system, although the other properties of the subsys-
tems, such as their density and chemical composition, may be different. In accord with
this observation, temperature is defined to be that system property which, if it has the
same value for any two systems, indicates that these systems are in thermal equilibrium
if they are in contact, or would be in thermal equilibrium if they were placed in thermal
contact.

Although this definition provides the link between temperature and thermal equi-
librium, it does not suggest a scale for temperature. If temperature is used only as an
indicator of thermal equilibrium, any quantification or scale of temperature is satis-
factory provided that it is generally understood and reproducible, though the accepted
convention is that increasing hotness of a substance should correspond to increasing val-
ues of temperature. An important consideration in developing a thermodynamic scale
of temperature is that it, like all other aspects of thermodynamics, should be general
and not depend on the properties of any one fluid (such as the specific volume of lig-
uid mercury). Experimental evidence indicates that it should be possible to formulate
a completely universal temperature scale. The first indication came from the study of
gases at densities so low that intermolecular interactions are unimportant (such gases
are called ideal gases), where it was found that the product of the absolute pressure P
and the molar volume V' of any low-density gas away from its condensation line (see
Chapter 7) increases with increasing hotness. This observation has been used as the
basis for a temperature scale by defining the temperature 7 to be linearly proportional
to the product of PV for a particular low-density gas, that is, by choosing 7" so that

PV = A+ RT (14-2)
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where A and R are constants. In fact, without any loss of generality one can define a
new temperature 7' = 7 + (A/R), which differs from the choice of Eq. 1.4-2 only by
an additive constant, to obtain

PV = RT (1.4-3)

Since neither the absolute pressure nor the molar volume of a gas can ever be negative,
the temperature defined in this way must always be positive, and therefore the ideal gas
temperature scale of Eq. 1.4-3 is an absolute scale (i.e., 7" > 0).

To complete this low-density gas temperature scale, it remains to specify the
constant R, or equivalently the size of a unit of temperature. This can be done in two
equivalent ways. The first is to specify the value of T" for a given value of PV and thus
determine the constant ?; the second is to choose two reproducible points on a hotness
scale and to decide arbitrarily how many units of 7" correspond to the difference in the
PV products at these two fixed points. In fact, it is the latter procedure that is used;
the ice point temperature of water? and the boiling temperature of water at standard at-
mospheric pressure (101.3 kPa) provide the two reproducible fixed-point temperatures.
What is done, then, is to allow a low-density gas to achieve thermal equilibrium with
water at its ice point and measure the product PV, and then repeat the process at the
boiling temperature. One then decides how many units of temperature correspond to
this measured difference in the product PV'; the choice of 100 units or degrees leads
to the Kelvin temperature scale, whereas the use of 180 degrees leads to the Rankine
scale. With either of these choices, the constant R can be evaluated for a given low-
density gas. The important fact for the formulation of a universal temperature scale
is that the constant R and hence the temperature scales determined in this way are
the same for all low-density gases! Values of the gas constant R in SI units are given
in Table 1.4-1.

For the present we assume this low-density or ideal gas Kelvin (denoted by K) tem-
perature scale is equivalent to an absolute universal thermodynamic temperature scale;
this is proven in Chapter 6.

More common than the Kelvin temperature scale for nonscientific uses of temper-
ature are the closely related Fahrenheit and Celsius scales. The size of the degree is
the same in both the Celsius (°C) and Kelvin temperature scales. However, the zero
point of the Celsius scale is arbitrarily chosen to be the ice point temperature of water.
Consequently, it is found that

T(K) = T(°C) + 273.15 (1.4-4a)

Table 1.4-1 The Gas Constant

R = 8.314 J/mol K
= 8.314 N m/mol K
= 8.314 x 103 kPa m®/mol K
= 8.314 x 10~° bar m*/mol K
= 8.314 x 102 bar m®/kmol K
= 8.314 x 1075 MPa m®/mol K

2The freezing temperature of water saturated with air at 101.3 kPa. On this scale the triple point of water is 0.01°C.
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In the Fahrenheit (°F) temperature scale the ice point and boiling point of water (at
101.3 kPa) are 32°F and 212°F, respectively. Thus

T(°F) + 459.67
1.8

Since we are assuming, for the present, that only the ideal gas Kelvin temperature scale
has a firm thermodynamic basis, we will use it, rather than the Fahrenheit and Cel-
sius scales, in all thermodynamic calculations.? (Another justification for the use of
an absolute-temperature scale is that the interrelation between pressure, volume, and
temperature for fluids is simplest when absolute temperature is used.) Consequently, if
the data for a thermodynamic calculation are not given in terms of absolute tempera-
ture, it will generally be necessary to convert these data to absolute temperatures using
Egs. 1.4-4.

The product of PV for a low-density gas is said to be a thermometric property
in that to each value of PV there corresponds only a single value of temperature. The
ideal gas thermometer is not convenient to use, however, because of both its mechan-
ical construction (see Fig. 1.4-3) and the manipulation required to make a measure-
ment. Therefore, common thermometers make use of thermometric properties of other
materials—for example, the single-valued relation between temperature and the spe-
cific volume of liquid mercury (Problem 1.2) or the electrical resistance of platinum
wire. There are two steps in the construction of thermometers based on these other ther-
mometric properties: first, fabrication of the device, such as sealing liquid mercury in an

T(K) = (1.4-4b)

Open to the

/ atmosphere

\

o

Indicial
point

Gas

bulb

Flexible  Figure 1.4-3 A simplified diagram of a con-
hose stant-volume ideal gas thermometer. In this
thermometer the product PV for a gas at var-
ious temperatures is found by measuring the
pressure P at constant volume. For each mea-
surement the mercury reservoir is raised or
lowered until the mercury column at the left
touches an index mark. The pressure of the
gas in the bulb is then equal to the atmospheric
pressure plus the pressure due to the height of
the mercury column.

30f course, for calculations involving only temperature differences, any convenient temperature scale may be used,
since a temperature difference is independent of the zero of the scale.
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otherwise evacuated tube; and second, the calibration of the thermometric indicator with
a known temperature scale. To calibrate a thermometer, its readings (e.g., the height of
a mercury column) are determined at a collection of known temperatures, and its scale
is completed by interpolating between these fixed points. The calibration procedure
for a common mercury thermometer is usually far simpler. The height of the mercury
column is determined at only two fixed points (e.g., the temperature of an ice-water
bath and the temperature of boiling water at atmospheric pressure), and the distance
between these two heights is divided into equal units; the number of units depends
on whether the Rankine or Kelvin degree is used, and whether a unit is to represent a
fraction of a degree, a degree, or several degrees. Since only two fixed points are used
in the calibration, intermediate temperatures recorded on such a thermometer may be
different from those that would be obtained using an ideal gas thermometer because
(1) the specific volume of liquid mercury has a slightly nonlinear dependence on tem-
perature, and (2) the diameter of the capillary tube may not be completely uniform
(so that the volume of mercury will not be simply related to its height in the tube; see
Problem 1.2).

1.5 HEAT, WORK, AND THE CONSERVATION OF ENERGY

As we have already indicated, two systems in thermal contact but otherwise isolated
from their surroundings will eventually reach an equilibrium state in which the systems
have the same temperature. During the approach to this equilibrium state the tempera-
ture of the initially low-temperature system increases while the temperature of the ini-
tially high-temperature system decreases. We know that the temperature of a substance
is directly related to its internal energy, especially the energy of molecular motion. Thus,
in the approach to equilibrium, energy has been transferred from the high-temperature
system to the one of lower temperature. This transfer of energy as a result of only a
temperature difference is called a flow of heat.

It is also possible to increase the total energy (internal, potential, and kinetic) of a
system by mechanical processes involving motion. In particular, the kinetic or potential
energy of a system can change as a result of motion without deformation of the system
boundaries, as in the movement of a solid body acted on by an external force, whereas
the internal energy and temperature of a system may change when external forces result
in the deformation of the system boundaries, as in the compression of a gas. Energy
transfer by mechanical motion also occurs as a result of the motion of a drive shaft,
push rod, or similar device across the system boundaries. For example, mechanical
stirring of a fluid first results in fluid motion (evidence of an increase in fluid kinetic
energy) and then, as this motion is damped by the action of the fluid viscosity, in an
increase in the temperature (and internal energy) of the fluid. Energy transfer by any
mechanism that involves mechanical motion of, or across, the system boundaries is
called work.

Finally, it is possible to increase the energy of a system by supplying it with elec-
trical energy in the form of an electrical current driven by a potential difference. This
electrical energy can be converted to mechanical energy if the system contains an elec-
tric motor, it can increase the temperature of the system if it is dissipated through a
resistor (resistive heating), or it can be used to cause an electrochemical change in the
system (e.g. recharging a lead storage battery). Throughout this book we consider the
flow of electrical energy to be a form of work. The reason for this choice will become
clear shortly.
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The amount of mechanical work is, from mechanics, equal to the product of the force
exerted times the distance moved in the direction of the applied force, or, alternatively,
to the product of the applied pressure and the displaced volume. Similarly, the electri-
cal work is equal to the product of the current flow through the system, the potential
difference across the system, and the time interval over which the current flow takes
place. Therefore, the total amount of work supplied to a system is frequently easy to
calculate.

An important experimental observation, initially made by James Prescott Joule be-
tween 1837 and 1847, is that a specified amount of energy can always be used in such
a way as to produce the same temperature rise in a given mass of water, regardless of
the precise mechanism or device used to supply the energy, and regardless of whether
this energy is in the form of mechanical work, electrical work, or heat. Rather than de-
scribe Joule’s experiments, consider how this hypothesis could be proved in the lab-
oratory. Suppose a sample of water at temperature 7} is placed in a well-insulated
container (e.g. a Dewar flask) and, by the series of experiments in Table 1.5-1, the
amount of energy expended in producing a final equilibrium temperature 75 is mea-
sured. Based on the experiments of Joule and others, we would expect to find that this

Table 1.5-1 Experiments Designed to Prove the Energy Equivalence of Heat and Work

Form in Which Form of Energy Method of Corrections That
Energy Is Supplied to Measuring Energy Must Be Made to
Transferred to Water Mechanism Used Mechanism Input Energy Input Data
(1) Mechanical Stirring: Electrical energy Product of voltage, Electrical energy
energy Paddlewheel current, and time loss in motor and
driven by electric circuit,
motor temperature rise
of paddlewheel
(2) Mechanical Stirring: Mechanical energy Change in potential Temperature rise of
energy Paddlewheel energy of weight: paddlewheel

driven by pulley product of mass

and falling of weight, change

weight in height, and the

gravitational
constant g

(3) Heat flow Electrical energy Electrical energy Product of voltage, Temperature rise of

converted to heat current, and time resistor and

in a resistor electrical losses

in circuit

(4) Heat flow Mechanical energy Mechanical energy Change in potential Temperature rise of

of falling weight energy of weight: mechanical

is converted to product of mass brakes, etc.

heat through of weight, change

friction of in height, and g

rubbing two
surfaces together,
as with a brake
on the axle of a
pulley
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energy (determined by correcting the measurements of column 4 for the temperature
rise of the container and the effects of column 5) is precisely the same in all cases.

By comparing the first two experiments with the third and fourth, we conclude that
there is an equivalence between mechanical energy (or work) and heat, in that pre-
cisely the same amount of energy was required to produce a given temperature rise,
independent of whether this energy was delivered as heat or work. Furthermore, since
both mechanical and electrical energy sources have been used (see column 3), there is
a similar equivalence between mechanical and electrical energy, and hence among all
three energy forms. This conclusion is not specific to the experiments in Table 1.5-1
but is, in fact, a special case of a more general experimental observation; that is, any
change of state in a system that occurs solely as a result of the addition of heat can
also be produced by adding the same amount of energy as work, electrical energy, or a
combination of heat, work, and electrical energy.

Returning to the experiments of Table 1.5-1, we can now ask what has happened
to the energy that was supplied to the water. The answer, of course, is that at the end
of the experiment the temperature, and hence the molecular energy, of the water has
increased. Consequently, the energy added to the water is now present as increased
internal energy. It is possible to extract this increased internal energy by processes that
return the water to its original temperature. One could, for example, use the warm water
to heat a metal bar. The important experimental observation here is that if you measured
the temperature rise in the metal, which occurred in returning the water to its initial
state, and compared it with the electrical or mechanical energy required to cause the
same temperature rise in the metal, you would find that all the energy added to the
water in raising its temperature could be recovered as heat by returning the water to its
initial state. Thus total energy has been conserved in the process.

The observation that energy has been conserved in this experiment is only one exam-
ple of a general energy conservation principle that is based on a much wider range of
experiments. The more general principle is that in any change of state, the total energy,
which is the sum of the internal, kinetic, and potential energies of the system, heat, and
electrical and mechanical work, is conserved. A more succinct statement is that energy
is neither created nor destroyed, but may change in form.

Although heat, mechanical work, and electrical work are equivalent in that a given
energy input, in any form, can be made to produce the same internal energy increase
in a system, there is an equally important difference among the various energy forms.
To see this, suppose that the internal energy of some system (perhaps the water in the
experiments just considered) has been increased by increasing its temperature from 7}
to a higher temperature 75, and we now wish to recover the added energy by returning
the system to its initial state at temperature 77. It is clear that we can recover the added
energy completely as a heat flow merely by putting the system in contact with another
system at a lower temperature. There is, however, no process or device by which it is
possible to convert all the added internal energy of the system to mechanical energy
and restore both the system and the surroundings to their initial states, even though the
increased internal energy may have resulted from adding only mechanical energy to
the system. In general, only a portion of the increased internal energy can be recovered
as mechanical energy, the remainder appearing as heat. This situation is not specific to
the experiments discussed here; it occurs in all similar efforts to convert both heat and
internal energy to work or mechanical energy.

We use the term thermal energy to designate energy in the form of internal en-
ergy and heat, and mechanical energy to designate mechanical and electrical work and
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the external energy of a system. This distinction is based on the general experimental
observation that while, in principle, any form of mechanical energy can be completely
converted to other forms of mechanical energy or thermal energy, only a fraction of the
thermal energy can be converted to mechanical energy in any cyclic process (a process
that at the end of the cycle restores the system and surroundings to their states at the
beginning of the cycle), or any process in which the only change in the universe (system
and surroundings) is the conversion of thermal energy to mechanical energy.

The units of mechanical work arise naturally from its definition as the product of
a force and a distance. Typical units of mechanical work are foot—pound force, dyne-
centimeter, and erg, though we will use the newton-meter (N m), which is equal to one
joule; and from the formulation of work as pressure times displaced volume, pascal-
meter?, which is also equal to one joule. The unit of electrical work is the volt-ampere-
second or, equivalently, the watt-second (again equal to one joule). Heat, however, not
having a mechanical definition, has traditionally been defined experimentally. Thus, the
heat unit calorie was defined as the amount of heat required to raise the temperature of
1 gram of water from 14.5°C to 15.5°C, and the British thermal unit (BTU) was defined
to be the amount of heat required to raise 1 1b of water from 59°F to 60°F. These ex-
perimental definitions of heat units have proved unsatisfactory because the amount of
energy in both the calorie and BTU have been subject to continual change as measure-
ment techniques improved. Consequently, there are several different definitions of the
Btu and calorie (e.g. the thermochemical calorie, the mean calorie, and the International
Table calorie) that differ by less than one and one-half parts in a thousand. Current
practice is to recognize the energy equivalence of heat and work and to use a com-
mon energy unit for both. We will use only the joule, which is equal to 0.2390 calorie
(thermochemical) or 0.9485 x 10~3 Btu (thermochemical).

1.6 SPECIFICATION OF THE EQUILIBRIUM STATE;
INTENSIVE AND EXTENSIVE VARIABLES;
EQUATIONS OF STATE

Since our main interest throughout this book is with stable equilibrium states, it is im-
portant to consider how to characterize the equilibrium state and, especially, what is
the minimum number of properties of a system at equilibrium that must be specified
to fix the values of all its remaining properties completely.* To be specific, suppose we
had 1 kg of a pure gas, say oxygen, at equilibrium whose temperature is some value
T, pressure some value P, volume V, refractive index R, electrical permitivity €, and
so on, and we wanted to adjust some of the equilibrium properties of a second sample
of oxygen so that all the properties of the two samples would be identical. The ques-
tions we are asking, then, are what sorts of properties, and how many properties, must
correspond if all of the properties of the two systems are to be identical?

The fact that we are interested only in stable equilibrium states is sufficient to decide
the types of properties needed to specify the equilibrium state. First, since gradients in
velocity, pressure, and temperature cannot be present in the equilibrium state, they do
not enter into its characterization. Next, since, as we saw in Sec. 1.3, the properties of
a stable equilibrium state do not depend on the history of the system or its approach to
equilibrium, the stable equilibrium state is characterized only by equilibrium properties
of the system.

“4Throughout this book, we implicitly assume that a system contains a large number of molecules (at least several
tens of thousands), so that the surface effects present in small systems are unimportant. See, however, Sec. 7.8.
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The remaining question, that of how many equilibrium properties are necessary to
specify the equilibrium state of the system, can be answered only by experiment. The
important experimental observation here is that an equilibrium state of a single-phase,
one-component system in the absence of external electric and magnetic fields is com-
pletely specified if its mass and two other thermodynamic properties are given. Thus,
going back to our example, if the second oxygen sample also weighs 1 kg, and if it
were made to have the same temperature and pressure as the first sample, it would also
be found to have the same volume, refractive index, and so forth. If, however, only the
temperature of the second 1-kg sample was set equal to that of the first sample, neither
its pressure nor any other physical property would necessarily be the same as that of
the first sample. Consequently, the values of the density, refractive index, and, more
generally, all thermodynamic properties of an equilibrium single-component, single-
phase fluid are completely fixed once the mass of the system and the values of at least
two other system parameters are given. (The specification of the equilibrium state of
multiphase and multicomponent systems is considered in Chapters 7 and 8.)

The specification of an equilibrium system can be made slightly simpler by recog-
nizing that the variables used in thermodynamic descriptions are of two different types.
To see this, consider a gas of mass M that is at a temperature 7" and pressure P and is
confined to a glass bulb of volume V. Suppose that an identical glass bulb is also filled
with mass M of the same gas and heated to the same temperature 7". Based on the
previous discussion, since the values of T', V', and M are the same, the pressure in the
second glass bulb is also P. If these two bulbs are now connected to form a new system,
the temperature and pressure of this composite system are unchanged from those of the
separated systems, although the volume and mass of this new system are clearly twice
those of the original single glass bulb. The pressure and temperature, because of their
size-independent property, are called intensive variables, whereas the mass, volume,
and total energy are extensive variables, or variables dependent on the size or amount
of the system. Extensive variables can be transformed into intensive variables by divid-
ing by the total mass or total number of moles so that a specific volume (volume per unit
mass or volume per mole), a specific energy (energy per unit mass or per mole), and so
forth are obtained. By definition, the term state variable refers to any of the intensive
variables of an equilibrium system: temperature, pressure, specific volume, specific in-
ternal energy, refractive index, and other variables introduced in the following chapters.
Clearly, from the previous discussion, the value of any state variable depends only on
the equilibrium state of the system, not on the path by which the equilibrium state was
reached.

With the distinction now made between intensive and extensive variables, it is pos-
sible to rephrase the requirement for the complete specification of a thermodynamic
state in a more coherent manner. The experimental observation is that the specification
of two state variables uniquely determines the values of all other state variables of an
equilibrium, single-component, single-phase system. [Remember, however, that to de-
termine the size of the system, that is, its mass or total volume, one must also specify
the mass of the system, or the value of one other extensive parameter (total volume,
total energy, etc.).] The implication of this statement is that for each substance there
exist, in principle, equations relating each state variable to two others. For example,

P
U

P(T,V)
U(T, V) (1.6-1)

<
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Here P is the pressure, 1" the temperature, U the internal energy per unit mass, and 1%
the volume per unit mass.’ The first equation indicates that the pressure is a function of
the temperature and volume per unit mass; the second indicates that the internal energy
is a function of temperature and volume. Also, there are relations of the form

U=U(T,P)
U=U(P,V)
P=PU,V) (1.6-2)

Similar equations are valid for the additional thermodynamic properties to be intro-
duced later.

The interrelations of the form of Eqs 1.6-1 and 1.6-2 are always obeyed in nature,
though we may not have been sufficiently accurate in our experiments, or clever enough
in other ways to have discovered them. In particular, Eq. 1.6-1 indicates that if we pre-
pare a fluid such that it has specified values 7" and f/, it will always have the same
pressure P. What is this value of the pressure P? To know this we would have either
done the experiment sometime in the past or know the exact functional relationship be-
tween T, V, and P for the fluid being considered. What is frequently done for fluids of

scientific or engineering interest is to make a large number of measurements of P, ‘7,
and 7" and then to develop a volumetric equation of state for the fluid, that is, a mathe-
matical relationship between the variables P, V and 7. Similarly, measurements of U
V, and 7" are made to develop a thermal equation of state for the fluid. Alternatively,
the data that have been obtained may be presented directly in graphical or tabular form.
(In fact, as will be shown later in this book, it is more convenient to formulate volumet-
ric equations of state in terms of P, V, and 7T than in terms of P, V/, and 7T, since in
this case the same gas constant of Eq. 1.4-3 can be used for all substances. If volume
on a per-mass basis V was used, the constant in the ideal gas equation of state would
be R divided by the molecular weight of the substance.)

There are some complications in the description of thermodynamic states of systems.
For certain idealized fluids, such as the ideal gas and the incompressible liquid (both
discussed in Sec. 3.3), the specification of any two state variables may not be suffi-
cient to fix the thermodynamic state of the system. To be specific, the internal energy
of the ideal gas is a function only of its temperature, and not of its pressure or density.
Thus, the specification of the internal energy and temperature of an ideal gas contains
no more information than specifying only its temperature and therefore is insufficient
to determine its pressure. Similarly, if a liquid is incompressible, its molar volume will
depend on temperature but not on the pressure exerted on it. Consequently, specifying
the temperature and the specific volume of an incompressible liquid contains no more
information than specifying only its temperature. The ideal gas and the incompress-
ible liquid are limiting cases of the behavior of real fluids, so that although the internal
energy of a real gas depends on density and temperature, the density dependence may
be weak; also the densities of most liquids are only weakly dependent on their pressure.

3In this book we use letters with carets to indicate properties per unit mass, such as U and V, and letters with
underbars, such as U and V/, to indicate properties per mole, which are referred to as molar properties. When, in
later chapters, we consider mixtures and have to distinguish between species, the notation will become a bit more
complicated in that U, and V; will be used to designate the molar internal energy and volume, respectively, of pure
species i. Also, when necessary, within parentheses we can indicate the temperature and/or pressure (and in later
chapters the composition) of the substance. In these cases, notation such as U (7', P) and V;(T', P) will be used.
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Therefore, although in principle any two state variables may be used to describe the
thermodynamic state of a system, one should not use U and T as the independent state
variables for gases or V and T as the independent state variables for liquids and solids.

As was pointed out in the previous paragraphs, two state variables are needed to fix
the thermodynamic state of an equilibrium system. The obvious next question is, how
does one specify the thermodynamic state of a nonequilibrium system? This is clearly
a much more complicated question, and the detailed answer would involve a discussion
of the relative time scales for changes imposed on the system and the changes that oc-
cur within the system (as a result of chemical reaction, internal energy flows, and fluid
motion). Such a discussion is beyond the scope of this book. The important observation
is that if we do not consider very fast system changes (as occur within a shock wave), or
systems that relax at a very slow but perceptible rate (e.g., molten polymers), the equi-
librium relationships between the fluid properties, such as the volumetric and thermal
equations of state, are also satisfied in nonequilibrium flows on a point-by-point basis.
That is, even though the temperature and pressure may vary in a flowing fluid, as long as
the changes are not as sharp as in a shock wave and the fluid internal relaxation times are
rapid,® the properties at each point in the fluid are interrelated by the same equations of
state as for the equilibrium fluid. This situation is referred to as local equilibrium. This
is an important concept since it allows us to consider not only equilibrium phenomena
in thermodynamics but also many flow problems involving distinctly nonequilibrium
processes.

1.7 A SUMMARY OF IMPORTANT
EXPERIMENTAL OBSERVATIONS

An objective of this book is to present the subject of thermodynamics in a logical,
coherent manner. We do this by demonstrating how the complete structure of thermo-
dynamics can be built from a number of important experimental observations, some of
which have been introduced in this chapter, some of which are familiar from mechan-
ics, and some of which are introduced in the following chapters. For convenience, the
most important of these observations are listed here.

From classical mechanics and chemistry we have the following two observations.

Experimental observation 1. In any change of state (except one involving a nuclear
reaction, which is not considered in this book) total mass is conserved.

Experimental observation 2. In any change of state total momentum is a conserved
quantity.

In this chapter the following eight experimental facts have been mentioned.

Experimental observation 3 (Sec. 1.5). In any change of state the total energy (which
includes internal, potential, and kinetic energy, heat, and work) is a conserved
quantity.

Experimental observation 4 (Sec. 1.5). A flow of heat and a flow of work are equiva-
lent in that supplying a given amount of energy to a system in either of these forms
can be made to result in the same increase in its internal energy. Heat and work,
or more generally, thermal and mechanical energy, are not equivalent in the sense

OThe situation being considered here is not as restrictive as it appears. In fact, it is by far the most common case
in engineering. It is the only case that is considered in this book.
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that mechanical energy can be completely converted to thermal energy, but thermal
energy can be only partially converted to mechanical energy in a cyclic process.

Experimental observation 5 (Sec. 1.3). A system that is not subject to forced flows
of mass or energy from its surroundings will evolve to a time-invariant state that is
uniform or composed of uniform subsystems. This is the equilibrium state.

Experimental observation 6 (Sec. 1.3). A system in equilibrium with its surroundings
will never spontaneously revert to a nonequilibrium state.

Experimental observation 7 (Sec. 1.3). Equilibrium states that arise naturally are stable
to small disturbances.

Experimental observation 8 (Secs. 1.3 and 1.6). The stable equilibrium state of a sys-
tem is completely characterized by values of only equilibrium properties (and not
properties that describe the approach to equilibrium). For a single-component, single-
phase system the values of only two intensive, independent state variables are needed
to fix the thermodynamic state of the equilibrium system completely; the further spec-
ification of one extensive variable of the system fixes its size.

Experimental observation 9 (Sec. 1.6). The interrelationships between the thermody-
namic state variables for a fluid in equilibrium also apply locally (i.e., at each point)
for a fluid not in equilibrium, provided the internal relaxation processes are rapid
with respect to the rate at which changes are imposed on the system. For fluids of
interest in this book, this condition is satisfied.

Although we are not, in general, interested in the detailed description of nonequi-
librium systems, it is useful to note that the rates at which natural relaxation processes
(i.e. heat fluxes, mass fluxes, etc.) occur are directly proportional to the magnitude of
the driving forces (i.e., temperature gradients, concentration gradients, etc.) necessary
for their occurrence.

Experimental observation 10. The flow of heat Q (units of J/s or W) that arises be-
cause of a temperature difference AT is linearly proportional to the magnitude of
the temperature difference:’

Q = —hAT (1.7-1)

Here h is a positive constant, and the minus sign in the equation indicates that the
heat flow is in the opposite direction to the temperature difference; that is, the flow of
heat is from a region of high temperature to a region of low temperature. Similarly, on
a microscopic scale, the heat flux in the z-coordinate direction, denoted by g, (with
units of J/m? s), is linearly related to the temperature gradient in that direction:

oT
G =~k (1.7-2)

The mass flux of species A in the x direction, ja|, (kg/m? s), relative to the fluid
mass average velocity is linearly related to its concentration gradient,

‘ o
jale = pr—g; A (1.7-3)

7Throughout this book we use a dot, as on Q, to indicate a flow term. Thus, Q is a flow of heat with units of J/s,
and M is a flow of mass with units of kg/s. Also, radiative heat transfer is more complicated, and is not considered
here.
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and for many fluids, the flux of the x-component of momentum in the y-coordinate
direction is
v,

In these equations 7 is the temperature, p the mass density, w4 the mass fraction of
species A, and v, the x-component of the fluid velocity vector. The parameter k is
the thermal conductivity, D the diffusion coefficient for species A, and p the fluid
viscosity; from experiment the values of these parameters are all greater than or equal
to zero (this is, in fact, a requirement for the system to evolve toward equilibrium).
Equation 1.7-2 is known as Fourier’s law of heat conduction, Eq. 1.7-3 is called Fick’s
first law of diffusion, and Eq. 1.7-4 is Newton’s law of viscosity.

1.8 A COMMENT ON THE DEVELOPMENT
OF THERMODYNAMICS

The formulation of the principles of thermodynamics that is used in this book is a reflec-
tion of the author’s preference and experience, and is not an indication of the historical
development of the subject. This is the case in most textbooks, as a good textbook
should present its subject in an orderly, coherent fashion, even though most branches of
science have developed in a disordered manner marked by both brilliant, and frequently
unfounded, generalizations and, in retrospect, equally amazing blunders. It would serve
little purpose to relate here the caloric or other theories of heat that have been proposed
in the past, or to describe all the futile efforts that went into the construction of perpetual
motion machines. Similarly, the energy equivalence of heat and work seems obvious
now, though it was accepted by the scientific community only after 10 years of work
by J. P. Joule. Historically, this equivalence was first pointed out by a medical doctor,
J. R. Mayer. However, it would be foolish to reproduce in a textbook the stages of his
discovery, which started with the observation that the venous blood of sailors being
bled in Java was unusually red, made use of a theory of Lavoisier relating the rate of
oxidation in animals to their heat losses, and ultimately led to the conclusion that heat
and work were energetically equivalent.

The science of thermodynamics as we now know it is basically the work of the exper-
imentalist, in that each of its principles represents the generalization of a large amount
of varied experimental data and the life’s work of many. We have tried to keep this flavor
by basing our development of thermodynamics on a number of key experimental ob-
servations. However, the presentation of thermodynamics in this book, and especially
in the introduction of entropy in Chapter 4, certainly does not parallel its historical

development.
PROBLEMS
1.1 For each of the cases that follow, list as many properties b. The system is contained in a constant-volume con-
of the equilibrium state as you can, especially the con- tainer and thermally and mechanically isolated from
straints placed on the equilibrium state of the system by its surroundings.
its surroundings and/or its container. c. The system is contained in a frictionless piston and
a. The system is placed in thermal contact with a ther- cylinder exposed to an atmosphere at pressure P and

mostatic bath maintained at temperature 7. thermally isolated from its surroundings.
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d. The system is contained in a frictionless piston and

cylinder exposed to an atmosphere at pressure P and T (°C VO]?EGSIC ! gﬁam VOluntf of 1 %ram

is in thermal contact with a thermostatic bath main- (O of >0 (em™) of Hg (em”)
tained at temperature 7. 0 1.0001329 0.0735560

e. The system consists of two tanks of gas connected 1 1.0000733 0.0735694
by tubing. A valve between the two tanks is fully 2 1.0000321 0.0735828
opened for a short time and then closed. 3 1.0000078 0.0735961
1.2 The following table lists the volumes of 1 gram of water 4 1.0000000 0.0736095
and 1 gram of mercury as functions of temperature. 5 1.0000081 0.0736228
a. Discuss why water would not be an appropriate ther- 6 1.0000318 0.0736362
mometer fluid between 0°C and 10°C. 7 1.0000704 0.0736496

b. Because of the slightly nonlinear temperature depen- 8 1.0001236 0.0736629
dence of the specific volume of liquid mercury, there 9 1.0001909 0.0736763

is an inherent error in using a mercury-filled ther- 10 1.0002719 0.0736893
mometer that has been calibrated against an ideal gas 20 1.0015678 0.0738233
thermometer at only 0°C and 100°C. Using the data 30 1.0043408 0.0739572

in the table, prepare a graph of the error, AT, as a 40 1.0078108 0.0740910
function of temperature. 50 1.012074 0.0742250

c¢. Why does a common mercury thermometer consist 60 1.017046 0.0743592
of a large-volume mercury-filled bulb attached to a 70 1.022694 0.0744936
capillary tube? 80 1.028987 0.0746282

90 1.035904 0.0747631

100 1.043427 0.0748981

*Based on data in R. H. Perry and D. Green, eds., Chemical
Engineers’ Handbook, 6th ed., McGraw-Hill, New York, 1984,
pp. 3-75-3-77.



Chapter 2

Conservation of Mass

In this chapter we start the quantitative development of thermodynamics using one of
the qualitative observations of the previous chapter, that mass is conserved. Here we
begin by developing the balance equations for the total mass of a system (a piece of
equipment, a defined volume in space, or whatever is convenient for the problem at
hand) by considering systems of only a single component. In this case, the mass of a
single species being considered is also the total mass, which is conserved, and we can
write the balance equation either based on mass or by dividing by the molecular weight,
on the number of moles. We develop two forms of these mass balance equations—the
first for computing the rate at which mass in a system changes with time, and the second
set, obtained by integrating these rate equations over an interval of time, to compute
only the change in mass (or number of moles) in that time interval.

We next consider the mass balances for a mixture. In this case while total mass is
conserved, there will be a change in mass of some or all species if one or more chemical
reactions occur. For this case, it is more convenient to develop the mass balance for
mixtures on a molar basis, as chemical reaction stoichiomentry is much easier to write
on a molar basis than on a mass basis. In this chapter we will consider only the case of
a single chemical reaction; in later chapters the more general case of several chemical
reactions occuring simultaneously will be considered.

The most important goals of this chapter are for the student to understand when to use
the rate-of-change form of the mass balance equation and when to use the difference
form, and how to use these equations to solve problems. Mastering the use of the mass
balance equations here will make it easier to use the more complicated energy and other
balance equations that will be introduced in the following two chapters.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 2
The goals of this chapter are for the student to:

e Be able to use the rate-of-change form of the pure component mass balance in
problem solving (Sec. 2.2)

e Be able to use the difference form of the pure component mass balance in problem
solving (Sec. 2.2)

e Be able to use the rate-of-change form of the multicomponent mass balance in
problem solving (Sec. 2.3)

e Be able to use the difference form of the multicomponent mass balance in problem
solving (Sec. 2.3)

e Be able to solve mass balance problems involving a single chemical reaction
(Sec. 2.3)

25
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IMPORTANT NOTATION INTRODUCED IN THIS CHAPTER

M; Mass of species i (g)
M, Mass flow rate at location k (g/s)
(Mi)k Mass flow rate of species i at location k (g/s)
N; Moles of species i (mol)
N, Molar flow rate at location k (g/s)
(N;)r,  Molar flow rate of species i at location k (g/s)
t Time (s)
x  Set of mole fractions of all species x1, 22, 3, . . .
X Molar extent of reaction (mol)
v;  Stoichiometric coefficient of species i

2.1 A GENERAL BALANCE EQUATION
AND CONSERVED QUANTITIES

The balance equations used in thermodynamics are conceptually simple. Each is ob-
tained by choosing a system, either a quantity of mass or a region of space (e.g., the
contents of a tank), and equating the change of some property of this system to
the amounts of the property that have entered and left the system and that have been
produced within it. We are interested both in the change of a system property over a
time interval and in its instantaneous rate of change; therefore, we will formulate equa-
tions of change for both. Determining which formulation of the equations of change
is used for the description of a particular physical situation will largely depend on the
type of information desired or available.

To illustrate the two types of descriptions and the relationship between them, as well
as the idea of using balance equations, consider the problem of studying the total mass
of water in Lake Mead (the lake behind Hoover Dam on the Colorado River). If you
were interested in determining, at any moment, whether the water level in this lake
was rising or falling, you would have to ascertain whether the water flows into the lake
were greater or less than the flows of water out of the lake. That is, at some instant
you would determine the rates at which water was entering the lake (due to the flow
of the Colorado River and rainfall) and leaving it (due to flow across the dam, evap-
oration from the lake surface, and seepage through the canyon walls), and then use
the equation

Rate of change of Rate at which Rate at which
amount of water = water flows — | water flows out (2.1-1)
in the lake into the lake of the lake

to determine the precise rate of change of the amount of water in the lake.

If, on the other hand, you were interested in determining the change in the amount
of water for some period of time, say the month of January, you could use a balance
equation in terms of the total amounts of water that entered and left the lake during
this time:
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Change in amount Amount of water that Amount of water that
of water in the _ | flowedinto the lake | flowed out of
lake during the ~ | during the month of the lake during the
month of January January month of January
(2.1-2)

Notice that Eq. 2.1-1 is concerned with an instantaneous rate of change, and it re-
quires data on the rates at which flows occur. Equation 2.1-2, on the other hand, is for
computing the total change that has occurred and requires data only on the total flows
over the time interval. These two equations, one for the instantaneous rate of change
of a system property (here the amount of water) and the other for the change over an
interval of time, illustrate the two types of change-of-state problems that are of interest
in this book and the forms of the balance equations that are used in their solution.

There is, of course, an interrelationship between the two balance equations. If you
had information on each water flow rate at each instant of time for the whole month
of January, you could integrate Eq. 2.1-1 over that period of time to obtain the same
answer for the total change in the amount of water as would be obtained directly from
Eq. 2.1-2 using the much less detailed information on the total flows for the month.

The example used here to illustrate the balance equation concept is artificial in that
although water flows into and out of a lake are difficult to measure, the amount of water
in the lake can be determined directly from the water level. Thus, Egs. 2.1-1 and 2.1-2
are not likely to be used. However, the system properties of interest in thermodynamics
and, indeed, in most areas of engineering are frequently much more difficult to measure
than flow rates of mass and energy. Therefore, the balance equation approach may be
the only practical way to proceed.

While our interest here is specifically in the mass balance, to avoid having to repeat
the analysis leading to equation 2.1-4, which follows, for other properties, such as en-
ergy (see next chapter), we will develop a general balance equation for any extensive
property 6. We will then replace 6 with the total mass. In the next section 6 will be
the mass of only one of the species (which may undergo a chemical reaction), and in
the next chapter 6 will be replaced by the total energy. In the remainder of this sec-
tion, the balance equations for an unspecified extensive property 6 of a thermodynamic
system are developed.

With the balance equations formulated in a general manner, they will be applicable
(by appropriate simplification) to all systems studied in this book. In this way it will not
be necessary to rederive the balance equations for each new problem; we will merely
simplify the general equations. Specific choices for €, such as total mass, mass (or
number of moles) of a single species, and energy, are considered in Sec. 2.2, 2.3, and
3.2, respectively.

We consider a general system that may be moving or stationary, in which mass and
energy may flow across its boundaries at one or more places, and the boundaries of
which may distort. Since we are concerned with equating the total change within the
system to flows across its boundaries, the details of the internal structure of the sys-
tem will be left unspecified. This “black-box” system is illustrated in Fig. 2.1-1, and
characteristics of this system are

1. Mass may flow into one, several, all, or none of the K entry ports labeled 1,2, . . .,
K (i.e., the system may be either open or closed to the flow of mass). Since we
are concerned with pure fluids here, only one molecular species will be involved,
although its temperature and pressure may be different at each entry port. The
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M,

My

M, . Figure 2.1-1 A single-component system with several
My mass flows.

mass flow rate into the system at the kth entry port will be My, so that M, > 0
for flow into the system, and M r < 0 for flow out of the system.

2. The boundaries of the black-box system may be stationary or moving. If the sys-
tem boundaries are moving, it can be either because the system is expanding or
contracting, or because the system as a whole is moving, or both.

The following two characteristics are important for the energy balance.

3. Energy in the form of heat may enter or leave the system across the system
boundaries.

4. Energy in the form of work (mechanical shaft motion, electrical energy, etc.) may
enter or leave the system across the system boundaries.

Throughout this book we will use the convention that a flow into the system, whether
it be a mass flow or an energy flow, is positive and a flow out of the system is negative.

The balance equation for the total amount of any extensive quantity 6 in this system
is obtained by equating the change in the amount of 6 in the system between times ¢
and ¢ 4+ At to the flows of 0 into and out of the system, and the generation of § within
the system, in the time interval At. Thus,

Amount of ¢ inthe | (Amountof finthe) _ (Amount of ¢ that entered the system across
system at time ¢ + At system at time ¢ ~\ system boundaries between ¢ and t + At

([ Amount of ¢ that left the system across
system boundaries between ¢ and t + At

Amount of 6 generated within the
system between ¢ and t + At (2.1-3)

The meaning of the first two terms on the right side of this equation is clear, but the
last term deserves some discussion. If the extensive property 6 is equal to the total
mass, total energy, or total momentum (quantities that are conserved, see experimental
observations 1 to 3 of Sec. 1.7), then the internal generation of 6 is equal to zero. This
is easily seen as follows for the special case of a system isolated from its environment
(so that the flow terms across the system boundaries vanish); here Eq. 2.1-3 reduces to

Amount of 6 generated
within the system (2.1-3a)
between ¢ and t + At

system at time

Amount of 0 in the (
t+ At

Amount of € in the\
system at time ¢

Since neither total mass, total momentum, nor total energy can be spontaneously pro-
duced, if 0 is any of these quantities, the internal generation term must be zero. If,
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however, § is some other quantity, the internal generation term may be positive (if 6
is produced within the system), negative (if 6 is consumed within the system), or zero.
For example, suppose the black-box system in Fig. 2.1-1 is a closed (batch) chemi-
cal reactor in which cyclohexane is partially dehydrogenated to benzene and hydrogen
according to the reaction

CGng — C@HG + 3H2

If 0 is set equal to the total mass, then, by the principle of conservation of mass, the
internal generation term in Eq. 2.1-3a would be zero. If, however, 6 is taken to be the
mass of benzene in the system, the internal generation term for benzene would be posi-
tive, since benzene is produced by the chemical reaction. Conversely, if  is taken to be
the mass of cyclohexane in the system, the internal generation term would be negative.
In either case the magnitude of the internal generation term would depend on the rate
of reaction.

The balance equation (Eq. 2.1-3) is useful for computing the change in the extensive
property 6 over the time interval At. We can also obtain an equation for computing the
instantaneous rate of change of 6 by letting the time interval At go to zero. This is done
as follows. First, we use the symbol 0(t) to represent the amount of  in the system at
time ¢, and we recognize that for a very small time interval At (over which the flows
into and out of the system are constant) we can write

Amount of € that enters the Rate at which 6 enters
system across system boundaries as the system across system | At
between ¢ and t + At boundaries

with similar expressions for the outflow and generation terms. Next we rewrite
Eq. 2.1-3 as

0(t + At) —0(t)  (Rate at which 6 enters the system
At across system boundaries

_ ( Rate at which ¢ leaves the system
across system boundaries

n Rate at which @ is generated
within the system

Finally, taking the limit as At — 0 and using the definition of the derivative from
calculus,

do 0+ AL~ 6(t)

dt Ao At

we obtain

@ _ [ Rate of change of \ Rate at which 0 enters the
dt — \ 0 in the system ~ \ system across system boundaries

B Rate at which 6 leaves the
system across system boundaries

Rate at which 6 is generated
+ s
within the system (2.1-4)
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Balance Eq. 2.1-4 is general and applicable to conserved and nonconserved quanti-
ties. There is, however, the important advantage in dealing with conserved quantities
that the internal generation term is zero. For example, to use the total mass balance
to compute the rate of change of mass in the system, we need know only the mass
flows into and out of the system. On the other hand, to compute the rate of change of
the mass of cyclohexane undergoing a dehydrogenation reaction in a chemical reactor,
we also need data on the rate of reaction in the system, which may be a function of
concentration, temperature, catalyst activity, and internal characteristics of the system.
Thus, additional information may be needed to use the balance equation for the mass
of cyclohexane, and, more generally, for any nonconserved quantity. The applications
of thermodynamics sometimes require the use of balance equations for nonconserved
quantities.

2.2 CONSERVATION OF MASS FOR A PURE FLUID

Rate-of-change mass
balance

Rate-of-change mass
balance: molar basis

The first balance equation of interest in thermodynamics is the conservation equation
for total mass. If 6 is taken to be the total mass in the system, designated by the symbol
M, we have, from Eq. 2.1-3

Amount of mass that Amount of mass
entered the system that left the system
M(t+At)—M(t) = | acrossthe system | — | across the system (2.2-1a)
boundaries between boundaries between
tandt + At tandt + At

where we have recognized that the total mass is a conserved quantity and that the only
mechanism by which mass enters or leaves a system is by a mass flow. Using M, k
to represent the mass flow rate into the system at the kth entry point, we have, from
Eq. 2.1-4, the equation for the instantaneous rate of change of mass in the system:

AM
- = > My (2.2-1b)
k=1

Equations 2.2-1a and b are general and valid regardless of the details of the system and
whether the system is stationary or moving.

Since we are interested only in pure fluids here, we can divide Eqgs. 2.2-1a and b by the
molecular weight of the fluid and use the fact that /V, the number of moles in the system,
is equal to M / mw, where mw is the molecular weight, and [V}, the molar flow rate into
the system at the kth entry port, is M, x/mw, to obtain instead of Eq. 2.2-1a a similar
equation in which the term moles replaces the word mass and, instead of Eq. 2.2-1b,

AN ..
— = Z N, (2.2-2)
k=1

We introduce this equation here because it is frequently convenient to do calculations
on a molar rather than on a mass basis.
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In Sec. 2.1 it was indicated that the equation for the change of an extensive state
variable of a system in the time interval At could be obtained by integration over the
time interval of the equation for the rate of change of that variable. Here we demonstrate
how this integration is accomplished. For convenience, ¢; represents the beginning of
the time interval and £, represents the end of the time interval, so that At = t5 — £;.
Integrating Eq. 2.2-1b between ¢, and 5 yields

2 dM /
—dt = M, dt 2.2-3
/t Z : (2.2-3)

1

The left side of the equation is treated as follows:

t2 aM M (ta) Change in total mass
/ I dt = / dM = M(ty) — M(t;) = | of system between
n o at M(t) t, and to

where M (t) is the mass in the system at time ¢. The term on the right side of the equation
may be simplified by observing that

to Mass that entered the
M, dt = | system at the kthentry | = AM,
1 port between t; and to

Thus

K
M(t) — M(t) = > AMj (2.2-4)

This is the symbolic form of Eq. 2.2-1a.
Equation 2.2-4 may be written in a simpler form when the mass flow rates are steady,
that is, independent of time. For this case

ta | . t2 .
/ Mkdt:Mk/ dt = M At
11 t

"1

so that

K
M(ty) — M(ty) = Z M, At (steady flows) (2.2-5)
k=1

The equations in this section that will be used throughout this book are listed in
Table 2.2-1.

ILLUSTRATION 2.2-1
Use of the Difference Form of the Mass Balance

A tank of volume 25 m? contains 1.5 x 10* kg of water. Over a two-day period the inlet to the
tank delivers 2.0 x 103 kg, 1.3 x 10® kg leaves the tank through the outlet port, and 50 kg of
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Table 2.2-1 The Mass Conservation Equation

Mass Basis Molar Basis

Rate-of-change form of the mass balance

. AM . . AN &
General equation i ; M, prie kZ:l Ny,
Special case:
dM dN
Closed system - 0 ar 0
M = constant N = constant

Difference form of the mass balance*
K K
General equation My — My = Z A M, Ny — Ny = Z AN,
k=1 k=1

Special cases:

Closed system My = M, Ny = N;
K . K .
Steady flow My— M, = MyAt  Ny—Ny=>» NyAt
k=1 k=1

*Here we have used the abbreviated notation M; = M (t;) and N; = N (¢;).

water leaves the tank by evaporation. How much water is in the tank at the end of the two-day
period?

SOLUTION

Since we are interested only in the change in the mass of water in the tank over the two-day
period, and not in the rate of change, we will use the difference form of the mass balance over the
period from the initial time (which we take to be ¢ = 0) until two days later (¢ = 2 days). We use
Eq. 2.2-4, recognizing that we have three flow terms: M; (flow into the tank) = +2.0 x 103 kg,
M, (flow from the tank) = —1.3 x 10® kg, and M (evaporation) = —50 kg. (Remember, in
our notation the + sign is for flow into the system, the tank, and the — sign is for flow out of the
system.)
Therefore,

M(t =2days) — M(t =0) = My + My + M3
M(t = 2 days) — 1.5 x 10* kg = 2.0 x 10* — 1.3 x 10 — 50
M(t = 2 days) = 1.5 x 10* + 2.0 x 10® — 1.3 x 10 — 50
= 1.565 x 10" kg

.1

ILLUSTRATION 2.2-2
Use of the Rate-of-Change Form of the Mass Balance

A storage tank is being used in a chemical plant to dampen fluctuations in the flow to a down-
stream chemical reactor. The exit flow from this tank will be kept constant at 1.5 kg/s; if the
instantaneous flow into the tank exceeds this, the level in the tank will rise, while if the instanta-
neous flow is less, the level in the tank will drop. If the instantaneous flow into the storage tank
is 1.2 kg/s, what is the rate of change of mass in the tank?

"Throughout this text the symbol B will be used to indicate the end of an illustration.
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SOLUTION

Since we are interested in the rate of change of mass, here we use the rate-of-change form of the
mass balance (Eq. 2.2-1b):

dM .
_
=2 M
k
or, in this case,

M 5i12——03ke
ar 0T e T T

Thus, at the moment the measurements were made, the amount of liquid in the tank was decreas-
ing by 0.3 kg/s or 300 g/s.

COMMENT

Remember, if we are interested in the rate of change of mass, as we are here, we use the rate-of-
change form of the mass balance, Eq. 2.2-1b. However, if we are interested only in the change
of total mass over a period of time, we use Eq. 2.2-4. |

ILLUSTRATION 2.2-3
Use of the Rate-of-Change Form of the Mass Balance
Gas is being removed from a high-pressure storage tank through a device that removes 1 percent

of the current contents of the tank each minute. If the tank initially contains 1000 mols of gas,
how much will remain at the end of 20 minutes?

SOLUTION

Since 1 percent of the gas is removed at any time, the rate at which gas leaves the tank will
change with time. For example, initially gas is leaving at the rate of 0.01 x 1000 mol/min =
10 mol/min. However, later when only 900 mol of gas remain in the tank, the exiting flow rate
will be 0.01 x 900 mol/min = 9 mol/min. In fact, the exiting flow rate is continuously changing
with time. Therefore, we have to use the rate-of-change or differential form of the mass (mole)
balance. Starting from the rate-of-change form of the mass balance (Eq. 2.2-1b) around the tank
that has only a single flow term, we have

dN . . din N
T =N where N = —0.01 x N sothat o = —0.01

The solution to this first-order differential equation is

1%%) = —0.01t or N(t) = N(t=0)e "

Therefore,

N(t =20) = N(t = 0)e” 220 = 1000e™ % = 818.7 mol

Note that if we had merely (and incorrectly) used the initial rate of 10 mol/min we would have
obtained the incorrect answer of 800 mol remaining in the tank.
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COMMENT

To solve any problem in which the mass (or molar) flow rate changes with time, we need to use
the differential or rate-of-change form of the mass balance. For problems in which all of the
flow terms are constant, we can use the general difference form of the mass balance (which has
been obtained from the rate-of-change form by integration over time), or we can use the rate-of-
change form and then integrate over time. However, it is important to emphasize that if one (or
more) flow rates are changing with time, the rate-of-change form must be used. |

ILLUSTRATION 2.2-4
Another Problem Using the Rate-of-Change Form of the Mass Balance

An open cylindrical tank with a base area of 1 m? and a height of 10 m contains 5 m® of water.
As a result of corrosion, the tank develops a leak at its bottom. The rate at which water leaves
the tank through the leak is

3

Leak rate (m—) = 0.5VAP

S

where AP is the pressure difference in bar between the fluid at the base of the tank and the
atmosphere. (You will learn about the origin of this equation in a course dealing with fluid flow.)
Determine the amount of water in the tank at any time.

SOLUTION

Note that the pressure at the bottom of the tank is equal to the atmosphere pressure plus the
hydrostatic pressure due to the water above the leak; that is, P = 1.013 bar + ph, where p is the
density of water and h is the height of water above the leak. Therefore, AP = (1.013 + ph) —
1.013 = ph and

Pams 5 bar
X 10° — = 0.09807h bar
g Pa

Since the height of fluid in the tank is changing with time, the flow rate of the leak will change
with time. Therefore, to solve the problem, we must use the rate-of-change form of the mass
balance. The mass of water in the tank at any time is

K
AP =10° “2 x hm x 9.807 = x 1
m S

kg

_ — 103 2 — 103
M(t) = pAh(t) = 10 E-lm - h(t) m = 10°h(t) kg

The mass balance on the contents of the tank at any time is

dMb) _ 4O _ v o5 /6,008 07h(t) = —0.1566+/A(t)

dt dt

where the negative sign arises because the flow is out of the tank. Integrating this equation
between ¢ = 0 and any later time ¢ yields

2v/h(t) — 24/h(0) = 24/h(t) — 2v/5 = —0.1566 x 103t

or

2

SR = vE (0.1566) < 10-%

which can be rearranged to
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2 2
h(t) = (\f— 0.7829 x 10’475) and M(t) = (\/— 0.7829 x 10’4t) % 10° kg

From this equation, one finds that the tank will be completely drained in 28 580 s or 7.938 hr.

COMMENT

Since the rate of flow of water out of the tank depends on the hydrostatic pressure due to the
water column above the leak, and since the height of this column changes with time, again we
must use the rate-of-change form of the mass balance to solve the problem.

It is important in any problem to be able to recognize whether the flows are steady, in which
case the difference form of the mass balance can be used, or the flows vary with time, as is the
case here, in which case the rate-of-change form of the mass balance must be used. [ |

2.3 THE MASS BALANCE EQUATIONS FOR
A MULTICOMPONENT SYSTEM WITH
A CHEMICAL REACTION

Rate-of-change mass
balance with chemical
reaction on a molar
basis

Difference form of the
mass balance

If a flow rate is steady

When chemical reactions occur, the mass (or mole) balance for each species is some-
what more complicated since the amount of the species can increase or decrease as
a result of the reactions. Here we will consider mass balances when there is only a
single chemical reaction; in Chapter 8 and later chapters the more general case of sev-
eral chemical reactions occurring simultaneously is considered. Also, we will write the
mass balances using only the number of moles since the stoichiometry of chemical re-
actions is usually written in terms of the number of moles of each species that undergoes
chemical reaction rather than the mass of each species that reacts. Using the notation

<N1> for the rate at which moles of species i enter (if positive) or leave (if negative)
k

in flow stream k, we have the differential or rate-of-change form of the mass balance on
species i as

K
dN; : dN,
o =2 ()it < = ) 23-1)

k=1

where the last term is new and describes the rate at which species i is produced (if pos-
itive) or consumed (if negative) within the system by chemical reaction. The difference
form of this equation, obtained by integrating over the time period from ¢; to ¢, is

Nita) = Ni(t) = > (N dt + (AN o = Y0 ANy + (AN

k=1 k=1

(2.3-2)

where the summation terms after the equal signs are the changes in the number of
moles of the species due to the flow streams, and the second terms are the result of the

chemical reaction. Note that only if the flow rate of a stream is steady (i.e., (Nl) is
k
constant), then

(AN = <Ni)k At
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Now consider the mass (mole) balances for a reactor in which the following chemical
reaction occurs

CQH4 + Clg — CQH4CIQ

but in which neither ethylene nor chlorine is completely consumed. The mass balances
for these species, in which stream 1 is pure ethylene and stream 2 is pure chlorine, are

CoHy: <dN;tzH4> - (NC2H4>1 + (N02H4>3 " (dz\ﬁfl{‘l)rxn

where all the exit streams [i.e., (...),] will be negative in value.

From the stoichiometry of this reaction, all the reaction rate terms are interrelated.
In this case, the rate at which ethylene chloride is created (the number of moles per
second) is equal to the rate at which ethylene is consumed, which is also equal to the
rate at which chlorine is consumed. That is,

dNcomyc, | _ _ (dNeyn, | _ _ (dNoy,
dt rXn dt rxn dt rxn

so we can simplify Egs. 2.3-3 by replacing the three different reaction rates with a
single one.

We can generalize this discussion of the interrelationships between reaction rates by
introducing the following convenient notation for the description of chemical reactions.
Throughout this book the chemical reaction

where v, (3, . . ., are the molar stoichiometric coefficients, will be written as
or
> ul=0 (2.3-4)

Here v is the stoichiometric coefficient of species I, defined so that v; is positive for
reaction products, negative for reactants, and equal to zero for inert species. In this
notation the electrolytic dissociation reaction HoO = H, + %Og is written as Hoy +
10, — H,0 = 0, so that vy,0 = —1, v, = +1, and vo, = +3.

We will use V; to represent the number of moles of species i in the system at any time
t and IV, ¢ to be the initial number of moles of species i. For a closed system, /V; and /V; o
are related through the reaction variable X, called the molar extent of reaction, and



Molar extent of
reaction

2.3 The Mass Balance Equations for a Multicomponent System with a Chemical Reaction 37

the stoichiometric coefficient 1; by the equation

Ni = Ni,O + l/iX (2.3-53)

or

B N; — Nio

Vi

X (2.3-5b)

An important characteristic of the reaction variable X defined in this way is that it
has the same value for each molecular species involved in a reaction; this is illustrated
in the following example. Thus, given the initial mole numbers of all species and X (or
the number of moles of one species from which the molar extent of reaction X can be
calculated) at time ¢, one can easily compute all other mole numbers in the system. In
this way the complete progress of a chemical reaction (i.e., the change in mole numbers
of all the species involved in the reaction) is given by the value of the single variable X .

ILLUSTRATION 2.3-1
Using the Molar Extent of Reaction Notation

The electrolytic decomposition of water to form hydrogen and oxygen occurs as follows:
HyO — Hs + %Og. Initially, only 3.0 mol of water are present in a closed system. At some
later time it is found that 1.2 mol of H, and 1.8 mol of HyO are present.

a. Show that the molar extents of reaction based on H, and H,O are equal.
b. Compute the number of moles of O, in the system.

SOLUTION

a. The reaction H,O — H, + %02 is rewritten as

Hy + 0, —H,0 =0

so that
Vh,0 = —1 v, = +1 and vo, = +%
From the H, data,
1.2—-0.0
X=——=+1.2mol
+1
From the H,O data,
1.8—-3.0
X = = +1.2 mol

b. Starting from N; = N, o + 1, X, we have
No, =0+ (+3)(1.2) = 0.6 mol

COMMENT

Note that the molar extent of reaction is not a fractional conversion variable; therefore, its value
is not restricted to lie between O and 1. As defined here X, which has units of number of moles,
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Rate-of-change

form of the mass
balance with chemical
reaction: molar basis

Difference form of
mass balance with
chemical reaction

is the number of moles of a species that has reacted divided by the stoichiometric coefficient for
the species. In fact, X may be negative if the reaction proceeds in the reverse direction to that
indicated (e.g., if hydrogen and oxygen react to form water). |

The rate of change of the number of the moles of species i resulting from a chemical

reaction is
dN; .
( 7 >rxn =X (2.3-6)

where the subscript rxn indicates that this is the rate of change of the number of moles
of species i due to chemical reaction alone, and X is the rate of change of the molar
extent of reaction. Using this notation, the balance equation for species i is

K

dN; - dX
=3 kel 2.3-7
dt k:1( 1)k + 14 dt ( )

The difference form of this equation, obtained by integrating over the time period from
tl to t2, is

Ni(ts) — Ni(th) = Zji(z'vi)k 0+ (AN = 3 (AN + BAX

k=1 k=1

(2.3-8)

Using this notation for the description of the production of ethylene dichloride consid-
ered earlier, we have

CoHy: (dNCQH4) = (N02H4)1 + (N02H4>3 - ﬂ

dt dt
 [dNew\ [+ : X
Cl: < dt > N (NCIQ)z * (NCh)s i (2.3-9)
dN, : X
il () = (See), + G

ILLUSTRATION 2.3-2
Mass Balance for a Mixture with Chemical Reaction

At high temperatures acetaldehyde (CH3 CHO) dissociates into methane and carbon monoxide
by the following reaction

CH3;CHO—CH,4 + CO

At 520°C the rate at which acetaldehyde dissociates is

dCcu,cuo 2 m?
ZHOHsCHO 6y -
dt 0 8CCH‘°’CHO kmol s
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where C is concentration in kmol/m?®. The reaction occurs in a constant-volume, 1-L vessel, and
the initial concentration of acetaldehyde is 10 kmol/m?®.

a. If 5 mols of the acetaldehyde reacts, how much methane and carbon monoxide is produced?

b. Develop expressions for the amounts of acetaldehyde, methane, and carbon monoxide
present at any time, and determine how long it would take for 5 mol of acetaldehyde to
have reacted.

SOLUTION

First, we must determine the initial amount of acetaldehyde present. Since the initial concentra-
tion is

mol kmol
Ccuscno = 10 T = -

it follows that initially
mol
NCH:;CHO =10 T x 1L =10 mol

Next, we write the stoichiometry for the reaction in terms of the molar extent of reaction X as
follows:

Nengcao =10 — X Neg, =X and Neo =X ()

a. To determine the amounts of each species after a given amount of acetaldehyde has reacted,
we can use the difference form of the mass balance for this system with no flows of species
into or out of the reactor:

Ni(t) = Ni(t = 0) = (AN})ixn = BAX
Therefore, for acetaldehyde
Necuseno(t) — Neascno(t =0) =5 — 10 mol = —5mol = —X
so that X = 5 mol. Then amounts of the other species are
Ncp, (t) = X =5 mol and Ngo(t) = X = 5 mol

b. To determine the amount of each species as a function of time is more difficult and must
be done using the rate-of-change form of the mass balance since the rate of reaction and
therefore the value of X change with time. However, because the amounts of the species
are always related by the stoichiometry of Eq. a, we can use the mass balance for one of
the species to determine the time variation of X, and then can use the expression for X ()
to obtain the compositions of all species in the reaction as a function of time. Since the rate
expression is written for acetaldehyde, we will use this substance to determine the time
dependence of X. Since there are no flows into or out of the reactor, Eq. 2.3-7 is

dNcuzcno _ dNcuzcno _, ax _ _dX
dt dt Ly CHeCHO gy dt

Next the reaction rate expression can be written as

d NchHzcHO 9 3
v 1 dNcnycno Néyzecno m

— = —0.48C"% = —0.48
dt Vv di CH3CHO V2 kmol s
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which, after using Ncp,cno = 10 — X, becomes
dX  0.48(10 — X)2 mol
da v Ls
Now integrating from ¢ = 0, at which X = 0, to some other time ¢ gives

1
= 0.48(10 — x> 2%
S

1 1 1
= =048t or X(t)=10— —— mol
10— X(t) 10 0.48¢ + 0.1
Therefore,
N (t) = and Nep, (t) = Neo(t) = 10 !
CHsCHOY ™ 5 48¢ + 0.1 CHa Y AHC0 0.48t + 0.1

Finally, solving this equation for X (¢) = 5 mol gives ¢ = 0.208 s; that is, half of the
acetaldehyde dissociates within approximately two-tenths of a second.

COMMENT

Notice again that solving the rate-of-change form of the mass balance requires more information
(here the rate of reaction) and more effort than solving the difference form of the mass balance.
However, we also get more information—the amount of each species present as a function of
time. In Sec. 2.4, which is optional and more difficult, we consider another, even deeper level of
description, where not only is time allowed to vary, but the system is not spatially homogeneous;
that is, the composition in the reactor varies from point to point. However, this section is not for
the faint-hearted and is best considered after a course in fluid mechanics. |

ILLUSTRATION 2.3-3
Mass Balance for a Liquid Mixture with a Reversible Reaction

The ester ethyl acetate is produced by the reversible reaction

CH5COOH + CyHyOH —= CH;COOC,Hy + HyO
k,l

in the presence of a catalyst such as sulfuric or hydrochloric acid. The rate of ethyl acetate pro-
duction has been found, from the analysis of chemical kinetics data, to be given by the following
equation:

dCga
dt

where the subscripts EA, A, E, and W denote ethyl acetate, acetic acid, ethanol, and water,
respectively, and the concentration of each species in units of kmol/m?. The values of the reaction
rate constants at 100°C and the catalyst concentration of interest are

= kCACg — k' CuaCw

k= 4.76 x 10~* m®/kmol min

and

k' =1.63 x 107* m®/kmol min

Develop expressions for the number of moles of each species as a function of time if the feed to
the reactor is 1 m® of an aqueous solution that initially contains 250 kg of acetic acid and 500 kg
of ethyl alcohol. The density of the solution may be assumed to be constant and equal to 1040
kg/m3, and the reactor will be operated at a sufficiently high pressure that negligible amounts
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of reactants or products vaporize. Compute the number of moles of each species present 100
minutes after the reaction has started, and at infinite time when the reaction will have stopped
and the system is at equilibrium.

SOLUTION

Since the reaction rate expression is a function of the compositions, which are changing as a
function of time, the mass balance for each species must be written in the rate-of-change form.
Since the species mole numbers and concentrations are functions of the molar extent of reaction,
X, we first determine how X varies with time by solving the mass balance for one species. We
will use ethyl acetate since the reaction rate is given for that species. Once the amount of ethyl
acetate is known, the other species mole numbers are easily computed as shown below.

The initial concentration of each species is

250 k 3
Ca = 250 ke/m- = 4.17 kmol/m?
60 g,/mol
500 k 3
Cg = 500 ke /m- = 10.9 kmol/m?
46 g/mol
1040 — 250 — 500) k 3
Oy = & Jke/m™ _ 164 kmol /m?
18 g/mol

Since there is 1 m® of solution, the initial amount of each species is

Na = 4.17 kmol

Ng = 10.9 kmol
Nyw = 16.1 kmol
Nga = 0 kmol

and by the reaction stoichiometry, the amount of each species present at any time (in kmol) and
its concentration (since 1 m? of volume is being considered) is

Npo=417—X  Cpo=417—X
Ng=109-X Cp=109—-X
Nw=161+X COw=1614+X

and
NEA :X CEA :X

Because the concentration of a species is equal to the number of moles N divided by the volume
V, the chemical reaction rate equation can be written as

d (NEA> _ Na Ng Nga Nw

at\ vV % Y%

Now using V = 1 m® and the mole numbers, we have

d
aX =k(4.17 - X)(10.9 — X) — k' X (16.1 + X)
or

dx
—— =476 x 107*(4.17 — X)(10.9 — X) — 1.63 x 107*(16.1 + X)X

dt
=2.163 x 1072(1 — 0.4528 X — 0.01447X?) kmol/m® min
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which can be rearranged to

dX
1—0.4528X +0.01447X2

Integrating this equation between ¢ = 0 and time ¢ yields?

2.163 x 1072 dt =

dX
1—0.4528X +0.01447X2

t X
2.163 x 10*2/ dt =2.163 x 1072 x t :/
0 0

or

0.02894X — 0.8364 0.8364 5
n —In| —— ) =0.8297 x 10™“¢t (c)
0.02894X — 0.0692 0.0692

and on rearrangement

e0.008297t —1

0.008297¢ __ () 08274

X (t) = 2.3911
e

for ¢ in minutes and X in kmol.
Therefore,

£0-008207t |

£0.008297t _ () 08274

Na(t) = Ca(t) = 4.17 — X = 4.17 — 2.3911

60.00829715 -1

0.008297t _ (). 08274

Ng(t) = Cg(t) = 10.9 — X = 10.9 — 2.3911
(&

0.008297t __ 1

0.008297¢ __ () 08274

Ny (t) = Cw(t) = 16.1 + X = 16.1 + 2.3911
e

and

60.008297t —1

0.008297t _ () 08274

Npa(t) = Cpa(t) = X = 23911
At 100 minutes, X = 1.40 kmol so that
Npo=417— X =417—-14=277  Ng=9.5, Ny = 17.5, Nga = 1.4
Also, at infinite time X = 2.39 (actually 2.3911) and
Np =417 - X =4.17—2.39 = 1.78, Ng = 8.51, Nw = 18.49, Nga = 2.39

ILLUSTRATION 2.3-4
Mass Balance Modeling of a Simple Environmental Problem

Water in a lake initially contains a pollutant at a parts-per-million concentration. This pollutant
is no longer present in the water entering the lake. The rate of inflow of water to the lake from a
creek is constant and equal to the rate of outflow, so the lake volume does not change.

2Note that

/ ax —Lln 2cX +b—+/—¢q
a+bX +cX2 2 [2eX+b++/—q

where ¢ = 4ac — b2,
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a. Assuming the water in the lake is well mixed, so its composition is uniform and the pollu-
tant concentration in the exit stream is the same as in the lake, estimate the number of lake
volumes of water that must be added to the lake and then leave in order for the concentration
of the pollutant in the water to decrease to one-half of its initial concentration.

b. How many lake volumes would it take for the concentration of the pollutant in the lake to
decrease to one-tenth of its initial concentration?

c. If the volume of water in the lake is equal to the inflow for a one-year period, assuming
the inflow of water is uniform in time, how long would it take for the concentration of the
pollutant in the lake to decrease to one-half and one-tenth of its initial concentration?

SOLUTION

a. In writing the overall mass balance for the lake, which we take to be the system, we use that
the flow rates into and out of the lake are constant and equal, and that the concentration of
the pollutant is so low that its change has a negligible effect on the total mass of the water
in the lake. With these simplifications the mass balance is

dM . . . . .
EIOI(M)l-F(M)Q, so that (M)lzf(M)QIM
That is, the rate of mass flow out of the lake is equal in magnitude and opposite in sign to
the rate of mass flow into the lake. The mass balance on the pollutant is
dM, _ d(CpM) _ , d(Cp)
e dt di
where we have used that the total amount of pollutant is equal to the product of its concen-
tration per unit mass C}, and the total mass M of water in the lake. Therefore,

= (MP)2 = (M)2Cp = _(M)lcp

dc,
G

N .
= ——dt which has the solution C, (t) = C, (t = 0) e~ M/
M

C, (t Mt )
ﬁ =05=exp|—— or Mt =0.693M
C,(t=0) M

Now Mt = AM, which is the amount of water that entered the lake over the time interval
from O to ¢. Therefore, when the amount of fresh water that has entered the lake Mt =
A M equals 69.3 percent of the initial (polluted) water in the lake, the concentration of the
pollutant in the lake will have decreased to half its initial value.
b. We proceed as in part (a), except that we now have
C, (1) Mt .
—— =0.1 = - or Mt=2303M
C, (t=0) P\ T
so that when an amount of water that enters is equal to 2.303 times the initial volume of
water in the lake, the concentration of pollutant will have decreased to one-tenth its initial
value.
c. It will take 0.693 years (253 days) and 2.303 years (840 days) for the concentration of the
pollutant to decrease to 50 percent and 10 percent of its inital concentration, respectively.ll

2.4 THE MICROSCOPIC MASS BALANCE EQUATIONS
IN THERMODYNAMICS AND FLUID MECHANICS?

This section appears on the website that accompanies this text.

3This section is optional—only for graduate and advanced undergraduate students.
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PROBLEMS

2.1

2.2

2.3

As a result of a chemical spill, benzene is evaporating

at the rate of 1 gram per minute into a room that is

6 m X 6 m x 3 min size and has a ventilation rate of

10 m3/min.

a. Compute the steady-state concentration of benzene
in the room.

b. Assuming the air in the room is initially free of ben-
zene, compute the time necessary for benzene to
reach 95 percent of the steady-state concentration.

The insecticide DDT has a half-life in the human body

of approximately 7 years. That is, in 7 years its con-

centration decreases to half its initial concentration. Al-
though DDT is no longer in general use in the United

States, it was estimated that 25 years ago the average

farm worker had a body DDT concentration of 22 ppm

(parts per million by weight). Estimate what the farm

worker’s present concentration would be.

At high temperatures phosphine (PH3) dissociates into

phosphorus and hydrogen by the following reaction:

4PH; —> P, + 6H,
At 800°C the rate at which phosphine dissociates is

dCpy,
dt

= —3.715 x 10 °Cpp,

24

for ¢ in seconds. The reaction occurs in a constant-

volume, 2-L vessel, and the initial concentration of

phosphine is 5 kmol/m?

a. If 3 mol of the phosphine reacts, how much phos-
phorus and hydrogen are produced?

b. Develop expressions for the number of moles of
phosphine, phosphorus, and hydrogen present at any
time, and determine how long it would take for
3 mol of phosphine to have reacted.

The following reaction occurs in air:

At 20°C the rate of this reaction is

90 _ ) 4% 1071020 Co,
dt
for ¢ in seconds and concentrations in kmol/m?®. The re-
action occurs in a constant-volume, 2-L vessel, and the
initial concentration of NO is 1 kmol/m?® and that of O,
is 3 kmol/m?®

a. If 0.5 mol of NO reacts, how much NOy is produced?
b. Determine how long it would take for 0.5 mol of NO

to have reacted.



Chapter 3

Conservation of Energy

In this chapter we continue the quantitative development of thermodynamics by de-
riving the energy balance, the second of the three balance equations that will be used
in the thermodynamic description of physical, chemical, and (later) biochemical pro-
cesses. The mass and energy balance equations (and the third balance equation, to be
developed in the following chapter), together with experimental data and information
about the process, will then be used to relate the change in a system’s properties to a
change in its thermodynamic state. In this context, physics, fluid mechanics, thermo-
dynamics, and other physical sciences are all similar in that the tools of each are the
same: a set of balance equations, a collection of experimental observations (equation-
of-state data in thermodynamics, viscosity data in fluid mechanics, etc.), and the initial
and boundary conditions for each problem. The real distinction between these differ-
ent subject areas is the class of problems, and in some cases the portion of a particular
problem, that each deals with.

One important difference between thermodynamics and, say, fluid mechanics and
chemical reactor analysis is the level of description used. In fluid mechanics one is usu-
ally interested in a very detailed microscopic description of flow phenomena and may
try to determine, for example, the fluid velocity profile for flow in a pipe. Similarly,
in chemical reactor analysis one is interested in determining the concentrations and
rates of chemical reaction everywhere in the reactor. In thermodynamics the descrip-
tion is usually more primitive in that we choose either a region of space or an element
of mass as the system and merely try to balance the change in the system with what is
entering and leaving it. The advantage of such a description is that we can frequently
make important predictions about certain types of processes for which a more detailed
description might not be possible. The compromise is that the thermodynamic descrip-
tion yields information only about certain overall properties of the system, though with
relatively little labor and simple initial information.

In this chapter we are concerned with developing the equations of energy conserva-
tion to be used in the thermodynamic analysis of systems of pure substances. (The ther-
modynamics of mixtures is more complicated and will be considered in later chapters.)
To emphasize both the generality of these equations and the lack of detail necessary,
we write these energy balance equations for a general black-box system. For contrast,
and also because a more detailed description will be useful in Chapter 4, the rudiments
of the more detailed microscopic description are provided in the final, optional sec-
tion of this chapter. This microscopic description is not central to our development of
thermodynamic principles, is suitable only for advanced students, and may be omitted.

45
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To use the energy balances, we will need to relate the energy to more easily mea-
surable properties, such as temperature and pressure (and in later chapters, when we
consider mixtures, to composition as well). The interrelationships between energy, tem-
perature, pressure, and composition can be complicated, and we will develop this in
stages. In this chapter and in Chapters 4, 5, and 6 we will consider only pure fluids,
so composition is not a variable. Then, in Chapters 8 to 15, mixtures will be consid-
ered. Also, here and in Chapters 4 and 5 we will consider only the simple ideal gas and
incompressible liquids and solids for which the equations relating the energy, temper-
ature, and pressure are simple, or fluids for which charts and tables interrelating these
properties are available. Then, in Chapter 6, we will discuss how such tables and charts
are prepared.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 3
The goals of this chapter are for the student to:

¢ Be able to use the differential form of the pure component energy balance in prob-
lem solving (Secs. 3.1 and 2)

e Be able to use the difference form of the pure component energy balance in prob-
lem solving (Secs. 3.1 and 2)

e Be able to compute changes in energy with changes in temperature and pressure
for the ideal gas (Sec. 3.3)

e Be able to compute changes in energy with changes in temperature and pressure
of real fluids using tables and charts of thermodynamic properties (Sec. 3.3)

NOTATION INTRODUCED IN THIS CHAPTER

Cp Constant-pressure molar heat capacity (J/mol K)

b ldeal gas constant-pressure molar heat capacity (J/mol K)
(v Constant-volume molar heat capacity (J/mol K)
v Ideal gas constant-volume molar heat capacity (J/mol K)
H Enthalpy (J)
H  Enthalpy per mole, or molar enthalpy (J/mol)

H Enthalpy per unit mass, or specific enthalpy (J/g)

Aps H  Molar enthalpy of melting or fusion (J/mol)
Nguy H  Molar enthalpy of sublimation (J/mol)
Avap H  Molar enthalpy of vaporization (J/mol)
ADvap H Enthalpy of vaporization per unit mass (J/g)
Rate of flow of heat into the system (J/s)
Heat that has flowed into the system (J)
Reference temperature for internal energy of enthalpy (K)
Internal energy per mole, or molar internal energy (J/mol)
Internal energy per unit mass, or specific internal energy (J/g)
Volume per mole, or molar volume (m?/mol)
Rate at which work is being done on the system (J/s)
Work that has been done on the system (J)
Shaft work that has been done on the system (J)
Rate at which shaft work is being done on the system (J/s)
Potential energy per unit of mass (J/g)

SIS
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w!  Mass fraction of phase I (quality for steam)
1 Potential energy per unit of mass (J/g)

3.1 CONSERVATION OF ENERGY

To derive the energy conservation equation for a single-component system, we again
use the black-box system of Figure 2.1-1 and start from the general balance equation,
Eq. 2.1-4. Taking 0 to be the sum of the internal, kinetic, and potential energy of the
system,

9:U+M<”22+w>

Here U is the total internal energy, v?/2 is the kinetic energy per unit mass (where v is
the center of mass velocity), and v is the potential energy per unit mass.! If gravity is
the only force field present, then 1) = gh, where h is the height of the center of mass
with respect to some reference, and g is the force of gravity per unit mass. Since energy
is a conserved quantity, we can write

d 2 . .
a { U+ M <U i ¢> } _ (Rate at which energy) B <Rate at which energy)

dt 2 enters the system leaves the system

3.1-1)
To complete the balance it remains only to identify the various mechanisms by which
energy can enter and leave the system. These are as follows.
Energy flow accompanying mass flow. As a fluid element enters or leaves the sys-
tem, it carries its internal, potential, and kinetic energy. This energy flow accompanying
the mass flow is simply the product of a mass flow and the energy per unit mass,

K 2
> My (U +5 ¢> (3.1-2)
k=1 k

where U, & 1s the internal energy per unit mass of the kth flow stream, and M,, is its mass

flow rate.

Heat. We use () to denote the total rate of flow of heat info the system, by both
conduction and radiation, so that () is positive if energy in the form of heat flows into
the system and negative if heat flows from the system to its surroundings. If heat flows
occur at several different places, the total rate of heat flow into the system is

Q=Y Q;
where Qj is the heat flow at the jth heat flow port.
Work. The total energy flow into the system due to work will be divided into several

parts. The first part, called shaft work and denoted by the symbol W, is the mechanical
energy flow that occurs without a deformation of the system boundaries. For example,

!In writing this form for the energy term, it has been assumed that the system consists of only one phase, that is, a
gas, a liquid, or a solid. If the system consists of several distinct parts—for example, gas and a liquid, or a gas and
the piston and cylinder containing it—the total energy, which is an extensive property, is the sum of the energies
of the constituent parts.
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if the system under consideration is a steam turbine or internal combustion engine, the
rate of shaft work W is equal to the rate at which energy is transferred across the
stationary system boundaries by the drive shaft or push rod. Following the convention
that energy flow into the system is positive, Ws is positive if the surroundings do work
on the system and negative if the system does work on its surroundings.

For convenience, the flow of electrical energy into or out of the system will be in-
cluded in the shaft work term. In this case, WS = +FEI, where F is the electrical
potential difference across the system and [ is the current flow through the system.
The positive sign applies if electrical energy is being supplied to the system, and the
negative sign applies if the system is the source of electrical energy.

Work also results from the movement of the system boundaries. The rate at which
work is done when a force F'is moved through a distance in the direction of the applied
force dL in the time interval dt is

. dL
W=F—
dt
Here we recognize that pressure is a force per unit area and write
. av
W=-P— 3.1-3
7 (3.1-3)

where P is the pressure exerted by the system at its boundaries.> The negative sign in
this equation arises from the convention that work done on a system in compression (for
which dV//dt is negative) is positive, and work done by the system on its surroundings
in an expansion (for which dV'/dt is positive) is negative. The pressure at the bound-
aries of a nonstationary system will be opposed by (1) the pressure of the environment
surrounding the system, (2) inertial forces if the expansion or compression of the sys-
tem results in an acceleration or deceleration of the surroundings, and (3) other external
forces, such as gravity. As we will see in Illustration 3.4-7, the contribution to the energy
balance of the first of these forces is a term corresponding to the work done against the
atmosphere, the second is a work term corresponding to the change in kinetic energy
of the surroundings, and the last is the work done that changes the potential energy of
the surroundings.

Work of a flowing fluid against pressure. One additional flow of energy for sys-
tems open to the flow of mass must be included in the energy balance equation; it is
more subtle than the energy flows just considered. This is the energy flow that arises
from the fact that as an element of fluid moves, it does work on the fluid ahead of it,
and the fluid behind it does work on it. Clearly, each of these work terms is of the
PAYV type. To evaluate this energy flow term, which occurs only in systems open to
the flow of mass, we will compute the net work done as one fluid element of mass
(M), enters a system, such as the valve in Fig. 3.1-1, and another fluid element of

Pressure P|—> Valve — Pressure P,
! ) . .
Figure 3.1-1 A schematic rep-
\ X X resentation of flow through a
Volume = V,AM, Volume = V,AM, valve.

2In writing this form for the work term, we have assumed the pressure to be uniform at the system boundary. If
this is not the case, Eq. 3.1-3 is to be replaced with an integral over the surface of the system.
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mass (AM ), leaves the system. The pressure of the fluid at the inlet side of the valve
is Py, and the fluid pressure at the outlet side is P, so that we have

Work done by surrounding fluid in .
pushing fluid element of mass (M), | = PLV1AM,
into the valve

Work done on surrounding fluid
by movement of fluid element of .
mass (AM ), out of the valve (since | = —P,VoAM,
this fluid element is pushing the
surrounding fluid)

(Net work done on the system due to> — PLV,AM, — PV AM,

movement of fluid

For a more general system, with several mass flow ports, we have

Net work done on the system due
to the pressure forces acting on
the fluids moving into and out of
the system

K

- Z AM, PV,
k=1

Finally, to obtain the net rate at which work is done, we replace each mass flow M},
with a mass flow rate M, so that

Net rate at which work is done on X
the system due to pressure forces : >
. . . = M, (PV),
acting on fluids moving into and out kz k(PV)i
of the system =1

where the sign of each term of this energy flow is the same as that of M.

One important application of this pressure-induced energy flow accompanying a
mass flow is hydroelectric power generation, schematically indicated in Fig. 3.1-2.
Here a water turbine is being used to obtain mechanical energy from the flow of wa-
ter through the base of a dam. Since the water velocity, height, and temperature are
approximately the same at both sides of the turbine (even though there are large velocity
changes within the turbine), the mechanical (or electrical) energy obtained is a result
of only the mass flow across the pressure difference at the turbine.

Collecting all the energy terms discussed gives

d 7)2 al . ~ 1)2 .
dt{U+M<2+¢>} => M, (U+2+w>k+Q
k=1 ’ 3.1-9)

. av .
+Wo =P+ ;Mk(PV)k

This equation can be written in a more compact form by combining the first and last
terms on the right side and introducing the notation
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Complete energy
balance, frequently
referred to as

the first law of
thermodynamics

Reservoir

Water turbine

Water

flow — !\
Dam

Hydroelectric power
generating station

Figure 3.1-2 A hydroelectric power generating station: a
device for obtaining work from a fluid flowing across a
large pressure drop.

H=U+PV

where the function H is called the enthalpy, and by using the symbol W to represent
the combination of shaft work W, and expansion work —P(dV/dt), that is, W =
W, — P(dV/dt). Thus we have

d v? Ko/ 2 .
(o)} =Sm (e ee) vonw |

It is also convenient to have the energy balance on a molar rather than a mass basis.
This change is easily accomplished by recognizing that MkI:I r can equally well be
written as N, H .» Where H is the enthalpy per mole or molar enthalpy,* and M (v?/2+
) = Nm (v?/2+ 1), where m is the molecular weight. Therefore, we can write the
energy balance as

2 K 2 ) .
C;lt{U+Nm<v2+¢>}:2Nk{H+m<g+zp)}k+Q+W

k=1

(3.1-4b)
Several special cases of Eqs. 3.1-4a and b are listed in Table 3.1-1.

The changes in energy associated with either the kinetic energy or potential energy
terms, especially for gases, are usually very small compared with those for the thermal
(internal) energy terms, unless the fluid velocity is near the velocity of sound, the change
in height is very large, or the system temperature is nearly constant. This point will
become evident in some of the illustrations and problems (see particularly Illustration
3.4-2). Therefore, it is frequently possible to approximate Eqgs. 3.1-4a and b by

3H =U + PV, where U and V are the molar internal energy and volume, respectively.
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K
% = (MH),+Q+ W (mass basis) (3.1-52)
k=1
AU o~ . . .
s Z(Nﬂ)k + Q@+ W (molar basis) (3.1-5b)
k=1

As with the mass balance, it is useful to have a form of the energy balance applicable
to a change from state 1 to state 2. This is easily obtained by integrating Eq. 3.1-4a over
the time interval ¢, to t,, the time required for the system to go from state 1 to state 2.

Table 3.1-1 Differential Form of the Energy Balance

General equation
d v? K L0 . .
—sU+M|— = My | H+ — w
m{ + (2+¢)} Z; k( +—2+¢>k+Q+ ()
Special cases:
(i) Closed system

M, =0 ar_,
k— Y dt -
SO
du d (v? . .
= o= = = %% b
Yy dt(2+w) O+ (b)
(i) Adiabatic process
in Egs. a, b, and d
Q=0 (©)
(iii) Open and steady-state system
dM dv d v?
— =0 — =0 — U+ M| — =0
dt ’ dt ’ dt { * ( > " d’)}
SO
K . 112 . .
0:ZMk(H+—+w) +Q+ W, ()
k=1 2 k
(iv) Uniform system
In Egs. aand b
U=MU (e)

Note: To obtain the energy balance on a molar basis, make the following substitutions:

Replace with

’02 ’L}2
M(?er) Nm(3+¢)

) w2 ) 2
Mk<H+?+1/1)k Nk{ﬂ-&-m(g-&-w)}k

MU NU
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The result is

e (e, e (5 o)),

K ta | R 2
_Z/ Mk<H+U2+w> dt+Q+W (3.1-6)
k=1""% k

1

where

ta | ta | V(t2) 2 qV
Q:/ Q dt Ws:/ W, dt / PdV:/ P at
t1 t1 V(tl) t dt

1

and

V(t2)
W=W, - PdV
Vi(t1)

The first term on the right side of Eq. 3.1-6 is usually the most troublesome to evaluate
because the mass flow rate and/or the thermodynamic properties of the flowing fluid
may change with time. However, if the thermodynamic properties of the fluids entering
and leaving the system are independent of time (even though the mass flow rate may
depend on time), we have

K rto 2 K 7 2 t2
Z/ Mk(H++w> dt:Z<H+2+¢> M, dt
k=17t k k=1 k-t
3.1-7)
K R 2
=AM, <H++1/1>
_ 2 k
k=1

If, on the other hand, the thermodynamic properties of the flow streams change with
time in some arbitrary way, the energy balance of Eq. 3.1-6 may not be useful since
it may not be possible to evaluate the integral. The usual procedure, then, is to try to
choose a new system (or subsystem) for the description of the process in which these
time-dependent flows do not occur or are more easily handled (see Illustration 3.4-5).

Table 3.1-2 lists various special cases of Eq. 3.1-6 that will be useful in solving ther-
modynamic problems.

For the study of thermodynamics it will be useful to have equations that relate the
differential change in certain thermodynamic variables of the system to differential
changes in other system properties. Such equations can be obtained from the differen-
tial form of the mass and energy balances. For processes in which kinetic and potential
energy terms are unimportant, there is no shaft work, and there is only a single mass
flow stream, these equations reduce to

dM .
oM
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and
au - . dv
which can be combined to give
aUu ~dM . av
a s T (3.1-8)

where H is the enthalpy per unit mass entering or leaving the system. (Note that for a
system closed to the flow of mass, dM /dt = M = 0.) Defining Q = @ dt to be equal

to the heat flow into the system in the differential time interval dt, and dM = M dt =
(dM /dt) dt to be equal to the mass flow in that time interval, we obtain the following
expression for the change of the internal energy in the time interval dt:

dU=HdM +Q — PdV (3.1-9a)

Table 3.1-2 Difference Form of the Energy Balance

General equation
2 2

2 K ta R
{U+M<%+w>}t2—{U+M(%+w)}tl:Z/tl Mk<H+%+w>kdt+Q+W (a)

Special cases:
(i) Closed system
1_)2 U2
{U+M(f—+—w>} —{U—I—M(f—ﬂp)} =Q+W (b)
2 to 2 t

and

(ii) Adiabatic process
In Egs.aand b

Q=0 (©
(iii) Open system, flow of fluids of constant thermodynamic properties
K o pty R 2 K . 2
Z/ Mk<H+”—+a/)) dt = AMk(H+”—+w) )
k=1t 2 k k=1 2 k
in Eq. a

(iv) Uniform system

2 2
{U+M(%+¢>}:M<U+%+w> ©
in Eqs. aand b

Note: To obtain the energy balance on a molar basis, make the following substitutions:

Replace with

U2 ’U2
M(?”’) Nm(?*@
to | R 1)2 ty | v2
S (e e) e[S men ()}
A, 1}2 ’112
M(U+7+¢) N{g+m(?+w)}
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For a closed system this equation reduces to

dU =Q — PdV (3.1-9b)

Since the time derivative operator d/dt is mathematically well defined, and the operator
d is not, it is important to remember in using Eqs. 3.1-9a and b that they are abbrevi-
ations of Eq. 3.1-8. Tt is part of the traditional notation of thermodynamics to use df
to indicate a differential change in the property 6, rather than the mathematically more
correct df/dt.

3.2 SEVERAL EXAMPLES OF USING THE ENERGY BALANCE

The energy balance equations developed so far in this chapter can be used for the de-
scription of any process. As the first step in using these equations, it is necessary to
choose the system for which the mass and energy balances are to be written. The im-
portant fact for the student of thermodynamics to recognize is that processes occurring
in nature are in no way influenced by our mathematical description of them. Therefore,
if our descriptions are correct, they must lead to the same final result for the system
and its surroundings regardless of which system choice is made. This is demonstrated
in the following example, where the same result is obtained by choosing for the system
first a given mass of material and then a specified region in space. Since the first sys-
tem choice is closed and the second open, this illustration also establishes the way in
which the open-system energy flow PV M is related to the closed-system work term
P(dv/dt).

ILLUSTRATION 3.2-1
Showing That the Final Result Should Not Depend on the Choice of System

A compressor is operating in a continuous, steady-state manner to produce a gas at temperature
T, and pressure P, from one at 7; and P;. Show that for the time interval A¢

Q+Ws:(ﬁ27ﬁ1)AM

where AM is the mass of gas that has flowed into or out of the system in the time At¢. Establish
this result by (a) first writing the balance equations for a closed system consisting of some con-
venient element of mass, and then (b) by writing the balance equations for the compressor and
its contents, which is an open system.

SOLUTION

a. The closed-system analysis
Here we take as the system the gas in the compressor and the mass of gas A M, that will enter
the compressor in the time interval A¢. The system is enclosed by dotted lines in the figure.

R 71
I I
P, T, : Compressor -i_Pz, T,
_'T__‘ —
e d
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At the later time ¢ + At, the mass of gas we have chosen as the system is as shown below.

e e ———

We use the subscript ¢ to denote the characteristics of the fluid in the compressor, the subscript
1 for the gas contained in the system that is in the inlet pipe at time ¢, and the subscript 2 for the
gas in the system that is in the exit pipe at time ¢ + A¢. With this notation the mass balance for
the closed system is

My(t + At) + Mo(t+ At) = M,y (t) + M,(t)

Since the compressor is in steady-state operation, the amount of gas contained within it and the
properties of this gas are constant. Thus, M. (t + At) = M,.(t) and

My (t + At) = M (t) = AM

The energy balance for this system, neglecting the potential and kinetic energy terms (which,
if retained, would largely cancel), is

M2U2‘t+m + McUc|t+At - MlUl|t - McUc|t =Ws+Q+ P1V1M1 - P2V2M2 (a)
In writing this equation we have recognized that the flow terms vanish for the closed system and
that there are two contributions of the [ P dV type, one due to the deformation of the system

boundary at the compressor inlet and another at the compressor outlet. Since the inlet and exit
pressures are constant at P; and P, these terms are

_/PdV: _Pl/ dV|inlct _PZ/ dvloutlct
= —P{Vi(t+At) — Vi (t)} — Po{Va(t + AL) — Via(t)}

However, Vi (t + At) = 0 and V»(t) = 0, so that

—/PdV = +PV, — Py = PLVAM, — PoVo M,

Now, using the energy balance and Eq. a above, and recognizing that since the compressor is in
steady-state operation,

Mcﬁc‘t-&-At - McUc‘t

we obtain

AM(Uy —Uy) = W + Q + PLVIAM — P,2VoAM

or

AM(Uy + PoVo — Uy — PLVi) = AM(Hy — Hy) = W + Q
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b. The open-system analysis
Here we take the contents of the compressor at any time to be the system. The mass balance
for this system over the time interval At is

t+At ) t+At )
M(t+ At) — M(H) :/ va dt+/ Ny dt = (M), + (M),
t t
and the energy balance is

foen(Geo)), - foem (5o,

t+At . . t+At 3 .
:/ Ml(Hl'f'Uf/?"‘l/Jl)dt-i-/ My (Hy + 05 /2 + o) dt + Q + W
t t
These equations may be simplified as follows:

1. Since the compressor is operating continuously in a steady-state manner, its contents must,
by definition, have the same mass and thermodynamic properties at all times. Therefore,

M(t + At) = M(t)

foen(Geo)) Lo (G

2. Since the thermodynamic properties of the fluids entering and leaving the turbine do not
change in time, we can write

and

t+At R t+AL
¢ [’
= (Hy +v7/2 +41) AM,

with a similar expression for the compressor exit stream.
3. Since the volume of the system here, the contents of the compressor, is constant

Va
PdV =0
Vi
so that
W =W,

4. Finally, we will neglect the potential and kinetic energy changes of the entering and exiting
fluids.

With these simplifications, we have

0= AMl + AMQ or AMl - 7AM2 =AM

and

0=AMH, + AM,H, + Q+ W
Combining these two equations, we obtain
Q+ W, = (Hy — H)) AM

This is the same result as in part (a).
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COMMENT

Notice that in the closed-system analysis the surroundings are doing work on the system (the
mass element) at the inlet to the compressor, while the system is doing work on its surroundings
at the outlet pipe. Each of these termsisa [ P dV—type work term. For the open system this work
term has been included in the energy balance as a PV AM term, so that it is the enthalpy, rather
than the internal energy, of the flow streams that appears in the equation. The explicit [P dV/
term that does appear in the open-system energy balance represents only the work done if the
system boundaries deform; for the choice of the compressor and its contents as the system here
this term is zero unless the compressor (the boundary of our system) explodes. |

This illustration demonstrates that the sum () + W is the same for a fluid undergoing
some change in a continuous process regardless of whether we choose to compute this
sum from the closed-system analysis on a mass of gas or from an open-system analy-
sis on a given volume in space. In Illustration 3.2-2 we consider another problem, the
compression of a gas by two different processes, the first being a closed-system piston-
and-cylinder process and the second being a flow compressor process. Here we will find
that the sum () + W is different in the two processes, but the origin of this difference
is easily understood.

ILLUSTRATION 3.2-2
Showing that Processes in Closed and Open Systems Are Different

A mass M of gas is to be compressed from a temperature 77 and a pressure P; to T and P,
in (a) a one-step process in a frictionless piston and cylinder,* and (b) a continuous process in
which the mass M of gas is part of the feed stream to the compressor of the previous illustration.
Compute the sum @ + W for each process.

SOLUTION

a. The piston-and-cylinder process

Plle I PZ’TZ |

Here we take the gas within the piston and cylinder as the system. The energy balance for this
closed system is

M(UQ — Ul) = Q@+ W (piston-cylinder process)

It is useful to note that W, =0and W = — [P dV.
b. The flow compressor process (see the figures in Illustration 3.2-1)

If we take the contents of the compressor as the system and follow the analysis of the previous
illustration, we obtain

M(Hy — H))=Q+ W (flow compressor)
where, since [PdV =0, W = W,.

COMMENT

From these results it is evident that the sum @) + W is different in the two cases, since the two
processes are different. The origin of the difference in the flow and nonflow energy changes

4Since the piston is frictionless, the pressure of the gas is equal to the pressure applied by the piston.
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accompanying a change of state is easily identified by considering two different ways of com-
pressing a mass M of gas in a piston and cylinder from (77, P;) to (T3, P;). The first way is
merely to compress the gas in situ. The sum of heat and work flows needed to accomplish the
change of state is, from the preceding computations,

Q+W = MU, — )

A second way to accomplish the compression is to open a valve at the side of the cylinder
and use the piston movement (at constant pressure P, ) to inject the gas into the compressor inlet
stream, use the compressor to compress the gas, and then withdraw the gas from the compressor
exit stream by moving the piston against a constant external pressure P,. The energy required in
the compressor stage is the same as that found above:

(Q+W). = M(H, — Hy)

To this we must add the work done in using the piston movement to pump the fluid into the
compressor inlet stream,

W, = /PdV: PV, =P, V\M

(this is the work done by the system on the gas in the inlet pipe to the compressor), and subtract
the work obtained as a result of the piston movement as the cylinder is refilled,

W, = —/PdV = —PVy = —P,VuM

(this is the work done on the system by the gas in the compressor exit stream). Thus the total
energy change in the process is

QAW =(Q+W).+ W+ W,
:M(I:IQ —ﬁl)-f‘Plf/lM—PQVQM:M(UQ —Ul)
which is what we found in part (a). Here, however, it results from the sum of an energy require-
ment of M (H, — Hy) in the flow compressor and the two pumping terms. |

Consider now the problem of relating the downstream temperature and pressure of a
gas in steady flow across a flow constriction (e.g., a valve, orifice, or porous plug) to its
upstream temperature and pressure.

ILLUSTRATION 3.2-3
A Joule-Thomson or Isenthalpic Expansion

A gas at pressure P; and temperature 77 is steadily exhausted to the atmosphere at pressure P,
through a pressure-reducing valve. Find an expression relating the downstream gas temperature
T, to Py, P5, and T;. Since the gas flows through the valve rapidly, one can assume that there is
no heat transfer to the gas. Also, the potential and kinetic energy terms can be neglected.

f T
T, P, ——— | | ———1,=2p,
| |

SOLUTION

The flow process is schematically shown in the figure. We will consider the region of space
that includes the flow obstruction (indicated by the dashed line) to be the system, although, as
in Ilustration 3.2-1, a fixed mass of gas could have been chosen as well. The pressure of the
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gas exiting the reducing valve will be P, the pressure of the surrounding atmosphere. (It is not
completely obvious that these two pressures should be the same. However, in the laboratory we
find that the velocity of the flowing fluid will always adjust in such a way that the fluid exit
pressure and the pressure of the surroundings are equal.) Now recognizing that our system (the
valve and its contents) is of constant volume, that the flow is steady, and that there are no heat or
work flows and negligible kinetic and potential energy changes, the mass and energy balances
(on a molar basis) yield

0:N1+N2 or N2=—N1
and
0=NH, +NoH, =N,(H, — H,)
Thus

=
I
I

or, to be explicit,

H(T, P1) = H(Ty, ) or H(Ty,Py) = H(Ty, P,)
so that the initial and final states of the gas have the same enthalpy. Consequently, if we knew
how the enthalpy of the gas depended on its temperature and pressure, we could use the known
values of T}, P;, and P; to determine the unknown downstream temperature 7.

COMMENTS

1. The equality of enthalpies in the upstream and downstream states is the only information
we get from the thermodynamic balance equations. To proceed further we need constitutive
information, that is, an equation of state or experimental data interrelating H, T, and P.
Equations of state are discussed in the following section and in much of Chapter 6.

2. The experiment discussed in this illustration was devised by William Thomson (later Lord
Kelvin) and performed by J. P. Joule to study departures from ideal gas behavior. The
Joule-Thomson expansion, as it is called, is used in the liquefaction of gases and in
refrigeration processes (see Chapter 5). |

3.3 THE THERMODYNAMIC PROPERTIES OF MATTER

The balance equations of this chapter allow one to relate the mass, work, and heat flows
of a system to the change in its thermodynamic state. From the experimental observa-
tions discussed in Chapter 1, the change of state for a single-component, single-phase
system can be described by specifying the initial and final values of any two indepen-
dent intensive variables. However, certain intensive variables, especially temperature
and pressure, are far easier to measure than others. Consequently, for most problems
we will want to specify the state of a system by its temperature and pressure rather
than by its specific volume, internal energy, and enthalpy, which appear in the energy
balance. What are needed, then, are interrelations between the fluid properties that
allow one to eliminate some thermodynamic variables in terms of other, more easily
measured ones. Of particular interest is the volumetric equation of state, which is a re-
lation between temperature, pressure, and specific volume, and the thermal equation
of state, which is usually either in the form of a relationship between internal energy,
temperature, and specific (or molar) volume, or between specific or molar enthalpy,
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temperature, and pressure. Such information may be available in either of two forms.
First, there are analytic equations of state, which provide an algebraic relation between
the thermodynamic state variables. Second, experimental data, usually in graphical or
tabular form, may be available to provide the needed interrelationships between the
fluid properties.

Equations of state for fluids are considered in detail in Chapter 6. To illustrate the
use of the mass and energy balance equations in a simple form, we briefly consider
here the equation of state for the ideal gas and the graphical and tabular display of the
thermodynamic properties of several real fluids.

An ideal gas is a gas at such a low pressure that there are no interactions among its
molecules. For such gases it is possible to show, either experimentally or by the methods
of statistical mechanics, that at all absolute temperatures and pressures the volumetric
equation of state is

PV =RT 3.3-1)

(as indicated in Sec. 1.4) and that the enthalpy and internal energy are functions of
temperature only (and not pressure or specific volume). We denote this latter fact by
H = H(T)and U = U(T). This simple behavior is to be compared with the enthalpy
for a real fluid, which is a function of temperature and pressure [i.e., H = H(T, P)]
and the internal energy, which is usually written as a function of temperature and spe-
cific volume [U = U(T, V)], as will be discussed in Chapter 6.

The temperature dependence of the internal energy and enthalpy of all substances (not
merely ideal gases) can be found by measuring the temperature rise that accompanies
a heat flow into a closed stationary system. If a sufficiently small quantity of heat is
added to such a system, it is observed that the temperature rise produced, AT, is linearly
related to the heat added and inversely proportional to N, the number of moles in the
system:

Q_

N
where C'is a parameter and () is the heat added to the system between the times ¢,
and t,. The object of the experiment is to accurately measure the parameter C' for a
very small temperature rise, since C' generally is also a function of temperature. If the
measurement is made at constant volume and with W = 0, we have, from the energy
balance and the foregoing equation,

CAT = C{T(t5) — T(t;)}

U(tz) —U(t1) = Q = NCy{T(t2) = T(t:)}
Thus

_ _U)-Ut) _ Ult) —U(h)
N{T(tz) =T(t1)}  T(t2) —T(t1)
where the subscript V has been introduced to remind us that the parameter C' was de-

termined in a constant-volume experiment. In the limit of a very small temperature
difference, we have

Cv

(TV)=  lm w = <8U>V - (W)V

3.3-2)
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so that the measured parameter C'y is, in fact, equal to the temperature derivative of
the internal energy at constant volume. Similarly, if the parameter C' is determined in a
constant-pressure experiment, we have
Q=Ultz) —U(tr) + P{V(t2) = V(t1)}
=Ul(t2) + P(t2)V(t2) — U(t1) — P(t:1)V (t1)

where we have used the fact that since pressure is constant, P = P(t5) = P(t;). Then

Cp(T, P) = <‘2§{>P = (W)P (3.3-3)

so that the measured parameter here is equal to the temperature derivative of the en-
thalpy at constant pressure.

The quantity Cy is called the constant-volume heat capacity, and Cp is the
constant-pressure heat capacity; both appear frequently throughout this book.
Partial derivatives have been used in Eqgs. 3.3-2 and 3.3-3 to indicate that although the
internal energy is a function of temperature and density or specific (or molar) volume,
C'v has been measured along a path of constant volume; and although the enthalpy is a
function of temperature and pressure, C'p has been evaluated in an experiment in which
the pressure was held constant.

For the special case of the ideal gas, the enthalpy and internal energy of the fluid are
functions only of temperature. In this case the partial derivatives above become total
derivatives, and

dH au

Cy(T) = ar and Cy(T) = ar (3.3-4)
so that the ideal gas heat capacities, which we denote using asterisks as Cp(7") and
Cy(T), are only functions of 7" as well. The temperature dependence of the ideal gas
heat capacity can be measured or, in some cases, computed using the methods of sta-
tistical mechanics and detailed information about molecular structure, bond lengths,
vibrational frequencies, and so forth. For our purposes C} (1) will either be consid-
ered to be a constant or be written as a function of temperature in the form

Co(T)=a+bT + T2 +dT> + - - (3.3-5)

Since H = U + PV, and for the ideal gas PV = RT, we have H = U + R1 and

_dH d(U+ RT)

G =r = a7

= Cy(T)+ R

sothat C3(T) = C5(T) — R = (a— R) + bT + ¢T* + dT? + - - - . The constants in
Eq. 3.3-5 for various gases are given in Appendix A.IL

The enthalpy and internal energy of an ideal gas at a temperature 75 can be related
to their values at 7} by integration of Egs. 3.3-4 to obtain

T
H(Ty) = H(Ty) + Cy(T)dT

T
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and

Ts
U'(Ty) =U"(Th) + Co(T)dT (3.3-6)

T1

where the superscript IG has been introduced to remind us that these equations are valid
only for ideal gases.

Our interest in the first part of this book is with energy flow problems in single-
component systems. Since the only energy information needed in solving these prob-
lems is the change in internal energy and/or enthalpy of a substance between two states,
and since determination of the absolute energy of a substance is not possible, what is
done is to choose an easily accessible state of a substance to be the reference state,
for which H'® is arbitrarily set equal to zero, and then report the enthalpy and internal
energy of all other states relative to this reference state. (That there is a state for each
substance for which the enthalpy has been arbitrarily set to zero does lead to difficulties
when chemical reactions occur. Consequently, another energy convention is introduced
in Chapter 8.)

If, for the ideal gas, the temperature T'; is chosen as the reference temperature (i.e.,
H' at T, is set equal to zero), the enthalpy at temperature 7" is then

T
H(T)= [ Cy(T)dT (3.3-7)
Tr
Similarly, the internal energy at 7" is
T T
US(T) =U"(Tp) + | CW(T)dT ={H'*(Tg) ~ RTr} + | Cy(T)dT
Tr Tr
T
= Cy(T)dT — RTgr
Tr

3.3-8)
One possible choice for the reference temperature T is absolute zero. In this case,

HIG /C* )dT and UIG /C’*

However, to use these equations, heat capacity data are needed from absolute zero to the
temperature of interest. These data are not likely to be available, so a more convenient
reference temperature, such as 0°C, is frequently used.
For the special case in which the constant-pressure and constant-volume heat capac-
ities are independent of temperature, we have, from Eqgs. 3.3-7 and 3.3-8,
H'(T) = C(T — Tg) (3.3-7)
and
U'(T) = Co(T — Tr) — RTr = CvT — CiTx (3.3-8")

which, when T is taken to be absolute zero, simplify further to

H'Y(T)=CyT and U'(T)=CyT
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As we will see in Chapters 6 and 7, very few fluids are ideal gases, and the mathe-
matics of relating the enthalpy and internal energy to the temperature and pressure of a
real fluid is much more complicated than indicated here. Therefore, for fluids of indus-
trial and scientific importance, detailed experimental thermodynamic data have been
collected. These data can be presented in tabular form (see Appendix A.III for a table
of the thermodynamic properties of steam) or in graphical form, as in Figs. 3.3-1 to
3.3-4 for steam, methane, nitrogen, and the environmentally friendly refrigerant HFC-
134a. (Can you identify the reference state for the construction of the steam tables in
Appendix A.ITI?) With these detailed data one can, given values of temperature and
pressure, easily find the enthalpy, specific volume, and entropy (a thermodynamic quan-
tity that is introduced in the next chapter). More generally, given any two intensive
variables of a single-component, single-phase system, the remaining properties can
be found.

Notice that different choices have been made for the independent variables in these
figures. Although the independent variables may be chosen arbitrarily,’ some choices
are especially convenient for solving certain types of problems. Thus, as we will see, an
enthalpy-entropy (H -S) or Mollier diagram,® such as Fig. 3.3-1a, is useful for problems
involving turbines and compressors; enthalpy-pressure (H-P) diagrams (for example
Figs. 3.3-2 to 3.3-4) are useful in solving refrigeration problems; and temperature-
entropy (1-5) diagrams, of which Fig. 3.3-1b is an example, are used in the analysis
of engines and power and refrigeration cycles (see Sec. 3.4 and Chapter 5).

An important characteristic of real fluids is that at sufficiently low temperatures they
condense to form liquids and solids. Also, many applications of thermodynamics of in-
terest to engineers involve either a range of thermodynamic states for which the fluid of
interest undergoes a phase change, or equilibrium multiphase mixtures (e.g., steam and
water at 100°C and 101.3 kPa). Since the energy balance equation is expressed in terms
of the internal energy and enthalpy per unit mass of the system, this equation is valid
regardless of which phase or mixture of phases is present. Consequently, there is no
difficulty, in principle, in using the energy balance (or other equations to be introduced
later) for multiphase or phase-change problems, provided thermodynamic information
is available for each of the phases present. Figures 3.3-1 to 3.3-4 and the steam tables
in Appendix A.III provide such information for the vapor and liquid phases and, within
the dome-shaped region, for vapor-liquid mixtures. Similar information for many other
fluids is also available. Thus, you should not hesitate to apply the equations of ther-
modynamics to the solution of problems involving gases, liquids, solids, and mixtures
thereof.

There is a simple relationship between the thermodynamic properties of a two-phase
mixture (e.g., a mixture of water and steam), the properties of the individual phases, and
the mass distribution between the phases. If 6 is any intensive property, such
as internal energy per unit mass or volume per unit mass, its value in an equilibrium
two-phase mixture is

é _ wIéI + wnén _ wlél + (1 - wI)éII (3.3-9)

Here w' is the mass fraction of the system that is in phase I, and 0" is the value of
the variable in that phase. Also, by definition of the mass fraction, w' + W' = 1.

5See, however, the comments made in Sec. 1.6 concerning the use of the combinations U and T, and V' and T as
the independent thermodynamic variables.
SEntropy, denoted by the letter .S, is a thermodynamic variable to be introduced in Chapter 4.
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Figure 3.3-1 (@) Enthalpy-entropy of Mollier diagram for steam. [Source: ASME Steam Tables in SI (Metric) Units for
Instructional Use, American Society of Mechanical Engineers, New York, 1967. Used with permission.] (This figure appears
as an Adobe PDF file on the website for this book, and may be enlarged and printed for easier reading and for use in solving
problems.)
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Figure 3.3-1(b) Temperature-entropy diagram for steam. [Source: J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore,
Steam Tables (International Edition—Metric Units). Copyright 1969. John Wiley & Sons, Inc., New York. Used with per-
mission.] (This figure appears as an Adobe PDF file on the website for this book, and may be enlarged and printed for easier
reading and for use in solving problems.)
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Figure 3.3-2 Pressure-enthalpy diagram for methane. (Source: W. C. Reynolds, Thermody-
namic Properties in SI, Department of Mechanical Engineering, Stanford University, Stanford,
CA, 1979. Used with permission.) (This figure appears as an Adobe PDF file on the website for
this book, and may be enlarged and printed for easier reading and for use in solving problems.)

(For mixtures of steam and water, the mass fraction of steam is termed the quality
and is frequently expressed as a percentage, rather than as a fraction; for example, a
steam-water mixture containing 0.02 kg of water for each kg of mixture is referred to
as steam of 98 percent quality.) Note that Eq. 3.3-9 gives the property of a two-phase
mixture as a linear combination of the properties of each phase weighted by its mass
fraction. Consequently, if charts such as Figures 3.3-1 to 3.3-4 are used to obtain the
thermodynamic properties, the properties of the two-phase mixture will fall along a
line connecting the properties of the individual phases, which gives rise to referring to
Eq. 3.3-9 as the lever rule.

If a mixture consists of two phases (i.e., vapor and liquid, liquid and solid, or solid
and vapor), the two phases will be at the same temperature and pressure; however,
other properties of the two phases will be different. For example, the specific volume
of the vapor and liquid phases can be very different, as will be their internal energy
and enthalpy, and this must be taken into account in energy balance calculations. The
notation that will be used in this book is as follows:

Avapff —HY - H" = enthalpy of vaporization per unit mass or on a molar basis,
AyapH = HY — H" = molar enthalpy of vaporization
Also (but for brevity, only on a molar basis),
A H = H* — H® = molar enthalpy of melting or fusion
Ao H = HY — H® = molar enthalpy of sublimation
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Figure 3.3-3 Pressure-enthalpy diagram for nitrogen. (Source: W. C. Reynolds, Thermodynamic
Properties in SI, Department of Mechanical Engineering, Stanford University, Stanford, CA,
1979. Used with permission.) (This figure appears as an Adobe PDF file on the website for this
book, and may be enlarged and printed for easier reading and for use in solving problems.)

Similar expressions can be written for the volume changes and internal energy changes
on a phase change.

It is also useful to note that several simplifications can be made in computing the
thermodynamic properties of solids and liquids. First, because the molar volumes of
condensed phases are small, the product PV can be neglected unless the pressure is
high. Thus, for solids and liquids,

H~U (3.3-10)

A further simplification commonly made for liquids and solids is to assume that they
are also incompressible; that is, their volume is only a function of temperature, so that

vy _
<(9P>T =0 3.3-11)

In Chapter 6 we show that for incompressible fluids, the thermodynamic proper-
ties U, Cp, and C'y are functions of temperature only. Since, in fact, solids, and most
liquids away from their critical point (see Chapter 7) are relatively incompressible,
Egs. 3.3-10 and 3.3-11, together with the assumption that these properties depend only
on temperature, are reasonably accurate and often used in thermodynamic studies in-
volving liquids and solids. Thus, for example, the internal energy of liquid water at a
temperature 77 and pressure P; is, to a very good approximation, equal to the internal
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Figure 3.3-4 Pressure—enthalpy diagram for HFC-134a. (Used with permission of DuPont Flu-
oroproducts.) (This figure appears as an Adobe PDF file on the website for this book, and may
be enlarged and printed for easier reading and for use in solving problems.)

energy of liquid water at the temperature 77 and any other pressure. Consequently, the
entries for the internal energy of liquid water for a variety of temperatures (at pressures
corresponding to the vapor-liquid coexistence or saturation pressures at each temper-
ature) given in the saturation steam tables of Appendix A.III can also be used for the
internal energy of liquid water at these same temperatures and higher pressures.
Although we will not try to quantitatively relate the interactions between molecules
to their properties—that is the role of statistical mechanics, not thermodynamics—it is
useful to make some qualitative observations. The starting point is that the interactions
between a pair of simple molecules (for example, argon or methane) depend on the
separation distance between their centers of mass, as shown in Fig. 3.3-5. There we see
that if the molecules are far apart, the interaction energy is very low, and it vanishes at
infinite separation. As the molecules are brought closer together, they attract each other,
which decreases the energy of the system. However, if the molecules are brought too
close together (so that their electrons overlap), the molecules repel each other, resulting
in a positive energy that increases rapidly as one attempts to bring the molecules closer.
We can make the following observations from this simple picture of molecular in-
teractions. First, if the molecules are widely separated, as occurs in a dilute gas, there
will be no energy of interaction between the molecules; this is the case of an ideal gas.
Next, as the density increases, and the molecules are somewhat closer together, molec-
ular attractions become more important, and the energy of the system decreases. Next,
at liquid densities, the average distance between the molecules will be near the deepest
(most attractive) part of the interaction energy curve shown in Fig. 3.3-5. (Note that
the molecules will not be at the very lowest value of the interaction energy curve as a
result of their thermal motion, and because the behavior of a large collection of
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Figure 3.3-5 The interaction energy between two molecules as a function of their separation
distance. Since the molecules cannot overlap, there is a strong repulsion (positive interaction
energy) at small separation distances. At larger separation distances the interactions between
the electrons result in an attraction between the molecules (negative interaction energy), which
vanishes at very large separations.

molecules is more complicated than can be inferred by examining the interaction
between only a pair of molecules.) Consequently, a liquid has considerably less inter-
nal energy than a gas. The energy that must be added to a liquid to cause its molecules
to move farther apart and vaporize is the heat of vaporization A,, H. In solids, the
molecules generally are located very close to the minimum in the interaction energy
function in an ordered lattice, so that a solid has even less internal energy than a liquid.
The amount of energy required to slightly increase the separation distances between the
molecules in a solid and form a liquid is the heat of melting or the heat of fusion A,  H.

As mentioned earlier, the constant-pressure heat capacity of solids is a function of
temperature; in fact, C'p goes to zero at the absolute zero of temperature and approaches
a constant at high temperatures. An approximate estimate for C'p of solids for temper-
atures of interest to chemical engineers comes from the empirical law (or observation)
of DulL.ong and Petit that

J

=3NR =24.942N
Cp =3NR 9 =

(3.3-12)

where N is the number of atoms in the formula unit. For comparison, the constant-
pressure heat capacities of lead, gold, and aluminum at 25°C are 26.8, 25.2, and
24.4 J/(mol K), respectively. Similarly, Eq. 3.3-12 gives a prediction of 49.9 for gal-
lium arsenide (used in the electronics industry), which is close to the measured value of
47.0 J/mol K. For Fe3C the prediction is 99.8 J/mol K and the measured value is 105.9.
So we see that the DuLong-Petit law gives reasonable though not exact values for the
heat capacities of solids.

3.4 APPLICATIONS OF THE MASS AND ENERGY BALANCES

In many thermodynamics problems one is given some information about the initial equi-
librium state of a substance and asked to find the final state if the heat and work flows
are specified, or to find the heat or work flows accompanying the change to a speci-
fied final state. Since we use thermodynamic balance equations to get the information
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needed to solve this sort of problem, the starting point is always the same: the identifi-
cation of a convenient thermodynamic system. The main restriction on the choice of a
system is that the flow terms into and out of the system must be of a simple form—for
example, not varying with time, or perhaps even zero. Next, the forms of the mass and
energy balance equations appropriate to the system choice are written, and any infor-
mation about the initial and final states of the system and the flow terms is used. Finally,
the thermal equation of state is used to replace the internal energy and enthalpy in the
balance equations with temperature, pressure, and volume; the volumetric equation of
state may then be used to eliminate volume in terms of temperature and pressure. In
this way equations are obtained that contain temperature and pressure as the only state
variables.

The volumetric equation of state may also provide another relationship between the
temperature, pressure, mass, and volume when the information about the final state of
the system is presented in terms of total volume, rather than volume per unit mass or
molar volume (see Illustration 3.4-5).

By using the balance equations and the equation-of-state information, we will fre-
quently be left with equations that contain only temperature, pressure, mass, shaft work
(W), and heat flow (Q)). If the number of equations equals the number of unknowns, the
problem can be solved. The mass and energy balance equations, together with equation-
of-state information, are sufficient to solve many, but not all, energy flow problems. In
some situations we are left with more unknowns than equations. In fact, we can readily
identify a class of problems of this sort. The mass and energy balance equations together
can, at most, yield new information about only one intensive variable of the system (the
internal energy or enthalpy per unit mass) or about the sum of the heat and work flows
if only the state variables are specified. Therefore, we are not, at present, able to solve
problems in which (1) there is no information about any intensive variable of the final
state of the system, (2) both the heat flow () and the shaft work (WW,) are unspecified,
or (3) one intensive variable of the final state and either () or W, are unknown, as in
Mlustration 3.4-4. To solve these problems, an additional balance equation is needed;
such an equation is developed in Chapter 4.

The seemingly most arbitrary step in thermodynamic problem solving is the choice
of the system. Since the mass and energy balances were formulated with great general-
ity, they apply to any choice of system, and, as was demonstrated in Illustration 3.2-1,
the solution of a problem is independent of the system chosen in obtaining the solu-
tion. However, some system choices may result in less effort being required to obtain a
solution. This is demonstrated here and again in Chapter 4.

ILLUSTRATION 3.4-1
Joule-Thomson Calculation Using a Mollier Diagram and Steam Tables

Steam at 400 bar and 500°C undergoes a Joule-Thomson expansion to 1 bar. Determine the
temperature of the steam after the expansion using

a. Fig.3.3-1a
b. Fig. 3.3-1b
c. The steam tables in Appendix A.III

SOLUTION

(Since only one thermodynamic state variable—here the final temperature—is unknown, from
the discussion that precedes this illustration we can expect to be able to obtain a solution to this
problem.)
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‘We start from Illustration 3.2-3, where it was shown that

I:II = I;I(Tl,Pl) = I:I(TQ,PQ) = I:IQ
for a Joule-Thomson expansion. Since TlA and P} are known, fIl can be found from either
Fig. 3.3-1 or the steam tables. Then, since H, (= Hy, from the foregoing) and P, are known, T,
can be found.

a. Using Fig. 3.3-1a, the Mollier diagram, we first locate the point P = 400 bar = 40 000 kPa
and 7' = 500°C, which corresponds to H, = 2900 kJ/kg. Following a line of constant
enthalpy (a horizontal line on this diagram) to P = 1 bar = 100 kPa, we find that the final
temperature is about 214°C.

b. Using Fig. 3.3-1b, we locate the point P = 400 bar and 7" = 500°C (which is somewhat
easier to do than it was using Fig. 3.3-1a) and follow the curved line of constant enthalpy
to a pressure of 1 bar to see that 75 = 214°C.

c. Using the steam tables of Appendix A.III, we have that at P = 400 bar = 40 MPa and
T = 500°C, H = 2903.3kJ/kg. At P = 1 bar = 0.1 MPa, I = 2875.3kJ/kgat T = 200°C
and H = 2974.3 kJ/kg at T = 250°C. Assuming that the enthalpy varies linearly with
temperature between 200 and 250°C at P = 1 bar, we have by interpolation

2903.3 — 2875.3 .
T =200 4 (250 — 200) X ——— "= — 914.1°C
2974.3 — 2875.3

[ The Aspen Plus® simulation for this illustration available on the Wiley website for this book
in the folder Aspen Illustrations>Chapter 3>3.4-1. The results using the IJAPWS-95 model
(equations on which the steam tables are based) give the following results:

exit temperature = 488.85 K = 215.7°C

Using the more approximate Peng-Robinson equation of state (discussed in Chapter 5), the
result is
exit temperature = 484.87 K = 211.7°C

This result is in reasonable agreement with that obtained with the more accurate IAPWS-95
model. |

COMMENT

For many problems a graphical representation of thermodynamic data, such as Figure 3.3-1, is
easiest to use, although the answers obtained are approximate and certain parts of the graphs
may be difficult to read accurately. The use of tables of thermodynamic data, such as the steam
tables, generally leads to the most accurate answers; however, one or more interpolations may be
required. For example, if the initial conditions of the steam had been 475 bar and 530°C instead of
400 bar and 500°C, the method of solution using Fig. 3.3-1 would be unchanged; however, using
the steam tables, we would have to interpolate with respect to both temperature and pressure to
get the initial enthalpy of the steam.

One way to do this is first, by interpolation between temperatures, to obtain the enthalpy of
steam at 530°C at both 400 bar = 40 MPa and 500 bar. Then, by interpolation with respect to
pressure between these two values, we obtain the enthalpy at 475 bar. That is, from

H(40 MPa, 500°C) = 2903.3 kJ/kg H(50 MPa, 500°C) = 2720.1 kl/kg
H(40 MPa, 550°C) = 3149.1 kJ/kg H(50 MPa, 550°C) = 3019.5 kl/kg

and the interpolation formula

O(y) — 6(z)
y—x

Oz +A)=0(z)+ A



72

Chapter 3: Conservation of Energy

where © is any tabulated function, and = and y are two adjacent values at which © is available,
we have

H(40 MPa, 550°C) — H(40 MPa, 500°C)

H(40 MPa, 530°C) = H(40 MPa, 500°C) + 30 x

550 — 500
3149.1 — 2903.3
=2903.3 + 30 X T E——— 2903.3 + 147.5
= 3050.8 kJ/kg
and
- 3019.5 — 2720.1
H(50 MPa, 530°C) = 2720.1 + 30 x B e 2899.7 kl/kg
Then

H(50 MPa, 530°C) — H(40 MPa, 530°C)
50 — 40

7.5
= 3050.8 + - X (2881.7 — 3050.8) = 2924.0 kl/kg -

H(47.5 MPa, 530°C) = H(40 MPa, 530°C) + 7.5 X

ILLUSTRATION 3.4-2
Application of the Complete Energy Balance Using the Steam Tables

An adiabatic steady-state turbine is being designed to serve as an energy source for a small
electrical generator. The inlet to the turbine is steam at 600°C and 10 bar, with a mass flow rate
of 2.5 kg/s through an inlet pipe that is 10 cm in diameter. The conditions at the turbine exit are
T = 400°C and P = 1 bar. Since the steam expands through the turbine, the outlet pipe is 25 cm
in diameter. Estimate the rate at which work can be obtained from this turbine.

T, = 600°C T, =400°C
P, =10 bar P, =1bar

SOLUTION

(This is another problem in which there is only a single thermodynamic unknown, the rate at
which work is obtained, so we can expect to be able to solve this problem.)

The first step in solving any energy flow problem is to choose the thermodynamic system; the
second step is to write the balance equations for the system. Here we take the turbine and its
contents to be the system. The mass and energy balance equations for this adiabatic, steady-state
system are

dM . .
IZOZMl‘i’MQ (a)

and

d v2 . N v? . N v3 .
T U+ M E-‘rgh =0= M, H1+? + M, H2+? + W, (b)
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In writing these equations we have set the rate of change of mass and energy equal to zero be-
cause the turbine is in steady-state operation; () is equal to zero because the process is adiabatic,
and P(dV/dt) is equal to zero because the volume of the system is constant (unless the turbine
explodes). Finally, since the schematic diagram indicates that the turbine is positioned horizon-
tally, we have assumed there is no potential energy change in the flowing steam.

There are six unknowns— Mo, fIl, fIQ, WS, v1, and vo,—in Eqs. a and b. However, both ve-
locities will be found from the mass flow rates, pipe diameters, and volumetric equation-of-state
information (here the steam tables in Appendix A.III). Also, thermal equation-of-state informa-
tion (again the steam tables in Appendix A.III) relates the enthalpies to temperature and pressure,
both of which are known. Thus M, and H- are the only real unknowns, and these may be found
from the balance equations above. From the mass balance equation, we have

M2 = _Ml =-2.5 kg/s
From the steam tables or, less accurately from Fig. 3.3-1, we have
H, = 3697.9 kl/kg H, = 3278.2 kl/kg
Vi = 0.4011 m®/kg V, = 3.103 m3/kg

The velocities at the inlet and outlet to the turbine are calculated from

. NS md?
Volumetric flow rate = MV = -V
where d is the pipe diameter. Therefore,
1255 o011 2
4M1V1 : S ’ kg m
v = st = b =277 —
mdi, 3.14159 - (0.1 m) s
vy = = 158.0 —
2T rd2, s
Therefore, the energy balance yields
2 2
Ws =—M> <H2 + “52) - M, <ﬁ1 + %)
g . N 1 kJ
=25 20 (Hy — Hy) + = (v —0v2)y —
s 2 k
1 J
k k] 1 2 Tkg 1kJ
= 2584107 0 ¢ (12777 — 158.0%) . K8
s kg 2 s m® 1000 J
<2

k kJ kJ
= —2.5-8{419.7 — 4.3} —— = —1038.5 — (= —1329 hp)
S kg S

[ The Aspen Plus® simulation for this illustration available on the Wiley website for this book
in the folder Aspen Illustrations>Chapter 3>3.4-2. The items to notice in that solution are:

1. The isentropic efficiency of the turbine had to be adjusted by trial-and-error to 57.85% to
achieve the exit conditions of 400°C and 1 bar

2. Kinetic and potential energy changes are not easily taken into account using Aspen Plus®.
However, they are small for this case, as already shown and can be neglected
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3. The Aspen Plus® result of 1049.85 kJ/s is in quite good agreement with the result of
1038.5 kJ/s this illustration. The difference of 1% is a result of the differences in the values
of the thermodynamic properties in the steam tables and the properties equations used in

Aspen Plus®.}

COMMENT

If we had completely neglected the kinetic energy terms in this calculation, the error in the
work term would be 4.3 kJ/kg, or about 1%. Generally, the contribution of kinetic and potential
energy terms can be neglected when there is a significant change in the fluid temperature, as was
suggested in Sec. 3.2. |

ILLUSTRATION 3.4-3
Use of Mass and Energy Balances with an Ideal Gas

A compressed-air tank is to be repressurized to 40 bar by being connected to a high-pressure
line containing air at 50 bar and 20°C. The repressurization of the tank occurs so quickly that the
process can be assumed to be adiabatic; also, there is no heat transfer from the air to the tank.
For this illustration, assume air to be an ideal gas with C§, = 21 J/(mol K).

a. If the tank initially contains air at 1 bar and 20°C, what will be the temperature of the air
in the tank at the end of the filling process?

b. After a sufficiently long period of time, the gas in the tank is found to be at room temper-
ature (20°C) because of heat exchange with the tank and the atmosphere. What is the new

pressure of air in the tank?
% 50 bar
20°C

SOLUTION

(Each of these problems contains only a single unknown thermodynamic property, so solutions
should be possible.)

a. We will take the contents of the tank to be the system. The difference form of the mass (or
rather mole) and energy balances for this open system are

N, — N, = AN (a)
N2U2_N1U1:(AN)E1D (b)
In writing the energy balance we have made the following observations:

1. The kinetic and potential energy terms are small and can be neglected.
2. Since the tank is connected to a source of gas at constant temperature and pressure, H;,
is constant.
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3. The initial process is adiabatic, so Q = 0, and the system (the contents of the tank) is
of constant volume, so AV = 0.
Substituting Eq. a in Eq. b, and recognizing that for the ideal gas H(T") = C5(T — Tr)
and U(T) = C3 (T — Tr) — RTk, yields

or
NQC:/TQ _ NlC\*,Tl = (N2 _ Nl)C;Tm

(Note that the reference temperature Tz cancels out of the equation, as it must, since the
final result cannot depend on the arbitrarily chosen reference temperature.) Finally, using
the ideal gas equation of state to eliminate N; and N5, and recognizing that V; = V5, yields

P, P Ch <P2 - P1> - P,
— == —_— or =
T, T, Ci T; TR N cy <P2 —P1>

TG\ T

The only unknown in this equation is 75, so, formally, the problem is solved. The answer
is T'= 405.2 K = 132.05°C.

Before proceeding to the second part of the problem, it is interesting to consider the case
in which the tank is initially evacuated. Here P; = 0, and so

_ %

=
independent of the final pressure. Since Cp is always greater than Cv, the temperature of
the gas in the tank at the end of the filling process will be greater than the temperature of
gas in the line. Why is this so?

b. To find the pressure in the tank after the heat transfer process, we use the mass balance
and the equation of state. Again, choosing the contents of the tank as the system, the mass
(mole) balance is N, = Ny, since there is no transfer of mass into or out of the system
during the heat transfer process (unless, of course, the tank is leaking; we do not consider
this complication here). Now using the ideal gas equation of state, we have

T, T

Py
T, T

P, T
71 or P2:P1?2
1

Thus, P, = 28.94 bar.

ILLUSTRATION 3.4-4

Example of a Thermodynamics Problem that Cannot Be Solved with Only the Mass and Energy
Balances’

A compressor is a gas pumping device that takes in gas at low pressure and discharges it at
a higher pressure. Since this process occurs quickly compared with heat transfer, it is usually
assumed to be adiabatic; that is, there is no heat transfer to or from the gas during its compression.
Assuming that the inlet to the compressor is air [which we will take to be an ideal gas with
Cp = 29.3 J/(mol K)]J at 1 bar and 290 K and that the discharge is at a pressure of 10 bar,
estimate the temperature of the exit gas and the rate at which work is done on the gas (i.e., the
power requirement) for a gas flow of 2.5 mol/s.

7We return to this problem in the next chapter after formulating the balance equation for an additional thermody-
namic variable, the entropy.



76 Chapter 3: Conservation of Energy

SOLUTION

(Since there are two unknown thermodynamic quantities, the final temperature and the rate at
which work is being done, we can anticipate that the mass and energy balances will not be
sufficient to solve this problem.)

The system will be taken to be the gas contained in the compressor. The differential form of
the molar mass and energy balances for this open system are

dN—N LN
a -\ 2
dU . . . .
E:N1ﬂ1+N2ﬁ2+Q+W

where we have used the subscript 1 to indicate the flow stream into the compressor and 2 to
indicate the flow stream out of the compressor.
Since the compressor operates continuously, the process may be assumed to be in a steady

state,
dN . .
ﬁ =0 or N1 = —NQ
w _,
dt

that is, the time variations of the mass of the gas contained in the compressor and of the energy
content of this gas are both zero. Also, = 0 since there is no heat transfer to the gas, and
W = W since the system boundaries (the compressor) are not changing with time. Thus we
have

W, = NiH, — NiH, = N,Cj(T, — T)

or

W, =Cp(T, - Th)

where W, = W, / N; is the work done per mole of gas. Therefore, the power necessary to drive
the compressor can be computed once the outlet temperature of the gas is known, or the outlet
temperature can be determined if the power input is known.

We are at an impasse; we need more information before a solution can be obtained. It is clear
by comparison with the previous examples why we cannot obtain a solution here. In the pre-
vious cases, the mass balance and the energy balance, together with the equation of state of
the fluid and the problem statement, provided the information necessary to determine the final
state of the system. However, here we have a situation where the energy balance contains two
unknowns, the final temperature and W _. Since neither is specified, we need additional informa-
tion about the system or process before we can solve the problem. This additional information
will be obtained using an additional balance equation developed in the next chapter. |

ILLUSTRATION 3.4-5
Use of Mass and Energy Balances to Solve an Ideal Gas Problem®

A gas cylinder of 1 m?® volume containing nitrogen initially at a pressure of 40 bar and a tem-
perature of 200 K is connected to another cylinder of 1 m® volume that is evacuated. A valve
between the two cylinders is opened until the pressures in the cylinders equalize. Find the final
temperature and pressure in each cylinder if there is no heat flow into or out of the cylinders or
between the gas and the cylinder. You may assume that the gas is ideal with a constant-pressure
heat capacity of 29.3 J/(mol K).

8 An alternative solution to this problem giving the same answer is given in the next chapter.



3.4 Applications of the Mass and Energy Balances 77

SOLUTION

This problem is more complicated than the previous ones because we are interested in changes
that occur in two separate cylinders. We can try to obtain a solution to this problem in two
different ways. First, we could consider each tank to be a separate system, and so obtain two
mass balance equations and two energy balance equations, which are coupled by the fact that the
mass flow rate and enthalpy of the gas leaving the first cylinder are equal to the like quantities
entering the second cylinder.’ Alternatively, we could obtain an equivalent set of equations by
choosing a composite system of the two interconnected gas cylinders to be the first system and
the second system to be either one of the cylinders. In this way the first (composite) system
is closed and the second system is open. We will use the second system choice here; you are
encouraged to explore the first system choice independently and to verify that the same solution
is obtained.

The difference form of the mass and energy balance equations (on a molar basis) for the two-
cylinder composite system are

N!=N{ + N/ (a)

and
NiUi = N{U{ + N{U} (b)

Here the subscripts 1 and 2 refer to the cylinders, and the superscripts ¢ and f refer to the initial
and final states. In writing the energy balance equation we have recognized that for the system
consisting of both cylinders there is no mass flow, heat flow, or change in volume.

Now using, in Eq. a, the ideal gas equation of state written as N = PV/RT and the fact that
the volumes of both cylinders are equal yields

Pi P f P f
non.h @)
T T

Using the same observations in Eq. b and further recognizing that for a constant heat capacity
gas we have, from Eq. 3.3-8, that

U(T) = Gy T — Gy T
yields
‘F)lZ * e * Plf * i f s« P2f * i f s«
S ACV T — CpTr}Y = —A{CVTY — CpTr} + —{CVTy — CpTr}
T} T} T
which, on rearrangement, gives

pi Pl P Lo
2L 2 TR+ CY{Pi - P/ -~ P/} =0
{Tf Tf Tzf plr+ V{ 1 1 2}

Since the bracketed quantity in the first term is identically zero (see Eq. a"), we obtain

Pf:P1f+P2f (©

9That the enthalpy of the gas leaving the first cylinder is equal to that entering the second, even though the two
cylinders are at different pressures, follows from the fact that the plumbing between the two can be thought of as
a flow constriction, as in the Joule-Thomson expansion. Thus the analysis of Illustration 3.2-3 applies to this part
of the total process.
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(Note that the properties of the reference state have canceled. This is to be expected, since the
solution to a change-of-state problem must be independent of the arbitrarily chosen reference
state. This is an important point. In nature, the process will result in the same final state indepen-
dent of our arbitrary choice of reference temperature, Tr. Therefore, if our analysis is correct,
Tr must not appear in the final answer.)

Next, we observe that from the problem statement P,/ = P, ; thus

P/ =P/ = 1P} =20 bar
and from Eq. a’

1 1 2 ,
77 + 7 T (c")
Thus we have one equation for the two unknowns, the two final temperatures. We cannot assume
that the final gas temperatures in the two cylinders are the same because nothing in the problem
statement indicates that a transfer of heat between the cylinders necessary to equalize the gas
temperatures has occurred.

To get the additional information necessary to solve this problem, we write the mass and en-
ergy balance equations for the initially filled cylinder. The rate-of-change form of these equations
for this system are

dNy .
=N d
7 (d)
and AN
— - =NH, (e)

In writing the energy balance equation, we have made use of the fact that Q, W, and dv/dt
are all zero. Also, we have assumed that while the gas temperature is changing with time, it is
spatially uniform within the cylinder, so that at any instant the temperature and pressure of the
gas leaving the cylinder are identical with those properties of the gas in the cylinder. Thus, the
molar enthalpy of the gas leaving the cylinder is

H=H(T\,P)=H,

Since our interest is in the change in temperature of the gas that occurs as its pressure drops
from 40 bar to 20 bar due to the escaping gas, you may ask why the balance equations here have
been written in the rate-of-change form rather than in terms of the change over a time interval.
The answer is that since the properties of the gas within the cylinder (i.e., its temperature and
pressure) are changing with time, so is H,, the enthalpy of the exiting gas. Thus, if we were
to use the form of Eq. e integrated over a time interval (i.e., the difference form of the energy
balance equation),

vl - Nui = [ ¥ a

we would have no way of evaluating the integral on the right side. Consequently, the difference
equation provides no useful information for the solution of the problem. However, by starting
with Eqgs. d and e, it is possible to obtain a solution, as will be evident shortly.

To proceed with the solution, we first combine and rearrange the mass and energy balances to
obtain

d(NU,) au, AN,

=N—+U
dt o 9y

= NH, = H, dt
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so that we have

du, dN,
=l _(H,-U,)—*
dt (H, = U,) dt

Now we use the following properties of the ideal gas (see Eqgs. 3.3-7 and 3.3-8)

Ny

N =PV/RT H=CyT—Tg)

and
U=Cy(T—Tg)— RTg
to obtain
PV __dT d (PV
1 . aly _ R, 1
RT, t dt \ RT}

Simplifying this equation yields

C{k/ldTl_Tld Pl
RT, d P dt\T
or

Cydin T d P,
by am Ly 1n<71>

R dt dt \T,

Now integrating between the initial and final states, we obtain
CL/R .
T/ v/ (P (T
T} S\ P\ Tf
CL/R
my (e ®
i P

where we have used the fact that for the ideal gas Cr = C5; + R. Equation f provides the means
to compute Tlf ,and Tgf can then be found from Eq. ¢’. Finally, using the ideal gas equation of
state we can compute the final number of moles of gas in each cylinder using the relation

or

f
Nf ‘/ClePJ

J = Rij (2)

where the subscript J refers to the cylinder number. The answers are

Tf =164.3K  N{ =1.464 kmol
Tf =255.6 K NJ =0.941 kmol

COMMENTS

The solution of this problem for real fluids is considerably more complicated than for the ideal
gas. The starting points are again

Pl =P/ (h)
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and _
N{ + N{ = N; )

and Eqs. d and e. However, instead of Eq. g we now have

\%
f_ Veyll .
Ni = % 0)]
and
\%
f_ Veyl2
N2 - Yg (k)

where VJ and V are related to (77, P") and (TJ, P}/), respectively, through the equation of
state or tabular PV'T" data of the form

{=via!,p) ()
vi=vi@, P (m)

The energy balance for the two-cylinder composite system is
NiUy = NU{ + NJUS (n)

Since a thermal equation of state or tabular data of the form U = U (T, V) are presumed available,
Eq. n introduces no new variables.

Thus we have seven equations among eight unknowns (N{, NJ, 17, 7/, P/, P/, V!, and
Yé ). The final equation needed to solve this problem can, in principle, be obtained by the ma-
nipulation and integration of Eq. e, as in the ideal gas case, but now using the real fluid equation
of state or tabular data and numerical integration techniques. Since this analysis is difficult, and
a simpler method of solution (discussed in Chapter 6) is available, the solution of this problem
for the real fluid case is postponed until Sec. 6.5. |

ILLUSTRATION 3.4-6

Showing That the Change in State Variables between Fixed Initial and Final States Is Indepen-
dent of the Path Followed

It is possible to go from a given initial equilibrium state of a system to a given final equilibrium
state by a number of different paths, involving different intermediate states and different amounts
of heat and work. Since the internal energy of a system is a state property, its change between
any two states must be independent of the path chosen (see Sec. 1.3). The heat and work flows
are, however, path-dependent quantities and can differ on different paths between given initial
and final states. This assertion is established here by example. One mole of a gas at a temperature
of 25°C and a pressure of 1 bar (the initial state) is to be heated and compressed in a frictionless
piston and cylinder to 300°C and 10 bar (the final state). Compute the heat and work required
along each of the following paths.

Path A. Isothermal (constant temperature) compression to 10 bar, and then isobaric (constant
pressure) heating to 300°C

Path B. Isobaric heating to 300°C followed by isothermal compression to 10 bar

Path C. A compression in which PV = constant, where v = C}/C%;, followed by an
isobaric cooling or heating, if necessary, to 300°C.
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For simplicity, the gas is assumed to be ideal with C} = 38 J/(mol K).

350 -
Final state
300 i———EtE—P'———T
201 | |
o 200 | - 4|
°: f < /v/
150 | s +
s |
100 F I // |
/

0 | Path A J|
Initial state Ny

0 2 4 6 8 10 12

P (bar)

SOLUTION

The 1-mol sample of gas will be taken as the thermodynamic system. The difference form of the
mass balance for this closed, deforming volume of gas is

N = constant = 1 mol

and the difference form of the energy balance is

AU:Q—/PdV:Q+W

Path A

i. Isothermal compression

% % %
V V, av V, g % P
Wi:—/ QPdV:f/ QRT—:fRT/ >V Y2 _prm 22
v, v, "V v,V v, P,

10
= 8.314.J/(mol K) x 208.15 K x In — = 5707.7 J /mol

Since
T2
Ay = O;k/ dT = C:/(TQ - Tl) and TQ = T1 = 2500
T

we have

AU =0 and @Q;=-W,=—5707.7J/mol
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ii. Isobaric heating

Ys YS
Wii:_/ PQdV:—Pz/ dV:—PQ(Yj—Yz):—R(Tg—TQ)
Yz -2
T3
To

and

Qi = AU — Wy = Cy(Ts — Ts) + R(T3 — Tz) = (Cy + R) (T3 — T)
= Cp(T3 — T2)

[This is, in fact, a special case of the general result that at constant pressure for a closed

system, @ = [C% dT. This is easily proved by starting with

. dU av
= — P—
@ dt + dt
and using the fact that P is constant to obtain
. dU d d dH dT
= — 4+ (PV)=—(U+PV)=— =C} —
Q=g TPV = G UHPY) = Podt
Now setting Q = [ Q dt yields Q = [ C} dT.]
Therefore,

Wy = —8.314 J/(mol K) x 275 K = —2286.3 J /mol
Qi = 38 J/(mol K) x 275 K = 10 450 J /mol

Q = Q; + Qi = —5707.7 + 10 450 = 4742.3 J /mol
W =W; + Wy = 5707.7 — 2286.3 = 3421.4 J /mol

Path B
i. Isobaric heating

W, = —R(Ty — T}) = —2286.3 J /mol

ii. Isothermal compression

Py 10
Wi = RTIn — = 8.314 x 573.151n 7)< 10 972.2 J/mol
1

Qi = —W; = —10972.2 J/mol
Q = 10450 — 10 972.2 = —522.2 J/mol
W = —2286.3 + 10 972.2 = 8685.9 J/mol

Path C

i. Compression with PV = constant

v

Vo ~ 2 constant constant ,_ ;_ 1—
Wi = — PdV = — ——dV = ————(V, T =V
v, v, ¥V L=
1 —R(Ty — T —R(T, — T
A A

11—~ ! l—y 1 (Cp/CY)

_Tl)
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where T, can be computed from

RT,\” RT,\”
Hm=ﬂ(;):&w=%<—ﬂ

1 P2

T, B P, (v=1)/~
T, \ P

or

Now
Ci 38
y=E = T —1.280
Cy 38 —8.314
so that
Ty = 298.15 K (10)0-289/1-280 — 493 38 K
and

Wi = C5(Ty — Ty) = (38 — 8.314) J/(mol K) x (493.38 — 298.15) K
= 5795.6 J /mol
AU; = C(Ty — Ty) = 5795.6 J /mol
Qi = AU = Wi =0

il. Isobaric heating

Qi = C5(Ts — Ty) = 38 J/(mol K) x (573.15 — 493.38) K = 3031.3 J /mol
Wi = —R(Ty — Tb) = —8.314 J /(mol K) x (573.15 — 493.38) K = —663.2 J/mol

and
Q =0+ 3031.3 = 3031.3 J/mol
W =5795.6 — 663.2 = 5132.4 J/mol
SOLUTION
Path @ (J/mol) W (J/mol) @+ W = AU(J/mol)
A 4742.3 3421.4 8163.7
B —522.2 8685.9 8163.7
C 3031.3 51324 8163.7
COMMENT

83

Notice that along each of the three paths considered (and, in fact, any other path between the
initial and final states), the sum of @ and W, which is equal to AU, is 8163.7 J/mol, even though
@ and W separately are different along the different paths. This illustrates that whereas the
internal energy is a state property and is path independent (i.e., its change in going from state
1 to state 2 depends only on these states and not on the path between them), the heat and work

flows depend on the path and are therefore path functions.
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ILLUSTRATION 3.4-7
Showing That More Work Is Obtained If a Process Occurs without Friction

An initial pressure of 2.043 bar is maintained on 1 mol of air contained in a piston-and-cylinder
system by a set of weights WV, the weight of the piston, and the surrounding atmosphere. Work is
obtained by removing some of the weights and allowing the air to isothermally expand at 25°C,
thus lifting the piston and the remaining weights. The process is repeated until all the weights
have been removed. The piston has a mass of w = 5 kg and an area of 0.01 m?. For simplicity, the
air can be considered to be an ideal gas. Assume that, as a result of sliding friction between the
piston and the cylinder wall, all oscillatory motions of the piston after the removal of a weight
will eventually be damped.

Compute the work obtained from the isothermal expansion and the heat required from external
sources for each of the following:

. The weight WV is taken off in one step.

. The weight is taken off in two steps, with W/2 removed each time.

. The weight is taken off in four steps, with WW/4 removed each time.

. The weight is replaced by a pile of sand (of total weight V), and the grains of sand are
removed one at a time.

e T

Processes b and d are illustrated in the following figure.'®

SOLUTION

L. Analysis of the problem. Choosing the air in the cylinder to be the system, recognizing that for
an ideal gas at constant temperature U is constant so that AU = 0, and neglecting the kinetic
and potential energy terms for the gas (since the mass of 1 mol of air is only 29 g), we obtain the
following energy balance equation:

0:Q—/PdV (@)

The total work done by the gas in lifting and accelerating the piston and the weights against the
frictional forces, and in expanding the system volume against atmospheric pressure is contained
inthe — [P dV term. To see this we recognize that the laws of classical mechanics apply to the
piston and weights, and equate, at each instant, all the forces on the piston and weights to their
acceleration,

Mass of 