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Preface

PREFACE FOR INSTRUCTORS

This book is intended as the text for a course in thermodynamics for undergraduate and graduate students in
chemical engineering and also for practicing engineers. Its previous four editions have served this purpose at
the University of Delaware for almost forty years. In writing the first edition of this book I had two objectives
that have been retained in the succeeding editions. The first was to develop a modern applied thermodynamics
text, especially for chemical engineers, relevant to other parts of the curriculum–specifically to courses in sep-
arations processes, chemical reactor analysis, and process design. The other objective was to develop, organize
and present material in sufficient detail for students to obtain a good understanding of the basic principles of
thermodynamics and a proficiency in applying these principles to the solution of a large variety of energy flow
and equilibrium problems.
Since the earlier editions largely met these goals, and since the principles of thermodynamics have not changed

over the past decade, this edition is similar in structure to the earlier ones. During this time, however, important
changes in engineering education have taken place. The first is the increasing availability of powerful desktop
computers and computational software, along with well-developed and easy-to-use process simulation software.
Another is the increasing application of chemical engineering thermodynamics principles and models to new
areas of technology such as polymers, biotechnology, solid-state processing, and the environment. The current
edition of this text includes applications that address each of these changes.
The availability of desktop computers and equation-solving software has now made it possible to closely align

engineering science, industrial practice, and undergraduate education. In their dormitory rooms or at home, stu-
dents can now perform sophisticated thermodynamics and phase equilibrium calculations similar to those they
will encounter in industry. In this fifth edition, I provide several different methods for making such calculations.
The first is to utilize the set of programs I have developed for making specific types of calculations included in
the fourth edition. These programs enable (1) the calculation of thermodynamic properties and vapor-liquid equi-
librium of a pure fluid described by a cubic equation of state; (2) the calculation of the thermodynamic properties
and phase equilibria for a multicomponent mixture described by a cubic equation of state; and (3) the predic-
tion of activity coefficients in a mixture using the UNIFAC group-contribution activity coefficient model. These
programs are available on the website for this book as both program-code and stand-alone executable modules;
they are unchanged from the previous edition of this book. However, I suggest instead the use of the thermody-
namics package in Aspen Plus(R), which is continually updated and has an easy-to-use interface.
The second is to employ the computer algebra/calculus programs for MATHCAD on the website that provides

solutions to many illustrations and homework problems in this edition. Alternatively, students and instructors
could use similar programs such as MATHEMATICA, MAPLE, and MATLAB. Students who develop their
own codes for such computer programs can achieve a thorough understanding of the methods required (and the
computational difficulties involved) in solving complex problems without having to become experts in computer
programming and numerical analysis. Students who use my prepared codes will be able to solve interesting
problems and concentrate on the subject matter at hand, namely, thermodynamics, without being distracted by
computational methods, algorithms, and programming languages. These equation-solving programs are, in my
view, valuable educational tools; but there is no material in this textbook that requires their use. Whether to
implement them or not is left to the discretion of the instructor.

iv
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More recently in engineering practice, these one-off thermodynamics programs written by textbook authors
have been replaced by suites of programs, process simulators, that make it possible to quickly model a whole
chemical plant using current unit operations and thermodynamics models, as well as to access enormous data-
banks of pure fluid and mixture thermodynamic data. A number of such simulators are available, such as ASPEN,
HYSIS, PROSIM, and CAPE-OPEN. In this fifth edition, I have incorporated the ASPEN process simulator by
adding thermodynamics illustrations and homework problems that use ASPEN. I recognize, however, that there
is no universal agreement on the use of a process simulator in, especially, an undergraduate thermodynamics
course. Indeed, there are those in my own department who argue against it. The argument against the use of
prepared computer programs in general, and process simulators in particular, is that students will treat them
as “black boxes” without understanding the fundamentals of thermodynamics or the methods for choosing the
thermodynamic models most appropriate to the problem at hand. My argument for using process simulators in
undergraduate instructional courses is two-fold. First, it allows students to solve with great efficiency more in-
teresting and practical problems than they could, within a reasonable time-frame, solve by hand; and it provides
them an opportunity to ask and answer “what-if” questions. For example, what happens to the vapor-liquid split
and the compositions of each of the co-existing phases in a multi-component Joule-Thomson expansion if the in-
let temperature or pressure is changed? Answering such what-if questions allows students to quickly develop an
intuitive sense of the way processes behave, an understanding that otherwise might only be attained by repeated,
tedious hand calculations. Second, using a process simulator introduces students to a tool they are likely to em-
ploy in their professional career. Moreover, modern process-simulation software is generally bug-free, providing
an easy-to-use interface that is the same for all problems.
In this argument I have taken the middle road. By means of some of the illustrations and problems provided in

this text, students will initially develop an understanding of the basic applications and methods of thermodynam-
ics by doing hand calculations. Then, once they understand the basic principles and methods, I encourage them
to use process simulators (rather than my previous programs) to explore many additional, and more complicated,
applications of thermodynamic principles. Whereas nothing in this new edition requires students or the instruc-
tor to use a process simulator, the illustrations do contain examples of the results of using a process simulator.
In addition, many opportunities for using process simulator software are provided in the numerous end-of-chapter
problems. Furthermore, by using a process simulator the instructor can easily change the input parameters of a
homework problem and obtain the solution, thereby providing unlimited opportunities for creating new problems.
On the designated website for this new edition, I have, therefore, provided the ASPEN 8.6 input files for nu-

merous illustrations and problems presented in the textbook. I have chosen ASPEN because it appears to be the
process simulator most widely used in industry and at colleges and universities, in the United States at least.
Clearly, any other process simulation software could be employed, but in these cases users will need to develop
their own input files. Since I am introducing ASPEN in this fifth edition, I have not updated the thermody-
namics programs included in previous editions of this textbook, and they remain available on the website. Still,
I encourage the use of Aspen or other process-simulation software rather than these more primitive programs.
(For assistance in employing the thermodynamics packages in Aspen, I suggest consulting my recent book,Using
Aspen Plus in Thermodynamics Instruction, published by Wiley/AIChE in 2015.)
In an effort tomake the subject of thermodynamicsmore accessible to students, the format of this book provides

space for marginal notes. The notes I have added are meant to emphasize important ideas and concepts, as well as
to make it easier for students to locate these concepts at a later time. Since I frequently write notes in the margins
of books I own, I wanted to provide a place for students to add notes of their own. Also, I continue to enclose
important equations in boxes, so that readers can easily identify the equations that are the end results of often
detailed analysis. I hope this will enable students to quickly identify the central tree in what seems like a forest
of equations. I have also provided a short title or description for each illustration to indicate the primary concept
that is to be learned or grasped.
Readers familiar with earlier editions of this book will notice that while the basic structure remains the same,

it contains many internal changes. For example, there are many new illustrative and homework problems.
Illustrations have been added not only to demonstrate new concepts, but also to provide breaks among pages of
mathematical derivations or thermodynamic philosophy. These should make thermodynamics and phase
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equilibria more relevant to the interests of students. There are additional sections on chemical reactions in bio-
chemical systems and I have included additional material on energy and energy-related processes. Furthermore,
the biochemical applications now appear throughout the second half of the book rather than being relegated to
the final chapter, as was the case in the previous edition.
Some of the idiosyncrasies present in earlier editions remain here. For example, I prefer to use the term energy

balance rather than the first law, and to show that the Carnot efficiency easily follows once entropy is defined.
Here I depart from the more common procedure of introducing entropy (and the second law) in terms of the
Carnot cycle. My experience with the latter method is that students then have difficulty making the necessary
generalization if the concept of entropy and the second law are introduced in terms of a specific device. Also,
I continue to prefer the partial molar Gibbs energy, which describes the function precisely, to the term chemical
potential. In most other areas, I employ traditional thermodynamic notation.
It has been a decade since the appearance of the fourth edition of this book. During this time many people

have encouraged me to prepare a new edition and have graciously contributed their views, ideas, and advice. The
most important contributors have been the undergraduate and graduate students I have taught at the University of
Delaware. I have benefited greatly from their inquisitive minds and penetrating questions. I have also benefited
from the helpful comments of colleagues at the University of Delaware and elsewhere who have used earlier
editions of this book, and from the questions and comments of students around the world who have corresponded
with me by email. I do refuse, however, to provide these students with solutions to homework problems assigned
by their instructors, a not infrequent request.
I wish to thank the administration and my colleagues at the University of Delaware, who have provided the

unencumbered time of a sabbatical leave necessary for the completion of this new edition. And I am grateful, as
always, to my family for their support.

Stanley I. Sandler
Newark, Delaware
January 25, 2016

PREFACE FOR STUDENTS

Thermodynamics is essential to the practice of chemical engineering. Amajor part of the equipment and operating
costs of processes developed by chemical engineers is based on design methods that apply the principles of
thermodynamics. In courses you will take later in the chemical engineering program–on mass transfer, reaction
engineering, and process design you will discover just how important a foundation thermodynamics provides.
At this point in your education, you have probably been exposed to some aspects of thermodynamics in courses

in general chemistry, physical chemistry, and physics. My recommendation is that you set aside what you have
learned about thermodynamics in those courses and start with a freshmind. To beginwith, the notation in this book
is different from that employed in those courses and more like the notation used in other chemical engineering
courses. In non-engineering courses, thermodynamics is usually applied only to a closed system (for example,
a fixed mass of a substance), while engineering applications generally involve open systems–that is, those with
mass flows into and/or out of the system. Moreover, you may have been introduced to entropy using a device such
as a Carnot cycle. Please expunge from your mind the connection between entropy and such devices. Entropy,
like energy, is a very general concept, independent of any such device. Entropy is different from energy (and mass
and momentum) in that it is not a conserved property. Indeed that is one of its most important characteristics and
allows us to explain why processes go in one direction and not in the reverse.
As you will see (in Chapter 4), even though it is a non-conserved property, entropy is very important.

For example, if two metal blocks, one hot and the other cold, are put into contact with each other, the con-
cept of entropy leads us to the conclusion that heat will be transferred from the hot block to the cold one, and
not the reverse, and that after a while, the two blocks will be at the same temperature. Both of these conclusions
are in agreement with our experience. Note that the principle of energy conservation tells us only that the total
energy of the system will ultimately equal the total initial energy, but not that the blocks need to be at the same
temperature. This is one illustration of the fact that we frequently have to employ the concepts of both energy
conservation and entropy to solve problems in thermodynamics.
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Thermodynamics is applied in two central ways. One is to calculate heat and work (or more generally energy)
flows: for example, to determine the conversion of heat to work in various types of engines; and to determine
the heat flows accompanying chemical reactions or changes from one state of system to another. The second
important type of thermodynamic calculation is to determine the equilibrium state: for example, to calculate the
equilibrium compositions of the vapor and liquid of a complexmixture needed to design amethod, such as distilla-
tion, for purifying the components; or to determine the equilibrium composition of a chemically reacting system.
After completing your study of this textbook, you should be able to do all such calculations, as well as some
computations relating to biochemical processing, safety, and the distribution of chemicals in the environment.
Chemical engineering, and the applied thermodynamics presented in this book deals with real substances; and

therein lie two of the difficulties. The first is that the properties of real substances may not be completely known
from an experiment or available in tables at all temperatures and pressures (and for mixtures at all compositions).
These may need to be approximately described by model equations: for example, a volumetric equation of state
that interrelates pressure, volume, and temperature (the ideal gas equation of state applies only to gases at very
low pressures and not to conditions generally of interest to chemical engineers); or equations that relate activity
coefficients to composition. Any one of several different models may be used to describe a pure substance or
mixture, and each will result in slightly different answers when solving a problem. Within the accuracy of the
underlying equations, however, all the solutions are likely to be correct if the appropriate models are used. This
may be disconcerting to you, as in other courses–especially in mathematics and physics–you may be used to
solving problems that have only a single correct answer. The situation here is one that is continually faced by
practicing engineers. They must solve a problem, even though the description of the properties is imperfect, and
choose which equation of state or activity coefficient model to employ. (Some guidance in making such choices
for mixtures is provided in Section 9.11.)
The second problem that arises is that the equations of state and activity coefficient models used in thermody-

namics are not linear algebraic equations, which can make the computations difficult. It is for this reason that I
provide a collection of computer aids on thewebsite for this book. Included areMATHCADworksheets, VISUAL
BASIC programs (as code and stand-alone executable modules), MATLAB programs (as code and essentially
stand-alone programs), and older DOS BASIC programs (as code and stand-alone executable programs). These
computer aids are described in Appendix B. What I highly recommend, however, is that you use the thermo-
dynamics packages in process simulators such as Aspen. These have the following advantages: they have been
developed over many years by experts, so that they are free of the bugs in programs written by professors; they
have a nice interface that can be used in solving many different problems; they include the most recent thermody-
namic models; and they have large databases with substance-specific parameters for these models. Perhaps most
important, these programs are the ones you are most likely to use in later classes in the chemical engineering
program and throughout your career.
I have also provided several instructional aides to help you in your study of thermodynamics. First, every

chapter of this book begins with a list of Instructional Objectives, indicating important items to be learned.
I suggest reading these objectives before starting a chapter and then reviewing them while preparing for exami-
nations. Second, important equations are displayed in boxes, and some very important ones within those boxes are
indicated by name or description in the margins. Third, at the end of each chapter (and in the case of Chapters 10,
11, and 12, also at the end of each section) you will find many problems to work on to hone your problem-solving
skills. Finally, Appendix C provides answers to selected problems. Only the final answers appear, however, not a
complete solution containing the steps required to arrive at that answer. Keep in mind that you may be solving a
problem correctly but may get a slightly different numerical answer than the one I have provided either because
you read a graph of thermodynamic properties slightly differently than I or because you used a correct but dif-
ferent equation of state or activity coefficient model. If your answer and mine differ only slightly, it is likely that
both are correct.
Good luck in your study of thermodynamics.

Stanley I. Sandler
Newark, Delaware
January 25, 2016
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PROPOSED SYLLABI

Two semester undergraduate chemical engineering thermodynamics course
Cover as much of the book as possible. If necessary, I would omit following material:

Sections 2.4 and 3.6

Section 6.9

Section 9.9

Sections 12.3, 4 and 5

Chapter 14 (as this material may be covered in the
reaction engineering course) and perhaps Chapter 15
if there is no interest in biochemical engineering

Two quarter undergraduate chemical engineering thermodynamics course
I suggest omitting the following chapters and sections:

Sections 2.4 and 3.6

Section 5.4

Sections 6.6, 6.9 and 10

Section 7.8

Section 9.9

Sections 12.3, 4 and 5

Chapter 14 (as this material may be covered in the
reaction engineering course) and perhaps Chapter 15
if there is no interest in biochemical engineering

One semester undergraduate chemical engineering thermodynamics course following a one semester
general or mechanical engineering thermodynamics course
I suggest quickly reviewing the notation in Chapters 2, 3 and 4, then start with Chapter 8. With the limited time
available, I suggest omitting the following chapters and sections:

Section 9.9

Sections 12.3, 4 and 5

Chapter 14 (as this material may be covered in the
reaction engineering course) and Chapter 15 if there
is no interest in biochemical engineering

One quarter undergraduate chemical engineering thermodynamics course following a general or mechan-
ical engineering thermodynamics course
Quickly review the notation in chapters 2, 3 and 4, then go directly to Chapter 8. With the very limited time
available, I suggest omitting the following chapters and sections:

Section 9.9

Sections 11.3, 4 and 5

Chapter 12

Chapter 14 (as this material may be covered in the
reaction engineering course) and Chapter 15 if there
is no interest in biochemical engineering



Contents

CHAPTER 1 INTRODUCTION 1
Instructional Objectives for Chapter 1 3
Important Notation Introduced in This Chapter 4
1.1 The Central Problems of Thermodynamics 4
1.2 A System of Units 5
1.3 The Equilibrium State 7
1.4 Pressure, Temperature, and Equilibrium 10
1.5 Heat, Work, and the Conservation of Energy 15
1.6 Specification of the Equilibrium State; Intensive and Extensive

Variables; Equations of State 18
1.7 A Summary of Important Experimental Observations 21
1.8 A Comment on the Development of Thermodynamics 23
Problems 23

CHAPTER 2 CONSERVATION OF MASS 25
Instructional Objectives for Chapter 2 25
Important Notation Introduced in This Chapter 26
2.1 A General Balance Equation and Conserved Quantities 26
2.2 Conservation of Mass for a Pure Fluid 30
2.3 The Mass Balance Equations for a Multicomponent System with a

Chemical Reaction 35
2.4 The Microscopic Mass Balance Equations in Thermodynamics and

Fluid Mechanics (Optional - only on the website for this book) 43
Problems 44

CHAPTER 3 CONSERVATION OF ENERGY 45
Instructional Objectives for Chapter 3 46
Notation Introduced in This Chapter 46
3.1 Conservation of Energy 47
3.2 Several Examples of Using the Energy Balance 54
3.3 The Thermodynamic Properties of Matter 59
3.4 Applications of the Mass and Energy Balances 69
3.5 Conservation of Momentum 93
3.6 The Microscopic Energy Balance (Optional - only on website

for this book) 93
Problems 93

ix



x Contents

CHAPTER 4 ENTROPY: AN ADDITIONAL BALANCE EQUATION 99
Instructional Objectives for Chapter 4 99
Notation Introduced in This Chapter 100
4.1 Entropy: A New Concept 100
4.2 The Entropy Balance and Reversibility 108
4.3 Heat, Work, Engines, and Entropy 114
4.4 Entropy Changes of Matter 125
4.5 Applications of the Entropy Balance 128
4.6 Availability and the Maximum Useful Shaft Work that can be obtained

In a Change of State 140
4.7 The Microscopic Entropy Balance (Optional - only on website

for this book) 145
Problems 145

CHAPTER 5 LIQUEFACTION, POWER CYCLES, AND EXPLOSIONS 152
Instructional Objectives for Chapter 5 152
Notation Introduced in this Chapter 152
5.1 Liquefaction 153
5.2 Power Generation and Refrigeration Cycles 158
5.3 Thermodynamic Efficiencies 181
5.4 The Thermodynamics of Mechanical Explosions 185
Problems 194

CHAPTER 6 THE THERMODYNAMIC PROPERTIES OF REAL SUBSTANCES 200
Instructional Objectives for Chapter 6 200
Notation Introduced in this Chapter 201
6.1 Some Mathematical Preliminaries 201
6.2 The Evaluation of Thermodynamic Partial Derivatives 205
6.3 The Ideal Gas and Absolute Temperature Scales 219
6.4 The Evaluation of Changes in the Thermodynamic Properties of Real

Substances Accompanying a Change of State 220
6.5 An Example Involving the Change of State of a Real Gas 245
6.6 The Principle of Corresponding States 250
6.7 Generalized Equations of State 263
6.8 The Third Law of Thermodynamics 267
6.9 Estimation Methods for Critical and Other Properties 268
6.10 Sonic Velocity 272
6.11 More About Thermodynamic Partial Derivatives (Optional - only on

website for this book) 275
Problems 275

CHAPTER 7 EQUILIBRIUM AND STABILITY IN ONE-COMPONENT SYSTEMS 285
Instructional Objectives for Chapter 7 285
Notation Introduced in This Chapter 285
7.1 The Criteria for Equilibrium 286
7.2 Stability of Thermodynamic Systems 293
7.3 Phase Equilibria: Application of the Equilibrium and Stability Criteria

to the Equation of State 300



Contents xi

7.4 The Molar Gibbs Energy and Fugacity of a Pure Component 307
7.5 The Calculation of Pure Fluid-Phase Equilibrium: The Computation

of Vapor Pressure from an Equation of State 322
7.6 Specification of the Equilibrium Thermodynamic State of a

System of Several Phases: The Gibbs Phase Rule for a
One-Component System 330

7.7 Thermodynamic Properties of Phase Transitions 334
7.8 Thermodynamic Properties of Small Systems, or Why Subcooling

and Superheating Occur 341
Problems 344

CHAPTER 8 THE THERMODYNAMICS OF MULTICOMPONENT MIXTURES 353
Instructional Objectives for Chapter 8 353
Notation Introduced in this chapter 353
8.1 The Thermodynamic Description of Mixtures 354
8.2 The Partial Molar Gibbs Energy and the Generalized Gibbs-Duhem

Equation 363
8.3 A Notation for Chemical Reactions 367
8.4 The Equations of Change for a Multicomponent System 370
8.5 The Heat of Reaction and a Convention for the Thermodynamic

Properties of Reacting Mixtures 378
8.6 The Experimental Determination of the Partial Molar Volume

and Enthalpy 385
8.7 Criteria for Phase Equilibrium in Multicomponent Systems 396
8.8 Criteria for Chemical Equilibrium, and Combined Chemical

and Phase Equilibrium 399
8.9 Specification of the Equilibrium Thermodynamic State of a

Multicomponent, Multiphase System; the Gibbs Phase Rule 404
8.10 A Concluding Remark 408
Problems 408

CHAPTER 9 ESTIMATION OF THE GIBBS ENERGY AND FUGACITY
OF A COMPONENT IN A MIXTURE 416
Instructional Objectives for Chapter 9 416
Notation Introduced in this Chapter 417
9.1 The Ideal Gas Mixture 417
9.2 The Partial Molar Gibbs Energy and Fugacity 421
9.3 Ideal Mixture and Excess Mixture Properties 425
9.4 Fugacity of Species in Gaseous, Liquid, and Solid Mixtures 436
9.5 Several Correlative Liquid Mixture Activity Coefficient Models 446
9.6 Two Predictive Activity Coefficient Models 460
9.7 Fugacity of Species in Nonsimple Mixtures 468
9.8 Some Comments on Reference and Standard States 478
9.9 Combined Equation-of-State and Excess Gibbs Energy Model 479
9.10 Electrolyte Solutions 482
9.11 Choosing the Appropriate Thermodynamic Model 490
Appendix A9.1 A Statistical Mechanical Interpretation of the Entropy

of Mixing in an Ideal Mixture (Optional – only on the
website for this book) 493



xii Contents

Appendix A9.2 Multicomponent Excess Gibbs Energy (Activity Coefficient)
Models 493

Appendix A9.3 The Activity Coefficient of a Solvent in an Electrolyte
Solution 495

Problems 499

CHAPTER 10 VAPOR-LIQUID EQUILIBRIUM IN MIXTURES 507
Instructional Objectives for Chapter 10 507
Notation Introduced in this Chapter 508
10.0 Introduction to Vapor-Liquid Equilibrium 508
10.1 Vapor-Liquid Equilibrium in Ideal Mixtures 510
Problems for Section 10.1 536
10.2 Low-Pressure Vapor-Liquid Equilibrium in Nonideal Mixtures 538
Problems for Section 10.2 568
10.3 High-Pressure Vapor-Liquid Equilibria Using Equations of State

(φ-φ Method) 578
Problems for Section 10.3 595

CHAPTER 11 OTHER TYPES OF PHASE EQUILIBRIA IN FLUID MIXTURES 599
Instructional Objectives for Chapter 11 599
Notation Introduced in this Chapter 600
11.1 The Solubility of a Gas in a Liquid 600
Problems for Section 11.1 615
11.2 Liquid-Liquid Equilibrium 617
Problems for Section 11.2 646
11.3 Vapor-Liquid-Liquid Equilibrium 652
Problems for Section 11.3 661
11.4 The Partitioning of a Solute Among Two Coexisting Liquid Phases;

The Distribution Coefficient 665
Problems for Section 11.4 675
11.5 Osmotic Equilibrium and Osmotic Pressure 677
Problems for Section 11.5 684

CHAPTER 12 MIXTURE PHASE EQUILIBRIA INVOLVING SOLIDS 688
Instructional Objectives for Chapter 12 688
Notation Introduced in this Chapter 688
12.1 The Solubility of a Solid in a Liquid, Gas, or Supercritical Fluid 689
Problems for Section 12.1 699
12.2 Partitioning of a Solid Solute Between Two Liquid Phases 701
Problems for Section 12.2 703
12.3 Freezing-Point Depression of a Solvent Due to the Presence of a Solute;

the Freezing Point of Liquid Mixtures 704
Problems for Section 12.3 709
12.4 Phase Behavior of Solid Mixtures 710
Problems for Section 12.4 718
12.5 The Phase Behavior Modeling of Chemicals in the Environment 720
Problems for Section 12.5 726



Contents xiii

12.6 Process Design and Product Design 726
Problems for Section 12.6 732
12.7 Concluding Remarks on Phase Equilibria 732

CHAPTER 13 CHEMICAL EQUILIBRIUM 734
Instructional Objectives for Chapter 13 734
Important Notation Introduced in This Chapter 734
13.1 Chemical Equilibrium in a Single-Phase System 735
13.2 Heterogeneous Chemical Reactions 768
13.3 Chemical Equilibrium When Several Reactions Occur in a Single Phase 781
13.4 Combined Chemical and Phase Equilibrium 791
13.5 Ionization and the Acidity of Solutions 799
13.6 Ionization of Biochemicals 817
13.7 Partitioning of Amino Acids and Proteins Between Two Liquids 831
Problems 834

CHAPTER 14 THE BALANCE EQUATIONS FOR CHEMICAL REACTORS,
AVAILABILITY, AND ELECTROCHEMISTRY 848
Instructional Objectives for Chapter 14 848
Notation Introduced in this Chapter 849
14.1 The Balance Equations for a Tank-Type Chemical Reactor 849
14.2 The Balance Equations for a Tubular Reactor 857
14.3 Overall Reactor Balance Equations and the Adiabatic Reaction

Temperature 860
14.4 Thermodynamics of Chemical Explosions 869
14.5 Maximum Useful Work and Availability in Chemically Reacting Systems 875
14.6 Introduction to Electrochemical Processes 882
14.7 Fuel Cells and Batteries 891
Problems 897

CHAPTER 15 SOME ADDITIONAL BIOCHEMICAL APPLICATIONS
OF THERMODYNAMICS 900
Instructional Objectives for Chapter 15 900
Notation Introduced in this Chapter 901
15.1 Solubilities of Weak Acids, Weak Bases, and Amino Acids

as a Function of pH 901
15.2 The Solubility of Amino Acids and Proteins as a funciton

of Ionic Strength and Temperature 911
15.3 Binding of a Ligand to a Substrate 917
15.4 Some Other Examples of Biochemical Reactions 922
15.5 The Denaturation of Proteins 925
15.6 Coupled Biochemical Reactions: The ATP-ADP Energy Storage

and Delivery Mechanism 932
15.7 Thermodynamic Analysis of Fermenters and Other Bioreactors 937
15.8 Gibbs-Donnan Equilibrium and Membrane Potentials 960
15.9 Protein Concentration in an Ultracentrifuge 967
Problems 970



xiv Contents

APPENDIX A THERMODYNAMIC DATA 973
Appendix A.I Conversion Factors for SI Units 973
Appendix A.II The Molar Heat Capacities of Gases in the Ideal Gas (Zero

Pressure) State 974
Appendix A.III The Thermodynamic Properties of Water and Steam 977
Appendix A.IV Enthalpies and Free Energies of Formation 987
Appendix A.V Heats of Combustion 990

APPENDIX B BRIEF DESCRIPTIONS OF COMPUTER AIDS FOR USE
WITH THIS BOOK 992

APPENDIX B
on Website only

DESCRIPTIONS OF COMPUTER PROGRAMS AND COMPUTER
AIDS FOR USE WITH THIS BOOK B1
Appendix B.I Windows-based Visual Basic Programs B1
Appendix B.II DOS-based Basic Programs B9
Appendix B.III MATHCAD Worksheets B12
Appendix B.IV MATLAB Programs B14

APPENDIX C ASPEN ILLUSTRATION INPUT FILES. THESE ARE ON THE
WEBSITE FOR THIS BOOK 994

APPENDIX D ANSWERS TO SELECTED PROBLEMS 995

INDEX 998



Chapter 1

Introduction

Amajor objective of any field of pure or applied science is to summarize a large amount
of experimental information with a few basic principles. The hope is that any new ex-
perimental measurement or phenomenon can be easily understood in terms of the es-
tablished principles, and that predictions based on these principles will be accurate.
This book demonstrates how a collection of general experimental observations can be
used to establish the principles of an area of science called thermodynamics, and then
shows how these principles can be used to study a wide variety of physical, chemical,
and biochemical phenomena.
Questions the reader of this book might ask include what is thermodynamics and

why should one study it? The word thermodynamics consists of two parts: the prefix
thermo, referring to heat and temperature, and dynamics, meaning motion. Initially,
thermodynamics had to do with the flow of heat to produce mechanical energy that
could be used for industrial processes and locomotion. This was the study of heat en-
gines, devices used to operate mechanical equipment, drive trains and cars, and perform
many other functions that accelerated progress in the Industrial Age. These started with
steam engines and progressed to internal combustion engines, turbines, heat pumps, air
conditioners, and other devices. This part of thermodynamics is largely the realm of
mechanical engineers. However, because such equipment is also used in chemical pro-
cessing plants, it is important for chemical engineers to have an understanding of the
fundamentals of this equipment. Therefore, such equipment is considered briefly in
Chapters 4 and 5 of this book. These applications of thermodynamics generally require
an understanding the properties of pure fluids, such as steam and various refrigerants,
and gases such as oxygen and nitrogen.
More central to chemical engineering is the study of mixtures. The production of

chemicals, polymers, pharmaceuticals and other biological materials, and oil and gas
processing, all involve chemical or biochemical reactions (frequently in a solvent) that
produce a mixture of reaction products. These must be separated from the mixture and
purified to result in products of societal, commercial, or medicinal value. It is in these
areas that thermodynamics plays a central role in chemical engineering. Separation pro-
cesses, of which distillation is the most commonly used in the chemical industry, are
designed based on information from thermodynamics. Of particular interest in the de-
sign of separation and purification processes is the compositions of two phases that
are in equilibrium. For example, when a liquid mixture boils, the vapor coming off
can be of a quite different composition than the liquid from which it was obtained.
This is the basis for distillation, and the design of a distillation column is based on

1
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predictions from thermodynamics. Similarly, when partially miscible components are
brought together, two (or more) liquid phases of very different composition will form,
and other components added to this two-phase mixture will partition differently be-
tween the phases. This phenomenon is the basis for liquid-liquid extraction, another
commonly used separation process, especially for chemicals and biochemicals that can-
not be distilled because they do not vaporize appreciably or because they break down on
heating. The design of such processes is also based on predictions from thermodynam-
ics. Thus, thermodynamics plays a central role in chemical process design. Although
this subject is properly considered in other courses in the chemical engineering curricu-
lum, we will provide very brief introductions to distillation, air stripping, liquid-liquid
extraction, and other processes so that the student can appreciate why the study of ther-
modynamics is central to chemical engineering.
Other applications of thermodynamics considered in this book include the distribu-

tion of chemicals when released to the environment, determining safety by estimating
the possible impact (or energy release) of mechanical and chemical explosions, ana-
lyzing biochemical processes, and product design, that is, identifying a chemical or
mixture that has the properties needed for a specific application.
A generally important feature of engineering design is making estimates when spe-

cific information on a fluid or fluid mixture is not available, which is almost always
the case. To understand why this is so, consider the fact that there are several hun-
dred chemicals commonly used in industry, either as final products or intermediates.
If this number were, say, 200, there would be about 20,000 possible binary mixtures,
1.3million possible ternarymixtures, 67million possible four-componentmixtures, and
so on. However, in the history of mankind the vapor-liquid equilibria of considerably
fewer than 10,000 different mixtures have been measured. Further, even if we were
interested in one of the mixtures for which data exist, it is unlikely that the measure-
ments were done at exactly the temperature and pressure in which we are interested.
Therefore, many times engineers have to make estimates by extrapolating the limited
data available to the conditions (temperature, pressure, and composition) of interest to
them, or predict the behavior of multicomponent mixtures based only on sets of two-
component mixture data. In other cases predictions may have to be made for mixtures in
which the chemical identity of one or more of the components is not known. One exam-
ple of this is petroleum or crude oil; another is the result of a polymerization reaction or
biochemical process. In these cases, many components of different molecular weights
are present that will not, and perhaps cannot, be identified by chemical analytic meth-
ods, and yet purification methods have to be designed so approximations are made.
Although the estimation of thermodynamic properties, especially of mixtures, is not

part of the theoretical foundation of chemical engineering thermodynamics, it is nec-
essary for its application to real problems. Therefore, various estimation methods are
interspersed with the basic theory, especially in Chapters 6, 8, and 11, so that the theory
can be applied.
This book can be considered as consisting of two parts. The first is the study of pure

fluids, which begins after this introductory chapter. In Chapter 2 is a review of the use
of mass balance, largely for pure fluids, but with a digression to reacting mixtures in
order to explain the idea of nonconserved variables. Although mass balances should be
familiar to a chemical engineering student from a course on stoichiometry or chemi-
cal process principles, it is reviewed here to introduce the different forms of the mass
balance that will be used, the rate-of-change and difference forms (as well as the mi-
croscopic form for the advanced student), and some of the subtleties in applying the
mass balance to systems in which flow occurs. The mass balance is the simplest of
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the balance equations we will use, and it is important to understand its application
before proceeding to the use of other balance equations. We then move on to the devel-
opment of the framework of thermodynamics and its application to power cycles and
other processes involving only pure fluids, thereby avoiding the problems of estimating
the properties of mixtures.
However, in the second part of this book, which begins in Chapter 8 and continues to

the end of the book, the thermodynamic theory of mixtures, the properties of mixtures,
and many different types of phase equilibria necessary for process design are consid-
ered, as are chemical reaction equilibria. It is this part of the book that is the essential
background for chemical engineering courses in equipment and process design. We end
the book with a chapter on the application of thermodynamics to biological and bio-
chemical processes, though other such examples have been included in several of the
preceding chapters.
Before proceeding, it is worthwhile to introduce a few of the terms used in applying

the balance equations; other, more specific thermodynamic terms and definitions appear
elsewhere in this book.

Glossary
Adiabatic system: A well-insulated system in which there are no heat flows in or out.

Closed system: A system in which there are no mass flows in or out.

Isolated system: A system that is closed to the flow of mass and energy in the form of
work flows and heat flows (i.e., is adiabatic).

Steady-state system: A system in which flows of mass, heat, and work may be present
but in such a way that the system properties do not change over time.

Cyclic process: A process that follows a periodic path so that the system has the same
properties at any point in the cycle as it did at that point in any preceding or succeeding
cycle.

The chapters in this book are all organized in a similar manner. First, there is a para-
graph or two describing the contents of the chapter and where it fits in to the general
subject of thermodynamics. This introduction is followed by some specific instructional
objectives or desired educational outcomes that the student is expected to develop from
the chapter. Next, is a brief list of the new terms or nomenclature introduced within the
chapter. After these preliminaries, the real work starts.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 1

The goals of this chapter are for the student to:

• Know the basic terminology of thermodynamics, such as internal energy, potential
energy, and kinetic energy; system, phase, and thermal and mechanical contact;
adiabatic and isolated systems; and the difference between a system and a phase

• Be able to use the SI unit system which is used in this book and throughout the
world

• Understand the concepts of absolute temperature and pressure
• Understand the difference between heat and work, and between mechanical and
thermal energies

• Understand the general concept of equilibrium, which is very important in the
application of thermodynamics in chemical engineering

• Understand the difference between intensive and extensive variables
• Understand that total mass and total energy are conserved in any process
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IMPORTANT NOTATION INTRODUCED IN THIS CHAPTER

M Mass (g)
N Number of moles (mol)
P Absolute pressure (kPa or bar)
R Gas constant (J/mol K)
T Absolute temperature (K)
U Internal energy (J)
Û Internal energy per unit mass (J/g)
U Internal energy per mole (J/mol)
V Volume (m3)
V̂ Specific volume, volume per unit mass (m3/g)
V Volume per mole (m3/mol)

1.1 THE CENTRAL PROBLEMS OF THERMODYNAMICS

Thermodynamics is the study of the changes in the state or condition of a substance
when changes in its temperature, state of aggregation, or internal energy are important.
By internal energywemean the energy of a substance associatedwith themotions, inter-
actions, and bonding of its constituent molecules, as opposed to the external
energy associated with the velocity and location of its center of mass, which is of pri-
mary interest in mechanics. Thermodynamics is a macroscopic science; it deals with the
average changes that occur among large numbers of molecules rather than the detailed
changes that occur in a single molecule. Consequently, this book will quantitatively
relate the internal energy of a substance not to its molecular motions and interaction,
but to other, macroscopic variables such as temperature, which is primarily related to
the extent of molecular motions, and density, which is a measure of how closely the
molecules are packed and thus largely determines the extent of molecular interactions.
The total energy of any substance is the sum of its internal energy and its bulk potential
and kinetic energy; that is, it is the sum of the internal and external energies.
Our interest in thermodynamics is mainly in changes that occur in some small part of

the universe, for example, within a steam engine, a laboratory beaker, or a chemical or
biochemical reactor. The region under study, which may be a specified volume in space
or a quantity of matter, is called the system; the rest of the universe is its surroundings.
Throughout this book the term state refers to the thermodynamic state of a system as
characterized by its density, refractive index, composition, pressure, temperature, or
other variables to be introduced later. The state of agglomeration of the system (whether
it is a gas, liquid, or solid) is called its phase.
A system is said to be in contact with its surroundings if a change in the surroundings

can produce a change in the system. Thus, a thermodynamic system is in mechanical
contact with its surroundings if a change in pressure in the surroundings results in
a pressure change in the system. Similarly, a system is in thermal contact with its
surroundings if a temperature change in the surroundings can produce a change in the
system. If a system does not change as a result of changes in its surroundings, the
system is said to be isolated. Systemsmay be partially isolated from their surroundings.
An adiabatic system is one that is thermally isolated from its surroundings; that is, it
is a system that is not in thermal contact, but may be in mechanical contact, with its
surroundings. If mass can flow into or out of a thermodynamic system, the system is
said to be open; if not, the system is closed. Similarly, if heat can be added to the system
or work done on it, we say the system is open to heat or work flows, respectively.1

1Both heat and work will be defined shortly.
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An important concept in thermodynamics is the equilibrium state, which will be dis-
cussed in detail in the following sections. Here we merely note that if a system is not
subjected to a continual forced flow of mass, heat, or work, the system will eventually
evolve to a time-invariant state in which there are no internal or external flows of heat
or mass and no change in composition as a result of chemical or biochemical reactions.
This state of the system is the equilibrium state. The precise nature of the equilibrium
state depends on both the character of the system and the constraints imposed on the
system by its immediate surroundings and its container (e.g., a constant-volume con-
tainer fixes the system volume, and a thermostatic bath fixes the system temperature;
see Problem 1.1).
Using these definitions, we can identify the two general classes of problems that are

of interest in thermodynamics. In the first class are problems concerned with comput-
ing the amount of work or the flow of heat either required or released to accomplish a
specified change of state in a system or, alternatively, the prediction of the change in
thermodynamic state that occurs for given heat or work flows. We refer to these prob-
lems as energy flow problems.
The second class of thermodynamic problems are those involving equilibrium. Of

particular interest here is the identification or prediction of the equilibrium state of a
system that initially is not in equilibrium. The most common problem of this type is the
prediction of the new equilibrium state of a system that has undergone a change in the
constraints that had been maintaining it in a previous state. For example, we will want
to predict whether a single liquid mixture or two partially miscible liquid phases will
be the equilibrium state when two pure liquids (the initial equilibrium state) are mixed
(the change of constraint; see Chapter 11). Similarly, we will be interested in predicting
the final temperatures and pressures in two gas cylinders after opening the connecting
valve (change of constraint) between a cylinder that was initially filled and another that
was empty (see Chapters 3 and 4).
It is useful to mention another class of problems related to those referred to in the

previous paragraphs, but that is not considered here. We do not try to answer the ques-
tion of how fast a system will respond to a change in constraints; that is, we do not try to
study system dynamics. The answers to such problems, depending on the system and its
constraints, may involve chemical kinetics, heat or mass transfer, and fluid mechanics,
all of which are studied elsewhere. Thus, in the example above, we are interested in the
final state of the gas in each cylinder, but not in computing how long a valve of given
size must be held open to allow the necessary amount of gas to pass from one cylinder to
the other. Similarly, when, in Chapters 10, 11, and 12, we study phase equilibrium and,
in Chapter 13, chemical equilibrium, our interest is in the prediction of the equilibrium
state, not in how long it will take to achieve this equilibrium state.
Shortly we will start the formal development of the principles of thermodynamics,

first qualitatively and then, in the following chapters, in a quantitative manner. First,
however, we make a short digression to discuss the system of units used in this text.

1.2 A SYSTEM OF UNITS

The study of thermodynamics involves mechanical variables such as force, pressure,
and work, and thermal variables such as temperature and energy. Over the years many
definitions and units for each of these variables have been proposed; for example, there
are several values of the calorie, British thermal unit, and horsepower. Also, whole
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Table 1.2-1 The SI Unit System

Unit Name Abbreviation Basis of Definition

Length meter m The distance light travels in a
vacuum in 1/299 792 458 second

Mass kilogram kg Platinum-iridium prototype at the
International Bureau of Weights
and Measures, Sèvres, France

Time second s Proportional to the period of one
cesium-133 radiative transition

Electric current ampere A Current that would produce a
specified force between two
parallel conductors in a specified
geometry

Temperature kelvin K 1/273.16 of the thermodynamic
temperature (to be defined
shortly) of water at its triple
point (see Chapter 7)

Amount of substance mole mol Amount of a substance that
contains as many elementary
entities as there are atoms in
0.012 kilogram of carbon-12
(6.022 × 1023, which is
Avogadro’s number)

Luminous intensity candela cd Related to the black-body radiation
from freezing platinum (2045 K)

systems of units, such as the English and cgs systems, have been used. The problem of
standardizing units was studied, and the Système International d’Unités (abbreviated SI
units) was agreed on at the Eleventh General Conference on Weights and Measures in
1960. This conference was one of a series convened periodically to obtain international
agreement on questions of metrology, so important in international trade. The SI unit
system is used throughout this book, with some lapses to the use of common units such
as volume in liters and frequently pressure in bar.
In the SI system the seven basic units listed in Table 1.2-1 are identified and their

values are assigned. From these seven basic well-defined units, the units of other quan-
tities can be derived. Also, certain quantities appear so frequently that they have been
given special names and symbols in the SI system. Those of interest here are listed in
Table 1.2-2. Some other derived units acceptable in the SI system are given in
Table 1.2-3, and Table 1.2-4 lists the acceptable scaling prefixes. [It should be pointed

Table 1.2-2 Derived Units with Special Names and Symbols Acceptable in SI Units

Expression in

Quantity Name Symbol SI Units Derived Units

Force newton N m kg s−2 J m−1

Energy, work, or quantity of heat joule J m2 kg s−2 N m
Pressure or stress pascal Pa m−1 kg s−2 N/m2

Power watt W m2 kg s−3 J/s
Frequency hertz Hz s−1
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Table 1.2-3 Other Derived Units in Terms of Acceptable SI Units

Quantity Expression in SI Units Symbol

Concentration of substance mol m−3 mol/m3

Mass density (ρ = m/V ) kg m−3 kg/m3

Heat capacity or entropy m2 kg s−1 K−1 J/K
Heat flow rate (Q̇) m2 kg s−3 W or J/s
Molar energy m2 kg s−2 mol−1 J/mol
Specific energy m2 s−2 J/kg
Specific heat capacity or specific entropy m2 s−2 K−1 J/(kg K)
Specific volume m3 kg−1 m3/kg
Viscosity (absolute or dynamic) m−1 kg s−1 Pa s
Volume m3 m3

Work, energy (W ) m2 kg s−2 J or N m

Table 1.2-4 Prefixes for SI Units

Multiplication Factor Prefix Symbol

1012 tera T
109 giga G
106 mega M
103 kilo k (e.g., kilogram)
102 hecto h
10 deka da
10−1 deci d
10−2 centi c (e.g., centimeter)
10−3 milli m
10−6 micro μ
10−9 nano n
10−12 pico p
10−15 femto f

out that, except at the end of a sentence, a period is never used after the symbol for an
SI unit, and the degree symbol is not used. Also, capital letters are not used in units that
are written out (e.g. pascals, joules, or meters) except at the beginning of a sentence.
When the units are expressed in symbols, the first letter is capitalized only when the
unit name is that of a person (e.g. Pa and J, but m).]
Appendix A.I presents approximate factors to convert from various common units to

acceptable SI units. In the SI unit system, energy is expressed in joules, J, with 1 joule
being the energy required to move an object 1 meter when it is opposed by a force of
1 newton. Thus, 1 J = 1 N m = 1 kg m2 s−2. A pulse of the human heart, or lifting
this book 0.1 meters, requires approximately 1 joule. Since this is such a small unit
of energy, kilojoules (kJ = 1000 J) are frequently used. Similarly, we frequently use
bar = 105 Pa = 0.987 atm as the unit of pressure.

1.3 THE EQUILIBRIUM STATE

As indicated in Section 1.1, the equilibrium state plays a central role in thermodynam-
ics. The general characteristics of the equilibrium state are that (1) it does not vary with
time; (2) the system is uniform (there are no internal temperature, pressure, velocity,
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or concentration gradients) or is composed of subsystems each of which is uniform;
(3) all flows of heat, mass, or work between the system and its surroundings are zero;
and (4) the net rate of all chemical reactions is zero.
At first it might appear that the characteristics of the equilibrium state are so restric-

tive that such states rarely occur. In fact, the opposite is true. The equilibrium state will
always occur, given sufficient time, as the terminal state of a system closed to the flow
of mass, heat, or work across its boundaries. In addition, systems open to such flows,
depending on the nature of the interaction between the system and its surroundings,
may also evolve to an equilibrium state. If the surroundings merely impose a value of
temperature, pressure, or volume on the system, the system will evolve to an equilib-
rium state. If, on the other hand, the surroundings impose a mass flow into and out
of the system (as a result of a pumping mechanism) or a heat flow (as would occur if
one part of the system were exposed to one temperature and another part of the sys-
tem to a different temperature), the system may evolve to a time-invariant state only
if the flows are steady. The time-invariant states of these driven systems are not equi-
librium states in that the systems may or may not be uniform (this will become clear
when the continuous-flow stirred tank and plug-flow chemical reactors are considered in
Chapter 14) and certainly do not satisfy part or all of criterion (3). Such time-invariant
states are called steady states and occur frequently in continuous chemical and physical
processing. Steady-state processes are of only minor interest in this book.
Nondriven systems reach equilibrium because all spontaneous flows that occur in

nature tend to dissipate the driving forces that cause them. Thus, the flow of heat that
arises in response to a temperature difference occurs in the direction that dissipates the
temperature difference, the mass diffusion flux that arises in response to a concentration
gradient occurs in such a way that a state of uniform concentration develops, and the
flux of momentum that occurs when a velocity gradient is present in a fluid tends to
dissipate that gradient. Similarly, chemical reactions occur in a direction that drives the
system toward equilibrium (Chapter 13). At various points throughout this book it will
be useful to distinguish between the flows that arise naturally and drive the system to
equilibrium, which we will call natural flows, and flows imposed on the system by its
surroundings, which we term forced flows.
An important experimental observation in thermodynamics is that any system free

from forced flows will, given sufficient time, evolve to an equilibrium state. This em-
pirical fact is used repeatedly in our discussion.
It is useful to distinguish between two types of equilibrium states according to their

response to small disturbances. To be specific, suppose a system in equilibrium is sub-
jected to a small disturbance that is then removed (e.g., temperature fluctuation or pres-
sure pulse). If the system returns to its initial equilibrium state, this state of the system
is said to be stable with respect to small disturbances. If, however, the system does not
return to the initial state, that state is said to have been unstable.
There is a simple mechanical analogy, shown in Fig. 1.3-1, that can be used to illus-

trate the concept of stability. Figure 1.3-1a, b, and c represent equilibrium positions of

(a) (b) (c)(a) (b) (c)

Figure 1.3-1 Blocks in states (a) and
(b) are stable to small mechanical dis-
turbances; the delicately balanced block
in state (c) is not.
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a block on a horizontal surface. The configuration in Fig. 1.3-1c is, however, precarious;
an infinitesimal movement of the block in any direction (so that its center of gravity is
not directly over the pivotal point) would cause the block to revert to the configuration
of either Fig. 1.3-1a or b. Thus, Fig. l.3-1c represents an unstable equilibrium position.
The configurations of Figs. 1.3-1a and b are not affected by small disturbances, and
these states are stable. Intuition suggests that the configuration of Fig. 1.3-1a is the
most stable; clearly, it has the lowest center of gravity and hence the lowest potential
energy. To go from the configuration of Fig. 1.3-1b to that of Fig. 1.3-1a, the block must
pass through the still higher potential energy state indicated in Fig. 1.3-1c. If we useΔε
to represent the potential energy difference between the configurations of Figs. 1.3-1b
and c, we can say that the equilibrium state of Fig. 1.3-1b is stable to energy disturbances
less than Δε in magnitude and is unstable to larger disturbances.
Certain equilibrium states of thermodynamic systems are stable to small fluctuations;

others are not. For example, the equilibrium state of a simple gas is stable to all fluctu-
ations, as are most of the equilibrium states we will be concerned with. It is possible,
however, to carefully prepare a subcooled liquid, that is, a liquid below its normal solid-
ification temperature, that satisfies the equilibrium criteria. This is an unstable equilib-
rium state because the slightest disturbance, such as tapping on the side of the containing
vessel, will cause the liquid to freeze. One sometimes encounters mixtures that, by the
chemical reaction equilibrium criterion (see Chapter 13), should react; however, the
chemical reaction rate is so small as to be immeasurable at the temperature of interest.
Such a mixture can achieve a state of thermal equilibrium that is stable with respect to
small fluctuations of temperature and pressure. If, however, there is a sufficiently large,
but temporary, increase in temperature (so that the rate of the chemical reaction is ap-
preciable for some period of time) and then the system is quickly cooled, a new thermal
equilibrium state with a chemical composition that differs from the initial state will be
obtained. The initial equilibrium state, like the mechanical state in Fig. 1.3-1b, is then
said to be stable with respect to small disturbances, but not to large disturbances.
Unstable equilibrium states are rarely encountered in nature unless they have been

specially prepared (e.g. the subcooled liquid mentioned earlier). The reason for this is
that during the approach to equilibrium, temperature gradients, density gradients, or
other nonuniformities that exist within a system are of a sufficient magnitude to act as
disturbances to unstable states and prevent their natural occurrence.
In fact, the natural occurrence of an unstable thermodynamic equilibrium state is

about as likely as the natural occurrence of the unstable mechanical equilibrium state
of Fig. 1.3-1c. Consequently, our concern in this book is mainly with stable equilibrium
states.
If an equilibrium state is stable with respect to all disturbances, the properties of

this state cannot depend on the past history of the system or, to be more specific, on
the path followed during the approach to equilibrium. Similarly, if an equilibrium state
is stable with respect to small disturbances, its properties do not depend on the path
followed in the immediate vicinity of the equilibrium state. We can establish the va-
lidity of the latter statement by the following thought experiment (the validity of the
first statement follows from a simple generalization of the argument). Suppose a sys-
tem in a stable equilibrium state is subjected to a small temporary disturbance of a
completely arbitrary nature. Since the initial state was one of stable equilibrium, the
system will return to precisely that state after the removal of the disturbance. However,
since any type of small disturbance is permitted, the return to the equilibrium state may
be along a path that is different from the path followed in initially achieving the stable
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equilibrium state. The fact that the system is in exactly the same state as before means
that all the properties of the system that characterize the equilibrium state must have
their previous values; the fact that different paths were followed in obtaining this equi-
librium state implies that none of these properties can depend on the path followed.
Another important experimental observation for the development of thermodynam-

ics is that a system in a stable equilibrium state will never spontaneously evolve to a
state of nonequilibrium. For example, any temperature gradients in a thermally con-
ducting material free from a forced flow of heat will eventually dissipate so that a state
of uniform temperature is achieved. Once this equilibrium state has been achieved, a
measurable temperature gradient will never spontaneously occur in the material.
The two observations that (1) a system free from forced flows will evolve to an equi-

librium state and (2) once in equilibrium a system will never spontaneously evolve to
a nonequilibrium state, are evidence for a unidirectional character of natural processes.
Thus we can take as a general principle that the direction of natural processes is such
that systems evolve toward an equilibrium state, not away from it.

1.4 PRESSURE, TEMPERATURE, AND EQUILIBRIUM

Most people have at least a primitive understanding of the notions of temperature, pres-
sure, heat, and work, and we have, perhaps unfairly, relied on this understanding in
previous sections. Since these concepts are important for the development of thermo-
dynamics, each will be discussed in somewhat more detail here and in the following
sections.
The concept of pressure as the total force exerted on an element of surface divided by

the surface area should be familiar from courses in physics and chemistry. Pressure—
or, equivalently, force—is important in both mechanics and thermodynamics because
it is closely related to the concept of mechanical equilibrium. This is simply illustrated
by considering the two piston-and-cylinder devices shown in Figs. 1.4-1a and b. In
each case we assume that the piston and cylinder have been carefully machined so
that there is no friction between them. From elementary physics we know that for the
systems in these figures to be in mechanical equilibrium (as recognized by the absence

A B

B

A

(a)

(b)

Figure 1.4-1 The piston separating gases A and B and the cylin-
der containing them have been carefully machined so that the
piston moves freely in the cylinder.



1.4 Pressure, Temperature, and Equilibrium 11

of movement of the piston), there must be no unbalanced forces; the pressure of gas A
must equal that of gas B in the system of Fig. 1.4-1a, and in the system of Fig. 1.4-1b it
must be equal to the sum of the pressure of gas B and the force of gravity on the piston
divided by its surface area. Thus, the requirement that a state of mechanical equilibrium
exists is really a restriction on the pressure of the system.
Since pressure is a force per unit area, the direction of the pressure scale is evident; the

greater the force per unit area, the greater the pressure. To measure pressure, one uses a
pressure gauge. A pressure gauge is a device that produces a change in some indicator,
such as the position of a pointer, the height of a column of liquid, or the electrical
properties of a specially designed circuit, in response to a change in pressure. Pressure
gauges are calibrated using devices such as that shown in Fig. 1.4-2. There, known
pressures are created by placing weights on a frictionless piston of known weight. The
pressure at the gauge Pg due to the metal weight and the piston is

Pg =
Mw + Mp

A
g (1.4-1)

Here g is the local acceleration of gravity on an element of mass; the standard value is
9.80665 m/s2. The position of the indicator at several known pressures is recorded, and
the scale of the pressure gauge is completed by interpolation.
There is, however, a complication with this calibration procedure. It arises be-

cause the weight of the air of the earth’s atmosphere produces an average pressure of
14.696 lbs force per sq in, or 101.3 kPa, at sea level. Since atmospheric pressure
acts equally in all directions, we are not usually aware of its presence, so that in
most nonscientific uses of pressure the zero of the pressure scale is the sea-level at-
mospheric pressure (i.e., the pressure of the atmosphere is neglected in the pressure
gauge calibration). Thus, when the recommended inflation pressure of an automobile
tire is 200 kPa, what is really meant is 200 kPa above atmospheric pressure. We re-
fer to pressures on such a scale as gauge pressures. Note that gauge pressures may
be negative (in partially or completely evacuated systems), zero, or positive, and er-
rors in pressure measurement result from changes in atmospheric pressure from the

Weight (mass Mw)

Gauge being tested
or calibrated

Oil reservoir

Piston (mass Mp)

Valve

Piston
area

A

Figure 1.4-2 A simple deadweight pressure tester. (The purpose
of the oil reservoir and the system volume adjustment is to main-
tain equal heights of the oil column in the cylinder and gauge sec-
tions, so that no corrections for the height of the liquid column
need be made in the pressure calibration.)
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gauge calibration conditions (e.g. using a gauge calibrated in New York for pressure
measurements in Denver).
We define the total pressure P to be equal to the sum of the gauge pressure Pg and

the ambient atmospheric pressure Patm. By accounting for the atmospheric pressure
in this way we have developed an absolute pressure scale, which is a pressure scale
with zero as the lowest pressure attainable (the pressure in a completely evacuated re-
gion of space). One advantage of such a scale is its simplicity; the pressure is always a
positive quantity, and measurements do not have to be corrected for either fluctuations
in atmospheric pressure or its change with height above sea level. We will frequently
be concerned with interrelationships between the temperature, pressure, and specific
volume of fluids. These interrelationships are simplest if the absolute pressure is used.
Consequently, unless otherwise indicated, the term pressure in this book refers to ab-
solute pressure.
Although pressure arises naturally from mechanics, the concept of temperature is

more abstract. To the nonscientist, temperature is a measure of hotness or coldness
and as such is not carefully defined, but rather is a quantity related to such things as
physical comfort, cooking conditions, or the level of mercury or colored alcohol in a
thermometer. To the scientist, temperature is a precisely defined quantity, deeply rooted
in the concept of equilibrium and related to the energy content of a substance.
The origin of the formal definition of temperature lies in the concept of thermal equi-

librium. Consider a thermodynamic system composed of two subsystems that are in
thermal contact but that do not interchange mass (e.g. the two subsystems may be two
solids in contact, or liquids or gases separated by a thin, impenetrable barrier or mem-
brane) and are isolated from their surroundings. When this composite system achieves
a state of equilibrium (detected by observing that the properties of each system are
time invariant), it is found that the property measured by the height of fluid in a given
thermometer is the same in each system, although the other properties of the subsys-
tems, such as their density and chemical composition, may be different. In accord with
this observation, temperature is defined to be that system property which, if it has the
same value for any two systems, indicates that these systems are in thermal equilibrium
if they are in contact, or would be in thermal equilibrium if they were placed in thermal
contact.
Although this definition provides the link between temperature and thermal equi-

librium, it does not suggest a scale for temperature. If temperature is used only as an
indicator of thermal equilibrium, any quantification or scale of temperature is satis-
factory provided that it is generally understood and reproducible, though the accepted
convention is that increasing hotness of a substance should correspond to increasing val-
ues of temperature. An important consideration in developing a thermodynamic scale
of temperature is that it, like all other aspects of thermodynamics, should be general
and not depend on the properties of any one fluid (such as the specific volume of liq-
uid mercury). Experimental evidence indicates that it should be possible to formulate
a completely universal temperature scale. The first indication came from the study of
gases at densities so low that intermolecular interactions are unimportant (such gases
are called ideal gases), where it was found that the product of the absolute pressure P
and the molar volume V of any low-density gas away from its condensation line (see
Chapter 7) increases with increasing hotness. This observation has been used as the
basis for a temperature scale by defining the temperature T to be linearly proportional
to the product of PV for a particular low-density gas, that is, by choosing T so that

PV = A + RT (1.4-2)
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where A and R are constants. In fact, without any loss of generality one can define a
new temperature T = T + (A/R), which differs from the choice of Eq. 1.4-2 only by
an additive constant, to obtain

PV = RT (1.4-3)

Since neither the absolute pressure nor the molar volume of a gas can ever be negative,
the temperature defined in this way must always be positive, and therefore the ideal gas
temperature scale of Eq. 1.4-3 is an absolute scale (i.e., T ≥ 0).
To complete this low-density gas temperature scale, it remains to specify the

constant R, or equivalently the size of a unit of temperature. This can be done in two
equivalent ways. The first is to specify the value of T for a given value of PV and thus
determine the constant R; the second is to choose two reproducible points on a hotness
scale and to decide arbitrarily how many units of T correspond to the difference in the
PV products at these two fixed points. In fact, it is the latter procedure that is used;
the ice point temperature of water2 and the boiling temperature of water at standard at-
mospheric pressure (101.3 kPa) provide the two reproducible fixed-point temperatures.
What is done, then, is to allow a low-density gas to achieve thermal equilibrium with
water at its ice point and measure the product PV , and then repeat the process at the
boiling temperature. One then decides how many units of temperature correspond to
this measured difference in the product PV ; the choice of 100 units or degrees leads
to the Kelvin temperature scale, whereas the use of 180 degrees leads to the Rankine
scale. With either of these choices, the constant R can be evaluated for a given low-
density gas. The important fact for the formulation of a universal temperature scale
is that the constant R and hence the temperature scales determined in this way are
the same for all low-density gases! Values of the gas constant R in SI units are given
in Table 1.4-1.
For the present we assume this low-density or ideal gas Kelvin (denoted by K) tem-

perature scale is equivalent to an absolute universal thermodynamic temperature scale;
this is proven in Chapter 6.
More common than the Kelvin temperature scale for nonscientific uses of temper-

ature are the closely related Fahrenheit and Celsius scales. The size of the degree is
the same in both the Celsius (◦C) and Kelvin temperature scales. However, the zero
point of the Celsius scale is arbitrarily chosen to be the ice point temperature of water.
Consequently, it is found that

T (K) = T (◦C) + 273.15 (1.4-4a)

Table 1.4-1 The Gas Constant

R = 8.314 J/mol K
= 8.314 N m/mol K
= 8.314 × 10−3 kPa m3/mol K
= 8.314 × 10−5 bar m3/mol K
= 8.314 × 10−2 bar m3/kmol K
= 8.314 × 10−6 MPa m3/mol K

2The freezing temperature of water saturated with air at 101.3 kPa. On this scale the triple point of water is 0.01◦C.
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In the Fahrenheit (◦F) temperature scale the ice point and boiling point of water (at
101.3 kPa) are 32◦F and 212◦F, respectively. Thus

T (K) =
T (◦F) + 459.67

1.8
(1.4-4b)

Since we are assuming, for the present, that only the ideal gas Kelvin temperature scale
has a firm thermodynamic basis, we will use it, rather than the Fahrenheit and Cel-
sius scales, in all thermodynamic calculations.3 (Another justification for the use of
an absolute-temperature scale is that the interrelation between pressure, volume, and
temperature for fluids is simplest when absolute temperature is used.) Consequently, if
the data for a thermodynamic calculation are not given in terms of absolute tempera-
ture, it will generally be necessary to convert these data to absolute temperatures using
Eqs. 1.4-4.
The product of PV for a low-density gas is said to be a thermometric property

in that to each value of PV there corresponds only a single value of temperature. The
ideal gas thermometer is not convenient to use, however, because of both its mechan-
ical construction (see Fig. 1.4-3) and the manipulation required to make a measure-
ment. Therefore, common thermometers make use of thermometric properties of other
materials—for example, the single-valued relation between temperature and the spe-
cific volume of liquid mercury (Problem 1.2) or the electrical resistance of platinum
wire. There are two steps in the construction of thermometers based on these other ther-
mometric properties: first, fabrication of the device, such as sealing liquid mercury in an

Open to the
atmosphere

Indicial
point

Flexible
hose

Gas
bulb

h

Figure 1.4-3 A simplified diagram of a con-
stant-volume ideal gas thermometer. In this
thermometer the product PV for a gas at var-
ious temperatures is found by measuring the
pressure P at constant volume. For each mea-
surement the mercury reservoir is raised or
lowered until the mercury column at the left
touches an index mark. The pressure of the
gas in the bulb is then equal to the atmospheric
pressure plus the pressure due to the height of
the mercury column.

3Of course, for calculations involving only temperature differences, any convenient temperature scale may be used,
since a temperature difference is independent of the zero of the scale.
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otherwise evacuated tube; and second, the calibration of the thermometric indicator with
a known temperature scale. To calibrate a thermometer, its readings (e.g., the height of
a mercury column) are determined at a collection of known temperatures, and its scale
is completed by interpolating between these fixed points. The calibration procedure
for a common mercury thermometer is usually far simpler. The height of the mercury
column is determined at only two fixed points (e.g., the temperature of an ice-water
bath and the temperature of boiling water at atmospheric pressure), and the distance
between these two heights is divided into equal units; the number of units depends
on whether the Rankine or Kelvin degree is used, and whether a unit is to represent a
fraction of a degree, a degree, or several degrees. Since only two fixed points are used
in the calibration, intermediate temperatures recorded on such a thermometer may be
different from those that would be obtained using an ideal gas thermometer because
(1) the specific volume of liquid mercury has a slightly nonlinear dependence on tem-
perature, and (2) the diameter of the capillary tube may not be completely uniform
(so that the volume of mercury will not be simply related to its height in the tube; see
Problem 1.2).

1.5 HEAT, WORK, AND THE CONSERVATION OF ENERGY

As we have already indicated, two systems in thermal contact but otherwise isolated
from their surroundings will eventually reach an equilibrium state in which the systems
have the same temperature. During the approach to this equilibrium state the tempera-
ture of the initially low-temperature system increases while the temperature of the ini-
tially high-temperature system decreases. We know that the temperature of a substance
is directly related to its internal energy, especially the energy ofmolecularmotion. Thus,
in the approach to equilibrium, energy has been transferred from the high-temperature
system to the one of lower temperature. This transfer of energy as a result of only a
temperature difference is called a flow of heat.
It is also possible to increase the total energy (internal, potential, and kinetic) of a

system by mechanical processes involving motion. In particular, the kinetic or potential
energy of a system can change as a result of motion without deformation of the system
boundaries, as in the movement of a solid body acted on by an external force, whereas
the internal energy and temperature of a systemmay change when external forces result
in the deformation of the system boundaries, as in the compression of a gas. Energy
transfer by mechanical motion also occurs as a result of the motion of a drive shaft,
push rod, or similar device across the system boundaries. For example, mechanical
stirring of a fluid first results in fluid motion (evidence of an increase in fluid kinetic
energy) and then, as this motion is damped by the action of the fluid viscosity, in an
increase in the temperature (and internal energy) of the fluid. Energy transfer by any
mechanism that involves mechanical motion of, or across, the system boundaries is
called work.
Finally, it is possible to increase the energy of a system by supplying it with elec-

trical energy in the form of an electrical current driven by a potential difference. This
electrical energy can be converted to mechanical energy if the system contains an elec-
tric motor, it can increase the temperature of the system if it is dissipated through a
resistor (resistive heating), or it can be used to cause an electrochemical change in the
system (e.g. recharging a lead storage battery). Throughout this book we consider the
flow of electrical energy to be a form of work. The reason for this choice will become
clear shortly.
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The amount of mechanical work is, frommechanics, equal to the product of the force
exerted times the distance moved in the direction of the applied force, or, alternatively,
to the product of the applied pressure and the displaced volume. Similarly, the electri-
cal work is equal to the product of the current flow through the system, the potential
difference across the system, and the time interval over which the current flow takes
place. Therefore, the total amount of work supplied to a system is frequently easy to
calculate.
An important experimental observation, initially made by James Prescott Joule be-

tween 1837 and 1847, is that a specified amount of energy can always be used in such
a way as to produce the same temperature rise in a given mass of water, regardless of
the precise mechanism or device used to supply the energy, and regardless of whether
this energy is in the form of mechanical work, electrical work, or heat. Rather than de-
scribe Joule’s experiments, consider how this hypothesis could be proved in the lab-
oratory. Suppose a sample of water at temperature T1 is placed in a well-insulated
container (e.g. a Dewar flask) and, by the series of experiments in Table 1.5-1, the
amount of energy expended in producing a final equilibrium temperature T2 is mea-
sured. Based on the experiments of Joule and others, we would expect to find that this

Table 1.5-1 Experiments Designed to Prove the Energy Equivalence of Heat and Work

Corrections That
Must Be Made to
Energy Input Data

Form in Which
Energy Is
Transferred to Water Mechanism Used

Form of Energy
Supplied to
Mechanism

Method of
Measuring Energy
Input

(1) Mechanical
energy

Stirring:
Paddlewheel
driven by electric
motor

Electrical energy Product of voltage,
current, and time

Electrical energy
loss in motor and
circuit,
temperature rise
of paddlewheel

(2) Mechanical
energy

Stirring:
Paddlewheel
driven by pulley
and falling
weight

Mechanical energy Change in potential
energy of weight:
product of mass
of weight, change
in height, and the
gravitational
constant g

Temperature rise of
paddlewheel

(3) Heat flow Electrical energy
converted to heat
in a resistor

Electrical energy Product of voltage,
current, and time

Temperature rise of
resistor and
electrical losses
in circuit

(4) Heat flow Mechanical energy
of falling weight
is converted to
heat through
friction of
rubbing two
surfaces together,
as with a brake
on the axle of a
pulley

Mechanical energy Change in potential
energy of weight:
product of mass
of weight, change
in height, and g

Temperature rise of
mechanical
brakes, etc.
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energy (determined by correcting the measurements of column 4 for the temperature
rise of the container and the effects of column 5) is precisely the same in all cases.
By comparing the first two experiments with the third and fourth, we conclude that

there is an equivalence between mechanical energy (or work) and heat, in that pre-
cisely the same amount of energy was required to produce a given temperature rise,
independent of whether this energy was delivered as heat or work. Furthermore, since
both mechanical and electrical energy sources have been used (see column 3), there is
a similar equivalence between mechanical and electrical energy, and hence among all
three energy forms. This conclusion is not specific to the experiments in Table 1.5-1
but is, in fact, a special case of a more general experimental observation; that is, any
change of state in a system that occurs solely as a result of the addition of heat can
also be produced by adding the same amount of energy as work, electrical energy, or a
combination of heat, work, and electrical energy.
Returning to the experiments of Table 1.5-1, we can now ask what has happened

to the energy that was supplied to the water. The answer, of course, is that at the end
of the experiment the temperature, and hence the molecular energy, of the water has
increased. Consequently, the energy added to the water is now present as increased
internal energy. It is possible to extract this increased internal energy by processes that
return the water to its original temperature. One could, for example, use the warm water
to heat a metal bar. The important experimental observation here is that if you measured
the temperature rise in the metal, which occurred in returning the water to its initial
state, and compared it with the electrical or mechanical energy required to cause the
same temperature rise in the metal, you would find that all the energy added to the
water in raising its temperature could be recovered as heat by returning the water to its
initial state. Thus total energy has been conserved in the process.
The observation that energy has been conserved in this experiment is only one exam-

ple of a general energy conservation principle that is based on a much wider range of
experiments. The more general principle is that in any change of state, the total energy,
which is the sum of the internal, kinetic, and potential energies of the system, heat, and
electrical and mechanical work, is conserved. A more succinct statement is that energy
is neither created nor destroyed, but may change in form.
Although heat, mechanical work, and electrical work are equivalent in that a given

energy input, in any form, can be made to produce the same internal energy increase
in a system, there is an equally important difference among the various energy forms.
To see this, suppose that the internal energy of some system (perhaps the water in the
experiments just considered) has been increased by increasing its temperature from T1

to a higher temperature T2, and we now wish to recover the added energy by returning
the system to its initial state at temperature T1. It is clear that we can recover the added
energy completely as a heat flow merely by putting the system in contact with another
system at a lower temperature. There is, however, no process or device by which it is
possible to convert all the added internal energy of the system to mechanical energy
and restore both the system and the surroundings to their initial states, even though the
increased internal energy may have resulted from adding only mechanical energy to
the system. In general, only a portion of the increased internal energy can be recovered
as mechanical energy, the remainder appearing as heat. This situation is not specific to
the experiments discussed here; it occurs in all similar efforts to convert both heat and
internal energy to work or mechanical energy.
We use the term thermal energy to designate energy in the form of internal en-

ergy and heat, andmechanical energy to designate mechanical and electrical work and
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the external energy of a system. This distinction is based on the general experimental
observation that while, in principle, any form of mechanical energy can be completely
converted to other forms of mechanical energy or thermal energy, only a fraction of the
thermal energy can be converted to mechanical energy in any cyclic process (a process
that at the end of the cycle restores the system and surroundings to their states at the
beginning of the cycle), or any process in which the only change in the universe (system
and surroundings) is the conversion of thermal energy to mechanical energy.
The units of mechanical work arise naturally from its definition as the product of

a force and a distance. Typical units of mechanical work are foot–pound force, dyne-
centimeter, and erg, though we will use the newton-meter (N m), which is equal to one
joule; and from the formulation of work as pressure times displaced volume, pascal-
meter3, which is also equal to one joule. The unit of electrical work is the volt-ampere-
second or, equivalently, the watt-second (again equal to one joule). Heat, however, not
having a mechanical definition, has traditionally been defined experimentally. Thus, the
heat unit calorie was defined as the amount of heat required to raise the temperature of
1 gram of water from 14.5◦C to 15.5◦C, and the British thermal unit (BTU) was defined
to be the amount of heat required to raise 1 lb of water from 59◦F to 60◦F. These ex-
perimental definitions of heat units have proved unsatisfactory because the amount of
energy in both the calorie and BTU have been subject to continual change as measure-
ment techniques improved. Consequently, there are several different definitions of the
Btu and calorie (e.g. the thermochemical calorie, the mean calorie, and the International
Table calorie) that differ by less than one and one-half parts in a thousand. Current
practice is to recognize the energy equivalence of heat and work and to use a com-
mon energy unit for both. We will use only the joule, which is equal to 0.2390 calorie
(thermochemical) or 0.9485 × 10−3 Btu (thermochemical).

1.6 SPECIFICATION OF THE EQUILIBRIUM STATE;
INTENSIVE AND EXTENSIVE VARIABLES;
EQUATIONS OF STATE

Since our main interest throughout this book is with stable equilibrium states, it is im-
portant to consider how to characterize the equilibrium state and, especially, what is
the minimum number of properties of a system at equilibrium that must be specified
to fix the values of all its remaining properties completely.4 To be specific, suppose we
had 1 kg of a pure gas, say oxygen, at equilibrium whose temperature is some value
T , pressure some value P , volume V , refractive index R, electrical permitivity ε, and
so on, and we wanted to adjust some of the equilibrium properties of a second sample
of oxygen so that all the properties of the two samples would be identical. The ques-
tions we are asking, then, are what sorts of properties, and how many properties, must
correspond if all of the properties of the two systems are to be identical?
The fact that we are interested only in stable equilibrium states is sufficient to decide

the types of properties needed to specify the equilibrium state. First, since gradients in
velocity, pressure, and temperature cannot be present in the equilibrium state, they do
not enter into its characterization. Next, since, as we saw in Sec. 1.3, the properties of
a stable equilibrium state do not depend on the history of the system or its approach to
equilibrium, the stable equilibrium state is characterized only by equilibrium properties
of the system.

4Throughout this book, we implicitly assume that a system contains a large number of molecules (at least several
tens of thousands), so that the surface effects present in small systems are unimportant. See, however, Sec. 7.8.
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The remaining question, that of how many equilibrium properties are necessary to
specify the equilibrium state of the system, can be answered only by experiment. The
important experimental observation here is that an equilibrium state of a single-phase,
one-component system in the absence of external electric and magnetic fields is com-
pletely specified if its mass and two other thermodynamic properties are given. Thus,
going back to our example, if the second oxygen sample also weighs 1 kg, and if it
were made to have the same temperature and pressure as the first sample, it would also
be found to have the same volume, refractive index, and so forth. If, however, only the
temperature of the second 1-kg sample was set equal to that of the first sample, neither
its pressure nor any other physical property would necessarily be the same as that of
the first sample. Consequently, the values of the density, refractive index, and, more
generally, all thermodynamic properties of an equilibrium single-component, single-
phase fluid are completely fixed once the mass of the system and the values of at least
two other system parameters are given. (The specification of the equilibrium state of
multiphase and multicomponent systems is considered in Chapters 7 and 8.)
The specification of an equilibrium system can be made slightly simpler by recog-

nizing that the variables used in thermodynamic descriptions are of two different types.
To see this, consider a gas of mass M that is at a temperature T and pressure P and is
confined to a glass bulb of volume V . Suppose that an identical glass bulb is also filled
with mass M of the same gas and heated to the same temperature T . Based on the
previous discussion, since the values of T , V , and M are the same, the pressure in the
second glass bulb is alsoP . If these two bulbs are now connected to form a new system,
the temperature and pressure of this composite system are unchanged from those of the
separated systems, although the volume and mass of this new system are clearly twice
those of the original single glass bulb. The pressure and temperature, because of their
size-independent property, are called intensive variables, whereas the mass, volume,
and total energy are extensive variables, or variables dependent on the size or amount
of the system. Extensive variables can be transformed into intensive variables by divid-
ing by the total mass or total number of moles so that a specific volume (volume per unit
mass or volume per mole), a specific energy (energy per unit mass or per mole), and so
forth are obtained. By definition, the term state variable refers to any of the intensive
variables of an equilibrium system: temperature, pressure, specific volume, specific in-
ternal energy, refractive index, and other variables introduced in the following chapters.
Clearly, from the previous discussion, the value of any state variable depends only on
the equilibrium state of the system, not on the path by which the equilibrium state was
reached.
With the distinction now made between intensive and extensive variables, it is pos-

sible to rephrase the requirement for the complete specification of a thermodynamic
state in a more coherent manner. The experimental observation is that the specification
of two state variables uniquely determines the values of all other state variables of an
equilibrium, single-component, single-phase system. [Remember, however, that to de-
termine the size of the system, that is, its mass or total volume, one must also specify
the mass of the system, or the value of one other extensive parameter (total volume,
total energy, etc.).] The implication of this statement is that for each substance there
exist, in principle, equations relating each state variable to two others. For example,

P = P (T, V̂ )

Û = Û(T, V̂ ) (1.6-1)
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Here P is the pressure, T the temperature, Û the internal energy per unit mass, and V̂
the volume per unit mass.5 The first equation indicates that the pressure is a function of
the temperature and volume per unit mass; the second indicates that the internal energy
is a function of temperature and volume. Also, there are relations of the form

Û = Û(T,P )
Û = Û(P, V̂ )
P = P (Û , V̂ ) (1.6-2)

Similar equations are valid for the additional thermodynamic properties to be intro-
duced later.
The interrelations of the form of Eqs 1.6-1 and 1.6-2 are always obeyed in nature,

though wemay not have been sufficiently accurate in our experiments, or clever enough
in other ways to have discovered them. In particular, Eq. 1.6-1 indicates that if we pre-
pare a fluid such that it has specified values T and V̂ , it will always have the same
pressure P . What is this value of the pressure P ? To know this we would have either
done the experiment sometime in the past or know the exact functional relationship be-
tween T , V̂ , and P for the fluid being considered. What is frequently done for fluids of
scientific or engineering interest is to make a large number of measurements of P , V̂ ,
and T and then to develop a volumetric equation of state for the fluid, that is, a mathe-
matical relationship between the variables P , V̂ , and T . Similarly, measurements of Û ,
V̂ , and T are made to develop a thermal equation of state for the fluid. Alternatively,
the data that have been obtained may be presented directly in graphical or tabular form.
(In fact, as will be shown later in this book, it is more convenient to formulate volumet-
ric equations of state in terms of P , V , and T than in terms of P , V̂ , and T , since in
this case the same gas constant of Eq. 1.4-3 can be used for all substances. If volume
on a per-mass basis V̂ was used, the constant in the ideal gas equation of state would
be R divided by the molecular weight of the substance.)
There are some complications in the description of thermodynamic states of systems.

For certain idealized fluids, such as the ideal gas and the incompressible liquid (both
discussed in Sec. 3.3), the specification of any two state variables may not be suffi-
cient to fix the thermodynamic state of the system. To be specific, the internal energy
of the ideal gas is a function only of its temperature, and not of its pressure or density.
Thus, the specification of the internal energy and temperature of an ideal gas contains
no more information than specifying only its temperature and therefore is insufficient
to determine its pressure. Similarly, if a liquid is incompressible, its molar volume will
depend on temperature but not on the pressure exerted on it. Consequently, specifying
the temperature and the specific volume of an incompressible liquid contains no more
information than specifying only its temperature. The ideal gas and the incompress-
ible liquid are limiting cases of the behavior of real fluids, so that although the internal
energy of a real gas depends on density and temperature, the density dependence may
be weak; also the densities of most liquids are only weakly dependent on their pressure.

5In this book we use letters with carets to indicate properties per unit mass, such as Û and V̂ , and letters with
underbars, such as U and V , to indicate properties per mole, which are referred to as molar properties. When, in
later chapters, we consider mixtures and have to distinguish between species, the notation will become a bit more
complicated in thatU i and V i will be used to designate the molar internal energy and volume, respectively, of pure
species i. Also, when necessary, within parentheses we can indicate the temperature and/or pressure (and in later
chapters the composition) of the substance. In these cases, notation such as U i(T,P ) and V i(T,P ) will be used.
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Therefore, although in principle any two state variables may be used to describe the
thermodynamic state of a system, one should not use Û and T as the independent state
variables for gases or V̂ and T as the independent state variables for liquids and solids.
As was pointed out in the previous paragraphs, two state variables are needed to fix

the thermodynamic state of an equilibrium system. The obvious next question is, how
does one specify the thermodynamic state of a nonequilibrium system? This is clearly
a much more complicated question, and the detailed answer would involve a discussion
of the relative time scales for changes imposed on the system and the changes that oc-
cur within the system (as a result of chemical reaction, internal energy flows, and fluid
motion). Such a discussion is beyond the scope of this book. The important observation
is that if we do not consider very fast system changes (as occur within a shock wave), or
systems that relax at a very slow but perceptible rate (e.g., molten polymers), the equi-
librium relationships between the fluid properties, such as the volumetric and thermal
equations of state, are also satisfied in nonequilibrium flows on a point-by-point basis.
That is, even though the temperature and pressure may vary in a flowing fluid, as long as
the changes are not as sharp as in a shock wave and the fluid internal relaxation times are
rapid,6 the properties at each point in the fluid are interrelated by the same equations of
state as for the equilibrium fluid. This situation is referred to as local equilibrium. This
is an important concept since it allows us to consider not only equilibrium phenomena
in thermodynamics but also many flow problems involving distinctly nonequilibrium
processes.

1.7 A SUMMARY OF IMPORTANT
EXPERIMENTAL OBSERVATIONS

An objective of this book is to present the subject of thermodynamics in a logical,
coherent manner. We do this by demonstrating how the complete structure of thermo-
dynamics can be built from a number of important experimental observations, some of
which have been introduced in this chapter, some of which are familiar from mechan-
ics, and some of which are introduced in the following chapters. For convenience, the
most important of these observations are listed here.
From classical mechanics and chemistry we have the following two observations.

Experimental observation 1. In any change of state (except one involving a nuclear
reaction, which is not considered in this book) total mass is conserved.

Experimental observation 2. In any change of state total momentum is a conserved
quantity.

In this chapter the following eight experimental facts have been mentioned.

Experimental observation 3 (Sec. 1.5). In any change of state the total energy (which
includes internal, potential, and kinetic energy, heat, and work) is a conserved
quantity.

Experimental observation 4 (Sec. 1.5). A flow of heat and a flow of work are equiva-
lent in that supplying a given amount of energy to a system in either of these forms
can be made to result in the same increase in its internal energy. Heat and work,
or more generally, thermal and mechanical energy, are not equivalent in the sense

6The situation being considered here is not as restrictive as it appears. In fact, it is by far the most common case
in engineering. It is the only case that is considered in this book.
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that mechanical energy can be completely converted to thermal energy, but thermal
energy can be only partially converted to mechanical energy in a cyclic process.

Experimental observation 5 (Sec. 1.3). A system that is not subject to forced flows
of mass or energy from its surroundings will evolve to a time-invariant state that is
uniform or composed of uniform subsystems. This is the equilibrium state.

Experimental observation 6 (Sec. 1.3). A system in equilibrium with its surroundings
will never spontaneously revert to a nonequilibrium state.

Experimental observation 7 (Sec. 1.3). Equilibrium states that arise naturally are stable
to small disturbances.

Experimental observation 8 (Secs. 1.3 and 1.6). The stable equilibrium state of a sys-
tem is completely characterized by values of only equilibrium properties (and not
properties that describe the approach to equilibrium). For a single-component, single-
phase system the values of only two intensive, independent state variables are needed
to fix the thermodynamic state of the equilibrium system completely; the further spec-
ification of one extensive variable of the system fixes its size.

Experimental observation 9 (Sec. 1.6). The interrelationships between the thermody-
namic state variables for a fluid in equilibrium also apply locally (i.e., at each point)
for a fluid not in equilibrium, provided the internal relaxation processes are rapid
with respect to the rate at which changes are imposed on the system. For fluids of
interest in this book, this condition is satisfied.

Although we are not, in general, interested in the detailed description of nonequi-
librium systems, it is useful to note that the rates at which natural relaxation processes
(i.e. heat fluxes, mass fluxes, etc.) occur are directly proportional to the magnitude of
the driving forces (i.e., temperature gradients, concentration gradients, etc.) necessary
for their occurrence.

Experimental observation 10. The flow of heat Q̇ (units of J/s or W) that arises be-
cause of a temperature difference ΔT is linearly proportional to the magnitude of
the temperature difference:7

Q̇ = −hΔT (1.7-1)

Here h is a positive constant, and the minus sign in the equation indicates that the
heat flow is in the opposite direction to the temperature difference; that is, the flow of
heat is from a region of high temperature to a region of low temperature. Similarly, on
a microscopic scale, the heat flux in the x-coordinate direction, denoted by qx (with
units of J/m2 s), is linearly related to the temperature gradient in that direction:

qx = −k
∂T

∂x
(1.7-2)

The mass flux of species A in the x direction, jA|x (kg/m2 s), relative to the fluid
mass average velocity is linearly related to its concentration gradient,

jA|x = −ρD
∂wA

∂x
(1.7-3)

7Throughout this book we use a dot, as on Q̇, to indicate a flow term. Thus, Q̇ is a flow of heat with units of J/s,
and Ṁ is a flow of mass with units of kg/s. Also, radiative heat transfer is more complicated, and is not considered
here.
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and for many fluids, the flux of the x-component of momentum in the y-coordinate
direction is

τyx = −μ
∂vx

∂y
(1.7-4)

In these equations T is the temperature, ρ the mass density, wA the mass fraction of
species A, and vx the x-component of the fluid velocity vector. The parameter k is
the thermal conductivity, D the diffusion coefficient for species A, and μ the fluid
viscosity; from experiment the values of these parameters are all greater than or equal
to zero (this is, in fact, a requirement for the system to evolve toward equilibrium).
Equation 1.7-2 is known as Fourier’s law of heat conduction, Eq. 1.7-3 is called Fick’s
first law of diffusion, and Eq. 1.7-4 is Newton’s law of viscosity.

1.8 A COMMENT ON THE DEVELOPMENT
OF THERMODYNAMICS

The formulation of the principles of thermodynamics that is used in this book is a reflec-
tion of the author’s preference and experience, and is not an indication of the historical
development of the subject. This is the case in most textbooks, as a good textbook
should present its subject in an orderly, coherent fashion, even though most branches of
science have developed in a disordered manner marked by both brilliant, and frequently
unfounded, generalizations and, in retrospect, equally amazing blunders. It would serve
little purpose to relate here the caloric or other theories of heat that have been proposed
in the past, or to describe all the futile efforts that went into the construction of perpetual
motion machines. Similarly, the energy equivalence of heat and work seems obvious
now, though it was accepted by the scientific community only after 10 years of work
by J. P. Joule. Historically, this equivalence was first pointed out by a medical doctor,
J. R. Mayer. However, it would be foolish to reproduce in a textbook the stages of his
discovery, which started with the observation that the venous blood of sailors being
bled in Java was unusually red, made use of a theory of Lavoisier relating the rate of
oxidation in animals to their heat losses, and ultimately led to the conclusion that heat
and work were energetically equivalent.
The science of thermodynamics as we now know it is basically the work of the exper-

imentalist, in that each of its principles represents the generalization of a large amount
of varied experimental data and the life’s work of many.We have tried to keep this flavor
by basing our development of thermodynamics on a number of key experimental ob-
servations. However, the presentation of thermodynamics in this book, and especially
in the introduction of entropy in Chapter 4, certainly does not parallel its historical
development.

PROBLEMS

1.1 For each of the cases that follow, list as many properties
of the equilibrium state as you can, especially the con-
straints placed on the equilibrium state of the system by
its surroundings and/or its container.
a. The system is placed in thermal contact with a ther-

mostatic bath maintained at temperature T .

b. The system is contained in a constant-volume con-
tainer and thermally and mechanically isolated from
its surroundings.

c. The system is contained in a frictionless piston and
cylinder exposed to an atmosphere at pressure P and
thermally isolated from its surroundings.



24 Chapter 1: Introduction

d. The system is contained in a frictionless piston and
cylinder exposed to an atmosphere at pressure P and
is in thermal contact with a thermostatic bath main-
tained at temperature T .

e. The system consists of two tanks of gas connected
by tubing. A valve between the two tanks is fully
opened for a short time and then closed.

1.2 The following table lists the volumes of 1 gram of water
and 1 gram of mercury as functions of temperature.
a. Discuss why water would not be an appropriate ther-

mometer fluid between 0◦C and 10◦C.
b. Because of the slightly nonlinear temperature depen-

dence of the specific volume of liquid mercury, there
is an inherent error in using a mercury-filled ther-
mometer that has been calibrated against an ideal gas
thermometer at only 0◦C and 100◦C. Using the data
in the table, prepare a graph of the error, ΔT , as a
function of temperature.

c. Why does a common mercury thermometer consist
of a large-volume mercury-filled bulb attached to a
capillary tube?

Volume of 1 gram Volume of 1 gram
T (◦C) of H2O (cm3) of Hg (cm3)

0 1.0001329 0.0735560
1 1.0000733 0.0735694
2 1.0000321 0.0735828
3 1.0000078 0.0735961
4 1.0000000 0.0736095
5 1.0000081 0.0736228
6 1.0000318 0.0736362
7 1.0000704 0.0736496
8 1.0001236 0.0736629
9 1.0001909 0.0736763

10 1.0002719 0.0736893
20 1.0015678 0.0738233
30 1.0043408 0.0739572
40 1.0078108 0.0740910
50 1.012074 0.0742250
60 1.017046 0.0743592
70 1.022694 0.0744936
80 1.028987 0.0746282
90 1.035904 0.0747631

100 1.043427 0.0748981

*Based on data in R. H. Perry and D. Green, eds., Chemical
Engineers’ Handbook, 6th ed., McGraw-Hill, New York, 1984,
pp. 3-75–3-77.



Chapter 2

Conservation of Mass

In this chapter we start the quantitative development of thermodynamics using one of
the qualitative observations of the previous chapter, that mass is conserved. Here we
begin by developing the balance equations for the total mass of a system (a piece of
equipment, a defined volume in space, or whatever is convenient for the problem at
hand) by considering systems of only a single component. In this case, the mass of a
single species being considered is also the total mass, which is conserved, and we can
write the balance equation either based on mass or by dividing by the molecular weight,
on the number of moles. We develop two forms of these mass balance equations—the
first for computing the rate at which mass in a system changes with time, and the second
set, obtained by integrating these rate equations over an interval of time, to compute
only the change in mass (or number of moles) in that time interval.
We next consider the mass balances for a mixture. In this case while total mass is

conserved, there will be a change in mass of some or all species if one or more chemical
reactions occur. For this case, it is more convenient to develop the mass balance for
mixtures on a molar basis, as chemical reaction stoichiomentry is much easier to write
on a molar basis than on a mass basis. In this chapter we will consider only the case of
a single chemical reaction; in later chapters the more general case of several chemical
reactions occuring simultaneously will be considered.
The most important goals of this chapter are for the student to understand when to use

the rate-of-change form of the mass balance equation and when to use the difference
form, and how to use these equations to solve problems. Mastering the use of the mass
balance equations here will make it easier to use the more complicated energy and other
balance equations that will be introduced in the following two chapters.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 2

The goals of this chapter are for the student to:

• Be able to use the rate-of-change form of the pure component mass balance in
problem solving (Sec. 2.2)

• Be able to use the difference form of the pure component mass balance in problem
solving (Sec. 2.2)

• Be able to use the rate-of-change form of the multicomponent mass balance in
problem solving (Sec. 2.3)

• Be able to use the difference form of the multicomponent mass balance in problem
solving (Sec. 2.3)

• Be able to solve mass balance problems involving a single chemical reaction
(Sec. 2.3)

25
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IMPORTANT NOTATION INTRODUCED IN THIS CHAPTER

Mi Mass of species i (g)
Ṁk Mass flow rate at location k (g/s)

(Ṁi)k Mass flow rate of species i at location k (g/s)
Ni Moles of species i (mol)
Ṅk Molar flow rate at location k (g/s)

(Ṅi)k Molar flow rate of species i at location k (g/s)
t Time (s)
x Set of mole fractions of all species x1, x2, x3, . . .

X Molar extent of reaction (mol)
νi Stoichiometric coefficient of species i

2.1 A GENERAL BALANCE EQUATION
AND CONSERVED QUANTITIES

The balance equations used in thermodynamics are conceptually simple. Each is ob-
tained by choosing a system, either a quantity of mass or a region of space (e.g., the
contents of a tank), and equating the change of some property of this system to
the amounts of the property that have entered and left the system and that have been
produced within it. We are interested both in the change of a system property over a
time interval and in its instantaneous rate of change; therefore, we will formulate equa-
tions of change for both. Determining which formulation of the equations of change
is used for the description of a particular physical situation will largely depend on the
type of information desired or available.
To illustrate the two types of descriptions and the relationship between them, as well

as the idea of using balance equations, consider the problem of studying the total mass
of water in Lake Mead (the lake behind Hoover Dam on the Colorado River). If you
were interested in determining, at any moment, whether the water level in this lake
was rising or falling, you would have to ascertain whether the water flows into the lake
were greater or less than the flows of water out of the lake. That is, at some instant
you would determine the rates at which water was entering the lake (due to the flow
of the Colorado River and rainfall) and leaving it (due to flow across the dam, evap-
oration from the lake surface, and seepage through the canyon walls), and then use
the equation

⎛
⎝Rate of change of

amount of water
in the lake

⎞
⎠ =

⎛
⎝Rate at which

water flows
into the lake

⎞
⎠ −

⎛
⎝ Rate at which
water flows out
of the lake

⎞
⎠ (2.1-1)

to determine the precise rate of change of the amount of water in the lake.
If, on the other hand, you were interested in determining the change in the amount

of water for some period of time, say the month of January, you could use a balance
equation in terms of the total amounts of water that entered and left the lake during
this time:
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⎛
⎜⎝
Change in amount
of water in the
lake during the

month of January

⎞
⎟⎠ =

⎛
⎜⎝
Amount of water that
flowed into the lake
during the month of

January

⎞
⎟⎠ −

⎛
⎜⎝
Amount of water that

flowed out of
the lake during the
month of January

⎞
⎟⎠

(2.1-2)

Notice that Eq. 2.1-1 is concerned with an instantaneous rate of change, and it re-
quires data on the rates at which flows occur. Equation 2.1-2, on the other hand, is for
computing the total change that has occurred and requires data only on the total flows
over the time interval. These two equations, one for the instantaneous rate of change
of a system property (here the amount of water) and the other for the change over an
interval of time, illustrate the two types of change-of-state problems that are of interest
in this book and the forms of the balance equations that are used in their solution.
There is, of course, an interrelationship between the two balance equations. If you

had information on each water flow rate at each instant of time for the whole month
of January, you could integrate Eq. 2.1-1 over that period of time to obtain the same
answer for the total change in the amount of water as would be obtained directly from
Eq. 2.1-2 using the much less detailed information on the total flows for the month.
The example used here to illustrate the balance equation concept is artificial in that

although water flows into and out of a lake are difficult to measure, the amount of water
in the lake can be determined directly from the water level. Thus, Eqs. 2.1-1 and 2.1-2
are not likely to be used. However, the system properties of interest in thermodynamics
and, indeed, in most areas of engineering are frequently much more difficult to measure
than flow rates of mass and energy. Therefore, the balance equation approach may be
the only practical way to proceed.
While our interest here is specifically in the mass balance, to avoid having to repeat

the analysis leading to equation 2.1-4, which follows, for other properties, such as en-
ergy (see next chapter), we will develop a general balance equation for any extensive
property θ. We will then replace θ with the total mass. In the next section θ will be
the mass of only one of the species (which may undergo a chemical reaction), and in
the next chapter θ will be replaced by the total energy. In the remainder of this sec-
tion, the balance equations for an unspecified extensive property θ of a thermodynamic
system are developed.
With the balance equations formulated in a general manner, they will be applicable

(by appropriate simplification) to all systems studied in this book. In this way it will not
be necessary to rederive the balance equations for each new problem; we will merely
simplify the general equations. Specific choices for θ, such as total mass, mass (or
number of moles) of a single species, and energy, are considered in Sec. 2.2, 2.3, and
3.2, respectively.
We consider a general system that may be moving or stationary, in which mass and

energy may flow across its boundaries at one or more places, and the boundaries of
which may distort. Since we are concerned with equating the total change within the
system to flows across its boundaries, the details of the internal structure of the sys-
tem will be left unspecified. This “black-box” system is illustrated in Fig. 2.1-1, and
characteristics of this system are

1. Massmay flow into one, several, all, or none of theK entry ports labeled 1, 2, . . . ,
K (i.e., the system may be either open or closed to the flow of mass). Since we
are concerned with pure fluids here, only one molecular species will be involved,
although its temperature and pressure may be different at each entry port. The
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M3

M2

M1
Mk

Figure 2.1-1 A single-component system with several
mass flows.

mass flow rate into the system at the k th entry port will be Ṁk, so that Ṁk > 0
for flow into the system, and Ṁk < 0 for flow out of the system.

2. The boundaries of the black-box system may be stationary or moving. If the sys-
tem boundaries are moving, it can be either because the system is expanding or
contracting, or because the system as a whole is moving, or both.

The following two characteristics are important for the energy balance.

3. Energy in the form of heat may enter or leave the system across the system
boundaries.

4. Energy in the form of work (mechanical shaft motion, electrical energy, etc.) may
enter or leave the system across the system boundaries.

Throughout this book we will use the convention that a flow into the system, whether
it be a mass flow or an energy flow, is positive and a flow out of the system is negative.
The balance equation for the total amount of any extensive quantity θ in this system

is obtained by equating the change in the amount of θ in the system between times t
and t + Δt to the flows of θ into and out of the system, and the generation of θ within
the system, in the time interval Δt. Thus,(

Amount of θ in the
system at time t + Δt

)
−

(
Amount of θ in the
system at time t

)
=

(
Amount of θ that entered the system across
system boundaries between t and t + Δt

)

−
(

Amount of θ that left the system across
system boundaries between t and t + Δt

)

+
(
Amount of θ generated within the
system between t and t + Δt

)
(2.1-3)

The meaning of the first two terms on the right side of this equation is clear, but the
last term deserves some discussion. If the extensive property θ is equal to the total
mass, total energy, or total momentum (quantities that are conserved, see experimental
observations 1 to 3 of Sec. 1.7), then the internal generation of θ is equal to zero. This
is easily seen as follows for the special case of a system isolated from its environment
(so that the flow terms across the system boundaries vanish); here Eq. 2.1-3 reduces to⎛

⎝Amount of θ in the
system at time

t + Δt

⎞
⎠ −

(
Amount of θ in the
system at time t

)
=

⎛
⎝Amount of θ generated

within the system
between t and t + Δt

⎞
⎠ (2.1-3a)

Since neither total mass, total momentum, nor total energy can be spontaneously pro-
duced, if θ is any of these quantities, the internal generation term must be zero. If,
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however, θ is some other quantity, the internal generation term may be positive (if θ
is produced within the system), negative (if θ is consumed within the system), or zero.
For example, suppose the black-box system in Fig. 2.1-1 is a closed (batch) chemi-
cal reactor in which cyclohexane is partially dehydrogenated to benzene and hydrogen
according to the reaction

C6H12 → C6H6 + 3H2

If θ is set equal to the total mass, then, by the principle of conservation of mass, the
internal generation term in Eq. 2.1-3a would be zero. If, however, θ is taken to be the
mass of benzene in the system, the internal generation term for benzene would be posi-
tive, since benzene is produced by the chemical reaction. Conversely, if θ is taken to be
the mass of cyclohexane in the system, the internal generation term would be negative.
In either case the magnitude of the internal generation term would depend on the rate
of reaction.
The balance equation (Eq. 2.1-3) is useful for computing the change in the extensive

property θ over the time interval Δt. We can also obtain an equation for computing the
instantaneous rate of change of θ by letting the time intervalΔt go to zero. This is done
as follows. First, we use the symbol θ(t) to represent the amount of θ in the system at
time t , and we recognize that for a very small time interval Δt (over which the flows
into and out of the system are constant) we can write⎛

⎝ Amount of θ that enters the
system across system boundaries

between t and t + Δt

⎞
⎠ as

⎛
⎝ Rate at which θ enters
the system across system

boundaries

⎞
⎠Δt

with similar expressions for the outflow and generation terms. Next we rewrite
Eq. 2.1-3 as

θ(t + Δt) − θ(t)
Δt

=
(
Rate at which θ enters the system

across system boundaries

)

−
(
Rate at which θ leaves the system

across system boundaries

)

+
(
Rate at which θ is generated

within the system

)

Finally, taking the limit as Δt → 0 and using the definition of the derivative from
calculus,

dθ

dt
= lim

Δt→0

θ(t + Δt) − θ(t)
Δt

we obtain

dθ

dt
=

(
Rate of change of
θ in the system

)
=

(
Rate at which θ enters the

system across system boundaries

)

−
(

Rate at which θ leaves the
system across system boundaries

)

+
(
Rate at which θ is generated

within the system

)
(2.1-4)
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Balance Eq. 2.1-4 is general and applicable to conserved and nonconserved quanti-
ties. There is, however, the important advantage in dealing with conserved quantities
that the internal generation term is zero. For example, to use the total mass balance
to compute the rate of change of mass in the system, we need know only the mass
flows into and out of the system. On the other hand, to compute the rate of change of
the mass of cyclohexane undergoing a dehydrogenation reaction in a chemical reactor,
we also need data on the rate of reaction in the system, which may be a function of
concentration, temperature, catalyst activity, and internal characteristics of the system.
Thus, additional information may be needed to use the balance equation for the mass
of cyclohexane, and, more generally, for any nonconserved quantity. The applications
of thermodynamics sometimes require the use of balance equations for nonconserved
quantities.

2.2 CONSERVATION OF MASS FOR A PURE FLUID

The first balance equation of interest in thermodynamics is the conservation equation
for total mass. If θ is taken to be the total mass in the system, designated by the symbol
M , we have, from Eq. 2.1-3

M(t+Δt)−M(t) =

⎛
⎜⎜⎜⎝
Amount of mass that
entered the system
across the system
boundaries between

t and t + Δt

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

Amount of mass
that left the system
across the system
boundaries between

t and t + Δt

⎞
⎟⎟⎟⎠ (2.2-1a)

where we have recognized that the total mass is a conserved quantity and that the only
mechanism by which mass enters or leaves a system is by a mass flow. Using Ṁk

to represent the mass flow rate into the system at the k th entry point, we have, from
Eq. 2.1-4, the equation for the instantaneous rate of change of mass in the system:

Rate-of-change mass
balance

dM

dt
=

K∑
k=1

Ṁk (2.2-1b)

Equations 2.2-1a and b are general and valid regardless of the details of the system and
whether the system is stationary or moving.
Since we are interested only in pure fluids here, we can divide Eqs. 2.2-1a and b by the

molecular weight of the fluid and use the fact thatN , the number of moles in the system,
is equal toM/mw, where mw is the molecular weight, and Ṅk, the molar flow rate into
the system at the k th entry port, is Ṁk/mw, to obtain instead of Eq. 2.2-1a a similar
equation in which the term moles replaces the word mass and, instead of Eq. 2.2-1b,

Rate-of-change mass
balance: molar basis

dN

dt
=

K∑
k=1

Ṅk (2.2-2)

We introduce this equation here because it is frequently convenient to do calculations
on a molar rather than on a mass basis.
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In Sec. 2.1 it was indicated that the equation for the change of an extensive state
variable of a system in the time interval Δt could be obtained by integration over the
time interval of the equation for the rate of change of that variable. Here we demonstrate
how this integration is accomplished. For convenience, t1 represents the beginning of
the time interval and t2 represents the end of the time interval, so that Δt = t2 − t1.
Integrating Eq. 2.2-1b between t1 and t2 yields∫ t2

t1

dM

dt
dt =

K∑
k=1

∫ t2

t1

Ṁk dt (2.2-3)

The left side of the equation is treated as follows:

∫ t2

t1

dM

dt
dt =

∫ M(t2)

M(t1)

dM = M(t2) − M(t1) =

⎛
⎝Change in total mass

of system between
t1 and t2

⎞
⎠

whereM(t) is themass in the system at time t. The term on the right side of the equation
may be simplified by observing that

∫ t2

t1

Ṁk dt =

(
Mass that entered the
system at the k th entry
port between t1 and t2

)
≡ ΔMk

Thus

Integral mass balance
M(t2) − M(t1) =

K∑
k=1

ΔMk (2.2-4)

This is the symbolic form of Eq. 2.2-1a.
Equation 2.2-4 may be written in a simpler form when the mass flow rates are steady,

that is, independent of time. For this case∫ t2

t1

Ṁk dt = Ṁk

∫ t2

t1

dt = ṀkΔt

so that

M(t2) − M(t1) =
K∑

k=1

ṀkΔt (steady flows) (2.2-5)

The equations in this section that will be used throughout this book are listed in
Table 2.2-1.

Illustration 2.2-1
Use of the Difference Form of the Mass Balance

A tank of volume 25 m3 contains 1.5 × 104 kg of water. Over a two-day period the inlet to the
tank delivers 2.0 × 103 kg, 1.3 × 103 kg leaves the tank through the outlet port, and 50 kg of
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Table 2.2-1 The Mass Conservation Equation

Mass Basis Molar Basis

Rate-of-change form of the mass balance

General equation
dM

dt
=

K∑
k=1

Ṁk

dN

dt
=

K∑
k=1

Ṅk

Special case:

Closed system
dM

dt
= 0

M = constant

dN

dt
= 0

N = constant

Difference form of the mass balance*

General equation M2 − M1 =

K∑
k=1

ΔMk N2 − N1 =

K∑
k=1

ΔNk

Special cases:
Closed system M2 = M1 N2 = N1

Steady flow M2 − M1 =

K∑
k=1

Ṁk Δt N2 − N1 =

K∑
k=1

Ṅk Δt

*Here we have used the abbreviated notation Mi = M(ti) and Ni = N(ti).

water leaves the tank by evaporation. How much water is in the tank at the end of the two-day
period?

Solution

Since we are interested only in the change in the mass of water in the tank over the two-day
period, and not in the rate of change, we will use the difference form of the mass balance over the
period from the initial time (which we take to be t = 0) until two days later (t = 2 days). We use
Eq. 2.2-4, recognizing that we have three flow terms: M1 (flow into the tank) = +2.0× 103 kg,
M2 (flow from the tank) = −1.3 × 103 kg, and M3 (evaporation) = −50 kg. (Remember, in
our notation the + sign is for flow into the system, the tank, and the − sign is for flow out of the
system.)

Therefore,

M(t = 2 days) − M(t = 0) = M1 + M2 + M3

M(t = 2 days) − 1.5 × 104 kg = 2.0 × 103 − 1.3 × 103 − 50
M(t = 2 days) = 1.5 × 104 + 2.0 × 103 − 1.3 × 103 − 50

= 1.565 × 104 kg

1

Illustration 2.2-2
Use of the Rate-of-Change Form of the Mass Balance

A storage tank is being used in a chemical plant to dampen fluctuations in the flow to a down-
stream chemical reactor. The exit flow from this tank will be kept constant at 1.5 kg/s; if the
instantaneous flow into the tank exceeds this, the level in the tank will rise, while if the instanta-
neous flow is less, the level in the tank will drop. If the instantaneous flow into the storage tank
is 1.2 kg/s, what is the rate of change of mass in the tank?

1Throughout this text the symbol will be used to indicate the end of an illustration.
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Solution

Since we are interested in the rate of change of mass, here we use the rate-of-change form of the
mass balance (Eq. 2.2-1b):

dM

dt
=
∑

k

Ṁk

or, in this case,

dM

dt
= −1.5 + 1.2 = −0.3

kg

s

Thus, at the moment the measurements were made, the amount of liquid in the tank was decreas-
ing by 0.3 kg/s or 300 g/s.

Comment

Remember, if we are interested in the rate of change of mass, as we are here, we use the rate-of-
change form of the mass balance, Eq. 2.2-1b. However, if we are interested only in the change
of total mass over a period of time, we use Eq. 2.2-4.

Illustration 2.2-3
Use of the Rate-of-Change Form of the Mass Balance

Gas is being removed from a high-pressure storage tank through a device that removes 1 percent
of the current contents of the tank each minute. If the tank initially contains 1000 mols of gas,
how much will remain at the end of 20 minutes?

Solution

Since 1 percent of the gas is removed at any time, the rate at which gas leaves the tank will
change with time. For example, initially gas is leaving at the rate of 0.01 × 1000 mol/min =
10 mol/min. However, later when only 900 mol of gas remain in the tank, the exiting flow rate
will be 0.01×900 mol/min = 9 mol/min. In fact, the exiting flow rate is continuously changing
with time. Therefore, we have to use the rate-of-change or differential form of the mass (mole)
balance. Starting from the rate-of-change form of the mass balance (Eq. 2.2-1b) around the tank
that has only a single flow term, we have

dN

dt
= Ṅ where Ṅ = −0.01 × N so that

d ln N

dt
= −0.01

The solution to this first-order differential equation is

ln

(
N(t)

N(t = 0)

)
= −0.01t or N(t) = N(t = 0)e−0.01t

Therefore,

N(t = 20) = N(t = 0)e−0.01×20 = 1000e−0.2 = 818.7 mol

Note that if we had merely (and incorrectly) used the initial rate of 10 mol/min we would have
obtained the incorrect answer of 800 mol remaining in the tank.
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Comment

To solve any problem in which the mass (or molar) flow rate changes with time, we need to use
the differential or rate-of-change form of the mass balance. For problems in which all of the
flow terms are constant, we can use the general difference form of the mass balance (which has
been obtained from the rate-of-change form by integration over time), or we can use the rate-of-
change form and then integrate over time. However, it is important to emphasize that if one (or
more) flow rates are changing with time, the rate-of-change form must be used.

Illustration 2.2-4
Another Problem Using the Rate-of-Change Form of the Mass Balance

An open cylindrical tank with a base area of 1 m2 and a height of 10 m contains 5 m3 of water.
As a result of corrosion, the tank develops a leak at its bottom. The rate at which water leaves
the tank through the leak is

Leak rate
(

m3

s

)
= 0.5

√
ΔP

where ΔP is the pressure difference in bar between the fluid at the base of the tank and the
atmosphere. (You will learn about the origin of this equation in a course dealing with fluid flow.)

Determine the amount of water in the tank at any time.

Solution

Note that the pressure at the bottom of the tank is equal to the atmosphere pressure plus the
hydrostatic pressure due to the water above the leak; that is, P = 1.013 bar + ρh, where ρ is the
density of water and h is the height of water above the leak. Therefore, ΔP = (1.013 + ρh) −
1.013 = ρh and

ΔP = 103 kg

m3
× h m × 9.807

m

s2
× 1

Pa m s

kg
× 105 bar

Pa
= 0.09807h bar

Since the height of fluid in the tank is changing with time, the flow rate of the leak will change
with time. Therefore, to solve the problem, we must use the rate-of-change form of the mass
balance. The mass of water in the tank at any time is

M(t) = ρAh(t) = 103 kg

m3
· 1 m2 · h(t) m = 103h(t) kg

The mass balance on the contents of the tank at any time is

dM(t)

dt
= 103 dh(t)

dt
= Ṁ = −0.5

√
0.098 07h(t) = −0.1566

√
h(t)

where the negative sign arises because the flow is out of the tank. Integrating this equation
between t = 0 and any later time t yields

2
√

h(t) − 2
√

h(0) = 2
√

h(t) − 2
√

5 = −0.1566 × 10−3t

or

√
h(t) =

√
5 −
(

0.1566

2

)
× 10−3t

which can be rearranged to
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h(t) =
(√

5 − 0.7829 × 10−4t
)2

and M(t) =
(√

5 − 0.7829 × 10−4t
)2

× 103 kg

From this equation, one finds that the tank will be completely drained in 28 580 s or 7.938 hr.

Comment

Since the rate of flow of water out of the tank depends on the hydrostatic pressure due to the
water column above the leak, and since the height of this column changes with time, again we
must use the rate-of-change form of the mass balance to solve the problem.

It is important in any problem to be able to recognize whether the flows are steady, in which
case the difference form of the mass balance can be used, or the flows vary with time, as is the
case here, in which case the rate-of-change form of the mass balance must be used.

2.3 THE MASS BALANCE EQUATIONS FOR
A MULTICOMPONENT SYSTEMWITH
A CHEMICAL REACTION

When chemical reactions occur, the mass (or mole) balance for each species is some-
what more complicated since the amount of the species can increase or decrease as
a result of the reactions. Here we will consider mass balances when there is only a
single chemical reaction; in Chapter 8 and later chapters the more general case of sev-
eral chemical reactions occurring simultaneously is considered. Also, we will write the
mass balances using only the number of moles since the stoichiometry of chemical re-
actions is usually written in terms of the number of moles of each species that undergoes
chemical reaction rather than the mass of each species that reacts. Using the notation(
Ṅi

)
k
for the rate at which moles of species i enter (if positive) or leave (if negative)

in flow stream k, we have the differential or rate-of-change form of the mass balance on
species i as

Rate-of-change mass
balance with chemical
reaction on a molar
basis

dNi

dt
=

K∑
k=1

(Ṅi)k +
(

dNi

dt

)
rxn

(2.3-1)

where the last term is new and describes the rate at which species i is produced (if pos-
itive) or consumed (if negative) within the system by chemical reaction. The difference
form of this equation, obtained by integrating over the time period from t1 to t2, is

Difference form of the
mass balance Ni(t2) − Ni(t1) =

K∑
k=1

⎧⎭t2

t1

(Ni)k dt + (ΔNi)rxn =
K∑

k=1

ΔNk + (ΔNi)rxn

(2.3-2)

where the summation terms after the equal signs are the changes in the number of
moles of the species due to the flow streams, and the second terms are the result of the

chemical reaction. Note that only if the flow rate of a stream is steady (i.e.,
(
Ṅi

)
k
is

constant), then

If a flow rate is steady (ΔNi)k =
(
Ṅi

)
k
�t
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Now consider the mass (mole) balances for a reactor in which the following chemical
reaction occurs

C2H4 + Cl2 → C2H4Cl2

but in which neither ethylene nor chlorine is completely consumed. The mass balances
for these species, in which stream 1 is pure ethylene and stream 2 is pure chlorine, are

C2H4:
(

dNC2H4

dt

)
=

(
ṄC2H4

)
1
+

(
ṄC2H4

)
3
+

(
dNC2H4

dt

)
rxn

Cl2:
(

dNCl2

dt

)
=

(
ṄCl2

)
2
+

(
ṄCl2

)
3
+

(
dNCl2

dt

)
rxn

(2.3-3)

C2H4Cl2:
(

dNC2H4Cl2

dt

)
=

(
ṄC2H4Cl2

)
3
+

(
dNC2H4Cl2

dt

)
rxn

where all the exit streams [i.e., (...)3] will be negative in value.
From the stoichiometry of this reaction, all the reaction rate terms are interrelated.

In this case, the rate at which ethylene chloride is created (the number of moles per
second) is equal to the rate at which ethylene is consumed, which is also equal to the
rate at which chlorine is consumed. That is,(

dNC2H4Cl2

dt

)
rxn

= −
(

dNC2H4

dt

)
rxn

= −
(

dNCl2

dt

)
rxn

so we can simplify Eqs. 2.3-3 by replacing the three different reaction rates with a
single one.
We can generalize this discussion of the interrelationships between reaction rates by

introducing the following convenient notation for the description of chemical reactions.
Throughout this book the chemical reaction

αA + βB + · · · −→←− ρR + · · ·

where α, β, . . . , are the molar stoichiometric coefficients, will be written as

ρR + · · · − αA − βB − · · · = 0

or ∑
i

νiI = 0 (2.3-4)

Here νi is the stoichiometric coefficient of species I, defined so that νi is positive for
reaction products, negative for reactants, and equal to zero for inert species. In this
notation the electrolytic dissociation reaction H2O = H2 + 1

2
O2 is written as H2 +

1
2
O2 − H2O = 0, so that νH2O = −1, νH2 = +1, and νO2 = + 1

2
.

We will useNi to represent the number of moles of species i in the system at any time
t andNi,0 to be the initial number of moles of species i. For a closed system,Ni andNi,0

are related through the reaction variable X , called the molar extent of reaction, and
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the stoichiometric coefficient νi by the equation

Molar extent of
reaction

Ni = Ni,0 + νiX (2.3-5a)

or

X =
Ni − Ni,0

νi

(2.3-5b)

An important characteristic of the reaction variable X defined in this way is that it
has the same value for each molecular species involved in a reaction; this is illustrated
in the following example. Thus, given the initial mole numbers of all species andX (or
the number of moles of one species from which the molar extent of reaction X can be
calculated) at time t , one can easily compute all other mole numbers in the system. In
this way the complete progress of a chemical reaction (i.e., the change in mole numbers
of all the species involved in the reaction) is given by the value of the single variableX .

Illustration 2.3-1
Using the Molar Extent of Reaction Notation

The electrolytic decomposition of water to form hydrogen and oxygen occurs as follows:
H2O−→H2 + 1

2
O2. Initially, only 3.0 mol of water are present in a closed system. At some

later time it is found that 1.2 mol of H2 and 1.8 mol of H2O are present.

a. Show that the molar extents of reaction based on H2 and H2O are equal.
b. Compute the number of moles of O2 in the system.

Solution

a. The reaction H2O → H2 + 1
2
O2 is rewritten as

H2 + 1
2
O2 − H2O = 0

so that

νH2O = −1 νH2 = +1 and νO2 = + 1
2

From the H2 data,

X =
1.2 − 0.0

+1
= +1.2 mol

From the H2O data,

X =
1.8 − 3.0

−1
= +1.2 mol

b. Starting from Ni = Ni,0 + νiX, we have

NO2 = 0 + (+ 1
2
)(1.2) = 0.6 mol

Comment

Note that the molar extent of reaction is not a fractional conversion variable; therefore, its value
is not restricted to lie between 0 and 1. As defined here X , which has units of number of moles,
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is the number of moles of a species that has reacted divided by the stoichiometric coefficient for
the species. In fact, X may be negative if the reaction proceeds in the reverse direction to that
indicated (e.g., if hydrogen and oxygen react to form water).

The rate of change of the number of the moles of species i resulting from a chemical
reaction is (

dNi

dt

)
rxn

= νiẊ (2.3-6)

where the subscript rxn indicates that this is the rate of change of the number of moles
of species i due to chemical reaction alone, and Ẋ is the rate of change of the molar
extent of reaction. Using this notation, the balance equation for species i is

Rate-of-change
form of the mass
balance with chemical
reaction: molar basis

dNi

dt
=

K∑
k=1

(Ṅi)k + νi
dX

dt
(2.3-7)

The difference form of this equation, obtained by integrating over the time period from
t1 to t2, is

Difference form of
mass balance with
chemical reaction

Ni(t2) − Ni(t1) =
K∑

k=1

⎧⎭t2

t1

(Ṅi)k dt + (ΔNi)rxn =
K∑

k=1

(ΔNi)k + νiΔX

(2.3-8)

Using this notation for the description of the production of ethylene dichloride consid-
ered earlier, we have

C2H4:
(

dNC2H4

dt

)
=

(
ṄC2H4

)
1
+

(
ṄC2H4

)
3
− dX

dt

Cl2:
(

dNCl2

dt

)
=

(
ṄCl2

)
2
+

(
ṄCl2

)
3
− dX

dt
(2.3-9)

C2H4Cl2:
(

dNC2H4Cl2

dt

)
=

(
ṄC2H4Cl2

)
3
+

dX

dt

Illustration 2.3-2
Mass Balance for a Mixture with Chemical Reaction

At high temperatures acetaldehyde (CH3CHO) dissociates into methane and carbon monoxide
by the following reaction

CH3CHO−→CH4 + CO

At 520oC the rate at which acetaldehyde dissociates is

dCCH3CHO

dt
= −0.48C2

CH3CHO

m3

kmol s
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where C is concentration in kmol/m3. The reaction occurs in a constant-volume, 1-L vessel, and
the initial concentration of acetaldehyde is 10 kmol/m3.

a. If 5 mols of the acetaldehyde reacts, howmuchmethane and carbonmonoxide is produced?
b. Develop expressions for the amounts of acetaldehyde, methane, and carbon monoxide

present at any time, and determine how long it would take for 5 mol of acetaldehyde to
have reacted.

Solution

First, we must determine the initial amount of acetaldehyde present. Since the initial concentra-
tion is

CCH3CHO = 10
mol

L
= 10

kmol

m3

it follows that initially

NCH3CHO = 10
mol

L
× 1 L = 10 mol

Next, we write the stoichiometry for the reaction in terms of the molar extent of reaction X as
follows:

NCH3CHO = 10 − X NCH4 = X and NCO = X (a)

a. To determine the amounts of each species after a given amount of acetaldehyde has reacted,
we can use the difference form of the mass balance for this system with no flows of species
into or out of the reactor:

Ni(t) − Ni(t = 0) = (ΔNi)rxn = νiΔX

Therefore, for acetaldehyde

NCH3CHO(t) − NCH3CHO(t = 0) = 5 − 10 mol = −5 mol = −X

so that X = 5 mol. Then amounts of the other species are

NCH4(t) = X = 5 mol and NCO(t) = X = 5 mol

b. To determine the amount of each species as a function of time is more difficult and must
be done using the rate-of-change form of the mass balance since the rate of reaction and
therefore the value of X change with time. However, because the amounts of the species
are always related by the stoichiometry of Eq. a, we can use the mass balance for one of
the species to determine the time variation of X, and then can use the expression for X(t)
to obtain the compositions of all species in the reaction as a function of time. Since the rate
expression is written for acetaldehyde, we will use this substance to determine the time
dependence of X. Since there are no flows into or out of the reactor, Eq. 2.3-7 is

dNCH3CHO

dt
=

(
dNCH3CHO

dt

)
rxn

= νCH3CHO

dX

dt
= −dX

dt

Next the reaction rate expression can be written as

d
(

NCH3CHO
V

)
dt

=
1

V

dNCH3CHO

dt
= −0.48C2

CH3CHO = −0.48
N2

CH3CHO

V 2

m3

kmol s
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which, after using NCH3CHO = 10 − X, becomes

dX

dt
=

0.48(10 − X)2

V

mol

L s
= 0.48(10 − X)2

mol

s

Now integrating from t = 0, at which X = 0, to some other time t gives

1

10 − X(t)
− 1

10
= 0.48t or X(t) = 10 − 1

0.48t + 0.1
mol

Therefore,

NCH3CHO(t) =
1

0.48t + 0.1
and NCH4(t) = NCO(t) = 10 − 1

0.48t + 0.1

Finally, solving this equation for X(t) = 5 mol gives t = 0.208 s; that is, half of the
acetaldehyde dissociates within approximately two-tenths of a second.

Comment

Notice again that solving the rate-of-change form of the mass balance requires more information
(here the rate of reaction) and more effort than solving the difference form of the mass balance.
However, we also get more information—the amount of each species present as a function of
time. In Sec. 2.4, which is optional and more difficult, we consider another, even deeper level of
description, where not only is time allowed to vary, but the system is not spatially homogeneous;
that is, the composition in the reactor varies from point to point. However, this section is not for
the faint-hearted and is best considered after a course in fluid mechanics.

Illustration 2.3-3
Mass Balance for a Liquid Mixture with a Reversible Reaction

The ester ethyl acetate is produced by the reversible reaction

CH3COOH + C2H5OH
k−→←−
k′

CH3COOC2H5 + H2O

in the presence of a catalyst such as sulfuric or hydrochloric acid. The rate of ethyl acetate pro-
duction has been found, from the analysis of chemical kinetics data, to be given by the following
equation:

dCEA

dt
= kCACE − k′CEACW

where the subscripts EA, A, E, and W denote ethyl acetate, acetic acid, ethanol, and water,
respectively, and the concentration of each species in units of kmol/m3. The values of the reaction
rate constants at 100◦C and the catalyst concentration of interest are

k = 4.76 × 10−4 m3/kmol min

and

k′ = 1.63 × 10−4 m3/kmol min

Develop expressions for the number of moles of each species as a function of time if the feed to
the reactor is 1 m3 of an aqueous solution that initially contains 250 kg of acetic acid and 500 kg
of ethyl alcohol. The density of the solution may be assumed to be constant and equal to 1040
kg/m3, and the reactor will be operated at a sufficiently high pressure that negligible amounts
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of reactants or products vaporize. Compute the number of moles of each species present 100
minutes after the reaction has started, and at infinite time when the reaction will have stopped
and the system is at equilibrium.

Solution

Since the reaction rate expression is a function of the compositions, which are changing as a
function of time, the mass balance for each species must be written in the rate-of-change form.
Since the species mole numbers and concentrations are functions of the molar extent of reaction,
X, we first determine how X varies with time by solving the mass balance for one species. We
will use ethyl acetate since the reaction rate is given for that species. Once the amount of ethyl
acetate is known, the other species mole numbers are easily computed as shown below.

The initial concentration of each species is

CA =
250 kg/m3

60 g/mol
= 4.17 kmol/m3

CE =
500 kg/m3

46 g/mol
= 10.9 kmol/m3

CW =
(1040 − 250 − 500) kg/m3

18 g/mol
= 16.1 kmol/m3

Since there is 1 m3 of solution, the initial amount of each species is

NA = 4.17 kmol
NE = 10.9 kmol
NW = 16.1 kmol
NEA = 0 kmol

and by the reaction stoichiometry, the amount of each species present at any time (in kmol) and
its concentration (since 1 m3 of volume is being considered) is

NA = 4.17 − X CA = 4.17 − X

NE = 10.9 − X CE = 10.9 − X

NW = 16.1 + X CW = 16.1 + X

and

NEA = X CEA = X

Because the concentration of a species is equal to the number of moles N divided by the volume
V, the chemical reaction rate equation can be written as

d

dt

(
NEA

V

)
= k

NA

V

NE

V
− k′ NEA

V

NW

V

Now using V = 1 m3 and the mole numbers, we have

d

dt
X = k(4.17 − X)(10.9 − X) − k′X(16.1 + X)

or

dX

dt
= 4.76 × 10−4(4.17 − X)(10.9 − X) − 1.63 × 10−4(16.1 + X)X

= 2.163 × 10−2(1 − 0.4528X − 0.01447X2) kmol/m3 min



42 Chapter 2: Conservation of Mass

which can be rearranged to

2.163 × 10−2 dt =
dX

1 − 0.4528X + 0.01447X2

Integrating this equation between t = 0 and time t yields2

2.163 × 10−2

∫ t

0

dt = 2.163 × 10−2 × t =

∫ X

0

dX

1 − 0.4528X + 0.01447X2

or

ln

(
0.02894X − 0.8364

0.02894X − 0.0692

)
− ln

(
0.8364

0.0692

)
= 0.8297 × 10−2t (c)

and on rearrangement

X (t) = 2.3911
e0.008297t − 1

e0.008297t − 0.08274

for t in minutes and X in kmol.
Therefore,

NA(t) = CA(t) = 4.17 − X = 4.17 − 2.3911
e0.008297t − 1

e0.008297t − 0.08274

NE(t) = CE(t) = 10.9 − X = 10.9 − 2.3911
e0.008297t − 1

e0.008297t − 0.08274

NW(t) = CW(t) = 16.1 + X = 16.1 + 2.3911
e0.008297t − 1

e0.008297t − 0.08274

and

NEA(t) = CEA(t) = X = 2.3911
e0.008297t − 1

e0.008297t − 0.08274

At 100 minutes, X = 1.40 kmol so that

NA = 4.17 − X = 4.17 − 1.4 = 2.77 NE = 9.5, NW = 17.5, NEA = 1.4

Also, at infinite time X = 2.39 (actually 2.3911) and

NA = 4.17 − X = 4.17 − 2.39 = 1.78, NE = 8.51, NW = 18.49, NEA = 2.39

Illustration 2.3-4
Mass Balance Modeling of a Simple Environmental Problem

Water in a lake initially contains a pollutant at a parts-per-million concentration. This pollutant
is no longer present in the water entering the lake. The rate of inflow of water to the lake from a
creek is constant and equal to the rate of outflow, so the lake volume does not change.

2Note that

∫
dX

a + bX + cX2
=

1√
2

ln

[
2cX + b −√−q

2cX + b +
√−q

]

where q = 4ac − b2.
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a. Assuming the water in the lake is well mixed, so its composition is uniform and the pollu-
tant concentration in the exit stream is the same as in the lake, estimate the number of lake
volumes of water that must be added to the lake and then leave in order for the concentration
of the pollutant in the water to decrease to one-half of its initial concentration.

b. How many lake volumes would it take for the concentration of the pollutant in the lake to
decrease to one-tenth of its initial concentration?

c. If the volume of water in the lake is equal to the inflow for a one-year period, assuming
the inflow of water is uniform in time, how long would it take for the concentration of the
pollutant in the lake to decrease to one-half and one-tenth of its initial concentration?

Solution

a. In writing the overall mass balance for the lake, which we take to be the system, we use that
the flow rates into and out of the lake are constant and equal, and that the concentration of
the pollutant is so low that its change has a negligible effect on the total mass of the water
in the lake. With these simplifications the mass balance is

dM

dt
= 0 = (Ṁ)1 + (Ṁ)2, so that (Ṁ)1 = −(Ṁ)2 = Ṁ

That is, the rate of mass flow out of the lake is equal in magnitude and opposite in sign to
the rate of mass flow into the lake. The mass balance on the pollutant is

dMp

dt
=

d (CpM)

dt
= M

d (Cp)

dt
=
(
Ṁp

)
2

= (Ṁ)2Cp = −(Ṁ)1Cp

where we have used that the total amount of pollutant is equal to the product of its concen-
tration per unit mass Cp and the total mass M of water in the lake. Therefore,

dCp

Cp

= −Ṁ

M
dt which has the solution Cp (t) = Cp (t = 0) e−(Ṁ/M)t

Cp (t)

Cp (t = 0)
= 0.5 = exp

(
−Ṁt

M

)
or Ṁt = 0.693M

Now Ṁt = �M , which is the amount of water that entered the lake over the time interval
from 0 to t. Therefore, when the amount of fresh water that has entered the lake Mt =
�M equals 69.3 percent of the initial (polluted) water in the lake, the concentration of the
pollutant in the lake will have decreased to half its initial value.

b. We proceed as in part (a), except that we now have

Cp (t)

Cp (t = 0)
= 0.1 = exp

(
−Ṁt

M

)
or Ṁt = 2.303M

so that when an amount of water that enters is equal to 2.303 times the initial volume of
water in the lake, the concentration of pollutant will have decreased to one-tenth its initial
value.

c. It will take 0.693 years (253 days) and 2.303 years (840 days) for the concentration of the
pollutant to decrease to 50 percent and 10 percent of its inital concentration, respectively.

2.4 THE MICROSCOPIC MASS BALANCE EQUATIONS
IN THERMODYNAMICS AND FLUID MECHANICS3

This section appears on the website that accompanies this text.

3This section is optional—only for graduate and advanced undergraduate students.
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PROBLEMS

2.1 As a result of a chemical spill, benzene is evaporating
at the rate of 1 gram per minute into a room that is
6 m × 6 m × 3 m in size and has a ventilation rate of
10 m3/min.
a. Compute the steady-state concentration of benzene

in the room.
b. Assuming the air in the room is initially free of ben-

zene, compute the time necessary for benzene to
reach 95 percent of the steady-state concentration.

2.2 The insecticide DDT has a half-life in the human body
of approximately 7 years. That is, in 7 years its con-
centration decreases to half its initial concentration. Al-
though DDT is no longer in general use in the United
States, it was estimated that 25 years ago the average
farm worker had a body DDT concentration of 22 ppm
(parts per million by weight). Estimate what the farm
worker’s present concentration would be.

2.3 At high temperatures phosphine (PH3) dissociates into
phosphorus and hydrogen by the following reaction:

4PH3 −→ P4 + 6H2

At 800◦C the rate at which phosphine dissociates is

dCPH3

dt
= −3.715 × 10−6CPH3

for t in seconds. The reaction occurs in a constant-
volume, 2-L vessel, and the initial concentration of
phosphine is 5 kmol/m3

a. If 3 mol of the phosphine reacts, how much phos-
phorus and hydrogen are produced?

b. Develop expressions for the number of moles of
phosphine, phosphorus, and hydrogen present at any
time, and determine how long it would take for
3 mol of phosphine to have reacted.

2.4 The following reaction occurs in air:

2NO + O2 −→ 2NO2

At 20◦C the rate of this reaction is

dCNO

dt
= −1.4 × 10−4C2

NOCO2

for t in seconds and concentrations in kmol/m3. The re-
action occurs in a constant-volume, 2-L vessel, and the
initial concentration of NO is 1 kmol/m3 and that of O2

is 3 kmol/m3

a. If 0.5mol of NO reacts, howmuchNO2 is produced?
b. Determine how long it would take for 0.5 mol of NO

to have reacted.



Chapter 3

Conservation of Energy

In this chapter we continue the quantitative development of thermodynamics by de-
riving the energy balance, the second of the three balance equations that will be used
in the thermodynamic description of physical, chemical, and (later) biochemical pro-
cesses. The mass and energy balance equations (and the third balance equation, to be
developed in the following chapter), together with experimental data and information
about the process, will then be used to relate the change in a system’s properties to a
change in its thermodynamic state. In this context, physics, fluid mechanics, thermo-
dynamics, and other physical sciences are all similar in that the tools of each are the
same: a set of balance equations, a collection of experimental observations (equation-
of-state data in thermodynamics, viscosity data in fluid mechanics, etc.), and the initial
and boundary conditions for each problem. The real distinction between these differ-
ent subject areas is the class of problems, and in some cases the portion of a particular
problem, that each deals with.
One important difference between thermodynamics and, say, fluid mechanics and

chemical reactor analysis is the level of description used. In fluid mechanics one is usu-
ally interested in a very detailed microscopic description of flow phenomena and may
try to determine, for example, the fluid velocity profile for flow in a pipe. Similarly,
in chemical reactor analysis one is interested in determining the concentrations and
rates of chemical reaction everywhere in the reactor. In thermodynamics the descrip-
tion is usually more primitive in that we choose either a region of space or an element
of mass as the system and merely try to balance the change in the system with what is
entering and leaving it. The advantage of such a description is that we can frequently
make important predictions about certain types of processes for which a more detailed
description might not be possible. The compromise is that the thermodynamic descrip-
tion yields information only about certain overall properties of the system, though with
relatively little labor and simple initial information.
In this chapter we are concerned with developing the equations of energy conserva-

tion to be used in the thermodynamic analysis of systems of pure substances. (The ther-
modynamics of mixtures is more complicated and will be considered in later chapters.)
To emphasize both the generality of these equations and the lack of detail necessary,
we write these energy balance equations for a general black-box system. For contrast,
and also because a more detailed description will be useful in Chapter 4, the rudiments
of the more detailed microscopic description are provided in the final, optional sec-
tion of this chapter. This microscopic description is not central to our development of
thermodynamic principles, is suitable only for advanced students, and may be omitted.

45
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To use the energy balances, we will need to relate the energy to more easily mea-
surable properties, such as temperature and pressure (and in later chapters, when we
consider mixtures, to composition as well). The interrelationships between energy, tem-
perature, pressure, and composition can be complicated, and we will develop this in
stages. In this chapter and in Chapters 4, 5, and 6 we will consider only pure fluids,
so composition is not a variable. Then, in Chapters 8 to 15, mixtures will be consid-
ered. Also, here and in Chapters 4 and 5 we will consider only the simple ideal gas and
incompressible liquids and solids for which the equations relating the energy, temper-
ature, and pressure are simple, or fluids for which charts and tables interrelating these
properties are available. Then, in Chapter 6, we will discuss how such tables and charts
are prepared.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 3

The goals of this chapter are for the student to:

• Be able to use the differential form of the pure component energy balance in prob-
lem solving (Secs. 3.1 and 2)

• Be able to use the difference form of the pure component energy balance in prob-
lem solving (Secs. 3.1 and 2)

• Be able to compute changes in energy with changes in temperature and pressure
for the ideal gas (Sec. 3.3)

• Be able to compute changes in energy with changes in temperature and pressure
of real fluids using tables and charts of thermodynamic properties (Sec. 3.3)

NOTATION INTRODUCED IN THIS CHAPTER

CP Constant-pressure molar heat capacity (J/mol K)
C∗

P Ideal gas constant-pressure molar heat capacity (J/mol K)
CV Constant-volume molar heat capacity (J/mol K)
C∗

V Ideal gas constant-volume molar heat capacity (J/mol K)
H Enthalpy (J)
H Enthalpy per mole, or molar enthalpy (J/mol)
Ĥ Enthalpy per unit mass, or specific enthalpy (J/g)

�fus H Molar enthalpy of melting or fusion (J/mol)
�sub H Molar enthalpy of sublimation (J/mol)
�vap H Molar enthalpy of vaporization (J/mol)
�vap Ĥ Enthalpy of vaporization per unit mass (J/g)

Q̇ Rate of flow of heat into the system (J/s)
Q Heat that has flowed into the system (J)

TR Reference temperature for internal energy of enthalpy (K)
U Internal energy per mole, or molar internal energy (J/mol)
Û Internal energy per unit mass, or specific internal energy (J/g)
V Volume per mole, or molar volume (m3/mol)
Ẇ Rate at which work is being done on the system (J/s)
W Work that has been done on the system (J)
Ws Shaft work that has been done on the system (J)
Ẇs Rate at which shaft work is being done on the system (J/s)
ψ Potential energy per unit of mass (J/g)
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ωI Mass fraction of phase I (quality for steam)
ψ Potential energy per unit of mass (J/g)

3.1 CONSERVATION OF ENERGY

To derive the energy conservation equation for a single-component system, we again
use the black-box system of Figure 2.1-1 and start from the general balance equation,
Eq. 2.1-4. Taking θ to be the sum of the internal, kinetic, and potential energy of the
system,

θ = U + M

(
v2

2
+ ψ

)
Here U is the total internal energy, v2/2 is the kinetic energy per unit mass (where v is
the center of mass velocity), and ψ is the potential energy per unit mass.1 If gravity is
the only force field present, then ψ = gh, where h is the height of the center of mass
with respect to some reference, and g is the force of gravity per unit mass. Since energy
is a conserved quantity, we can write

d

dt

{
U + M

(
v2

2
+ ψ

)}
=

(
Rate at which energy
enters the system

)
−

(
Rate at which energy
leaves the system

)
(3.1-1)

To complete the balance it remains only to identify the various mechanisms by which
energy can enter and leave the system. These are as follows.
Energy flow accompanying mass flow. As a fluid element enters or leaves the sys-

tem, it carries its internal, potential, and kinetic energy. This energy flow accompanying
the mass flow is simply the product of a mass flow and the energy per unit mass,

K∑
k=1

Ṁk

(
Û +

v2

2
+ ψ

)
k

(3.1-2)

where Ûk is the internal energy per unit mass of the kth flow stream, and Ṁk is its mass
flow rate.
Heat. We use Q̇ to denote the total rate of flow of heat into the system, by both

conduction and radiation, so that Q̇ is positive if energy in the form of heat flows into
the system and negative if heat flows from the system to its surroundings. If heat flows
occur at several different places, the total rate of heat flow into the system is

Q̇ =
∑

Q̇j

where Q̇j is the heat flow at the jth heat flow port.
Work. The total energy flow into the system due to work will be divided into several

parts. The first part, called shaft work and denoted by the symbolWs, is the mechanical
energy flow that occurs without a deformation of the system boundaries. For example,

1In writing this form for the energy term, it has been assumed that the system consists of only one phase, that is, a
gas, a liquid, or a solid. If the system consists of several distinct parts—for example, gas and a liquid, or a gas and
the piston and cylinder containing it—the total energy, which is an extensive property, is the sum of the energies
of the constituent parts.
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if the system under consideration is a steam turbine or internal combustion engine, the
rate of shaft work Ẇs is equal to the rate at which energy is transferred across the
stationary system boundaries by the drive shaft or push rod. Following the convention
that energy flow into the system is positive, Ẇs is positive if the surroundings do work
on the system and negative if the system does work on its surroundings.
For convenience, the flow of electrical energy into or out of the system will be in-

cluded in the shaft work term. In this case, Ẇs = ±EI , where E is the electrical
potential difference across the system and I is the current flow through the system.
The positive sign applies if electrical energy is being supplied to the system, and the
negative sign applies if the system is the source of electrical energy.
Work also results from the movement of the system boundaries. The rate at which

work is done when a force F is moved through a distance in the direction of the applied
force dL in the time interval dt is

Ẇ = F
dL

dt

Here we recognize that pressure is a force per unit area and write

Ẇ = −P
dV

dt
(3.1-3)

where P is the pressure exerted by the system at its boundaries.2 The negative sign in
this equation arises from the convention that work done on a system in compression (for
which dV/dt is negative) is positive, and work done by the system on its surroundings
in an expansion (for which dV/dt is positive) is negative. The pressure at the bound-
aries of a nonstationary system will be opposed by (1) the pressure of the environment
surrounding the system, (2) inertial forces if the expansion or compression of the sys-
tem results in an acceleration or deceleration of the surroundings, and (3) other external
forces, such as gravity. As wewill see in Illustration 3.4-7, the contribution to the energy
balance of the first of these forces is a term corresponding to the work done against the
atmosphere, the second is a work term corresponding to the change in kinetic energy
of the surroundings, and the last is the work done that changes the potential energy of
the surroundings.
Work of a flowing fluid against pressure. One additional flow of energy for sys-

tems open to the flow of mass must be included in the energy balance equation; it is
more subtle than the energy flows just considered. This is the energy flow that arises
from the fact that as an element of fluid moves, it does work on the fluid ahead of it,
and the fluid behind it does work on it. Clearly, each of these work terms is of the
PΔV type. To evaluate this energy flow term, which occurs only in systems open to
the flow of mass, we will compute the net work done as one fluid element of mass
(M)1 enters a system, such as the valve in Fig. 3.1-1, and another fluid element of

Pressure P2Pressure P1

Volume = V1�M1
^

Volume = V2�M2
^

Valve

Figure 3.1-1 A schematic rep-
resentation of flow through a
valve.

2In writing this form for the work term, we have assumed the pressure to be uniform at the system boundary. If
this is not the case, Eq. 3.1-3 is to be replaced with an integral over the surface of the system.
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mass (ΔM)2 leaves the system. The pressure of the fluid at the inlet side of the valve
is P1, and the fluid pressure at the outlet side is P2, so that we have⎛

⎝ Work done by surrounding fluid in
pushing fluid element of mass (M)1

into the valve

⎞
⎠ = P1V̂1ΔM1

⎛
⎜⎜⎜⎝

Work done on surrounding fluid
by movement of fluid element of

mass (ΔM)2 out of the valve (since
this fluid element is pushing the

surrounding fluid)

⎞
⎟⎟⎟⎠ = −P2V̂2ΔM2

(
Net work done on the system due to

movement of fluid

)
= P1V̂1ΔM1 − P2V̂2ΔM2

For a more general system, with several mass flow ports, we have⎛
⎜⎝
Net work done on the system due
to the pressure forces acting on
the fluids moving into and out of
the system

⎞
⎟⎠ =

K∑
k=1

ΔMkPV̂k

Finally, to obtain the net rate at which work is done, we replace each mass flow Mk

with a mass flow rate Ṁk, so that⎛
⎜⎝

Net rate at which work is done on
the system due to pressure forces

acting on fluids moving into and out
of the system

⎞
⎟⎠ =

K∑
k=1

Ṁk(PV̂ )k

where the sign of each term of this energy flow is the same as that of Ṁk.
One important application of this pressure-induced energy flow accompanying a

mass flow is hydroelectric power generation, schematically indicated in Fig. 3.1-2.
Here a water turbine is being used to obtain mechanical energy from the flow of wa-
ter through the base of a dam. Since the water velocity, height, and temperature are
approximately the same at both sides of the turbine (even though there are large velocity
changes within the turbine), the mechanical (or electrical) energy obtained is a result
of only the mass flow across the pressure difference at the turbine.
Collecting all the energy terms discussed gives

d

dt

{
U + M

(
v2

2
+ ψ

)}
=

K∑
k=1

Ṁk

(
Û +

v2

2
+ ψ

)
k

+ Q̇

+ Ẇs − P
dV

dt
+

K∑
k=1

Ṁk(PV̂ )k

(3.1-4)

This equation can be written in a more compact form by combining the first and last
terms on the right side and introducing the notation
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Reservoir

Water
flow

Dam

Water turbine

Hydroelectric power
generating station

Figure 3.1-2 A hydroelectric power generating station: a
device for obtaining work from a fluid flowing across a
large pressure drop.

H = U + PV

where the function H is called the enthalpy, and by using the symbol Ẇ to represent
the combination of shaft work Ẇs and expansion work −P (dV/dt), that is, Ẇ =
Ẇs − P (dV/dt). Thus we have

Complete energy
balance, frequently
referred to as
the first law of
thermodynamics

d

dt

{
U + M

(
v2

2
+ ψ

)}
=

K∑
k=1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

+ Q̇ + Ẇ (3.1-4a)

It is also convenient to have the energy balance on a molar rather than a mass basis.
This change is easily accomplished by recognizing that ṀkĤk can equally well be
written as Ṅk Hk, whereH is the enthalpy per mole or molar enthalpy,3 andM(v2/2+
ψ) = Nm (v2/2 + ψ), where m is the molecular weight. Therefore, we can write the
energy balance as

d

dt

{
U + Nm

(
v2

2
+ ψ

)}
=

K∑
k=1

Ṅk

{
H + m

(
v2

2
+ ψ

)}
k

+ Q̇ + Ẇ

(3.1-4b)
Several special cases of Eqs. 3.1-4a and b are listed in Table 3.1-1.
The changes in energy associated with either the kinetic energy or potential energy

terms, especially for gases, are usually very small compared with those for the thermal
(internal) energy terms, unless the fluid velocity is near the velocity of sound, the change
in height is very large, or the system temperature is nearly constant. This point will
become evident in some of the illustrations and problems (see particularly Illustration
3.4-2). Therefore, it is frequently possible to approximate Eqs. 3.1-4a and b by

3H = U + PV , where U and V are the molar internal energy and volume, respectively.
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Commonly used forms
of energy balance

dU

dt
=

K∑
k=1

(ṀĤ)k + Q̇ + Ẇ (mass basis) (3.1-5a)

dU

dt
=

K∑
k=1

(ṄH)k + Q̇ + Ẇ (molar basis) (3.1-5b)

As with the mass balance, it is useful to have a form of the energy balance applicable
to a change from state 1 to state 2. This is easily obtained by integrating Eq. 3.1-4a over
the time interval t1 to t2, the time required for the system to go from state 1 to state 2.

Table 3.1-1 Differential Form of the Energy Balance

General equation
d

dt

{
U + M

(
v2

2
+ ψ

)}
=

K∑
k=1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

+ Q̇ + Ẇ (a)

Special cases:
(i) Closed system

Ṁk = 0,
dM

dt
= 0

so

dU

dt
+ M

d

dt

(
v2

2
+ ψ

)
= Q̇ + Ẇ (b)

(ii) Adiabatic process
in Eqs. a, b, and d

Q̇ = 0 (c)

(iii) Open and steady-state system

dM

dt
= 0,

dV

dt
= 0,

d

dt

{
U + M

(
v2

2
+ ψ

)}
= 0

so

0 =

K∑
k=1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

+ Q̇ + Ẇs (d)

(iv) Uniform system
In Eqs. a and b

U = MÛ (e)

Note: To obtain the energy balance on a molar basis, make the following substitutions:

Replace with

M

(
v2

2
+ ψ

)
Nm

(
v2

2
+ ψ

)

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

Ṅk

{
H + m

(
v2

2
+ ψ

)}
k

MÛ NU
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The result is

{
U + M

(
v2

2
+ ψ

)}
t2

−
{

U + M

(
v2

2
+ ψ

)}
t1

=
K∑

k=1

∫ t2

t1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

dt + Q + W (3.1-6)

where

Q =
∫ t2

t1

Q̇ dt Ws =
∫ t2

t1

Ẇs dt

∫ V (t2)

V (t1)

P dV =
∫ t2

t1

P
dV

dt
dt

and

W = Ws −
∫ V (t2)

V (t1)

P dV

The first term on the right side of Eq. 3.1-6 is usually the most troublesome to evaluate
because the mass flow rate and/or the thermodynamic properties of the flowing fluid
may change with time. However, if the thermodynamic properties of the fluids entering
and leaving the system are independent of time (even though the mass flow rate may
depend on time), we have

K∑
k=1

∫ t2

t1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

dt =
K∑

k=1

(
Ĥ +

v2

2
+ ψ

)
k

∫ t2

t1

Ṁk dt

=
K∑

k=1

ΔMk

(
Ĥ +

v2

2
+ ψ

)
k

(3.1-7)

If, on the other hand, the thermodynamic properties of the flow streams change with
time in some arbitrary way, the energy balance of Eq. 3.1-6 may not be useful since
it may not be possible to evaluate the integral. The usual procedure, then, is to try to
choose a new system (or subsystem) for the description of the process in which these
time-dependent flows do not occur or are more easily handled (see Illustration 3.4-5).
Table 3.1-2 lists various special cases of Eq. 3.1-6 that will be useful in solving ther-

modynamic problems.
For the study of thermodynamics it will be useful to have equations that relate the

differential change in certain thermodynamic variables of the system to differential
changes in other system properties. Such equations can be obtained from the differen-
tial form of the mass and energy balances. For processes in which kinetic and potential
energy terms are unimportant, there is no shaft work, and there is only a single mass
flow stream, these equations reduce to

dM

dt
= Ṁ
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and

dU

dt
= ṀĤ + Q̇ − P

dV

dt

which can be combined to give

dU

dt
= Ĥ

dM

dt
+ Q̇ − P

dV

dt
(3.1-8)

where Ĥ is the enthalpy per unit mass entering or leaving the system. (Note that for a
system closed to the flow of mass, dM/dt = Ṁ = 0.) Defining Q = Q̇ dt to be equal
to the heat flow into the system in the differential time interval dt, and dM = Ṁ dt =
(dM/dt) dt to be equal to the mass flow in that time interval, we obtain the following
expression for the change of the internal energy in the time interval dt:

dU = Ĥ dM + Q − P dV (3.1-9a)

Table 3.1-2 Difference Form of the Energy Balance

General equation{
U + M

(
v2

2
+ ψ

)}
t2

−
{

U + M

(
v2

2
+ ψ

)}
t1

=

K∑
k=1

∫ t2

t1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

dt + Q + W (a)

Special cases:
(i) Closed system {

U + M

(
v2

2
+ ψ

)}
t2

−
{

U + M

(
v2

2
+ ψ

)}
t1

= Q + W (b)

and

M(t1) = M(t2)

(ii) Adiabatic process
In Eqs. a and b

Q = 0 (c)

(iii) Open system, flow of fluids of constant thermodynamic properties
K∑

k=1

∫ t2

t1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

dt =

K∑
k=1

ΔMk

(
Ĥ +

v2

2
+ ψ

)
k

(d)

in Eq. a

(iv) Uniform system {
U + M

(
v2

2
+ ψ

)}
= M

(
Û +

v2

2
+ ψ

)
(e)

in Eqs. a and b

Note: To obtain the energy balance on a molar basis, make the following substitutions:

Replace with

M

(
v2

2
+ ψ

)
Nm

(
v2

2
+ ψ

)

∫ t2

t1

Ṁk

(
Ĥ +

v2

2
+ ψ

)
k

dt

∫ t2

t1

Ṅk

{
H + m

(
v2

2
+ ψ

)}
k

dt

M

(
Û +

v2

2
+ ψ

)
N

{
U + m

(
v2

2
+ ψ

)}



54 Chapter 3: Conservation of Energy

For a closed system this equation reduces to

dU = Q − P dV (3.1-9b)

Since the time derivative operator d/dt is mathematically well defined, and the operator
d is not, it is important to remember in using Eqs. 3.1-9a and b that they are abbrevi-
ations of Eq. 3.1-8. It is part of the traditional notation of thermodynamics to use dθ
to indicate a differential change in the property θ, rather than the mathematically more
correct dθ/dt.

3.2 SEVERAL EXAMPLES OF USING THE ENERGY BALANCE

The energy balance equations developed so far in this chapter can be used for the de-
scription of any process. As the first step in using these equations, it is necessary to
choose the system for which the mass and energy balances are to be written. The im-
portant fact for the student of thermodynamics to recognize is that processes occurring
in nature are in no way influenced by our mathematical description of them. Therefore,
if our descriptions are correct, they must lead to the same final result for the system
and its surroundings regardless of which system choice is made. This is demonstrated
in the following example, where the same result is obtained by choosing for the system
first a given mass of material and then a specified region in space. Since the first sys-
tem choice is closed and the second open, this illustration also establishes the way in
which the open-system energy flow PV Ṁ is related to the closed-system work term
P (dV/dt).

Illustration 3.2-1
Showing That the Final Result Should Not Depend on the Choice of System

A compressor is operating in a continuous, steady-state manner to produce a gas at temperature
T2 and pressure P2 from one at T1 and P1. Show that for the time interval Δt

Q + Ws = (Ĥ2 − Ĥ1) ΔM

where ΔM is the mass of gas that has flowed into or out of the system in the time Δt. Establish
this result by (a) first writing the balance equations for a closed system consisting of some con-
venient element of mass, and then (b) by writing the balance equations for the compressor and
its contents, which is an open system.

Solution

a. The closed-system analysis
Here we take as the system the gas in the compressor and the mass of gas ΔM , that will enter

the compressor in the time interval Δt. The system is enclosed by dotted lines in the figure.

P1, T1 P2, T2

Ws Q

Compressor
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At the later time t + Δt, the mass of gas we have chosen as the system is as shown below.

P1, T1 P2, T2

Ws Q

Compressor

We use the subscript c to denote the characteristics of the fluid in the compressor, the subscript
1 for the gas contained in the system that is in the inlet pipe at time t, and the subscript 2 for the
gas in the system that is in the exit pipe at time t + Δt. With this notation the mass balance for
the closed system is

M2(t + Δt) + Mc(t + Δt) = M1(t) + Mc(t)

Since the compressor is in steady-state operation, the amount of gas contained within it and the
properties of this gas are constant. Thus, Mc(t + Δt) = Mc(t) and

M2(t + Δt) = M1(t) = ΔM

The energy balance for this system, neglecting the potential and kinetic energy terms (which,
if retained, would largely cancel), is

M2Û2|t+Δt + McÛc|t+Δt − M1Û1|t − McÛc|t = Ws + Q + P1V̂1M1 − P2V̂2M2 (a)

In writing this equation we have recognized that the flow terms vanish for the closed system and
that there are two contributions of the

∫
P dV type, one due to the deformation of the system

boundary at the compressor inlet and another at the compressor outlet. Since the inlet and exit
pressures are constant at P1 and P2, these terms are

−
∫

P dV = −P1

∫
dV |inlet − P2

∫
dV |outlet

= −P1{V1(t + Δt) − V1(t)} − P2{V2(t + Δt) − V2(t)}

However, V1(t + Δt) = 0 and V2(t) = 0, so that

−
∫

P dV = +P1V1 − P2V2 = P1V̂1M1 − P2V̂2M2

Now, using the energy balance and Eq. a above, and recognizing that since the compressor is in
steady-state operation,

McÛc|t+Δt = McÛc|t
we obtain

ΔM(Û2 − Û1) = Ws + Q + P1V̂1ΔM − P2V̂2ΔM

or

ΔM(Û2 + P2V̂2 − Û1 − P1V̂1) = ΔM(Ĥ2 − Ĥ1) = Ws + Q
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b. The open-system analysis
Here we take the contents of the compressor at any time to be the system. The mass balance

for this system over the time interval Δt is

M(t + Δt) − M(t) =

∫ t+Δt

t

Ṁ1 dt +

∫ t+Δt

t

Ṁ2 dt = (M)1 + (M)2

and the energy balance is

{
U + M

(
v2

2
+ ψ

)}
t+Δt

−
{

U + M

(
v2

2
+ ψ

)}
t

=

∫ t+Δt

t

Ṁ1(Ĥ1 + v2
1/2 + ψ1) dt +

∫ t+Δt

t

Ṁ2(Ĥ2 + v2
2/2 + ψ2) dt + Q + W

These equations may be simplified as follows:

1. Since the compressor is operating continuously in a steady-state manner, its contents must,
by definition, have the same mass and thermodynamic properties at all times. Therefore,

M(t + Δt) = M(t)

and {
U + M

(
v2

2
+ ψ

)}
t+Δt

=

{
U + M

(
v2

2
+ ψ

)}
t

2. Since the thermodynamic properties of the fluids entering and leaving the turbine do not
change in time, we can write

∫ t+Δt

t

Ṁ1(Ĥ1 + v2
1/2 + ψ1) dt = (Ĥ1 + v2

1/2 + ψ1)

∫ t+Δt

t

Ṁ1 dt

= (Ĥ1 + v2
1/2 + ψ1) ΔM1

with a similar expression for the compressor exit stream.
3. Since the volume of the system here, the contents of the compressor, is constant

∫ V2

V1

P dV = 0

so that

W = Ws

4. Finally, we will neglect the potential and kinetic energy changes of the entering and exiting
fluids.

With these simplifications, we have

0 = ΔM1 + ΔM2 or ΔM1 = −ΔM2 = ΔM

and

0 = ΔM1Ĥ1 + ΔM2Ĥ2 + Q + Ws

Combining these two equations, we obtain

Q + Ws = (Ĥ2 − Ĥ1) ΔM

This is the same result as in part (a).
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Comment

Notice that in the closed-system analysis the surroundings are doing work on the system (the
mass element) at the inlet to the compressor, while the system is doing work on its surroundings
at the outlet pipe. Each of these terms is a

∫
P dV –type work term. For the open system this work

term has been included in the energy balance as a PV̂ ΔM term, so that it is the enthalpy, rather
than the internal energy, of the flow streams that appears in the equation. The explicit

∫
P dV

term that does appear in the open-system energy balance represents only the work done if the
system boundaries deform; for the choice of the compressor and its contents as the system here
this term is zero unless the compressor (the boundary of our system) explodes.

This illustration demonstrates that the sumQ+Ws is the same for a fluid undergoing
some change in a continuous process regardless of whether we choose to compute this
sum from the closed-system analysis on a mass of gas or from an open-system analy-
sis on a given volume in space. In Illustration 3.2-2 we consider another problem, the
compression of a gas by two different processes, the first being a closed-system piston-
and-cylinder process and the second being a flow compressor process. Here we will find
that the sum Q + W is different in the two processes, but the origin of this difference
is easily understood.

Illustration 3.2-2
Showing that Processes in Closed and Open Systems Are Different

A mass M of gas is to be compressed from a temperature T1 and a pressure P1 to T2 and P2

in (a) a one-step process in a frictionless piston and cylinder,4 and (b) a continuous process in
which the mass M of gas is part of the feed stream to the compressor of the previous illustration.
Compute the sum Q + W for each process.

Solution

a. The piston-and-cylinder process

P1, T1 P2, T2

Here we take the gas within the piston and cylinder as the system. The energy balance for this
closed system is

M(Û2 − Û1) = Q + W (piston-cylinder process)

It is useful to note that Ws = 0 and W = −
∫

P dV .
b. The flow compressor process (see the figures in Illustration 3.2-1)

If we take the contents of the compressor as the system and follow the analysis of the previous
illustration, we obtain

M(Ĥ2 − Ĥ1) = Q + W (flow compressor)

where, since
∫

P dV = 0, W = Ws.

Comment

From these results it is evident that the sum Q + W is different in the two cases, since the two
processes are different. The origin of the difference in the flow and nonflow energy changes

4Since the piston is frictionless, the pressure of the gas is equal to the pressure applied by the piston.
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accompanying a change of state is easily identified by considering two different ways of com-
pressing a mass M of gas in a piston and cylinder from (T1, P1) to (T2, P2). The first way is
merely to compress the gas in situ. The sum of heat and work flows needed to accomplish the
change of state is, from the preceding computations,

Q + W = M(Û2 − Û1)

A second way to accomplish the compression is to open a valve at the side of the cylinder
and use the piston movement (at constant pressure P1) to inject the gas into the compressor inlet
stream, use the compressor to compress the gas, and then withdraw the gas from the compressor
exit stream by moving the piston against a constant external pressure P2. The energy required in
the compressor stage is the same as that found above:

(Q + W )c = M(Ĥ2 − Ĥ1)

To this we must add the work done in using the piston movement to pump the fluid into the
compressor inlet stream,

W1 =

∫
P dV = P1V1 = P1V̂1M

(this is the work done by the system on the gas in the inlet pipe to the compressor), and subtract
the work obtained as a result of the piston movement as the cylinder is refilled,

W2 = −
∫

P dV = −P2V2 = −P2V̂2M

(this is the work done on the system by the gas in the compressor exit stream). Thus the total
energy change in the process is

Q + W = (Q + W )c + W1 + W2

= M(Ĥ2 − Ĥ1) + P1V̂1M − P2V̂2M = M(Û2 − Û1)

which is what we found in part (a). Here, however, it results from the sum of an energy require-
ment of M(Ĥ2 − Ĥ1) in the flow compressor and the two pumping terms.

Consider now the problem of relating the downstream temperature and pressure of a
gas in steady flow across a flow constriction (e.g., a valve, orifice, or porous plug) to its
upstream temperature and pressure.

Illustration 3.2-3
A Joule-Thomson or Isenthalpic Expansion

A gas at pressure P1 and temperature T1 is steadily exhausted to the atmosphere at pressure P2

through a pressure-reducing valve. Find an expression relating the downstream gas temperature
T2 to P1, P2, and T1. Since the gas flows through the valve rapidly, one can assume that there is
no heat transfer to the gas. Also, the potential and kinetic energy terms can be neglected.

T1, P1 T2 = ?, P2

Solution

The flow process is schematically shown in the figure. We will consider the region of space
that includes the flow obstruction (indicated by the dashed line) to be the system, although, as
in Illustration 3.2-1, a fixed mass of gas could have been chosen as well. The pressure of the
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gas exiting the reducing valve will be P2, the pressure of the surrounding atmosphere. (It is not
completely obvious that these two pressures should be the same. However, in the laboratory we
find that the velocity of the flowing fluid will always adjust in such a way that the fluid exit
pressure and the pressure of the surroundings are equal.) Now recognizing that our system (the
valve and its contents) is of constant volume, that the flow is steady, and that there are no heat or
work flows and negligible kinetic and potential energy changes, the mass and energy balances
(on a molar basis) yield

0 = Ṅ1 + Ṅ2 or Ṅ2 = −Ṅ1

and

0 = Ṅ1H1 + Ṅ2H2 = Ṅ1(H1 − H2)

Thus

Isenthalpic or
Joule-Thomson
expansion

H1 = H2

or, to be explicit,

H(T1, P1) = H(T2, P2) or Ĥ(T1, P1) = Ĥ(T2, P2)

so that the initial and final states of the gas have the same enthalpy. Consequently, if we knew
how the enthalpy of the gas depended on its temperature and pressure, we could use the known
values of T1, P1, and P2 to determine the unknown downstream temperature T2.

Comments

1. The equality of enthalpies in the upstream and downstream states is the only information
we get from the thermodynamic balance equations. To proceed further we need constitutive
information, that is, an equation of state or experimental data interrelating H , T , and P.
Equations of state are discussed in the following section and in much of Chapter 6.

2. The experiment discussed in this illustration was devised by William Thomson (later Lord
Kelvin) and performed by J. P. Joule to study departures from ideal gas behavior. The
Joule-Thomson expansion, as it is called, is used in the liquefaction of gases and in
refrigeration processes (see Chapter 5).

3.3 THE THERMODYNAMIC PROPERTIES OF MATTER

The balance equations of this chapter allow one to relate the mass, work, and heat flows
of a system to the change in its thermodynamic state. From the experimental observa-
tions discussed in Chapter 1, the change of state for a single-component, single-phase
system can be described by specifying the initial and final values of any two indepen-
dent intensive variables. However, certain intensive variables, especially temperature
and pressure, are far easier to measure than others. Consequently, for most problems
we will want to specify the state of a system by its temperature and pressure rather
than by its specific volume, internal energy, and enthalpy, which appear in the energy
balance. What are needed, then, are interrelations between the fluid properties that
allow one to eliminate some thermodynamic variables in terms of other, more easily
measured ones. Of particular interest is the volumetric equation of state, which is a re-
lation between temperature, pressure, and specific volume, and the thermal equation
of state, which is usually either in the form of a relationship between internal energy,
temperature, and specific (or molar) volume, or between specific or molar enthalpy,
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temperature, and pressure. Such information may be available in either of two forms.
First, there are analytic equations of state, which provide an algebraic relation between
the thermodynamic state variables. Second, experimental data, usually in graphical or
tabular form, may be available to provide the needed interrelationships between the
fluid properties.
Equations of state for fluids are considered in detail in Chapter 6. To illustrate the

use of the mass and energy balance equations in a simple form, we briefly consider
here the equation of state for the ideal gas and the graphical and tabular display of the
thermodynamic properties of several real fluids.
An ideal gas is a gas at such a low pressure that there are no interactions among its

molecules. For such gases it is possible to show, either experimentally or by themethods
of statistical mechanics, that at all absolute temperatures and pressures the volumetric
equation of state is

PV = RT (3.3-1)

(as indicated in Sec. 1.4) and that the enthalpy and internal energy are functions of
temperature only (and not pressure or specific volume). We denote this latter fact by
H = H(T ) and U = U(T ). This simple behavior is to be compared with the enthalpy
for a real fluid, which is a function of temperature and pressure [i.e., H = H(T,P )]
and the internal energy, which is usually written as a function of temperature and spe-
cific volume [U = U(T, V )], as will be discussed in Chapter 6.
The temperature dependence of the internal energy and enthalpy of all substances (not

merely ideal gases) can be found by measuring the temperature rise that accompanies
a heat flow into a closed stationary system. If a sufficiently small quantity of heat is
added to such a system, it is observed that the temperature rise produced,ΔT , is linearly
related to the heat added and inversely proportional to N , the number of moles in the
system:

Q

N
= CΔT = C{T (t2) − T (t1)}

where C is a parameter and Q is the heat added to the system between the times t1
and t2. The object of the experiment is to accurately measure the parameter C for a
very small temperature rise, since C generally is also a function of temperature. If the
measurement is made at constant volume and with Ws = 0, we have, from the energy
balance and the foregoing equation,

U(t2) − U(t1) = Q = NCV{T (t2) − T (t1)}
Thus

CV =
U(t2) − U(t1)

N{T (t2) − T (t1)}
=

U(t2) − U(t1)
T (t2) − T (t1)

where the subscript V has been introduced to remind us that the parameter C was de-
termined in a constant-volume experiment. In the limit of a very small temperature
difference, we have

Constant-volume heat
capacity definition CV(T, V ) = lim

T (t2)−T (t1)→0

U(t2) − U(t1)
T (t2) − T (t1)

=
(

∂U

∂T

)
V

=
(

∂U(T, V )
∂T

)
V

(3.3-2)
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so that the measured parameter CV is, in fact, equal to the temperature derivative of
the internal energy at constant volume. Similarly, if the parameter C is determined in a
constant-pressure experiment, we have

Q = U(t2) − U(t1) + P{V (t2) − V (t1)}
= U(t2) + P (t2)V (t2) − U(t1) − P (t1)V (t1)
= H(t2) − H(t1) = NCP{T (t2) − T (t1)}

where we have used the fact that since pressure is constant, P = P (t2) = P (t1). Then

Constant-pressure
heat capacity
definition

CP(T,P ) =
(

∂H

∂T

)
P

=
(

∂H(T,P )
∂T

)
P

(3.3-3)

so that the measured parameter here is equal to the temperature derivative of the en-
thalpy at constant pressure.
The quantity CV is called the constant-volume heat capacity, and CP is the

constant-pressure heat capacity; both appear frequently throughout this book.
Partial derivatives have been used in Eqs. 3.3-2 and 3.3-3 to indicate that although the
internal energy is a function of temperature and density or specific (or molar) volume,
CV has been measured along a path of constant volume; and although the enthalpy is a
function of temperature and pressure,CP has been evaluated in an experiment in which
the pressure was held constant.
For the special case of the ideal gas, the enthalpy and internal energy of the fluid are

functions only of temperature. In this case the partial derivatives above become total
derivatives, and

C∗
P(T ) =

dH

dT
and C∗

V(T ) =
dU

dT
(3.3-4)

so that the ideal gas heat capacities, which we denote using asterisks as C∗
P(T ) and

C∗
V(T ), are only functions of T as well. The temperature dependence of the ideal gas

heat capacity can be measured or, in some cases, computed using the methods of sta-
tistical mechanics and detailed information about molecular structure, bond lengths,
vibrational frequencies, and so forth. For our purposes C∗

P(T ) will either be consid-
ered to be a constant or be written as a function of temperature in the form

Ideal gas heat capacity C∗
P(T ) = a + bT + cT 2 + dT 3 + · · · (3.3-5)

Since H = U + PV , and for the ideal gas PV = RT , we have H = U + RT and

C∗
P(T ) =

dH

dT
=

d(U + RT )
dT

= C∗
V(T ) + R

so that C∗
V(T ) = C∗

P(T )−R = (a−R) + bT + cT 2 + dT 3 + · · · . The constants in
Eq. 3.3-5 for various gases are given in Appendix A.II.
The enthalpy and internal energy of an ideal gas at a temperature T2 can be related

to their values at T1 by integration of Eqs. 3.3-4 to obtain

H IG(T2) = H IG(T1) +
∫ T2

T1

C∗
P(T ) dT
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and

U IG(T2) = U IG(T1) +
∫ T2

T1

C∗
V(T ) dT (3.3-6)

where the superscript IG has been introduced to remind us that these equations are valid
only for ideal gases.
Our interest in the first part of this book is with energy flow problems in single-

component systems. Since the only energy information needed in solving these prob-
lems is the change in internal energy and/or enthalpy of a substance between two states,
and since determination of the absolute energy of a substance is not possible, what is
done is to choose an easily accessible state of a substance to be the reference state,
for which H IG is arbitrarily set equal to zero, and then report the enthalpy and internal
energy of all other states relative to this reference state. (That there is a state for each
substance for which the enthalpy has been arbitrarily set to zero does lead to difficulties
when chemical reactions occur. Consequently, another energy convention is introduced
in Chapter 8.)
If, for the ideal gas, the temperature TR is chosen as the reference temperature (i.e.,

H IG at TR is set equal to zero), the enthalpy at temperature T is then

H IG(T ) =
∫ T

TR

C∗
P(T ) dT (3.3-7)

Similarly, the internal energy at T is

U IG(T ) = U IG(TR) +
∫ T

TR

C∗
V(T ) dT = {H IG(TR) − RTR} +

∫ T

TR

C∗
V(T ) dT

=
∫ T

TR

C∗
V(T ) dT − RTR

(3.3-8)
One possible choice for the reference temperature TR is absolute zero. In this case,

H IG(T ) =
∫ T

0

C∗
P(T ) dT and U IG(T ) =

∫ T

0

C∗
V(T ) dT

However, to use these equations, heat capacity data are needed from absolute zero to the
temperature of interest. These data are not likely to be available, so a more convenient
reference temperature, such as 0◦C, is frequently used.
For the special case in which the constant-pressure and constant-volume heat capac-

ities are independent of temperature, we have, from Eqs. 3.3-7 and 3.3-8,

H IG(T ) = C∗
P(T − TR) (3.3-7′′′ )

and

U IG(T ) = C∗
V(T − TR) − RTR = C∗

VT − C∗
PTR (3.3-8′′′ )

which, when TR is taken to be absolute zero, simplify further to

H IG(T ) = C∗
PT and U IG(T ) = C∗

VT



3.3 The Thermodynamic Properties of Matter 63

As we will see in Chapters 6 and 7, very few fluids are ideal gases, and the mathe-
matics of relating the enthalpy and internal energy to the temperature and pressure of a
real fluid is much more complicated than indicated here. Therefore, for fluids of indus-
trial and scientific importance, detailed experimental thermodynamic data have been
collected. These data can be presented in tabular form (see Appendix A.III for a table
of the thermodynamic properties of steam) or in graphical form, as in Figs. 3.3-1 to
3.3-4 for steam, methane, nitrogen, and the environmentally friendly refrigerant HFC-
134a. (Can you identify the reference state for the construction of the steam tables in
Appendix A.III?) With these detailed data one can, given values of temperature and
pressure, easily find the enthalpy, specific volume, and entropy (a thermodynamic quan-
tity that is introduced in the next chapter). More generally, given any two intensive
variables of a single-component, single-phase system, the remaining properties can
be found.
Notice that different choices have been made for the independent variables in these

figures. Although the independent variables may be chosen arbitrarily,5 some choices
are especially convenient for solving certain types of problems. Thus, as we will see, an
enthalpy-entropy (H-S) orMollier diagram,6 such as Fig. 3.3-1a, is useful for problems
involving turbines and compressors; enthalpy-pressure (H-P ) diagrams (for example
Figs. 3.3-2 to 3.3-4) are useful in solving refrigeration problems; and temperature-
entropy (T -S) diagrams, of which Fig. 3.3-1b is an example, are used in the analysis
of engines and power and refrigeration cycles (see Sec. 3.4 and Chapter 5).
An important characteristic of real fluids is that at sufficiently low temperatures they

condense to form liquids and solids. Also, many applications of thermodynamics of in-
terest to engineers involve either a range of thermodynamic states for which the fluid of
interest undergoes a phase change, or equilibrium multiphase mixtures (e.g., steam and
water at 100◦C and 101.3 kPa). Since the energy balance equation is expressed in terms
of the internal energy and enthalpy per unit mass of the system, this equation is valid
regardless of which phase or mixture of phases is present. Consequently, there is no
difficulty, in principle, in using the energy balance (or other equations to be introduced
later) for multiphase or phase-change problems, provided thermodynamic information
is available for each of the phases present. Figures 3.3-1 to 3.3-4 and the steam tables
in Appendix A.III provide such information for the vapor and liquid phases and, within
the dome-shaped region, for vapor-liquid mixtures. Similar information for many other
fluids is also available. Thus, you should not hesitate to apply the equations of ther-
modynamics to the solution of problems involving gases, liquids, solids, and mixtures
thereof.
There is a simple relationship between the thermodynamic properties of a two-phase

mixture (e.g., a mixture of water and steam), the properties of the individual phases, and
the mass distribution between the phases. If θ̂ is any intensive property, such
as internal energy per unit mass or volume per unit mass, its value in an equilibrium
two-phase mixture is

Properties of a
two-phase mixture:
the lever rule

θ̂ = ωIθ̂I + ωIIθ̂II = ωIθ̂I + (1 − ωI)θ̂II (3.3-9)

Here ωI is the mass fraction of the system that is in phase I, and θ̂I is the value of
the variable in that phase. Also, by definition of the mass fraction, ωI + ωII = 1.

5See, however, the comments made in Sec. 1.6 concerning the use of the combinations U and T , and V and T as
the independent thermodynamic variables.
6Entropy, denoted by the letter S, is a thermodynamic variable to be introduced in Chapter 4.
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(a)

Figure 3.3-1 (a) Enthalpy-entropy of Mollier diagram for steam. [Source: ASME Steam Tables in SI (Metric) Units for
Instructional Use, American Society of Mechanical Engineers, New York, 1967. Used with permission.] (This figure appears
as an Adobe PDF file on the website for this book, and may be enlarged and printed for easier reading and for use in solving
problems.)
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(b)

Figure 3.3-1(b) Temperature-entropy diagram for steam. [Source: J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore,
Steam Tables (International Edition—Metric Units). Copyright 1969. John Wiley & Sons, Inc., New York. Used with per-
mission.] (This figure appears as an Adobe PDF file on the website for this book, and may be enlarged and printed for easier
reading and for use in solving problems.)
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Figure 3.3-2 Pressure-enthalpy diagram for methane. (Source: W. C. Reynolds, Thermody-
namic Properties in SI, Department of Mechanical Engineering, Stanford University, Stanford,
CA, 1979. Used with permission.) (This figure appears as an Adobe PDF file on the website for
this book, and may be enlarged and printed for easier reading and for use in solving problems.)

(For mixtures of steam and water, the mass fraction of steam is termed the quality
and is frequently expressed as a percentage, rather than as a fraction; for example, a
steam-water mixture containing 0.02 kg of water for each kg of mixture is referred to
as steam of 98 percent quality.) Note that Eq. 3.3-9 gives the property of a two-phase
mixture as a linear combination of the properties of each phase weighted by its mass
fraction. Consequently, if charts such as Figures 3.3-1 to 3.3-4 are used to obtain the
thermodynamic properties, the properties of the two-phase mixture will fall along a
line connecting the properties of the individual phases, which gives rise to referring to
Eq. 3.3-9 as the lever rule.
If a mixture consists of two phases (i.e., vapor and liquid, liquid and solid, or solid

and vapor), the two phases will be at the same temperature and pressure; however,
other properties of the two phases will be different. For example, the specific volume
of the vapor and liquid phases can be very different, as will be their internal energy
and enthalpy, and this must be taken into account in energy balance calculations. The
notation that will be used in this book is as follows:

�vapĤ = ĤV − ĤL = enthalpy of vaporization per unit mass or on a molar basis,

�vapH = HV − HL = molar enthalpy of vaporization

Also (but for brevity, only on a molar basis),

�fusH = HL − HS = molar enthalpy of melting or fusion

�subH = HV − HS = molar enthalpy of sublimation
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Figure 3.3-3 Pressure-enthalpy diagram for nitrogen. (Source:W. C. Reynolds, Thermodynamic
Properties in SI, Department of Mechanical Engineering, Stanford University, Stanford, CA,
1979. Used with permission.) (This figure appears as an Adobe PDF file on the website for this
book, and may be enlarged and printed for easier reading and for use in solving problems.)

Similar expressions can be written for the volume changes and internal energy changes
on a phase change.
It is also useful to note that several simplifications can be made in computing the

thermodynamic properties of solids and liquids. First, because the molar volumes of
condensed phases are small, the product PV can be neglected unless the pressure is
high. Thus, for solids and liquids,

Solids or liquids at
low pressure

H ≈ U (3.3-10)

A further simplification commonly made for liquids and solids is to assume that they
are also incompressible; that is, their volume is only a function of temperature, so that

Idealized
incompressible fluid
or solid

(
∂V

∂P

)
T

= 0 (3.3-11)

In Chapter 6 we show that for incompressible fluids, the thermodynamic proper-
ties U , CP, and CV are functions of temperature only. Since, in fact, solids, and most
liquids away from their critical point (see Chapter 7) are relatively incompressible,
Eqs. 3.3-10 and 3.3-11, together with the assumption that these properties depend only
on temperature, are reasonably accurate and often used in thermodynamic studies in-
volving liquids and solids. Thus, for example, the internal energy of liquid water at a
temperature T1 and pressure P1 is, to a very good approximation, equal to the internal
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Figure 3.3-4 Pressure–enthalpy diagram for HFC-134a. (Used with permission of DuPont Flu-
oroproducts.) (This figure appears as an Adobe PDF file on the website for this book, and may
be enlarged and printed for easier reading and for use in solving problems.)

energy of liquid water at the temperature T1 and any other pressure. Consequently, the
entries for the internal energy of liquid water for a variety of temperatures (at pressures
corresponding to the vapor-liquid coexistence or saturation pressures at each temper-
ature) given in the saturation steam tables of Appendix A.III can also be used for the
internal energy of liquid water at these same temperatures and higher pressures.
Although we will not try to quantitatively relate the interactions between molecules

to their properties—that is the role of statistical mechanics, not thermodynamics—it is
useful to make some qualitative observations. The starting point is that the interactions
between a pair of simple molecules (for example, argon or methane) depend on the
separation distance between their centers of mass, as shown in Fig. 3.3-5. There we see
that if the molecules are far apart, the interaction energy is very low, and it vanishes at
infinite separation. As the molecules are brought closer together, they attract each other,
which decreases the energy of the system. However, if the molecules are brought too
close together (so that their electrons overlap), the molecules repel each other, resulting
in a positive energy that increases rapidly as one attempts to bring the molecules closer.
We can make the following observations from this simple picture of molecular in-

teractions. First, if the molecules are widely separated, as occurs in a dilute gas, there
will be no energy of interaction between the molecules; this is the case of an ideal gas.
Next, as the density increases, and the molecules are somewhat closer together, molec-
ular attractions become more important, and the energy of the system decreases. Next,
at liquid densities, the average distance between the molecules will be near the deepest
(most attractive) part of the interaction energy curve shown in Fig. 3.3-5. (Note that
the molecules will not be at the very lowest value of the interaction energy curve as a
result of their thermal motion, and because the behavior of a large collection of



3.4 Applications of the Mass and Energy Balances 69

In
te

ra
ct

io
n 

en
er

gy

+

−

Separation distance

0

Figure 3.3-5 The interaction energy between two molecules as a function of their separation
distance. Since the molecules cannot overlap, there is a strong repulsion (positive interaction
energy) at small separation distances. At larger separation distances the interactions between
the electrons result in an attraction between the molecules (negative interaction energy), which
vanishes at very large separations.

molecules is more complicated than can be inferred by examining the interaction
between only a pair of molecules.) Consequently, a liquid has considerably less inter-
nal energy than a gas. The energy that must be added to a liquid to cause its molecules
to move farther apart and vaporize is the heat of vaporization ΔvapH . In solids, the
molecules generally are located very close to the minimum in the interaction energy
function in an ordered lattice, so that a solid has even less internal energy than a liquid.
The amount of energy required to slightly increase the separation distances between the
molecules in a solid and form a liquid is the heat of melting or the heat of fusionΔfusH .
As mentioned earlier, the constant-pressure heat capacity of solids is a function of

temperature; in fact,CP goes to zero at the absolute zero of temperature and approaches
a constant at high temperatures. An approximate estimate for CP of solids for temper-
atures of interest to chemical engineers comes from the empirical law (or observation)
of DuLong and Petit that

CP = 3NR = 24.942N
J

mol K
(3.3-12)

where N is the number of atoms in the formula unit. For comparison, the constant-
pressure heat capacities of lead, gold, and aluminum at 25◦C are 26.8, 25.2, and
24.4 J/(mol K), respectively. Similarly, Eq. 3.3-12 gives a prediction of 49.9 for gal-
lium arsenide (used in the electronics industry), which is close to the measured value of
47.0 J/mol K. For Fe3C the prediction is 99.8 J/mol K and the measured value is 105.9.
So we see that the DuLong-Petit law gives reasonable though not exact values for the
heat capacities of solids.

3.4 APPLICATIONS OF THE MASS AND ENERGY BALANCES

Inmany thermodynamics problems one is given some information about the initial equi-
librium state of a substance and asked to find the final state if the heat and work flows
are specified, or to find the heat or work flows accompanying the change to a speci-
fied final state. Since we use thermodynamic balance equations to get the information
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needed to solve this sort of problem, the starting point is always the same: the identifi-
cation of a convenient thermodynamic system. The main restriction on the choice of a
system is that the flow terms into and out of the system must be of a simple form—for
example, not varying with time, or perhaps even zero. Next, the forms of the mass and
energy balance equations appropriate to the system choice are written, and any infor-
mation about the initial and final states of the system and the flow terms is used. Finally,
the thermal equation of state is used to replace the internal energy and enthalpy in the
balance equations with temperature, pressure, and volume; the volumetric equation of
state may then be used to eliminate volume in terms of temperature and pressure. In
this way equations are obtained that contain temperature and pressure as the only state
variables.
The volumetric equation of state may also provide another relationship between the

temperature, pressure, mass, and volume when the information about the final state of
the system is presented in terms of total volume, rather than volume per unit mass or
molar volume (see Illustration 3.4-5).
By using the balance equations and the equation-of-state information, we will fre-

quently be left with equations that contain only temperature, pressure, mass, shaft work
(Ws), and heat flow (Q). If the number of equations equals the number of unknowns, the
problem can be solved. The mass and energy balance equations, together with equation-
of-state information, are sufficient to solve many, but not all, energy flow problems. In
some situations we are left with more unknowns than equations. In fact, we can readily
identify a class of problems of this sort. Themass and energy balance equations together
can, at most, yield new information about only one intensive variable of the system (the
internal energy or enthalpy per unit mass) or about the sum of the heat and work flows
if only the state variables are specified. Therefore, we are not, at present, able to solve
problems in which (1) there is no information about any intensive variable of the final
state of the system, (2) both the heat flow (Q) and the shaft work (Ws) are unspecified,
or (3) one intensive variable of the final state and either Q or Ws are unknown, as in
Illustration 3.4-4. To solve these problems, an additional balance equation is needed;
such an equation is developed in Chapter 4.
The seemingly most arbitrary step in thermodynamic problem solving is the choice

of the system. Since the mass and energy balances were formulated with great general-
ity, they apply to any choice of system, and, as was demonstrated in Illustration 3.2-1,
the solution of a problem is independent of the system chosen in obtaining the solu-
tion. However, some system choices may result in less effort being required to obtain a
solution. This is demonstrated here and again in Chapter 4.

Illustration 3.4-1
Joule-Thomson Calculation Using a Mollier Diagram and Steam Tables

Steam at 400 bar and 500◦C undergoes a Joule-Thomson expansion to 1 bar. Determine the
temperature of the steam after the expansion using

a. Fig. 3.3-1a
b. Fig. 3.3-1b
c. The steam tables in Appendix A.III

Solution

(Since only one thermodynamic state variable—here the final temperature—is unknown, from
the discussion that precedes this illustration we can expect to be able to obtain a solution to this
problem.)
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We start from Illustration 3.2-3, where it was shown that

Ĥ1 = Ĥ(T1, P1) = Ĥ(T2, P2) = Ĥ2

for a Joule-Thomson expansion. Since T1 and P1 are known, Ĥ1 can be found from either
Fig. 3.3-1 or the steam tables. Then, since Ĥ2 (= Ĥ1, from the foregoing) and P2 are known, T2

can be found.

a. Using Fig. 3.3-1a, theMollier diagram, we first locate the pointP = 400 bar = 40 000 kPa
and T = 500◦C, which corresponds to Ĥ1 = 2900 kJ/kg. Following a line of constant
enthalpy (a horizontal line on this diagram) to P = 1 bar = 100 kPa, we find that the final
temperature is about 214◦C.

b. Using Fig. 3.3-1b, we locate the point P = 400 bar and T = 500◦C (which is somewhat
easier to do than it was using Fig. 3.3-1a) and follow the curved line of constant enthalpy
to a pressure of 1 bar to see that T2 = 214◦C.

c. Using the steam tables of Appendix A.III, we have that at P = 400 bar = 40 MPa and
T = 500◦C, Ĥ = 2903.3 kJ/kg. AtP = 1 bar = 0.1MPa, Ĥ = 2875.3 kJ/kg at T = 200◦C
and Ĥ = 2974.3 kJ/kg at T = 250◦C. Assuming that the enthalpy varies linearly with
temperature between 200 and 250◦C at P = 1 bar, we have by interpolation

T = 200 + (250 − 200) × 2903.3 − 2875.3

2974.3 − 2875.3
= 214.1◦C

[
The Aspen Plus R© simulation for this illustration available on the Wiley website for this book

in the folder Aspen Illustrations>Chapter 3>3.4-1. The results using the IAPWS-95 model
(equations on which the steam tables are based) give the following results:

exit temperature = 488.85 K = 215.7◦C

Using the more approximate Peng-Robinson equation of state (discussed in Chapter 5), the
result is

exit temperature = 484.87 K = 211.7◦C

This result is in reasonable agreement with that obtained with the more accurate IAPWS-95
model.

]
Comment

For many problems a graphical representation of thermodynamic data, such as Figure 3.3-1, is
easiest to use, although the answers obtained are approximate and certain parts of the graphs
may be difficult to read accurately. The use of tables of thermodynamic data, such as the steam
tables, generally leads to the most accurate answers; however, one or more interpolations may be
required. For example, if the initial conditions of the steam had been 475 bar and 530◦C instead of
400 bar and 500◦C, the method of solution using Fig. 3.3-1 would be unchanged; however, using
the steam tables, we would have to interpolate with respect to both temperature and pressure to
get the initial enthalpy of the steam.

One way to do this is first, by interpolation between temperatures, to obtain the enthalpy of
steam at 530◦C at both 400 bar = 40 MPa and 500 bar. Then, by interpolation with respect to
pressure between these two values, we obtain the enthalpy at 475 bar. That is, from

Ĥ(40 MPa, 500◦C) = 2903.3 kJ/kg Ĥ(50 MPa, 500◦C) = 2720.1 kJ/kg
Ĥ(40 MPa, 550◦C) = 3149.1 kJ/kg Ĥ(50 MPa, 550◦C) = 3019.5 kJ/kg

and the interpolation formula

Θ(x + Δ) = Θ(x) + Δ
Θ(y) − Θ(x)

y − x
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where Θ is any tabulated function, and x and y are two adjacent values at which Θ is available,
we have

Ĥ(40 MPa, 530◦C) = Ĥ(40 MPa, 500◦C) + 30 × Ĥ(40 MPa, 550◦C)− Ĥ(40 MPa, 500◦C)
550 − 500

= 2903.3 + 30 × 3149.1 − 2903.3

50
= 2903.3 + 147.5

= 3050.8 kJ/kg

and

Ĥ(50 MPa, 530◦C) = 2720.1 + 30 × 3019.5 − 2720.1

50
= 2899.7 kJ/kg

Then

Ĥ(47.5 MPa, 530◦C) = Ĥ(40 MPa, 530◦C) + 7.5 × Ĥ(50 MPa, 530◦C)− Ĥ(40 MPa, 530◦C)
50 − 40

= 3050.8 +
7.5

10
× (2881.7 − 3050.8) = 2924.0 kJ/kg

Illustration 3.4-2
Application of the Complete Energy Balance Using the Steam Tables

An adiabatic steady-state turbine is being designed to serve as an energy source for a small
electrical generator. The inlet to the turbine is steam at 600◦C and 10 bar, with a mass flow rate
of 2.5 kg/s through an inlet pipe that is 10 cm in diameter. The conditions at the turbine exit are
T = 400◦C and P = 1 bar. Since the steam expands through the turbine, the outlet pipe is 25 cm
in diameter. Estimate the rate at which work can be obtained from this turbine.

T1 = 600°C
P1 = 10 bar

T2 = 400°C
P2 = 1 bar

Ws

Solution

(This is another problem in which there is only a single thermodynamic unknown, the rate at
which work is obtained, so we can expect to be able to solve this problem.)

The first step in solving any energy flow problem is to choose the thermodynamic system; the
second step is to write the balance equations for the system. Here we take the turbine and its
contents to be the system. The mass and energy balance equations for this adiabatic, steady-state
system are

dM

dt
= 0 = Ṁ1 + Ṁ2 (a)

and

d

dt

{
U + M

(
v2

2
+ gh

)}
= 0 = Ṁ1

(
Ĥ1 +

v2
1

2

)
+ Ṁ2

(
Ĥ2 +

v2
2

2

)
+ Ẇs (b)
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In writing these equations we have set the rate of change of mass and energy equal to zero be-
cause the turbine is in steady-state operation; Q is equal to zero because the process is adiabatic,
and P (dV/dt) is equal to zero because the volume of the system is constant (unless the turbine
explodes). Finally, since the schematic diagram indicates that the turbine is positioned horizon-
tally, we have assumed there is no potential energy change in the flowing steam.

There are six unknowns—Ṁ2, Ĥ1, Ĥ2, Ẇs, v1, and v2—in Eqs. a and b. However, both ve-
locities will be found from the mass flow rates, pipe diameters, and volumetric equation-of-state
information (here the steam tables in Appendix A.III). Also, thermal equation-of-state informa-
tion (again the steam tables in Appendix A.III) relates the enthalpies to temperature and pressure,
both of which are known. Thus Ṁ2 and Ĥ2 are the only real unknowns, and these may be found
from the balance equations above. From the mass balance equation, we have

Ṁ2 = −Ṁ1 = −2.5 kg/s

From the steam tables or, less accurately from Fig. 3.3-1, we have

Ĥ1 = 3697.9 kJ/kg

V̂1 = 0.4011 m3/kg

Ĥ2 = 3278.2 kJ/kg

V̂2 = 3.103 m3/kg

The velocities at the inlet and outlet to the turbine are calculated from

Volumetric flow rate = ṀV̂ =
πd2

4
v

where d is the pipe diameter. Therefore,

v1 =
4Ṁ1V̂1

πd2
in

=

4 · 2.5
kg

s
· 0.4011

m3

kg

3.14159 · (0.1 m)2
= 127.7

m

s

v2 =
4Ṁ2V̂2

πd2
out

= 158.0
m

s

Therefore, the energy balance yields

Ẇs = −Ṁ2

(
Ĥ2 +

v2
2

2

)
− Ṁ1

(
Ĥ1 +

v2
1

2

)

= −2.5
kg

s

{
(Ĥ1 − Ĥ2) +

1

2
(v2

1 − v2
2)

}
kJ

kg

= −2.5
kg

s

⎧⎪⎪⎨
⎪⎪⎩419.7

kJ

kg
+

1

2
(127.72 − 158.02)

m2

s2
·
1

J

kg

m2

s2

· 1 kJ

1000 J

⎫⎪⎪⎬
⎪⎪⎭

= −2.5
kg

s
{419.7 − 4.3} kJ

kg
= −1038.5

kJ

s
(= −1329 hp)

[
The Aspen Plus R© simulation for this illustration available on the Wiley website for this book

in the folder Aspen Illustrations>Chapter 3>3.4-2. The items to notice in that solution are:

1. The isentropic efficiency of the turbine had to be adjusted by trial-and-error to 57.85% to
achieve the exit conditions of 400◦C and 1 bar

2. Kinetic and potential energy changes are not easily taken into account using Aspen Plus R©.
However, they are small for this case, as already shown and can be neglected
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3. The Aspen Plus R© result of 1049.85 kJ/s is in quite good agreement with the result of
1038.5 kJ/s this illustration. The difference of 1% is a result of the differences in the values
of the thermodynamic properties in the steam tables and the properties equations used in

Aspen Plus R©.
]

Comment

If we had completely neglected the kinetic energy terms in this calculation, the error in the
work term would be 4.3 kJ/kg, or about 1%. Generally, the contribution of kinetic and potential
energy terms can be neglected when there is a significant change in the fluid temperature, as was
suggested in Sec. 3.2.

Illustration 3.4-3
Use of Mass and Energy Balances with an Ideal Gas

A compressed-air tank is to be repressurized to 40 bar by being connected to a high-pressure
line containing air at 50 bar and 20◦C. The repressurization of the tank occurs so quickly that the
process can be assumed to be adiabatic; also, there is no heat transfer from the air to the tank.
For this illustration, assume air to be an ideal gas with C∗

V = 21 J/(mol K).

a. If the tank initially contains air at 1 bar and 20◦C, what will be the temperature of the air
in the tank at the end of the filling process?

b. After a sufficiently long period of time, the gas in the tank is found to be at room temper-
ature (20◦C) because of heat exchange with the tank and the atmosphere. What is the new
pressure of air in the tank?

50 bar
20°C

Solution

(Each of these problems contains only a single unknown thermodynamic property, so solutions
should be possible.)

a. We will take the contents of the tank to be the system. The difference form of the mass (or
rather mole) and energy balances for this open system are

N2 − N1 = ΔN (a)

N2U2 − N1U1 = (ΔN)H in (b)

In writing the energy balance we have made the following observations:

1. The kinetic and potential energy terms are small and can be neglected.
2. Since the tank is connected to a source of gas at constant temperature and pressure, H in

is constant.
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3. The initial process is adiabatic, so Q = 0, and the system (the contents of the tank) is
of constant volume, so ΔV = 0.
Substituting Eq. a in Eq. b, and recognizing that for the ideal gas H(T ) = C∗

P(T − TR)
and U(T ) = C∗

V(T − TR) − RTR, yields

N2{C∗
V(T2 − TR) − RTR} − N1{C∗

V(T1 − TR) − RTR} = (N2 − N1)C
∗
P(Tin − TR)

or

N2C
∗
VT2 − N1C

∗
VT1 = (N2 − N1)C

∗
PTin

(Note that the reference temperature TR cancels out of the equation, as it must, since the
final result cannot depend on the arbitrarily chosen reference temperature.) Finally, using
the ideal gas equation of state to eliminateN1 andN2, and recognizing that V1 = V2, yields

P2

T2

=
P1

T1

+
C∗

V

C∗
P

(
P2 − P1

Tin

)
or T2 =

P2

P1

T1

+
C∗

V

C∗
P

(
P2 − P1

Tin

)

The only unknown in this equation is T2, so, formally, the problem is solved. The answer
is T = 405.2 K = 132.05◦C.

Before proceeding to the second part of the problem, it is interesting to consider the case
in which the tank is initially evacuated. Here P1 = 0, and so

T2 =
C∗

P

C∗
V

Tin

independent of the final pressure. Since CP is always greater than CV, the temperature of
the gas in the tank at the end of the filling process will be greater than the temperature of
gas in the line. Why is this so?

b. To find the pressure in the tank after the heat transfer process, we use the mass balance
and the equation of state. Again, choosing the contents of the tank as the system, the mass
(mole) balance is N2 = N1, since there is no transfer of mass into or out of the system
during the heat transfer process (unless, of course, the tank is leaking; we do not consider
this complication here). Now using the ideal gas equation of state, we have

P2

T2

=
P1

T1

or P2 = P1

T2

T1

Thus, P2 = 28.94 bar.

Illustration 3.4-4
Example of a Thermodynamics Problem that Cannot Be Solved with Only the Mass and Energy
Balances7

A compressor is a gas pumping device that takes in gas at low pressure and discharges it at
a higher pressure. Since this process occurs quickly compared with heat transfer, it is usually
assumed to be adiabatic; that is, there is no heat transfer to or from the gas during its compression.
Assuming that the inlet to the compressor is air [which we will take to be an ideal gas with
C∗

P = 29.3 J/(mol K)] at 1 bar and 290 K and that the discharge is at a pressure of 10 bar,
estimate the temperature of the exit gas and the rate at which work is done on the gas (i.e., the
power requirement) for a gas flow of 2.5 mol/s.

7We return to this problem in the next chapter after formulating the balance equation for an additional thermody-
namic variable, the entropy.
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Solution

(Since there are two unknown thermodynamic quantities, the final temperature and the rate at
which work is being done, we can anticipate that the mass and energy balances will not be
sufficient to solve this problem.)

The system will be taken to be the gas contained in the compressor. The differential form of
the molar mass and energy balances for this open system are

dN

dt
= Ṅ1 + Ṅ2

dU

dt
= Ṅ1H1 + Ṅ2H2 + Q̇ + Ẇ

where we have used the subscript 1 to indicate the flow stream into the compressor and 2 to
indicate the flow stream out of the compressor.

Since the compressor operates continuously, the process may be assumed to be in a steady
state,

dN

dt
= 0 or Ṅ1 = −Ṅ2

dU

dt
= 0

that is, the time variations of the mass of the gas contained in the compressor and of the energy
content of this gas are both zero. Also, Q̇ = 0 since there is no heat transfer to the gas, and
Ẇ = Ẇs since the system boundaries (the compressor) are not changing with time. Thus we
have

Ẇs = Ṅ1H2 − Ṅ1H1 = Ṅ1C
∗
P(T2 − T1)

or

W s = C∗
P(T2 − T1)

where W s = Ẇs/Ṅ1 is the work done per mole of gas. Therefore, the power necessary to drive
the compressor can be computed once the outlet temperature of the gas is known, or the outlet
temperature can be determined if the power input is known.

We are at an impasse; we need more information before a solution can be obtained. It is clear
by comparison with the previous examples why we cannot obtain a solution here. In the pre-
vious cases, the mass balance and the energy balance, together with the equation of state of
the fluid and the problem statement, provided the information necessary to determine the final
state of the system. However, here we have a situation where the energy balance contains two
unknowns, the final temperature and W s. Since neither is specified, we need additional informa-
tion about the system or process before we can solve the problem. This additional information
will be obtained using an additional balance equation developed in the next chapter.

Illustration 3.4-5
Use of Mass and Energy Balances to Solve an Ideal Gas Problem8

A gas cylinder of 1 m3 volume containing nitrogen initially at a pressure of 40 bar and a tem-
perature of 200 K is connected to another cylinder of 1 m3 volume that is evacuated. A valve
between the two cylinders is opened until the pressures in the cylinders equalize. Find the final
temperature and pressure in each cylinder if there is no heat flow into or out of the cylinders or
between the gas and the cylinder. You may assume that the gas is ideal with a constant-pressure
heat capacity of 29.3 J/(mol K).

8An alternative solution to this problem giving the same answer is given in the next chapter.
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Solution

This problem is more complicated than the previous ones because we are interested in changes
that occur in two separate cylinders. We can try to obtain a solution to this problem in two
different ways. First, we could consider each tank to be a separate system, and so obtain two
mass balance equations and two energy balance equations, which are coupled by the fact that the
mass flow rate and enthalpy of the gas leaving the first cylinder are equal to the like quantities
entering the second cylinder.9 Alternatively, we could obtain an equivalent set of equations by
choosing a composite system of the two interconnected gas cylinders to be the first system and
the second system to be either one of the cylinders. In this way the first (composite) system
is closed and the second system is open. We will use the second system choice here; you are
encouraged to explore the first system choice independently and to verify that the same solution
is obtained.

The difference form of the mass and energy balance equations (on a molar basis) for the two-
cylinder composite system are

N i
1 = Nf

1 + Nf
2 (a)

and

N i
1U

i
1 = Nf

1 Uf
1 + Nf

2 Uf
2 (b)

Here the subscripts 1 and 2 refer to the cylinders, and the superscripts i and f refer to the initial
and final states. In writing the energy balance equation we have recognized that for the system
consisting of both cylinders there is no mass flow, heat flow, or change in volume.

Now using, in Eq. a, the ideal gas equation of state written as N = PV/RT and the fact that
the volumes of both cylinders are equal yields

P i
1

T i
1

=
P f

1

T f
1

+
P f

2

T f
2

(a′′′ )

Using the same observations in Eq. b and further recognizing that for a constant heat capacity
gas we have, from Eq. 3.3-8, that

U(T ) = C∗
VT − C∗

PTR

yields

P i
1

T i
1

{C∗
VT i

1 − C∗
PTR} =

P f
1

T f
1

{C∗
VT f

1 − C∗
PTR} +

P f
2

T f
2

{C∗
VT f

2 − C∗
PTR}

which, on rearrangement, gives

−
{

P i
1

T i
1

− P f
1

T f
1

− P f
2

T f
2

}
C∗

PTR + C∗
V{P i

1 − P f
1 − P f

2 } = 0

Since the bracketed quantity in the first term is identically zero (see Eq. a′), we obtain

P i
1 = P f

1 + P f
2 (c)

9That the enthalpy of the gas leaving the first cylinder is equal to that entering the second, even though the two
cylinders are at different pressures, follows from the fact that the plumbing between the two can be thought of as
a flow constriction, as in the Joule-Thomson expansion. Thus the analysis of Illustration 3.2-3 applies to this part
of the total process.
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(Note that the properties of the reference state have canceled. This is to be expected, since the
solution to a change-of-state problem must be independent of the arbitrarily chosen reference
state. This is an important point. In nature, the process will result in the same final state indepen-
dent of our arbitrary choice of reference temperature, TR. Therefore, if our analysis is correct,
TR must not appear in the final answer.)

Next, we observe that from the problem statement P f
1 = P f

2 ; thus

P f
1 = P f

2 = 1
2
P i

1 = 20 bar

and from Eq. a′

1

T f
1

+
1

T f
2

=
2

T i
1

(c′′′ )

Thus we have one equation for the two unknowns, the two final temperatures. We cannot assume
that the final gas temperatures in the two cylinders are the same because nothing in the problem
statement indicates that a transfer of heat between the cylinders necessary to equalize the gas
temperatures has occurred.

To get the additional information necessary to solve this problem, we write the mass and en-
ergy balance equations for the initially filled cylinder. The rate-of-change form of these equations
for this system are

dN1

dt
= Ṅ (d)

and
d(N1U1)

dt
= ṄH1 (e)

In writing the energy balance equation, we have made use of the fact that Q̇, Ẇs, and dV/dt
are all zero. Also, we have assumed that while the gas temperature is changing with time, it is
spatially uniform within the cylinder, so that at any instant the temperature and pressure of the
gas leaving the cylinder are identical with those properties of the gas in the cylinder. Thus, the
molar enthalpy of the gas leaving the cylinder is

H = H(T1, P1) = H1

Since our interest is in the change in temperature of the gas that occurs as its pressure drops
from 40 bar to 20 bar due to the escaping gas, you may ask why the balance equations here have
been written in the rate-of-change form rather than in terms of the change over a time interval.
The answer is that since the properties of the gas within the cylinder (i.e., its temperature and
pressure) are changing with time, so is H1, the enthalpy of the exiting gas. Thus, if we were
to use the form of Eq. e integrated over a time interval (i.e., the difference form of the energy
balance equation),

Nf
1 Uf

1 − N i
1U

i
1 =

∫
ṄH1 dt

we would have no way of evaluating the integral on the right side. Consequently, the difference
equation provides no useful information for the solution of the problem. However, by starting
with Eqs. d and e, it is possible to obtain a solution, as will be evident shortly.

To proceed with the solution, we first combine and rearrange the mass and energy balances to
obtain

d(N1U1)

dt
≡ N1

dU1

dt
+ U1

dN1

dt
= ṄH1 = H1

dN1

dt
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so that we have

N1

dU1

dt
= (H1 − U1)

dN1

dt

Now we use the following properties of the ideal gas (see Eqs. 3.3-7 and 3.3-8)

N = PV/RT H = C∗
P(T − TR)

and

U = C∗
V(T − TR) − RTR

to obtain

P1V

RT1

C∗
V

dT1

dt
= RT1

d

dt

(
P1V

RT1

)

Simplifying this equation yields

C∗
V

R

1

T1

dT1

dt
=

T1

P1

d

dt

(
P1

T1

)
or

C∗
V

R

d ln T1

dt
=

d

dt
ln

(
P1

T1

)

Now integrating between the initial and final states, we obtain

(
T f

1

T i
1

)C∗
V/R

=

(
P f

1

P i
1

)(
T i

1

T f
1

)

or

(
T f

1

T i
1

)C∗
P/R

=

(
P f

1

P i
1

)
(f)

where we have used the fact that for the ideal gas C∗
P = C∗

V + R. Equation f provides the means
to compute T f

1 , and T f
2 can then be found from Eq. c′. Finally, using the ideal gas equation of

state we can compute the final number of moles of gas in each cylinder using the relation

Nf
J =

VcylJP
f
J

RT f
J

(g)

where the subscript J refers to the cylinder number. The answers are

T f
1 = 164.3 K Nf

1 = 1.464 kmol

T f
2 = 255.6 K Nf

2 = 0.941 kmol

Comments

The solution of this problem for real fluids is considerably more complicated than for the ideal
gas. The starting points are again

P f
1 = P f

2 (h)
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and
Nf

1 + Nf
2 = N i

1 (i)

and Eqs. d and e. However, instead of Eq. g we now have

Nf
1 =

Vcyl1

V f
1

(j)

and

Nf
2 =

Vcyl2

V f
2

(k)

where V f
1 and V f

2 are related to (T f
1 , P f

1 ) and (T f
2 , P f

2 ), respectively, through the equation of
state or tabular PV T data of the form

V f
1 = V f

1 (T f
1 , P f

1 ) (l)

V f
2 = V f

2 (T f
2 , P f

2 ) (m)

The energy balance for the two-cylinder composite system is

N i
1U

i
1 = Nf

1 Uf
1 + Nf

2 Uf
2 (n)

Since a thermal equation of state or tabular data of the formU = U(T, V ) are presumed available,
Eq. n introduces no new variables.

Thus we have seven equations among eight unknowns (Nf
1 , Nf

2 , T f
1 , T f

2 , P f
1 , P f

2 , V f
1 , and

V f
2 ). The final equation needed to solve this problem can, in principle, be obtained by the ma-

nipulation and integration of Eq. e, as in the ideal gas case, but now using the real fluid equation
of state or tabular data and numerical integration techniques. Since this analysis is difficult, and
a simpler method of solution (discussed in Chapter 6) is available, the solution of this problem
for the real fluid case is postponed until Sec. 6.5.

Illustration 3.4-6
Showing That the Change in State Variables between Fixed Initial and Final States Is Indepen-
dent of the Path Followed

It is possible to go from a given initial equilibrium state of a system to a given final equilibrium
state by a number of different paths, involving different intermediate states and different amounts
of heat and work. Since the internal energy of a system is a state property, its change between
any two states must be independent of the path chosen (see Sec. 1.3). The heat and work flows
are, however, path-dependent quantities and can differ on different paths between given initial
and final states. This assertion is established here by example. One mole of a gas at a temperature
of 25◦C and a pressure of 1 bar (the initial state) is to be heated and compressed in a frictionless
piston and cylinder to 300◦C and 10 bar (the final state). Compute the heat and work required
along each of the following paths.

Path A. Isothermal (constant temperature) compression to 10 bar, and then isobaric (constant
pressure) heating to 300◦C

Path B. Isobaric heating to 300◦C followed by isothermal compression to 10 bar
Path C. A compression in which PV γ = constant, where γ = C∗

P/C∗
V, followed by an

isobaric cooling or heating, if necessary, to 300◦C.
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For simplicity, the gas is assumed to be ideal with C∗
P = 38 J/(mol K).

Path B

Path A

Path C

Final state

350

300

250

200

150

100

50

0
0 2 4 6 8 10

P (bar)
12

T
 (

°C
)

Initial state

Solution

The 1-mol sample of gas will be taken as the thermodynamic system. The difference form of the
mass balance for this closed, deforming volume of gas is

N = constant = 1 mol

and the difference form of the energy balance is

ΔU = Q −
∫

P dV = Q + W

Path A

i. Isothermal compression

Wi = −
∫ V 2

V 1

P dV = −
∫ V 2

V 1

RT
dV

V
= −RT

∫ V 2

V 1

dV

V
= −RT ln

V 2

V 1

= RT ln
P2

P1

= 8.314 J/(mol K) × 298.15 K × ln
10

1
= 5707.7 J/mol

Since

ΔU =

∫ T2

T1

C∗
V dT = C∗

V(T2 − T1) and T2 = T1 = 25◦C

we have

ΔU = 0 and Qi = −Wi = −5707.7 J/mol
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ii. Isobaric heating

Wii = −
∫ V 3

V 2

P2 dV = −P2

∫ V 3

V 2

dV = −P2(V 3 − V 2) = −R(T3 − T2)

ΔU =

∫ T3

T2

C∗
V dT = C∗

V(T3 − T2)

and

Qii = ΔU − Wii = C∗
V(T3 − T2) + R(T3 − T2) = (C∗

V + R)(T3 − T2)
= C∗

P(T3 − T2)

[This is, in fact, a special case of the general result that at constant pressure for a closed
system, Q =

∫
C∗

P dT . This is easily proved by starting with

Q̇ =
dU

dt
+ P

dV

dt

and using the fact that P is constant to obtain

Q̇ =
dU

dt
+

d

dt
(PV ) =

d

dt
(U + PV ) =

dH

dt
= C∗

P

dT

dt

Now setting Q =
∫

Q̇ dt yields Q =
∫

C∗
P dT .]

Therefore,

Wii = −8.314 J/(mol K) × 275 K = −2286.3 J/mol
Qii = 38 J/(mol K) × 275 K = 10 450 J/mol
Q = Qi + Qii = −5707.7 + 10 450 = 4742.3 J/mol
W = Wi + Wii = 5707.7 − 2286.3 = 3421.4 J/mol

Path B
i. Isobaric heating

Qi = C∗
P(T2 − T1) = 10 450 J/mol

Wi = −R(T2 − T1) = −2286.3 J/mol

ii. Isothermal compression

Wii = RT ln
P2

P1

= 8.314 × 573.15 ln

(
10

1

)
= 10 972.2 J/mol

Qii = −Wii = −10 972.2 J/mol
Q = 10 450 − 10 972.2 = −522.2 J/mol
W = −2286.3 + 10 972.2 = 8685.9 J/mol

Path C

i. Compression with PV γ = constant

Wi = −
∫ V 2

V 1

P dV = −
∫ V 2

V 1

constant

V γ dV = −constant

1 − γ
(V 1−γ

2 − V 1−γ
1 )

= − 1

1 − γ
(P2V 2 − P1V 1) =

−R(T2 − T1)

1 − γ
=

−R(T2 − T1)

1 − (C∗
P/C∗

V)
= C∗

V(T2 − T1)
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where T2 can be computed from

P1V
γ
1 = P1

(
RT1

P1

)γ

= P2V
γ
2 = P2

(
RT2

P2

)γ

or

T2

T1

=

(
P2

P1

)(γ−1)/γ

Now

γ =
C∗

P

C∗
V

=
38

38 − 8.314
= 1.280

so that

T2 = 298.15 K (10)0.280/1.280 = 493.38 K

and

Wi = C∗
V(T2 − T1) = (38 − 8.314) J/(mol K) × (493.38 − 298.15) K

= 5795.6 J/mol

ΔUi = C∗
V(T2 − T1) = 5795.6 J/mol

Qi = ΔUi − Wi = 0

ii. Isobaric heating

Qii = C∗
P(T3 − T2) = 38 J/(mol K) × (573.15 − 493.38) K = 3031.3 J/mol

Wii = −R(T3 − T2) = −8.314 J/(mol K) × (573.15 − 493.38) K = −663.2 J/mol

and

Q = 0 + 3031.3 = 3031.3 J/mol
W = 5795.6 − 663.2 = 5132.4 J/mol

Solution

Path Q (J/mol) W (J/mol) Q + W = ΔU (J/mol)

A 4742.3 3421.4 8163.7
B −522.2 8685.9 8163.7
C 3031.3 5132.4 8163.7

Comment

Notice that along each of the three paths considered (and, in fact, any other path between the
initial and final states), the sum of Q andW, which is equal to ΔU , is 8163.7 J/mol, even though
Q and W separately are different along the different paths. This illustrates that whereas the
internal energy is a state property and is path independent (i.e., its change in going from state
1 to state 2 depends only on these states and not on the path between them), the heat and work
flows depend on the path and are therefore path functions.
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Illustration 3.4-7
Showing That More Work Is Obtained If a Process Occurs without Friction

An initial pressure of 2.043 bar is maintained on 1 mol of air contained in a piston-and-cylinder
system by a set of weightsW , the weight of the piston, and the surrounding atmosphere. Work is
obtained by removing some of the weights and allowing the air to isothermally expand at 25◦C,
thus lifting the piston and the remaining weights. The process is repeated until all the weights
have been removed. The piston has a mass of ω = 5 kg and an area of 0.01 m2. For simplicity, the
air can be considered to be an ideal gas. Assume that, as a result of sliding friction between the
piston and the cylinder wall, all oscillatory motions of the piston after the removal of a weight
will eventually be damped.

Compute the work obtained from the isothermal expansion and the heat required from external
sources for each of the following:

a. The weight W is taken off in one step.
b. The weight is taken off in two steps, with W/2 removed each time.
c. The weight is taken off in four steps, with W/4 removed each time.
d. The weight is replaced by a pile of sand (of total weight W), and the grains of sand are

removed one at a time.

Processes b and d are illustrated in the following figure.10

Solution

I. Analysis of the problem. Choosing the air in the cylinder to be the system, recognizing that for
an ideal gas at constant temperature U is constant so that ΔU = 0, and neglecting the kinetic
and potential energy terms for the gas (since the mass of 1 mol of air is only 29 g), we obtain the
following energy balance equation:

0 = Q −
∫

P dV (a)

The total work done by the gas in lifting and accelerating the piston and the weights against the
frictional forces, and in expanding the system volume against atmospheric pressure is contained
in the −

∫
P dV term. To see this we recognize that the laws of classical mechanics apply to the

piston and weights, and equate, at each instant, all the forces on the piston and weights to their
acceleration,

Forces on piston and weights =

(
Mass of piston
and weights

)
× Acceleration

and obtain

[P × A − Patm × A − (W + ω)g + Ffr] = (W + ω)
dv

dt
(b)

Here we have taken the vertical upward (+z) direction as being positive and used P and Patm

to represent the pressure of the gas and atmosphere, respectively; A the piston area; ω its mass;
W the mass of the weights on the piston at any time; v the piston velocity; and Ffr the frictional
force, which is proportional to the piston velocity. Recognizing that the piston velocity v is equal
to the rate of change of the piston height h or the gas volume V , we have

v =
dh

dt
=

1

A

dV

dt

10From H. C. Van Ness, Understanding Thermodynamics,McGraw-Hill, New York, 1969. Used with permission
of the McGraw-Hill Book Co.
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�/2 �/2 �/2

�/2

�/2

�/2

Process b

Process d

Also we can solve Eq. b for the gas pressure:

P = Patm +
(W + ω)

A
g − Ffr

A
+

(W + ω)

A

dv

dt
(c)

At mechanical and thermodynamic equilibrium (i.e., when dv/dt = 0 and v = 0), we have

P = Patm +
(W + ω)

A
g (d)

With these results, the total work done by the gas can be computed. In particular,∫
P dV =

∫ [
Patm +

(W + ω

A

)
g − Ffr

A
+

(W + ω)

A

dv

dt

]
dV

=

[
Patm +

(W + ω)

A
g

]
ΔV − 1

A

∫
Ffr dV +

(W + ω)

A

∫
dv

dt
dV

This equation can be simplified by rewriting the last integral as follows:

1

A

∫
dv

dt
dV =

1

A

∫
dv

dt

dV

dt
dt =

∫
dv

dt
v dt =

1

2

∫
dv2

dt
dt = Δ

(
1

2
v2

)
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where the symbol Δ indicates the change between the initial and final states. Next, we recall
from mechanics that the force due to sliding friction, here Ffr, is in the direction opposite to the
relative velocity of the moving surfaces and can be written as

Ffr = −kfrv

where kfr is the coefficient of sliding friction. Thus, the remaining integral can be written as

1

A

∫
Ffr dV = − 1

A

∫
kfrv

dV

dt
dt = −kfr

∫
v2 dt

The energy balance, Eq. a, then becomes

Q =

∫
P dV = Patm ΔV + (W + ω)g Δh + kfr

∫
v2 dt + (W + ω) Δ

(
1
2
v2
)

(e)

This equation relates the heat flow into the gas (to keep its temperature constant) to the work the
gas does against the atmosphere in lifting the piston and weights (hence increasing their potential
energy) against friction and in accelerating the piston and weights (thus increasing their kinetic
energy).

The work done against frictional forces is dissipated into thermal energy, resulting in a higher
temperature at the piston and cylinder wall. This thermal energy is then absorbed by the gas and
appears as part of Q. Consequently, the net flow of heat from a temperature bath to the gas is

QNET = Q − kfr

∫
v2 dt (f)

Since heat will be transferred to the gas, and the integral is always positive, this equation estab-
lishes that less heat will be needed to keep the gas at a constant temperature if the expansion
occurs with friction than in a frictionless process.

Also, since the expansion occurs isothermally, the total heat flow to the gas is, from Eq. a,

Q =

∫ Vf

Vi

P dV =

∫ Vf

Vi

NRT

V
dV = NRT ln

Vf

Vi

(g)

Combining Eqs. e and f, and recognizing that our interest here will be in computing the heat and
work flows between states for which the piston has come to rest (v = 0), yields

QNET = Q − kfr

∫
v2 dt = Patm ΔV + (W + ω)g Δh = PΔV = −WNET (h)

where P is the equilibrium final pressure given by Eq. d. Also from Eqs. f, g, and h, we have

QNET = −WNET = NRT ln

(
V2

V1

)
− kfr

∫
v2 dt (i)

HereWNET represents the net work obtained by the expansion of the gas (i.e., the work obtained
in raising the piston and weights and in doing work against the atmosphere).

The foregoing equations can now be used in the solution of the problem. In particular, as
a weight is removed, the new equilibrium gas pressure is computed from Eq. d, the resulting
volume change from the ideal gas law, WNET and QNET from Eq. h, and the work against
friction from Eq. i. There is, however, one point that should be mentioned before we proceed
with this calculation. If there were no mechanism for the dissipation of kinetic energy to thermal
energy (that is, sliding friction between the piston and cylinder wall, and possibly also viscous
dissipation on expansion and compression of the gas due to its bulk viscosity), then when a
weight was removed the piston would be put into a perpetual oscillatory motion. The presence
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of a dissipative mechanism will damp the oscillatory motion. (As will be seen, the value of
the coefficient of sliding friction, kfr, does not affect the amount of kinetic energy ultimately
dissipated as heat. Its value does, however, affect the dynamics of the system and thus determine
how quickly the oscillatory motion is damped.)

II. The numerical solution. First, the massW of the weights is computed using Eq. d and the fact
that the initial pressure is 2.043 bar. Thus,

P = 2.043 bar = 1.013 bar +
(5 + W) kg

0.01 m2
× 9.807

m

s2
× 1 Pa

kg/(m s2)
× 1 bar

105 Pa

or

(5 + W) kg = 105.0 kg

so thatW = 100 kg.
The ideal gas equation of state for 1 mol of air at 25◦C is

PV = NRT = 1 mol × 8.314 × 10−5 bar m3

mol K
× (25 + 273.15) K

= 2.479 × 10−2 bar m3 = 2479 J

(j)

and the initial volume of the gas is

V =
2.479 × 10−2 bar m3

2.043 bar
= 1.213 × 10−2 m3

Process a
The 100-kg weight is removed. The equilibrium pressure of the gas (after the piston has

stopped oscillating) is

P1 = 1.013 bar +
5 kg × 9.807 m/s2

0.01 m2
× 10−5 bar

kg/(m s2)
= 1.062 bar

and the gas volume is

V1 =
2.479 × 10−2 bar m3

1.062 bar
= 2.334 × 10−2 m3

Thus

ΔV = (2.334 − 1.213) × 10−2 m3 = 1.121 × 10−2 m3

− WNET = 1.062 bar × 1.121 × 10−2 m3 × 105 J

bar m3

= 1190.5 J = QNET

and

Q = NRT ln
V1

V0

= 2479 J ln
2.334 × 10−2

1.213 × 10−2
= 1622.5 J

(since NRT = 2479 J from Eq. j). Consequently, the work done against frictional forces (and
converted to thermal energy), which we denote by Wfr, is

−Wfr = Q − QNET = (1622.5 − 1190.5) J = 432 J

The total useful work obtained, the net heat supplied, and the work against frictional forces
are given in Table 1. Also, the net work, P ΔV , is shown as the shaded area in the accompanying
figure, together with the line representing the isothermal equation of state, Eq. j. Note that in this
case the net work is that of raising the piston and pushing back the atmosphere.
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Table 1

−WNET = QNET Q −Wfr

Process (J) (J) (J)

a 1190.5 1622.5 432.0
b 1378.7 1622.5 243.8
c 1493.0 1622.5 129.5
d 1622.5 1622.5 0

Process b
The situation here is similar to that of process a, except that the weight is removed in two

50-kg increments. The pressure, volume, work, and heat flows for each step of the process are
given in Table 2, and −WNET

i = Pi(ΔV )i, the net work for each step, is given in the figure.

Process c
Here the weight is removed in four 25-kg increments. The pressure, volume, work, and heat

flows for each step are given in Table 2 and summarized in Table 1. Also, the net work for each
step is given in the figure.
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Table 2

Process b

−WNET
i = Pi(ΔV )i Q = NRT ln

Vi

Vi−1

−Wfr
P V

Stage (bar) (m3) (J) (J) (J)

0 2.043 1.213 × 10−2

1 1.552 1.597 × 10−2 596.0 681.8 85.8
2 1.062 2.334 × 10−2 782.7 940.7 158.0
Total 1378.7 1622.5 243.8

Process c

−WNET
i = Pi(ΔV )i Q = NRT ln

Vi

Vi−1

−Wfr
P V

Stage (bar) (m3) (J) (J) (J)

0 2.043 1.213 × 10−2

1 1.798 1.379 × 10−2 298.5 318.0 19.5
2 1.552 1.597 × 10−2 338.3 363.8 25.5
3 1.307 1.897 × 10−2 392.1 426.8 34.7
4 1.062 2.334 × 10−2 464.1 513.9 49.8
Total 1493.0 1622.5 129.5
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Process d
The computation here is somewhat more difficult since the number of stages to the calculation

is almost infinite. However, recognizing that in the limit of the mass of a grain of sand going to
zero there is only a differential change in the pressure and volume of the gas and negligible
velocity or acceleration of the piston, we have

−WNET =
∑

i

Pi(ΔVi) →
∫

P dV = NRT ln
Vf

Vi

= QNET

and Wfr = 0, since the piston velocity is essentially zero at all times. Thus,

− WNET = QNET = Q = 1 mol × 8.314
J

mol K
× 298.15 K × ln

2.334 × 10−2

1.213 × 10−2

= 1622.5 J

This result is given in Table 1 and the figure.
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Comments

Several points are worth noting about this illustration. First, although the initial and final states
of the gas are the same in all three processes, the useful or net work obtained and the net heat
required differ. Of course, by the energy conservation principle, it is true that −WNET = QNET

for each process. It is important to note that the most useful work is obtained for a given change
of state if the change is carried out in differential steps, so that there is no frictional dissipation
of mechanical energy to thermal energy (compare process d with processes a, b, and c). Also,
in this case, if we were to reverse the process and compress the gas, it would be found that the
minimum work required for the compression is obtained when weights are added to the piston
in differential (rather than finite) steps. (See Problem 3.29.)

It should also be pointed out that in each of the four processes considered here the gas did
1622.5 J of work on its surroundings (the piston, the weights, and the atmosphere) and absorbed
1622.5 J of heat (from the thermostatic bath maintaining the system temperature constant and
from the piston and cylinder as a result of their increased temperature due to frictional heating).
We can see this from Table 1, since −(WNET + Wfr) = Q = 1622.5 J for all four processes.
However, the fraction of the total work of the gas obtained as useful work versus work against
friction varies among the different processes.

At first glance it might appear that in the process in illustration 3.4.7 the proscription
in Chapter 1 that thermal energy (here heat) cannot be completely converted to me-
chanical energy (here work) has been violated. However, that statement included the
requirement that such a complete conversion was not possible in a cyclic process or in
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a process in which there were no changes in the universe (system plus surroundings).
In the illustration here heat has been completely converted to work, but this can only
be done once since the system, the gas contained within the cylinder, has not been re-
stored to its initial pressure. Consequently, we cannot continue to add heat and extract
the same amount of energy as work.

Illustration 3.4-8
Computing the Pressure, and Heat and Work Flows in a Complicated Ideal Gas Problem

Consider the cylinder filled with air and with the piston and spring arrangement shown below.
The external atmospheric pressure is 1 bar, the initial temperature of the air is 25◦C, the no-load
length of the spring is 50 cm, the spring constant is 40 000 N/m, the frictionless piston weighs
500 kg, and the constant-volume heat capacity of air can be taken to be constant at 20.3 J/(mol
K). Assume air is an ideal gas. Compute

a. The initial pressure of the gas in the cylinder
b. How much heat must be added to the gas in the cylinder for the spring to compress 2 cm

55 cm

15 cm

30 cm

Solution

a. The pressure of the gas inside the cylinder is a result of the atmospheric pressure (1 bar),
the force exerted on the gas as a result of the weight of the piston and the force of the spring.
The contribution from the piston is

PPiston =
F

A
=

M kg × 9.807
m

s2
× 1 Pa

kg/(m s2)
× 1 bar

105 Pa

π(d2/4) m2

=
M

d2
× 1.2487 × 10−4 bar =

500

(0.3)2
× 1.2487 × 10−4 bar = 0.6937 bar

The contribution due to the spring is

PSpring =
F

A
=

−k(x − x0)

π(d2/4)
= −40 000

N

m
× (55 − 50) × 10−2 m

=
−40 000

N

m
× (55 − 50) × 10−2 m

π[(0.3)2/4] m2
× 1

m kg

s2 N
× 1

Pa

kg/(m s2)
× 1 bar

105 Pa

= −0.2829 bar

Therefore, the pressure of the air in the cylinder is

P = PAtmosphere + PPiston + PSpring

= 1 + 0.6937 − 0.2829 bar = 1.4108 bar
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For later reference we note that the number of moles of gas in the cylinder is, from the ideal
gas law,

N =
PV

RT
=

1.4108 bar × π

4
(0.3)2(0.15) m3

298.15 K × 8.314 × 10−5 bar m3

mol K

= 0.6035 mol which is equal to 17.5 g = 0.0175 kg

b. The contribution to the total pressure due to the spring after heating is computed as above,
except that now the spring extension is 53 cm (55 cm− 2 cm). Thus

PSpring =
−40 000

N

m
× (53 − 50) × 10−2 m

π
(0.3)2 m2

4

= −0.1697 bar

So the final pressure of the air in the cylinder is

P = 1 + 0.6937 − 0.1697 bar = 1.524 bar

[Note that the pressure at any extension of the spring, x, is

P = 1.6937 − 5.658(x − 0.50) bar where x is the extension of spring (m)]

The volume change on expansion of the gas (to raise the piston by 2 cm) is

ΔV =
π

4
(0.3)2 m2 × 0.02 m = 1.414 × 10−3 m3

Also, the final temperature of the gas, again from the ideal gas law, is

T =
PV

NR
=

1.524 bar × π

4
0.32 m2 × 0.17 m

0.6035 mol × 8.314 × 10−5 bar m3

mol K

= 365.0 K

The work done can be computed in two ways, as shown below. For simplicity, we first
compute the individual contributions, and then see how these terms are combined.

Work done by the gas against the atmosphere is

WAtmosphere = −PAtmosphere × ΔV = −1 bar × 1.414 × 10−3 m3 × 105 J

bar m3
= −141.4 J

(The minus sign indicates that the gas did work on the surrounding atmosphere.)
Work done by the gas in compressing the spring is

WSpring = −k

2
[(x2 − x0)

2 − (x1 − x0)
2]

= −40 000

2

N

m
[32 × 10−4 m2 − 52 × 10−4 m2]

= −2 × (9 − 25) = 32 N m × 1
J

N m
= 32 J

Work done by the gas in raising the 500-kg piston is

WPiston = −500 kg × 0.02 m × 9.807
m

s2
× 1 J

m2 kg/s2
= −98.07 J
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Work done by the gas in raising its center of mass by 1 cm (why does the center of mass
of the gas increase by only 1 cm if the piston is raised 2 cm?) is

Wgas = −17.5 g × 0.01 m × 9.807
m

s2
× 1 J

m2 kg/s2
× 1 kg

1000 g
= −0.0017 J

which is negligible compared with the other work terms. If we consider the gas in the
cylinder to be the system, the work done by the gas is

W = Work to raise piston + Work against atmosphere + Work to compress spring
= −98.1 J − 141.4 J + 32.0 J = −207.5 J

[Here we have recognized that the gas is doing work by raising the piston and by expansion
against the atmosphere, but since the spring is extended beyond its no-load point, it is doing
work on the gas as it contracts. (The opposite would be true if the spring were initially
compressed to a distance less than its no-load point.)]

An alternative method of computing this work is as follows. The work done by the gas
on expanding (considering only the gas in the system) is

W = −
∫

P dV = −A

∫ 0.17 m

0.15 m

P dy = −A

∫ 0.17 m

0.15 m

[1.6937 − 5.658(x − 0.5)] dy

where y is the height of the bottom of the piston at any time. The difficulty with the in-
tegral above is that two different coordinate systems are involved, since y is the height of
the piston and x is the extension of the spring. Therefore, we need to make a coordinate
transformation. To do this we note that when y = 0.15, x = 0.55, and when y = 0.17,
x = 0.53. Consequently, x = 0.7 − y and

W = −A

∫ 0.17 m

0.15 m

[1.6937 − 5.658(0.7 − y − 0.5)] dy

= −A

[
1.6937 × 0.02 − 5.658

∫ 0.17 m

0.15 m

(0.2 − y) dy

]
= −A

[
1.6937 × 0.02 − 5.658

(
0.2 × 0.02 − 1

2
(0.172 − 0.152)

)]
= −7.068 × 10−2[0.03387 − 0.02263 + 0.01811]

= −0.2075 × 10−2 bar m3 × 105 J

bar m3
= −207.5 J

This is identical to the result obtained earlier.
Finally, we can compute the heat that must be added to raise the piston. The difference

form of the energy balance on the closed system consisting of the gas is

U(final state) − U(initial state) = Q + W = NCV(Tf − Ti)

so that

Q = NCV(Tf − Ti) − W

= 0.6035 mol × 20.3
J

mol K
× (365 − 298.15) K + 207.5 J

= 819.0 J + 207.5 J = 1026.5 J

Therefore, to accomplish the desired change, 1026.5 J of heat must be added to the gas. Of
this amount, 819 J are used to heat the gas, 98 J to raise the 500-kg piston, and 141.4 J to
push back the atmosphere; during the process, the spring supplies 32 J.
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3.5 CONSERVATION OF MOMENTUM

Based on the discussion of Sec. 3.4 and Illustration 3.4-4, we can conclude that the
equations of mass and energy conservation are not sufficient to obtain the solution to all
the problems of thermodynamics in which we might be interested. What is needed is a
balance equation for an additional thermodynamic state variable. The one conservation
principle that has not yet been used is the conservation of momentum. If, in Eq. 2.1-4,
θ is taken to be the momentum of a black-box system, we have

d

dt
(Mv) =

⎛
⎝Rate at which momentum

enters system by all
mechanisms

⎞
⎠ −

⎛
⎝Rate at which momentum

leaves system by all
mechanisms

⎞
⎠ (3.5-1)

where v is the center-of-mass velocity vector of the system, and M its total mass. We
could now continue the derivation by evaluating all the momentum flows; however, it is
clear by looking at the left side of this equation that we will get an equation for the rate
of change of the center-of-mass velocity of the system, not an equation of change for
a thermodynamic state variable. Consequently, the conservation-of-momentum equa-
tion will not lead to the additional balance equation we need, so this derivation will
not be completed. The development of an additional, useful balance equation is not a
straightforward task, and will be delayed until Chapter 4.

3.6 THE MICROSCOPIC ENERGY BALANCE (OPTIONAL)

This section appears on the website for this text.

PROBLEMS

3.1 a. A bicyclist is traveling at 20 km/hr when he en-
counters a hill 70 m in height. Neglecting road and
wind resistance (a poor assumption), what is the
maximum vertical elevation gain the bicyclist could
achieve without pedaling?

b. If the hill is a down hill, what speed would the bicy-
clist achieve without pedaling, again neglecting road
and wind resistance?

3.2 Water in the Niagara River approaches the falls at a ve-
locity of 8 km/hr. Niagara Falls is approximately 55 m
high. Neglecting air resistance, estimate the velocity of
the water at the bottom of the falls.

3.3 a. One kilogram of steam contained in a horizontal
frictionless piston and cylinder is heated at a con-
stant pressure of 1.013 bar from 125◦C to such a
temperature that its volume doubles. Calculate the
amount of heat that must be added to accomplish this
change, the final temperature of the steam, the work
the steam does against its surroundings, and the in-
ternal energy and enthalpy changes of the steam for
this process.

b. Repeat the calculation of part (a) if the heating oc-
curs at a constant volume to a pressure that is twice
the initial pressure.

c. Repeat the calculation of part (a) assuming that
steam is an ideal gas with a constant-pressure heat
capacity of 34.4 J/mol K.

d. Repeat the calculation of part (b) assuming steam is
an ideal gas as in part (c).

3.4 In Joule’s experiments, the slow lowering of a weight
(through a pulley and cable arrangement) turned a stir-
rer in an insulated container of water. As a result of
viscosity, the kinetic energy transferred from the stirrer
to thewater eventually dissipated. In this process the po-
tential energy of theweightwas first converted to kinetic
energy of the stirrer and the water, and then as a result
of viscous forces, the kinetic energy of the water was
converted to thermal energy apparent as a rise in tem-
perature. Assuming no friction in the pulleys and no heat
losses, how large a temperature rise would be found in
1 kg of water as a result of a 1-kg weight being lowered
1 m?

3.5 Steam at 500 bar and 600◦C is to undergo a Joule-
Thomson expansion to atmospheric pressure. What will
be the temperature of the steam after the expansion?
What would be the downstream temperature if the
steam were replaced by an ideal gas?
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3.6 Water in an open metal drum is to be heated from room
temperature (25◦C) to 80◦C by adding steam slowly
enough that all the steam condenses. The drum initially
contains 100 kg of water, and steam is supplied at 3.0
bar and 300◦C. How many kilograms of steam should
be added so that the final temperature of the water in
the tank is exactly 80◦C? Neglect all heat losses from
the water in this calculation.

3.7 Consider the following statement: “The adiabatic work
necessary to cause a given change of state in a closed
system is independent of the path by which that change
occurs.”
a. Is this statement true or false? Why? Does this state-

ment contradict Illustration 3.4-6, which establishes
the path dependence of work?

b. Showthat if thestatement is false, itwouldbepossible
to construct a machine that would generate energy.

3.8 A nonconducting tank of negligible heat capacity and
1m3 volume is connected to a pipeline containing steam
at 5 bar and 370◦C, filled with steam to a pressure of
5 bar, and disconnected from the pipeline.
a. If the tank is initially evacuated, how much steam is

in the tank at the end of the filling process, and what
is its temperature?

b. If the tank initially contains steam at 1 bar and
150◦C, how much steam is in the tank at the end of
the filling process, and what is its temperature?

3.9 a. A 1-kg iron block is to be accelerated through a pro-
cess that supplies it with 1 kJ of energy. Assuming
all this energy appears as kinetic energy, what is the
final velocity of the block?

b. If the heat capacity of iron is 25.10 J/(mol K) and
the molecular weight of iron is 55.85, how large a
temperature rise would result from 1 kJ of energy
supplied as heat?

3.10 The voltage drop across an electrical resistor is
10 volts and the current through it is 1 ampere. The
total heat capacity of the resistor is 20 J/K, and heat
is dissipated from the resistor to the surrounding air
according to the relation

Q̇ = −h(T − Tam)

where Tam is the ambient air temperature, 25◦C; T is
the temperature of the resistor; and h, the heat transfer
coefficient, is equal to 0.2 J/(K s). Compute the steady-
state temperature of the resistor, that is, the tempera-
ture of the resistor when the energy loss from the re-
sistor is just equal to the electrical energy input.

3.11 The frictionless piston-and-cylinder system shown
here is subjected to 1.013 bar external pressure. The
piston mass is 200 kg, it has an area of 0.15 m2, and
the initial volume of the entrapped ideal gas is 0.12m3.
The piston and cylinder do not conduct heat, but heat
can be added to the gas by a heating coil. The gas has

a constant-volume heat capacity of 30.1 J/(mol K) and
an initial temperature of 298 K, and 10.5 kJ of energy
are to be supplied to the gas through the heating coil.
a. If stops placed at the initial equilibrium position of

the piston prevent it from rising, what will be the
final temperature and pressure of the gas?

b. If the piston is allowed to move freely, what will be
the final temperature and volume of the gas?

Heating
coil

3.12 As an energy conservation measure in a chemical
plant, a 40-m3 tank will be used for temporary stor-
age of exhaust process steam. This steam is then used
in a later stage of the processing. The storage tank is
well insulated and initially contains 0.02 m3 of liquid
water at 50◦C; the remainder of the tank contains wa-
ter vapor in equilibriumwith this liquid. Process steam
at 1.013 bar and 90 percent quality enters the storage
tank until the pressure in the tank is 1.013 bar. How
many kilograms of wet steam enter the tank during the
filling process, and how much liquid water is present
at the end of the process? Assume that there is no heat
transfer between the steam or water and the tank walls.

3.13 The mixing tank shown here initially contains 50 kg
of water at 25◦C. Suddenly the two inlet valves and
the single outlet valve are opened, so that two water
streams, each with a flow rate of 5 kg/min, flow into
the tank, and a single exit stream with a flow rate of
10 kg/min leaves the tank. The temperature of one in-
let stream is 80◦C, and that of the other is 50◦C. The
tank is well mixed, so that the temperature of the out-
let stream is always the same as the temperature of the
water in the tank.
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a. Compute the steady-state temperature that will fi-
nally be obtained in the tank.

b. Develop an expression for the temperature of the
fluid in the tank at any time.

3.14 Awell-insulated storage tank of 60 m3 contains 200 L
of liquid water at 75◦C. The rest of the tank con-
tains steam in equilibrium with the water. Spent pro-
cess steam at 2 bar and 90 percent quality enters the
storage tank until the pressure in the tank reaches
2 bar. Assuming that the heat losses from the system
to the tank and the environment are negligible, calcu-
late the total amount of steam that enters the tank dur-
ing the filling process and the fraction of liquid water
present at the end of the process.

3.15 An isolated chamber with rigid walls is divided into
two equal compartments, one containing gas and the
other evacuated. The partition between the compart-
ments ruptures. After the passage of a sufficiently long
period of time, the temperature and pressure are found
to be uniform throughout the chamber.
a. If the filled compartment initially contains an ideal

gas of constant heat capacity at 1 MPa and 500 K,
what are the final temperature and pressure in the
chamber?

b. If the filled compartment initially contains steam
at 1 MPa and 500 K, what are the final temperature
and pressure in the compartment?

c. Repeat part (a) if the second compartment initially
contains an ideal gas, but at half the pressure and
100 K higher temperature.

d. Repeat part (b) if the second compartment initially
contains steam, but at half the pressure and 100 K
higher temperature.

3.16 a. An adiabatic turbine expands steam from 500◦C
and 3.5 MPa to 200◦C and 0.3 MPa. If the turbine
generates 750 kW, what is the flow rate of steam
through the turbine?

b. If a breakdown of the thermal insulation around the
turbine allows a heat loss of 60 kJ per kg of steam,
and the exiting steam is at 150◦C and 0.3 MPa,
what will be the power developed by the turbine
if the inlet steam conditions and flow rate are
unchanged?

3.17 Intermolecular forces play an important role in de-
termining the thermodynamic properties of fluids. To
see this, consider the vaporization (boiling) of a liquid
such as water in the frictionless piston-and-cylinder
device shown.
a. Compute the work obtained from the piston when

1 kg of water is vaporized to steam at 100◦C (the
vapor and liquid volumes of steam at the boiling
point can be found in the steam tables).

b. Show that the heat required for the vaporization
of the steam is considerably greater than the work

done. (Note that the enthalpy change for the vapor-
ization is given as 2257 kJ/kg in the steam tables in
Appendix A.III.)

Steam

Water

3.18 It is sometimes necessary to produce saturated steam
from superheated steam (steam at a temperature higher
than the vapor-liquid coexistence temperature at the
given pressure). This change can be accomplished
in a desuperheater, a device in which just the right
amount of water is sprayed into superheated steam to
produce dry saturated steam. If superheated steam at
3.0 MPa and 500◦C enters the desuperheater at a
rate of 500 kg/hr, at what rate should liquid water at
2.5 MPa and 25◦C be added to the desuperheater to
produce saturated steam at 2.25 MPa?

3.19 Nitrogen gas leaves a compressor at 2.0 MPa and
120◦C and is collected in three different cylinders,
each of volume 0.3 m3. In each case the cylinder is
to be filled to a pressure of 2.0 MPa. Cylinder 1 is
initially evacuated, cylinder 2 contains nitrogen gas at
0.1 MPa and 20◦C, and cylinder 3 contains nitrogen at
1 MPa and 20◦C. Find the final temperature of nitro-
gen in each of the cylinders, assuming nitrogen to be
an ideal gas with C∗

P = 29.3 J/mol K. In each case as-
sume the gas does not exchange heat with the cylinder
walls.

3.20 A clever chemical engineer has devised the thermally
operated elevator shown in the accompanying dia-
gram. The elevator compartment is made to rise by
electrically heating the air contained in the piston-
and-cylinder drive mechanism, and the elevator is
lowered by opening a valve at the side of the cylin-
der, allowing the air in the cylinder to slowly escape.
Once the elevator compartment is back to the lower
level, a small pump forces out the air remaining in
the cylinder and replaces it with air at 20◦C and a
pressure just sufficient to support the elevator com-
partment. The cycle can then be repeated. There is
no heat transfer between the piston, cylinder, and the
gas; the weight of the piston, elevator, and elevator
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Heating
coil

Elevator
compartment

2nd floor

1st floor

3 m

Centrifugal
pump

contents is 4000 kg; the piston has a surface area of
2.5 m2; and the volume contained in the cylinder when
the elevator is at its lowest level is 25 m3. There is no
friction between the piston and the cylinder, and the
air in the cylinder is assumed to be an ideal gas with
C∗

P = 30 J/(mol K).
a. What is the pressure in the cylinder throughout the

process?
b. How much heat must be added to the air during the

process of raising the elevator 3 m, and what is the
final temperature of the gas?

c. What fraction of the heat added is used in doing
work, and what fraction is used in raising the tem-
perature of the gas?

d. How many moles of air must be allowed to escape
in order for the elevator to return to the lowest level?

3.21 The elevator in the previous problem is to be designed
to ascend and descend at the rate of 0.2 m/s, and to rise
a total of 3 m.
a. At what rate should heat be added to the cylinder

during the ascent?
b. How many kilomoles per second of air should be

removed from the cylinder during the descent?
3.22 Nitrogen gas is being withdrawn at the rate of 4.5 g/s

from a 0.15-m3 cylinder, initially containing the gas at
a pressure of 10 bar and 320 K. The cylinder does not
conduct heat, nor does its temperature change during
the emptying process. What will be the temperature
and pressure of the gas in the cylinder after 5 minutes?
What will be the rate of change of the gas temperature
at this time? Nitrogen can be considered to be an ideal
gas with C∗

P = 30 J/(mol K).
3.23 In Illustration 3.4-6 we considered the compression

of an ideal gas in which PV γ = constant, where

γ = C∗
P/C∗

V. Show that such a pressure-volume re-
lationship is obtained in the adiabatic compression of
an ideal gas of constant heat capacity.

3.24 Air in a 0.3-m3 cylinder is initially at a pressure of
10 bar and a temperature of 330 K. The cylinder is to
be emptied by opening a valve and letting the pres-
sure drop to that of the atmosphere. What will be the
temperature and mass of gas in the cylinder if this is
accomplished?
a. In a manner that maintains the temperature of the

gas at 330 K?
b. In a well-insulated cylinder?
For simplicity assume, in part (b), that the process oc-
curs sufficiently rapidly that there is no heat transfer
between the cylinder walls and the gas. The gas is
ideal, and C∗

P = 29 (J/mol K).
3.25 A 0.01-m3 cylinder containing nitrogen gas initially at

a pressure of 200 bar and 250K is connected to another
cylinder 0.005 m3 in volume, which is initially evacu-
ated. A valve between the two cylinders is opened until
the pressures in the cylinders equalize. Find the final
temperature and pressure in each cylinder if there is no
heat flow into or out of the cylinder. You may assume
that there is no heat transfer between the gas and the
cylinder walls and that the gas is ideal with a constant-
pressure heat capacity of 30 J/(mol K).

3.26 Repeat the calculation of Problem 3.25, but now as-
sume that sufficient heat transfer occurs between the
gas in the two cylinders that both final temperatures
and both final pressures are the same.

3.27 Repeat the calculation in Problem 3.25, but now as-
sume that the second cylinder, instead of being evacu-
ated, is filled with nitrogen gas at 20 bar and 160 K.

3.28 A 1.5 kW heater is to be used to heat a room with
dimensions 3.5 m × 5.0 m × 3.0 m. There are no
heat losses from the room, but the room is not airtight,
so the pressure in the room is always atmospheric.
Consider the air in the room to be an ideal gas with
C∗

P = 29 J/(mol K), and its initial temperature is 10◦C.
a. Assuming that the rate of heat transfer from the air

to the walls is low, what will be the rate of increase
of the temperature in the room when the heater is
turned on?

b. What would be the rate of increase in the room tem-
perature if the room were hermetically sealed?

3.29 The piston-and-cylinder device of Illustration 3.4-7 is
to be operated in reverse to isothermally compress the
1 mol of air. Assume that the weights in the illustration
have been left at the heights they were at when they
were removed from the piston (i.e., in process b the
first 50-kg weight is at the initial piston height and the
second is at Δh = ΔV/A = 0.384 m above the initial
piston height). Compute the minimum work that must
be done by the surroundings and the net heat that must
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be withdrawn to return the gas, piston, and weights to
their initial states. Also compute the total heat and the
total work for each of the four expansion and compres-
sion cycles and comment on the results.

3.30 The piston-and-cylinder device shown here contains
an ideal gas at 20 bar and 25◦C. The piston has a mass
of 300 kg and a cross-sectional area of 0.05 m2. The
initial volume of the gas in the cylinder is 0.03 m3, the
piston is initially held in place by a pin, and the exter-
nal pressure on the piston and cylinder is 1 bar. The
pin suddenly breaks, and the piston moves 0.6 m far-
ther up the cylinder, where it is stopped by another pin.
Assuming that the gas is ideal with a constant-pressure
heat capacity of 30 J/(mol K), and that there is no heat
transfer between the gas and the cylinder walls or pis-
ton, estimate the piston velocity, and the temperature
and pressure of the gas just before the piston hits the
second pin. Do this calculation assuming
a. No friction between the piston and the cylinder
b. Friction between the piston and the cylinder
List and defend all assumptions you make in solving
this problem.

0.6 m

Pin 2

Pin 1

3.31 A 0.6 m diameter gas pipeline is being used for the
long-distance transport of natural gas. Just past a
pumping station, the gas is found to be at a tempera-
ture of 25◦C and a pressure of 3.0 MPa. The mass flow
rate is 125 kg/s, and the gas flow is adiabatic. Forty
miles down the pipeline is another pumping station.
At this point the pressure is found to be 2.0 MPa. At
the pumping station the gas is first adiabatically com-
pressed to a pressure of 3.0 MPa and then isobarically
(i.e., at constant pressure) cooled to 25◦C.
a. Find the temperature and velocity of the gas just

before it enters the pumping station.
b. Find the rate at which the gas compressor in the

pumping station does work on the gas, the tempera-
ture of the gas leaving the compressor, and the heat
load on the gas cooler. You may assume that the
compressor exhaust is also a 0.6-m pipe. (Explain
why you cannot solve this problem. You will have
another chance in Chapter 4.)

Natural gas can be assumed to be pure methane
[molecular weight = 16, C∗

P = 36.8 J/(mol K)], and
an ideal gas at the conditions being considered here.
Note that the mass flow rate M is ρvA, where ρ is the
mass density of the gas, v is the average gas velocity,
and A is the area of the pipe.

3.32 Nitrogen can be liquefied using a Joule-Thomson ex-
pansion process. This is done by rapidly and adiabati-
cally expanding cold nitrogen gas from high pressure
to a low pressure. If nitrogen at 135 K and 20 MPa
undergoes a Joule-Thomson expansion to 0.4 MPa,
a. Estimate the fraction of vapor and liquid present

after the expansion, and the temperature of this
mixture using the pressure-enthalpy diagram for
nitrogen.

b. Repeat the calculation assuming nitrogen to be an
ideal gas with C∗

P = 29.3 J/(mol K).
3.33 A very large mass M of hot porous rock equal to

1012 kg is to be utilized to generate electricity by
injecting water and using the resulting hot steam to
drive a turbine. As a result of heat extraction, the
temperature of the rock drops according to Q̇ =
−MCP dT/dt, where CP is the specific heat of the
rock which is assumed to be independent of tempera-
ture. If the plant produces 1.36× 109 kW hr of energy
per year, and only 25 percent of the heat extracted from
the rock can be converted towork, how longwill it take
for the temperature of the rock to drop from 600◦C to
110◦C? Assume that for the rock CP = 1 J/(g K).

3.34 The human body generates heat by the metabolism of
carbohydrates and other food materials. Metabolism
provides energy for all biological activities (e.g., mus-
cle contractions). The metabolic processes also gen-
erate heat, and there are special cells in the body
whose main function is heat generation. Now let us
assume that our friend Joe BlueHen ingests 1 L of
ice, which he allows to melt in his mouth before
swallowing.
a. How much energy is required to melt the ice and

warm the water to the body temperature?
b. If 1 g of fat when metabolized releases approxi-

mately 42 kJ of energy, how much fat will Joe burn
by ingesting the water?

c. Suppose that, instead of ice, Joe drank 1 L of water
at 0◦C. How would the answers to parts (a) and (b)
change?
Several years ago there was a story circulating the

Internet that a good way to lose weight is to drink
a lot of very cold water, since considerable energy
would be expended within the body in heating up the
cold water. Based on your calculations above; is that
a reasonable method of weight loss? (The reason this
claim was widely circulated is a result of the sloppy
use of units. Some countries report the biologically
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accessible energy in food as being in units of calories,
when in fact the number reported is kilocalories. For
example, in the United States a teaspoon of sugar is
reported ito contain 16 calories, when it is actually 16
kilocalories. Calories is incorrectly being used as an
abbreviation for kilocalories.)

3.35 Water is to be heated from its pipeline temperature of
20◦C to 90◦C using superheated steam at 450◦C and
2.5MPa in a steady-state process to produce 10 kg/s of
heated water. In each of the processes below, assume
there is no heat loss.
a. The heating is to be done in a mixing tank by di-

rect injection of the steam, all of which condenses.
Determine the two inlet mass flows needed to meet
the desired hot water flow rate.

b. Instead of direct mixing, a heat exchanger will be
used in which the water to be heated will flow in-
side copper tubes and the steam will partially con-
dense on the outside of the tubes. In this case heat
will flow from the steam to the water, but the two
streams are not mixed. Calculate the steam flow
rate if the steam leaves the heat exchanger at 50
percent quality at 100◦C.

3.36 People partially cool themselves by sweating, which
releases water that evaporates. If during exercise a
human “burns” 1000 kcal (4184 kJ) in one hour of
exercise, how many grams of water must evaporate at
a body temperature of 37◦C? Assuming only 75 per-
cent of the sweat evaporates (the rest being retained by
the exercise clothes), how many grams of sweat must
actually be produced?

3.37 It is thought that people develop respiratory infections
during air travel becausemuch of the airplane cabin air
is recirculated. Airlines claim that using only fresh air
in the cabins is too costly since at an altitude of 30 000
feet the outside conditions are −50◦C and 0.1 bar, so
that the air would have to be compressed and heated
before being introduced into the cabin. The airplane
cabin has a volume of 100 m3 with air at the in-flight
conditions of 25◦C and 0.8 bar.What would be the cost
of completely refreshing the air every minute if air has
a heat capacity of C∗

P = 30 J/(mol K) and energy costs
$0.2 per kW hr?

3.38 Redo Problem 3.5 using Aspen Plus R©.
3.39 Redo Problem 3.16a using Aspen Plus R©.
3.40 Redo Problem 3.32 using Aspen Plus R©.

Aspen Plus R© problem solutions are available for Problems 3.5, 3.16a and 3.32

Solution

3.5 Using Aspen Plus R© and the IAPWS-95 model, see the file Illustration 3.5 in the Aspen
folder on the website gives the results of 387.4K = 114.25◦C

3.16 Using Aspen Plus R© and the IAPWS-95 equations for steam, to obtain the exit condi-
tions of 200◦C an 0.3 MPa, the isentropic efficiency, by trial-and-error, was found to be
89.33%. This results in a work flow of 0.1627 kW/kg-hr. Therefore, the steam flow rate is
750 kW/0.1627 kW/kg-hr or 4609 kg/hr



Chapter 4

Entropy: An Additional
Balance Equation

Several of the illustrations and problems in Chapter 3 show that the equations of mass
and energy conservation are not sufficient to solve all the thermodynamic energy flow
problems in which we might be interested. To be more specific, these two equations
are not always sufficient to determine the final values of two state variables, or the
heat and work flows for a system undergoing a change of state. What is needed is a
balance equation for an additional state variable. As we have seen, the principle of
momentum conservation does not provide this additional equation. Although a large
number of additional state variables could be defined and could serve as the basis for
a new balance equation, these variables would have the common feature that they are
not conserved quantities. Thus the internal generation term for each of these variables
would, in general, be nonzero and would have to be evaluated for the balance equation
to be of use. Clearly the most useful variable to introduce as the basis for a new balance
equation is one that has an internal generation rate that can be specified and has some
physical significance.

Another defect in our present development of thermodynamics has to do with the
unidirectional character of natural processes that was considered in Sec. 1.3. There it
was pointed out that all spontaneous or natural processes proceed only in the direction
that tends to dissipate the gradients in the system and thus lead to a state of equilibrium,
and never in the reverse direction. This characteristic of natural processes has not yet
been included in our thermodynamic description.

To complete our thermodynamic description of pure component systems, it is there-
fore necessary that we (1) develop an additional balance equation for a state variable and
(2) incorporate into our description the unidirectional character of natural processes. In
Sec. 4.1 we show that both these objectives can be accomplished by introducing a single
new thermodynamic function, the entropy. The remaining sections of this chapter are
concerned with illustrating the properties and utility of this new variable and its balance
equation.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 4

The goals of this chapter are for the student to:

• Be able to use the rate-of-change form of the pure component entropy balance in
problem solving

99
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• Be able to use the difference form of the pure component entropy balance in prob-
lem solving

• Be able to calculate the entropy change between two states of an ideal gas
• Be able to calculate the entropy change of a real fluid using thermodynamic prop-

erties charts and tables
• To understand the concept of availability and be able to compute the maximum

useful shaft work that can be obtained in a change of state

NOTATION INTRODUCED IN THIS CHAPTER

A Helmholtz energy = U + PV (J)
A Molar Helmholtz energy (J/mol)

Â, B̂ Availability
G Gibbs energy = H + PV (J)
G Molar Gibbs energy (J/mol)

Q̇R Radiant heat flux (J/s)
S Entropy (J/K)
S Entropy per mole [J/(mol K)]

Ŝ Entropy per unit mass [J/(kg K)]
Ṡgen Rate at which entropy is generated within the system [J/(mol K s)]
Sgen Entropy generated within the system [J/(mol K)]
TR Temperature of body emitting radiation (K)

W rev Work in a reversible process (J)
γ = CP/CV

4.1 ENTROPY: A NEW CONCEPT

We take as the starting point for the identification of an additional thermodynamic
variable the experimental observation that all spontaneous processes occurring in an
isolated constant-volume system result in the evolution of the system to a state of equi-
librium (this is a special case of experimental observation 5, Sec. 1.7). The problem is
to quantify this qualitative observation. We can obtain some insight into how to do this
by considering the general balance equation (Eq. 2.1-4) for any extensive variable θ of
a closed, isolated, constant-volume system

dθ

dt
=

(
Rate of change of
θ in the system

)
=

(
Rate at which θ is generated

within the system

)
(4.1-1)

Alternatively, we can write Eq. 4.1-1 as

dθ

dt
= θ̇gen (4.1-2)

where θ̇gen is the rate of internal generation of the yet-unspecified state variable θ.
Now, if the system under consideration were in a true time-invariant equilibrium state,
dθ/dt = 0 (since, by definition of a time-invariant state, no state variable can change
with time). Thus

θ̇gen = 0 at equilibrium (4.1-3)
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Equations 4.1-2 and 4.1-3 suggest a way of quantifying the qualitative observation of
the unidirectional evolution of an isolated system to an equilibrium state. In particular,
suppose we could identify a thermodynamic variable θ whose rate of internal generation
θ̇gen was positive,1 except at equilibrium, where θ̇gen = 0. For this variable

dθ

dt
> 0 away from equilibrium

dθ

dt
= 0

or θ = constant

⎫⎬
⎭ at equilibrium

(4.1-4)

Furthermore, since the function θ is increasing in the approach to equilibrium, θ must
be a maximum at equilibrium subject to the constraints of constant mass, energy, and
volume for the isolated constant-volume system.2

Thus, if we could find a thermodynamic function with the properties given in Eq.
4.1-4, the experimental observation of unidirectional evolution to the equilibrium state
would be built into the thermodynamic description through the properties of the func-
tion θ. That is, the unidirectional evolution to the equilibrium state would be mathemat-
ically described by the continually increasing value of the function θ and the occurrence
of equilibrium in an isolated, constant-volume system to the attainment of a maximum
value of the function θ.

The problem, then, is to identify a thermodynamic state function θ with a rate of
internal generation, θ̇gen, that is always greater than or equal to zero. Before searching
for the variable θ, it should be noted that the property we are looking for is θ̇gen ≥ 0; this
is clearly not as strong a statement as θ̇gen = 0 always, which occurs if θ is a conserved
variable such as total mass or total energy, but it is as strong a general statement as we
can expect for a nonconserved variable.

We could now institute an extensive search of possible thermodynamic functions in
the hope of finding a function that is a state variable and also has the property that its
rate of internal generation is a positive quantity. Instead, we will just introduce this new
thermodynamic property by its definition and then show that the property so defined
has the desired characteristics.

Definition

The entropy (denoted by the symbol S) is a state function. In a system in which
there are flows of both heat by conduction (Q̇) and work [Ẇs and P (dV/dt)]
across the system boundaries, the conductive heat flow, but not the work flow,
causes a change in the entropy of the system; this rate of entropy change is
Q̇/T , where T is the absolute thermodynamic temperature of the system at

1If we were to choose the other possibility, θ̇gen being less than zero, the discussion here would still be valid
except that θ would monotonically decrease to a minimum, rather than increase to a maximum, in the evolution to
the equilibrium state. The positive choice is made here in agreement with standard thermodynamic convention.
2Since an isolated constant-volume system has fixed mass, internal energy, and volume, you might ask how θ can
vary if M , U , and V or alternatively, the two state variables U and V are fixed. The answer is that the discussion
of Secs. 1.3 and 1.6 established that two state variables completely fix the state of a uniform one-component,
one-phase system. Consequently, θ (or any other state variable) can vary for fixed U and V in (1) a nonuniform
system, (2) a multicomponent system, or (3) a multiphase system. The first case is of importance in the approach to
equilibrium in the presence of internal relaxation processes, and the second and third cases for chemical reaction
equilibrium and phase equilibrium, which are discussed later in this book.
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the point of the heat flow. If, in addition, there are mass flows across the sys-
tem boundaries, the total entropy of the system will also change due to this
convected flow. That is, each element of mass entering or leaving the system
carries with it its entropy (as well as internal energy, enthalpy, etc.).

Using this definition and Eq. 2.1-4, we have the following as the balance equation
for entropy:3

Entropy balance, also
called the second law
of thermodynamics,
for an open system

dS

dt
=

K∑
k=1

ṀkŜk +
Q̇

T
+ Ṡgen (4.1-5a)

where
K∑

k=1

ṀkŜk = net rate of entropy flow due to the flows of mass into and out of the
system (Ŝ = entropy per unit mass)

Q̇

T
= rate of entropy flow due to the flow of heat across the system boundary

Ṡgen = rate of internal generation of entropy within the system.

For a system closed to the flow of mass (i.e., all Ṁk = 0), we have

Entropy balance for a
closed system

dS

dt
=

Q̇

T
+ Ṡgen

(4.1-5b)

Based on the discussion above, we then have (from Eqs. 4.1-3 and 4.1-4)

Sgen ≥ 0, and
dS

dt
= 0 at equilibrium (4.1-5c)

Equations 4.1-5 are usually referred to as the second law of thermodynamics.
Before we consider how the entropy balance, Eq. 4.1-5a, will be used in problem

solving, we should establish (1) that the entropy function is a state variable, and (2)
that it has a positive rate of internal generation, that is, Ṡgen ≥ 0. Notice that Eq. 4.1-5
cannot provide general information about the internal generation of entropy since it is
an equation for the black-box description of a system, whereas Ṡgen depends on the
detailed internal relaxation processes that occur within the system. In certain special
cases, however, one can use Eq. 4.1-5 to get some insight into the form of Ṡgen. To see
this, consider the thermodynamic system of Fig. 4.1-1, which is a composite of two
subsystems, A and B. These subsystems are well insulated except at their interface,
so that the only heat transfer that occurs is a flow of heat from the high-temperature
subsystem A to the low-temperature subsystem B. We assume that the resistance to
heat transfer at this interface is large relative to the internal resistances of the subsystems
(which would occur if, for example, the subsystems were well-mixed liquids or highly
conducting solids), so that the temperature of each subsystem is uniform, but varying
with time.

3For simplicity, we have assumed that there is only a single heat flow into the system. If there are multiple heat flows
by conduction, the term Q̇/T is to be replaced by a

∑
Q̇j/Tj , where Q̇j is the heat flow and Tj the temperature

at the jth heat flow port into the system.
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A B

Figure 4.1-1 Systems A and B are free to interchange en-
ergy, but the composite system (A + B) is isolated from the
environment.

In this situation the heat transfer process occurs in such a way that, at any instant,
each subsystem is in a state of internal thermal equilibrium (i.e., if the two subsys-
tems were suddenly separated, they would be of uniform but different temperatures
and would not change with time); however, the composite system consisting of both
subsystems (at different temperatures) is not in thermal equilibrium, as evidenced by
the fact that though the composite system is isolated from the environment, its proper-
ties are changing with time (as heat is transferred from A to B and the temperatures of
these subsystems are changing). The rate-of-change form of the entropy balances for
subsystems A and B, which are passing through a succession of equilibrium states,4

and therefore have no internal generation of entropy, are

dSA

dt
=

Q̇A

TA

= −h

(
TA − TB

TA

)
(4.1-6a)

and

dSB

dt
=

Q̇B

TB

= +h

(
TA − TB

TB

)
(4.1-6b)

In writing these equations we have recognized that the amount of heat that leaves sub-
system A enters subsystem B, and that the heat flow from A to B is proportional to the
temperature difference between the two systems, that is,

Q̇A = −Q̇B = −h (TA − TB)

where h is the heat transfer coefficient (experimental observation 10 of Sec. 1.7).
The entropy balance for the isolated (Q̇ = 0), nonequilibrium composite system

composed of subsystems A and B is

dS

dt
= Ṡgen (4.1-7)

Since the total entropy is an extensive property, S = SA+SB , and Eqs. 4.1-6 and 4.1-7
can be combined to yield

Ṡgen = −h

(
TA − TB

TA

)
+ h

(
TA − TB

TB

)
=

h(TA − TB)2

TATB

=
h(ΔT )2

TATB

(4.1-8)

Since h, TA, and TB are positive, Eq. 4.1-8 establishes that for this simple example the
entropy generation term is positive. It is also important to note that Ṡgen is proportional
to the second power of the system nonuniformity, here (ΔT )2. Thus, Ṡgen is positive
away from equilibrium (when TA �= TB) and equal to zero at equilibrium.

4A process in which a system goes through a succession of equilibrium states is termed a quasistatic process.
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This expression for the rate of entropy generation was obtained by partitioning a
black-box system into two subsystems, resulting in a limited amount of information
about processes internal to the overall system. In Sec. 4.6 a more general derivation
of the entropy generation term is given, based on the detailed microscopic description
introduced in Sec. 2.4, and it is shown that the entropy is indeed a state function and
that Ṡgen is positive, except in the equilibrium state, where it is equal to zero. It is also
established that Ṡgen is proportional to the second power of the gradients of tempera-
ture and velocity; thus the rate of generation of entropy is related to the square of the
departure from the equilibrium state.

Table 4.1-1 gives several special cases of the entropy balance equation, on both a
mass and a molar basis, for situations similar to those considered for the mass and
energy balance equations in Tables 2.2-1, 3.1-1, and 3.1-2.

Frequently, one is interested in the change in entropy of a system in going from state
1 to state 2, rather than the rate of change of entropy with time. This entropy change can
be determined by integrating Eq. 4.1-5 over the time interval t1 to t2, where (t2 − t1)
is the (perhaps unknown) time required to go between the two states. The result is

Difference form of
entropy balance

S2 − S1 =
∑

k

∫ t2

t1

ṀkŜk dt +
∫ t2

t1

Q̇

T
dt + Sgen (4.1-9)

where

Sgen = total entropy generated =
∫ t2

t1

Ṡgen dt

Since Ṡgen is always greater than or equal to zero in any process, it follows that its
integral Sgen must also be greater than or equal to zero.

There are two important simplifications of Eq. 4.1-9. First, if the entropy per unit
mass of each stream entering and leaving the system is constant in time (even though

Table 4.1-1 Rate-of-Change Form of the Entropy Balance

General equation:
dS

dt
=

K∑
k=1

ṀkŜk +
Q̇

T
+ Ṡgen (a)

Special cases:
(i) Closed system set Ṁk = 0

so
dS

dt
=

Q̇

T
+ Ṡgen (b)

(ii) Adiabatic process set Q̇ = 0 in Eqs. a, b, and e (c)

(iii) Reversible process set Ṡgen = 0 in Eqs. a, b, and e (d)

(iv) Open steady-state system
dS

dt
= 0

so 0 =

K∑
k=1

ṀkŜk +
Q̇

T
+ Ṡgen (e)

(v) Uniform system S = MŜ in Eqs. a and b (f)

Note: To obtain the entropy balance on a molar basis, replace ṀkŜk by ṄkS k, and MŜ by NS, where S

is the entropy per mole of fluid.
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the flow rates may vary), we have

∑
k

∫ t2

t1

ṀkŜk dt =
∑

k

Ŝk

∫ t2

t1

Ṁk dt =
∑

k

ΔMkŜk

where (ΔM)k =
∫ t2

t1
Ṁk dt is the total mass that has entered the system from the kth

stream. Next, if the temperature is constant at the location where the heat flow occurs,
then ∫ t2

t1

Q̇

T
dt =

1
T

∫ t2

t1

Q̇ dt =
Q

T

where Q =
∫ t2

t1
Q̇ dt is the total heat flow into the system between t1 and t2. If either of

these simplifications is not valid, the respective integrals must be evaluated if Eq. 4.1-9
is to be used. This may be a difficult or impossible task, so that, as with the energy
balance, the system for which the entropy balance is to be written must be chosen with
care, as illustrated later in this chapter. Table 4.1-2 summarizes various forms of the
integrated entropy balance.

It should be pointed out that we have introduced the entropy function in an axiomatic
and mathematical fashion. In the history of thermodynamics, entropy has been pre-
sented in many different ways, and it is interesting to read about these alternative ap-
proaches. One interesting source is The Second Law by P. W. Atkins (W. H. Freeman,
New York, 1984).

The axiom that is used here, Sgen ≥ 0, is a statement of what has historically been
called the second law of thermodynamics. The principle of conservation of energy
discussed previously is referred to as the first law. It is interesting to compare the form
of the second law used here with two other forms that have been proposed in the history
of thermodynamics, both of which deal with the transformation of heat to work.

Table 4.1-2 Difference Form of the Entropy Balance

General equation S2 − S1 =

K∑
k=1

∫ t2

t1

ṀkŜk dt +

∫ t2

t1

Q̇

T
dt + Sgen (a)

Special cases:
(i) Closed system set Ṁk = 0 in Eq. a

so S2 − S1 =

∫ t2

t1

Q̇

T
dt + Sgen (b)

(ii) Adiabatic process

set

∫ t2

t1

Q̇

T
dt = 0 in Eq. a (c)

(iii) Reversible process set Sgen = 0 in Eqs. a and b (d)

(iv) Open system: Flow of fluids of constant thermodynamic properties

set

K∑
k=1

∫ t2

t1

ṀkŜk dt =

K∑
k=1

ΔMkŜk in Eq. a (e)

(v) Uniform system S = MŜ in Eq. a (f)

Note: To obtain the entropy balance on a molar basis, replace MŜ by NS,
∫ t2

t1
ṀkŜk dt by

∫ t2
t1

ṄkS k dt,
and ΔMkŜk with ΔNkS k.
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Illustration 4.1-1
Clausius Statement of the Second Law

The second-law statement of Rudolf Clausius (1822–1888) is that it is not possible to construct
a device that operates in a cycle and whose sole effect is to transfer heat from a colder body to
a hotter body. Show from the axiom Sgen ≥ 0 that the process below is impossible, so that the
Clausius statement of the second law is consistent with what has been presented in this book.

Clausius
device

T2

Q2

Q1

T1

T2 > T1

Solution

The energy balance over one complete cycle, so that the device is in the same state at the begin-
ning and at the end of the process, is

Uf − Ui = 0 = Q1 + Q2 + W−→
0

since there is no work produced or absorbed in the device. Therefore, the energy balance yields
Q2 = −Q1. Thus the energy balance tells us that the process may be possible as long as the heat
flows in and out balance, that is, if energy is conserved.

The entropy balance over one complete cycle is

Sf − Si = 0 =
Q1

T1

+
Q2

T2

+ Sgen

or

Sgen = −Q2

T2

− Q1

T1

=
Q1

T2

− Q1

T1

= Q1

(
1

T2

− 1

T1

)

The second-law statement we have used is Sgen > 0. However, since T2 > T1, if Q1 were
positive (heat flow into device from cold body), Sgen < 0, which is a violation of our axiom. If
Q1 were negative, so that the heat flow was from high temperature to low temperature (or equiv-
alently T1 > T2), the process would be possible. Consequently, our statement of the second law,
Sgen ≥ 0, is consistent with the Clausius version, but much more general.

Illustration 4.1-2
Kelvin-Planck Statement of the Second Law

An alternative statement of the second law, due to Lord Kelvin (William Thomson, 1824–1907)
and Max Planck (1858–1947), is that it is not possible to construct a device operating in a cycle
that results in no effect other than the production of work by transferring heat from a single body.
A schematic diagram of a Kelvin-Planck device is shown below.

Kelvin-Planck
device

Q

T

W

Show from our axiom Sgen ≥ 0 that this process is indeed impossible.
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Solution

The energy balance over one complete cycle is

Uf − Ui = 0 = Q + W or W = −Q

As long as the work produced equals the heat absorbed, this device satisfies the principle of
energy conservation, and is possible by the first law of thermodynamics. The entropy balance
over one complete cycle is

Sf − Si = 0 =
Q

T
+ Sgen

or

Sgen = −Q

T

Since T is positive (remember, we are using absolute temperature), for the entropy generation to
be positive, Q must be negative. That is, to be consistent with our statement of the second law, the
device cannot absorb heat and convert all of it to work. However, the reverse process, in which
the device receives work and converts all that work to heat, is possible. Therefore, our statement
of the second law is consistent with that of Kelvin and Planck, but again more general.

An alternative wording of the Kelvin-Planck statement is that heat cannot be com-
pletely converted to work in a cyclic process. However, it is possible, as shown above, to
do the converse and completely convert work to heat. Since heat cannot be completely
converted to work, heat is sometimes considered a less useful form of energy than work.
When work or mechanical energy is converted to heat, for example, by friction, it is said
to be degraded.

Finally, notice the very different roles of the first law (energy conservation) and sec-
ond law (Sgen ≥ 0) in the analyses above. The first law did not provide a definitive
result as to whether a process was possible or not, but merely set some constraints (i.e.,
Q2 = −Q1 for the Clausius device and W = −Q for the Kelvin-Planck device). How-
ever, the second law is definitive in that it establishes that it is impossible to construct
devices that would operate in the manners proposed.

Heat flow by radiation

So far we have considered the heat flow Q̇ to be due only to conduction across the
system boundaries. However, heat can also be transmitted to a system by radiation—for
example, as the sun heats the earth. If there is a radiative heat flow, it can be incorporated
into the energy balance as an additional energy flow that can be combined with the
conductive heat flow. The change in entropy accompanying radiative heat transfer is
more complicated than for conductive heat transfer, and must be treated separately.
In particular, the entropy flow depends on the distribution of energy in the radiation,
which in turn depends on the source and temperature of the radiation. Radiation can
be monochromatic, that is, of a single frequency, when produced by a laser, or it can
have a broad spectrum of energies, for example, following the Stefan-Boltzmann law
for typical radiating bodies, such as the sun, a red-hot metal, or even our bodies (which
do radiate heat). Further, the frequency distribution (or energy spectrum) emitted from
fluorescent and incandescent lamps is different.

Here we will consider only the entropic contribution from the most common form
of radiation, that which follows the Stefan-Boltzmann law. In this case, for a radiant
energy transfer to a system of Q̇R the rate of entropy change is

Entropy flow accompanying radiation =
4Q̇R

3TR
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where TR is the temperature of the body emitting the radiation, not the temperature of
the receiving body. Therefore, the entropy balance for a system, including heat transfer
by radiation (from a body or device emitting radiation with a Stefan-Boltzmann energy
distribution), is, on a mass basis

dS

dt
=

K∑
k=1

ṀkŜk +
Q̇

T
+

4Q̇R

3TR

+ Ṡgen (4.1-10a)

and on a molar basis

dS

dt
=

K∑
k=1

ṄkSk +
Q̇

T
+

4Q̇R

3TR

+ Ṡgen (4.1-10b)

Since radiative heat transfer is not generally important in chemical engineering appli-
cations of thermodynamics, Eqs. 4.1-10a and b will not be used much in this book.

4.2 THE ENTROPY BALANCE AND REVERSIBILITY

Reversible processes
An important class of processes is that for which the rate of generation of entropy is
always zero. Such processes are called reversible processes and are of special interest
in thermodynamics. Since Ṡgen is proportional to the square of the temperature gradi-
ents and velocity gradients in the system, such gradients must vanish in a process in
which Ṡgen is zero. Notice, however, that although the rate of entropy generation is
second order in the system gradients, the internal relaxation processes that occur in the
approach to equilibrium are linearly proportional to these gradients (i.e., the heat flux
q is proportional to the temperature gradient ∇T , the stress tensor is proportional to
the velocity gradient, etc. as shown in Sec. 1.7). Therefore, if there is a very small tem-
perature gradient in the system, the heat flux q, which depends on ∇T , will be small,
and Ṡgen, which depends on (∇T )2, may be so small as to be negligible. Similarly,
the rate of entropy generation Ṡgen may be negligible for very small velocity gradients.
Processes that occur with such small gradients in temperature and velocity that Ṡgen is
essentially zero can also be considered to be reversible.

The designation reversible arises from the following observation. Consider the change
in state of a general system open to the flow of mass, heat, and work, between two equal
time intervals, 0 to t1 and t1 to t2, where t2 = 2t1. The mass, energy, and entropy bal-
ances for this system are, from Eqs. 2.2-4, 3.1-6, and 4.1-9,

M2 − M0 =
∑

k

∫ t1

0

Ṁk dt +
∑

k

∫ t2

t1

Ṁk dt

U2 − U0 =
∫ t1

0

[∑
k

ṀkĤk − P
dV

dt
+ Ẇs + Q̇

]
dt

+
∫ t2

t1

[∑
k

ṀkĤk − P
dV

dt
+ Ẇs + Q̇

]
dt
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and

S2 − S0 =
∫ t1

0

[∑
k

ṀkŜk +
Q̇

T

]
dt +

∫ t2

t1

[∑
k

ṀkŜk +
Q̇

T

]
dt

+
∫ t1

0

Ṡgen dt +
∫ t2

t1

Ṡgen dt

Now, suppose that all of the mass, heat, and work flows are just reversed between t1
and t2 from what they had been between 0 and t1, so that∫ t1

0

Ṁk dt = −
∫ t2

t1

Ṁk dt

∫ t1

0

Q̇ dt = −
∫ t2

t1

Q̇ dt

∫ t1

0

ṀkĤk dt = −
∫ t2

t1

ṀkĤk dt

∫ t1

0

Q̇

T
dt = −

∫ t2

t1

Q̇

T
dt

∫ t1

0

ṀkŜk dt = −
∫ t2

t1

ṀkŜk dt

∫ t1

0

Ẇs dt = −
∫ t2

t1

Ẇs dt

∫ t1

0

P
dV

dt
dt = −

∫ t2

t1

P
dV

dt
dt

(4.2-1)

In this case the equations reduce to

M2 = M0 (4.2-2a)
U2 = U0 (4.2-2b)

S2 = S0 +
∫ t1

0

Ṡgen dt +
∫ t2

t1

Ṡgen dt (4.2-2c)

In general, Ṡgen ≥ 0, so the two integrals in Eq. 4.2-2c will be positive, and the entropy
of the initial and final states will differ. Thus the initial and final states of the system will
have different entropies and therefore must be different. If, however, the changes were
accomplished in such a manner that the gradients in the system over the whole time
interval are infinitesimal, then Ṡgen = 0 in each time interval, and S2 = S0. In this
case the system has been returned to its initial state from its state at t1 by a process
in which the work and each of the flows were reversed. Such a process is said to be
reversible. If Ṡgen had not been equal to zero, then S2 > S0, and the system would not
have been returned to its initial state by simply reversing the work and other flows; the
process is then said to be irreversible.

The main characteristic of a reversible process is that it proceeds with infinitesimal
gradients within the system. Since transport processes are linearly related to the gra-
dients in the system, this requirement implies that a reversible change occurs slowly
on the time scale of macroscopic relaxation times. Changes of state in real systems
can be approximated as being reversible if there is no appreciable internal heat flow
or viscous dissipation; they are irreversible if such processes occur. Consequently, ex-
pansions and compressions that occur uniformly throughout a fluid, or in well-designed
turbines, compressors, and nozzles for which viscous dissipation and internal heat flows
are unimportant, can generally be considered to occur reversibly (i.e., Ṡgen = 0). Flows
through pipes, through flow constrictions (e.g., a valve or a porous plug), and through
shock waves all involve velocity gradients and viscous dissipation and hence are irre-
versible. Table 4.2-1 contains some examples of reversible and irreversible processes.
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Table 4.2-1 Examples of Reversible and Irreversible Processes

Reversible process: A process that occurs with no (appreciable) internal temperature, pressure,
or velocity gradients, and therefore no internal flows or viscous dissipationReversible process

Examples:
Fluid flow in a well-designed turbine, compressor, or nozzle
Uniform and slow expansion or compression of a fluid
Many processes in which changes occur sufficiently slowly that gradients do not appear in the
system

Irreversible process: A process that occurs with internal temperature, pressure, and/or velocity
gradients so that there are internal flows and/or viscous dissipationIrreversible process

Examples:
Flow of fluid in a pipe or duct in which viscous forces are present
Flow of fluid through a constriction such as a partially open valve, a small orifice, or a porous
plug (i.e., the Joule-Thomson expansion)
Flow of a fluid through a sharp gradient such as a shock wave
Heat conduction process in which a temperature gradient exists
Any process in which friction is important
Mixing of fluids of different temperatures, pressures, or compositions

Another characteristic of a reversible process is that if the surroundings are extracting
work from the system, the maximum amount of work is obtained for a given change
of state if the process is carried out reversibly (i.e., so that Ṡgen = 0). A corollary to
this statement is that if the surroundings are doing work on the system, a minimum
amount of work is needed for a given change of state if the change occurs reversibly.
The first of these statements is evident from Illustration 3.4-7, where it was found that
the maximum work (WNET) was extracted from the expansion of a gas in a piston-and-
cylinder device between given initial and final states if the expansion was carried out
reversibly (by removing grains of sand one at a time), so that only differential changes
were occurring, and there was no frictional dissipation of kinetic energy to thermal
energy in the work-producing device. It will be shown, in Illustration 4.5-8, that such a
process is also one for which Sgen = 0.

Although few processes are truly reversible, it is sometimes useful to model them to
be so. When this is done, it is clear that any computations made based on Eqs. 4.1-5
or 4.1-9, with Ṡgen = Sgen = 0, will only be approximate. However, these approximate
results may be very useful, since the term neglected (the entropy generation) is of known
sign, so we will know whether our estimate for the heat, work, or any state variable is
an upper or lower bound to the true value. To see this, consider the energy and entropy
balances for a closed, isothermal, constant-volume system:

U2 = U1 + Q + Ws (4.2-3)

and

S2 = S1 +
Q

T
+ Sgen (4.2-4)
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Eliminating Q between these two equations and using T1 = T2 = T gives

Ws = (U2 − T2S2) − (U1 − T1S1) + TSgen

= A2 − A1 + TSgen (4.2-5)

Here we have defined a new thermodynamic state variable, the Helmholtz energy, as

Helmholtz energy A = U − TS (4.2-6)

(Note that A must be a state variable since it is a combination of state variables.) The
work required to bring the system from state 1 to state 2 by a reversible (i.e., Sgen = 0),
isothermal, constant-volume process is

Reversible work at
constant N , V and T

W rev
s = A2 − A1 (4.2-7)

while the work in an irreversible (i.e., Sgen > 0), isothermal, constant-volume process
between the same initial and final states is

Ws = A2 − A1 + TSgen = W rev
s + TSgen

Since TSgen > 0, this equation establishes that more work is needed to drive the system
from state 1 to state 2 if the process is carried out irreversibly than if it were carried out
reversibly. Conversely, if we are interested in the amount of work the system can do on
its surroundings at constant temperature and volume in going from state 1 to state 2 (so
that Ws is negative), we find, by the same argument, that more work is obtained if the
process is carried out reversibly than if it is carried out irreversibly.

One should not conclude from Eq. 4.2-7 that the reversible work for any process
is equal to the change in Helmholtz energy, since this result was derived only for an
isothermal, constant-volume process. The value of W rev

s , and the thermodynamic func-
tions to which it is related, depends on the constraints placed on the system during the
change of state (see Problem 4.3). For example, consider a process occurring in a closed
system at fixed temperature and pressure. Here we have

U2 = U1 + Q + Ws − (P2V2 − P1V1)

where P2 = P1, T2 = T1, and

S2 = S1 +
Q

T
+ Sgen

Thus

Reversible work at
constant N , P and T

W rev
s = G2 − G1

where

Gibbs energy

G ≡ U + PV − TS = H − TS (4.2-8)

G is called the Gibbs energy. Therefore, for the case of a closed system change at
constant temperature and pressure, we have

Ws = G2 − G1 + TSgen = W rev
s + TSgen
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The quantity TSgen in either process can be interpreted as the amount of mechanical
energy that has been converted to thermal energy by viscous dissipation and other sys-
tem irreversibilities. To see this, consider a reversible process (Sgen = 0) in a closed
system. The energy balance is

Qrev = U2 − U1 − W rev

(here W is the sum of the shaft work and P ΔV work). If, on the other hand, the process
was carried out between the same initial and final states so that macroscopic gradients
arose in the system (that is, irreversibly, so Sgen > 0), then

Q = U2 − U1 − W = U2 − U1 − W rev − TSgen

or
Q = Qrev − TSgen (4.2-9a)

and
W = W rev + TSgen (4.2-9b)

Since TSgen is greater than zero, less heat and more work are required to accomplish a
given change of state in the second (irreversible) process than in the first.5 This is be-
cause the additional mechanical energy supplied in the second case has been converted
to thermal energy. It is also generally true that system gradients that lead to heat flows,
mass flows, and viscous dissipation result in the conversion of mechanical energy to
thermal energy and in a decrease in the amount of work that can be obtained from a
work-producing device between fixed initial and final states.

Finally, since the evaluation of the changes in the thermodynamic properties of a
system accompanying its change of state are important in thermodynamics, it is useful
to have an expression relating the entropy change to changes in other state variables.
To obtain this equation we start with the rate-of-change form of the mass, energy, and
entropy balances for a system in which the kinetic and potential energy terms are unim-
portant, there is only one mass flow stream, and the mass and heat flows occur at the
common temperature T :

dM

dt
= Ṁ

dU

dt
= ṀĤ + Q̇ − P

dV

dt
+ Ẇs

and

dS

dt
= ṀŜ +

Q̇

T
+ Ṡgen

where Ĥ and Ŝ are the enthalpy per unit mass and entropy per unit mass of the fluid
entering or leaving the system. Eliminating Ṁ between these equations and multiplying
the third equation by T yields

dU

dt
= Ĥ

dM

dt
+ Q̇ − P

dV

dt
+ Ẇs

5The argument used here assumes that work is required to drive the system from state 1 to state 2. You should
verify that the same conclusions would be reached if work were obtained in going from state 1 to state 2.
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and

T
dS

dt
= T Ŝ

dM

dt
+ Q̇ + T Ṡgen

Of particular interest is the form of these equations applicable to the change of state
occurring in the differential time interval dt. As in Sec. 3.1, we write

Q = Q̇ dt = heat flow into the system in the time interval dt
Ws = Ẇs dt = shaft work into the system in the time interval dt

Sgen = Ṡgen dt = entropy generated in the system in the time interval dt

and obtain the following balance equations for the time interval dt:

dU = Ĥ dM + Q − P dV + Ws (4.2-10a)

and

T dS = T Ŝ dM + Q + TSgen (4.2-10b)

Equations 4.2-10 can be used to interrelate the differential changes in internal energy,
entropy, and volume that occur between fixed initial and final states that are only slightly
different. This is accomplished by first solving Eq. 4.2-10b for Q,

Q = T dS − TSgen − T Ŝ dM (4.2-11a)

and using this result to eliminate the heat flow from Eq. 4.2-10a, to obtain6

dU = T dS − TSgen − P dV + Ws + (Ĥ − T Ŝ) dM

= T dS − TSgen − P dV + Ws + Ĝ dM
(4.2-11b)

For a reversible process (Sgen = 0), these equations reduce to

Qrev = T dS − T Ŝ dM (4.2-12a)

and

dU = T dS + (−P dV + Ws)rev + Ĝ dM (4.2-12b)

In writing these equations we have recognized that since the initial and final states of
the system are fixed, the changes in the path-independent functions are the same for
reversible and irreversible processes. The heat and work terms that depend on the path
followed are denoted by the superscript rev.

Equating the changes in the (state variables) internal energy and entropy for the re-
versible process (Eqs. 4.2-12) and the irreversible process (Eqs. 4.2-11) yields

Qrev = Qirrev + TSgen

and

(−P dV + Ws)rev = (−P dV + Ws)irrev − TSgen

6Alternatively, this equation and those that follow can be written in terms of the molar Gibbs energy and the mole
number change by replacing Ĝ dM by G dN .
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Substituting these results into Eqs. 4.2-11 again gives Eqs. 4.2-12, which are now seen
to apply for any process (reversible or irreversible) for which kinetic and potential
changes are negligible. There is a subtle point here. That is, Eq. 4.2-12b can be used
to interrelate the internal energy and entropy changes for any process, reversible or ir-
reversible. However, to relate the heat flow Q and the entropy, Eq. 4.2-11a is always
valid, whereas Eq. 4.2-12a can be used only for reversible processes.

Although both Eqs. 4.2-11b and 4-2.12b provide relationships between the changes
in internal energy, entropy, mass, and the work flow for any real process, we will, in fact
use only Eq. 4.2-12b to interrelate these changes since, in many cases, this simplifies
the computation. Finally, we note that for a system with no shaft work7

Differential entropy
change for an open
system

dU = T dS − P dV + Ĝ dM (4.2-13a)

and, further, if the system is closed to the flow of mass,

dU = T dS − P dV

or

Differential entropy
change for a closed
system

dU = T dS − P dV (4.2-13b)

Since we are always free to choose the system for a given change of state such that
there is no shaft work (only P ΔV work), Eq. 4.2-13a can generally be used to com-
pute entropy changes in open systems. Similarly, Eq. 4.2-13b can generally be used to
compute entropy changes in closed systems. This last point needs to be emphasized.
In many cases it is necessary to compute the change in thermodynamic properties be-
tween two states of a substance. Since, for this computation, we can choose the system
in such a way that it is closed and shaft work is excluded, Eq. 4.2-13b can be used in
the calculation of the change in thermodynamic properties of the substance between
the given initial and final states, regardless of the device or path used to accomplish this
change.

4.3 HEAT, WORK, ENGINES, AND ENTROPY

The discussion of Sec. 4.2, and especially Eqs. 4.2-9, reveals an interesting distinction
between mechanical energy (and work) and heat or thermal energy. In particular, while
both heat and work are forms of energy, the relaxation processes (i.e., heat flow and
viscous dissipation) that act naturally to reduce any temperature and velocity gradients
in the system result in the conversion of mechanical energy in the form of work or the
potential to do work, to heat or thermal energy. Friction in any moving object, which
reduces its speed and increases its temperature, is the most common example of this
phenomenon.

A problem of great concern to scientists and engineers since the late eighteenth cen-
tury has been the development of devices (engines) to accomplish the reverse transfor-
mation, the conversion of heat (from the combustion of wood, coal, oil, natural gas, and
other fuels) to mechanical energy or work. Much effort has been spent on developing
engines of high efficiency, that is, engines that convert as large a fraction of the heat
supplied to useful work as is possible.

7Equivalently, on a molar basis, we have dU = T dS − P dV + GdN .
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T1
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(a) (b)

Figure 4.3-1 (a) Schematic diagram of a simple heat engine. (b) Schematic diagram
of a fluid flow engine.

Such engines are schematically represented in Fig. 4.3-1a, where Q̇1 is the heat flow
rate into the engine from the surroundings at temperature T1, Q̇2 is the heat flow rate
from the engine to its surroundings at temperature T2, and Ẇ is the rate at which work
is done by the engine. Remember that from the Clausius and Kelvin-Planck statements
discussed earlier that Q̇2 cannot be zero; that is, some of the heat entering the engine
cannot be converted to work and must be expelled at a lower temperature.

The engine in Fig. 4.3-1a may operate either in a steady-state fashion, in which case
Q̇1, Q̇2, and Ẇ are independent of time, or cyclically. If the energy and entropy bal-
ances for the engine are integrated over a time interval Δt, which is the period of one
cycle of the cyclic engine, or any convenient time interval for the steady-state engine,
one obtains8

0 = Q1 + Q2 + W (4.3-1)

0 =
Q1

T1

+
Q2

T2

+ Sgen (4.3-2)

where Q =
∫ t2

t1
Q̇ dt and W =

∫ t2
t1

(Ẇs − P (dV/dt)) dt. The left sides of Eqs. 4.3-1
and 4.3-2 are zero for the cyclic and steady-state engines, as both engines are in the same
state at time t2 as they were at t1. Eliminating Q2 between Eqs. 4.3-1 and
4.3-2 yields

Work done by the engine = −W = Q1

(
T1 − T2

T1

)
− T2Sgen (4.3-3)

Based on the discussion of the previous section, to obtain the maximum work from an
engine operating between fixed temperatures T1 and T2 it is necessary that all processes
be carried out reversibly, so that Sgen = 0. In this case

Maximum work done by the engine = −W = Q1

(
T1 − T2

T1

)
(4.3-4)

and

Engine efficiency =

⎛
⎝ Fraction of heat

supplied that is
converted to work

⎞
⎠ =

−W

Q1

=
T1 − T2

T1

(4.3-5)

8Independent of the direction the arrows have been drawn in these figures, we still use the sign convention that a
flow of heat, work, or mass into the system or device is positive, and a flow out is negative. The arrows in this and
the following figures are drawn to remind the reader of the expected directions of the flows. Consequently, Q̇2 in
Fig. 4.3-1a will be negative in value.
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This is a surprising result since it establishes that, independent of the engine design,
there is a maximum engine efficiency that depends only on the temperature levels be-
tween which the engine operates. Less than ideal design or irreversible operation of the
engine will, of course, result in the efficiency of an engine being less than the maxi-
mum efficiency given in Eq. 4.3-5. Industrial heat engines, due to design and operating
limitations, heat losses, and friction, typically operate at about half this efficiency.

Another aspect of the conversion of heat to work can be illustrated by solving for Q2,
the heat leaving the engine, in Eqs. 4.3-1 and 4.3-3 to get

−Q2 = Q1
T2

T1

+ T2Sgen (4.3-6)

This equation establishes that it is impossible to convert all the heat supplied to an
engine to work (that is, for Q2 to equal zero) in a continuous or cyclic process, unless
the engine has a lower operating temperature (T2) of absolute zero. In contrast, the
inverse process, that of converting work or mechanical energy completely to heat, can
be accomplished completely at any temperature, and unfortunately occurs frequently in
natural processes. For example, friction can convert mechanical energy completely to
heat, as when stopping an automobile by applying the brake, which converts mechanical
energy (here kinetic energy) to heat in the brake drum.

Therefore, it is clear that although heat and work are equivalent in the sense that
both are forms of energy (experimental observations 3 and 4 of Sec. 1.7), there is a
real distinction between them in that work or mechanical energy can spontaneously
(naturally) be converted completely to heat or thermal energy, but thermal energy can,
with some effort, be only partially converted to mechanical energy. It is in this sense
that mechanical energy is regarded as a higher form of energy than thermal energy.

At this point one might ask if it is possible to construct an engine having the effi-
ciency given by Eq. 4.3-5. Nicolas Léonard Sadi Carnot (1796–1832) described such a
cyclic engine in 1824. The Carnot engine consists of a fluid enclosed in a frictionless
piston-and-cylinder device, schematically shown in Fig. 4.3-2. Work is extracted from
this engine by the movement of the piston. In the first step of the four-part cycle, the
fluid is isothermally and reversibly expanded from volume Va to volume Vb at a con-
stant temperature T1 by adding an amount of heat Q1 from the first heat source. The
mechanical work obtained in this expansion is

∫ Vb

Va
P dV . The next part of the cycle

is a reversible adiabatic expansion of the fluid from the state (Pb, Vb, T1) to the state
(Pc, Vc, T2). The work obtained in this expansion is

∫ Vc

Vb
P dV and is gotten by di-

rectly converting the internal energy of the fluid to work. The next step in the cycle is
to reversibly and isothermally compress the fluid to the state (Pd, Vd, T2).

The work done on the fluid in this process is
∫ Vd

Vc
P dV , and the heat removed is

Q2. The final step in the cycle is a reversible adiabatic compression to the initial state
(Pa, Va, T1). The work done on the fluid in this part of the process is

∫ Va

Vd
P dV . The

complete work cycle is summarized in the following table.
The energy and entropy balances for one complete cycle are

0 = W + Q1 + Q2 (4.3-7)

0 =
Q1

T1

+
Q2

T2

(4.3-8)

where

Carnot cycle work W = −
∫ Vb

Va

P dV −
∫ Vc

Vb

P dV −
∫ Vd

Vc

P dV −
∫ Va

Vd

P dV



4.3 Heat, Work, Engines, and Entropy 117

T2

T1

Heat bath at temperature
T1

Heat bath at temperature
T2

(a)

P T

a

b

c

d

V S

a b

d c

(b) (c)

S

T

0
0S

T

0
0S

T

(f)(e)(d)

0
0

a b

d c

a b

d c

Qa→b Qc→d WNET

Figure 4.3-2 The Carnot cycle. (a) Schematic diagram of a Carnot engine. (b) The Carnot cycle
on a pressure-volume plot. (c) The Carnot cycle on a temperature-entropy plot. (d) Heat flow
into the cycle going from point a to b. (e) Heat flow into the cycle going from point c to point d.
(f ) Net work flow.

Work Done Heat Added
Path on the Fluid to the Fluid

(Pa, Va, T1)

reversible
isothermal−−−−−→
expansion

(Pb, Vb, T1) −
∫ Vb

Va

P dV Q1

(Pb, Vb, T1)
reversible−−−−−→
adiabatic
expansion

(Pc, Vc, T2) −
∫ Vc

Vb

P dV 0

(Pc, Vc, T2)

reversible
isothermal−−−−−→

compression
(Pd, Vd, T2) −

∫ Vd

Vc

P dV Q2

(Pd, Vd, T2)
reversible−−−−−→
adiabatic

compression

(Pa, Va, T1) −
∫ Va

Vd

P dV 0



118 Chapter 4: Entropy: An Additional Balance Equation

Now using Eq. 4.3-8 to eliminate Q2 from Eq. 4.3-7 yields

−W = Q1 −
(

T2

T1

Q1

)
=

T1 − T2

T1

Q1 (4.3-9)

and

Carnot cycle efficiency −W

Q1

=
T1 − T2

T1

which is exactly the result of Eq. 4.3-4. Equations 4.3-5 and 4.3-6 then follow directly.
Thus we conclude that the Carnot engine is the most efficient possible in the sense of
extracting the most work from a given flow of heat between temperature baths at T1

and T2 in a cyclic or continuous manner.
Perhaps the most surprising aspect of the Carnot cycle engine (or Eq. 4.3-4, for that

matter) is that the work obtained depends only on T1, T2, and the heat flow Q1, and does
not depend on the working fluid, that is, which fluid is used in the piston-and-cylinder
device. Consequently, the efficiency, −W/Q1, of the Carnot cycle depends only on the
temperatures T1 and T2, and is the same for all fluids.

Since the work supplied or obtained in each step of the Carnot cycle is expressible
in the form −

∫
P dV , the enclosed area on the P-V diagram of Fig. 4.3-2b is equal to

the total work supplied by the Carnot engine to its surroundings in one complete cy-
cle. (You should verify that if the Carnot engine is driven in reverse, so that the cycle in
Fig. 4.3-2b is traversed counterclockwise, the enclosed area is equal to the work
absorbed by the engine from its surroundings in one cycle.9)

Since the differential entropy change dS and the heat flow Q for a reversible process
in a closed system are related as

dS =
Q

T
or Q = T dS

the heat flows (and the work produced) can be related to areas on the T-S diagram for
the process as follows. The heat flow into the Carnot cycle in going from point a to
point b is equal to

Qa→b =
∫

T dS = T1ΔSa→b = T1 · (Sb − Sa) since the temperature is constant

This heat flow is given by the area shown in Fig. 4.3-2d . Similarly, the heat flow from
point c to point d is equal in magnitude to the area shown in Fig. 4.3-2e, but negative in
value (since Sc is larger than Sd). Finally, since from Eq. 4.3-7 the net work flow (work
produced less work used in the isothermal compression step) is equal to the difference
between the two heat flows into the Carnot cycle, this work flow is given by the rect-
angular area in Fig. 4.3-2f. A similar graphical analysis of the heat and work flows can
be used for other cycles, as will be shown in Sec. 5.2.

Thus, for reversible cycles, the P-V diagram directly supplies information about the
net work flow, and the T-S diagram provides information about the net heat flow.

9Note that if the Carnot heat engine is operated as shown in Fig. 4.3-2 it absorbs heat from the high-temperature
bath, exhausts heat to the low-temperature bath, and produces work. However, if the engine is operated in reverse,
it accepts work, absorbs heat from the low-temperature bath, and exhausts heat to the high-temperature bath. In
this mode it is operating as a refrigerator, air conditioner, or heat pump.
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Stationary blades Rotating blades
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Figure 4.3-3 (a) Sketch of an axial flow steam turbine. High pressure steam enters,
is expanded against the rotating turbine blades and low pressure steam leaves going to a con-
denser. The expanding steam drives the turbine blades producing work that is captured through
the shaft that may drive an electric generator. (b) Sketch of an axial flow compressor in which
low pressure gas enters, is compressed by the rotating blades that are driven by a motor, and
high pressure gas leaves the compressor. {Note that these two devices are the inverse of each
other. The turbine starts with fluid at high pressure and produces work and a low pressure fluid,
while the compressor starts with a low pressure fluid and requires work to produce a fluid of
higher pressure. Adapted from “Fundamentals of Engineering Thermodynamics”, 5th ed. by
M. J. Morgan and H. N. Shapiro, J. Wiley & Sons, Inc., 2004. Used with permission.}

For irreversible processes (i.e., processes for which Sgen �= 0), the heat flow and entropy
change are not simply related as above, and the area on a T-S diagram is not directly
related to the heat flow.

In addition to the Carnot heat engine, other cycles and devices may be used for the
conversion of thermal energy to mechanical energy or work, although the conversion
efficiencies for these other cycles, because of to the paths followed, are less than that of
the Carnot engine. Despite their decreased efficiency, these other engines offer certain
design and operating advantages over the Carnot cycle, and hence are more widely used.
The efficiencies of some other cycles are considered in Sec. 5.2.

Another class of work-producing devices are engines that convert the thermal energy
of a flowing fluid to mechanical energy. Examples of this type of engine are the nozzle-
turbine systems of Fig. 4.3-3. Here a high-pressure, high-temperature fluid, frequently
steam, is expanded through a nozzle to obtain a low-pressure, high-velocity gas. This
gas then impinges on turbine blades, where the kinetic energy of the gas is transferred
to the turbine rotor, and thus is available as shaft work. The resulting low-pressure, low-
velocity gas leaves the turbine. Of course, many other devices can be used to accomplish
the same energy transformation. All of these devices can be schematically represented
as shown in Fig. 4.3-1b.

The steady-state mass, energy, and entropy balances on a molar basis for such heat
engines are

0 = Ṅ1 + Ṅ2 or Ṅ2 = −Ṅ1

0 = (H1 − H2)Ṅ1 + Q̇ + Ẇs

(4.3-10)

and

0 = (S1 − S2)Ṅ1 +
Q̇

T
+ Ṡgen (4.3-11)

Here we have assumed that the kinetic and potential energy changes of the fluid entering
and leaving the device cancel or are negligible (regardless of what happens internally)
and that the heat flow Q̇ can be identified as occurring at a single temperature T .10

10If this is not the case, a sum of Q̇/T terms or an integral of the heat flux divided by the temperature over the
surface of the system is needed.



120 Chapter 4: Entropy: An Additional Balance Equation

Solving these equations for the heat flow Q̇ and the work flow Ẇs yields

Q̇ = −T (S1 − S2)Ṅ1 − T Ṡgen (4.3-12)

and

Ẇs = −Ṅ1[(H1 − TS1) − (H2 − TS2)] + T Ṡgen (4.3-13)

Note that the quantity (H1 − TS1) is not equal to the Gibbs energy unless the tem-
perature T at which heat transfer occurs is equal to the inlet fluid temperature (that is,
G1 = H1 − T1S1); a similar comment applies to the term (H2 − TS2).

Several special cases of these equations are important. First, for the isothermal flow
engine (i.e., for an engine in which the inlet temperature T1, the outlet temperature T2,
and the operating temperature T are all equal), Eq. 4.3-13 reduces to

Ẇs = −Ṅ1(G1 − G2) + T Ṡgen

The maximum rate at which work can be obtained from such an engine for fixed inlet
and exit pressures and fixed temperature occurs when the engine is reversible; in this
case

Ẇ rev
s = −Ṅ1(G1 − G2)

and the heat load for reversible, isothermal operation is

Q̇rev = −TṄ1(S1 − S2)

Second, for adiabatic operation (Q̇ = 0) of a flow engine, we have from Eq. 4.3-10 that

Ẇs = −Ṅ1(H1 − H2) (4.3-14)

and

0 = Ṅ1(S1 − S2) + Ṡgen (4.3-15)

so that the work flow is proportional to the difference in the enthalpies of the inlet
and exiting fluids. Usually, the inlet temperature and pressure and the exit pressure of
the adiabatic flow engine can be specified by the design engineer; the exit temperature
cannot be specified, but instead adjusts so that Eq. 4.3-15 is satisfied. Thus, although
the entropy generation term does not explicitly appear in the work term of Eq. 4.3-14,
it is contained implicitly through the exit temperature and therefore the exit enthalpy
H2. By example (Problems 4.9 and 4.24), one can establish that a reversible adiabatic
engine has the lowest exit temperature and enthalpy for fixed inlet and exit pressures,
and thereby achieves the best conversion of fluid thermal energy to work.

Finally, we want to develop an expression in terms of the pressure and volume for
the maximum rate at which work is obtained, or the minimum rate at which work must
be added, to accomplish a given change of state in continuous-flow systems such as
turbines and compressors. Figure 4.3-4 is a generic diagram of a device through which
fluid is flowing continuously. The volume element in the figure contained within the
dashed lines is a very small region of length ΔL in which the temperature and pressure
of the fluid can be taken to be approximately constant (in fact, shortly we will consider
the limit in which ΔL → 0). The mass, energy, and entropy balances for this steady-
state system are
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ωsq

L L + ΔL

N�L N�L + ΔL

Figure 4.3-4 Device with fluid, heat, and
work flows.

dN

dt
= 0 = Ṅ |L − Ṅ |L+ΔL (4.3-16a)

dU

dt
= 0 = ṄH |L − ṄH |L+ΔL + q̇ ΔL + ω̇s ΔL (4.3-16b)

dS

dt
= 0 = ṄS|L − ṄS|L+ΔL +

q̇

T
ΔL + σ̇gen ΔL (4.3-16c)

In these equations, q̇, ω̇s, and σ̇gen are, respectively, the heat and work flows and the
rate of entropy generation per unit length of the device.

Dividing by ΔL, taking the limit as ΔL → 0, and using the definition of the total
derivative from calculus gives

lim
ΔL→0

Ṅ |L+ΔL − Ṅ |L
ΔL

=
dṄ

dL
= 0 or Ṅ = constant (4.3-17a)

Ṅ lim
ΔL→0

(
H |L+ΔL − H |L

ΔL

)
= Ṅ

dH

dL
= q̇ + ω̇s (4.3-17b)

Ṅ lim
ΔL→0

(
S|L+ΔL − S|L

ΔL

)
= Ṅ

dS

dL
=

q̇

T
+ σ̇gen (4.3-17c)

From the discussion of the previous section, the maximum work that can be obtained,
or the minimum work required, in a given change of state occurs in a reversible process.
Setting σ̇gen = 0 yields

Ṅ
dS

dL
=

q̇

T

ω̇s = Ṅ

(
dH

dL
− T

dS

dL

)
Now, from H = U + PV ,

dH = dU + d(PV ) = dU + P dV + V dP

and from Eq. 4.2-13b,

dU = T dS − P dV

we have

dH − T dS = T dS − P dV + P dV + V dP − T dS = V dP
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or

dH

dL
− T

dS

dL
= V

dP

dL

and

ω̇s = ṄV
dP

dL

Further, integrating over the length of the device gives

Ẇs =
∫

ω̇s dL = Ṅ

∫
V

dP

dL
dL

or

W s =
Ẇs

Ṅ
=

∫
V dP (4.3-18)

Equation 4.3-18 is the desired result.
It is useful to consider several applications of Eq. 4.3-18. For the ideal gas undergoing

an isothermal change, so that PV = RT = constant,

W s =
∫

V dP =
∫

RT

P
dP = RT

∫
dP

P
= RT ln

P2

P1

(4.3-19)

For an expansion or compression for which

P1V
γ
1 = P2V

γ
2 = constant (4.3-20)

W s =
∫

V dP = (constant)1/γ

∫
dP

P 1/γ

=
(constant)1/γ

(
P 1−1/γ

2 − P 1−1/γ
1

)
1 − 1

γ

=
(P2V

γ
2)1/γP 1−1/γ

2 − (P1V
γ
1)1/γP 1−1/γ

1

1 − 1
γ

Work in a polytropic
process

W s =
γ(P2V 2 − P1V 1)

γ − 1
(4.3-21)

A process that obeys Eq. 4.3-20 is referred to as a polytropic process. For an ideal gas
it is easy to show that

γ = 0 for an isobaric process
γ = 1 for an isothermal process

γ = ∞ for a constant-volume (isochoric) process
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Also, we will show later that

γ = C∗
P/C∗

V for a constant-entropy (isentropic) process
in an ideal gas of constant heat capacity

Note that since entropy is a state property, once two properties of a one-phase sys-
tem, such as temperature and pressure, are fixed, the value of the entropy is also fixed.
Consequently, the entropy of steam can be found in the steam tables or the Mollier
diagram, and that of methane, nitrogen, and HFC-134a in the appropriate figures in
Chapter 3. In the next section we consider entropy changes for an ideal gas, and in
Chapter 6 we develop the equations to be used to compute entropy changes for nonideal
fluids.

In preparation for the discussion of how entropy changes accompanying a change of
state can be computed, it is useful to consider the thermodynamic balance equations for
a change of state of a closed system. The difference form of the energy balance is

Uf − Ui = Q + W

Consequently we see that the change in the state variable U , the internal energy, is
related to two path variables, the heat and the work. For a change between a given
initial and final state, the internal energy change will always be the same, even though,
as we have shown in the previous chapter, the heat and work flows along different paths
will be different. Similarly, the entropy balance is

Sf − Si =
Q

T
+ Sgen

and we have a similar situation as above, where a change in a state function between
two states is related to two path functions, here Q/T and the entropy generation.

Use of a reversible
path to calculate
the change in state
variables

This discussion brings up a subtle, sometimes confusing, but very important point.
Since properties such as the internal energy, enthalpy, and entropy are state functions,
the changes in their values with a change of state depend only on the initial and final
states, not on the path used to go between these two states. Therefore, in calculating
a change in a state property, such as the internal energy or entropy, between fixed ini-
tial and final states, any convenient path can be used; to some degree this was demon-
strated in Illustration 3.4-6. Frequently, a reversible path will be the most convenient for
computing the change in the state variables between given initial and final states even
though the actual system change is not reversible. However, for path variables such as
heat flows, work flows, and entropy generation, the path is important, and different val-
ues for these quantities will be obtained along different paths. Therefore, to accurately
compute the heat flows, the work flows, and the entropy generation, the actual path of
the system change must be followed.

To conclude this section, we consider a brief introduction to the thermodynamic lim-
its on the conversion of sunlight to electrical (or mechanical) energy.

Illustration 4.3-1
Conversion of Radiant Energy to Mechanical or Electrical Energy

Show that a solar or photovoltaic cell that converts solar energy to mechanical or electrical energy
must emit some of the energy of the incident radiation as heat.
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Solution

The way we will prove that a solar cell must emit heat is to assume that it does not, and show
that this would be a violation of the entropy generation principle (that is, the second law of
thermodynamics). The steady-state energy balance on a solar cell absorbing radiation but not
releasing any heat is

0 = Q̇R + Ẇ

or

−Ẇ = Q̇R

and the entropy balance is

0 =
4

3

Q̇R

TR

+ Ṡgen

so that

Ṡgen = −4

3

Q̇R

TR

The only way that Ṡgen can be greater than or equal to zero, which is necessary to satisfy the
second law of thermodynamics, is if Q̇R ≤ 0; that is, radiant energy must be released rather
than absorbed. Therefore, we see that a solar cell also obeys the Kelvin-Planck statement of the
second law (see Illustration 4.1-2). However, note that the cell can operate in the reverse manner
in that it can receive electrical energy and completely convert it to radiant energy. A light-emitting
diode (LED) or a metal wire electrically heated until it is red hot are two examples of complete
conversion of electrical energy to radiant energy.

Illustration 4.3-2
Maximum Conversion of Solar Energy to Mechanical or Electrical Energy

Based on analysis of the frequency distribution of radiation from the sun, it can be considered
to be emitting radiant energy with a Stefan-Boltzmann distribution at a temperature of 6000 K.
Estimate the maximum efficiency with which this radiant energy can be converted to electrical
(or mechanical) energy using solar cells (commonly called photovoltaic cells). For this analysis,
assume that the solar cell is operating in steady state and is receiving radiant energy, that its
surface temperature is 300 K, and that it is losing heat by conduction to the environment.

Solution

The energy balance on this solar cell is

0 = Q̇1 + Q̇2 + Ẇ = Q̇R + Q̇2 + Ẇ

or

−Ẇ = Q̇R + Q̇2

and the entropy balance is

0 =
4

3

Q̇R

TR

+
Q̇2

T
+ Ṡgen
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For maximum conversion efficiency, Ṡgen = 0. Therefore,

Q̇2 = −4

3

Q̇R

TR

T

and

−Ẇ = Q̇R − 4

3

Q̇R

TR

T = Q̇R

(
1 − 4

3

T

TR

)

and the maximum efficiency is

−Ẇ

Q̇R

= 1 − 4

3

T

TR

With TR = 6000 K and T = 300 K, the maximum efficiency for solar energy conversion is
0.9333, or 93.33 percent.

Comments

The efficiency of commercial solar cells is generally 10 percent or less, rather the 93.33 percent
from the calculation above. The most important reason for this is that is solar cells (and also
biological cells in photosynthesis) can use radiant energy in just a small portion of the radiation
frequency spectrum. Consequently, most of the radiation received by a solar cell is merely ab-
sorbed as heat, which is why many solar systems combine photovoltaic cells for the production
of electricity with panels for heating water. Another loss factor is that some of the radiant energy
received is reradiated to the sky (which can be considered a black body at a temperature of 0 K.)

Also, one should note that the efficiency calculated above is somewhat less than the Carnot
efficiency,

η = 1 − 300

6000
= 0.95

operating between the same two temperatures. However, as there is no way to transfer heat at
6000 K from the the sun to the earth by conduction, the Carnot efficiency is not applicable.

4.4 ENTROPY CHANGES OF MATTER

Equation 4.2-13b provides the basis for computing entropy changes for real fluids, and
it will be used in that manner in Chapter 6. However, to illustrate the use of the entropy
balance here in a simple way, we consider the calculation of the entropy change accom-
panying a change of state for 1 mol of an ideal gas, and for incompressible liquids and
solids.

From the discussion of Sec. 3.3 the internal energy change and pressure of an ideal
gas are

dU = C∗
V dT and P = RT/V

respectively, so that for 1 mol of an ideal gas we have

dS =
1
T

dU +
P

T
dV =

C∗
V

T
dT +

R

V
dV (4.4-1)

If C∗
V is independent of temperature, we can immediately integrate this equation to

obtain
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Ideal gas entropy
change with T and
V as independent
variables if C∗

V is a
constant

S(T2, V 2) − S(T1, V 1) = C∗
V

∫ T2

T1

dT

T
+ R

∫ V 2

V 1

dV

V

= C∗
V ln

(
T2

T1

)
+ R ln

(
V 2

V 1

) (4.4-2)

Using the ideal gas law, we can eliminate either the temperature or the volume in this
equation and obtain expressions for the change in entropy with changes in temperature
and pressure,

S(T2, P2) − S(T1, P1) = C∗
V ln

(
T2

T1

)
+ R ln

RT2/P2

RT1/P1

= (C∗
V + R) ln

(
T2

T1

)
− R ln

(
P2

P1

)

Entropy change of
an ideal gas with T
and P as independent
variables if C∗

P is a
constant

S(T2, P2) − S(T1, P1) = C∗
P ln

(
T2

T1

)
− R ln

(
P2

P1

)
(4.4-3)

and pressure and volume:

S(P2, V 2) − S(P1, V 1) = C∗
V ln

P2V 2/R

P1V 1/R
+ R ln

(
V 2

V 1

)

= (C∗
V + R) ln

(
V 2

V 1

)
+ C∗

V ln
(

P2

P1

)

= C∗
P ln

(
V 2

V 1

)
+ C∗

V ln
(

P2

P1

) (4.4-4)

The evaluation of the entropy change for an ideal gas in which the heat capacity is a
function of temperature (see Eq. 3.3-5) leads to more complicated equations than those
given here. It is left to the reader to develop the appropriate expressions (Problem 4.13).

For liquids or solids we can generally write

dS =
1
T

dU +
P

T
dV ≈ 1

T
dU (4.4-5)

since the molar volume is very weakly dependent on either temperature or pressure (i.e.,
dV is generally small). Furthermore, since for a liquid or a solid CV ≈ CP, we have

dU = CV dT ≈ CP dT

for these substances, so that

dS = CP
dT

T

and

Entropy change for a
solid or liquid

S(T2) − S(T1) =
∫ T2

T1

CP
dT

T
(4.4-6)
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Finally, if thermodynamic tables and charts that include entropy have been prepared
for real fluids, the entropy changes accompanying a change in state can easily be cal-
culated. In this way the entropy changes on a change of state for methane, nitrogen,
HFC-134a, and steam can be calculated using the figures of Chapter 3 and the tables in
Appendix A.III for steam.

Illustration 4.4-1
Calculation of Entropy Generation for a Process

Compute the entropy generated on mixing 1 kg of steam at 1 bar and 200◦C (state 1) with 1 kg
of steam at 1 bar and 300◦C (state 2).

Solution

Considering the 2 kg of steam to be a closed system, the mass balance is

Mf − (M1 + M2) = 0 or Mf = M1 + M2 = 2 kg

The energy balance is

Mf Ûf − M1Û1 − M2Û2 = −P (Mf V̂f − M1V̂1 − M2V̂2)

Since the pressure is constant, the U and PV terms can be combined to give

Mf Ĥf − M1Ĥ1 − M2Ĥ2 = 0

or

2 kg · Ĥ(Tf =?, P = 1 bar)

= 1 kg · Ĥ(T = 200◦C, P = 1 bar) + 1 kg · Ĥ(T = 300◦C, P = 1 bar)

Therefore,

Ĥ(Tf =?, P = 1 bar) = 1
2
[Ĥ(T = 200◦C, P = 1 bar) + Ĥ(T = 300◦C, P = 1 bar)]

= 1
2
[2875.3 + 3074.3]

kJ

kg
= 2974.8

kJ

kg

and from the steam tables we find for this value of the enthalpy at a pressure of 1 bar that
Tf = 250◦C. Now from the entropy balance, we have

Mf Ŝf − M1Ŝ1 − M2Ŝ2 = Sgen

or

Sgen = 2 kg · Ŝ(T = 250◦C, P = 1 bar) − 1 kg · Ŝ(T = 200◦C, P = 1 bar)

− 1 kg · Ŝ(T = 300◦C, P = 1 bar)

= 2 kg · 8.0333
kJ

kg K
− 1 kg · 7.8343

kJ

kg K
− 1 kg · 8.2158

kJ

kg K

= 0.0165
kJ

K

So we see that mixing two fluids of the same pressure but different temperatures generates en-
tropy and therefore is an irreversible process.
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Illustration 4.4-2
Illustration 3.4-1 Continued

Compute the entropy generated by the flow of 1 kg/s of steam at 400 bar and 500◦C undergoing
a Joule-Thomson expansion to 1 bar.

Solution

In Illustration 3.4-1, from the energy balance, we found that

Ĥ1 = Ĥ(T1 = 500◦C, P1 = 400 bar) = Ĥ2 = Ĥ(T2 =?, P2 = 1 bar)

and then by interpolation of the information in the steam tables that T2 = 214.1◦C. From the
entropy balance on this steady-state system, we have

dS

dt
= 0 = Ṁ1Ŝ1 + Ṁ2Ŝ2 + Ṡgen = Ṁ1(Ŝ1 − Ŝ2) + Ṡgen

so that

Ṡgen = Ṁ1(Ŝ2 − Ŝ1)

From the steam tables (using interpolation to obtain the entropy of steam at 214.1◦C and 1 bar),
we have

Ŝ1 = Ŝ(T = 500◦C, P = 400 bar) = 5.4700
kJ

kg K

and

Ŝ2 = Ŝ(T = 214.1◦C, P = 1 bar) = 7.8904
kJ

kg K

Therefore

Ṡgen = Ṁ1(Ŝ2 − Ŝ1) = 1
kg

s
· (7.8904 − 5.4700)

kJ

kg K
= 2.4202

kJ

K s

Since Ṡgen > 0, the Joule-Thomson expansion is also an irreversible process.

4.5 APPLICATIONS OF THE ENTROPY BALANCE

In this section we show, by example, that the entropy balance provides a useful ad-
ditional equation for the analysis of thermodynamic problems. In fact, some of the
examples considered here are continuations of the illustrations of the previous chap-
ter, to emphasize that the entropy balance can provide the information needed to solve
problems that were unsolvable using only the mass and energy balance equations, or,
in some cases, to develop a simpler solution method for problems that were solvable
(see Illustration 4.5-2).

Illustration 4.5-1
Illustration 3.4-4 Continued, Using the Entropy Balance

In Illustration 3.4-4 we tried to estimate the exit temperature and power requirements for a gas
compressor. From the steady-state mass balance we found that

Ṅ1 = −Ṅ2 = Ṅ (a)

and from the steady-state energy balance we had

Ẇs = ṄC∗
P(T2 − T1) (b)
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which resulted in one equation (Eq. b) with two unknowns, Ẇs and T2. Now, writing a molar
entropy balance for the same system yields

0 = (S1 − S2)Ṅ + Ṡgen (c)

To obtain an estimate of the exit temperature and the power requirements, we assume that the
compressor is well designed and operates reversibly, that is

Ṡgen = 0 (d)

Thus, we have
S1 = S2 (e)

which is the additional relation for a state variable needed to solve the problem. Now using
Eq. 4.4-3,

S(P2, T2) − S(P1, T1) = C∗
P ln

(
T2

T1

)
− R ln

(
P2

P1

)

and recognizing that S(P2, T2) = S(P1, T1) yields

(
T2

T1

)
=

(
P2

P1

)R/C∗
P

(f)

or

T2 = T1

(
P2

P1

)R/C∗
P

= 290 K

(
10

1

)8.314/29.3

= 557.4 K or 284.2◦C (g)

Thus T2 is known, and hence W s can be computed:

W s = C∗
P(T2 − T1) = 29.3 × (557.4 − 290) = 7834.8 J/mol

and

Ẇs = ṄW s = 2.5
mol

s
× 7834.8

J

mol
= 19.59

kJ

s

Before considering the problem to be solved, we should try to assess the validity of the as-
sumption Ṡgen = 0. However, this can be done only by experiment. One method is to measure
the inlet and exit temperatures and pressures for an adiabatic turbine and see if Eq. e is satisfied.
Experiments of this type indicate that Eq. e is reasonably accurate, so that reversible operation
is a reasonable approximation for a gas compressor.

[
The Aspen Plus R© simulation to solve this illustration is available on the Wiley website for

this book in the folder Aspen Illustrations>Chapter 4>4.5-1 (also available there are folders
for using the Peng-Robinson equation of state, and also varying compressor efficiencies).
The simulation using the ideal gas equation of state and assuming 100% isentropic efficiency
leads to an exit temperature of 557.25 K or 284.2◦C. The compressor work needed is
19.62 kW = 19.62 kJ/s.

Repeating the calculation with the Peng-Robinson equation of state (see Chapter 6), the results
are an exit temperature of 557.67 K and compressor work of 19.64 kW. (Aspen Illustrations>
Chapter 4>4.5-1 PREOS)

Finally, repeating the calculation using the Peng-Robinson equation of state and an isentropic
efficiency of 0.72 (Aspen Plus R© default value) results in an exit temperature of 658.0 K and
compressor work of 27.27 kW (Aspen Illustrations>Chapter 4>4.5-1 PREOS Comp eff).

]
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Illustration 4.5-2
An Alternative Way to Solve One Problem

Sometimes it is possible to solve a thermodynamic problem several ways, based on different
choices of the system. To see this, we consider Illustration 3.4-5, which was concerned with
the partial evacuation of a compressed gas cylinder into an evacuated cylinder of equal vol-
ume. Suppose we now choose for the system of interest only that portion of the contents of the
first cylinder that remains in the cylinder when the pressures have equalized (see Fig. 4.5-1,
where the thermodynamic system of interest is within the dashed lines). Note that with this
choice the system is closed, but of changing volume. Furthermore, since the gas on one side
of the imaginary boundary has precisely the same temperature as the gas at the other side, we
can assume there is no heat transfer across the boundary, so that the system is adiabatic. Also,
with the exception of the region near the valve (which is outside what we have taken to be the

Final
state

Initial
state

Figure 4.5-1 The dashed lines enclose a system
consisting of gas initially in the first cylinder that
remains in that cylinder at the end of the process.

system), the gas in the cylinder is undergoing a uniform expansion so there will be no pressure,
velocity, or temperature gradients in the cylinder. Therefore, we can assume that the changes
taking place in the system occur reversibly.

The mass, energy, and entropy balances (on a molar basis) for this system are

Nf
1 = N i

1 (a)

Nf
1 Uf

1 = N i
1U

i
1 −
∫ V

f
1

V i
1

P dV (b)

and
Nf

1 Sf
1 = N i

1S
i
1 (c)

Now the important observation is that by combining Eqs. a and c, we obtain

Sf
1 = Si

1 (d)

so the process is isentropic (i.e., occurs at constant entropy) for the system we have chosen.
Using Eq. 4.4-3,

S1(P
f , T f ) − S1(P

i, T i) = C∗
P ln

(
T f

1

T i
1

)
− R ln

(
P f

1

P i
1

)

and Eq. d yields (
T f

1

T i
1

)C∗
P/R

=

(
P f

1

P i
1

)

This is precisely the result obtained in Eq. f of Illustration 3.4-5 using the energy balance on
the open system consisting of the total contents of cylinder 1. The remainder of the problem can
now be solved in exactly the same manner used in Illustration 3.4-5.

Although the system choice used in this illustration is an unusual one, it is one that leads
quickly to a useful result. This demonstrates that sometimes a clever choice for the thermo-
dynamic system can be the key to solving a thermodynamic problem with minimum effort.
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However, one also has to be careful about the assumptions in unusual system choices. For ex-
ample, consider the two cylinders connected as in Fig. 4.5-2, where the second cylinder is not
initially evacuated. Here we have chosen to treat that part of the initial contents of cylinder 1 that
will be in that cylinder at the end of the process as one system and the total initial contents of
cylinder 2 as a second system. The change that occurs in the first system, as we already discussed,
is adiabatic and reversible, so that (

T f
1

T i
1

)C∗
P/R

=

(
P f

1

P i
1

)
(e)

Initial state Final state

1 2 1 2

Figure 4.5-2 Incorrect system choice for gas contained in cylinder 2.

One might expect that a similar relation would hold for the system shown in cylinder 2. This is
not the case, however, since the gas entering cylinder 2 is not necessarily at the same temperature
as the gas already there (hydrodynamics will ensure that the pressures are the same). Therefore,
temperature gradients will exist within the cylinder, and our system, the partial contents of cylin-
der 2, will not be adiabatic. Consequently, Eq. e will not apply.

Illustration 4.5-3
Illustration 3.4-5 Continued, Using the Entropy Balance Instead of the Energy Balance

A gas cylinder of 1 m3 volume containing nitrogen initially at a pressure of 40 bar and a tem-
perature of 200 K is connected to another cylinder of 1 m3 volume, which is evacuated. A valve
between the two cylinders is opened only until the pressure in both cylinders equalizes and then
is closed. Find the final temperature and pressure in each cylinder if there is no heat flow into or
out of the cylinders, or between the gas and the cylinder walls. The properties of nitrogen gas
are given in Fig. 3.3-3.

Solution

Except for the fact that nitrogen is now being considered to be a real, rather than an ideal, gas,
the problem here is the same as in Illustration 3.4-5. In fact, Eqs. h–n in the comments to that
illustration apply here. The additional equation needed to solve this problem is obtained in the
same manner as in Illustration 4.5-2. Thus, for the cylinder initially filled we have

Si
1 = Sf

1 (o)
For an ideal gas of constant heat capacity (which is not the case here) this reduces to(

P f
1

P i
1

)
=

(
T f

1

T i
1

)C∗
P/R

by Eq. 4.4-3. For real nitrogen gas, Eq. o requires that the initial and final states in cylinder 1 be
connected by a line of constant entropy in Fig. 3.3-3.

With eight equations (Eqs. h–o) and eight unknowns, this problem can be solved, though the
solution is a trial-and-error process. In general, a reasonable first guess for the pressure in the
nonideal gas problem is the ideal gas solution, which was

P f
1 = P f

2 = 20 bar
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Locating the initial conditions (P = 40 bar = 4 MPa and T = 200 K) in Fig. 3.3-3 yields11

Ĥi
1 ≈ 337 kJ/kg and V̂ i

1 ≈ 0.0136 m3/kg, so that

M i
1 =

V1

V̂ i
1

=
1 m3

0.136
m3

kg

= 73.5 kg

Now using Eq. o (in the form Ŝi
1 = Ŝf

1 ) and Fig. 3.3-3, we find T f
1 ≈ 165 K, Hf

1 = 310 kJ/kg,
and V̂ f

1 ≈ 0.0224 m3/kg, so that

Mf
1 =

V1

V̂ f
1

=
1 m3

0.0224
m3

kg

= 44.6 kg

and Mf
2 = M i

1 − Mf
1 = 28.9 kg, which implies

V̂ f
2 =

1 m3

28.9 kg
= 0.0346

m3

kg

Locating P = 20 bar (2 MPa) and V̂ = 0.0346 m3/kg on Fig. 3.3-3 gives a value for T f
2 of

about 240 K and Ĥf
2 = 392 kJ/kg.

Finally, we must check whether the energy balance is satisfied for the conditions computed
here based on the final pressure we have assumed. To do this we must first compute the internal
energies of the initial and final states as follows:

Û i
1 = Ĥi

1 − P i
1V̂ i

1

= 337
kJ

kg
− 40 bar × 0.0136

m3

kg
× 105 Pa

bar
× 1 J

m3 Pa
× 1 kJ

1000 J
= 282.6

kJ

kg

Similarly,
Ûf

1 = 265.2 kJ/kg

and
Ûf

2 = 322.8 kJ/kg

The energy balance (Eq. n of Illustration 3.4-5) on a mass basis is

M i
1Û

i
1 = Mf

1 Ûf
1 + Mf

2 Ûf
2

or
73.5 × 282.6 kJ = 44.6 × 265.2 + 28.9 × 322.8 kJ

2.0771 × 104 kJ ≈ 2.1157 × 104 kJ

Thus, to the accuracy of our calculations, the energy balance can be considered to be satisfied
and the problem solved. Had the energy balance not been satisfied, it would have been necessary
to make another guess for the final pressures and repeat the calculation.

It is interesting to note that the solution obtained here is essentially the same as that for the
ideal gas case. This is not generally true, but occurs here because the initial and final pressures
are sufficiently low, and the temperature sufficiently high, that nitrogen behaves as an ideal gas.
Had we chosen the initial pressure to be higher, say several hundred bars, the ideal gas and real
gas solutions would have been significantly different (see Problem 4.22).

Illustration 4.5-4
Illustration 3.4-6 Continued, Showing That Entropy Is a State Function

Show that the entropy S is a state function by computing ΔS for each of the three paths of
Illustration 3.4-6.

11Since the thermodynamic properties in Fig. 3.3-3 are on a mass basis, all calculations here will be on a mass,
rather than a molar, basis.
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Solution

Since the piston-and-cylinder device is frictionless (see Illustration 3.4-6), each of the expansion
processes will be reversible (see also Illustration 4.5-8). Thus, the entropy balance for the gas
within the piston and cylinder reduces to

dS

dt
=

Q̇

T

Path A

i. Isothermal compression. Since T is constant,

ΔSA =
QA

T
= −5707.7 J/mol

298.15 K
= −19.14 J/(mol K)

ii. Isobaric heating

Q̇ = C∗
P

dT

dt
so

dS

dt
=

Q̇

T
=

C∗
P

T

dT

dt

and

ΔSB = C∗
P ln

T2

T1

= 38
J

mol K
× ln

573.15

298.15
= 24.83 J/(mol K)

ΔS = ΔSA + ΔSB = −19.14 + 24.83 = 5.69 J/(mol K)

Path B

i. Isobaric heating

ΔSA = C∗
P ln

T2

T1

= 24.83 J/(mol K)

ii. Isothermal compression

ΔSB =
Q

T
= −10 972.2

573.15
= −19.14 J/(mol K)

ΔS = 24.83 − 19.14 = 5.69 J/(mol K)

Path C

i. Compression with PV γ = constant

ΔSA =
Q

T
= 0

ii. Isobaric heating

ΔSB = C∗
P ln

T3

T2

= 38
J

mol K
× ln

573.15

493.38
= 5.69 J/(mol K)

ΔS = 5.69 J/(mol K)
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1 2

Figure 4.5-3 A well-insulated box divided into two
equal compartments.

Comment

This example verifies, at least for the paths considered here, that the entropy is a state function.
For reversible processes in closed systems, the rate of change of entropy and the ratio Q̇/T are
equal. Thus, for reversible changes, Q̇/T is also a state function, even though the total heat flow
Q̇ is a path function.

Illustration 4.5-5
Showing That the Entropy Reaches a Maximum at Equilibrium in a Closed, Isolated System

(In Sec. 4.1 we established that the entropy function will be a maximum at equilibrium in an
isolated system. This is illustrated by example for the system shown here.)

Figure 4.5-3 shows a well-insulated box of volume 6 m3 divided into two equal volumes. The
left-hand cell is initially filled with air at 100◦C and 2 bar, and the right-hand cell is initially evac-
uated. The valve connecting the two cells will be opened so that gas will slowly pass from cell 1
to cell 2. The wall connecting the two cells conducts heat sufficiently well that the temperature
of the gas in the two cells will always be the same. Plot on the same graph (1) the pressure in the
second tank versus the pressure in the first tank, and (2) the change in the total entropy of the
system versus the pressure in tank 1. At these temperatures and pressures, air can be considered
to be an ideal gas of constant heat capacity.

Solution

For this system

Total mass = N = N1 + N2

Total energy = U = U1 + U2

Total entropy = S = S1 + S2 = N1S1 + N2S2

From the ideal gas equation of state and the fact that V = NV , we have

N i
1 =

PV

RT
=

2 bar × 3 m3

8.314 × 10−5
bar m3

mol K
× 373.15 K

= 193.4 mol = 0.1934 kmol

Now since U = constant, T1 = T2, and for the ideal gas U is a function of temperature only,
we conclude that T1 = T2 = 100◦C at all times. This result greatly simplifies the computation.
Suppose that the pressure in cell 1 is decreased from 2 bar to 1.9 bar by transferring some gas
from cell 1 to cell 2. Since the temperature in cell 1 is constant, we have, from the ideal gas law,

N1 = 0.95N i
1

and by mass conservation, N2 = 0.05N i
1. Applying the ideal gas relation, we obtain P2 =

0.1 bar.
For any element of gas, we have, from Eq. 4.4-3,

Sf − Si = C∗
P ln

T f

T i
− R ln

P f

P i
= −R ln

P f

P i
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Figure 4.5-4 The system entropy change and the pressure in cell 2 as a
function of the pressure in cell 1.

since temperature is constant. Therefore, to compute the change in entropy of the system, we
visualize the process of transferring 0.05N i

1 moles of gas from cell 1 to cell 2 as having two
effects:

1. To decrease the pressure of the 0.95N i
1 moles of gas remaining in cell 1 from 2 bar to 1.9

bar
2. To decrease the pressure of the 0.05N i

1 moles of gas that have been transferred from cell 1
to cell 2 from 2 bar to 0.1 bar

Thus

Sf − Si = −0.95N i
1R ln(1.9/2) − 0.05N i

1R ln(0.1/2)

or

ΔS

N i
1R

= −0.95 ln 0.95 − 0.05 ln 0.05

= 0.199

{
P1 = 1.9 bar

P2 = 0.1 bar

Similarly, if P1 = 1.8 bar,

ΔS

N i
1R

= −0.9 ln 0.9 − 0.1 ln 0.1

= 0.325

{
P1 = 1.8 bar

P2 = 0.2 bar

and so forth. The results are plotted in Fig. 4.5-4.
From this figure it is clear that ΔS, the change in entropy from the initial state, and therefore

the total entropy of the system, reaches a maximum value when P1 = P2 = 1 bar. Consequently,
the equilibrium state of the system under consideration is the state in which the pressure in both
cells is the same, as one would expect. (Since the use of the entropy function leads to a solution
that agrees with one’s intuition, this example should reinforce confidence in the use of the entropy
function as a criterion for equilibrium in an isolated constant-volume system.)

Illustration 4.5-6
Showing That the Energy and Entropy Balances Can Be Used to Determine Whether a Process
Is Possible
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An engineer claims to have invented a steady-flow device that will take air at 4 bar and 20◦C
and separate it into two streams of equal mass, one at 1 bar and −20◦C and the second at 1 bar
and 60◦C. Furthermore, the inventor states that his device operates adiabatically and does not
require (or produce) work. Is such a device possible? [Air can be assumed to be an ideal gas
with a constant heat capacity of C∗

P = 29.3 J/(mol K)].

P = 4 bar
T = 20°C

P = 1 bar
T = –20°C

P = 1 bar
T = 60°C

N2

N3

N1

Black
box

Solution

The three principles of thermodynamics—(1) conservation of mass, (2) conservation of energy,
and (3) Ṡgen ≥ 0—must be satisfied for this or any other device. These principles can be used to
test whether any device can meet the specifications given here.

The steady-state mass balance equation for the open system consisting of the device and its
contents is dN/dt = 0 =

∑
k Ṅk = Ṅ1 + Ṅ2 + Ṅ3. Since, from the problem statement,

Ṅ2 = Ṅ3 = − 1
2
Ṅ1, mass is conserved. The steady-state energy balance for this device is

dU

dt
= 0 =

∑
k

ṄkHk = Ṅ1H1 − 1
2
Ṅ1H2 − 1

2
Ṅ1H3

= Ṅ1C
∗
P(293.15 K − 1

2
× 253.15 K − 1

2
× 333.15 K) = 0

so the energy balance is also satisfied. Finally, the steady-state entropy balance is

dS

dt
= 0 =

∑
K

ṄkSk + Ṡgen = Ṅ1S1 − 1
2
Ṅ1S2 − 1

2
Ṅ1S3 + Ṡgen

= 1
2
Ṅ1[(S1 − S2) + (S1 − S3)] + Ṡgen

Now using Eq. 4.4-3, we have

Ṡgen = −1

2
Ṅ1

(
C∗

P ln
T1

T2

− R ln
P1

P2

+ C∗
P ln

T1

T3

− R ln
P1

P3

)

= −1

2
Ṅ1

(
29.3 ln

293.15 × 293.15

253.15 × 333.15
− 8.314 ln

4 × 4

1 × 1

)
= 11.25Ṅ1

J

K s

Therefore, we conclude, on the basis of thermodynamics, that it is possible to construct a device
with the specifications claimed by the inventor. Thermodynamics, however, gives us no insight
into how to design such a device. That is an engineering problem.

Two possible devices are indicated in Fig. 4.5-5. The first device consists of an air-driven
turbine that extracts work from the flowing gas. This work is then used to drive a heat pump
(an air conditioner or refrigerator) to cool part of the gas and heat the rest. The second device,
the Hilsch-Ranque vortex tube, is somewhat more interesting in that it accomplishes the desired
change of state with only a valve and no moving parts. In this device the air expands as it enters
the tube, thus gaining kinetic energy at the expense of internal energy (i.e., at the end of the
expansion process we have high-velocity air of both lower pressure and lower temperature than
the incoming air). Some of this cooled air is withdrawn from the center of the vortex tube. The
rest of the air swirls down the tube, where, as a result of viscous dissipation, the kinetic energy
is dissipated into heat, which increases the internal energy (temperature) of the air. Thus, the air
being withdrawn at the valve is warmer than the incoming air.
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(a) Turbine-heat pump system

(b) Hilsch-Ranque vortex tube

Compressed air at 
room temperature Turbine

Air at
1 bar

Heat pump driven
by turbine

Hot air, 1 bar

Cold air, 1 bar

Q

Q

Work

Cold
air

Warm air

Compressed air

Compressed 
air

(cross section)

Figure 4.5-5 Two devices to separate compressed air into two low-pressure air
streams of different temperature.

Illustration 4.5-7
Another Example of Using the Entropy Balance in Problem Solving

A steam turbine operates at the following conditions:

Inlet Outlet

Velocity (m/min) 2000 7500
T (K) 800 440
P (MPa) 3.5 0.15
Flow rate (kg/hr) 10 000
Heat loss (kJ/hr) 125 000

a. Compute the horsepower developed by the turbine and the entropy change of the steam.
b. Suppose the turbine is replaced with one that is well insulated, so that the heat loss is

eliminated, and well designed, so that the expansion is reversible. If the exit pressure and
velocity are maintained at the previous values, what are the outlet steam temperature and
the horsepower developed by the turbine?

Solution

The steady-state mass and energy balances on the turbine and its contents (the system) yield

dM

dt
= 0 = Ṁ1 + Ṁ2 Ṁ2 = −Ṁ1 = −10 000 kg/hr

d

dt

[
U + M

(
v2

2
+ gh

)]
= 0 = Ṁ1

(
Ĥ1 +

v2
1

2

)
+ Ṁ2

(
Ĥ2 +

v2
2

2

)
+ Ẇs + Q̇
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a. From the Mollier diagram of Fig. 3.3-1 (or Appendix A.III),

Ĥ1 
 3510 J/g

and

Ŝ1 
 7.23 J/(g K)

Also,

v2
1

2
=

1

2

(
2000 m/min2

60 s/min

)2

× 1 J/kg

m2/s2
× 1 kg

1000 g
= 0.56 J/g

so that

Ĥ1 +
v2
1

2
= 3510.6 J/g

Similarly,

Ĥ2 
 2805 J/g Ĥ2 +
v2
2

2
= 2805 + 7.8 = 2812.8 J/g

and

Ŝ2 
 7.50 J/(g K)

Therefore,

− Ẇs = (3510.6 − 2812.8)
J

g
× 10 000

kg

hr
× 1000

g

kg
− 12.5 × 104 kJ

hr
× 1000

J

kJ

= 6.853 × 109 J

hr
× 1 kJ

1000 J
× 1 hr

3600 s
= 1903.6 kJ/s = 1.9036 × 106 W

= 2553 hp

Also,

ΔŜ = (Ŝ2 − Ŝ1) = 0.27 J/(g K)

b. The steady-state entropy balance for the turbine and its contents is

dS

dt
= 0 = Ṁ1Ŝ1 − Ṁ1Ŝ2 + Ṡgen

since Q̇ = 0, and Ṁ2 = −Ṁ1. Also, the turbine operates reversibly so that Ṡgen = 0, and
Ŝ1 = Ŝ2; that is, the expansion is isentropic. We now use Fig. 3.3-1, the entropy-enthalpy
plot (Mollier diagram) for steam, to solve this problem. In particular, we locate the initial
steam conditions (T = 800 K, P = 3.5 MPa) on the chart and follow a line of constant
entropy (a vertical line on the Mollier diagram) to the exit pressure (0.15 MPa), to obtain
the enthalpy of the exiting steam (Ĥ2 ≈ 2690 J/g) and its final temperature (T ≈ 373 K).
Since the exit velocity is known, we can immediately compute the horsepower generated
by the turbine:

− Ẇs = [(3510 + 0.6) − (2690 + 7.8)]
J

g
× 10 000

kg

hr
× 1000 g/kg

1000 J/kJ
× 1 hr

3600 s

= 2257.8 kJ/s = 2.2578 × 106 W = 3028 hp
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Comments

1. Here, as before, the kinetic energy term is of negligible importance compared with the
internal energy term.

2. Notice from the Mollier diagram that the turbine exit steam is right at the boundary of a
two-phase mixture of vapor and liquid. For the solution of this problem, no difficulties arise
if the exit steam is a vapor, a liquid, or a two-phase vapor-liquid mixture since our mass,
energy, and entropy balances are of general applicability. In particular, the information
required to use these balance equations is the internal energy, enthalpy, and entropy per unit
mass of each of the flow streams. Provided we have this information, the balance equations
can be used independent of whether the flow streams consist of single or multiple phases,
or, in fact, single or multiple components. Here the Mollier diagram provides the necessary
thermodynamic information, and the solution of this problem is straightforward.

3. Finally, note that more work is obtained from the turbine by operating it in a reversible and
adiabatic manner.

Illustration 4.5-8
Showing That Sgen = 0 for a Reversible Process, and Sgen > 0 for an Irreversible Process

a. By considering only the gas contained within the piston-and-cylinder device of Illustration
3.4-7 to be the system, show that the gas undergoes a reversible expansion in each of the
four processes considered in that illustration. That is, show that Sgen = 0 for each process.

b. By considering the gas, piston, and cylinder to be the system, show that processes a, b, and
c of Illustration 3.4-7 are not reversible (i.e., Sgen > 0), and that process d is reversible.

Solution

a. The entropy balance for the 1 mol of gas contained in the piston and cylinder is

Sf − Si =
Q

T
+ Sgen

where T is the constant temperature of this isothermal system and Q is the total heat flow
(from both the thermostatic bath and the cylinder walls) to the gas. From Eq. g of Illustration
3.4-7, we have for the 1 mol of gas

Q = RT ln
V f

V i

and from Eq. 4.4-2, we have

Sf − Si = R ln
V f

V i

since the temperature of the gas is constant. Thus

Sgen = Sf − Si −
Q

T
= R ln

V f

V i

− 1

T

{
RT ln

V f

V i

}
= 0

so that the gas undergoes a reversible expansion in all four processes.
b. The entropy balance for the isothermal system consisting of 1 mol of gas and the piston

and cylinder is

Sf − Si =
Q

T
+ Sgen
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where Q is the heat flow to the piston, cylinder, and gas (QNET of Illustration 3.4-7) and
Sf − Si is the entropy change for that composite system:

Sf − Si = (Sf − Si)gas + (Sf − Si)piston-cylinder

Since the system is isothermal,

(Sf − Si)gas = R ln
V f

V i

(see Eq. 4.4-2)

and

(Sf − Si)piston-cylinder = 0 (see Eq. 4.4-6)

Consequently,

Sgen = R ln
V f

V i

− Q

T
=

1622.5 − QNET

298.15
J/K

so we find, using the entries in Table 1 of Illustration 3.4-7, that

Sgen =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.4473 J/K for process a
0.8177 J/K for process b
0.4343 J/K for process c
0 for process d

Thus, we conclude that for the piston, cylinder, and gas system, processes a, b, and c are
not reversible, whereas process d is reversible.

Comment

From the results of part (a) we find that for the gas all expansion processes are reversible (i.e.,
there are no dissipative mechanisms within the gas). However, from part (b), we see that when the
piston, cylinder, and gas are taken to be the system, the expansion process is irreversible unless
the expansion occurs in differential steps. The conclusion, then, is that the irreversibility, or the
dissipation of mechanical energy to thermal energy, occurs between the piston and the cylinder.
This is, of course, obvious from the fact that the only source of dissipation in this problem is the
friction between the piston and the cylinder wall.

4.6 AVAILABILITY AND THE MAXIMUM USEFUL SHAFT WORK THAT CAN BE
OBTAINED IN A CHANGE OF STATE

A question that arises in thermodynamics is what is the maximum useful work that
can be obtained for a change of state of a substance, fluid or solid that is moving or
stationary? This quantity is frequently referred to as the available work that can be
obtained as a result of a change of state. To explore this, we first consider a stationary,
steady-state system shown below.

M1

M2

Figure 4.6-1 Schematic dia-
gram of a flow process
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Since the system is operating in steady-state and is stationary, the mass, energy and
entropy balances are

Ṁ1 + Ṁ2 = 0 or Ṁ2 = −Ṁ1

Ṁ1

(
Ĥ (T1, P1) + 1

2
v2
1 + gh1

)
+ Ṁ2

(
Ĥ (T2, P2) + 1

2
v2
2 + gh2

)
+ Q̇ + Ẇs = 0

or Ṁ1

(
Ĥ (T1, P1) + 1

2
v2
1 + gh1

)
− Ṁ1

(
Ĥ (T2, P2) + 1

2
v2
2 + gh2

)
+ Q̇ + Ẇs = 0

and Ṁ1Ŝ (T1, P1) + Ṁ2Ŝ (T2, P2) +
Q̇

T
+ Ṡgen =

Ṁ1Ŝ (T1, P1) − Ṁ1Ŝ (T2, P2) +
Q̇

T
+ Ṡgen = 0

(4.6-1)
Of special interest is that when the final state of the system is the so-called dead state

in which the temperature and pressure are the same as the environment that we indicate
as Tamb and Pamb. Since, if the temperature of the exiting stream was something other
than Tamb, additional shaft work could be obtained by inserting a power cycle, for
example a Carnot cycle that would operate between the exit stream temperature and
the ambient temperature. Similarly, any heat transfer from the system should occur at
the ambient temperature; if not a power cycle could be used to obtain work from this
heat flow. In a similar fashion the exiting pressure should be Pamb since otherwise a
turbine could be added to the system to extract work from the higher pressure of the
exit stream. The velocity of the exit stream should be zero, otherwise a turbine could
be added to the system to extract work from this stream. Also, to obtain the maximum
shaft work, the height of the exit stream should be a ground level, i.e., h2 = 0. Finally,
to obtain the maximum useful shaft work, any process should operate reversibly, that
is Ṡgen = 0.

With these restrictions, we have that

Ṁ1

(
Ĥ (T1, P1) + 1

2
v2
1 + gh1

)
− Ṁ1Ĥ (Tamb, Pamb) + Q̇ + Ẇs,max = 0

and Ṁ1Ŝ (T1, P1) − Ṁ1Ŝ (Tamb, Pamb) + Q̇/Tamb = 0
(4.6-2)

Now eliminating the heat flow between the energy and entropy balances yields

Ṁ1

(
Ĥ (T1, P1) − TambŜ (T1, P1) + 1

2
v2
1 + gh1

)
−

Ṁ1

(
Ĥ (Tamb, Pamb) − TambŜ (Tamb, Pamb)

)
+ Ẇs,max = 0

(4.6-3)

Since temperature, enthalpy and entropy are all state properties, it is convenient to define
a new state variable, the open system availabilityB(T,P ) = H(T,P )−TambS(T,P ).
This is similar to the Gibbs energy G(T,P ) = H(T,P ) − TS(T,P ) except that the
ambient temperature Tamb multiplies the entropy instead of the system temperature.
With this notation the maximum work that can be obtained from a flowing stream in
any device is

Ẇs,max = −Ṁ1

[(
B̂ (T1, P1) + 1

2
v2
1 + gh1

)
−

(
B̂ (Tamb, Pamb) + gh2

)]
or

Ẇs,max

Ṁ1
= B̂ (Tamb, Pamb) − B̂ (T1, P1) − 1

2
v2
1 − gh1

(4.6-4)
Illustration 4.6-1

What is the maximum work that can be obtained from steam at 2 MPa and 700◦C that is flowing
continuously at 5 m/sec in a pipe that is 5 m above ground level?
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Solution

Using the steam tables
At 2 MPa and 700◦C:Ĥ = 3071.8 kJ/kg, Ŝ = 7.8926 kJ/kg · K, so that

B̂ = 3071.8 − 298.15 × 7.8926 = 718.62 kJ/kg
and at 0.10135 MPa and 25◦C

Ĥ = 104.89 kJ/kg, Ŝ = 0.3674 kJ/kg · K, so that B̂ = 104.89 − 298.15 × 0.3674 =
−4.65 kJ/kg

So that
Ẇs,max

Ṁ1
= B̂ (Tamb, Pamb)−B̂ (T1, P1) − 1

2
v2
1 − gh1 =

= ((−4.65) − 718.62) kJ
kg

−
25m2

s2
× J/kg

m2/s2

2·1000 J
kJ

− 5m × 9.8 m
s2

×
J/kg

m2/s2

1000 J
kJ

= −723.27 − 0.01 − 0.049 kJ
kg

= −723.77 kJ
kg

where the minus sign indicates work done by the maximum shaft work that could be done by sys-
tem on the surroundings. We see that the maximum useful shaft work that can be obtained from
this flowing stream is 723.77 kJ/kg, and that the kinetic and potential energy terms, that is the
terms due to the stream velocity and the initial stream height, contribute very little (0.059 kJ/kg)
to the maximum work that can be obtained. This is generally the case if there is a significant
difference between the entering fluid and the ambient temperature.

Note that the maximum useful shaft work that can be obtained in a transformation
from a state 1 to any state 2 is, by simple extension of the analysis above,

Ẇs,max

Ṁ1
= B̂ (T2, P2) + 1

2
v2
2 + gh2 − B̂ (T1, P1) − 1

2
v2
1 − gh1

= B̂ (T2, P2) − B̂ (T1, P1) + 1
2
Δv2 + gΔh

(4.6-5)

where Δv2 = v2
2 − v2

1 and Δh = h2 − h1. However, as shown in this example, these
two terms are usually negligible if there is a significant temperature change between the
two states.

Illustration 4.6-2

One continuously flowing stream of steam is at 2 MPa and 800◦C, and another is at 1 MPa and
900◦C. Which could, in principle, produce the greatest amount of useful work in a flow process?

Solution

Using the steam tables at 2 MPa and 800◦C: Ĥ = 4150.3 kJ/kg, Ŝ = 8.1765 kJ/kg · K, so that
B̂ = 4150.3 − 298.15 × 8.1765 = 1712.5 kJ/kg
and at 1 MPa and 900◦C

Ĥ = 4392.9 kJ/kg, Ŝ = 8.7118 kJ/kg · K, so that B̂ = 4392.9 − 298.15 × 8.7118

= 1795.5 kJ/kg

Therefore, we see that the lower pressure stream has the greater potential to do useful work due
to its higher temperature.

For convenience, changing to a molar basis rather than a mass basis as tables ther-
modynamic properties such as the steam tables are not available for most fluids that are
of interest, and since (see Section 6.2)(

∂H

∂T

)
P

= CP and
(

∂S

∂T

)
P

=
CP

T
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It then follows that(
∂B
∂T

)
P

=
(

∂H

∂T

)
P

− Tamb

(
∂S

∂T

)
P

= CP − Tamb
CP

T
= CP

(
1 − Tamb

T

)
(4.6-6)

and

B (T2, P1) − B (T1, P1) =
∫ T2

T1

CP

(
1 − Tamb

T

)
dT (4.6-7a)

If the constant pressure heat capacity independent of temperature

B (T2, P1)−B (T1, P1) = CP

∫ T2

T1

(
1 − Tamb

T

)
dT = CP

(
T2 − T1 − Tamb ln

T2

T1

)
(4.6-7b)

Also, since(
∂H

∂P

)
T

= V − T

(
∂V

∂P

)
T

and
(

∂S

∂P

)
T

= −
(

∂V

∂P

)
T

then(
∂B
∂P

)
T

= V −T

(
∂V

∂P

)
T

+Tamb

(
∂V

∂P

)
T

= V +(Tamb − T )
(

∂V

∂P

)
T

(4.6-8)

and

B (T,P2) − B (T,P1) =
∫ P2

P1

(
V − T

(
∂V

∂P

)
T

+ Tamb

(
∂V

∂P

)
T

)
Tm

dP

=
∫ P2

P1

(
V + (Tamb − T )

(
∂V

∂P

))
T

dP

(4.6-9)
For the ideal gas this reduces to

B (T,P2) − B (T,P1) =
∫ P2

P1

(
V + (Tamb − T )

(
∂V

∂P

)
T

)
dP

=
∫ P2

P1

(
RT

P
+ (Tamb − T )

R

P

)
dP

= RTamb

∫ P2

P1

dP

P

= RTamb ln
(

P2

P1

)
(4.6-10)

If, instead of a steady flow situation just considered we had a closed system with no
mass flows entering of leaving, the analysis of the useful work that can be obtained is
somewhat different. The mass, energy and entropy balances in this case are

dM

dT
= 0;

dMÛ

dT
= M

dÛ

dT
= Q̇+Ẇs −P

dV

dT
; and

dMŜ

dT
= M

dŜ

dT
=

Q̇

T
+ Ṡgen

(4.6-11)
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Now invoking the same restrictions as previously, that all heat transfer occurs at ambient
conditions, and that the process is reversible so that Ṡgen = 0 results in

M
dÛ

dT
= Q̇ + Ẇs,max − Pamb

dV

dT
;M

dŜ

dT
=

Q̇

Tamb

;

so that M
d

(
Û − TambŜ

)
dT

= Ẇs,max − Pamb
dV

dT

or M
d

(
Û + PambV̂ − TambŜ

)
dT

= Ẇs,max (4.6-12)

Here it is convenient to define a new function, the closed system availability, as
A = U + PambV − TambS, that is similar to the definition of the Gibbs energy except
that Pamb multiples the volume instead of the system pressure, and Tamb multiplies the
entropy rather than the system temperature T. In this case the maximum useful work
that can be obtained from a closed, stationary system is

Ẇs,max = M
d

(
Û + PambV̂ − TambŜ

)
dT

=M
dÂ
dT

(4.6-13a)

which on integration between the initial and ambient states gives

Ws,max=M
[
Â (Tamb, Pamb) − Â (T1, P1)

]
(4.6-13b)

Here the useful shaft work has been separated from the work as a result of expansion
or contraction of the system volume against the ambient pressure as this latter work
cannot be captured and therefore is not included in the useful shaft work.
The maximum useful work that can be obtained between any initial state 1 and final
state 2 is, by extension of the analysis above,

Ws,max = M
[
Â (T1, P1)−Â (T2, P2)

]
(4.6-14)

Illustration 4.6-3

What is the maximum work that can be obtained from steam at 2 MPa and 700◦C in a non-flow
process?

Solution

Using the data in the previous illustration with the following additional information from the
steam tables (note that at the ambient conditions the steam has condensed to liquid water).
At 2 MPa and 700◦C:

Û = 2808.6 kJ/kg, V̂ = 1.3162 m3/kg so that

Â = 2808.6 kJ
kg

+ 1.0 bar × 1.3162m3

kg
× 102.67 kJ

bar·m3 − 298.15 × 7.8926 kJ
kg

= 590.55 kJ/kg

and at the ambient conditions 0.10135 MPa and 25◦C

Û = 104.88 kJ/kg, V̂ = 0.001 m3/kg, so that

Â = 104.88 + 1 × 0.001 × 102.67 − 298.15 × 0.3674 = −4.56 kJ/kg
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Therefore,

Ẇs,max

Ṁ1

= Â (Tamb, Pamb) − Â (T1, P1) = −4.56 − 590.55 = −595.11
kJ

kg

We see that the maximum useful work that can be obtained from this stagnant stream is 595.1
kJ/kg. (As usual, the negative sign indicates that shaft work is being done by the system.)

Another function that is sometimes used in thermodynamics is the exergy, which is
the difference in availability between the current state of the system and the availability
if the system was at ambient conditions. For the flow system, the exergy per unit mass is

exergy = B̂ (T1, P1) − B̂ (Tamb, Pamb) = −Ŵs,max (4.6-15)

which in this case is just the negative of the maximum shaft work per unit mass. The
analogous expression for the non-flow system is

exergy = Â (T1, P1) − Â (Tamb, Pamb) = −Ŵs,max (4.6-16)

Finally, there is a similarity between the analysis in this section and that in Section
4.3. There we obtained the maximum shaft work that could be obtained from a thermal
engine operating between two temperatures, Eq. 4.3-4, without knowing what the en-
gine would be, or how it would operate. It was left to an inventor, Carnot, to invent the
machinery to accomplish the maximum shaft work. Here we have obtained a general
expressions for the maximum shaft work that could be obtained for any change of state,
Eqs. 4.6-15 and 16, without specifying the device to obtain that maximum shaft work.
It is left to the engineer to design the device to accomplish this.

4.7 THE MICROSCOPIC ENTROPY BALANCE (OPTIONAL)

This section appears on the website for this book.

PROBLEMS

4.1 A 5-kg copper ball at 75◦C is dropped into 12 kg of wa-
ter, initially at 5◦C, in a well-insulated container.
a. Find the common temperature of the water and

copper ball after the passage of a long period
of time.

b. What is the entropy change of the water in going
from its initial to final state? Of the ball? Of the com-
posite system of water and ball?

Data:
CP(copper) = 0.5 J/(g K)
CP(water) = 4.2 J/(g K)

4.2 In a foundry, metal castings are cooled by quenching in
an oil bath. Typically, a casting weighing 20 kg and at a
temperature of 450◦C is cooled by placing it in a 150-kg
involatile oil bath initially at 50◦C. If CP of the metal is
0.5 J/(kg K), and CP of the oil 2.6 J/(kg K), determine
the common final temperature of the oil and casting af-
ter quenching if there are no heat losses. Also, find the
entropy change in this process.

4.3 a. Show that the rate at which shaft work is obtained or
required for a reversible change of state in a closed
system at constant internal energy and volume is

equal to the negative of the product of the temper-
ature and the rate of change of the entropy for the
system.

b. Show that the rate at which shaft work is obtained or
required for a reversible change of state in a closed
system at constant entropy and pressure is equal to
the rate of change of enthalpy of the system.

4.4 Steam at 700 bar and 600◦C is withdrawn from a steam
line and adiabatically expanded to 10 bar at a rate of
2 kg/min. What is the temperature of the steam that was
expanded, and what is the rate of entropy generation in
this process?

4.5 Two metal blocks of equal mass M of the same sub-
stance, one at an initial temperature T i

1 and the other at
an initial temperature T i

2 , are placed in a well-insulated
(adiabatic) box of constant volume. A device that can
produce work from a flow of heat across a tempera-
ture difference (i.e., a heat engine) is connected between
the two blocks. Develop expressions for the maximum
amount of work that can be obtained from this process
and the common final temperature of the blocks when
this amount of work is obtained. You may assume that
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the heat capacity of the blocks does not vary with
temperature.

4.6 The compressor discussed in Illustrations 3.4-4 and 4.5-
1 is being used to compress air from 1 bar and 290 K
to 10 bar. The compression can be assumed to be adia-
batic, and the compressed air is found to have an outlet
temperature of 575 K.
a. What is the value of ΔS for this process?
b. How much work, Ws, is needed per mole of air for

the compression?
c. The temperature of the air leaving the compressor

here is higher than in Illustration 4.5-1. How do you
account for this?

In your calculations you may assume air is an ideal gas
with C∗

P = 29.3 J/(mol K).
4.7 A block of metal of total heat capacity CP is initially

at a temperature of T1, which is higher than the ambi-
ent temperature T2. Determine the maximum amount
of work that can be obtained on cooling this block to
ambient temperature.

4.8 The Ocean Thermal Energy Conversion (OTEC)
project in Hawaii produces electricity from the temper-
ature difference between water near the surface of the
ocean (about 27◦C) and the 600 m deep water at 5◦C
that surrounds the island. Estimate the maximum net
work (total work less the work of pumping the water to
the surface) that can be obtained from each kilogram of
water brought to the surface, and the overall efficiency
of the process.

4.9 a. A steam turbine in a small electric power plant is de-
signed to accept 4500 kg/hr of steam at 60 bar and
500◦C and exhaust the steam at 10 bar. Assuming
that the turbine is adiabatic and has been well de-
signed (so that Ṡgen = 0), compute the exit temper-
ature of the steam and the power generated by the
turbine.

b. The efficiency of a turbine is defined to be the ratio
of the work actually obtained from the turbine to the
work that would be obtained if the turbine operated
isentropically between the same inlet and exit pres-
sures. If the turbine in part (a) is adiabatic but only
80 percent efficient, what would be the exit temper-
ature of the steam? At what rate would entropy be
generated within the turbine?

c. In off-peak hours the power output of the turbine
in part (a) (100 percent efficient) is decreased by
adjusting a throttling valve that reduces the turbine
inlet steam pressure to 30 bar (see diagram) while
keeping the flow rate constant. Compute T1, the

500°C
Steam

60 bar

T1 = ?

30 bar

T2 = ?

10 bar
Turbine

W

steam temperature to the turbine, T2, the steam tem-
perature at the turbine exit, and the power output of
the turbine.

4.10 Complete part (b) of Problem 3.31, assuming the com-
pressor operates reversibly and adiabatically.

4.11 Steam is produced at 70 bar and some unknown tem-
perature. A small amount of steam is bled off just be-
fore entering a turbine and goes through an adiabatic
throttling valve to atmospheric pressure. The tempera-
ture of the steam exiting the throttling valve is 400◦C.
The unthrottled steam is fed into the turbine, where it
is adiabatically expanded to atmospheric pressure.
a. What is the temperature of the steam entering the

turbine?
b. What is the maximum work per kilogram of steam

that can be obtained using the turbine in its present
mode of operation?

c. Tests on the turbine exhaust indicate that the steam
leaving is a saturated vapor. What is the efficiency
of the turbine and the entropy generated per kilo-
gram of steam?

d. If the ambient temperature is 25◦C and the ambi-
ent pressure is 1 bar, what is the maximum possible
work that could be obtained per kilogram of steam
in any continuous process?

4.12 A well-insulated, 0.7-m3 gas cylinder containing nat-
ural gas (which can be considered to be pure methane)
at 70 bar and 300 K is exhausted until the pressure
drops to 3.5 bar. This process occurs fast enough that
there is no heat transfer between the cylinder walls and
the gas, but not so rapidly as to produce large velocity
or temperature gradients in the gas within the cylinder.
Compute the number of moles of gas withdrawn and
the final temperature of the gas in the cylinder if
a. Methane gas is assumed to be ideal with C∗

P = 36
J/(mol K).

b. Methane is considered to be a real gas with the
properties given in Fig. 3.3-2.

4.13 If the heat capacity of an ideal gas is given by

C∗
V = (a − R) + bT + cT 2 + dT 3 + e/T 2

show that

S(T2, V 2) − S(T1, V 1) = (a − R) ln

(
T2

T1

)
+ b(T2 − T1)

+
c

2
(T 2

2 − T 2
1 ) +

d

3
(T 3

2 − T 3
1 )

− e

2
(T−2

2 − T−2
1 ) + R ln

(
V 2

V 1

)
Also develop expressions for this fluid that replace
Eqs. 4.4-3 and 4.4-4.

4.14 a. Steam at 35 bar and 600 K enters a throttling valve
that reduces the steam pressure to 7 bar. Assum-
ing there is no heat loss from the valve, what is
the exit temperature of the steam and its change in
entropy?
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b. If air [assumed to be an ideal gas with C∗
P = 29.3

J/(mol K)] entered the valve at 35 bar and 600 K
and left at 7 bar, what would be its exit temperature
and entropy change?

4.15 A tank contains 20 percent liquid water and 80 per-
cent steam by volume at 200◦C. Steam is withdrawn
from the top of the tank until the fluid remaining in the
tank is at a temperature of 150◦C. Assuming the tank
is adiabatic and that only vapor is withdrawn, compute
a. The pressure in the tank finally
b. The fraction of vapor and liquid in the tank finally
c. The fraction of the total water present initially that

was withdrawn
4.16 One mole of carbon dioxide is to be compressed adi-

abatically from 1 bar and 25◦C to 10 bar. Because of
irreversibilities and poor design of the compressor, the
compressor work required is found to be 25 percent
greater than that for a well-designed (reversible) com-
pressor. Compute the outlet temperature of the carbon
dioxide and the work that must be supplied to the com-
pressor for both the reversible and irreversible com-
pressors for the two cases below.
a. Carbon dioxide is an ideal gas with a constant-

pressure heat capacity of 37.151 J/(mol K).
b. Carbon dioxide is an ideal gas with the constant-

pressure heat capacity given in Appendix A.II.
4.17 Hydrogen has an auto-ignition temperature of 853 K;

that is, hydrogen will ignite spontaneously at that
temperature if exposed to oxygen. Hydrogen is to be
adiabatically and reversibly compressed from 1 bar
and 300 K to a high pressure. To avoid accidental
explosions in case of a leak, the maximum allowed
exit temperature from the compressor will be 800 K.
Compute the maximum pressure that can be obtained
in the compressor. You may consider hydrogen to
be an ideal gas with the heat capacity given in
Appendix A.II.

4.18 If it is necessary to compress hydrogen to a higher
pressure than is possible with the single-compression
step above, an alternative is to use two compressors
(or a two-stage compressor) with intercooling. In such
a process the hydrogen is compressed in the first stage
of the compressor, then cooled at constant pressure to
a lower temperature, and then compressed further in
a second compressor or stage. Although it may not be
economical to do so, more than two stages can be used.
a. Compute the maximum pressure that can be

obtained in a two-stage compression with inter-
cooling to 300 K between the stages, assuming hy-
drogen to be an ideal gas with the heat capacity
given in Appendix A.II.

b. Repeat the calculation above for a three-stage com-
pression with intercooling to 300 K.

4.19 Joe Unidel claims to have invented a steady-state flow
device in which the inlet is steam at 300◦C and 5 bar,

the outlet is saturated steam at 100◦C and 1 bar, the
device is adiabatic and produces approximately 388
kJ per kilogram of steam passed through the device.
Should we believe his claim?

4.20 Steam at 20 bar and 300◦C is to be continuously
expanded to 1 bar.
a. Compute the final temperature, the entropy gener-

ated, the heat required, and the work obtained per
kilogram of steam if this expansion is done by pass-
ing the steam through an adiabatic expansion valve.
Will the final state be a vapor, a liquid, or a vapor-
liquid mixture?

b. Compute the final temperature, the entropy gen-
erated, the heat required, and the work obtained
per kilogram of steam if this expansion is done by
passing the steam through a well-designed, adia-
batic turbine. Will the final state be a vapor, a liq-
uid, or a vapor-liquid mixture?

c. Compute the final temperature, the entropy gener-
ated, the heat required, and the work obtained per
kilogram of steam if this expansion is done by pass-
ing the steam through a well-designed, isothermal
turbine. Will the final state be a vapor, a liquid, or
a vapor-liquid mixture?

4.21 In a large refrigeration plant it is necessary to com-
press a fluid, which we will assume to be an ideal gas
with constant heat capacity, from a low pressure P1 to
a much higher pressure P2.
a. If the compression is done in a single compressor

that operates reversibly and adiabatically, obtain an
expression for the work needed for the compression
in terms of the mass flow rate, P1, P2, and the initial
temperature, T1.

b. If the compression is to be done in two stages, first
compressing the gas from P1 to P ∗, then cooling
the gas at constant pressure down to the compressor
inlet temperature T1, and then compressing the gas
to P2, develop an expression for the work needed
for the compression. What should the value of the
intermediate pressure be to accomplish the com-
pression with minimum work?

4.22 Repeat Problem 3.25, now considering nitrogen to be
a real gas with the thermodynamic properties given in
Fig. 3.3-3.

4.23 An isolated chamber with rigid walls is divided into
two equal compartments, one containing steam at 10
bar and 370◦C, and the other evacuated. A valve be-
tween the compartments is opened to permit steam to
pass from one chamber to the other.
a. After the pressures (but not the temperatures) in the

two chambers have equalized, the valve is closed,
isolating the two systems. What are the temperature
and pressure in each cylinder?

b. If the valve were left open, an equilibrium state
would be obtained in which each chamber has
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the same temperature and pressure. What are this
temperature and pressure?

(Note: Steam is not an ideal gas under the conditions
here.)

4.24 Anadiabatic turbineisoperatingwithanidealgaswork-
ing fluid of fixed inlet temperature and pressure, T1 and
P1, respectively, and a fixed exit pressure, P2. Show
that
a. The minimum outlet temperature, T2, occurs when

the turbine operates reversibly, that is, when
Sgen = 0.

b. The maximum work that can be extracted from the
turbine is obtained when Sgen = 0.

4.25 a. Consider the following statement: “Although the
entropy of a given system may increase, decrease,
or remain constant, the entropy of the universe can-
not decrease.” Is this statement true? Why?

b. Consider any two states, labeled 1 and 2. Show that
if state 1 is accessible from state 2 by a real (irre-
versible) adiabatic process, then state 2 is inacces-
sible from state 1 by a real adiabatic process.

4.26 A very simple solar engine absorbs heat through a col-
lector. The collector loses some of the heat it absorbs
by convection, and the remainder is passed through a
heat engine to produce electricity. The heat engine op-
erates with one-half the Carnot efficiency with its low-
temperature side at ambient temperature Tamb and its
high-temperature side at the steady-state temperature
of the collector, Tc. The expression for the heat loss
from the collector is

Rate of heat loss from the collector = k (Tc − Tamb)

where T1 is the temperature at which heat enters
the solar collector, and k is the overall heat trans-
fer coefficient; all temperatures are absolute. What
collector temperature produces the maximum rate at
which work is produced for a given heat flux to the
collector?

4.27 It is necessary to estimate how rapidly a piece of equip-
ment can be evacuated. The equipment, which is 0.7
m3 in volume, initially contains carbon dioxide at 340
K and 1 bar pressure. The equipment will be evac-
uated by connecting it to a reciprocating constant-
displacement vacuum pump that will pump out 0.14
m3/min of gas at any conditions. At the conditions here
carbon dioxide can be considered to be an ideal gas
with C∗

P = 39 J/(mol K).
a. What will be the temperature and pressure of the

carbon dioxide inside the tank after 5 minutes of
pumping if there is no exchange of heat between
the gas and the process equipment?

b. The gas exiting the pump is always at 1 bar pres-
sure, and the pump operates in a reversible adia-
batic manner. Compute the temperature of the gas
exiting the pump after 5 minutes of operation.

4.28 A 0.2-m3 tank containing helium at 15 bar and 22◦C
will be used to supply 4.5 moles per minute of helium
at atmospheric pressure using a controlled adiabatic
throttling valve.
a. If the tank is well insulated, what will be the pressure

in the tank and the temperature of the gas stream
leaving the throttling valve at any later time t?

b. If the tank is isothermal, what will be the pressure
in the tank as a function of time?

You may assume helium to be an ideal gas with C∗
P =

22 J/(mol K), and that there is no heat transfer between
the tank and the gas.

4.29 A portable engine of nineteenth-century design used a
tank of compressed air and an “evacuated” tank as its
power source. The first tank had a capacity of 0.3 m3

and was initially filled with air at 14 bar and a temper-
ature of 700◦C. The “evacuated” tank had a capacity
of 0.75 m3. Unfortunately, nineteenth-century vacuum
techniques were not very efficient, so the “evacuated”
tank contained air at 0.35 bar and 25◦C. What is the
maximum total work that could be obtained from an air-
driven engine connected between the two tanks if the
process is adiabatic? What would be the temperature
and pressure in each tank at the end of the process? You
may assume that air is an ideal gas with C∗

P = 7R/2.
4.30 A heat exchanger is a device in which heat flows be-

tween two fluid streams brought into thermal contact
through a barrier, such as a pipe wall. Heat exchang-
ers can be operated in either the cocurrent (both fluid
streams flowing in the same direction) or countercur-
rent (streams flowing in opposite direction) configura-
tion; schematic diagrams are given here.

Cocurrent flow

Countercurrent flow

The heat flow rate from fluid 1 to fluid 2 per unit
length of the heat exchanger, Q̇, is proportional to the
temperature difference (T1 − T2):

Q̇ =

⎛
⎜⎝Heat flow rate from fluid 1

to fluid 2 per unit length of
heat exchanger

⎞
⎟⎠ = κ(T1 − T2)

where κ is a constant of proportionality with units of
J/(m s K). The fluids in the two streams are the same
and their flow rates are equal. The initial and final tem-
peratures of stream 1 will be 35◦C and 15◦C, respec-
tively, and those for stream 2 will be −15◦C and 5◦C.
a. Write the balance equations for each fluid stream

in a portion of the heat exchanger of length
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dL and obtain differential equations by letting
dL → 0.

b. Integrate the energy balance equations over the
length of the exchanger to obtain expressions for
the temperature of each stream at any point in
the exchanger for each flow configuration. Also
compute the length of the exchanger, in units of
L0 = ṀCP/2κ (where Ṁ is the mass flow rate
of either stream), needed to accomplish the desired
heat transfer.

c. Write an expression for the change of entropy of
stream 1 with distance for any point in the ex-
changer.

4.31 a. Compute the maximum useful work that can be
obtained when 1 kg of steam undergoes a closed-
system change of state from 30 bar and 600◦C to
5 bar and 300◦C when the atmospheric conditions
are 1.013 bar and 298.15 K.

b. Compute the maximum useful work that can be
obtained when 1 kg of steam undergoes a closed-
system change of state from 30 bar and 600◦C to
5 bar and 300◦C when the atmospheric conditions
are 1.013 bar and 298.15 K.

4.32 Two tanks are connected as shown here. Tank 1 ini-
tially contains an ideal gas at 10 bar and 20◦C, and
both parts of tank 2 contain the same gas at 1 bar and
20◦C. The valve connecting the two tanks is opened
long enough to allow the pressures in the tanks to equi-
librate and is then shut. There is no transfer of heat
from the gas to the tanks or the frictionless piston, and
the constant-pressure heat capacity of the gas is 4R.
Compute the temperature and pressure of the gas in
each part of the system at the end of the process and
the work done on the gas behind the piston (i.e., the
gas in subsystem 3).

4.33 An important factor in determining the extent of air
pollution in urban areas is whether the atmosphere is
stable (poor mixing, accumulation of pollutants) or
unstable (good mixing and dispersion of pollutants).
Whether the atmosphere is stable or unstable depends
on how the temperature profile (the so-called lapse
rate) in the atmosphere near ground level compares
with the “adiabatic lapse rate.” The adiabatic lapse
rate is the atmospheric temperature that would result
at each elevation if a packet of air (for example, as
contained in a balloon) rose from ground level with-
out any heat or mass transfer into or out of the packet.
Assuming that air is an ideal gas, with a molecular
weight of 29 and a constant-pressure heat capacity
of 29.2 J/(mol K), obtain expressions for the pressure
profile and the adiabatic lapse rate in the atmosphere.

4.34 A device is being marketed to your company. The de-
vice takes in hot, high-pressure water and generates
work by converting it to two outlet streams: steam
and low-pressure water. You are asked to evaluate the

device to see if your firm should buy it. All you are told
is that 10 kW of work is obtained under the following
operating conditions:

Outlet Outlet
Inlet Stream 1 Stream 2

Mass flow rate (kg/s) 1.0 0.5
T (◦C) 300 100 300
P (MPa) 5.0
Steam Liquid Quality unknown Sat.liquid

a. What is the quality of the steam in outlet stream 1?
b. Is this device thermodynamically feasible?

4.35 Diesel engines differ from gasoline engines in that the
fuel is not ignited by a spark plug. Instead, the air in
the cylinder is first compressed to a higher pressure
than in a gasoline engine, and the resulting high tem-
perature results in the spontaneous ignition of the fuel
when it is injected into the cylinder.
a. Assuming that the compression ratio is 25:1 (that

is, the final volume of the air is 1/25 times the ini-
tial volume), that air can be considered an ideal gas
with C∗

V = 21J/(mol K), that the initial conditions
of the air are 1 atm and 30◦C, and that the com-
pression is adiabatic and reversible, determine the
temperature of the air in the cylinder before the fuel
is injected, and the minimum amount of work that
must be done in the compression.

b. The compression ratio in a supercharged gasoline
engine is usually 10:1 (or less). Repeat the calcula-
tions of part (a) for this compression ratio.

4.36 A rigid, isolated container 300 L in volume is divided
into two parts by a partition. One part is 100 L in vol-
ume and contains nitrogen at a pressure of 200 kPa
and a temperature of 100◦C. The other part, 200 L in
volume, contains nitrogen at a pressure of 2 MPa and
a temperature of 200◦C. If the partition breaks and a
sufficiently long time elapses for the temperature and
pressure to become uniform within the container, as-
suming that there is no heat transfer to the container and
that nitrogen is an ideal gas with C∗

P = 30 J/(mol K)
a. What is the final temperature and pressure of the

gas in the container?
b. How much entropy is generated in this process?

4.37 In normal operation, a paper mill generates excess
steam at 20 bar and 400◦C. It is planned to use this
steam as the feed to a turbine to generate electricity
for the mill. There are 5000 kg/hr of steam available,
and it is planned that the exit pressure of the steam will
be 2 bar. Assuming that the turbine is well insulated,
what is the maximum power that can be generated by
the turbine?

4.38 Atmospheric air is to be compressed and heated as
shown in the figure before being fed into a chemical
reactor. The ambient air is at 20◦C and 1 bar, and is
first compressed to 5 bar and then heated at constant
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pressure to 400◦C. Assuming air can be treated as
a single-component ideal gas with C∗

V = 21 J/(mol
K), and that the compressor operates adiabatically and
reversibly,
a. Determine the amount of work that must be sup-

plied to the compressor and the temperature of the
gas leaving the compressor.

b. Determine the heat load on the heat exchanger.

20°C, 1 bar 400°C, 5 bar

Ambient air

5 bar
Heater

4.39 One kilogram of saturated liquid methane at 160 K is
placed in an adiabatic pistion-and-cylinder device, and
the piston will be moved slowly and reversibly until 25
percent of the liquid has vaporized. Compute the max-
imum work that can be obtained.

4.40 A sugar mill in Florida has been disposing of the
bagasse (used sugar cane) by open-air burning. You,
as a new chemical engineer, determine that by using
the dried bagasse as boiler fuel in the mill, you can
generate 5000 kg/hr of surplus steam at 20 bar and
600◦C. You propose to your supervisor that the mill
invest in a steam turbine–electrical generator assem-
bly to generate electricity that can be sold to the local
power company.
a. If you purchase a new, state-of-the-art adiabatic and

isentropic steam turbine, and the turbine exit pres-
sure is 1 bar, what is the temperature of the exit
steam, how much electrical energy (in kW) can be
generated, and what fraction of the steam exiting
the turbine is vapor?

b. Instead, a much cheaper used turbine is purchased,
which is adiabatic but not isentropic, that at the
same exit pressure of 1 bar produces 90 percent of
the work produced by the state-of-the-art turbine.
What is the temperature of the exit steam, what
fraction of the steam exiting the turbine is vapor,
and what is the rate of entropy generation?

4.41 A well-insulated cylinder fitted with a frictionless pis-
ton initially contains nitrogen at 15◦C and 0.1 MPa.
The piston is placed such that the volume to the right
of the piston is 0.5 m3, and there is negligible volume
to the left of the piston and between the piston and the
tank, which is also well insulated. Initially the tank
of volume 0.25 m3 contains nitrogen at 400 kPa and
200◦C. For the calculations below, assume that nitro-
gen is an ideal gas with C∗

P = 29.3J/(mol K)

Tank Cylinder

Piston

a. The piston is a perfect thermal insulator, and the
valve between the cylinder and the tank is opened
only long enough for the pressure in the tank and
cylinder to equalize. What will the equalized pres-
sure be, and what will be the temperatures of the
nitrogen in the tank, in the cylinder to the left of the
piston, and in the cylinder to the right of the piston?

b. What will the volumes in the cylinder be to the left
and to the right of the piston?

c. How much entropy has been generated by the pro-
cess?

4.42 If the piston in the previous problem is replaced by
one that is a perfect conductor, so that after the valve
is closed the temperatures of the gas on the two sides
of the piston equalize (clearly, the piston will move in
this process),
a. What will the equalized pressure in the cylinder be,

and what will be the temperature of the nitrogen in
the cylinder?

b. What will the volumes in the cylinder be to the left
and to the right of the piston?

c. How much entropy has been generated in going
from the initial state (before the valve was opened)
to the final state (equalized temperature and pres-
sure on the two sides of the piston)?

4.43 A tank of 0.1 m3 volume initially containing nitrogen
at 25◦C and 1 bar will be filled with compressed nitro-
gen at a rate of 20 mol/s. The nitrogen coming from the
compressor and into the tank is at an absolute pressure
of 110 bar and a temperature of 80◦C. The filling pro-
cess occurs sufficiently rapidly that there is negligible
heat transfer between the gas and the tank walls, and
a valve is closed to stop the filling process when the
pressure in the tank reaches 100 bar. Assuming nitro-
gen is an ideal gas with C∗

P = 29.3 J/(mol K),
a. What is the nitrogen temperature immediately after

the filling process ends?
b. How long did it take for the pressure of the gas in

the tank to reach 100 bar?
c. After a sufficiently long period of time, due to heat

transfer with the surroundings, the temperature of
the gas drops to 25◦C. What is the pressure of the
nitrogen in the tank?

4.44 A stream of hot water at 85◦C and a rate of 1 kg/s
is needed for the pasteurizing unit in a milk-bottling
plant. Such a stream is not readily available, and will
be produced in a well-insulated mixing tank by di-
rectly injecting steam from the boiler plant at 10 bar
and 200◦C into city water available at 1 bar and 20◦C.
a. Calculate the flow rates of city water and steam

needed.
b. Calculate the rate of entropy production in the

mixing tank.
4.45 Low-density polyethylene is manufactured from ethy-

lene at medium to high pressure in a radical chain
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polymerization process. The reaction is exothermic,
and on occasion, because of cooling system failure or
operator error, there are runaway reactions that raise
the pressure and temperature in the reactor to danger-
ous levels. For safety, there is a relief valve on the re-
actor that will open when the total pressure reaches
200 bar and discharge the high-pressure ethylene into
a holding tank with a volume that is four times larger
than that of the reactor, thereby reducing the risk of ex-
plosion and discharge into the environment. Assuming
the volume occupied by the polymer is very small, that
the gas phase is pure ethylene, that in case of a run-
away reaction the temperature in the reactor will rise
to 400◦C, and that the holding tank is initially evacu-
ated, what will be the temperature and pressure in the
reactor and the holding tank if ethylene can be consid-
ered to be an ideal gas with C∗

P = 73.2 J/(mol K)?
4.46 An inventor has proposed a flow device of secret de-

sign for increasing the superheat of steam. He claims
that a feed steam at 1 bar and 100◦C is converted to
superheated steam at 1 bar and 250◦C and saturated
water (that is, water at its boiling point) also at 1 bar,
and that no additional heat or work is needed. He also
claims that 89.9 percent of the outlet product is su-
perheated steam, and the remainder is saturated water.
Will the device work as claimed?

4.47 Two separate experiments are performed on a gas en-
closed in a piston-and-cylinder device, both starting
from the same initial state. The result of the first ex-
periment is to be used to predict the outcome of the
second.
a. In the first experiment, the piston is free to move,

with the external pressure held constant. A small
amount of heat is added to the gas in the cylinder,
resulting in the expansion of the gas. The tempera-
ture of the gas is found to have increased.

b. In the second experiment, the piston is not free to
move; instead, its position is adjusted manually. In
addition, the device is insulated, so that no heat
flows to or from the surroundings. The piston is
moved outward slowly, allowing the gas to expand
by a small amount. Does the temperature of the gas
increase or decrease?

4.48 Consider the Hilsch-Ranque vortex tube discussed in
Illustration 4.5-6 (pages 135–136). Starting with air at
4 bar and 25◦C, an exhaust pressure of 1.013 bar, and
that half the air that enters the tube will be withdrawn
at the higher temperature, what is the maximum tem-
perature difference that can be obtained? Treat air as
an ideal gas with C∗

P = 29.3 J
mol·K .

4.49 Redo Problem 4.4 using Aspen Plus R©.
4.50 Redo Problem 4.6 using Aspen Plus R©.
4.51 Redo Problem 4.9 using Aspen Plus R©.

4.52 Redo Problem 4.11 using Aspen Plus R©.
4.53 Redo Problem 4.17 using Aspen Plus R©.
4.54 Redo Problem 4.18 using Aspen Plus R©.
4.55 Redo Problem 4.20 using Aspen Plus R©.
4.56 Redo Problem 4.37 using Aspen Plus R©.
4.57 Redo Problem 4.38 using Aspen Plus R©.
4.58 Redo Problem 4.40 using Aspen Plus R©.
4.59 100 kg of steam is available at 2 MPa and 800◦C.

a. Determine the maximum amount of shaft work that
can be obtained from this steam in a non-flow pro-
cess if the ambient conditions are 25◦C and 1 bar.

b. This steam will be used in a non-flow work produc-
ing process that reduces its pressure to 0.6 MPa and
its temperature to 400◦C. Determine the maximum
amount of shaft work that could have been obtained
in that process.

c. Determine the maximum amount of non-flow shaft
work that could be obtained from the steam avail-
able at the end of the process in part b.

4.60 Steam is available at 2 MPa and 800◦C.
a. Determine the maximum amount of shaft work that

can be obtained from this steam in a flow process
if the ambient conditions are 25◦C and 1 bar.

b. This steam will be used in a work producing pro-
cess that reduces its pressure to 0.6 MPa and its
temperature to 400◦C. Determine the maximum
amount of shaft work that could have been obtained
in that process.

c. Determine the maximum amount of shaft work that
could be obtained in a flow from the steam available
at the end of the process in part b.

4.61 From a process, 100 kg of steam is available at 2 MPa
and 800◦C.
a. Determine the maximum amount of shaft work that

can be obtained from this steam in a non-flow pro-
cess if the ambient conditions are 25◦C and 1 bar.

b. This steam will be used in a work producing non-
flow process that reduces its pressure to 0.6 MPa
and its temperature to 400◦C. Determine the max-
imum amount of non-flow shaft work that can be
obtained in that process.

4.62 Which has the greater potential to produce more avail-
able work steam at 2 MPa and 800◦C or steam at
1.4 MPa and 900◦C?

4.63 A stream of flowing air is available at 25 bar and
1000◦C or at 40 bar and 900◦C. Assuming air is an
ideal gas with a constant pressure heat capacity of
29.7 J/mol K, which stream has the greater potential
produce available work?

4.64 a. Derive the equations analogous to Eqs. 4.6-6 and 8
for the nonflow available work.

b. Derive the integrated forms of these equations for
an ideal gas of constant heat capacity.



Chapter 5

Liquefaction, Power Cycles,
and Explosions

In this chapter we consider several practical applications of the energy and entropy
balances that we have developed. These include the liquefaction of a gas, and the
analysis of cycles used to convert heat to work and to provide refrigeration and
air conditioning. Finally, as engineers we have a social responsibility to consider
safety as a paramount issue in anything we design or operate. Therefore, methods to
estimate the energy that could be released in different types of nonchemical explosions
are presented.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 5

The goals of this chapter are for the student to:

• Be able to solve problems involving the liquefaction of gases (Sec. 5.1)
• Be able to compute the work that can be obtained from different types of power
cycles and using different working fluids (Sec. 5.2)

• Be able to compute the work required for the operation of refrigeration cycles
(Sec. 5.2)

• Be able to compute the energy release resulting from the uncontrolled expansion
of a gas (Sec. 5.4)

• Be able to compute the energy release resulting from an explosion that involves a
boiling liquid (Sec. 5.4)

NOTATION INTRODUCED IN THIS CHAPTER

C.O.P. Coefficient of performance of a refrigeration cycle
�vapĤ Enthalpy change (or heat) of vaporization per unit mass (J/kg)

�vapH Molar enthalpy change on vaporization (J/mol)

Tb Boiling temperature of a liquid at atmospheric pressure (K)
�vapÛ Internal energy change on vaporization per unit mass (J/kg)
�vapU Molar internal energy change on vaporization (J/mol)

152
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5.1 LIQUEFACTION

An important industrial process is the liquefaction of gases, such as natural gas
(to produce liquid natural gas (LNG)), propane, and refrigerant gases, to name a few.
One way to liquefy a gas is to cool it below its boiling-point temperature at the desired
pressure. However, this would require refrigeration equipment capable of producing
very low temperatures. Therefore, such a direct liquefaction process is not generally
used. What is more commonly done is to start with a gas at low pressure, compress it
to high pressure (which increases its temperature since work has been done on it), cool
this high-temperature gas at the constant high pressure, and then expand it to low pres-
sure and low temperature using a Joule-Thomson expansion, which produces a mixture
of liquid and vapor. In this way the cooling is done at a higher temperature (and pres-
sure), so that low-temperature refrigeration is not needed. (Such a process is also used
internally in many refrigeration cycles, including your home refrigerator, as discussed
in the next section.) The vapor and liquid are then separated in a flash drum (an insu-
lated, constant-pressure container). The process just described is shown schematically
in Fig. 5.1-1.

1

2 3 4

5

6 

Compressor
Cooler

Throttling
valve

Flash
drum

Gas

Liquefied gas

(single or multistage)

Figure 5.1-1 A simple liquefaction process without recycle.

The efficiency of this process, that is, the amount of liquefied gas produced for each
unit of work done in the compressor, can be improved upon by better engineering design.
For example, instead of merely discarding the low-temperature, low-pressure gas leav-
ing the flash drum (stream 5), the gas can be used to cool the high-pressure gas upstream
of the throttle valve and then returned to the compressor, so that none of the gas is wasted
or exhausted to the atmosphere. This process, referred to as theLinde process, is shown
in Fig. 5.1-2. In this way the only stream leaving the liquefaction plant is liquefied gas,
and, as shown in Illustration 5.1-1, more liquefied gas is produced per unit of energy
expended in the compressor.

1

1'

2

3

3' 4
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5'
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Compressor
(single- or multistage)

Cooler

Throttling
valve

Flash
drum

Liquefied 
gas

Heat
exchanger

Figure 5.1-2 The more efficient Linde liquefaction process.



154 Chapter 5: Liquefaction, Power Cycles, and Explosions

Illustration 5.1-1
Comparing the Efficiency of the Simple and Linde Liquefaction Processes

It is desired to produce liquefied natural gas (LNG), which we consider to be pure methane, from
that gas at 1 bar and 280 K (conditions at point 1 in Figs. 5.1-1 and 5.1-2). Leaving the cooler,
methane is at 100 bar and 210 K (point 3). The flash drum is adiabatic and operates at 1 bar,
and the compressor can be assumed to operate reversibly and adiabatically. However, because
of the large pressure change, a three-stage compressor with intercooling is used. The first stage
compresses the gas from 1 bar to 5 bar, the second stage from 5 bar to 25 bar, and the third stage
from 25 bar to 100 bar. Between stages the gas is isobarically cooled to 280 K.

a. Calculate the amount of work required for each kilogram of methane that passes through
the compressor in the simple liquefaction process.

b. Calculate the fractions of vapor and liquid leaving the flash drum in the simple liquefaction
process of Fig. 5.1-1 and the amount of compressor work required for each kilogram of
LNG produced.

c. Assuming that the recycled methane leaving the heat exchanger in the Linde process
(Fig. 5.1-2) is at 1 bar and 200 K, calculate the amount of compressor work required for
each kilogram of LNG produced.

Data: The thermodynamic properties of methane are given in Fig. 3.3-2

Solution

a. For each stage of compression, assuming steady-state and reversible adiabatic operation,
we have from the mass, energy, and entropy balances, respectively:

0 = Ṁin + Ṁout or Ṁout = −Ṁin = −Ṁ

0 = ṀinĤin + ṀoutĤout + Ẇ or Ẇ = Ṁ(Ĥout − Ĥin)

0 = ṀinŜin + ṀoutŜout or Ŝout = Ŝin

So through each compressor (but not intercooler) stage, one follows a line of constant
entropy in Fig. 3.3-2 (which is redrawn here with all the stages indicated). For the first
compressor stage, we have

Ĥin(T = 280 K, P = 1 bar) = 940 kJ/kg and

Ŝin(T = 280 K, P = 1 bar) = 7.2 kJ/(kg K)

Ĥout(Ŝ = 7.2 kJ/(kg K), P = 5 bar) = 1195 kJ/kg and Tout = 388 K

so that the first-stage work per kilogram of methane flowing through the compressor is

Ẇ (first stage) = (1195 − 940) kJ/kg = 225 kJ/kg

After cooling, the temperature of the methane stream is 280 K, so that for the second
compressor stage, we have

Ĥin(T = 280 K, P = 5 bar) = 938 kJ/kg and

Ŝin(T = 280 K, P = 5 bar) = 6.35 kJ/(kg K)

Ĥout(Ŝ = 6.35 kJ/(kg K), P = 25 bar) = 1180 kJ/kg and Tout = 386 K



5.1 Liquefaction 155

Figure 5.1-3 Pressure-enthalpy diagram for methane. (Source:W. C. Reynolds, Thermodynamic
Properties in SI, Department of Mechanical Engineering, Stanford University, Stanford, CA,
1979. Used with permission.)

Therefore, the second-stage work per kilogram of methane flowing through the compres-
sor is

Ẇ (second stage) = (1180 − 938) kJ/kg = 242 kJ/kg

Similarly, after intercooling, the third-stage compressor work is found from

Ĥin(T = 280 K, P = 25 bar) = 915 kJ/kg and

Ŝin(T = 280 K, P = 25 bar) = 5.5 kJ/(kg K)

Ĥout(Ŝ = 5.5 kJ/(kg K), P = 100 bar) = 1140 kJ/kg and Tout = 383 K

Therefore, the third-stage work per kilogram of methane flowing through the compres-
sor is

Ẇ (third stage) = (1140 − 915) kJ/kg = 225 kJ/kg

Consequently, the total compressor work through all three stages is

Ẇ = 255 + 242 + 225 = 722 kJ/kg

b. The liquefaction process is a Joule-Thomson expansion, and therefore occurs at constant
enthalpy. The enthalpy of the methane leaving the cooler at 100 bar and 210 K is 493 kJ/kg.
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At 1 bar the enthalpy of the saturated vapor is 582 kJ/kg, and that of the liquid is 71 kJ/kg.
Therefore, from the energy balance on the throttling valve and flash drum, we have1

Ĥin = Ĥout or

Ĥ(210 K, 100 bar) = (1 − ω)Ĥ(saturated vapor, 1 bar) + ωĤ(saturated liquid, 1 bar)

493
kJ

kg
= (1 − ω) · 71

kJ

kg
+ ω · 582

kJ

kg

so that ω = 0.826 is the fraction of vapor leaving the flash drum, and (1−ω) = 0.174 is the
fraction of the methane that has been liquefied. Therefore, for each kilogram of methane
that enters the simple liquefaction unit, 826 g of methane are lost as vapor, and only 174 g
of LNG are produced. Further, since 722 kJ of work are required in the compressor to
produce 174 g of LNG, approximately 4149 kJ of compressor work are required for each
kilogram of LNG produced.

c. While the Linde process looks more complicated, it can be analyzed in a relatively simple
manner. First, we choose the system for writing balance equations to be the subsystem
consisting of the heat exchanger, throttle valve, and flash drum (though other choices could
be made). The mass and energy balances for this subsystem (since there are no heat losses
to the outside or any work flows) are

Ṁ3 = Ṁ5′ + Ṁ6

or, taking Ṁ3 = 1 and letting ω be the mass fraction of vapor,

1 = (1 − ω) + ω

for the mass balance, and

Ṁ3Ĥ3 = Ṁ5′Ĥ5′ + Ṁ6Ĥ6

Ĥ(T = 210 K, P = 100 bar)

= ω · Ĥ(T = 200 K, P = 1 bar) + (1 − ω) · Ĥ(saturated liquid, P = 1 bar)

493
kJ

kg
= ω · 770

kJ

kg
+ (1 − ω) · 70.7

kJ

kg

for the energy balance. The solution to this equation is ω = 0.604 as the fraction of vapor
that is recycled, and 0.396 as the fraction of liquid.

The balance equations for mixing the streams immediately before the compressor are

Ṁ5′ + Ṁ1 = Ṁ1′

and basing the calculation on 1 kg of flow into the compressor,

Ṁ1′ = 1 Ṁ5′ = 0.604 and Ṁ1 = 0.396

1In this equation saturated liquid refers to the fact that the phase is at its equilibrium (boiling) temperature at the
specified pressure.
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for the mass balance, and

Ṁ1′Ĥ1′ + Ṁ5′Ĥ5′ = Ṁ1′Ĥ1′

0.396 · Ĥ(T = 280 K, P = 1 bar)

+ 0.604 · Ĥ(T = 200 K, P = 1 bar) = Ĥ1′(T = ?, P = 1 bar)

0.396 · 940
kJ

kg
+ 0.604 · 770

kJ

kg
= 837.3

kJ

kg
= Ĥ(T = ?, P = 1 bar)

for the energy balance. Using the redrawn Fig. 3.3-2 here, we conclude that the temperature
of a stream entering the compressor is 233 K. To complete the solution to this problem, we
need to compute the compressor work load. Following the solution for part (a), we find for
the first stage that

Ĥin(T = 233 K, P = 1 bar) = 837 kJ/kg and

Ŝin(T = 233 K, P = 1 bar) = 6.8 kJ/(kg K)

Ĥout(Ŝ = 6.8 kJ/(kg K), P = 5 bar) = 1020 kJ/kg and Tout = 388 K

Therefore, now the first-stage work per kilogram of methane flowing through the compres-
sor is

Ẇ (first stage) = 1020 − 837 kJ/kg = 183 kJ/kg

Since the methane leaving the intercooler is at 280 K and 5 bar, the work in each of the
second and third stages of the compressor is the same as in part (a). Therefore, the total
compressor work is

Ẇ = 183 + 242 + 225 = 650 kJ/kg of methane through the compressor

However, each kilogram of methane through the compressor results in only 0.396 kg of
LNG, as the remainder of the methane is recycled. Consequently, the compressor work
required per kilogram of LNG produced is (650 kJ/kg)/0.396 kg = 1641 kJ/kg of LNG pro-
duced. This is to be compared with 4149 kJ/kg of LNG produced in the simple liquefaction
process.[
The Aspen Plus R© simulation for this illustration to solve the simple liquefaction process

with the Peng-Robinson equation of state is available on the Wiley website for this book
in the folder Aspen Illustrations>Chapter 5>5.1-1a+b. The results are as follows:

Compressor Work = 281.3(stage 1) + 260.6(stage 2) + 224.0(stage 3)

= 765.8(total)

Also, the fraction of the liquid leaving the flash unit is 0.164.
]

Comment

By comparing the Linde process with the simple liquefaction process we see the importance
and advantages of clever engineering design. In particular, the Linde process uses only about
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40 percent of the energy required in the simple process to produce a kilogram of LNG. Also,
unlike the simple process, the Linde process releases no gaseous methane, which is a greenhouse
gas that contributes to global warming, into the atmosphere. Finally, it should be pointed out that
since a graph of thermodynamic properties, rather than a more detailed table of values, was used,
the numerical values of the properties read from the diagram are approximate.

5.2 POWER GENERATION AND REFRIGERATION CYCLES

So far we have considered only the Carnot cycle for converting heat (produced by burn-
ing coal, oil, or natural gas) to work (usually electricity). While this cycle is the most
efficient possible for converting heat to work, in practice it is rarely used because of
the large amount of work that must be supplied during the isothermal compression
step. In this section other power generation and refrigeration cycles are introduced.
However, we consider only ideal such cycles, that is, those that are the most efficient,
theoretical implementations. In actual operation, the efficiency of these cycles will be
lower because of irreversibilities due to fluid friction, that there is not a step change
in temperature as modelled, but rather a more gradual temperature change in a heat
exchanger, that there is a variation in pressure not a step change in a pump or turbine,
and that there may be heat conduction in the device between the hot and cold parts.
Therefore, while different parts of the cycles to be considered are modelled here to be
isentropic, isothermal, adiabatic or at constant pressure, they will not be so in an actual
machine. Therefore the efficiencies computed here are upper bounds.
The most widely used commercial cycle is the Rankine cycle, shown in

Fig. 5.2-1 with water as the operating or so-called working fluid, though other flu-
ids may also be used. The Rankine cycle is used in most electrical power generation
plants. The cycle is closed in that the working fluid is continually recirculated with-
out any addition or removal. When the Rankine cycle is operated in reverse, as will
be described later, it is used in refrigeration plants, air conditioners, heat pumps and
refrigerators. Because of the temperatures involved, the working fluid in such cases is a
refrigerant such as a partially halogenated hydrocarbon such as 1,1,1,2 tetrafluoroethane
(HFC- 134a).
In this cycle the turbine and the pump are considered to operate isentropically, the

condenser operates isobarically, and the fluid in the boiler is heated at constant pressure.
The properties and path for this cycle are:

Rankine cycle

1

2

3

4

QB

WPWT

High-pressure
steam

Low-pressure
steam

High-pressure
water

Low-pressure
water

Boiler

Pump
Turbine

Condenser

QC Figure 5.2-1 Rankine cycle.
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Point Path to Next Point T P Ŝ Ĥ Energy Flow

1 T1 P1 Ŝ1 Ĥ1

Isentropic ↓ ẆP = ṀV̂1(P2 − P1)
2 T2 P2 Ŝ2 = Ŝ1 Ĥ2

Isobaric ↓ Q̇B

3 T3 P3 = P2 Ŝ3 Ĥ3

Isentropic ↓ ẆT = Ṁ(Ĥ4 − Ĥ3)
4 T4 P4 Ŝ4 = Ŝ3 Ĥ4

Isobaric ↓ Q̇C

1 T1 P1 = P4 Ŝ1 Ĥ1

The work flows in this process are computed as follows.

Step 1 → 2 (pump)
The mass and energy balances on the open system consisting of the pump and its
contents operating at steady state are

dM

dt
= 0 = Ṁ1 + Ṁ2 or Ṁ1 = −Ṁ2 = Ṁ

and

dU

dt
= 0 = Ṁ1Ĥ1 + Ṁ2Ĥ2 + ẆP

so that

ẆP = −Ṁ2Ĥ2 − Ṁ1Ĥ1 = Ṁ(Ĥ2 − Ĥ1)

= Ṁ1(Û2 + P2V̂2 − Û1 − P1V̂1)

= ṀV̂1(P2 − P1)

since the molar volume and internal energy of the liquid are essentially independent
of pressure at constant temperature.

Step 3 → 4 (turbine)

dM

dt
= 0 = Ṁ3 + Ṁ4 or Ṁ3 = −Ṁ4 = Ṁ

since the mass flow rate is constant throughout the process, and

dU

dt
= 0 = Ṁ3Ĥ3 − Ṁ4Ĥ4 + ẆT or ẆT = Ṁ(Ĥ4 − Ĥ3)

The efficiency η of this process (and other cyclic processes as well) is defined to be
the ratio of the net work obtained, here −(ẆT + ẆP), where ẆT is negative and ẆP

is positive in value, to the heat input Q̇B; that is,

η =
−(ẆT + ẆP)

Q̇B
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The plot of this cycle on a temperature–entropy diagram is such that 1 → 2 is a line
of constant entropy (vertical line), 2 → 3 is a line of constant pressure, 3 → 4 is another
line of constant entropy, and 4 → 1 closes the cycle with a line of constant temperature.
Several different locations for these lines, depending largely on the operation of the
boiler, are shown in Fig. 5.2-2.
Figure 5.2-2a looks like the T -Ŝ diagram for the Carnot cycle (Fig. 4.3-2c), and

indeed at these conditions the Rankine cycle has the same efficiency as the Carnot
cycle. The practical difficulty is that the high-speed turbine blades will severely erode
if impacted by liquid droplets. Therefore, step 3 → 4 should be completely in the vapor
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Figure 5.2-2 (a)–(d) T -Ŝ diagrams of various Rankine cycles. (e) Area equal to heat flow into
boiler. (f ) Area equal to heat removed in condenser. (g) Area equal to net work produced in
cycle.
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region, as in Fig. 5.2-2b and d. Also, to minimize the work required for the pump, the
fluid passing through it should be all liquid, as in Fig. 5.2-2c and d. Therefore, of the
choices in Fig. 5.2-2, the conditions in Fig. 5.2-2d are used for practical operation of
a Rankine power cycle. In this case, the efficiency is less than that of the Carnot cy-
cle. Also, the condenser operating temperature is generally determined by the available
cooling water. However, lower temperatures and pressures in the condenser improve
the efficiency of the cycle (see Problems 5.2 and 5.3).
As pointed out in Sec. 4.3, the differential entropy change dS and the heat flow Q for

a reversible process in a closed system are related as follows:

dS =
Q

T
or Q = T dS

so that the heat flows (and the work produced) are related to areas on the T -S diagram
for the Rankine power cycle as follows. The heat flow into the cycle on going from
point 2 to 3 is equal to

Q2→3 =
∫ 3

2

T dS

This heat flow is given by the area shown in Fig. 5.2-2e. Similarly, the heat flow from
point 4 to 1 is equal in magnitude to the area shown in Fig 5.2-2f, but negative in value
(since S4 is larger than S1). Finally, since from the energy balance, the net work flow
is equal to the difference of the two heat flows into the cycle, this work flow is given by
the area in Fig. 5.2-2g.
Similar graphical analyses can be done for the other cycles considered in this section,

though we will not do so.

Illustration 5.2-1
Calculating the Efficiency of a Steam Power Cycle

A Rankine power generation cycle using steam operates at a temperature of 100◦C in the con-
denser, a pressure of 3.0MPa in the evaporator, and amaximum temperature of 600◦C.Assuming
the pump and turbine operate reversibly, plot the cycle on a T -Ŝ diagram for steam and compute
the efficiency of the cycle.

Solution

We start by plotting the cycle on the temperature-entropy diagram for steam (Fig. 3.3-1b,
repeated below). Then we construct the table of thermodynamic properties (which follows) for
each point in the cycle using the known operating conditions and the path from each point in
the cycle to the next point. Based on this information, we can then compute the efficiency of
the cycle

η =
−(ẆT + ẆP)

Q̇B

=
−(−947.6 + 3.03)

3260.2
=

944.3

3260.2
= 0.290 or 29.0 percent
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(State) T P Ŝ Ĥ V̂
Point Path to Next Point (◦C) (MPa) (kJ/kgK) (kJ/kg) (m3/kg) Energy Flow

1 (Saturated liquid) 100 0.10135 1.3069 419.04 0.001044
↓

Isentropic ŴP = V̂1(P2 − P1)
= 0.001044 m3/kg
× (3.0 − 0.10135) MPa

= 3.03 kJ/kg
2 ∼ 103 3.0 1.3069 422.07

↑
Isobaric Q̂B = 3682.3 − 422.1

= 3260.2 kJ/kg
3 600 3.0 7.5085 3682.3

↓
Isentropic ŴT = (Ĥ4 − Ĥ3)

= 2734.7 − 3682.3
= −947.6 kJ/kg

4 ∼ 126.2 0.10135 7.5085 ∼ 2734.7
↑

Isobaric Q̂C = Ĥ1 − Ĥ4

= 419.04 − 2734.7
= −2315.7 kJ/kg

1 Saturated liquid 100 0.10135 1.3069 419.04

Note: In preparing this table we have used bold notation to indicate data given in the problem statement (e.g., 100◦C) or from information
on an adjacent point in the cycle (also indicated by arrows connecting two points), italics to indicate numbers found in the steam tables
(e.g., 0.10135 MPa), and a tilde to indicate numbers obtained from the steam tables by interpolation (e.g., ∼2734.7 kJ/kg).

[
Using an Aspen Plus R© simulation with the Peng-Robinson equation of state to solve this
illustration is available Wiley website for this book in the folder Aspen>Illustration 5.2-1.
The Aspen Plus R© simulation for this illustration available on the Wiley website for this book in
the folder Aspen Illustrations>Chapter 5>5.2-1 PR. The results are as follows:

Point T(◦C) P(MPa) Q(kJ/kg) W(kJ/kg)
1 Pump↓ 100.2 3.0 3.02
2 Boiler↓ 600 3.0 3334.4
3 Turbine↓ 129.6 0.1013 −942.6
4 Condenser 100.0 −2388.1

Using an Aspen Plus R© simulation with IAPWS-95 thermodynamic properties of water and
streamto solve this illustration is available Wiley website for this book in the folder Aspen
Illustrations>Chapter 5>5.2-1 IAPWS-95. The results are as follows:

Point T(◦C) P(MPa) Q(kJ/kg) W(kJ/kg)
1 Pump↓ 100.2 3.0 3.02
2 Boiler↓ 600 3.0 3260.6
3 Turbine↓ 129.6 0.1013 −946.9
4 Condenser 100.0 −2316.7

Those results are in excellent agreement with the results obtained using the stream tables.
]

The Rankine power cycle above receives heat at a high temperature, emits it at a lower
temperature, and produces work. (Does this cycle violate the Kelvin-Planck statement
of the second law? The answer is no since there are two heat flows, one into the cycle
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from a hot body, and the second from the cycle into a cooler body or cooling water.
Consequently, not all the heat available at high temperature is converted into work,
only a portion of it.) A similar cycle, known as the Rankine refrigeration cycle, operates
essentially in reverse by using work to pump heat from a low-temperature region to a
high-temperature region. This refrigeration cycle is shown in Fig. 5.2-3a.
In a home refrigerator the condenser is the air-cooled coil usually found at the bottom

or back of the refrigerator, and the evaporator is the cooling coil located in the freezer
section. Here the compressor and the turbine are considered to operate isentropically,
and the condenser and evaporator to operate at constant pressure. Frequently, and this
is the case we consider here, the condenser receives a two-phase mixture and emits a
saturated liquid at the same pressure. The properties and path for this cycle are given
in the following table.
Schematic diagrams of the path of this cycle on both T -Ŝ and P -Ĥ diagrams are

shown in Fig. 5.2-3b.
As in the previous case, the mass flow is the same in all parts of the cycle, and we

designate this by Ṁ . The steady-state energy balance around the evaporator and its
contents yields

0 = ṀĤ2 − ṀĤ3 + Q̇B or Q̇B = Ṁ(Ĥ3 − Ĥ2)

The energy balance on the compressor is

0 = ṀĤ3 − ṀĤ4 + ẆP or ẆP = Ṁ(Ĥ4 − Ĥ3)

Refrigeration cycle
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Figure 5.2-3 (a) The Rankine refrigeration cycle. (b) The Rankine refrigeration
cycle on T -Ŝ and P -Ĥ diagrams.
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The energy balance on the condenser is

0 = ṀĤ4 − ṀĤ1 + Q̇C or Q̇C = Ṁ(Ĥ1 − Ĥ4)

(State)
Point Path to Next Point T P Ŝ Ĥ Energy Flow

1 (Saturated liquid) T1 P1 Ŝ1 Ĥ1

Isentropic ↓ ẆT

2 (Vapor-liquid mix.) T2 P2 Ŝ2 = Ŝ1 Ĥ2

Isobaric ↓ ↓ Q̇B

[also isothermal
in this case]

3 (Saturated vapor) T3 = T2 P3 = P2 Ŝ3 Ĥ3

Isentropic ↓ ẆP

4 (Superheated vapor) T4 P4 Ŝ4 = Ŝ3 Ĥ4

Isobaric ↓ Q̇C

1 T1 P1 = P4 Ŝ1 Ĥ1

and the energy balance on the turbine is

0 = ṀĤ1 − ṀĤ2 + ẆT or ẆT = Ṁ(Ĥ2 − Ĥ1)

In refrigeration it is common to use the term coefficient of performance (C.O.P.),
defined as

C.O.P. =
Heat removed from low-temperature region

Net work required for heat removal
= − Q̇B

ẆP + ẆT

rather than efficiency (as was used in the Rankine power generation cycle). For the cycle
shown here, we have

C.O.P. =
Q̇B

ẆP + ẆT

=
Ĥ3 − Ĥ2

(Ĥ4 − Ĥ3) + (Ĥ2 − Ĥ1)

The amount of work recovered in the expansion turbine of the Rankine refrigera-
tion cycle is small. Consequently, to simplify the design and operation of refrigerators
and small air-conditioning units, and to reduce the number of moving parts in such
equipment, it is common to replace the expansion turbine with an expansion valve,
capillary tube, orifice, or other partial obstruction so that the refrigerant undergoes a
Joule-Thomson expansion, rather than an isentropic expansion, between points 1 and 2
in the cycle. Such a cycle is shown in Fig. 5.2-4a. The properties and path for this cycle
are given in the table below. This cycle is referred to as the vapor-compression refrig-
eration cycle, and is more commonly used than the Rankine refrigeration cycle. Note
that the net process in both the Rankine and vapor-compression refrigeration cycles is
to use work to remove heat from a low-temperature source and exhaust it to a reservoir
at a higher temperature.
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The compressor in this cycle is considered to operate isentropically, the expansion
valve results in a Joule-Thomson (isenthalpic) expansion, and the condenser and evap-
orator operate at constant pressure. Here we consider the case in which the condenser
receives a two-phase mixture and emits a saturated liquid at the same pressure; conse-
quently, the condenser also operates at constant temperature. The properties and path
for this cycle are given in the table.

(State)
Point Path to Next Point T P Ŝ Ĥ Energy Flow

1 (Saturated liquid) T1 P1 Ŝ1 Ĥ1

Isenthalpic ↓ 0
2 (Vapor-liquid mixture) T2 P2 Ŝ2 Ĥ2 = Ĥ1

Isobaric heating ↓ ↓ Q̇B

[also isothermal
in this case]

3 (Saturated vapor) T3 = T2 P3 = P2 Ŝ3 Ĥ3

Isentropic ↓ ẆP

4 (Superheated vapor) T4 P4 Ŝ4 = Ŝ3 Ĥ4

Isobaric ↓ − Q̇C

1 T1 P1 = P4 Ŝ1 Ĥ1

1

2

3

4

QC

QB

WP

Evaporator
(or boiler)

Condenser

Expansion
valve

Low-pressure 
vapor Low-pressure

vapor-liquid
mixture

High-pressure
liquid

High-pressure
vapor

Compressor 

(a)

T P

S
^

H
^

4

4

3 32 2

1 1

(b)

Figure 5.2-4 (a) The vapor-compression refrigeration cycle. (b) The
vapor-compression refrigeration cycle on T -Ŝ and P -Ĥ diagrams.
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Schematic T -Ŝ and P -Ĥ diagrams of the path of this cycle are shown in Fig. 5.2-4b.
The mass flow is the same in all parts of the cycle, and we designate this by Ṁ . The
steady-state energy balance around the evaporator and its contents yields

0 = ṀĤ2 − ṀĤ3 + Q̇B or Q̇B = Ṁ(Ĥ3 − Ĥ2)

The energy balance on the compressor is

0 = ṀĤ3 − ṀĤ4 + ẆP or ẆP = Ṁ(Ĥ4 − Ĥ3)

and the energy balance on the condenser is

0 = ṀĤ4 − ṀĤ1 + Q̇C or Q̇C = Ṁ(Ĥ1 − Ĥ4)

The coefficient of performance (C.O.P.) for the vapor-compression refrigeration
cycle is

C.O.P. =
Heat removed from low-temperature region
Net work required for that heat removal

=
Q̇B

ẆP

=
Ĥ3 − Ĥ2

Ĥ4 − Ĥ3

Illustration 5.2-2
Calculating the Coefficient of Performance of an Automobile Air Conditioner

An automobile air conditioner uses a vapor-compression refrigeration cycle with the environ-
mentally friendly refrigerant HFC-134a as the working fluid. The following data are available
for this cycle.

Point Fluid State Temperature

1 Saturated liquid 55◦C
2 Vapor-liquid mixture
3 Saturated vapor 5◦C
4 Superheated vapor

a. Supply the missing temperatures and the pressures in the table.
b. Evaluate the coefficient of performance for the refrigeration cycle described in this

problem.

Solution

The keys to being able to solve this problem are (1) to identify the paths between the various
locations and (2) to be able to use the thermodynamic properties chart of Fig. 3.3-4 for HFC-134a
to obtain the properties at each of the locations. The following figure shows the path followed
in the cycle, and the table provides the thermodynamic properties for each stage of the cycle as
read from the figure.
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With this information, the C.O.P. is

C.O.P. =
Q̇B

Ẇ
=

Ĥ3 − Ĥ2

Ĥ4 − Ĥ3

=
402 − 280

432 − 402
= 4.07

[
Since an equation of state specific to HFC-134a is not available, the Peng-Robinson equa-
tion (See Chapter 6) will be used. To proceed, we need to know the equilibrium pressures for
HFC-134a as predicted by the Peng-Robinson equation of state. To calculate these use Analy-
sis > Pure, and choose PL as the property we find at 5◦C the vapor pressure is 3.484 bar =
0.3484 MPa and at 55◦C the vapor pressure is 14.96 bar = 1.496 MPa. Using these results in
the simulation, the following is obtained

Point T (◦C) P (MPa) Q (Watts) W (Watts)
1 Condenser 55 1.496 −152.84
2 Valve 5 0.348
3 Boiler 5 0.348 +122.31
4 Pump 58.9 1.496 30.53

(Results for Q and W based on 1kg/sec flow.) The coefficient of performance is

C.O.P =
122.31

30.53
= 4.01

in good agreement with the hand calculation using the results of using the thermodynamic prop-
erties chart for HFC-134a.

Also an Aspen Plus R© simulation with the Peng-Robinson equation of state is available Wiley
website for this book in the folder Aspen>Illustration 5.2-2.

]
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Point State Path T (◦C) P (MPa) Ĥ (kJ/kg) Ŝ (kJ/kg K)

1 Saturated 55 1.493 280 1.262
liquid

Isenthalp to 5◦C ↓
2 Vapor-liquid 5 0.350 280 1.30

mixture
P constant ↑

3 Saturated 5 0.350 402 1.725
vapor

Isentrope to 1493 kPa ↓
4 Superheated 60 1.493 432 1.725

vapor
P constant ↑

1 Saturated 55 1.493 280 1.262
liquid

In this table the numbers in boldface are properties known from the problem statement or from an adjacent
step in the cycle (i.e., a process that is at constant pressure as in steps 2 → 3 and 4 → 1, at constant enthalpy
as in step 1 → 2, or at constant entropy as in step 3 → 4). The numbers in italics are found from Fig. 3.3-4
with the state of the refrigerant fixed from the values of the known variables.

Stirling cycle
A large number of other cycles and variations to the standard cycles considered above

have been proposed. We consider only a few additional cycles here. The Stirling cycle,
shown in Fig. 5.2-5, operates with a vapor-phase working fluid, rather than a two-phase
mixture as in the cycles considered above. In Stirling cycle the compressor and turbine,
which are on the same shaft, are cooled and heated, respectively, in order to operate
isothermally. The heat exchanger operates isochorically (that is, at constant volume).
In many implementations, the compressor is replaced by a simple gas-phase pump, and
the turbine by any work-receiving device such as a flywheel. The Stirling cycle has the
advantages that it is reasonably simple to construct, and any form of heat source can
be used, including solar energy. The P -V̂ and T -Ŝ traces of this cycle are shown in
Fig. 5.2-6. The properties and path are shown in the table.

Point Path to Next Point T P V̂ Ĥ Energy Flow

1 T1 P1 V̂1 Ĥ1

V̂ = constant ↓ Q̇12

2 T2 P2 V̂2 = V̂1 Ĥ2

T = constant ↓ Q̇T, −Ẇ23

3 T3 = T2 P3 V̂3 Ĥ3

V̂ = constant ↓ −Q̇34 = Q̇12

4 T4 P4 V̂4 = V̂3 Ĥ4

T = constant ↓ −Q̇C, −Ẇ41

1 T1 = T4 P1 V̂1 Ĥ1

Wout

QC

QTRegenerator or
heat exchanger

Isothermal
compressor

Isothermal
turbine

3

2
1

4

Figure 5.2-5 The Stirling
cycle.
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Figure 5.2-6 The Stirling cycle on P-V̂ and T -Ŝ diagrams.

From an energy balance on stream 3 in the regenerator, we have (at steady state)

0 = ṀĤ3 − ṀĤ4 + Q̇34

and on stream 1

0 = ṀĤ1 − ṀĤ2 + Q̇12

Adding these two equations and noting that Q̇12 + Q̇34 = 0, since there is no net heat
flow into or out of the heat exchanger, gives

(Ĥ3 − Ĥ4) + (Ĥ1 − Ĥ2) = 0

An energy balance on the compressor (4 → 1) gives

Ṁ(Ĥ4 − Ĥ1) + Ẇ41 + Q̇C = 0

and on the turbine (2 → 3) gives

Ṁ(Ĥ2 − Ĥ3) + Ẇ23 + Q̇T = 0

Adding these last two equations together gives

Ṁ(Ĥ4 − Ĥ1) + Ṁ(Ĥ2 − Ĥ3) + (Ẇ41 + Ẇ23) + Q̇C + Q̇T = 0

From the balance equation on the heat exchanger, the first two terms cancel. Also,
Ẇ41 + Ẇ23 is equal to Ẇout. Thus we obtain

Ẇout + Q̇C + Q̇T = 0

Therefore, the efficiency of this Stirling cycle, η, is

η =
−Ẇout

Q̇T

=
Ẇout

Ẇout + Q̇C

=
−Ẇ23 − Ẇ41

Q̇T

Ericsson cycle The Ericsson cycle is similar to the Stirling cycle except that each of the streams in
the regenerator is at a constant (but different) pressure rather than at a constant volume.
The P -V̂ and T -Ŝ traces are shown in Fig. 5.2-7.
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Figure 5.2-7 The Ericsson cycle on P-V̂ and T -Ŝ diagrams.

The properties and path are given in the following table.

Point Path to Next Point T P Ĥ Energy Flow

1 T1 P1 Ĥ1

P = constant ↓ Q̇12

2 T2 P2 = P1 Ĥ2

T = constant ↓ Q̇T, −Ẇ23

3 T3 = T2 P3 Ĥ3

P = constant ↓ −Q̇34 = Q̇12

4 T4 P4 = P3 Ĥ4

T = constant ↓ −Q̇C, −Ẇ41

1 T1 = T4 P1 Ĥ1

The balance equations are exactly as for the Stirling cycle, so that the efficiency is

η =
−Ẇout

Q̇T

=
−Ẇ23 − Ẇ41

Q̇T

=
−Wout

Q̇C + Wout

Indeed, the only computational difference between the Stirling and Ericsson cycles is
that the thermodynamic properties at the various points of the cycle are slightly different
because of the difference between the constant-pressure and constant-volume paths.

Illustration 5.2-3
Calculating the Efficiency of an Ericsson Cycle

An Ericsson cycle with air as the working fluid is operating between a low temperature of 70◦C
and a high temperature of 450◦C, a low pressure of 2 bar, and a pressure compression ratio of 8
(so that the high pressure is 16 bar). Assume that at these conditions air can be considered to be
an ideal gas with C∗

P constant. Compute the properties at each point in each of these cycles and
the cycle efficiencies.

Solution

We first compute the energy flows in each step of the process. In this analysis the process is at
steady state so that all the time derivatives are equal to zero and the mass flow rate Ṁ (actually
we will use the molar flow rate Ṅ ) is constant throughout the process.

1 → 2 Through the regenerative heat exchanger
Energy balance:

0 = ṄH1 − ṄH2 + Q̇12 or
Q̇12

N
= (H2 − H1) = C∗

P(T2 − T1)
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2→ 3 Through the isothermal turbine
Energy balance:

0 = ṄH2 − ṄH3 + Q̇T + Ẇ23

Entropy balance:

0 = ṄS2 − ṄS3 +
Q̇T

T

or

Q̇T

Ṅ
= T2(S3 − S2) = T2

[
C∗

P ln
T3

T2

− R ln
P3

P2

]
= −RT2 ln

P3

P2

≡ −RT2 ln KT

where KT = P3/P2 is the compression ratio of the turbine. Consequently,

Ẇ23

Ṅ
= H3 − H2 −

Q̇T

Ṅ
= C∗

P(T3 − T2) + RT2 ln KT = RT2 ln KT

3→ 4 Through the regenerative heat exchanger
Energy balance:

0 = ṄH3 − ṄH4 + Q̇34 or
Q̇34

Ṅ
= H4 − H3 = C∗

P(T4 − T3)

However,

Q̇12 = −Q̇34

which implies (since C∗
P is constant) that T2 − T1 = T3 − T4. Also, since both the

compressor and turbine are isothermal (so that T2 = T3 and T4 = T1), the temperature
decrease of stream 1 exactly equals the temperature increase of stream 3 for this case
of an ideal gas of constant heat capacity.

4→ 1 Isothermal compressor
As for the isothermal turbine, we find

Q̇C

Ṅ
= RT1 ln

P1

P4

and
Ẇ41

Ṅ
= RT1 ln

P1

P4

The efficiency of this cycle is

η =
−Ẇout

Q̇T

=
−(Ẇ23 + Ẇ41)

Q̇T

=

[
RT2 ln

P3

P2

+ RT1 ln
P1

P4

]

RT2 ln
P3

P2

Since each of the streams in the heat exchanger operates at constant pressure, it
follows that P3 = P4 and P2 = P1. Therefore,

η =

[
RT2 ln

P3

P2

+ RT1 ln
P1

P3

]

RT2 ln
P3

P2

=
T2 − T1

T2
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As T2 is the high temperature of the cycle and T1 is the low temperature, this efficiency
is exactly equal to the Carnot efficiency. (Indeed, it can be shown that for any cycle,
if the two heat transfers to the surroundings occur at different but constant tempera-
tures, as is the case here with an isothermal compressor and an isothermal turbine, the
efficiency of the cycle will be that of a Carnot cycle.)

Therefore, the efficiency of the Ericsson cycle considered here is

η =
(450 + 273.15) − (70 + 273.15)

(450 + 273.15)
= 0.525

Note that the efficiency is dependent on the temperatures of the various parts of the cycle, but
not on the pressures or the compression ratio. However, the pressure ratio does affect the heat
and work flows in each part of the cycle.

Illustration 5.2-4
Calculating the Efficiency of a Stirling Cycle

Compute the efficiency of a Stirling cycle operating under the same conditions as the Ericsson
cycle above.

Solution

The terms for each of the steps in the Stirling cycle are the same as for the Ericsson cycle;
however, the properties are slightly different since in this case the heat exchanger (regenerator)
operates such that each of its streams is at constant volume, not constant pressure. Therefore,
rather than P2 = P1 as in the Ericsson cycle, here we have (by the ideal gas law) P2 = P1T2/T1.
Similarly, P4 = P3T4/T3. Therefore,

η =
−Ẇout

Q̇T

=

RT2 ln
P3

P2

+ RT1 ln
P1

P4

RT2 ln
P3

P2

=

RT2 ln
P3

P2

+ RT1 ln
P2T1/T2

P3T4/T3

RT2 ln
P3

P2

=

RT2 ln
P3

P2

+ RT1 ln
P2

P3

RT2 ln
P3

P2

=
T2 − T1

T2

Since T2 = T3 and T1 = T4, both the compressor and turbine operate isothermally. Therefore,
the efficiency of the Stirling cycle is also equal to that of the Carnot cycle. For the operating
conditions here, η = 0.525.

A common method of producing mechanical work (usually for electrical power gen-
eration) is to use a gas turbine and the Brayton or gas turbine power cycles. This open
cycle consists of a compressor (on the same shaft as the turbine), a combustor in which
fuel is added and ignited to heat the gas, and a turbine that extracts work from the
high-temperature, high-pressure gas, which is then exhausted to the atmosphere. The
open-cycle gas turbine is used, for example, in airplane jet engines and in some trucks.
This cycle is shown in Fig. 5.2-8.
In this cycle the compressor and turbine are assumed to operate isentropically, and

the gas flow through the combustor is at constant pressure. Note that the temperatures
of streams 1 and 4 may not be the same, though the pressures are both atmospheric.
The closed gas turbine cycle is shown in Fig. 5.2-9. Closed cycles are typically used

in nuclear power plants, where the heating fluid in the high-temperature heat exchanger
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Figure 5.2-8 The open Brayton power cycle.

is the reactor cooling fluid, which for safety and environmental reasons must be con-
tained within the plant, and the low-temperature coolant is river water. The properties
and path for this cycle are given below.

Point Path to Next Point T P S H Energy Flow

1 T1 P1 S1 H1

Isentropic ↓ Ẇ12

2 T2 P2 S2 = S1 H2

Isobaric ↓ Q̇23

3 T3 P3 = P2 S3 H3

Isentropic ↓ Ẇ34

4 T4 P4 S4 = S3 H4

Isobaric ↓ Q̇41

1 T1 P1 = P4 S1 H1

Closed Brayton cycle

WT

High-temperature
heat exchanger

Low-temperature
heat exchanger

Compressor Turbine

4

32

1

Figure 5.2-9 The closed Brayton power
generation cycle.
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Illustration 5.2-5
Calculating the Efficiency of a Brayton Cycle

Assuming the working fluid in a Brayton power cycle is an ideal gas of constant heat capacity,
show that the efficiency of the cycle is

η =
−(Ẇ34 − Ẇ12)

Q̇23

and obtain an explicit expression for the efficiency in terms of the cycle temperatures.

Solution

For path 1 → 2, through the compressor, we have from the energy balance that

Ẇ12

Ṅ
= H2 − H1 = C∗

P(T2 − T1)

Also from S2 = S1, we have

0 = C∗
P ln

T2

T1

− R ln
P2

P1

or
T2

T1

=

(
P2

P1

)R/C∗
P

Similarly, across the gas turbine, 3 → 4, we have

Ẇ34

Ṅ
= H 4 − H3 = C∗

P(T4 − T3)

and
T4

T3

=

(
P4

P3

)R/C∗
P

But P3 = P2 and P4 = P1, so that

T4

T3

=

(
P4

P3

)R/C∗
P

=

(
P1

P2

)R/C∗
P

=
T1

T2

Across the high-temperature heat exchanger, 2 → 3, we have

0 = ṄH2 − ṄH3 + Q̇23

or
Q̇23

Ṅ
= H3 − H2 = C∗

P(T3 − T2)

Similarly, across the low-temperature heat exchanger, 4 → 1,

Q̇41

Ṅ
= H1 − H4 = C∗

P(T1 − T4)

Therefore,

η = − (Ẇ34 + Ẇ12)

Q̇23

=
−C∗

P(T4 − T3) − C∗
P(T2 − T1)

C∗
P(T3 − T2)

=
(T3 − T4) + (T1 − T2)

T3 − T2

=
(T3 − T2) − (T4 − T1)

(T3 − T2)
= 1 − (T4 − T1)

(T3 − T2)

= 1 − T1

T2

(
T4

T1

− 1

)
(

T3

T2

− 1

)
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However, from T4/T3 = T1/T2, we have that T4/T1 = T3/T2, so that

η = 1 − T1

T2

= 1 −
(

P1

P2

)R/C∗
P

= 1 − K
−R/C∗

P
T

where KT = P2/P1 is the compression ratio.

The most ubiquitous implementation of the open Brayton cycle is the jet engine on
airplanes. There air is taken in through the compressor at the front of the engine, mixed
with fuel and ignited in the combustion region, and the resulting high temperature,
high pressure gas is released through the exit turbine that is on the same shaft as the
compressor. Here the turbine is designed to produce only the power needed to drive
the inlet compressor, while most of the energy in the process goes to produce a high
velocity exhaust gas that provides the thrust to drive the aircraft.
The final cyclic device we consider is the heat pump, that is, a device used to pump

heat from a low-temperature source to a high-temperature sink by expending work.
Refrigerators and air conditioners are examples of heat pumps. Heat pumps (with ap-
propriate valving) are now being installed in residential housing so that they can be used
for both winter heating (by pumping heat to the house from its surroundings) and sum-
mer cooling (by pumping heat from the house to the surroundings). The surroundings
may be either the atmosphere, the water in a lake, or, with use of underground coils,
the earth. The term pumping is used since in both the winter and summer modes, heat
is being taken from a region of low temperature and exhausted to a region of higher
temperature. In principle, any power generation or refrigeration cycle that can be made
to operate in reverse can serve as a heat pump.
A heat pump that uses the vapor-compression refrigeration cycle and two connected

(so that they operate together) three-way valves is schematically shown in Fig. 5.2-10.
In this way the indoor coil is the condenser during the winter months and the evaporator
or boiler during the summer. Similarly, the outdoor coil is the evaporator (boiler) during
the winter and the condenser during the summer. The vapor compression refrigeration
cycle was discussed earlier in this section, and the paths on T-Ŝ and P-Ĥ plots are given
in Fig. 5.2-4b.

Heat pump
Heating cycle

Compressor 

Outdoor
coil

Indoor
coil

Joule-Thomson (isenthalpic)
expansion valve or capillary tube

Joule-Thomson (isenthalpic)
expansion valve or capillary tube

Cooling cycle

Compressor 

Outdoor
coil

Indoor
coil

4

3

12

4

3

21

Figure 5.2-10 Heat pump in heating (winter) and cooling (summer) cycles.
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Illustration 5.2-6
Calculating the Coefficients of Performance of a Heat Pump

Consider a residential heat pump that uses lake water as a heat source in the winter and as a heat
sink in the summer. The house is to be maintained at a winter temperature of 18◦C and a summer
temperature of 25◦C. To do this efficiently, it is found that the indoor coil temperature should be
at 50◦C in the winter and 5◦C in the summer. The outdoor coil temperature can be assumed to
be 5◦C during the winter months and 35◦C during the summer.

a. Compute the coefficient of performance of a reverse Carnot cycle (Carnot cycle heat pump)
in the winter and summer if it is operating between the temperatures listed above.

b. Instead of the reverse Carnot cycle, a vapor-compression cycle will be used for the heat
pump with HFC-134a as the working fluid. Compute the winter and summer coefficients
of performance for this heat pump. Assume that the only pressure changes in the cycle
occur across the compressor and the expansion valve, and that the only heat transfer to and
from the refrigerant occurs in the indoor and outdoor heat transfer coils.

Heating Cooling
Point Temperature Temperature Fluid State

1 50◦C 35◦C Saturated liquid
2 Vapor-liquid mixture
3 5◦C 5◦C Saturated vapor
4 Superheated vapor

Solution

a. Carnot cycle coefficients of performance:

Q1 Q2

T2
T1

T1 < T2

W

The energy balance on the cycle is

0 = Q̇1 + Q̇2 + Ẇ

The entropy balance is

0 =
Q̇1

T1

+
Q̇2

T2

since Sgen = 0 for the Carnot cycle. Therefore,

Q̇2 =
−T2

T1

Q̇1 and −Ẇ = Q̇2 + Q̇1 = Q̇1

(
T1 − T2

T1

)

Winter Operation (Heating Mode)

C.O.P. (winter) =
−Q̇1

Ẇ
=

T1

T2 − T1

=
(5 + 273.15)

45
= 6.18
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Summer Operation (Cooling Mode):

C.O.P. (summer) =
Q̇1

Ẇ
=

T1

T2 − T1

=
(5 + 273.15)

30
= 9.27

b. Vapor compression cycle coefficients of performance:
The following procedure is used to locate the cycles on the pressure-enthalpy diagram of

Fig. 3.3-4, a portion of which is repeated here. First, point 1 is identified as corresponding
to the saturated liquid at the condenser temperature. (In this illustration the condenser is
the indoor coil at 50◦C in the heating mode, and the outdoor coil at 35◦C in the cooling
mode.) Since the path from point 1 to 2 is an isenthalpic (Joule-Thomson) expansion, a
downward vertical line is drawn to the evaporator temperature (corresponding to the out-
door coil temperature of 5◦C in the heating mode, or in the cooling mode to the indoor coil
temperature, which also happens to be 5◦C in this illustration). This temperature and the
enthalpy of point 1 fix the location of point 2. Next, point 3 is found by drawing a horizontal
line to the saturated vapor at the evaporator pressure. The path from point 2 to 3 describes
the vaporization of the vapor-liquid mixture that resulted from the Joule-Thomson expan-
sion. The evaporator is the outdoor coil in the heating mode and the indoor coil in the
cooling mode.

The path from point 3 to 4 is through the compressor, which is assumed to be isentropic,
and so corresponds to a line of constant entropy on the pressure-enthalpy diagram. Point 4 is
located on this line at its intersection with the horizontal line corresponding to the pressure
of the evaporator. The fluid at point 4 is a superheated vapor. The path from 4 to 1 is a
horizontal line of constant pressure terminating at the saturated liquid at the temperature
and pressure of the condenser.

The tables below give the values of those properties (read from the pressure-enthalpy
diagram) at each point in the cycle needed for the calculation of the coefficient of per-
formance in the heating and cooling modes of the heat pump. In these tables the proper-
ties known at each point from the problem statement or from an adjacent point appear in
boldface, and the properties found from the chart at each point appear in italics.

Heating (winter operation)

Point T (◦C) P (MPa) Condition Ĥ

(
kJ

kg

)
Ŝ

(
kJ

kg K

)

1 50 1.319 Saturated liquid 271.9
↓

2 5 0.3499 Vapor-liquid mixture 271.9
↓

3 5 0.3499 Saturated vapor 401.7 1.7252
↓

4 58 1.319 Superheated vapor 432 1.7252

Therefore,

−Q̇23

Ṁ
= Ĥ3 − Ĥ2 = (407.1 − 271.9)

kJ

kg
= 129.8

kJ

kg

Ẇ34

Ṁ
= Ĥ4 − Ĥ3 = (432 − 401.7)

kJ

kg
= 30.3

kJ

kg

and

C.O.P. =
129.8

30.3
= 4.28
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Cooling (summer operation)

Point T (◦C) P (MPa) Condition Ĥ

(
kJ

kg

)
Ŝ

(
kJ

kg K

)

1 35 0.8879 Saturated liquid 249.2
↓

2 5 0.3499 Vapor-liquid mixture 249.2
↓

3 5 0.3499 Saturated vapor 401.7 1.7252
↓

4 45 0.8879 Superheated vapor 436 1.7252

Consequently, here

Q̇23

Ṁ
= Ĥ3 − Ĥ2 = (401.7 − 249.2)

kJ

kg
= 152.5

kJ

kg

Ẇ34

Ṁ
= Ĥ4 − Ĥ3 = (436 − 401.7)

kJ

kg
= 34.3

kJ

kg

and

C.O.P. =
152.5

34.3
= 4.45

Note that in both the heating and cooling modes, the heat pump in this illustration has
a lower coefficient of performance (and therefore lower efficiency) than a reverse Carnot
cycle operating between the same temperatures. Finally, it should be mentioned that the
thermodynamic properties listed abovewere obtained from a detailed thermodynamic prop-
erties table for HFC-134a, akin to the steam tables for water in Appendix A.III; values
cannot be obtained from Fig. 3.3-4 to this level of accuracy.

As in Illustration 5.2-2 Aspen Plus R© with the Peng-Robinson equation of state will be
used. To use the folder Aspen Illustration>Chapter 5>5.2-6 on the Wiley website for this
book it is necessary to compute the vapor pressures of HFC-134a as predicted by equation
of state at 5◦C, 35◦C and 50◦C. These are computed using Properties > Pure option in
Aspen Plus R© which predicts the following

T (◦C) P (MPa)
5 0.3484

35 0.8864
50 1.3205

Winter
Point T (◦C) P (MPa) Q (Watts) W (Watts)
1 Condenser 50 1.3205 −158276
2 Valve 5 0.3484
3 Boiler 5 0.3484 130762
4 Compressor 56.4 1.3205 2796.4

C.O.P =
130762

27964
= 4.676

Summer
Point T (◦C) P (MPa) Q (Watts) W (Watts)
1 Condenser 35 0.8864 −174316
2 Valve 5 0.3484
3 Boiler 5 0.3484 154692
4 Compressor 37.3 0.8864 19625
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5.3 THERMODYNAMIC EFFICIENCIES

We have so far considered the operations of adiabatic turbines (work-producing
devices) and compressors to be completely efficient, that is that there are no energy
losses in the process. However, real turbines and compressors are not 100% efficient,
and two measures of efficiency are commonly used.
The first efficiency measure is the isentropic efficiency that compares the work out of

a turbine or the work required in a compressor with that if the process were isentropic.
the isentropic work obtained from a turbine expanding a fluid from T1 and P1 to an
outlet pressure P2 is obtained by first computing T2,S where the subscript S is used
to indicate this temperature is found along a path of constant entropy. The isentropic
work, WS , is then

WS = Ĥ(T2,S, P2) − Ĥ(T1, P1) (5.3-1)

The actual work obtained is

WA = Ĥ(T2, P2) − Ĥ(T1, P1) (5.3-2)

where T2 is the actual measured temperature. The isentropic efficiency, η, for a turbine
is the

η =
actual work

isentropic work
=

Ĥ(T2, P2) − Ĥ(T1, P1)
Ĥ(T2,S, P2) − Ĥ(T1, P1)

(5.3-3)

So if the isentropic efficiency of a turbine is given, one proceeds as follows to determine
the work obtained and fluid exit temperature:

a) Determine the exit temperature of the fluid assuming the process is isentropic
b) Compute the ideal work obtained using Eq. (5.3-1)
c) Compute the actual work obtained using the specified isentropic efficiency from

WA = ηWS = η(Ĥ(T2,S, P2) − Ĥ(T1, P1)) (5.3-4)

d) the final enthalpy is computed from

Ĥ(T2,S, P2) = W + Ĥ(T1, P1)) (5.3-5)

and
e) the final temperature is computed using the known pressure and the final enthalpy.

Illustration 5.3-1
Effect of Turbine Efficiency

Steam at 500◦C and 10 bar is expanded in an adiabatic turbine 1 bar.

(a) Compute the final temperature of the steam and work obtained if the process is 100%
efficient.

(b) Compute the final temperature of the steam and work obtained if the process has an isen-
tropic efficiency of 85%.

Solution

a) From the steam tables, the thermodynamic properties of the initial state are

Ĥ(T = 500◦C, 1.0 MPa) = 3478.5 kJ/kg and

Ŝ(T = 500◦C, 1.0 MPa) = 7.7622 kJ/kg K
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The final fluid conditions are

P = 0.1 MPa and Ŝ = 7.7622 kJ/kg K

Interpolating from the data in the steam tables, we have T = 183.7◦C and
H = 2843.0 kJ/kg therefore,

WS = 2843.0 − 3478.5 kJ/kg = −635.5 kJ/kg

of work produced by the isentropic turbine
b) For the non-isentropic turbine the work obtained is

WA = 0.85 WS = −540.2 kJ/kg

and the final enthalpy = 3478.5 − 540.2 = 2938.3 kJ/kg. At 0.1 MPa, this enthalpy
corresponds to a temperature of 238◦C.

Comment

Note that less work is obtained from the non-isentropic turbine. Since energy is conserved, a
greater portion of the energy in the initial steam now appears in the exiting steam in the form of
a higher temperature.

Isentropic work WS and the actual work WA required in a compressor are also com-
puted from Eqs. 5.3-1 and 2 respectively. However, the compressor efficiency is defined
to be

η =
isentropic work
actual work

=
Ĥ(T1,S, P2) − Ĥ(T1, P1)
Ĥ(T2, P2) − Ĥ(T1, P1)

(5.3-6)

Illustration 5.3-2
Analysis of compressor operation

An ideal gas with a constant pressure heat capacity of 30 kJ/kg K is to be compressed from
1 bar and 25◦C to 10 bar.

(a) Compute the final temperature of the gas and the work required if the compressor operates
isentropically

(b) Compute the final temperature of the gas and the work required if the compressor has an
isentropic efficiency of 75%.

Solution

(a) For an isentropic process, from Eq. 4.4-3

C∗
P ln

T2

T1

= R ln

(
P2

P1

)

or

T2,S = T1

(
P2

P1

)R/C∗
P



5.3 Thermodynamic Efficiencies 183

so that T2,S = 564.38 K and

W = C∗
P(T2,S − 298.15)

= 30(564.38 − 298.15) = 7986.8 kJ/kg

(b) Here WA = 7986.8/0.75 = 106490.0 kJ/kg. Therefore, T2 =
10649.0

30
+ 298.15 =

653.1 K

Comment

In this case more work is required to compress the gas than with a isentropic compressor, and
this extra work requirement results in a higher gas exit temperature.

Another measure of thermodynamic efficiency is the polytropic efficiency.
A polytropic process is one in which

PV̂ n = constant or P1V̂
n
1 = P2V̂

n
2 (5.3-7)

where n is the polytropic index. If n = 0 the process is at constant pressure (isobaric),
if n = 1 the process is isothermal (for an ideal gas), if n = CP/CV the process is
isentropic, while if n = ∞ the process is at constant volume (isochoric). The ideal
work obtained from, or done on, a fluid can be calculated for a closed system from∫ state2

state1

V̂ dP (5.3-8)

while the actual work required or obtained between the two states is

Ĥstate2 − Ĥstate1

The polytropic efficiency is defined as

ηP =
actual change in energy
ideal change in energy

=
Ĥstate2 − Ĥstate1∫ state2

state1
V̂ dP

(5.3-9)

In some cases, a compressor is designed to operate approximately isothermally rather
than adiabatically. This is done using fins, internally cooled turbine blades or other
methods. One reason for doing this is that on compression, especially if there is a large
pressure change, the temperature of the gas may get sufficiently high as to be dangerous.
For example, a combustible gas may self-ignite if there is oxygen infiltration and the
gas temperature is above the auto-ignition temperature (frequently abbreviated as AIT).
In this case, the ideal operation of the compressor is a reversible isothermal process
operating at the same inlet temperature and pressure and the same exit temperature and
pressure, and the efficiency is defined as

ηisothermal compressor =
Wisothermal

Wactual
(5.3-10)

So in this case the inlet and exit stream properties are identical, but more work will
be required and more heat released in the real isothermal compressor than in the ideal
isothermal compressor.
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Illustration 5.3-3
Operation of an isothermal compressor

Methane at 260 K is to be isothermally compressed from 0.1 MPa to 1.0 MPa.

a) What is the minimum work required, and how much heat must be removed to keep the
compression process isothermal?

b) If the compressor is only 75% efficient what is the work required, and how much heat must
be removed to keep the compression process isothermal?

Solution

a) The steady-state energy and entropy balances for this case are

0 = Ĥ(T = 260 K, P = 0.1 MPa) − Ĥ(T = 260 K, P = 1 MPa) + W + Q

= 882 kJ/kg − 897 kJ/kg + W + Q

or W = 15 kJ/kg − Q and

0 = Ŝ(T = 260 K, P = 0.1 MPa) − Ŝ(T = 260 K, P = 1 MPa) +
Q

T

= (7.1 − 5.9) kJ/kg K +
Q

260 K

so that Q = −312 kJ/kg and then W = 15 + 312 = 327 kJ/kg[
The Aspen process simulator does not provide the option of an isothermal compressor,

so there are no results to compare with.
]

b) Since the turbine is only 75% efficient, the actual work done by the compressor is 436 kJ/kg.
Since the temperature and pressure of the inlet and exit streams are fixed, the enthalpies of
the streams remain the same as in part a. So

W = 436 kJ/kg = 15 kJ/kg − Q or Q = 15 − 436 = −421 kJ/kg

Therefore, the extra work that must be added as a result of the turbine efficiency turns into
heat that must be removed.

A less commonly used measure of thermodynamic efficiency is for nozzles.
The objective of using a nozzle is to produce a fluid of high velocity and low pres-
sure from a low-velocity, high-pressure inlet stream. This is what is done, for example,
inside a steam turbine where a low-velocity, high-pressure stream passes through a
nozzle to produce a high-velocity, low-pressure stream that impinges upon the blades
to drive the turbine. For nozzles, the thermodynamic efficiency is defined as the ratio
of the kinetic energy (or simply the square of the velocity) of the exit stream to that in
a reversible adiabatic (that is, isentropic) nozzle at the same exit pressure. Thus,

ηnozzle =
ν2

actual
ν2

isentropic
(5.3-11)

In the case of the actual nozzle, the velocity of the exit stream will be lower, and its
temperature higher than for an isentropic nozzle.
In order do accurate thermodynamic calculations in all of the cases above, one has

to know the efficiency of the device, be it a turbine, compressor or nozzle. This may
be impossible to predict knowing only the design of the device. Therefore, the usual
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procedure is to do one or several measurements on a device with a fluid whose thermo-
dynamic properties are precisely known, and from those data compute the efficiency of
the device. A common example of this is when an electrical power generation company
orders a turbine, one of the specifications to the manufacturer is the turbine efficiency.
After installation, the efficiency is then certified using steam as the working fluid.
Failure to meet the specification by even tenths of a percent will result in additional
fuel needed for each unit of electrical power generated, and result in a penalty to the
turbine manufacturer of millions of dollars. It is for this reason that extremely accurate
thermodynamic properties of steam are needed, and there is an international organiza-
tion, the International Association for the Properties of Water and Steam (IAPWS), that
develops critically-evaluated tables of data that are the standard for such certifications.
IAPWS-95 is the currently accepted steam tables (also available in equation form for
use in computers), and it is one of the thermodynamic model choices in the ASPEN
process simulator.

5.4 THE THERMODYNAMICS OF MECHANICAL EXPLOSIONS

In this section we are interested in predicting the uncontrolled energy release of an
explosion that occurs without a chemical reaction. That is, we are interested in energy
released from an explosion that results from the bursting of an overpressurized tank,
or the rapid depressurization of a hot liquid that leads to its partially boiling (flashing)
to a vapor-liquid mixture. We do not consider chemical explosions, for example, the
detonation of TNT or a natural gas explosion, both of which involve multiple chem-
ical reactions and require the estimate of properties of mixtures that we have not yet
considered. Chemical explosions are considered in Chapter 13.
First we consider the impact of an explosion involving a high-pressure gas, and then

we consider the explosion of a flashing liquid due to rapid depressurization. A primary
characteristic of an explosion is that it is rapid, indeed so rapid that there is insuffi-
cient time for the transfer of heat or mass to or from the exploding material. Instead,
the exploding matter undergoes a rapid expansion, pushing away the surrounding air.
This is schematically illustrated in Fig. 5.4-1.

Initial system
boundary

Expanding shock wave

Uniform
expansion

Figure 5.4-1 Explosion—a rapid, uniform expansion. If the
shock wave moves at less than the speed of sound, the event
is classified as a deflagration. If the shock wave travels at the
speed of sound, the event is an explosion.
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During a detonation, a shock wave is produced; outside this shock wave the pressure
is ambient, but inside the shock wave the pressure is above ambient. This shock wave
continues to travel outward until, as a result of the expansion of the gas behind the shock
front, the pressure inside the wave falls to ambient pressure and the temperature is below
the initial temperature of the gas. If the initial pressure is sufficiently high, the shock
wave will travel at, but not exceed, the speed of sound. This is the strict definition
of an explosion. If the shock wave travels at a slower speed, the event is referred to
as a deflagration. It is the overpressurization or pressure difference resulting from the
passage of a shock wave that causes most of the damage in an explosion.
We compute the energy released from an explosion, since the energy release is related

to the extent of overpressurization and the amount of damage. We do this by writing the
thermodynamic balance equations for a closed system consisting of the initial contents
of an exploding tank. This is a system with an expanding boundary (as the explosion
occurs) that is closed to the transfer of mass and is adiabatic (i.e., Q = 0) since the
expansion occurs too rapidly for heat transfer to occur. We also assume that the expan-
sion occurs uniformly, so that there are no temperature or pressure gradients, except at
the boundary of the shock wave.
The difference form of the mass balance for this closed system inside the shock

wave is
Mf − Mi = 0 or Mf = Mi = M (5.4-1)

Here the subscript i denotes the initial state, before the explosion has occurred, and f
denotes the final state, when the system volume has expanded to such an extent that
the pressure inside the shock wave is the ambient pressure. The energy balance for this
system is

Mf Û(Tf , Pf) − MiÛ(Ti, Pi) = W (5.4-2)

Balance equations
for a vapor-phase
explosion

Using the mass balance and the fact that the final pressure is ambient gives

M [Û(Tf , P = ambient) − Û(Ti, Pi)] = W (5.4-3)

where −W is the energy that the exploding system imparts to its surroundings.
This equation contains two unknowns,W and Û(Tf , P = ambient), that we cannot

evaluate since Tf is unknown. Therefore, we need another equation, which we get from
the entropy balance. The entropy balance for this system is

M [Ŝ(Tf , P = ambient) − Ŝ(Ti, Pi)] = Sgen (5.4-4)

Here Sgen is the entropy generated during the explosion. Since the expansion is a uni-
form expansion (that is, there are no spatial gradients except at the shock wave bound-
ary), the only generation of entropy occurs across the shock wave. If we neglect this
entropy generation, the work we compute will be somewhat too high. However, in
safety problems we prefer to be conservative and err on the side of overpredicting an
energy release resulting from an explosion, since we are usually interested in estimat-
ing the maximum energy release and the maximum damage that could result. Further,
we really do not have a good way of computing the amount of entropy generated during
an explosion. Consequently, we will set Sgen = 0, and from Eqs. 5.4-2 and 4 obtain

Ŝ(Tf , P = ambient) = Ŝ(Ti, Pi) (5.4-5)

which provides the additional equation necessary to find Tf and Ûf .
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Equations 5.4-3 and 5.4-5 will be used to compute the work or explosive energy
imparted to the surroundings as a result of a gas phase explosion. This work is trans-
ferred to the surroundings by the damage-producing overpressurization of the shock
wave. The procedure to be used to compute the energy transfer to the surroundings is
as follows:

1. Knowing the initial temperature and pressure of the system, compute the initial
specific volume V̂i, specific internal energy Ûi, and specific entropy Ŝi.

2. If the mass of the system is known, proceed to step 3. If the mass of the system
is not known, but the total initial volume of the system VS is known, compute the
mass from

M =
VS

V̂i(Ti, Pi)

3. Since the initial and final specific entropies of the system are the same
(see Eq. 5.4-5), compute the final temperature of the system from the known final
specific entropy and the ambient pressure.

4. From the ambient pressure and computed final temperature, calculate the final
specific internal energy Ûf .

5. Finally, use Eq. 5.4-3 to determine how much work the exploding system does on
its surroundings.

To use the procedure described above, we need to be able to compute the ther-
modynamic properties of the fluid. We may have access to tables of thermodynamic
properties for the fluid. For example, if the fluid is water vapor, we could use the steam
tables. Other possibilities include using graphs for the properties of the gas under con-
sideration, the ideal gas law, or if available an accurate equation of state for the fluid
(to be discussed in the next chapter).

Illustration 5.4-1
Energy Released on the Explosion of a Steam Tank

A tank of volume 0.1 m3 that contains steam at 600◦C and 1 MPa bursts. Estimate the energy of
the blast. For comparison, the blast energy of trinitrotoluene (TNT) is 4600 kJ/kg.

Solution

From the steam tableswe have at the initial conditions that V̂ = 0.4011 m3/kg, Û = 3296.8 kJ/kg,
and Ŝ = 8.0290 kJ/(kg K). At P = 0.1 MPa = 1 bar we have that Ŝ = 8.0290 kJ/(kg K) at
T = 248◦C, where Û ≈ 2731 kJ/kg. Consequently,

M =
0.1 m3

0.4011
m3

kg

= 0.2493 kg

and

−W = 0.2493 kg × (3296.8 − 2731)
kJ

kg
= 141.1 kJ

This is equivalent to the energy released by 30.7 g of TNT.
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The simplest and least accurate procedure for calculating the blast energy is to assume
that the fluid is an ideal gas with a constant heat capacity. In this case we have (using a
molar basis rather than per unit mass)

N = number of moles =
PiVS

RTi

(5.4-6)

where VS is the initial system volume (i.e., the volume of the tank). Also,

S(Tf , P = ambient) − S(Ti, Pi) = 0 = C∗
P ln

Tf

Ti

− R ln
(P = ambient)

Pi

or

Tf = Ti

(
P = ambient

Pi

)R/C∗
P

(5.4-7)

Then

W = N [U(Tf , P = ambient) − U(Ti, Pi)] = NC∗
V(Tf − Ti)

=
PiVS

RTi

C∗
VTi

[(
P = ambient

Pi

)R/C∗
P

− 1

]

=
PiVS

R
C∗

V

[(
P = ambient

Pi

)R/C∗
P

− 1

]
(5.4-8)

Finally, using γ = C∗
P/C∗

V, we have

−W =
PiVS

γ − 1

[
1 −
(

P = ambient
Pi

)(γ−1)/γ
]

(5.4-9)

Here Pi is the initial pressure, that is, the pressure at which the tank bursts, VS is the
initial total volume of the system or tank, P is the ambient pressure, and −W (which
is a positive number) is the work or energy the explosion imparts to its surroundings,
which is what does the damage.

Illustration 5.4-2
Energy Released on the Explosion of a Compressed Air Tank

A compressed air tank has a volume of 0.167 m3 and contains air at 25◦C and 650 bar when it
explodes. Estimate the amount of work done on the surroundings in the explosion. Compute the
TNT equivalent of the compressed air tank blast.

Data: For air C∗
P = 29.3 J/(mol K) and γ = C∗

P/C∗
V = 1.396.

Solution

−W =
650 bar × 0.167 m3

(1.396 − 1)

[
1 −
(

1 bar

650 bar

)(1.396−1)/1.396
]

= 230.2 bar m3 × 105 Pa

bar
×

1
J

m3

Pa
× 1 kJ

103 J
= 23 020 kJ



5.4 The Thermodynamics of Mechanical Explosions 189

Therefore, the blast energy is equivalent to

23 020 kJ

4600
kJ

kg TNT

= 5.0 kg of TNT

Clearly, this is a sizable explosion. In fact, a blast of 5 kg of TNTwill cause the total destruction
of structures not reinforced to withstand blasts within a circle of radius 7 meters from the blast
site, substantial damage out to a radius of 14 meters, minor structural damage out to 55 meters,
and broken windows out to 130 meters. Also, eardrum ruptures can be expected up to 10 meters
from the site of the explosion.

So far we have considered the blast energy when the fluid is a gas. If the fluid con-
tained in the vessel is a liquid, the same equations apply:

Ŝ(Tf , P = ambient) = Ŝ(Ti, Pi) (5.4-5)

and

W = M [Û(Tf , P = ambient) − Û(Ti, Pi)] (5.4-3)

However, for a liquid the entropy and internal energy are, to an excellent approxima-
tion, independent of pressure. This implies that there is no entropy or internal energy
change from the failure of a vessel containing a liquid (as long as the liquid does not
vaporize). Consequently, there is no blast energy resulting from the change in thermo-
dynamic properties of the fluid. However, there will be some release of energy that had
been stored as elastic or strain energy in the walls of the container. Since the evalu-
ation of this contribution is based on solid mechanics and not thermodynamics, it is
not discussed here. The important observation is that compressed gases can result in
devastating explosions; however, compressed liquids, as long as they do not vaporize,
contain little energy to release on an explosion.2 It is for this reason that liquids, not
gases, are used to test high-pressure vessels before they are put into use.
A vaporizing liquid is considered next. If a tank initially under high pressure ruptures,

it is possible that as a result of the sudden depressurization the liquid or liquid-vapor
mixture initially in the tank may partially or completely vaporize. Such explosions are
known as boiling liquid–evaporating vapor explosions (BLEVEs). Here we estimate
the energy released on a BLEVE.
For generality we assume that both the initial and final states include two phases,

and we use ωi and ωf to represent the fraction of vapor in the initial and final states,
respectively. The mass balance for this system is

Mi[ωi + (1 − ωi)] = Mf [ωf + (1 − ωf )] (5.4-10a)

or

Mi = Mf = M (5.4-10b)
The energy balance is

M [ωf ÛV(Tf , P = ambient) + (1 − ωf )ÛL(Tf , P = ambient)]
− M [ωiÛ

V(Ti, Pi) + (1 − ωi)ÛL(Ti, Pi)] = W
(5.4-11)

2It should be noted that we have considered only the internal energy change of an explosion. For air or steam
this is all we need to consider. However, if the tank contents are combustible, the result can be more devastating.
There are numerous examples of a tank of combustible material rupturing and producing a flammable vapor cloud.
At some point distant from the initial explosion, this vapor cloud comes in contact with sufficient oxygen and an
ignition source, which results in a second, chemical explosion. In chemical plants such secondary explosions are
usually more devastating than the initial explosion.
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and the entropy balance is

Balance equations
for a vapor-liquid
explosion

ωf ŜV(Tf , P = ambient) + (1 − ωf )ŜL(Tf , P = ambient)
= ωiŜ

V(Ti, Pi) + (1 − ωi)ŜL(Ti, Pi)
(5.4-12)

Here the superscripts V and L indicate the vapor and liquid phases, respectively. Also,
it should be remembered that if two phases are present, the temperature must be the
saturation temperature of the fluid at the specified pressure. For example, if the fluid
is water and the final condition is ambient pressure (1 atm or 1.013 bar), then Tf must
be 100◦C.

Illustration 5.4-3
Energy Released from a Steam-Water Explosion

Joe Udel decides to install his own 52-gallon (0.197 m3) hot-water heater. However, being cheap,
he ignores safety codes and neglects to add safety devices such as a thermostat and a rupture
disk or pressure relief valve. In operation, the hot-water heater is almost completely filled with
liquid water and the pressure in the heater tank is the waterline pressure of 1.8 bar or the water
saturation pressure at the heater temperature, whichever is greater. The water heater tank will
rupture at a pressure of 20 bar. Several hours after Joe completes the installation of the water
heater, it explodes.

a. What was the temperature of the water when the tank exploded?
b. Estimate the energy released in the blast.

Solution

a. From Appendix A.III the thermodynamic properties of saturated liquid water at 20 bar
(2 MPa) are

Ti = 212.42◦C V̂ L
i = 0.001177

m3

kg
ÛL

i = 906.44
kJ

kg

and

ŜL
i = 2.4474

kJ

kg K

Therefore, the water temperature when the tank explodes is 212.42◦C. Also, as indicated
in the problem statement, the tank contains only liquid, so ωi = 0 and

M =
VT

V̂ L
i

=
0.197 m3

0.001177
m3

kg

= 167.24 kg

b. After the explosion we expect to have a vapor-liquid mixture. Since the pressure is 1 atm
(actually, we use 1 bar), the temperature is 100◦C and the other thermodynamic
properties are

ÛL = 417.36
kJ

kg
ÛV = 2506.1

kJ

kg

ŜL = 1.3026
kJ

kg K
ŜV = 7.3594

kJ

kg K

We first use the entropy balance to determine the fractions of vapor and liquid present

ŜL
i = ωf ŜV

f + (1 − ωf )ŜL
f
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or
2.4474 = ωf7.3594 + (1 − ωf )1.3026

which gives
ωf = 0.1890

Next, to calculate the blast energy we use the energy balance, Eq. 5.4-11:

− W = M [ÛL
i − Ûf ] = M [ÛL

i − {ωf ÛV
f + (1 − ωf )ÛL

f }]
= 167.24 kg [906.44 − {0.1890 × 2506.1 + 0.8110 × 417.36}] kJ/kg

= 15 772 kJ

This is equivalent to 3.43 kg of TNT.

Comment

In January 1982 a large hot-water tank exploded in an Oklahoma school, killing 7 people and
injuring 33 others. The tank was found 40meters from its original location, and part of the school
cafeteria was destroyed. It was estimated that the tank failed at a pressure of only 7 bar.

If thermodynamic tables for the fluid in the explosion are not available, it may still
be possible to make an estimate of the fraction of vapor and liquid present after the
explosion and the energy released knowing just the heat of vaporization of the fluid and
its liquid heat capacity. To do this, we first write the unsteady-state mass and energy
balances on the open system consisting of the liquid, shown in Fig. 5.4-2. In this figure
Ṁ is the molar flow rate of the liquid being vaporized. The mass and energy balances
for this open, constant-volume system are as follows:

Mass balance

dM

dt
= −Ṁ (5.4-13)

Energy balance

d

dt
(MÛL) = −ṀĤV (5.4-14)

Here we have used the superscripts L and V to indicate the vapor and liquid phases.
Also, we will use that for liquids at moderate pressure ÛL ≈ ĤL, as discussed earlier.
Therefore, using this result and combining the two above equations, we have

M
dĤL

dt
+ ĤL dM

dt
=

dM

dt
ĤV

or

MCL
P

dT

dt
=

dM

dt
ΔvapĤ (5.4-15)

Vapor

Liquid
Figure 5.4-2 Boiling liquid–evaporating vapor event. The
dashed line indicates the system for which the mass and energy
balances are being written.
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Here we have used dĤL = CL
P dT . Also, we have defined the heat of vaporization of

a liquid, ΔvapĤ , to be the difference between the enthalpies of the vapor and liquid
when both are at the boiling temperature (i.e., ΔvapĤ = ĤV − ĤL).
Integrating this equation between the initial and final states, we have∫ Mf

Mi

1
M

dM =
∫ Tf

Ti

CL
P

ΔvapĤ
dT ∼= CL

P

ΔvapĤ

∫ Tf

Ti

dT (5.4-16)

where, in writing the last of these equations, we have assumed that both the
liquid heat capacity and the heat of vaporization are independent of temperature.
We then obtain

ln
Mf

Mi

=
CL

P

ΔvapĤ
(Tf − Ti) (5.4-17)

Note that the final temperature, Tf , is the normal boiling temperature of the fluid, Tb.
Also, the initial and final masses in this equation are those of the liquid. Further, if
the pre-explosion state is only liquid (ωi = 0), then Mf/Mi is the fraction of liquid
initially present that is not vaporized in the BLEVE. For this case we have

1 − ωf = exp

[
CL

P

ΔvapĤ
(Tb − Ti)

]

or

ωf = 1 − exp

[
CL

P

ΔvapĤ
(Tb − Ti)

]
(5.4-18)

To proceed further, we need to compute the change in internal energy between the
initial and final states. For simplicity in this calculation, we choose the reference state
to be one in which the internal energy is zero for the liquid at its normal boiling point,
and compute the internal energies of the other states relative to this reference state since
our interest is only with changes in internal energy. (Note that this choice of reference
state is just a matter of convenience and not a necessity. Can you show that any state
can be chosen as the reference state for the calculation of the energy differences without
affecting the final result?) Consequently, we have

ÛL(Tb, P = 1 bar) = 0 (5.4-19a)

ÛV(Tb, P = 1 bar) = ÛL(Tb, P = 1 bar) + ΔvapÛ
(5.4-19b)

= 0 +
(

ΔvapĤ − RTb

MW

)
= ΔvapĤ − RTb

MW

and

ÛL(Ti, Pi) =
∫ Ti

Tb

CL
P dT ∼= CL

P(Ti − Tb) (5.4-19c)
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Therefore, the energy released in an explosion is

Simplified equation
for estimating the
energy released on a
two-phase explosion

− W = M [ÛL(Ti, Pi) − ωf ÛV(Tb, P = ambient) −

(1 − ωf )ÛL(Tb, P = ambient)]

= M

[
CL

P(Ti − Tb) − ωf

(
ΔvapĤ − RTb

MW

)] (5.4-20)

where ωf is given by Eq. 5.4-18.

Illustration 5.4-4
Use of the Simplified Equation to Calculate the Energy Released in a Two-Phase Explosion
(BLEVE)

Rework the previous illustration using only the fact that the density of water at 212.4◦C is about
0.85 g/cm3, and that over the temperature range

CL
P = 4.184

J

g K
and ΔvapĤ = 2250

J

g
= 2250

kJ

kg

Solution

Given the density of water above, we have

M = 0.197 m3 × 0.85
g

cc
× 106 cc

m3
× 10−3 kg

g
= 167.5 kg

Next, we use

ωf = 1 − exp

[
CL

P

ΔvapĤ
(Tb − Ti)

]

= 1 − exp

[
4.184

2250
(100 − 212.42)

]
= 0.189

which is equal to the value found in the previous illustration using accurate thermodynamic
tables.

Next we have

− W = M

[
4.184(212.42 − 100) − 0.189

(
2250 − 8.314 × 373.15

18

)]

= 167.5 kg [470.37 − 392.68]
kJ

kg
= 13 013 kJ

compared with 15 772 kJ from the more accurate calculation of the previous example. Since the
total mass and the fraction vaporized have been correctly calculated, all the error is a result of
the approximate calculation of the internal energies. Nonetheless, such approximate calculations
are useful when detailed thermodynamic data are not available.
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PROBLEMS

5.1 a. An automobile air conditioner uses the vapor-
compression refrigeration cycle with HFC-134a as
the refrigerant. The operational temperature of the
evaporator is 7◦C and that of the condenser is 45◦C.
Determine the coefficient of performance of this air-
conditioning system and the amount of work needed
for each kilojoule of cooling provided by the air
conditioner.

b. For service in high-temperature areas, the condenser
temperature may go up to 65◦C. How would the
answers to part (a) change in this case?

5.2 It is desired to improve the thermal efficiency of the
Rankine power generation cycle. Two possibilities have
been suggested. One is to increase the evaporator tem-
perature, and the second is to decrease the condenser
temperature (and consequently the pressure) of the
low-pressure part of the cycle.
a. Draw a T -Ŝ diagram for the Rankine cycle simi-

lar to that in Fig. 5.2-2d, but with a higher evapora-
tor temperature. Show from a comparison of those
two diagrams that the efficiency of the Rankine
power generation cycle increases with increasing
evaporator temperature.

b. Repeat part (a) for a lower condenser temperature.
5.3 Using a T -Ŝ diagram, discuss the effect of subcooling

in the condenser and superheating in the evaporator on
the efficiency of a Rankine (or other) power generation
cycle.

5.4 A power plant using a Rankine power generation cy-
cle and steam operates at a temperature of 80◦C in
the condenser, a pressure of 2.5 MPa in the evapora-
tor, and a maximum evaporator temperature of 700◦C.
Draw the two cycles described below on a temperature-
entropy diagram for steam, and answer the following
questions.
a. What is the efficiency of this power plant, assum-

ing the pump and turbine operate adiabatically and
reversibly? What is the temperature of the steam
leaving the turbine?

b. If the turbine is found to be only 85 percent efficient,
what is the overall efficiency of the cycle? What is
the temperature of the steam leaving the turbine in
this case?

5.5 Forest cabins, remote mobile homes, Amish farms, and
residential structures in locations where electricity is
not available are often equipped with absorption re-
frigerators that rely on changes from absorption at low
temperatures to desorption at high temperatures to pro-
duce pressure changes in a refrigeration system instead
of a compressor. The energy source for such refrigera-
tion systems is a flame, typically produced by propane
or another fuel. The most common absorption refrig-
eration working fluid is the ammonia-water system.

The only patent ever awarded to Albert Einstein was
for an absorption refrigeration design.

The simplest representation of an absorption refrig-
eration is given in the figure below. The energy flows
in such a device are a high-temperature (TH ) heat flow
(Q̇H ) that supplies the energy for the refrigerator, a low-
temperature (TL) heat flow (Q̇L) into the condenser of
the refrigeration cycle extracted from the cold box of
the refrigerator, and a moderate-temperature (TM ) heat
flow (Q̇M ) out of the refrigerator.

Absorption
refrigerator

QL

TL

TM

TH

QM

QH

a. Compute the coefficient of performance for an ab-
sorption refrigerator defined as

C.O.P. =
Q̇L

Q̇H

assuming that the absorption refrigeration cycle is
reversible.

b. Calculate the maximum coefficient of performance
that can be achieved if heat transfer from the flame
occurs at 750◦C, the ambient temperature near the
refrigerator is 27◦C, and the temperature inside the
refrigerator is −3◦C.

5.6 a. Nitrogen can be liquefied using a simple Joule-
Thomson expansion process. This is done by rapidly
and adiabatically expanding cold nitrogen from
a high-pressure gas to a low-temperature, low-
pressure vapor-liquid mixture. To produce the high
pressure, nitrogen initially available at 0.1 MPa and
135 K is reversibly and adiabatically compressed to
2 MPa, isobarically cooled to 135 K, recompressed
to 20 MPa, and again isobarically cooled before un-
dergoing the Joule-Thomson expansion to 0.1 MPa.
What is the temperature of the liquid nitrogen, and
howmuch compressor work is required per kilogram
of liquid nitrogen produced?

b. If, to improve efficiency, the Linde process is used
with the same two-stage compressor as in part (a)
and with nitrogen vapor leaving the heat exchanger
at 0.1 MPa and 125 K, how much compressor
work is required per kilogram of liquid nitrogen
produced?
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5.7 A Rankine steam cycle has been proposed to generate
work from burning fuel. The temperature of the burning
fuel is 1100◦C, and cooling water is available at 15◦C.
The steam leaving the boiler is at 20 bar and 700◦C,
and the condenser produces a saturated liquid at 0.2 bar.
The steam lines are well insulated, the turbine and pump
operate reversibly and adiabatically, and some of the
mechanical work generated by the turbine is used to
drive the pump.
a. What is the net work obtained in the cycle per

kilogram of steam generated in the boiler?
b. How much heat is discarded in the condenser per

kilogram of steam generated in the boiler?
c. What fraction of the work generated by the turbine

is used to operate the pump?
d. How much heat is absorbed in the boiler per

kilogram of steam generated?
e. Calculate the engine efficiency and compare it with

the efficiency of a Carnot cycle receiving heat at
1100◦C and discharging heat at 15◦C.

5.8 As in Illustration 5.1-1 it is desired to produce lique-
fied methane; however, the conditions are now changed
so that the gas is initially available at 1 bar and 200 K,
and methane leaving the cooler will be at 100 bar and
200 K. The flash drum is adiabatic and operates at 1 bar,
and each compressor stage can be assumed to oper-
ate reversibly and adiabatically. A three-stage compres-
sor will be used, with the first stage compressing the
gas from 1 bar to 5 bar, the second stage from 5 bar
to 25 bar, and the third stage from 25 bar to 100 bar.
Between stages the gas will be isobarically cooled
to 200 K.
a. Calculate the amount of work required for each

kilogram of methane that passes through the
compressor in the simple liquefaction process.

b. Calculate the fractions of vapor and liquid leaving
the flash drum in the simple liquefaction process of
Fig. 5.1-1 and the amount of compressor work re-
quired for each kilogram of LNG produced.

c. Assuming that the recycled methane leaving the
heat exchanger in the Linde process (Fig. 5.1-2)
is at 1 bar and 200 K, calculate the amount of
compressor work required per kilogram of LNG
produced.

5.9 High-pressure helium is available from gas produc-
ers in 0.045-m3 cylinders at 400 bar and 298 K.
Calculate the explosion equivalent of a tank of com-
pressed helium in terms of kilograms of TNT. Assume
helium is an ideal gas.

5.10 The “Quick Fill” bicycle tire filling system consists of a
small (2 cm diameter, 6.5 cm long) cylinder filled with
nitrogen to a pressure of 140 bar. Estimate the explosion
equivalent of the gas contained in the cylinder in grams
of TNT. Assume nitrogen is an ideal gas.

5.11 A tank containing liquid water in equilibrium with a
small amount of vapor at 25 bar suddenly ruptures.
Estimate the fraction of liquid water in the tank that
flash vaporizes, and the explosive energy released per
kilogram of water initially in the tank.

5.12 Electrical power is to be produced from a steam turbine
connected to a nuclear reactor. Steam is obtained from
the reactor at 540 K and 36 bar, the turbine exit pressure
is 1.0 bar, and the turbine is adiabatic.
a. Compute the maximum work per kilogram of steam

that can be obtained from the turbine.
A clever chemical engineer has suggested that the
single-stage turbine considered here be replaced by
a two-stage adiabatic turbine, and that the steam ex-
iting from the first stage be returned to the reactor

P

P

Nuclear
reactor

1 bar

1 bar

Steam
540 K

36 bar

540 K

36 bar

540 K

Part (a)

Parts 
(b) and (c)

Turbine

Turbine

Turbine

∗

∗

Ws

Ws

Ws

and reheated, at constant pressure, to 540 K, and
then fed to the second stage of the turbine. (See the
figure.)
b. Compute the maximum work obtained per kilogram

of steam if the two-stage turbine is used and the ex-
haust pressure of the first stage is P ∗ = 1

2
(36 +

1.0) = 18.5 bar.
c. Compute the maximum work obtained per kilogram

of steam if the two-stage turbine is used and the ex-
haust pressure of the first stage is P ∗ =

√
36 × 1 =

6.0 bar.
d. Compute the heat absorbed per kilogram of steam in

the reheating steps in parts (b) and (c).
5.13 A coal-fired power plant had been operating using a

standard Rankine cycle to produce power. The op-
erating conditions are as given in Illustration 5.2-1.
However, the boiler is aging and will need to be re-
placed. While waiting for the replacement, it has been
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suggested that for safety the operating temperature be
reduced from 600◦C to 400◦C. The plant operates with
steam, with a condenser temperature of 100◦C, and
in this emergency mode the boiler would operate at
3.0 MPa and 400◦C.
a. Can the plant function in this mode? Why or

why not?
b. A clever operator suggests that a Joule-Thompson

valve could be placed after the boiler and before the
turbine. This valve is to be designed such that the
exhaust from the turbine is at the same conditions
as in Illustration 5.2-1, 0.10135 MPa and approxi-
mately 126◦C. Assuming that the pump and turbine
operate adiabatically and reversibly, fill in the miss-
ing thermodynamic properties in the table below.
[Values that are unchanged from Illustration 5.2-1
are given in bold.]

c. Determine the heat and work flows per kg of steam
in the pump, boiler, turbine and condenser.

d. What is the efficiency of this new cycle? How
does it compare with the efficiency of the cycle in
Illustration 5.2-1?

5.14 Duringmethane liquefaction, about 1000 kg of methane
are stored at a pressure of 10 MPa and 180 K. The
plant manager is worried about the possibility of
explosion. Determine the energy released by a sud-
den rupture of this storage tank and the temperature
and physical state of the methane immediately after
the rupture.

5.15 A Rankine power generation cycle is operated with wa-
ter as the working fluid. It is found that 100 MW of
power is produced in the turbine by 89 kg/s of steam
that enters the turbine at 700◦C and 5 MPa and leaves
at 0.10135 MPa. Saturated liquid water exits the con-
denser and is pumped back to 5 MPa and fed to the
boiler, which operates isobarically.
a. The turbine operates adiabatically, but not re-

versibly. Find the temperature of the steam exiting
the turbine.

b. Determine the rate of entropy generation in the
turbine and compute the efficiency of the turbine.

c. How much work must be supplied to the pump?

Point T (◦C) P (MPa) Ŝ [kJ/(kg K)] Ĥ (kJ/kg)

1 Exit from condenser 100 0.10135 1.3069 419.04
entry to pump 100 0.10135 1.3069 419.04

2 Exit from pump
entry to boiler 103 3.0 1.3069 422.07

3 Exit from boiler
entry to J-T valve 3.0

4 Exit from J-T valve
entry to turbine

5 Exit from turbine
entry to condenser 126.2 0.10135 7.5085 2734.7

QC

QB

WP WT

Boiler

Condenser

Pump Turbine

5.16 The United States produces about 2700 megawatts
(MW) of electricity from geothermal energy, which is
comparable to burning 60 million barrels of oil each
year. Worldwide about 7000 MW of geothermal elec-
tricity are produced. The process is that naturally oc-
curring steam or hot water that is not far below the
earth’s surface (especially in places such asYellowstone
National Park and other volcanic and geothermal areas)
is brought to the surface and used to heat a working
fluid in a binary fluid power generation cycle, such as
that shown in Fig 5.2-9. (Geothermal steam and water
are not directly injected into a turbine, as the dissolved
salts and minerals would precipitate and quickly dam-
age the equipment.) For geothermal water at tempera-
tures less than 200◦C, isobutane is used as the working
fluid. Isobutane is vaporized and superheated to 480 K
and 10 MPa in the heat exchanger by the geothermal
water, and is then passed through a turbine (which we
will assume to be adiabatic and isentropic) connected
to an electrical generator. The isobutane next passes
through an isobaric condenser that produces a saturated
liquid at 320 K. A pressure-enthalpy diagram for isobu-
tane follows.
a. At what pressure does the condenser operate?
b. What are the temperature and pressure of the isobu-

tane leaving the turbine?
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c. Determine the work produced by the turbine per
kilogram of isobutane circulating, and the flow
rate of isobutane necessary to produce 3 MW of
electricity.

d. Draw the cycle of the process on the isobutane
pressure-enthalpy diagram.

e. Obtain the heat or work requirements for the four
units of the cycle in the table below.

Heat flow Work flow
Unit (kJ/kg) (kJ/kg)

Pump 0 ?
Boiler ? 0
Turbine 0 ?
Condenser ? 0

f. What is the efficiency of the proposed cycle?
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5.17 Steam enters a turbine 350◦C and 0.8 MPa and exits
at 0.1 MPa.Compute the work exiting temperature and
work obtained if:
a. the turbine operates isentropically; and
b. the turbine has an isentropic efficiency of 0.8.

5.18 Consider the Hilsch-Ranque vortex tube discussed in
Illustration 4.5-6 (pages 135-137). Starting with air
at 4 bar and 25◦C, and exhaust pressure of 1.013
bar, and that half the air that enters the tube will be

withdrawn at the higher temperature, what is the maxi-
mum temperature difference that can be obtained? Treat

air as an ideal gas with C∗
P = 29.3

J

mol · K .

5.19 An Automobile engine can be modelled as an idealized
four-stroke Otto cycle, although it actually consists of 6
steps:
Step 0: a fuel-air mixture is drawn into a cylinder at
constant pressure (admission stroke).
Step 1: adiabatic and reversible (isentropic) compres-
sion of the air as the piston moves from the bot-
tom (V2) of the cylinder to the top (V1)(compression
stroke).
Step 2: isochoric (constant volume) heat transfer to the
working gas from an external source while the piston is
at V1. (This represents an instantaneous combustion of
the fuel-air mixture.)
Step 3: adiabatic and reversible (isentropic) expansion
of the cylinder contents (power stroke).

Step 4: isochoric heat transfer in which heat is
released by the gas to the atmosphere through the cylin-
der walls while the piston is at V2.
Step 5: isobaric release of exhaust gases to the atmo-
sphere (exhaust stroke).
Here steps 0 and 5 can be ignored as no apprecia-
ble work is obtained or consumed. Steps 1 to 4 pro-
duce the net shaft work to power the automobile. The
heat source for the engine is the burning of the fuel;
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for simplicity this heat will be considered as coming
from an external heat source.
a. Draw this cycle on a pressure-entropy diagram.
b. Assuming that the working fluid behaves like an

ideal gas of constant heat capacity, calculate the ther-
mal efficiency of the cycle (net work divided by
heat flow in) as a function of the specific heat ratio
k = CP/CV and the compression ratio γ = V1/V2,
whereV1 andV2 are theminimum anmaximumvol-
umes occupied by the gas, respectively.

5.20 n-butane is to be liquefied to make liquid petroleum
gas (LPG). The butane is available at 25◦C and 1 bar,
it will be compressed to 15 bar in a compressor that
has an isentropic efficiency of 85%, cooled to 0◦C
in a heat exchanger, and then expanded adiabatically
to 1 bar, with the vapor recycled to the compressor.
Determine the work required per kg of LPG produced.

5.21 One suggestion that has been made to conserve energy
is that all new electrical power generation plants should
be co-generation facilities. In a typical power plant the
combustion of coal or natural gas is used to produce
steam that is run through a turbine and the only use-
ful energy that results is electricity. In such cases the
pressure at the downstream end of the turbine is kept
as low as possible to produce the most work (electric-
ity). This is done by having a condenser after the turbine
cooled by (frequently river) water or air. Another
alternative is a co-generation power plant in which the
temperature of the exiting steam is kept higher so that
the steam leaving the turbine can be used for heat-
ing purposes (as process stream in a chemical plant or
for residential heating as in New York City). In a co-
generation plant the useful energy obtained is the sum
of the electrical energy and energy that can be used for
heating. Calculate the useful energy and overall energy
efficiency obtained from:
a. a standard power generation plant, and
b. a co-generation plant.

The following data are available:

i The heat combustion of the fuel is used to produce
steam at 900◦C and 25 bar from water at 1 bar
and 25◦C. This is accomplished with 80% efficiency
(that is 20% of the heating value of the fuel is lost in
the process);

ii The steam turbines are adiabatic and reversible;
iii The condensed saturated steam leaving the standard

power plant is at 45◦C which sets the pressure at the
exit of the turbine and

iv The steam exit pressure in the co-generation plant
is 1 bar, and this steam in then used as a heat
transfer fluid until is condensed and its temperature
is 40◦C.

5.22 Isobutane is to be liquefied to make liquid petroleum
gas (LPG). The butane is available at 25◦C and 1 bar,

it will be compressed to 15 bar, cooled to 0◦C in a heat
exchanger, and expanded and flashed to 1 bar in an adi-
abatic valve, and the vapor and liquid separated. Deter-
mine the work required per kg of LPG produced if the
compressor has an isentropic efficiency of 100%, and
none of the vapor is recycled.

5.23 Repeat the calculation of problem 5.22 with the vapor
being recycled to the compressor.

5.24 Repeat the calculation of problem 5.22 if the compres-
sor has an isentropic efficiency of 72%.

5.25 Repeat the calculation of problem 5.23 if the compres-
sor has an isentropic efficiency of 87%.

5.26 The inlet to an adiabatic turbine is steam at 0.8MPa and
350◦C, and the turbine exit pressure is 0.1 MPa.
a. Determine the maximum work that can be obtained

from each kg of steam and the exit temperature of
the steam.

b. If the turbine has an isentropic efficiency of 80%, de-
termine the work obtained per kg of steam and the
exit temperature.

5.27 Methane at 260 K is to be isothermally compressed
from 0.1 MPa to 1.0 MPa.
a. What is the minimum work required, and how much

heat must be removed to keep the compression pro-
cess isothermal?

b. If the compressor is only 75% isentropically effi-
cient, what work is required, and how much heat
must be removed to keep the compression process
isothermal?

5.28 The inlet to an adiabatic turbine is steam at
1.3 MPa and 385◦C, and the turbine exit pressure is
0.1 MPa.
a. Determine the maximum work that can be obtained

from each kg of steam and the exit temperature of
the steam.

b. If the turbine has an isentropic efficiency of 80%, de-
termine the work obtained per kg of steam and the
exit temperature.

5.29 The inlet to an adiabatic compressor is nitrogen at 1 bar
(0.1 MPa) and 150 K, and the exit pressure is 10 bar
(1 MPa).
a. Determine the minimum work required for each kg

of nitrogen compressed and the exit temperature of
the nitrogen.

b. If the compressor is found to require 20%more work
than the minimum, determine efficiency of the com-
pressor, the work obtained per kg of nitrogen and the
exit temperature.

5.30 A gas is continuously passed through an adiabatic tur-
bine at the rate of 2 mol/s. Its initial temperature
is 600 K, its initial pressure is 5 bar and its exit-
ing pressure is 1 bar. Determine the maximum rate at
which work can be obtained in this process. The gas
is described by an augmented Clausius equation
of state
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P (V − b) = RT with b = b0 +
b1

T
;

b0 = 3 × 10−5 m3

mol
and b1 = 3 × 10−5 m3 · K

mol

C∗
P = CP,0 + CP,1 ∗ T ;

CP,0 = 25
J

mol · K and CP,1 = 1.8 × 10−3 J

mol · K2

5.31 In a continuous manufacturing process, chlorodifluo-
romethane (CHClF2) initially at 10 bar and 420 K,
passes through an adiabatic pressure reducing valve so
that its pressure is 0.1 bar (this last pressure is low
enough that CHClF2 can be considered to be an ideal
gas). At these operating conditions, the gas can be
represented by a one-term virial equation of state:

PV

RT
= 1 +

B(T )

V

The following data are available for this gas:

B(T ) = 297.6 − 256, 100

T

cm3

mol′

and the ideal gas heat capacity is CP = 27.93 +

0.093T
J

mol · K
What is the temperature of the chlorodifluoromethane
exiting valve? How much entropy is generated in the
process per mole of chlorodifluoromethane that flows
through the valve?

5.32 Two separate experiments are performed on a gas en-
closed in a piston-and-cylinder device, both starting
from the same initial state. The result of the first ex-
periment is to be used to predict the outcome of the
second.

a. In the first experiment, the piston is free to move,
with the external pressure held constant. A small
amount of heat is added to the gas in the cylinder,
resulting in expansion of the gas. The temperature
of the gas is found to have increased.

b. In the second experiment, the piston is not free to
move; instead, its position is adjusted manually. In
addition, the device is insulated, so that no heat flows
to or from the surroundings. The piston is moved
outward slowly, allowing the gas to expand by a
small amount. Does the temperature of the gas in-
crease or decrease?

5.33 Use Aspen Plus R© to compute the coefficient of perfor-
mance of a Rankine cycle using water as the working
fluid (described by the IAPWS-95 method) and the fol-
lowing state conditions:
Condenser: saturated liquid exiting at 1 bar
Pump: exit pressure is 30 bar
Boiler: exit temperature is 600◦C at 30 bar
Turbine: operates isentropically with an exit pressure
of 1 bar.
(Hint: This is a closed system, so you must specify the
flowrate of one stream.)

5.34 Redo Problem 5.1 using Aspen Plus R©.
5.35 Redo Problem 5.2 using Aspen Plus R©.
5.36 Redo Problem 5.4 using Aspen Plus R©.
5.37 Redo Problem 5.7 using Aspen Plus R©.
5.38 Redo Problem 5.20 using Aspen Plus R©.
5.39 Redo Problem 5.22 using Aspen Plus R©.
5.40 Redo Problem 5.23 using Aspen Plus R©.
5.41 Redo Problem 5.24 using Aspen Plus R©.
5.42 Redo Problem 5.25 using Aspen Plus R©.
5.43 Redo Problem 5.27 using Aspen Plus R©.
5.44 Redo Problem 5.28 using Aspen Plus R©.
5.45 Redo Problem 5.29 using Aspen Plus R©.



Chapter 6

The Thermodynamic
Properties of
Real Substances

In Chapters 2, 3, and 4 we derived a general set of balance equations for mass, energy,
and entropy that can be used to compute energy changes, and heat or work requirements,
for the changes of state of any substance. However, these balance equations are in terms
of the internal energy, enthalpy, and entropy rather than the pressure and temperature,
the variables most easily measured and thus most often used to specify the thermody-
namic state of the system. To illustrate the use of the balance equations in the simplest
manner, examples were given using either ideal gases or fluids whose thermodynamic
properties were available in graphical and tabular form. Unfortunately, no gas is ideal
over the whole range of pressure and temperature, and thermodynamic properties tables
are not always available, so a necessary ingredient of many thermodynamic computa-
tions is the calculation of the thermodynamic properties of real substances in any state.
The main topic of this chapter is establishing how to solve thermodynamic problems for
real substances given heat capacity data and the relationship between pressure, volume,
and temperature. The problem of constructing a thermodynamic properties chart from
such data is also considered. The discussion of the relationship between the ideal gas
and absolute temperature scales, which began in Chapter 1, is completed here. Finally,
the principle of corresponding states and generalized equations of state are considered,
as is their application.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 6

The goals of this chapter are for the student to:

• Be able to evaluate the partial derivative of a thermodynamic variable with respect
to one variable (e.g., temperature) while holding a second variable constant (e.g.,
pressure) (Sec. 6.2)

• Be able to interrelate the partial derivatives that arise in thermodynamics (Sec. 6.2)
• Be able to obtain volumetric equation of state parameters from critical properties
(Sec. 6.4)

200
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• Be able to solve problems for real fluids using volumetric equations of state (e.g.,
van der Waals or Peng-Robinson) (Secs. 6.4 and 6.7)

• Be able to construct tables and charts of thermodynamic properties (Sec. 6.4).

NOTATION INTRODUCED IN THIS CHAPTER

a(T ) Equation-of-state parameter (dimensions depend on equation)
A Dimensionless form of equation-of-state parameter a

b(T ) Equation-of-state parameter (m3/mol)
B Dimensionless form of equation-of-state parameter b

B(T ) Second virial coefficient (m3/mol)
C(T ) Third virial coefficient (m3/mol)2

Pc Pressure at the critical point (kPa)
Pr Reduced pressure = P/Pc

Tc Temperature at the critical point (K)
Tr reduced temperature = T/Tc

V c Molar volume at the critical point (m3/mol)
Vr Reduced volume = V /V c

Z Compressibility factor =
PV

RT
Zc Compressibility factor at the critical point

α coefficient of thermal expansion =
1
V

(
∂V

∂T

)
P

(K−1)

α(T ) Temperature-dependent term in equation of state

κT isothermal compressibility = − 1
V

(
∂V

∂P

)
T

(kPa−1)

κ Parameter in temperature dependence of a(T ) in equation of state

μ Joule-Thomson coefficient =
(

∂T

∂P

)
H

(K kPa−1)

ω Acentric factor

6.1 SOMEMATHEMATICAL PRELIMINARIES

In the previous chapters eight thermodynamic state variables (P , T , V , S, U , H ,
A, and G), which frequently appear in thermodynamic calculations, were introduced.
If the values of any two of these variables are given, the thermodynamic state of a
pure, single-phase system is fixed, as are the values of the remaining six variables (ex-
perimental observation 8 of Sec. 1.7). Mathematically we describe this situation by
saying that any two variables may be chosen as the independent variables for the single-
component, one-phase system, and the remaining six variables are dependent variables.
If, for example, T and V are taken as the independent variables, then any other variable,
such as the internal energyU , is a dependent variable; this is denoted byU = U(T, V )
to indicate that the internal energy is a function of temperature and specific volume. The
change in internal energy dU , which results from differential changes in T and V , can
be computed using the chain rule of differentiation:

dU =
(

∂U

∂T

)
V

dT +
(

∂U

∂V

)
T

dV

where the subscript on each derivative indicates the variable being held constant; that
is, (∂U/∂T )V denotes the differential change in molar internal energy accompanying
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a differential change in temperature in a process in which the molar volume is constant.
Note that both (∂U/∂T )V and (∂U/∂V )T are partial derivatives of the type(

∂X

∂Y

)
Z

(6.1-1)

where X , Y , and Z are used here to denote the state variables P , T , V , S, U , H , A,
and G. Since derivatives of this type occur whenever one tries to relate a change in one
thermodynamic function (here U ) to changes in two others (here T and V ), one of the
goals of this chapter is to develop methods for computing numerical values for these
derivatives, as these will be needed in many thermodynamic calculations.
In open systems extensive properties, such as the total internal energy U , the total

enthalpyH , and the total entropy S, are functions of three variables, usually taken to be
two thermodynamic variables (either intensive or extensive) and the total mass (M ) or
mole number (N ). Thus, for example, the total internal energy can be considered to be
a function of temperature, total volume, and number of moles, so that for a differential
change in T , V , and N

dU =
(

∂U

∂T

)
V,N

dT +
(

∂U

∂V

)
T,N

dV +
(

∂U

∂N

)
T,V

dN

where two subscripts are now needed to indicate the variables being held constant for
each differential change.
The derivatives of extensive properties at constant mole number or mass are simply

related to the analogous derivatives among the state variables, that is, to derivatives
of the form of Eq. 6.1-1. To see this, we note that since any extensive property X can
be written as NX , where X is an intensive (or molar) property, the derivative of an
extensive property with respect to an intensive property (e.g., temperature, pressure, or
specific volume) at constant mole number is(

∂X

∂Y

)
Z,N

=
(

∂(NX)
∂Y

)
Z,N

= N

(
∂X

∂Y

)
Z

Thus, (
∂U

∂T

)
V,N

= N

(
∂U

∂T

)
V

= NCV

where CV is the constant-volume heat capacity defined in Chapter 3. Similarly, the
derivative of an extensive property with respect to an extensive property at a constant
mole number is found from the observation that(

∂X

∂Y

)
Z,N

=
(

∂(NX)
∂(NY )

)
Z,N

=
N

N

(
∂X

∂Y

)
Z

=
(

∂X

∂Y

)
Z

so that, for example, (
∂U

∂V

)
T,N

=
(

∂U

∂V

)
T

Consequently, once a method is developed to obtain numerical values for derivatives in
the form of Eq. 6.1-1,
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(
∂X

∂Y

)
Z

it can also be used to evaluate derivatives of the form(
∂X

∂Y

)
Z,N

and
(

∂X

∂Y

)
Z,N

The derivative of an extensive property with respect to mole number [e.g., the deriva-
tive (∂U/∂N)T,V in this discussion] is not of the form of Eq. 6.1-1. Such derivatives
are considered in the following sections and in Sec. 6.10.
We start the analysis of partial derivatives of the type indicated in Eq. 6.1-1 by listing

several of their important properties. First, their numerical value depends on the path
followed, that is, on which variable is being held constant. Thus,(

∂U

∂T

)
V

�=
(

∂U

∂T

)
P

as will be verified shortly (Illustration 6.2-1). If two intensive variables are held constant
in a one-component, single-phase system, all derivatives, such as(

∂U

∂T

)
V ,P

must equal zero, since by fixing the values of two intensive variables, one also fixes the
values of all the remaining variables.
We will assume that all the thermodynamic variables in which we are interested exist

and are well behaved in some mathematical sense that we will leave unspecified. In this
case, the derivative of Eq. 6.1-1 has the properties that(

∂X

∂Y

)
Z

=
1

(∂Y /∂X)Z

(6.1-2)

and

∂

∂Z

∣∣∣
Y

(
∂X

∂Y

)
Z

=
∂

∂Y

∣∣∣
Z

(
∂X

∂Z

)
Y

(6.1-3)

The last equation, the commutative property, states that in a mixed second derivative
the order of taking derivatives is unimportant. Also,

(
∂X

∂Y

)
X

= 0 (6.1-4a)

and

(
∂X

∂X

)
Z

= 1 (6.1-4b)

since the first derivative is the change in X along a path of constant X , and the second
derivative is the change in X in response to an imposed change in X .
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If X is any dependent variable, and Y and Z the two independent variables, by the
chain rule of differentiation we can write X = X(Y ,Z), and

dX =
(

∂X

∂Y

)
Z

dY +
(

∂X

∂Z

)
Y

dZ (6.1-5)

Now from Eqs. 6.1-4a and 6.1-5, we have(
∂X

∂Y

)
X

= 0 =
(

∂X

∂Y

)
Z

(
∂Y

∂Y

)
X

+
(

∂X

∂Z

)
Y

(
∂Z

∂Y

)
X

and using Eq. 6.1-4b we obtain

(
∂X

∂Y

)
Z

(
∂Z

∂X

)
Y

(
∂Y

∂Z

)
X

= −1 (6.1-6a)

or

Triple-product rule
(

∂X

∂Y

)
Z

(
∂Z

∂X

)
Y

= −
(

∂Z

∂Y

)
X

(6.1-6b)

Equations 6.1-6a and b are known as the triple product rule and will be used frequently
in this book; this rule is easily remembered by noting the symmetric form of Eq. 6.1-6a
in that each variable appears in each derivative position once and only once.
There are two other important results to be derived from Eq. 6.1-5. The first is the

expansion rule, obtained by introducing any two additional thermodynamic properties
K and L, (

∂X

∂K

)
L

=
(

∂X

∂Y

)
Z

(
∂Y

∂K

)
L

+
(

∂X

∂Z

)
Y

(
∂Z

∂K

)
L

(6.1-7)

and the second is a special case of the first in which L = Z, so that, by Eq. 6.1-4a,

Chain rule
(

∂X

∂K

)
Z

=
(

∂X

∂Y

)
Z

(
∂Y

∂K

)
Z

(6.1-8)

This equation is known as the chain rule. (You should compare Eq. 6.1-6b with
Eq. 6.1-8 and note the difference between them.) Thus, if for some reason it is conve-
nient, we can use this equation interpose a new variable in evaluating a partial derivative,
as is the case with the variable Y in Eq. 6.1-8.
Finally, we note that for an open system it is usually convenient to use the massM or

mole numberN , and two variables from among T ,P , and the extensive variablesU , V ,
S, G, H , and A, as the independent variables. Letting X , Y , and Z represent variables
from among the set (U , V , S, G, H , A, T , and P ), we have X = X(Y,Z,N) and

dX =
(

∂X

∂Y

)
Z,N

dY +
(

∂X

∂Z

)
Y,N

dZ +
(

∂X

∂N

)
Y,Z

dN (6.1-9)
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6.2 THE EVALUATION OF THERMODYNAMIC PARTIAL DERIVATIVES

Whenever the change in a thermodynamic property is related to changes in two
others, derivatives of the type of Eq. 6.1-1 occur. Four of these partial derivatives oc-
cur so frequently in both experiment and calculation that they have been given special
designations: (

∂U

∂T

)
V

= CV = constant-volume heat capacity
(see Sec. 3.3)

(6.2-1)

(
∂H

∂T

)
P

= CP = constant-pressure heat capacity
(see Sec. 3.3)

(6.2-2)

Definitions 1
V

(
∂V

∂T

)
P

= α = coefficient of thermal expansion (6.2-3)

− 1
V

(
∂V

∂P

)
T

= κT = isothermal compressibility (6.2-4)

The starting point of the analysis of other thermodynamic derivatives is Eq. 4.2-13a
for open systems,

dU = T dS − P dV + GdN (6.2-5a)

and Eq. 4.2-13b for closed systems:

dU = T dS − P dV =
(

∂U

∂S

)
V

dS +
(

∂U

∂V

)
S

dV (6.2-5b)

which leads to
(

∂U
∂S

)
T

= T and
(

∂U
∂V

)
S

= −P . Alternatively, these equations can

be rearranged to

dS =
1
T

dU +
P

T
dV − G

T
dN (6.2-5c)

and

dS =
1
T

dU +
P

T
dV (6.2-5d)

By definition, H = U + PV , so that

dH = dU + V dP + P dV = T dS − P dV + GdN + V dP + P dV

= T dS + V dP + GdN
(6.2-6a)

and for the closed system

dH = T dS + V dP (6.2-6b)

Similarly, from Eq. 4.2-6 we have A = U − TS, so that dA = dU − S dT − T dS.
Using Eq. 6.2-5 yields

dA = −P dV − S dT + GdN (6.2-7a)
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which for the closed system becomes

dA = −P dV − S dT (6.2-7b)

Finally, from Eq. 4.2-8, we have G = H − TS, so that

dG = V dP − S dT + GdN (6.2-8a)

and
dG = V dP − S dT (6.2-8b)

Next, we note the analogy between Eqs. 6.1-5 and 6.1-9 and Eqs. 6.2-5 through 6.2-8
and obtain the following relations:(

∂U

∂S

)
V,N

=
(

∂U

∂S

)
V

= T (6.2-9a)(
∂U

∂V

)
S,N

=
(

∂U

∂V

)
S

= −P (6.2-9b)(
∂U

∂N

)
S,V

= G (6.2-9c)(
∂S

∂N

)
U,V

= − G

T
(6.2-9d)(

∂H

∂S

)
P,N

=
(

∂H

∂S

)
P

= T (6.2-10a)

1
N

(
∂H

∂P

)
S,N

=
(

∂H

∂P

)
S

= V (6.2-10b)(
∂H

∂N

)
P,S

= G (6.2-10c)(
∂A

∂V

)
T,N

=
(

∂A

∂V

)
T

= −P (6.2-11a)

1
N

(
∂A

∂T

)
V,N

=
(

∂A

∂T

)
V

= −S (6.2-11b)(
∂A

∂N

)
T,V

= G (6.2-11c)

1
N

(
∂G

∂P

)
T,N

=
(

∂G

∂P

)
T

= V (6.2-12a)

1
N

(
∂G

∂T

)
P,N

=
(

∂G

∂T

)
P

= −S (6.2-12b)

and (
∂G

∂N

)
T,P

= G (6.2-12c1)

1Note that comparing Eqs. 6.2-9c and 6.2-9d, 6.2-10c, 6.2-11c, and 6.2-12c we have(
∂U

∂N

)
S,V

=

(
∂H

∂N

)
P,S

=

(
∂A

∂N

)
T,V

=

(
∂G

∂N

)
T,P

= −T

(
∂S

∂N

)
U,V

= G

The multicomponent analogues of these equations are given in Sec. 8.2.
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To get expressions for several additional thermodynamic derivatives we next use
Eq. 6.1-3, the commutative property of mixed second derivatives. In this way, starting
with Eq. 6.2-9 we obtain

∂

∂V

∣∣∣
S

(
∂U

∂S

)
V

=
(

∂T

∂V

)
S

∂

∂S

∣∣∣
V

(
∂U

∂V

)
S

= −
(

∂P

∂S

)
V

so that from Eq. 6.1-3 we have

Maxwell
relations

(
∂T

∂V

)
S

= −
(

∂P

∂S

)
V

(6.2-13)

Similarly, from Eqs. 6.2-10 through 6.2-12 we obtain(
∂T

∂P

)
S

=
(

∂V

∂S

)
P

(6.2-14)

(
∂P

∂T

)
V

=
(

∂S

∂V

)
T

(6.2-15)

and (
∂V

∂T

)
P

= −
(

∂S

∂P

)
T

(6.2-16)

Equations 6.2-13 through 6.2-16 are known as theMaxwell relations. (It is left to you
to derive the Maxwell relations for open systems; see Problem 6.27.)
Equation 6.2-5d relates the change in entropy to changes in internal energy and vol-

ume. Since temperature and pressure, or temperature and volume, are, because of the
ease with which they can be measured, more common choices for the independent vari-
ables than U and V , it would be useful to have expressions relating dS to dT and dV ,
or to dT and dP . We can derive such expressions by first writing S as a function of
T and V ,

S = S(T, V )

and then using the chain rule of partial differentiation to obtain

dS =
(

∂S

∂T

)
V

dT +
(

∂S

∂V

)
T

dV (6.2-17)

From the application of first Eq. 6.1-8, then Eqs. 6.1-2a and b, and finally Eqs. 6.2-1
and 6.2-9a, we obtain

(
∂S

∂T

)
V

=
(

∂S

∂U

)
V

(
∂U

∂T

)
V

=
(

∂U

∂T

)
V

[(
∂U

∂S

)
V

]−1

= CV/T (6.2-18)

and from Eq. 6.2-15, we have (
∂S

∂V

)
T

=
(

∂P

∂T

)
V
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Thus

dS =
CV

T
dT +

(
∂P

∂T

)
V

dV (6.2-19)

Consequently, given heat capacity data as a function of T andP or T and V , volumetric
equation-of-state information, that is, a relationship between P , V , and T , and a value
of the entropy at some value of T and V , it is possible to compute the entropy at any
other value of T and V by integration of Eq. 6.2-19. Similarly, starting from S =
S(T,P ), one can easily show that(

∂S

∂T

)
P

=
CP

T
,

(
∂S

∂P

)
T

= −
(

∂V

∂T

)
P

and

dS =
CP

T
dT −

(
∂V

∂T

)
P

dP (6.2-20)

Equations 6.2-19 and 6.2-20 can now be used in Eqs. 6.2-5 and 6.2-6 to get

dU = T dS − P dV

= T

[
CV

T
dT +

(
∂P

∂T

)
V

dV

]
− P dV

= CV dT +

[
T

(
∂P

∂T

)
V

− P

]
dV

(6.2-21)

and

dH = CP dT +
[
V − T

(
∂V

∂T

)
P

]
dP (6.2-22)

From these last two equations we obtain(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P (6.2-23)

and (
∂H

∂P

)
T

= V − T

(
∂V

∂T

)
P

(6.2-24)

Table 6.2-1 summarizes the definitions used and some of the thermodynamic
identities developed so far in this chapter. The equations in this table can be useful
in obtaining information about some thermodynamic derivatives, as indicated in
Illustration 6.2-1.

Illustration 6.2-1
Showing That Similar Partial Derivatives with Different State Variables Held Constant Are Not
Equal

Obtain expressions for the two derivatives (∂U/∂T )V and (∂U/∂T )P , and show that they are
not equal.
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Important table
Table 6.2-1 Some Useful Definitions and Thermodynamic Identities

Definitions

Constant-volume heat capacity = CV =

(
∂U

∂T

)
V

= T

(
∂S

∂T

)
V

Constant-pressure heat capacity = CP =

(
∂H

∂T

)
P

= T

(
∂S

∂T

)
P

Isothermal compressibility = κT = − 1

V

(
∂V

∂P

)
T

Coefficient of thermal expansion = α =
1

V

(
∂V

∂T

)
P

Joule-Thomson coefficient = μ = −

[
V − T

(
∂V

∂T

)
P

]
CP

Maxwell relations(
∂T

∂V

)
S

= −
(

∂P

∂S

)
V(

∂P

∂T

)
V

=

(
∂S

∂V

)
T

(
∂T

∂P

)
S

=

(
∂V

∂S

)
P(

∂V

∂T

)
P

= −
(

∂S

∂P

)
T

Thermodynamic identities(
∂H

∂S

)
P

=

(
∂U

∂S

)
V

= T

(
∂U

∂V

)
S

=

(
∂A

∂V

)
T

= −P

(
∂G

∂P

)
T

=

(
∂H

∂P

)
S

= V

(
∂A

∂T

)
V

=

(
∂G

∂T

)
P

= −S

Thermodynamic functions

dU = T dS − P dV = CV dT +

[
T

(
∂P

∂T

)
V

− P

]
dV

dH = T dS + V dP = CP dT +

[
V − T

(
∂V

∂T

)
P

]
dP

dA = −P dV − S dT

dG = V dP − S dT

Miscellaneous(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P =
Tα

κT

− P

(
∂H

∂P

)
T

= V − T

(
∂V

∂T

)
P

= V (1 − Tα)

∂

∂T

∣∣∣∣
P

(
G

T

)
= − H

T 2

∂

∂T

∣∣∣∣
V

(
A

T

)
= − U

T 2

∂

∂
1

T

∣∣∣∣
P

(
G

T

)
= H

∂

∂
1

T

∣∣∣∣
V

(
A

T

)
= U

G =

(
∂G

∂N

)
T,P

=

(
∂A

∂N

)
T,V

=

(
∂H

∂N

)
P,S

=

(
∂U

∂N

)
S,V

= −T

(
∂S

∂N

)
U,V
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Solution

Starting from Eq. 6.2-21,

dU = CV dT +

[
T

(
∂P

∂T

)
V

− P

]
dV

Using Eq. 6.1-7 yields

(
∂U

∂T

)
V

= CV

(
∂T

∂T

)
V

+

[
T

(
∂P

∂T

)
V

− P

](
∂V

∂T

)
V

which, with Eq. 6.1-4, reduces to (
∂U

∂T

)
V

= CV

Again starting with Eq. 6.2-21, we obtain

(
∂U

∂T

)
P

= CV +

[
T

(
∂P

∂T

)
V

− P

](
∂V

∂T

)
P

(6.2-25)

Clearly, then, (
∂U

∂T

)
V

�=
(

∂U

∂T

)
P

(see Problem 6.3).

The form of Eqs. 6.2-19 through 6.2-22 is nice for two reasons. First the equations
relate the change in entropy, internal energy, and enthalpy to changes in only P , V ,
and T . Next, the right sides of these equations contain only CP, CV, P , V , and T ,
and partial derivatives involving P , V , and T . Thus, given heat capacity data and the
volumetric equation of state for the fluid, the changes in S, U , and H accompanying a
change in system temperature, pressure, or volume can be computed.
Ideally, we would like to develop equations similar to Eqs. 6.2-19 through 6.2-22

for all the thermodynamic variables of interest and, more generally, to be able to relate
numerically the change in any thermodynamic property to the changes in any two oth-
ers. To do this we must be able to obtain a numerical value for any derivative of the
form (∂X/∂Y )Z . Since engineers generally use two variables from among pressure,
temperature, and volume as the independent variables, and they also have most infor-
mation about the interrelationship between these variables, the discussion that follows
centers on reducing all partial derivatives to functions of P , V , and T ; their mutual
derivatives; and the heat capacity, as in the equations already derived. Unfortunately,
it is not possible to reduce all partial derivatives to functions of only these variables
because certain partial derivatives introduce the entropy (see Eqs. 6.2-11 and 6.2-12).
Since, using Eqs. 6.2-19 and 6.2-20, entropy can be evaluated from heat capacity and
volumetric equation-of-state data, its inclusion introduces no real difficulty. Thus, we
will be satisfied if we can reduce any partial derivative to a form containing P , V , T ,
S, and CP or CV, and derivatives containing only P , V , and T . In fact, as we shall
see later in this section (Eq. 6.2-30), there are only three independent partial derivatives
from among the four in Eqs. 6.2-1 through 6.2-4, for example, CP, α, and κT , so that
is possible to reduce the partial derivatives encountered in this chapter to functions of
only P , V , T , S, α, κT , and CP or CV.
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Since eight different variables (T ,P , V ,U ,H , S,A, andG) may be used in the ther-
modynamic description of a one-component system, there are 8×7×6 = 336 possible
nonzero derivatives of the form of Eq. 6.1-1 to be considered. (In a binary mixture there
is a ninth variable, composition, and three independent variables—temperature, specific
volume, and composition—so that the thermodynamic partial derivatives of possible in-
terest number in the thousands.) Therefore, it is necessary that a systematic procedure
be developed for reducing any such derivative. Although not needed for the discussion
that follows, such a procedure is introduced in Sec. 6.10.
As mentioned earlier, the Joule-Thomson expansion is a process that occurs at con-

stant enthalpy. The Joule-Thomson coefficient μ is defined to be the change in temper-
ature accompanying a differential change in pressure at constant enthalpy; that is,

μ =
(

∂T

∂P

)
H

(6.2-26)

From Eq. 6.2-22 we have that at constant enthalpy

0 = CP dT |H +
[
V − T

(
∂V

∂T

)
P

]
dP |H

or

μ =
(

∂T

∂P

)
H

= −

[
V − T

(
∂V

∂T

)
P

]
CP

(6.2-27)

(Note: The procedure used above can also be used with Eqs. 6.2-5 through 6.2-8, 6.2-19
through 6.2-22, and elsewhere in the evaluation of thermodynamic partial derivatives.)
For later reference, we also note

∂

∂T

∣∣∣
P

G

T
=

1
T

(
∂G

∂T

)
− G

T 2
= −S

T
− (H − TS)

T 2
= − H

T 2
(6.2-28)

and

∂

∂T

∣∣∣
V

A

T
=

1
T

(
∂A

∂T

)
V

− A

T 2
= −S

T
− (U − TS)

T 2
= − U

T 2
(6.2-29)

Also, since

∂

∂

(
1
T

) = − ∂

(1/T 2)∂T
= −T 2 ∂

∂T

we have

∂(G/T )
∂(1/T )

∣∣∣∣
P

= H and
∂(A/T )
∂(1/T )

∣∣∣∣
V

= U (6.2-30)

Illustration 6.2-2
Showing Again That Similar Partial Derivatives with Different State Variables Held Constant
Have Different Values
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For the discussion of the difference between the constant-pressure heat capacity CP and the
constant-volume heat capacityCV, it is useful to have an expression for the derivative (∂S/∂T )P

in which T and V are the independent variables. Derive such an expression.

Solution

Starting from Eq. 6.2-19,

dS =
CV

T
dT +

(
∂P

∂T

)
V

dV

we have (
dS

∂T

)
P

=
CV

T

(
∂T

∂T

)
P

+

(
∂P

∂T

)
V

(
∂V

∂T

)
P

=
CV

T
+

(
∂P

∂T

)
V

(
∂V

∂T

)
P

(6.2-31)

Now using the triple-product rule,(
∂P

∂T

)
V

(
∂V

∂P

)
T

(
∂T

∂V

)
P

= −1 (6.2-32)

we get (
∂S

∂T

)
P

=
CV

T
−
(

∂P

∂V

)
T

(
∂V

∂T

)2

P

(6.2-33a)

=
CV

T
−
(

∂V

∂P

)
T

(
∂P

∂T

)2

V

(6.2-33b)

and finally (
∂S

∂T

)
P

=
CV

T
+

V α2

κT

(6.2-34)

Compare this with (
∂S

∂T

)
V

=
CV

T

In Eqs. 6.2-1 through 6.2-4, four partial derivatives that frequently occur were intro-
duced. As has already been indicated, only three of these derivatives are independent
in that given the values of three derivatives, we can easily compute the value of the
fourth. We establish this here by deriving an equation that relates CP to CV, α, and
κT . The starting point is the relation CP = T (∂S/∂T )P and the results developed in
Illustration 6.2-2, which yield

CP = T

(
∂S

∂T

)
P

= CV + T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

= CV − T

(
∂P

∂V

)
T

(
∂V

∂T

)2

P

= CV − T

(
∂V

∂P

)
T

(
∂P

∂T

)2

V

= CV + TV α2/κT

(6.2-35)

establishing that CP, CV, α, and κT are all interrelated.
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For the discussion of the following section, we need to know the dependence of the
constant-volume heat capacity on specific volume (or density) at constant temperature.
To obtain (∂CV/∂V )T , we start with

dU = CV dT +

[
T

(
∂P

∂T

)
V

− P

]
dV

and note that (
∂U

∂T

)
V

= CV and
(

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P

Use of the commutative property, Eq. 6.1-3, yields the desired result:

∂

∂V

∣∣∣
T

(
∂U

∂T

)
V

=
(

∂CV

∂V

)
T

= T

(
∂2P

∂T 2

)
V

=
∂

∂T

∣∣∣
V

(
∂U

∂V

)
T

(6.2-36)

In a similar fashion, starting with Eq. 6.2-22, one obtains(
∂CP

∂P

)
T

= −T

(
∂2V

∂T 2

)
P

(6.2-37)

Illustration 6.2-3
Use of Partial Derivative Interrelations to Obtain Useful Results

Develop expressions for the coefficient of thermal expansion α, the isothermal compressibility
κT, the Joule-Thomson coefficient μ, and the difference CP−CV for (a) the ideal gas and (b) the
gas that obeys the volumetric equation of state(

P +
a

V 2

)
(V − b) = RT (6.2-38a)

where a and b are constants. (This equation of state was developed by J. D. van der Waals in
1873, and fluids that obey this equation of state are called van der Waals fluids.)

Solution

a. For the ideal gas PV = RT ; thus(
∂V

∂T

)
P

=
R

P
=

V

T
so that α =

1

V

(
∂V

∂T

)
P

=
1

T

and (
∂V

∂P

)
T

= −V

P
so that κT = − 1

V

(
∂V

∂P

)
T

=
1

P

From Eq. 6.2-27 we have

(
∂T

∂P

)
H

= μ = −

[
V − T

(
∂V

∂T

)
P

]
CP

= − V

CP

[1 − Tα]
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For the ideal gas,

μ =

(
∂T

∂P

)
H

= − V

C∗
P

[
1 − T · 1

T

]
= 0

and

C∗
P = C∗

V +
TV α2

κT

= C∗
V + TV

1

T 2
P = C∗

V +
PV

T
= C∗

V + R

b. For the van der Waals fluid, we first rewrite the equation of state as

T =
PV

R
− Pb

R
+

a

V R
− ab

RV 2

so that (
∂T

∂V

)
P

=
P

R
− a

RV 2 +
2ab

RV 3

and

(α)−1 = V

(
∂T

∂V

)
P

=
PV

R
− a

RV
+

2ab

RV 2

Now rewriting the van der Waals equation as

P =
RT

V − b
− a

V 2 (6.2-38b)

allows us to eliminate P from the expression for α to obtain

(α)−1 =
TV

(V − b)
− 2a

RV
+

2ab

RV 2 =
TV

(V − b)
− 2a

RV 2 (V − b)

An expression for κT is obtained as follows:(
∂P

∂V

)
T

= − RT

(V − b)2
+

2a

V 3

or

(κT )−1 =
RTV

(V − b)2
− 2a

V 2 =
R

(V − b)

[
TV

(V − b)
− 2a

RV 2 (V − b)

]

=
R

(V − b)
α−1

Consequently,

μ =

(
∂T

∂P

)
H

= − V

CP

(1 − Tα) = − V

CP

⎡
⎢⎣1 − 1

V

V − b
− 2a

RT

(
V − b

V 2

) ⎤⎥⎦
and

CP = CV +
TV α2

κT

= CV + TV α2

(
R

(V − b)α

)

= CV +
R

1 − 2a

RT

(V − b)2

V 3
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Finally, it is useful to note that although the molar internal energy can be considered
to be a function of any two state variables, an equation of state that gives the internal
energy as a function of entropy and volume is, in principle, more useful than an equation
of state for the internal energy in terms of temperature and volume or any other pair of
state variables. To see that this is so, suppose we had thermal equations of state of the
form U = U(S, V ) and U = U(T, V ). From Eq. 6.2-5b it is evident that we could
differentiate the first equation of state to get other thermodynamic functions directly,
for example,

T =
(

∂U

∂S

)
V

and P = −
(

∂U

∂V

)
S

However, using the second equation of state U(T, V ) and Eq. 6.2-21, we obtain(
∂U

∂T

)
V

= CV and
(

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P

In this case, on differentiation, we do not obtain thermodynamic state functions directly,
but rather derivatives of state functions or combinations of state functions and their
derivatives.
In a similar fashion, it is possible to show that an equation of state that relates H , S,

and P , or A, V , and T , or G, P , and T is more useful than other equations of state.
Equations of state relating (S, U , and V ), (H , S, and P ), (A, V , and T ), or (G, T ,
and P ) are called fundamental equations of state, a term first used by the American
physicist Josiah Willard Gibbs in 1873. Unfortunately, in general we do not have the
information to obtain or construct a fundamental equation of state. More commonly,
we have only a volumetric equation of state, that is, an equation relating P , V , and T .

Illustration 6.2-4
Showing That a Fundamental Equation of State Contains All the Information about a Fluid

Show that from an equation of state relating the Gibbs energy, temperature, and pressure, equa-
tions of state for all other state functions (and their derivatives as well) can be obtained by ap-
propriate differentiation.

Solution

Suppose we had an equation of state of the form G = G(T, P ). The entropy and volume,
as a function of temperature and pressure, are then immediately obtained using Eqs. 6.2-12a,
b, and c:

S(T, P ) = −
(

∂G

∂T

)
P

and V (T, P ) =

(
∂G

∂P

)
T

Since we have G as a function of T and P , these derivatives can be evaluated. Next, the enthalpy
and internal energy can be found as follows:

H(T, P ) = G(T, P ) + TS(T, P ) = G(T, P ) − T

(
∂G

∂T

)
P

and

U(T, P ) = G(T, P ) + TS(T, P ) − PV (T, P ) = G(T, P ) − T

(
∂G

∂T

)
P

− P

(
∂G

∂P

)
T
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The Hemholtz energy is obtained from

A(T, P ) = G(T, P ) − PV = G(T, P ) − P

(
∂G

∂P

)
T

and the constant-pressure and constant-volume heat capacities can then be found as follows:

CP(T, P ) =

(
∂H

∂T

)
P

=
∂

∂T

∣∣∣
P

[
G(T, P ) − T

(
∂G

∂T

)
P

]
= −T

(
∂2G

∂T 2

)
P

and

CV(T, P ) = CP +
T (∂V /∂T )2P
(∂V /∂P )T

= −T

(
∂2G

∂T 2

)
P

− T

(
∂2G

∂T∂P

)2 (
∂2G

∂P 2

)−1

T

Finally, the isothermal compressibility κT and coefficient of thermal expansion α are found as

κT = − 1

V

(
∂V

∂P

)
T

= − (∂2G/∂P 2)T

(∂G/∂P )T

and

α =
1

V

(
∂V

∂T

)
P

=
(∂2G/∂P∂T )

(∂G/∂P )T

Thus, if the fundamental equation of state for a substance in the form G = G(T, P ) were
available, we could, using these relations, obtain explicit equations relating all other state vari-
ables for this substance to temperature and pressure by taking the appropriate derivatives of the
fundamental equation.

Questions

1. Why do we need two equations, a volumetric equation of state P = P (T, V ) and a thermal
equation of state U = U(T, V ), to define an ideal gas?

2. Can you develop a single equation of state that would completely specify all the properties
of an ideal gas? (See Problem 7.7.)

Although fundamental equations of state are, in principle, the most useful thermody-
namic descriptions of any substance, it is unlikely that such equations will be available
for all fluids of interest to engineers. In fact, frequently only heat capacity and PV T
data are available; in Sec. 6.4 we consider how these more limited data are used in
thermodynamic problem solving.

Illustration 6.2-5
Calculation of the Joule-Thomson Coefficient of Steam from Data in the Steam Tables

Use the steam tables in Appendix A.III to evaluate the Joule-Thomson coefficient of steam at
600◦C and 0.8 MPa.

Solution

From Eq. 6.2-27,

μ =

(
∂T

∂P

)
H

= −

[
V − T

(
∂V

∂T

)
P

]
CP

= −

[
V̂ − T

(
∂V̂

∂T

)
P

]

ĈP
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and

ĈP =

(
∂Ĥ

∂T

)
P

From the superheated vapor section of the steam tables we have the following entries at
P = 0.8 MPa:

T (◦C) V̂ (m3/kg) Ĥ (kJ/kg)
500 0.4433 3480.6
600 0.5018 3699.4
700 0.5601 3924.2

So

ĈP =

(
∂Ĥ

∂T

)
P

≈ Ĥ(700◦C) − Ĥ(500◦C)

(700 − 500)◦C
=

(3924.2 − 3480.6)
kJ

kg

200 K
= 2.218

kJ

kg K

and

(
∂V̂

∂T

)
P

≈ V̂ (700◦C) − V̂ (500◦C)

(700 − 500)◦C
=

(0.5601 − 0.4433)
m3

kg

200 K
= 5.84 × 10−4 m3

kg K

Therefore,

μ = −
[0.5018 − (600 + 273.15) × 5.84 × 10−4]

m3

kg

2.218
kJ

kg K

= 3.66 × 10−3 m3 K

kJ

Since 1 kJ = 10−3 MPa m3, and 1 MPa = 10 bar,

μ = 3.66
K

MPa
= 0.366

K

bar

Since μ is positive, the temperature of steam at these conditions will decrease if the pressure is
reduced, that is, if the steam is isenthalpically expanded.

Note: An alternative method of doing this calculation is to use the definition of the
Joule-Thomson coefficient, (∂T/∂P )H , directly. For example, at 0.6 MPa we have

T (◦C) Ĥ (kJ/kg)
500 3482.8
600 3700.9

By interpolation we can find the temperature at 0.6 MPa at which: Ĥ(T, 0.6 MPa) =
3699.4 kJ/kg = Ĥ(600◦C, 0.8 MPa).

Ĥ(600◦C, 0.6 MPa) − Ĥ(T, 0.6 MPa)

Ĥ(600◦C, 0.6 MPa) − Ĥ(500◦C, 0.6 MPa)
=

3700.9 − 3699.4

3700.9 − 3482.8
=

600 − T

600 − 500

which gives T = 599.3◦C or ΔT = −0.6977 K. Therefore,

μ =

(
∂T

∂P

)
H

=
−0.6977 K

−0.2 MPa
= 3.49

K

MPa
= 0.349

K

bar

which is in reasonably good agreement with the value obtained above.
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Illustration 6.2-6
Calculation of CP for Water

The constant-pressure heat capacity of liquid water at 25◦C at 1 bar is 4.18 J/(g K). Estimate the
heat capacity of liquid water at 25◦C at 100 bar.

Data:

α =
1

V

(
∂V

∂T

)
P

=
1

V̂

(
∂V̂

∂T

)
P

= 2.56 × 10−4 K−1,

(
∂α

∂T

)
P

= 9.6 × 10−6 K−2

and V̂ = 1.003 cm3/g.

Solution

From Eq. 6.2-37, we have(
∂CP

∂P

)
T

= −T

(
∂2V

∂T 2

)
P

or equivalently

(
∂ĈP

∂P

)
T

= −T

(
∂2V̂

∂T 2

)
P

Now (
∂V̂

∂T

)
P

= V̂ α so

(
∂2V̂

∂T 2

)
P

=

(
∂V̂

∂T

)
P

α + V̂

(
∂α

∂T

)
P

and (
∂ĈP

∂P

)
T

= −T

[
α

(
∂V̂

∂T

)
P

+ V̂

(
∂α

∂T

)
P

]
= −T

[
α2V̂ + V̂

(
∂α

∂T

)
P

]

= −298.15 K × 1.003
cm3

g
[6.5536 × 10−8 + 9.6 × 10−6] K−2

= −2.890 × 10−3 cm3

g K
× 1 J

10 bar cm3
= −2.890 × 10−4 J

g K bar

Assuming that (∂ĈP/∂P )T is reasonably constant with pressure, we have

ĈP(T, P + ΔP ) − ĈP(T, P ) =

(
∂ĈP

∂P

)
T

ΔP

and

ĈP(25◦C, 100 bar) − ĈP(25◦C, 1 bar) = −2.890 × 10−4 J

g K bar
× 99 bar

= −0.0286
J

g K

Therefore,

ĈP(25◦C, 100 bar) = 4.18 − 0.0286 = 4.1514
J

g K

and we see that the heat capacity of water at these conditions (and indeed that of most liquids
and solids) is only very weakly dependent on pressure.
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Finally, there are two other equations based on Eq. 6.2-12b that will be useful in
analyzing phase behavior. The first of these equations is

∂

∂T

∣∣∣
P,N

(
G

T

)
= − H

T 2
(6.2-39)

The second equation, which is related to the one above, is

⎡
⎢⎢⎣

∂

(
G

T

)

∂

(
1
T

)
⎤
⎥⎥⎦

P,N

= H (6.2-40)

Various forms of Eqs. 6.2-28 and 6.2-30 are used later in this book.

6.3 THE IDEAL GAS AND ABSOLUTE TEMPERATURE SCALES

In Chapters 1 and 3, we introduced the concept of the ideal gas and suggested, without
proof, that if the ideal gas were used to establish a scale of temperature, an absolute
and universal, or thermodynamic scale would be obtained. We now have developed
sufficient thermodynamic theory to prove this to be the case.
We take as the starting point for this discussion the facts that the product PV

and the internal energy U of an ideal gas are both unspecified but increasing func-
tions of the absolute temperature T and are independent of density, pressure, or specific
volume (see Sec. 3.3). To be perfectly general at this point we denote these character-
istics by

PV = RT IG = Θ1(T ) (6.3-1)

and

U = Θ2(T ) (6.3-2)

where T IG is the temperature on the ideal gas temperature scale. To prove the equality
of the ideal gas and thermodynamic temperature scales it is necessary to establish that
Θ1(T ) is a linear function of T as was suggested in Eqs. 1.4-2 and 3.3-1.
It is important to note that in the balance equations the thermodynamic temperature

first appears in the introduction of the entropy function—in particular, in the Q̇/T term
in Eq. 4.1-5. Thus it is the thermodynamic temperature T that appears in all equations
derived from Eq. 4.1-5, and therefore in the equations of Sec. 6.2. From Eq. 6.2-21 we
have, in general,

dU = CV dT +

[
T

(
∂P

∂T

)
V

− P

]
dV

whereas from Eq. 6.3-2 we have, for the ideal gas,

dU =
dΘ2(T )

dT
dT (6.3-3)
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The only way to reconcile these two equations is for the coefficient of the dV term in
Eq. 6.2-21 to be zero for the ideal gas, that is,

P = T

(
∂P

∂T

)
V

This implies that for changes at constant volume,

dP

P

∣∣∣
V

=
dT

T

∣∣∣
V

or

P2

P1

=
T2

T1

(6.3-4)

for any two states 1 and 2 with the same specific volume. However, from Eq. 6.3-1 we
have, that under these circumstances,

P2

P1

=
Θ1(T2)
Θ1(T1)

(6.3-5)

To satisfy Eqs. 6.3-4 and 6.3-5, Θ1(T ) must be a linear function of temperature,
that is,

Θ1(T ) = RT (6.3-6)

where R is a constant related to the unit of a degree (see Sec. 1.4). Using Eq. 6.3-6 in
Eq. 6.3-1 yields

PV = RT

which establishes that the ideal gas temperature scale is also a thermodynamic temper-
ature scale.

6.4 THE EVALUATION OF CHANGES IN THE THERMODYNAMIC PROPERTIES
OF REAL SUBSTANCES ACCOMPANYING A CHANGE OF STATE

The Necessary Data

In order to use the energy and entropy balances for any real substance for which thermo-
dynamic tables are not available, we must be able to compute the changes in its internal
energy, enthalpy, and entropy for any change of state. The equations of Sec. 6.2 pro-
vide the basis for such computations. However, before we discuss these calculations it
is worthwhile to consider the minimum amount of information needed and the form in
which this information is likely to be available.

Volumetric Equation-of-State Information

Clearly, to use Eqs. 6.2-19 through 6.2-22 we need volumetric equation-of-state data,
that is, information on the interrelationship betweenP ,V , andT . This informationmay
be available as tables of experimental data, or, more frequently, as approximate equa-
tions with parameters that have been fitted to experimental data. Hundreds of analytic
equations of state have been suggested for the correlation of PV T data.
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The equation (
P +

a

V 2

)
(V − b) = RT (6.2-38a)

or equivalently,

The van der Waals
equation of state

P =
RT

V − b
− a

V 2 (6.2-38b)

with a and b constants, was proposed by J. D. van derWaals in 1873 to describe the vol-
umetric or PV T behavior of both vapors and liquids, work for which he was awarded
the Nobel Prize in Physics in 1910. The constants a and b can be determined either
by fitting this equation to experimental data or, more commonly, from critical-point
data as will be described in Sec. 6.6. Values for the parameters for several gases appear
in Table 6.4-1. These parameters were computed from critical-point data as described
in Sec. 6.6.
The van der Waals equation of state is not very accurate and is mainly of historic

interest in that it was the first equation capable of predicting the transition between
vapor and liquid; this will be discussed in Sec. 7.3. It also is the prototype for modern,
more accurate equations of state, such as those of Redlich-Kwong (1949);2

P =
RT

V − b
− a

T 1/2V (V + b)
(6.4-1)

Soave (1972),3 in which the a/T 1/2 term in Eq. 6.4-1 is replaced with a(T ), a function
of temperature; and Peng and Robinson (1976),4

The Peng-Robinson
equation of state

P =
RT

V − b
− a(T )

V (V + b) + b(V − b)
(6.4-2)

Table 6.4-1 Parameters for the van der Waals
Equation of State

Gas a (Pa m6/mol2) b [(m3/mol) × 105]

O2 0.1381 3.184
N2 0.1368 3.864
H2O 0.5542 3.051
CH4 0.2303 4.306
CO 0.1473 3.951
CO2 0.3658 4.286
NH3 0.4253 3.737
H2 0.0248 2.660
He 0.00346 2.376

2O. Redlich and J. N. S. Kwong, Chem. Rev. 44, 233 (1949).
3G. Soave, Chem. Eng. Sci. 27, 1197 (1972).
4D.-Y. Peng and D. B. Robinson, IEC Fundam. 15, 59 (1976).
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Equations 6.2-38b, 6.4-1, and 6.4-2 are special cases of the general class of equations
of state

P =
RT

V − b
− (V − η)θ

(V − b)(V 2 + δV + ε)
(6.4-3)

where each of the five parameters b, θ, δ, ε, and η can depend on temperature. In prac-
tice, however, generally only θ is taken to be a function of temperature, and it is adjusted
to give the correct boiling temperature as a function of pressure; this will be discussed
in Sec. 7.5. Table 6.4-2 gives the parameters of Eq. 6.4-3 for some common equations
of state from among the hundreds of this class that have been published. Clearly, many
other choices are possible.
Numeric values for equation-of-state parameters are commonly obtained in one of

two ways. First, parameters can be obtained by fitting the equation to PV T and other
data for the fluid of interest; this leads to the most accurate values, but is very tedious.
Second, as will be discussed in Sec. 6.7, general relations can be obtained between
the equation-of-state parameters and critical-point properties. From these equations,
somewhat less accurate parameter values are easily obtained from only critical-point
properties.
Each of the equations of state discussed here can be written in the form

Cubic form of the
above equations

Z3 + αZ2 + βZ + γ = 0 (6.4-4)

Table 6.4-2 Parameters for Cubic Equations of State P =
RT

V − b
− Δ

Author Year θ η δ ε Δ

van der Waals 1873 a b 0 0
a

V 2

Clausius 1880 a/T b 2c c2 a/T

(V + c)2

Berthelot 1899 a/T b 0 0
a/T

V 2

Redlich-Kwong 1949 a/
√

T b b 0
a/

√
T

V (V + b)

Soave 1972 θS(T ) b b 0
θS(T )

V (V + b)

Lee-Erbar-Edmister 1973 θL(T ) η(T ) b 0
θL(T )[V − η(T )]

(V − b)(V + b)

Peng-Robinson 1976 θPR(T ) b 2b − b2 θPR(T )

V (V + b) + b(V − b)

Patel-Teja 1981 θPT (T ) b b + c − cb
θPT (T )

V (V + b) + c(V − b)

Note: If η = b, Eq. 6.4-3 reduces to

P =
RT

V − b
− θ

V 2 + δV + ε
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Table 6.4-3 Parameters in Eq. 6.4-4 for the Three Equations of State

Redlich-Kwong
van der Waals and Soave Peng-Robinson

α − 1 − B − 1 − 1 + B
β A A − B − B2 A − 3B2 − 2B
γ − AB − AB − AB + B2 + B3

where
Z = PV /RT
B = bP/RT

and

A =

⎧⎪⎪⎨
⎪⎪⎩

aP/(RT )2 in the van der Waals, Soave, and
Peng-Robinson equations of state

aP/R2T 2.5 in the Redlich-Kwong equation of
state

where Z = PV /RT is the compressibility factor, and the parameters α, β, and
γ for some representative equations of state are given in Table 6.4-3. Consequently,
these equations are said to be cubic equations of state. Many such equations have been
suggested in the scientific literature. One should remember that all cubic equations of
state are approximate; generally, they provide a reasonable description of the PV T
behavior in both the vapor and liquid regions for hydrocarbons, and of the vapor region
only for many other pure fluids. The Soave–Redlich-Kwong and the Peng-Robinson
equations are, at present, the most commonly used cubic equations of state.
A different type of equation of state is the virial equation

Virial equation of
state

PV

RT
= 1 +

B(T )
V

+
C(T )
V 2

+ · · · (6.4-5)

where B(T ) and C(T ) are the temperature-dependent second and third virial coeffi-
cients. Although higher-order terms can be defined in a similar fashion, data generally
are available only for the second virial coefficient.5

The virial equation was first used by H. Kamerlingh Onnes in 1901 and is of theoret-
ical interest since it can be derived from statistical mechanics, with explicit expressions
obtained for the virial coefficients in terms of the interaction energy betweenmolecules.
The virial equation of state is a power series expansion in density (that is, reciprocal
volume) about the ideal gas result (PV /RT = 1). With a sufficient number of co-
efficients, the virial equation can give excellent vapor-phase predictions, but it is not
applicable to the liquid phase. When truncated at the B(T ) term, as is usually the case
because of a lack of higher virial coefficient data, the virial equation of state can be
used only at low densities; as a general rule, it should not be used at pressures above
10 bar for most fluids.
There are other, more complicated equations of state that accurately predict thePV T

behavior in most of the vapor and liquid regions; such equations contain the reciprocal

5A recent tabulation, The Virial Coefficients of Pure Gases and Mixtures: A Critical Evaluation, by J. H.
Dymond and E. B. Smith, Clarendon Press, Oxford, 1980, provides second virial coefficient data for more than
250 compounds.
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volume in both integral powers (like the virial equation) and exponential functions. One
example is the equation of Benedict, Webb, and Rubin (1940)6,

PV

RT
= 1 +

(
B − A

RT
− C

RT 3

)
1
V

+
(
b − a

RT

) 1
V 2

+
aα

RTV 5 +
β

RT 3V

(
1 +

γ

V 2

)
exp(−γ/V 2)

(6.4-6a)

where the eight constants a, b,A,B,C ,α, β, and γ are specific to each fluid and are ob-
tained by fitting the equation of state to a variety of experimental data. The exponential
term in this equation (and others in this class of equations) is meant to compensate for
the truncation of the virial series since, if expanded in a Taylor series around V = ∞,
the exponential function generates terms of higher order in reciprocal volume. The
20-constant Bender equation (1970)7,

P =
T

V

[
R +

B

V
+

C

V 2 +
D

V 3 +
E

V 4 +
F

V 5 +
(

G +
H

V 2

)
1

V 2 exp(−a20/V
2)
]

(6.4-6b)
with

B = a1 − a2/T − a3/T
2 − a4/T

3 − a5/T
4

C = a6 + a7/T + a8/T
2

D = a9 + a10/T
E = a11 + a12/T
F = a13/T
G = a14/T

3 + a15/T
4 + a16/T

5

H = a17/T
3 + a18/T

4 + a19/T
5

is another example of an equation of this type. Although such equations provide more
accurate descriptions of fluid behavior, including the vapor-liquid phase transition, than
simple equations of state, they are useful only with digital computers. Furthermore,
because of the amount of data needed the coefficients that appear in these equations are
known only for light hydrocarbons and a few other substances.
Some recent equations of state are expressed in the form of the Helmholtz energy as a

function of temperature and specific volume. The advantage of such an interrelationship
is that it is a fundamental equation of state, as discussed in Sec. 4.2. An example of this
is the 1995 International Association for the Properties of Water and Steam (IAPWS)
formulation8 which contains 56 parameters to very accurately describe the properties
of water and steam. Such high accuracy in the thermodynamic properties is needed in
a number of applications, including evaluating the efficiency of newly installed steam
turbines, which is frequently a contract specification between the power company and
the turbine manufacturer. Few other fluids are of sufficient industrial interest to justify
the expense of measuring the very large amount of data needed to develop such high-
accuracy equations.
For an evaluation of volumetric equations of state important in engineering, refer

to J. M. Prausnitz, B. E. Poling, and J. P. O’Connell, The Properties of Gases and

6M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys. 8. 334 (1940), and later papers by the same authors.
7E. Bender, 5th Symposium on Thermophysical Properties, ASME, New York (1970), p. 227, and later papers by
the same author.
8W. Wagner and A. Pruss, J. Phys. Chem. Ref. Data, 31, 387 (2002)
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Liquids, 5th ed. (McGraw-Hill, New York, 2001). In the discussion that follows, we
will generally assume that a volumetric equation of state in analytic form is available.

Heat Capacity Data

It is also evident from Eqs. 6.2-19 through 6.2-22 that data for CP and CV are needed
to compute changes in thermodynamic properties. At first glance it might appear that
we need data for CV as a function of T and V , and CP as a function of T and P for
each fluid over the complete range of conditions of interest. However, from Eqs. 6.2-36
and 6.2-37 it is clear that our need for heat capacity data is much more modest once
we have volumetric equation-of-state information. To see this, consider the situation
in which we have data for CP as a function of temperature at a pressure P1, and want
CP as a function of temperature at another pressure, P2. At each temperature we can
integrate Eq. 6.2-37 to obtain the desired result:∫ P2,T

P1,T

dCP = CP(P2, T ) − CP(P1, T ) = −T

∫ P2,T

P1,T

(
∂2V

∂T 2

)
P

dP (6.4-7)

or

CP(P2, T ) = CP(P1, T ) − T

∫ P2,T

P1,T

(
∂2V

∂T 2

)
P

dP (6.4-8)

Here we have included T in the limits of integration to stress that the integration is
carried out over pressure at a fixed value of temperature. Similarly, for the constant-
volume heat capacity, one obtains (from Eq. 6.2-36)

CV(V 2, T ) = CV(V 1, T ) + T

∫ V 2,T

V 1,T

(
∂2P

∂T 2

)
V

dV (6.4-9)

Therefore, given the volumetric equation of state (or, equivalently, a numerical tabula-
tion of the volumetric data for a fluid) and heat capacity data as a function of temperature
at a single pressure or volume, the value of the heat capacity in any other state can be
computed.
In practice, heat capacity data are tabulated only for states of very low pressure or,

equivalently, large specific volume, where all fluids are ideal gases.9 Therefore, if P1

and V 1 are taken as 0 and ∞, respectively, in Eqs. 6.4-8 and 6.4-9, we obtain

CP(P, T ) = C∗
P(T ) − T

∫ P,T

P=0,T

(
∂2V

∂T 2

)
P

dP (6.4-10)

and

CV(V , T ) = C∗
V(T ) + T

∫ V ,T

V =∞,T

(
∂2P

∂T 2

)
V

dV (6.4-11)

where we have used the notation

C∗
P(T ) = CP(P = 0, T )

9That all fluids become ideal gases at large specific volumes is easily verified by observing that all volumetric
equations of state (e.g., Eqs. 6.2-33, 6.4-1, 6.4-2, and 6.4-3) reduce to PV = RT in the limit of V → ∞.
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and
C∗

V(T ) = CV(V = ∞, T )

where the asterisk denotes the ideal gas heat capacity, as in Chapter 3.
Data forC∗

P andC∗
V are available in most data reference books, such as the Chemical

Engineers’ Handbook10 orTheHandbook of Chemistry and Physics.11 This information
is frequently presented in the form

Ideal gas heat capacity C∗
P(T ) = a + bT + cT 2 + dT 3 + · · ·

See Appendix A.II for C∗
P data for some compounds.

The Evaluation ofΔΔΔH,ΔΔΔU, andΔΔΔS

To compute the change in enthalpy in going from the state (T1, P1) to the state
(T2, P2), we start from

ΔH = H(T2, P2) − H(T1, P1) =
∫ T2,P2

T1,P1

dH (6.4-12)

and note that since enthalpy is a state function, we can compute its change between
two states by evaluating the integral along any convenient path. In particular, if the
path indicated by the solid line in Fig. 6.4-1 is used (isothermal expansion followed by
isobaric heating and isothermal compression), we have, from Eq. 6.2-22,

Enthalpy change
between two states ΔH =

∫ P=0,T1

P1,T1

[
V − T

(
∂V

∂T

)
P

]
dP +

∫ T2,P=0

T1,P=0

C∗
P dT

+
∫ P2,T2

P=0,T2

[
V − T

(
∂V

∂T

)
P

]
dP

(6.4-13)

Alternatively, we could compute the enthalpy change using the path indicated by the
dashed line in Fig. 6.4-1—isobaric heating followed by isothermal compression. For

0
T1

P2

P1

T2

Figure 6.4-1 Two paths for the integration of
Eq. 6.4-12.

10R. H. Perry and D. Green, eds., Chemical Engineers’ Handbook, 6th ed., McGraw-Hill, New York (1984).
11R. C. Weast, ed., The Handbook of Chemistry and Physics, Cleveland Chemical Rubber Co. This handbook is
updated annually.
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this path

ΔH =
∫ P1,T2

P1,T1

CP dT +
∫ P2,T2

P1,T2

[
V − T

(
∂V

∂T

)
P

]
dP =

∫ T2

T1

C∗
P dT

−
∫ T2

T1

T

{∫ P1

0

(
∂2V

∂T 2

)
P

dP

}
dT +

∫ P2,T2

P1,T2

[
V − T

(
∂V

∂T

)
P

]
dP

(6.4-14a)

where in going from the first to the second of these equations we have used Eq. 6.4-10.
The equality of Eqs. 6.4-13 and 6.4-14 is easily established as follows. First we note

that

∫ T2

T1

T

{∫ P1

0

(
∂2V

∂T 2

)
P

dP

}
dT

=
∫ P1

0

{∫ T2

T1

T

(
∂2V

∂T 2

)
P

dT

}
dP

=
∫ P1

P=0

{∫ T2

T1

∂

∂T

∣∣∣
P

[
T

(
∂V

∂T

)
P

− V

]
dT

}
dP

=
∫ P1,T2

P=0,T2

[
T

(
∂V

∂T

)
P

− V

]
dP −

∫ P1,T1

P=0,T1

[
T

(
∂V

∂T

)
P

− V

]
dP

(6.4-15)

where we have used the fact that the order of integration with respect to T and P can be
interchanged, and then recognized that T (∂2V /∂T 2) has an exact differential. Next,
substituting Eq. 6.4-15 into Eq. 6.4-14 yields Eq. 6.4-13, verifying that the enthalpy
change between given initial and final states is independent of the path used in its
computation.
Using the solid-line path in Fig. 6.4-1 and Eq. 6.2-20, we obtain

Entropy change
between two states ΔS = −

∫ P=0,T1

P1,T1

(
∂V

∂T

)
P

dP +
∫ T2

T1

C∗
P

T
dT −

∫ P2,T2

P=0,T2

(
∂V

∂T

)
P

dP

(6.4-16a)

By following the same argument, we can show that the entropy function is also path
independent.
The path in the V -T plane analogous to the solid-line path in the P -T plane of

Fig. 6.4-1 is shown in Fig. 6.4-2. Here the gas is first isothermally expanded to zero
pressure (and, hence, infinite volume), then heated (at V = ∞) from T1 to T2, and
finally compressed to a specific volume V 2. The entropy and internal energy changes
from Eqs. 6.2-19 and 6.2-21 are

ΔS =
∫ V =∞,T1

V 1,T1

(
∂P

∂T

)
V

dV +
∫ T2

T1

C∗
V

T
dT +

∫ V 2,T2

V =∞,T2

(
∂P

∂T

)
V

dV (6.4-17a)
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V = ∞

V2

V1

T1 T2

_

_

_

Figure 6.4-2 Integration path in the V -T plane.

and

ΔU =
∫ V =∞,T1

V 1,T1

[
T

(
∂P

∂T

)
V

− P

]
dV

+
∫ T2

T1

C∗
V dT +

∫ V 2,T2

V =∞,T2

[
T

(
∂P

∂T

)
V

− P

]
dV

(6.4-18)

It can be easily shown that alternative paths lead to identical results for ΔS and ΔU .
Note that only C∗

P, C
∗
V, and terms related to the volumetric equation of state appear

in Eqs. 6.4-13, 6.4-14a, 6.4-16a, 6.4-17a, and 6.4-18. Thus, as has already been pointed
out, we do not need heat capacity data at all densities, but merely in the low-density
(ideal gas) limit and volumetric equation-of-state information.
Given C∗

P or C∗
V data and volumetric equation-of-state data (in either analytic or tab-

ular form), it is possible to compute ΔH , ΔU , and ΔS for any two states of a fluid;
given the value of S in any one state, it is also possible to compute ΔG and ΔA. Thus,
we now have the equations necessary to construct complete tables or charts interrelating
H , U , S, T , P , and V , such as those in Chapter 3. Although the process of con-
structing thermodynamic properties tables and charts is tedious (see Illustration 6.4-1),
their availability, as we saw in Chapters 3, 4 and 5, makes it possible to use the bal-
ance equations to solve thermodynamic problems for real fluids quickly and with good
accuracy.
It is interesting to compare the equations just derived with the analogous results for

an ideal gas. Since

Ideal gas results
(

∂V

∂T

)IG

P

=
(

∂V

∂T

)IG

P

=
V

T
=

R

P
so V IG − T

(
∂V

∂T

)IG

P

= 0

and (
∂P

∂T

)IG

V

=
R

V
=

P

T

we have

H IG(T2, P2) − H IG(T1, P1) =
∫ T2,P=0

T1,P=0

C∗
P dT (6.4-14b)
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SIG(T2, P2) − SIG(T1, P1) = −
∫ T1,P=0

T1,P1

R

P
dP +

∫ T2

T1

C∗
P

T
dT −

∫ T2,P2

T2,P=0

R

P
dP

=
∫ T2

T1

C∗
P

T
dT − R ln

P2

P1

(6.4-16b)

SIG(T2, V 2) − SIG(T1, V 1) = +
∫ T1,V =∞

T1,V 1

R

V
dV +

∫ T2

T1

C∗
V

T
dT +

∫ T2,V 2

T2,V =∞

R

V
dV

=
∫ T2

T1

C∗
V

T
dT + R ln

V 2

V 1

(6.4-17b)

Thus, comparing Eqs. 6.4-14a and b, Eqs. 6.4-17a and b, and Eqs. 6.4-16a and b, we
have for the real fluid

Enthalpy and entropy
changes in terms of
departure functions

H(T2, P2) − H(T1, P1)
= H IG(T2, P2) − H IG(T1, P1)

+
∫ T1,P=0

T1,P1

[
V − T

(
∂V

∂T

)
P

]
dP +

∫ T2,P2

T2,P=0

[
V − T

(
∂V

∂T

)
P

]
dP

= H IG(T2, P2) − H IG(T1, P1) + (H − H IG)T2,P2 − (H − H IG)T1,P1

(6.4-19)

S(T2, P2) − S(T1, P1)
= SIG(T2, P2) − SIG(T1, P1)

−
∫ T1,P=0

T1,P1

[(
∂V

∂T

)
P

− R

P

]
dP −

∫ T2,P2

T2,P=0

[(
∂V

∂T

)
P

− R

P

]
dP

= SIG(T2, P2) − SIG(T1, P1) + (S − SIG)T2,P2 − (S − SIG)T1,P1

(6.4-20)

and

S(T2, V 2) − S(T1, V 1)
= SIG(T2, V 2) − SIG(T1, V 1)

+
∫ T1,V 1=∞

T1,V 1

[(
∂P

∂T

)
V

− R

V

]
dV +

∫ T2,V 2

T2,V =∞

[(
∂P

∂T

)
V

− R

V

]
dV

= SIG(T2, V 2) − SIG(T1, V 1) + (S − SIG)T2,V 2
− (S − SIG)T1,V 1

(6.4-21)

where

Departure functions
(H − H IG)T,P =

∫ T,P

T,P=0

[
V − T

(
∂V

∂T

)
P

]
dP (6.4-22)
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(S − SIG)T,P = −
∫ T,P

T,P=0

[(
∂V

∂T

)
P

− R

P

]
dP (6.4-23)

and
(S − SIG)T,V = S(T, V ) − SIG(T, V )

=
∫ T,V

T,V =∞

[(
∂P

∂T

)
V

− R

V

]
dV

(6.4-24)

The interpretation of Eqs. 6.4-19, 6.4-20, and 6.4-21 is clear: The changes in enthalpy
and entropy of a real fluid are equal to those for an ideal gas undergoing the same change
of state plus the departure of the fluid from ideal gas behavior at the end state less the
departure from ideal gas behavior of the initial state. These departure functions, given
by Eqs. 6.4-22, 6.4-23, and 6.4-24, can be computed once the fluid equation of state is
known.
Before leaving this subject, we note that although Eqs. 6.4-22, 6.4-23, and 6.4-24

are useful for calculating the enthalpy and entropy departures from ideal gas behavior
for some equations of state, their form is less helpful for the van der Waals, Peng-
Robinson and other equations of state considered in this section in which V and T are
the convenient independent variables.12

In such cases it is useful to have alternative expressions for the departure functions at
fixed temperature and pressure. To obtain such expressions, we start with Eqs. 6.4-22
and 6.4-23 and use

dP =
1
V

d(PV ) − P

V
dV (6.4-25)

and the triple product rule (Eq. 6.1-6a) in the form(
∂V

∂T

)
P

(
∂P

∂V

)
T

(
∂T

∂P

)
V

= −1 or
(

∂V

∂T

)
P

dP
∣∣∣
T

= −
(

∂P

∂T

)
V

dV
∣∣∣
T

(6.4-26)
to obtain∫ P

P=0

[
V − T

(
∂V

∂T

)
P

]
dP =

∫ PV (T,P )

PV =RT

d(PV )

+
∫ V =V (T,P )

V =∞

[
T

(
∂P

∂T

)
V

− P

]
dV

= (PV − RT ) +
∫ V =V (T,P )

V =∞

[
T

(
∂P

∂T

)
V

− P

]
dV

therefore

Useful form of
enthalpy departure
equation

H(T,P ) − H IG(T,P ) = RT (Z − 1) +
∫ V =V (T,P )

V =∞

[
T

(
∂P

∂T

)
V

− P

]
dV

(6.4-27)

12That is, with such equations of state, it is easier to solve for P given V and T than for V given P and T .
Consequently, derivatives of P with respect to V or T are more easily found in terms of V and T than are deriva-
tives of V with respect to P and T (try it!).
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where Z = PV /RT . Similarly, from

R

P
dP = R

d(PV )
PV

− R
dV

V
= Rd ln (PV ) − R

V
dV

and Eq. 6.4-23 we obtain∫ P

P=0

[
R

P
−

(
∂V

∂T

)
P

]
dP = R

∫ PV (T,P )

PV =RT

d ln (PV )

+
∫ V =V (T,P )

V =∞

[(
∂P

∂T

)
V

− R

V

]
dV

= R ln
(

PV

RT

)
+

∫ V =V (T,P )

V =∞

[(
∂P

∂T

)
V

− R

V

]
dV

and

S(T,P ) − SIG(T,P ) = R lnZ +
∫ V =V (T,P )

V =∞

[(
∂P

∂T

)
V

− R

V

]
dV (6.4-28)

The desired equations, Eqs. 6.4-27 and 6.4-28, are general and can be used with any
equation of state. Using, for example, the Peng-Robinson equation of state, one obtains
(see Problem 6.2)

Enthalpy and entropy
changes for the
Peng-Robinson
equation of state

H(T,P ) − H IG(T,P ) = RT (Z − 1) +
T

(
da

dT

)
− a

2
√

2b
ln

[
Z + (1 +

√
2)B

Z + (1 −
√

2)B

]

(6.4-29)

and

S(T,P ) − SIG(T,P ) = R ln(Z − B) +

da

dT
2
√

2b
ln

[
Z + (1 +

√
2)B

Z + (1 −
√

2)B

]

(6.4-30)

where
Z = PV /RT and B = Pb/RTDemonstrating

how an equation
of state is used in
the construction of
a thermodynamics
properties chart

Illustration 6.4-1
Making of a Thermodynamic Properties Chart

As an introduction to the problem of constructing a chart or table of the thermodynamic prop-
erties of a real fluid, develop a thermodynamic properties chart for oxygen over the temperature
range of −100◦C to +150◦C and a pressure range of 1 to 100 bar. (A larger temperature range,
including the vapor-liquid two-phase region, will be considered in Chapter 7.) In particular,
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calculate the compressibility factor, specific volume, molar enthalpy, and molar entropy as a
function of temperature and pressure. Also, prepare a pressure-volume plot, a pressure-enthalpy
plot (see Fig. 3.4-2), and a temperature-entropy plot (see Fig. 3.4-3) for oxygen.
Data: For simplicity we will assume oxygen obeys the Peng-Robinson equation of state and has
an ideal gas heat capacity given by

C∗
P

(
J

mol K

)
= 25.46 + 1.519 × 10−2T − 0.7151 × 10−5T 2 + 1.311 × 10−9T 3

We will choose the reference state of oxygen to be the ideal gas state at 25◦C and 1 bar:

HIG(T = 25◦C, P = 1 bar) = 0

and
SIG(T = 25◦C, P = 1 bar) = 0

As will be explained shortly, the Peng-Robinson parameters for oxygen are

a(T ) = 0.45724
R2T 2

c

Pc

α(T )

b(T ) = 0.07780
RTc

Pc

[α(T )]1/2 = 1 + κ

(
1 −
√

T

Tc

)

where κ = 0.4069, Tc = 154.6 K is the critical temperature of oxygen, and Pc = 5.046 MPa is
its critical pressure.

Solution

I. Volume
The volume is the easiest of the properties to calculate. For each value of temperature we compute
values for a(T ) and b, and then at each pressure solve the equation

P =
RT

V − b
− a(T )

V (V + b) + b(V − b)

for the volume, or equivalently (and preferably), solve the equation

Z3 + (−1 + B)Z2 + (A − 3B2 − 2B)Z + (−AB + B2 + B3) = 0

with B = bP/RT and A = aP/(RT )2 (see Eq. 6.4-4 and Table 6.4-3) for the compressibility
factor Z = PV /RT , from which the volume is easily calculated as V = ZRT/P . Repeat-
ing the calculation a number of times leads to the entries in Table 6.4-4. These calculations can
be done using the Visual Basic computer program described in Appendix B.I-2, the DOS-based
program PR1 described in Appendix B.II-1, the MATHCAD worksheet described in
Appendix B.III, or the MATLAB program described in Appendix B.IV and included on the
web site for this book.

Since the pressure and specific volume vary by several orders of magnitude over the range of
interest, these results have been plotted in Fig. 6.4-3 as ln P versus ln V . Remember that for the
ideal gas PV = RT , so that an ideal gas isotherm on a log-log plot is a straight line. (Note that
Fig. 6.4-3 also contains isotherms for temperatures below−100◦C. The calculation of these will
be discussed in Sec. 7.5.)
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Figure 6.4-3 Pressure-volume diagram for oxygen calculated using the Peng-Robinson equation of state.

II. Enthalpy
To compute the difference in the enthalpy of oxygen between a state of temperature T and pres-
sure P and the ideal gas reference state at 25◦C and 1 bar, we use

H(T, P ) − HIG(T = 25◦C, P = 1 bar)

= H(T, P ) − HIG(T, P ) + HIG(T, P ) − HIG(T = 25◦C, P = 1 bar)

= (H − HIG)T,P +

∫ T

T=298.15K

C∗
P dT

= (H − HIG)T,P + 25.46(T − 298.15) +
1.519 × 10−2

2
(T 2 − 298.152)

− 0.7151 × 10−5

3
(T 3 − 298.153) +

1.311 × 10−9

4
(T 4 − 298.154)

The quantity (H − HIG)T,P is computed using Eq. 6.4-29 and the value of the compressibil-
ity factor Z found earlier at each set of (T, P ) values. The values of enthalpy computed in this
manner appear in Table 6.4-4 and have been plotted in Fig. 6.4-4 as a pressure and enthalpy dia-
gram. The Peng-Robinson program (Appendices B.I-3 and B.II-1) was used for this calculation
as well. [Note that at T = 25◦C and P = 1 bar, oxygen is not quite an ideal gas; Z = 0.9991, not
unity. Consequently, (H − HIG)T=25◦C,P=1 bar = −9.44 J/mol, so that the enthalpy of oxygen
at T = 25◦C, P = 1 bar is −9.44 J/mol, whereas if it were an ideal gas at these conditions its
enthalpy would be zero.] Once again, lower-temperature results, including the two-phase region,
appear in Fig 6.4-6. The basis for those calculations will be discussed in Sec. 7.5.
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Figure 6.4-4 Pressure-enthalpy diagram for oxygen calculated using the Peng-Robinson equa-
tion of state.

III. Entropy
To compute the difference in the entropy of oxygen between the state (T , P ) and the ideal gas
reference state at 25◦C and 1 bar, we use

S(T, P ) − SIG(T = 25◦C, P = 1 bar)

= S(T, P ) − SIG(T, P ) + SIG(T, P ) − SIG(T = 25◦C, P = 1 bar)

= (S − SIG)T,P +

∫ T

T=298.15K

C∗
P

T
dT − R ln

(
P

1 bar

)

= (S − SIG)T,P + 25.46 ln
T

298.15
+ 1.519 × 10−2(T − 298.15)

− 0.7151 × 10−5

2
(T 2 − 298.152) +

1.311 × 10−9

3
(T 3 − 298.153)

− R ln

(
P

1 bar

)
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Figure 6.4-5 Temperature-entropy diagram for oxygen calculated using
the Peng-Robinson equation of state.

The quantity (S − SIG)T,P is computed using Eq. 6.4-30, and the value of the compressibility
factorZ is found earlier at each T and P . The values of the entropy computed in this manner with
the programs in either Appendix B.I or B.II (on the website for this book) appear in Table 6.4-4
and as a temperature-entropy diagram in Fig. 6.4-5.

Comments

For illustrative purposes, the Peng-Robinson equation of state was used here. Generally, if one
were going to take the time and effort to construct tables or plots such as those developed here,
muchmore complicated equations of state, for example, the Bender equation (Eq. 6.4-6b), would
be used to obtain more accurate results.

Note that in this illustration we chose the hypothetical ideal gas at 25◦C and 1 bar as the
reference state for the calculation, rather than the real gas at those conditions. Since the actual
state of oxygen from the Peng-Robinson equation is not quite ideal, we have

Z(1 bar, 25◦C) = 0.9991

H(1 bar, 25◦C) = −9.44 kJ/mol

S(1 bar, 25◦C) = −0.02 kJ/(mol K)

At first glance it might appear that to avoid such differences one could choose zero pressure as
the reference state, since all gases are then ideal. The reason this is not done is that the entropy
of a gas is infinite at zero pressure (see, for example, Eq. 4.4-3).
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Table 6.4-5 Molar Volume, Coefficient of Thermal Expansion, and Coefficient
of Isothermal Compressiblity at 20◦C for Some Condensed Phases

V (cc/mol) α × 104 (K−1) κT × 106 (bar−1)

Solids
Copper 7.12 0.492 0.77
Graphite 5.31 0.24 2.96
Platinum 9.10 0.265 0.375
Silver 10.27 0.583 1.0
Sodium chloride 27.02 1.21 4.15

Liquids
Benzene 88.87 12.4 92.8
Carbon tetrachloride 96.44 12.4 102
Ethanol 58.40 11.2 109
Methanol 40.47 12.0 118
Water 18.02 2.07 44.7
Mercury 14.81 1.81 3.80

In Chapter 2 we made the assumption that some thermodynamic properties of con-
densed phases, that is, liquids and solids, were independent of pressure. We now have
the equations that allow us to examine and improve upon this assumption. We will
do this using the data in Table 6.4-5, which includes the molar volume V , the coeffi-
cient of thermal expansion α = (1/V )(∂V /∂T )P , and the isothermal compressibility
κT = −(1/V )(∂V /∂P )T for a number of substances. Here we are interested in the
change in thermodynamic properties with pressure when α and κT are the only infor-
mation available, as is typically the case for a liquid or a solid.
To compute the change in volume of a condensed phase from the pressure P to the

pressure P +ΔP , assuming that the isothermal compressibility is independent of pres-
sure, we use

V (T,P + ΔP ) = V (T,P ) +
(

∂V

∂P

)
T

ΔP

= V (T,P ) − κTV (T,P )ΔP = V (T,P )[1 − κTΔP ]

(6.4-31)

Note that for an incompressible fluid κT = 0, so that V (T,P + ΔP ) = V (T,P ).

Illustration 6.4-2
Effect of Pressure on the Volume of Liquids and Solids

Compute the change in the molar volume of copper, sodium chloride, ethanol, and mercury for
the very large pressure change of going from 1 bar to 1000 bar at 20◦C.

Solution

Using the equation, we have

V Cu(20◦C, 1000 bar) = 7.12
cc

mol
× [1 − 0.77 × 10−6 bar−1 × 999 bar]

= 7.12
cc

mol
× [1 − 0.000769] = 7.115

cc

mol
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V NaCl(20◦C, 1000 bar) = 27.02
cc

mol
× [1 − 4.15 × 10−6 bar−1 × 999 bar] = 26.91

cc

mol

V EtOH(20◦C, 1000 bar) = 58.40
cc

mol
[1 − 109 × 10−6 bar−1 × 999 bar] = 52.04

cc

mol

V Hg(20◦C, 1000 bar) = 14.81
cc

mol
[1 − 3.80 × 10−6 bar−1 × 999 bar] = 14.75

cc

mol

Comment

We see that the change in volume with a factor of 1000 change in pressure is very small for the
two solids and the liquid metal considered, but that there is an 8.9 percent change in volume for
the more compressible liquid ethanol.

From Eq. 6.2-22 we have that the change in enthalpy with pressure at constant tem-
perature is

dH =
[
V − T

(
∂V

∂T

)
P

]
dP = [V − TV α]dP (6.4-32)

Therefore, assuming that V and α are essentially constant with pressure gives

H(T,P + ΔP ) − H(T,P ) = V [1 − Tα]ΔP (6.4-33)

Illustration 6.4-3
Effect of Pressure on the Enthalpy of Liquids and Solids

Compute the change in enthalpy of the four substances considered in the previous example on
going from 1 bar to 1000 bar at 20◦C.

Solution

HCu(20◦C, 1000 bar) − HCu(20◦C, 1 bar)

= 7.12
cc

mol

[
1 − 293.15 K × 0.492 × 10−4 K−1

]
× 999 bar

= 7.12
cc

mol
[1 − 0.0144] × 999 bar = 7010.3

cc bar

mol
= 701

J

mol

HNaCl(20◦C, 1000 bar) − HNaCl(20◦C, 1 bar)

= 27.02
cc

mol
× [1 − 293.15 × 1.21 × 10−4] × 999 bar

= 2604
J

mol
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HEtOH(20◦C, 1000 bar) − HEtOH(20◦C, 1 bar)

= 58.40
cc

mol
× [1 − 293.15 × 11.2 × 10−4] × 999 bar

= 3919
J

mol

and

HHg(20◦C, 1000 bar) − HHg(20◦C, 1 bar)

= 14.81
cc

mol
× [1 − 293.15 × 1.81 × 10−4] × 999 bar

= 1401
J

mol

Comment

Note that in each case the enthalpy change due to the pressure change is large and cannot be
neglected. In all cases the contribution from the V ΔP dominates, with the contribution from
the isothermal compressibility being only 1.4 percent of the total for copper, 3.6 percent for
sodium chloride, and 5.3 percent for liquid mercury. However, this contribution is 32.8 percent
for liquid ethanol.

The easiest way to compute the change in internal energy with pressure at constant
temperature for a condensed phase is to note that U = H − PV . Therefore, if we can
assume the volume of a condensed phase does not change much with pressure, we have

U(T,P + ΔP ) − U(T,P ) = H(T,P + ΔP ) − (P + ΔP )V (T,P )

− [H(T,P ) − PV (T,P )]

= H(T,P + ΔP ) − H(T,P ) − V (T,P )ΔP

= V ΔP − V TαΔP − V ΔP = −V TαΔP

(6.4-34)

Illustration 6.4-4
Effect of Pressure on the Internal Energy of Liquids and Solids

Compute the change in internal energy of the four substances considered in the previous illus-
trations on going from 1 bar to 1000 bar at 20◦C.

Solution

UCu(20◦C, 1000 bar) − UCu(20◦C, 1 bar)

= −V TαΔP

= −7.12
cc

mol
× 293.15 K × 0.492 × 10−4 K−1 × 999 bar × 1 J

10 cc bar

= −10.3
J

mol
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UNaCl(20◦C, 1000 bar) − UNaCl(20◦C, 1 bar) = −95.7
J

mol

UEtOH(20◦C, 1000 bar) − UEtOH(20◦C, 1 bar) = −1915.5
J

mol

UHg(20◦C, 1000 bar) − UHg(20◦C, 1 bar) = −78.5
J

mol

Comment

With the exception of ethanol, the changes in internal energy are small, much smaller than the
changes in enthalpy for these substances. Indeed, for moderate changes in pressure, rather than
the large pressure change considered here, the change in internal energy with pressure can be
neglected.

The change in entropy with pressure at constant temperature is, from Eq. 6.2-20,

dS = −
(

∂V

∂T

)
P

dP (6.4-35)

Assuming the coefficient of thermal expansion is independent of pressure, we obtain

S(T,P + ΔP ) − S(T,P ) = −αV ΔP (6.4-36)

Illustration 6.4-5
Effect of Pressure on the Entropy of Liquids and Solids

Compute the change in entropy of the four substances considered in the previous example on
going from 1 bar to 1000 bar.

Solution

SCu(20◦C, 1000 bar) − SCu(20◦C, 1 bar)

= 7.12
cc

mol
× 0.492 × 10−4 K−1 × 999 bar × 1 J

10 cc bar

= −0.035
J

mol K

SNaCl(20◦C, 1000 bar) − SNaCl(20◦C, 1 bar) = −0.327
J

mol K

SEtOH(20◦C, 1000 bar) − SEtOH(20◦C, 1 bar) = −6.534
J

mol K

SHg(20◦C, 1000 bar) − SHg(20◦C, 1 bar) = −0.268
J

mol K

Comment

Again, with the exception of ethanol, the changes in entropy are quite small. For moderate
changes in pressure the entropy change of a condensed phase with pressure is negligible.
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The illustrations above show that unless the pressure change is large, and the con-
densed phase is quite compressible (as is the case for ethanol here), the changes in
volume, internal energy, and entropy with changing pressure are quite small. However,
the change in enthalpy can be significant and must be accounted for. Indeed, it is this
enthalpy difference that is important in computing the work required to pump a liquid
from a lower pressure to a higher pressure.

Illustration 6.4-6
Energy Required to Pressurize a Liquid

Compute the minimum work required and the heat that must be removed to isothermally pump
liquid ethanol from 20◦C and 1 bar to 1000 bar in a continuous process.

Solution

Consider the pump and its contents to be the system around which balance equations are to be
written.

N2

N1

The steady-state mass balance (on a molar basis) is

dN

dt
= 0 = Ṅ1 + Ṅ2 or Ṅ2 = −Ṅ1 = −Ṅ

The steady-state energy balance is

dU

dt
= 0 = Ṅ1H1 + Ṅ2H2 + Q̇ + Ẇ

or

Ẇ

Ṅ
= − Q̇

Ṅ
+ (H2 − H1)

The steady-state entropy balance (with Ṡgen = 0 for minimum work) is

dS

dt
= 0 = Ṅ1S1 + Ṅ2S2 +

Q̇

T
or

Q̇

Ṅ
= T (S2 − S1)

From the previous illustrations, we have

S2 − S1 = S(20◦C, 1000 bar) − S(20◦C, 1 bar) = −6.534 J/(mol K)

and

H2 − H1 = H(20◦C, 1000 bar) − H(20◦C, 1 bar) = 3919 J/mol
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Therefore,

Q̇

Ṅ
= 293.15 K × (−6.534)

J

mol K
= −1915

J

mol

and

Ẇ

Ṅ
= 1915 + 3919 = 5834

J

mol

Comment

If we neglected the effect of thermal expansion, that is, set α = 0, then from Eq. 6.4-33,

H(T, P + ΔP ) − H(T, P ) = V [1 − Tα]ΔP = V ΔP

and from Eq. 6.4-36,

S(T, P + ΔP ) − S(T, P ) = −αV ΔP = 0

Then, for the problem here,

H(20◦C, 1000 bar) − H(20◦C, 1 bar) = 58.40
cc

mol
× 999 bar × 1J

10 cc bar
= 5834

J

mol

and

S(20◦C, 1000 bar) − S(20◦C, 1 bar) = 0

so that

Q̇

Ṅ
= 0 and

Ẇ

Ṅ
= 5834

J

mol

Note that the total work is the same as before for this isothermal pressurization (why?), but in
this case no heat would have to be removed to keep the liquid at constant temperature.

To pressurize liquid mercury, which is closer to being incompressible than ethanol, over the
same conditions one obtains (without making the assumption that α = 0)

Q̇

Ṅ
= 293.15 K ×

(
−0.286

J

mol K

)
= −78.6

J

mol

and

Ẇ

Ṅ
= 78.6 + 1401

J

mol
= 1478.6

J

mol

Much less work is needed for this less compressible fluid since very little work is being done to
change the volume of the liquid; the work is largely going to change the fluid pressure.

Illustration 6.4-7
Computing the Difference between CP and CV

Compute the difference between the constant-pressure and constant-volume heat capacities at
20◦C for the four condensed phases considered in the previous illustrations.
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Solution

From Eq. 6.2-35 we have

CP − CV = TV
α2

κT

(CP − CV)Cu = 293.15 K × 7.12
cc

mol
× (0.492 × 10−4)2

K2

bar

0.77 × 10−6
× 1 J

10 bar cc

= 0.656
J

mol K

(CP − CV)NaCl = 2.795
J

mol K

(CP − CV)EtOH = 19.70
J

mol K

(CP − CV)Hg = 3.742
J

mol K

Comment

Note that the difference between the constant-pressure and constant-volume heat capacities is
significant, and in fact can be quite large if the fluid has a large coefficient of thermal expansion,
as is the case for ethanol. For comparison, the difference between CP and CV for an ideal gas is
R = 8.314 J/(mol K).

Illustration 6.4-8
Effect of Pressure on the Enthalpy of Liquid Water

The coefficient of thermal expansion of liquid water at 25◦C was given in Illustration 6.2-6 to be

α =
1

V̂

(
∂V̂

∂T

)
P

= 2.56 × 10−4 K

Use this information and the fact that V̂ (25◦C, saturated liquid at 3.169 kPa) = 0.001003 m3/kg
and Ĥ(25◦C, saturated liquid at 3.169 kPa) = 104.89 kJ/kg to determine the enthalpy of liquid
water at (a) 25◦C and 1 bar and (b) 25◦C and 10 bar.

Solution

Using Eq. 6.4-33, on a mass basis we have

Ĥ(25◦C, 1 bar) = Ĥ(25◦C, 3.169 kPa) + V̂ [1 − Tα](100 − 3.169) kPa

= 104.89
kJ

kg
+ 1.003 × 10−3 m3

kg
[1 − 298.15 × 2.56 × 10−4] × 96.83 kPa

= 104.89
kJ

kg
+ 0.0897

Pa m3

kg
× 1

kJ

kPa m3
= 104.98

kJ

kg
(a)

and

Ĥ(25◦C, 10 bar) = 104.89 + 1.003 × 10−3[1 − 298.15 × 2.56 × 10−4](1000 − 3.169)

= 104.89 + 0.92 = 105.81
kJ

kg

(b)
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Comment

Here we see that for modest pressure changes, the liquid enthalpy changes little with pressure.
Therefore, little error is incurred if, at fixed temperature, one uses the saturated liquid enthalpy
in the steam tables at higher pressures. However, this will lead to errors near the critical point,
where the density of the liquid changes rapidly with small changes in both temperature and
pressure.

6.5 AN EXAMPLE INVOLVING THE CHANGE OF STATE OF A REAL GAS

Given low-density heat capacity data and volumetric equation-of-state information for a
fluid, we can use the procedures developed in this chapter to calculate the change in the
thermodynamic properties of the fluid accompanying any change in its state. Thus, at
least in principle, we can use themass, energy, and entropy balances to solve energy flow
problems for all fluids. The starting point for solving such problems is exactly the same
here as that used in Chapters 2, 3, and 4, in that the balance equations are written for
a convenient choice of the thermodynamic system. For real fluids, tedious calculations
may be necessary to eliminate the internal energy, enthalpy, and entropy, which appear
in the balance equations in terms of the pressure, temperature, and specific volume.
If the fluid under study is likely to be of continual interest, it is probably worthwhile to
construct a complete thermodynamic properties chart, as in Figs. 3.3-1 through 3.3-3
and in Illustration 6.4-1, so that all problems can be solved rapidly, as was demonstrated
in Chapters 2, 3, and 4. If, on the other hand, the fluid is of limited interest, it is more
logical to use the heat capacity and volumetric equation-of-state data only to solve the
problem at hand. This type of calculation is illustrated in the following example which
uses the van der Waals equation of state merely as a prototype for the equations of state
of real fluids. This example is also considered, and enlarged upon, in the following two
sections. Of course, the use of the Benedict-Webb-Rubin and other, more complicated
equations of state would lead to predictions of greater accuracy, but with a great deal
more computational effort.

Illustration 6.5-1
Comparing Solutions to a Problem Assuming the Gas Is Ideal, Using a Thermodynamic Prop-
erties Chart, and Assuming That the Gas Can Be Described by the van der Waals Equation
of State

Nitrogen gas is being withdrawn from a 0.15-m3 cylinder at the rate of 10 mol/min. The cylinder
initially contains the gas at a pressure of 100 bar and 170 K. The cylinder is well insulated, and
there is a negligible heat transfer between the cylinder walls and the gas. How many moles of
gas will be in the cylinder at any time? What will the temperature and pressure of the gas in the
cylinder be after 50 minutes?

a. Assume that nitrogen is an ideal gas.
b. Use the nitrogen properties chart of Fig. 3.3-3.
c. Assume that nitrogen is a van der Waals fluid.

Data: For parts (a) and (c) use

C∗
P [J/(mol K)] = 27.2 + 4.2 × 10−3T (K)
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Solution

The mass and energy balances for the contents of the cylinder are

dN

dt
= Ṅ or N(t) = N(t = 0) + Ṅt (a)

and

d(NU)

dt
= ṄH (b)

where Ṅ = −10 mol/min.
Following Illustration 4.5-2, the result of writing an entropy balance for that portion of the

gas that always remains in the cylinder is

dS

dt
= 0 or S(t = 0) = S(t) (c)

Also, from V = NV , we have

N(t = 0) =
Vcyl

V (t = 0)
=

0.15 m3

V (t = 0)
(d)

Equations a, b, c, and d apply to both ideal and nonideal gases.
Computation of N(t)

a. Using the ideal gas equation of state

V (t = 0) =
RT (t = 0)

P (t = 0)
=

8.314 × 10−5 bar m3/mol K × 170 K

100 bar

= 1.4134 × 10−4 m3/mol

so that
N(t = 0) = 1061.3 mol

and
N(t) = 1061.3 − 10t mol

b. Using Figure 3.3-3

V̂ (T = 170 K, P = 100 bar) = V̂ (T = 170 K, P = 10 MPa) ≈ 0.0035 m3/kg

V (T = 170 K, P = 10 MPa) = 28.014
g

mol
× 0.0035

m3

kg
× 1 kg

1000 g

= 9.80 × 10−5 m3/mol

so that

N(t = 0) =
0.15 m3

9.80 × 10−5 m3/mol
= 1529.8 mol

and
N(t) = 1529.8 − 10t mol

c. Using the van der Waals equation of state
The van der Waals equation is

P =
RT

V − b
− a

V 2
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With the constants given in Table 6.4-1, we have

100 bar = 1 × 107 Pa =
8.314 × 170

V (t = 0) − 3.864 × 10−5
− 0.1368

[V (t = 0)]2

Solving this cubic equation, we obtain

V (t = 0) = 9.435 × 10−5 m3/mol

so that

N(t = 0) = 1589.9 mol

and

N(t) = 1589.9 − 10t mol

Note also that since the volume of the cylinder is constant (0.15 m3), and asN(t) is known,
we can compute the molar volume of the gas at any later time from

V (t) =
0.15 m3

N(t)
(e)

In particular, we can use this equation to compute V (t = 50 min). These results, together
with other information gathered so far, and some results from the following sections, are
listed in Table 6.5-1.

Since we know the specific volume after 50 minutes, we need to determine only one
further state property to have the final state of the system completely specified. In princi-
ple, either the energy or entropy balance could be used to find this property. The entropy
balance is more convenient to use, especially for the nonideal gas calculations. Thus, all
the calculations here are based on the fact (see Eq. c) that

S(t = 0) = S(t = 50 min)

Computation of T (t = 50 min) and P (t = 50 min)

a. Using the ideal gas equation of state
From Eq. 4.4-1,

dS = CV

dT

T
+ R

dV

V

Now for the ideal gas,
CV = C∗

V = C∗
P − R = (27.2 − 8.314) + 4.2 × 10−3T

= 18.9 + 4.2 × 10−3T J/(mol K)

Table 6.5-1

Equation of State N(t = 0) N(t) V (t = 50 min) (m3/mol)

Ideal gas 1061.3 1061.3 − 10t 2.672 × 10−4

Fig 3.3-3 1529.8 1529.8 − 10t 1.457 × 10−4

van der Waals 1589.9 1589.9 − 10t 1.376 × 10−4

Corresponding states 1432.7 1432.7 − 10t 1.608 × 10−4

(Illustration 6.6-2)
Peng-Robinson 1567.9 1567.9 − 10t 1.405 × 10−4

(Illustration 6.7-1)
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Also, since S = constant, or ΔS = 0, we have

∫ T

T=170

(18.9 + 4.2 × 10−3T )

T
dT + 8.314

∫ V =2.672×10−4

V =1.413×10−4

dV

V
= 0

or

18.9 ln
T

170
+ 4.2 × 10−3(T − 170) + 8.314 ln

2.672 × 10−4

1.413 × 10−4
= 0

The solution to this equation is 130.3 K, so that

P (t = 50 min) =
RT (t = 50 min)

V (t = 50 min)
= 40.5 bar

b. Using Fig. 3.3-3

V (t = 50 min) = 1.457 × 10−4 m3

mol
× 1 mol

28.014 g
× 1000

g

kg

= 5.20 × 10−3 m3

kg

To find the final temperature and pressure using Fig. 3.3-3, we locate the initial point
(T = 170 K, P = 10 MPa) and follow a line of constant entropy (dashed line) through this
point to the intersection with a line of constant specific volume V̂ = 5.2 × 10−3m3/kg.
This intersection gives the pressure and temperature of the t = 50 min state. We find

T (t = 50 min) ≈ 133 K

P (t = 50 min) ≈ 3.9 MPa = 39 bar

This construction is shown in the following diagram, which is a portion of Fig. 3.3-3.
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c. Using the van der Waals equation of state
Here we start with Eq. 6.2-19,

dS =
CV

T
dT +

(
∂P

∂T

)
V

dV

and note that for the van der Waals gas(
∂P

∂T

)
V

=
R

V − b

The integration path to be followed is

i. T (t = 0), V (t = 0) → T (t = 0), V = ∞
ii. T (t = 0), V = ∞ → T (t = 50 min), V = ∞ (CV = C∗

V for this step)
iii. T (t = 50 min), V = ∞ → T (t = 50 min), V (t = 50 min)

so that

S(t = 50 min) − S(t = 0) = 0 = R

∫ V =∞

V (t=0)

dV

V − b
+

∫ T (t=50)

T=170K

C∗
V

T
dT + R

∫ V (t=50)

V =∞

dV

V − b

or

0 = R

∫ V (t=50)

V (t=0)

dV

V − b
+

∫ T (t=50)

T=170K

18.9 + 4.2 × 10−3T

T
dT

Thus, using b = 3.864 × 10−5 m3/mol, we have

0 = 8.314 ln

[
(13.77 − 3.864) × 10−5

(9.437 − 3.864) × 10−5

]
+ 18.9 ln

T

170
+ 4.2 × 10−3(T − 170)

The solution to the equation is

T (t = 50 min) = 133.1 K

Now, using the van der Waals equation of state with T = 133.1 K and V = 13.76 × 10−5

m3/mol, we find

P (t = 50 min) = 39.5 bar

Summary

Equation of State V (t = 50 min) (m3/mol) T (t = 50 min) (K) P (t = 50 min) (bar)

Ideal gas 2.672 × 10−4 129.6 40.3
Fig. 3.3-3 1.457 × 10−4 133 39
van der Waals 1.376 × 10−4 133.1 39.5
Corresponding states 1.608 × 10−4 136 41
(Illustration 6.6-2)
Peng-Robinson 1.405 × 10−4 134.7 40.6
(Illustration 6.7-1)
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Comments

It is clear from the results of this problem that one cannot assume that a high-pressure gas is ideal
and expect to make useful predictions. Of the techniques that have been considered for the ther-
modynamic calculations involving real fluids, the use of a previously prepared thermodynamic
properties chart for the fluid is the most rapid way to proceed. The alternatives, the use of a sim-
ple volumetric equation of state for the fluid or of corresponding-states correlations (discussed
in the following section), are always tedious, and their accuracy is hard to assess. However, if
you do not have a thermodynamic properties chart available for the working fluid, you have no
choice but to use the more tedious methods.

6.6 THE PRINCIPLE OF CORRESPONDING STATES

The analysis presented in Sec. 6.4 makes it possible to solve thermodynamic problems
for real substances or to construct tables and charts of their thermodynamic properties
given only the low-density (ideal gas) heat capacity and analytic or tabular information
on the volumetric equation of state. Unfortunately, these can be tedious tasks, and the
necessary volumetric equation-of-state information is not available for all fluids. Thus,
we consider here the principle of corresponding states, which allows one to predict
some thermodynamic properties of fluids from generalized property correlations based
on available experimental data for similar fluids.
Before we introduce the concept of generalized fluid properties correlations, it is use-

ful to consider which properties we can hope to get from this sort of correlation scheme,
and which we cannot. The two types of information needed in thermodynamic calcula-
tions are the volumetric equation of state and the ideal gas heat capacity. The ideal gas
heat capacity is determined solely by the intramolecular structure (e.g., bond lengths,
vibration frequencies, configuration of constituent atoms) of only a single molecule, as
there is no intermolecular interaction energy in an ideal gas. As the structure of each
molecular species is sufficiently different from that of others, and since experimental
low-density heat capacity data are frequently available, we will not attempt to develop
correlations for heat capacity data or for the ideal gas part of the enthalpy, internal
energy, or entropy, which can be computed directly from C∗

P and C∗
V.

However, the volumetric equation of a state of a fluid is determined solely by the
interactions of each molecule with its neighbors. An interesting fact that has emerged
from the study of molecular behavior (i.e., statistical mechanics) is that as far as molec-
ular interactions are concerned, molecules can be grouped into classes, such as spherical
molecules, nonspherical molecules, molecules with permanent dipole moments, and so
forth, and that within any one class, molecular interactions are similar. It has also been
found that the volumetric equations of state obeyed by all members of a class are similar
in the sense that if a given equation of state (e.g., Peng-Robinson or Benedict-Webb-
Rubin) fits the volumetric data for one member of a class, the same equation of state,
with different parameter values, is likely to fit the data for other molecular species in
the same class.
The fact that a number of different molecular species may be represented by a volu-

metric equation of state of the same form suggests that it might be possible to construct
generalized correlations, that is, correlations applicable to many different molecular
species, for both the volumetric equation of state and the density- (or pressure-) depen-
dent contribution to the enthalpy, entropy, or other thermodynamic properties. Histori-
cally, the first generalized correlation arose from the study of the van derWaals equation
of state. Although present correlations are largely based on experimental data, it is use-
ful to review the van der Waals generalized correlation scheme since, although not very
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P

V_

T > Tc

T = Tc

T < Tc

Figure 6.6-1 The pressure-volume behavior of the van der
Waals equation of state.

accurate, it does indicate both the structure and correlative parameters used in modern
fluid property correlations.
A plot of P versus V for various temperatures for a van der Waals fluid is given in

Fig. 6.6-1. An interesting characteristic of this figure is that isotherms below the one
labeled Tc exhibit a local minimum followed by a local maximum with increasing V
over part of the specific volume-pressure range. As we will see in Chapter 7, such be-
havior is associated with a vapor-liquid transition. For T > Tc this structure in theP -V
plot has vanished, whereas at T = Tc this minimum and maximum have converged to
a single point. At this point the first and second derivatives of P with respect to V at
constant T are zero. For the present discussion, this point is taken to be the critical
point of the fluid, that is, the point of highest temperature at which a liquid can exist
(justification for this identification is given in Chapter 7). A brief list of measured crit-
ical temperatures, critical pressures Pc, and critical volumes V c (i.e., the pressure and
volume of the highest-temperature liquid) for various fluids is given in Table 6.6-1.
To identify the critical point for the van der Waals fluid analytically, we make use of

the following mathematical requirements for the occurrence of an inflection point on
an isotherm in the P -V plane:

Critical-point
conditions

(
∂P

∂V

)
Tc

= 0 and
(

∂2P

∂V 2

)
Tc

= 0 at Pc and Vc (6.6-1)

(Also, the first nonzero derivative should be odd and negative in value, but this is not
used here.) Using Eqs. 6.6-1a and b together with Eq. 6.2-38, we find that at the critical
point

Pc =
RTc

V c − b
− a

V 2
c

(6.6-2a)
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∂P

∂V

)
T

∣∣∣∣evaluated at

Tc,Pc,V c

= 0 = − RTc

(V c − b)2
+

2a

V 3
c

(6.6-2b)

and (
∂2P

∂V 2

)
T

∣∣∣∣evaluated at

Tc,Pc,V c

= 0 =
2RTc

(V c − b)3
− 6a

V 4
c

(6.6-2c)

Thus, three equations interrelate the two unknowns a and b. Using Eqs. 6.6-2b and c
to ensure that the critical-point conditions of Eqs. 6.6-1 are satisfied, we obtain
(Problem 6.5)

a =
9V cRTc

8
(6.6-3a)

and

b =
V c

3
Using these results in Eq. 6.6-2a yields

Pc =
a

27b2
(6.6-3b)

By direct substitution we find that the compressibility at the critical point is

Zc =
PcV c

RTc

=
3
8

= 0.375 (6.6-3c)
For the van der Waals
equation only

This last equation can be used to obtain expressions for the van der Waals parameters
in terms of (1) the critical temperature and pressure,

For the van der Waals
equation only

a =
27R2T 2

c

64Pc

and b =
RTc

8Pc

(6.6-4a)

or (2) the critical pressure and volume:

a = 3PcV
2
c and b =

V c

3
(6.6-4b)

Substituting either of these sets of parameters into Eq. 6.2-38 yields[
P

Pc

+ 3
(

V c

V

)2
][

3
(

V

V c

)
− 1

]
= 8

T

Tc

Now defining a dimensionless or reduced temperature Tr, reduced pressure Pr, and
reduced volume Vr by

Tr =
T

Tc

Pr =
P

Pc

and Vr =
V

V c

(6.6-5)

we obtain [
Pr +

3
V 2

r

]
[3Vr − 1] = 8Tr (6.6-6)



6.6 The Principle of Corresponding States 253

The form of Eq. 6.6-6 is very interesting since it suggests that for all fluids that
obey the van der Waals equation, Vr is the same function of Tr and Pr. That is, at
given values of the reduced temperature (Tr = T/Tc) and reduced pressure (Pr =
P/Pc), all van der Waals fluids will have the same numerical value of reduced volume
(Vr = V /V c). This does not mean that at the same value of T and P all van der Waals
fluids have the same value of V ; this is certainly not the case, as can be seen from the
illustration that follows. Two fluids that have the same values of reduced temperature
and pressure and therefore the same reduced volume, are said to be in corresponding
states.

Illustration 6.6-1
Simple Example of the Use of Corresponding States

Assume that oxygen (Tc = 154.6 K, Pc = 5.046× 106 Pa, and V c = 7.32× 10−5 m3/mol) and
water (Tc = 647.3 K, Pc = 2.205 × 107 Pa, and V c = 5.6 × 10−5 m3/mol) can be considered
van der Waals fluids.

a. Find the value of the reduced volume both fluids would have at Tr = 3/2 and Pr = 3.
b. Find the temperature, pressure, and volume of each gas at Tr = 3/2 and Pr = 3.
c. If O2 and H2O are both at a temperature of 200◦C and a pressure of 2.5 × 106 Pa, find

their specific volumes.

Solution

a. Using Tr = 3/2 and Pr = 3 in Eq. 6.6-6, one finds that Vr = 1 for both fluids.
b. Since Vr = 1 at these conditions [see part (a)], the specific volume of each fluid is equal

to the critical volume of that fluid. So

V O2
= 7.32 × 10−5 m3/mol

at

PO2 = 3 × Pc,O2 = 1.514 × 107 Pa

and

TO2 = 1.5 × Tc,O2 = 232.2 K

V H2O = 5.6 × 10−5 m3/mol

at

PH2O = 3 × Pc,H2O = 6.615 × 107 Pa

and

TH2O = 1.5 × Tc,H2O = 971 K

c. For oxygen we have

Pr =
2.5 × 106

5.046 × 106
= 0.495

and Tr = 473.2/154.6 = 3.061. Therefore, Vr = 16.5 and V = 1.208 × 10−3m3/mol.
Similarly for water,

Pr =
2.5 × 106

2.205 × 107
= 0.113

Tr = 473.2/647.3 = 0.731, so that Vr = 15.95 and V = 8.932 × 10−4 m3/mol.

As has been already indicated, the accuracy of the van der Waals equation is not
very good. This may be verified by comparing the results of the previous illustration
with experimental data, or by comparing the compressibility factor Z = PV /RT for
the van der Waals equation of state with experimental data for a variety of gases. In
particular, at the critical point (see Eq. 6.6-3c)

Zc

∣∣
van der Waals

= PcV c/RTc = 0.375

while for most fluids the critical compressibility Zc is in the range 0.23 to 0.31
(Table 6.6-1), so that the van der Waals equation fails to predict accurate critical-point
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Table 6.6-1 The Critical and Other Constants for Selected Fluids

Molecular
Weight

Substance Symbol (g mol−1) Tc (K) Pc (MPa) Vc (m3/kmol) Zc ω Tboil (K)

Acetylene C2H2 26.038 308.3 6.140 0.113 0.271 0.184 189.2
Ammonia NH3 17.031 405.6 11.28 0.0724 0.242 0.250 239.7
Argon Ar 39.948 150.8 4.874 0.0749 0.291 −0.004 87.3
Benzene C6H6 78.114 562.1 4.894 0.259 0.271 0.212 353.3
n-Butane C4H10 58.124 425.2 3.800 0.255 0.274 0.193 272.7
Isobutane C4H10 58.124 408.1 3.648 0.263 0.283 0.176 261.3
1-Butene C4H8 56.108 419.6 4.023 0.240 0.277 0.187 266.9
Carbon dioxide CO2 44.010 304.2 7.376 0.0940 0.274 0.225 194.7
Carbon monoxide CO 28.010 132.9 3.496 0.0931 0.295 0.049 81.7
Carbon tetrachloride CCl4 153.823 556.4 4.560 0.276 0.272 0.194 349.7
n-Decane C10H22 142.286 617.6 2.108 0.603 0.247 0.490 447.3
n-Dodecane C12H26 170.340 658.3 1.824 0.713 0.24 0.562 489.5
Ethane C2H6 30.070 305.4 4.884 0.148 0.285 0.098 184.5
Ethyl ether C4H10O 74.123 466.7 3.638 0.280 0.262 0.281 307.7
Ethylene C2H4 28.054 282.4 5.036 0.129 0.276 0.085 169.4
Helium He 4.003 5.19 0.227 0.0573 0.301 −0.387 4.21
n-Heptane C7H16 100.205 540.2 2.736 0.304 0.263 0.351 371.6
n-Hexane C6H14 86.178 507.4 2.969 0.370 0.260 0.296 341.9
Hydrogen H2 2.016 33.2 1.297 0.065 0.305 −0.22 20.4
Hydrogen fluoride HF 20.006 461.0 6.488 0.069 0.12 0.372 292.7
Hydrogen sulfide H2S 34.080 373.2 8.942 0.0985 0.284 0.100 212.8
Methane CH4 16.043 190.6 4.600 0.099 0.288 0.008 111.7
Naphthalene C10H8 128.174 748.4 4.05 0.410 0.267 0.302 491.1
Neon Ne 20.183 44.4 2.756 0.0417 0.311 0 27.0
Nitric oxide NO 30.006 180.0 6.485 0.058 0.250 0.607 121.4
Nitrogen N2 28.013 126.2 3.394 0.0895 0.290 0.040 77.4
n-Octane C8H18 114.232 568.8 2.482 0.492 0.259 0.394 398.8
Oxygen O2 31.999 154.6 5.046 0.0732 0.288 0.021 90.2
n-Pentane C5H12 72.151 469.6 3.374 0.304 0.262 0.251 309.2
Isopentane C5H12 72.151 460.4 3.384 0.306 0.271 0.227 301.0
Propane C3H8 44.097 369.8 4.246 0.203 0.281 0.152 231.1
Propylene C3H6 42.081 365.0 4.620 0.181 0.275 0.148 225.4
Refrigerant R12 CCl2F2 120.914 385.0 4.124 0.217 0.280 0.176 243.4
Refrigerant HFC-134a CH2FCF3 102.03 374.23 4.060 0.198 0.258 0.332 247.1
Sulfur dioxide SO2 64.063 430.8 7.883 0.122 0.268 0.251 263
Toluene C7H8 92.141 591.7 4.113 0.316 0.264 0.257 383.8
Water H2O 18.015 647.3 22.048 0.056 0.229 0.344 373.2
Xenon Xe 131.300 289.7 5.836 0.118 0.286 0.002 165.0

Source:Adapted from R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York,
1986, Appendix A and other sources.

behavior. (It is, however, a great improvement over the ideal gas equation of state, which
predicts that Z = 1 for all conditions.)
The fact that the critical compressibility of the van der Waals fluid is not equal to

that for most real fluids also means that different values for the van der Waals param-
eters are obtained for any one fluid, depending on whether Eq. 6.6-3a, Eq. 6.6-4a, or
Eq. 6.6-4b are used to relate these parameters to the critical properties. In practice, the
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critical volume of a fluid is known with less experimental accuracy than either the crit-
ical temperature or critical pressure, so that Eq. 6.6-4a and critical-point data are most
frequently used to obtain the van der Waals parameters. Indeed, the entries in Tables
6.4-1 and 6.6-1 are related in this way. Thus, if the parameters in Table 6.4-1 are used
in the van der Waals equation, the critical temperature and pressure will be correctly
predicted, but the critical volume will be too high by the factor

Zc

∣∣
van der Waals

Zc

=
3

8Zc

where Zc is the real fluid critical compressibility.
Although the van der Waals equation is not accurate, the idea of a correspondence of

states to which it historically led is both appealing and, as we will see, useful. Attempts
at using the corresponding-states concept over the last 40 years have been directed
toward representing the compressibility factor Z as a function of the reduced pressure
and temperature, that is,

Two-parameter
corresponding states

Z = PV /RT = Z(Pr, Tr) (6.6-7)

where the functional relationship between Tr,Pr, andZ is determined from experimen-
tal data, or from a very accurate equation of state. That such a procedure has somemerit
is evident from Fig. 6.6-2, where the compressibility data for different fluids have been
made to almost superimpose by plotting each as a function of its reduced temperature
and pressure.
A close study of Fig. 6.6-2 indicates that there are systematic deviations from the sim-

ple corresponding-states relation of Eq. 6.6-7. In particular, the compressibility factors
for the inorganic fluids are almost always below those for the hydrocarbons. Further-
more, if Eq. 6.6-7 were universally valid, all fluids would have the same value of the
critical compressibilityZc = Z(Pr = 1, Tr = 1); however, fromTable 6.6-1, it is clear
that Zc for most real fluids ranges from 0.23 to 0.31. These failings of Eq. 6.6-7 have
led to the development of more complicated corresponding-states principles. The sim-
plest generalization is the suggestion that there should not be a single Z = Z(Pr, Tr)
relationship for all fluids, but rather a family of relationships for different values of Zc.
Thus, to find the value of the compressibility factor for given values Tr andPr, it would
be necessary to use a chart of Z = Z(Pr, Tr) prepared from experimental data for flu-
ids with approximately the same value of Zc. This is equivalent to saying that Eq. 6.6-7
is to be replaced by

Z = Z(Tr, Pr, Zc)

Alternatively, fluid characteristics other than Zc can be used as the additional parame-
ter in the generalization of the simple corresponding-states principle. In fact, since for
many substances the critical density, and hence Zc, is known with limited accuracy, if
at all, there is some advantage in avoiding the use of Zc.
Pitzer13 has suggested that for nonspherical molecules the acentric factor ω be used

as the third correlative parameter, where ω is defined to be

Acentric factor ω = −1.0 − log10[P
vap(Tr = 0.7)/Pc]

13See Appendix 1 of K. S. Pitzer, Thermodynamics, 3rd ed., McGraw-Hill, New York, 1995.
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Figure 6.6-2 Compressibility factors for different fluids as a function of the reduced temperature and pres-
sure. [Reprinted with permission from G.-J. Su, Ind. Eng. Chem. 38. 803 (1946). Copyright American Chemical
Society.]

Here P vap(Tr = 0.7) is the vapor pressure of the fluid at Tr = 0.7, a temperature near
the normal boiling point. In this case the corresponding-states relation would be of
the form

Three-parameter
corresponding states

Z = Z(Tr, Pr, ω)

Even these extensions of the corresponding-states concept, which are meant to ac-
count for molecular structure, cannot be expected to be applicable to fluids with perma-
nent dipoles and quadrupoles. Since molecules with strong permanent dipoles interact
differently than molecules without dipoles, or than molecules with weak dipoles, one
would expect the volumetric equation of state for polar fluids to be a function of the
dipole moment. In principle, the corresponding-states concept could be further gener-
alized to include this new parameter, but we will not do so here. Instead, we refer you to
the book by Reid, Prausnitz, and Poling for a detailed discussion of the corresponding-
states correlations commonly used by engineers.14

The last several paragraphs have emphasized the shortcomings of a single correspon-
ding-states principle when dealing with fluids of different molecular classes. How-
ever, it is useful to point out that a corresponding-states correlation can be an accurate

14J. M. Prausnitz, B. E. Poling, and J. P. O’Connell, Properties of Gases and Liquids, 5th ed., McGraw-Hill,
New York, 2001.
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representation of the equation-of-state behavior within any one class of similar
molecules. Indeed, the volumetric equation-of-state behavior of many simple fluids and
most hydrocarbons is approximately represented by the plot in Fig. 6.6-3, which was
developed from experimental data for molecules with Zc = 0.27.
The existence of an accurate corresponding-states relationship of the type Z =

Z(Tr, Pr) (or perhaps a whole family of such relationships for different values of Zc

or ω) allows one to also develop corresponding-states correlations for that contribution
to the thermodynamic properties of the fluid that results from molecular interactions,
or nonideal behavior, that is, the departure functions of Sec. 6.4. For example, starting
with Eq. 6.4-22, we have

H(T,P ) − H IG(T,P ) =
∫ P,T

P=0,T

[
V − T

(
∂V

∂T

)
P

]
dP
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and using the corresponding-states relation, Eq. 6.6-7, yields

V =
RT

P
Z(Tr, Pr)

and

V − T

(
∂V

∂T

)
P

= −RT 2

P

(
∂Z

∂T

)
P

so that

H(T,P ) − H IG(T,P )

= −
∫ P,T

P=0,T

RT 2

P

(
∂Z

∂T

)
P

dP = −RTc

∫ Pr,Tr

Pr=0,Tr

T 2
r

Pr

(
∂Z

∂Tr

)
Pr

dPr

or

H(T,P ) − H IG(T,P )
Tc

= −RT 2
r

∫ Pr,Tr

Pr=0,Tr

1
Pr

(
∂Z

∂Tr

)
Pr

dPr (6.6-8)

The important thing to notice about this equation is that nothing in the integral depends
on the properties of a specific fluid, so that when the integral is evaluated using the
corresponding-states equation of state, the result will be applicable to all corresponding-
states fluids.
Figure 6.6-4 contains in detailed graphical form the corresponding-states prediction

for the enthalpy departure from ideal gas behavior computed from Fig. 6.6-3 (for fluids
with Zc = 0.27) and Eq. 6.6-8.15

The enthalpy change of a real fluid in going from (T0, P = 0) to (T,P ) can then be
computed using Fig. 6.6-4 as indicated here:

H(T,P ) − H(T0, P = 0) = H IG(T,P ) − H(T0, P = 0)

+ {H(T,P ) − H IG(T,P )} =
∫ T

T0

C∗
P dT

+ Tc

[
H(T,P ) − H IG(T,P )

Tc

]
from Fig.6.6−4

(6.6-9)

Similarly, the enthalpy change in going from any state (T1, P1) to state (T2, P2) can be
computed from the repeated application of Eq. 6.6-9, which yields

Enthalpy change from
corresponding states H(T2, P2) − H(T1, P1) =

∫ T2

T1

C∗
P dT + Tc

{[
H(T,P ) − H IG(T,P )

Tc

]
Tr2 ,Pr2

−
[
H(T,P ) − H IG(T,P )

Tc

]
Tr1 ,Pr1

}
from Fig. 6.6-4

(6.6-10)

15Note that Eqs. 6.6-8, 6.6-9, and 6.6-10 contain the term (H−HIG)/Tc, whereas Fig. 6.6-4 gives (HIG−H)/Tc.
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Figure 6.6-4 (Reprinted with permission from O. A. Hougen, K. M. Watson, and R. A. Ragatz,
Chemical Process Principles Charts, 2nd ed., John Wiley & Sons, New York, 1960. This figure
appears as an Adobe PDF file on the website for this book, and may be enlarged and printed for
easier reading and for use in solving problems.)

The form of Eqs. 6.6-9 and 6.6-10 makes good physical sense in that each consists of
two terms with well-defined meanings. The first term depends only on the ideal gas heat
capacity, which is a function of the molecular structure and is specific to the molecular
species involved. The second term, on the other hand, represents the nonideal behavior
of the fluid due to intermolecular interactions that do not exist in the ideal gas, but
whose contribution can be estimated from the generalized correlation.
In a manner equivalent to that just used, it is also possible to show (see Problem 6.6)

that

S(T,P ) − SIG(T,P ) = −R

∫ Pr,Tr

Pr=0,Tr

[
Z − 1

Pr

+
Tr

Pr

(
∂Z

∂Tr

)
Pr

]
dPr (6.6-11)
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This equation and Fig. 6.6-3 are the bases for the entropy departure plot given in
Fig. 6.6-5.16 The change in entropy between any two states (T1, P1) and (T2, P2) can
then be computed from

Entropy change from
corresponding states S(T2, P2) − S(T1, P1) =

∫ T2

T1

C∗
P

T
dT − R

∫ P2

P1

dP

P

+
{[

S − SIG
]
Tr2 ,Pr2

−
[
S − SIG

]
Tr1 ,Pr1

}
from Fig. 6.6-5

(6.6-12)

Similarly, corresponding-states plots could be developed for the other thermodynamic
propertiesU ,A, andG, though these properties are usually computed from the relations

U = H − PV

A = U − TS

G = H − TS

(6.6-13)

and the corresponding-states figures already given.

Illustration 6.6-2
Using Corresponding States to Solve a Real Gas Problem

Rework Illustration 6.5-1, assuming that nitrogen obeys the generalized correlations of Figs.
6.6-3, 6.6-4, and 6.6-5.

Solution

From Table 6.6-1 we have for nitrogen Tc = 126.2 K and Pc = 33.94 bar, and from the initial
conditions of the problem,

Tr =
170

126.2
= 1.347 and Pr =

100

33.94
= 2.946

From Fig. 6.6-3, Z = 0.741, so

V (t = 0) = Z
RT (t = 0)

P (t = 0)
= ZV IG(t = 0) = 1.047 × 10−4 m3/mol

Therefore, following Illustration 6.5-1,

N(t = 0) = 1432.7 mol

N(t) = 1432.7 − 10t mol

and

V (t = 50 min) =
0.15 m3

(1432.7 − 500) mol
= 1.6082 × 10−4 m3/mol

To compute the temperature and pressure at the end of the 50 minutes, we use

S(t = 0) = S(t = 50 min)

16Note that Eqs. 6.6-11 and 6.6-12 contain the term S − SIG, whereas Fig. 6.6-5 gives SIG − S.
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Figure 6.6-5 (Reprinted with permission from O. A. Hougen, K. M. Watson, and R. A. Ragatz,
Chemical Process Principles Charts, 2nd ed., John Wiley & Sons, New York, 1960. This figure
appears as an Adobe PDF file on the website for this book, and may be enlarged and printed for
easier reading and for use in solving problems.)
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and recognize that

S(t = 0) = SIG(T, V )t=0 + (S − SIG)t=0

and

S(t = 50 min) = SIG(T, V )t=50 min + (S − SIG)t=50 min

so that

S(t = 50 min) − S(t = 0) = SIG(T, P )t=50 min − SIG(T, P )t=0

+ (S − SIG)t=50 min − (S − SIG)t=0

where

SIG(T, P )t=50 min − SIG(T, P )t=0

= 27.2 ln
T (t = 50 min)

170

+ 4.2 × 10−3[T (t = 50 min) − 170] − 8.314 ln
P (t = 50 min)

100

Both of the (S − SIG) terms are obtained from the corresponding-states charts. (S − SIG)t=0 is
easily evaluated, since the initial state is known; that is, Tr = 1.347 andPr = 2.946, so that, from
Fig. 6.6-5 (S − SIG)t=0 = −2.08 cal/(mol K) = −8.70 J/(mol K). To compute (S − SIG) at
t = 50 minutes is more difficult because neither Tr nor Pr is known. The procedure to be
followed is

1. V (t = 50 min) is known, so guess a value of T (t = 50 min). (A reasonable first guess is
the ideal gas solution obtained earlier.)

2. Use V (t = 50 min) and T (t = 50 min) to compute, by trial and error, P (t = 50 min)
from

P =
RT

V
Z

(
T

Tc

,
P

Pc

)
=

RT

V
Z(Tr, Pr)

3. Use the values of P and T from steps 1 and 2 to compute (S − SIG)t=50 min.
4. Determine whether S(t = 50 min) = S(t = 0) is satisfied with the trial values of T and

P . If not, guess another value of T (t = 50) and go back to step 2.

Our solution after a number of trials is

T (t = 50 min) = 136 K

P (t = 50 min) = 41 bar

Comment

Because of the inaccuracy in reading numerical values from the corresponding-states graphs,
this solution cannot be considered to be of high accuracy.

It should be pointed out that although the principle of corresponding states and
Eqs. 6.6-7, 6.6-8, and 6.6-11 appear simple, the application of these equations can be-
come tedious, as is evident from this illustration. Also, the use of generalized correla-
tions will lead to results that are not as accurate as those obtained using tabulations of
the thermodynamic properties for the fluid of interest. Therefore, the corresponding-
states principle is used in calculations only when reliable thermodynamic data are not
available.



6.7 Generalized Equations of State 263

6.7 GENERALIZED EQUATIONS OF STATE

Although the discussion of the previous section focused on the van der Waals equation
and corresponding-states charts for both the compressibility factor Z and the thermo-
dynamic departure functions, the modern application of the corresponding states idea
is to use generalized equations of state. The concept is most easily demonstrated by
again using the van der Waals equation of state. From Eqs. 6.2-38,

P =
RT

V − b
− a

V 2 (6.2-38b)

and the result of the inflection point analysis of Sec. 6.6, the constants a and b can be
obtained from the fluid critical properties using

a =
27R2T 2

c

64Pc

and b =
RTc

8Pc

(6.6-4a)

The combination of Eqs. 6.2-38b and 6.6-4a is an example of a generalized equation
of state, since we now have an equation of state that is presumed to be valid for a class
of fluids with parameters (a and b) that have not been fitted to a whole collection of
experimental data, but rather are obtained only from the fluid critical properties. The
important content of these equations is that they permit the calculation of the PV T
behavior of a fluid knowing only its critical properties, as was the case in corresponding-
states theory.
It must be emphasized that the van der Waals equation of state is not very accu-

rate and has been used here merely for demonstration because of its simplicity. It is
never used for engineering design predictions, though other cubic equations of state are
used. To illustrate the use of generalized equations of state, we will consider only the
Peng-Robinson equation, which is commonly used to represent hydrocarbons and in-
organic gases such as nitrogen, oxygen, and hydrogen sulfide. The generalized form of
the Peng-Robinson equation of state is

Complete generalized
Peng-Robinson
equation of state

P =
RT

V − b
− a(T )

V (V + b) + b(V − b)
(6.4-2)

with

a(T ) = 0.45724
R2T 2

c

Pc

α(T ) (6.7-1)

b = 0.07780
RTc

Pc

(6.7-2)

√
α = 1 + κ

(
1 −

√
T

Tc

)
(6.7-3)

and

κ = 0.37464 + 1.54226ω − 0.26992ω2 (6.7-4)

where ω is the acentric factor defined earlier and given in Table 6.6-1.
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Equations 6.7-1 through 6.7-4 were obtained in the following manner. First, the
critical-point restrictions of Eq. 6.6-1 were used, which leads to (see Problem 6.11)

a(Tc) = 0.45724
R2T 2

c

Pc

and b = 0.07780
RTc

Pc

Next, to improve the predictions of the boiling pressure as a function of temperature,
that is, the vapor pressure (which will be discussed in Sec. 7.5), Peng and Robinson
added an additional temperature-dependent term to their equation by setting

a(T ) = a(Tc)α(T )

Note that to satisfy the critical-point restrictions, α(T = Tc) must equal unity, as does
the form of Eq. 6.7-3. The specific form of α given by Eqs. 6.7-3 and 6.7-4 was chosen
by fitting vapor pressure data for many fluids.
There are two points to be noted in comparing the generalized van der Waals and

Peng-Robinson equations of state. First, although the parameter a is a constant in the
van der Waals equation, in the Peng-Robinson equation it is a function of temperature
(actually reduced temperature, Tr = T/Tc) through the temperature dependence of α.
Second, the generalized parameters of the Peng-Robinson equation of state are func-
tions of the critical temperature, the critical pressure, and the acentric factor ω of the
fluid. Consequently, the Peng-Robinson equation of state, as generalized here, is said to
be a three-parameter (Tc, Pc, ω) equation of state, whereas the van der Waals equation
contains only two parameters, Tc and Pc.
This generalized form of the Peng-Robinson equation of state (or other equations of

state) can be used to compute not only the compressibility, but also the departure func-
tions for the other thermodynamic properties. This is done using Eqs. 6.4-29 and 6.4-30.
In particular, to obtain numerical values for the enthalpy or entropy departure for a fluid
that obeys the Peng-Robinson equation of state, one uses the following procedure:

1. Use the critical properties and acentric factor of the fluid to calculate b, κ, and the
temperature-independent part of a using Eqs. 6.7-1, 6.7-2, and 6.7-4.

2. At the temperature of interest, compute numerical values for α and a using
Eqs. 6.7-1 and 6.7-3.

3. Solve the equation of state, Eq. 6.4-2, for V and compute Z = PV /RT . Alter-
natively, solve for Z directly from the equivalent equation

Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 − B3) = 0 (6.7-5)

where B = Pb/RT and A = aP/R2T 2.
4. Use the computed value of Z and

For Peng-Robinson
equation of state

da

dT
= −0.45724

R2T 2
c

Pc

κ

√
α

TTc

to compute [H(T,P ) − H IG(T,P )] and/or [S(T,P ) − SIG(T,P )] as desired,
using Eqs. 6.4-29 and 6.4-30.

The enthalpy and entropy departures from ideal gas behavior calculated in this way can
be used to solve thermodynamic problems in the same manner as the similar functions
obtained from the corresponding-states graphs were used in the previous section.
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It is clear that the calculation outlined here using the Peng-Robinson equation of
state is, when doing computations by hand, more tedious than merely calculating the
reduced temperature and pressure and using the graphs in Sec. 6.6. However, the equa-
tions here have some important advantages with the use of digital computers. First, this
analytic computation avoids putting the three corresponding-states graphs in a com-
puter memory in numerical form. Second, the values of the compressibility factor and
departures from ideal gas properties obtained in the present three-parameter calculation
should be more accurate than those obtained from the simple two-parameter (Tc, Pc)
corresponding-states method of the previous section because of the additional fluid pa-
rameter (acentric factor) involved. Also, there is an absence of interpolation errors.
Finally, if, at some time in the future, it is decided to use a different equation of state,
only a few lines of computer code need be changed, as opposed to one’s having to draw
a complete new series of corresponding-states graphs.
Before there was easy access to electronic calculators and computers, it was

common practice to apply the corresponding-states principle by using tables and graphs
as illustrated in the previous section. Now, however, the usual industrial practice is
to directly incorporate the corresponding-states idea that different fluids obey the same
form of the equation of state, by using digital computer programs and generalized equa-
tions of state such as the one discussed here. This is demonstrated in the following
illustration.

Illustration 6.7-1
Using the Peng-Robinson Equation of State to Solve a Real Gas Problem

Rework Illustration 6.5-1 assuming that nitrogen can be described using the Peng-Robinson
equation of state.

Solution

The equations for solving this problem are the same as in Illustration 6.5-1. Specifically, the
final temperature and pressure in the tank should be such that the molar entropy of gas finally
in the tank is equal the initial molar entropy (Eq. c of Illustration 6.5-1), and the final molar
volume should be such that the correct number of moles of gas remains in the tank (Eq. e of
Illustration 6.5-1). The main difference here is that the Peng-Robinson equation of state is to be
used in the solution. The general procedure used to calculate thermodynamic properties from the
Peng-Robinson equation of state, and specifically for this problem, is as follows:

1. Choose values of T and P (these are known for the initial state and here will have to be
found by trial and error for the final state).

2. Calculate a and b using Eqs. 6.7-1 through 6.7-4 and thenA = aP/R2T 2 andB = Pb/RT .
3. Find the compressibility Z or the molar volume (for the vapor phase in this problem) by

solving the cubic equation, Eq. 6.7-5 (here for the largest root).
4. Using the value of Z found above and Eq. 6.4-30 to calculate the entropy departure from

ideal gas behavior, S − SIG. (Note that though they are not needed in this problem, the
enthalpy departure and other properties can also be computed once the compressibility is
known.)

The equations to be solved are first the Peng-Robinson equation of Eqs. 6.7-1 to 6.7-4 for the
initial molar volume or compressibility, and then the initial number of moles in the tank using
Eq. d of Illustration 6.5-2. The results, using the Visual Basic computer program described in
Appendix B.I-2, the DOS-based program PR1 described in Appendix B.II-1, the MATHCAD
worksheet described in Appendix B.III, or the MATLAB program described in B.IV included
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on the web site for this book, are

Z = 0.6769 V (t = 0) = 0.9567 × 10−4 m3/mol

N(t = 0) = 1567.9 mol and (S − SIG)t=0 = −9.18 J/(mol K)

Consequently,

N(t = 50) = 1567.9 − 10 × 50 = 1067.9 mol and

V (t = 50) = 0.15 m3/1067.9 mol = 1.4046 × 10−4 m3/mol
(a)

Also

S(t = 50) − S(t = 0) = 0

= SIG(t = 50) − SIG(t = 0) + (S − SIG)t=50 − (S − SIG)t=0

=

∫ T (t=50)

T (t=0)

C∗
P(T )

T
dT − R ln

(
P (t = 50)

P (t = 0)

)

+ (S − SIG)t=50 − (S − SIG)t=0

= 27.2 ln

(
T (t = 50)

170

)
+ 0.0042 × (T (t = 50) − 170)

− R ln

(
P (t = 50)

P (t = 0)

)
+ (S − SIG)t=50 − (S − SIG)t=0

(b)

Equations a and b are to be solved together with the Peng-Robinson equation of state and
Eq. 6.4-30 for the entropy departure. This can be done in several ways. The simplest is to use
an equation-solving program; this is illustrated using the MATHCAD worksheet described in
Appendix B III. A somewhat more tedious method is to use one of the other Peng-Robinson
equation-of-state programs described in Appendix B in an iterative fashion. That is, one could
use the following procedure:

1. Guess the final temperature of the expansion process (the ideal gas result is generally a
good initial guess).

2. Using the Peng-Robinson equation of state, iterate on the pressure until the correct value
of V (t = 50) is obtained for the guessed value of T (t = 50).

3. With the values of T (t = 50) and P (t = 50) so obtained, check whether Eq. b above is
satisfied. If it is, the correct solution has been obtained. If not, adjust the guessed value of
T (t = 50) and repeat the calculation.

The result, directly from the MATHCAD worksheet or after several iterations with the other
programs following the procedure above, is

T (t = 50 min) = 134.66 K and P (t = 50 min) = 40.56 bar

[Note that at these conditions (S − SIG)t=50 = −10.19 J/mol.]

Alternatively, Aspen Plus R© with the Peng-Robinson equation of state can be used to solve
this problem.

Though we will usually use the generalized Peng-Robinson equation of state for cal-
culations and illustrations in this text, it is of interest to also list the generalized version
of the Soave-Redlich-Kwong equation of state since it is also widely used in industry:

Soave-Redlich-Kwong
equation of state

P =
RT

V − b
− a(T )

V (V + b)
(6.4-1b)



6.8 The Third Law of Thermodynamics 267

with

a(T ) = 0.42748
R2T 2

c

Pc

α(T ) (6.7-6)

b = 0.08664
RTc

Pc

(6.7-7)

√
α(T ) = 1 + κ

(
1 −

√
T

Tc

)
(6.7-8)

and
κ = 0.480 + 1.574ω − 0.176ω2 (6.7-9)

6.8 THE THIRD LAW OF THERMODYNAMICS

In most treatises on thermodynamics, it is usual to refer to the laws of thermodynam-
ics. The conservation of energy is referred to as the First Law of Thermodynamics,
and this principle was discussed in detail in Chapter 3. The positive-definite nature of
entropy generation used in Chapter 4, or any of the other statements such as those of
Clausius or Kelvin and Planck, are referred to as the SecondLaw of Thermodynamics.
The principle of conservation of mass precedes the development of thermodynamics,
and therefore is not considered to be a law of thermodynamics.
There is a Third Law of Thermodynamics, though it is less generally useful than

the first two. One version of the third law is

Third law of
thermodynamics

The entropy of all substances in the perfect crystalline state (for solids) or the perfect
liquid state (for example, for helium) is zero at the absolute zero of temperature (0 K).

Before we can use this statement, the perfect state must be defined. Here by “perfect”
wemeanwithout any disturbance in the arrangement of the atoms. That is, the substance
must be without any vacancies, dislocations, or defects in the structure of the solid (or
liquid) and not contain any impurities. The statement of the third law here is somewhat
too constraining. A more correct statement is that all substances in the perfect state
mentioned above should have the same value of entropy at 0 K, not necessarily a value
of zero. It is mostly for convenience in the preparation of thermodynamic tables that a
value of entropy of zero at 0 K is chosen.
There are several implications of the above statement. The first obvious one is that

there will be no entropy change on a chemical reaction at 0 K if each of the react-
ing substances is in a perfect state, to produce one or more products in perfect states.
In fact, it was this observation that led to the formulation of the third law. A second
implication, which is less obvious and is sometimes used as an alternative statement of
the third law, is

It is impossible to obtain a temperature of absolute zero.

This statement is proved as follows. From Eq. 6.2-20, we have

dS =
CP

T
dT −

(
∂V

∂T

)
P

dP =
CP

T
dT (6.2-20)

for a change at constant pressure. To continue we divide by dT and take the limits as
T → 0 to obtain
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lim
T→0

(
∂S

∂T

)
P

= lim
T→0

CP

T
(6.8-1)

There is experimental evidence showing that the constant-pressure heat capacity is finite
and positive in value at all temperatures, and zero at absolute zero. Since CP is positive
and T is zero, we have

lim
T→0

(
∂S

∂T

)
P

= ∞ (6.8-2)

There are two possible conclusions from this equation. One is that as T decreases to
absolute zero (so dT is negative), the entropy of any substance will become negative
infinity. However, the experimental evidence is that the Gibbs energy of a substance,
G = H − TS, converges to its enthalpy as absolute zero is approached, which means
that the entropy must be finite. Therefore, the second, alternative conclusion is that it
is not possible to reach a temperature of 0 K. This interpretation is the correct one, and
in fact 0 K has not been attained in the laboratory. (However, with considerable effort
temperatures of the order of 20 to 100 nK have been obtained.)

6.9 ESTIMATION METHODS FOR CRITICAL AND OTHER PROPERTIES

To use either the generalized equations of state (such as the Peng-Robinson and
Soave–Redlich-Kwong equations) or the method of corresponding states, one needs
information on the critical and other properties of the fluids of interest. The discussion
so far has been concerned with molecules for which such data are available. However,
an issue that arises is what to do when one does not have such data, either because
the data are not available, (e.g., the compound one wishes to study has not yet been
made in the laboratory) or perhaps because one is interested in a preliminary identifi-
cation of which compounds or which class of compounds might have certain desired
properties. This is especially the case in “product engineering,” where one is interested
in creating a compound or mixture of compounds with certain desired properties. This
might be done by using a fast computational method to narrow the search of compounds
with the desired properties, and then going to the library, searching the Web, or doing
measurements in the laboratory to determine if the compounds so identified actually
do have the desired properties. This task of identifying compounds with specific prop-
erties to make a new product is different from the usual job of a chemical engineer,
which is “process engineering,” that is, designing a process to make a desired product.
Also, the thermodynamic properties of most pharmaceuticals and naturally occurring
biologically-produced chemicals are unknown, and this is another case where being
able to make some estimates, even very approximate ones, can be useful in developing
purification methods.
The most common way to make properties estimates in the absence of experimental

data is to use various group contribution methods. The basis of the method is that a
molecule is thought of as a collection of functional groups, each of which makes an
additive, though not necessarily linear, contribution to the properties of the molecule.
Then as a result of summing up the contributions of each of the functional groups, the
properties of the molecule are obtained. The underlying idea is that all molecules can be
assembled from a limited number of functional groups (much in the same way that all
of English literature can be created from only the 26 letters or functional groups in the
alphabet). We will consider only one simple group contribution method for estimating



6.9 Estimation Methods for Critical and Other Properties 269

pure component properties here, that of Joback17, though a number of other methods
exist.
However, before we proceed, a word of caution. Any group contribution method is

inherently approximate and has some shortcomings. For example, it is assumed that
a functional group makes the same contribution to the properties of a molecule inde-
pendent of the molecule, and also which other functional groups it is bound to. This
is a serious assumption, and one that is not generally true. For example, a methylene
group, −CH2−, makes a different contribution to the properties of a molecule if its
binding partners are other methylene groups, halogens, or alcohols. Also, since sim-
ple group contribution methods are based on merely counting the number of each type
of functional group, and not on their location within the molecule, they do not distin-
guish between isomers. In principle, group contribution methods can be improved by
accounting for the first nearest neighbors, or the first and second nearest neighbors of
each functional group. However, this makes the method much more difficult to apply,
and would require extensive high-accuracy data and complicated data regression meth-
ods to obtain the contributions of each group. Instead, generally only simple group con-
tributions methods are used, with the understanding that the results will be of uncertain
accuracy and only of use for preliminary analysis, not for engineering design.
The Joback group contribution method uses the following equations:

Tc (K) =
Tb (K)

0.584 + 0.965 ·
∑

i νi
Tc,i − (
∑

i νi
Tc,i)
2

Pc (bar) =
1(

0.113 + 0.0032 · n −
∑
i

νi · 
Pc,i

)2

V c

(
cm3

mol

)
= 17.5 +

∑
i

νi · 
Vc,i

Tb (K) = 198 +
∑

i

νi · 
Tb,i

Tf (K) = 122 +
∑

i

νi · 
Tf,i

In these equations, the subscripts c, b, and f indicate the critical point, boiling point, and
freezing point, respectively; the 
 terms are the contributions of the group to each of
the specified properties given in the following table; and νi is the number of functional
groups of type i in the molecule.
To use the generalized form of, for example, the Peng-Robinson or Soave–Redlich-

Kwong equations of state, one also needs the acentric factor. If the vapor pressure of the
substance is known as a function of temperature, and the critical properties are known,
the acentric factor can be computed from its definition,

ω = −log
P vap (T = 0.7Tc)

Pc

− 1

17See, for example, Chapter 2 of B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and
Liquids, 5th ed., McGraw-Hill, New York, 2001
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Table 6.9-1 Joback Group Contributions to Pure Component Properties

Group 
Tc 
Pc 
Vc 
Tb 
Tf

−CH3 nonring 0.0141 −0.0012 65 23.58 −5.1

−
−

CH2 nonring 0.0189 0.0000 56 22.88 11.27

−CH2− ring 0.0100 0.0025 48 27.15 7.75

−
−

CH− nonring 0.0164 0.0020 41 21.74 12.64

−
−

CH− ring 0.0122 0.0004 38 21.78 19.88

−
−

C −− nonring 0.0067 0.0043 27 18.25 46.43

−
−

C −− ring 0.0042 0.0061 27 21.32 60.15

=CH2 nonring 0.0113 −0.0028 56 18.18 −4.32
=CH− nonring 0.0129 −0.0006 46 24.96 8.73
=CH− ring 0.0082 0.0011 41 26.73 8.13
=C −− nonring 0.0117 0.0011 38 24.14 11.14

=C −− ring 0.0143 0.0008 32 31.01 37.02
=C= nonring 0.0026 0.0028 36 26.15 17.78
≡CH nonring 0.0027 −0.0008 46 9.2 −11.18
≡C− nonring 0.0020 0.0016 37 27.38 64.32
−F all 0.0111 −0.0057 27 −0.03 −15.78
−Cl all 0.0105 −0.0049 58 38.13 13.55
−Br all 0.0133 0.0057 71 66.86 43.43
−I all 0.0068 −0.0034 97 93.84 41.69
−OH alcohol 0.0741 0.0112 28 92.88 44.45
−OH phenol 0.0240 0.0184 −25 76.34 82.83
−O− nonring 0.0168 0.0015 18 22.42 22.23
−O− ring 0.0098 0.0048 13 31.22 23.05

−
−

C=O nonring 0.0380 0.0031 62 76.75 61.2

−
−

C=O ring 0.0284 0.0028 55 94.97 75.97

O=CH− aldehyde 0.0379 0.003 82 72.24 36.9
−COOH acid 0.0791 0.0077 89 169.09 155.5
−COO− nonring 0.0481 0.0005 82 81.1 53.6
=O other 0.0143 0.0101 36 −10.5 2.08
−NH2 all 0.0243 0.0109 38 −10.5 2.08

−
−

NH nonring 0.0295 0.0077 35 50.17 52.66

−
−

NH ring 0.0130 0.0114 29 52.82 101.51

−
−

N− nonring 0.0169 0.0074 9 11.74 48.84

−N= nonring 0.0255 −0.0099 0 74.6 0
−N= ring 0.0085 0.0076 34 57.55 68.4
−CN all 0.0496 −0.0101 91 125.66 59.89
−NO2 all 0.0437 0.0064 91 152.54 127.24
−SH all 0.0031 0.0084 63 63.56 20.09
−S− nonring 0.0119 0.0049 54 68.78 34.4
−S− ring 0.0019 0.0051 38 52.1 79.93
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When such information is not available, the following approximate equation can be
used:

ω =
3
7

Tbr

1 − Tbr

log Pc − 1

where Tbr = Tb/Tc. A very crude approximation, which was not suggested by Joback,
is to use an estimated rather than a measured value for the normal boiling-point tem-
perature in this equation should experimental data not be available.

Illustration 6.9-1
Group Contribution Estimate of the Properties of a Pure Fluid

Use the methods described above to estimate the properties of n-octane that has a boiling point of
398.8 K and ethylene glycol (1,2-ethanediol) that has a boiling point of 470.5 K. Also compare
the estimates of using and not using the measured boiling points.

Solution

The results for n-octane are as follows:

Experiment Using Tb Not Using Tb

Tb (K) 398.8 398.8 382.4
Tf (K) 216.4 179.4 179.4
Tc (K) 568.8 569.2 545.9
Pc (bar) 24.9 25.35 25.35
Vc (cc/mol) 492 483.5 483.5
ω 0.392 0.402 0.402

The results for ethylene glycol are

Experiment Using Tb Not Using Tb

Tb (K) 470.5 470.5 429.5
Tf (K) 260.2 233.4 233.4
Tc (K) 645.0 645.5 589.3
Pc (bar) 77.0 66.5 66.5
Vc (cc/mol) ? 185.5 185.5
ω ? 1.094 1.094

We see that while none of the results are perfect, the estimates for n-octane are reasonably
good, while those for ethylene glycol are less accurate. However, all the predictions are good
enough to provide at least a qualitative estimate of the properties of these fluids. That is especially
important when experimental data are not available, as is the case here for the critical volume
and acentric factor of ethylene glycol. Note also that if a measured value of the normal boiling
temperature is available and used, it results in a considerably more accurate value of the critical
temperature than is the case if the information is not available.

Comment

Another situation in which approximate group contribution methods are especially useful is in
product design where an engineer can ask (on a computer) what changes in properties would
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result if one or more functional groups were added, removed or replaced in a molecule. An
example of a product design will be given later in this book

However, it is important to remember that all group contribution methods are very approxi-
mate. Therefore, while the methods discussed here can be used to obtain a preliminary estimate
of the properties of a molecule, they should be verified against measurements before being used
in an engineering design.

6.10 SONIC VELOCITY

When a pressure pulse is introduced into a gas (or any compressible fluid), for exam-
ple, something so simple as a spoken word or as complex as an explosion, this pressure
wave travels at a fixed velocity, referred to as the sonic velocity or simply the speed of
sound, that depends on the properties of the fluid. It is the sonic velocity that we wish
to compute here. So consider the system shown in Fig. 6.10-1 in which the small move-
ment of a piston in a cylindrical tube initiates a pressure wave that travels at velocity c,
the speed of sound. This pressure wave will have a very sharp wave front. We can con-
sider the fluid in the tube to consist of the region immediately on the left through which
the pressure wave has already passed, state 1, and the region on the right, state 2, that
has not yet experienced the pressure wave. Note that the pressure wave and the fluids
in both regions adjacent to the pressure wave are in motion because of the difference
in pressure. The fluid adjacent to the pressure wave in region 2 has the velocity v2 = c
and that in region 1 has a velocity v1 = c− δv; the fluid far ahead of the pressure wave
is quiescent.

Pressure wave

State 1

H1(P1, ρ1) H2(P2, ρ2)

n1

State 2

n2 = c

Figure 6.10-1 Pressure wave in a gas

We start by writing the mass balance for a region of infinitesimal thickness that in-
cludes a small pressurewave and its immediate surrounding gas ofmolecular weightmw
on both sides of the wave. The downstream enthalpy will be denoted by H2(P, ρ) and
as the pressure difference between the regions upstream and downstream of the shock
wave is small, the properties in the upstream region are at the slightly higher pres-
sure P + δP and density ρ + δρ, and the enthalpy will be denoted as H1(P1, ρ1) =
H(P + δP, ρ + δρ) = H + δH . With this notation, the mass balance on the control
volume is

Ṅ1 = ρ1Av1 = Ṅ2 = ρ2Av2; Also (ρ + δρ)(c − δv) = ρc or

− ρδv + cδρ − (δv)(δρ) = 0 so that δv = c
δρ

ρ + δρ
≈ c

δρ

ρ

(6.10-1)

assuming that the pressure pulse is sufficiently small so that the density variation is
small with respect to the total density
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The energy balance for the control volume is

Ṅ1

[
H1(P1, ρ1) + mw

1
2
v2
1

]
= Ṅ1

[
H + δH + mw

1
2
(c − v)2

]
= Ṅ2

[
H2(P2, ρ2) + mw

1
2
v2
2

]
= Ṅ2

[
H + mw

1
2
c2
]
; and since Ṅ1 = Ṅ2

δH + mw
1
2
(c − v)2 = mw

1
2
c2 or δH + mw

1
2
(−cv + v2) = 0

Now since the sonic veloity c is much larger than the fluid velocity v, neglecting the v2

term with respect to the cv term, and using Eqn. 6.10-1 gives

δH − mwcv = 0 and δH = mwcv = mwc
(
c
δρ

ρ

)
; or

c2 =
ρ

mw
δH

δρ
and c =

√
ρ

mw
δH

δρ

To complete the analysis, we have to determine the conditions under which the deriva-
tive δH/δρ is to be evaluated. Since the passage of the shock wave occurs very rapidly,
the process is adiabatic. Less obvious is that the process can be considered to be re-
versible since each element of fluid differes in properties (temperature, pressure, den-
sity) only infinitesimally from its neighboring fluid elements. So that it is essentially
in equilibrium with its neighbors, so that process can be considered to be reversible.

Therefore, the speed of sound c is given by c =
√

ρ

mw

(∂H

∂ρ

)
S
.

Starting from

dH = TdS+V dP = TdS+
dP

ρ
so that ρ

(∂H

∂ρ

)
S

=
(∂P

∂ρ

)
S

= −V 2
(∂P

∂V

)
S

Now using the triple product rule gives

(∂P

∂V

)
S

(∂V

∂S

)
P

( ∂S

∂P

)
V

= −1 or
(∂P

∂V

)
S

= −

(
∂S
∂V

)
P(

∂S
∂P

)
V

Using dS =
CP

T
dT −

(∂V

∂T

)
P
dP gives

( ∂S

∂V

)
P

=
CP

T

(∂T

∂V

)
P

Also, starting from dS =
CV

T
dT +

(∂P

∂T

)
V
dV gives

( ∂S

∂P

)
V

=
CV

T

(∂T

∂P

)
V

Therefore,

(∂P

∂V

)
S

= −
CP
T

(
∂T
∂V

)
P

CV
T

(
∂T
∂P

)
V

= −
CP

(
∂T
∂V

)
P

CV

(
∂T
∂P

)
V

and

ρ
(∂H

∂ρ

)
S

=
(∂P

∂ρ

)
S

= −V 2
(∂P

∂V

)
S

= V 2

CP
T

(
∂T
∂V

)
P

CV
T

(
∂T
∂P

)
V



274 Chapter 6: The Thermodynamic Properties of Real Substances

Also then

c =

√√√√√√ 1
mw

V 2

CP
T

(
∂T
∂V

)
P

CV
T

(
∂T
∂P

)
V

For the ideal gas

PV = RT, so that
(∂T

∂V

)
P

=
P

R
and

(∂T

∂P

)
V

=
V

R

Therefore, there speed of sound for an ideal gas is

c =

√√√√√√ 1
mw

V 2

CP
T

(
∂T
∂V

)
P

CV
T

(
∂T
∂P

)
V

=

√
1
mw

V 2
CP

P
R

CV
V
R

=
√

1
mw

CP

CV

RT

So for the ideal gas, the speed of sound depends on the square root of the ratio of the
constant pressure to constant volume heat capacities, on the square root of the temper-
ature, and is inversely proportional to the square root of the molecular weight.

Illustration 6.10-1
Compression of air

For the purposes here, air can be considered to be a single-component gas (rather than a 21mol%
oxygen-79 mol % nitrogen mixture with a molecular weight of 29 and for which CP = 7R/2.
Compute the velocity of sound in air at room temperature (298 K) and on a very cold morning
in Minnesota when the temperature is −40◦C.

Solution

a. Since CP = 7R/2, then CV = CP − R = 5R/2 for the ideal gas. Therefore, at 298 K

c =

√
1

mw

CP

CV

RT =

√
1

29 g
mol

7R/2

5R/2
× 8.314

J

mol K
× kg m2

s2J
× g

kg
× 298 K

=
√

119607
m

s
= 345.8

m

s

b. At −40◦C = 233.15 K

c =

√
1

mw

CP

CV

RT =

√
1

29 g
mol

7R/2

5R/2
× 8.314

J

mol K
× kg m2

s2J
× g

kg
× 233.15 K

=
√

93578.4
m

s
= 305.9

m

s

The reason that the speed of sound (or sonic velocity) is of interest to chemical engi-
neers is that it the highest velocity possible that a gas can achieve. This is, for example,
the highest gas velocity that could be obtained in the throat of a valve or in a con-
verging nozzle, that is a nozzle whose cross-sectional area decreases in the direction of
flow. Generally, for flow through a valve or converging nozzle, the mass flow rate will
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increase as the upstream pressure is increased or the downstream pressure is reduced.
However, this will not occur if the velocity of the gas in the valve or nozzle was already
at the sonic velocity. The flow then said to be choked, and the mass flow rate for the
given geometry cannot be increased by higher upstream pressure or lower downstream
pressure. The design of nozzles and valves to avoid choking flow is a problem that we
leave to mechanical engineers and aerodynamicists.
One final term to introduce, largely because it appears in both aerodynamics and the

nontechnical literature, is the Mach number M that is defined as the ratio of the actual
gas velocity v to the sonic velocity c at the same temperature and pressure. That is,

M =
v

c

The Mach number is an important parameter in the flow of gases. However, it will not
be considered further.

6.11 MORE ABOUT THERMODYNAMIC PARTIAL DERIVATIVES (OPTIONAL)

This section appears on the website for this book.

PROBLEMS

For some of these problems, it will be helpful to use the
computer programs and/or MATHCAD worksheets on
the website for this book and described in Appendix B
in solving part of all of the problem.

6.1 For steam at 500◦C and 10 MPa, using the Mollier
diagram,
a. Compute the Joule-Thomson coefficient μ =

(∂T/∂P )H .
b. Compute the coefficient κS = (∂T/∂P )S .
c. Relate the ratio (∂H/∂S)T /(∂H/∂S)P to μ and

κS , and compute its value for steam at the same
conditions.

6.2 Derive Eqs. 6.4-29 and 6.4-30.
6.3 Evaluate the difference

(
∂U

∂T

)
P

−
(

∂U

∂T

)
V

for the ideal and van der Waals gases, and for a gas that
obeys the virial equation of state.

6.4 One of the beauties of thermodynamics is that it pro-
vides interrelationships between various state variables
and their derivatives so that information from one set of
experiments can be used to predict the results of a com-
pletely different experiment. This is illustrated here.
a. Show that

CP =
T 2

μ

(
∂(V /T )

∂T

)
P

Thus, if the Joule-Thomson coefficient μ and
the volumetric equation of state (in analytic or
tabular form) are known for a fluid, CP can be
computed. Alternatively, if CP and μ are known,
(∂(V /T )/∂T )P can be calculated, or if CP and
(∂(V /T )/∂T )P are known, μ can be calculated.

b. Show that

V (P, T2) =
T2

T1

V (P, T1) + T2

∫ P,T2

P,T1

μCP

T 2
dT

so that if μ and CP are known functions of tempera-
ture at pressure P , and V is known at P and T1, the
specific volume at P and T2 can be computed.

6.5 Derive Eqs. 6.6-2 and 6.6-3, and show that
Zc|van der Waals = 3/8.

6.6 Derive Eq. 6.6-11.
6.7 One hundred cubic meters of carbon dioxide initially at

150◦C and 50 bar is to be isothermally compressed in
a frictionless piston-and-cylinder device to a final pres-
sure of 300 bar. Calculate
i. The volume of the compressed gas
ii. The work done to compress the gas
iii. The heat flow on compression
assuming carbon dioxide
a. Is an ideal gas
b. Obeys the principle of corresponding states of

Sec. 6.6
c. Obeys the Peng-Robinson equation of state
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6.8 By measuring the temperature change and the specific
volume change accompanying a small pressure change
in a reversible adiabatic process, one can evaluate the
derivative (

∂T

∂P

)
S

and the adiabatic compressibility

κS = − 1

V

(
∂V

∂P

)
S

Develop an expression for (∂T/∂P )S in terms of T , V ,
CP, α, and κT , and show that

κS

κT

=
CV

CP

6.9 Prove that the following statements are true.
a. (∂H/∂V )T is equal to zero if (∂H/∂P )T is equal to

zero.
b. The derivative (∂S/∂V )P for a fluid has the same

sign as its coefficient of thermal expansion α and is
inversely proportional to it.

6.10 By measuring the temperature change accompanying
a differential volume change in a free expansion across
a valve and separately in a reversible adiabatic expan-
sion, the two derivatives (∂T/∂V )H and (∂T/∂V )S

can be experimentally evaluated.
a. Develop expressions for these derivatives in terms

of the more fundamental quantities.
b. Evaluate these derivatives for a van derWaals fluid.

6.11 a. Show for the Peng-Robinson equation of state
(Eq. 6.4-2) that

a(Tc) = 0.45724R2T 2
c /Pc

and
b = 0.07780RTc/Pc

b. Determine the critical compressibility of the Peng-
Robinson equation of state.

6.12 Ethylene at 30 bar and 100◦C passes through a heater-
expander and emerges at 20 bar and 150◦C. There is
no flow of work into or out of the heater-expander,
but heat is supplied. Assuming that ethylene obeys the
Peng-Robinson equation of state, compute the flow of
heat into the heater-expander per mole of ethylene.

Q

20 bar
150°C

30 bar
100°C

6.13 A natural gas stream (essentially pure methane) is
available at 310 K and 14 bar. The gas is to be com-
pressed to 345 bar before transmission by underground
pipeline. If the compression is carried out adiabati-
cally and reversibly, determine the compressor outlet
temperature and the work of compression per mole
of methane. You may assume that methane obeys the
Peng-Robinson equation of state. See Appendix A.II
for heat capacity data.

6.14 Values of the virial coefficientsB andC at a fixed tem-
perature can be obtained from experimental PV T data
by noting that

lim
P→0

(V →∞)

PV

RT
= 1

lim
P→0

(V →∞)

V

(
PV

RT
− 1

)
= B

lim
P→0

(V →∞)

V 2

(
PV

RT
− 1 − B

V

)
= C

a. Using these formulas, show that the van der Waals
equation leads to the following expressions for the
virial coefficients.

B = b − a

RT
C = b2

b. The temperature at which

lim
P→0

(or V →∞)

V

(
PV

RT
− 1

)
= B = 0

is called the Boyle temperature. Show that for the
van der Waals fluid

TBoyle = 3.375Tc

where Tc is the critical temperature of the van der
Waals fluid given by Eqs. 6.6-3. (For many real
gases TBoyle is approximately 2.5Tc!)

6.15 From experimental data it is known that at moder-
ate pressures the volumetric equation of state may be
written as

PV = RT + BP

where the virial coefficient B is a function of
temperature only. Data for nitrogen are given in the
table.

a. Identify the Boyle temperature (the temperature at
which B = 0) and the inversion temperature [the
temperature at which μ = (∂T/∂P )H = 0] for
gaseous nitrogen.

b. Show, from the data in the table, that at tem-
peratures above the inversion temperature the
gas temperature increases in a Joule-Thomson
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T (K) B (cm3/mol)

75 −274
100 −160
125 −104
150 −71.5
200 −35.2
250 −16.2
300 −4.2
400 +9.0
500 +16.9
600 +21.3
700 +24.0

Source: J. H. Dymond and E. B.
Smith, The Virial Coefficients
of Gases, Clarendon Press,
Oxford, 1969, p. 188.

expansion, whereas it decreases if the initial tem-
perature is below the inversion temperature.

c. Describe how you would find the inversion temper-
ature as a function of pressure for nitrogen using
Fig. 3.3-3 and for methane using Fig. 3.3-2.

6.16 Eighteen kilograms of the refrigerant HFC-134a at
150◦C is contained in a 0.03-m3 tank. Compare the
prediction you can make for the pressure in the tank
with that obtained using Fig. 3.3-4. For data, see
Table 6.6-1.

6.17 Calculate the molar volume, enthalpy, and entropy of
carbon tetrachloride at 300◦C and 35 bar using the
Peng-Robinson equation of state and the principle of
corresponding states of Sec. 6.6. The following data
are available:

H(T = 16◦C, ideal gas at P = 0.1 bar) = 0

S(T = 16◦C, ideal gas at P = 0.1 bar) = 0

Tc = 283.2◦C

Pc = 45.6 bar

Zc = 0.272 ω = 0.194

C∗
P: see Appendix A.II

6.18 The Clausius equation of state is

P (V − b) = RT

a. Show that for this volumetric equation of state

CP(P, T ) = CV(P, T ) + R

CP(P, T ) = C∗
P(T )

and
CV(V , T ) = C∗

V(T )

b. For a certain process the pressure of a gas must be
reduced from an initial pressureP1 to the final pres-
sure P2. The gas obeys the Clausius equation of

state, and the pressure reduction is to be accom-
plished either by passing the gas through a flow
constriction, such as a pressure-reducing valve, or
by passing it through a small gas turbine (which
we can assume to be both reversible and adiabatic).
Obtain expressions for the final gas temperature in
each of these cases in terms of the initial state and
the properties of the gas.

6.19 A tank is divided into two equal chambers by an in-
ternal diaphragm. One chamber contains methane at a
pressure of 500 bar and a temperature of 20◦C, and the
other chamber is evacuated. Suddenly, the diaphragm
bursts. Compute the final temperature and pressure of
the gas in the tank after sufficient time has passed for
equilibrium to be attained. Assume that there is no
heat transfer between the tank and the gas and that
methane:
a. is an ideal gas;
b. obeys the principle of corresponding states of

Sec. 6.6;
c. obeys the van der Waals equation of state;
d. obeys the Peng-Robinson equation of state;
Data: For simplicity you may assume C∗

P =
35.56 J/(mol K).

6.20 The divided tank of the preceding problem is re-
placed with two interconnected tanks of equal volume;
one tank is initially evacuated, and the other contains
methane at 500 bar and 20◦C. A valve connecting the
two tanks is opened only long enough to allow the
pressures in the tanks to equilibrate. If there is no heat
transfer between the gas and the tanks, what are the
temperature and pressure of the gas in each tank after
the valve has been shut? Assume that methane
a. Is an ideal gas
b. Obeys the principle of corresponding states of

Sec. 6.6
c. Obeys the Peng-Robinson equation of state

6.21 Ammonia is to be isothermally compressed in a spe-
cially designed flow turbine from 1 bar and 100◦C to
50 bar. If the compression is done reversibly, compute
the heat and work flows needed per mole of ammonia
if
a. Ammonia obeys the principle of corresponding

states of Sec. 6.6.
b. Ammonia satisfies the Clausius equation of state

P (V − b) = RT with b = 3.730× 10−2 m3/kmol.
c. Ammonia obeys the Peng-Robinson equation of

state.
6.22 A tank containing carbon dioxide at 400 K and 50

bar is vented until the temperature in the tank falls to
300 K. Assuming there is no heat transfer between the
gas and the tank, find the pressure in the tank at the
end of the venting process and the fraction of the ini-
tial mass of gas remaining in the tank for each of the
following cases.
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a. The equation of state of carbon dioxide is

P (V − b) = RT with b = 0.0441 m3/kmol

b. Carbon dioxide obeys the law of corresponding
states of Sec. 6.6.

c. Carbon dioxide obeys the Peng-Robinson equation
of state.

The low-pressure (ideal gas) heat capacity of
CO2 is given in Appendix A.II.

6.23 Derive the equations necessary to expand Illustra-
tion 6.4-1 to include the thermodynamic state vari-
ables internal energy, Gibbs energy, and Helmholtz
energy.

6.24 Draw lines of constant Gibbs and Helmholtz energies
on the diagrams of Illustration 6.4-1.

6.25 The speed of propagation of a small pressure pulse or
sound wave in a fluid, vS, can be shown to be equal to

vS =

√(
∂P

∂ρ

)
S

where ρ is the molar density.
a. Show that an alternative expression for the sonic

velocity is

vS =

√
γV 2

(
∂T

∂V

)
P

(
∂P

∂T

)
V

where γ = CP/CV.
b. Show that γ = 1+R/CV for both the ideal gas and

a gas that obeys the Clausius equation of state

P (V − b) = RT

and that γ is independent of specific volume for
both gases.

c. Develop expressions for vS for both the ideal and
the Clausius gases that do not contain any deriva-
tives other than CV and CP.

6.26 The force required to maintain a polymeric fiber at a
length L when its unstretched length is L0 has been
observed to be related to its temperature by

F = γT (L − L0)

where γ is a positive constant. The heat capacity of the
fiber measured at the constant length L0 is given by

CL = α + βT

where α and β are parameters that depend on the fiber
length.
a. Develop an equation that relates the change in en-

tropy of the fiber to changes in its temperature and
length, and evaluate the derivatives (∂S/∂L)T and
(∂S/∂T )L that appear in this equation.

b. Develop an equation that relates the change in inter-
nal energy of the fiber to changes in its temperature
and length.

c. Develop an equation that relates the entropy of the
fiber at a temperature T0 and an extension L0 to
its entropy at any other temperature T and exten-
sion L.

d. If the fiber at T = Ti and L = Li is stretched
slowly and adiabatically until it attains a length Lf ,
what is the fiber temperature at Tf?

e. In polymer science it is common to attribute the
force necessary to stretch a fiber to energetic and
entropic effects. The energetic force (i.e., that
part of the force that, on an isothermal exten-
sion of the fiber, increases its internal energy)
is FU = (∂U/∂L)T , and the entropic force is
FS = −T (∂S/∂L)T . Evaluate FU and FS for the
fiber being considered here.

6.27 Derive the following Maxwell relations for open
systems.
a. Starting from Eq. 6.2-5a,(

∂T

∂V

)
S,N

= −
(

∂P

∂S

)
V,N(

∂T

∂N

)
S,V

=

(
∂G

∂S

)
V,N(

∂P

∂N

)
S,V

= −
(

∂G

∂V

)
S,N

b. Starting from Eq. 6.2-6a,(
∂T

∂P

)
S,N

=

(
∂V

∂S

)
P,N(

∂T

∂N

)
S,P

=

(
∂G

∂S

)
P,N(

∂V

∂N

)
S,P

=

(
∂G

∂P

)
S,N

c. Starting from Eq. 6.2-7a,(
∂S

∂V

)
T,N

=

(
∂P

∂T

)
V,N(

∂S

∂N

)
T,V

= −
(

∂G

∂T

)
V,N(

∂P

∂N

)
T,V

= −
(

∂G

∂V

)
T,N

d. Starting from Eq. 6.2-8a,(
∂S

∂P

)
T,N

= −
(

∂V

∂T

)
P,N(

∂S

∂N

)
T,P

= −
(

∂G

∂T

)
P,N(

∂V

∂N

)
T,P

=

(
∂G

∂P

)
T,N
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6.28 For real gases the Joule-Thomson coefficient is greater
than zero at low temperatures and less than zero at
high temperatures. The temperature at which μ is
equal to zero at a given pressure is called the inversion
temperature.
a. Show that the van der Waals equation of state ex-

hibits this behavior, and develop an equation for the
inversion temperature of this fluid as a function of
its specific volume.

b. Show that the van der Waals prediction for
the inversion temperature can be written in the
corresponding-states form

T inv
r =

3(3Vr − 1)2

4V 2
r

c. The following graph shows the inversion temper-
ature of nitrogen as a function of pressure.18 Plot
on this graph the van der Waals prediction for the
inversion curve for nitrogen.
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6.29 Nitrogen is to be isothermally compressed at 0◦C from
1 bar to 100 bar. Compute the work required for this
compression; the change in internal energy, enthalpy;
Helmholtz and Gibbs energies of the gas; and the heat
that must be removed to keep the gas at constant tem-
perature if

a. The gas is an ideal gas.
b. The gas obeys the virial equation of state

PV

RT
= 1 +

B

V
+

C

V 2

with B = −10.3× 10−6 m3/mol and C = 1517×
10−12 m6/mol2.

c. The gas is described by the van der Waals equation

P =
RT

V − b
− a

V 2

or equivalently

PV

RT
=

V

V − b
− a

V RT

with a = 0.1368 Pa m6/mol2 and b = 3.864 ×
10−5 m3/mol.

d. The gas is described by the Peng-Robinson equa-
tion of state.

6.30 For an isothermal process involving a fluid described
by the Redlich-Kwong equation of state, develop ex-
pressions for the changes in
a. Internal energy
b. Enthalpy
c. Entropy
in terms of the initial temperature and the initial and
final volumes.

6.31 Steam is continuously expanded from a pressure of
25 bar and 300◦C to 1 bar through a Joule-Thomson
expansion valve. Calculate the final temperature and
the entropy generated per kilogram of steam using
a. The ideal gas law
b. The van der Waals equation of state
c. The Peng-Robinson equation of state
d. The steam tables

6.32 Repeat the calculations of Problem 6.13 if the me-
chanical efficiency of the adiabatic turbine is only
85 percent.

6.33 In statistical mechanics one tries to find an equation
for the partition function of a substance. The canoni-
cal partition function, Q(N, V, T ), is used for a closed
system at constant temperature, volume, and number
of particles N . This partition function can be written
as a product of terms as follows:

Q(N, V, T ) =
f(T )N · V N · Z(N/V, T )

N !

where f(T ) is the part that depends only on the prop-
erties of a single molecule, and Z(N/V, T ) is a nor-
malized configuration integral that is unity for an ideal

18From B. F. Dodge, Chemical Engineering Thermodynamics, McGraw-Hill. Used with permission of McGraw-
Hill Book Company.
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gas and depends on the interaction energies among the
molecules for a real gas. Also, the Helmholtz energy is
related to the canonical partition function as follows:

A(N, V, T ) = −kT ln Q(N/V , T )

where k is Boltzmann’s constant (the gas constant di-
vided by Avogadro’s number). Write expressions for
all the thermodynamic properties of a fluid in terms of
its canonical partition function and its derivatives.

6.34 Any residual property θ is defined to be

θres(T, P ) = θ(T, P ) − θIG(T, P )

where IG denotes the same property in the ideal gas
state. Such a quantity is also referred to as a departure
function.
a. Develop general expressions for dHres, dU res,

dSres, and dGres with temperature and pressure as
the independent variables.

b. Recognizing that as P → 0 all fluids become ideal
gases, so that their residual properties are zero,
develop explicit expressions for the residual prop-
erties Hres, U res, Sres, and Gres as functions of
temperature and pressure for the van der Waals
equation of state.

c. Repeat part (a) for the Peng-Robinson equation of
state.

d. Repeat part (a) for the Redlich-Kwong equation of
state.

Problems Involving the Redlich-Kwong Equation of
State (6.35–6.48).
6.35 a. Show for the Soave–Redlich-Kwong equation of

state (Eq. 6.4-1) that

a(T ) = 0.427 48
R2T 2

c

Pc

α(T )

b = 0.086 64
RTc

Pc

b. Show that the critical compressibility of the
Soave–Redlich-Kwong equation of state is 1/3.

6.36 Derive the expressions for the enthalpy and en-
tropy departures from ideal gas behavior (that is, the
analogues of Eqs. 6.4-29 and 6.4-30) for the
Soave–Redlich-Kwong equation of state.

6.37 Repeat Illustration 6.4-1 using the Soave–Redlich-
Kwong equation of state.

6.38 Repeat Illustration 6.7-1 using the Soave–Redlich-
Kwong equation of state.

6.39 Redo Problem 6.7 with the Soave–Redlich-Kwong
equation of state.

6.40 Redo Problem 6.12 with the Soave–Redlich-Kwong
equation of state.

6.41 Redo Problem 6.22 with the Soave–Redlich-Kwong
equation of state.

6.42 Using the Redlich-Kwong equation of state, compute
the following quantities for nitrogen at 298.15 K.
a. The difference CP − CV as a function of pressure

from low pressures to very high pressures
b. CP as a function of pressure from low pressures to

very high pressures. [Hint: It is easier to first com-
pute both CP − CV and CV for chosen values of
volume, then compute the pressure that corre-
sponds to those volumes, and finally calculate CP

as the sum of (CP − CV) + CV.]
6.43 The Boyle temperature is defined as the temperature at

which the second virial coefficient B is equal to zero.
a. Recognizing that any equation of state can be ex-

panded in virial form, find the Boyle temperature
for the Redlich-Kwong equation of state in terms
of the parameters in that equation.

b. The Redlich-Kwong parameters for carbon diox-
ide are a = 6.466×10−4 m6 MPa K0.5 mol−2 and
b = 2.971 × 10−3 m3 mol−1. Estimate the Boyle
temperature for carbon dioxide, assuming that it
obeys the Redlich-Kwong equation of state.

6.44 In the calculation of thermodynamic properties, it is
convenient to have the following partial derivatives:

lim
P→0

(
∂Z

∂P

)
T

and lim
P→∞

(
∂Z

∂P

)
T

where Z = (PV /RT ) is the compressibility factor.
Develop expressions for these two derivatives for the
Redlich-Kwong equation of state in terms of tempera-
ture and the Redlich-Kwong parameters.

6.45 The second virial coefficient B can be obtained from
experimental PV T data or from an equation of state
from

B = lim
P→0

V

(
PV

RT
− 1

)

a. Show that for the Redlich-Kwong equation

P =
RT

V − b
− a√

TV (V + b)

the second virial coefficient is

B = b − a

RT 3/2

b. Compute the second virial coefficient of n-pentane
as a function of temperature from the Redlich-
Kwong equation of state.

6.46 The Joule-Thomson coefficient, μ, given by

μ =

(
∂T

∂P

)
H

= − V

CP

[1 − Tα]

is a function of temperature. The temperature at which
μ = 0 is known as the inversion temperature.
a. Use the van der Waals equation of state to deter-

mine the inversion temperature of H2, O2, N2, CO,
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and CH4. The van der Waals parameters for these
gases can be found in Table 6.4-1.

b. Repeat part (a) using the Redlich-Kwong equation
of state.

6.47 Using the Redlich-Kwong equation of state, com-
pute and plot (on separate graphs) the pressure of
nitrogen as a function of specific volume at the two
temperatures:
a. 110 K
b. 150 K

6.48 Use the information in Illustration 6.4-1 and the
Soave–Redlich-Kwong equation of state to compute
the thermodynamic properties of oxygen along the fol-
lowing two isotherms:
a. 155 K
b. 200 K

6.49 Repeat Problem 5.9 assuming that helium is described
by the Peng-Robinson equation of state.

6.50 Repeat Problem 5.10 assuming that nitrogen is de-
scribed by the Peng-Robinson equation of state.

6.51 In this chapter, from the third law of thermodynamics,
it has been shown that the entropy of all substances
approaches a common value at 0 K (which for con-
venience we have taken to be zero). This implies that
the value of the entropy at 0 K is not a function of
volume or pressure. Use this information to show the
following:

CV = 0

at T = 0 K and that the coefficient of thermal
expansion

α =
1

V

(
∂V

∂T

)
P

is zero at 0 K.
6.52 A fluid is described by the Clausius equation of state

P =
RT

V − b

where b is a constant. Also, the ideal gas heat capacity
is given by

C∗
P = α + βT + γT 2

For this fluid, obtain explicit expressions for
a. A line of constant enthalpy as a function of pressure

and temperature
b. A line of constant entropy as a function of temper-

ature and pressure
c. Does this fluid have a Joule-Thomson inversion

temperature?
6.53 A piston-and-cylinder device contains 10 kmol of n-

pentane at −35.5◦C and 100 bar. Slowly the piston
is moved until the vapor pressure of n-pentane is
reached, and then further moved until 5 kmol of the
n-pentane is evaporated. This complete process takes

place at the constant temperature of−35.5◦C. Assume
n-pentane can be described by the Peng-Robinson
equation of state.
a. What is the volume change for the process?
b. Howmuch heat must be supplied for the process to

be isothermal?
6.54 Develop an expression for how the constant-volume

heat capacity varies with temperature and specific vol-
ume for the Peng-Robinson fluid.

6.55 Amanuscript recently submitted to a major journal for
publication gave the following volumetric and thermal
equations of state for a solid:

V (T, P ) = a + bT − cP and U (T, P ) = dT + eP

where a, b, c, d, and e are constants. Are these two
equations consistent with each other?

6.56 The following equation of state describes the behavior
of a certain fluid:

P (V − b) = RT +
aP 2

T

where the constants are a = 10−3 m3 K/(bar mol) = 102

(J K)/(bar2 mol) and b = 8 × 10−5 m3/mol. Also, for
this fluid the mean ideal gas constant-pressure heat ca-
pacity,CP, over the temperature range of 0 to 300◦C at
1 bar is 33.5 J/(mol K).
a. Estimate the mean value of CP over the tempera-

ture range at 12 bar.
b. Calculate the enthalpy change of the fluid for a

change from P = 4 bar, T = 300 K to P = 12 bar
and T = 400 K.

c. Calculate the entropy change of the fluid for the
same change of conditions as in part (b).

6.57 The van der Waals equation of state with a = 0.1368
Pa m3/mol2 and b = 3.864 × 10−5 m3/mol can be
used to describe nitrogen.
a. Using the van der Waals equation of state, prepare

a graph of pressure (P ) of nitogen as a function of
log V , where V is molar volume at temperatures of
100 K, 125 K, 150 K, and 175 K. The range of the
plot should be V = 1 × 10−4 to 25 m3/mol.

b. One mole of nitrogen is to be isothermally com-
pressed from 100 kPa to 10 MPa at 300 K. Deter-
mine (1) the molar volume at the initial and final
conditions and (2) the amount of work necessary
to carry out the isothermal compression.

c. Repeat the calculation of part (b) for an ideal gas.
6.58 Abicycle pump can be treated as a piston-and-cylinder

system that is connected to the tire at the “closed” end
of the cylinder. The connection is through a valve that
is initially closed, while the cylinder is filled with air
at atmospheric pressure, following which the pump-
ing in a cycle occurs as the plunger (piston) is pushed
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further into the cylinder. When the air pressure in the
cylinder increases until it reaches the same pressure as
that in the tire, the valve opens and further movement
of the piston forces air from the pump into the tire.
The whole process occurs quickly enough that there is
no significant heat flow to or from the surroundings to
the pump or tire during the pumping process. Thus, a
single pumping cycle can be considered a three-step
process. First, air is drawn into the pump cylinder at
constant pressure. Second, as the pumping begins, the
valve is closed so that the pressure increases without a
flow of air from the pump. Third, the valve opens and
the pumping action forces air into the tire. Here we are
interested in calculations only for the second step if the
tire pressure is initially 60 psig (5.15 bar absolute). For
reference, the cylinder of a bicycle hand pump is about
50 cm long and about 3 cm in diameter.

Plunger (piston)
Valve

Air in pump cylinder

Valve

a. If the ambient temperature is 25◦C and air is treated
as an ideal gas with C∗

P = 29.3 J/(mol K), how far
down will the piston have moved before the valve
opens? What is the temperature of the gas?

b. Repeat the calculation of part (a) if the Peng-
Robinson equation is used to describe air, assuming
that the critical constants and acentric factor of air
are the same as for nitrogen.

6.59 The Euken coefficient ξ is defined as ξ = (∂T/∂V )U .
a. Show that the Euken factor is also equal to

ξ = −
(

T (∂P/∂T )V − P

CV

)

b. What is the value of the Euken coefficient for an
ideal gas?

c. Develop an explicit expression for the Euken coef-
ficient for a gas that is described by the truncated
virial equation

PV

RT
= Z = 1 +

B(T )

V

d. Develop an expression for the Euken coefficient for
a gas that is described by the Peng-Robinson equa-
tion of state.

6.60 Redo Problem 4.45 if ethylene is described by the trun-
cated virial equation with B (T ) = 5.86 · 10−5 −
0.056/T m3/mol and T in K.

6.61 Redo Problem 4.45 if ethylene is described by the
Peng-Robinson equation of state.

6.62 a. Show that

(∂V /∂T )S

(∂V /∂T )P

= − CV

κTV T

(
∂T

∂P

)2

V

b. Use the result of part (a) to show that for a stable
system at equilibrium (∂V /∂T )S and (∂V /∂T )P

must have opposite signs.
c. Two separate measurements are to be performed

on a gas enclosed in a piston-and-cylinder de-
vice. In the first measurement the device is well
insulated so there is no flow of heat to or from
the gas, and the piston is slowly moved inward,
compressing the gas, and its temperature is found
to increase. In the second measurement the pis-
ton is free to move and the external pressure is
constant. A small amount of heat is added to the
gas in the cylinder, resulting in the expansion of
the gas. Will the temperature of the gas increase
or decrease?

6.63 Gasoline vapor is to be recovered at a filling station
rather than being released into the atmosphere. In the
scheme we will analyze, the vapor is first condensed to
a liquid and then pumped back to a storage tank. De-
termine the work necessary to adiabatically pump the
liquid gasoline from 0.1MPa and 25◦C to 25MPa, and
the final temperature of the liquid gasoline. Consider
gasoline to be n-octane and C∗

P = 122.2 J/(mol K)
independent of temperature.

6.64 A 3-m3 tank is in the basement of your house to store
propane that will be used for home and water heating
and cooking. Your basement, and therefore the con-
tents of the tank, remain at 20◦C all year. Initially, ex-
cept for a small vapor space the tank is completely
full of liquid propane, but by January 60 percent of
the propane has been used. Compute
a. The fraction of the remaining propane that is

present as vapor
b. The total flow of heat into the tank over the period

in which the propane has been used
6.65 Pipelines are used to transport natural gas over thou-

sands of miles, with compressors (pumping stations)
at regular intervals along the pipeline to compensate
for the pressure drop due to flow. Because of the long
distances involved and the good heat transfer, the gas
remains at an ambient temperature of 20◦C. At each
pumping station the gas in compressed with a single-
stage compressor to 4 MPa, and then isobarically
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cooled back to 20◦C. Because of safety and equip-
ment constraints, the gas temperature during compres-
sion should not exceed 120◦C. Assuming natural gas is
methane that is described by the Peng-Robinson equa-
tion of state, how low a pressure is allowed before the
gas should be recompressed?

6.66 In a continuous manufacturing process, chlorodifluo-
romethane (CHClF2), initially at 10 bar and 420 K,
passes through an adiabatic pressure-reducing valve so
that its pressure drops to 0.1 bar (this last pressure low
enough that CHClF2 can be considered to be an ideal
gas). At these operating conditions, the gas can be rep-
resented by a one-term virial equation of state:

PV

RT
= 1 +

B (T )

V

The following data are available for this gas:

B (T ) = 297.6 − 256100

T

cm3

mol

and

C∗
P = 27.93 + 0.093T

J

mol K

What is the temperature of the chlorodifluoromethane
exiting the valve?

6.67 How much entropy is generated per mole of chlorod-
ifluoromethane that passes through the pressure-
reducing valve of the previous problem?

6.68 One kilogram of saturated liquid methane at 160 K is
placed in an adiabatic piston-and-cylinder device, and
the piston will be moved slowly and reversibly until
25 percent of the liquid has vaporized. Compute the
maximum work that can be obtained, assuming that
methane is described by the Peng-Robinson equation
of state. Compare your results with the solution to
Problem 4.39.

6.69 The thermoelastic effect is the temperature change that
results from stretching an elastic material or fiber. The
work done on the material is given by

Ẇ = Force × Rate of change of distance = A · L · σ · dε

dt

where

σ = Stress =
Force

Cross-sectional area
=

Force

A

and
dε

dt
= Rate of strain =

1

L

dL

dt

In the situation being considered here, the thermody-
namic properties such as the heat capacity depend on
the stress (just as for a gas the heat capacity depends
on the pressure).

a. Develop the energy and entropy balances for this
one-dimensional material, assuming that there is
no additional work term other than the stretching
work, and that the volume of the material does not
change on stretching (that is, the length change
is compensated for by a change in cross-sectional
area).

b. An elastic material has the following properties at
733 K and a stress of 103 MPa.

ασ =
1

L

(
∂L

∂T

)
σ

= 16.8 × 10−6 K−1

and

Cσ = T

(
∂S

∂T

)
σ

= 38.1
J

(mol K)

Estimate the change in temperature per unit of
strain at these conditions.

6.70 The following equation of state has been proposed for
a fluid

PV

RT
= 1 +

B

V
+

C

V 2

where B and C are constants.
a. Does this fluid exhibit a critcal point? Prove it.
b. If you believe the answer to part a. is yes, derive ex-

pressions for B and C in terms of the critical tem-
perature and pressure for this fluid.

6.71 Nitrogen at 15 bar and 100 K is to be adiabatically
flashed to 1 bar. Determine the exiting temperature of
nitrogen and the fractions that are vapor and liquid us-
ing the Peng-Robinson equation of state.

6.72 A residual thermodynamic property is defined as the
difference between the property of the real fluid and
that of an ideal gas at the same temperature and
pressure, that is

θres (N, P, T ) = θ (N, P, T ) − θIG (N, P, T )

Assuming that a fluid can be described by the
viral equation of state with only the second virial
coefficient, develop the expressions for the resid-
ual contributions to the volume, internal energy and
Helmholtz energy at a fixed temperature and pressure.

6.73 A piston-and-cylinder device contains 10 kmols of
n-pentane at −35.5◦C and 100 bar. Slowly the pis-
ton is moved until the vapor pressure of n-pentane is
reached, and then further moved until 5 kmols of the
n-pentane is evaporated. This complete process takes
place at the constant temperature of−35.5◦C. Assume
n-pentane can be described by the van derWaals equa-
tion of state. The following data are available from the
vdW equation state at −35.5◦C
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P vap = 1.013 bar Z(liquid) = 0.009077
P = 100 bar Z(liquid) = 0.69075

Z(vapor) = 0.94016

a. What is the volume change for the process?
b. Howmuch heat must be supplied for the process to

be isothermal?
6.74 In a continuous manusfacturing process chlorodiflu-

oromethane (CHClF2) initially at 10 bar and 420◦C
passes through and adiabatic pressure reducing valve
so that its pressure is reduced to 0.1 bar (this last
pressure is low enough that CHClF2 can be consid-
ered an ideal gas. At these operating conditions, this
gas can be described by a one-term virial equation
of state:

PV

RT
= 1 +

B

V

and the ideal heat capacity is C∗
P = 29.93 +

0.093T J
molK

What is the temperature of the chlorodi-
fluoromethane exiting the valve? Howmuch entropy is
generated in the process per mole of CHClF2 flowing
through the valve?

6.75 A gas is continuously passed through an adiabatic tur-
bine at the rate of 2 mol/s. Its initial temperature is
600 K, its initial pressure is 5 bar and its exiting
pressure is 1 bar. Determine the maximum rate at
which work can be obtained in this process. The gas is
described by an augmented Clausius equation of state

P (V − b) = RT

with

b = b0+
b1

T
, b0 = 3×10−5 m3

mol
and b1 = 3×10−3 m3 · K

mol

C∗
P(T ) = C0 + C1 ∗ T

with

C0 = 25
J

mol · K and C2 = 1.8 × 10−2 J

mol · K2

6.76 Use the Estimation tool in Aspen Plus R© to estimate
the physical properties of methyl vinyl ketone (MKK)
after entering structure using the Molecular Structure
tool.

6.77 Methane at 1 atm and 25◦C is to be compressed to 5
bar in an adiabatic, isentropic compressor. What is the
temperature of the methane stream exiting the com-
pressor? If the flowrate of methane is 60 kmol/hr, how
much work needs to be supplied by the compressor?

6.78 Nitrogen at 1 atm and 25◦C is to be compressed to 5
bar in an adiabatic, isentropic compressor. What is the
temperature of the nitrogen stream exiting the com-
pressor? If the flowrate of nitrogen is 100 kmol/hr, how
much work needs to be supplied by the compressor?

6.79 Redo Problem 6.7 using Aspen Plus R©.
6.80 Redo Problem 6.12 using Aspen Plus R©.
6.81 Redo Problem 6.13 using Aspen Plus R©.
6.82 Redo Problem 6.29 using Aspen Plus R©.
6.83 Redo Problem 6.31 using Aspen Plus R©.
6.84 Redo Problem 6.32 using Aspen Plus R©.
6.85 Redo Problem 6.65 using Aspen Plus R©.



Chapter 7

Equilibrium and Stability
in One-Component Systems

Now that the basic principles of thermodynamics have been developed and some
computational details considered, we can study one of the fundamental problems of
thermodynamics: the prediction of the equilibrium state of a system. In this chapter
we examine the conditions for the existence of a stable equilibrium state in a single-
component system, with particular reference to the problem of phase equilibrium.
Equilibrium in multicomponent systems will be considered in following chapters.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 7

The goals of this chapter are for the student to:

• Identify the criterion for equilibrium in systems subject to different constraints
(Sec. 7.1)

• Use the concept of stability to identify when phase splitting into vapor and liquid
phases will occur (Sec. 7.2)

• Identify the conditions of phase equilibrium (Sec. 7.3)
• Be able to identify the critical point of a fluid (Sec. 7.3)
• Calculate the fugacity of a pure substance that is a gas or a liquid when a volumetric
equation of state is available (Sec. 7.4)

• Calculate the fugacity of a pure liquid or solid when a volumetric equation of state
is not available (Sec. 7.4)

• Use fugacity in the calculation of vapor-liquid equilibrium (Sec. 7.5)
• Be able to determine the number degrees of freedom for a pure fluid (Sec. 7.6)

NOTATION INTRODUCED IN THIS CHAPTER

f Fugacity (kPa)
F Number of degrees of freedom
φ Fugacity coefficient = f/P

f I
sat(T ) Fugacity of phase I at a phase change at temperature T (kPa)

HL Molar enthalpy of a liquid (kJ/mol)
HS Molar enthalpy of a solid (kJ/mol)
HV Molar enthalpy of a vapor (kJ/mol)

285
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�vapH Enthalpy change (or heat) of vaporization = HV − HL (kJ/mol)
�fusH Enthalpy change (or heat) of melting = HL − HS (kJ/mol)
�subH Enthalpy change (or heat) of sublimation = HV − HS (kJ/mol)

Pt Triple-point pressure (kPa)
P sub(T ) Sublimation pressure at temperature T (kPa)
P vap(T ) Vapor pressure at temperature T (kPa)

Tt Triple-point temperature (K)

7.1 THE CRITERIA FOR EQUILIBRIUM

In Chapter 4 we established that the entropy function provides a means of mathemat-
ically identifying the state of equilibrium in a closed, isolated system (i.e., a system
in which M , U , and V are constant). The aim in this section is to develop a means
of identifying the equilibrium state for closed thermodynamic systems subject to other
constraints, especially those of constant temperature and volume, and constant temper-
ature and pressure. This will be done by first reconsidering the equilibrium analysis
for the closed, isolated system used in Sec. 4.1, and then extending this analysis to the
study of more general systems.
The starting points for the analysis are the energy and entropy balances for a closed

system:

Balance equations for
a closed system

dU

dt
= Q̇ − P

dV

dt
(7.1-1)

and

dS

dt
=

Q̇

T
+ Ṡgen

(7.1-2)

with

Second law of
thermodynamics Ṡgen ≥ 0 (the equality holding at equilibrium or for reversible processes)

(7.1-3)

Here we have chosen the system in such a way that the only work term is that of the
deformation of the system boundary. For a constant-volume system exchanging no heat
with its surroundings, Eqs. 7.1-1 and 7.1-2 reduce to

dU

dt
= 0

so that
U = constant

(or, equivalently, U = constant, since the total number of moles, or mass, is fixed in a
closed, one-component system) and
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dS

dt
= Ṡgen ≥ 0 (7.1-4)

Since the entropy function can only increase in value during the approach to equilibrium
(because of the sign of Ṡgen), the entropy must be a maximum at equilibrium. Thus, the
equilibrium criterion for a closed, isolated system is

or
S = maximum

S = maximum

}
at equilibrium in a closed system at constant U and V

(7.1-5)

At this point youmight ask howS can achieve amaximum value ifU andV are fixed,
since the specification of any two intensive variables completely fixes the values of all
others. The answer to this question was given in Chapter 4, where it was pointed out that
the specification of two intensive variables fixes the values of all other state variables
in the uniform equilibrium state of a single-component, single-phase system. Thus, the
equilibrium criterion of Eq. 7.1-5 can be used for identifying the final equilibrium state
in a closed, isolated system that is initially nonuniform, or in which several phases or
components are present.
To illustrate the use of this equilibrium criterion, consider the very simple, initially

nonuniform system shown in Fig. 7.1-1. There a single-phase, single-component fluid
in an adiabatic, constant-volume container has been divided into two subsystems by an
imaginary boundary. Each of these subsystems is assumed to contain the same chemi-
cal species of uniform thermodynamic properties. However, these subsystems are open
to the flow of heat and mass across the imaginary internal boundary, and their temper-
ature and pressure need not be the same. For the composite system consisting of the
two subsystems, the total mass (though, in fact, we will use number of moles), internal
energy, volume, and entropy, all of which are extensive variables, are the sums of these
respective quantities for the two subsystems, that is,

N = N I + N II

U = U I + U II

V = V I + V II

(7.1-6)

and
S = SI + SII

Now considering the entropy to be a function of internal energy, volume, and mole
number, we can compute the change in the entropy of system I due to changes in N I,
U I, and V I from Eq. 6.2-5c.

N I, S I, U I, V I N II, S II, U II, V II

Figure 7.1-1 An isolated nonequilibrium system.
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dSI =
(

∂SI

∂U I

)
V I,NI

dU I +
(

∂SI

∂V I

)
UI,NI

dV I +
(

∂SI

∂N I

)
UI,V I

dN I

=
1
T I

dU I +
P I

T I
dV I − GI

T I
dN I

In a similar fashion dSII can be computed. The entropy change of the composite
system is

dS = dSI +dSII =
1
T I

dU I +
1

T II
dU II +

P I

T I
dV I +

P II

T II
dV II − GI

T I
dN I − GII

T II
dN II

However, the total number of moles, total internal energy, and total volume are constant
by the constraints on the system, so that

dN = dN I + dN II = 0 or dN I = −dN II

dU = dU I + dU II = 0 or dU I = −dU II

dV = dV I + dV II = 0 or dV I = −dV II

(7.1-7)

Consequently,

dS =
(

1
T I

− 1
T II

)
dU I +

(
P I

T I
− P II

T II

)
dV I −

(
GI

T I
− GII

T II

)
dN I (7.1-8)

Now since S = maximum or dS = 0 for all system variations at constant N , U , and
V (here all variations of the independent variables dU I, dV I, and dN I at constant total
number of moles, total internal energy, and total volume), we conclude that(

∂S

∂U I

)
V I,NI

= 0 so that
1
T I

=
1

T II
or T I = T II (7.1-9a)

(
∂S

∂V I

)
UI,NI

= 0 so that
P I

T I
=

P II

T II
or P I = P II (7.1-9b)

(since it has already been shown that T I = T II)(
∂S

∂N I

)
UI,V I

= 0 so that
GI

T I
=

GII

T II
or GI = GII (7.1-9c)

Therefore, the equilibrium condition for the system illustrated in Fig. 7.1-1 is satisfied
if both subsystems have the same temperature, the same pressure, and the same molar
Gibbs energy. For a single-component, single-phase system, this implies that the com-
posite system should be uniform. This is an obvious result, and it is reassuring that it
arises so naturally from our development.
The foregoing discussion illustrates how the condition dS = 0 may be used to iden-

tify a possible equilibrium state of the closed, isolated system, that is, a state for which
S is a maximum. From calculus we know that dS = 0 is a necessary but not sufficient
condition for S to achieve a maximum value. In particular, dS = 0 at a minimum value
or an inflection point of S, as well as when S is a maximum. The condition d2S < 0,
when dS = 0, assures us that a maximum value of the entropy, and hence a true equi-
librium state, has been identified rather than a metastable state (an inflection point) or
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an unstable state (minimum value of S). Thus, the sign of d2S determines the stabil-
ity of the state found from the condition that dS = 0. The implications of this stability
condition are considered in the next section.
It is also possible to develop the equilibrium and stability conditions for systems

subject to other constraints. For a closed system at constant temperature and volume,
the energy and entropy balances are

dU

dt
= Q̇

and
dS

dt
=

Q̇

T
+ Ṡgen

Eliminating Q̇ between these two equations, and using the fact that T dS = d(TS),
since T is constant, gives

d(U − TS)
dt

=
dA

dt
= −T Ṡgen ≤ 0

Here we have also used the facts that T ≥ 0 and Ṡgen ≥ 0, so that (−T Ṡgen) ≤ 0.
Using the same argument that led from Eq. 7.1-4 to Eq. 7.1-5 here yields

or
A = minimum

A = minimum

}
for equilibrium in a closed system at constant T and V

(7.1-10)

It should be noted that this result is also a consequence of Ṡgen ≥ 0.
If we were to use Eq. 7.1-10 to identify the equilibrium state of an initially nonuni-

form, single-component system, such as that in Fig. 7.1-1, but now maintained at a
constant temperature and volume, we would find, following the previous analysis, that
at equilibrium the pressures of the two subsystems are equal, as are the molar Gibbs en-
ergies (cf. Eqs. 7.1-9a, b, and c and Problem 7.4); since temperature is being maintained
constant, it would, of course, be the same in the two subsystems.
For a closed system maintained at constant temperature and pressure, we have

dU

dt
= Q̇ − P

dV

dt
= Q̇ − d

dt
(PV )

and
dS

dt
=

Q̇

T
+ Ṡgen

Again eliminating Q̇ between these two equations gives

dU

dt
+

d

dt
(PV )− d

dt
(TS) =

d

dt
(U + PV − TS) =

dG

dt
= −T Ṡgen ≤ 0 (7.1-11)

so that the equilibrium criterion here is
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Most important of the
equilibrium criteria

or
G = minimum

G = minimum

}
for equilibrium in a closed system at constant T and P

(7.1-12)
This equation also leads to the equality of the molar Gibbs energies (Eq. 7.1-9c) as
a condition for equilibrium. Of course, since both temperature and pressure are held
constant, the system is also at uniform temperature and pressure at equilibrium.
Finally, the equilibrium criterion for a system consisting of an element of fluid mov-

ing with the velocity of the fluid around it is also of interest, as such a choice of system
arises in the study of continuous processing equipment used in the chemical indus-
try. The tubular chemical reactor discussed in Chapter 14 is perhaps the most common
example. Since each fluid element is moving with the velocity of the fluid surrounding
it, there is no convected flow of mass into or out of this system. Therefore, each such
element of mass in a pure fluid is a system closed to the flow of mass, and consequently
is subject to precisely the same equilibrium criteria as the closed systems discussed
above (i.e., Eq. 7.1-5, 7.1-10, or 7.1-12, depending on the constraints on the system).
The equilibrium and stability criteria for systems and constraints that are of interest

in this book are collected in Table 7.1-1. As we will see in Chapter 8, these equilibrium
and stability criteria are also valid for multicomponent systems. Thus the entries in this
table form the basis for the analysis of phase and chemical equilibrium problems to be
considered during much of the remainder of this book.
Using the method of analysis indicated here, it is also possible to derive the equilib-

rium criteria for systems subject to other constraints. However, this task is left to you
(Problem 7.2).
As a simple example of the use of the equilibrium conditions, we consider a problem

to which we intuitively know the solution, but want to show that the answer arises
naturally from the analysis of this section.

Illustration 7.1-1
Using the Equilibrium Condition to Solve a Simple Problem

Two identical metal blocks of mass M with initial temperatures T1,i and T2,i, respectively, are
in contact with each other in a well-insulated (adiabatic), constant-volume enclosure. Find the

Table 7.1-1 Equilibrium and Stability Criteria

System Constraint Equilibrium Criterion Stability Criterion

Isolated, adiabatic U = constant S = maximum
fixed-boundary system V = constant dS = 0 d2S < 0

Isothermal closed T = constant A = minimum
system with fixed V = constant dA = 0 d2A > 0
boundaries

Isothermal, isobaric T = constant G = minimum
closed system P = constant dG = 0 d2G > 0

Isothermal, isobaric T = constant G = minimum
open system moving P = constant dG = 0 d2G > 0
with the fluid velocity M = constant
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final equilibrium temperatures of themetal blocks. (Of course, intuituively, we know the solution,
T1, f = T2, f . However, we want to show that this arises naturally, though with some work, from
the equilibrium condition, as we will encounter many problems, especially when we deal with
mixtures, where our intuition will not help us identify the equilibrium state.)

Adiabatic enclosure

T1, i T2, i

Solution

We will choose the two metal blocks as the system for writing the balance equations. There
is no exchange of mass between the blocks, so the mass balance does not provide any useful
information. The energy balance for the system is

MÛ1, f + MÛ2, f − MÛ1, i − MÛ2, i = 0

or

MĈV (T1, f − T1, ref)+MĈV (T2, f − T2, ref)−MĈV (T1, i − T1, ref)−MĈV (T2, i − T2, ref) = 0

which reduces to

T1, f − T1, i + T2, f − T2, i = 0 (a)

The entropy balance cannot be used directly to provide useful information since the entropy
generation due to heat transfer cannot be evaluated at this stage in the calculation. However, we
can use the fact that for a system in which M, U , and V are constant, at equilibrium the entropy
is a maximum with respect to the independent variations within the system. The final entropy of
the system is

S = MŜ1, f + MŜ2, f = MĈV ln

(
T1, f

T1, ref

)
+ MĈV ln

(
T2, f

T2, ref

)

The only possible variations are in the two final temperatures, T1, f and T2, f . However, as
the energy balance connects these two temperatures, only one of them can be considered to be
independent, say T1, f . Therefore, to identify the equilibrium state we set the differential of the
entropy with respect to T1, f equal to zero:

dS

dT1, f

= 0 =
d

dT1, f

[
MĈV ln

(
T1, f

T1,ref

)
+ MĈV ln

(
T2,f

T2,ref

)]

=
MĈV

T1, f

+
MĈV

T1, f

dT2, f

dT1, f

or
dT2, f

dT1, f

= −T2, f

T1, f

(b)
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Now taking the derivative of the energy balance with respect to T1, f , we obtain

d

dT1, f

[
MĈV(T1, f − T1,i) + MĈV(T2, f − T2,i)

]
= 0 = MĈV + MĈV

dT2, f

dT1, f

or
dT2, f

dT1, f

= −1 (c)

Comparing Eqs. b and c, we have

dT2, f

dT1, f

= −1 = −T1, f

T2, f

Clearly, the only way this combined equation can be satisfied is if T1, f = T2, f = Tf ; that is, the
final temperature of the two blocks must be equal, which is the intuitively obvious solution.

To calculate this final equilibrium temperature, we use the energy balance, Eq. a,

Tf − T1,i + Tf − T2,i = 2Tf − T1,i − T2,i = 0

which has the solution

Tf =
T1,i + T2,i

2

Knowing the final state of the system, it is of interest to calculate the amount of entropy
generated in the process of achieving equilibrium. We do this using the difference form of the
entropy balance,

Sf − Si = Sgen

Sgen = Sf − Si

= MĈV

[
ln

(
Tf

T1,ref

)
+ ln

(
Tf

T2,ref

)]
− MĈV

[
ln

(
T1,i

T1,ref

)
+ ln

(
T2,i

T2,ref

)]

= MĈV ln

[
T1,i + T2,i

2T1,i

]
+ MĈV ln

[
T1,i + T2,i

2T2,i

]
= MĈV ln

[
(T1,i + T2,i)

2

4T1,iT2,i

]

Illustration 7.1-2
Proving the Equality of Gibbs Energies for Vapor-Liquid Equilibrium

Use the information in the steam tables of Appendix A.III to show that Eq. 7.1-9c is satisfied at
100◦C and 0.101 35 MPa.

Solution

From the saturated steam temperature table, we have at 100◦C and 0.101 35 MPa

ĤL = 419.04 kJ/kg
ŜL = 1.3069 kJ/(kg K)

ĤV = 2676.1 kJ/kg
ŜV = 7.3549 kJ/(kg K)

Since Ĝ = Ĥ − T Ŝ, we have further that

ĜL = 419.04 − 373.15 × 1.3069 = −68.6 kJ/kg
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and
ĜV = 2676.1 − 373.15 × 7.3549 = −68.4 kJ/kg

which, to the accuracy of the calculations here, confirms that ĜL = ĜV (or, equivalently, that
GL = GV) at this vapor-liquid phase equilibrium state.

7.2 STABILITY OF THERMODYNAMIC SYSTEMS

In the previous section we used the result dS = 0 to identify the equilibrium state of
an initially nonuniform system constrained to remain at constant mass, internal en-
ergy, and volume. In this section we explore the information content of the stability
criterion

d2S < 0 at constant M, U, and V

[The stability analysis for closed systems subject to other constraints (i.e., constant T
and V or constant T and P ) is similar to, and, in fact, somewhat simpler than the
analysis here, and so it is left to you (Problem 7.3).]
By studying the sign of the second differential of the entropy, we are really consid-

ering the following question: Suppose that a small fluctuation in a fluid property, say
temperature or pressure, occurs in some region of a fluid that was initially at equilib-
rium; is the character of the equilibrium state such that d2S < 0, and the fluctuation will
dissipate, or such that d2S > 0, in which case the fluctuation grows until the system
evolves to a new equilibrium state of higher entropy?
In fact, since we know that fluids exist in thermodynamically stable states (experi-

mental observation 7 of Sec. 1.7), we will take as an empirical fact that d2S < 0 for all
real fluids at equilibrium, and instead establish the restrictions placed on the equations
of state of fluids by this stability condition. We first study the problem of the intrin-
sic stability of the equilibrium state in a pure single-phase fluid, and then the mutual
stability of two interacting systems or phases.
We begin the discussion of intrinsic stability by considering further the example of

Figure 7.1-1 of the last section, equilibrium in a pure fluid at constant mass (actually,
we will use number of moles), internal energy, and volume. Using the (imaginary) sub-
division of the system into two subsystems, and writing the extensive properties N ,
U , V , and S as sums of these properties for each subsystem, we were able to show in
Sec. 7.1 that the condition

dS = dSI + dSII = 0 (7.2-1)

for all system variations consistent with the constraints (i.e., all variations in dN I, dV I,
and dU I) led to the requirements that at equilibrium

T I = T II

P I = P II

and
GI = GII

Continuing, we write an expression for the stability requirement d2S < 0 for this
system and obtain
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d2S = SI
UU(dU I)2 + 2SI

UV(dU I)(dV I) + SI
VV(dV I)2

+ 2SI
UN(dU I)(dN I) + 2SI

VN(dV I)(dN I) + SI
NN(dN I)2

+ SII
UU(dU II)2 + 2SII

UV(dU II)(dV II) + SII
VV(dV II)2

+ 2SII
UN(dU II)(dN II) + 2SII

VN(dV II)(dN II) + SII
NN(dN II)2 < 0 (7.2-2a)

In this equation we have used the abbreviated notation

SI
UU =

(
∂2S

∂U2

)I

V,N

SI
UV =

∂

∂U

∣∣∣∣
V,N

(
∂S

∂V

)I

U,N

etc.

Since the total number of moles, total internal energy, and total volume of the com-
posite system are fixed, we have, as in Eqs. 7.1-7,

dN I = −dN II dU I = −dU II dV I = −dV II

and

d2S = (SI
UU + SII

UU)(dU I)2 + 2(SI
UV + SII

UV)(dU I)(dV I)

+ (SI
VV + SII

VV)(dV I)2 + 2(SI
UN + SII

UN)(dU I)(dN I)

+ 2(SI
VN + SII

VN)(dV I)(dN I) + (SI
NN + SII

NN)(dN I)2 (7.2-2b)

Furthermore, since the same fluid in the same state of aggregation is present in regions
I and II, and since we have already established that the temperature, pressure, and mo-
lar Gibbs energy each have the same value in the two regions, the value of any state
property must be the same in the two subsystems. It follows that any thermodynamic
derivative that can be reduced to combinations of intensive variables must have the same
value in the two regions of the fluid. The second derivatives (Eq. 7.2-2b), as we will
see shortly, are combinations of intensive and extensive variables. However, the quan-
tities NSxy, where x and y denote U , V , or N , are intensive variables. Therefore,
it follows that

N ISI
xy = N IISII

xy (7.2-3)

Using Eqs. 7.1-7 and 7.2-3 in Eq. 7.2-2 yields

d2S =
(

N I + N II

N IN II

)
[N ISI

UU(dU I)2 + 2N ISI
UV(dU I)(dV I)

+ N ISI
VV(dV I)2 + 2N ISI

UN(dU I)(dN I)

+ 2N ISI
VN(dV I)(dN I) + N ISI

NN(dN I)2] < 0 (7.2-4a)

The term (N I + N II)/N IN II must be greater than zero since mole numbers can only
be positive. Also, we can eliminate the superscripts from the products NSxy, as they
are equal in the two regions. Therefore, the inequality Eq. 7.2-4a can be rewritten as

NSUU(dU I)2 + 2NSUV(dU I)(dV I) + NSVV(dV I)2 + 2NSUN(dU I)(dN I)

+ 2NSVN(dV I)(dN I) + NSNN(dN I)2 < 0 (7.2-4b)
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Equations 7.2-3 and 4 must be satisfied for all variations in N I, U I, and V I if the
fluid is to be stable. In particular, since Eq. 7.2-4b must be satisfied for all variations in
U I (dU I �= 0) at fixed values of N I and V I (i.e., dN I = 0 and dV I = 0), stable fluids
must have the property that

NSUU < 0 (7.2-5a)

Similarly, by considering variations in volume at fixed internal energy andmole number,
and variations in mole number at fixed volume and internal energy, we obtain

NSVV < 0 (7.2-5b)

and
NSNN < 0 (7.2-5c)

as additional conditions for fluid stability.
More severe restrictions on the equation of state result from demanding that

Eq. 7.2-4b be satisfied for all possible and simultaneous variations in internal energy,
volume, and mole number and not merely for variations in one property with the others
held fixed. Unfortunately, the present form of Eq. 7.2-4b is not well suited for studying
this more general situation since the cross-terms (i.e., dU IdV I, dU IdN I, and dV IdN I)
may be positive or negative depending on the sign of the variations dU I, dV I, and dN I,
so that little can be said about the coefficients of these terms.
By much algebraic manipulation (Problem 7.32), Eq. 7.2-4b can be written as

θ1(dX1)2 + θ2(dX2)2 + θ3(dX3)2 < 0 (7.2-6)

where

θ1 = NSUU

θ2 = (NSUUNSVV − N2S2
UV)/NSUU

θ3 =
(NSUUNSNN − N2S2

UN)
NSUU

− (NSUUNSVN − NSUVNSUN)2

NSUU(NSUUNSVV − N2S2
UV)

dX1 = dU I +
SUV

SUU

dV I +
SUN

SUU

dN I

dX2 = dV I +
(SUUSVN − SUVSUN)

(SUUSVV − S2
UV)

dN I

and

dX3 = dN I

The important feature of Eq. 7.2-6 is that it contains only square terms in the sys-
tem variations. Thus, (dX1)2, (dX2)2, and (dX3)2 are greater than or equal to zero
regardless of whether dU I, dV I, and dN I individually are positive or negative. Conse-
quently, if

θ1 = NSUU ≤ 0 (7.2-7a)

θ2 =
NSUUNSVV − N2S2

UV

NSUU

≤ 0 (7.2-7b)

θ3 ≤ 0 (7.2-7c)
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Eq. 7.2-6, and hence Eq. 7.2-4b, will be satisfied for all possible system variations.
Equations 7.2-7 provide more restrictive conditions for fluid stability than Eqs. 7.2-5a,
b, and c.
It now remains to evaluate the various entropy derivatives, so that the stability re-

strictions of Eqs. 7.2-7a, b, and c can be put into a more usable form. Starting from

NSUU = N
∂

∂U

∣∣∣∣
N,V

(
∂S

∂U

)
N,V

= N

(
∂(1/T )

∂U

)
N,V

= − N

T 2

(
∂T

∂U

)
N,V

and using that for the open system that

dU = NCV dT +

[
T

(
∂P

∂T

)
V

− P

]
dV + G dN (7.2-8)

leads to (
∂U

∂T

)
V,N

= NCV

NSUU = − 1
T 2CV

< 0

SinceT is absolute temperature and positive, one condition for the existence of a stable
equilibrium state of a fluid is that

First or thermal
stability criterion

CV > 0 (7.2-9)

That is, the constant-volume heat capacity must be positive, so that internal energy
increases as the fluid temperature increases.
Next, we note that

NSUV = N
∂

∂U

∣∣∣∣
V,N

(
∂S

∂V

)
N,U

= N
∂

∂V

∣∣∣∣
U,N

(
∂S

∂U

)
V,N

= N
∂

∂V

∣∣∣∣
U,N

(
1
T

)
= − N

T 2

(
∂T

∂V

)
U,N

and from Eq. 7.2-8,

(
∂T

∂V

)
U,N

= −

[
T

(
∂P

∂T

)
V

− P

]

NCV

to obtain

NSUV =

[
T

(
∂P

∂T

)
V

− P

]

CVT 2
(7.2-10a)1

1Note, from these equations, that NSUU, NSUV , and NSVV are intensive variables, as was suggested earlier,
whereas SUU, SUV, and SVV are proportional to N−1.
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Similarly, but with a great deal more algebra, we can show that

NSVV =
1
T

(
∂P

∂V

)
T

− 1
CVT 2

[
T

(
∂P

∂T

)
V

− P

]2

(7.2-10b)1

and

θ2 =
NSUUNSVV − N2S2

UV

NSUU

=
1
T

(
∂P

∂V

)
T

Thus, a further stability restriction on the equation of state of a substance, since T is
positive, is that

Second or mechanical
stability criterion

(
∂P

∂V

)
T

< 0

or

κT = − 1
V

(
∂V

∂P

)
T

> 0 (7.2-11)

where κT is the isothermal compressibility of the fluid, introduced in Sec. 6.2. This
result indicates that if a fluid is to be stable, its volumetric equation of state must be
such that the fluid volume decreases as the pressure increases at constant temperature.
As we will see shortly, this restriction has important implications in the interpretation
of phase behavior from the equation of state of a fluid.
Finally, and with a great deal more algebra (Problem 7.32), one can show that θ3

is identically equal to zero and thus does not provide any further restrictions on the
equation of state.
The main conclusion from this exercise is that if a fluid is to exist in a stable equi-

librium state, that is, an equilibrium state in which all small internal fluctuations will
dissipate rather than grow, the fluid must be such that

CV > 0 (7.2-12)

and (
∂P

∂V

)
T

< 0 or κT > 0 (7.2-13)

Alternatively, since all real fluids exist in thermodynamically stable states, Eqs. 7.2-12
and 7.2-13 must be satisfied for real fluids. In fact, no real fluid state for which either
(∂P/∂V )T > 0 or CV < 0 has yet been found.
Equations 7.2-12 and 7.2-13 may be thought of as part of the philosophical content of

thermodynamics. In particular, thermodynamics alone does not give information on the
heat capacity or the equation of state of any substance; such information can be gotten
only from statistical mechanics or experiment. However, thermodynamics does provide
restrictions or consistency relations that must be satisfied by such data; Eqs. 7.2-12 and
7.2-13 are examples of this. (Consistency relations for mixtures are discussed in later
chapters.)
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Illustration 7.2-1
Using the Steam Tables to Show That the Stability Conditions Are Satisfied for Steam

Show that Eqs. 7.2-12 and 7.2-13 are satisfied by superheated steam.

Solution

It is easiest to use Eq. 7.2-13 in the form (∂P/∂V )T < 0, which requires that the volume decrease
as the pressure increases at constant temperature. This is seen to be true by using the superheated
steam table and observing that V̂ decreases as P increases at fixed temperature. For example,
at 1000◦C

P (MPa) 0.50 0.8 1.0 1.4 1.8 2.5
V̂ (m3/kg) 1.1747 0.7340 0.5871 0.4192 0.3260 0.2346

Proving that CV > 0 or ĈV > 0 is a bit more difficult since

ĈV =

(
∂Û

∂T

)
V

and the internal energy is not given at constant volume. Therefore, interpolation methods must
be used. As an example of how the calculation is done, we start with the following data from the
superheated vapor portion of the steam tables.

P = 1.80 MPa P = 2.00 MPa

T (◦C) V̂ (m3/kg) Û (kJ/kg) V̂ (m3/kg) Û (kJ/kg)

800 0.2742 3657.6 0.2467 3657.0
900 0.3001 3849.9 0.2700 3849.3

1000 0.3260 4048.5 0.2933 4048.0

To proceed, we need values of the internal energy at two different temperatures and the same
specific volume. We will use P = 2.00 MPa and T = 1000◦C as one point; at these condi-
tions V̂ = 0.2933 m3/kg and Û = 4048.0 kJ/kg. We now need to find the temperature at which
V̂ = 0.2933 m3/kg at P = 1.80 MPa. We use linear interpolation for this:

T − 800

900 − 800
=

V̂ (T, 1.80 MPa) − V̂ (800◦C, 1.80 MPa)

V̂ (900◦C, 1.80 MPa) − V̂ (800◦C, 1.80 MPa)
=

0.2933 − 0.2742

0.3001 − 0.2742

so that T = 873.75◦C. Next we need the internal energy Û at T = 873.75◦C and P = 1.80 MPa
(since at these conditions V̂ = 0.2933 m3/kg). Again using linear interpolation,

873.75 − 800

900 − 800
=

Û(873.75◦C, 1.80 MPa) − Û(800◦C, 1.80 MPa)

Û(900◦C, 1.80 MPa) − Û(800◦C, 1.80 MPa)

=
Û(873.75◦C, 1.80 MPa) − 3657.6

3849.9 − 3657.6

we find that

Û(873.75◦C, 1.80 MPa) = Û(873.75◦C, 0.2933 m3/kg) = 3799.4 kJ/kg
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Finally, replacing the derivative by a finite difference, and for the average temperature [i.e.,
T = (1000 + 873.75)/2 = 936.9◦C], we have

ĈV(T = 936.9◦C, V̂ = 0.2933 m3/kg)

≈ Û(1000◦C, 0.2933 m3/kg) − Û(873.75◦C, 0.2933 m3/kg)

1000◦C − 873.75◦C

=
4048.0 − 3799.4

1000 − 873.75
= 1.969

kJ

kg K
> 0

Similarly, we would find that ĈV > 0 at all other conditions.

Next we consider the problems of identifying the equilibrium state for two interact-
ing phases of the same molecular species but in different states of aggregation, and of
determining the requirements for the stability of this state. An example of this is a vapor
and a liquid in equilibrium. To be general, we again consider a composite system iso-
lated from its environment, except that here the boundary between the two subsystems
is the real interface between the phases. For this system, we have

S = SI + SII

N = N I + N II = constant
V = V I + V II = constant
U = U I + U II = constant

(7.2-14)

Since N , U , and V are fixed, the equilibrium condition is that the entropy should attain
a maximum value. Now, however, we allow for the fact that the states of aggregation
in regions I and II are different, so that the fluids in these regions may follow different
equations of state (or the different vapor and liquid branches of the same equation of
state).
Using the analysis of Eqs. 7.1-6, 7.1-7, and 7.1-8, we find that at equilibrium (i.e.,

when dS = 0),

Important criteria for
phase equilibria under
all constraints

T I = T II (7.2-15a)
P I = P II (7.2-15b)
GI = GII (7.2-15c)

Here Eqs. 7.2-15a and b provide the obvious conditions for equilibrium, and since
two different phases are present, Eq. 7.2-15c provides a less obvious condition for
equilibrium.
Next, from the stability condition d2S < 0, we obtain (following the analysis that

led to Eq. 7.2-2b)

d2S = {SI
VV + SII

VV}(dV I)2 + 2{SI
UV + SII

UV}(dU I)(dV I)

+ {SI
UU + SII

UU}(dU I)2 + 2{SI
VN + SII

VN}(dV I)(dN I)

+ {SI
NN + SII

NN}(dN I)2 + 2{SI
UN + SII

UN}(dU I)(dN I) (7.2-16)

Here, however, the two partial derivatives in each of the bracketed terms need not be
equal, since the two phases are in different states of aggregation and thus obey different
equations of state, or different roots of the same equation of state. It is clear from a
comparison with Eq. 7.2-2b that a sufficient condition for Eq. 7.2-16 to be satisfied is
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that each phase to be intrinsically stable; that is, Eq. 7.2-16 is satisfied if, for each of
the coexisting phases, the equations

Must be satisfied in
each stable phase

CV > 0 and
(

∂P

∂V

)
T

< 0

are satisfied. Therefore, a condition for the mutual stability of two interacting subsys-
tems is that each subsystem be intrinsically stable.

7.3 PHASE EQUILIBRIA: APPLICATION OF THE EQUILIBRIUM AND STABILITY
CRITERIA TO THE EQUATION OF STATE

Figure 7.3-1 shows the shapes of different isotherms computed using a typical equa-
tion of state (for illustration we have used the van der Waals equation of state). In this
figure the isotherms are labeled so that T5 > T4 > T3 > T2 > T1. The isotherm T3

has a single point, C, for which (∂P/∂V )T = 0; at all other points on this isotherm
(∂P/∂V )T < 0. On the isotherms T4 and T5, (∂P/∂V )T < 0 everywhere, whereas
on the isotherms T1 and T2, (∂P/∂V )T < 0 in some regions and (∂P/∂V )T > 0
in other regions (i.e., between the points A and B on isotherm T1, and the points A′

and B′ on T2). The criterion for fluid stability requires that (∂P/∂V )T < 0, which
is satisfied for the isotherms T4 and T5, but not in the aforementioned regions of the
T1 and T2 isotherms. Thus we conclude that the regions A to B and A′ to B′ of the
isotherms T1 and T2, respectively, are not physically realizable; that is, they will not be
observed in any experiment since a fluid in these states is not stable, and instead would
go to an appropriate stable state.
This observation raises some question about the interpretation to be given to the T1

and T2 isotherms. We cannot simply attribute these oddities to a peculiarity of the

T5

T4

T3

T2

T1

C
P

B

A

A'

B'

_V

Figure 7.3-1 Isotherms of the van der Waals equation in the
pressure-volume plane.
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Pb

Pα
P

b

aPa

I

II

T < Tc

Vα_ V'α_V"α_

_V

Figure 7.3-2 A low-temperature isotherm of the van der Waals equation.

van der Waals equation because many other, more accurate equations of state show es-
sentially the same behavior. Some insight into the physical meaning of isotherms such
as T1 can be gained from Fig. 7.3-2, which shows this isotherm separately. If we look
at any isobar (constant-pressure line) between PA and PB in this figure, such as Pα, we
see that it intersects the equation of state three times, corresponding to the fluid volumes
V α, V

′
α, and V ′′

α. One of these, V
′′
α, is on the part of the isotherm that is unattainable

by the stability criterion. However, the other two intersections, at V α and V ′
α, are phys-

ically possible. This suggests that at a given pressure and temperature the system can
have two different volumes, a conclusion that apparently contradicts the experimental
observation of Chapter 1 that two state variables completely determine the state of a
single-component, single-phase system. However, this can occur if equilibrium can ex-
ist between two phases of the same species that are in different states of aggregation
(and hence density). The equilibrium between liquid water and steam at 100◦C and
101.325 kPa (1 atm) is one such example.
One experimental observation in phase equilibrium is that the two coexisting equi-

librium phases must have the same temperature and pressure. Clearly, the arguments
given in Secs. 7.1 and 7.2 establish this. Another experimental observation is that as the
pressure is lowered along an isotherm on which a liquid-vapor phase transition occurs,
the actual volume-pressure behavior is as shown in Fig. 7.3-3, and not as in Fig. 7.3-2.

P

T < Tc

_V _V V_V L

Figure 7.3-3 A low-temperature isotherm of a real fluid.
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That is, there is a portion of the isotherm where the specific volume varies continuously
at fixed temperature and pressure; this is the two-phase coexistence region, here the
vapor-liquid coexistence region.
The variation of the overall (or two-phase) specific volume in this region arises from

the fact that although the specific volumes of the vapor and liquid phases are fixed
(since the temperature and pressure are fixed in each of the one-phase equilibrium sub-
systems), the fraction of the mixture that is vapor, ωV, can vary continuously from
0 to 1. In the two-phase region the specific volume of the two-phase mixture is
given by

V = ωVV V + ωLV L = ωVV V + (1 − ωV)V L (7.3-1a)

where ωV and ωL are fractions of vapor and liquid, respectively, on a molar basis.
(Equation 7.3-1a could also be written using volumes per unit mass andmass fractions.)
These fractions can vary between 0 and 1 subject to the condition that ωV + ωL = 1.
Solving for ωV yields

Maxwell or lever rule ωV =
V − V L

V V − V L
(7.3-1b)

and

ωV

1 − ωV
=

V − V L

V V − V
(7.3-1c)

Equations analogous to those here also hold for the H , U , G, S, and A. Equations
of the form of Eq. 7.3-1c are the Maxwell’s rules or lever rules first discussed in
Sec. 3.3.

Illustration 7.3-1
Computing the Properties of a Two-Phase Mixture

Compute the total volume, total enthalpy, and total entropy of 1 kg of water at 100◦C, half by
weight of which is steam and the remainder liquid water.

Solution

From the saturated steam temperature table at 100◦C, the equilibrium pressure is 0.101 35 MPa
and

V̂ L = 0.001 004 m3/kg
ĤL = 419.04 kJ/kg
ŜL = 1.3069 kJ/(kg K)

V̂ V = 1.6729 m3/kg
ĤV = 2676.1 kJ/kg
ŜV = 7.3549 kJ/(kg K)

Using Eq. 7.3-1a on a mass basis gives

V̂ = 0.5 × 0.001 004 + 0.5 × 1.6729 = 0.836 45 m3/kg

The analogous equation for enthalpy is

Ĥ = ωLĤL + ωVĤV = 0.5 × 419.04 + 0.5 × 2676.1 = 1547.6
kJ

kg
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and that for entropy is

Ŝ = ωLŜL + ωVŜV = 0.5 × 1.3069 + 0.5 × 7.3549 = 4.3309
kJ

kg K

Consequently, the continuous variation of specific volume of the vapor-liquidmixture
at fixed temperature and pressure is a result of the continuous change in the fraction of
the mixture that is vapor. The conclusion, then, is that an isotherm such as that shown
in Fig. 7.3-2 is an approximate representation of the real phase behavior (shown in
Fig. 7.3-3) by a relatively simple analytic equation of state. In fact, it is impossible
to represent the discontinuities in the derivative (∂P/∂V )T that occur at V L and V V

with any analytic equation of state. By its sigmoidal behavior in the two-phase region,
the van der Waals equation of state is somewhat qualitatively and crudely exhibiting
the essential features of vapor-liquid phase equilibrium; historically, it was the first
equation of state to do so.
We can improve the representation of the two-phase region when using the van der

Waals or other analytic equations of state by recognizing that all van der Waals loops,
such as those in Fig. 7.3-2, should be replaced by horizontal lines (isobars), as shown
in Fig. 7.3-3. This construction ensures that the equilibrium phases will have the same
temperature and pressure (see Eqs. 7.1-9a and b). The question that remains is at which
pressure should the isobar be drawn, since any pressure such that

Pa < P < Pb

will yield an isotherm like that in Fig. 7.3-3. The answer is that the pressure chosen
must satisfy the last condition for equilibrium, GI = GII.
To identify the equilibrium pressure, we start from Eq. 4.2-8b,

dG = V dP − S dT

and recognize that for the integration between any two points along an isotherm of the
equation of state, we have

ΔG =
∫ P2

P1

V dP

Thus, for a given equation of state we can identify the equilibrium pressure for each
temperature by arbitrarily choosing pressures Pα along the van der Waals loop, until
we find one for which

Vapor-liquid
coexistence pressure
or vapor pressure

GV − GL = 0 =
∫ Pa

Pα

V dP +
∫ Pb

Pa

V dP +
∫ Pα

Pb

V dP (7.3-2)

Here the specific volume in each of the integrations is to be computed from the equa-
tion of state for the appropriate part of the van derWaals loop. Alternatively, we can find
the equilibrium pressure graphically by noting that Eq. 7.3-2 requires that areas I and
II between the van der Waals loop and the constant pressure line in Fig. 7.3-2 be equal
at the pressure at which the vapor and liquid exist in equilibrium. This vapor-liquid co-
existence pressure, which is a function of temperature, is called the vapor pressure of
the liquid and will be denoted by P vap(T ).
We can continue in the manner described here to determine the phase behavior of

the fluid for all temperatures and pressures. For the van der Waals fluid, this result is
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Figure 7.3-4 The van der Waals fluid with the vapor-liquid coexistence region identified.

shown in Fig. 7.3-4. An important feature of this figure is the dome-shaped, two-phase
coexistence region. The inflection point C of Fig. 7.3-1 is the peak of this dome, and
therefore is the highest temperature at which the condensed phase (the liquid) can exist;
this point is called the critical point of the liquid.
It is worthwhile retracing the steps followed in identifying the existence and location

of the two-phase region in the P -V plane:

1. The stability condition (∂P/∂V )T < 0 was used to identify the unstable region
of an isotherm and thereby establish the existence of a two-phase region.

2. The conditions T I = T II and P I = P II were then used to establish the shape
(but not the location) of the horizontal coexistence line in the P -V plane.

3. Finally, the equilibrium conditionGI = GII was used to locate the position of the
coexistence line.

A more detailed representation of phase equilibrium in a pure fluid, including the
presence of a single solid phase,2 is given in the three-dimensionalPV T phase diagram
of Fig. 7.3-5. Such complete phase diagrams are rarely available, although data may be
available in the form of Fig. 7.3-4, which is a projection of the more complete diagram
onto the P -V plane, and Fig. 7.3-6, which is the projection onto the P -T plane.
The concepts of phase equilibrium and the critical point can also be considered from

a somewhat different point of view. Presume it were possible to compute the Gibbs en-
ergy as a function of temperature and pressure for any phase, either from an equation
of state, experimental data, or statistical mechanics. Then, at fixed pressure, one could

2If several solid phases occur corresponding to different crystal structures, as is frequently the case, the solid region
is partitioned into several regions.
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Figure 7.3-5 The PV T phase diagram for a substance with a single solid
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Figure 7.3-7 The molar Gibbs energy as a func-
tion of temperature for the vapor and liquid phases
of the same substance.

plot G as a function of T for each phase, as shown in Fig. 7.3-7 for the vapor and
liquid phases. From the equilibrium condition that G be a minimum, one can conclude
that the liquid is the equilibrium phase at temperatures below TP , that the vapor is the
equilibrium phase above TP , and that both phases are present at the phase transition
temperature TP .
If such calculations are repeated for a wide range of temperatures and pressures, it

is observed that the angle of intersection θ between the liquid and vapor Gibbs energy
curves decreases as the pressure (and temperature) at which the intersection increases
(provided P ≤ Pc). At the critical pressure, the two Gibbs energy curves intersect,
with θ = 0; that is, the two curves are collinear for some range of T around the critical
temperature Tc. Thus, at the critical point,(

∂GL

∂T

)
P

=
(

∂GV

∂T

)
P

Further, since (∂G/∂T )P = −S, we have that at the critical point

SL(Tc, Pc) = SV(Tc, Pc)

Also, for the coexisting phases at equilibrium, we have

GL(Tc, Pc) = GV(Tc, Pc)

by Eq. 7.2-15c. Since the molar Gibbs energy, molar entropy, temperature, and pressure
each have the same value in the vapor and the liquid phases, the values of all other state
variables must be identical in the two equilibrium phases at the critical point. Conse-
quently, the vapor and liquid phases become indistinguishable at the critical point. This
is exactly what is experimentally observed. At all temperatures higher than the critical
temperature, regardless of the pressure, only the vapor phase exists. This is the reason
for the abrupt terminus of the vapor-liquid coexistence line in the pressure-temperature
plane (Fig. 7.3-6). [Thus, we have two ways of recognizing the fluid critical point: first,
as the peak in the vapor-liquid coexistence curve in the P -V plane (Fig. 7.3-4), and
second, as the terminus of the vapor-liquid coexistence curve in the P-T plane.]
Also interesting is the fluid triple point, which is the intersection of the solid-liquid,

liquid-vapor, and solid-vapor coexistence curves. It is the only point on the phase di-
agram where the solid, liquid, and vapor coexist at equilibrium. Since the solid-liquid
coexistence curve generally has a steep slope (see Fig. 7.3-6), the triple-point temper-
ature for most fluids is close to the normal melting temperature, that is, the melting
temperature at atmospheric pressure (see Problem 7.10).
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Although, in general, we are not interested in equilibrium states that are unstable to
large perturbations (the metastable states of Chapter 1), superheated liquids and sub-
cooled vapors do occur and are sufficiently familiar that we will briefly relate these
states to the equilibrium and stability discussions of this chapter. For convenience, the
van der Waals equation of state and Fig. 7.3-2 are the basis for this discussion, though
the concepts involved are by no means restricted to this equation. We start by noticing
that although the liquid phase is thermodynamically stable along the isotherm shown
in Fig. 7.3-2 down to a pressure Pa, the phase equilibrium analysis indicates that the
vapor, and not the liquid, is the equilibrium phase at pressures below the vapor pres-
sure Pα = P vap(T1). If care is taken to avoid vapor-phase nucleation sites, such as by
having only clean, smooth surfaces in contact with the liquid, it is possible to maintain
a liquid at fixed temperature below its vapor pressure (but above its limit of stability,
Pa), or at fixed pressure at a temperature higher than its boiling temperature, without
having the liquid boil. Such a liquid is said to be superheated. The metastability of
this state is illustrated by the fact that a superheated liquid, if slightly perturbed, may
vaporize with explosive violence. (To prevent this occurrence, “boiling stones” are used
in chemistry laboratory experiments.) It is also possible, if no condensation nucleation
sites, such as dust particles, are present, to prepare a vapor at a pressure higher than the
liquid-vapor coexistence pressure or vapor pressure at the given temperature, but below
its limit of stability [i.e., between Pα = P vap(T1) and Pb in Fig. 7.3-2] or, at a tem-
perature lower than the liquid boiling temperature. Such a vapor is termed subcooled
and is also metastable. (See Problem 7.8.) Why superheating and subcooling occur is
discussed in Sec. 7.8.
At sufficiently low temperatures, the van der Waals equation predicts that the limit

of stability of the liquid phase occurs at negative values of pressure, that is, that a liquid
could support a tensile force. In fact, such behavior has been observed with water in
capillary tubes and is thought to be important in the vascular system of plants.3

7.4 THE MOLAR GIBBS ENERGY AND FUGACITY OF A PURE COMPONENT

In this section we consider how one uses an equation of state to identify the states of
vapor-liquid equilibrium in a pure fluid. The starting point is the equality of molar Gibbs
energies in the coexisting phases,

GL(T,P ) = GV(T,P ) (7.1-9c)

To proceed, we note that from Eq. 6.2-8b,

dG = −S dT + V dP

so that (
∂G

∂T

)
P

= −S (7.4-1)

and (
∂G

∂P

)
T

= V (7.4-2)

3For a review of water under tension, especially in biological systems, see P. F. Scholander, Am. Sci. 60, 584 (1972).
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Since our presumption here is that we have an equation of state from which we can
compute V as a function of T and P , only Eq. 7.4-2 will be considered further.
Integration of Eq. 7.4-2 between any two pressures P1 and P2 (at constant tempera-

ture) yields

G(T1, P2) − G(T1, P1) =
∫ P2

P1

V dP (7.4-3)

If the fluid under consideration were an ideal gas, then V IG = RT/P , so that

GIG(T1, P2) − GIG(T1, P1) =
∫ P2

P1

RT

P
dP (7.4-4)

Subtracting Eq. 7.4-4 from Eq. 7.4-3 gives

[G(T1, P2) − GIG(T1, P2)] − [G(T1, P1) − GIG(T1, P1)] =
∫ P2

P1

(
V − RT

P

)
dP

(7.4-5a)

Further, (1) setting P1 equal to zero, (2) recognizing that at P = 0 all fluids are ideal
gases so that G(T1, P = 0) = GIG(T1, P = 0), and (3) omitting all subscripts yields

G(T,P ) − GIG(T,P ) =
∫ P

0

(
V − RT

P

)
dP (7.4-5b)

For convenience, we define a new thermodynamic function, the fugacity, denoted by
the symbol f , as

Definition of fugacity

f = P exp
{

G(T,P ) − GIG(T,P )
RT

}
= P exp

{
1

RT

∫ P

0

(
V − RT

P

)
dP

}

(7.4-6a)

and the related fugacity coefficient φ by

Definition of the
fugacity coefficient φ =

f

P
= exp

{
G(T,P ) − GIG(T,P )

RT

}
= exp

{
1

RT

∫ P

0

(
V − RT

P

)
dP

}

(7.4-6b)

From this definition it is clear that the fugacity has units of pressure, and that f →
P as P → 0; that is, the fugacity becomes equal to the pressure at pressures low
enough that the fluid approaches the ideal gas state.4 Similarly, the fugacity coefficient
φ = f/P → 1 as P → 0. Both the fugacity and the fugacity coefficient will be used
extensively throughout this book.

4It is tempting to view the fugacity as a sort of corrected pressure; it is, however, a well-defined function related
to the exponential of the difference between the real and ideal gas Gibbs energies.
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The fugacity function has been introduced because its relation to the Gibbs energy
makes it useful in phase equilibrium calculations. The present criterion for equilibrium
between two phases (Eq. 7.1-9c) is GI = GII, with the restriction that the tempera-
ture and pressure be constant and equal in the two phases. Using this equality and the
definition of the fugacity (Eq. 7.4-6) gives

GIG(T,P ) + RT ln
f I(T,P )

P
= GIG(T,P ) + RT ln

f II(T,P )
P

Now recognizing that the ideal gas molar Gibbs energy at fixed temperature and pres-
sure has the same value regardless of which phase is considered yields as the condition
for phase equilibrium

ln
f I(T,P )

P
= ln

f II(T,P )
P

or in terms of the fugacity,

Important forms of
equilibrium criterion

f I(T,P ) = f II(T,P ) (7.4-7a)

and in terms of the fugacity coefficient,

φI(T,P ) = φII(T,P ) (7.4-7b)

Since these equations follow directly from the equality of the molar Gibbs energy in
each phase at phase equilibrium, Eqs. 7.4-7a and b can be used as criteria for equilib-
rium. They will be used for this purpose in this book.
Since the fugacity is, by Eq. 7.4-6, related to the equation of state, the equality of

fugacities provides a direct way of doing phase equilibrium calculations using the equa-
tions of state. In practice, however, Eq. 7.4-6 is somewhat difficult to use because al-
though the molar volume V is needed as a function of T and P , it is difficult to solve
the equations of state considered in Sec. 6.4 explicitly for volume. In fact, all these
equations of state are in a form in which pressure is an explicit function of volume and
temperature. Therefore, it is useful to have an equation relating the fugacity to an in-
tegral over volume (rather than pressure). We obtain such an equation by starting with
Eq. 7.4-6b and using Eq. 6.4-25 at constant temperature in the form

dP =
1
V

d(PV ) − P

V
dV =

P

Z
dZ − P

V
dV

to change the variable of integration to obtain (Problem 7.14)

ln
f(T,P )

P
= lnφ =

1
RT

∫ V

V =∞

[
RT

V
− P

]
dV − lnZ + (Z − 1) (7.4-8)

where Z = PV /RT is the compressibility factor defined earlier. [Alternatively,
Eq. 7.4-8 can be obtained from Eq. 7.4-6 using

G(T,P ) − GIG(T,P ) = [H(T,P ) − H IG(T,P )] − T [S(T,P ) − SIG(T,P )]

and Eqs. 6.4-27 and 6.4-28.]
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For later reference we note that from Eqs. 7.4-2 and 7.4-6 we have

RT

(
∂ ln f

∂P

)
T

= V =
(

∂G

∂P

)
T

(7.4-9a)

Also, the temperature dependence of the fugacity is usually given as the temperature
dependence of the logarithm of the fugacity coefficient ( f/P ), which is computed as

∂

∂T

(
ln

f

P

)
P

=
∂

∂T

∣∣∣∣
P

{
G(T,P ) − GIG(T,P )

RT

}

=
1

RT

∂

∂T
{G(T,P ) − GIG(T,P )} −

{
G(T,P ) − GIG(T,P )

RT 2

}

= − 1
RT

{S(T,P ) − SIG(T,P )} −
{

G(T,P ) − GIG(T,P )
RT 2

}

= − 1
RT 2

{[G(T,P ) − TS(T,P )] − [GIG(T,P ) − TSIG(T,P )]}

= −
{

H(T,P ) − H IG(T,P )
RT 2

}
(7.4-9b)

In deriving this result we have used the relations (∂G/∂T )P = −S andG = H−TS.
Since the fugacity function is of central importance in phase equilibrium calculations,

we consider here the computation of the fugacity for pure gases, liquids, and solids.

a. Fugacity of a Pure Gaseous Species

To compute the fugacity of a pure gaseous species we will always use a volumetric
equation of state and Eq. 7.4-6b or

General fugacity
coefficient equation ln

fV(T,P )
P

=
1

RT

∫ V =ZVRT/P

V =∞

(
RT

V
− P

)
dV − lnZV + (ZV − 1)

(7.4-8)
where the superscript V is used to designate the fugacity and compressibility of the
vapor phase. Thus, given a volumetric equation of state of a gas applicable up to the
pressure of interest, the fugacity of a pure gas can be computed by integration
of Eq. 7.4-8. At very low pressures, where a gas can be described by the ideal gas
equation of state

PV = RT or ZV = 1

we have

ln
fV(T,P )

P
= 0 or fV(T,P ) = P (7.4-10)

Thus, for a low-pressure gas, the fugacity of a species is just equal to the total pressure.
The calculation of the fugacity when detailed thermodynamic data, such as the steam

tables, are available is demonstrated in the following illstrations.
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Illustration 7.4-1
Computing Fugacity from Volumetric Data

Use the volumetric information in the steam tables of Appendix A.III to compute the fugacity
of superheated steam at 300◦C and 8 MPa.

Solution

With tabulated volumetric data, as in the steam tables, it is most convenient to use Eq. 7.4-6a:

f = P exp

[
1

RT

∫ P

0

(
V − RT

P

)
dP

]

From the superheated vapor steam tables at 300◦C, we have

P (MPa) V̂ (m3/kg) V (m3/mol) [V − RT/P ] (m3/mol)× 104

0.01 26.445 0.476 41 −1.02
0.05 5.284 0.095 191 −1.121
0.10 2.639 0.047 542 −1.101
0.20 1.316 2 0.023 711 −1.145
0.30 0.875 3 0.015 769 −1.154
0.40 0.654 8 0.011 796 −1.167
0.50 0.522 6 0.009 414 6 −1.157
0.60 0.433 4 0.007 807 7 −1.342
0.80 0.324 1 0.005 838 7 −1.178
1.0 0.257 9 0.004 646 1 −1.191
1.2 0.213 8 0.003 851 6 −1.194
1.4 0.182 28 0.003 283 8 −1.199
1.6 0.158 62 0.002 857 5 −1.207
1.8 0.140 21 0.002 525 9 −1.214
2.0 0.125 47 0.002 260 3 −1.222
2.5 0.098 90 0.001 781 7 −1.244
3.0 0.081 14 0.001 461 7 −1.267
3.5 0.068 42 0.001 232 6 −1.289
4.0 0.058 84 0.001 060 0 −1.313
4.5 0.051 35 0.000 925 07 −1.339
5.0 0.045 32 0.000 816 44 −1.366
6.0 0.036 16 0.000 651 42 −1.428
7.0 0.029 47 0.000 530 90 −1.498
8.0 0.024 26 0.000 437 04 −1.586

Numerically evaluating the integral using the data above, we find

∫ 8 MPa

0

(
V − RT

P

)
dP ≈ −1.093 × 10−3 m3 MPa

mol

and

f = 8 MPa exp

⎡
⎢⎢⎣

−1.093 × 10−3 m3 MPa

mol

573.15 K × 8.314 × 10−6 MPa m3

mol K

⎤
⎥⎥⎦ = 8 exp(−0.2367) MPa

= 8 × 0.7996 MPa = 6.397 MPa
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Also, the fugacity coefficient, φ, in this case is

φ =
f

P
= 0.7996

Comment

Had the same calculation been done at a much higher temperature, the steam would be closer
to an ideal vapor, and the fugacity coefficient would be closer to unity in value. For exam-
ple, the result of a similar calculation at 1000◦C and 10 MPa yields f = 9.926 MPa and
φ = f/P = 0.9926.

Illustration 7.4-2
Alternative Fugacity Calculation

Use other data in the superheated vapor steam tables to calculate the fugacity of steam at 300◦C
and 8 MPa, and check the answer obtained in the previous illustration.

Solution

At 300◦C and 0.01 MPa we have from the steam tables Ĥ = 3076.5 kJ/kg and Ŝ = 9.2813
kJ/(kg K). Therefore,

Ĝ(300◦C, 0.01 MPa) = Ĥ − T Ŝ

= 3076.5 − 573.15 × 9.2813 = −2243.1 kJ/kg

and G(300◦C, 0.01 MPa) = −2243.1 J/g × 18.015 g/mol = −40 409 J/mol. Since the pres-
sure is so low (0.01 MPa) and well away from the saturation pressure of steam at 300◦C (which
is 8.581 MPa), we assume steam is an ideal gas at these conditions. Then using Eq. 7.4-3 for an
ideal gas, we have

GIG(300◦C, 8 MPa) = GIG(300◦C, 0.01 MPa) +

∫ 8MPa

0.01MPa

V IG dP

= −40 409 +

∫ 8MPa

0.01MPa

RT

P
dP

= −40 409 + RT ln
8

0.01
= −40 409 + 8.134 × 573.15 ln 800

= −8555.7
J

mol

For real steam at 300◦C and 8 MPa, we have, from the steam tables, Ĥ = 2785.0 kJ/kg and
Ŝ = 5.7906 kJ/(kg K), so that

Ĝ(300◦C, 8 MPa) = 2785.0 − 573.15 × 5.7906 = −533.88
kJ

kg

and

G(300◦C, 8 MPa) = −9617.9
J

mol

Now using Eq. 7.4-6a in the form

f(T, P ) = P exp

[
G(T, P ) − GIG(T, P )

RT

]
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results in

f(300◦C, 8 MPa) = 8 MPa exp

[−9617.9 − (−8555.7)

8.314 × 573.15

]

= 8 MPa exp[−0.2229]

= 6.402 MPa

which is in excellent agreement with the results obtained in the previous illustration.

Illustration 7.4-3
Calculation of the Fugacity of Saturated Steam

Compute the fugacity of saturated steam at 300◦C.

Solution

The saturation pressure of steam at 300◦C is 8.581 MPa, and from Illustration 7.3-1 we have
ĜV = −520.5 kJ/kg and GV = −9376.8 J/mol. Following the previous illustration, we have

GIG(300◦C, 8.581 MPa) = GIG(300◦C, 0.01MPa) +

∫ 8.581 MPa

0.01 MPa

RT

P
dP

= −40 409 + 8.314 × 573.15 ln 858.1

= −8221.6
J

mol

Therefore,

fV(300◦C, 8.581 MPa) = 8.581 MPa exp

[−9376.8 − (−8221.6)

8.314 × 573.15

]

= 8.581 MPa × 0.7847

= 6.7337 MPa

Comment

Note that since, at equilibrium, fV = fL, it is also true that

fL(300◦C, 8.581 MPa) = 6.7337 MPa

At low to moderate pressures, the virial equation of state truncated after the second
virial coefficient,

PV

RT
= Z = 1 +

B(T )
V

(7.4-11)

may be used, if data for B(T ) are available. Using Eq. 7.4-11 in Eq. 7.4-8, we obtain
(Problem 7.14)

Fugacity coefficient:
virial equation of state

ln
fV(T,P )

P
=

2B(T )
V

− lnZ =
2PB(T )

ZRT
− lnZ (7.4-12)

where

Z = 1 +
B(T )

V
=

1
2

[
1 +

√
1 +

4B(T )P
RT

]
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Illustration 7.4-4
Calculation of the Fugacity of a Gas Using the Virial Equation

Compute the fugacities of pure ethane and pure butane at 373.15 K and 1, 10, and 15 bar,
assuming the virial equation of state can describe these gases at these conditions.

Data:

BET(373.15 K) = −1.15 × 10−4 m3/mol

BBU(373.15 K) = −4.22 × 10−4 m3/mol

[Source: E. M. Dontzler, C. M. Knobler, and M. L. Windsor, J. Phys. Chem. 72, 676 (1968).]

Solution

Using Eq. 7.4-12, we find

Ethane Butane

P (bar) Z f (bar) Z f (bar)

1 0.996 0.996 0.986 0.986
10 0.961 9.629 0.838 8.628
15 0.941 14.16 0.714 11.86

Since the pressures are not very high, these results should be reasonably accurate. However,
the virial equation with only the second virial coefficient will be less accurate as the pressure
increases. In fact, at slightly above 15 bar and 373.15 K, n-butane condenses to form a liquid.
In this case the virial equation description is inappropriate, as it does not show a phase change
or describe liquids.

At higher pressure, a more complicated equation of state (or higher terms in the virial
expansion) must be used. By using the (not very accurate) van der Waals equation, one
obtains

Fugacity coefficient:
van der Waals
equation of state

ln
fV

P
= ln

V

V − b
− a

RTV
+

(
PV

RT
− 1

)
− ln

(
PV

RT

)
or

= (ZV − 1) − ln(ZV − B) − A

ZV
(7.4-13)

Fugacity coefficient:
Peng-Robinson
equation of state

For hydrocarbons and simple gases, the Peng-Robinson equation (Eq. 6.4-2) provides
a more accurate description. In this case we have

ln
fV

P
= (ZV − 1) − ln

(
ZV − bP

RT

)
− a

2
√

2bRT
ln

[
ZV + (1 +

√
2)bP/RT

ZV + (1 −
√

2)bP/RT

]

= (ZV − 1) − ln(ZV − B) − A

2
√

2B
ln

[
ZV + (1 +

√
2)B

ZV + (1 −
√

2)B

]

(7.4-14a)

where in Eqs. 7.4-13 and 7.4-14a,A = aP/(RT )2 andB = Pb/RT . Of course, other
equations of state could be used for the fugacity calculations starting from Eq. 7.4-8,
though we do not consider such calculations here.
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To use either the virial, van der Waals, Peng-Robinson, or other equation of state to
calculate the fugacity of a gaseous species, the following procedure is used: (1) For a
given value of T and P , use the chosen equation of state to calculate the molar volume
V or, equivalently, the compressibility factorZ. When using cubic or more complicated
equations of state, it is the low-density (largeV orZ) solution that is used. (2) This value
of V or Z is then used in Eq. 7.4-12, 7.4-13, or 7.4-14, as appropriate, to calculate the
species fugacity coefficient, f/P , and thus the fugacity. The Peng-Robinson equation-
of-state programs, the MATHCADworksheets described in Appendix B on the website
for this book or in Aspen Plus R© can be used for this calculation.

Illustration 7.4-5
Calculation of the Fugacity of a Gas Using the Peng-Robinson Equation of State

Compute the fugacities of pure ethane and pure butane at 373.15 K and 1, 10, and 15 bar,
assuming the Peng-Robinson equation describes these gases at these conditions.

Solution

Using one of the omputer programs described in Appendix B.I on the website for this book (or
in Aspen Plus R©), or the data in Table 4.6-1, we obtain the following (note that the results may
differ slightly depending on the program used):

Ethane Butane

P (bar) Z f (bar) Z f (bar)

1 0.996 1.00 0.985 0.99
10 0.957 9.58 0.837 8.57
15 0.935 14.06 0.733 11.81

Comment

We see that these results are only slightly different from those computed with the virial equa-
tion of state. The differences would become larger as the pressure increases or the temperature
decreases.

For hand calculations it is simpler, but less accurate, to compute the fugacity of a
species using a specially prepared corresponding-states fugacity chart. To do this, we
note that since, for simple gases and hydrocarbons, the compressibility factor Z obeys
a corresponding-states relation (see Sec. 6.6), the fugacity coefficient f/P given by
Eq. 7.4-6 can also be written in corresponding-states form as follows:

fV

P
= exp

{
1

RT

∫ P

0

(V − V IG) dP

}
= exp

{∫ P

0

(
PV

RT
− 1

)
dP

P

}

= exp
{∫ Pr

0

[Z(Tr, Pr, ω) − 1] d lnPr

}
(7.4-15a)

or

Fugacity coefficient
corresponding states

ln
fV

P
=

{∫ Pr

0

[Z(Tr, Pr, ω) − 1] d lnPr

}
(7.4-15b)
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Reduced pressure, Pr

Generalized fugacity coefficients
of pure gases and liquids

(Zc = 0.27)
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Figure 7.4-1 (Reprintedwith permission fromO.A. Hougen, K.M.Watson, and R. A. Ragatz,
Chemical Process Principles Charts, 2nd ed., John Wiley & Sons, New York, 1960.)

Consequently, the fugacity coefficient can be tabulated in the corresponding-states man-
ner. The corresponding-states correlation for the fugacity coefficient of nonpolar gases
and liquids given in Fig. 7.4-1 was obtained using Eq. 7.4-15b and the compressibility
correlation (Fig. 6.6-3).

b. The Fugacity of a Pure Liquid

The fugacity of a pure liquid species can be computed in a number of ways, depending
on the data available. If the equation of state for the liquid is known, we can again start
from Eq. 7.4-8, now written as

ln
fL(T,P )

P
=

1
RT

∫ V =ZLRT/P

V =∞

(
RT

V
− P

)
dV − lnZL + (ZL − 1) (7.4-18)

where the superscript L is used to indicate that the liquid-phase compressibility (high
density, small V and Z) solution of the equation of state is to be used, and it is the
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liquid-phase fugacity that is being calculated. Using, for example, the Peng-Robinson
equation of state in Eq. 7.4-8 yields

Fugacity coefficient
Peng-Robinson
equation of state

ln
fL

P
= (ZL − 1) − ln

(
ZL − bP

RT

)
− a

2
√

2bRT
ln

[
ZL + (1 +

√
2)bP/RT

ZL + (1 −
√

2)bP/RT

]

= (ZL − 1) − ln(ZL − B) − A

2
√

2B
ln

[
ZL + (1 +

√
2)B

ZL + (1 −
√

2)B

]

(7.4-14b)
To use this equation, we first, at the specified value ofT andP , solve the Peng-Robinson
equation of state for the liquid compressibility, ZL, and use this value to compute
fL(T,P ). Of course, other equations of state could be used in Eq. 7.4-8. The Peng-
Robinson equation-of-state programs described in Appendix B on the website for this
book or in Aspen Plus R© can be used for this calculation for the Peng-Robinson equa-
tion of state.

Illustration 7.4-6
Calculation of the Fugacity of a Liquid Using the Peng-Robinson Equation of State

Compute the fugacity of pure liquid n-pentane and pure liquid benzene at 373.15 K and 50 bar
using the Peng-Robinson equation of state.

Solution

Using one of the Peng-Robinson equation-of-state programs in Appendix B on the website for
this book with the liquid (high-density) root, we obtain for n-pentane

ZPE(373.15 K, P = 50 bar) = 0.2058

fPE(373.15 K, P = 50 bar) = 6.22 bar

and for benzene

ZBZ(373.15 K, P = 50 bar) = 0.1522

fBZ(373.15 K, P = 50 bar) = 1.98 bar

If one has some liquid volume data, but not an equation of state, it is more convenient
to start with Eq. 7.4-6, which can be rearranged to

RT ln
fL

P
=

∫ P

0

[
V − RT

P

]
dP (7.4-16a)

and perform the integration. However, one has to recognize that a phase change from a
vapor to a liquid occurs within the integration range as the pressure is increased from
zero pressure to the vapor pressure, and that the molar volume of a fluid is discontinuous
at this phase transition. Thus, the result of the integration is

RT ln
(

fL

P

)
= G(T,P ) − GIG(T,P )

=
∫ Pvap(T )

P=0

(
V − RT

P

)
dP + RTΔ

(
ln

f

P

)
phase
change

+
∫ P

Pvap(T )

(
V − RT

P

)
dP

(7.4-16b)
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The first term on the right side of this equation is the difference between the real and
ideal gas Gibbs energy changes of compressing the vapor from zero pressure to the
vapor pressure of the substance at temperature T . The second term allows for the Gibbs
energy change at the phase transition. The last term is the difference between the liquid
and ideal gas Gibbs energy changes on compression of the liquid from its vapor pressure
to the pressure of interest.
From Eq. 7.4-7 and the fact that the pressure is continuous and the fugacities are

equal at a phase change, we have

Δ
(

ln
f

P

)
phase
change

= 0

and from Eq. 7.4-6, we further have that∫ Pvap(T )

0

(
V − RT

P

)
dP = RT ln

(
f

P

)
sat,T

(7.4-17)

where (f/P )sat,T is the fugacity coefficient of the saturated fluid (either vapor or liq-
uid at the phase transition pressure, since these fugacities are equal) at temperature T .
Finally, the last term in Eq. 7.4-16 can be partially integrated as follows:

∫ P

Pvap(T )

(
V − RT

P

)
dP =

∫ P

Pvap(T )

V dP − RT

∫ P

Pvap(T )

1
P

dP

=
∫ P

Pvap(T )

V dP − RT ln
P

P vap(T )

Combining these terms yields the following expressions for the fugacity of a pure liquid:

Poynting correction fL(T,P ) = P vap(T )
(

f

P

)
sat,T

exp
[

1
RT

∫ P

Pvap(T )

V dP

]

= fsat(T ) exp
[

1
RT

∫ P

Pvap(T )

V dP

] (7.4-18)

The exponential term in this equation, known as the Poynting pressure correction, ac-
counts for the increase in fugacity due to the fact that the system pressure is higher than
the vapor pressure of the liquid. Since the molar volume of a liquid is generally much
less than that of a gas (so that PV L/RT 
 1), the Poynting term is only important at
high pressures. (An exception to this is for cryogenic systems, where T is very low.)
Equation 7.4-18 lends itself to several levels of approximation. The simplest approx-

imation is to neglect the Poynting and (f/P )sat terms and set the fugacity of the liquid
equal to its vapor pressure at the same temperature, that is,

Simplest
approximation for fL

fL(T,P ) = P vap(T ) (7.4-19)

The result is valid only when the vapor pressure is low and the liquid is at a low total
pressure. Although this equation applies to most fluids at low pressure, it is not cor-
rect for fluids that associate, that is, form dimers in the vapor phase, such as acetic acid.
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A more accurate approximation is

Better approximation
for fL

fL(T,P ) = fL
sat(T ) = fV(T,P vap) = P vap(T )

(
f

P

)
sat,T

(7.4-20)

which states that the fugacity of a liquid at a given temperature and any pressure is
equal to its fugacity at its vapor pressure (as a vapor or liquid). This approximation
is valid provided the system pressure is not greatly different from the species vapor pres-
sure at the temperature of interest (so that the Poynting term is negligible). To evaluate
fV(T,P vap), any of the methods considered in Sec. 7.4a may be used. For example,
if second virial coefficient data are available, Eq. 7.4-13 can be used, or if an equation
of state is available for the vapor, but not for the liquid (as may be the case for nonhy-
drocarbon fluids), Eq. 7.4-8 (or its integrated form for the equations of state considered
in Sec. 7.4a) can be used to estimate fV(T,P vap). Alternatively, but less accurately,
(f/P )sat,T can be gotten from the corresponding-states diagram of Fig. 7.4-1 using the
saturation line and the reduced temperature of interest.
Another approximation that can be made in Eq. 7.4-18 is to take into account the

Poynting pressure correction, but to assume that the liquid is incompressible (Fig. 7.3-4
for the van der Waals equation of state, for example, does indicate that at constant
temperature the liquid volume is only slightly pressure dependent). In this case

Best approximation
for fL

fL(T,P ) = P vap(T )
(

f

P

)
sat,T

exp
[
V (P − P vap)

RT

]
(7.4-21)

where the term on the right, before the exponential, is the same as in Eq. 7.4-20. Alter-
natively, one can use

fL(T,P ) = P

(
f

P

)
T,P

(7.4-22)

where the fugacity coefficient is evaluated using the principle of corresponding states
and Fig. 7.4-1. However, if an equation of state for the liquid is available, one should
use Eq. 7.4-8.

Illustration 7.4-7
Calculation of the Fugacity of Liquid Water from Density Data

Compute the fugacity of liquid water at 300◦C and 25 MPa.

Solution

From Eq. 7.4-18, we have

fL(T, P ) = f sat(T ) exp

[
1

RT

∫ P

Pvap(T )

V L dP

]

Since liquids are not very compressible, we can assume (away from the critical point of steam)
that V L ∼ V L

sat, so that

fL(T, P ) = f sat(T ) exp

[
V L

sat(P − P vap(T ))

RT

]
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From Illustration 7.4-3 we have f sat(300◦C) = 6.7337MPa and from the steam tables, at 300◦C,
P vap = 8.581 MPa and V̂ L = 0.001 404 m3/kg, so that

V sat = 1.404 × 10−3 m3

kg
× 1 kg

103 g
× 18.015

g

mol

= 2.5293 × 10−5 m3

mol

Consequently,

fL(300◦C, 25 MPa) = 6.7337 MPa exp

⎡
⎢⎢⎣

2.5293 × 10−5 m3

mol
× (25 − 8.581) MPa

8.314 × 10−6 MPa m3

mol K
× 573.15 K

⎤
⎥⎥⎦

= 6.7337 exp[0.08715] MPa

= 6.7337 × 1.0911 MPa = 7.347 MPa

c. Fugacity of a Pure Solid Phase

The extension of the previous discussion to solids is relatively simple. In fact, if we
recognize that a solid phase may undergo several phase transitions, and let V J be the
molar volume of the Jth phase and P J be the pressure above which this phase is stable
at the temperature T , we have

fS(T,P ) = P sat(T )
(

f

P

)
sat,T

exp

[
1

RT

∑
J=1

∫ PJ+1

PJ

V J dP

]
(7.4-23)

Here P sat is generally equal to the sublimation pressure of the solid.5 Since the subli-
mation (or vapor) pressure of a solid is generally small, so that the fugacity coefficient
can be taken equal to unity, it is usually satisfactory to approximate Eq. 7.4-23 at low
total pressures by

fS(T,P ) = P sat(T ) (7.4-24a)
or, for a solid subject to moderate or high total pressures, by

Fugacity of a solid fS(T,P ) = P sat(T ) exp
[
V S(P − P sat(T ))

RT

]
(7.4-24b)

Illustration 7.4-8
Calculation of the Fugacity of Ice from Density Data

Compute the fugacity of ice at −5◦C and pressures of 0.1 MPa, 10 MPa, and 100 MPa.

5Below the triple-point temperature, as the pressure is reduced at constant temperature, a solid will sublimate
directly to a vapor. However, near the triple-point temperature some solids first melt to form liquids and then
vaporize as the ambient pressure is reduced at constant temperature (see Fig. 7.3-6). In such cases P sat(T ) in
Eq. 7.4-23 is taken to be the vapor pressure of the liquid.
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Data:

At −5◦C, the sublimation pressure of ice is 0.4 kPa and its specific gravity is 0.915.

Solution

We assume that ice is incompressible over the range from 0.4 kPa to 100 MPa, so that its molar
volume over this pressure range is

V =
18.015 g/mol

0.915 g/cc
= 19.69 cc/mol = 1.969 × 10−5 m3/mol

From Eq. 7.4-24b, we then have

fice(−5◦C, 0.1 MPa) = 0.4 kPa exp

⎡
⎢⎢⎣

1.969 × 10−5 m3

mol
× (0.1 − 0.0004) MPa

268.15 K × 8.314 × 10−6 MPa m3

mol K

⎤
⎥⎥⎦

= 0.4 exp[8.797 × 10−4] kPa

= 0.4 × 1.000 88 kPa

= 0.4004 kPa

Similarly,

fice(−5◦C, 10 MPa) = 0.4 kPa exp

⎡
⎢⎢⎣

1.969 × 10−5 m3

mol
× (10 − 0.0004) MPa

268.15 K × 8.314 × 10−6 MPa m3

mol K

⎤
⎥⎥⎦

= 0.4369 kPa

and

fice(−5◦C, 100 MPa) = 0.4 kPa exp

⎡
⎢⎢⎣

1.969 × 10−5 m3

mol
× (100 − 0.0004) MPa

268.15 K × 8.314 × 10−6 MPa m3

mol K

⎤
⎥⎥⎦

= 0.9674 kPa

Comment

Generally, the change in fugacity of a condensed species (liquid or solid) with small pressure
changes is small. Here we find that the fugacity of ice increases by 10 percent for an increase in
pressure from the sublimation pressure to 100 bar, and by a factor of 2.5 as the pressure on ice
increases to 1000 bar.

Illustration 7.4-9
Calculation of the Fugacity of Naphthalene from Density Data

The saturation pressure of solid naphthalene can be represented by

log10 P sat(bar) = 8.722 − 3783

T
(T in K)
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The density of the solid is 1.025 g/cm3, and the molecular weight of naphthalene is 128.19.
Estimate the fugacity of solid naphthalene at 35◦C at its vapor pressure, and also at 1, 20,
30, 40, 50, and 60 bar. (This information is used in Sec. 12.1 in a study of supercritical phase
behavior.)

Solution

We start with Eq. 7.4-23 for a single solid phase with the assumption that the solid is
incompressible:

fS(T, P ) = P sat(T )

(
f

P

)
sat,T

exp

[
V (P − P sat(T ))

RT

]

Using the data in the problem statement,

P sat(35◦C) = 10[8.722−(3783/(273.15+35))] = 2.789 × 10−4 bar

Since the sublimation pressure is so low, we can use (see Fig. 7.4-1)(
f

P

)
sat

= 1

Therefore,
fS(T = 35◦C, P sat) = 2.789 × 10−4 bar

At any higher pressure, we have

fS(T = 35◦C, P ) = 2.789 × 10−4 (bar)

× exp

⎡
⎢⎢⎣

128.19

1.025

cm3

mol
× (P − 2.879 × 10−4) bar × 10−6 m3

cm3

8.314 × 10−5 bar m3

mol K
× 308.15 K

⎤
⎥⎥⎦

The result is

P (bar) fS(35◦C, P ) (bar)

2.789 × 10−4 2.789 × 10−4

1 2.803 × 10−4

10 2.933 × 10−4

20 3.083 × 10−4

30 3.241 × 10−4

40 3.408 × 10−4

50 3.582 × 10−4

60 3.766 × 10−4

7.5 THE CALCULATION OF PURE FLUID-PHASE EQUILIBRIUM: THE
COMPUTATION OF VAPOR PRESSURE FROM AN EQUATION OF STATE

Now that the fugacity (or equivalently, the molar Gibbs energy) of a pure fluid can be
calculated, it is instructive to consider how one can compute the vapor-liquid equilib-
rium pressure of a pure fluid, that is, the vapor pressure, as a function of temperature,
using a volumetric equation of state. Such calculations are straightforward in princi-
ple, but, because of the iterative nature of the computation involved, are best done on a
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computer. One starts by choosing a temperature between the melting point and critical
point of the fluid of interest and guessing the vapor pressure. Next, for these values of
T and P, the equation of state is solved to find the liquid (smaller V and Z ) and the
vapor (larger V and Z ) roots, which we denote by ZL and ZV, respectively. These
values are then used in the fugacity coefficient expression appropriate to the equation
of state to obtain fL and fV. Finally, these values are compared. If fL is, within a
specified tolerance, equal to fV, the guessed pressure is the correct vapor pressure for
the temperature of interest. If, however, the liquid-phase fugacity is greater than the
vapor-phase fugacity (i.e., fL > fV), the guessed pressure is too low; it is too high if
fV > fL. In either case, a new guess must be made for the pressure, and the calculation
repeated.
Figure 7.5-1 is a flow diagram for the calculation of the vapor pressure using the

Peng-Robinson equation-of-state (the Peng-Robinson equation-of-state programs in
Appendix B on the website for this book or in Aspen Plus R© can be used for this cal-
culation); clearly, other equations of state could have been used. Also, the algorithm
could be modified slightly so that pressure is chosen, and the boiling temperature at
this pressure found (in this case remember that, from Eq. 6.7-1, the a parameter in the
equation of state is temperature dependent).

Print the equilibrium
(vapor) pressure

No Yes

Exit or repeat calculation
for another temperature

Enter T and guessed value of P

Enter Tc, Pc, ω

Compute a and b using
Eqs. 6.7-1, 6.7-2, and 6.7-3

Compute A and B, where
A = aP/R2T 2 and B = Pb/RT

Compute f V by substituting
ZV into Eq. 7.4-14a

Compute f L by substituting
ZL into Eq. 7.4-14b

Solve Eq. 6.7-5 for ZL and ZV

Is     
f L

  – 1   < 0.0001?
f V

P = P
f V
f L

|   |   

Figure 7.5-1 Flow sheet of a computer
program for the calculation of the vapor
pressure of a fluid using the Peng-Robinson
equation of state.
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Figure 7.5-2 contains experimental vapor pressure versus temperature data for
n-butane, together with vapor pressure predictions from (1) the van der Waals equa-
tion; (2) the Peng-Robinson equation, but with a = 0.457 24R2T 2

c /Pc rather than the
correct expression of Eq. 6.7-1; and (3) the complete Peng-Robinson equation of state,
that is, with the a parameter being the function of temperature given in Eq. 6.7-1. From
this figure we see that the vapor pressure predictions of the van der Waals equation are
not very good, nor are the predictions of the simplified Peng-Robinson equationwith the
a parameter independent of temperature. However, the predictions with the complete
Peng-Robinson equation are excellent. Indeed, the specific form of the temperature de-
pendence of the α(T ) term in the a parameter was chosen so that good vapor pressure
predictions would be obtained at all temperatures, and so that α(Tc) = 1 to ensure that
the critical-point conditions are met.
Finally, it should be pointed out that in the calculation scheme suggested here, the

initial guess for the vapor pressure at the chosen temperature (or temperature at fixed
pressure) must be made with some care. In particular, the pressure (or temperature)
must be within the range of the van der Waals loop of the equation of state, so that
separate solutions for the vapor and liquid densities (or compressibilities) are obtained.
If the guessed pressure is either too high so that only the high-density root exists, or
too low so that only the low-density root exists, the presumed vapor and liquid phases
will be identical, and the algorithm of Fig. 7.5-1 will accept the guessed pressure as the
vapor pressure, even though it is an incorrect one-phase solution, not the correct two-
phase solution to the problem. The incorrect “solution” so obtained is referred to as the
trivial solution (in which the two phases are identical) rather than the actual solution
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1000/T (K)
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Figure 7.5-2 The vapor pressure of n-butane
as a function of temperature. The points �� are
the experimental data. Line a is the prediction
of the van der Waals equation, line b is the pre-
diction of the Peng-Robinson equation with
α = 1, and line c is the prediction of the com-
plete Peng-Robinson equation [i.e., α = α(t)].
The reason for plotting ln P vap versus 1/T
rather than P vap versus T is discussed
in Sec. 7.7.
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to the problem, in which vapor and liquid phases exist. The best method of avoiding
this difficulty is to make a very good initial guess, though this becomes increasingly
harder to do as one approaches the critical point of the fluid, and the van der Waals loop
becomes very small (remember, it vanishes at the critical point).
Of course, using an equation of state, not only can the vapor pressure of a fluid be

calculated, but so can other thermodynamic properties along the vapor-liquid phase
boundary. This is demonstrated in the following illustration, which is a continuation of
Illustration 6.4-1, dealing with the thermodynamic properties of oxygen.

Illustration 7.5-1 (Illustration 6.4-1 continued)
Using an Equation of State to Calculate the Vapor Pressure of a Compound

Using the data in Illustration 6.4-1, and the same reference state, compute the vapor pressure of
oxygen over the temperature range of −200◦C to the critical temperature, and also compute the
specific volume, enthalpy, and entropy along the vapor-liquid equilibrium phase envelope. Add
these results to Figs. 6.4-3, 6.4-4, and 6.4-5.

Solution

Using the Peng-Robinson equation-of-state programs described in Appendix B on the website
for this book, we obtain the results in Table 7.5-1. The vapor pressure as a function of temperature
is plotted in Fig. 7.5-3. The specific volumes andmolar enthalpies and entropies of the coexisting
phases have been added as the two-phase envelopes in Figs. 6.4-3, 6.4-4, and 6.4-5.

Illustration 7.5-2 (Illustration 6.4-1 concluded)
Completing the Construction of a Thermodynamic Properties Chart Using an Equation of State

Complete the calculated thermodynamic properties chart for oxygen by considering temperatures
between −100◦C and −200◦C.

Solution

The calculation here is much like that of Illustration 6.4-1 except that for some pressures at
temperatures below the critical temperature, three solutions for the compressibility or specific
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Figure 7.5-3 The vapor pressure of oxygen calculated using
the Peng-Robinson equation of state.
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Table 7.5-1 Thermodynamic Properties of Oxygen Along the Vapor-Liquid Phase Boundary Calculated Using the
Peng-Robinson Equation of State

T (◦C) Vapor Liquid

P = 0.11 bar
Z 0.9945 0.0004

−200 V 53.3256 0.0232
H −6311.60 −13 501.04
S −20.87 −119.14

P = 0.47 bar
Z 0.9832 0.0016

−190 V 14.5751 0.0241
H −6064.97 −13 013.02
S −29.34 −112.90

P = 1.39 bar
Z 0.9611 0.0045

−180 V 5.3617 0.0252
H −5842.71 −12 517.98
S −35.65 −107.30

P = 2.19 bar
Z 0.9452 0.0070

−175 V 3.5151 0.0259
H −5744.89 −12 261.51
S −38.25 −104.64

P = 3.31 bar
Z 0.9256 0.0103

−170 V 2.3964 0.0266
H −5658.53 −11 997.44
S −40.60 −102.05

P = 6.76 bar
Z 0.8746 0.0204

−160 V 1.2175 0.0284
H −5529.07 −11 440.52
S −44.75 −96.99

T (◦C) Vapor Liquid

P = 12.30 bar
Z 0.8062 0.0371

−150 V 0.6713 0.0309
H −5475.94 −10 829.37
S −48.49 −91.95

P = 20.54 bar
Z 0.7170 0.0641

−140 V 0.3864 0.0346
H −5534.19 −10 131.95
S −52.20 −86.72

P = 32.15 bar
Z 0.5983 0.1107

−130 V 0.2215 0.0410
H −5780.50 −9273.89
S −56.43 −80.84

P = 39.44 bar
Z 0.5191 0.1501

−125 V 0.1621 0.0469
H −6043.66 −8716.50
S −59.19 −77.23

P = 47.85 bar
Z 0.4000 0.2253

−120 V 0.1065 0.0600
H −6599.85 −7885.19
S −63.62 −72.01

V [=] m3/kmol; H [=] J/mol = kJ/kmol; S [=] J/mol K = kJ/(kmol K).

volume are obtained. To choose the correct solution in such cases, the vapor pressure calculated
in the previous illustration is needed. If three solutions are obtained and the system pressure
is above the vapor pressure, the liquid is the stable phase and the smallest compressibility (or
specific volume) is the correct solution, and it should be used in the calculation of all other
thermodynamic properties. Conversely, if the system pressure is below the calculated vapor
pressure, the vapor is the stable phase and the largest compressibility or specific volume root is
to be used.

Using this calculational procedure, which is incorporated into the programs on the website
for this book, the entries in Table 7.5-2 were obtained. These values also appear in Figs. 6.4-3,
6.4-4, and 6.4-5.
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Table 7.5-2 The Thermodynamic Properties of Oxygen in the Low-Temperature Range
Calculated Using the Peng-Robinson Equation of State

T (◦C)

−125 −150 −175 −200

P = 1 bar
Z 0.9915 0.9863 0.9756 0.0038
V 12.2138 10.0988 7.9621 0.0232
H −4302.26 −4995.07 −5684.10 −13 491.36
S −19.97 −25.09 −31.35 −119.04

P = 2 bar
Z 0.9830 0.9723 0.9502 0.0076
V 6.0543 4.9777 3.8775 0.0232
H −4330.39 −5031.67 −5734.76 −13 489.39
S −25.85 −31.04 −37.42 −119.04

P = 5 bar
Z 0.9569 0.9285 0.0158 0.0191
V 2.3574 1.9014 0.0258 0.0232
H −4416.92 −5146.94 −12 257.99 −13 484.22
S −33.84 −39.24 −104.68 −119.07

P = 10 bar
Z 0.9116 0.8478 0.0316 0.0382
V 1.1229 0.8681 0.0258 0.0232
H −4569.30 −5362.75 −12 251.78 −13 475.52
S −40.27 −46.14 −104.75 −119.11

P = 20 bar
Z 0.8119 0.0598 0.0630 0.0762
V 0.5000 0.03063 0.0257 0.0232
H −4915.26 −10 834.90 −12 239.17 −13 458.10
S −47.61 −92.19 −104.88 −119.19

P = 30 bar
Z 0.6912 0.0889 0.0943 0.1142
V 0.2838 0.0304 0.0256 0.0232
H −5356.44 −10 840.08 −12 226.32 −13 440.62
S −53.14 −92.48 −105.01 −119.26

P = 40 bar
Z 0.1512 0.1176 0.1254 0.1521
V 0.0466 0.0301 0.0256 0.0231
H −8734.00 −10 843.32 −12 213.23 −13 423.11
S −77.37 −92.75 −105.14 −119.34

P = 50 bar
Z 0.1740 0.1458 0.1563 0.1899
V 0.0429 0.0299 0.0255 0.0231
H −8937.76 −10 844.89 −12 199.92 −13 405.54
S −79.04 −93.01 −105.27 −119.42

(continued)
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Table 7.5-2 (Continued)

T (◦C)

−125 −150 −175 −200

P = 60 bar
Z 0.1987 0.1737 0.1871 0.2277
V 0.0408 0.0296 0.0256 0.0231
H −9054.31 −10 845.02 −12 186.40 −13 387.93
S −80.11 −93.25 −105.39 −119.49

P = 70 bar
Z 0.2235 0.2013 0.2178 0.2654
V 0.0393 0.0294 0.0254 0.0231
H −9134.97 −10 843.88 −12 172.67 −13 370.28
S −80.92 −93.48 −105.51 −119.57

P = 80 bar
Z 0.2481 0.2285 0.2483 0.3030
V 0.0382 0.0293 0.0253 0.0230
H −9195.27 −10 841.61 −12 158.77 −13 352.59
S −81.59 −93.70 −105.62 −119.64

P = 90 bar
Z 0.2724 0.2555 0.2787 0.3405
V 0.0373 0.0291 0.0253 0.0230
H −9242.27 −10 838.35 −12 144.68 −13 334.86
S −82.16 −93.91 −105.74 −119.71

P = 100 bar
Z 0.2964 0.2823 0.3089 0.3780
V 0.0365 0.0289 0.0252 0.0230
H −9279.82 −10 834.20 −12 130.43 −13 317.09
S −82.67 −94.11 −105.85 −119.78

V [=] m3/mol; H [=] J/mol = kJ/kmol; S [=] J/mol K = kJ/(kmol K).

Note

This completes the calculation of the thermodynamic properties of oxygen. You should remem-
ber, however, that these results were obtained using only a simple, generalized three-parameter
(Tc,Pc,ω) cubic equation of state. Therefore, although they are good estimates, the results are not
of as high an accuracy as would be obtained using a considerably more complicated equation of
state. For example, an equation with 59 constants specific to water was used to compute the very
accurate properties of steam in the steam tables (Appendix A.III). Clearly, a very large amount
of carefully obtained experimental data, and sophisticated numerical analysis, must be used to
obtain the 59 equation-of-state constants. This was done for water because in various industrial
applications, especially in the design and evaluation of steam boilers and turbines, the properties
of steam are needed to high accuracy.

It must be emphasized that the generalization of the Peng-Robinson equation-of-
state parameters given by Eqs. 6.7-2, 6.7-3, and 6.7-4 is useful only for hydrocarbons
and inorganic gases (O2, N2, CO2, etc.). For polar fluids (water, organic acids, al-
cohols, etc.), this simple generalization is not accurate, especially at low temperatures
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and pressures. A number of alternative procedures have been suggested in this case.
One is to add additional species properties in the generalization for the equation-of-state
parameters, such as the dipole moment, polarizability, and/or other properties. A sim-
pler and generally more accurate procedure is to make the equation-of-state parameters
specific for each fluid. One such procedure, and the only one that we shall introduce
here, is due to Stryjek and Vera,6 which is to replace Eq. 6.7-4 with

κ = κ0 + κ1(1 + T 0.5
r )(0.7 − Tr) (7.5-1)

where

κ0 = 0.378893 + 1.4897153ω + 0.17131848ω2 + 0.0196554ω3 (7.5-2)

Here κ1 is a parameter specific to each pure compound that is optimized to accurately
fit low-temperature vapor pressure information. We refer to this modification of the
Peng-Robinson equation as the PRSV equation. We also note (for later reference) that
in this case

da(T )
dT

= 0.457 24
R2Tc

Pc

(
1 −

√
Tr

Tr

)
×

[{(
0.7 − Tr

2

)
− (1 +

√
Tr)

√
Tr

}
κ1(1 −

√
Tr) − κ

]
(7.5-3)

Illustration 7.5-3
Vapor Pressure Calculations for Water with the Peng-Robinson Equation of State

a. Compare the predictions for the vapor pressure of water from the Peng-Robinson equation
of state with generalized coefficients with data in the saturated steam tables.

b. Use the PRSV equation of state with Eqs. 7.5-1 and 7.5-2 with κ1 = −0.0665 to calculate
the vapor pressure of water, and compare the results with data in the steam tables.

Solution

In the table below are the vapor pressure data from the steam tables and as calculated from the
Peng-Robinson (PR) and PRSV equations of state.

Comment

Clearly, the PRSV equation of state, with the fluid-specific parameter κ1, leads to more accu-
rate water-vapor pressure predictions than the Peng-Robinson equation of state with generalized
parameters. This is not surprising since the PRSV equation has an extra parameter that can be
fit to data for each fluid. In general, the difference in accuracy between the Peng-Robinson and
PRSV equations will be larger the more different the fluid is from a simple hydrocarbon, with
the PRSV equation being more accurate. For comparison, values of the vapor pressure calcu-
lated from the Peng-Robinson equation of state with α equal to a constant value of unity are also
given. These values are in poor agreement with the experimental data, and demonstrate why α
has been made a function of temperature. Finally, since the critical properties were used in de-
termining the parameters in the Peng-Robinson (with α a constant or a function of temperature)

6R. Stryjek and J. H. Vera, Can. J. Chem. Eng. Sci. 64, 334, 820 (1986).
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Vapor Pressure (kPa)

T (K) Steam Tables PR (α(T )) PR (α = 1) PRSV (κ1 = −0.0665)

273.16 0.6113 0.4827 121.7 0.6094
283.15 1.2276 0.9969 164.8 1.2233
293.15 2.339 1.947 218.6 2.330
303.15 4.246 3.617 284.8 4.229
323.15 12.35 10.94 460.7 12.30
343.15 31.19 28.50 705.9 31.08
373.15 101.4 95.98 1 233 101.0
393.15 198.5 191.3 1 712 198.0
423.15 475.8 467.4 2 626 474.4
448.15 892.0 885.9 3 668 889.5
474.15 1 554 1 555 4 976 1 550
523.15 3 973 4 012 8 228 3 970
573.15 8 581 8 690 12 750 8 602
623.15 16 513 16 646 18 654 16 579
643.15 21 030 21 030 21 440 21 030

and PRSV equations, both equations must give the same critical point, so that the difference
between these equations is greatest far away from the critical point, at low temperatures and
pressures.

In Chapter 10we consider vapor-liquid equilibria inmixtures. For such calculations it
is important to have the correct pure component vapor pressures if the mixture behavior
is to be predicted correctly. Therefore, for equation-of-state calculations involving polar
fluids, the PRSV equation will be used.

7.6 SPECIFICATION OF THE EQUILIBRIUM THERMODYNAMIC STATE
OF A SYSTEM OF SEVERAL PHASES: THE GIBBS PHASE RULE
FOR A ONE-COMPONENT SYSTEM

As we have already indicated, to completely fix the equilibrium thermodynamic state
of a one-component, single-phase system, we must specify the values of two state vari-
ables. For example, to fix the thermodynamic state in either the vapor, liquid, or solid
region of Fig. 7.3-6, both the temperature and pressure are needed. Thus, we say that
a one-component, single-phase system has two degrees of freedom. In addition, to fix
the total size or extent of the systemwemust also specify its mass or one of its extensive
properties, such as total volume or total energy, from which the mass can be calculated.
In this section we are interested in determining the amount of information, and its

type, that must be specified to completely fix the thermodynamic state of an equilibrium
single-component, multiphase system. That is, we are interested in obtaining answers
to the following questions:

1. How many state variables must be specified to completely fix the thermodynamic
state of each phase when several phases are in equilibrium (i.e., howmany degrees
of freedom are there in a single-component, multiphase system)?

2. Howmany additional variables need be specified, andwhat type of variable should
they be, to fix the distribution of mass (or number of moles) between the phases,
and thereby fix the overall molar properties of the composite, multiphase system?

3. What additional information is needed to fix the total size of the multiphase
system?
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To specify the thermodynamic state of any one phase of a single-component, multi-
phase system, two thermodynamic state variables of that phase must be specified; that
is, each phase has two degrees of freedom. Thus, it might appear that if P phases are
present, the system would have 2P degrees of freedom. The actual number of degrees
of freedom is considerably fewer, however, since the requirement that the phases be
in equilibrium puts constraints on the values of certain state variables in each phase.
For example, from the analysis of Secs. 7.1 and 7.2 it is clear that at equilibrium the
temperature in each phase must be the same. Thus, there are P − 1 relations of
the form

T I = T II

T I = T III

...

that must be satisfied. Similarly, at equilibrium the pressure in each phase must be the
same, so that there are an additional P − 1 restrictions on the state variables of
the form

P I = P II

P I = P III

...

Finally, at equilibrium, the molar Gibbs energies must be the same in each phase,
so that

GI(T,P ) = GII(T,P )
GI(T,P ) = GIII(T,P )

...

which provides an additional P − 1 restrictions on the phase variables.
Since there are a total of 3(P − 1) restrictions on the 2P state variables needed to

fix the thermodynamic state of each of the P phases, the number of degrees of freedom
for the single-component, multiphase system is

Gibbs phase rule for
a single-component
system F = Number of degrees

of freedom
=

⎛
⎜⎝

Number of state
variables needed to
fix the state of each
of the P phases

⎞
⎟⎠ −

⎛
⎜⎜⎜⎝

Restrictions on
these state variables

as a result of each of the
phases being in
equilibrium

⎞
⎟⎟⎟⎠

= 2P − 3(P − 1)

= 3 − P

(7.6-1)

Thus, the specification of 3 − P state variables of the individual phases is all that is
needed, in principle, to completely fix the thermodynamic state of each of the phases
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in a one-component, multiphase system. Of course, to fix the thermodynamic states of
the phases, we would, in fact, need appropriate equation-of-state information.
It is easy to demonstrate that Eq. 7.6-1 is in agreement with our experience and with

the phase diagram of Fig. 7.3-6. For example, we have already indicated that a single-
phase (P = 1) system has two degrees of freedom; this follows immediately from
Eq. 7.6-1. To specify the thermodynamic state of each phase in a two-phase system (i.e.,
vapor-liquid, vapor-solid, or solid-liquid coexistence regions), it is clear from Fig. 7.3-6
that we need specify only the temperature or the pressure of the system; the value of
the other variable can then be obtained from the appropriate coexistence curve. Setting
P equal to 2 in Eq. 7.6-1 confirms that a two-phase system has only a single degree of
freedom. Finally, since the solid, liquid, and vapor phases coexist at only a single point,
the triple point, a single-component, three-phase system has no degrees of freedom.
This also follows from Eq. 7.6-1 with P equal to 3.
The character of the variable to be specified as a degree of freedom is not completely

arbitrary. To see this, consider Eq. 7.3-1a, which gives the molar volume of a two-
phase mixture as a function of ωV and the two single-phase molar volumes. Clearly,
a specification of either V V or V L is sufficient to fix the thermodynamic state of both
phases because the two-phase system has only one degree of freedom. However, the
specification of the two-phase molar volume V can be satisfied by a range of choices
of temperatures along the coexistence curve by suitably adjusting ωV, so that V or any
other molar property of the two phases combined is not suitable for a degree-of-freedom
specification. Consequently, to fix the thermodynamic state of each of the P phases in
equilibrium, we must specify 3 − P properties of the individual phases.
Next we want to consider how many variables, and of what type, must be specified to

also fix the distribution of mass or number of moles between the phases, so that the mo-
lar thermodynamic properties of the system consisting of several phases in equilibrium
can be determined. If there are P phases, there are P values of ωi, the mass fraction
in phase i, which must be determined. Since the mass fractions must sum to unity,
we have

ωI + ωII + · · · =
P∑

i=1

ωi = 1 (7.6-2)

as one of the relations between the mass fractions. Thus, P − 1 additional equations of
the form

P∑
i=1

ωiV̂ i = V̂

P∑
i=1

ωiĤ i = Ĥ (7.6-3a)

or generally,
P∑

i=1

ωiθ̂i = θ̂ (7.6-3b)

are needed. In these equations, θ̂i is the property per unit mass in phase i, and θ̂ is the
property per unit mass of the multiphase mixture.
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From these equations, it is evident that to determine the mass distribution between
the phases, we need to specify a sufficient number of variables of the individual phases
to fix the thermodynamic state of each phase (i.e., the degrees of freedomF) andP − 1
thermodynamic properties of the multiphase system in the form of Eq. 7.6-3. For exam-
ple, if we know that steam and water are in equilibrium at some temperature T (which
fixes the single-degree freedom of this two-phase system), the equation of state or the
steam tables can be used to obtain the equilibrium pressure, specific enthalpy, entropy,
and volume of each of the phases, but not the mass distribution between the phases. If,
in addition, the volume (or enthalpy or entropy, etc.) per unit mass of the two-phase
mixture were known, this would be sufficient to determine the distribution of mass be-
tween the two phases, and then all the other overall thermodynamic properties.
Once the thermodynamic properties of all the phases are fixed (by specification of the

F = 3 − P degrees of freedom) and the distribution of mass determined (by the speci-
fication of an additional P − 1 specific properties of the multiphase system), the value
of any one extensive variable (total volume, total enthalpy, etc.) of the multiphase sys-
tem is sufficient to determine the total mass and all other extensive variables of the
multiphase system.
Thus, to determine the thermodynamic properties per unit mass of a single-compo-

nent, two-phase mixture, we need to specify the equivalent of one single-phase state
variable (the one degree of freedom) and one variable that provides information on the
mass distribution. The additional specification of one extensive property is needed to
determine the total mass or size of the system. Similarly, to fix the thermodynamic prop-
erties of a single-component, three-phase mixture, we need not specify any single state
variable (since the triple point is unique), but two variables that provide information on
the distribution of mass between the vapor, liquid, and solid phases and one extensive
variable to determine the total mass of the three-phase system.

Illustration 7.6-1
Use of the Gibbs Phase Rule

a. Show, using the steam tables, that fixing the equilibrium pressure of a steam-water mixture
at 1.0135 bar is sufficient to completely fix the thermodynamic states of each phase. (This
is an experimental verification of the fact that a one-component, two-phase system has only
one degree of freedom.)

b. Show that additionally fixing the specific volume of the two-phase system V̂ at 1 m3/kg is
sufficient to determine the distribution of mass between the two phases.

c. What is the total enthalpy of 3.2 m3 of this steam-water mixture?

Solution

a. Using the saturation steam tables of Appendix A.III, we see that fixing the pressure at
1.0135 bar is sufficient to determine the temperature and the thermodynamic properties of
each phase:

T = 100◦C

V̂ L = 0.001 044 m3/kg

ĤL = 419.04 kJ/kg

ŜL = 1.3069 kJ/(kg K)

V̂ V = 1.6729 m3/kg

ĤV = 2676.1 kJ/kg

ŜV = 7.3549 kJ/(kg K)

Alternatively, specifying only the temperature, the specific volume, the specific enthalpy,
or in fact any one other intensive variable of one of the phases would be sufficient to fix
the thermodynamic properties of both phases. However, a specification of only the system
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pressure, temperature, or any one-phase state variable is not sufficient to determine the
relative amounts of the vapor and liquid phases.

b. To determine the relative amounts of each of the phases, we need information from which
ωV and ωL can be determined. Here the specific volume of the two-phase mixture is given,
so we can use Eq. 7.3-1,

V̂ = ωVV̂ V + (1 − ωV)V̂ L

and the relation
ωV + ωL = 1

to find the distribution of mass between the two phases. For the situation here,

1 m3/kg = ωV(1.6729 m3/kg) + (1 − ωV)(0.001 044 m3/kg)

so that

ωV = 0.5975

and

ωL = 0.4025

c. Using the data in the problem statement, we know that the total mass of the steam-water
mixture is

M =
V

V̂
=

3.2 m3

1.0 m3/kg
= 3.2 kg

From the results in parts (a) and (b) we can compute the enthalpy per unit mass of the
two-phase mixture:

Ĥ = ωLĤL + ωVĤV

= 0.4025(419.04) + 0.5975(2676.1) = 1767.7 kJ/kg

Therefore,

H = MĤ = 3.2 × 1767.7 = 5303 kJ

7.7 THERMODYNAMIC PROPERTIES OF PHASE TRANSITIONS

In this section several general properties of phase transitions are considered, as well as
a phase transition classification system. The discussion and results of this section are
applicable to all phase transitions (liquid-solid, solid-solid, vapor-solid, vapor-liquid,
etc.), although special attention is given to vapor-liquid equilibrium.
One phase transition property important to chemists and engineers is the slope of

the coexistence curves in the P -T plane; the slope of the vapor-liquid equilibrium line
gives the rate of change of the vapor pressure of the liquid with temperature, the slope
of the vapor-solid coexistence line is equal to the change with temperature of the vapor
pressure of the solid (called the sublimation pressure), and the inverse of the slope
of the liquid-solid coexistence line gives the change of the melting temperature of the
solid with pressure. The slope of any of these phase equilibrium coexistence curves can
be found by starting with Eq. 7.2-15c,

GI(T,P ) = GII(T,P ) (7.7-1)
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where the superscripts label the phases. For a small change in the equilibrium temper-
ature dT , the corresponding change of the coexistence pressure dP (i.e., the change in
pressure following the coexistence curve) can be computed from the requirement that
since Eq. 7.7-1 must be satisfied all along the coexistence curve, the changes in Gibbs
energies in the two phases corresponding to the temperature and pressure changes must
be equal, that is,

dGI = dGII (7.7-2)

Using Eq. 6.2-8b in Eq. 7.7-2 gives

V I dP − SI dT = V II dP − SII dT

or, sinceP andT are the same in both phases for this equilibrium system (see Sec. 7.2)(
∂P

∂T

)
GI=GII

=
(

SI − SII

V I − V II

)
=

ΔS

ΔV
(7.7-3)

From Eq. 7.7-1, we also have

GI = H I − TSI = GII = H II − TSII

or

SI − SII =
H I − H II

T

so that Eq. 7.7-3 can be rewritten as

Clapeyron equation
(

∂P sat

∂T

)
GI=GII

=
ΔS

ΔV
=

ΔH

TΔV
(7.7-4)

where Δθ = θI − θII, and we have used P sat to denote the equilibrium coexistence
pressure.7 Equation 7.7-4 is the Clapeyron equation; it relates the slope of the coex-
istence curve to the enthalpy and volume changes at a phase transition.
Figure 7.3-6 is, in many ways, a typical phase diagram. From this figure and

Eqs. 7.7-3 and 7.7-4 one canmake several observations about property changes at phase
transitions. First, since none of the coexistence lines has zero slope, neither the entropy
change nor the enthalpy change is equal to zero for solid-liquid, liquid-vapor, or solid-
vapor phase transitions. Also, since the coexistence lines do not have infinite slope,ΔV
is not generally equal to zero. (In general, both the heat of fusion, ΔfusH = HL−HS,
and the volume change on melting, ΔfusV = V L − V S, are greater than zero for the
liquid-solid transition, so that the liquid-solid coexistence line is as shown in the figure.
One exception to this is water, for which ΔfusH > 0 but ΔfusV < 0, so the ice-water
coexistence line has a negative slope.) From Sec. 7.3 we know that at the fluid critical
point the coexisting phases are indistinguishable. Therefore, we can conclude thatΔH ,
ΔV , and ΔS are all nonzero away from the fluid critical point and approach zero as
the critical point is approached.

7P vap is used to denote the vapor pressure of the liquid, P sub to denote the vapor pressure of the solid, and P sat

to designate a general equilibrium coexistence pressure; equations containingP sat are applicable to both the vapor
pressures and sublimation pressures.
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Of particular interest is the application of Eq. 7.7-4 to the vapor-liquid coexistence
curve because this gives the change in vapor pressure with temperature. At tempera-
tures for which the vapor pressure is not very high, it is found that V V � V L and
ΔV ≈ V V. If, in addition, the vapor phase is ideal, we have ΔvapV = V V = RT/P ,
so that

Clausius-Clapeyron
equation

dP vap

dT
=

P vap ΔvapH

RT 2
or

d lnP vap

dT
=

ΔvapH

RT 2
(7.7-5a)

and

ln
P vap(T2)
P vap(T1)

=
∫ T2

T1

ΔvapH

RT 2
dT (7.7-5b)

which relates the fluid vapor pressures at two different temperatures to the heat of vapor-
ization,ΔvapH = HV−HL. Equation 7.7-5a is referred to as theClausius-Clapeyron
equation. The heat of vaporization is a function of temperature; however, if it is as-
sumed to be independent of temperature, Eq. 7.7-5 can be integrated to give

Approximate
integrated
Clausius-Clapeyron
equation

ln
P vap(T2)
P vap(T1)

= −ΔvapH

R

(
1
T2

− 1
T1

)
(7.7-6)

a result that is also valid over small temperature ranges even when ΔvapH is temper-
ature dependent. Equation 7.7-6 has been found to be fairly accurate for correlating
the temperature dependence of the vapor pressure of liquids over limited temperature
ranges. (Note that Eq. 7.7-6 indicates that lnP vap should be a linear function of 1/T ,
whereT is the absolute temperature. It is for this reason that Figs. 7.5-2 and 7.5-3 were
plotted as lnP vap versus 1/T .)

Illustration 7.7-1
Use of the Clausius-Clapeyron Equation

The vapor pressure of liquid 2,2,4-trimethyl pentane at various temperatures is given below.
Estimate the heat of vaporization of this compound at 25◦C.

Vapor pressure
(kPa) 0.667 1.333 2.666 5.333 8.000 13.33 26.66 53.33 101.32
Temperature
(◦C) −15.0 −4.3 7.5 20.7 29.1 40.7 58.1 78.0 99.2

Solution

Over a relatively small range of temperature (say from 20.7 to 29.1◦C), ΔvapH may be taken to
be constant. Using Eq. 7.7-6, we obtain

ΔvapH

R
=

− ln[P vap(T2)/P vap(T1)]
1

T2

− 1

T1

=
− ln(8.000/5.333)

1

302.25
− 1

293.85

= 4287.8 K

so that
ΔvapH = 35.649 kJ/mol
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Figure 7.7-1 The vapor pressure of
2,2,4-trimethyl pentane as a func-
tion of temperature.

One can obtain an estimate of the temperature variation of the heat of vaporization by noting
that the integration of Eq. 7.7-5 can be carried out as an indefinite rather than definite integral.
In this case we obtain

ln P vap(T ) = −ΔvapH

RT
+ C

where C is a constant. Therefore, if we were to plot ln P vap versus 1/T , we should get a straight
line with a slope equal to −ΔvapH/R if the heat of vaporization is independent of temperature,
and a curve if ΔvapH varies with temperature. Figure 7.7-1 is a vapor pressure-temperature plot
for the 2,2,4-trimethyl pentane system. As is evident from the linearity of the plot, ΔvapH is
virtually constant over the whole temperature range.

This illustration is a nice example of the utility of thermodynamics in providing interrelation-
ships between properties. In this case we see how data on the temperature dependence of the
vapor pressure of a fluid can be used to determine its heat of vaporization.

The equation developed in the illustration can be rewritten as

ln P vap(T ) = A − B

T
(7.7-7)

with B = ΔvapH/R, and it is reasonably accurate for estimating the temperature dependence
of the vapor pressure over small temperature ranges. More commonly, the Antoine equation

Antoine equation ln P vap(T ) = A − B

T + C
(7.7-8)

is used to correlate vapor pressures accurately over the range from 1 to 200 kPa. Antoine con-
stants for many substances are given by Poling, Prausnitz, and O’Connell.8 Other commonly
used vapor pressure correlations include the Riedel equation

ln P vap(T ) = A +
B

T
+ C ln T + DT 6 (7.7-9)

8B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill,
New York (2001).
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and the Harlecher-Braun equation,

ln P vap(T ) = A +
B

T
+ C ln(T ) +

DP vap(T )

T 2
(7.7-10)

which must be solved iteratively for the vapor pressure, but is reasonably accurate from low
vapor pressure up to the critical pressure.

Illustration 7.7-2
Interrelating the Thermodynamic Properties of Phase Changes

The following vapor pressure data are available

T (◦C) P vap (mm Hg)

Ice −4 3.280
−2 3.880

Water +2 5.294
+4 6.101

Estimate each of the following:

a. Heat of sublimation of ice
b. Heat of vaporization of water
c. Heat of fusion of ice
d. The triple point of water

Solution

a. Here we use Eq. 7.7-6 in the form

ΔsubH

R
= − ln[P sub(T2)/P sub(T1)]

1

T2

− 1

T1

= −
ln

(
3.880

3.280

)
1

271.15 K
− 1

269.15 K

= 6130 K

so that

ΔsubH = 6130 K × 8.314
J

mol K
= 50 965

J

mol
= 50.97

kJ

mol

b. Similarly, here we have

ΔvapH

R
= − ln[P vap(T2)/P vap(T1)]

1

T2

− 1

T1

= −
ln

(
6.101

5.294

)
1

277.15 K
− 1

275.15 K

= 5410 K

or

ΔvapH = 5410 K × 8.314
J

mol K
= 44 979

J

mol
= 44.98

kJ

mol
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c. Since
ΔsubH = H(vapor) − H(solid)

and
ΔvapH = H(vapor) − H(liquid)

it then follows that

ΔfusH = H(liquid) − H(solid) = ΔsubH − ΔvapH = 50.97 − 44.98 = 5.99
kJ

mol

d. At the triple-point temperature Tt the sublimation pressure of the solid and the vapor pres-
sure of the liquid are equal; we denote this triple-point pressure as Pt. Using Eq. 7.7-6 for
both the solid and liquid phases gives

ΔsubH

R
= 6130 = −

ln

(
Pt

P sub(T )

)
1

Tt

− 1

T

= −
ln

(
Pt

3.880

)
1

Tt

− 1

271.15

and

ΔvapH

R
= 5410 = −

ln

(
Pt

P vap(T )

)
1

Tt

− 1

T

= −
ln

(
Pt

5.294

)
1

Tt

− 1

275.15

The solution to this pair of equations is Tt = 273.279 K, and Pt = 4.627 mm Hg. The
reported triple point is 273.16 K and 4.579 mm Hg, so our estimate is quite good.

Comment

This example illustrates the value of thermodynamics in interrelating properties in that from two
sublimation pressure and two vapor pressure data points, we were able to estimate the heat of
sublimation, the heat of vaporization, the heat of fusion, and the triple point. Further, we can
now use the information we have obtained and write the equations

ln

(
P sub

3.880

)
= −6130

(
1

T
− 1

271.15

)

and

ln

(
P vap

5.294

)
= −5410

(
1

T
− 1

275.15

)

Consequently, we can also calculate the sublimation pressure and vapor pressure of ice andwater,
respectively, at other temperatures. Using these equations, we find

P sub (−10◦C) = 1.951 mm Hg

which compares favorably with the measured value of 1.950 mm Hg. Also,

P vap (+10◦C) = 9.227 mm Hg

compared with the measured value of 9.209 mm Hg.
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An important characteristic of the class of phase transitions we have been considering
so far is that, except at the critical point, certain thermodynamic properties are discon-
tinuous across the coexistence line; that is, these properties have different values in the
two coexisting phases. For example, for the phase transitions indicated in Fig. 7.3-6
there is an enthalpy change, an entropy change, and a volume change on crossing the
coexistence line. Also, the constant-pressure heat capacityCP = (∂H/∂T )P becomes
infinite at a phase transition for a pure component because temperature is constant and
the enthalpy increases across the coexistence line. In contrast, the Gibbs energy is, by
Eq. 7.2-15c, continuous at a phase transition.
These observations may be summarized by noting that for the phase transitions con-

sidered here, the Gibbs energy is continuous across the coexistence curve, but its first
derivatives (

∂G

∂T

)
P

= −S and
(

∂G

∂P

)
T

= V

are discontinuous, as are all higher derivatives. This class of phase transition is called
a first-order phase transition. The concept of higher-order phase transitions follows
naturally. A second-order phase transition (at constant T and P ) is one in which G
and its first derivatives are continuous, but derivatives of second order and higher are
discontinuous. Third-order phase transition is defined in a similar manner.
One example of a second-order phase change is the structural rearrangement of quartz,

whereG,S, and V are continuous across the coexistence line, but the constant-pressure
heat capacity, which is related to the second temperature derivative of the Gibbs energy,(

∂2G

∂T 2

)
P

= −
(

∂S,

∂T

)
P

= −CP

T

is not only discontinuous but has a singularity at the phase change (see Fig. 7.7-2). An-
other example of a second-order phase transition is the change from the ferromagnetic
to paramagnetic states in some materials. No phase transitions higher than second order
have been observed in the laboratory.
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Figure 7.7-2 The specific heat of quartz near a
second-order phase transition. (Reprinted with
permission fromH. B. Callen, Thermodynamics,
John Wiley & Sons, New York, 1960.)
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7.8 THERMODYNAMIC PROPERTIES OF SMALL SYSTEMS, OR WHY SUBCOOLING
AND SUPERHEATING OCCUR

A drop of liquid in a vapor consists of molecules in the bulk of the liquid interact-
ing with many other molecules, and molecules at the surface that on the liquid side
of the interface interact with many molecules and on the vapor side interact with only
a few molecules. Consequently, the energy of interaction (a part of the internal en-
ergy) of the molecules at the interface between the two phases is different from that of
molecules in the bulk. Other cases of molecules at the surface having different energies
than those in the bulk occur at liquid-liquid, liquid-solid, and solid-vapor interfaces.
Except for very small drops that have large surface areas relative to their volume, the
number of molecules at the surface is very much smaller than the number of molecules
in the bulk, so that the effect of the difference in energies between molecules in the bulk
and surface molecules can be neglected. However, for very small drops, this surface
effect is important.
The contribution to the energy from the surface is usually written as σA, where σ is

the surface tension for the liquid-vapor interface (or the interfacial tension for a liquid-
liquid interface) and A is the surface area. The σA contribution is the two-dimensional
analogue of the PV term for bulk fluids. Including the effect of changing surface area
in the energy balance, just as we have included the effect of changing volume, gives for
a closed system without shaft work

dU

dt
= Q̇ − P

dV

dt
− σ

dA

dt
(7.8-1)

where P is the external pressure on the system. The negative sign on the σ(dA/dt)
term is due to the fact that the system must do work to increase its surface area, just as
the system must do work against the surroundings to expand (increase its volume).
Our interest here will be in spherical drops, as droplets that occur in nature are gen-

erally spherical or almost so. In this case V = 4
3
πr3 and A = 4πr2, where r is the

drop radius. Therefore, the energy balance is

dU

dt
= Q̇−4πr2P

dr

dt
−8πrσ

dr

dt
= Q̇−4πr2

(
P +

2σ

r

)
dr

dt
= Q̇−

(
P +

2σ

r

)
dV

dt

or simply

dU

dt
= Q̇ − Pint

dV

dt
(7.8-2)

where Pint = (P + 2σ/r) is the internal pressure in the droplet as a result of the
external pressure and the surface tension acting on the surface of the droplet. (The same
relation between the internal pressure and the external pressure can be obtained from
a force balance.) If the drop is very large (i.e., r → ∞), the external pressure and
the internal pressure are equal. However, for a very small drop (that is, as r → 0),
the internal pressure is significantly larger than the external pressure. (The expression
for the internal pressure indicates that it becomes infinite in the limit of a drop of the
size of a single molecule. However, when only one or a few molecules are involved,
one must use a statistical mechanical description, not the macroscopic thermodynamic
description in this book. Therefore, wewill not consider the case of r being ofmolecular
dimensions.)
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Table 7.8-1 Surface Tension at a Liquid-Vapor Interface

Liquid Temperature (◦C) σ (dyne/cm)∗

Water 20 72.9
25 72.1

Methanol 20 22.7
Ethanol 20 22.1
1-Octanol 20 27.6
Benzene 20 28.9
Aniline 20 43.4
Glycerol 20 64.0
Perfluorohexane 20 11.9
n-Heptane 20 20.4
n-Octane 20 21.6
Propionic acid 20 26.7
Mercury 20 487
Sodium 139 198
Sodium chloride 1073 115

∗Divide by 1000 for J/m2.

Table 7.8-2 Interfacial Tension at a Liquid-Liquid Interface

Liquid Temperature (◦C) σ (dyne/cm)∗

Water/n-butyl alcohol 20 1.8
Water/mercury 20 415
Water/benzaldehyde 20 15.5
Water/diethylene glycol 25 57
Mercury/n-hexane 20 378

∗Divide by 1000 for J/m2.

Some values of the surface tension (for vapor-liquid interfaces) and interfacial ten-
sions (for liquid-liquid interfaces) are given in Table 7.8-1.
We now consider two cases. The first is a bulk liquid at a temperature T subject to

an external pressure of P . The fugacity of this liquid, fL (T,P ), can be computed by
any of the methods described earlier in this chapter. The second case is that of a small
droplet of the same liquid at the same temperature and external pressure. The fugacity
of this droplet is

fL
drop (T,P ) = fL (T,Pint) = fL

(
T,P +

2σ

r

)
= fL (T,P ) exp

(
2σ

rRT
V L

)
(7.8-3)

where V L is the molar volume of the liquid, and we have introduced the Poynting
correction (so that the fugacity of the liquid drop can be expressed as the product of the
fugacity of the bulk liquid at the same temperature and same external pressure) and a
correction factor for the surface effect. Clearly, the contribution from the surface term
is always greater than unity, so that the fugacity of the drop is always greater than the
fugacity of the bulk liquid at the same temperature and external pressure. Further, this
difference will be very large if the drop is very small, as shown in Fig. 7.8-1.
There are several implications of this result. The first is that since at a given temper-

ature the fugacity of a drop is higher than that of a bulk liquid, it will attain a value of
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Figure 7.8-1 Difference in Gibbs energy between a bubble of radius r and the
bulk fluid for water at 20◦C.

1.013 bar at a lower temperature than that of the bulk liquid; that is, the boiling temper-
ature of small drops at atmospheric pressure will be lower than that of the bulk liquid
(Problem 7.72). Or, more generally, small drops will vaporize more easily than the bulk
fluid because of their higher fugacity (a thermodynamic effect) and their greater surface
area per unit mass (promoting mass transfer). Also, as vaporization of the drop occurs
and the drop radius becomes smaller, both the fugacity of the liquid in the drop and the
surface-to-volume ratio increase, so that the vaporization process accelerates. It is for
this reason that to vaporize a liquid quickly in consumer products—for example, in an
air freshener—an atomization process is used that produces small droplets.
From the relationship between fugacity and molar Gibbs energy, we know that the

molar Gibbs energy of a droplet is higher than that of the bulk fluid at the same tem-
perature and external pressure. This is shown in Fig. 7.8-1. In particular, as the droplet
radius goes to zero, this difference in molar Gibbs energy becomes infinite.
Instead of vaporization, which is the disappearance of a phase, consider the opposite

process of condensation, in which a liquid phase is created. The liquid will form when
the fugacity (or, equivalently, molar Gibbs energy) of the liquid is less than that of the
vapor. However, we see from Fig. 7.8-1 that the first liquid droplet that forms, of in-
finitesimal size, will have a very large Gibbs energy. Therefore, a vapor can be cooled
below its normal condensation temperature (as long as there is no dust or other nucle-
ation sites present) but may not condense, because while the Gibbs energy of the bulk
liquid will be less than that of the vapor, the Gibbs energy of the very small droplets
that will form first is greater than that of the vapor. This is the phenomenon of subcool-
ing. As the vapor continues to be cooled, the difference between the vapor and bulk
liquid Gibbs energies will become large enough to overcome the Gibbs energy penalty
required for the formation of the first droplet of liquid. Once this first droplet is formed,
since the Gibbs energy of a droplet decreases by the droplet growing in size, droplet
growth (condensation) then occurs rapidly.
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Similarly, to initiate boiling in a liquid, an infintesimal bubble of vapor must first be
created. However, here too there is a very large Gibbs energy barrier to the formation of
the first, very small bubble, and unless boiling chips or other devices are used to induce
the nucleation of bubbles, on heating the normal boiling temperature will be exceeded
before boiling starts. This is superheating. Note that the cause of both subcooling and
superheating is the cost in Gibbs energy of producing a new phase (the liquid droplet
in subcooling and a vapor bubble in superheating).
Similar phenomena occur in other phase transitions, such as solidification or crystal-

lization. That is, on cooling a liquid, initially a temperature below its normal freezing
point will be reached without freezing (liquid-solid subcooling), and then suddenly a
significant amount of freezing or crystallization will occur.
There is a related process that occurs after nucleation of a new phase and is espe-

cially evident in crystallization. Initially, crystals of many different sizes form when
crystallization (or freezing) first occurs. If the system is adiabatic (so that no further
heating or cooling is supplied the small crystals will decrease in size and eventually
disappear, while the large crystals will grow, until there may be only a few (or even
just one) large crystals. This phenomenon is referred to as Ostwald ripening. We can
easily understand why this occurs by examining Fig. 7.8-1, where we see that crystals
of large size (radius) have a lower Gibbs energy than crystals of small size. Therefore,
in the evolution toward equilibrium, the state of lowest Gibbs energy, the Gibbs energy
of the system is lowered by replacing many small crystals with a few larger ones.

PROBLEMS

7.1 By doing some simple calculations and plotting sev-
eral graphs, one can verify some of the statements made
in this chapter concerning phase equilibrium and phase
transitions. All the calculations should be done using
the steam tables.
a. Establish, by direct calculation, that

GL = GV

for steam at 2.5 MPa and T = 224◦C.
b. Calculate GV at P = 2.5 MPa for a collection of

temperatures between 225 and 400◦C and extrapo-
late this curve below 224◦C.

c. Find GL at 160, 170, 180, 190, 200, and 210◦C. Plot
this result on the same graph as used for part (b) and
extrapolate above 224◦C. (Hint: For a liquid H and
S can be taken to be independent of pressure. There-
fore, the values ofH and S for the liquid at any pres-
sure can be gotten from the data for the saturated liq-
uid at the same temperature.) How does this graph
compare with Fig. 7.3-7?

d. Plot V versus T at P = 2.5 MPa for the temper-
ature range of 150 to 400◦C, and show that V is
discontinuous.

e. Plot CP versus T at P = 2.5 MPa over the temper-
ature range of 150 to 400◦C, and thereby establish
that CP is discontinuous.

f. Using the data in the steam tables, show that the
Gibbs energies per unit mass of steam and liquid
water in equilibrium at 300◦C are equal.

7.2 a. Show that the condition for equilibrium in a closed
system at constant entropy and volume is that the in-
ternal energy U achieve a minimum value subject to
the constraints.

b. Show that the condition for equilibrium in a closed
system at constant entropy and pressure is that the
enthalpy H achieve a minimum value subject to the
constraints.

7.3 a. Show that the intrinsic stability analysis for fluid
equilibrium at constant temperature and volume
leads to the single condition that(

∂P

∂V

)
T

< 0

b. Show that intrinsic stability analysis for fluid
equilibrium at constant temperature and pressure
does not lead to any restrictions on the equation
of state.

7.4 a. Show that the conditions for vapor-liquid equilib-
rium at constant N , T , and V are GV = GL and
PV = PL.

b. Show that the condition for vapor-liquid equilibrium
at constant N , T , and P is GV = GL.

7.5 Prove that CP ≥ CV for any fluid, and identify those
conditions for which CP = CV.

7.6 Show that if the polymer fiber of Problem 6.26 is to be
thermodynamically stable at all temperatures, the pa-
rameters α, β, and γ must be positive.
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7.7 The entropy of a certain fluid has been found to be re-
lated to its internal energy and volume in the following
way:

S = S◦ + α ln
U

U◦ + β ln
V

V ◦

where S◦, U◦, and V ◦ are, respectively, the molar en-
tropy, internal energy, and volume of the fluid for some
appropriately chosen reference state, and α and β are
positive constants.
a. Develop an interrelationship between internal en-

ergy, temperature, and specific volume (the thermal
equation of state) for this fluid.

b. Develop an interrelationship between pressure, tem-
perature, and volume (the volumetric equation of
state) for this fluid.

c. Show that this fluid does not have a first-order phase
transition by establishing that the fluid is stable in all
thermodynamic states.

7.8 Figure 7.3-4 is the phase diagram for a van der Waals
fluid. Within the vapor-liquid coexistence envelope one
can draw another envelope representing the limits of
supercooling of the vapor and superheating of the liq-
uid that can be observed in the laboratory; along each
isotherm these are the points for which(

∂P

∂V

)
T

= 0

Obtain this envelope for the van der Waals fluid. This is
the spinodal curve. The region between the coexistence
curve and the curve just obtained is the metastable re-
gion of the fluid. Notice also that the critical point of the
fluid is metastable.

7.9 Derive the following two independent equations for a
second-order phase transition:

∂P

∂T

∣∣∣∣
along phase
transition
curve

=
CI

P − CII
P

T

[(
∂V

∂T

)I

P

−
(

∂V

∂T

)II

P

]

and

∂P

∂T

∣∣∣∣
along phase
transition
curve

=

[(
∂V

∂T

)I

P

−
(

∂V

∂T

)II

P

]
[(

∂V

∂P

)I

T

−
(

∂V

∂P

)II

T

] =
αI − αII

κI
T − κII

T

These equations, which are analogues of the Clapey-
ron equation, are sometimes referred to as the Ehrenfest
equations.
Also, show that these two equations can be derived by
applying L’Hopital’s rule to the Clapeyron equation for
a first-order phase transition.

7.10 a. The heat of fusion ΔfusĤ for the ice-water phase
transition is 335 kJ/kg at 0◦C and 1 bar. The den-
sity of water is 1000 kg/m3 at these conditions, and
that of ice is 915 kg/m3. Develop an expression for
the change of the melting temperature of ice with
pressure.

b. The heat of vaporization for the steam-water phase
transition is 2255 kJ/kg at 100◦C and 1 bar. De-
velop an expression for the change in the boiling
temperature of water with pressure.

c. Compute the freezing and boiling points of water
in Denver, Colorado, where the mean atmospheric
pressure is 84.6 kPa.

7.11 The triple point of iodine, I2, occurs at 112.9◦C and
11.57 kPa. The heat of fusion at the triple point is
15.27 kJ/mol, and the following vapor pressure data
are available for solid iodine:

Vapor pressure (kPa) 2.67 5.33 8.00
Temperature (◦C) 84.7 97.5 105.4

Estimate the normal boiling temperature of molecular
iodine.

7.12 The following data are available for water:

ln P sub(ice) = 28.8926 − 6140.1/T P in Pa
ln P vap(water) = 26.3026 − 5432.8/T T in K

a. Compute the triple-point temperature and pressure
of water.

b. Compute the heat of vaporization, the heat of sub-
limation, and the heat of fusion of water at its triple
point.

7.13 a. The following data have been reported for the vapor
pressure of ethanol as a function of temperature.9

P vap (kPa) 0.6667 1.333 2.667 5.333 8.00 13.33
T (◦C) −12.0 −2.3 8.0 19.0 26.0 34.9

Use these data to calculate the heat of vaporization
of ethanol at 17.33◦C.

b. Ackermann and Rauh have measured the vapor
pressure of liquid plutonium using a clever mass

9Reference: R. H. Perry, D. W. Green, and J. O. Maloney, eds., The Chemical Engineers’ Handbook, 6th ed.,
McGraw-Hill, New York (1984) pp. 3–55.
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effusion technique.10 Some of their results are
given here:

T (K) 1343 1379 1424 1449

P vap (bar) 7.336 1.601 3.840 5.654
× 10−9 × 10−8 × 10−8 × 10−8

Estimate the heat of vaporization of liquid pluto-
nium at 1400 K.

7.14 a. Derive Eq. 7.4-8.
b. Derive Eq. 7.4-12.
c. Obtain an expression for the fugacity of a pure

species that obeys the van der Waals equation of
state in terms of Z , B = Pb/RT , and A =
aP/(RT )2 (i.e., derive Eq. 7.4-13).

d. Repeat the derivation with the Peng-Robinson
equation of state (i.e., derive Eq. 7.4-14a).

7.15 a. Calculate the fugacity of liquid hydrogen sulfide
in contact with its saturated vapor at 25.5◦C and
20 bar.

b. The vapor pressure of pure water at 310.6 K is
6.455 kPa. Compute the fugacity of pure liquid wa-
ter at 310.6 Kwhen it is under a pressure of 100 bar,
500 bar, and 1000 bar. [Volume 7 of the Interna-
tional Critical Tables (McGraw-Hill, New York,
1929) gives values of 6.925, 9.175, and 12.966 kPa,
respectively, for these conditions.]

7.16 a. Using only the steam tables, compute the fugacity
of steam at 400◦C and 2 MPa, and at 400◦C and
50 MPa.

b. Compute the fugacity of steam at 400◦C and 2MPa
using the principle of corresponding states. Repeat
the calculation at 400◦C and 50 MPa.

c. Repeat the calculations using the Peng-Robinson
equation of state.
Comment on the causes of the differences among
these predictions.

7.17 a. Show that at moderately low pressures and densi-
ties the virial equation of state can be written as

PV

RT
= 1 + B

(
P

RT

)
+ (C − B2)

(
P

RT

)2

+ · · ·

b. Prove that the fugacity coefficient for this form of
the virial equation of state is

f

P
= exp

{
B

(
P

RT

)
+

(C − B2)

2

(
P

RT

)2

+ · · ·
}

c. The first two virial coefficients for methyl flu-
oride at 50◦C are B = −0.1663 m3/kmol and
C = 0.012 92 (m3/kmol)2. Plot the ratio f/P

as a function of pressure at 50◦C for pressures
up to 150 bar. Compare the results with the
corresponding-states plot of f/P versus P/Pc.

7.18 The following data are available for carbon tetrachlo-
ride:

Tc = 283.3◦C Pc = 4.56 MPa Zc = 0.272

Vapor pressure (MPa) 0.5065 1.013 2.026
T (◦C) 141.7 178.0 222.0

a. Compute the heat of vaporization of carbon tetra-
chloride at 200◦C using only these data.

b. Derive the following expression, which can be used
to compute the heat of vaporization from the prin-
ciple of corresponding states:

ΔvapH = Tc

[(
H − HIG

Tc

)
sat
vap

−
(

H − HIG

Tc

)
sat
liq

]

c. Compute the heat of vaporization of carbon tetra-
chloride at 200◦C using the principle of corre-
sponding states.

d. Comment on the reasons for the difference between
the heats of vaporization computed in parts (a) and
(c) and suggest a way to correct the results to im-
prove the agreement.

7.19 An article in Chemical and Engineering News (Sept.
28, 1987) describes a hydrothermal autoclave. This
device is of constant volume, is evacuated, and then
water is added so that a fraction x of the total vol-
ume is filled with liquid water and the remainder is
filled with water vapor. The autoclave is then heated
so that the temperature and pressure in the sealed ves-
sel increase. It is observed that if x is greater than
a “critical fill” value, xc, the liquid volume fraction
increases as the temperature increases, and the ves-
sel becomes completely filled with liquid at temper-
atures below the critical temperature. On the other
hand, if x < xc, the liquid evaporates as temperature
is increased, and the autoclave becomes completely
filled with vapor below the water critical temperature.
If, however, x = xc, the volume fraction of liq-
uid in the autoclave remains constant as the tempera-
ture increases, and the temperature-pressure trajectory
passes through the water critical point. Assuming the
hydrothermal autoclave is to be loaded at 25◦C, calcu-
late the critical fill xc

a. Using the steam tables
b. Assuming the water obeys the Peng-Robinson

equation of state

10R. J. Ackermann and E. G. Rauh, J. Chem. Thermodyn. 7, 211 (1975).
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7.20 a. Quantitatively explain why ice skates slide along
the surface of ice. Can it get too cold to ice skate?

b. Is it possible to ice skate on other materials, such
as frozen carbon dioxide?

c. What is the approximate lowest temperature at
which a good snowball can be made? Why can’t
a snowball be made if the temperature is too low?

7.21 The effect of pressure on the melting temperature of
solids depends on the heat of fusion and the volume
change on melting. The heat of fusion is always pos-
itive (that is, heat must be added to melt the solid),
while the volume change on melting will be positive if
the solid is a close-packed structure, and negative for
solids that crystallize into an open structure. Metallic
elements generally crystallize into close-packed struc-
tures, so that ΔfusV is positive for most metals. Us-
ing the data below, calculate the change in the melting
temperature Tmp for each substance for a pressure in-
crease from 1 bar to 1001 bar, and compare the results
with the experimentally

Substance Tmp (K) ΔfusH (J/g) ΔfusV (cc/g) ΔT (K)

Water 273.2 333.8 −0.0906 −7.4
Acetic acid 289.8 187.0 +0.01595 +2.44
Tin 505.0 58.6 +0.00389 +3.3
Bismuth 544 52.7 −0.00342 −3.55

7.22 The vapor pressure of some materials can be repre-
sented by the equation

ln P (mm Hg) =
a

T
+ b ln T + cT + d

Values of the constants in this equation are given
below.
Compute the heats of sublimation of the solids and the
heats of vaporization of the liquids above over the tem-
perature range specified.

7.23 The metal tin undergoes a transition from a gray phase
to a white phase at 286 K and ambient pressure. Given
that the enthalpy change of this transition is 2090 J/mol
and that the volume change of this transition is

Temperature
Substance a b c × 103 d Range (K)

Ag(s) −14 710 −0.328 11.66 298–298
Ag(l) −14 260 −0.458 12.23 1234–1234
BeO(s) −34 230 −0.869 18.50 298–298
Ge(s) −20 150 −0.395 13.28 298–298
Mg(s) −7 780 −0.371 11.41 298–298
Mg(l) −7 750 −0.612 12.79 924–924
NaCl(s) −12 440 −0.391 −0.46 14.31 298–298
Si(s) −18 000 −0.444 12.83 1200–1200

−4.35 cm3/mol, compute the temperature at which
this transition occurs at 100 bar.

7.24 Estimate the triple-point temperature and pressure of
benzene. The following data are available:

Vapor Pressure

T (◦C) −36.7 −19.6 −11.5 −2.6
P vap (Pa) 133.3 666.7 1333 2667

Melting point at atmospheric pressure = 5.49◦C
Heat of fusion at 5.49◦C = 127 J/g
Liquid volume at 5.49◦C = 0.901 × 10−3 m3/kg
Volume change on melting = 0.1317 × 10−3 m3/kg

7.25 The following data are available for the thermody-
namic properties of graphite and diamond:

Property Graphite Diamond

G(T = 298 K) 0
J

mol
2900

J

mol

S(T = 298 K) 5.740
J

mol K
2.377

J

mol K

Density 2220
kg

m3
3510

kg

m3

Assuming that the entropies and densities are approx-
imately independent of temperature and pressure, de-
termine the range of conditions for which diamonds
can be produced from graphite. (The procedure pro-
posed would be to hold the graphite at high tempera-
tures and pressures until diamonds formed, followed
by rapid cooling and depressurizing so that the dia-
monds can not revert to graphite.)

7.26 A thermally insulated (adiabatic) constant-volume
bomb has been very carefully prepared so that half its
volume is filled with water vapor and half with sub-
cooled liquid water, both at −10◦C and 0.2876 kPa
(the saturation pressure of the subcooled liquid). Find
the temperature, pressure, and fraction of water in
each phase after equilibrium has been established
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in the bomb. What is the entropy change for the
process?

For simplicity, neglect the heat capacity of the
bomb, assume the vapor phase is ideal, and for the
limited temperature range of interest here, assume
that each of the quantities below is independent of
temperature.

Data:

ΔĤ(solid → liquid) = 335 J/g
ΔĤ(liquid → vapor, T ∼ 0◦C) = 2530 J/g

CP(liquid) = 4.22 J/(g ◦C)
CP(solid) = 2.1 J/(g ◦C)

CP(vapor) = 2.03 J/(g ◦C)

V̂ (liquid) = 1 × 10−3 m3/kg
V̂ (solid) = 1.11 × 10−3 m3/kg

7.27 One question that arises in phase equilibrium calcu-
lations and experiments is how many phases can be
in equilibrium simultaneously, since this determines
how many phases one should search for. Consider a
one-component system.
a. If only solid phases in different crystal forms are

present, what is the maximum number of equilib-
rium solid phases that can coexist?

b. If a liquid is present, what is the maximum number
of solid phases that can also exist at equilibrium?

c. If a vapor is present, what is the maximum number
of solid phases that can also exist at equilibrium?

d. If a vapor and a liquid are present, what is the max-
imum number of solid phases that can also exist at
equilibrium?

7.28 Many thermodynamic and statistical mechanical the-
ories of fluids lead to predictions of the Helmholtz en-
ergy A with T and V as the independent variables;
that is, the result of the theory is an expression of the
form A = A(T, V ). The following figure is a plot of A
for one molecular species as a function of specific vol-
ume at constant temperature. The curve on the left has
been calculated assuming the species is present as a
liquid, and the curve on the right assuming the species
is a gas.

Liquid

_V

_A

Vapor

Tangent
line

T = constant

Prove that for the situation indicated in the figure,
the vapor and liquid can coexist at equilibrium, that
the specific volumes of the two coexisting phases are
given by the points of tangency of the Helmholtz en-
ergy curves with the line that is tangent to both curves,
and that the slope of this tangent line is equal to the
negative of the equilibrium (vapor) pressure.

7.29 The principle of corresponding states has far greater
applicability in thermodynamics than was indicated
in the discussion of Sec. 6.6. For example, it is pos-
sible to construct corresponding-states relations for
both the vapor and liquid densities along the coexis-
tence curve, and for the vapor pressure and enthalpy
change on vaporization (ΔvapH) as a function of re-
duced temperature. This will be demonstrated here us-
ing the van der Waals equation as a model equation
of state.
a. Show that at vapor-liquid equilibrium

∫ V V

V L
V

(
∂P

∂V

)
T

dV = 0

b. Show that the solution to this equation for the van
der Waals fluid is

ln

[
3V L

r − 1

3V V
r − 1

]
+ (3V V

r − 1)−1 + (3V L
r − 1)−1

+
9

4TrV L
r

(
1 − V L

r

V V
r

)
= 0

where V L
r = V L/V c and V V

r = V V/V c.
c. Construct a corresponding-states curve for the re-

duced vapor pressure P vap
r of the van der Waals

fluid as a function of its reduced temperature.
d. Describe how a corresponding-states curve for the

enthalpy change on vaporization as a function of
the reduced temperature can be obtained for the van
der Waals fluid.

7.30 a. Show that it is not possible for a pure fluid to have
a quartenary point where the vapor, liquid, and two
solid phases are all in equilibrium.

b. Show that the specification of the overall molar
volume of a one-component, two-phase mixture
is not sufficient to identify the thermodynamic
state of either phase, but that the specification of
both the molar volume and the molar enthalpy
(or any two other molar properties) is sufficient
to determine the thermodynamic states of each of
the phases and the distribution of mass between
the phases.

7.31 From Eqs. 6.2-18 and 6.2-20, we have the following
as definitions of the heat capacities at constant volume
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and constant pressure:

CV = T

(
∂S

∂T

)
V

and

CP = T

(
∂S

∂T

)
P

More generally, we can define a heat capacity subject
to some other constraint X by

CX = T

(
∂S

∂T

)
X

One such heat capacity of special interest is CLV, the
heat capacity along the vapor-liquid equilibrium line.
a. Show that

C i
LV = C i

P − αiV i ΔvapH

ΔvapV

where αi is the coefficient of thermal expansion
for phase i (liquid or vapor), C i

P is its constant-
pressure heat capacity, V i is its molar volume, and
ΔvapH and ΔvapV are the molar enthalpy and vol-
ume changes on vaporization.

b. Show that
(i) CL

LV ≈ CL
P

(ii) CV
LV may be negative by considering saturated

steam at its normal boiling point and at 370◦C.
7.32 a. By multiplying out the various terms, show that

Eqs. 7.2-4 and 7.2-6 are equivalent.
Also show that

b. SUV =
∂

∂U

∣∣∣
N,V

(
∂S

∂N

)
U,V

= − 1

T 2

(
∂T

∂N

)
U,V

=
−V

NCVT

(
∂P

∂T

)
V

+
H

NT 2CV

c. SVN =
1

T

(
∂P

∂N

)
U,V

− P

T 2

(
∂T

∂N

)
U,V

= − 1

NCVT 2

{
H − V T

(
∂P

∂T

)
V

}
{

T

(
∂P

∂T

)
V

− P

}
− V

NT

(
∂P

∂V

)
T

d. SNN =
2HV

NCVT

(
∂P

∂T

)
V

− H2

NCVT 2

− V 2

NCV

(
∂P

∂T

)2

V

+
V 2

NT

(
∂P

∂V

)
T

e. θ3 = 0

7.33 Assuming that nitrogen obeys the Peng-Robinson
equation of state, develop tables and charts of its
thermodynamic properties such as those in Illustra-
tions 6.4-1, 7.5-1, and 7.5-2. Compare your results
with those in Figure 3.3-3 and comment on the
differences.

7.34 Assuming that water obeys the Peng-Robinson equa-
tion of state, develop tables and charts of its thermo-
dynamic properties such as those in Illustrations 6.4-1,
7.5-1, and 7.5-2. Compare your results with those in
Figures 3.3-1 and Appendix A.III.

7.35 A well-insulated gas cylinder, containing ethylene at
85 bar and 25◦C, is exhausted until the pressure drops
to 10 bar. This process occurs fast enough that no heat
transfer occurs between the gas and the cylinder walls,
but not so rapidly as to produce large velocity or tem-
perature gradients within the cylinder.
a. Calculate the final temperature of the ethylene in

the cylinder.
b. What fraction of the ethylene remaining in the

cylinder is present as a liquid?
7.36 The following vapor-liquid equilibrium data are avail-

able for methyl ethyl ketone:

Heat of vaporization at 75◦C: 31 602 J/mol
Molar volume of saturated liquid at 75◦C: 9.65×10−2

m3/kmol

ln P vap = 43.552 − 5622.7

T
− 4.705 04 ln T

where Pvap is the vapor pressure in bar and T is
in K. Assuming the saturated vapor obeys the volume-
explicit form of the virial equation,

V =
RT

P
+ B

Calculate the second virial coefficient, B , for methyl
ethyl ketone at 75◦C.

7.37 The freezing point of n-hexadecane is approximately
18.5◦C, where its vapor pressure is very low. By how
much would the freezing point of n-hexadecane be
depressed if n-hexadecane were under a 200-bar pres-
sure? For simplicity in this calculation you may as-
sume that the change in heat capacity on fusion of
n-hexadecane is zero, and that its heat of fusion is
48.702 kJ/mol.

7.38 Ten grams of liquid water at 95◦C are contained in the
insulated container shown. The pin holding the fric-
tionless piston in place breaks, and the volume avail-
able to the water increases to 1× 10−3 m3. During the
expansion some of the water evaporates, but no heat is
transferred to the cylinder.
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Liquid
water

Vacuum

Find the temperature, pressure, and amounts of vapor,
liquid, and solid water present after the expansion.

7.39 At a subcritical temperature, the branch of the Peng-
Robinson equation of state for V > b exhibits a van
der Waals loop. However, there is also interesting be-
havior of the equation in the ranges V < b and V < 0,
though these regions do not have any physical mean-
ing. At supercritical temperatures the van der Waals
loop disappears, but much of the structure in the V < 0
region remains. Establish this by drawing a P -V plot
for n-butane at temperatures of 0.6 Tc, 0.8 Tc, 1.0 Tc,
1.5 Tc, and 5 Tc for all values of V .

7.40 The van’t Hoff corollary to the third law of thermody-
namics is that whenever two solid forms of a substance
are known, the one with the greater specific heat will
be the more stable one at higher temperatures. Explain
why this is so.

7.41 Consider the truncated virial equation of state

PV

RT
= 1 +

B(T )

V

whereB(T ) is the second virial coefficient. Obtain the
constraint on B(T ) if the fluid is to be thermodynam-
ically stable.

7.42 Show that the requirement for stability of a closed sys-
tem at constant entropy and pressure leads to the con-
dition that CP > 0 for all stable fluids. (Hint: You do
not need to make a change of variable to show this.)

7.43 A fluid obeys the Clausius equation of state

P =
RT

V − b(T )

where b(T ) = b0 + b1T . The fluid undergoes a Joule-
Thomson expansion from T1 = 120.0◦C and P1 = 5.0
MPa to a final pressure P2 = 1.0 MPa. Given that
CP = 20.97J/(mol K), b0 = 4.28 × 10−5 m3/mol,
and b1 = 1.35× 10−7 m3/(mol K), determine the final
temperature of the fluid.

7.44 Does a fluid obeying the Clausius equation of state
have a vapor-liquid transition?

7.45 Can a fluid obeying the virial equation of state have a
vapor-liquid transition?

7.46 Derive the expression for the fugacity coefficient of a
species described by the Soave–Redlich-Kwong equa-
tion of state (the analogue of Eq. 7.4-14b).

7.47 Using the Redlich-Kwong equation of state, compute
and plot (on separate graphs) the pressure and fugacity
of nitrogen as a function of specific volume at the two
temperatures
a. 110 K
b. 150 K

7.48 The vapor pressure of liquid ethanol at 126◦C is
505 kPa, and its second virial coefficient at this tem-
perature is −523 cm3/mol.
a. Calculate the fugacity of ethanol at saturation at

126◦C assuming ethanol is an ideal gas.
b. Calculate the fugacity of ethanol at saturation

at 126◦C assuming ethanol is described by the
virial equation truncated after the second virial
coefficient.

(Note: Since this calculation is being done at satura-
tion conditions, the value computed is for both the va-
por and liquid, even though the calculation has been
done using only the vapor pressure and vapor-phase
properties.)

7.49 Liquid ethanol, for which κT = 1.09 × 10−6 kPa−1,
has a relatively high isothermal compressibility, which
can have a significant effect on its fugacity at high
pressures. Using the data in the previous problem, cal-
culate the fugacity of liquid ethanol at 25 MPa and
126◦C
a. Assuming liquid ethanol is incompressible
b. Using the value for the isothermal compressibility

of liquid ethanol given above
7.50 Redo Illustration 7.4-6 using the Soave–Redlich-

Kwong equation of state.
7.51 Redo Illustration 7.5-1 using the Soave–Redlich-

Kwong equation of state.
7.52 Redo Illustration 7.5-2 using the Soave–Redlich-

Kwong equation of state.
7.53 Adapt the program PR1, or one of the other Peng-

Robinson programs, or develop a program of your own
to use the Soave–Redlich-Kwong equation of state
rather than the Peng-Robinson equation to calculate
the thermodynamic properties of a fluid.

7.54 Adapt the program PR1, or one of the other Peng-
Robinson programs, or develop a program of your own
using the Peng-Robinson equation of state to do the
calculations for a Joule-Thomson expansion of a liq-
uid under pressure to produce a vapor-liquid mixture
at ambient pressure. The output results should include
the outlet temperature and the fractions of the outlet
stream that are liquid and vapor, respectively.

7.55 Adapt the program PR1, or one of the other Peng-
Robinson programs, or develop a program of your own
using the Peng-Robinson equation of state to do the
calculations for an isentropic expansion of a liquid
under pressure to produce a vapor-liquid mixture at
ambient pressure. The output results should include
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the outlet temperature and the fractions of the outlet
stream that are liquid and vapor, respectively.

7.56 Redo Problem 7.54 with the Soave–Redlich-Kwong
equation of state.

7.57 Redo Problem 7.55 with the Soave–Redlich-Kwong
equation of state.

7.58 Redo Illustration 7.5-3 with the Soave–Redlich-
Kwong equation of state. Compare the results obtained
with those for the Peng-Robinson equation in the il-
lustration. Also, repeat the calculations for the Soave–
Redlich-Kwong equation but with the simplifying as-
sumption that the α function of Eqs. 6.7-6 and 6.7-8 is
a constant and equal to unity, rather than a function of
temperature.

7.59 Redo Illustration 6.7-1 using the Soave–Redlich-
Kwong equation of state.

7.60 A fluid obeys the equation of state

PV

RT
= 1 +

B

V
+

C

V 2

where B and C are constants. Also,

C∗
V = a + bT

a. For what values of the constants B and C will this
fluid undergo a vapor-liquid phase transition?

b. What is the molar internal energy change if this
fluid is heated at a constant pressure P from T1

to T2, and how does this compare with the molar
internal energy change for an ideal gas with the
same ideal gas heat capacity undergoing the same
change?

c. Develop an expression relating the differen-
tial change in temperature accompanying a differ-
ential change in volume for a reversible adiabatic
expansion of this fluid. What would be the analo-
gous expression if the fluid were an ideal gas?

7.61 It has been suggested that a simple cubic equation
of state can also be used to describe a solid. How-
ever, since in a solid certain molecular contacts are
preferred, compared with a fluid (vapor or liquid) in
whichmolecules interact in random orientations, it has
also been suggested that different equation-of-state pa-
rameters be used for the fluid and solid phases. As-
sume both the fluid and solid phases obey the equation
of state

P =
RT

V
− a

V 2

with the parameters af and as, respectively. Develop
expressions for the fugacity coefficients of the gas,
liquid, and solid. Discuss how you would use such
an equation to calculate the vapor-liquid, liquid-solid,
vapor-solid, and vapor-liquid-solid equilibria.

7.62 Proteins can exist in one of two states, the active,
folded state and the inactive, unfolded state. Protein

folding is sometimes thought of as a first-order phase
transition from folded to unfolded (denaturation) with
increasing temperature. (We will revisit this descrip-
tion in Chapter 15.) Denaturation is accompanied by
an increase in molecular volume and a significant pos-
itive latent heat (i.e.,�F→DV > 0 and�F→DH > 0).
a. Sketch the Gibbs energy function for both D (dena-

tured) and F (folded) proteins, and identify T ∗, the
phase transition temperature. Which state has the
higher entropy?

b. Given the observed volume and enthalpy changes
upon denaturation, how would increasing the pres-
sure affect T ∗? Should biopharmaceuticals (i.e.,
folded proteins) be stored under high pressure?

7.63 Calculate the vapor pressure of methane as a function
of temperature using the Peng-Robinson equation of
state. Compare your results with (a) literature values
and (b) predictions using the Peng-Robinson equation
of state in which the temperature-dependent parameter
α (T ) is set equal to unity at all temperatures.

7.64 Calculate the vapor pressure of n-butane as a function
of temperature using the Peng-Robinson equation of
state. Compare your results with (a) literature values
and (b) predictions using the Peng-Robinson equation
of state in which the temperature-dependent parameter
α (T ) is set equal to unity at all temperatures.

7.65 Calculate the vapor pressure of n-decane as a function
of temperature using the Peng-Robinson equation of
state. Compare your results with (a) literature values
and (b) predictions using the Peng-Robinson equation
of state in which the temperature-dependent parameter
α (T ) is set equal to unity at all temperatures.

7.66 The critical temperature of benzene is 289◦C and its
critical pressure is 4.89 MPa. At 220◦C its vapor pres-
sure is 1.91 MPa.
a. Calculate the fugacity of liquid benzene in equilib-

rium with its pure vapor at 220◦C.
b. Repeat the calculation for the case in which liquid

benzene is under an atmosphere of hydrogen such
that the total pressure is 13.61 MPa. The average
density of liquid benzene at these conditions is 0.63
g/cc, and you can assume that hydrogen is insolu-
ble in benzene at this temperature. The molecular
weight of benzene is 78.02.

7.67 The sublimation pressure of carbon dioxide as a func-
tion of temperature is

T (K) 130 155 185 194.5 205
P (kPa) 0.032 1.674 44.02 101.3 227

and the molar volume of CO2 is 2.8 × 10−5 m3/mol.
a. Determine the heat of sublimation of CO2 at

190 K.
b. Estimate the fugacity of solid CO2 at 190 K and

200 bar.
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7.68 The figure below shows a pressure-enthalpy diagram
submitted by Joe Udel as part of a homework assign-
ment. On the diagram isotherms (T1 < T2 < T3), iso-
chores (V 1 < V 2 < V 3), and isentropes (S1 < S2 <
S3) are shown. Is this figure consistent with require-
ments for a stable equilibrium system?

H

P

T1 T2 T3

S3

S2

S1

V3
V2

V1

7.69 A relatively simple cubic equation of state is

P =
RT

V
− b − a√

TV 2

where a is a constant.
a. Determine the relationship between the a and b pa-

rameters in this equation of state and the critical
temperature and pressure of the fluid.

b. Obtain an expression for the constant-volume heat
capacity as a function of temperature, volume, the
critical temperature and pressure, and the ideal heat
capacity.

c. The constant-volume heat capacities of real fluids
diverge as the critical point is approached. Does the
constant-volume heat capacity obtained from this
equation of state diverge as the critical point is ap-
proached?

7.70 a. Show that

(
∂V

∂T

)
S(

∂V

∂T

)
P

= − CV

TV κT

(
∂T

∂P

)2

V

b. Use this result to show that, for a stable system at
equilibrium, (∂V /∂T )S and (∂V /∂T )P must have
opposite signs.

c. Two separate measurements are to be performed on
a gas enclosed in a piston-and-cylinder device. In
the first measurement the device is well insulated
so there is no flow of heat to or from the gas, and
the piston is slowlymoved inward, compressing the
gas, and its temperature is found to increase. In the
second measurement the piston is free to move and

the external pressure is constant. A small amount
of heat is added to the gas in the cylinder, resulting
in the expansion of the gas. Will the temperature of
the gas increase or decrease?

7.71 Using a Knudsen effusion cell, Svec and Clyde11 mea-
sured the sublimation pressures of several amino acids
as a function of temperature.
a. The results they reported for glycine are

T (K) 453 457 466 471
P (torr) 5.87 4.57 1.59 2.43

× 10−5 × 10−5 × 10−4 × 10−4

Use these data to estimate the heat of sublimation
of glycine over this temperature range.

b. The results they reported for l-alanine are

T (K) 453 460 465 469
P (torr) 5.59 1.22 2.03 2.58

× 10−5 × 10−4 × 10−4 × 10−4

Use these data to estimate the heat of sublimation
of l-alanine over this temperature range. [1 torr =
133.32 Pa]

7.72 Determine the boiling temperature of a water droplet
at 1.013 bar as a function of the droplet radius.

7.73 The following equation of state has been proposed for
a fluid

PV

RT
= 1 +

B

V
+

C

V 2

where B and C are constants.
a. Does this fluid exhibit a critical point? Prove it.
b. If you believe the answer to part (a) is yes, derive

expressions forB andC in terms of the critical tem-
perature and pressure for this fluid.

7.74 Estimate the vapor pressures of the refrigerants
1,1,1,2-tetrafluoroethane, dichlorodifluoromethane
and 2-chloro-1,1,1,2-tetrafluoroethane over the tem-
perature range of −40 to +85◦C.

7.75 Redo Problem 7.1 using Aspen Plus R©.
7.76 Redo Problem 7.33 using Aspen Plus R©.
7.77 Redo Problem 7.34 using Aspen Plus R©.
7.78 Explain the nonmonotonic behavior of the fugacity

coefficent along the T = 1.50 isotherm in Fig. 7.4-1
using the van der Waals equation of state.

7.79 Use the Analysis>Pure tool in Aspen Plus R©
with the Peng-Robinson equation of state to
compute the vapor pressures of the refrigerants
R12 (dichlorodifluoromethane, or Freon 12), R124
(1-chloro-1,2,2,2,-tetrafluoroethane), and R134a
(1,1,1,2-tetrafluoroethane) over the temperature range
of 0 to 100◦C.

11H. J. Svec and D. C. Clyde, J. Chem. Eng. Data 10, 151 (1965).



Chapter 8

The Thermodynamics of
Multicomponent Mixtures

In this chapter the study of thermodynamics, which was restricted to pure fluids in
the first part of this book, is extended to mixtures. First, the problem of relating the
thermodynamic properties of amixture, such as the volume, enthalpy, Gibbs energy, and
entropy, to its temperature, pressure, and composition is discussed; this is the problem of
the thermodynamic description of mixtures. Next, the equations of change for mixtures
are developed. Using the equations of change and the positive definite nature of the
entropy generation term, the general equilibrium criteria for mixtures are considered
and shown to be formally identical to the pure fluid equilibrium criteria. These criteria
are then used to establish the conditions of phase and chemical equilibrium in mixtures,
results that are of central importance in the remainder of this book.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 8

The goals of this chapter are for the student to:

• Understand the difference between partial molar properties and pure component
properties (Sec. 8.1)

• Be able to use the Gibbs-Duhem equation to simplify equations (Sec. 8.2)
• Be able to identify a set of independent reactions
• Be able to use the mass, energy, and entropy balance equations for mixtures
(Secs. 8.4 and 8.5)

• Be able to compute partial molar properties from experimental data (Sec. 8.6)
• Be able to derive the criteria for phase and chemical equilibria in multicomponent
systems (Secs. 8.7 and 8.8)

NOTATION INTRODUCED IN THIS CHAPTER

Āi Partial molar Helmholtz energy of species i (J/mol)
C Number of components

C̄P,i Partial molar heat capacity of species i (J/mol K)

f̄i Fugacity of species i in a mixture (kPa)
Ḡi Partial molar Gibbs energy of species i (J/mol)

353
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ΔfGo
i Standard state molar Gibbs energy of formation of species i (kJ)

ΔmixG Gibbs energy change on mixing (kJ)
ΔrxnG Gibbs energy change of reaction (kJ)

ΔrxnG◦ Standard state Gibbs energy change on reaction (kJ)
H̄i Partial molar enthalpy of species i (J/mol)

ΔmixH Enthalpy energy change on mixing (kJ)
ΔfHo

i Standard State molar enthalpy of formation of species i (kJ)
ΔrxnH Enthalpy change (or heat) of reaction (kJ)

ΔrxnH◦ Standard state enthalpy change on reaction (kJ)
M Number of independent chemical reactions
P Number of phases
S̄i Partial molar entropy of species i [J/(mol K)]
V̄i Partial molar volume of species i (m3/mol)

ΔmixV Volume change on mixing (m3)
Xj Molar extent of reaction of the jth independent chemical reaction (mol)
wi Mass fraction of species i in a phase
wI Fraction of total system mass in phase I
φ̄i Fugacity coefficient of species i in a mixture (= f̄i/P )

νi,j Stoichiometric coefficient of species i in independent chemical reaction j

8.1 THE THERMODYNAMIC DESCRIPTION OF MIXTURES

In Chapter 1 we pointed out that the thermodynamic state of a pure, single-phase system
is completely specified by fixing the values of two of its intensive state variables (e.g.,T
andP orT and V ), and that its size and thermodynamic state is fixed by a specification
of its mass or number of moles and two of its state variables (e.g., N , T , and P or N ,
T , and V ). For a single-phase mixture of C components, one intuitively expects that
the thermodynamic state will be fixed by specifying the values of two of the intensive
variables of the system and all but one of the species mole fractions (e.g., T , P , x1,
x2, . . . , xC−1), the remaining mole fraction being calculable from the fact that the mole
fractions must sum to 1. (Though we shall largely use mole fractions in the discussion,
other composition scales, such as mass fraction, volume fraction, and molality, could
be used. Indeed, there are applications in which each is used.) Similarly, one anticipates
that the size and state of the system will also be fixed by specifying the values of two
state variables and the mole numbers of all species present. That is, for a C-component
mixture we expect equations of state of the form

U = U(T,P,N1,N2, . . . ,NC)
V = V (T,P,N1,N2, . . . ,NC)

or

or
U = U(T,P, x1, x2, . . . , xC−1)
V = V (T,P, x1, x2, . . . , xC−1)

and so on. Here xi is the mole fraction of species i—that is, xi = Ni/N , where Ni is
the number of moles of species i andN is the total number of moles—andU and V are
the internal energy and volume per mole of the mixture.1

Our main interest here will be in determining how the thermodynamic properties
of the mixture depend on species concentrations. That is, we would like to know the
concentration dependence of the mixture equations of state.

1In writing these equations we have chosen T and P as the independent state variables; other choices could have
beenmade. However, since temperature and pressure are easilymeasured and controlled, they are themost practical
choice of independent variables for processes of interest to chemists and engineers.
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A naive expectation is that each thermodynamic mixture property is a sum of the
analogous property for the pure components at the same temperature and pressure
weighted with their fractional compositions. That is, if U i is the internal energy per
mole of pure species i at temperature T and pressure P , then it would be convenient
if, for a C-component mixture,

U(T,P, x1, . . . , xC−1) =
C∑

i=1

xiU i(T,P ) (8.1-1)

Alternatively, if Ûi is the internal energy per unit mass of pure species i, then the
development of a mixture equation of state would be simple if

Û(T,P,w1, . . . , wC−1) =
C∑

i=1

wiÛi(T,P ) (8.1-2)

where wi is the mass fraction of species i.
Unfortunately, relations as simple as Eqs. 8.1-1 and 8.1-2 are generally not valid. This

is evident from Fig. 8.1-1, which shows the enthalpy of a sulfuric acid–water mixture
at various temperatures. If equations of the form of Eq. 8.1-2 were valid, then

Ĥ = w1Ĥ1 + w2Ĥ2 = w1Ĥ1 + (1 − w1)Ĥ2

and the enthalpy of the mixture would be a linear combination of the two pure-
component enthalpies; this is indicated by the dashed line connecting the pure-
component enthalpies at 0◦C. The actual thermodynamic behavior of the mixture, given
by the solid lines in the figure, is quite different. In Fig. 8.1-2 are plotted the volume
change on mixing, defined to be2Definition of the

volume change on
mixing ΔmixV = V (T,P, x) − x1V 1(T,P ) − x2V 2(T,P )

and the enthalpy change on mixing,
Definition of the
enthalpy change on
mixing

ΔmixH = H(T,P, x) − x1H1(T,P ) − x2H2(T,P )

for several mixtures. (The origin of such data is discussed in Sec. 8.6.) If equations like
Eq. 8.1-1 were valid for these mixtures, then both ΔmixV and ΔmixH would be equal
to zero at all compositions; the data in the figures clearly show that this is not the case.
There is a simple reason why such elementary mixture equations as Eqs. 8.1-1 and

8.1-2 fail for real mixtures. We have already pointed out that one contribution to the in-
ternal energy (and other thermodynamic properties) of a fluid is the interactions
between its molecules. For a pure fluid this contribution to the internal energy is the
result of molecules interacting only with other molecules of the same species. However,
in a binary fluid mixture of species 1 and 2, the total interaction energy is a result of 1-1,
2-2, and 1-2 interactions. Although the 1-1 and 2-2 molecular interactions that occur in
the mixture are approximately taken into account in Eqs. 8.1-1 and 8.1-2 through the
pure-component properties, the effects of the 1-2 interactions are not. Therefore, it is

2In these equations, and most of those that follow, the abbreviated notation θ(T, P, x1, x2, . . . , xC−1) =
θ(T, P, x) will be used.
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Figure 8.1-1 Enthalpy-concentration diagram for aqueous sulfuric acid at 0.1MPa. The sulfuric
acid percentage is by weight (which, in the two-phase region, includes the vapor). Reference
states: The enthalpies of the pure liquids at 0◦C and their vapor pressures are zero. (Based on
Fig. 81, p. 325 in O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles:
I. Material and Energy Balances, 2nd ed. Reprinted with permission from John Wiley & Sons,
New York, 1954.) This figure appears as an Adobe PDF file on the website for this book, and
may be enlarged and printed for easier reading and for use in solving problems.

not surprising that these equations are not good approximations for the properties of
most real fluid mixtures.
What we must do, instead of making simple guesses such as Eqs. 8.1-1 and 8.1-2,

is develop a general framework for relating the thermodynamic properties of a mix-
ture to the composition variables. Since the interaction energy of a mixture is largely
determined by the number of molecular interactions of each type, the mole fractions,
or, equivalently, the mole numbers, are the most logical composition variables for the
analysis. We will use the symbol θ to represent any molar property (molar volume,
molar enthalpy, etc.) of a mixture consisting of N1 moles of species 1, N2 moles of
species 2, and so forth, N =

∑C
i Ni being the total number of moles in the system.

For the present our main interest is in the composition variation of θ at fixedT andP , so
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Figure 8.1-2 (a) Volume change onmixing at 298.15 K: ◦methyl formate+methanol, •methyl
formate + ethanol. [From J. Polak and B. C.-Y. Lu, J. Chem. Thermodyn., 4, 469 (1972).
Reprinted with permission from Academic Press.] (b) Enthalpy change on mixing at 298.15 K
for mixtures of benzene (C6H6) and aromatic fluorocarbons (C6F5Y), with Y = H, F, Cl, Br,
and I. [From D. V. Fenby and S. Ruenkrairergsa, J. Chem. Thermodyn., 5, 227 (1973). Reprinted
with permission from Academic Press.]

we write

Nθ = φ(N1,N2, . . . ,NC) at constant T and P (8.1-3)

to indicate that Nθ is a function of all the mole numbers.3

If the number of moles of each species in the mixture under consideration were dou-
bled, so that N1 → 2N1, N2 → 2N2, . . . , and N → 2N (thereby keeping the relative
amounts of each species, and the relative numbers of each type of molecular interaction
in the mixture, unchanged), the value of θ per mole of mixture, θ, would remain un-
changed; that is, θ(T,P,N1,N2, . . .) = θ(T,P, 2N1, 2N2, . . .). Rewriting Eq. 8.1-3
for this situation gives

2Nθ = φ(2N1, 2N2, . . . , 2NC) (8.1-4)

while multiplying Eq. 8.1-3 by the factor 2 yields

2Nθ = 2φ(N1,N2, . . . ,NC) (8.1-5)

so that

φ(2N1, 2N2, . . . , 2NC) = 2φ(N1,N2, . . . ,NC)

3The total property θ = Nθ is a function of T , P , and the mole numbers; that is,

Nθ = Nθ(T, P, x1, x2, . . .) = θ(T, P, N1, N2, . . .)
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This relation indicates that as long as the relative amounts of each species are kept
constant, φ is a linear function of the total number of moles. This suggests φ should
really be considered to be a function of the mole ratios. Thus, a more general way of
indicating the concentration dependence of θ is as follows:

Nθ = N1φ1

(
N2

N1

,
N3

N1

, . . . ,
NC
N1

)
(8.1-6)

where we have introduced a new function, φ1, of only C − 1 mole ratios in a C-
component mixture (at constant T and P ). In this equation the multiplicative factor
N1 establishes the extent or total mass of the mixture, and the function φ1 is dependent
only on the relative amounts of the various species. (Of course, any species other than
species 1 could have been singled out in writing Eq. 8.1-6.)
To determine how the property Nθ varies with the number of moles of each species

present, we look at the derivatives of Nθ with respect to mole number. The change in
the value of Nθ as the number of moles of species 1 changes (all other mole numbers,
T , and P being held constant) is

∂

∂N1

(Nθ)
∣∣∣
T,P,N2,N3,...

= φ1

(
N2

N1

, . . .

)
+ N1

C∑
i=2

∂φ1

∂

(
Ni

N1

) ∂

(
Ni

N1

)
∂N1

(8.1-7)

where the last term arises from the chain rule of partial differentiation and the fact that
φ1 is a function of the mole ratios. Now multiplying by N1, and using the fact that

∂

(
Ni

N1

)
∂N1

∣∣∣
i �=1

= − Ni

N2
1

gives

N1
∂

∂N1

(Nθ)
∣∣∣
T,P,Nj�=1

= N1

⎧⎨
⎩ φ1

(
N2

N1

, . . .

)
− 1

N1

C∑
i=2

Ni
∂φ1

∂

(
Ni

N1

)
⎫⎬
⎭

= Nθ −
C∑

i=2

Ni
∂φ1

∂

(
Ni

N1

)
(8.1-8a)

or

Nθ = N1
∂

∂N1

(Nθ)
∣∣∣
T,P,Nj�=1

+
C∑

i=2

Ni
∂φ1

∂

(
Ni

N1

) (8.1-8b)

Here we have introduced the notation Nj�=1 in the partial derivative to indicate that
all mole numbers except N1 are being held constant. Similarly, for the derivative with
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respect to Ni, i �= 1, we have

∂(Nθ)
∂Ni

∣∣∣
T,P,Nj�=i

= N1

C∑
j=2

∂φ1

∂

(
Nj

N1

) ∂

(
Nj

N1

)
∂Ni

=
∂φ1

∂

(
Ni

N1

) (8.1-9)

since (∂Nj/∂Ni) is equal to 1 for i = j, and 0 for i �= j. Using Eq. 8.1-9 in Eq. 8.1-8b
yields

Nθ = N1
∂

∂N1

(Nθ)
∣∣∣
T,P,Nj�=1

+
C∑

i=2

Ni
∂(Nθ)
∂Ni

∣∣∣
T,P,Nj�=i

or

Nθ =
C∑

i=1

Ni
∂(Nθ)
∂Ni

∣∣∣
T,P,Nj�=i

(8.1-10)

Dividing by N =
∑

Ni gives

θ =
C∑

i=1

xi
∂(Nθ)
∂Ni

∣∣∣
T,P,Nj�=i

(8.1-11)

Common thermodynamic notation is to define a partial molar thermodynamic
property θi as4Definition of a partial

molar property

θi = θi(T,P, x) =
∂(Nθ)
∂Ni

∣∣∣
T,P,Nj�=i

(8.1-12)

so that Eq. 8.1-11 can be written as

Mixture property in
terms of partial molar
properties

θ =
C∑

i=1

xiθi(T,P, x) (8.1-13)

Although this equation is similar in form to the naive assumption of Eq. 8.1-1, there
is the very important difference that θi, which appears here, is a true mixture property
to be evaluated experimentally for each mixture (see Sec. 8.6), whereas θi, which ap-
pears in Eq. 8.1-1, is a pure component property. It should be emphasized that generally
θi �= θi; that is, the partial molar and pure component thermodynamic properties are not
equal! Some common partial molar thermodynamic properties are listed in Table 8.1-1.
An important problem in the thermodynamics of mixtures is the measurement or esti-
mation of these partial molar properties; this will be the focus of part of this chapter
and all of Chapter 9.

4Note that the temperature and pressure (as well as certain mole numbers) are being held constant in the partial
molar derivative. Later in this chapter we will be concerned with similar derivatives in which T and/or P are not
held constant; such derivatives are not partial molar quantities!
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Table 8.1-1

Partial Molar Property Molar Propert of the Mixture

U i =
Partial molar
internal
energy

=

(
∂(NU)

∂Ni

)
T,P,Nj�=i

U =
∑

xiU i

V i =
Partial molar
volume

=

(
∂(NV )

∂Ni

)
T,P,Nj�=i

V =
∑

xiV i

H i =
Partial molar
enthalpy

=

(
∂(NH)

∂Ni

)
T,P,Nj�=i

H =
∑

xiH i

Si =
Partial molar
entropy

=

(
∂(NS)

∂Ni

)
T,P,Nj�=i

S =
∑

xiSi

Gi =
Partial molar
Gibbs energy

=

(
∂(NG)

∂Ni

)
T,P,Nj�=i

G =
∑

xiGi

Ai =
Partial molar
Helmholtz
energy

=

(
∂(NA)

∂Ni

)
T,P,Nj�=i

A =
∑

xiAi

The fact that the partial molar properties of each species in a mixture are different from
the pure-component molar properties gives rise to changes in thermodynamic proper-
ties during the process of forming a mixture from the pure components. For example,
consider the formation of a mixture fromN1 moles of species 1,N2 moles of species 2,
and so on. The total volume and enthalpy of the unmixed pure components are

V =
C∑
i

NiV i(T,P )

and

H =
C∑
i

NiH i(T,P )

whereas the volume and enthalpy of the mixture at the same temperature and pressure
are, from Eq. 8.1-13,

V (T,P,N1,N2, . . .) = NV (T,P, x) =
C∑
i

NiV i(T,P, x)

and

H(T,P,N1,N2, . . .) = NH(T,P, x) =
C∑
i

NiH i(T,P, x)
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Therefore, the isothermal volume change on mixing, ΔmixV , and the isothermal en-
thalpy change on mixing or the heat of mixing, ΔmixH , are

Volume change on
mixing in terms of
partial molar volumes ΔmixV (T,P,N1,N2, . . .) = V (T,P,N1,N2, . . .) −

C∑
i=1

NiV i(T,P )

=
C∑

i=1

Ni[V i(T,P, x) − V i(T,P )]

(8.1-14)

and

Heat of mixing in
terms of partial molar
enthalpies

ΔmixH(T,P,N1,N2, . . .) = H(T,P,N1,N2, . . .) −
C∑

i=1

NiH i(T,P )

=
C∑

i=1

Ni[H i(T,P, x) − H i(T,P )]

(8.1-15)

Other thermodynamic property changes on mixing can be defined similarly.
In Chapter 4 the Helmholtz and Gibbs energies of pure components were introduced

by the relations
A = U − TS (8.1-16a)
G = H − TS (8.1-16b)

These definitions are also valid for mixtures, provided the values of U , H , and S used
are those for the mixture. That is, the Helmholtz and Gibbs energies of a mixture bear
the same relation to the mixture internal energy, enthalpy, and entropy as the pure com-
ponent Gibbs energies do to the pure component internal energy, enthalpy, and entropy.
Equations like Eqs. 8.1-16a and b are also satisfied by the partial molar properties. To

see this, we multiply Eq. 8.1-16a by the total number of molesN and take the derivative
with respect to Ni at constant T , P , and Nj�=i to obtain

∂

∂Ni

(NA)
∣∣∣
T,P,Nj�=i

=
∂

∂Ni

(NU)
∣∣∣
T,P,Nj�=i

− T
∂

∂Ni

(NS)
∣∣∣
T,P,Nj�=i

or

Ai = U i − TSi

Similarly, starting with Eq. 8.1-16b, one can easily show that Gi = H i − TSi.
The constant-pressure heat capacity of a mixture is given by

CP =
(

∂H

∂T

)
P,Nj

where H is the mixture enthalpy, and the subscript Nj indicates that the derivative is
to be taken at a constant number of moles of all species present; the partial molar heat
capacity for species i in a mixture is defined to be

CP,i =
∂

∂Ni

(NCP)
∣∣∣
T,P,Nj�=i
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Now

NCP =
∂(NH)

∂T

∣∣∣
P,Nj

and

CP,i =
∂(NCP)

∂Ni

∣∣∣
T,P,Nj�=i

=
∂

∂Ni

∣∣∣
T,P,Nj�=i

∂

∂T
(NH)

∣∣∣
P,Nj

=
∂

∂T

∣∣∣
P,Ni

∂(NH)
∂Ni

∣∣∣
T,P,Nj�=i

=
(

∂H i

∂T

)
P,Nj

so that CP,i = (∂H i/∂T )P,Nj
for species i in a mixture, just as CP,i = (∂H i/∂T )P,N

for the pure species i.
In a similar fashion a large collection of relations among the partial molar quan-

tities can be developed. For example, since (∂Gi/∂T )P,N = −Si for a pure fluid,
one can easily show that (∂Gi/∂T )P,Ni

= −Si for a mixture. In fact, by extending
this argument to other mixture properties, one finds that for each relationship among
the thermodynamic variables in a pure fluid, there exists an identical relationship for
the partial molar thermodynamic properties in a mixture!

Illustration 8.1-1
Calculating the Energy Release of an Exothermic Mixing Process

Three moles of water and one mole of sulfuric acid are mixed isothermally at 0◦C. How much
heat must be absorbed or released to keep the mixture at 0◦C?

Solution

Water has amolecular weight of 18.015, and that of sulfuric acid is 98.078. Therefore, themixture
will contain 3 × 18.015 + 1 × 98.078 = 152.12 g, and will have a composition of

98.078 g

152.12 g
× 100% = 64.5 wt % sulfuric acid

From Fig. 8.1-1 the enthalpy of the mixture is about −315 kJ/kg. Therefore, when 3 mol water
and 1 mol sulfuric acid are mixed isothermally,

ΔmixĤ = Ĥmix − w1Ĥ1 − w2Ĥ2 = −315
kJ

kg

since Ĥ1(T = 0◦C) = 0 and Ĥ2(T = 0◦C) = 0, so that a total of −315 kJ/kg × 0.152 kg =
−47.9 kJ of energy must be removed to keep the mixture at a constant temperature of 0◦C.

Comment

Sulfuric acid and water are said to mix exothermically since energy must be released to the
environment to mix these two components at constant temperature. The temperature rise that
occurs when these two components are mixed adiabatically is considered in Illustration 8.4-1.
Note also that to solve this problem we have, in effect, used an energy balance without explicitly
writing a detailed balance equation. We will consider the balance equations (mass, energy, and
entropy) for mixtures in Sec. 8.4.
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Themeaning of a partial molar property may be understood as follows. For a property
θ(T,P,N1,N2) in a binary mixture, we have

θ(T,P,N1,N2) = N1θ1(T,P, x) + N2θ2(T,P, x) (8.1-17a)

Now suppose we add a small amount of species 1, ΔN1, which is so small compared
with the total number of moles of species 1 and 2 that x1 and x2 are essentially un-
changed. In this case we have

θ(T,P,N1 + ΔN1,N2) = (N1 + ΔN1)θ1(T,P, x) + N2θ2(T,P, x) (8.1-17b)

Subtracting Eq. 8.1-17a from Eq. 8.1-17b, we find that the change in the property θ is

Δθ = θ(T,P,N1 + ΔN1,N2) − θ(T,P,N1,N2) = ΔN1θ1(T,P, x)

Therefore, the amount by which a small addition of a species to a mixture changes
the mixture property is equal to the product of the amount added and its partial molar
property, that is, how the species behaves in a mixture, and not its pure component
property.

8.2 THE PARTIAL MOLAR GIBBS ENERGY AND THE GENERALIZED
GIBBS-DUHEM EQUATION

Since the Gibbs energy of a multicomponent mixture is a function of temperature, pres-
sure, and each species mole number, the total differential of the Gibbs energy function
can be written as

dG =
(

∂G

∂T

)
P,Ni

dT +
(

∂G

∂P

)
T,Ni

dP +
C∑

i=1

(
∂G

∂Ni

)
T,P,Nj�=i

dNi

= −S dT + V dP +
C∑

i=1

Gi dNi

(8.2-1)

Chemical potential

Here the first two derivatives follow from Eqs. 6.2-12a, b and c for the pure fluid,
and the last from the definition of the partial molar Gibbs energy. Historically, the par-
tial molar Gibbs energy has been called the chemical potential and designated by the
symbol μi.
Since the enthalpy can bewritten as a function of entropy and pressure (see Eq. 6.2-6),

we have

dH =
(

∂H

∂P

)
S,Ni

dP +
(

∂H

∂S

)
P,Ni

dS +
C∑

i=1

(
∂H

∂Ni

)
P,S,Nj�=i

dNi

= V dP + T dS +
C∑

i=1

(
∂H

∂Ni

)
P,S,Nj�=i

dNi

(8.2-2)

In this equation it should be noted that (∂H/∂Ni)P,S,Nj�=i
is not equal to the partial

molar enthalpy, which is H i = (∂H/∂Ni)T,P,Nj�=i
(see Problem 8.1).
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However, from H = G + TS and Eq. 8.2-1, we have5

dH = dG + T dS + S dT = −S dT + V dP +
∑

i

Gi dNi + T dS + S dT

= V dP + T dS +
∑

i

Gi dNi
(8.2-3)

Comparing Eqs. 8.2-2 and 8.2-3 establishes that(
∂H

∂Ni

)
P,S,Nj�=i

= Gi =
(

∂G

∂Ni

)
T,P,Nj�=i

so that the derivative (∂H/∂Ni)P,S,Nj�=i
is equal to the partial molar Gibbs energy.

Using the procedure established here, it is also easily shown (Problem 8.1) that

dU = T dS − P dV +
C∑
i

Gi dNi (8.2-4)

dA = −P dV − S dT +
C∑
i

Gi dNi (8.2-5)

with

Gi =
(

∂U

∂Ni

)
S,V,Nj�=i

=
(

∂A

∂Ni

)
T,V,Nj�=i

From these equations we see that the partial molar Gibbs energy assumes special
importance in mixtures, as the molar Gibbs energy does in pure fluids.
Based on the discussion of partial molar properties in the previous section, any ther-

modynamic function θ can be written as

Nθ =
∑

Niθi

so that

d(Nθ) =
∑

Ni dθi +
∑

θi dNi (8.2-6)

by the product rule of differentiation. However, Nθ can also be considered to be a
function of T , P , and each of the mole numbers, in which case we have, following
Eq. 8.2-1,

d(Nθ) =
∂(Nθ)

∂T

∣∣∣
P,Ni

dT +
∂(Nθ)

∂P

∣∣∣
T,Ni

dP +
C∑

i=1

∂(Nθ)
∂Ni

∣∣∣
T,P,Nj�=i

dNi

= N

(
∂θ

∂T

)
P,Ni

dT + N

(
∂θ

∂P

)
T,Ni

dP +
C∑

i=1

θi dNi

(8.2-7)

5You should compare Eqs. 8.2-3, 8.2-4, and 8.2-5 with Eqs. 6.2-6a, 6.2-5a, and 6.2-7a, respectively.
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Subtracting Eq. 8.2-7 from Eq. 8.2-6 gives the relation

−N

(
∂θ

∂T

)
P,Ni

dT − N

(
∂θ

∂P

)
T,Ni

dP +
C∑

i=1

Ni dθi = 0 (8.2-8a)

and dividing by the total number of moles N yields

Generalized
Gibbs-Duhem
equation

−
(

∂θ

∂T

)
P,Ni

dT −
(

∂θ

∂P

)
T,Ni

dP +
C∑

i=1

xi dθi = 0 (8.2-8b)

These results are forms of the generalized Gibbs-Duhem equation.
For changes at constant temperature and pressure, the Gibbs-Duhem equation

reduces to

Gibbs-Duhem
equation at constant T
and P

C∑
i=1

Nidθi

∣∣
T,P

= 0 (8.2-9a)

and

C∑
i=1

xidθi|T,P = 0 (8.2-9b)

Finally, for a change in any propertyY (except mole fraction6) at constant temperature
and pressure, Eq. 8.2-9a can be rewritten as

C∑
i

Ni

(
∂θi

∂Y

)
T,P

= 0 (8.2-10)

whereas for a change in the number of moles of species j at constant temperature, pres-
sure, and all other mole numbers, we have

C∑
i

Ni

(
∂θi

∂Nj

)
T,P,Nk�=j

= 0 (8.2-11)

Since in much of the remainder of this book we are concerned with equilibrium at
constant temperature and pressure, the Gibbs energy will be of central interest. The
Gibbs-Duhem equations for the Gibbs energy, obtained by setting θ = G in Eqs. 8.2-8a
and b, are

0 = S dT − V dP +
C∑

i=1

Ni dGi (8.2-12a)

0 = S dT − V dP +
C∑

i=1

xi dGi (8.2-12b)

6Since mole fractions can be varied in several ways—for example, by varying the number of moles of only one
species while holding all other mole numbers fixed, by varying the mole numbers of only two species, and so on,
a more careful derivation than that given here must be used to obtain the mole fraction analogue of Eq. 8.2-10.
The result of such an analysis is Eq. 8.2-18.
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and the relations analogous to Eqs. 8.2-9, 8.2-10, and 8.2-11 are

C∑
i=1

Ni dGi

∣∣∣
T,P

= 0 (8.2-13a)

C∑
i=1

xi dGi

∣∣∣
T,P

= 0 (8.2-13b)

C∑
i=1

Ni

(
∂Gi

∂Y

)
T,P

= 0 (8.2-14)

and

C∑
i=1

Ni

(
∂Gi

∂Nj

)
T,P,Nk �=j

= 0 (8.2-15)

Each of these equations will be used later.
The Gibbs-Duhem equation is a thermodynamic consistency relation that expresses

the fact that among the set of C + 2 state variables, T , P , and C partial molar Gibbs
energies in a C-component system, only C+1 of these variables are independent. Thus,
for example, although temperature, pressure, G1, G2, . . . , and GC−1 can be indepen-
dently varied, GC cannot also be changed at will; instead, its change dGC is related to
the changes dT, dP, dG1, . . . , dGC−1 by Eq. 8.2-12a, so that

dGC =
1

NC

{
−S dT + V dP −

C−1∑
i=1

Ni dGi

}

Thus, the interrelationships provided by Eqs. 8.2-8 through 8.2-15 are really restric-
tions on the mixture equation of state. As such, these equations are important in min-
imizing the amount of experimental data necessary in evaluating the thermodynamic
properties of mixtures, in simplifying the description of multicomponent systems, and
in testing the consistency of certain types of experimental data (see Chapter 10).
Later in this chapter we show how the equations of change for mixtures and the
Gibbs-Duhem equations provide a basis for the experimental determination of partial
molar properties.
Although Eqs. 8.2-8 through 8.2-11 are well suited for calculations in which

temperature, pressure, and the partial molar properties are the independent variables,
it is usually more convenient to have T , P , and the mole fractions xi as the indepen-
dent variables. A change of variables is accomplished by realizing that for a
C-component mixture there are only C − 1 independent mole fractions (since∑C

i=1 xi =1). Thus we write

dθi =
(

∂θi

∂T

)
P,x

dT +
(

∂θi

∂P

)
T,x

dP +
C−1∑
j=1

(
∂θi

∂xj

)
T,P

dxj (8.2-16)
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where T,P, x1, . . . , xC−1 have been chosen as the independent variables. Substituting
this expansion in Eq. 8.2-8b gives

0 = −
(

∂θ

∂T

)
P,Ni

dT −
(

∂θ

∂P

)
T,Ni

dP

+
C∑

i=1

xi

[(
∂θi

∂T

)
P,x

dT +
(

∂θi

∂P

)
T,x

dP +
C−1∑
j=1

(
∂θi

∂xj

)
T,P

dxj

]

(8.2-17)

Since

C∑
i=1

xi

(
∂θi

∂T

)
P,x

dT =
∂

∂T

∣∣∣
P,x

( C∑
i=1

xiθi

)
dT =

(
∂θ

∂T

)
P,x

dT

and since holding all the mole numbers constant is equivalent to keeping all the mole
fractions fixed, the first and third terms in Eq. 8.2-17 cancel. Similarly, the second and
fourth terms cancel. Thus we are left with

C∑
i=1

xi

C−1∑
j=1

(
∂θi

∂xj

)
T,P

dxj = 0 (8.2-18)

which for a binary mixture reduces to

2∑
i=1

xi

(
∂θi

∂x1

)
T,P

dx1 = 0 (8.2-19a)

or, equivalently

x1

(
∂θ1

∂x1

)
T,P

+ x2

(
∂θ2

∂x1

)
T,P

= 0 (8.2-19b)

Gibbs-Duhem
equations for binary
mixture at constant T
and P

For the special case in which θ is equal to the Gibbs energy, we have

x1

(
∂G1

∂x1

)
T,P

+ x2

(
∂G2

∂x1

)
T,P

= 0 (8.2-20)

Finally, note that several different forms of Eqs. 8.2-19 and 8.2-20 can be obtained by
using x2 = 1 − x1 and dx2 = −dx1.

8.3 A NOTATION FOR CHEMICAL REACTIONS

Since our interest in this chapter is with the equations of change and the equilibrium
criteria for general thermodynamic systems, we need a convenient notation for
the description of chemical reactions. Here we will generalize the notation for a
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chemical reaction introduced in Sec. 2.3. There we wrote the reaction

αA + βB + · · · −→←− ρR + · · ·
where α, β, . . . are the molar stoichiometric coefficients, as

ρR + · · · − αA − βB − · · · = 0

or ∑
i

νiI = 0 (8.3-1)

In this notation, from Chapter 2, νi is the stoichiometric coefficient of species I, so de-
fined that νi is positive for reaction products, negative for reactants, and equal to zero for
inert species. (You should remember that in this notation the reaction
H2+ 1

2
O2 = H2O is written asH2O−H2− 1

2
O2 = 0, so that νH2O = +1, νH2 = −1,

and νO2 = −1
2
.)

UsingNi to represent the number of moles of species i in a closed system at any time
t , and Ni,0 for the initial number of moles of species i, then Ni and Ni,0 are related
through the reaction variable X , the molar extent of reaction, and the stoichiometric
coefficient νi by

Ni = Ni,0 + νiX (8.3-2a)

and

X =
Ni − Ni,0

νi

(8.3-2b)

The reason for introducing the reaction variable X is that it has the same value for
each molecular species involved in a reaction, as was shown in Illustration 2.3-1. Thus,
given the initial mole numbers of all species and X (or the number of moles of one
species from which X can be calculated) at time t, one can easily compute all other
mole numbers in the system. In this way the complete progress of a chemical reaction
(i.e., the change in mole numbers of all the species involved in the reaction) is given by
the value of the single variable X . Also, the rate of change of the number of moles of
species i resulting from the chemical reaction is(

dNi

dt

)
rxn

= νiẊ (8.3-3)

where the subscript rxn indicates that this is the rate of change of species i attributable
to chemical reaction alone, and Ẋ is the rate of change of the molar extent of reac-
tion.7 The total number of moles in a closed system at any time (i.e., for any extent of
reaction) is

N =
C∑

i=1

Ni =
C∑

i=1

(Ni,0 + νiX) =
C∑

i=1

Ni,0 + X
C∑

i=1

νi (8.3-4)

However, our interest can also extend to situations in which there are multiple chem-
ical reactions, and the notation introduced in Sec. 2.3 and reviewed here needs to be
extended to such cases. Before we do this, it is necessary to introduce the concept
of independent chemical reactions. The term independent reactions is used here to

7For an open system the number of moles of species i may also change due to mass flows into and out of the
system.
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designate the smallest collection of reactions that, on forming various linear combi-
nations, includes all possible chemical reactions among the species present. Since we
have used the adjective smallest in defining a set of independent reactions, it follows
that no reaction in the set can itself be a linear combination of the others. For example,
one can write the following three reactions between carbon and oxygen:

C + O2 = CO2

2C + O2 = 2CO
2CO + O2 = 2CO2

If we add the second and third of these equations, we get twice the first, so these three
reactions are not independent. In this case, any two of the three reactions form an inde-
pendent set.
As we will see in Chapter 13, it is not necessary to consider all the chemical reactions

that can occur between the reactant species in order to describe a chemically reacting
system, only the independent reactions. Furthermore, the molar extent of reaction for
any chemical reaction among the species can be computed from an appropriate linear
combination of the known extents of reaction for the set of independent chemical reac-
tions (see Sec. 13.3). Thus, in the carbon-oxygen reaction system just considered, only
two reaction variables (and the initial mole numbers) need be specified to completely fix
the mole numbers of each species; the specification of a third reaction variable would
be redundant and may result in confusion.
To avoid unnecessary complications in the analysis of multiple reactions, we restrict

the following discussion to sets of independent chemical reactions. Consequently, we
need a method of identifying a set of independent reactions from a larger collection of
reactions. When only a few reactions are involved, as in the foregoing example, this
can be done by inspection. If many reactions occur, the methods of matrix algebra8 can
be used to determine a set of independent reactions, though we will employ a simpler
procedure developed by Denbigh.9

In the Denbigh procedure one first writes the stoichiometric equations for the forma-
tion, from its constituent atoms, of each of the molecular species present in the chem-
ical reaction system. One of the equations that contains an atomic species not actually
present in the atomic state at the reaction conditions is then used, by addition and/or
subtraction, to eliminate that atomic species from the remaining equations. In this way
the number of stoichiometric equations is reduced by one. The procedure is repeated
until all atomic species not present have been eliminated. The equations that remain
form a set of independent chemical reactions; the molar extents of reaction for these
reactions are the variables to be used for the description of the multiple reaction system
and to follow the composition changes in the mixture.10

As an example of this method, consider again the oxidation of carbon. We start by
writing the following equations for the formation of each of the compounds:

2O = O2

C + O = CO
C + 2O = CO2

8N. R. Amundson,Mathematical Methods in Chemical Engineering, Prentice Hall, Englewood Cliffs, N.J. (1966),
p. 50.
9K. Denbigh, Principles of Chemical Equilibrium, 4th ed., Cambridge University Press, Cambridge (1981),
pp. 169–172.
10When considering chemical reactions involving isomers—for example, ortho-, meta-, and para-xylene—one
proceeds as described here, treating each isomer as a separate chemical species.
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Since a free oxygen atom does not occur, the first equation is used to eliminate O from
the other two equations to obtain

2C + O2 = 2CO
C + O2 = CO2

All the remaining atomic species in these equations (here only carbon) are present in
the reaction system, so no further reduction of the equations is possible, and these two
equations form a set of independent reactions. Note that two other, different sets of
independent reactions are obtained by using instead the second or third equation to
eliminate the free oxygen atom. Though different sets of independent reactions are
obtained, each would contain only two reactions, and either set could be used as the
set of independent reactions.
For the multiple-reaction case, Xj is defined to be the molar extent of reaction

(or simply the reaction variable) for the jth independent reaction, and νij the stoichio-
metric coefficient for species i in the jth reaction. The number of moles of species i
present at any time (in a closed system) is

Ni = Ni,0 +
M∑
j=1

νijXj (8.3-5)

where the summation is over the set of M independent chemical reactions. The
instantaneous rate of change of the number of moles of species i due only to chemical
reaction is (

dNi

dt

)
rxn

=
M∑
j=1

νijẊj (8.3-6)

Finally, with X̂j = Xj/V defined to be the molar extent of reaction per unit volume,
Eq. 8.3-6 can be written as

(
dNi

dt

)
rxn

=
M∑
j=1

νij
d

dt
(V X̂j) =

dV

dt

M∑
j=1

νijX̂j + V
M∑
j=1

νijrj (8.3-7)

where rj = dX̂j/dt, the rate of reaction per unit volume, is the reaction variable most
frequently used by chemists and chemical engineers in chemical reactor analysis.

8.4 THE EQUATIONS OF CHANGE FOR AMULTICOMPONENT SYSTEM

The next step in the development of the thermodynamics of multicomponent systems is
the formulation of the equations of change. These equations can, in completely general
form, be considerably more complicated than the analogous pure component equations
since (1) the mass or number of moles of each species may not be conserved due to
chemical reactions, and (2) the diffusion of one species relative to the others may occur
if concentration gradients are present. Furthermore, there is the computational difficulty
that each thermodynamic property depends, in a complicated fashion, on the tempera-
ture, pressure, and composition of the mixture.
To simplify the development of the equations, we will neglect all diffusional pro-

cesses, since diffusion has very little effect on the thermodynamic state of the system.
(This assumption is equivalent to setting the average velocity of each species equal to
the mass average velocity of the fluid.) In Chapter 2 the kinetic and potential energy



8.4 The Equations of Change for a Multicomponent System 371

terms were found to make a small contribution to the pure component energy balance;
the relative importance of these terms to the energy balance for a reacting mixture is
even less, due to the large energy changes that accompany chemical transformations.
Therefore, we will neglect the potential and kinetic energy terms in the formulation of
the mixture energy balance. This omission will cause serious errors only in the analysis
of rocket engines and similar high-speed devices involving chemical reaction.
With these assumptions, the formulation of the equations of change for a multicom-

ponent reactingmixture is not nearly so formidable a task as it might first appear. In fact,
merely by making the proper identifications, the equations of change for a mixture can
be written as simple generalizations of the equations of change for a single-component
system. The starting point is Eq. 2.1-4, which is rewritten as

dθ

dt
=

(
Rate of change of
θ in the system

)
=

⎛
⎝Rate at which θ enters

the system across
system boundaries

⎞
⎠

−

⎛
⎝Rate at which θ leaves

the system across
system boundaries

⎞
⎠

+

⎛
⎝Rate at which θ is

generated within
the system

⎞
⎠

(2.1-4)

The balance equation for species i is obtained by setting θ equal toNi, the number of
moles of species i; letting (Ṅi)k equal the molar flow rate of species i into the system
at the kth port; and recognizing that species i may be generated within the system by
chemical reaction;

Species mass balance
for a reacting system

dNi

dt
=

K∑
k=1

(Ṅi)k +
(
Rate at which species i is being
produced by chemical reaction

)

=
K∑

k=1

(Ṅi)k +
(

dNi

dt

)
rxn

=
K∑

k=1

(Ṅi)k +
M∑
j=1

νijẊj

(8.4-1a)

We can obtain a balance equation on the total number of moles in the system by sum-
ming Eq. 8.4-1a over all species i, recognizing that

∑C
i=1 Ni = N is the total number

of moles, and that

C∑
i=1

K∑
k=1

(Ṅi)k =
K∑

k=1

C∑
i=1

(Ṅi)k =
K∑

k=1

Ṅk

where Ṅk =
∑C

i=1(Ṅi)k is the total molar flow rate at the k th entry port, so that

Total mass balance for
a reacting system

dN

dt
=

K∑
k=1

Ṅk +
C∑

i=1

M∑
j=1

νijẊj (8.4-1b)
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Since neither the number of moles of species i nor the total number of moles is a
conserved quantity, we need information on the rates at which all chemical reactions
occur to use Eqs. 8.4-1a and b. That is, we need detailed information on the reaction
processes internal to the black-box system (unless, of course, no reactions occur, in
which case Ẋj = 0 for all j).
Althoughwewill be interested in the equations of changemainly on amolar basis, for

completeness and for several illustrations that follow, some of the equations of change
will also be given on a mass basis. To obtain a balance equation for the mass of species
i, we need only multiply Eq. 8.4-1a by the molecular weight of species i, mi, and use
the notation Mi = miNi and (Ṁi)k = mi(Ṅi)k to get

dMi

dt
=

K∑
k=1

(Ṁi)k +
M∑
j=1

miνijẊj (8.4-2a)

Also, summing the equation over species i, we get the overall mass balance equation

dM

dt
=

K∑
k=1

Ṁk (8.4-2b)

where Ṁk =
∑C

i=1(Ṁi)k is the total mass flow at the k th entry port. In Eq. 8.4-2b the
chemical reaction term vanishes since total mass is a conserved quantity (Problem 8.5).
If θ in Eq. 2.1-4 is now taken to be the total energy of the system (really only the

internal energy, since we are neglecting the kinetic and potential energy terms), and
the same energy transfer mechanisms identified in Sec. 3.1 are used here, we obtain

dU

dt
=

K∑
k=1

(ṄH)k + Q̇ + Ẇs − P
dV

dt
(molar basis) (8.4-3)

Energy balance for a
reacting system

and

dU

dt
=

K∑
k=1

(ṀĤ)k + Q̇ + Ẇs − P
dV

dt
(mass basis)

Here (ṄH)k is the product of the molar flow rate and the molar enthalpy of the fluid,
and (ṀĤ)k the product of mass flow rate and enthalpy per unit mass, both at the k th
entry port. Since some or all of the flow streams may be mixtures, to evaluate a term
such as (ṄH)k the relation

(ṄH)k =
C∑

i=1

(ṄiH i)k (8.4-4)

must be used, where (Ṅi)k is the molar flow rate of species i in the k th flow stream,
and (H i)k is its partial molar enthalpy. Similarly, the internal energy of the systemmust
be obtained from

U =
C∑

i=1

NiU i

where Ni is the number of moles of species i and U i is its partial molar internal energy.
At this point youmight be concerned that the heat of reaction (i.e., the energy released

or absorbed on reaction since the total energy of the chemical bonds in the reactant
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and product molecules are not equal) does not explicitly appear in the energy balance
equation. Since the only assumptions made in deriving this equation were to neglect
the potential and kinetic energy terms and diffusion, neither of which involves chemical
reaction, the heat of reaction is in fact contained in the energy balance, though it appears
implicitly rather than explicitly. Although energy balances on chemical reactors are
studied in detail in Chapter 14, to demonstrate that the heat of reaction is contained
in Eq. 8.4-3, we will consider its application to the well-stirred, steady-state chemical
reactor in Fig. 8.4-1. Here by steady state we mean that the rate at which each species
i leaves the reactor just balances the rate at which species i enters the reactor and is
produced within it, so that Ni does not vary with time, that is,

dNi

dt
= 0 = (Ṅi)in + (Ṅi)out + νiẊ (8.4-5a)

and, further, that the rates of flow of energy into and out of the reactor just balance, so
that the internal energy of the contents of the reactor does not change with time

Energy balance for
a continuous-flow
stirred-tank reactor

dU

dt
= 0 =

C∑
i=1

(ṄiH i)in +
C∑

i=1

(ṄiH i)out + Q̇ (8.4-5b)

For the very simple isothermal case in which the inlet and outlet streams and the
reactor contents are all at temperatureT , and with the assumption that the partial molar
enthalpy of each species is just equal to its pure-component enthalpy, we obtain

Q̇ = −
C∑

i=1

[(Ṅi)out + (Ṅi)in]H i

Now if there were no chemical reaction (Ṅi)out = −(Ṅi)in and the heat flow rate
Q̇ should be equal to zero to maintain the constant temperature T . However, when a
chemical reaction occurs, (Ṅi)out and (Ṅi)in are not equal in magnitude, and the steady
heat flow Q̇ required to keep the reactor at constant temperature is

Q̇ = −
C∑

i=1

[(Ṅi)out + (Ṅi)in]H i =
C∑

i=1

Ẋ νiH i

= Ẋ
C∑

i=1

νiH i = ΔrxnHẊ

Reactor
inlet
stream

Reactor
outlet
stream

Stirrer

Heating and
cooling coil 

Figure 8.4-1 A simple stirred-tank reactor.
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so that the heat flow rate is equal to the product of ΔrxnH =
∑

νiH i, the isothermal
heat of reaction, and Ẋ , the reaction rate. Thus, we see that the heat of reaction is
implicitly contained in the energy balance equation through the difference in species
mole numbers in the inlet and outlet flow streams.
For nonideal mixtures (i.e., mixtures for which H i �= H i) and nonisothermal reac-

tors, the expression for the heat of reaction is buried somewhat deeper in the energy
balance equation; this is discussed in Chapter 14.
To derive the macroscopic entropy balance equation for mixtures we now set θ = S

in Eq. 2.1-4 and make the same identification for the entropy flow terms as was made
in Sec. 4.1, to obtain

dS

dt
=

K∑
k=1

(ṄS)k +
Q̇

T
+ Ṡgen (8.4-6)

where

(ṄS)k =
C∑

i=1

(ṄiSi)k

Thus the entropy balance, like the energy balance equation, is of the same form for the
pure fluid and for mixtures.
As the final step in the development of the entropy balance, an expression for the

entropy generation term should be obtained here, as was done for the pure fluid in
Sec. 4.6. The derivation of such an expression is tedious andwould require us to develop
detailed microscopic equations of change for a mixture. Rather than doing this, we will
merely write down the final result, referring the reader to the book by de Groot and
Mazur for the details.11 Their result, with the slight modification of writing the chemical
reaction term on a molar rather than a mass basis, is

Ṡgen =
∫

σ̇s dV

where

σ̇s =
λ

T 2
(∇T )2 +

μ

T
φ2 − 1

T

M∑
j=1

C∑
i=1

νijGiẊj (8.4-7)

(see Secs. 3.6 and 4.6 for the definitions of λ, φ, and the gradient operator ∇). The
last term, which is new, represents the contribution of chemical reactions to the entropy
generation rate. One can establish that this term makes a positive contribution to the
entropy generation term. It is of interest to note that had diffusional processes also been
considered, there would be an additional contribution to Ṡgen due to diffusion. That
term would be in the form of a diffusional flux times a driving force for diffusion and
would also be greater than or equal to zero.
In Chapter 4 we defined a reversible process to be a process for which Ṡgen = 0.

This led to the conclusion that in a reversible process in a one-component system only
infinitesimal temperature and velocity gradients could be present. Clearly, on the basis
of Eq. 8.4-7, a reversible process in a multicomponent system is one in which only

11S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam (1962),
Chapter 3.
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infinitesimal gradients in temperature, velocity, and concentration may be present, and
in which all chemical reactions proceed at only infinitesimal rates.
The differential form of the multicomponent mass, energy, and entropy balances can

be integrated over time to get difference forms of the balance equations, as was done in
Chapters 2, 3, and 4 for the pure-component equations. The differential and difference
forms of the balance equations are listed in Tables 8.4-1 and 8.4-2, respectively. It is
left to the reader to work out the various simplifications of these equations that arise for
special cases of closed systems, adiabatic processes, and so forth.
With the equations of change for mixtures, and given mixture thermodynamic data,

such as the enthalpy data for sulfuric acid–water mixtures in Fig. 8.1-1, it is possible to
solve many thermodynamic energy flow problems for mixtures. One example is given
in the following illustration.

Table 8.4-1 The Differential Form of the Equations of Change for a Multicomponent System

Species balance

dNi

dt
=

K∑
k=1

(Ṅi)k +

M∑
j=1

νijẊj (molar basis)

dMi

dt
=

K∑
k=1

(Ṁi)k +

M∑
j=1

miνijẊj (mass basis)

Overall mass balance
dN

dt
=

K∑
k=1

Ṅk +

C∑
i=1

M∑
j=1

νijẊj (molar basis)

dM

dt
=

K∑
k=1

Ṁk (mass basis)

Energy balance
dU

dt
=

K∑
k=1

(ṄH)k + Q̇ + Ẇs − P
dV

dt
(molar basis)

dU

dt
=

K∑
k=1

(ṀĤ)k + Q̇ + Ẇs − P
dV

dt
(mass basis)

Entropy balance
dS

dt
=

K∑
k=1

(ṄS)k +
Q̇

T
+ Ṡgen (molar basis)

dS

dt
=

K∑
k=1

(ṀŜ)k +
Q̇

T
+ Ṡgen (mass basis)

where

Ṅk =

C∑
i=1

(Ṅi)k (ṄH)k =

C∑
i=1

(ṄiH i)k (ṄS)k =

C∑
i=1

(ṄiSi)k

and

Ṁk =

C∑
i=1

(Ṁi)k
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Table 8.4-2 The Difference Form of the Equations of Change for a Multicomponent Mixture

Species balance

Ni(t2) − Ni(t1) =

K∑
k=1

∫ t2

t1

(Ṅi)k dt +

M∑
j=1

νijXj

Mi(t2) − Mi(t1) =

K∑
k=1

∫ t2

t1

(Ṁi)k dt +

M∑
j=1

νijmiXj

Overall mass balance

N(t2) − N(t1) =

K∑
k=1

∫ t2

t1

Ṅk dt +

C∑
i=1

M∑
j=1

νijXj

M(t2) − M(t1) =

K∑
k=1

∫ t2

t1

Ṁk dt

Energy balance

U(t2) − U(t1) =

K∑
k=1

∫ t2

t1

(ṄH)k dt + Q + Ws −
∫

P dV

U(t2) − U(t1) =

K∑
k=1

∫ t2

t1

(ṀĤ)k dt + Q + Ws −
∫

P dV

Entropy balance

S(t2) − S(t1) =

K∑
k=1

∫ t2

t1

(ṄS)k dt +

∫ t2

t1

Q̇

T
dt + Sgen

S(t2) − S(t1) =

K∑
k=1

∫ t2

t1

(ṀŜ)k dt +

∫ t2

t1

Q̇

T
dt + Sgen

where (Ṅ)k, (ṄH)k, (ṄS)k, and (Ṁ)k are defined in Table 8.4-1

Illustration 8.4-1
Temperature Change on Adiabatic Mixing of an Acid and Water

Three moles of water and one mole of sulfuric acid, each at 0◦C, are mixed adiabatically. Use
the data in Fig. 8.1-1 and the information in Illustration 8.1-1 to estimate the final temperature
of the mixture.

Solution

From the closed-system mass balance, we have

Mf = MH2O + MH2SO4 = 3 × 18.015 + 1 × 98.078 = 152.12 g

and from the energy balance, we have

Uf = Hf = Hi = Mf Ĥmix = MH2OĤH2O + MH2SO4ĤH2SO4 = 3 × 0 + 1 × 0 = 0 kJ

Thus finally we have a mixture of 64.5 wt % sulfuric acid that has an enthalpy of 0 kJ/kg. (Note
that we have used the fact that for liquids and solids at low pressure, the internal energy and
enthalpy are essentially equal.) From Fig. 8.1-1 we see that a mixture containing 64.5 wt %
sulfuric acid has an enthalpy of 0 kJ/kg at about 150◦C. Therefore, if water and sulfuric acid are
adiabatically mixed in the ratio of 3:1, the mixture will achieve a temperature of 150◦C, which
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is just below the boiling point of the mixture. This large temperature rise, and the fact that the
mixture is just below its boiling point, makes mixing sulfuric acid and water an operation that
must be done with extreme care.

Comment

If instead of starting with refrigerated sulfuric acid and water (at 0◦C), one started with these
components at 21.2◦C and mixed them adiabatically, the resulting 3:1 mixture would be in the
liquid + vapor region; that is, the mixture would boil (and splatter). Also note that because of
the shape of the curves on the enthalpy-concentration diagram, adding sulfuric acid to water
adiabatically (i.e., moving to the right from the pure water edge of the diagram) results in a more
gradual temperature rise than adding water to sulfuric acid (i.e., moving to the left from the pure–
sulfuric acid edge). Therefore, whenever possible, sulfuric acid should be added to water, and
not vice versa.

Illustration 8.4-2
Mass and Energy Balances on a Nonreacting System

A continuous-flow steam-heated mixing kettle will be used to produce a 20 wt % sulfuric acid
solution at 65.6◦C from a solution of 90 wt % sulfuric acid at 0◦C and pure water at 21.1◦C.
Estimate

Heating
coil

 90 wt %
sulfuric acid,
T = 0°C

20 wt %
sulfuric acid,
T = 65.6°C

 Water
T = 21.1°C

a. The kilograms of pure water needed per kilogram of initial sulfuric acid solution to produce
a mixture of the desired concentration

b. The amount of heat needed per kilogram of initial sulfuric acid solution to heat the mixture
to the desired temperature

c. The temperature of the kettle effluent if the mixing process is carried out adiabatically

Solution

We choose the contents of the mixing kettle as the system. The difference form of the equations
of change will be used for a time interval in which 1 kg of concentrated sulfuric acid enters the
kettle.

a. Since there is no chemical reaction, and the mixing tank operates continuously, the total
and sulfuric acid mass balances reduce to

0 =

3∑
k=1

Ṁk and

3∑
k=1

(MH2SO4)k = 0

Denoting the 90 wt % acid stream by the subscript 1 and its mass flow by Ṁ1, the water
stream by the subscript 2, and the dilute acid stream by subscript 3, we have, from the total
mass balance,

0 = Ṁ1 + Ṁ2 + Ṁ3 = Ṁ1 + ZṀ1 + Ṁ3
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or

Ṁ3 = −(1 + Z)Ṁ1

where Z is equal to the number of kilograms of water used per kilogram of the 90 wt %
acid. Also, from the mass balance on sulfuric acid, we have

0 = 0.90Ṁ1 + 0Ṁ2 + 0.20Ṁ3 = 0.90Ṁ1 − 0.20(1 + Z)Ṁ1

Therefore,

1 + Z =
0.90

0.20
= 4.5 and Z = 3.5

so that 3.5 kg of water must be added to each 1 kg of 90 wt % acid solution to produce a
20 wt % solution.

b. The steady-state energy balance is

0 =
∑

k

(ṀĤ)k + Q̇

since Ws = 0 and
∫

P dV = 0. From the mass balance of part (a),

Ṁ2 = 3.5Ṁ1

Ṁ3 = −4.5Ṁ1

From the enthalpy-concentration chart, Fig. 8.1-1, we have

Ĥ1 = Ĥ(90 wt % H2SO4, T = 0◦C) = −183 kJ/kg

Ĥ2 = Ĥ(pure H2O, T = 21.1◦C) = 91 kJ/kg

Ĥ3 = Ĥ(20 wt % H2SO4, T = 65.56◦C) = 87 kJ/kg

so that

Q = (4.5 × 87 − 3.5 × 91 − 1 × (−183))

= (391.5 − 318.5 + 183) = 256 kJ/kg of initial acid solution

c. For adiabatic operation, the energy balance is

0 =
∑

k

(ṀĤ)k

or

0 = 4.5Ĥ3 − 3.5(91) − 1(−183)

4.5Ĥ3 = 135.5 and Ĥ3 = 30.1 kJ/kg

Referring to the enthalpy-concentration diagram, we find that T ∼ 50◦C.

8.5 THE HEAT OF REACTION AND A CONVENTION FOR THE THERMODYNAMIC
PROPERTIES OF REACTING MIXTURES

In the first part of this book we were interested in the change in the internal energy,
enthalpy, and entropy accompanying a change in the thermodynamic state of a pure
substance. For convenience in such calculations, one state of each substance was cho-
sen as the reference state, with zero values for both enthalpy and entropy, and the values
of the thermodynamic properties of the substance in other states were given relative to
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this reference state. Thus in the steam tables in Appendix A.III the internal energy and
entropy are zero for liquid water at the triple point, whereas the zero values of these ther-
modynamic properties for methane (Fig. 2.4-2) and nitrogen (Fig. 2.4-3) correspond to
different conditions of temperature and pressure. The reference states for sulfuric acid
and water in the enthalpy-concentration diagram of Fig. 8.1-1 were also chosen on the
basis of convenience. Such arbitrary choices for the reference state were satisfactory
because our interest was only with the changes in thermodynamic properties in go-
ing from one thermodynamic state to another in a nonreacting system. However, when
chemical reactions occur, the reference state for the thermodynamic properties of each
species must be chosen with great care. In particular, the thermodynamic properties for
each species must be such that the differences between the reactant and product species
in any chemical transformation will be equal to those that would be measured in the
appropriate experiment. For example, in the ideal gas-phase reaction

H2 + 1
2
O2 → H2O

it is observed that 241.82 kJ are liberated for each mole of water vapor produced when
this reaction is run in an isothermal, constant-pressure calorimeter at 25◦C and 1 bar
with all species in the vapor phase. Clearly, then, the enthalpies of the reactingmolecules
must be related as follows:

ΔrxnH(T = 25◦C, P = 1 bar) = HH2O(vapor, T = 25◦C, P = 1 bar)

− HH2
(gas, T = 25◦C, P = 1 bar)

− 1
2
HO2

(gas, T = 25◦C, P = 1 bar)

= −241.82
kJ

mol H2O produced

so that we are not free to choose the values of the enthalpy of hydrogen, oxygen, and
water vapor all arbitrarily. A similar argument applies to the other thermodynamic
properties such as the entropy and Gibbs free energy.
By considering a large collection of chemical reactions, one finds that, to be consis-

tent with the heat-of-reaction data for all possible reactions, the zero value of internal
energy or enthalpy can be set only once for each element. Thus, one could set the en-
thalpy of each element to be zero at 25◦C and 1 bar (or some other reference state)
and then determine the enthalpy of every compound by measuring the heat liberated or
absorbed during its production, by isothermal chemical reaction, from its elements.
Although such a procedure is a conceptually pleasing method of devising a thermo-

dynamic enthalpy scale, it is experimentally difficult. For example, to determine the
enthalpy of water vapor, one would have to measure the heat liberated on its formation
from hydrogen and oxygen atoms. However, since hydrogen and oxygen molecules,
and not their atoms, are the thermodynamically stable species at 25◦C, one would first
have to dissociate the oxygen and hydrogen molecules into their constituent atoms and
then accurately measure the heat evolved when the atoms combine to form a water
molecule—a very difficult task. Instead, the thermodynamic energy scale that is most
frequently used is based on choosing as the zero state of both enthalpy and Gibbs
energy12 for each atomic species its simplest thermodynamically stable state at 25◦C

12For chemical equilibrium the Gibbs energy, rather than the entropy, is of central importance. Therefore, generally
the enthalpy and the Gibbs energy are set equal to zero in the reference state.
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and 1 bar. Thus, the reference state for argon and helium is the atomic gases; for oxy-
gen, nitrogen, and hydrogen, it is the molecular gases; for mercury and bromine, it is
the atomic and molecular liquids, respectively; whereas for iron and carbon, it is as the
α-crystalline and graphite solids, respectively, all at 25◦C and 1 bar.
Starting from this basis, and using the measured data from a large number

of heats of reaction, heats of mixing, and chemical equilibrium measurements, the
enthalpy and Gibbs energy content of all other molecular species relative to their
constituent atoms in their reference states can be determined; these quantities are
called the enthalpy of formation, ΔfH

◦ and the Gibbs energy of formation, ΔfG
◦.

Thus, by definition,

ΔfH
◦
H2O(vapor, 25◦C, 1 bar) = HH2O(vapor, 25◦C, 1 bar)

− HH2
(gas, 25◦C, 1 bar)

− 1
2
HO2

(gas, 25◦C, 1 bar)

Appendix A.IV contains a listing of ΔfH
◦ and ΔfG

◦ for a large collection of sub-
stances in their normal states of aggregation at 25◦C and 1 bar.
Isothermal heats (enthalpies) and Gibbs energies of formation of species may be

summed to compute the enthalpy change andGibbs free energy change that would occur
if the molecular species at 25◦C, 1 bar, and the state of aggregation listed in Appendix
A.IV reacted to form products at 25◦C, 1 bar, and their listed state of aggregation.
We will denote these changes by ΔrxnH◦(25◦C, 1 bar) and ΔrxnG◦(25◦C, 1 bar),
respectively. For example, for the gas-phase reaction

3NO2 + H2O = 2HNO3 + NO

we have

ΔrxnH
◦(25◦C, 1 bar) = 2HHNO3

(25◦C, 1 bar) + HNO(25◦C, 1 bar)

− 3HNO2
(25◦C, 1 bar) − HH2O(25◦C, 1bar)

= 2[ΔfH
◦
HNO3

+ 3
2
HO2

+ 1
2
HH2

+ 1
2
HN2

]25◦C,1bar

+ [ΔfH
◦
NO + 1

2
HO2

+ 1
2
HN2

]25◦C,1bar

− 3[ΔfH
◦
NO2

+ HO2
+ 1

2
HN2

]25◦C,1bar

− [ΔfH
◦
H2O + HH2

+ 1
2
HO2

]25◦C,1bar

= [2ΔfH
◦
HNO3

+ ΔfH
◦
NO − 3ΔfH

◦
NO2

− ΔfH
◦
H2O]25◦C,1bar

=
∑

νiΔfH
◦
i (25◦C, 1 bar)

Note that the enthalpies of the reference state atomic species cancel; by the conservation
of atomic species, this will always occur. Thus, we have, as general results,

Standard state heat of
reaction

ΔrxnH
◦(25◦C, 1 bar) =

∑
i

νiΔfH
◦
i (25◦C, 1 bar) (8.5-1)
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and

Standard state Gibbs
energy change on
reaction

ΔrxnG
◦(25◦C, 1 bar) =

∑
i

νiΔfG
◦
i (25◦C, 1 bar) (8.5-2)

We use the term standard state of a substance to indicate the state of aggrega-
tion given in Appendix A.IV (or, in certain cases, the reference states discussed in
Chapter 13), at the temperature T and pressure of 1 bar, with the following qualifi-
cations. For a gas here (as in Chapter 6) we use the ideal gas at 1 bar, not the real
gas. As was mentioned in Chapter 6, the P = 0 state cannot be used since the en-
tropy would then be positive infinity and the Gibbs energy would be negative infinity.
For substances that are typically solutes—sodium chloride, for example—properties in
two or more standard states are given. One standard state is as a solid (in the crystalline
state) and the other is in solution. The latter case is a bit complicated in that the enthalpy
of formation may be given at a specified concentration whereas the Gibbs energy for-
mation is that in a (hypothetical) ideal 1-molal solution (see Sec. 9.8). The pure liquid
cannot be used as the standard state since the solute does not exist as a liquid at these
conditions, and the very high (infinite) dilution state cannot be used since the Gibbs
energy of the solute goes to negative infinity at infinite dilution. What is used, instead,
is a hypothetical ideal state of finite concentration, here 1 molal, with properties ob-
tained from the extrapolation of data obtained for the solute highly diluted in aqueous
solution, as will be discussed in Chapter 9.
The standard heat of reaction at any temperature T , ΔrxnH◦(T ), is defined

as the change in enthalpy that results when a stoichiometric amount of the reactants,
each in their standard states at the temperatureT , chemically react to form the reaction
products in their standard states at the temperature T . Thus, in analogy with Eqs. 8.5-1
and 8.5-2,

ΔrxnH
◦(T,P = 1 bar) =

∑
i

νiΔfH
◦
i (T,P = 1 bar) (8.5-3)

and

ΔrxnG
◦(T,P = 1 bar) =

∑
i

νiΔfG
◦
i (T,P = 1 bar) (8.5-4)

where the subscript i indicates the species and the superscript ◦ denotes the standard
state. From

H◦
i (T,P = 1 bar) = H◦

i (T0, P = 1 bar) +
∫ T

T0

C◦
P,i(T,P = 1 bar) dT

we have

ΔrxnH
◦(T, 1 bar) =

∑
i

νiΔfH
◦
i (25◦C, 1 bar) +

∑
i

νi

∫ T

T=25◦C
C◦

P,i dT

= ΔrxnH
◦(25◦C, 1 bar) +

∑
i

νi

∫ T

T=25◦C
C◦

P,i dT

(8.5-5)

where C◦
P,i is the heat capacity of species i in its standard state.
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In certain instances, such as in the study of large organic compounds that
require a complicated synthesis procedure or of biochemical molecules, it is not pos-
sible to measure the heat of formation directly. A substitute procedure in these cases
is to measure the energy change for some other reaction, usually the heat of combus-
tion, that is, the energy liberated when the compound is completely oxidized (all the
carbon is oxidized to carbon dioxide, all the hydrogen to water, etc.). The standard
heat of combustion ΔcH

◦(T ) is defined to be the heat of combustion with both the
reactants and the products in their standard states, at the temperature T . The standard
heat of combustion at 25◦C and 1 bar is listed in Appendix A.V for a number of com-
pounds. (Note that there are two entries in this table, one corresponding to the liquid
phase and the other to the vapor phase, being the standard state for water.) Given the
standard heat of combustion, the standard heat of reaction is computed as indicated in
Illustration 8.5-1.

Illustration 8.5-1
Calculation of the Standard Heat of Reaction at 25◦C

Compute the standard heat of reaction for the hydrogenation of benzene to cyclohexane,

C6H6 + 3H2 → C6H12

from the standard-heat-of-combustion data.

Solution

The standard heat of reaction can, in principle, be computed from Eq. 8.5-3; however, for illustra-
tion, we will use the heat of combustion for cyclohexane. From the standard heat-of-combustion
data in Appendix A.V, we have ΔcH

◦ = −3 919 906 J/mol of cyclohexane for the following
reaction:

C6H12(l) + 9O2 → 6CO2 + 6H2O(l)

Thus

ΔcH
◦
C6H12

= 6HCO2
+ 6HH2O − HC6H12

− 9HO2
= −3 919 906 J/mol

or

HC6H12
= −ΔcH

◦
C6H12

− 9HO2
+ 6HCO2

+ 6HH2O

Similarly,

HC6H6
= −ΔcH

◦
C6H6

− 7 1
2
HO2

+ 6HCO2
+ 3HH2O

and

3HH2
= −3ΔcH

◦
H2

− 1 1
2
HO2

+ 3HH2O

Therefore,

ΔrxnH◦ = −ΔcH
◦
C6H12

− 9HO2
+ 6HCO2

+ 6HH2O + ΔcH
◦
C6H6

+ 7 1
2
HO2

− 6HCO2
− 3HH2O + 3ΔcH

◦
H2

+ 1 1
2
HO2

− 3HH2O

= −ΔcH
◦
C6H12

+ ΔcH
◦
C6H6

+ 3ΔcH
◦
H2

= −
∑

i

νiΔcH
◦
i

= 3 919 906 − 3 267 620 − 3 × 285 840 = −205 234
J

mol benzene

= −205.23
kJ

mol benzene
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Comment

Note that in the final equation, ΔrxnH◦ = −∑ νiΔcH
◦
i , the enthalpies of the reference-state

atomic species cancel, as they must due to conservation of atomic species on chemical reaction.
Aspen Plus R© can be used to solve this illustration as shown in Wiley website for this book in

the folder Aspen Illustrations>Chapter 8>8.5-1. The calculation is done there using the RStoic
reactor block in the Simulation mode with the ideal gas model. Using 1 kmol/hr flow rate of
benzene with an isothermal 25◦C reactor. Looking the Results Summary>Model gives in a heat
duty of −57272.2

Watts = −57272.2
J
S
× 3600

S
hr

× 1 hr
1 kmol benzene

× 1
kmol

103 mol
× 1 kJ

103 mol

= −206.18
kJ

mol benzene

This is in agreement with the result above.

The equation developed in this illustration,

ΔrxnH
◦(T = 25◦C, 1 bar) = −

∑
i

νiΔcH
◦
i (T = 25◦C, P = 1 bar)

is always valid and provides a way of computing the standard heat of reaction from
standard-heat-of-combustion data.

Illustration 8.5-2
Calculation of the Standard Heat of Reaction as a Function of Temperature

Compute the standard-state heat of reaction for the gas-phase reaction N2O4 = 2NO2 over the
temperature range of 200 to 600 K.13

Data: See Appendices A.II and A.IV.

Solution

The heat of reaction at a temperature T can be computed from

ΔrxnH◦(T ) =
∑

i

νiΔfH
◦
i (T )

At T = 25◦C we find, from the data in Appendix A.IV, that for each mole of N2O4 reacted,

ΔrxnH◦(T = 25◦C) = [2 × 33.18 − 9.16] kJ/mol = 57.20 kJ/mol

To compute the heat of reaction at any temperature T, we start from Eq. 8.5-5 and note that since
the standard state for each species is a low-pressure gas, C◦

P,i = C∗
P,i. Therefore,

ΔrxnH◦(T ) = ΔrxnH◦(T = 25◦C) +

∫ T

T=298.2K

∑
i

νiC
∗
P,i dT

13Since, as we will see, Hi = Hi for an ideal gas mixture, the standard state heat of reaction and the actual heat
of reaction are identical in this case.
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For the case here we have, from Appendix A.II,∑
νiC

∗
P,i = 2C∗

P,NO2
− C∗

P,N2O4

= 12.804 − 7.239 × 10−2T + 4.301 × 10−5T 2 + 1.5732 × 10−8T 3 J

mol K

Thus

ΔrxnH◦(T ) = 57 200 +

∫ T

298.2

(12.804 − 7.239 × 10−2T

+ 4.301 × 10−5T 2 + 1.5732 × 10−8T 3) dT

= 57 200 + 12.804(T − 298.15) − 7.239

2
× 10−2(T 2 − 298.152)

+
4.301

3
× 10−5(T 3 − 298.153) +

1.5732

4
× 10−8(T 4 − 298.154)

= 56 189 + 12.804T − 3.619 × 10−2T 2 + 1.4337 × 10−5T 3

+ 3.933 × 10−9T 4 J/mol N2O4

Values of ΔrxnH◦ for various values of T are given in the following table.

T (K) 200 300 400 500 600

ΔrxnH◦ (kJ/mol N2O4) 57.423 57.192 56.538 55.580 54.448

[
Aspen Plus R© can be used to compute the standard heat of reaction using the folder Aspen
Illustrations>Chapter 8>8.5-2 on Wiley website for this book following the procedure used in
Illustration 8.5-1. One difference is that calculation is repeated for each of the temperatures with
an isothermal reactor (reactor feed and exit at the same temperatures). The results are

T (K) Watts kJ/mol N2O4

200 15134.7 54.48
300 15920.5 57.31
400 16169.9 58.21
500 16087.3 57.91
600 15828.9 56.98

These results are in only approximate agreement with those in the illustration above. The differ-
ences are the result of differences in the databases in the appendices and in Aspen Plus R©.

]
Comment

The heat of reaction can be, and in fact usually is, a much stronger function of temperature than
is the case here.

Third law reference
state

In some databases—for example, in the very extensive NIST Chemistry Web-
Book14—the data reported for each substance are the the standard state heat of for-
mation ΔfH◦ and the absolute entropy So, both at 25◦C. Here by absolute entropy
is meant entropy based on the third law of thermodynamics as defined in Sec. 6.8.
The reason for reporting these two quantities is that they are determined directly by
thermal or calorimetric measurements, unlike the Gibbs energy of formation, which is
obtained by measuring chemical equilibrium constants.

14http://webbook.nist.gov/chemistry/

http://webbook.nist.gov/chemistry/
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If the standard state heat of formation and the absolute entropy of each substance
are known, the Gibbs energy of reaction can be computed as follows. First, the heat of
reaction is computed using

ΔrxnH
◦ =

C∑
i=1

νiΔfH
◦
i

and then the entropy change for the reaction is computed from

ΔrxnS
◦ =

C∑
i=1

νiS
◦

The standard-state Gibbs energy change on reaction at T = 25oC can then be
computed from

ΔrxnG
◦ = ΔrxnH

◦ − 298.15 · ΔrxnS
◦ =

C∑
i=1

νi [ΔfH i
◦ − 298.15 · S◦

i ]

Then using the heat capacities reported in the NIST ChemistryWebBook and Eq. 8.5-5,
the Gibbs free energy of reaction at any other temperature can be obtained.
As an example of the use of data in this form, we return to the gas-phase reaction of

hydrogen and oxygen to form water considered at the beginning of this section. Using
the NIST Chemistry WebBook, we obtain the following data.

Species ΔfH
o kJ

mol
So J

mol K
H2 0 130.680
O2 0 205.150
H2O −241.826 188.835

This results inΔrxnH = −241.826 kJ/mol, ΔrxnS = 44.43 J/(mol K), and Δrxn

G = −228.579 kJ/mol. This last value agrees with the Gibbs energy of formation for
water as a vapor in Appendix A.IV.

8.6 THE EXPERIMENTAL DETERMINATION OF THE PARTIAL MOLAR
VOLUME AND ENTHALPY

Experimental values for some of the partial molar quantities can be obtained from lab-
oratory measurements on mixtures. In particular, mixture density measurements can be
used to obtain partial molar volumes, and heat-of-mixing data yield information on par-
tial molar enthalpies. Both of these measurements are considered here. In Chapter 10
phase equilibrium measurements that provide information on the partial molar Gibbs
energy of a component in a mixture are discussed. Once the partial molar enthalpy and
partial molar Gibbs energy are known at the same temperature, the partial molar entropy
can be computed from the relation Si = (Gi − H i)/T .
Table 8.6-1 contains data on the mixture density, at constant temperature and pres-

sure, for the water(1)–methanol(2) system. Column 4 of this table contains calculated
values for the molar volume change on mixing (i.e., ΔmixV = V − x1V 1 − x2V 2)
at various compositions; these data have also been plotted in Fig. 8.6-1. The slope of the
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Table 8.6-1 Density Data for the Water(1)–Methanol(2) System at
T = 298.15 K

x1 ρ (kg/m3) V (m3/mol) × 106* ΔmixV (m3/mol) × 106

0.0 786.846 40.7221 0
0.1162 806.655 37.7015 −0.3883
0.2221 825.959 35.0219 −0.6688
0.2841 837.504 33.5007 −0.7855
0.3729 855.031 31.3572 −0.9174
0.4186 864.245 30.2812 −0.9581
0.5266 887.222 27.7895 −1.0032
0.6119 905.376 25.9108 −0.9496
0.7220 929.537 23.5759 −0.7904
0.8509 957.522 20.9986 −0.4476
0.9489 981.906 19.0772 −0.1490
1.0 997.047 18.0686 0

*Note that the notation V (m3/mol) × 106 means that the entries in the table have
been multiplied by the factor 106. Therefore, for example, the volume of pure methanol
V (x1 = 0) is 40.7221 × 10−6 m3/mol = 40.7221 cm3/mol.
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Figure 8.6-1 The isothermal volume change onmixing for thewater(1)–methanol(2)
system.
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ΔmixV versus mole fraction curve at any mole fraction is related to the partial molar
volumes. To obtain this relationship we start from

ΔmixV = (x1V 1 +x2V 2)−x1V 1−x2V 2 = x1(V 1−V 1)+x2(V 2−V 2) (8.6-1)

so that

∂(ΔmixV )
∂x1

∣∣∣
T,P

= (V 1 − V 1) + x1

(
∂V 1

∂x1

)
T,P

− (V 2 − V 2) + x2

(
∂V 2

∂x1

)
T,P

(8.6-2)

Here we have used the facts that the pure-component molar volumes are indepen-
dent of mixture composition (i.e., (∂V i/∂x1)T,P = 0), and that for a binary mixture
x2 = 1 − x1, so (∂x2/∂x1) = −1.
From the Gibbs-Duhem equation, Eq. 8.2-19b with θi = V i, we have

x1

(
∂V 1

∂x1

)
T,P

+ x2

(
∂V 2

∂x1

)
T,P

= 0

so that Eq. 8.6-2 becomes

∂(ΔmixV )
∂x1

∣∣∣
T,P

= (V 1 − V 1) − (V 2 − V 2) (8.6-3)

Now multiplying this equation by x1 and subtracting the result from Eq. 8.6-1 gives

Equation for the
calculation of the
partial molar volume

ΔmixV − x1
∂(ΔmixV )

∂x1

∣∣∣
T,P

= (V 2 − V 2) (8.6-4a)

Similarly,

ΔmixV − x2
∂(ΔmixV )

∂x2

∣∣∣
T,P

= ΔV mix + x2
∂(ΔmixV )

∂x1

∣∣∣
T,P

= (V 1 − V 1)
(8.6-4b)

Therefore, given data for the volume change on mixing as a function of concentration,
so that ΔmixV and the derivative ∂(ΔmixV )/∂x1 can be evaluated at x1, we can im-
mediately compute (V 1 − V 1) and (V 2 − V 2) at this composition. Knowledge of the
pure-component molar volumes, then, is all that is necessary to compute V 1 and V 2 at
the specified composition x1. By repeating the calculation at other values of the mole
fraction, the complete partial molar volume versus composition curve can be obtained.
The results of this computation are given in Table 8.6-2.
It is also possible to evaluate (V 1 − V 1) and (V 2 − V 2) in a more direct, graphical

manner. At a given composition, say x∗
1, a tangent line to theΔmixV curve is drawn; the

intersections of this tangent line with the ordinates at x1 = 0 and x1 = 1 are designated
by the symbols A and B in Fig. 8.6-1. The slope of the this tangent line is

∂(ΔmixV )
∂x1

∣∣∣
x∗1
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Table 8.6-2 The Partial Molar Volumes of the Water(1)–Methanol(2) System at T = 298.15 K

V 1 − V 1 V 1 V 2 − V 2 V 2

x1 (m3/mol) × 106 (m3/mol) × 106 (m3/mol) × 106 (m3/mol) × 106

0 −3.8893 14.180* 0 40.722†
0.1162 −2.9741 15.095 −0.0530 40.669
0.2221 −2.3833 15.686 −0.1727 40.549
0.2841 −2.0751 15.994 −0.2773 40.445
0.3729 −1.6452 16.424 −0.4884 40.234
0.4186 −1.4260 16.643 −0.6321 40.090
0.5266 −0.9260 17.143 −1.0822 39.640
0.6119 −0.5752 17.494 −1.5464 39.176
0.7220 −0.2294 17.840 −2.2363 38.486
0.8509 −0.0254 18.044 −2.9631 37.759
0.9489 −0.0026 18.072 −3.1689 37.553
1.0 0 18.069† −3.0348 37.687*

*Value of partial molar volume at infinite dilution.
†Value of pure-component molar volume.

so that

−x∗
1

∂(ΔmixV )
∂x1

∣∣∣
x∗1

is the distance indicated in Fig. 8.6-1. Referring to the figure, it is evident that the
numerical value on the ordinate at point A is equal to the left side of Eq. 8.6-4a and,
therefore, equal to the value of (V 2−V 2) atx∗

1. Similarly, the intersection of the tangent
line with the ordinate at x1 = 1 (point B ) gives the value of (V 1 − V 1) at x∗

1. Thus,
both (V 1 − V 1) and (V 2 − V 2) are obtained by a simple graphical construction.
For more accurate calculations of the partial molar volume (or any other partial mo-

lar property), an analytical, rather than graphical, procedure is used. First, one fits the
volume change on mixing, ΔmixV , with a polynomial in mole fraction, and then the
necessary derivative is found analytically. Since ΔmixV must equal zero at x1 = 0 and
x1 = 1 (x2 = 0), it is usually fit with a polynomial of the Redlich-Kister form:

Redlich-Kister
expansion (can be
used for the change on
mixing of any molar
property)

ΔmixV = x1x2

n∑
i=0

ai(x1 − x2)i (8.6-5a)

(Similar expansions are also used for ΔmixH,ΔmixU , and the other excess properties
to be defined in Chapter 9.) Then, rewriting Eq. 8.6-5a, we have

ΔmixV = x1(1 − x1)
n∑

i=0

ai(2x1 − 1)i

∂ΔmixV

∂x1

∣∣∣
T,P

= −
n∑

i=0

ai(2x1 − 1)i+1 + 2x1(1 − x1)
n∑

i=0

aii(2x1 − 1)i−1

(8.6-5b)
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and

ΔmixV − x1
∂(ΔmixV )

∂x1

∣∣∣
T,P

= V 2 − V 2

= x2
1

∑
i

ai[(x1 − x2)i − 2ix2(x1 − x2)i−1]

(8.6-6a)
Also

V 1 − V 1 = ΔmixV + x2
∂(ΔmixV )

∂x1

∣∣∣
T,P

= x2
2

∑
i

ai[(x1 − x2)i + 2ix1(x1 − x2)i−1]
(8.6-6b)

An accurate representation of the water-methanol data has been obtained using
Eq. 8.6-5 with (in units of m3/mol)

a0 = −4.0034 × 10−6

a1 = −0.177 56 × 10−6

a2 = 0.541 39 × 10−6

a3 = 0.604 81 × 10−6

and the partial molar volumes in Table 8.6-2 have been computed using these constants
and Eqs. 8.6-6a and b.
Finally, we note that for the water-methanol system the volume change on mixing

was negative, as were (V 1−V 1) and (V 2−V 2). This is not a general characteristic in
that, depending on the system, these three quantities can be positive, negative, or even
positive over part of the composition range and negative over the rest.
The partial molar enthalpy of a species in a binary mixture can be obtained by a

similar analysis, but using enthalpy change on mixing (or heat of mixing) data. Such
measurements are frequently made using the steady-state flow calorimeter schemati-
cally indicated in Fig. 8.6-2. Two streams, one of pure fluid 1 and the second of pure
fluid 2, both at a temperatureT and a pressureP , enter this steady-state mixing device,
and a single mixed stream, also at T and P , leaves. Heat is added or removed to

Pure fluid 1 at
temperature T

Pure fluid 2 at
temperature T

Heating or cooling
coil to maintain
calorimeter at
temperature T

Stirrer

Fluid mixture at
temperature T

Figure 8.6-2 An isother-
mal flow calorimeter.
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maintain the temperature of the outlet stream. Taking the contents of the calorimeter to
be the system, the mass and energy balances (Eqs. 8.4-1 and 8.4-3) are

0 = Ṅ1 + Ṅ2 + Ṅ3 (8.6-7)

and

0 = Ṅ1H1 + Ṅ2H2 + Ṅ3Hmix + Q̇ (8.6-8)

Thus

Q̇ = [Ṅ1 + Ṅ2]Hmix − Ṅ1H1 − Ṅ2H2 = [Ṅ1 + Ṅ2]ΔmixH

and

ΔmixH = Q̇/[Ṅ1 + Ṅ2]

where ΔmixH = Hmix−x1H1−x2H2. Therefore, by monitoring Ṅ1 and Ṅ2 as well
as the heat flow rate Q̇ necessary to maintain constant temperature, the heat of mixing
ΔmixH = Q̇/[Ṅ1 + Ṅ2] can be determined at the composition x1 = Ṅ1/[Ṅ1 + Ṅ2].
Measurements at a collection of values of the ratio Ṅ1/Ṅ2 give the complete heat of
mixing versus composition curve at fixed T and P .
Once the composition dependence of the heat of mixing is known, H1 and H2 may

be computed in a manner completely analogous to the procedure used for the partial
molar volumes. In particular, it is easily established that

ΔmixH − x1
∂(ΔmixH)

∂x1

∣∣∣
T,P

= (H2 − H2) (8.6-9a)

and

ΔmixH − x2
∂(ΔmixH)

∂x2

∣∣∣
T,P

= ΔmixH + x2
∂(ΔmixH)

∂x1

∣∣∣
T,P

= (H1 − H1)
(8.6-9b)

so that either the computational or graphical technique may also be used to calculate
the partial molar enthalpy.
Table 8.6-3 and Fig. 8.6-3 contain the heat of mixing data for the water–methanol

system. These data have been used to compute the partial molar enthalpies given in
Table 8.6-4. Note that one feature of the heat of mixing data of Fig. 8.6-3 is that it is
skewed, with the largest absolute value at x1 = 0.73 (and not x1 = 0.5).
The entries in Tables 8.6-2 and 8.6-4 are interesting in that they show that the partial

molar volume and partial molar enthalpy of a species in a mixture are very similar to the
pure component molar quantities when the mole fraction of that species is near unity
and are most different from the pure component values at infinite dilution, that is, as
the species mole fraction goes to zero. (The infinite dilution values in Tables 8.6-2 and
8.6-4 were obtained by extrapolating both the V and H versus mole fraction data for
each species to zero mole fraction.) This behavior is reasonable because in a strongly
nonequimolar mixture the molecules of the concentrated species are interacting most
often with like molecules, so that their environment and thus their molar properties are
very similar to those of the pure fluid. The dilute species, on the other hand, is interacting
mostly with molecules of the concentrated species, so that its molecular environment,
and consequently its partial molar properties, will be unlike those of its pure component
state. Since the environment around a molecule in a mixture is most dissimilar from
its pure component state at infinite dilution, the greatest difference between the pure
component molar and partial molar properties usually occurs in this limit.
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Table 8.6-3 Heat of Mixing Data for the Water(1)–Methanol(2)
System at T = 19.69◦C

x1 Q+ (kJ/mol MeOH) Q (kJ/mol) = ΔmixH

0.05 −0.134 −0.127
0.10 −0.272 −0.245
0.15 −0.419 −0.356
0.20 −0.569 −0.455
0.25 −0.716 −0.537
0.30 −0.862 −0.603
0.35 −1.017 −0.661
0.40 −1.197 −0.718
0.45 −1.398 −0.769
0.50 −1.632 −0.816
0.55 −1.896 −0.853
0.60 −2.218 −0.887
0.65 −2.591 −0.907
0.70 −3.055 −0.917
0.75 −3.666 −0.917
0.80 −4.357 −0.871
0.85 −5.114 −0.767
0.90 −5.989 −0.599
0.95 −6.838 −0.342

Source: International Critical Tables, Vol. 5, McGraw-Hill, New York,
1929, p. 159. Q = (1 − x1)Q+.
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Figure 8.6-3 Heat of mixing data
for thewater(1)–methanol(2) system
at T = 19.69◦C.

Finally, the analyses used here to obtain expressions relating V i and H i to ΔmixV
and ΔmixH , respectively, are easily generalized, yielding the following for the partial
molar property of any extensive function θ:

General equation
relating the partial
molar property to
the pure component
property and the
property change on
mixing θ1(T,P, x) − θ1(T,P ) = Δmixθ(T,P, x) − x2

∂(Δmixθ)
∂x2

∣∣∣
T,P

(8.6-10a)
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Table 8.6-4 The Difference between the Partial Molar and
Pure Component Enthalpies for the
Water(1)–Methanol(2) System at T = 19.69◦ C

x1 H1 − H1 (kJ/mol) H2 − H2 (kJ/mol)

0 −2.703* 0
0.05 −2.482 −0.006
0.10 −2.251 −0.025
0.15 −2.032 −0.056
0.20 −1.838 −0.097
0.25 −1.678 −0.143
0.30 −1.551 −0.191
0.35 −1.456 −0.237
0.40 −1.383 −0.280
0.45 −1.325 −0.323
0.50 −1.270 −0.373
0.55 −1.209 −0.441
0.60 −1.131 −0.548
0.65 −1.028 −0.719
0.70 −0.898 −0.992
0.75 −0.740 −1.412
0.80 −0.560 −2.036
0.85 −0.371 −2.935
0.90 −0.193 −4.192
0.95 −0.056 −5.905
1.00 0 −8.188*

*Indicates value at infinite dilution.

and

θ2(T,P, x) − θ2(T,P ) = Δmixθ(T,P, x) − x1
∂(Δmixθ)

∂x1

∣∣∣
T,P

(8.6-10b)

One can also show that if θmix is any molar property of the mixture (not the change on
mixing, which is Δmixθ), we have

θ1(T,P, x) = θmix(T,P, x) − x2
∂(θmix)

∂x2

∣∣∣
T,P

(8.6-11a)

and

θ2(T,P, x) = θmix(T,P, x) − x1
∂(θmix)

∂x1

∣∣∣
T,P

(8.6-11b)

where, for a binary mixture, x is used to represent one pair of mole fractions x1 and x2.

Illustration 8.6-1
Calculations of Partial Molar Enthalpies from Experimental Data

Using the data in Fig. 8.1-1, determine the partial molar enthalpy of sulfuric acid and water at
50 mol % sulfuric acid and 65.6◦C.
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Solution

First we must obtain values of enthalpy versus concentration at 65.6◦C. The values read from
this figure and converted to a molar basis are given below.

wt % H2SO4

Ĥ

(
kJ

kg

)
ΔmixĤ

(
kJ

kg

)
xH2SO4

mol

kg
ΔmixH

(
kJ

mol

)

0 +278 0 0 0
20 +85 −155.8 0.0439 46.45 −3.354
40 −78 −281.6 0.1091 37.38 −7.533
60 −175 −341.4 0.2160 28.32 −12.055
80 −153 −282.2 0.4235 19.26 −14.652
90 −60 −170.6 0.6231 14.73 −11.582

100 92 0 1.000 0

These data are fit reasonably well with the simple expression

ΔmixH

(
kJ

mol

)
= xH2SO4xH2O(−82.795 + 56.683xH2SO4)

= xH2SO4(1 − xH2SO4)(−82.795 + 56.683xH2SO4)

= −82.795xH2SO4 + 139.478x2
H2SO4

− 56.683x3
H2SO4

and
dΔmixH

dxH2SO4

= −82.795 + 278.965xH2SO4 − 170.049x2
H2SO4

Therefore,

dΔmixH

dxH2SO4

∣∣∣∣
xH2SO4=0.5

= 14.17
kJ

mol

and

dΔmixH

dxH2O

∣∣∣∣
xH2SO4=0.5

= − dΔmixH

dxH2SO4

∣∣∣∣
xH2SO4=0.5

= −14.17
kJ

mol

Also,

ΔmixH(xH2SO4 = 0.5) = −13.61
kJ

mol

HH2SO4
= 92

kJ

kg
× 1 kg

1000 g
× 98.708 g

mol
= 9.02

kJ

mol

and

HH2O = 278
kJ

kg
× 1 kg

1000 g
× 18.015 g

mol
= 5.01

kJ

mol

Finally, from Eq. 8.6-9b, we have

HH2SO4(xH2SO4 = 0.5, T = 65.6◦C)

= HH2SO4
(T = 65.6◦C) + ΔmixH(xH2SO4 = 0.5) + xH2O

∂ΔmixH

∂xH2SO4

∣∣∣∣
xH2SO4=0.5

= 9.02 − 13.61 + 0.5(−14.17) = −11.68
kJ

mol
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and

HH2O(xH2SO4 = 0.5, T = 65.6◦C)

= HH2O(T = 65.6◦C) + ΔmixH(xH2SO4 = 0.5) + xH2SO4

∂ΔmixH

∂xH2O

∣∣∣∣
xH2SO4=0.5

= 5.01 − 13.61 + 0.5(14.17) = −1.52
kJ

mol

Note that in this case the pure component and partial molar enthalpies differ considerably. Con-
sequently, we say that this solution is quite nonideal, where, as we shall see in Chapter 9, an ideal
solution is one in which some partial molar properties (in particular the enthalpy, internal energy,
and volume) are equal to the pure component values. Further, here the solution is so nonideal that
at the temperature chosen the pure component and partial molar enthalpies are even of different
signs for both water and sulfuric acid. For later reference we note that, at xH2SO4 = 0.5, we have

HH2SO4 − HH2SO4
= −20.7

kJ

mol
and HH2O − HH2O = −6.5

kJ

mol

Generally, any partial molar property differs most from the pure component property
in the limit of the component being in high dilution, or at infinite dilution. Therefore,
except for components that associate to form dimers, for example, the largest differ-
ences between the partial molar and pure component molar properties are

θ1(T,P, x1 → 0) − θ1(T,P ) = − ∂(Δmixθ)
∂x2

∣∣∣∣
x2=1

= +
∂(Δmixθ)

∂x1

∣∣∣∣
x1=0

(8.6-12a)

and

θ2(T,P, x2 → 0) − θ2(T,P ) = − ∂(Δmixθ)
∂x1

∣∣∣∣
x1=1

= +
∂(Δmixθ)

∂x2

∣∣∣∣
x2=0

(8.6-12b)

Illustration 8.6-2
Calculation of Infinite Dilution Partial Molar Enthalpies from Experimental Data

Compute the difference between the infinite dilution partial molar enthalpy and the pure compo-
nent molar enthalpy for sulfuric acid and water at 65.6◦C using the information in the previous
illustration.

Solution

From the previous illustration(
∂ΔmixH

∂xH2SO4

)
T,P

= −82.795 + 278.965xH2SO4 − 170.049x2
H2SO4

Therefore,(
∂ΔmixH

∂xH2SO4

)
xH2SO4=1

= +26.11
kJ

mol
and

(
∂ΔmixH

∂xH2SO4

)
xH2SO4=0

= −82.80
kJ

mol
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so that

HH2SO4(T = 65.6◦C, xH2SO4 = 0) − HH2SO4
(T = 65.6◦C) = −82.80

kJ

mol

in which case

HH2SO4(T = 65.6◦C, xH2SO4 = 0) = 9.02 − 82.80 = −73.80
kJ

mol

HH2O(T = 65.6◦C, xH2O = 0) − HH2O(T = 65.6◦C) = −26.11
kJ

mol

and

HH2O(T = 65.6◦C, xH2O = 0) = 5.01 − 26.11 = −21.1
kJ

mol

Note that for the sulfuric acid + water system at T = 65.6◦C the differences between the pure
component and partial molar properties at infinite dilution are considerably greater than at the
mole fraction of 0.5 in the previous illustration.

There is a simple physical interpretation for partial molar properties at infinite dilu-
tion. In general, we have from Eq. 8.1-13 for any total property θ(T,P, x) in a binary
mixture that

θ(T,P, x) = N1θ1(T,P, x) + N2θ2(T,P, x) (8.6-13)

Now consider the case when N2 = 1 and N1 
 N2 so that x1 ∼ 1, in which case
θ1(T,P, x1 ∼ 1) ∼= θ1(T,P ), since species 1 is essentially at the pure component
limit. Also, θ2(T,P, x1 ∼ 1) is the partial molar property of species 2 at infinite di-
lution, so that at in this limit

θ(T,P, x1 ∼ 1) = N1θ(T,P ) + θ2(T,P, x2 ∼ 0) (8.6-14)

From this equation we see that the infinite dilution partial molar property θ2(T,P,
x2 ∼ 0) is the amount by which the total property θ changes as a result of the addition
of one mole of species 2 to an infinitely large amount of species 1 (so that x2 remains
about zero). Note that if the solution were ideal, the total property θ would change by an
amount equal to the pure component molar property θ2; however, since most solutions
are nonideal, the change is instead equal to θ2.

Illustration 8.6-3
Calculation of the Isothermal Enthalpy Change of Mixing

One mole of sulfuric acid at 65.6◦C is added to 1000 moles of water at the same temperature. If
the mixing is done isothermally, estimate the change in enthalpy of the mixture.

Solution

From Eq. 8.6-14,

H(T = 65.6◦C, NH2O = 1000, NH2SO4 = 1) − H(T = 65.6◦C, NH2O = 1000, NH2SO4 = 0)

= HH2SO4(T = 65.6◦C, xH2SO4 = 0.001 ∼ 0) = −73.80
kJ

mol

= ΔmixH(1000 mol H2O + 1 mol H2SO4)

[The numerical value for HH2SO4(T = 65.6◦C, xH2SO4 ∼ 0) was obtained from the previous
illustration.]
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8.7 CRITERIA FOR PHASE EQUILIBRIUM IN MULTICOMPONENT SYSTEMS

An important observation in this chapter is that the equations of change for a mul-
ticomponent mixture are identical, in form, to those for a pure fluid. The difference
between the two is that the pure fluid equations contain thermodynamic properties
(U , H , S, etc.) that can be computed from pure fluid equations of state and heat ca-
pacity data. Whereas in the multicomponent case these thermodynamic properties can
be computed only if the appropriate mixture equation of state and heat capacity data
or enthalpy-concentration and entropy-concentration data are given, or if we otherwise
have enough information to evaluate the necessary concentration-dependent partial mo-
lar quantities at all temperatures, pressures, and compositions of interest. Although this
represents an important computational difference between the pure fluid and mixture
equations, it has no effect on their fundamental structure. Consequently, for a closed
system, we have for both the pure component and multicomponent cases

dU

dt
= Q̇ + ẆS − P

dV

dt
(8.7-1)

and
dS

dt
=

Q̇

T
+ Ṡgen (8.7-2)

where
U = NU(T,P )
S = NS(T,P )

{
for the pure component
system (molar basis)

and

U =
C∑

i=1

NiU i(T,P, x)

S =
C∑

i=1

NiSi(T,P, x)

{
for a multicomponent
system (molar basis)

(8.7-3)

Since the form of the balance equations is unchanged, we can use, without modifica-
tion, the analysis of the last chapter to establish that the equilibrium criteria for a closed
multicomponent mixture are (Problem 8.23)

S = maximum for equilibrium at constant M, U, and V

A = minimum for equilibrium at constant M, T, and V

G = minimum for equilibrium at constant M, T, and P

(8.7-4)

Thus, although it may be computationally more difficult to identify the equilibrium state
in a multicomponent mixture than is the case for a pure fluid, the basic criteria used in
this identification are the same.
As the first application of these criteria, consider the problem of identifying the state

of equilibrium in a closed, nonreacting multicomponent system at constant internal en-
ergy and volume. To be specific, supposeN1 moles of species 1,N2 moles of species 2,
and so on are put into an adiabatic container that will be maintained at constant volume,
and that these species are only partially soluble in one another, but do not chemically
react. What we would like to be able to do is to predict the composition of each of the
phases present at equilibrium. (A more difficult but solvable problem is to also pre-
dict the number of phases that will be present. This problem is briefly considered in



8.7 Criteria for Phase Equilibrium in Multicomponent Systems 397

Chapter 11.) In the analysis that follows, we develop the equation that will be used in
Chapters 10, 11, and 12 to compute the equilibrium compositions.
The starting point for solving this problem are the general equilibrium criteria of

Eq. 8.7-4. In particular, the equilibrium criterion for a closed, adiabatic, constant-volume
system is

S = maximum

subject to the constraints of constant U , V , and total number of moles of each species
Ni. For the two-phase system, each extensive property (e.g., Ni, S, U , V ) is the sum
of the properties for the individual phases, for example,

Ni = N I
i + N II

i

where the superscripts I and II refer to the phase. In general, the problem of finding
the extreme value of a function subject to constraints is not a straightforward task, as
will become evident later. However, here this can be done easily. We start by setting the
differential of the entropy for the two-phase system equal to zero,

dS = dSI + dSII = 0 (8.7-5)

and then use Eq. 8.2-4, rearranged as

dS =
1
T

dU +
P

T
dV − 1

T

C∑
i=1

Gi dNi

for each phase. Now recognizing that since the total internal energy, total volume, and
the number of moles of each species are fixed, we have

dU II = −dU I

dV II = −dV I

dN II
i = −dN I

i

which can be used in Eq. 8.7-5 to obtain

dS =
(

1
T I

− 1
T II

)
dU I +

(
P I

T I
− P II

T II

)
dV I −

C∑
i=1

(
GI

i

T I
− GII

i

T II

)
dN I

i = 0

(8.7-6)
The condition for equilibrium is that the differential of the entropy be zero with re-

spect to all variations of the independent and unconstrained variables, here dU I, dV I,
and each of the dN I

i . In order for Eq. 8.7-6 to be satisfied, we must have (1) that(
∂S

∂U I

)
V I,NI

i

= 0

which implies

First criterion for
phase equilibrium

1
T I

=
1

T II
or simply T I = T II (8.7-7a)

(2) that (
∂S

∂V I

)
UI,NI

i

= 0
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which implies

P I

T I
=

P II

T II

or, in view of Eq. 8.7-7a,

Second criterion for
phase equilibrium

P I = P II (8.7-7b)

and (3) that (∂S/∂N I
i )UI,V I,NI

j �=i
= 0 for each species i, which implies

Third criterion for
phase equilibrium

GI
i = GII

i or μI
i = μII

i for each species i (8.7-7c)

since T I = T II. In Eq. 8.7-7c, μi = Gi is the chemical potential of species i.
Thus, for phase equilibrium to exist in a closed, nonreacting multicomponent system

at constant energy and volume, the pressure must be the same in both phases (so that
mechanical equilibrium exists), the temperature must be the same in both phases (so
that thermal equilibrium exists), and the partial molar Gibbs energy of each species
must be the same in each phase (so that equilibrium with respect to species diffusion
exists).15

Note that with the replacement of the partial molar Gibbs free energy by the pure
component Gibbs energy, Eqs. 8.7-7a, b, and c become identical to the conditions for
phase equilibrium in a one-component system derived in Sec. 7.1 (see Eqs. 7.1-9a, b,
and c). In principle, we could now continue to follow the development of Chapter 7
and derive the conditions for stability of the equilibrium state. However, this task is
algebraically complicated and will not be considered here.16

To derive the conditions for phase equilibrium in a closed system at constant (and, of
course, uniform) temperature and pressure, we start from the equilibrium criterion that
G be a minimum and set the differential of G for the two-phase system equal to zero,
that is,

dG = dGI + dGII = 0 (8.7-8)

Now recognizing that at constant T and P (from Eq. 8.2-1)

dG|T,P =
C∑

i=1

Gi dNi

and that the total number of moles of each species is fixed, so that Ni = N I
i + N II

i or
dN II

i = −dN I
i , we obtain

dG =
C∑

i=1

GI
i dN I

i +
C∑

i=1

GII
i dN II

i =
C∑

i=1

(GI
i − GII

i ) dN I
i = 0

15Clearly, from these results, it is a species partial molar Gibbs energy difference between phases, rather than a
concentration difference, that is the driving force for interphase mass transfer in the approach to equilibrium.
16See, for example, of J. W. Tester and M. Modell, Thermodynamics and Its Applications, 3rd ed., Prentice Hall,
Englewood Cliffs, N.J. (1997) Chapter 7.
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Setting the derivative of the Gibbs energy with respect to each of its independent
variables (here the mole numbers N I

i ) equal to zero yields(
∂G

∂N I
i

)
NI

j �=i

= 0 = GI
i − GII

i or GI
i = GII

i

so that here, as in Chapter 7, we find that the equality of Gibbs free energies is a nec-
essary condition for the existence of phase equilibrium for systems subject to a variety
of constraints (see Problem 8.3).
Although we will not do so here, it is easy to show that these analyses for two-phase

equilibrium are easily generalized to multiphase equilibrium and yield

GI
i = GII

i = GIII
i = · · · (8.7-9)

8.8 CRITERIA FOR CHEMICAL EQUILIBRIUM, AND COMBINED CHEMICAL
AND PHASE EQUILIBRIUM

Equations 8.7-4 also provide a means of identifying the equilibrium state when chem-
ical reactions occur. To see this, consider first the case of a single chemical reaction
occurring in a single phase (both of these restrictions will be removed shortly) in a
closed system at constant temperature and pressure.17 The total Gibbs energy for this
system, using the reaction variable notation introduced in Sec. 8.3, is

G =
C∑

i=1

NiGi =
C∑

i=1

(Ni,0 + νiX)Gi

Since the only variation possible in a one-phase, closed system at constant temperature
and pressure is in the extent of reaction X , the equilibrium criterion is(

∂G

∂X

)
T,P

= 0

which yields

Criterion for chemical
equilibrium of a single
reaction

0 =
C∑

i=1

νiGi (8.8-1)

(Note that
C∑
i

Ni(∂Gi/∂X)T,P is equal to zero by the Gibbs-Duhem equation,

Eq. 8.2-14 with Y = X .)
It is possible to show that the criterion for chemical equilibrium developed here is also

applicable to systems subject to constraints other than constant temperature and pres-
sure (Problem 8.4). In fact, Eq. 8.8-1, like the phase equilibrium criterion of Eq. 8.7-9,
is of general applicability. Of course, the difficulty that arises in using either of these
equations is translating their simple form into a useful prescription for equilibrium

17Since chemists and chemical engineers are usually interested in chemical and phase equilibria at constant tem-
perature and pressure, the discussions that follow largely concern equilibrium under these constraints.
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calculations by relating the partial molar Gibbs energies to quantities of more direct
interest, such as temperature, pressure, and mole fractions. This problem will be the
focus of much of the rest of this book.
The first generalization of the analysis given here is to the case of multiple chemical

reactions in a closed, single-phase, constant-temperature and constant-pressure system.
Using the notation of Sec. 8.3, the number of moles of species i present at any time is

Ni = Ni,0 +
M∑
j=1

νijXj (8.35)

where the summation is over the independent reactions. The total Gibbs energy of the
system is

G =
C∑

i=1

NiGi =
C∑

i=1

(
Ni,0 +

M∑
j=1

νijXj

)
Gi

=
C∑

i=1

Ni,0Gi +
C∑

i=1

M∑
j=1

νijXjGi

(8.8-2)

The condition for chemical equilibrium in thismultireaction system isG = minimum
or dG = 0 for all variations consistent with the stoichiometry at constant temperature,
pressure, and total mass. For the present case this implies(

∂G

∂Xj

)
T,P,Xi �=j

= 0 j = 1, 2, . . . ,M (8.8-3)

so that(
∂G

∂Xj

)
T,P,Xi �=j

= 0 =
C∑

i=1

νijGi +
C∑

i=1

Ni

(
∂Gi

∂Xj

)
T,P,Xk�=j

for all independent
reactions
j = 1, 2, . . . ,M

Since the sum
∑C

i=1 Ni(∂Gi/∂Xj)T,P,Xk�=j
vanishes by the Gibbs-Duhem equation,

the equilibrium criterion is

Chemical equilibrium
criteria for multiple
reactions

C∑
i=1

νijGi = 0 j = 1, 2, . . . ,M (8.8-4)

This equation is analogous to Eq. 8.8-1 for the single-reaction case. The interpretation
of Eq. 8.8-4 is clear: In a system in which several chemical reactions occur, chemical
equilibrium is achieved only when each reaction is itself in equilibrium.
The final case to be considered is that of combined phase and chemical equilibrium

in a closed system at constant temperature and pressure. At this point you can probably
guess the final result: If both phase changes and chemical transformations are pos-
sible, equilibrium occurs only when each possible transformation is itself in equilib-
rium. Thus, Eqs. 8.7-7 and 8.8-4 must be simultaneously satisfied for all species and all
reactions in all phases.
To prove this assertion, it is first useful to consider the mathematical technique of

Lagrange multipliers, a method used to find the extreme (maximum or minimum) value
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of a function subject to constraints. Rather than develop the method in complete gener-
ality, we merely introduce it by application to the problem just considered: equilibrium
in a single-phase, multiple–chemical reaction system.
We identified the equilibrium state for several chemical reactions occurring in a

single-phase system at constant temperature and pressure by finding the state for which

G =
C∑

i=1

NiGi was equal to a minimum subject to the stoichiometric constraints

Ni = Ni,0 +
M∑
j=1

νijXj for all species i

The procedure used was to incorporate the constraints directly into the Gibbs energy
function and then find the minimum value of the resulting unconstrained equation
(Eq. 8.8-2) by setting each of the M derivatives (∂G/∂Xj)T,P,Xi �=j

equal to zero.
However, this direct substitution technique can be very cumbersome when the con-
straints are complicated, as is the case in the problem of combined chemical and phase
equilibrium.
An alternative method of obtaining a solution to the multiple-reaction, single-phase

equilibrium problem is to use the method of Lagrange multipliers.18 Here one first
rewrites the constraints as

Ni − Ni,0 −
M∑
j=1

νijXj = 0 i = 1, 2, . . . , C (8.8-5)

and then creates a new function G by adding the constraints, each with a multiplying
parameter αi, a Lagrange multiplier, to the original Gibbs function:

G =
C∑

i=1

NiGi +
C∑

i=1

αi

[
Ni − Ni,0 −

M∑
j=1

νijXj

]
(8.8-6)

The independent variables of this new function areN1,N2, . . . ,NC ;X1,X2, . . . ,XM;
and α1, α2, . . . , αC . To determine the state for which the Gibbs energy is a minimum
subject to the stoichiometric constraints of Eq. 8.8-5, the partial derivatives of this new
unconstrained function G with respect to each of its independent variables are set equal
to zero. From this procedure we obtain the following sequence of simultaneous equa-
tions to be solved:(

∂G
∂Nk

)
T,P,Xj,Nj�=k

= 0 = Gk + αk +
C∑

i=1

Ni

(
∂Gi

∂Nk

)
T,P,Xj,Nj�=k

where the last term is zero by the Gibbs-Duhem equation, so that

αk = −Gk k = 1, 2, . . . , C (8.8-7)
Also, (

∂G
∂Xk

)
T,P,Ni,Xj�=k

= 0 = −
C∑

i=1

νikαi k = 1, 2, . . . ,M (8.8-8)

18A more complete discussion of Lagrange multipliers may be found in M. H. Protter and C. B. Morrey, College
Calculus with Analytic Geometry, Addison-Wesley, Reading, Mass. (1964), pp. 708–715; and V. G. Jenson and
G. V. Jeffreys,Mathematical Methods in Chemical Engineering, Academic Press, New York (1963), pp. 482–483.



402 Chapter 8: The Thermodynamics of Multicomponent Mixtures

or, using Eq. 8.8-7,
C∑

i=1

νikGi = 0 k = 1, 2, . . . ,M (8.8-9)

and finally,

(
∂G
∂αi

)
T,P,Xj,Nk

= 0 = Ni − Ni,0 −
M∑
j=1

νijXj i = 1, 2, . . . (8.8-10)

Clearly, Eq. 8.8-9 gives the same equilibrium requirement as before (see Eq. 8.8-4),
whereas Eq. 8.8-10 ensures that the stoichiometric constraints are satisfied in solv-
ing the problem. Thus the Lagrange multiplier method yields the same results as the
direct substitution or brute-force approach. Although the Lagrange multiplier method
appears awkward when applied to the very simple problem here, its real utility is for
complicated problems in which the number of constraints is large or the constraints
are nonlinear in the independent variables, so that direct substitution is very difficult
or impossible.
To derive the criteria for combined chemical and phase equilibrium, the following

notation will be used: Nk
i and Gk

i are, respectively, the number of moles and partial
molar Gibbs energy of species i in the kth phase; Ni,0 is the initial number of moles of
species i in the closed system; and Xj is the overall molar extent of reaction (reaction
variable) for the jth independent reaction, regardless of which phase or in how many
different phases the reaction occurs. Thus⎛

⎝Total number of
moles of species
i in all P phases

⎞
⎠ =

P∑
k=1

Nk
i = Ni,0 +

M∑
j=1

νijXj (8.8-11)

and (
Total Gibbs free
energy of system

)
= G =

P∑
k=1

C∑
i=1

Nk
i Gk

i (8.8-12)

whereP is the number of phases, C is the number of components, andM is the number
of independent reactions.
The equilibrium state for a closed system at constant temperature and pressure is

that state for which the Gibbs energy G achieves a minimum value from among all the
states consistent with the reaction stoichiometry. The identification of the equilibrium
state is then a problem ofminimizing theGibbs energy subject to the stoichiometric con-
straints of Eq. 8.8-11. Since the easiest way of solving this problem is to use the method
of Lagrange multipliers, we define a set of Lagrange multipliers, α1, α2, . . . , αC and
construct the augmented function

G =
P∑

k=1

C∑
i=1

Nk
i Gk

i +
C∑

i=1

αi

{ P∑
k=1

Nk
i − Ni,0 −

M∑
j=1

νijXj

}
(8.8-13)

whose minimumwe wish to find for all variations of the independent variablesX1,X2,
. . . ,XM,N I

1,N
II
1 , . . . ,NP

C , and α1, α2, . . . , αC .
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Setting each of the partial derivatives of G with respect to N I
1,N

II
1 , . . . equal to zero,

remembering that theN ’s,X’s, and α’s are now to be treated as independent variables,
yields19(

∂G
∂N I

1

)
= GI

1 +
P∑

k=1

C∑
i=1

Nk
i

(
∂Gk

i

∂N I
1

)
+ α1 = GI

1 + α1 = 0

(
∂G

∂N II
1

)
= GII

1 +
P∑

k=1

C∑
i=1

Nk
i

(
∂Gk

i

∂N II
1

)
+ α1 = GII

1 + α1 = 0

...

(8.8-14)

In each case the double-summation term vanishes by application of the Gibbs-Duhem
equation (Eq. 8.2-15) to each phase. The net information content of Eqs. 8.8-14 is

GI
1 = GII

1 = · · · = GP
1 = −α1

and by generalization,

GI
i = GII

i = · · · = GP
i = −αi i = 1, 2, . . . , C (8.8-15)

These equations establish that one of the equilibrium conditions in a multiple-reaction,
multiphase system is that phase equilibrium be established for each of the species
among the phases in which the species is present.
Another set of equilibrium criteria is obtained by minimizing G with respect to each

of the reaction variables Xj (j = 1, . . . ,M). Thus20(
∂G
∂X1

)
= 0 =

P∑
k=1

C∑
i=1

Nk
i

(
∂Gk

i

∂X1

)
−

C∑
i=1

αiνi1 = 0 (8.8-16)

The first term on the right side of this equation vanishes by the Gibbs-Duhem equation,
and from Eq. 8.8-15, we can set GI

i = GII
i = · · · = Gk

i = · · · = −αi and so obtain(
∂G
∂X1

)
= 0 =

C∑
i=1

νi1G
k
i (8.8-17)

Similarly, from ∂G/∂X2 = 0, ∂G/∂X3 = 0, . . . , we obtain

C∑
i=1

νijG
k
i = 0 for all phases k = I, II, . . . ,P

and all reactions j = 1, 2, . . . ,M (8.8-18)

which establishes that a further condition for equilibrium in a multiphase, multireac-
tion system is that each reaction be in equilibrium in every phase. In fact, since at

19Though we have not listed the variables being held constant, you should recognize that all variables in the set T ,
P , Nk

i (i = 1, . . . , C; k = 1, . . . ,P), Xj (j = 1, . . . ,M), and αi (i = 1, . . . , C), except the one being varied in
the derivative, have been held constant.
20See footnote 18.
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equilibrium the partial molar Gibbs energy of each species is the same in every phase
(see Eq. 8.8-15), if Eq. 8.8-18 is satisfied in any phase, it is satisfied in all phases.
Finally, setting the partial derivatives of G with respect to each of the Lagrange

multipliers αi equal to zero yields the stoichiometric constraints of Eq. 8.8-11.
The equilibrium state is that state for which Eqs. 8.8-11, 8.8-15, and 8.8-18 are
simultaneously satisfied.
Thus, we have proved the assertion that in the case of combined chemical and phase

equilibria the conditions of phase equilibriummust be satisfied for all species in each of
the phases and, furthermore, that chemical equilibrium must exist for each reaction in
each phase. (The fact that each reaction must be in chemical equilibrium in each phase
does not imply that each mole fraction will be the same in each phase. This point is
demonstrated in Chapter 13.)

8.9 SPECIFICATION OF THE EQUILIBRIUM THERMODYNAMIC STATE OF A
MULTICOMPONENT, MULTIPHASE SYSTEM; THE GIBBS PHASE RULE

As has been mentioned several times, the equilibrium state of a single-phase, one-
component system is completely fixed by the specification of two independent, inten-
sive variables. From this observation we were able, in Sec. 7.6, to establish a simple
relation for determining the number of degrees of freedom for a single-component, mul-
tiphase system. Here an analogous equation is developed for determining the number of
degrees of freedom in a reacting multicomponent, multiphase system; this relationship
is called the Gibbs phase rule.
The starting point for the present analysis is the observation in Sec. 8.1 that the equi-

librium thermodynamic state of a single-phase C-component system can be fixed by
specifying the values of two intensive variables and C − 1 mole fractions. Alterna-
tively, the specification of any C + 1 independent state variables could be used to fix
the state of this system.21 Thus, we can say that a C-component, single-phase system
has C + 1 degrees of freedom, that is, we are free to adjust C + 1 independent inten-
sive thermodynamic properties of this system; however, once this is done, all the other
intensive thermodynamic properties are fixed. This is equivalent to saying that if T , P ,
x1, x2, . . . , xC−1 are taken as the independent variables, there exist equations of state
in nature of the form

V = V (T,P, x1, . . . , xC−1)
S = S(T,P, x1, . . . , xC−1)
G = G(T,P, x1, . . . , xC−1)

although we may not have been clever enough in our experiments to have determined
the functional relationship between the variables.
Our interest here is in determining the number of degrees of freedom in a general

multicomponent, multiphase chemically reacting system consisting of C components
distributed among P phases and in which M independent chemical reactions occur.
Since C + 1 variables are required to completely specify the state of each phase, and

21By C+1 independent state variables wemean C+1 nonredundant pieces of information about the thermodynamic
state of the system. For example, temperature, pressure, and C − 1 mole fractions form a set of C + 1 independent
variables; temperature and C mole fractions are not independent, however, since

∑C
i xi = 1, so that only C − 1

mole fractions are independent. Similarly, for a gas mixture composed of ideal gases, the enthalpy or internal
energy, temperature, and C − 1 mole fractions do not form an independent set of variables, since H and U are
calculable from the mole fractions and the temperature. However,H , P , and C−1mole fractions are independent.
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there are P phases present, it would appear that a total of P(C + 1) variables must be
specified to fix the state of each of the phases. Actually, the number of variables that
must be specified is considerably fewer than this, since the requirement that equilibrium
exists provides a number of interrelationships between the state variables in each of the
phases. In particular, the fact that the temperature must be the same in all phases,

T I = T II = T III = · · · = TP (8.9-1)

results in (P−1) restrictions on the values of the state variables of the phases. Similarly,
the requirement that the pressure be the same in all phases,

P I = P II = P III = · · · = PP (8.9-2)

provides an additional (P − 1) restrictions. Since each of the partial molar Gibbs en-
ergies is in principle calculable from equations of state of the form

Gj
i = Gj

i(T,P, x j
1, x

j
2, . . . , x

j
C−1) (8.9-3)

the condition for phase equilibrium,

GI
i = GII

i = · · · = GP
i i = 1, 2, . . . , C (8.9-4)

provides C(P − 1) additional relationships among the variables without introducing
any new unknowns.
Finally, ifM independent chemical reactions occur, there areM additional relations

of the form
C∑

i=1

νijGi = 0 j = 1, 2, . . . ,M (8.9-5)

(where we have omitted the superscript indicating the phase since, by Eq. 8.9-4, the
partial molar Gibbs energy for each species is the same in all phases).
Now designating the number of degrees of freedom by the symbol F , we have

Gibbs phase rule

F =

⎛
⎝Number of unknown

thermodynamic
parameters

⎞
⎠ −

(
Number of independent relations
among the unknown parameters

)

= P(C + 1) − [2(P − 1) + C(P − 1) + M]
= C −M−P + 2

(8.9-6)

Therefore, in a C-component, P-phase system in whichM independent chemical reac-
tions occur, the specification of C −M−P +2 state variables of the individual phases
completely fixes the thermodynamic state of each of the phases. This result is known
as the Gibbs phase rule.
In practice, temperature, pressure, and phase composition aremost commonly used to

fix the thermodynamic state of multicomponent, multiphase systems, though any other
information about the thermodynamic state of the individual phases could be used as
well. However, thermodynamic information about the composite multiphase system is
not useful in fixing the state of the system. That is, we could use the specific volume of
any one of the phases as one of the C − M − P + 2 degrees of freedom, but not the
molar volume of the multiphase system. Finally, we note that for a pure fluid C = 1
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and M = 0, so that Eq. 8.9-6 reduces to

F = 3 − P (8.9-7)

the result found in Sec. 7.6.

Illustration 8.9-1
Application of the Gibbs Phase Rule

In Chapter 13 we will consider the reaction equilibrium when styrene is hydrogenated to form
ethylbenzene. Depending on the temperature and pressure of the system, this reaction may take
place in the vapor phase or in a vapor-liquid mixture. Show that the system has three degrees of
freedom if a single phase exists, but only two degrees of freedom if the reactants and products
form a two-phase mixture.

Solution

The styrene-hydrogen-ethylbenzene system is a three-component (C = 3), single-reaction
(M = 1) system. Thus

F = C −M−P + 2 = 4 − P

Clearly, if only the vapor phase exists (P = 1), there are three degrees of freedom; if, however,
both the vapor and liquid are present (P = 2), the system has only two degrees of freedom.

Illustration 8.9-2
Another Application of the Gibbs Phase Rule

Determine the number of degrees of freedom for each of the following mixtures.

a. A one-component vapor-liquid mixture
b. A nonreacting two-component vapor-liquid mixture
c. Avapor-liquidmixture of ortho-, meta-, and para-xylenes and ethylbenzene at temperatures

high enough that the xylenes can undergo isomerization

Solution

a. This system has one component (C = 1) and two phases (P = 2), and there are no chemical
reactions (M = 0). Therefore,

F = C −M−P + 2 = 1 − 0 − 2 + 2 = 1

Consequently, this system has one degree of freedom. If the temperature is set, the pressure
is fixed; or if the pressure is set, the temperature is fixed. We see this when boiling water
in a pot open to the atmosphere. At 101.3 kPa (1 atm), the temperature of the boiling water
will be 100◦C and will remain at this temperature no matter how much of the water boils
away, provided the water is pure. In order to change the temperature of this vapor-liquid
mixture, the pressure must change.

b. This system has two components (C = 2) and two phases (P = 2), and there are no
chemical reactions occurring (M = 0). The number of degrees of freedom in this system is

F = C −M−P + 2 = 2 − 0 − 2 + 2 = 2

Therefore, the values of two state parameters—for example, temperature and pressure,
temperature and the mole fraction of one of the species, or pressure and the mole frac-
tion of one of the species—must be set to fix the state of this mixture. This suggests
that at a fixed pressure the boiling temperature of the mixture will be a function of its
composition. To see the implication of this, consider the experiment of preparing a mixture
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of two species (composition initially known) at one atmosphere and heating this mixture
to its boiling point, and removing the vapor as the boiling continues. For most mixtures
(an azeotropic mixture, to be discussed in Sec. 10.2, is the exception) as boiling occurs the
composition of the vapor will be different from that of the prepared mixture, so that (by a
mass balance) the composition of the remaining liquid will change during the boiling pro-
cess (unless the vapor is continually condensed and replaced). As a result, at fixed pressure,
the boiling temperature of this mixture will continually change as the process of boiling
continues. This behavior is different from the boiling of a one-component mixture consid-
ered above, in which the temperature remains constant as the boiling process continues at
fixed pressure. Also, by changing the composition of this mixture, a range of equilibrium
temperatures can be obtained at the same pressure, or a range of equilibrium pressures can
occur at a fixed temperature.

c. There are three independent reactions for this system. One set of such independent
reactions is

m-xylene ↔ o-xylene
m-xylene ↔ p-xylene
m-xylene ↔ ethylbenzene

This system has four components (C = 4) and two phases (P = 2), and there are three
independent chemical reactions occurring (M = 3). The number of degrees of freedom in
this system is

F = C −M−P + 2 = 4 − 3 − 2 + 2 = 1

Therefore, specification of the value of only one state variable—temperature, pressure,
or the mole fraction of one of the species in one of the phases—completely fixes the two-
phase state of this mixture. For example, consider the experiment of preparing a mixture of
these species, and heating the mixture under pressure to a temperature that is high enough
that vaporization and chemical reaction occur. In this mixture, once such a temperature is
fixed, the pressure, liquid composition, and vapor composition are all fixed. If an additional
amount of one of the components is added to this mixture, the total number of moles of
vapor and liquid will change, but the pressure, the vapor mole fractions, and the liquid
mole fractions will not change. Also for this mixture, as with a pure component, the vapor-
liquid equilibrium temperature will change when the pressure is changed, but will remain
constant as boiling occurs and the vapor is removed.

It is also of interest to determine the amount and type of additional information
needed to fix the relative amounts of each of the phases in equilibrium, once their ther-
modynamic states are known. We can obtain this from an analysis that equates the
number of variables to the number of restrictions on these variables. It is convenient for
this discussion to write the specific thermodynamic properties of the multiphase system
in terms of the distribution of mass between the phases. The argument could be based
on a distribution of numbers of moles; however, it is somewhat more straightforward
on a mass basis because total mass, and not total moles, is a conserved quantity. Thus,
we will use wi to represent the mass fraction of the ith phase.22 Clearly the wi must
satisfy the equation

1 = wI + wII + wIII + · · · + wP (8.9-8)

The total volume per unit mass, V̂ , the total entropy per unit mass, Ŝ, and so on, are
related to the analogous quantities in each of the phases by the equations

V̂ = wIV̂ I + wIIV̂ II + · · · + wP V̂ P

Ŝ = wIŜI + wIIŜII + · · · + wP ŜP (8.9-9)

22I hope the notation is not too confusing. Here wI is the fraction of the total mass of the system in phase I, while
earlier in this chapter wi was used to represent the mass fraction of species i in a phase.
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In writing these equations we are presuming that the specific volumes, entropies, and
so forth for each phase (denoted by the superscript) are known from the equations of
state or experimental data for the individual phases and a previous specification of the
C −M−P + 2 degrees of freedom.
Since there are P unknown mass distribution variables, each of the wi, it is evi-

dent that we need P equations to determine the relative amounts of each of the phases.
Therefore, Eq. 8.9-8, together with the specification of P−1 intensive thermodynamic
variables for the multiphase system (which can be written in the form of Eq. 8.9-9),
are needed. This is in addition to the C −M− P + 2 intensive variables of the indi-
vidual phases that must be specified to completely fix the thermodynamic state of all
of the phases. (You should convince yourself that this conclusion is in agreement with
Illustration 7.6-1.)
Thus far we have not considered the fact that the initial composition of a chemical

or phase equilibrium system may be known. Such information can be used in the for-
mulation of species mass balances and the energy balance, which lead to additional
equations relating the phase variables. Depending on the extent of initial information
available and the number of phases present, the initial state information may or may
not reduce the number of degrees of freedom of the system. This point is most easily
demonstrated by reference to specific examples, so the effect of initial state information
will be considered in the illustrations of the following chapters, not here.
We should point out that the Gibbs phase rule is of use in deciding whether or not

an equilibrium problem is “well posed,” that is, whether enough information has been
given for the problem to be solvable, but it is not of use in actually solving for the
equilibrium state. This too is demonstrated by examples later in this book. The Gibbs
phase rule, being general in its scope and application, is regarded as another part of the
philosophical content of thermodynamics.

8.10 A CONCLUDING REMARK

The discussion in this chapter essentially concludes our development of thermodynamic
theory. The remainder of this book is largely concerned with how this theory is used
to solve problems of interest to the chemical process industry. Since the partial molar
Gibbs free energy has emerged as the central function in equilibrium computations,
Chapter 9 is concerned with the techniques used for estimating this quantity in gaseous,
liquid, and solid mixtures. Chapters 10 to 15 are devoted to the use of thermodynamics
in explaining and predicting the great diversity of physical, chemical, and biochemical
equilibria that occur in mixtures.

PROBLEMS

8.1 Prove that

a.
(

∂H

∂Ni

)
P,S,Nj�=i

= H i − TSi = Gi

b. Gi =

(
∂U

∂Ni

)
S,V,Nj�=i

=

(
∂A

∂Ni

)
V,T,Nj�=i

8.2 Derive the analogues of the Gibbs-Duhem equations
(Eqs. 8.2-8 and 8.2-9) for the constraints of

a. Constant temperature and volume
b. Constant internal energy and volume
c. Constant entropy and volume

8.3 In Sec. 8.7 we established that the condition for equi-
librium between two phases is

GI
i = GII

i (for all species present in both phases)

for closed systems either at constant temperature and
pressure or at constant internal energy and volume.
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Show that this equilibrium condition must also be
satisfied for closed systems at
a. Constant temperature and volume
b. Constant entropy and volume

8.4 Show that the criterion for chemical equilibrium
developed in the text,

C∑
i

νiGi = 0

for a closed system at constant temperature and pres-
sure, is also the equilibrium condition to be satisfied for
closed systems subject to the following constraints:
a. Constant temperature and volume
b. Constant internal energy and volume

8.5 Prove that since total mass is conserved during a
chemical reaction,

C∑
i=1

νimi = 0 for a single-reaction system

and

C∑
i=1

νijmi = 0 j = 1, 2, . . . ,M for a multiple-reaction
system

where mi is equal to the molecular weight of species i.
Also show, by direct substitution, that the first of these
equations is satisfied for the reaction

H2O = H2 + 1
2
O2

8.6 Show that the partial molar volumes computed from
Eqs. 8.6-4a and b and the partial molar enthalpies
computed from Eqs. 8.6-9a and b must satisfy the
Gibbs-Duhem equation.

8.7 Compute the partial molar volumes of methyl formate
in methanol–methyl formate and ethanol–methyl for-
mate mixtures at 298.15 K for various compositions
using the experimental data in Fig. 8.1-2a and the
following pure-component data:

V MF = 0.062 78 m3/kmol

V M = 0.040 73

V E = 0.058 68

8.8 Compute the difference between the pure-component
and partial molar enthalpies for both components at
298.15 K and various compositions in each of the
following mixtures using the data in Fig. 8.1-2b.
a. benzene–C6F5H
b. benzene–C6F6

c. benzene–C6F5Cl
d. benzene–C6F5Br
e. benzene–C6F5I

8.9 a. In vapor-liquid equilibrium in a binary mixture,
both components are generally present in both
phases. Howmany degrees of freedom are there for
such a system?

b. The reaction between nitrogen and hydrogen to
form ammonia occurs in the gas phase. How many
degrees of freedom are there for this system?

c. Steam and coal react at high temperatures to form
hydrogen, carbon monoxide, carbon dioxide, and
methane. The following reactions have been sug-
gested as being involved in the chemical transfor-
mation:

C + 2H2O = CO2 + 2H2

C + H2O = CO + H2

C + CO2 = 2CO

C + 2H2 = CH4

CO + H2O = CO2 + H2

CO + 3H2 = CH4 + H2O

How many degrees of freedom are there for
this system? [Hint: (1) How many independent
chemical reactions are there in this sequence?
(2) How many phase equilibrium equations are
there?]

8.10 a. In vapor-liquid equilibrium, mixtures sometimes
occur in which the compositions of the coexist-
ing vapor and liquid phases are the same. Such
mixtures are called azeotropes. Show that a bi-
nary azeotropic mixture has only one degree of
freedom.

b. In osmotic equilibrium, two mixtures at different
pressures and separated by a rigid membrane per-
meable to only one of the species present attain a
state of equilibrium in which the two phases have
different compositions. How many degrees of free-
dom are there for osmotic equilibrium in a binary
mixture?

c. The phase equilibrium behavior of furfural
(C5H4O2)–water mixtures is complicated because
furfural and water are only partially soluble in the
liquid phase.
(i) How many degrees of freedom are there for

the vapor-liquid mixture if only a single liquid
phase is present?

(ii) Howmany degrees of freedom are there for the
vapor-liquid mixture if two liquid phases are
present?

8.11 a. What is the maximum number of phases that
can coexist for a mixture of two nonreacting
components?

b. How would the answer in part (a) change if
the two components could react to form a third
component?
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8.12 Consider a reaction that occurs in a vessel containing
a semipermeablemembrane that allows only one of the
components to pass through it (for example, a small
molecule such as hydrogen) but will not allow the
passage of large molecules. With such a membrane,
the chemical potential of the permeable component
can be kept constant in the reaction vessel.
a. Derive the equilibrium criterion for a one-phase

reaction system described above in which the
temperature, pressure, and chemical potential of
one component are held constant.

b. Derive the equilibrium criterion for a one-phase
reaction system described above in which the
temperature, volume, and chemical potential of one
component are held constant.

8.13 The following set of reactions is thought to occur
between nitrogen and oxygen at high temperatures

N2 + 1
2
O2 = N2O

N2 + O2 = 2NO

N2 + 2O2 = N2O4

N2O4 = 2NO2

2NO + 3
2
O2 = N2O5

N2O + NO2 = 3NO

a. Find an independent set of reactions for the
nitrogen-oxygen system.

b. How many degrees of freedom are there for this
system?

c. If the starting oxygen-to-nitrogen ratio is fixed
(as in air), howmany degrees of freedom are there?

8.14 The temperature achieved when two fluid streams of
differing temperature and/or composition are adiabat-
ically mixed is termed the adiabatic mixing temper-
ature. Compute the adiabatic mixing temperature for
the following two cases:
a. Equal weights of aqueous solutions containing

10 wt % sulfuric acid at 20◦C and 90 wt % sulfuric
acid at 70◦C are mixed.

b. Equal weights of aqueous solutions containing
10 wt % sulfuric acid at 20◦C and 60 wt % sulfuric
acid at 0◦C are mixed.

Explain why the adiabatic mixing temperature is
greater than that of either of the initial solutions in one
of these cases, and intermediate between those of the
initial solutions in the other case.

8.15 The molar integral heat of solution ΔsH is defined as
the change in enthalpy that results when 1 mole of
solute (component 1) is isothermally mixed with N2

moles of solvent (component 2) and is given by

ΔsH = (1 + N2)Hmix − H1 − N2H2

= H1 + N2H2 − H1 − N2H2

ΔsH is easily measured in an isothermal calorime-
ter by monitoring the heat evolved or absorbed on
successive additions of solvent to a given amount of
solute. The table below gives the integral heat-of-
solution data for 1mol of sulfuric acid in water at 25◦C
(the negative sign indicates that heat is evolved in the
dilution process).

N2 (moles of water) 0.25 1.0 1.5 2.33

−ΔsH (J) 8242 28 200 34 980 44 690

N2 (moles of water) 4.0 5.44 9.0

−ΔsH (J) 54 440 58 370 62 800

N2 (moles of water) 10.1 19.0 20.0

−ΔsH (J) 64 850 70 710 71 970

a. Calculate the heat evolved when 100 g of pure
sulfuric acid is added isothermally to 100 g of
water.

b. Calculate the heat evolved when the solution
prepared in part (a) is diluted with an additional
100 g of water.

c. Calculate the heat evolved when 100 g of a 60 wt %
solution of sulfuric acid is mixed with 75 g of a
25 wt % sulfuric acid solution.

d. Relate (H1 −H1) and (H2 −H2) to only N1, N2,
ΔHs, and the derivatives of ΔHs with respect to
the ratio N2/N1.

e. Compute the numerical values of (H1 − H1) and
(H2 − H2) in a 50 wt % sulfuric acid solution.

8.16 The following data have been reported for the
constant-pressure heat capacity of a benzene–carbon
tetrachloride mixture at 20◦C.23

wt % CCl4 CP (J/g ◦C) wt % CCl4 CP (J/g ◦C)

0 1.7655 60 1.004
10 1.630 70 0.927
20 1.493 80 0.858
30 1.358 90 0.816
40 1.222 100 0.807
50 1.100

23International Critical Tables, Vol. 5, McGraw-Hill, New York (1929).
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On a single graph plot the constant-pressure partial
molar heat capacity for both benzene and carbon tetra-
chloride as a function of composition.

8.17 A 20 wt % solution of sulfuric acid in water is to be
enriched to a 60 wt % sulfuric acid solution by adding
pure sulfuric acid.
a. How much pure sulfuric acid should be added?
b. If the 20 wt % solution is available at 5◦C, and

the pure sulfuric acid at 50◦C, how much heat will
have to be removed to produce the 60 wt % solu-
tion at 70◦C? Howmuch heat will have to be added
or removed to produce the 60 wt % solution at its
boiling point?

8.18 Develop a procedure for determining the partial molar
properties for each constituent in a three-component
(ternary) mixture. In particular, what data would you
want, and what would you do with the data? Based
on your analysis, do you suppose there is much partial
molar property data available for ternary and quater-
nary mixtures?

8.19 The partial molar enthalpies of species in simple
binary mixtures can sometimes be approximated by
the following expressions:

H1 = a1 + b1x
2
2

and

H2 = a2 + b2x
2
1

a. For these expressions show that b1 must equal b2.
b. Making use of the fact that

lim
xi→1

θi = θi

for any thermodynamic property θ, show that

a1 = H1 a2 = H2 and ΔHmix = b1x1x2

8.20 A partial molar property of a component in a mixture
may be either greater than or less than the corre-
sponding pure-component molar property. Further-
more, the partial molar property may vary with
composition in a complicated way. Show this to be
the case by computing (a) the partial molar volumes
and (b) the partial molar enthalpies of ethanol and
water in an ethanol-water mixture. (The data that fol-
low are from Volumes 3 and 5 of the International
Critical Tables, McGraw-Hill, New York, 1929.)

Heat Evolved
on Mixing

Alcohol Density at 20◦C mol % at 17.33◦C
wt % (kg m−3) × 10−3 Water (kJ/mol of Ethanol)

0 0.9982
5 0.9894 5 0.042

10 0.9819 10 0.092
15 0.9751 15 0.167
20 0.9686 20 0.251
25 0.9617 25 0.335
30 0.9538 30 0.423
35 0.9449 35 0.519
40 0.9352 40 0.636
45 0.9247 45 0.757
50 0.9138 50 0.946
55 0.9026 55 1.201
60 0.8911 60 1.507
65 0.8795 65 1.925
70 0.8677 70 2.478
75 0.8556 75 3.218
80 0.8434 80 4.269
85 0.8310 85 5.821
90 0.8180 90 7.801
95 0.8042 95 9.818

100 0.7893

8.21 Using the information in Problems 7.13 and 8.20,
estimate the heat of vaporization for the first bit of
ethanol from ethanol-water solutions containing 25,
50, and 75 mol % ethanol and from a solution in-
finitely dilute in ethanol. How do these heats of vapor-
ization compare with that for pure ethanol computed in
Problem 7.13? Why is there a difference between the
various heats of vaporization?

8.22 The volume of a binary mixture has been reported in
the following polynomial form:

V (T, P, x1, x2) = x1b1 + x2b2 + x1x2

n∑
i=0

ai(x1 − x2)
i

a. What values should be used for b1 and b2?
b. Derive, from the equation here, expressions for V 1,

V 2, V ex
1 = V 1 − V 1 and V ex

2 = V 2 − V 2.
c. Derive, from the equation here, expressions for

the partial molar excess volumes of each species
at infinite dilution, that is, V ex

1 (T, P, x1 → 0) and
V ex

2 (T, P, x2 → 0).
8.23 Prove the validity of Eqs. 8.7-4.
8.24 The definition of a partial molar property is

M i =

(
∂(NM)

∂Ni

)
T,P,Nj�=i
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It is tempting, but incorrect, to assume that this
equation can be written as

M i =

(
∂M

∂xi

)
T,P

Prove that the correct result is

M i = M +

(
∂M

∂xi

)
T,P,xk �=i

−
∑

xj

(
∂M

∂xj

)
T,P,xk �=j

8.25 In some cases if pure liquid A and pure liquid B are
mixed at constant temperature and pressure, two liquid
phases are formed at equilibrium, one rich in species
A and the other in species B. We have proved that the
equilibrium state at constant T and P is a state of min-
imum Gibbs energy, and the Gibbs energy of a two-
phase mixture is the sum of the number of moles times
the molar Gibbs energy for each phase. What would
themolar Gibbs free energy versusmole fraction curve
look like for this system if we could prevent phase
separation from occurring? Identify the equilibrium
compositions of the two phases on this diagram.
The limit of stability of a single phase at constant tem-
perature and pressure can be found from d2G = 0 or(

∂2G

∂x2
1

)
T,P

= 0

Identify the limits of single-phase stability on the
Gibbs energy versus mole fraction curve.

8.26 Mattingley and Fenby [J. Chem. Thermodyn. 7,
307 (1975)] have reported that the enthalpies of
triethylamine-benzene solutions at 298.15 K are
given by

Hmix − [xBHB + (1 − xB)HEA]

= xB(1 − xB){1418 − 482.4(1 − 2xB)

+ 187.4(1 − 2xB)3}

where xB is the mole fraction of benzene and Hmix,
HB, and HEA are the molar enthalpies of the mix-
ture, pure benzene, and pure triethylamine, respec-
tively, with units of J/mol.
a. Develop expressions for (HB − HB) and (HEA −

HEA).
b. Compute values for (HB−HB) and (HEA−HEA)

at xB = 0.5.
c. One mole of a 25 mol % benzene mixture is to be

mixed with one mole of a 75 mol % benzene mix-
ture at 298.15 K. How much heat must be added or
removed for the process to be isothermal?

[Note: Hmix − xBHB − (1− xB)HEA is the enthalpy
change on mixing defined in Sec. 8.1.]

8.27 When water and n-propanol are isothermally mixed,
heat may be either absorbed (Q > 0) or evolved
(Q < 0), depending on the final composition of the
mixture. Volume 5 of the International Critical Tables
(McGraw-Hill, New York, 1929) gives the following
data:

mol % Water Q, kJ/mol of n-Propanol

5 +0.042
10 +0.084
15 +0.121
20 +0.159
25 +0.197
30 +0.230
35 +0.243
40 +0.243
45 +0.209
50 +0.167
55 +0.084
60 −0.038
65 −0.201
70 −0.431
75 −0.778
80 −1.335
85 −2.264
90 −4.110
95 −7.985

Plot (HW − HW) and (HNP − HNP) over the whole
composition range.

8.28 The heat-of-mixing data of Featherstone and Dick-
inson [J. Chem. Thermodyn., 9, 75 (1977)] for the
n-octanol + n-decane liquid mixture at atmospheric
pressure is approximately fit by

ΔmixH = x1x2(A + B(x1 − x2)) J/mol

where
A = −12 974 + 51.505T

and
B = +8782.8 − 34.129T

with T in K and x1 being the n-octanol mole fraction.
a. Compute the difference between the partial molar

and pure-component enthalpies of n-octanol and of
n-decane at x1 = 0.5 and T = 300 K.

b. Compute the difference between the partial molar
and pure-component heat capacities of n-octanol
and of n-decane at x1 = 0.5 and T = 300 K.

c. An x1 = 0.2 solution and an x1 = 0.9 solu-
tion are to flow continuously into an isothermal
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mixer in the mole ratio 2:1 at 300 K. Will heat have
to be added or removed to keep the temperature
of the solution leaving the mixer at 300 K? What
will be the heat flow per mole of solution leaving
the mixer?

8.29 Two streams containing pyridine and acetic acid at
25◦C are mixed and fed into a heat exchanger. Due
to the heat-of-mixing effect, it is desired to reduce the
temperature after mixing to 25◦C using a stream of
chilled ethylene glycol as indicated in the diagram.
Calculate themass flow rate of ethylene glycol needed.
The heat capacity of ethylene glycol at these condi-
tions is approximately 2.8 kJ/(kg K), and the enthalpy
change of mixing (ΔmixH) is given below.

Ethylene glycol
T = 25 °C

Ethylene glycol
T = 5°C

Pyridine
+ acetic acid
2 kmol/min
T = 25°C

Acetic acid
1 kmol/min
T = 25°C

Pyridine
1 kmol/min
T = 25°C

Data: Heat of mixing for pyridine (C5H5N) and
acetic acid at 25◦C [H. Kehlen, F. Herold and H.-
J. Rademacher, Z. Phys. Chem. (Leipzig), 261, 809
(1980)].

Pyridine Mole ΔmixH Pyridine Mole ΔmixH
Fraction (J/mol) Fraction (J/mol)

0.0371 −1006 0.4076 −4880
0.0716 −1851 0.4235 −4857
0.1032 −2516 0.4500 −4855
0.1340 −3035 0.4786 −4833
0.1625 −3427 0.5029 −4765
0.1896 −3765 0.5307 −4669
0.2190 −4043 0.5621 −4496
0.2494 −4271 0.5968 −4253
0.2760 −4440 0.6372 −3950
0.3006 −4571 0.6747 −3547
0.3234 −4676 0.7138 −3160
0.3461 −4760 0.7578 −2702
0.3671 −4819 0.8083 −2152
0.3874 −4863 0.8654 −1524
0.3991 −4882 0.9297 −806

8.30 Use the data in problem 8.29 to compute the partial
molar enthalpies of pyridine and acetic acid in their
mixtures at 25◦C over the whole composition range.

8.31 For the study of the oxidation of methane, an engineer
devises the following set of possible reactions:

CH4 + 2O2 → CO2 + 2H2O CO + 1
2
O2 → CO2

CH4 + 3
2
O2 → CO + 2H2O CH4 → C + 2H2

CO + H2O → CO2 + H2 C + 1
2
O2 → CO

C + O2 → CO2 H2 + 1
2
O2 → H2O

How many independent chemical reactions are there
in this system?

8.32 Calculate the standard heats and Gibbs energies of
reaction at 25◦C for the following reactions:
a. N2(g) + 3H2(g) = 2NH3(g)
b. C3H8(g) = C2H4(g) + CH4(g)
c. CaCO3(s) = CaO(s) + CO2(g)
d. 4CO(g) + 8H2(g) = 3CH4(g) + CO2(g) +

2 H2O (g)

8.33 Steele et al. [J. Phys. Chem. Soc., 96, 4731 (1992)]
used bomb calorimetry to compute the standard en-
thalpy of combustion of solid buckminsterfullerene
(C60) at 298.15 K to be 26 033 kJ/mol. Calculate
the standard state ΔH of transition from graphite
to buckminsterfullerene and its standard enthalpy of
formation.

8.34 The following data are available for the isothermal
heat of mixing of trichloromethane (1) and ethanol (2)
at 30◦C [reference: J. P. Shatas, M. M. Abbott, and H.
C. Van Ness, J. Chem. Eng. Data, 20, 406 (1975)].

x1, Mole ΔmixH x1, Mole ΔmixH
Fraction (J/mol) Fraction (J/mol)

0.0120 −68.8 0.5137 −66.1
0.0183 −101.3 0.5391 −1.9
0.0340 −179.1 0.5858 117.1
0.0482 −244.4 0.6172 186.5
0.0736 −344.6 0.6547 266.9
0.1075 −451.1 0.7041 360.3
0.1709 −565.3 0.7519 436.6
0.1919 −581.0 0.7772 470.5
0.2301 −585.0 0.7995 495.9
0.2636 −566.1 0.8239 510.0
0.2681 −561.9 0.8520 515.8
0.2721 −557.8 0.8784 505.3
0.3073 −519.6 0.8963 486.0
0.3221 −508.0 0.9279 420.5
0.3486 −468.5 0.9532 329.2
0.3720 −424.4 0.9778 184.7
0.3983 −369.1 0.9860 123.3
0.4604 −197.1 0.9971 25.1
0.4854 −135.4
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Compute the partial molar enthalpies of trichloro-
methane and ethanol in their mixtures at 30◦C over the
whole composition range.

8.35 An equimolar mixture of nitrogen and acetylene enters
a steady-flow reactor at 25◦C and 1 bar of pressure.
The only reaction occurring is

N2(g) + C2H2(g) = 2 HCN(g)

The product leaves the reactor at 600◦C and contains
24.2 percent mole fraction of HCN. How much heat is
supplied to the reactor per mole of HCN?

8.36 Using the data below, calculate the partial molar
enthalpies of 1-propanol and water as a function of
composition at both 25◦C and 50◦C.

Mole 25◦C Mole 50◦C
Fraction Hex Fraction Hex

Propanol (J/mol) Propanol (J/mol)

0.027 −223.16 0.031 −76.20
0.034 −290.15 0.043 −121.84
0.054 −329.50 0.082 −97.55
0.094 −384.35 0.098 −52.75
0.153 −275.07 0.206 125.60
0.262 −103.41 0.369 370.53
0.295 −81.22 0.466 435.43
0.349 −11.35 0.587 473.11
0.533 133.98 0.707 460.55
0.602 168.31 0.872 238.23
0.739 177.94

data:V. P. Belousov,Vent. LeningradUniv. Fiz., Khim,
16(1), 144 (1961).

8.37 Following are the slightly smoothed heat-of-mixing
data of R. P. Rastogi, J. Nath, and J. Misra [J.
Chem. Thermodyn., 3, 307 (1971)] for the system
trichloromethane (component 1) and 1,2,4-trimethyl
benzene at 35◦C.

ΔmixH ΔmixH
x1 (kJ/mol) x1 (kJ/mol)

0.2108 −738 0.5562 −1096
0.2834 −900 0.6001 −1061
0.3023 −933 0.6739 −976
0.4285 −1083 0.7725 −780
0.4498 −1097 0.8309 −622
0.5504 −1095

a. From the information in this table, calculate the
quantity (ΔmixH)/(x1x2) at each of the reported
compositions.

b. Compute the difference between each of the par-
tial molar and pure-componentmolar enthalpies for
this system at each composition.

8.38 We want to make a simplified estimate of the
maximum amount of work that can be obtained from
gasoline, which we will assume to be adequately
represented by n-octane (C8H18). The processes that
occur in the cylinder of an automobile engine are that
first the gasoline reacts to form a high-temperature,
high-pressure combustion gas consisting of carbon
dioxide, water, and the nitrogen initially present in the
air (as well as other by-products that we will neglect),
and then work is extracted from this combustion gas
as its pressure and temperature are reduced.
a. Assuming that n-octane (vaporized in the fuel in-

jector) and a stoichiometric amount of air (21 vol.
% oxygen, 79 vol. % nitrogen) initially at 1 bar
and 25◦C react to completion at constant volume,
calculate the final temperature and pressure of the
combustion gas, assuming further that there is no
heat loss to the pistons and cylinders of the auto-
mobile engine.

b. Calculate the final temperature of the combustion
gas and the work that can be obtained from the
gas if it is adiabatically expanded from the pressure
found in part (a) to 1 bar.

c. Calculate the maximum amount of additional work
that can be obtained from the combustion gas as its
temperature is isobarically lowered from the tem-
perature found in part (b) to an exhaust temperature
of 150◦C.

Data: Consider the gas to be ideal, in which case the
partial molar enthalpies of the components are equal
to their pure component molar enthalpies at the same
temperature and pressure.

ΔfH
◦ (kJ/mol) CP J/(mol K)

C8H18 −208.4
CO2 −393.5 51.25
H2O −241.8 39.75
N2 0.0 32.43
O2 0.0 33.45

Note that for the calculations here the molar heat
capacity of the mixture is just the mole fraction–
weighted sum of the heat capacities of the individual
components,

CP,mixture =
∑

i

xiCP,i
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Below is a diagram of the three steps in the process.

Constant
volume

Adiabatic
expansion

Isobaric
cooling

1 2 3 4

8.39 “Duhem’s theorem” states that for any number of
components, phases, and chemical reactions in a
closed system, if the initial amounts of all the species
are specified, the further specification of two inde-
pendent state variables completely fixes the state of
the system. Prove that this theorem is either valid
or invalid.

8.40 Calculate the minimum work required to separate air
(79 mole % nitrogen) into pure oxygen and nitrogen
assuming an isothermal, steady flow process at 300 K.
The inlet air pressure is 10 bar and each stream is to
exit at 10 bar and 300 K.

8.41 To obtain uranium 235 (U235) for use in nuclear
power plants, uranium containing ore containing U238

and U235 is crushed, subjected to a solvent ex-
traction process, and then reacted with fluorine to
produce uranium hexafluoride, which is a gas at am-
bient conditions the U235 is then separated from the
U238 by various multi-stage methods that take advan-
tage of the small mass difference between U235F6 and
U238F6, such as gas centrifuges or gaseous diffusion.

The hexafluoride gas produced from naturally occur-
ring uranium ores contains 0.72 mole percent U235F6

the remainder being U238F6. It is desired to recover
25% of the U235F6 in a gas stream enriched to 2 mole
percent. What is the minimum heat and work flows
necessary to accomplish this enrichment for a 1000
mole gaseous stream at ambient conditions?

8.42 The following is a modified van der Waals equation
with an improved temperature dependence

P =
RT

V mix

− a

V 2
mix

√
T

The usual van der Waals one-fluid mixing rules are
used with this equation of state. Develop an expres-
sion for the mixture constant volume heat capacity of
a mixure at elevated pressures in terms of the mix-
ture volume V mix, the mole fractions, temperature,
the equation of state parameters, and each of the pure
component ideal gas heat capacities.

8.43 The volume change on mixing in cm3/mol for
ethanol(1) + methyl butyl ether(2) mixtures at 25◦C
is given by the following equation

ΔmixV (x) = x1x2 [−1.026 + 0.220(x1 − x2)]

Given that V 1 = 58.63 cm3/mol and V 2 =
118.46 cm3/mol, calculate the following when
750 cm3 of pure ethanol is mixed with 1500 cm3

of methyl butyl ether at 25◦C:
a. The volume of the solution if an ideal mixture was

formed.
b. The actual volume of the solution.
c. The partial molar volumes of both components in

the mixture above.



Chapter 9

Estimation of the Gibbs
Energy and Fugacity of a
Component in a Mixture

The most important ingredient in the thermodynamic analysis of mixtures is informa-
tion about the partial molar properties of each species in the mixture. The partial molar
Gibbs energy is of special interest since it is needed in the study of phase and chemi-
cal equilibria, which are considered in great detail in the following chapters. For many
mixtures the partial molar property information needed for equilibrium calculations is
not available. Consequently, in this chapter we consider methods for estimating the
partial molar Gibbs energy and its equivalent, the fugacity. Before proceeding with
this detailed study, we will consider two very simple cases, a mixture of ideal gases
(Sec. 9.1) and the ideal mixture (Sec. 9.3), for which the partial molar properties are
simply related to the pure component properties.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 9

The goals of this chapter are for the student to:

• Be able to distinguish between ideal mixtures and nonideal mixtures (Sec. 9.3)
• Understand the concepts of excess properties and activity coefficients (Secs. 9.3
and 5)

• Be able to calculate the fugacity of a component in a vapor mixture and in a liquid
mixture if an equation of state is available (Sec. 9.4)

• Be able to calculate the fugacity of a component in a vapor mixture and in a liquid
mixture if an equation of state is not available (Sec. 9.4)

• Be able to use correlative activity coefficient models with experimental data
(Sec. 9.5)

• Be able to use predictive activity coefficient models when there are no experimen-
tal data (Sec. 9.6)

• Be able to compute the fugacity of a species in a mixture when, as a pure compo-
nent it would be a supercritical gas or a solid (Sec. 9.7)

• Be able to use different standard states in thermodynamic calculations
(Secs. 9.7–9.9)

• Be able to do calculations involving electrolyte solutions (Sec. 9.10)
416
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NOTATION INTRODUCED IN THIS CHAPTER

θIGM Property θ of an ideal gas mixture
Pi Partial pressure of species i in a mixture = yiP (kPa)

ΔmixθIGM Change in molar property θ on forming an ideal gas mixture
θIGM Molar property θ of an ideal gas mixture
θIG Pure-component ideal gas property θ

θIG Pure-component molar property θ in an ideal gas

θIGM
i Partial molar property θ of species i in an ideal gas mixture
θIM Property θ of an ideal mixture
θIM Molar property θ of an ideal mixture

θIM
i Partial molar property θ of species i in an ideal mixture

ΔmixθIM Change in molar property θ on forming an ideal mixture
θmix Molar property θ of a mixture
θex Excess molar property = θmix(T,P, x) − θIM

mix(T,P, x)
γi(T,P, x) Activity coefficient of species i at T , P and x

f i Fugacity of species i in a mixture (kPa)

φi Fugacity coefficient of species i in a mixture

θi Partial molar property of species i
δi Solubility parameter of species i
φi Volume fraction of species i in a mixture
ψi Surface area fraction of species i in a mixture

Xm Mole fraction of functional group m in a mixture
Φm Volume fraction of functional group m in a mixture
Ψm Surface area fraction of functional group m in a mixture
Hi Henry’s law constant of species i in a mixture (kPa)
Mi Molality of species i (moles of species i per 1000 g of solvent)
Hi Molality-based Henry’s law constant of species i (kPa/M)
I Ionic strength (M)

γ∗
i Activity coefficient of species i in Henry’s law based on mole fraction

γ��
i Activity coefficient of species i in Henry’s law based on molality

γ± Mean ionic activity coefficient in an electrolyte solution
M± Mean ionic activity molality in an electrolyte solution

z+, z− Charge on cation and anion, respectively, in an electrolyte solution
ν+, ν− Numbers of cations and anions, respectively, from the ionization of an

electrolyte

9.1 THE IDEAL GAS MIXTURE

As defined in Chapter 3, the ideal gas is a gas whose volumetric equation of state at all
temperatures, pressures, and densities is

PV = NRT or PV = RT (9.1-1)

and whose internal energy is a function of temperature only. By the methods of sta-
tistical mechanics, one can show that such behavior occurs when a gas is sufficiently
dilute that interactions between the molecules make a negligible contribution to the
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total energy of the system. That is, a gas is ideal when each molecule in the gas is
(energetically) unaware of the presence of other molecules.
An ideal gas mixture is a gas mixture with a density so low that its molecules do

not appreciably interact. In this case the volumetric equation of state of the gas mixture
will also be of the form of Eq. 9.1-1, and its internal energy will merely be the sum
of the internal energies of each of the constituent ideal gases, and thus a function of
temperature and mole number only. That is,

Hypothetical ideal gas
mixture PV IGM = (N1 + N2 + · · · )RT =

( C∑
j=1

Nj

)
RT = NRT (9.1-2)

and

U IGM(T,N) =
C∑

j=1

NjU
IG
j (T ) (9.1-3)

Here we have used the superscripts IG and IGM to indicate properties of the ideal gas
and the ideal gas mixture, respectively, and taken pressure and temperature to be the
independent variables. From Eq. 8.1-12 it then follows that for the ideal gas mixture

Partial molar
properties for the
ideal gas mixtures

U IGM
i (T, x) =

∂U IGM(T,N)
∂Ni

∣∣∣∣
T,P,Nj�=i

=
∂

∂Ni

∣∣∣∣
T,P,Nj�=i

C∑
j=1

NjU
IG
j (T ) = U IG

i (T )

(9.1-4)
and

V IGM
i (T,P, x) =

∂V IGM(T,P,N)
∂Ni

∣∣∣∣
T,P,Nj�=i

=
∂

∂Ni

∣∣∣∣
T,P,Nj�=i

C∑
j

Nj
RT

P

=
RT

P
= V IG

i (T,P )

(9.1-5)

Here and throughout the rest of this book, we use the notation x to represent all the
mole fractions. That is, any property written as θ(T,P, x) is meant to indicate that θ is
a function of temperature, pressure, and all the mole fractions (x1, x2, x3, . . . , etc.).
Equation 9.1-4 indicates that the partial molar internal energy of species i in an ideal

gas mixture at a given temperature is equal to the pure component molar internal en-
ergy of that component as an ideal gas at the same temperature. Similarly, Eq. 9.1-5
establishes that the partial molar volume of species i in an ideal gas mixture at a given
temperature and pressure is identical to the molar volume of the pure component as an
ideal gas at that temperature and pressure.
Consider now the process of forming an ideal gas mixture at temperature T and

pressure P from a collection of pure ideal gases, all at that temperature and pressure.
From the discussion here it is clear that for each species V i(T,P, x) = V i(T,P ) and
U i(T, x) = U i(T ). It then follows immediately from equations such as Eqs. 8.1-14
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and 8.1-15 that ΔmixV = 0 and ΔmixU = 0 for this process. Also, ΔmixH ≡
ΔmixU + P ΔmixV = 0.
The partial pressure of species i in a gas mixture, denoted by Pi, is defined for both

ideal and nonideal gas mixtures to be the product of the mole fraction of species i and
total pressure P , that is,

Pi = xiP (9.1-6)

For the ideal gas mixture,

P IGM
i (N,V, T, x) =

Ni

C∑
j=i

Nj

P =
Ni

C∑
j=i

Nj

{ C∑
j=1

Nj
RT

V

}

=
NiRT

V
= P IG(Ni, V, T )

Thus, for the ideal gas mixture, the partial pressure of species i is equal to the pres-
sure that would be exerted if the same number of moles of that species, Ni, alone
were contained in the same volume V and maintained at the same temperature T as
the mixture.
Since there is no energy of interaction in an ideal gas mixture, the effect on each

species of forming an ideal gas mixture at constant temperature and total pressure
is equivalent to reducing the pressure from P to its partial pressure in the mixture
Pi. Alternatively, the effect is equivalent to expanding each gas from its initial vol-
ume Vi = NiRT/P to the volume of the mixture V =

∑
i NiRT/P . Thus, from

Eqs. 6.4-2 and 6.4-3, we have

SIGM
i (T,P, x) − SIG

i (T,P ) = −R ln
Pi

P
= −R lnxi (9.1-7)

or

SIGM
i (T, V, x) − SIG

i (T, Vi) = R ln
V

Vi

= R ln
∑

NjRT/P

NiRT/P
= −R lnxi

Consequently,

ΔmixS
IGM =

C∑
i=1

Ni[SIGM
i (T,P, x) − SIG

i (T,P )] = −R
C∑

i=1

Ni lnxi

and

ΔmixS
IGM =

ΔmixSIGM

N
= −R

C∑
i=1

xi lnxi (9.1-8)

The statistical mechanical interpretation of Eq. 9.1-8 is that an ideal gas mixture is a
completely mixed or random mixture. This is discussed in Appendix A9.1.
Using the energy, volume, and entropy changes on mixing given here, one can eas-

ily compute the other thermodynamic properties of an ideal gas mixture (Problem 9.1).
The results are given in Table 9.1-1. Of particular interest are the expressions for
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Properties of an Ideal Gas Mixture (Mixing at Constant T and P )

Internal energy U IGM
i (T, x) = U IG

i (T ) ΔmixU
IGM = 0

Enthalpy HIGM
i (T, x) = HIG

i (T ) ΔmixH
IGM = 0

Volume V IGM
i (T, x) = V IG

i (T ) ΔmixV
IGM = 0

Entropy SIGM
i (T, P, x) = SIG

i (T, P ) − R ln xi ΔmixS
IGM = −R

C∑
i=1

xi ln xi

Gibbs energy GIGM
i (T, P, x) = GIG

i (T, P ) + RT ln xi ΔmixG
IGM = RT

C∑
i=1

xi ln xi

Helmholtz energy AIGM
i (T, P, x) = AIG

i (T, P ) + RT ln xi ΔmixA
IGM = RT

C∑
i=1

xi ln xi

Internal energy U IGM(T, x) =
∑

xiU
IG
i (T )

Enthalpy HIGM(T, P, x) =
∑

xiH
IG
i (T, P )

Volume V IGM(T, P, x) =
∑

xiV
IG
i (T, P )

Entropy SIGM(T, P, x) =
∑

xiS
IG
i (T, P ) − R

∑
xi ln xi

Gibbs energy GIGM(T, P, x) =
∑

xiG
IG
i (T, P ) + RT

∑
xi ln xi

Helmholtz energy AIGM(T, P, x) =
∑

xiA
IG
i (T, P ) + RT

∑
xi ln xi

GIGM
i (T,P, x) and ΔmixG

IGM:

GIGM
i (T,P, x) = H IGM

i (T,P, x) − TSIGM
i (T,P, x)

= H IG
i (T,P ) − T (SIG

i (T,P ) − R lnxi)

= GIG
i (T,P ) + RT lnxi

(9.1-9)

ΔmixG
IGM =

C∑
i=1

xi{GIGM
i (T,P, x) − GIG

i (T,P )}

= RT
∑

xi lnxi

(9.1-10)

From Eqs. 9.1-1 to 9.1-10, we then have for an ideal gas mixture

U IGM(T, x) =
∑

xiU
IG
i (T ) (9.1-11)

V IGM(T,P, x) =
∑

xiV
IG
i (T,P ) (9.1-12)

H IGM(T,P, x) =
∑

xiH
IG
i (T,P ) (9.1-13)

SIGM(T,P, x) =
∑

xiS
IG
i (T,P ) − R

∑
xi lnxi (9.1-14)

GIGM(T,P, x) =
∑

xiG
IG
i (T,P ) + RT

∑
xi lnxi (9.1-15)

AIGM(T,P, x) =
∑

xiA
IG
i (T,P ) + RT

∑
xi lnxi (9.1-16)
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Illustration 9.1-1
Examination of Whether a Gas Mixture Is an Ideal Gas Mixture

The following data are available for the compressibility factor Z = PV /RT of nitrogen-butane
mixtures at 444.3 K.

Mole Fraction P = 13.79 MPa P = 68.95 MPa
Butane Zmix Zmix

0 1.06 1.47
0.10 1.04 1.51
0.30 0.96 1.61
0.50 0.81 1.72
0.70 0.64 1.83
0.90 0.52 1.95
1.0 0.51 1.98

Is the nitrogen-butane mixture an ideal gas mixture at these conditions?

Solution

From Eq. 9.1-2 we have, for a gas mixture to be an ideal gas mixture, that

PV IGM
mix

NRT
=

PV IGM
mix

RT
= Zmix = 1

at all temperatures, pressures, and compositions. Clearly, the nitrogen-butane mixture is not an
ideal gas mixture at the temperature and two pressures in this illustration.

9.2 THE PARTIAL MOLAR GIBBS ENERGY AND FUGACITY

Unfortunately, very few mixtures are ideal gas mixtures, so general methods must be
developed for estimating the thermodynamic properties of real mixtures. In the discus-
sion of phase equilibrium in a pure fluid of Sec. 7.4, the fugacity function was especially
useful; the same is true for mixtures. Therefore, in an analogous fashion to the deriva-
tion in Sec. 7.4, we start from

dG = −S dT + V dP +
C∑

i=1

Gi dNi (8.2-1)

and, using the commutative property of second derivatives of the thermodynamic func-
tions (cf. Eq. 8.1-3),

∂

∂Ni

∣∣∣∣
T,P,Nj�=i

(
∂G

∂T

)
P,Nj

=
∂

∂T

∣∣∣∣
P,Nj

(
∂G

∂Ni

)
T,P,Nj�=i

and

∂

∂Ni

∣∣∣∣
T,P,Nj�=i

(
∂G

∂P

)
T,Nj

=
∂

∂P

∣∣∣∣
T,Nj

(
∂G

∂Ni

)
T,P,Nj�=i
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to obtain the two equations

Si = −
(

∂Gi

∂T

)
P,Nj

(9.2-1)

and

V i =
(

∂Gi

∂P

)
T,Nj

(9.2-2)

As in the pure component case, the second of these equations is more useful than the
first, and leads to the relation

Gi(T1, P2, x) − Gi(T1, P1, x) =
∫ P2

P1

V i dP

In analogy with Eq. 7.4-6, the fugacity of species i in a mixture, denoted by f i, is
defined with reference to the ideal gas mixture as follows:

Fugacity of a species
in a mixture

f i(T,P, x) = xiP exp
{

Gi(T,P, x) − GIGM
i (T,P, x)

RT

}

= xiP exp
{

1
RT

∫ P

0

(V i − V IG
i ) dP

}

= P exp
{

Gi(T,P, x) − GIG
i (T,P )

RT

}
(9.2-3a)

so that f i → xiP ≡ Pi as P → 0. Here Pi is the partial pressure of species i, and the
superscript IGM indicates an ideal gas mixture property. The fact that as the pressure
goes to zero all mixtures become ideal gas mixtures (just as all pure fluids become ideal
gases) is embedded in this definition. Also, the fugacity coefficient for a component in
a mixture, φi, is defined as

Fugacity coefficient of
a species in a mixture

φi =
f i

xiP
= exp

{
Gi(T,P, x) − GIGM

i (T,P, x)
RT

}

= exp
{

1
RT

∫ P

0

(V i − V IGM
i ) dP

} (9.2-3b)

The multicomponent analogue of Eq. 7.4-9a, obtained by differentiating ln f i with
respect to pressure at a constant temperature and composition, is

RT

(
∂ ln f i

∂P

)
T,x

=
(

∂Gi

∂P

)
T,x

= V i (9.2-4)

To relate the fugacity of pure component i to the fugacity of component i in a mixture,
we first subtract Eq. 7.4-9a from Eq. 9.2-4 and then integrate between P = 0 and the
pressure of interest P , to obtain
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RT ln
{

f i(T,P, x)
f i(T,P → 0, x)

}
− RT ln

{
fi(T,P )

fi(T,P → 0)

}
=
∫ P

P→0

(V i − V i) dP

(9.2-5)
We now use the fact that as P → 0, f i → xiP and fi → P , to obtain

RT ln
{

f i(T,P, x)
xi fi(T,P )

}
=
∫ P

0

(V i − V i) dP (9.2-6)

Therefore, for a mixture in which the pure component and partial molar volumes are
identical [i.e., V i (T,P, x) = xiVi (T,P ) at all conditions], the fugacity of each
species in the mixture is equal to its mole fraction times its pure-component fugacity
evaluated at the same temperature and pressure as the mixture f i (T,P, x) =
xi fi (T,P ). However, if, as is generally the case, V i �= V i, then f i and fi are related
through the integral over all pressures of the difference between the species partial mo-
lar and pure-component molar volumes.
The temperature dependence of the fugacity f i (actually, the fugacity coefficient

φi = f i/xiP ) can be gotten by differentiating Eq. 9.2-3 with respect to temperature at
constant pressure and composition,

[
∂ ln(f i/xiP )

∂T

]
P,x

= −(Gi − GIG
i )

RT 2
+

1
RT

[
∂(Gi − GIGM

i )
∂T

]
P,x

(9.2-7)

and then using dG = V dP − S dT and G = H − TS, to obtain[
∂ ln

(
f i

/
xiP
)

∂T

]
P,x

=
[
∂ lnφi

∂T

]
P,x

= −
(
H i − H IGM

i

)
RT 2

(9.2-8)

It is useful to have an expression for the change in partial molar Gibbs energy of
a species between two states of the same temperature and pressure, but of differing
composition. To derive such an equation, we start by writing

ΔGi = Gi(T,P, xII) − Gi(T,P, xI)

where the superscripts I and II denote phases of different composition. Now substituting
the logarithm of Eq. 9.2-3,

Gi(T,P, x) = GIGM
i (T,P, x) + RT ln

(
f i(T,P, x)

xiP

)

= GIGM
i (T,P, x) + RT lnφi(T,P, x)

(9.2-9)

and using Eq. 9.1-9,

GIGM
i (T,P, x) = GIG

i (T,P ) + RT lnxi
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yields

Gi(T,P, xII) − Gi(T,P, xI) = GIGM
i (T,P, xII) + RT ln

{
f i(T,P, xII)

xII
i P

}

− GIGM
i (T,P, xI) − RT ln

{
f i(T,P, xI)

xI
iP

}

= GIG
i (T,P ) + RT lnxII

i + RT ln
{

f i(T,P, xII)
xII

i P

}

− GIG
i (T,P ) − RT lnxI

i − RT ln
{

f i(T,P, xI)
xI

iP

}

or, finally,

Gi(T,P, xII)−Gi(T,P, xI) = RT ln
{

f i(T,P, xII)
f i(T,P, xI)

}
= RT ln

{
xII

i φi(T,P, xII)
xI

iφi(T,P, xI)

}
(9.2-10a)

A special case of this equation is when state I is a pure component:

Gi(T,P, x) − Gi(T,P ) = RT ln
{

f i(T,P, x)
fi(T,P )

}
= RT ln

{
xiφi(T,P, x)

φi(T,P )

}

(9.2-10b)

The fugacity function has been introduced because its relation to the Gibbs energy
makes it useful in phase equilibrium calculations. The present criterion for equilibrium
between two phases is that GI

i = GII
i for all species i, with the restriction that the

temperature and pressure be constant and equal in both phases. Using Eqs. 9.2-10a and
b and the equality of partial molar Gibbs free energies yields

Criterion for phase
equilibrium

f I
i = f i(T,P, xI) = f i(T,P, xII) = f II

i (9.2-11)

Therefore, at equilibrium, the fugacity of each species must be the same in the two
phases. Since this result follows directly from Eq. 8.7-10, it may be substituted for it.
Furthermore, since we can make estimates for the fugacity of a species in a mixture in
a more direct fashion than for partial molar Gibbs energies, it is more convenient to use
Eq. 9.2-11 as the basis for phase equilibrium calculations.
In analogy with Eqs. 7.4-6 and 9.2-3, the overall fugacity of a mixture f is defined

by the relation

f = P exp
{

G(T,P, x) − GIGM(T,P, x)
RT

}
(9.2-12)
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Note that the fugacity of species i in a mixture, f i, as defined by Eq. 9.2-3 is not a partial
molar fugacity, that is,

f i �=
(

∂(Nf)
∂Ni

)
T,P,Nj�=i

Finally, note that Eq. 7.4-6, for computing the fugacity of a pure component, and
Eq. 9.2-3, for computing the fugacity of a species in a mixture, both require that the
volumetric equation of state be solved explicitly for the volume in terms of the tem-
perature and pressure. However, as was discussed in Sec. 7.4, equations of state are
usually pressure explicit (that is, easily solved for pressure as a function of temperature
and volume, and not vice versa; see Eqs. 6.4-1 though 6.4-3), so that calculations based
on Eqs. 7.4-6 and 9.2-3 can be difficult. Starting from Eq. 9.2-3, using Eq. 6.4-25 in
the form

dP =
1
V

d(PV ) − P

V
dV =

P

Z
dZ − P

V
dV

and the triple-product rule (Eq. 8.1-6a),(
∂V

∂Ni

)
T,P,Nj�=i

(
∂P

∂V

)
T,Nj

(
∂Ni

∂P

)
T,V,Nj�=i

= −1

in the form (
∂V

∂Ni

)
T,P,Nj�=i

dP = −
(

∂P

∂Ni

)
T,V,Nj�=i

dV

we obtain for the fugacity (actually the fugacity coefficient) of a species in a mixture

Fugacity coefficient for
a species in a mixture
from an equation of
state

lnφi = ln
f i(T,P, x)

xiP
=

1
RT

∫ V =ZRT/P

V =∞

[
RT

V
− N

(
∂P

∂Ni

)
T,V,Nj�=i

]
dV − lnZ

(9.2-13)
(see Problem 9.24), which is to be comparedwith the expressionwe previously obtained
for a pure fluid,

lnφ = ln
f(T,P )

P
=

1
RT

∫ V =ZRT/P

V =∞

(
RT

V
− P

)
dV − lnZ + (Z − 1) (7.4-8)

for the fugacity of a pure component. Equation 9.2-13 is especially useful for computing
the fugacity of a species in a mixture from a pressure-explicit equation of state, as we
will see in Sec. 9.4.

9.3 IDEAL MIXTURE AND EXCESS MIXTURE PROPERTIES

The estimation of the thermodynamic properties of a real fluid or fluidmixture in the ab-
sence of direct experimental data is a very complicated problem involving
detailed spectroscopic, structural, and interaction potential data and the use of
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statistical mechanics. Such a calculation is beyond the scope of this book and would
not be of interest to most engineers. Instead, we use procedures for estimating mixture
thermodynamic properties that are far simpler than starting from “first principles.” In
particular, we will either use equations of state or, as in this section, choose a state for
each system in which the thermodynamic properties are reasonably well known and
then try to estimate how the departure of the real system from the chosen reference
state affects the system properties. This last procedure is philosophically similar to the
method used in Chapter 6, where the properties of real fluids were computed as the sum
of an ideal gas contribution plus the departure from ideal gas behavior.
Clearly, the accuracy of a property estimation technique based on such a proce-

dure increases as the difference between the reference state and actual state of the
system diminishes. Therefore, choosing the reference state to be an ideal gas mixture at
the same temperature and composition as the mixture under consideration is not very
satisfactory because the reference state and actual state, particularly for liquids, may
be too dissimilar. It is in this context that we introduce the concept of an ideal mixture.
An ideal mixture, which may be either a gaseous or liquid mixture, is defined to

be a mixture in which

Ideal mixture
H IM

i (T,P, x) = H i(T,P ) (9.3-1a)

and
V IM

i (T,P, x) = V i(T,P ) (9.3-1b)

for all temperatures, pressures, and compositions (the superscript IM indicates an
ideal mixture property). Note that unlike the ideal gas mixture, here neither H i nor
V i is an ideal gas property. From Eqs. 8.1-14 and 8.1-15 it is evident that for such a
mixture

ΔmixV
IM (T,P, x) =

C∑
i=1

Ni

[
V IM

i (T,P, x) − V i (T,P )
]

= 0 (9.3-2a)

and

ΔmixH
IM (T,P, x) =

C∑
i=1

Ni

[
H IM

i (T,P, x) − H i (T,P )
]

= 0 (9.3-2b)

so that there are no volume or enthalpy changes on the formation of an ideal mixture
from its pure components at the same temperature and pressure. Also, since V IM

i = V i

at all temperatures, pressures, and compositions, we have, from Eq. 9.2-6,

f IM
i (T,P, x) = xi fi(T,P ) (9.3-3)

Next, using Eqs. 9.3-1, it is easily established that

U IM
i (T,P, x) = U i(T,P ) (9.3-4a)

and from Eq. 9.2-10b,
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GIM
i (T,P, x) − Gi(T,P ) = RT ln

{
f IM

i (T,P, x)
fi(T,P )

}

= RT ln
{

xi fi(T,P )
fi(T,P )

}
= RT lnxi

Consequently, we obtain

GIM
i (T,P, x) = Gi(T,P ) + RT lnxi

AIM
i (T,P, x) = Ai(T,P ) + RT lnxi

SIM
i (T,P, x) = Si(T,P ) − R lnxi

(9.3-4b)

It then follows from Eqs. 9.3-1 to 9.3-4 that for an ideal mixture

U IM(T,P, x) =
∑

xiU i(T,P ) (9.3-5a)

V IM(T,P, x) =
∑

xiV i(T,P ) (9.3-5b)

H IM(T,P, x) =
∑

xiH i(T,P ) (9.3-5c)

SIM(T,P, x) =
∑

xiSi(T,P ) − R
∑

xi lnxi (9.3-5d)

GIM(T,P, x) =
∑

xiGi(T,P ) + RT
∑

xi lnxi (9.3-5e)

AIM(T,P, x) =
∑

xiAi(T,P ) + RT
∑

xi lnxi (9.3-5f)

Illustration 9.3-1
Determining Whether a Mixture Is an Ideal Mixture Even Though It Is Not an Ideal Gas Mixture

Determine whether the nitrogen-butane mixture of Illustration 9.1-1 is an ideal mixture.

Solution

For the nitrogen-butane mixture to be an ideal mixture, from Eq. 9.3-5b at all temperatures,
pressures, and compositions,

V IM(T, P, x) =
∑

xiV i(T, P )

or, alternatively, after multiplying by P/RT and recognizing that Z = PV /RT ,

ZIM
mix(T, P, x) =

∑
xiZi(T, P ) (*)

Below we tabulate Zmix and ZIM
mix at the conditions in Illustration 9.1-1.

P = 13.79 MPa P = 68.95 MPa
Mole Fraction

Butane Zmix ZIM
mix Zmix ZIM

mix

0 1.06 1.06 1.47 1.47
0.1 1.04 1.01 1.51 1.52
0.3 0.96 0.90 1.61 1.62
0.5 0.81 0.79 1.72 1.73
0.7 0.64 0.68 1.83 1.83
0.9 0.52 0.57 1.95 1.93
1.0 0.51 0.51 1.98 1.98
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Clearly, Eq. (*) is much closer to being satisfied with the higher-pressure data than with the
lower-pressure data. However, for an ideal mixture, this equation must be satisfied at all pres-
sures, temperatures, and compositions. Therefore, we conclude that the nitrogen-butane mixture
is not quite an ideal mixture at the conditions considered here, and it certainly is not an ideal gas
mixture based on Illustration 9.1-1.

Equations 9.3-3 to 9.3-5 resemble those obtained in Sec. 9.1 for the ideal gas mixture.
There is an important difference, however. In the present case we are considering an
ideal mixture of fluids that are not ideal gases, so each of the pure-component properties
here will not be an ideal gas property, but rather a real fluid property that must either
be measured or computed using the techniques described in Chapter 6. Thus, the molar
volume V i is not equal to RT/P , and the fugacity of each species is not equal to the
pressure.
Also, from Eq. 9.3-3,

φIM
i (T,P, x) = φi(T,P )

and since all derivatives at constant composition must be equal,[
∂ ln(f IM

i /xiP )
∂T

]
P,x

=
[
∂ ln(fi/P )

∂T

]
P

(9.3-6)

Note that an ideal mixture identically satisfies the Gibbs-Duhem equation
(Eq. 8.2-12b):

SIM dT − V IM dP +
∑

xi dGIM
i

=
∑

xiS
IM
i dT −

∑
xiV

IM
i dP +

∑
xi d(Gi + RT lnxi)

=
∑

xiSi dT − R
∑

xi lnxi dT −
∑

xiV i dP +
∑

xi dGi

+ R
∑

xi lnxi dT + RT
∑

xi d lnxi

=
∑

xi(Si dT − V i dP + dGi) + RT
∑

dxi

≡ 0
(9.3-7)

since dG = V dP − S dT for a pure component, and
∑

xi = 1, so that d
∑

xi =∑
dxi = d(1) = 0.
Any property change on mixing Δmixθ of a real mixture can be written in terms of

the analogous property of an ideal mixture plus an additional term as follows:

Δmixθ(T,P, x) = Δmixθ
IM(T,P, x) + [Δmixθ(T,P, x) − Δmixθ

IM(T,P, x)]
= Δmixθ

IM + θex

Excess mixing
property

where

θex = Δmixθ(T,P, x)−Δmixθ
IM(T,P, x) =

∑
i

xiθi−
∑

i

xiθ
IM
i =

∑
i

xi(θi−θIM
i )

(9.3-8)
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is the excess mixing property, that is, the change in θ that occurs on mixing at con-
stant temperature and pressure in addition to that which would occur if an ideal mixture
were formed. Excess properties θex are generally complicated, nonlinear functions
of the composition, temperature, and pressure, and usually must be obtained from
experiment. The hope is, however, that the excess properties will be small (particu-
larly when θ is the Gibbs energy or entropy) compared with Δmixθ

IM so that even an
approximate theory for θex may be sufficient to compute Δmixθ with reasonable
accuracy. Table 9.3-1 also contains a list of excess thermodynamic properties that
will be of interest in this book.
Finally, in analogy with Eq. 6.1-12, we define a partial molar excess quantity by the

relation

θex
i =

∂(Nθex)
∂Ni

∣∣∣∣
T,P,Nj�=i

=
∂

∂Ni

∣∣∣∣
T,P,Nj�=i

∑
k

Nk(θk − θIM
k )

which reduces to

θex
i = θi − θIM

i (9.3-9)

since

∑
k

Nk
∂

∂Ni

(θk − θIM
k )
∣∣
T,P,Nj�=i

= 0

by the Gibbs-Duhem equation (Eq. 8.2-11). For the case in which θi is equal to the
partial molar Gibbs energy, we have

Gex
i = (Gi − GIM

i ) = (Gi − GIGM
i ) + (GIGM

i − GIM
i )

= (Gi − GIGM
i ) + (GIG

i + RT lnxi − Gi − RT lnxi)

= (Gi − GIGM
i ) + (GIG

i − Gi)

= RT ln
f i

xiP
− RT ln

fi

P

= RT ln
(

f i

xifi

)
= RT ln

(
φi

φi

)
=
∫ P

0

[V i − V i] dP

(9.3-10)

If equations of state (or specific volume data) are available for both the pure fluid and
the mixture, the integral can be evaluated. However, for liquid mixtures not describ-
able by an equation of state, common thermodynamic notation is to define an activity
coefficient γi(T,P, x), which is a function of temperature, pressure, and composition,
by the equation

Definition of the
activity coefficient

fL
i (T,P, x) = xiγi(T,P, x)fL

i (T,P ) (9.3-11)

where the superscript L has been used to denote the liquid phase. Alternatively,

RT ln γi(T,P, x) = Gex
i =

(
∂NGex

∂Ni

)
T,P,Nj�=i

(9.3-12)
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[Note that the fugacity of the pure liquid, fL
i (T,P ), in Eq. 9.3-11 can be found from

the methods of Sec. 7.4b.] As will be seen in Chapters 10 to 12, the calculation of
the activity coefficient for each species in a mixture is an important step in many phase
equilibrium calculations. Therefore, much of this chapter deals with models (equations)
for Gex and activity coefficients.

Illustration 9.3-2
Analyzing the Gibbs Energy of a Mixture to Determine Whether It Is an Ideal Mixture

Experimentally (as will be described in Sec. 10.2) it has been found that the Gibbs energy for
a certain binary mixture has the form

Gmix(T, P, x) =

2∑
i=1

xiGi(T, P ) + RT

2∑
i=1

xi ln xi + ax1x2 (**)

where a is a constant. Determine whether this mixture is an ideal mixture.

Solution

For an ideal mixture Eqs. 9.3-1a and b must be satisfied at all conditions. To see if this is
so, we start with the relation between the Gibbs energy and volume and use the equation above
to obtain

V mix =

(
∂Gmix

∂P

)
T,N

=

2∑
i=1

xi

(
∂Gi

∂P

)
T,N

=
∑

xiV i(T, P )

Therefore,

V 1(T, P ) =
∂(NV mix)

∂N1

∣∣∣∣
T,N2

=
∂

∂N1

(N1V 1(T, P ) + N2V 2(T, P ))T,N2
= V 1(T, P )

Similarly, V 2(T, P ) = V 2(T, P ), so Eq. 9.3-1b is satisfied. We now move on to Eq. 9.3-1a by
starting with

∂

∂T

∣∣∣∣
P

(
G

T

)
=

1

T

(
∂G

∂T

)
P

− G

T 2
=

1

T
(−S) − (H − TS)

T 2
= − H

T 2

or

H = −T 2 ∂

∂T

∣∣∣∣
P

(
G

T

)

Therefore,

Hmix = −T 2 ∂

∂T

∣∣∣∣
P

[∑
xi

Gi

T
+ R
∑

xi ln xi +
a

T
x1x2

]

= −T 2

[∑
xi

(
−H i

T 2

)
− a

T 2
x1x2

]
=
∑

xiH i + ax1x2
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Then

H1(T, P, x) =
∂

∂N1

∣∣∣∣
T,P,N2

NHmix =
∂

∂N1

∣∣∣∣
T,P,N2

(
N1H1 + N2H2 +

aN1N2

N1 + N2

)

= H1(T, P ) + a

[
N2

N1 + N2

− N1N2

(N1 + N2)2

]

= H1(T, P ) + a(x2 − x1x2) = H1(T, P ) + ax2(1 − x1)

= H1(T, P ) + ax2
2

Similarly, H2(T, P, x) = H2(T, P ) + ax2
1.

Therefore, Eq. 9.3-1a is not satisfied, and the mixture described by Eq. ** above is not an
ideal mixture.

Comment

Clearly, for this mixture Gex = ax1x2 and Aex = ax1x2. Since the excess Gibbs energies of
mixing are not zero, this also shows that the mixture cannot be ideal.

Illustration 9.3-3
Developing Expressions for Activity Coefficients and Species Fugacities from the Gibbs Energy

Develop an expression for the activity coefficients and species fugacities using the Gibbs energy
function of the previous illustration.

Solution

We start from

Gex = Gmix − GIM
mix

=

(
2∑

i=1

xiGi + RT

2∑
i=1

xi ln xi + ax1x2

)
−
(

2∑
i=1

xiGi + RT

2∑
i=1

xi ln xi

)
= ax1x2

Then, by definition,

Gex
1 =

(
∂NGex

∂N1

)
T,P,N2

=
∂

∂N1

∣∣∣∣
T,P,N2

Nax1x2 =
∂

∂N1

∣∣∣∣
T,P,N2

aN1N2

(N1 + N2)

= a

[
N2

N1 + N2

− N1N2

(N1 + N2)2

]
= a(x2 − x1x2)

= ax2(1 − x1) = ax2
2 = RT ln γ1(x1)

or

γ1(x1) = exp

[
ax2

2

RT

]
= exp

[
a(1 − x1)

2

RT

]

Similarly,

Gex
2 = ax2

1 = a(1 − x2)
2 and γ2(x2) = exp

[
ax2

1

RT

]
= exp

[
a(1 − x2)

2

RT

]
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Finally,

f1(T, P, x1) = x1 exp

[
ax2

2

RT

]
f1(T, P ) = x1 exp

[
a(1 − x1)

2

RT

]
f1(T, P )

and

f2(T, P, x2) = x2 exp

[
a(1 − x2)

2

RT

]
f2(T, P )

Comment

The results above for the activity coefficients and fugacities are not general, but are specific to
the very simple excess Gibbs energy function we have used,

Gex(T, P, x) = ax1x2

As we shall see, in order to have excess Gibbs energy functions that more accurately fit ex-
perimental data, more complicated activity coefficient and fugacity expressions are needed.
However, the expressions here do show that the activity coefficients are strong functions of
composition or mole fraction. Indeed, in this example the activity coefficients are exponential
functions of the square of the mole fraction.

There is a very important point in this illustration that is easily overlooked. To obtain the
activity coefficient from the expression for the excess Gibbs energy, we used the definition

Correct! Gex
1 = RT ln γ1(x1) =

(
∂NGex

∂N1

)
T,P,N2

We did not use

Incorrect! Gex
1 =

(
dGex

dx1

)
T,P

which is an incorrect equation and gives the wrong result (try it and see).

From Eq. 9.3-3, the activity coefficient is equal to unity for species in ideal mixtures,
and for nonideal mixtures

γi(T,P, x) = exp
(

Gex
i

RT

)
= exp

(
1

RT

∫ P

0

[
V i(T,P, x) − V i(T,P )

]
dP

)
(9.3-13)

Since both real and ideal mixtures satisfy the Gibbs-Duhem equation of Sec. 8.2,

0 = S dT − V dP +
C∑

i=1

xi dGi (8.2-12b)

and

0 = SIM dT − V IM dP +
C∑

i=1

xi dGIM
i (9.3-7)
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we can subtract these two equations to obtain a form of the Gibbs-Duhem equation
applicable to excess thermodynamic properties:

Gibbs-Duhem
equation for excess
properties

0 = Sex dT − V ex dP +
C∑

i=1

xi dGex
i (9.3-14)

Now using Eq. 9.3-12, in the form of Gex
i = RT ln γi, and

Gex =
∑

xiG
ex
i = Hex − TSex

we obtain

0 =
Hex

T
dT − V ex dP + RT

C∑
i=1

xi d ln γi (9.3-15)

Thus, for changes in composition at constant temperature and pressure, we have

0 =
C∑

i=1

xi d ln γi

∣∣
T,P

(9.3-16)

which is a special case of Eqs. 8.2-9b and 8.2-13b. For a binary mixture, we have, from
Eq. 8.2-20,

Gibbs-Duhem
equation for activity
coefficients

x1

(
∂ ln γ1

∂x1

)
T,P

+ x2

(
∂ ln γ2

∂x1

)
T,P

= 0 (9.3-17)

Illustration 9.3-4
Testing Whether an Activity Coefficient Model Satisfies the Gibbs-Duhem Equation

Determine whether the activity coefficient expressions derived in the previous illustration satisfy
the Gibbs-Duhem equation, Eq. 9.3-17.

Solution

From the previous illustration, we have

ln γ1(x1) =
a

RT
x2

2 =
a

RT
(1 − x1)

2

and

ln γ2(x2) =
a

RT
x2

1 =
a

RT
(1 − x2)

2

Consequently,(
∂ ln γ1

∂x1

)
T,P

=
−2a

RT
(1 − x1) =

−2ax2

RT
and

(
∂ ln γ2

∂x1

)
T,P

=
2ax1

RT

so that

x1

(
∂ ln γ1

∂x1

)
T,P

+ x2

(
∂ ln γ2

∂x1

)
T,P

= −2ax1x2

RT
+

2ax1x2

RT
= 0

as required by Eq. 9.3-17.
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Comment

All activity coefficients derived from an excess Gibbs energy expression that satisfies the bound-
ary conditions of being zero at x1 = 0 and 1 will satisfy the Gibbs-Duhem equation. Can you
prove this?

To determine the dependence of the activity coefficient γi on temperature and pres-
sure, we rewrite Eq. 9.3-13 as

ln γi(T,P, x) =
Gex

i (T,P, x)
RT

=
1

RT

∫ P

0

[
V i(T,P, x) − V i(T,P )

]
dP (9.3-18)

Taking the derivative with respect to pressure at constant temperature and composition,
we obtain

(
∂ ln γi(T,P, x)

∂P

)
T,x

=
∂

∂P

(
1

RT

∫ P

0

[
V i(T,P, x) − V i(T,P )

]
dP

)
T,x

=
V i(T,P, x) − V i(T,P )

RT
=

V ex
i (T,P, x)

RT
(9.3-19)

Therefore,

γi(T,P2, x) = γi(T,P1, x) exp
[∫ P2

P1

V ex
i (T,P, x)

RT
dP

]

	 γi(T,P1, x) exp
[
V ex

i (T, x)(P2 − P1)
RT

] (9.3-20)

In obtaining the last expression in Eq. 9.3-20 we have assumed that the excess partial
molar volume is independent of pressure. (Note that although Eqs. 9.3-18 and 9.3-19
are correct, they are difficult to use in practice since the activity coefficient description
is applied to fluid mixtures not well described by an equation of state.) Next, taking the
temperature derivative of Eq. 9.3-18 at constant pressure and composition, we obtain(

∂ ln γi(T,P, x)
∂T

)
P,x

=
∂

∂T

(
Gex

i

RT

)
P,x

= −Hex
i (T,P, x)

RT 2
(9.3-21)

so that

Temperature variation
of activity coefficients γi(T2, P, x) = γi(T1, P, x) exp

[
−
∫ T2

T1

Hex
i (T,P, x)

RT 2
dT

]
(9.3-22)

For small temperature changes, or if the excess partial molar enthalpy is independent
of temperature, we have

γi(T2, P, x) = γi(T1, P, x) exp
[
Hex

i (x)
R

(
1
T2

− 1
T1

)]
(9.3-23)
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These equations, especially Eqs. 9.3-20, 9.3-22, and 9.3-23, are useful when one
wants to correct the numerical values of activity coefficients obtained at one temper-
ature and pressure for use at other temperatures and pressures. For example, either
Eq. 9.3-22 or 9.3-23 would be needed for the prediction of low-temperature liquid-
liquid phase equilibrium (Sec. 11.1) if the only activity coefficient data available were
those obtained from higher-temperature vapor-liquid equilibrium measurements
(Sec. 10.2). Alternatively, if activity coefficients have been measured at several pres-
sures, Eq. 9.3-20 can be used to calculate partial molar excess volumes, or if activity
coefficients have been measured at several temperatures, Eq. 9.2-23 can be used to
calculate partial molar excess enthalpies (and heats of mixing).

9.4 FUGACITY OF SPECIES IN GASEOUS, LIQUID, AND SOLID MIXTURES

The fugacity function is central to the calculation of phase equilibrium. This should
be apparent from the earlier discussion of this chapter and from the calculations of
Sec. 7.5, which established that once we had the pure fluid fugacity, phase behavior
in a pure fluid could be predicted. Consequently, for the remainder of this chapter we
will be concerned with estimating the fugacity of species in gaseous, liquid, and solid
mixtures.

9.4-1 Gaseous Mixtures

Several methods are commonly used for estimating the fugacity of a species in a
gaseous mixture.1 The most approximate method is based on the observation that
some gaseous mixtures follow Amagat’s law, that is,

Vmix(T,P,N1,N2, . . .) =
C∑

i=1

NiV i(T,P ) (9.4-1)

which, on multiplying by P/NRT , can be written as

Zmix(T,P, y) =
C∑

i=1

yiZi(T,P ) (9.4-2)

Here Z = PV/NRT is the compressibility of the mixture, Zi is the compressibility
of the pure component i, and yi = Ni/N is the mole fraction of species i. (Hereafter
yi will be used to indicate a gas-phase mole fraction and xi to denote a mole fraction
in the liquid phase or in equations that are applicable to both gases and liquids.)
The data in Fig. 9.4-1 for the nitrogen-butane system show that the mixture com-

pressibility is nearly a linear function of mole fraction at both low and high pressures, so
that Eq. 9.4-2 is approximately satisfied at these conditions, but fails in the intermediate
pressure range. If we nonetheless accept Eq. 9.4-2 as being a reasonable approximation
over the whole pressure range, we then have, from Eq. 9.4-1 and the definition of the
partial molar volume, V i(T,P, y) = V i(T,P ) and, from Eq. 9.2-6,

Lewis-Randall rule fV
i (T,P, y) = yi f

V
i (T,P ) (9.4-3)

1See also Secs. 9.7 and 9.9.
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Figure 9.4-1 Compressibility factors for nitrogen-butane mixtures at 444.3 K. [Data of R. B.
Evans and C. M. Watson, Chem. Eng. Data Ser., 1, 67 (1956). Based on figure in J. M. Prausnitz,
Molecular Thermodynamics of Fluid-Phase Equilibria, 1969. Reprinted with permission from
Prentice Hall, Englewood Cliffs, N.J.]

This result, which relates the fugacity of a species in a gaseous mixture only to its mole
fraction and the fugacity of the pure gaseous component at the same temperature and
pressure, is known as the Lewis-Randall rule.

Illustration 9.4-1
Approximate Species Fugacity Calculation Using the Lewis-Randall Rule

Compute the fugacities of ethane and n-butane in an equimolar mixture at 323.15 K at 1, 10, and
15 bar total pressure assuming that the Lewis-Randall rule is correct.

Solution

From Illustration 7.4-4, we have

fET(373.15 K, 1 bar) = 0.996 bar

fET(373.15 K, 10 bar) = 9.629 bar

fET(373.15 K, 15 bar) = 14.16 bar

fBU(373.15 K, 1 bar) = 0.986 bar

fBU(373.15 K, 10 bar) = 8.628 bar

fBU(373.15 K, 15 bar) = 11.86 bar
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Then, by the Lewis-Randall rule, f i(T, P, y) = yi fi(T, P ), we have

fET(373.15 K, 1 bar, yET = 0.5) = 0.5 × fET(373.15, 1 bar)

= 0.5 × 0.996 bar = 0.498 bar

fET(373.15 K, 10 bar, yET = 0.5) = 4.815 bar

fET(373.15 K, 15 bar, yET = 0.5) = 7.08 bar
and

fBU(373.15 K, 1 bar, yBU = 0.5) = 0.493 bar

fBU(373.15 K, 10 bar, yBU = 0.5) = 4.314 bar

fBU(373.15 K, 15 bar, yBU = 0.5) = 5.930 bar

A more accurate way to estimate the fugacity of a species in a gaseous mixture is to
start with Eq. 9.2-13,

ln
fV

i (T,P, y)
yiP

= lnφV
i (T,P, y)

=
1

RT

∫ V =ZVRT/P

V =∞

[
RT

V
− N

(
∂P

∂Ni

)
T,V,Nj�=i

]
dV − lnZV

(9.2-13)
and use an appropriate equation of state. At low pressures, the truncated virial equation
of state

PV

RT
= 1 +

Bmix(T, y)
V

= Zmix (9.4-4)

can be used if data for the mixture virial coefficient as a function of composition are
available.2 From statistical mechanics it is known that

Bmix(T, y) =
∑

i

∑
j

yiyjBij(T ) (9.4-5)

where each Bij(T ) is a function only of temperature and Bij = Bji. Using Eqs. 9.4-4
and 9.4-5 in Eq. 9.2-13 yields (see Problem 9.6)

Fugacity coefficient
from virial equation of
state

ln
fV

i (T,P, y)
yiP

=
2
V

∑
j

yjBij(T ) − lnZmix

=
2P

ZmixRT

∑
j

yjBij(T ) − lnZmix

(9.4-6)

2The book The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation, by J. H. Dymond and
E. B. Smith, Clarendon Press, Oxford, 1980, contains second-virial-coefficient data for more than one thousand
mixtures.
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where

Zmix =
1
2

(
1 +

√
1 +

4BmixP

RT

)
(9.4-7)

Illustration 9.4-2
Species Fugacity Calculation Using the Virial Equation of State

Compute the fugacities of ethane and n-butane in an equimolar mixture at 373.15 K and 1, 10,
and 15 bar using the virial equation of state.
Data:

BET−ET = −1.15 × 10−4 m3/mol BBU−BU = −4.22 × 10−4 m3/mol

BET−BU = −2.15 × 10−4 m3/mol

Solution

We start by noting from Eq. 9.4-5 that

Bmix =
∑∑

yiyjBij = y2
ETBET−ET + 2yETyBUBET−BU + y2

BUBBU−BU

= −2.417 × 10−4 m3/mol

Then by using Eqs. 9.4-6 and 9.4-7 we find that

P Z fET(373.15, P, yET = 0.5) fBU(373.15, P, yBU = 0.5)

1 bar 0.992 0.499 bar 0.494 bar
10 bar 0.915 4.866 bar 4.367 bar
15 bar 0.865 7.211 bar 6.074 bar

Comment

These results are slightly higher than those computed from the Lewis-Randall rule, and are more
accurate.

At higher pressures, Eq. 9.2-13 can still be used to compute the fugacity of a species
in a gaseous mixture, but more accurate equations of state must be used. One can, for
example, use the Peng-Robinson equation of state

P =
RT

V − b
− a(T )

V (V + b) + b(V − b)
(6.4-2)

where the parameters a and b are now those for the mixture, amix and bmix. To obtain
these mixture parameters one starts with the a and b parameters for the pure compo-
nents obtained from either fitting pure component data or the generalized correlations
of Sec. 6.7 and then uses the mixing rules
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Equation-of-state
mixing rule amix =

C∑
i=1

C∑
j=1

yiyjaij

bmix =
C∑

i=1

yibi

(9.4-8)

where aii and bi are the parameters for pure component i, and the combining rule

Equation-of-state
combining rule

aij =
√

aiiajj(1 − kij) = aji (9.4-9)

Here a new parameter kij, known as the binary interaction parameter, has been intro-
duced to result in more accurate mixture equation-of-state calculations. This parameter
is found by fitting the equation of state to mixture data (usually vapor-liquid equilib-
rium data, as discussed in Chapter 10). Values of the binary interaction parameter kij

that have been reported for a number of binary mixtures appear in Table 9.4-1. Equa-
tions 9.4-8 and 9.4-9 are referred to as the van der Waals one-fluid mixing rules. The
term one-fluid derives from the fact that the mixture is being described by the same
equation of state as the pure fluids, but with concentration-dependent parameters.
As a result of the mole fraction dependence of the equation-of-state parameters, the

pressure is a function of mole fraction or, alternatively, of the number of moles of
each species present. Evaluating the derivative (∂P/∂Ni)T,V,Nj�=i

, which appears in
Eq. 9.2-13, using the Peng-Robinson equation of state yields

Fugacity coefficient
from Peng-Robinson
equation of state

ln
fV

i (T,P, y)
yiP

= lnφV
i (T,P, y)

=
bi

bmix

(ZV
mix − 1) − ln

(
ZV

mix −
bmixP

RT

)

− amix

2
√

2bmixRT

⎡
⎢⎢⎣

2
∑

j

yjaij

amix

− bi

bmix

⎤
⎥⎥⎦ ln

⎡
⎢⎣ZV

mix +
(
1 +

√
2
) bmixP

RT

ZV + (1 −
√

2)
bmixP

RT

⎤
⎥⎦

=
Bi

Bmix

(ZV
mix − 1) − ln(ZV

mix − Bmix)

− Amix

2
√

2Bmix

⎡
⎢⎢⎣

2
∑

j

yjAij

Amix

− Bi

Bmix

⎤
⎥⎥⎦ ln

[
ZV

mix + (1 +
√

2)Bmix

ZV
mix + (1 −

√
2)Bmix

]

(9.4-10)
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where, again, A = aP/(RT )2, B = bP/RT , and the superscript V is used to remind
us that the vapor-phase compressibility factor is to be used. Also, amix and bmix (and
therefore Amix and Bmix) are computed using the vapor-phase mole fractions.
To calculate the fugacity of each species in a gaseous mixture using Eq. 9.4-10 at

specified values of T , P , and mole fractions of all components y1, y2, . . . , yC , the
following procedure is used:

1. Obtain the parameters aii and bi for each pure component of the mixture either
from the generalized correlations given in Sec. 6.7 or, if necessary, from pure
component data.

2. Compute the a and b parameters for the mixture using the mixing rules of
Eq. 9.4-8. (If the value for any binary interaction parameter, kij, is not available,
either use a value for similar mixtures or assume it is zero.)

3. Solve the cubic equation of state for the vapor compressibility ZV.
4. Use this value of ZV to compute the vapor fugacity for each species using

Eq. 9.4-10 repeatedly for i = 1, 2, . . . , C, where C is the number of components.

Computer programs and a MATHCAD worksheet to do this calculation are discussed
in Appendix B. Aspen Plus R© can also be used.

Illustration 9.4-3
Species Fugacity Calculation Using the Peng-Robinson Equation of State

Compute the fugacities of ethane and n-butane in an equimolar mixture at 373.15 K and 1, 10,
and 15 bar using the Peng-Robinson equation of state.

Solution

Using the computer programs in Appendix B on the website for this book or Aspen Plus R© and
from Table 9.4-1, with kET−BU = 0.010, the results below are obtained.

P Z fET(373.15, P, yET = 0.5) fBU(373.15, P, yBU = 0.5)

1 bar 0.991 0.498 bar 0.493 bar
10 bar 0.910 4.836 bar 4.333 bar
15 bar 0.861 7.143 bar 6.024 bar

Comment

These results are similar to those obtained using either the Lewis-Randall rule or the virial equa-
tion of state. However, greater differences between the methods occur for gases as the pressure is
increased. At higher pressures the results from the Peng-Robinson equation of state are expected
to be the most accurate.

Illustration 9.4-4
Calculation of the Fugacity of a Species in a Mixture by Two Methods

Compute the fugacity of both carbon dioxide and methane in an equimolar mixture at 500 K and
500 bar using (a) the Lewis-Randall rule and (b) the Peng-Robinson equation of state.
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Solution

a. The Lewis-Randall rule is

f i(T, P, y) = yifi(T, P ) = yi

(
f

P

)
i

P

From Fig. 7.4-1, we have

Tr Pr f/P

CO2 1.644 6.78 ∼ 0.77
CH4 2.623 10.87 ∼ 1.01*

*Since it is very difficult to read the fugacity coefficient
curve in the range of the reduced temperature and pressure
for methane in this problem, this entry was obtained from
the tables in O. A. Hougen, K.M.Watson, and R. A. Ragatz,
Chemical Process Principles, Part II, Thermodynamics, 2nd
ed., John Wiley & Sons, New York (1959).

Thus

fCO2 = 0.5 × 0.77 × 500 bar = 192.5 bar

and

fCH4 = 0.5 × 1.01 × 500 bar = 252.5 bar

b. Using the Peng-Robinson equation of state (Eqs. 6.4-2 and 9.4-8 through 9.4-10) and As-
pen Plus R© or the computer programs discussed in Appendix B, we find, for k12 = 0.0,

fCO2 = 208.71 bar and fCH4 = 264.72 bar

and using k12 = 0.09 (from Table 9.4-1),

fCO2 = 212.81 bar and fCH4 = 269.35 bar

These last values should be the most accurate.

9.4-2 Liquid Mixtures

The estimation of species fugacities in liquid mixtures is done in two different ways,
depending on the data available and the components in the mixture. For liquid mixtures
involving only hydrocarbons and dissolved gases, such as nitrogen, hydrogen sulfide,
and carbon dioxide, simple equations of state may be used to describe liquid-state be-
havior. For example, if the approximate Peng-Robinson equation of state and the van
derWaals mixing rules are used, the fugacity of each species in themixture is, following
the same development as for gaseous mixtures, given by
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(9.4-11)

where, again, A = aP/(RT )2, B = bP/RT , and ZL is the liquid (high density or
small Z) root for the compressibility factor. Here, however, amix and bmix (and there-
foreAmix andBmix) are computed using the liquid-phasemole fractions. Consequently,
the calculational scheme for species fugacities in liquid mixtures that can be described
by equations of state is similar to that for gaseous mixtures, except that it is the liquid-
phase, rather than the vapor-phase, compositions and compressibility factor that
are used in the calculations. The Appendix B computer programs or Aspen Plus R© can
be used for this calculation as well.

Illustration 9.4-5
Species Fugacity Calculation for a Hydrocarbon Mixture

Compute the fugacities of n-pentane and benzene in their equimolar mixture at 373.15 K and
50 bar.

Solution

The simplest estimate is obtained using the Lewis-Randall rule and the results of Illustration
7.4-6. In this case we obtain

fPE(373.15 K, 50 bar, xPE = 0.5) = 0.5 × fPE(373.15 K, 50 bar)

= 0.5 × 6.22 bar = 3.11 bar
and

fBZ(373.15 K, 50 bar, xBZ = 0.5) = 0.5 × 1.98 bar = 0.99 bar

A better estimate is obtained using the Peng-Robinson equation of state with a value kPE−BZ =
0.018 from Table 9.4-1. The results are

fPE(373.15 K, 50 bar, xPE = 0.5) = 3.447 bar

fBZ(373.15 K, 50 bar, xBZ = 0.5) = 1.129 bar
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For liquid mixtures in which one or more of the components cannot be described by
an equation of state in the liquid phase—for example, mixtures containing alcohols, or-
ganic or inorganic acids and bases, and electrolytes—another procedure for estimating
species fugacities must be used. The most common starting point is Eq. 9.3-11,

f i(T,P, x) = xiγi(T,P, x)fi(T,P ) (9.3-11)

where γi is the activity coefficient of species i, and fi(T,P ) is the fugacity of pure
species i as a liquid at the temperature and pressure of the mixture.3 However, since
volumetric equation-of-state data are not available, the activity coefficient is obtained
not from integration of Eq. 9.3-13, but rather from

RT ln γi(T,P, x) = Gex
i =

(
∂NGex

∂Ni

)
T,P,Nj�=i

(9.4-12)

and approximate models for the excess Gibbs energyGex of the liquid mixture. Several
such liquid solution models are considered in Sec. 9.5.

9.4-3 Solid Mixtures

The atoms in a crystalline solid are arranged in an ordered lattice structure consisting
of repetitions of a unit cell. To form a solid solution, it is necessary to replace some
molecules in the lattice with molecules of another component. If the two species are
different in size, shape, or in the nature of their intermolecular forces, a solid solution
can be obtained only by greatly distorting the crystalline structure. Such a distortion
requires a great deal of energy, and, therefore, is energetically unfavorable. That is, the
total energy (and in this case the Gibbs energy) of the distorted crystalline solid solution
is greater than the energy of the two pure solids (each in its undistorted crystalline state).
Consequently, with the exception of metals and metal alloys, the energetically preferred
state for many solid mixtures is as heterogeneous mixtures consisting of regions of
pure single species in their usual crystalline state. If these regions are large enough
that macroscopic thermodynamics can be applied without making corrections for the
thermodynamic state of the molecules at the interface between two solid regions, the
solid mixture can be treated as an agglomeration of pure species, each having its own
pure component solid fugacity. Thus

Fugacity of a species
in many mixed solids

fS
i (T,P, x) = fS

i (T,P ) (9.4-13)

The point that the discrete pure component regions in a solid mixture should not be
too small is worth dwelling on. A collection of molecules can be thought of as being
composed of molecules at the surface of the region and molecules in the interior, as
was discussed in Sec. 7.8. The interior molecules interact only with similar molecules
and therefore are in the same energy state as molecules in a macroscopically large mass
of the pure substance. The surface or interfacial molecules, however, interact with both
like and unlike molecules, and hence their properties are representative of molecules in
a mixture. The assumption being made in Eq. 9.4-13 is that the number of interfacial

3If the pure species does not exist as a liquid at the temperature and pressure of interest, as, for example, in
the case of a gas or solid dissolved in a liquid, other, more appropriate starting points are used, as discussed in
Sec. 9.7.
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molecules is small compared with the number of interior molecules, so that even if the
properties of the interfacial molecules are poorly represented, the effect on the total
thermodynamic properties of the system is small.
While Eq. 9.4-13 will generally be used to calculate the fugacity of a species in a solid

mixture, especially involving organic compounds, there are cases of true solid mixtures,
especially involving metals and inorganic compounds. While we defer considerations
of such mixtures until Sec. 12.4, it is useful to note that the activity coefficient for a
species in a true solid mixture, following Eq. 9.3-11, can be written as

Fugacity of a species
in a true solid mixture

fS
i (T,P, xS) = xS

i γ
S
i (T,P, xS)fS

i (T,P ) (9.4-14)

9.5 SEVERAL CORRELATIVE LIQUID MIXTURE
ACTIVITY COEFFICIENT MODELS

In this section we are interested in mixtures for which equation-of-state models are in-
applicable. In such cases attempts are made to estimate Gex or ΔmixG directly, either
empirically or semitheoretically. In making such estimates it is useful to distinguish
between simple and nonsimple liquid mixtures. We define a simple liquid mixture to
be one that is formed by mixing pure fluids, each of which is a liquid at the tempera-
ture and pressure of the mixture. A nonsimple liquid mixture, on the other hand, is
formed by mixing pure species, at least one of which is not a liquid at the temperature
and pressure of the mixture. Examples of nonsimple liquid mixtures are solutions of
dissolved solids in liquids (for example, sugar in water) and dissolved gases in liquids
(for example, carbon dioxide in soda water). In this section we are concerned with mix-
ture models that are applicable to simple liquid mixtures. Nonsimple liquid mixtures
are considered in Sec. 9.7 and elsewhere in this book. Also, for simplicity, most of the
excess Gibbs energy models we will consider here are for two-component (binary) mix-
tures. Multicomponent-mixture versions of these models are listed in Appendix A9.2.
From Eq. 9.3-8, we have that the Gibbs energy change on forming a simple liquid

mixture is

ΔmixG = ΔmixG
IM + Gex = RT

C∑
i=1

xi lnxi + Gex(x)

The excess Gibbs energy of mixing for the benzene–2,2,4-trimethyl pentane system
(a simple liquid mixture) is shown in Fig. 9.5-1 (the origin of these data is discussed
in Sec. 10.2); data for the excess Gibbs energy for several other mixtures are shown in
Fig. 9.5-2. Each of the curves in these figures is of simple form. Thus, one approach to
estimating the excess Gibbs energy of mixing has been merely to try to fit results, such
as those given in Figs. 9.5-1 and 9.5-2, with polynomials in the composition. The hope is
that given a limited amount of experimental data, one can determine the parameters in
the appropriate polynomial expansion, and then predict the excess Gibbs energy and
liquid-phase activity coefficients over the whole composition range. Of course, any
expression chosen for the excess Gibbs energy must satisfy the Gibbs-Duhem equation
(i.e., Eqs. 9.3-14 through 9.3-17) and, like the data in the figures, go to zero as x1 → 0
and x1 → 1.
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Figure 9.5-1 The excess Gibbs energy for the benzene–2,2,4-
trimethyl pentane system at 55◦C.
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Figure 9.5-2 The excess Gibbs energy for several mixtures. Curve 1: Trimethyl methane (1) and
benzene at 0◦C. [Data from V. Mathot and A. Desmyter, J. Chem. Phys. 21, 782 (1953).] Curve
2: Trimethyl methane (1) and carbon tetrachloride at 0◦C. [Data from ibid.] Curve 3: Methane
(1) and propane at 100 K. [Data from A. J. B. Cutler and J. A. Morrison, Trans. Farad. Soc., 61,
429 (1965).] Curve 4: Water (1) and hydrogen peroxide at 75◦C. [From the smoothed data of G.
Scatchard, G. M. Kavanagh, and L. B. Ticknor, J. Am. Chem. Soc., 74, 3715 (1952).]
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The simplest polynomial representation of Gex satisfying these criteria is

One-constant
Margules Gex

Gex = Ax1x2 (9.5-1)

for which

Gex
1 =

∂(NGex)
∂N1

∣∣∣∣
T,P,N2

=
∂

∂N1

(
AN1N2

N1 + N2

)

= A

{
N2

N1 + N2

− N1N2

(N1 + N2)2

}
= Ax2

2

(9.5-2)

so that

γ1(x) = exp
{

Gex
1

RT

}
= exp

{
Ax2

2

RT

}
= exp

{
A(1 − x1)22

RT

}

and similarly one can show that

γ2(x) = exp
{

Ax2
1

RT

}
= exp

{
A(1 − x2)22

RT

}
(9.5-3)

Consequently, for this solution model we have

fL
i (T,P, x) = xiγif

L
i (T,P ) (9.5-4)

where

One-constant
Margules activity
coefficients

RT ln γ1 = Ax2
2

RT ln γ2 = Ax2
1

(9.5-5)

These relations, known as the one-constant Margules equations, are plotted in
Fig. 9.5-3. Two interesting features of the one-constant Margules equations are appar-
ent from this figure. First, the two species activity coefficients are mirror images of each
other as a function of the composition. This is not a general result, but follows from the
choice of a symmetric function in the compositions forGex. Second, γi → 1 as xi → 1,

x1

0
1

2

3

0.2 0.4 0.6 0.8 1.0

γ

γ1 γ2

Figure 9.5-3 The activity coefficients
for the one-constantMargules equation
with (A/RT ) = 1.0.
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so that f i → fi in this limit. This makes good physical sense since one expects the fu-
gacity of a component in a mixture to tend toward that of the pure liquid as the mixture
becomes concentrated in that component. Conversely, γi exhibits a greater departure
from unity (and greater departure from ideal solution behavior) the greater the dilu-
tion of species i, as would be expected from the discussion in Chapter 8. Note that the
parameter A can be either positive or negative, so that Eq. 9.5-5 can lead to activity
coefficients that are greater than 1 (A > 0) or less than 1 (A < 0).
It is interesting to note that in the ideal solution model (i.e., f i = xifi), the only

role of components other than the one of interest is as diluents, so that they affect f i

only through xi. No account is taken of the fact that the energy of a species 1–species
2 interaction could be different from that of species 1–species 1 or species 2–species
2 interactions. For the nonideal solution of Eq. 9.5-1 the parameter A is dependent on
both species, or more precisely, on the differences in species interaction energies in-
volved. This results in the behavior of species 1 being influenced by both the nature
and composition of species 2, and vice versa. The value of the parameter A depends
on the macroscopic and molecular properties of both species in the mixture and is dif-
ficult to estimate a priori; its value may be either positive or negative and generally is
a function of temperature. Over small temperature ranges A may be assumed to be a
constant, so that its value found from experiments at one temperature can be used at
neighboring temperatures.
The one-constant Margules equation provides a satisfactory representation for activ-

ity coefficient behavior only for liquid mixtures containing constituents of similar size,
shape, and chemical nature. For more complicated systems, particularly mixtures of
dissimilar molecules, simple relations such as Eq. 9.5-1 or 9.5-5 are not valid. In par-
ticular, the excess Gibbs energy of a general mixture will not be a symmetric function
of the mole fraction, and the activity coefficients of the two species in a mixture should
not be expected to be mirror images. One possible generalization of Eq. 9.5-1 to such
cases is to set

Redlich-Kister
expansion

Gex = x1x2{A + B(x1 − x2) + C(x1 − x2)2 + · · · } (9.5-6)

where A,B,C, . . . are temperature-dependent parameters. This expression for Gex is
another example of the Redlich-Kister expansion used for the representation of excess
thermodynamic properties, which was discussed in Sec. 8.6. The number of terms re-
tained in this expansion depends on the shape of the Gex curve as a function of com-
position, the accuracy of the experimental data, and the goodness of the fit desired.
When A = B = C = · · · = 0, the ideal solution model is recovered; for A �= 0,
B = C = · · · = 0, the one-constant Margules equation is obtained. For the case in
which A �= 0, B �= 0, but C = D = · · · = 0, one obtains (see Problem 9.8)

Two-constant
Margules expansion

RT ln γ1 = α1x
2
2 + β1x

3
2

RT ln γ2 = α2x
2
1 + β2x

3
1

(9.5-7)

where

αi = A + 3(−1)i+1B

and

βi = 4(−1)iB
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In this equation i denotes the species and has values of 1 and 2. These results are known
as the two-constant Margules equations. In this case the excess Gibbs energy is not
symmetric in the mole fractions and the two activity coefficients are not mirror images
of each other as a function of concentration.
The expansion of Eq. 9.5-6 is certainly not unique; other types of expansions for the

excess Gibbs energy could also be used. Another expansion is that of Wohl,4

Gex

RT (x1q1 + x2q2)
= 2a12z1z2 + 3a112z

2
1z2 + 3a122z1z

2
2

+ 4a1112z
3
1z2 + 4a1222z1z

3
2 + 6a1122z

2
1z

2
2

+ · · ·

(9.5-8)

where qi is some measure of the volume of molecule i (e.g., its liquid molar volume
or van der Waals b parameter) and the a’s are parameters resulting from the unlike
molecule (i.e., species 1–species 2) interactions. The zi in Eq. 9.5-8 are, essentially,
volume fractions defined by

zi =
xiqi

x1q1 + x2q2

Equation 9.5-8 is modeled after the virial expansion for gaseous mixtures, and, in fact,
the constants in the expansion (2, 3, 3, 4, 4, 6, etc.) are those that arise in that equation.
The liquid-phase activity coefficients for the Wohl expansion can be obtained from

Eq. 9.5-8 by taking the appropriate derivatives:

ln γi =
Gex

i

RT
=

∂

∂Ni

(
NGex

RT

)
T,P,Nj�=i

In particular, for the case in which we assume a12 �= 0 and a112 = a122 = · · · = 0,
we have

Gex

RT
= (x1q1 + x2q2)2a12z1z2 =

2a12x1q1x2q2

x1q1 + x2q2

and (see Problem 9.8)

van Laar equations ln γ1 =
α[

1 +
α

β

x1

x2

]2 and ln γ2 =
β[

1 +
β

α

x2

x1

]2 (9.5-9)

where α = 2q1a12 and β = 2q2a12. Equations 9.5-9 are known as the van Laar
equations;5 they are frequently used to correlate activity coefficient data. Other, more
complicated, activity coefficient equations can be derived from Eq. 9.5-8 by retaining
additional terms in the expansion, though this is not done here.
The values of the parameters in the activity coefficient equations are usually found

by fitting these equations to experimental activity coefficient data (see Problem 9.22)

4K. Wohl, Trans. AIChE, 42, 215 (1946).
5J. J. van Laar, Z. Physik. Chem., 72, 723 (1910); 83, 599 (1913).
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over the whole composition range. Alternatively, if only limited data are available, the
van Laar equations, which can be written as

α =
(

1 +
x2 ln γ2

x1 ln γ1

)2

ln γ1

β =
(

1 +
x1 ln γ1

x2 ln γ2

)2

ln γ2
(9.5-10)

so that data for γ1 and γ2 at only a single mole fraction can be used to evaluate the
two van Laar constants, and hence to compute the activity coefficients at all other com-
positions. This procedure is used in Chapter 10. However, if activity coefficient data
are available at several compositions, a regression procedure can be used to obtain the
“best” fit values for α and β. Table 9.5-1 contains values that have been reported for
these parameters for a number of binary mixtures.

Table 9.5-1 The van Laar Constants for Some Binary Mixtures

Component 1–Component 2 Temperature Range (◦C) α β

Acetaldehyde–water 19.8–100 1.59 1.80
Acetone–benzene 56.1–80.1 0.405 0.405
Acetone–methanol 56.1–64.6 0.58 0.56

25 1.89 1.66Acetone–water
{
56.1–100 2.05 1.50

Benzene–isopropanol 71.9–82.3 1.36 1.95
Carbon disulfide–acetone 39.5–56.1 1.28 1.79
Carbon disulfide–Carbon tetrachloride 46.3–76.7 0.23 0.16
Carbon tetrachloride–benzene 76.4–80.2 0.12 0.11
Ethanol–benzene 67.0–80.1 1.946 1.610
Ethanol–cyclohexane 66.3–80.8 2.102 1.729
Ethanol–toluene 76.4–110.7 1.757 1.757
Ethanol–water 25 1.54 0.97
Ethyl acetate–benzene 71.1–80.2 1.15 0.92
Ethyl acetate–ethanol 71.7–78.3 0.896 0.896
Ethyl acetate–toluene 77.2–110.7 0.09 0.58
Ethyl ether–acetone 34.6–56.1 0.741 0.741
Ethyl ether–ethanol 34.6–78.3 0.97 1.27
n-Hexane–ethanol 59.3–78.3 1.57 2.58

37.8 2.62 3.02Isobutane–furfural
{

51.7 2.51 2.83
Isopropanol–water 82.3–100 2.40 1.13
Methanol–benzene 55.5–64.6 0.56 0.56
Methanol–ethyl acetate 62.1–77.1 1.16 1.16

25 0.58 0.46Methanol–water
{
64.6–100 0.83 0.51

Methyl acetate–methanol 53.7–64.6 1.06 1.06
Methyl acetate–water 57.0–100 2.99 1.89
n-Propanol–water 88.0–100 2.53 1.13
Water–phenol 100–181 0.83 3.22

Source: This table is an adaptation of one given in J. H. Perry, ed., Chemical Engineers’ Handbook, 4th ed.,
McGraw-Hill, New York (1963), p. 13–7.

Note: When α = β, the van Laar equation ln γ1 =
α

[1 + (αx1/βx2)]2
reduces to the Margules form

ln γ1 = αx2
2.
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Figure 9.5-4 Experimental activity coefficient data for the benzene–2,2,4-trimethyl pentane
mixture and the correlation of these data obtained using the one-constant Margules equation.

Illustration 9.5-1
Use of Activity Coefficient Models to Correlate Data

The points in Figs. 9.5-4 and 9.5-5 represent smoothed values of the activity coefficients for
both species in a benzene–2,2,4-trimethyl pentane mixture at 55◦C taken from the vapor-liquid
equilibrium measurements of Weissman and Wood (see Illustration 10.2-4). Test the accuracy
of the one-constant Margules equation and the van Laar equations in correlating these data.

Solution

a. The one-constant Margules equation. From the data presented in Fig. 9.5-4 it is clear that the
activity coefficient for benzene is not the mirror image of that for trimethyl pentane. Therefore,
the one-constant Margules equation cannot be made to fit both sets of activity coefficients simul-
taneously. (It is interesting to note that the Margules form, RT ln γi = Aix

2
j , will fit these data

well if A1 and A2 are separately chosen. However, this suggestion does not satisfy the Gibbs-
Duhem equation! Can you prove this?)
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 = 0.415
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Figure 9.5-5 Experimental activity coefficient data for the benzene–2,2,4-trimethyl pentane
mixture and the correlation of these data obtained using the van Laar equation.
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b. The van Laar equation. One can use Eqs. 9.5-10 and a single activity coefficient–composi-
tion data point (or a least-squares analysis of all the data points) to find values for the van Laar
parameters. Using the data at x1 = 0.6, we find that α = 0.415 and β = 0.706. The activity
coefficient predictions based on these values of the van Laar parameters are shown in Fig. 9.5-5.
The agreement between the correlation and the experimental data is excellent. Note that these
parameters were found using the MATHCAD worksheet ACTCOEFF on the website for this
book, and discussed in Appendix B.III.

The molecular-level assumption underlying the Redlich-Kister expansion is that
completely random mixtures are formed, that is, that the ratio of species 1 to species
2 molecules in the vicinity of any molecule is, on the average, the same as the ratio
of their mole fractions. A different class of excess Gibbs energy models can be for-
mulated by assuming that the ratio of species 1 to species 2 molecules surrounding
any molecule also depends on the differences in size and energies of interaction of the
chosen molecule with species 1 and species 2. Thus, around each molecule there is a
local composition that is different from the bulk composition. From this picture, the
several binary mixture models have been developed.
The first model we consider of this type is the two-parameter (Λ12,Λ21) Wilson

equation6

Gex

RT
= −x1 ln(x1 + x2Λ12) − x2 ln(x2 + x1Λ21) (9.5-11)

for which

Wilson equation
ln γ1 = − ln(x1 + x2Λ12) + x2

[
Λ12

x1 + x2Λ12

− Λ21

x1Λ21 + x2

]

ln γ2 = − ln(x2 + x1Λ21) − x1

[
Λ12

x1 + x2Λ12

− Λ21

x1Λ21 + x2

] (9.5-12a)

The two infinite-dilution activity coefficients in this model are

ln γ∞
1 = − lnΛ12 + 1 − Λ12 and ln γ∞

2 = − lnΛ21 + 1 − Λ21 (9.5-12b)

The secondmodel is the three-parameter (α, τ12, τ21) nonrandom two-liquid (NRTL)
equation7

Gex

RT
= x1x2

(
τ21G21

x1 + x2G21

+
τ12G12

x2 + x1G12

)
(9.5-13)

with lnG12 = −ατ12 and lnG21 = −ατ21, for which

NRTL model
ln γ1 = x2

2

[
τ21

(
G21

x1 + x2G21

)2

+
τ12G12

(x2 + x1G12)2

]

ln γ2 = x2
1

[
τ12

(
G12

x2 + x1G12

)2

+
τ21G21

(x1 + x2G21)2

] (9.5-14a)

6G. M. Wilson, J. Am. Chem. Soc., 86, 127 (1964).
7H. Renon and J. M. Prausnitz, AIChE J., 14, 135 (1968).
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and
ln γ∞

1 = τ21 + τ12G12 = τ21 + τ12exp (−ατ12)
ln γ∞

2 = τ12 + τ21G21 = τ12 + τ21exp (−ατ21)
(9.5-14b)

Note that in these models there are different weightings of the mole fractions of the
species due to the parameters (Λij and τij), the values of which depend on differences
in size and interaction energies of the molecules in the mixture. (The multicomponent
forms of the Wilson and NRTL models are given in Appendix A9.2.)
Another model, the Flory and Huggins model, is meant to apply to mixtures of

molecules of very different size, including solutions of polymers. This solution model
contains two parts. The first is an expression for the entropy of mixing per mole:

ΔmixS = −R(x1 lnφ1 + x2 lnφ2) (9.5-15a)

or

Sex = ΔmixS − ΔmixS
IM

= −R

(
x1 ln

φ1

x1

+ x2 ln
φ2

x2

)
(9.5-15b)

Here

φ1 =
x1v1

x1v1 + x2v2

=
x1

x1 + mx2

and φ2 =
mx2

x1 + mx2

are the volume fractions, with vi being somemeasure of the volume of species imolecules,
andm = v2/v1. The assumption in Eqs. 9.5-15a and b is that for molecules of different
size it is the volume fractions, rather than the mole fractions, that determine the entropy
of mixing. The second part of the model is that the enthalpy of mixing, or excess en-
thalpy, can be expressed by the simple one-constant term in volume fractions (rather
than mole fractions, as in the case of the one-constant Margules equation)

ΔmixH = Hex = χRT (x1 + mx2)φ1φ2 (9.5-16)

where χ is an adjustable parameter referred to as the Flory interaction parameter or
simply the Flory parameter (and sometimes as the chi parameter).
Combining Eqs. 9.5-15 and 9.5-16 gives

Gex

RT
=

Hex − TSex

RT

=
[
x1 ln

φ1

x1

+ x2 ln
φ2

x2

]
+ χ(x1 + mx2)φ1φ2

(9.5-17)

which is the Flory-Huggins model. The first term on the right side of this equation
is the entropic contribution to the excess Gibbs energy, and the second term is the
enthalpic contribution. These two terms are also referred to as the combinatorial and
residual terms, respectively. The activity coefficient expressions for this model
(Problem 9.29) are

Flory-Huggins
equations

ln γ1 = ln
φ1

x1

+
(

1 − 1
m

)
φ2 + χφ2

2

ln γ2 = ln
φ2

x2

+ (m − 1)φ1 + mχφ2
1

(9.5-18)
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We will consider only one additional activity coefficient equation here, the
UNIQUAC (universal quasichemical) model of Abrams and Prausnitz.8 This model,
based on statistical mechanical theory, allows local compositions to result from both
the size and energy differences between the molecules in the mixture. The result is the
expression

Gex

RT
=

Gex(combinatorial)
RT

+
Gex(residual)

RT
(9.5-19)

where the first term accounts for molecular size and shape differences, and the second
term accounts largely for energy differences. These terms, in multicomponent form, are
given by

UNIQUAC equation
Gex (combinatorial)

RT
=
∑

i

xi ln
φi

xi

+
z

2

∑
i

xiqi ln
θi

φi

(9.5-20)

and

Gex (residual)
RT

= −
∑

i

qixi ln

(∑
j

θjτji

)
(9.5-21)

where

ri = volume parameter for species i

qi = surface area parameter for species i

θi = area fraction of species i = xiqi

/∑
j

xjqj

φi = segment or volume fraction of species i = xiri

/∑
j

xjrj

ln τij = −(uij − ujj)
RT

with uij being the average interaction energy for a species i–species j interaction and
z being the average coordination number, that is, the number of molecules around a
central molecule, usually taken to be 10. Combining Eqs. 9.5-19, 9.5-20, and 9.5-21
gives

UNIQUAC expression
for activity coefficients

ln γi = ln γi(combinatorial) + ln γi(residual) (9.5-22)

ln γi(combinatorial) = ln
φi

xi

− z

2
qi ln

φi

θi

+ li −
φi

xi

∑
j

xjlj (9.5-23a)

ln γi(residual) = qi

⎡
⎢⎢⎣1 − ln

(∑
j

θjτji

)
−
∑

j

θjτij∑
k

θkτkj

⎤
⎥⎥⎦ (9.5-23b)

where li = (ri − qi)z/2 − (ri − 1).
Since the size and surface area parameters ri and qi can be evaluated from molecular

structure information, as will be discussed next, the UNIQUAC equation contains only

8D. S. Abrams and J. M. Prausnitz, AIChE J., 21, 116 (1975).
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two adjustable parameters, τ12 and τ21 (or, equivalently, u12–u22 and u21–u11) for each
binary pair. Thus, like the van Laar or Wilson equations, it is a two-parameter activity
coefficient model. It does have a better theoretical basis than these models, though it is
somewhat more complicated.
Instead of listing the volume (r) and surface area (q) parameters for each molecular

species for use in the UNIQUAC model, these parameters are evaluated by a group
contributionmethod. The underlying idea is that a molecule can be considered to be a
collection of functional groups, and that volume Ri and surface area Qi of functional
group i will be approximately the same in any molecule in which that group occurs. For
example, we expect the contribution to the total volume and surface area of a molecule
from a methyl (CH3–) group to be the same independent of whether the methyl group is
at the end of an ethane, propane, or dodecane molecule. Thus, the volume and surface
area parameters r and q of amolecule are obtained from a sum over its functional groups
of the R and Q parameters. The advantage of this group contribution approach is that
from a relatively small number of functional groups, the properties of the millions upon
millions of different molecules can be obtained.
Table 9.5-2 contains the R and Q parameters for 106 functional groups referred to as

subgroups in the table (the main group vs. subgroup terminology will be explained in
the following section). All the values that appear in the table have been normalized to
the properties of a methylene group in polymethylene, and therefore are unitless. There
are several things to note about the entries in this table. First, several molecules, such as
water and furfural, have such unique properties that they have been treated as functional
groups. Such molecule functional groups appear in bold in the table. Second, similar
groups, such as –CH3 and –C–, may have different surface area or Q parameters. This
is because a –CH3 group, being at the end of a molecule, increases its surface area,
whereas the –C– group, which is at the interior of a molecule, makes no contribution
to its surface area. Finally, as the functional group method continues to evolve, new
groups are added and group parameters are subject to change.

Illustration 9.5-2
Computation of Volume and Surface Area Fractions for Use in the UNIQUAC Model

One mole each of benzene and 2,2,4-trimethyl pentane are mixed together. Using the data in
Table 9.5-2, compute the volume fraction and surface area fractions of benzene and
2,2,4-trimethyl pentane in this mixture.

Solution

Benzene consists of six aromatic CH (ACH) groups. Therefore,

rB = 6 × 0.5313 = 3.1878

qB = 6 × 0.4000 = 2.4000

The structure of 2,2,4-trimethyl pentane is

CH3 CH3— —

CH3 —C—CH2 —CH—CH3—

CH3

This molecule consists of five CH3 groups, one CH2 group, one CH group, and one C group.
Thus

rTMP = 5 × 0.9011 + 0.6744 + 0.4469 + 0.2195 = 5.8463
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Table 9.5-2 The Group Volume and Surface Area Parameters, R and Q, for Use with the
UNIQUAC and UNIFAC Models*

Main
Group Subgroup R Q Example Assignments

CH2 CH3 0.6325 1.0608 n-Hexane: 4 CH2, 2 CH3

CH2 0.6325 0.7081 n-Heptane: 5 CH2, 2 CH3

CH 0.6325 0.3554 2-Methylpropane: 1 CH, 3 CH3

C 0.6325 0.0000 Neopentane: 1 C, 4 CH3

C=C CH2=CH 1.2832 1.6016 1-Hexene: 1 CH2=CH, 3 CH2, 1 CH3

CH=CH 1.2832 1.2489 2-Hexene: 1 CH=CH, 2 CH3, 2 CH2

CH2=C 1.2832 1.2489 2-Methyl-1-butene: 1 CH2=C, 1 CH2, 2 CH3

CH=C 1.2832 0.8962 2-Methyl-2-butene: 1 CH=C, 2 CH3

C=C 1.2832 0.4582 12,3-Dimethyl-2-butene: 1 C=C, 4 CH3

ACH ACH 0.3763 0.4321 Benzene: 6 ACH
AC 0.3763 0.2113 Styrene: 1 CH2=C, 5 ACH2, 1 ACH

ACCH2 ACCH3 0.9100 0.9490 Toluene: 5 ACH, 1 ACCH3

ACCH2 0.9100 0.7962 Ethylbenzene: 5 ACH, 1 ACCH2, 1 CH3

ACCH 0.9100 0.3769 Isopropylbenzene: 5 ACH, 1 ACCH, 2 CH3

OH OH(p) 1.2302 0.8927 1-Propanol: 1 OH(p), 1 CH3, 2 CH2

OH(s) 1.0630 0.8663 2-Propanol: 1 OH(s), 2 CH3, 1 CH
OH(t) 0.6895 0.8345 tert-Butanol: 1 OH(t), 3 CH3, 1 C

CH3OH CH3OH 0.8585 0.9938 Methanol
Water H2O 1.7334 2.4561 Water
ACOH ACOH 1.0800 0.9750 Phenol: 1 ACOH, 5 ACH
CH2CO CH3CO 1.7048 1.6700 2-Butanone: 1 CH3CO, 1 CH3, 1 CH2

CH2CO 1.7048 1.5542 2-Pentanone: 1 CH2CO, 2 CH3, 1 CH2

CHO CHO 0.7173 0.7710 Propionic aldehyde: 1 CHO, 1 CH3, 1 CH2

CCOO CH3COO 1.2700 1.6286 Butyl acetate: 1 CH3COO, 1 CH3, 3 CH2

CH2COO 1.2700 1.4228 Methyl propionate: 1 CH2COO, 2 CH3

HCOO HCOO 1.9000 1.8000 Ethyl formate: 1 HCOO, 1 CH3, 1 CH2

CH2O CH3O 1.1434 1.6022 Dimethyl ether: 1 CH3CO, 1 CH3

CH2O 1.1434 1.2495 Diethyl ether: 1 CH2O, 2 CH3, 1 CH2

CHO 1.1434 0.8968 Diisopropyl ether: 1 CHO, 4 CH3, 1 CH
CNH2 CH3NH2 1.6607 1.6904 Methylamine: CH3NH2

CH2NH2 1.6607 1.3377 Ethylamine: 1 CH2NH2, 1 CH3

CHNH2 1.6607 0.9850 Isopropylamine: 1 CHNH2, 2 CH3

CNH2 1.6607 0.9850 tert-Butylamine: 1 CNH2, 3 CH3

CNH CH3NH 1.3680 1.4332 Dimethylamine: CH3NH, 1 CH3

CH2NH 1.3680 1.0805 Diethylamine: 1 CH2NH, 2 CH3, 1 CH2

CHNH 1.3680 0.7278 Diisopropylamine: 1 CHNH, 4 CH3, 1 CH
(C)3N CH3N 1.0746 1.1760 Trimethylamine: 1 CH3N, 2 CH3

CH2N 1.0746 0.8240 Triethylamine: 1 CH2N, 2 CH2, 3 CH3

ACNH2 ACNH2 1.1849 0.8067 Aniline: 1 ACNH2, 5 ACH
Pyridines AC2H2N 1.4578 0.9022 Pyridine: 1 AC2H2N, 3ACH

AC2HN 1.2393 0.6330 2-Methylpyridine: 1 AC2HN, 3 ACH, 1 CH3

AC2N 1.0731 0.3539 2,5-Methylpyridine: 1 AC2N, 3 ACH, 2 CH3

CCN CH3CN 1.5575 1.5193 Acetonitrile
CH2CN 1.5575 1.1666 Propionitrile: 1 CH2CN, 1 CH3

COOH COOH 0.8000 0.9215 Acetic acid: 1 COOH, 1 CH3

HCOOH HCOOH 0.8000 1.2742 Formic acid

*The parameters for the UNIQUAC and UNIFAC models have been supplied by Prof. J. Gmehling of the
University of Oldenburg, Germany, supported by the UNIFAC Consortium.

(continued)
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Table 9.5-2 (Continued)

Main
Group Subgroup R Q Example Assignments

CCl CH2Cl 0.9919 1.3654 1-Chlorobutane: 1 CH2Cl, 1 CH3, 2 CH2

CHCl 0.9919 1.0127 2-Chloropropane: 1 CHCl, 2 CH3

CCl 0.9919 0.6600 tert-Butyl chloride: 1 CHCl, 3 CH3

CCl2 CH2Cl2 1.8000 2.5000 Dichloromethane: 1 CH2Cl2
CHCl2 1.8000 2.1473 1,1-Dichloroethane: 1 CHCl2, 1 CH3

CCl2 1.8000 1.7946 2,2-Dichloropropane: 1 CCl2, 2 CH3

CCl3 CHCl3 2.4500 2.8912 Chloroform
CCl3 2.6500 2.3778 1,1,1-Trichloroethane: 1 CCl3, 1 CH3

CCl4 CCl4 2.6180 3.1836 Tetrachloromethane
ACCl ACCl 0.5365 0.3177 Chlorobenzene: 1 ACCl, 5 ACH
CNO2 CH3NO2 2.6440 2.5000 Nitromethane

CH2NO2 2.5000 2.3040 1-Nitropropane: 1 CH2NO2, 1 CH3, 1 CH2

CHNO2 2.8870 2.2410 2-Nitropropane: 1 CHNO2, 2 CH3

ACNO2 ACNO2 0.4656 0.3589 Nitrobenzene: 1 ACNO2, 5 ACH
CS2 CS2 1.2400 1.0680 Carbon disulfide
CH3SH CH3SH 1.2890 1.7620 Methanethiol

CH2SH 1.5350 1.3160 Ethanethiol: 1 CH2SH, 1 CH3

Furfural furfural 1.2990 1.2890 Furfural
Diol (CH2OH)2 2.0880 2.4000 1,2-Ethanediol (ethylene glycol)
I I 1.0760 0.9169 Ethyl iodide: 1 I, 1 CH3, 1 CH2

Br Br 1.2090 1.4000 Ethyl bromide: 1 Br, 1 CH3, 1 CH2

C≡C CH≡C 0.9214 1.3000 1-Hexyne: 1 CH≡C, 1 CH3, 3 CH2

C≡C 1.3030 1.1320 2-Hexyne: 1 C≡C, 2 CH3, 2 CH2

DMSO DMSO 3.6000 2.6920 Dimethyl sulfoxide
ACRY ACRY 1.0000 0.9200 Acrylonitrile
Cl(C=C) Cl(C=C) 0.5229 0.7391 Trichloroethylene: 3 Cl(C=C), 1 CH=C
ACF ACF 0.8814 0.7269 Hexafluorobenzene: 6 ACF
DMF DMF 2.0000 2.0930 N, N -Dimethylformamide

HCON(CH2)2 2.3810 1.5220 N, N -Diethylformamide: 1 HCON(CH2)2, 2 CH3

CF2 CF3 1.2840 1.2660 1,1,1-Trifluoroethane: 1 CF3, 1 CH3

CF2 1.2840 1.0980 Perfluorohexane: 4 CF2, 2 CF3

CF 0.8215 0.5135 Perfluoromethylcyclohexane: 1 CF, 5 CF2, 1 CF3

COO COO 1.6000 0.9000 Methyl acrylate: 1 COO, 1 CH3, 1 CH2=CH
cy-CH2 cy-CH2 0.7136 0.8635 Cyclohexane: 6 cy-CH2

cy-CH 0.3479 0.1071 Methylcyclohexane: 1 cy-CH, 5 cy-CH2, 1 CH3

cy-C 0.3470 0.0000 1,1-Dimethylcyclohexane: 1 cy-C, 5 cy-CH2, 2 CH3

cy-CH2O cy-CH2OCH2 1.7023 1.8784 Tetrahydrofuran: 1 cy-CH2OCH2, 2 cy-CH2

cy-CH2O(CH2)1/2 1.4046 1.4000 1,3-Dioxane: 2 cy-CH2O(CH2)1/2, 1 cy-CH2

cy-(CH2)1/2O(CH2)1/2 1.0413 1.0116 1,3,5-Trioxane: 3 cy-(CH2)1/2O(CH2)1/2

cy-CON-C cy-CON-CH3 3.9819 3.2000 N -Methylpyrrolidone: 1 cy-CON-CH3, 3 cy-CH2

cy-CON-CH2 3.7543 2.8920 N -Ethylpyrrolidone: 1 cy-CON-CH2, 3 cy-CH2, 1 CH3

cy-CON-CH 3.5268 2.5800 N -Isopropylpyrrolidone: 1 cy-CON-CH, 3 cy-CH2, 2 CH3

cy-CON-C 3.2994 2.3520 N -tert-Butylpyrrolidone: 1 cy-CON-C, 3 cy-CH2, 3 CH3

ACS AC2H2S 1.7943 1.3400 Thiophene: 1 AC2H2S, 2 ACH
AC2HS 1.6282 1.0600 2-Methylthiophene: 1 AC2HS, 2 ACH, 1 CH3

AC2S 1.4621 0.7800 2,5-Dimethylthiophene: 1 AC2S, 2 ACH, 2 CH3

Note: A (as in ACH) denotes a group in an aromatic ring, cy- denotes a group in a cyclic structure, and functional groups in bold without
any example assignments, such as water, formic acid, etc. are specific to that molecule.
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and
qTMP = 5 × 0.8480 + 0.5400 + 0.2280 + 0.0 = 5.0080

Consequently,

θB =
0.5 × 2.4000

0.5 × 2.4000 + 0.5 × 5.0080
= 0.324 θTMP = 0.676

φB =
0.5 × 3.1878

0.5 × 3.1878 + 0.5 × 5.8463
= 0.353 φTMP = 0.647

Finally, it is useful to note that the Gibbs-Duhem equation can be used to get in-
formation about the activity coefficient of one component in a binary mixture if the
concentration dependence of the activity coefficient of the other species is known. This
is demonstrated in the next illustration.

Illustration 9.5-3
Interrelating the Two Activity Coefficients in a Binary Mixture

The activity coefficient for species 1 in a binary mixture can be represented by

ln γ1 = ax2
2 + bx3

2 + cx4
2

where a, b, and c are concentration-independent parameters. What is the expression for ln γ2 in
terms of these same parameters?

Solution

For a binary mixture at constant temperature and pressure we have, from Eq. 8.2-20 or 9.3-17,

x1

∂ ln γ1

∂x2

+ x2

∂ ln γ2

∂x2

= 0

Since x1 = 1 − x2 and ln γ1 = ax2
2 + bx3

2 + cx4
2, we have

∂ ln γ2

∂x2

= −x1

x2

∂ ln γ1

∂x2

= − (1 − x2)

x2

(2ax2 + 3bx2
2 + 4cx3

2)

= −2a + (2a − 3b)x2 + (3b − 4c)x2
2 + 4cx3

2

Now, by definition, γ2(x2 = 1) = 1, and ln γ2(x2 = 1) = 0. Therefore,

∫ x2

x2=1

∂ ln γ2

∂x2

dx2 = ln γ2(x2) − ln γ2(x2 = 1) = ln γ2(x2)

=

∫ x2

x2=1

[−2a + (2a − 3b)x2 + (3b − 4c)x2
2 + 4cx3

2] dx2

= −2a(x2 − 1) +
(2a − 3b)

2
(x2

2 − 1) +
(3b − 4c)

3
(x3

2 − 1)

+
4c

4
(x4

2 − 1)
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Again using x1 + x2 = 1, or x2 = 1 − x1, yields

ln γ2 = −2a(1 − x1 − 1)

+ 1
2
(2a − 3b)(1 − 2x1 + x2

1 − 1)

+ 1
3
(3b − 4c)(1 − 3x1 + 3x2

1 − x3
1 − 1)

+ c(1 − 4x1 + 6x2
1 − 4x3

1 + x4
1 − 1)

ln γ2 =

(
a +

3b

2
+ 2c

)
x2

1 − (b + 8
3
c)x3

1 + cx4
1

Finally, we should point out that any of the liquid-state activity coefficient models
discussed here can also be used for mixtures in the solid state. However, in practice,
simpler models, such as the one introduced in Sec. 12.4, are generally used.

9.6 TWO PREDICTIVE ACTIVITY COEFFICIENT MODELS

Because the variety of organic compounds of interest in chemical processing is very
large, and the number of possible binary, ternary, and other mixtures is essentially
uncountable, situations frequently arise in which engineers need to make activity co-
efficient predictions for systems or at conditions for which experimental data are not
available. Although the models discussed in the previous section are useful for correlat-
ing experimental data, or for making predictions given a limited amount of experimental
information, they are of little value in making predictions when no experimental data
are available. This is because in these models there is no theory that relates the values
of the parameters to molecular properties.
Most of the recent theories of liquid solution behavior have been based on well-

defined thermodynamic or statistical mechanical assumptions, so that the parameters
that appear can be related to the molecular properties of the species in the mixture, and
the resulting models have some predictive ability. Although a detailed study of the more
fundamental approaches to liquid solution theory is beyond the scope of this book, we
consider two examples here: the theory of van Laar,9 which leads to regular solution
theory; and the UNIFAC group contribution model, which is based on the UNIQUAC
model introduced in the previous section. Both regular solution theory and the UNIFAC
model are useful for estimating solution behavior in the absence of experimental data.
However, neither one is considered sufficiently accurate for the design of a chemical
process.
The theory of van Laar (i.e., the argument that originally led to Eqs. 9.5-9) is based

on the assumptions that (1) the binary mixture is composed of two species of similar
size and energies of interaction, and (2) the van der Waals equation of state applies to
both the pure fluids and the binary mixture.10

The implication of assumption 1 is that the molecules of each species will be uni-
formly distributed throughout the mixture (see Appendix A9.1) and the intermolecular
spacing will be similar to that in the pure fluids. Consequently, it is not unreasonable to
expect in this case that at a given temperature and pressure

ΔmixV = 0 or V ex = 0

9See Footnote 5.
10van Laar was a student of van der Waals.



9.6 Two Predictive Activity Coefficient Models 461

and

ΔmixS = −R
2∑

i=1

xi lnxi or Sex = 0 (9.6-1)

so that

Gex = U ex + PV ex − TSex = U ex

for such liquidmixtures. Thus to obtain the excess Gibbs energy change, and thereby the
activity coefficients for this liquid mixture, we need only compute the excess internal
energy change on mixing.
Since the internal energy, and therefore the excess internal energy, is a state function,

U ex may be computed along any convenient path leading from the pure components to
the mixture. The following path is used.

I Start with x1 moles of pure liquid 1 and x2 moles of pure liquid 2 (where x1 +
x2 = 1) at the temperature and pressure of the mixture, and, at constant tem-
perature, lower the pressure so that each of the pure liquids vaporizes to an
ideal gas.

II At constant temperature and (very low) pressure, mix the ideal gases to form an
ideal gas mixture.

III Now compress the gas mixture, at constant temperature, to a liquid mixture at
the final pressure P .

The total internal energy change for this process (which is just the excess internal
energy change since ΔmixU

IM = 0) is the sum of the internal energy changes for each
of the steps:

Gex = U ex = ΔU I + ΔU II + ΔU III (9.6-2)

Noting that (
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P

and using the facts that V → ∞ as P → 0 and that ΔU II = ΔmixU
IGM = 0, one

obtains

Gex = ΔU = x1

[∫ ∞

V 1

{
T

(
∂P

∂T

)
V

− P

}
dV

]
pure fluid 1

+ x2

[∫ ∞

V 2

{
T

(
∂P

∂T

)
V

− P

}
dV

]
pure fluid 2

+

[∫ V mix

∞

{
T

(
∂P

∂T

)
V

− P

}
dV

]
mixture

(9.6-3)

Each of the bracketed terms represents the internal energy change on going from a
liquid to an ideal gas and is equal to the internal energy change on vaporization.
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Next we use assumption 2, that the van der Waals equation of state is applicable to
both pure fluids and the mixture. From

P =
RT

(V − b)
− a

V 2 (9.6-4)

it is easily established that(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P =
a

V 2

so that Eq. 9.6-3 becomes

Gex = ΔU = x1

∫ ∞

V 1

a1

V 2 dV + x2

∫ ∞

V 2

a2

V 2 dV −
∫ ∞

V mix

amix

V 2 dV

= x1
a1

V 1

+ x2
a2

V 2

− amix

V mix

(9.6-5)

where the molar volumes appearing in this equation are those of the liquid. Since the
molecules of a liquid are closely packed, liquids are relatively incompressible; that
is, enormous pressures are required to produce relatively small changes in the molar
volume. Such behavior is predicted by Eq. 9.6-4 if V ≈ b. Making this substitution in
Eq. 9.6-5 gives

Gex = ΔU = x1
a1

b1

+ x2
a2

b2

− amix

bmix

Now using the mixing rules of Eq. 9.4-8 (with kij = 0), we obtain the following
expression for the excess internal energy of a van Laar mixture:

U ex = Gex = ΔU =
x1x2b1b2

x1b1 + x2b2

(√
a1

b1

−
√

a2

b2

)2

Finally, differentiating this expression with respect to composition yieldsGex
i and, from

Eq. 9.3-12, one obtains the van Laar equations for the activity coefficients,

ln γ1 =
α[

1 +
αx1

βx2

]2 and ln γ2 =
β[

1 +
βx2

αx1

]2

with

α =
b1

RT

[√
a1

b1

−
√

a2

b2

]2

and β =
b2

RT

[√
a1

b1

−
√

a2

b2

]2

(9.6-6)

This development provides both a justification for the van Laar equations and a
method of estimating the van Laar parameters for liquid-phase activity coefficients from
the parameters in the van der Waals equation of state. Since we know the van der Waals
equation is not very accurate, it is not surprising that if α and β are treated as adjustable
parameters, the correlative value of the van Laar equations is greater than when α and
β are determined from Eqs. 9.6-6 (Problem 9.9).
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Scatchard,11 based on the observations of Hildebrand,12 concluded that although V ex

and Sex were approximately equal to zero for some solutions (such mixtures are called
regular solutions), few obeyed the van der Waals equation of state. Therefore, he sug-
gested that instead of using an equation of state to predict the internal energy change
on vaporization, as in the van Laar theory, the experimental internal energy change on
vaporization (usually at 25◦C) be used. It was also suggested that the internal energy
change of vaporization for the mixture be estimated from the approximate mixing rule

(ΔvapU)mix =

(
x1

√
V 1ΔvapU1

V mix

+ x2

√
V 2ΔvapU2

V mix

)2

(9.6-7)

since experimental data on the heat of vaporization of mixtures are rarely available. In
this equation all molar volumes are those of the liquids, and V mix = x1V 1 + x2V 2,
since ΔmixV = 0 by the first van Laar assumption. Defining the volume fraction Φi

and solubility parameter δi of species i by

Φi ≡
xiV i

V mix

(9.6-8)

and

δi ≡
(

ΔvapU i

V i

)1/2

(9.6-9)

one obtains (see Eq. 9.6-3)

Gex = U ex = x1ΔvapU1 + x2ΔUvap
2 − (ΔvapU)mix

= (x1V 1 + x2V 2)Φ1Φ2[δ1 − δ2]2

which, on differentiation, yields

Regular solution
model activity
coefficients

RT ln γ1 = V 1Φ
2
2[δ1 − δ2]2

RT ln γ2 = V 2Φ
2
1[δ1 − δ2]2

(9.6-10)

Thus, we have a recipe for estimating the activity coefficients of each species in a binary
liquid mixture from a knowledge of the pure-component molar volumes, the mole (or
volume) fractions, and the solubility parameters (or internal energy changes on vapor-
ization) of each species. Table 9.6-1 gives a list of the solubility parameters and molar
volumes for a number of nonpolar liquids. Note, however, that the assumptions con-
tained in regular solution theory (i.e., V ex = Sex = 0 and Eq. 9.6-7) are not generally
applicable to polar substances. Therefore, regular solution theory should be used only
for the components listed in Table 9.6-1 and similar compounds.
Regular solution theory is functionally equivalent to the van Laar theory since, with

the substitutions

α =
V 1

RT
(δ1 − δ2)2 and β =

V 2

RT
(δ1 − δ2)2

11G. Scatchard, Chem Rev., 8, 321 (1931).
12J. H. Hildebrand, J. Am. Chem. Soc., 41, 1067 (1919). This is discussed in J. H. Hildebrand, J. M. Prausnitz, and
R. L. Scott, Regular and Related Solutions, Van Nostrand-Reinhold, Princeton, N.J. (1970).
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Table 9.6-1 Molar Liquid Volumes and Solubility Parameters
of Some Nonpolar Liquids

V L (cc/mol) δ (cal/cc)1/2

Liquefied gases at 90 K

Nitrogen 38.1 5.3
Carbon monoxide 37.1 5.7
Argon 29.0 6.8
Oxygen 28.0 7.2
Methane 35.3 7.4
Carbon tetrafluoride 46.0 8.3
Ethane 45.7 9.5

Liquid solvents at 25◦C

Perfluoro-n-heptane 226 6.0
Neopentane 122 6.2
Isopentane 117 6.8
n-Pentane 116 7.1
n-Hexane 132 7.3
1-Hexene 126 7.3
n-Octane 164 7.5
n-Hexadecane 294 8.0
Cyclohexane 109 8.2
Carbon tetrachloride 97 8.6
Ethyl benzene 123 8.8
Toluene 107 8.9
Benzene 89 9.2
Styrene 116 9.3
Tetrachloroethylene 103 9.3
Carbon disulfide 61 10.0
Bromine 51 11.5

Source: J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase
Equilibria. 1969. Reprinted with permission from Prentice-Hall, En-
glewood Cliffs, N.J.
Note: In regular solution theory the solubility parameter has tradition-
ally been given in the units shown. For this reason the traditional units,
rather than SI units, appear in this table.

Eqs. 9.5-9 and 9.6-10 are identical. The important advantage of regular solution theory,
however, is that we can calculate its parameters without resorting to activity coefficient
measurements. Unfortunately, the parameters derived in this way are not as accurate as
those fitted to experimental data.

Illustration 9.6-1
Test of the Regular Solution Model

Compare the regular solution theory predictions for the activity coefficients of the benzene–
2,2,4-trimethyl pentane mixture with the experimental data given in Illustration 9.5-1.

Solution

From Table 9.6-1 we have V L = 89 cc/mol and δ = 9.2 (cal/cc)1/2 for benzene. The parame-
ters for 2,2,4-trimethyl pentane are not given. However, the molar volume of this compound is
approximately 165 cc/mol, and the solubility parameter can be estimated from
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δ =

(
ΔvapU

V L

)1/2

=

(
ΔvapH − RT

V L

)1/2

where in the numerator we have neglected the liquid molar volume with respect to that of the
vapor, and further assumed ideal vapor-phase behavior. Using the value of ΔvapH found in
Illustration 7.7-1, we obtain δ = 6.93 (cal/cc)1/2.

Our predictions for the activity coefficients, together with the experimental data, are plotted
in Fig. 9.6-1. It is evident that although the regular solution theory prediction leads to activity
coefficient behavior that is qualitatively correct, the quantitative agreement in this case is, in
fact, poor. This example should serve as a warning that theoretical predictions may not always
be accurate and that experimental data are to be preferred.

The extension of regular solution theory to multicomponent mixtures is an alge-
braically messy task; the final result is

RT ln γi = V i(δi − δ)2 (9.6-11)

where

δ =

⎛
⎝ Volume fraction
averaged solubility

parameter

⎞
⎠ =

∑
j

Φjδj
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Figure 9.6-1 The regular solution theory predictions for the activity coefficients of the benzene–
2,2,4-trimethyl pentane mixture. The points indicated by ◦ are the experimental data.
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and

Φj =
xjV j∑

k

xkV k

where each of the sums is over all the species in the mixture.
Several other characteristics of regular solution theory are worth noting. The first

is that the theory leads only to positive deviations from ideal solution behavior in the
sense that γi ≥ 1. This result can be traced back to the assumption of Eq. 9.6-7, which
requires that (ΔvapU)mix always be intermediate to ΔvapU of the two pure compo-
nents. Also, the solubility parameters are clearly functions of temperature since δ → 0
as T → Tc for each species; however, (δ1 − δ2) is often nearly temperature inde-
pendent, at least over limited temperature ranges. Therefore, the solubility parameters
listed in Table 9.6-1 may be used at temperatures other than the one at which they
were obtained (see Eq. 9.3-22, however). Also, referring to Eq. 9.6-10, it is evident
that liquids with very different solubility parameters, such as neopentane and carbon
disulfide, can be expected to exhibit highly nonideal solution behavior (i.e., γi > 1),
whereas adjacent liquids in Table 9.6-1 will form nearly ideal solutions. This is useful
information.
The most successful recent activity coefficient prediction methods are based on the

idea of group contributions, in which each molecule is considered to be a collection
of basic building blocks, the functional groups discussed in the last section. Thus, a
mixture of molecules is considered to be a mixture of functional groups, and its proper-
ties result from functional group interactions. Because the number of different types of
functional groups is very much smaller than the number of different molecular species,
it is possible, by the regression of experimental data, to obtain a fairly compact table
of parameters for the interaction of each group with all others. From such a table, the
activity coefficients in a mixture for which no experimental data are available can be
estimated from a knowledge of the functional groups present.
The two most developed group contribution methods are the ASOG (Analytical

SolutionOfGroups)13 andUNIFAC (UNIquac Functional-groupActivity Coefficient)14

models, both of which are the subjects of books. We will consider only the UNIFAC
model here. UNIFAC is based on the UNIQUAC model of Sec. 9.5. This model, you
will remember, has a combinatorial term that depends on the volume and surface area
of each molecule, and a residual term that is a result of the energies of interaction be-
tween the molecules. In UNIQUAC the combinatorial term was evaluated using group
contributions to compute the size parameters, whereas the residual term had two ad-
justable parameters for each binary system that were to be fit to experimental data. In
the UNIFACmodel, both the combinatorial and residual terms are obtained using group
contribution methods.
When using the UNIFAC model, one first identifies the functional subgroups present

in each molecule using the list in Table 9.5-2. Next the activity coefficient for each
species is written as

ln γi = ln γi(combinatorial) + ln γi(residual)

13K. Kojima and T. Tochigi, Prediction of Vapor-Liquid Equilibrium by the ASOG Method, Elsevier, Amsterdam
(1979).
14A. Fredenslund, J. Gmehling, and P. Rasmussen,Vapor-Liquid EquilibriumUsingUNIFAC,Elsevier, Amsterdam
(1977).
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The combinatorial term is evaluated from a modified form of the comparable term in
the UNIQUAC equation (Eq. 9.5-23a):

ln γi(combinatorial) = ln
φi

′

xi

+ 1 − φi
′

xi

− z

2
qi

(
1 + ln

φi

θi

− φi

θi

)
(9.6-12a)

where φ′
i = xir

3/4
i

/∑
j

xjr
3/4
j , with the r and q parameters evaluated using the group

contribution discussed in the previous section. Here, however, the residual term is also
evaluated by a group contribution method, so that the mixture is envisioned as being a
mixture of functional groups rather than of molecules. The residual contribution to the
logarithm of the activity coefficient of group k in the mixture, ln Γk, is computed from
the group contribution analogue of Eq. 9.5-23b, which is written as

ln Γk = Qk

[
1 − ln

(∑
m

ΘmΨmk

)
−
∑
m

ΘmΨkm∑
n

ΘnΨnm

]
(9.6-12b)

where

Θm =

⎛
⎝Surface area

fraction of
group m

⎞
⎠ =

XmQm∑
n

XnQn

Xm = mole fraction of group m in mixture (9.6-13a)

and

Ψmn = exp
[
−(umn − unn)

kT

]
= exp

[−amn

T

]
(9.6-13b)

where umn is a measure of the interaction energy between groups m and n, and the sums
are over all groups in the mixture.
Finally, the residual part of the activity coefficient of species i is computed from

The UNIFAC model ln γi(residual) =
∑

k

v(i)
k [ln Γk − ln Γ(i)

k ] (9.6-14)

Here v(i)
k is the number of k groups present in species i, and Γ(i)

k is the residual contri-
bution to the activity coefficient of group k in a pure fluid of species i molecules. This
last term is included to ensure that in the limit of pure species i, which is still a mix-
ture of groups (unless species i molecules consist of only a single functional group),
ln γi(residual) is zero or γi(residual) = 1.
The combination of Eqs. 9.6-12 through 9.6-14 is the UNIFAC model. Since the

volume (Ri) and surface (Qi) parameters are known (Table 9.5-2), the only unknowns
are binary parameters, anm and amn, for each pair of functional groups. Continuing
with the group contribution idea, it is next assumed that any pair of functional groups
m and n will interact in the same manner, that is, have the same value of amn and anm,
independent of the mixtures in which these two groups occur. Thus, for example, it is
assumed that the interaction between an alcohol (—OH) group and a methyl (—CH3)
group will be the same, regardless of whether these groups occur in ethanol–n-pentane,
isopropanol-decane, or 2-octanol–2,2-4-trimethyl pentane mixtures.
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Consequently, by a regression analysis of very large quantities of activity coefficient
(or, as we will see in Sec. 10.2, actually vapor-liquid equilibrium) data, the binary pa-
rameters anm and amn for many group-group interactions can be determined. These
parameters can then be used to predict the activity coefficients in mixtures (binary or
multicomponent) for which no experimental data are available.
In the course of such an analysis it was found that (1) experimental data existed to

determine many of, but not all, the binary group parameters anm and amn and (2) that
some very similar groups, such as the —CH3, —CH2, —CH, and —C groups, interact
with other groups in approximately the same way and, therefore, have the same inter-
action parameters with other groups. Such very similar subgroups are considered to
belong to the same main group. Consequently, in Table 9.5-2 there are 46 main groups
among the 106 subgroups. All the subgroups within a main group (i.e., the CH3, CH2,
CH, and C subgroups within the CH2 main group) have the same values of the binary
parameters for interactions with other main groups and zero values for the interactions
with other subgroups in their own main group. Appendix B describes several programs
that use the UNIFAC model for activity coefficient predictions that are the on the web-
site for this book. The Visual Basic and MATLAB programs use the recent UNIFAC
model described in this chapter, whereas the DOS Basic version uses an earlier model
(the storage limitations in DOS Basic did not allow updating this program to accom-
modate the many new parameters that had been added). Therefore, the Visual Basic
or MATLAB versions of the program can be used; the DOS-based version has been
retained should the reader wish to examine the difference in the two methods. How-
ever, Aspen Plus R© contains the UNIFAC model with the latest parameters and has an
easier to use user interface therefore is preferred. [See the folder Aspen Illustrations>
Chapter 9>9.6-5 on Wiley website for this book.]

Illustration 9.6-2
Test of the UNIFAC Model

Compare the UNIFAC predictions for the activity coefficients of the benzene–2,2,4-trimethyl
pentane mixture with the experimental data given in Illustration 9.5-1.

Solution

Benzene consists of six aromatic CH groups (i.e., subgroup 10 of Table 9.5-2), whereas 2,2,4-
trimethyl pentane contains five CH3 groups (subgroup 1), one CH2 group (subgroup 2), one CH
group (subgroup 3), and one C group (subgroup 4). Using the UNIFAC program of Aspen Plus R©
with the folder Aspen Illustrations>Chapter 9>9.6-2 on the Wiley website for this book, the
results plotted in Fig. 9.6-2 are obtained.

It is clear from this figure that, for this simple system, the UNIFAC predictions are good—
much better than the regular solution predictions of Fig. 9.6-1. Although the UNIFAC predic-
tions for all systems are not always as good as for the benzene–2,2,4-trimethyl pentane system,
UNIFACwith its recent improvements is the best activity coefficient prediction method currently
available.

[
The Excel file Illustration 9.6-2 in Appendix C on the website for this book gives

the results.
]

9.7 FUGACITY OF SPECIES IN NONSIMPLE MIXTURES

To estimate the fugacity of a species in a gaseous mixture using the Lewis-Randall rule,

fV
i (T,P, y) = yi f

V
i (T,P ) (9.7-1)
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Figure 9.6-2 UNIFAC predictions for the activity coefficients of the benzene–2,2,4-trimethyl
pentane system. The points are activity coefficients derived from experimental data.

we need the fugacity of pure species i as a vapor at the temperature and pressure of the
mixture. In a nonsimple gaseous mixture at least one of the pure components does not
exist as a vapor at the mixture temperature and pressure, so fV

i (T,P ) for that species
cannot be computed without some sort of approximation or assumption. To estimate
the fugacity of a species in a liquid mixture from an activity coefficient model, one uses

fL
i (T,P, x) = xiγi(T,P, x)fL

i (T,P ) (9.7-2)

and one would need the fugacity of pure species i as a liquid at the temperature and
pressure of the mixture. In a nonsimple liquid mixture, at least one of the components,
if pure, would be a solid or a vapor at the temperature and pressure of the mixture, so
it is not evident how to compute fL

i (T,P ) in this case.
The study of vapor-liquid equilibria (Sec 10.1) of the solubility of gases in liquids

(Sec. 11.1), and of the solubility of solids in liquids (Sec. 12.1), all involve nonsimple
mixtures. To see why this occurs, consider the criterion for vapor-liquid equilibrium:

fL
i (T,P, x) = fV

i (T,P, y)

Using Eqs. 9.7-1 and 9.7-2, we have

xiγi(T,P, x)fL
i (T,P ) = yi f

V
i (T,P )

To use this equation we must estimate the pure component fugacity of each species as
both a liquid and a vapor at the temperature and pressure of the mixture. However, at
this temperature and pressure either the liquid or the vapor will be the stable phase for
each species, generally not both.15

Consequently, at least one of the phases will be a nonsimple mixture. In most vapor-
liquid problems both phases will be nonsimple mixtures, in that species with pure
component vapor pressures greater than the system pressure appear in the liquid phase,
and those with vapor pressures less than the system pressure appear in the vapor phase.
For those situations one can proceed in several ways. The simplest, and most accu-

rate when it is applicable, is to use equations of state to compute species fugacities in

15Unless, fortuitously, the system pressure is equal to the vapor pressure of that species.



470 Chapter 9: Estimation of the Gibbs Energy and Fugacity of a Component in a Mixture

mixtures, thereby avoiding the use of Eqs. 9.7-1 and 9.7-2 and the necessity of com-
puting a pure component fugacity in a thermodynamic state that does not occur. Thus,
when an equation of state (virial, cubic, etc.) can be used for the vapor mixture, a non-
simple gaseous mixture can be treated using the methods of Sec. 9.4. Similarly, if a
nonsimple liquid mixture can be described by an equation of state, which is likely to be
the case only for hydrocarbons and perhaps hydrocarbons with dissolved gases, it can
also be treated by the methods of Sec 9.4.
If an equation of state cannot be used, one can, in principle, proceed in either of two

ways. The first procedure is to write the Gibbs energy of mixing as

ΔmixG = ΔG′ + ΔmixG
IM + Gex

where ΔmixG
IM and Gex have their usual meanings, and ΔG′ is the Gibbs energy

change of converting to the same phase as the mixture those species that exist in other
phases as pure substances. For example, ΔG′ might be the Gibbs energy change of
producing pure liquids from either gases or solids before forming a liquid mixture.
The partial molar Gibbs energy and fugacity of each species in the mixture would then
be computed directly from ΔmixG. In practice, however, the calculation of ΔG′ can
be difficult, since it may involve the estimation of the Gibbs energy of substances in
hypothetical states (i.e., a liquid above its critical point).
A second, more straightforward procedure is to use Eqs. 9.7-1 and 9.7-2 and the

models for γi considered in Secs. 9.5 and 9.6, but with estimates for the pure compo-
nent fugacities of the hypothetical gases and liquids obtained by simple extrapolation
procedures. Of course, such extrapolation schemes have no real physical or chemi-
cal basis; they are, rather, calculational methods that have been found empirically to
lead to satisfactory predictions, provided the extrapolation is not too great. The first
extrapolation scheme to be considered is for the liquid-phase fugacity of a species
that would be a vapor as a pure component at the temperature and pressure of the
mixture. The starting point here is the observation that the fugacity of a pure liquid
is equal to its vapor pressure if the vapor pressure is not too high (or the product of
P vap and the fugacity coefficient at higher vapor pressures). Consequently, one takes
the fugacity of the hypothetical liquid at the temperature T and the pressure P to be
equal to the vapor pressure of the real liquid at the same temperature [even though
P vap(T ) > P ]. Thus, in Illustration 10.1-2, where we consider vapor-liquid equilib-
rium for an n-pentane, n-hexane, and n-heptane mixture at 69◦C and 1 bar, the fugacity
of “liquid” n-pentane, for use in Eq. 9.7-2, will be taken to be equal to its vapor pressure
at 69◦C, 2.721 bar.
To calculate the fugacity of a pure vapor from corresponding states that, at the condi-

tions of the mixture, exists only as a liquid, we will use Eq. 7.8-1 with fV
i (T,P ) equal

to the total pressure, if the pressure is low enough, or

fV
i (T,P ) = P

(
f

P

)
i

at higher pressures. Here, however, the fugacity coefficient is obtained not from
Fig. 7.4-1, but rather from Fig. 9.7-1, which is a corresponding states correlation in
which the fugacity coefficient for gases has been extrapolated into the liquid region.
(You should compare Figs. 7.4-1 and 9.7-1.)
Extrapolation schemes may also be used in some circumstances where the desired

phase does not exist at any pressure for the temperature of interest—for example, to
estimate the fugacity of a “liquid” not too far above its critical temperature, or not much
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Figure 9.7-1 Fugacity coefficients of gases and vapors. (Reprinted with permission from O. A. Hougen and K. M. Watson,
Chemical Process Principles Charts, John Wiley & Sons, New York, 1946.) In this figure Zc = 0.27.

below its triple-point temperature. As an example of the methods used, we consider the
estimation of the liquid-phase fugacity at temperatures below its triple point (so that the
solid is the stable phase) and also at temperatures above its critical temperature (where
the gas is the stable phase) for the substance whose pure component phase diagram
is given in Fig. 9.7-2a. In either case the first step in the procedure is to extend the
vapor pressure curve, either analytically (using the Clausius-Clapeyron equation) or
graphically as indicated in Fig. 9.7-2b, to obtain the vapor pressure of the hypothetical
liquid.16

In the case of the subcooled liquid, which involves an extrapolation into the solid
region, the vapor pressure is usually so low that the fugacity coefficient is close to
unity, and the fugacity of this hypothetical liquid is equal to the extrapolated vapor
pressure. For the supercritical liquid, however, the extrapolation is above the critical
temperature of the liquid and yields very high vapor pressures, so that the fugacity of
this hypothetical liquid is equal to the product of the extrapolated vapor pressure and the
fugacity coefficient (which is taken from the corresponding-states plot of Fig. 9.7-1).
Another way to estimate the “subcooled” liquid fugacity fL

1 below the melting point
is to use heat (enthalpy) of fusion data and, if available, the heat capacity data for both

16For accurate extrapolations lnP vap should be plotted versus 1/T as in Sec. 7.5.
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the solid and liquid to compute the Gibbs energy of fusion ΔfusG(T ), which is related
to the fugacity ratio as follows:

ΔfusG(T,P )
RT

=
GL

1 (T,P ) − GS
1(T,P )

RT
= ln

fL
1 (T,P )

fS
1 (T,P )

(9.7-3)

The value ofΔfusG(T ) is computed by separately calculatingΔfusH(T ) andΔfusS(T ),
and then using the relation ΔfusG(T ) = ΔfusH(T ) − TΔfusS(T ). To compute the
enthalpy and entropy changes of fusion, we suppose that the melting of a solid (be-
low its normal melting point) to form a liquid is carried out in the following three-step
constant-pressure process:

1. The solid is heated at fixed pressure from the temperatureT to its normal melting
temperature Tm.

2. The solid is then melted to form a liquid.
3. The liquid is cooled without solidification from Tm back to the temperature of the

mixture.

The enthalpy and entropy changes for this process are

ΔfusH(T ) =
∫ Tm

T

CS
P dT + ΔfusH(Tm) +

∫ T

Tm

CL
P dT

= ΔfusH(Tm) +
∫ T

Tm

ΔCP dT

(9.7-4)

ΔfusS(T ) =
∫ Tm

T

CS
P

T
dT + ΔfusS(Tm) +

∫ T

Tm

CL
P

T
dT

= ΔfusS(Tm) +
∫ T

Tm

ΔCP

T
dT

(9.7-5)

where ΔCP = CL
P − CS

P.
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Note that Eqs. 9.7-4 and 9.7-5 relate the enthalpy and entropy changes of fusion at
any temperature T to those changes at the melting point at the same pressure. Now
since G = H − TS, and ΔfusG(T = Tm) = 0, Eq. 9.7-5 can be rewritten as

ΔfusS(T ) =
ΔfusH(Tm)

Tm

+
∫ T

Tm

ΔCP

T
dT (9.7-6)

and, therefore,

ΔfusG(T ) = ΔfusH(T ) − TΔfusS(T )

= ΔfusH(Tm)
[
1 − T

Tm

]
+
∫ T

Tm

ΔCP dT − T

∫ T

Tm

ΔCP

T
dT

≡ RT ln
[
fL
1 (T,P )

fS
1 (T,P )

] (9.7-7)

Thus

fL
1 (T,P )

= fS
1 (T,P ) exp

[
1

RT

[
�fusH (T )

(
1 − T

Tm

)
+
∫ T

Tm

�CPdT − T

∫ T

Tm

�CP

T
dT

]]
(9.7-8a)

As heat capacity data may not be available, this equation is usually simplified to

fL
1 (T,P ) = fS

1 (T,P ) exp
[
�fusH (T )

RT

(
1 − T

Tm

)]
(9.7-8b)

Therefore, if the sublimation pressure of the solid, which is equal to the solid fugacity fS
1

and the heat of fustion at the melting point, are known, the fugacity of the hypothetical
liquid, or liquid below its melting temperature, can be computed.
The fugacity of a hypothetical superheated solid can be estimated by extrapolating the

sublimation pressure line into the liquid region of the phase diagram. This is indicated
in Fig. 9.7-2c. The fugacity coefficient is usually equal to unity in this case.
For species whose thermodynamic properties are needed in hypothetical states far

removed from their stable states, such as a liquid well above its critical point, the ex-
trapolation procedures discussed here are usually inaccurate. In some cases special cor-
relations or prescriptions are used; one such correlation is discussed in Chapter 11. In
other cases different procedures, such as those discussed next, are used.
The fugacity of a very dilute species in a liquid mixture (e.g., a dissolved gas or solid

of limited solubility) is experimentally found to be linearly proportional to its mole
fraction at low mole fractions, that is,

fL
i (T,P, x) = xiHi(T,P ) as xi → 0 (9.7-9)

The value of the “constant of proportionality,” called the Henry’s law constant, is
dependent on the solute-solvent pair, temperature, and pressure. At higher concentra-
tions the linear relationship between fL

i (T,P, x) and mole fraction fails; a form of
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Figure 9.7-3 Solute fugacity in real
and ideal Henry’s law solutions. (a)
Solute fugacity versus mole frac-
tion. (b) Solute fugacity versus
molality.

Eq. 9.7-9 can be used at these higher concentrations by introducing a new activity co-
efficient γ∗

i (T,P, xi) so that

Henry’s law based on
mole fraction

fL
i (T,P, x) = xiγ

∗
i (T,P, x)Hi(T,P ) (9.7-10)

The dashed line in Fig. 9.7-3a is the fugacity of an ideal Henry’s law component, that
is, a species that obeys Eq. 9.7-9 over the whole concentration range, and the solid
lines represent two real solutions for which γ∗

i (T,P, x) is not equal to unity at all
concentrations.
Note that the Henry’s law activity coefficient γ∗

i is different from the activity coeffi-
cient γi defined earlier. In particular, in solutions considered here γ∗

i → 1 as xi → 0,
whereas for the usual activity coefficient γi → 1 as xi → 1. We can relate these
two activity coefficients by comparing Eqs. 9.7-2, 9.7-9, and 9.7-10. First, equating
Eqs. 9.7-2 and 9.7-5 gives

fL
i (T,P, x) = xiγ

∗
i (T,P, x)Hi(T,P ) = xiγi(T,P, x)fL

i (T,P )

or
γ∗

i (T,P, x)Hi(T,P ) = γi(T,P, x)fL
i (T,P ) (9.7-11)

Taking the limit as xi → 0 [remembering that γ∗
i (T,P, xi = 0) = 1] yields

Hi(T,P ) = γi(T,P, xi = 0)fL
i (T,P ) (9.7-12)

Using this relation in Eq. 9.7-11 gives

γ∗
i (T,P, x)γi(T,P, xi = 0)fL

i (T,P ) = γi(T,P, x)fL
i (T,P )
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or simply

γ∗
i (T,P, x) =

γi(T,P, x)
γi(T,P, xi = 0)

(9.7-13)

so that the activity coefficient γ∗
i is equal to the ratio of the activity coefficient γi to its

value at infinite dilution.
If a solute-solvent pair were ideal in the Henry’s law sense, Eq. 9.7-4 would be sat-

isfied at all mole fractions; in particular, at xi = 1,

fL
i (T,P, xi = 1) = Hi(T,P )

Thus, the Henry’s law constant is the hypothetical fugacity of a solute species as a pure
liquid extrapolated from its infinite-dilution behavior; we will denote this by f ∗

i (T,P )
(see Fig. 9.7-3a). Thus

fL
i (T,P, x) = xiγ

∗
i (T,P, x)Hi(T,P ) = xiγ

∗
i (T,P, x)f ∗

i (T,P ) (9.7-14)

Using Eq. 9.2-10, we can also write

Gi(T,P, x) − G∗
i (T,P ) = RT ln

{
fL

i (T,P, x)
f ∗
i (T,P )

}
= RT ln{xiγ

∗
i (T,P, x)}

(9.7-15)
where G∗

i (T,P ) is the (hypothetical) molar Gibbs free energy of the solute species as
a pure liquid obtained from extrapolation of its dilute solution behavior.
The fugacity of a very dilute species can also be written as

fL
i (T,P,Mi) = MiHi(T,P ) as Mi → 0 (9.7-16)

Here Mi is the molality of species i, that is, the number of moles of this species per
1000 g of solvent,17 and Hi is the Henry’s law constant based on molality; its value
depends on the solute-solvent pair, temperature, and pressure. For real solutions the
activity coefficient γ��

i (T,P,Mi) is introduced, so that

Henry’s law based on
molality

fL
i (T,P,Mi) = Miγ

��
i (T,P,Mi)Hi(T,P ) (9.7-17)

Clearly, γ��
i (T,P,Mi) → 1 as Mi → 0. The behaviors of real and ideal solutions are

indicated by dashed and solid lines, respectively, in Fig 9.7-3b.

17The molality of a solution consisting of ni moles of solute in ns moles of a solvent of molecular weight ms is

Mi =
ni 1000

msns

whereas the mole fraction of solute i is

xi =
ni

ns +
∑

nj

where the summation is over all solutes. At low solute concentration ns �
∑

j nj, and these equations reduce to
xi 	 ni/ns and Mi 	 xi1000/ms, so that Mi and xi are linearly related. Therefore, it is not surprising that both
Eqs. 9.7-9 and 9.7-16 are satisfied. Furthermore, Hi = 1000Hi/ms.
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From Eq. 9.7-17 we have that the molal Henry’s law constant is equal to the fugacity
of the solute species at unit molality in an ideal Henry’s law solution; that is,

Hi(T,P ) = f��
i (T,P,Mi = 1) (9.7-18)

where the ideal-solution unit molality fugacity f��
i (T,P,Mi = 1) is obtained by ex-

trapolation of dilute solution behavior to 1 molal, as indicated in Fig 9.7-3b. Using the
analysis that led to Eq. 9.7-13, one can show that

γ��
i (Mi) =

xi 1000
msMi

γi(x)
γi(xi = 0)

=
xi 1000
msMi

γ∗
i (xi) (9.7-19)

and that

Gi(T,P,Mi) = G��
i (T,P,Mi = 1) + RT ln

(
Miγ��

i (T,P,Mi)
Mi = 1

)
(9.7-20)

The value of the partial molar Gibbs energy of species i in the (hypothetical) ideal
solution G��

i (T,P,Mi = 1) is obtained by assuming ideal solution behavior and ex-
trapolating the behavior of Gi(T,P,Mi) in very low-molality solutions to one molal.
The value of G��

i (and G∗
i , as well) obtained in this way depends on temperature, pres-

sure, and the solute-solvent pair.
It is useful to identify the physical significance of the quantities used here and to

relate them to the analogous quantities for simple mixtures. In a simple liquid mixture,
the properties of the pure components dominate the partial molar properties, and we
have

fL
i (T,P, x) = xiγi(T,P, x)fL

i (T,P )

where fL
i (T,P ) is the pure component fugacity (i.e., the fugacity of species i when it

interacts only with other molecules of the same species), and the explicit mole fraction
accounts for its dilution. The activity coefficient γi arises because the nature of the inter-
action between the solute species i and the solvent is different from that between solute
molecules, so that γi accounts for the effect of replacing solute-solute interactions with
solute-solvent interactions. By using a Henry’s law description for a nonsimple mix-
ture, we recognize that, for the solute species, the liquid mixture and pure component
states are very different. The implication of using

fL
i (T,P, x) = xiγ

∗
i (T,P, x)Hi(T,P )

or

fL
i (T,P,Mi) = Miγ

��
i (T,P,Mi)Hi(T,P )

is that the properties of the solute species in solution are largely determined by solute
molecules interacting only with solvent molecules, which are taken into account by
the Henry’s law constants Hi and Hi. In this case, the activity coefficients γ∗

i and γ��
i

account for the effect of replacing solute-solvent interactions with solute-solute inter-
actions. Therefore, the values of the Henry’s law constants depend on both the solvent
and the solute. That is, the Henry’s law constant for a solute in different solvents will
have different values.
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We will have occasion to use the Henry’s law descriptions (on both a mole fraction
and a molality basis) and the associated activity coefficients several times in
this book. The immediate disadvantage of these choices is that f ∗

i (T,P, xi = 1) and
f��

i (T,P,Mi = 1) can be obtained only by extrapolation of experimental information
for very dilute solutions. However, this information may be easier to obtain and more
accurate than that obtained by estimating the pure liquid fugacity of a species whose
equilibrium state is a supercritical gas or a solid below its triple-point temperature.
It is left as an exercise for you to relate the regular solution and UNIFAC model

predictions for γ∗
i and γ��

i to those already obtained for γi (Problem 9.10).

Activity coefficients of
proteins

Another example of a nonsimple mixture is a protein in aqueous solution. It is a non-
simple mixture because the protein, as a pure species, does not exist as a liquid. A quan-
tity of interest when dealing with proteins is the biological activity, that is, how efficient
the proteins are in catalyzing biological processes. A property that is of less importance
but may influence the biological activity is the thermodynamic activity of proteins in
aqueous solution, and as with any mixture, solution nonidealities arise. However, one is
generally interested in the thermodynamic activity of only the protein, not the solvent
(usually water). Since the molecular weight of the protein might not be known precisely
(for example, because the protein may aggregate, polymerize, or depolymerize), it is
common to describe the protein concentrations in mass per unit volume (usually ci in
grams/liter) and the solution nonideality using a virial-type expansion:

ln γ•
i = Bi · ci + Ci · c2

i + Di · c3
i + · · · (9.7-21)

where the activity coefficient γ•
i is defined on a Henry’s law basis, so that

ai = ciγ
•
i with γ•

i → 1 as ci → 0 (9.7-22)

where ai is the thermodynamic activity, with units of concentration.

Illustration 9.7-1
The Activity Coefficient of Hemoglobin

The following data are available on the activity of hemoglobin in aqueous solution.18

c (g/L) a (g/L) c (g/L) a (g/L) c (g/L) a (g/L)

20 23.1 120 330 220 2 060
40 53.5 140 473 240 3 040
60 94.6 160 679 260 4 580
80 150 180 973 280 7 040

100 226 200 1 410 300 11 050

Compute the hemoglobin activity coefficient as a function of concentration, and fit those results
using Eq. 9.7-21.

Solution

It is the activity coefficients, rather than the activities, that should be fit. So the first step is to
calculate the activity coefficient at each concentration from γ (c) = a (c) /c. The result is

18A. P. Minton, J. Molec. Biol. 110, 89 (1977).
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c (g/l) γ• c (g/l) γ• c (g/l) γ•

20 1.155 120 2.750 220 9.364
40 1.337 140 3.379 240 12.67
60 1.577 160 4.244 260 17.62
80 1.875 180 5.406 280 25.14

100 2.260 200 7.050 300 36.83

We find that the equation

ln γ•
i = 7.139 × 10−3 · ci + 6.940 × 10−6 · c2

i + 3.116 × 10−8 · c3
i

provides a good fit to the activity coefficients, as shown in the figure below.
γ
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The activity coefficients of hemoglobin as a function of con-
centration. The line is the fit of Eq. 9.5-24, and the points •
are the reported data.

9.8 SOME COMMENTS ON REFERENCE AND STANDARD STATES

We have referred to a number of reference states and standard states in this book. There-
fore, it is useful to review these concepts and build upon them here. The need for a ref-
erence state arises largely in the development of tables and charts of thermodynamic
properties. In this case the reference state is a single state of fixed temperature and
pressure at which the values of certain properties (typically either internal energy or
enthalpy and either entropy or Gibbs energy) are set equal to zero. One common choice
for the reference state is some convenient temperature and pressure (now 1 bar, previ-
ously 1 atmosphere) and the fluid as an ideal gas. Another common choice is a pure
liquid at 1 bar and some convenient temperature. The values of all other properties are
then computed as changes from those in the fixed reference state. Zero pressure cannot
be used as the reference state because the entropy and Gibbs and Helmholtz energies
diverge in this limit.
The need for a standard state arises in the definition of activity coefficients and

in chemical transformations. In this case the temperature of the standard state is not
fixed as in the definition of a reference state, but is the temperature of the system.
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The pressure is fixed, generally at 1 bar or 1 atmosphere. However, different states
are used depending on the state of aggregation. For the gas phase, the pure compo-
nent as an ideal gas is used as the standard state. Since pressure and composition are
fixed, the standard-state properties are a function only of temperature. If G◦(T ) is the
standard-state Gibbs energy in the ideal gas state, andμ◦(T ) is the standard-state chem-
ical potential in the ideal gas state, then G◦(T ) = μ◦(T ) and

Gi(T,P, x) = G◦
i (T ) + RT ln

f i(T,P, x)
1 bar

(9.8-1)

and

μi(T,P, x) = μ◦
i (T ) + RT ln

f i(T,P, x)
1 bar

(9.8-2)

If G◦
i (T ) is given as a function of temperature, the standard-state enthalpy and entropy

can be obtained as follows:

H◦
i (T ) = −T 2

d

(
G◦

i (T )
T

)
dT

= −T 2

d

(
μ◦

i (T )
T

)
dT

(9.8-3)

and

S◦
i (T ) = −dG◦

i (T )
dT

= −dμ◦
i (T )
dT

(9.8-4)

The standard state for a pure liquid or solid is taken to be the substance in that state
of aggregation at a pressure of 1 bar. This same standard state is also used for liquid
mixtures of those components that exist as a liquid at the conditions of the mixture.
Such substances are sometimes referred to as “liquids that may act as a solvent.” For
substances that exist only as a solid or a gas in the pure component state at the tempera-
ture of the mixture, sometimes referred to as “substances that can act only as a solute,”
the situation is more complicated, and standard states based on Henry’s law may be
used. In this case the pressure is again fixed at 1 bar, and thermal properties such as the
standard-state enthalpy and heat capacity are based on the properties of the substance
in the solvent at infinite dilution, but the standard-state Gibbs energy and entropy are
based on a hypothetical state of unit concentration (either unit molality or unit mole
fraction, depending on the form of Henry’s law used), with the standard-state fugacity
at these conditions extrapolated from infinite-dilution behavior in the solvent, as shown
in Fig. 9.7-3a and b. Therefore, just as for a gas, where the ideal gas state at 1 bar is a
hypothetical state, the standard state of a substance that can only behave as a solute is a
hypothetical state. However, one important characteristic of the solute standard state is
that the properties depend strongly upon the solvent used. Therefore, the standard-state
properties are a function of the temperature, the solute, and the solvent. This can lead
to difficulties when a mixed solvent is used.

9.9 COMBINED EQUATION-OF-STATE AND EXCESS GIBBS ENERGY MODEL

As has already been mentioned, simple cubic equations of state with the van der Waals
one-fluid mixing rules of Eqs. 9.4-8 and 9.4-9 are applicable at all densities and tem-
peratures, but only to mixtures of hydrocarbons or hydrocarbons with inorganic gases.
That is, this model is applicable to relatively simple mixtures. On the other hand, excess
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Gibbs energy or activity coefficient models were developed to describe mixtures of any
degree of solution nonideality, including mixtures involving polar organic chemicals,
but only in the liquid state. Further, the parameters in activity coefficient models are very
temperature dependent, these models are not applicable to expanded liquids (as occurs
at high temperatures) or to the vapor phase, and there is also the problem of defin-
ing a hypothetical standard state and the standard-state properties for a component that
exists as a gas in the pure component state at the temperature and pressure of the mix-
ture, especially if the component is above its critical temperature (see Sec. 9.7). The
latter problem results in difficulties in, for example, describing the solubility of hydro-
gen or nitrogen in liquids. The absence of an accurate gas-phase model for polar or-
ganic compounds has resulted in difficulties in describing the vapor-liquid equilibrium
of polar mixtures at high temperatures and pressures, and for describing supercritical
extraction processes.
Recently methods have been developed that combine an equation of state with an

excess Gibbs energy (or, equivalently, activity coefficient) model and that allow sim-
ple equations of state to accurately describe all mixtures, including highly nonideal
mixtures over large ranges of temperature and pressure without having to deal with
hypothetical standard states and the other shortcomings of the direct use of activity coef-
ficient models. The underlying idea of these models is to recognize that cubic equations
of state, such as the van der Waals and Peng-Robinson equations, have two constants,
a and b, and that this provides an opportunity to satisfy two boundary conditions.
One useful boundary condition is that at low density the composition dependence of

the second virial coefficient obtained from an equation of state should agree with the
theoretically correct result of Eq. 9.4-5,

Bmix(T, x) =
∑

i

∑
j

xixjBij(T ) (9.9-1)

derived from statistical mechanics. Since it has already been shown (Problem 6.14) that
the second virial coefficient from a cubic equation of state is

B(T ) = b − a(T )
RT

(9.9-2)

the first boundary condition is

b − a

RT
=
∑

i

∑
j

xixj

(
bij −

aij

RT

)
(9.9-3)

Equation 9.9-3 does not give values for the mixture parameters a and b separately,
but only for their sum. A second equation comes from requiring that the excess Gibbs
energy predicted from an equation of state at liquidlike densities be equivalent to that
from excess Gibbs energy or activity coefficient models discussed in Secs. 9.5 and 9.6.
Since, from an equation of state, as P → ∞, V → b and V mix → bmix, so that liquid
densities are obtained, the second equation that is used is

Aex
EOS(T,P → ∞, x) = Aex

γ (T,P → ∞, x) (9.9-4)

where the subscripts EOS and γ indicate Aex as computed from an equation of state
and an activity coefficient model, respectively. The use of the excess Helmholtz energy
rather than the excess Gibbs energy deserves some explanation. From the relationship
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between the Helmholtz and Gibbs energies, we have

Gex = Aex + PV ex (9.9-5)

Empirically it is found that, at liquid densities, Aex is rather insensitive to pressure,
while Gex diverges as P → ∞ because of the PV ex term. Therefore, in the P → ∞
limit it is Aex rather than Gex that should be used.
Further, since Aex is only a weak function of pressure at liquid densities, it is reason-

able to assume that the excess Helmholtz energy at infinite pressure can be replaced as
follows:

Aex(T,P → ∞, x) = Aex(T,P = 1 bar, x) (9.9-6)

or if not 1 bar, at some other pressure at which experimental data are available (obtained
as described in Chapter 10). Finally, since the PV ex term makes only a negligible con-
tribution at low pressures in Eq. 9.9-5, we can combine Eqs. 9.9-4, 9.9-5, and 9.9-6 to
obtain

Aex
EOS(T,P → ∞, x) = Aex

γ (T,P → ∞, x)

= Aex
γ (T,P = 1 bar, x) = Gex

γ (T,P = 1 bar, x)
(9.9-7)

It is the relationship between the first and last terms in this equality that we will use.
To proceed further, we note that as P → ∞ (and V i → bi, V mix → b) we obtain

Aex
EOS = C∗

[
a

b
−
∑

xi
ai

bi

]
(9.9-8)

(Problem 9.31), where C∗ is a constant whose value depends upon the equation of state

used; its value is−1 for the van derWaals equation, and [ln(
√

2−1)]/
√

2 = −0.623 23
for the Peng-Robinson equation. Combining all of the equations above, we get the fol-
lowing mixing rules:

a

RT
= Q

D

1 − D
b =

Q

1 − D
(9.9-9a)

Q =
∑

i

∑
j

xixj

(
bij −

aij

RT

)
(9.9-9b)

D =
∑

i

xi
ai

biRT
+

Gex
γ (T,P, x)
C∗RT

(9.9-9c)

These equations are usually referred to as the Wong-Sandler19 mixing rules
(Problem 9.32).
The equations above still leave the cross term (bij−aij/RT ) unspecified. This quan-

tity is usually derived from either of the following combining rules

bij −
aij

RT
=
√(

bii −
aii

RT

)(
bjj −

ajj

RT

)
(1 − kij) (9.9-10a)

or

bij −
aij

RT
= 1

2
(bii + bjj) −

√
aiiajj

RT
(1 − kij) (9.9-10b)

19D. S. H. Wong and S. I. Sandler, AIChE J., 38, 671–680 (1992).
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The second of these equations has the advantage of being more similar to the van der
Waals one-fluid mixing rules of Eqs. 9.4-8 and 9.4-9 and, as with those equations, both
of the combining rules above introduce a single adjustable parameter, kij, for each pair
of components.
The mixing and combining rule combination introduced here is very useful for de-

scribing and even predicting the phase behavior of both moderately nonideal and highly
nonideal mixtures over large ranges of temperature and pressure. This will be demon-
strated in the next chapter.
The fugacity coefficient for this mixing rule is (Problem 9.33)

lnφi(T,P, x) = ln
f i(T,P, x)

xiP

=
1
b

(
∂Nb

∂Ni

)
T,Nj�=i

(Z − 1) − ln
(

Z − bP

RT

)
− a

2
√

2bRT
×

[
1

aN

(
∂N2a

∂Ni

)
T,Nj�=i

− 1
b

(
∂Nb

∂Ni

)
T,Nj�=i

]
ln

⎡
⎢⎣Z +

(
1 +

√
2
) bP

RT

Z +
(
1 −

√
2
) bP

RT

⎤
⎥⎦

(9.9-11)

where(
∂Nb

∂Ni

)
T,Nj�=i

=
1

1 − D

1
N

(
∂N2Q

∂Ni

)
T,Nj�=i

− Q

(1 − D)2

[
1 −

(
∂ND

∂Ni

)
T,Nj�=i

]

1
N

(
∂N2a

∂Ni

)
T,Nj�=i

= RTD
(

∂Nb

∂Ni

)
T,Nj�=i

+ RTb

(
∂ND

∂Ni

)
T,Nj�=i

1
N

(
∂N2Q

∂Ni

)
T,Nj�=i

= 2
∑

j

xj

(
b − a

RT

)
ij

(9.9-12)

(
∂ND

∂Ni

)
T,Nj�=i

=
ai

biRT
+

1
C∗RT

(
∂NGex

γ (T, x)
∂Ni

)
T,Nj�=i

=
ai

biRT
+

ln γi

C∗

(9.9-13)

Although these equations look complicated, they are in fact easily programmed.

9.10 ELECTROLYTE SOLUTIONS

So far in this chapter we have considered mixtures of electrically neutral molecules.
However, liquid solutions containing ionic species, especially aqueous solutions of
acids, bases, and salts, occur frequently in chemical and biological processes. Charged
particles interact with coulombic forces at small separations and, because of the forma-
tion of ion clouds around each ion, with damped coulombic forces at larger separation
distances. These forces are stronger and much longer-range than those involved in the
interactions of neutral molecules, so that solute ions in solution interact at very low
concentrations. Consequently, electrolyte solutions are very nonideal in the sense that
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the electrolyte Henry’s law activity coefficient γ��
i of Eq. 9.7-17 is significantly different

from unity at very low electrolyte concentrations; also, the greater the charge on the
ions, the stronger their interaction and themore nonideal the solution. Since the solution
models discussed in the preceding sections do not allow for the formation of ion clouds,
they do not apply to electrolyte solutions.
In this section we discuss certain characteristics of electrolyte solutions and present

equations for the prediction or correlation of electrolyte activity coefficients in solution.
Since the derivations of these equations are complicated and beyond the scope of this
book, they are not given.
An important characteristic of electrolyte solutions is that they are electrically con-

ductive. A useful measure is the equivalent conductance, Ω, the conductance per mole
of charge. A strong electrolyte is one that is completely dissociated into ions. In this case
the equivalent conductance is high, and decreases only slowly with increasing concen-
tration. A weak electrolyte is only partially dissociated into its constituent ions, and its
equivalent conductance is less than that of a strong electrolyte at any concentration but
increases rapidly as the concentration decreases. This is because there is more complete
dissociation and therefore more ions per mole of electrolyte in solution as the concen-
tration of a weak electrolyte decreases. Sodium chloride, which completely dissociates
into sodium and chloride ions,

NaCl ⇀ Na+ + Cl−

is an example of a strong electrolyte, while acetic acid, which is only partially dissoci-
ated into sodium and acetate ions,

CH3COOH −→←−H+ + CH3OO−

is an example of a weak electrolyte. This partial dissociation is described by a chemical
equilibrium constant, as discussed in Chapter 13.
Our interest is with an electrically neutral electrolyte, designated byAν+Bν− , which,

in solution, dissociates as follows:

Aν+Bν− = ν+Az+ + ν−Bz− (9.10-1)

Here ν+ and ν− are the numbers of positive ions (cations) and negative ions (anions) ob-
tained from the dissociation of one electrolyte molecule, and z+ and z− are the charges
of the ions in units of charge of a proton (i.e., z+ and z− are the valences of the ions). For
an electrically neutral salt, ν+, ν−, z+, and z− are related by the charge conservation
(or electrical neutrality) condition that

ν+z+ + ν−z− = 0 (9.10-2)

An important consideration in the study of electrolytes is that the concentration of
any one ionic species is not independently variable because the electrical neutrality
of the solution must be maintained. Thus, if NA and NB are the numbers of moles of
the Az+ and Bz− ions, respectively, that result from the dissolution and dissociation
of Aν+Bν− , NA and NB are related by

Electrical neutrality z+NA + z−NB = 0 (9.10-3)

This restriction has an important implicationwith regard to the description of electrolyte
solutions, as will be evident shortly.
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A solution of a single electrolyte in a solvent contains four identifiable species:
the solvent, undissociated electrolyte, anions, and cations. Therefore, it might seem
appropriate, following Eqs. 8.1-12 and 8.1-13, to write the Gibbs energy of the
solution as

G = NSGS + NABGAB + NAGA + NBGB (9.10-4)

where NS and NAB are the mole numbers of solvent and undissociated electrolyte, and
Gi is the partial molar Gibbs energy of species i, that is,

Gi =
(

∂G

∂Ni

)
T,P,Nj�=i

(9.10-5)

Since solutions with low electrolyte concentrations are of most interest, the solute
activity coefficients in electrolyte solutions could, in principle, be defined, following
Eq. 9.7-20, by

Gi(T,P,Mi) = G��
i + RT ln(γ��

i Mi/(Mi = 1)) (9.10-6)

where Mi is the molality of species i, G��
i is its Gibbs energy in an ideal solution of unit

molality, and γ��
i is the activity coefficient defined such that γ��

i approaches unity as Mi

approaches zero. Thus, we have for the undissociated electrolyte, and, in principle, for
each of the ions, that

GAB(T,P,MAB) = G��
AB + RT ln(γ��

ABMAB/(MAB = 1))

GA(T,P,MA) = G��
A + RT ln(γ��

AMA/(MA = 1))

GB(T,P,MB) = G��
B + RT ln(γ��

BMB/(MB = 1))

(9.10-7)

The difficulty with this description is that GA and GB are not separately measur-
able, because, as a result of Eq. 9.10-3, it is not possible to vary the number of moles
of cations holding the number of moles of anions fixed, or vice versa. (Even in mixed
electrolyte solutions, that is, solutions of several electrolytes, the condition of overall
electrical neutrality makes it impossible to vary the number of only one ionic species.)
To maintain the present thermodynamic description of mixtures and, in particular, the
concept of the partial molar Gibbs energy, we instead consider a single electrolyte solu-
tion to be a three-component system: solvent, undissociated electrolyte, and dissociated
electrolyte. Letting NAB,D be the moles of dissociated electrolyte, we then have

G = NSGS + NABGAB + NAB,DGAB,D (9.10-8)

where GAB,D, the partial molar Gibbs energy of the dissociated electrolyte, GS, and
GAB are all measurable.

Comparing Eqs. 9.10-4 and 9.10-8 yields

NAB,DGAB,D = NAGA + NBGB

or

GAB,D = ν+GA + ν−GB (9.10-9)
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so that

GAB,D = ν+[G��
A + RT ln(γ��

AMA/MA = 1)] + ν−[G��
B + RT ln(γ��

BMB/MB = 1)]

= [ν+G��
A + ν−G��

B] + RT ln
{

(γ��
AMA)ν+(γ��

BMB)ν−

(MA = 1)ν+(MB = 1)ν−

}
(9.10-10)

Finally, we define amean ionic activity coefficient, γ±, by

Mean ionic activity
coefficient

γν
± = (γ��

A)ν+(γ��
B)ν− (9.10-11)

a mean ionic molality, M±, by

Mean ionic molality Mν
± = M

ν+
A Mν−

B (9.10-12)

and

G��
AB,D = ν+G��

A + ν−G��
B (9.10-13)

to obtain

GAB,D = G��
AB,D + RT ln[(M±γ±)ν/(M = 1)ν ]

= G��
AB,D + νRT ln[(M±γ±)/(M = 1)]

(9.10-14)

where ν = ν+ + ν−.
As it is the mean activity coefficient, and not the activity coefficients of the individ-

ual ions, that is measurable, in the remainder of this section our interest is in formulas
for γ±. Also, since we will be concerned mostly with low electrolyte concentrations
in aqueous solutions, in the application of these formulas the distinction between mo-
lality (moles per kilogram of solvent) and concentration in molarity (moles per liter of
solution) will sometimes be ignored.
P. Debye and E. Hückel,20 using a statistical mechanical model to obtain the aver-

age ion distribution around ions in solution, derived the following expression for the
dependence of γ± on electrolyte concentration

Debye-Hückel limiting
law

ln γ± = −α|z+z−|
√

I (9.10-15)

The bracketed term in this equation is the absolute value of the product of ion valences,
α is a parameter that depends on the solvent and the temperature (see Table 9.10-1 for
the values of water), and I is the ionic strength, defined as

Ionic strength I =
1
2

∑
i=ions

z2
i Mi (9.10-16)

where the summation is over all ions in solution.
Equation 9.10-15 is exact at very low ionic strengths and is usually referred to as the

Debye-Hückel limiting law. Unfortunately, significant deviations from this limiting
law expression are observed at ionic strengths as low as 0.01 molal (see Fig. 9.10-1).

20P. Debye and E. Hückel, Phys. Z., 24, 185 (1923).
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Table 9.10-1 Values of the Parameters in the Equations
for γ± for Aqueous Solutions21

T (◦C) α (mol/kg)−1/2 β [(mol/kg)1/2 Å]−1

0 1.129 0.3245
5 1.137 0.3253

10 1.146 0.3261
15 1.155 0.3269
20 1.164 0.3276
25 1.175 0.3284
30 1.184 0.3292
40 1.206 0.3309
50 1.230 0.3326
60 1.255 0.3343
70 1.283 0.3361
80 1.313 0.3380
90 1.345 0.3400

100 1.379 0.3420

For higher electrolyte concentrations, the following empirical and semitheoretical mod-
ifications of Eq. 9.10-15 have been proposed:

Correction to the
Debye-Hückel limiting
law

ln γ± = −α|z+z−|
√

I

1 + βa
√

I
(9.10-17)

ln γ± = −α|z+z−|
√

I

1 + βa
√

I
+ δI (9.10-18)

In these equations β is the parameter given in Table 9.10-1 and a is a constant related to
the average hydrated radius of ions, usually about 4 Å. In practice, however, the product
βa is sometimes set equal to unity or treated as an adjustable parameter. Similarly, δ is
sometimes set to 0.1|z+z−| and sometimes taken to be an adjustable parameter.

Illustration 9.10-1
Use of Electrolyte Solution Models

The data below are for the activity coefficients of HCl in aqueous hydrochloric acid solutions
as a function of HCl molality at 25◦C. Compare the predictions of the Debye-Hückel model
(Eqs. 9.10-15 and 9.10-16), and the extended Debye-Hückel models (Eqs. 9.10-17 and 9.10-18)
with these data.

MHCl γ± MHCl γ± MHCl γ±

0.0005 0.975 0.1 0.796 8 5.90
0.001 0.965 0.5 0.757 10 10.44
0.005 0.928 1.0 0.809 12 17.25
0.01 0.904 3 1.316 14 27.3
0.05 0.830 5 2.38 16 42.4

211 Å = 1 angstrom = 10−10 m; L = liter = 10−3 m3.
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Figure 9.10-1 The activity coefficients of various salts in aqueous solution at 25◦C as a func-
tion of the salt molarity M . The solid line is the experimental data (from R. A. Robinson and
R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworth, London, 1959). The line — - — is the
result of the Debye-Hückel limiting law, Eq. 9.10-15, and the dashed line is the prediction of
Eq. 9.10-18, with βα = 1 and δ = 0.1|z+z−|. Note that for NaCl I = M ; for CaCl2 I = 3M ;
and for CuSO4 I = 4M .

Solution

Hydrogen chloride is a strong electrolyte, and is fully ionized. Therefore,

I = 1
2
[(+1)2MH+ + (−1)2MCl− ] = 1

2
[MH+ + MCl− ] = MHCl

In Fig. 9.10-2 the experimental data are plotted as points together with the curves that result from
the use of the Debye-Hückel limiting law (Eq. 9.10-15), of the extended version of Eq. 9.10-17
with βa = 1, of Eq. 9.10-18 with βa = 1 and δ = 0.1, and finally, of Eq. 9.10-18 with βa = 1
and δ = 0.3. As can be seen, the last equation provides a good correlation with the experimental
mean molal activity coefficient data.

Illustration 9.10-2
Another Electrolyte Solution Example

The following data are available for the mean ionic activity coefficient of sodium chloride in
water at 25◦C.
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Eq. 9.10-18 (βa = 1, δ = 0.3)
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ln
 γ

±

Figure 9.10-2 Mean molar activity coefficient for hydrogen chloride in water at 25◦C as
a function of the square root of the ionic strength I = MHCl. Points are the experimental
data, and the lines are the results of various models.

Molality γ± Molality γ±

0.0 1.00 2.0 0.669
0.1 0.778 3.0 0.714
0.25 0.720 4.0 0.782
0.5 0.681 5.0 0.873
0.75 0.665 6.0 0.987
1.0 0.657

a. Compare the predictions of the Debye-Hückel limiting law with these data:

ln γ± = −1.178
√

I (1)

where I is the ionic strength.
b. Compare the predictions of the following version of the extended Debye-Hückel limiting

law with these data.

ln γ± = −1.178
√

I

1 +
√

I
(2)

c. Correlate the data with the following expression, in which δ is an adjustable parameter.

ln γ± = −1.178
√

I

1 +
√

I
+ δI (3)

Solution

The results are given in the figure below. Clearly, only Eq. 3, with a fitted value of δ = 0.137,
gives an acceptable description of the experimental data over the whole concentration range.
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Eq. 9.10-18 (βa = 1, δ= 0.137)

Eq. 9.10-17 (βa = 1)

Eq. 9.10-15

Equation 9.10-18 is frequently satisfactory for the correlation of the mean molal
activity coefficient data for solutions of low molality (see Figs. 9.10-1 and 9.10-2).
In general, the accuracy of this equation is best for a z+ = 1, z− = −1 electrolyte
(termed a 1:1 electrolyte) and becomes progressively less satisfactory for electrolytes
of 1:2, 2:2, and so on, which are increasingly more nonideal. This should be kept in
mind in using the equations here.
The equations in this section are valid for solutions of several electrolytes, or mixed

electrolyte solutions, as well as single electrolytes. In the former case there are several
mean activity coefficients, one for each electrolyte, and the equations here are used to
compute the value of each. In this calculation the ionic strength I is that computed by
summing over all ions in solution and, consequently, is the same for each electrolyte in
the solution.
There are few solution models valid for moderate and high concentrations of elec-

trolytes. Perhaps the most successful is the model of Pitzer:22

Gex

nwRT
= f(I) +

∑
i

∑
j

λij(I)MiMj +
∑

i

∑
j

∑
k

δijkMiMjMk (9.10-19)

where Gex/nw is the excess Gibbs energy per kilogram of solvent, Mi is the molality
of each ion or neutral solute present, and f(I) is the Debye-Hückel term. Finally, λij

and δijk are the second and third virial coefficients among the species present, with λij

also being a function of ionic strength I .
Although Eq. 9.10-19 has a large number of parameters, especially for mixed elec-

trolyte solutions, it has been useful in representing the thermodynamic behavior of elec-
trolyte solutions all the way from dilute solutions to molten salts.

Molality and molarity

Before leaving this section, one comment about the concentration units used should
be made. Molality, which we have used here and indicated by the symbol M, is con-
centration expressed as moles of solute per kilogram of solvent. Molarity, defined as
the number of moles of solute per liter of solution, is also a commonly used concen-
tration unit. However, because the volume of a solution varies with composition and
with temperature, molarity can be more difficult to deal with than molality, which is

22See, for example, K. S. Pitzer, “Thermodynamics of Aqueous Systems with Industrial Applications,” ACS Symp.
Ser., 133, 451 (1980).
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based on a fixed amount of one kilogram of solvent. It is for this reason that molality
has been used here, and again in Chapter 15. Note that if the solvent is water, and the
solution is dilute in solute (so that one liter of solution contains one kilogram of water),
molality and molarity are equivalent.

9.11 CHOOSING THE APPROPRIATE THERMODYNAMIC MODEL

The objective of this chapter has been to develop methods of estimating species fugac-
ities in mixtures. These methods are very important in phase equilibrium calculations,
as will be seen in the following chapters. Because of the variety of methods discussed,
there may be some confusion as to which fugacity estimation technique applies in a
given situation. The comments that follow may be helpful in choosing among the three
main methods discussed in this chapter:

1. Equations of state
2. Activity coefficient (or excess Gibbs energy) models
3. Activity coefficient (or excess Gibbs energy) models based on the Henry’s law

standard state

Electrolyte solutions are special and can only be treated by the methods considered
in Sec. 9.10. Therefore, electrolyte solutions are not be considered in this discussion.
Also, the Henry’s law standard state is used only for a component that does not exist
as a pure component at the temperature of interest—for example, a dissolved solid
below its melting point, or a dissolved gas much above its critical point. (However, if
the liquid mixture can be described by an equation of state—for example, mixtures of
hydrocarbons and nitrogen or carbon dioxide—there is no need to use the Henry’s law
standard state.)
In low- to moderate-density vapors, mixture nonidealities are not very large, and

therefore equations of state of the type discussed in this text can generally be used for
the prediction of vapor-phase fugacities of all species. [However, mixtures containing
species that associate (i.e., form dimers, trimers, etc.) in the vapor phase, such as acetic
acid, are generally described using the virial equation of state with experimentally deter-
mined virial coefficients.] The Lewis-Randall rule should be used only for approximate
calculations; it is best to use an equation of state to calculate the vapor-phase fugacity
of vapor mixtures.
At liquid densities, solution nonidealities can be large. In this case, equation-of-state

predictions with the van der Waals one-fluid mixing rules will be reasonably accu-
rate only for mixtures composed of relatively simple molecules that are similar. Thus,
equations of state with the van der Waals one-fluid mixing rules of Eq. 9.4-8 will be
satisfactory only for mixtures involving light hydrocarbons, including hydrocarbons
with some dissolved inorganic gases (CO, CO2, H2S, N2, etc.). This equation-of-state
method will not be accurate if complicated molecular phenomena are involved—for
example, hydrogen bonding, as occurs in mixtures containing water, alcohols, and or-
ganic acids—or if chemically dissimilar molecular species are involved. In these cases,
activity coefficient models (also referred to as Gibbs energy models) must be used for
estimating the liquid-phase species fugacities, even though an equation-of-state model
may be used for the vapor phase. Alternatively, the same equation of state can be used
for both the liquid and the vapor if the mixing rules of Sec. 9.9 that combine activity
coefficient and equation-of-state models are used.
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Traditionally, in the petroleum and natural gas industries, where mostly low- and
moderate-molecular-weight hydrocarbons (with only small concentrations of aromatic
and inorganic compounds) are involved, equation-of-state methods with the van der
Waals one-fluid mixing rules are generally used for the prediction of both liquid- and
vapor-phase properties. In the chemicals industry, on the other hand, where oxygen,
nitrogen, sulfur, or halogen-containing organic compounds and inorganic (electrolyte)
compounds are involved, activity coefficient or Gibbs energy models are used for the
prediction of liquid-phase properties, with equation-of-state models used for the vapor
phase if the pressure is above ambient. However, in recent years the equation-of-state
methods of Sec. 9.9 have also been used to model both the vapor and liquid phases of
such mixtures.
The critical point of a mixture, to be discussed in the next chapter, is similar to the

critical point of a pure component in that it is the temperature and pressure at which the
vapor and liquid phases of a mixture of given composition become identical. Although
we have not yet discussed phase equilibrium in multicomponent mixtures (see Chapters
10 to 12), we can guess that if we are to predict the point at which two phases become
identical (the critical point) with some accuracy, the models we use for the vapor and
liquid phases must give identical results for all properties at this point. This will occur
only if we use the same equation-of-state model to describe both the vapor and liquid
phases, but clearly cannot, in general, be expected to occur if we use different mod-
els, such as an activity coefficient model for the liquid phase and an equation of state
for the vapor phase. This ability to predict critical phenomena is an important advan-
tage of using the same equation-of-state model for both phases. Another advantage of
the equation-of-state description is that the concept of standard states, and especially
hypothetical or extrapolated standard states, never arises.
Finally, since a number of different activity coefficient (or excess Gibbs energy) mod-

els have been discussed, it is useful to consider their range of application. The most
important observation is that none of the completely predictive methods, such as regu-
lar solution theory, UNIFAC, or ASOG, can be regarded as highly accurate. Therefore,
these methods should be used only when no experimental data are available for the sys-
tem of interest. Of the predictive methods, UNIFAC is the best developed and regular
solution theory is the least accurate.
As we have considered a number of activity coefficient models in this section, it

is useful to discuss which might be best for different types of mixtures. To start this
discussion, it is useful to classify seven different types of chemicals that one might
encounter.

Nonpolar compounds: Chemical species without significant dipole moments, such as
most hydrocarbons, and some very symmetric compounds such as tetrachloromethane
and hexafluorobenzene.
Weakly polar compounds: Aldehydes, ethers, and ketones
Very polar compounds: Alcohols, amines
Water
Carboxylic acids
Polymers
Electrolyte systems

As a general rule, a mixture containing components frommore than one of the classes
above exhibits greater nonideality than a mixture containing only components from the
same class. For example, a mixture containing an aldehyde and a ketone probably has a
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lower excess Gibbs energy of mixing than an aldehyde-hydrocarbon mixture. However,
it is also true that even for amixture containing compounds within one class, themixture
may be slightly nonideal if the components are similar in size and chemical function-
ality, or more nonideal (larger Gibbs energy of mixing) if there is greater dissimilar-
ity in the components. Table 9.11-1 suggests the most appropriate activity coefficient
(excess Gibbs energy) model or models to use for different classes of mixtures, and
Table 9.11-2 lists the most appropriate equation-of-state model. These tables should
be used as references in choosing thermodynamic models—for example, when using a
process simulator.

Table 9.11-1 Recommended Activity Coefficient Models

Nonpolar + nonpolar compounds: All of the models (Margules, van Laar, Wilson,
UNIQUAC, and NRTL) will give good correlations of data for these mixtures.

Nonpolar + weakly polar compounds: All of the models (Margules, van Laar, Wilson,
UNIQUAC, and NRTL) can be used, although the UNIQUAC model is better for mixtures that
are more nonideal.

Nonpolar + strongly polar compounds: Although all of the models (Margules, van Laar,
Wilson, UNIQUAC, and NRTL) can be used for mixtures that are not too nonideal, the
UNIQUAC model appears to give the best correlation for somewhat nonideal systems, wheras
the Wilson model may be better for mixtures that are more nonideal (but not so nonideal as to
result in liquid-liquid immiscibility; see Sec. 11.2).

Weakly polar + weakly polar compounds: All of the models (Margules, van Laar, Wilson,
UNIQUAC, and NRTL) can be used, although it appears that the UNIQUAC model is better for
mixtures that are more nonideal.

Weakly polar + strongly polar compounds: All of the models (Margules, van Laar, Wilson,
UNIQUAC, and NRTL) can be used, although it appears that the UNIQUAC model is better for
mixtures that are more nonideal.

Strongly polar + strongly polar compounds: The UNIQUAC model appears to best correlate
data, though all models give reasonable results.

Water + nonpolar compounds: These mixtures generally have limited mutual solubility and
are discussed in Sec. 11.2.

Water + weakly polar compounds: These mixtures generally have limited mutual solubility
and are discussed in Sec. 11.2.

Water + strongly polar compounds: The UNIQUAC model appears to best correlate data for
aqueous mixtures.

Solutions containing carboxylic acids: The Wilson model appears to best correlate data for
mixtures containing carboxylic acids if the components are mutually soluble. (TheWilsonmodel
does not predict liquid-liquid phase splitting, as discussed in Sec. 11.2). Otherwise, the
UNIQUAC, van Laar, or NRTL model should be used.

Solutions containing polymers: Use the Flory-Huggins model.

Solutions containing ionizable salts, strong acids, or bases: Use the extended Debye-Hückel
model.

Multicomponent mixtures: Choose the model that, based on the suggestions above, best
describes the dominant components in the mixture.
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Table 9.11-2 Recommended Equation-of-State Models

Vapor Mixtures

1. Low pressures, no components that associate (such as carboxylic acids or HF): As-
sume the mixture is an ideal gas mixture. fV

i

(
T, P, y

)
= yiP

2. Low pressure for a mixture that contains an associating component: Use the virial
equation of state, retaining only the second virial coefficient, and search for experimental
pure component and cross virial coefficient data for all components in the mixture.

3. Slightly elevated pressures: Use choice 1 or 2 above. Alternatively, use 4 below if there
are no associating components, or 5 if associating components are present.

4. Elevated pressures for a vapor mixture that contains hydrocarbons, nitrogen, oxy-
gen, carbon dioxide, and/or other inorganic gases (but not HF): Use an equation of
state, such as the Peng-Robinson or Soave–Redlich-Kwong equation with van der Waals
one-fluid mixing rules (see Sec. 9.4).

5. Elevated pressures for a vapor mixture that contains one or more polar and/or associ-
ating compounds:Use an equation of state, such as the Peng-Robinson or Soave–Redlich-
Kwong equation with the excess Gibbs energy–based mixing rules (see Sec. 9.9) and the
appropriate activity coefficient model (see Table 9.11-1).

Liquid Mixtures

Liquid mixtures at low pressure are generally described using the activity coefficient models
as described in Table 9.11-1, and the behavior of a liquid mixture is generally not much af-
fected by pressure, unless the pressure is very high. However, as we will see in Sec. 10.3,
for phase equilibrium calculations at high pressures, especially as the critical point of a mix-
ture is approached, there are important advantages to using the same thermodynamic model for
both phases. In such cases the same equation-of-state model should be used for the vapor and
liquid phases.

1. Liquid mixture at elevated pressure that contains only hydrocarbons, nitrogen, oxy-
gen, carbon dioxide, and/or other inorganic gases (but not HF) : Use equation of state,
such as Peng-Robinson or Soave–Redlich-Kwong with van der Waals one-fluid mixing
rules (see Sec. 9.4).

2. Liquid mixture at elevated pressure that contains that contains one or more polar
and/or associating compounds. Use equation of state, such as Peng-Robinson or Soave–
Redlich-Kwong with the excess Gibbs energy–based mixing rules (see Sec. 9.9) and the
appropriate activity coefficient model (see Table 9.11-1).

Appendix A9.1 A Statistical Mechanical Interpretation of the Entropy of Mixing
in an Ideal Mixture

This section appears on the website for this book.

Appendix A9.2 Multicomponent Excess Gibbs Energy (Activity Coefficient) Models

The excess Gibbs energy models for binary mixtures discussed in Sec. 9.5 can be ex-
tended to multicomponent mixtures. For example, the Wohl expansion of Eq. 9.5-8 can
be extended to ternary mixtures:
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Gex
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which, neglecting all terms of third and higher order in the volume fractions, yields for
species 1

ln γ1 =
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(A9.2-2)

where αij = 2qiaij, βij = 2qjaij, and aij = aji. (Thus, αji = βij and βji = αij.) The
expression for ln γ2 is obtained by interchanging the subscripts 1 and 2 in Eq. A9.2-2
and that for ln γ3 by interchanging the subscripts 1 and 3. The collection of equations
obtained in this way are the van Laar equations for a ternary mixture. Note that there
are two parameters, αij and βij, for each pair of components in the mixture. This model
can be extended to multicomponent mixtures in a similar manner.
The multicomponent form of the van Laar model is obtained by starting from

Gex

RT
C∑

i=1

xiqi

=
C∑

i=1

C∑
j=1

αijzizj +
C∑

i=1

C∑
j=1

C∑
k=1

αijkzizjzk + · · · (A9.2-3)

and neglecting third- and higher-order terms in the volume fraction. In this case, αij =
αji �= 0, αii = 0, and αijk = αikj = αkij = αiii = 0.
The multicomponent form of the Wilson equation is

Gex

RT
= −

C∑
i=1

xi ln

( C∑
j=1

xjΛij

)
(A9.2-4)

for which

ln γi = 1 − ln

( C∑
j=1

xjΛij

)
−

C∑
j=1

xjΛji

C∑
k=1

xkΛjk

(A9.2-5)

Since Λii = 1, there are also two parameters, Λij and Λji, for each binary pair of com-
ponents in this multicomponent mixture model.
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The multicomponent NRTL equation is

Gex

RT
=

C∑
i=1

xi

C∑
j=1

τjiGjixj

C∑
j=1

Gjixj

(A9.2-6)

with lnGij = −αijτij, αij = αji, and τii = 0, for which

ln γi =

C∑
j=1

τjiGjixj

C∑
j=1

Gjixj

+
C∑

j=1

xjGij

C∑
k=1

xkGkj

⎛
⎜⎜⎜⎜⎝τij −

C∑
k=1

xkτkjGkj

C∑
k=1

xkGkj

⎞
⎟⎟⎟⎟⎠ (A9.2-7)

This equation has three parameters, τij, τji, and αij, for each pair of components in the
multicomponent mixture.
The important feature of each of the equations discussed here is that all the parameters

that appear can be determined from activity coefficient data for binary mixtures. That
is, by correlating activity coefficient data for the species 1–species 2 mixture using any
of the models, the 1–2 parameters can be determined. Similarly, from data for species
2–species 3 and species 1–species 3 binary mixtures, the 2–3 and 1–3 parameters can
be found. These coefficients can then be used to estimate the activity coefficients for the
ternary 1–2–3 mixture without any experimental data for the three-component system.
One should keep in mind that this ability to predict multicomponent behavior from

data on binary mixtures is not an exact result, but rather arises from the assumptions
made or the models used. This is most clearly seen in going from Eq. A9.2-1 to
Eq. A9.2-2. Had the term α123z1z2z3 been retained in the Wohl expansion, Eq. A9.2-2
would contain this α123 term, which could be obtained only from experimental data for
the ternary mixture. Thus, if this more complete expansion were used, binary data and
some ternary data would be needed to determine the activity coefficient model param-
eters for the ternary mixture.

Appendix A9.3 The Activity Coefficient of a Solvent in an Electrolyte Solution

The starting point for the derivation of the activity coefficient of solvent S in a solution
with electrolyte AB is the Gibbs-Duhem equation,

NS dGS + NAB dGAB = 0

where NS is the moles of solvent,

GS = GS + RT ln (xSγS)
and

GAB = GAB,D + RT ln
[

M±γ±
M = 1

]ν

with

M± = M
ν+
A · Mν−

B =
[
ν

ν+
+ · νν−

−
]
MAB
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We are interested in the case where the number of moles of electrolyte AB is infinites-
imally increased at fixed number of moles of solvent NS, which leads to

dGAB = νRT · dln [M±] +νRT · d ln [γ±]

Here we will consider the simplest case, the Debye-Hückel limiting law, in detail and
then give expressions for the other cases considered in this book.

ln γ± = −α
⏐⏐z+z−

⏐⏐√I

where

I =
1
2

∑
ions i

z2
i Mi =

1
2
MAB

∑
ions i

νiz
2
i

so that

dGAB = νRT · dMAB

MAB

+νRT
{
−α
⏐⏐z+z−

⏐⏐} 1
2
I−1/2 dI

= νRT · dMAB

MAB

+
νRT

{
−α
⏐⏐z+z−

⏐⏐} 1/2{
1
2

∑
ions i

νiz2
i MAB

}1/2

{
1
2

∑
ions i

νiz
2
i dMAB

}

= νRT · dMAB

MAB

−νRT

2
α
⏐⏐z+z−

⏐⏐{1
2

∑
ions i

νiz
2
i

}1/2

dMAB

M1/2
AB

and

dGAB = νRT · dMAB

MAB

−νRTα
⏐⏐z+z−

⏐⏐{1
2

∑
ions i

νiz
2
i

}1/2

dM 1/2
AB

Now using NAB to represent the number of moles of electrolyte, and

MAB =
Number of moles of electrolyte

kg of solvent

so that NAB = MAB ×mS, where mS is the number of kilograms of solvent per mole
of solvent (= 0.018 for water), then

NAB dGAB = MAB · mS dGAB

= MAB · mS · νRT ·

⎡
⎣dMAB

MAB

−α
⏐⏐z+z−

⏐⏐{1
2

∑
ions i

νiz
2
i

}1/2

dM 1/2
AB

⎤
⎦

= mS · νRT · dMAB−mS · νRT · α
⏐⏐z+z−

⏐⏐{1
2

∑
ions i

νiz
2
i

}1/2

×

MABdM 1/2
AB

= −NS dGS (by the Gibbs-Duhem equation).
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and

NS

∫ MAB

MAB=0

dGS = NS

(
GS − GS

)
= RT ln (xSγS)

= −mS · νRT

∫ MAB

MAB=0

dMAB + mS · νRT · α
⏐⏐z+z−

⏐⏐×
{

1
2

∑
ions i

νiz
2
i

}1/2 ∫ MAB

MAB=0

MABdM 1/2
AB

Since∫ MAB

MAB=0

dMAB = MAB and
∫ MAB

MAB=0

MAB dM 1/2
AB =

∫ √
MAB

MAB=0

x2 dx

=

(√
MAB

)
3

=
M2/3

AB

3

RT ln (xSγS) = −mS · νRT · MAB + mS · νRT · α
⏐⏐z+z−

⏐⏐×{
1
2

∑
ions i

νiz
2
i

}1/2

M3/2
AB

3

= −mS · νRT · MAB

[
1 − α

3
⏐⏐z+z−

⏐⏐√I
]

and

ln xSγS = −mS · ν · MAB

[
1 − α

3
⏐⏐z+z−

⏐⏐√I
]

where ν = ν+ + ν−, MAB is the molality of the electrolyte, and mS is the molecular
weight of the solvent in kg/mol.
When using the equation derived here or the ones that follow, it is important to cor-

rectly compute the mole fraction of the solvent. To do this one must keep in mind that
in an electrolyte solution there are solvent molecules, anions, cations, and also the pos-
sibility of undissociated electrolyte. Thus, for example, in an aqueous sodium chloride
solution, since NaCl is a strong electrolyte that is fully ionized,

xS =
NS

NS + NNa+ + NCl−
=

NS

NS + 2 · NNaCl

and sinceM = moles of solute per kg of water = moles of solute per 55.51 moles water,

xS =
NS

NS + 2 · NNaCl

which for water is xW =
55.51

55.51 + 2MNaCl

If instead of the Debye-Hückel limiting law we use the simple extension

ln γ± = −
α
⏐⏐z+z−

⏐⏐√I

1 + βa
√

I
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the result is

ln xSγS = −mS · ν · MAB

[
1 − α

3
⏐⏐z+z−

⏐⏐√I · σ
(
βa

√
I
)]

where

σ (y) =
1
y3

[
1 + y − 2 · ln(1 + y) − 1

1 + y

]

[Note: By repeated use of L’Hopital’s rule, one can show that as βa
√

I (or y) →
0, σ (y) → 1

3
, so that in this limit the result agrees with that obtained from the Debye-

Hückel limiting law.]
Finally, using

ln γ± = −
α
⏐⏐z+z−

⏐⏐√I

1 + βa
√

I
+ δI

leads to

ln xSγS = −mS · ν · MAB

[
1 − α

3
⏐⏐z+z−

⏐⏐√I · σ
(
βa

√
I
)

+
δI

2

]

Illustration A9.3-1
The Activity Coefficient of Water in an Aqueous Sodium Chloride Solution

Over the range of 0 to 6 M, we have shown that the mean ionic activity coefficient of sodium
chloride in aqueous solutions at 25◦C is well correlated with

ln γ± = −α
⏐⏐z+z−

⏐⏐√I

1 +
√

I
+ 0.137I

Determine the activity coefficient of water in aqueous sodium chloride solutions over this range
of concentrations using the equation derived in this appendix.

Solution

For sodium chloride solutions I = 1
2

(1 + 1) M = M . Therefore,

ln xWγW = ln
55.51

55.51 + 2 · MNaCl

+ lnγW

= −0.018 × 2 × MNaCl

[
1 − 1.178

3

√
MNaCl · σ (MNaCl) +

0.137

2
MNaCl

]

The results are given in the table below.

MNaCl xH2O γH2O MNaCl xH2O γH2O

0.0 1.000 1.000 3.0 0.902 0.989
0.1 0.996 1.000 4.0 0.874 0.978
0.25 0.991 1.000 5.0 0.847 0.964
0.5 0.982 1.000 6.0 0.822 0.946
0.75 0.974 1.000 8.0 0.776 0.904
1.0 0.965 1.000 10.0 0.735 0.852
2.0 0.933 0.996
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PROBLEMS

9.1 Show that for mixing of ideal gases at constant temper-
ature and pressure to form an ideal gas mixture,

ΔmixU = ΔmixH = ΔmixV = 0

and

ΔmixG = ΔmixA = RT
∑

i

xi ln xi

9.2 In Sec. 9.1 we considered the changes in thermody-
namic properties on forming an ideal gas mixture from
a collection of ideal gases at the same temperature and
pressure. A second, less common way of forming an
ideal gas mixture is to start with a collection of pure
ideal gases, each at the temperature T and volume V ,
and mix and compress the mixture to produce an ideal
gas mixture at temperature T and volume V .
a. Show that the mixing process described here is mix-

ing at constant partial pressure of each component.
b. Derive each of the entries in the following table.

9.3 Repeat the derivations of the previous problem for a
mixing process in which both pure fluids, initially at a
temperature T and pressure P , are mixed at constant
temperature and the pressure then adjusted so that the
final volume of the mixture is equal to the sum of the
initial volumes of the pure components (i.e., there is no
volume change on mixing).

9.4 We have the following properties for a certain mixture
for mixing at constant temperature and pressure:

U(T, P, x) =

C∑
i=1

NiU i(T, P )

Ideal Gas Mixing Properties* at Constant Temperature and Partial Pressure of Each
Species

Internal energy U IG
i (T, xi) = U IG

i (T ) ΔmixU
IG = 0

Volume† V IGM
i (T, P, xi) = xiV

IG
i (T, Pi) ΔmixV

IGM = (1 − C)V
/ C∑

i=1

Ni

Enthalpy HIGM
i (T, xi) = HIG

i (T ) ΔIGM

mixH = 0

Entropy SIGM
i (T, P, xi) = SIG

i (T, Pi) ΔmixS
IGM = 0

Helmholtz energy AIGM
i (T, P, xi) = AIG

i (T, Pi) ΔmixA
IGM = 0

Gibbs energy GIGM
i (T, P, xi) = GIG

i (T, Pi) ΔmixG
IGM = 0

*For mixing at constant temperature and partial pressure of each species, we have the following

ΔmixθIGM =
∑

i

xi[θi(T, P, xi) − θi(T, Pi)]

†C = number of components.

V (T, P, x) =

C∑
i=1

NiV i(T, P )

S(T, P, x) =

C∑
i=1

NiSi(T, P ) − R

C∑
i=1

Ni ln xi

where Si, the pure-component molar entropy of com-
ponent i, is given by

Si = S◦
i + CV,i ln

U i

U◦
i

+ R ln
V i

V ◦
i

Here S◦
i , U

◦
i , and V ◦

i are the molar entropy, internal en-
ergy, and volume of pure component i in some reference
state, and CV,i is its constant-volume heat capacity.
a. Obtain expressions for the partial molar volume, par-

tial molar internal energy, partial molar entropy, and
partial molar Gibbs energy of each component in this
mixture in terms of S◦

i , U
◦
i , V

◦
i , CV,i, R, and T .

b. Obtain expressions for the volumetric and thermal
equations of state for this mixture.

c. Obtain expressions for the enthalpy and the
Helmholtz and Gibbs energies of this mixture.

9.5 Assuming that two pure fluids and their mixture can be
described by the van der Waals equation of state,

P =
RT

V − b
− a

V 2
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and that for the mixture the van der Waals one-fluid
mixing rules apply

a =
∑

i

∑
j

xixjaij and b =
∑

i

xibi

a. Show that the fugacity coefficient for species i in the
mixture is

ln φi = ln
f i

xiP
=

Bi

Z − B
− ln(Z − B) −

2
∑

j

xjaij

RTV

where B = Pb/RT .
b. Derive an expression for the activity coefficient of

each species.
9.6 Assuming that the van der Waals equation of state,

P =
RT

V − b
− a

V 2

is satisfied by two pure fluids and by their mixture, and
that the van der Waals one-fluid rules

a =
∑

i

∑
j

xixjaij

and

b =
∑

i

∑
j

xixjbij

with bij = bji apply to the mixture, derive expressions
for
a. The excess volume change on mixing at constant

T and P
b. The excess enthalpy and internal energy changes on

mixing at constant T and P
c. The excess entropy change on mixing at constant

T and P
d. The excess Helmholtz and Gibbs energy changes on

mixing at constant T and P
9.7 The virial equation for a binary mixture is

PV

RT
= 1 +

Bmix

V
+ · · ·

with

Bmix = y2
1B11 + y2

2B22 + 2y1y2B12

Here B11 and B22 are the second virial coefficients
for pure species 1 and pure species 2, respectively, and
B12 is the cross second virial coefficient. For a binary
mixture

a. Obtain an expression for the fugacity coefficient of
a species (Eq. 9.4-6).

b. Show that the activity coefficient for species 1 is

ln γ1 = δ12y
2
2P/RT

where δ12 = 2B12 − B11 − B22.
c. Generalize the results in part (b) to a multicompo-

nent mixture.
9.8 a. Derive the two-constant Margules equations for the

activity coefficients of a binary mixture (Eqs. 9.5-7).
b. Derive Eqs. 9.5-9.
c. Use the results of part (b) to derive van Laar expres-

sions for the activity coefficients of a ternarymixture
(Eq. A9.2-2).

9.9 Using the van Laar theory, estimate the activity coeffi-
cients for the benzene–2,2,4-trimethyl pentane system
at 55◦C. Compare the predictions with the results in
Illustrations 9.5-1, 9.6-1, and 9.6-2.

Data:

2,2,4-Trimethyl
Benzene Pentane

Critical temperature 562.1 K 554 K
Critical pressure 4.894 MPa 2.482 MPa
Critical density 301 kg/m3 235 kg/m3

9.10 Develop expressions for γ∗
1 and γ��

1 using each of
the following: the one-constant and two-constant
Margules equations, the van Laar equation, regular
solution theory, and the UNIFAC model.

9.11 Use the lattice model discussed in Appendix A9.1 to
show that the state of maximum entropy for an ideal
gas at constant temperature (and therefore energy) and
contained in a volume V is the state of uniform den-
sity.

9.12 Calculate the fugacity for each species in the following
gases at 290 K and 800 bar:
a. Pure oxygen
b. Pure nitrogen
c. Oxygen and nitrogen in a 30 mol % O2, 70 mol %

N2 mixture using the Lewis-Randall rule
d. Oxygen and nitrogen in the mixture in part (c) us-

ing the Peng-Robinson equation of state
9.13 Chemically similar compounds (e.g., ethanol and wa-

ter or benzene and toluene) generally form mixtures
that are close to ideal, as evidenced by activity coef-
ficients that are near unity and by small excess Gibbs
energies of mixing. On the other hand, chemically dis-
similar species (e.g., benzene and water or toluene and
ethanol) form strongly nonideal mixtures. Show, by
considering the binary mixtures that can be formed
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from ethanol, water, benzene, and toluene, that the
UNIFAC model predicts such behavior.

9.14 Repeat the calculations of the previous problem with
the regular solution model. Compare the two results.

9.15 Develop an expression for the activity coefficient of a
species in a mixture from the Peng-Robinson equation
of state with the van der Waals one-fluid mixing rules.

9.16 a. Show that the minimum amount of work, Wmin
s ,

necessary to separate 1 mole of a binary mixture
into its pure components at constant temperature
and pressure is

Wmin
s = x1RT ln

f1(T, P )

f1(T, P, x1)

+ x2RT ln
f2(T, P )

f2(T, P, x2)

b. Show that this expression reduces to

Wmin
s = −x1RT ln x1 − x2RT ln x2

for (i) an ideal liquid mixture and (ii) a gaseous
mixture for which the Lewis-Randall rule is
obeyed.

c. Calculate the minimum amount of work needed to
separate a 50/50 mixture of two isomers at 300 K
and a pressure of 1 bar into its pure components at
the same temperature and pressure. Explicitly state
and justify all assumptions.

9.17 There are several possible expressions that can be used
for the Gibbs excess energy. One is the Redlich-Kister
expansion

Gex = x1x2{A + B(x1 − x2) + C(x1 − x2)
2}

where B = 0, but A and C are nonzero. Find expres-
sions for the activity coefficients for this excess Gibbs
energy model in which γ1 is given solely in terms of
x2 and the parameters A and C, and γ2 only in terms
of x1, A, and C.

9.18 Experimentally it is observed that

lim
xi→1

(
∂ ln γi

∂xi

)
T,P

= 0 for any species i

This equation implies that the activity coefficient γi

(or its logarithm) is weakly dependent on mole frac-
tion near the pure component limit. Since we also
know that γi → 1 as xi → 1, this equation further

implies that the activity coefficient is near unity for an
almost pure substance.
a. Show that this equation is satisfied by all the liquid

solution models discussed in Sec. 9.5.
b. Show that since this equation is satisfied for any

substance, we also have

lim
xi→0

xi

(
∂ ln γi

∂xi

)
T,P

= 0

9.19 The following data are available for mean activity co-
efficients of single electrolytes in water at 25◦C.23

γ±

Molality KCl CrCl3 Cr2(SO4)3

0.1 0.770 0.331 0.0458
0.2 0.718 0.298 0.0300
0.3 0.688 0.294 0.0238
0.5 0.649 0.314 0.0190
0.6 0.637 0.335 0.0182
0.8 0.618 0.397 0.0185
1.0 0.604 0.481 0.0208

Compare these data with the predictions of the Debye-
Hückel limiting law, Eq. 9.10-15, and Eq. 9.10-18with
βa = 1 and δ = 0.1|z+z−|.

9.20 The data below are for the activity coefficients of
lithium bromide in aqueous solutions as a function of
molality at 25◦C.

MLiBr γ± MLiBr γ± MLiBr γ±

0.001 0.967 0.5 0.739 10 19.92
0.005 0.934 1.0 0.774 12 46.3
0.01 0.891 3 1.156 14 104.7
0.05 0.847 5 2.74 16 198.0
0.1 0.790 8 8.61 20 485.0

Compare the predictions of the Debye-Hückel model
(Eqs. 9.10-15 and 9.10-16), and the extended Debye-
Hückel models (Eqs. 9.10-17 and 9.10-18) with these
data.

9.21 Develop a Gibbs-Duhem equation for strong
electrolyte-water systems, and use this equation and
the data in Illustration 9.10-1 to compute the activ-
ity coefficient of water in aqueous hydrochloric acid
solutions at 25◦C.

23Reference: R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959),
Appendix 8.10.
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9.22 a. Given experimental data either for the excess Gibbs
energy, Gex, or for species activity coefficients
from which Gex can be computed, it is sometimes
difficult to decide whether to fit the data to the
two constant Margules or van Laar expressions for
Gex and γi. One method of making this decision
is to plot Gex/x1x2 versus x1 and x1x2/Gex ver-
sus x1 and determine which of the two plots is most
nearly linear. If it is the first, the data are best fit
with the two-constant Margules expression; if the
second, the van Laar expression should be used.
Justify this procedure, and suggest how these plots
can be used to obtain the parameters in the activity
coefficient equations.

b. The following data have been obtained for the
benzene–2,2,4-trimethyl pentane mixture (Illustra-
tion 10.1-4). Using the procedure in part (a), decide
which of the two solution methods is likely to best
fit the data.

xB 0.0819 0.2192 0.3584 0.3831
Gex (J/mol) 83.7 203.8 294.1 302.5
xB 0.5256 0.8478 0.9872
Gex (J/mol) 351.9 223.8 23.8

9.23 The excess Gibbs energies for liquid argon–methane
mixtures have been measured at several tempera-
tures.24 The results are

Gex

RT
= xAr(1 − xAr){A − B(1 − 2xAr)}

where numerical values for the parameters are

T (K) A B

109.0 0.3024 −0.014 53
112.0 0.2929 −0.011 69
115.75 0.2792 +0.051 15

Compute the following:
a. The activity coefficients of argon and methane at

112.0 K and xAr = 0.5
b. The molar isothermal enthalpy change on produc-

ing an xAr = 0.5mixture from its pure components
at 112.0 K

c. Themolar isothermal entropy change on producing
an xAr = 0.5 mixture from its pure components at
112.0 K

9.24 Derive Eq. 9.2-13.
9.25 Wilson25 has proposed that the excess Gibbs energy of

a multicomponent system is given by

Gex = −RT

C∑
i=1

xi ln

[ C∑
j=1

xjΛij

]

where

Λij =
V L

j

V L
i

exp

[
− (λij − λii)

RT

]

Note that this equation contains only the interaction
parameters Λij for binary mixtures. Also, the parame-
ters (λij −λii) appear to be insensitive to temperature.

Holmes and van Winkle26 have tested this equation
and found it to be accurate for the prediction of binary
and ternary vapor–liquid equilibria. They also report
values of the parameters V L

i and (λij − λii) for many
binary mixtures. Use the Wilson equation to
a. Derive Eqs. 9.5-12 and 9.5-13 for the activity coef-

ficients of a species in a binary mixture.
b. Obtain the following expression for the activity co-

efficient of species 1 in a multicomponent mixture

ln γ1 = 1 − ln

[ C∑
j=1

xjΛ1j

]
−

C∑
i=1

xiΛi1

C∑
j=1

xjΛij

9.26 The fugacity of a species in a mixture can have a pe-
culiar dependence on composition at fixed temperature
and pressure, especially if there is a change of phase
with composition. Show this by developing plots of
the fugacity of isobutane and of carbon dioxide in their
binary mixture as a function of isobutane composition
using the Peng-Robinson equation of state for each of
the following conditions.
a. T = 377.6 K and P in the range from 20 to 80 bar
b. T = 300 K and P in the range from 7 to 35 bar

9.27 One expression that has been suggested for the excess
Gibbs energy of a binary mixture that is asymmetric
in composition is

Gex = Ax1x2(x1 − x2)

24Reference: A. G. Duncan and M. J. Hiza, I.E.C. Fundam. 11, 38 (1972).
25G. M. Wilson, J. Am. Chem. Soc., 86, 127 (1964).
26M. J. Holmes and M. van Winkle, Ind. Eng. Chem., 62, 21 (1970).
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a. Find expressions for the activity coefficients in
which γ1 is specified in terms of x2 and γ2 in terms
of x1.

b. Does this excess Gibbs energy model satisfy the
Gibbs-Duhem equation?

9.28 It has been suggested that since the one-parameter
Margules expansion is not flexible enough to fit most
activity coefficient data, it should be expanded by
adding additional constants. In particular, the follow-
ing have been suggested:

Two-parameter models: ln γ1 = Ax2
2 ln γ2 = Bx2

1

ln γ1 = Axn
2 ln γ2 = Axn

1

Three-parameter model: ln γ1 = Axn
2 ln γ2 = Bxn

1

In each case the reference states are the pure compo-
nents at the temperature and pressure of the mixture.
a. Which of these models are reasonable?
b. What are the allowable values for the parameters

A, B, and n in each of the models?
9.29 Derive Eqs. 9.5-18.
9.30 At T = 60◦C the vapor pressure of methyl acetate

is 1.126 bar, and the vapor pressure of methanol is
0.847 bar. Their mixtures can be described by the one-
constant Margules equation

Gex = Ax1x2 with A = 1.06RT

where R is the gas constant and T is temperature in K.
a. Plot the fugacity of methyl acetate and methanol in

their mixtures as a function of composition at this
temperature.

b. The Henry’s law coefficient Hi is given by the
equation

Hi = lim
xi→0

Pi

xi

Develop an expression for the Henry’s law constant
as a function of the A parameter in the Margules
expression, the vapor pressure, and composition.
Compare the hypothetical pure component fugac-
ity based on theHenry’s law standard state with that
for the usual pure component standard state.

9.31 Derive Eq. 9.9-8.
9.32 Derive Eqs. 9.9-9.
9.33 Derive Eqs. 9.9-11 to 9.9-13.
9.34 Derive the expression for the fugacity coefficient of the

Soave–Redlich-Kwong equation of state (Eq. 4.4-1b)
with the van der Waals one-fluid mixing and combin-
ing rules of Eqs. 9.4-8 and 9.4-9.

9.35 a. A starting point for modeling the thermodynamics
of polymers in solution is to use the Flory-Huggins
model with the Flory χ parameter assumed to be
a constant. For mixtures of polystyrene in toluene,

in which V PS = 1000V T, χ = 0.6 is a reason-
able estimate of the value for that parameter. Plot
the activity coefficients of polystyrene and toluene
as a function of the mole fraction of toluene at
298 K, assuming that the molecular weight of
toluene is 92 and that of the polystyrene in this so-
lution is 90 000.

b. Plot these activity coefficients versus the toluene
volume fraction, and also plot the activity coeffi-
cients as a function of toluene mass fraction.

c. Usually, to accurately fit experimental data, the χ
parameter cannot be taken to be a constant, but
must be a function of both temperature and com-
position. One proposed model is

χ =
Ax2

T

where T is the absolute temperature in kelvins, x2

is the mole fraction of polymer, andA is a constant.
Using this expression, derive the equations for the
activity coefficients and for the excess enthalpy of
mixing Hex of polystyrene-toluene solutions as a
function of toluene mole fraction.

d. If the value of the A parameter in the above equa-
tion is 1500 K, plot the activity coefficients of
polystyrene and toluene as a function of the mole
fraction, mass fraction, and volume fraction of
toluene at 298 K.

e. Plot the heat of mixing for polystyrene-toluene
mixtures as a function of the mole fraction,
mass fraction, and volume fraction of toluene at
298 K.

9.36 a. Derive an expression for the minimum amount of
work needed to continuously and adiabatically sep-
arate two isomers into their pure components at
constant temperature and pressure. Explicitly state
all assumptions and justify them.

b. Calculate the minimum work necessary to separate
a 50/50 mixture of isomers at 300 K and a constant
pressure of 1 bar.

9.37 The activity of a substance, which is a function of
temperature, pressure and composition, is defined as
follows:

ai (T, P, x) =
f i(T, P, x)

fo
i (T, P o, xo)

where fo
i (T, P o, xo) is the standard-state fugacity

of species i at the standard-state pressure P o and
standard-state composition xo (which could be the
pure component state or one of the various Henry’s
law standard states).
a. Using this definition of the activity, prove for

a binary mixture at constant temperature and pres-
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sure that

d ln

(
a1

x1

)
= −x2

x1

d ln

(
a2

x2

)

b. For fixed standard-state temperature, derive an ex-
pression for how the species activity changes with
temperature at constant pressure and composition.

9.38 Air contains approximately 21 mol % oxygen and 79
mol% nitrogen. An engineer claims to have developed
a continuous process in which air is first compressed to
2 bar and 25◦C, and then isothermally expanded to at-
mospheric pressure through a secret device that has no
moving parts and results in two gas streams. The first
stream is said to contain 99 mol % oxygen, and the
second stream contains only 5 mol % oxygen. Prove
whether such a device is thermodynamically possible.

9.39 A gas stream at 310 K and 14 bar is to be com-
pressed to 345 bar before transmission by underground
pipeline. If the compression is carried out adiabati-
cally and reversibly, determine the compressor outlet
temperature and the work of compression for the gas
stream, which consists of
a. Pure methane
b. 95 mol % methane and 5 mol % ethane
c. 5 mol % methane and 95 mol % ethane
d. Compare your results with the results given by the

ideal gas equation.
9.40 The following data are available for the mean ionic

activity coefficients of these salts in water at 25◦C.

M HCl CaCl2 ZnSO4

0.001 0.966 0.888 0.734
0.005 0.928 0.789 0.477
0.01 0.905 0.732 0.387
0.05 0.830 0.584 0.202
0.1 0.796 0.531 0.148
0.5 0.757 0.457 0.063
1.0 0.809 0.509 0.044
2.0 1.009 0.807 0.035
3.0 1.316 1.055 0.041

a. Fit these data as best you can using the equations in
this chapter for the mean ionic activity coefficient.

b. Determine the activity coefficient of water in each
of these solutions.

9.41 A thermodynamic property of a mixture is given by

θ (x1, x2, x3, T, P ) =

3∑
i=1

xiθi (T, P )

+

3∑
j=1

3∑
i=1

aijxixj + a123x1x2x3

with aii = 0.

a. Develop expressions for the partial molar proper-
ties θ1, θ2, and θ3 as a function of the pure compo-
nent molar properties, the mole fractions, and the
parameters a12, a13, a12, and a123.

b. Obtain expressions for the infinite-dilution value of
θ1 in solutions of varying concentrations of species
2 and 3. Repeat for θ2 in mixed solvent solutions
of 1 and 3, and for θ3 in mixed solvent solutions of
1 and 2.

9.42 The infinite-dilution heat of solution for solid urea
(CH4N2O) in water at 25oC is reported in The Chem-
ical Engineer’s Handbook to be −3609 cal/g. In the
same book the heat of formation is reported to be
−77.55 kcal/mol for liquid urea and−79.634 kcal/mol
for crystalline urea. Compare the heat of melting of
urea with its heat of solution.

9.43 Derive the expression for the partial molar volume of
a species in a mixture that obeys the Peng-Robinson
equation of state and the van der Waals one-fluid mix-
ing rules.

9.44 Derive the expression for the partial molar volume of
a species in a mixture that obeys the Peng-Robinson
equation of state and the Wong-Sandler mixing
rules.

9.45 Derive the expression for the activity coefficient of
a species in a mixture that obeys the Peng-Robinson
equation of state and the van der Waals one-fluid mix-
ing rules.

9.46 Derive the expression for the activity coefficient of
a species in a mixture that obeys the Peng-Robinson
equation of state and the Wong-Sandler mixing rules.

9.47 The following data are available for the infinite-
dilution activity coefficients in actetone in ethanol:

T (◦C) γ∞
acetone

49.3 2.17
62.6 2.03
75.1 1.92

a. Compute the excess partial molar enthalpy of
acetone in ethanol at 62.6◦C.

b. Make a thermodynamically based estimate of the
value of the infinite-dilution activity coefficient
of acetone in ethanol at 100◦C. (A simple linear
extrapolation is not correct.)

9.48 Use the regular solution model to predict the activity
coefficients of benzene and 2,2,4-trimethyl pentane in
their mixtures at 55◦C. What are the predicted values
of the infinite-dilution activity coefficients?

9.49 Use the UNIFAC model to predict the activity coeffi-
cients of benzene and 2,2,4-trimethyl pentane in their
mixtures at 55◦C. What are the predicted values of the
infinite-dilution activity coefficients?
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9.50 Use the UNIFAC model to predict the activity coef-
ficients of acetone + water in their mixtures at 298
K. What are the predicted values of the two infinite-
dilution activity coefficients?

9.51 Using Gex = ax1x2, show that

∂ (NGex)

∂N1

⏐⏐⏐
T,P

∂ (Gex)

∂x1

⏐⏐⏐
T,P

and
∂ (Gex)

∂x1

⏐⏐⏐
T,P,x2

all lead to different results. Note that from definition of
a partial molar property, only the first of these deriva-
tives is the partial molar excess Gibbs energy.

9.52 The following simple expression has been suggested
for modeling the activity coefficient of species 1 in a
binary mixture:

RT ln γ1 = ax2

as it has the proper behavior that γ1 → 1 as x1 → 1
(so that x2 → 0). Obtain the expression for γ2, and
determine whether or not this model is a reasonable
one.

9.53 In a binary mixture, the activity coefficient of compo-
nent 1 has been found to be

RT ln γ1 = Ax2
2 with A = a +

b

T

and
V ex

1 (T, P, x) = θx2
2

where a, b, and θ are constants independent of tem-
perature, pressure, and composition. Find expressions
for G, S, H , and V in terms of the gas constant R; the
temperature T ; the parameters a, b, and θ; the pure-
component properties; and the mixture composition.

9.54 A50mol%mixture of two gases A and B at 300K and
1 bar is to be isothermally and isobarically separated
into its pure components. If the gases form an ideal
mixture and C∗

P,A = 10 J/(mol K) and C∗
P,B = 15

J/(mol K), how much Gibbs energy is required to
separate the mixture?

9.55 An oxygen enrichment device is needed for people
with impaired respiratory systems. To design such a
device, it is necessary to compute the work needed to
produce a stream that contains 50 mol % of oxygen
from air (21 mol % oxygen) at 300 K and 1 bar. If
the exit streams are at the same temperature and pres-
sure as the inlet air, and half of the oxygen in the air is
recovered in the enriched oxygen stream, what is the
minimum amount of work required to operate what-
ever device is developed for this process?

9.56 At moderate but not high pressures, the vapor phase
of a binary mixture can be described by the following

virial equation of state truncated at the second virial
coefficient

PV mix

RT
= 1 +

Bmix

V mix

with

Bmix = y2
1B11 + 2y1y2B12 + y2

2B22

Write the expression for the vapor-phase fugacity of
each species in this mixture in a form that contains
only the temperature, the pressure, the composition
and the virial coefficients, but does not contain the
volume.

9.57 Some liquid mixtures can be described by an equa-
tion of state. For example, liquid mixtures of hy-
drocarbons or other nonpolar species. Derive the
expressions for the excess Gibbs energy and the ac-
tivity coefficients for a mixture that can be described
by the Peng-Robinson equation of state with the van
der Waals one-fluid mixing rules.

9.58 The following two-parameter activity coefficient
model has been proposed:

x1x2RT

Gex
=

A12x1 + A21x2

A12A21

Obtain the expressions for the activity coefficients in
this model.

9.59 Calculate the Flory-Huggins entropy of mixing for a
0.5 mole fraction solution as a function of polymer
chain length. Compare this to the entropy of mix-
ing for a 0.5 mole fraction solution of similar size
molecules.

9.60 Ionic liquids are salts with melting temperatures
that are sufficiently low that they are liquids at or
near room temperature. They consist of a larger
cation and a smaller anion, for example, 1-methyl-3-
butylimidazolium octyl sulfate [BMIN][OctS], and it
is because of their size and complex geometry that they
do not crystallize easily and are liquids at room tem-
perature. Also, ionic liquids have very low (essentially
zero) vapor pressure, and therefore are of great inter-
est as “green” solvents, since they are not lost into the
atmosphere. In fact, we can consider [BMIN][OctS]
to have zero vapor pressure. Below are data for the
equilibrium pressure above mixtures of methanol and
[BMIN][OctS] at 303.15 K from Safarov, Verevkin,
Bich and Heintz (J. Chem. Eng. Data, 2006, 51, 518).
Here xmeth is the mole fraction of methanol assuming
the ionic liquid is not ionized (i.e., only the molecule,
not anions and cations, are present).
a. Determine the activity coefficients of methanol as

a function of concentration,
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b. Determine the activity coefficients of [BMIN]
[OctS] as a function of concentration.

xmeth Press (Pa)
0.2222 2102
0.2629 2570
0.4629 4482
0.6156 7603
0.6549 8769
0.7638 12880
0.8792 17732
0.9235 19952
0.9392 20583
0.9754 21348
0.9874 21485

1 21880

9.61 Calculate the minimum work required to separate air
(79 mole % nitrogen) into essentially pure oxygen and
nitrogen assuming an isothermal, steady flow process
at 300 K. The inlet air pressure is 10 bar and each
stream is to exit at 10 bar and 300 K.

9.62 A natural gas stream 90 mol % CH4 (component 1)
contaminated with 10 mol % CO2 (component 2). In
order to calculate pumping requirements you are asked
to perform calculations of properties of the gas mix-
ture at 300 K and 10 bar.
To a reasonable first approximation this gas mixture
can be represented by the van der Waals equation
of state with the van der Waals mixing rules. Pure-
component constants for the van der Waals equation
of state are a = 0.2303Pa m6/mol2, b = 4.306 ×
10−5m3/mol for CH4 and a = 0.3658Pa m6/mol2,
b = 4.286 × 10−5m3/mol for CO2. [The binary
interaction parameter kij may be taken to be 0.]

a. Calculate the molar volume of the mixture at 300 K
and 10 bar.

b. Calculate the difference between the real and ideal
gas molar enthalpies of this mixture at 300 K and
15 bar.

c. Caclulate the difference between the real and ideal
gas molar entropies of this mixture at 300 K and
15 bar.

9.63 Repeat the calculation of the previous problem using
Aspen Plus R© and the Peng-Robinson equation with
its default parameters.

9.64 Calculate the Flory-Huggins entropy of mixing as a
function of 0.5 mole fraction solution and as a function
of polymer chain length. Compare this to the entropy
of mixing for a solution of similar molecules.

9.65 An equimolar mixture of methane and ethane at 25◦C
and 1 bar is to be compressed to 5 bar in an isentropic
compressor.
a. Compute the temperature of the stream leaving the

compressor and the amount of compressor work
needed.

b. The stream leaving the compressor is cooled at con-
stant pressure to 310 K. Compute the amount of
heat that must be removed.

9.66 Repeat the calculations of problem 9.65, but with a
compressor that has an isentropic efficiency of 0.72.

9.67 Redo Problem 9.9 with UNIFAC using Aspen Plus R©.
9.68 Redo Problem 9.13 with UNIFAC using Aspen

Plus R©.
9.69 Redo Problem 9.22 using Aspen Plus R©.
9.70 Redo Problem 9.49 with UNIFAC using Aspen

Plus R©.
9.71 Redo Problem 9.50 with UNIFAC using Aspen

Plus R©.



Chapter 10

Vapor-Liquid Equilibrium
in Mixtures

The objective of this chapter and the two that follow is to illustrate how the principles
introduced in Chapter 8 for the thermodynamic description of mixtures together with
the calculational procedures of Chapter 9 can be used to study many different types of
phase equilibria important in chemical engineering practice. In particular, the following
are considered:

1. Vapor-liquid equilibria (this chapter)
2. The solubility of gas in a liquid (Sec. 11.1)
3. The solubility of a liquid in a liquid (Sec. 11.2)
4. Vapor-liquid-liquid equilibria (Sec. 11.3)
5. The distribution of a solute among two liquid phases (Sec. 11.4)
6. Osmotic equilibrium and osmotic pressure (Sec. 11.5)
7. The solubility of a solid in a liquid, gas, or supercritical fluid (Sec. 12.1)
8. The distribution of a solid solute among two liquid phases (Sec. 12.2)
9. The freezing-point depression of a solvent due to the presence of a solute

(Sec. 12.3)
10. The phase behavior of solid mixtures (Sec. 12.4)
11. The distribution of chemicals in the environment (Sec. 12.5)

Our interest in phase equilibria is twofold: to make predictions about the equilibrium
state for the types of phase equilibria listed above using activity coefficient models
and/or equations of state, and to use experimental phase equilibrium data to obtain
activity coefficient and other partial molar property information. Also, there are brief
introductions to how such information is used in the design of several different types of
purification processes, including distillation (this chapter) and liquid-liquid extraction
(Chapter 11).

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 10

The goals of this chapter are for the student to:

• Be able to compute the vapor-liquid equilibrium compositions when the liquid
is an ideal mixture and the vapor is an ideal gas mixture (that is, to be be able to

507
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compute the conditions of vapor-liquid equilibrium and develop x-y, T-x-y, and
P-x-y diagrams for ideal mixtures) (Sec. 10.1)

• Be able to correlate the low-pressure vapor-liquid equilibrium data for a nonideal
liquid mixture (that is, to be able to compute the conditions of vapor-liquid equi-
librium and develop x-y, T-x-y, and P-x-y diagrams for nonideal mixtures using
activity coefficient models (the γ-φ method) (Sec. 10.2)

• Be able to predict low-pressure vapor-liquid equilibria when no experimental data
are available (Sec. 10.2)

• Be able to correlate high-pressure vapor-liquid equilibrium data using an equation
of state (that is, to be able to compute the conditions of vapor-liquid equilibrium
and develop x-y, T-x-y, and P-x-y diagrams using an equation of state (the φ-φ
method) (Sec. 10.3)

• Be able to predict high-pressure vapor-liquid equilibrium compositions using an
equation of state when no experimental data are available (Sec. 10.3)

• Be able to do bubble point, dew point, and partial vaporization calculations for
both ideal and nonideal systems (Secs. 10.1, 10.2, and 10.3)

• Have an understanding of the importance of vapor-liquid equilibrium for separa-
tions by distillation (Secs. 10.1 and 10.2)

NOTATION INTRODUCED IN THIS CHAPTER

ai Activity of species i, ai = xiγi

B Flow rate of bottoms product from a distillation column
D Flow rate of distillate (overheads product) in a distillation column
F Flow rate of feed to a distillation column or flash unit
L Number of moles of a mixture that are liquid, or the liquid stream in a

distillation column or flash unit
Pi Partial pressure of species i = yiP (kPa)
Ki Separation or K factor for species i, Ki = yi/xi

V Number of moles of a mixture that are vapor, or the vapor stream in a
distillation column or flash unit

xi Liquid phase mole fraction of species i
x Set of liquid phase mole fractions x1, x2, . . .
yi Vapor phase mole fraction of species i
y Set of vapor phase mole fractions y1, y2, . . .

zi,F Feed composition of species i
γ∞

i Activity coefficient of species i when it is at infinite dilution
θL Property θ in the liquid phase
θV Property θ in the vapor phase

10.0 INTRODUCTION TO VAPOR-LIQUID EQUILIBRIUM

For the analysis of distillation and other vapor-liquid separation processes one must
estimate the compositions of the vapor and liquid in equilibrium. This topic is consid-
ered in detail in this chapter with particular reference to the preparation of mixture
vapor-liquid equilibrium (VLE) phase diagrams, partial vaporization and condensa-
tion calculations, and the use of vapor-liquid equilibrium measurements to obtain
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information on the partial molar properties of mixtures. Also, there is a brief intro-
duction to how such information is used to design purification processes involving
distillation.
The starting point for all vapor-liquid calculations is the equilibrium criterion

Starting point for all
phase equilibrium
calculations

fL
i (T,P, x) = fV

i (T,P, y) (10.0-1)

where the superscripts L and V refer to the liquid and vapor phases, respectively. From
the entries in Table 9.6-2, to compute the fugacity of a species in a vapor, fV

i (T,P, y),
we use either an equation of state or, less accurately, a simplifying assumption such as
the Lewis-Randall rule or the ideal gas mixture model. For the fugacity of a species in a
liquid, fL

i (T,P, x), we have two different ways of proceeding—one based on activity
coefficient (excess Gibbs energy) models, and the other based on the equation-of-state
description of the liquid phase.
If an equation of state is used to describe both phases, the basic equilibrium relation

becomes

The equation-of-state
or φ-φ method

fL
i (T,P, x) = xiPφL

i (T,P, x) = fV
i (T,P, y) = yiPφV

i (T,P, y) (10.0-2)

where

φL
i (T,P, x) =

fL
i (T,P, x)

xiP
and φV

i (T,P, y) =
fV

i (T,P, y)
yiP

(10.0-3)

are the fugacity coefficients for the liquid and vapor phases, respectively, which are
computed from an equation of state using Eq. 9.2-13. As a result of this form of relation,
the description of vapor-liquid equilibrium using an equation of state for both phases is
frequently referred to as the φ-φ method and will be considered in detail in Sec. 10.3.
The other alternative is to use an activity coefficient model for the liquid phase and
an equation of state for the vapor phase. At moderate pressures, omitting the Poynting
correction, we have

The activity coefficient
or γ-φ method

fL
i (T,P, x) = xiγi(T,P, x)P sat

i (T )φL,sat
i (T,P ) = fV

i (T,P, y) = yiPφV
i (T,P, y)

(10.0-4)

The description of vapor-liquid equilibrium using an activity coefficient for the liquid
phase and an equation of state for the vapor phase is usually referred to as the γ-φ
method, which is considered in Sec. 10.2. These γ-φ and φ-φ descriptions are two
different methods of analysis of the equilibrium problem, and hence we consider them
separately.
However, before we proceed with the discussion, it is useful to consider the range

of validity of the activity coefficient (γ-φ) and equation-of-state (φ-φ) models. The
activity coefficient (or excess Gibbs energy) models can be used for liquid mixtures
of all species. This description generally does not include density, and therefore will
not give a good description of an expanded liquid, which occurs near the vapor-liquid
critical point of a mixture. Also, when two different models are used—for example,
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an activity coefficient model for the liquid phase and an equation-of-state model for
the vapor phase—the properties of the two phases cannot become identical, so the
vapor-liquid critical region behavior is predicted incorrectly. In contrast, equation-of-
state (φ-φ) models can be used at all temperatures, pressures, and densities, including
the critical region, but if the van der Waals one-fluid mixing rules are used, only for
hydrocarbons and inorganic gases. However, with excess free energy–based mixing
rules such as those in Sec. 9.9, the equation-of-state method can be used with all com-
ponents at all conditions. Nevertheless, the activity coefficient method is simpler to use
at low pressures.

10.1 VAPOR-LIQUID EQUILIBRIUM IN IDEAL MIXTURES

At low pressures using the activity coefficient description and the Lewis-Randall rule
in Eq. 10.0-4, we obtain

xiγi(T,P, x)P vap
i (T )

(
f

P

)
sat,i

= yiP

(
f

P

)
i

(10.1-1a)

This equation provides a relation between the compositions of the coexisting vapor and
liquid equilibrium phases. Summing Eq. 10.1-1a over all species yields

C∑
i=1

xiγi(T,P, x)P vap
i (T )

(
f

P

)
sat,i

= P
C∑

i=1

yi

(
f

P

)
i

(10.1-2a)

There are several simplifications that can be made to these equations. First, if the
total pressure and the vapor pressure of the species are sufficiently low that all fugacity
coefficient corrections are negligible, we have

Low-pressure
vapor-liquid
equilibrium equation

xiγi(T,P, x)P vap
i (T ) = yiP (10.1-1b)

and on summation, since
∑

yi = 1,∑
xiγi(T,P, x)P vap

i (T ) = P (10.1-2b)

Further, if the liquid phase forms an ideal mixture (e.g., γi = 1 for all species), these
equations further reduce to

Raoult’s law (for ideal
liquid mixture + ideal
vapor phase)

xiP
vap
i (T ) = yiP = Pi (10.1-3)

and

∑
xiP

vap
i (T ) =

∑
Pi = P (10.1-4)

wherePi = yiP is the partial pressure of species i in the vapor phase. Equation 10.1-3,
which is known asRaoult’s law, indicates that the partial pressure of a component in an
ideal solution is equal to the product of the species mole fraction and its pure component
vapor pressure. Also, from Eq. 10.1-4 the equilibrium pressure of an ideal mixture is
equal to the mole fraction–weighted sum of the pure component vapor pressures, and
therefore is a linear function of the mole fraction.
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Equations 10.1-1 and 10.1-2 or their simplifications here, together with the restric-
tions that ∑

i

xi = 1 (10.1-5)

and ∑
i

yi = 1 (10.1-6)

and the mass and energy balance equations, are the basic relations for all vapor-liquid
equilibrium calculations we consider in this section.
As the first illustration of the use of these equations, consider vapor-liquid equilib-

rium in the hexane-triethylamine system at 60◦C. These species form an essentially
ideal mixture. The vapor pressure of hexane at this temperature is 0.7583 bar and that
of triethylamine is 0.3843 bar; these are so low that the fugacity coefficients at satura-
tion and for the vapor phase can be neglected. Consequently, Eqs. 10.1-3 and 10.1-4
should be applicable to this system. The three solid lines in Fig. 10.1-1 represent the
two species partial pressures and the total pressure, which were calculated using these
equations and all are linear functions of the of liquid-phase mole fraction; the points are
the experimental results. The close agreement between the computations and the labo-
ratory data indicates that the hexane-triethylamine mixture is ideal at these conditions.
Note that this linear dependence of the partial and total pressures on mole fractions
predicted by Eqs. 10.1-2 and 10.1-3 is true only for ideal mixtures; it is not true for
nonideal mixtures, as we shall see in Sec. 10.2.
Once the equilibrium total pressure has been computed for a given liquid composi-

tion using Eqs. 10.1-2 or 10.1-4, the equilibrium composition of the vapor can be cal-
culated using Eqs. 10.1-1 or 10.1-3, as appropriate. Indeed, we can prepare a complete
vapor-liquid equilibrium composition diagram, or x -y diagram, at constant tempera-
ture by choosing a collection of values for the composition of one of the phases, say
the liquid-phase composition xi, and then using the vapor pressure data to compute the
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Figure 10.1-1 Equilibrium total pressure and species liquid-phase fugacities (xiP
vap
i ) versus

mole fraction for the essentially ideal hexane-triethylamine system at 60◦C. [Based on data of
J. L. Humphrey and M. Van Winkle. J. Chem. Eng. Data, 12, 526 (1967).]
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total pressure and value of yi corresponding to each xi. For the hexane-triethylamine
system, to calculate the composition of the vapor in equilibriumwith a 50mol% hexane
mixture at T = 60◦C, Eq. 10.1-4 is first used to compute the equilibrium pressure,

Construction of an x-y
diagram

P =
∑

xiP
vap
i = xHP vap

H + xTP vap
T

= 0.5 × 0.7583 + 0.5 × 0.3843 = 0.5713 bar

and then Eq. 10.1-3 is used to calculate the vapor-phase mole fraction of hexane:

yH =
xHP vap

H

P
=

0.5 × 0.7583
0.5713

= 0.6637

By choosing other liquid compositions and repeating the calculation at a fixed tem-
perature, the complete constant-temperature vapor-liquid equilibrium composition di-
agram, or x -y diagram, can be constructed. The results are shown in Fig. 10.1-2 along
with points representing the experimental data. The second line in this figure is the line
x = y; the greater the difference between the x -y curve of the mixture and the x = y
line, the greater the difference in composition between the liquid and vapor phases, and
the easier it is to separate the two components by distillation, as will be discussed later
in this section. (Since x -y diagrams are most often used in the study of distillation, it
is common practice to include the x = y or 45◦ line.)
An alternative way of presenting vapor-liquid equilibrium data is to plot, on a single

figure, the equilibrium pressure and the compositions for both phases at fixed temper-
ature. This has been done for the hexane-triethylamine system in Fig. 10.1-3. In this
figure the equilibrium compositions of the vapor and liquid as a function of pressure
are given by the curves labeled “vapor” and “liquid,” respectively; the compositions of
the two coexisting phases at each pressure are given by the intersection of a horizontal
line (i.e., a line of constant pressure) with the vapor and liquid curves. The term tie line
is used here, and generally in this chapter, to indicate a line connecting the equilibrium
compositions in two coexisting phases. The tie line drawn in Fig. 10.1-3 shows that at
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Figure 10.1-2 The x-y diagram for the hexane-triethylamine system at T = 60◦C. [Based on
data of J. L. Humphrey and M. Van Winkle. J. Chem Eng. Data, 12, 526 (1967).]
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Figure 10.1-3 Pressure-composition diagram for the hexane-
triethylamine system at fixed temperature.

60◦C, a liquid containing 50 mol % hexane is in equilibrium with a vapor containing
66.37 mol % hexane at 0.5713 bar.
So far the discussion has been specific to systems at constant temperature; equiva-

lently, pressure could be fixed and temperature and liquid phase composition taken as
the variables. Although much experimental vapor-liquid equilibrium data are obtained
in constant-temperature experiments, distillation columns and other vapor-liquid sepa-
rations equipment in the chemical process industry are operated more nearly at constant
pressure. Therefore, it is important that chemical engineers be familiar with both types
of calculations.
The vapor-liquid equilibrium temperature for specified pressure and liquid compo-

sition is found as the solution to Eqs. 10.1-2 or, if the system is ideal, as the solu-
tion to Eq. 10.1-4. However, since the temperature appears only implicitly in these
equations through the species vapor pressures,1 and since there is a nonlinear relation-
ship between the vapor pressure and temperature (cf. the Clausius-Clapeyron equa-
tion, Eq. 7.7-5 a), these equations are usually solved by iteration. That is, one guesses
a value of the equilibrium temperature, computes the value of the vapor pressure of
each species at this temperature, and then tests whether the pressure computed from
Eqs. 10.1-2 (or Eq. 10.1-4 if the system is ideal) equals the fixed pressure. If the two
are equal, the guessed equilibrium temperature is correct, and the vapor-phase mole
fractions can be computed from Eq. 10.1-1 (or, if the system is ideal, from Eq. 10.1-3).2

If the two pressures do not agree, a new trial temperature is chosen and the calculation
repeated. Figure 10.1-4 is a plot, on a single graph, of the equilibrium temperature and
mole fractions for the hexane-triethylamine system at 0.7 bar calculated in this way, and

1In fact, the species activity coefficients also depend on temperature; see Eq. 9.3-22. However, since this temper-
ature dependence is usually small compared with the temperature variation of the vapor pressure, it is neglected
here.
2If the vapor-phase mole fractions calculated in this way do not sum to 1, only a single phase, vapor or liquid, is
present at equilibrium.
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Figure 10.1-4 Temperature-composition diagram for the
hexane-triethylamine system at fixed pressure.

Fig. 10.1-5 is the x -y diagram for this system. Note that tie lines drawn on Fig. 10.1-4
are again horizontal lines, though here they are lines of constant temperature.

Bubble point pressure
and dew point
pressure

The liquid line in vapor-liquid equilibrium diagrams is also referred to as the liq-
uidus, the bubble point curve, or simply the bubble curve. The last two names arise
as follows. Consider an equimolar mixture of hexane and triethylamine at 60◦C and
a pressure of 0.8 bar. Based on Fig. 10.1-3, this mixture is a liquid at these conditions
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Figure 10.1-5 The x-y diagram for the hexane-triethylamine
system at a fixed pressure of 0.7 bar.
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(since the pressure is greater than the equilibrium pressure for this composition and
temperature). As the pressure is lowered at constant temperature, the mixture remains a
liquid until the vapor-liquid equilibrium pressure of 0.5713 bar is reached (the intersec-
tion of the 0.5 mole fraction line and the liquid curve). At this pressure the first bubble
of vapor forms (containing 0.6637 mole fraction hexane), and this pressure is called
the bubble point pressure of this mixture at this temperature. The bubble point pressure
versus composition line is referred to as the bubble point pressure curve.
In a similar manner if, for example, an equimolar vapor mixture of hexane and tri-

ethylamine at low pressure and 60◦C is isothermally compressed, at 0.5100 bar the first
drop of liquid or dew forms (containing 0.3363 mole fraction hexane). This pressure is
called the dew point pressure, and the line of dew point pressure versus composition
is the dew point pressure curve. The dew point pressure at, for example, a mole fraction
of 0.5 is given by the intersection of the vertical 0.5 mole fraction line with the vapor
or dew point curve in Fig. 10.1-3.
Note that even for this ideal mixture, the compositions of the two phases in equilib-

rium at each pressure (or at each temperature) are different. This is because the two
pure component vapor pressures are different (see Eq. 10.1-3). Also, at the constant
temperature of 60◦C, an equimolar hexane-triethylamine mixture begins to vaporize
at one pressure (0.5713 bar), while a vapor of that composition starts to condense at
a different pressure (0.5100 bar). If we start at low pressure and isothermally com-
press this mixture, the first drop of liquid forms at 0.5100 bar and then, as the pressure
increases, more liquid will form, producing a vapor richer than the initial mixture in
hexane and a liquid richer in triethylamine. This process will continue until the
pressure of 0.5713 bar is reached at which all the vapor will have condensed to a
liquid of the original composition of the vapor. (Can you follow this process in
Fig. 10.1-3? Also, can you describe the analogous process if pressure is fixed and tem-
perature varies, as in Fig. 10.1-4?) The behavior described above is unlike that of a pure
fluid that undergoes a complete vapor-liquid phase change at a single pressure if the
temperature is fixed.
Figures 10.1-3 and 10.1-4 are two-dimensional sections of the three-dimensional

phase diagram of Fig. 10.1-6. The intersections of this three-dimensional equilibrium
surface with planes of constant temperature (the vertical, unshaded planes) produce
two-dimensional figures such as Fig. 10.1-3, whereas the intersection of a plane of
constant pressure (horizontal, shaded plane) results in a diagram such as Fig. 10.1-4.

Bubble point
temperature and dew
point temperature

Next consider the vaporization of a 50 mol % hexane-triethylamine mixture at fixed
pressure. As this liquid is heated, a temperature is reached at which the first bub-
ble of vapor is formed; this temperature is termed the bubble point temperature of
the liquid mixture at the given pressure. Since the composition of the liquid is essen-
tially unchanged by its partial vaporization to form only one small bubble, we can use
Fig. 10.1-4 and the initial liquid composition to determine that the composition of this
first bubble of vapor is 66 mol % hexane and the bubble point temperature is 66.04◦C.
As the vapor formed is richer in hexane than the liquid mixture, the liquid will be de-
pleted in hexane as the boiling proceeds. Thus, as more and more liquid vaporizes,
the liquid will become increasingly more dilute in hexane and its boiling temperature
will increase.
Conversely, we can consider the condensation of a 50 mol % hexane-triethylamine

vapor mixture. As the vapor temperature decreases at fixed pressure, the dew point
temperature is reached, at which the first drop of liquid forms. Since the condensation
to form a single small drop of liquid leaves the vapor composition virtually unchanged,
we can use Fig. 10.1-4 to determine that, at 0.7 bar, the first drop of condensate will
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Figure 10.1-6 Vapor-liquid equilib-
ria of hexane-triethylamine mixtures.

appear at about 69.26◦C, and its composition will be about 34.2 mol % hexane. Clearly,
as the condensation process continues, the vapor will become increasingly richer in
hexane, and the equilibrium condensation temperature will decrease.
Thus, at fixed pressure, boiling and condensation phenomena, which occur at a single

temperature in a pure fluid, take place over the range of temperatures between the dew
point temperature and bubble point temperature in a mixture. Generally, the dew point
and bubble point temperatures differ by many degrees (see Illustration 10.1-2); the two
are close for the hexane-triethylamine system because the species vapor pressures are
close and the components form an ideal mixture.

Illustration 10.1-1
Development of Vapor-Liquid Equilibrium Diagrams for a Mixture That Obeys Raoult’s Law

Assuming a mixture of n-pentane and n-heptane is ideal, prepare vapor-liquid equilibrium dia-
grams for this mixture at

a. A constant temperature of 50oC
b. A constant pressure of 1.013 bar

Data:

ln P vap
5 = 10.422 − 26 799

RT
and ln P vap

7 = 11.431 − 35 200

RT

for P in bar, T in K, and R = 8.314 J/(mol K). The subscripts 5 and 7 designate pentane and
heptane, respectively.
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Solution

Before we attempt to solve this problem, it is useful to check whether this problem is, in fact,
solvable. We can get this information from the Gibbs phase rule. At the dew point or bubble
point there are two components, two phases, and no chemical reactions, so there are

F = 2 − 0 − 2 + 2 = 2

degrees of freedom. In this calculation we will fix either temperature [part (a)] or pressure [part
(b)] as one degree of freedom, and then for each liquid-phase composition (the second degree
of freedom) calculate the equilibrium conditions. Therefore, the problem is well posed and, in
principle, solvable.

a. Using the Antoine equations given above and T = 50oC = 323.15 K, we have P vap
5 =

1.564 bar and P vap
7 = 0.188 bar. To calculate the equilibrium pressure at each liquid

pentane composition x5, we use

P (x5) = x5 · P vap
5 + x7 · P vap

7 = x5 · P vap
5 + (1 − x5) · P vap

7

and then calculate the vapor phase composition from

y5 =
x5 · P vap

5

P (x5)

Figure a is a plot of the vapor composition versus the liquid composition (that is, an x-y
plot) at constant temperature, and Fig. b shows pressure as a function of both the vapor and
liquid compositions on a single plot.

b. This calculation is a slightly more complicated, since the equilibrium temperature at each
composition is not known, and the vapor pressures are nonlinear functions of temperature.
Therefore, at each choice of liquid composition, the following equation must be solved for
temperature:

x5 · P vap
5 (T ) + x7 · P vap

7 (T ) = x5 · P vap
5 (T ) + (1 − x5) · P vap

7 (T ) = 1.013 bar

The procedure is that at each liquid composition x5 a guess is made for the equilibrium
temperature T , and the the equilibrium pressure is then calculated. If the calculated pressure
equals 1.013 bar, the guessed temperature is correct and the vapor composition is computed
from

y5 =
x5 · P vap

5

1.013

1

0.6

y 5

x
5

0.8

0.4

0.2

0
0 0.2 0.4

Constant temperature
T = 50°C 

0.6 0.8 1

x = y

Figure a The x-y diagram for the n-pentane + n-
heptane mixture at T = 50◦C.
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However, if the calculated pressure is greater than 1.013 bar, a lower temperature is guessed
and the calculation repeated, whereas if the calculated pressure is too low, a higher temper-
ature is tried. Figure c is a plot of the vapor composition versus the liquid composition at
constant pressure (another x-y plot), calculated in this way, and Fig. d gives the equilibrium
temperature as a function of both the vapor and liquid compositions on a single plot.[

Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 10.1>10.1-1 on the Wiley
website for this book the results shown in the Excel spreadsheet Illustration 10.1-1.xlsx in that
are obtained. Note the results are slightly different from the calculations above in this illustration
since the vapor pressures in the Aspen Plus R© databank are slightly different than those in the
problem statement.

]
Comment

It would be useful at this point for the reader to compare figures a and c, and figures b and d, and
to understand the difference between them—in particular, to understand why the liquid region
is at the top part of figure b and at the bottom part of figure d.

Also note that in the x-y diagrams of figures a and c, the equilibrium line relating the compo-
sition of the liquid to the composition of the vapor is the curved line. The straight x = y lines in
these figures, that is, the 45◦ lines, are usually added to x-y diagrams to indicate the difference
between the vapor and liquid compositions. The difference between the equilibrium and x = y
lines is an indication of how easy or difficult it will be to separate the components by distillation.
This will be discussed briefly later in this section.

Few liquid mixtures are ideal, so vapor-liquid equilibrium calculations can be more
complicated than is the case for the hexane-triethylamine system, and the system phase
diagrams can be more structured than Fig. 10.1-6. These complications arise from
the (nonlinear) composition dependence of the species activity coefficients. For ex-
ample, as a result of the composition dependence of γi, the equilibrium pressure in a
fixed-temperature experiment will no longer be a linear function of mole fraction. Thus
nonideal solutions exhibit deviations from Raoult’s law. We will discuss this in detail
in the following sections of this chapter. However, first, to illustrate the concepts and
some of the types of calculations that arise in vapor-liquid equilibrium in the simplest
way, we will assume ideal vapor and liquid solutions (Raoult’s law) here, and then in
Sec. 10.2 consider the calculations for the more difficult case of nonideal solutions.
For a binary (that is, two-component) mixture, if constant-pressure vapor-liquid equi-

librium diagrams, such as Fig. 10.1-4 or that of Illustration 10.1-1, have been previ-
ously prepared, dewpoint and bubblepoint temperatures can easily be read from these
diagrams. For the cases in which such information is not available, or if a multicompo-
nent mixture is of interest, the trial-and-error procedure of Illustration 10.1-2 is used to
estimate these temperatures.

Illustration 10.1-2
Estimation of Dew Point and Bubble Point Temperatures

Estimate the bubble point and dew point temperatures of a 25 mol % n-pentane, 45 mol %
n-hexane, and 30 mol % n-heptane mixture at 1.013 bar.

Data:

ln P vap
5 = 10.422 − 26 799

RT
δ5 = 7.02 (cal/cc)1/2

ln P vap
6 = 10.456 − 29 676

RT
δ6 = 7.27 (cal/cc)1/2

ln P vap
7 = 11.431 − 35 200

RT
δ7 = 7.43 (cal/cc)1/2
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for P in bar, T in K, and R = 8.314 J/(mol K). The subscripts 5, 6, and 7 designate pentane,
hexane, and heptane, respectively.

Solution

Before solving this problem it is again useful to check whether this problem is, in fact, solvable.
We can get this information from the Gibbs phase rule. At the dew point or bubble point there
are three components, two phases, and no chemical reactions, so there are

F = 3 − 0 − 2 + 2 = 3

degrees of freedom. Since the pressure and two independent mole fractions of one phase have
been fixed, the problem is well posed and, in principle, solvable.

Since the solubility parameters for these hydrocarbons are sufficiently close, we will assume
that this liquid mixture is ideal; that is, fL

i = xiP
vap
i . (This assumption should be reasonably ac-

curate here, and simplifies the calculations.) Finally, since the pressure is so low, we will assume
the vapor phase is ideal, so that fV

i = yiP . Therefore, the equilibrium relation for each species
i is xiP

vap
i = yiP .

a. At the bubble point of the liquid mixture, Eqs. 10.1-3, 10.1-4, and 10.1-6 must be satisfied.
Therefore, the procedure is to
i. Pick a trial value of the bubble point temperature.
ii. Compute the values of the yi from

yi =
xiP

vap
i

P

iii. If
∑

yi = 1, the trial value of T is the bubble point temperature. If
∑

yi > 1, T is too
high, and if

∑
yi < 1, T is too low; in either case, adjust the value of T and go back to

step ii.
Following this calculational procedure, we find

T (bubble point) = 334.6 K
y5 = 0.554
y6 = 0.359
y7 = 0.087

b. To find the dew point of the vapor mixture, we
i. Pick a trial value for the dew point temperature.
ii. Compute the values of the liquid-phase composition from

xi =
yiP

P vap
i

iii. If
∑

xi = 1, the trial value of T is the dew-point temperature. If
∑

xi > 1, T is too
low, and if

∑
xi < 1, T is too high; in either case, adjust the value of T and go back to

step ii.
In this case we find

T (dew point) = 350.5 K
x5 = 0.073
x6 = 0.347
x7 = 0.580[

Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 10.1>10.1-2 on the Wiley
website for this book the bubble point is T = 334.7 K, y5 = 0.554, y6 = 0.358 and y7 = 0.088.
The dew point is T = 350.6 K, x5 = 0.073, x6 = 0.346 and x7 = 0.581. The results are in
almost perfect agreement with those above.

]
Comment

Note that the dew point and bubble point temperatures differ by 16 K for this mixture.
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The next illustration demonstrates that the calculation of the bubble point and dew
point pressures, since temperature and therefore pure-component vapor pressures are
fixed, is somewhat easier than the computation of bubble point and dew point
temperatures as was done above.

Illustration 10.1-3
Estimation of Dew Point and Bubble Point Pressures

Estimate the bubble point and dew point pressures for the mixture of Illustration 10.1-2 at 73oC.

Solution

a. At the bubble point pressure of the liquid mixture Eqs. 10.1-3, 10.1-4, and 10.1-6 must be
satisfied. However, since this mixture satisfies Raoult’s law, the calculation of the bubble
point pressure is

P (bubble point) =
∑

i

xiP
vap
i = x5P

vap
5 + x6P

vap
6 + x7P

vap
7

P (bubble point) = 0.25 × 3.034 + 0.45 × 1.155 + 0.30 × 0.449 = 1.413 bar

Then the vapor-phase mole fractions yi are computed from

yi =
P vap

i

P
xi

giving y5 = 0.537, y6 = 0.368, and y7 = 0.095.
b. To find the dew point pressure of the vapor mixture is a bit more complicated, so we

i. Pick a trial value for the dew point pressure.
ii. Compute the values of the liquid-phase composition from

xi = yi

P

P vap
i

iii. If
∑

xi = 1, the trial value of P is the dew point pressure of the vapor mixture. If∑
xi > 1, P is too high, and if

∑
xi < 1, P is too low; in either case, adjust the value

of P and go back to step ii.
In this case we find

P (dew point) = 0.877 bar
x5 = 0.072
x6 = 0.342
x7 = 0.586[

Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 10.1>10.1-3 on the Wiley
website for this book the bubble point is P = 1.421 bar, y5 = 0.540, y6 = 0.366 and y7 = 0.095.
The dew point is P = 0.888 bar, x5 = 0.072, x6 = 0.342 and x7 = 0.586. The results are in
almost perfect agreement with those above.

]
Comment

Note that at fixed temperature a pure fluid boils andwill completely evaporate at a single pressure;
for example, water at 1.013 bar boils at 100oC. Therefore, its dew point pressure and bubble
point pressure are identical, and we do not use these terms for a pure fluid. However, for the
mixture and temperature considered here, the pressures of initial boiling and condensation differ
by 0.536 bar.

Flash calculations:
mass balances for
VLE

Another type of vapor-liquid equilibrium problem, and one that is more important for
designing separation equipment, is computing the two-phase equilibrium state when
either a liquid of known composition is partially vaporized or a vapor is partially con-
densed as a result of a change in temperature and/or pressure. Such a problem is
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generically referred to as a flash calculation. The term flash arises from the fact that
if the pressure is suddenly lowered (or the temperature raised) on a mixture that is
at its boiling temperature, it will flash-vaporize; that is, there will be a sudden partial
vaporization of the liquid. The partial vaporization or partial condensation problem
is somewhat more difficult to solve than bubble point and dew point calculations for
the following reason: In a bubble point calculation an infinitesimal amount of vapor
is produced, so the liquid composition is that of the original mixture; and in a dew
point calculation, an infinitesimal amount of liquid forms, so the vapor composition
is that of the original mixture. In either case, we know the equilibrium composition
of one of the phases. However, in a flash calculation, the final compositions of both
phases are unknown. If the flash process occurs at constant temperature (for example,
in a heat exchanger), one uses the equilibrium criterion, Eq. 10.1-1, the restrictions of
Eqs. 10.1-5 and 10.1-6, and the species mass balance equations. If the flash process does
not take place at constant temperature (for example, if there were a sudden rupture of
a tank or for flow through an orifice the flash vaporization may occur adiabatically),
one would also have to include the energy balance in the calculation, which makes the
solution much more tedious. We consider only the constant-temperature (isothermal)
case here.
For a process in which 1 mole of a mixture with species mole fractions z1,F,

z2,F, . . . , zC,F is, by partial vaporization or condensation, separated into Lmoles of liq-
uid of composition x1, x2, . . . , xC andV moles of vapor of composition y1, y2, . . . , yC ,
the species mass balance yields

xiL + yiV = zi,F i = 1, 2, . . . , C (10.1-7)

(since no chemical reactions occur). From the total mass balance, we also have

L + V = 1 (10.1-8)

though this is not an independent equation, since it can be obtained by summing
Eq. 10.1-7 over all species, and using Eqs. 10.1-5 and 10.1-6.
Equations 10.1-7 and 10.1-8, together with the equilibrium relations, can be used to

solve problems involving partial vaporization and condensation processes at constant
temperature. For partial vaporization and condensation processes that occur adiabati-
cally, the final temperature of the vapor-liquid mixture is also unknown and must be
found as part of the solution. This is done by including the energy balance among the
equations to be solved. Since the isothermal partial vaporization or isothermal flash cal-
culation is already tedious (see Illustration 10.1-4), the adiabatic partial vaporization
(or adiabatic flash) problem will not be considered here.3

Illustration 10.1-4
Partial Vaporization Calculation

A liquid mixture of 25 mol % n-pentane, 45 mol % n-hexane, and 30 mol % n-heptane, ini-
tially at 69◦C and a high pressure, is partially vaporized by isothermally lowering the pressure
to 1.013 bar (1 atm). Find the relative amounts of vapor and liquid in equilibrium and their
compositions.

3Flash vaporization processes are usually considered in courses and books onmass transfer processes and stagewise
operations. See, for example, R. E. Treybal, Mass Transfer Operations, 3rd ed., McGraw-Hill, New York (1980),
p. 363 et seq.; and C. J. King, Separation Processes, 2nd ed., McGraw-Hill, New York (1980), pp. 68–90.
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Solution

From the Antoine equation data in Illustration 10.1-2, we have

P vap
5 = 2.721 bar P vap

6 = 1.024 bar and P vap
7 = 0.389 bar

Also, using the simplifications for this system introduced in the previous illustrations, the
equilibrium relation fL

i = fV
i reduces to xiP

vap
i = yiP , or

yi

xi

=
P vap

i

P

For convenience, we will use the K factor, defined by the relation yi = Kixi, in the calculations;
for the ideal mixtures considered here Ki = P vap

i (T )/P . Thus we obtain the following three
equations:

y5 = x5K5 where K5 = 2.7406 (1)

y6 = x6K6 K6 = 1.0109 (2)

y7 = x7K7 K7 = 0.3844 (3)

We also have, from Eqs. 10.1-5–10.1-8,

x5 + x6 + x7 = 1 (4)

y5 + y6 + y7 = 1 (5)

and

x5L + y5V = 0.25 (6)

x6L + y6V = 0.45 (7)

x7L + y7V = 0.30 (8)

L + V = 1.0 (9)

Thus we have eight independent equations for eight unknowns (x5, x6, x7, y5, y6, y7, L, and
V ), and any numerical procedure for solving algebraic equations may be used to solve this set of
equations. One method is to use Eqs. 1, 2, and 3 to eliminate the vapor-phase mole fractions and
the overall mass balance, Eq. 9, to eliminate the amount of vapor. In this way the eight algebraic
equations are reduced to five linear algebraic equations:

x5 + x6 + x7 = 1 (4)

K5x5 + K6x6 + K7x7 = 1 (5′)

x5[L + K5(1 − L)] = x5[L(1 − K5) + K5] = 0.25 (6′)

x6[L(1 − K6) + K6] = 0.45 (7′)

x7[L(1 − K7) + K7] = 0.30 (8′)

These equations are most easily solved by trial and error. In particular, a value of L is guessed
and then used in Eqs. 6′–8′ to compute x5, x6, and x7. These trial values of the liquid-phase
mole fractions are then tested in Eqs. 4 and 5′. If those equations are satisfied, the guessed value
of L and the computed values of the xi’s are correct, and the vapor-phase mole fractions can be
computed from Eqs. 1–3. If Eqs. 4 and 5′ are not satisfied, a new guess for L is made, and the
procedure repeated. Alternatively, one can use an equation-solving computer program such as
MATHCAD, MATLAB or Aspen Plus R© and the file in the folder Aspen Illustrations>Chapter
10.1>10.1-4 on the Wiley website for this book.
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The solution is

L = 0.564 V = 0.436

x5 = 0.142 y5 = 0.390

x6 = 0.448 y6 = 0.453

x7 = 0.410 y7 = 0.158[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 10.1>10.1-4 on the Wiley
website for this book the following results are obtained

L = 0.569 V = 0.431

x5 = 0.144 y5 = 0.391

x6 = 0.448 y6 = 0.452

x7 = 0.408 y7 = 0.157

The slight differences between those obtained using Aspen Plus R© and previous is a result of the
different vapor pressures in the Aspen databank.

]
Comments

1. The K-factor formulation introduced in this calculation is frequently useful in solving
vapor-liquid equilibrium problems. The procedure is easily generalized to nonideal liquid
and vapor phases as follows:

yi

xi

≡ Ki =
γiP

vap
i

φiP

In this caseKi is a nonlinear function of the liquid-phase mole fraction through the activity
coefficient γi, and also a function of the vapor-phase composition through the fugacity
coefficient φi. This makes solving the equations much more difficult.

2. It was not necessary to assume ideal solution behavior to solve this problem. One could,
for example, assume that the solution is regular, in which case γi (and Ki) would be a
nonlinear function of the mole fractions. The calculation of the vapor- and liquid-phase
mole fractions is then more complicated than was the case here; however, the basis of the
calculation, the equality of the fugacity of each species in both phases, remains unchanged.

3. In some cases it may not be possible to find an acceptable solution to the algebraic equa-
tions. Here by acceptable we mean a solution such that each mole fraction, L, and V are
each greater than 0 and less than 1. This difficulty occurs when the vapor and liquid phases
cannot coexist in the equilibrium state at the specified conditions. For example, if the flash
vaporization temperature were sufficiently high or the total pressure so low that all theKi’s
were greater than 1, there would be no set of mole fractions that satisfies both Eqs. 4 and
5′. In this case only the vapor is present. Similarly, if all the Ki’s are less than 1 (which
occurs at low temperatures or high pressures), only the liquid is present, and again there is
no acceptable solution to the equations. It is also possible that there will not be an accept-
able solution even with a distribution of values of the K factors if some, but not all, their
values are much greater than or much less than unity.

4. For this system C = 3, P = 2, andM = 0, so that, from the Gibbs phase rule, the number
of degrees of freedom is

F = 3 − 0 − 2 + 2 = 3

Since the equilibrium temperature and pressure were specified, one degree of freedom re-
mains. If no further information about the system were given, that is, if one were asked to
determine the equilibrium compositions of vapor and liquid for a pentane–hexane–heptane
mixture at 69◦C and 1.013 bar with no other restrictions, many different vapor and liquid
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compositions would be solutions to the problem. A problem that does not have a unique
solution is said to be ill posed. With the initial liquid composition given, however, the
species mass balances (Eqs. 6, 7, and 8) provide the additional equations that must be
satisfied to ensure that there will be no more than one solution to the problem.

Illustration 10.1-5
Partial Equilibrium Vaporization Calculation and its Relation to Separation Processes

A liquid mixture of 50 mol % n-pentane and 50 mol % n-heptane, initially at a low temperature,
is partially vaporized by heating at a constant pressure of 1.013 bar (1 atm). Find the equilibrium
vapor and liquid compositions and the equilibrium temperature as a function of the fraction that
is vaporized.

Solution

Here we have for the equilibrium conditions

yi = xi

P vap
i (T )

P (x5, x7, T )

where P vap
i (T ) is obtained from the Antoine equation data in Illustration 10.1-1. From Raoult’s

law, the total pressure is

P (x5, x7, T ) = x5P
vap
5 (T ) + x7P

vap
7 (T )

We also have, from Eqs. 10.1-5–10.1-8,

x5 + x7 = 1

y5 + y7 = 1

and
x5L + y5V = 0.50
x7L + y7V = 0.50

L + V = 1.0

With pressure fixed, for each value of the fraction of liquid L, the equilibrium temperature
and the compositions in vapor and liquid phases can be computed by iteration. The results are
given below and shown in Fig. 10.1-7. In this diagram each of the horizontal tie lines shown
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Figure 10.1-7 The fraction of an equimolar n-pentane–n-heptane mixture vaporized at fixed
pressure, and the composition of the coexisting phases as a function of temperature.
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connecting the vapor and liquid compositions is labeled with its equilibrium temperature. Note
that the first bubble of vapor occurs at 327.8 K and has an n-pentane mole fraction of 0.888. As
the temperature increases, more of the liquid phase evaporates, and each of the phases becomes
increasing more concentrated in n-heptane and less concentrated in n-pentane. Of course, when
all the liquid has evaporated (L = 0), the vapor will be of the same composition as the initial
liquid. Also, the end points of this figure at L = 0 and L = 1 in fact can be computed somewhat
more easily from bubble point and dew point calculations, respectively.

L = 1.0 L = 0.9 L = 0.8 L = 0.7

x5 0.500 0.459 0.414 0.367
y5 0.888 0.869 0.843 0.811
T (K) 327.8 329.9 332.4 335.3

L = 0.6 L = 0.5 L = 0.4 L = 0.3

x5 0.319 0.274 0.235 0.202
y5 0.772 0.726 0.677 0.628
T (K) 338.4 341.7 344.8 347.6

L = 0.2 L = 0.1 L = 0.0

x5 0.175 0.154 0.136
y5 0.581 0.538 0.500
T (K) 350.0 352.1 353.9

[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 10.1>10.1-5 on the Wiley
website for this book the calculation is done using the two-phase flash block and varying the
fraction that is liquid from 1 (the bubble point of the feed) to 0 (the dew point of the feed).
The results are given in the file Illustration 10.1-5.xlsx in that folder, which are agreement with
the results above.

]
These results, while specific to this system, have some interesting implications for the

purification of mixtures. For example, suppose that by starting with a liquid mixture of
50 mol % n-pentane and 50 mol % n-heptane, we wanted to produce a liquid mixture
that contained 98 mol % n-pentane. One way to do this would be to vaporize some
of the initial mixture, collect the vapor, and then condense it. However, we see from
the results above that the highest concentration of n-pentane we could get in this way
is 88.8 mole %, but only if we got an infinitesimal amount of vapor (i.e., L = 1).
Vaporizing any greater fraction of liquid produces a vapor of lower concentration, as
seen above.
Another possibility is to use a two-stage process in which we vaporize some of the

liquid to get a vapor enriched in n-pentane, condense this liquid, and then partially
vaporize it to produce a vapor that has even a higher concentration of n-pentane. For
example, if we vaporized just 10 mol % of the original liquid (L = 0.9), we would
obtain a vapor containing 86.9 mol % n-pentane. Now condensing this stream to a
liquid and using it as the feed to a second partial vaporization process, repeating the
calculation above with this new feed, we obtain

L = 1.0 L = 0.9 L = 0.8 L = 0.7

x5 0.869 0.856 0.841 0.823
y5 0.982 0.982 0.980 0.977
T (K) 313.4 313.8 314.3 314.9
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We see from these results that by vaporizing 20 mol % (L = 0.8 for stage 2) of the
condensed vapor from stage 1, we obtain a vapor that contains the desired 98 mol %
n-pentane. So we have met the concentration specifications. However, this process is
very wasteful of the chemicals and not energy efficient. In particular, if we started with
100 moles of the initial feed, only 10 moles would remain after the first partial vapor-
ization, and only 2 moles of the product stream containing 98 mol % n-pentane would
result from the second stage. So that by starting with 50 moles of n-pentane (100 moles
× 50 mol % n-pentane) we have obtained a product that contains only 2 moles ×
98 mol % n-pentane = 1.96 moles of n-pentane. That is, 48.04 moles of n-pentane
have not been recovered in the process.
This suggests that a more efficient process of purification is needed than simple par-

tial vaporization and condensation. Chemical engineers have devised a much more ef-
ficient method, multistage distillation. This subject is discussed in detail in courses on
stagewise operations, unit operations, and/or mass transfer. We will give a very brief
discussion of simple, multistage distillation here just to point out the importance of
thermodynamics in chemical engineering design.

Relevance of
vapor-liquid
equilibrium to
distillation

A tray-type multistage distillation column contains several essential elements. There
are a number of trays in a vertical cylindrical column, a boiler at the bottom, and a
condenser at the top. Each tray holds up some liquid, and vapor produced in the boiler
(called the reboiler) passes up the column and through the liquid on each of the trays.
In this process, the vapor reaches equilibriumwith the liquid on each tray, and the vapor
composition changes. When the vapor reaches the top of the column, it is condensed;
some of the condensed vapor is withdrawn as the distillate or overhead product, and
the remainder is returned to the distillation column as liquid. This liquid flows down
the column from tray to tray and reaches equilibrium with the vapor passing through
each tray. When the liquid reaches the reboiler at the bottom of the column, some of
it is vaporized and provides the vapor for the distillation column, while the rest is re-
moved as the bottoms product. The overall operation of a distillation column, as shown
in Fig. 10.1-8, is that a feed enters the column somewhere between the reboiler and the
condenser, and an overhead product containing predominantly the more volatile com-
ponent and a bottoms product containing predominantly the less volatile component
are withdrawn from the column. The important characteristic of a distillation column is
that internally there is countercurrent flow between a downward flowing liquid, which
is becoming increasingly rich in the less volatile component, and an upward flowing
vapor that is becoming increasingly rich in the more volatile component. (A question
that is sometimes asked is why some of the condensed vapor product must be returned
to the column. The answer is that if this were not done, trays in the column would be
dry, and vapor-liquid equilibrium would not be obtained.)
While the design of distillation columns can be quite complicated, we will consider

only the simplest case here. The simplifications we will use are that vapor-liquid equi-
librium will be assumed to exist on each tray (or equilibrium stage) and in the reboiler,
that the column operates at constant pressure, that the feed is liquid and will enter the
distillation column on a tray that has liquid of approximately the same composition as
the feed, that the molar flow rate of vapor V is the same throughout the column, and
that the liquid flow rate L is constant on all trays above the feed tray, and is constant
and equal toL+F below the feed tray, where F is the molar flow rate of the feed to the
column, here assumed to be a liquid. The analysis of this simplified distillation column
involves only the equilibrium relations and mass balances. This is demonstrated in the
illustration below.
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Figure 10.1-8 (a) Schematic diagram of a distillation col-
umn, showing (b) the tray-to-tray flows and compositions.

Illustration 10.1-6
A Very Simple Design of a Distillation Column

Start with the the feed of the previous illustration, consisting of 50 mol % n-pentane and
50 mol % n-heptane, and recover 95 percent of the n-pentane in the feed in a stream that con-
tains 98 mol % n-pentane. At the top of the column, 1 mole of product will be withdrawn
for every 9 moles that are returned to the column, and the distillation column will operate at
1.013 bar pressure.

Solution

Basis for the calculations: 100 mol/hr of feed.
The feed contains 50 moles of C5. To meet the recovery target, 50 × 0.95 = 47.5 moles

of C5 in a stream of 98 percent purity is needed, so the distillate flow rate is D = 47.5/0.98 =
48.47 mol/hr, and the distillate contains 48.47−47.5 = 0.97moles ofC7. Therefore, the bottoms
flow rate B = 100− 48.47 = 51.53 mol/hr and by a mass balance on C5 contains the remaining
2.5 moles of C5 and 50 − 0.97 = 49.03 mol/hr of C7. Consequently, the mole fractions of the
bottoms product are xC5 = 0.0485 and xC7 = 0.9515.

Since the distillate flow rate is 48.47 mol/hr, and 9 moles of liquid are returned to the column
for each mole of overhead product, L = 48.47×9 = 436.23 mol/hr and L+F = 536.23 mol/hr.
Also, the vapor flow in the column V must equal the liquid flow at the top of the column plus
the amount of distillate withdrawn, so V = L + D = 436.23 + 48.47 = 484.70 mol/hr.

With the overall column flows now determined, we next consider what happens on each tray.
The top tray, which we refer to as tray 1, is shown schematically in Fig. 10.1-9. It has four
streams: a vapor stream leaving the tray V1, which is in equilibrium with the liquid stream leav-
ing L1; the vapor stream V2 entering tray 1 from tray 2 below, and an entering liquid stream from
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Condenser

Tray 1

Tray 2

L0, xD = x0 V1, y1 = xD

L2, x2 V3, y3

L1, x1 V2, y2 Figure 10.1-9 Schematic diagram of top two trays in a distil-
lation column. Note that the vapor and liquid leaving the same
tray are assumed to be in equilibrium (that is, x1 is in equilbrium
with y1, x2 with y2, etc.). Also, since there is a total condenser
on this distillation column, the composition of the vapor leav-
ing the the top tray, y1, and the liquid returned to the column,
x0, both have the same composition as the distillate xD.

the condenser, which we designate as L0. On tray 1 we know that since all the vapor leaving is
condensed to product and the returning or reflux liquid, the C5 mole fraction of L0 and V1 are
0.98. Also, since L1 is in equilibrium with V1, from an equilibrium calculation at P = 1.013 bar,
we find that the C5 mole fraction of L1 is 0.856 and that the equilibrium tray temperature is
313.8 K. Next a mass balance is used to find the C5 mole fraction of V2 as follows:

yC5,2V + xC5,0L = yC5,1V + xC5,1L

yC5,2 × 484.70 + 0.98 × 436.23 = 0.98 × 484.70 + 0.856 × 436.23

So yC5,2 = 0.868.
Now since the liquid leaving tray 2 is in equilibrium with the vapor of composition, yC5,2 =

0.868, a dew point calculation can be done to find the tray temperature and liquid composition.
The results are xC5,2 = 0.458 and the tray temperature is 329.9 K.

Next a mass balance is used to find the vapor composition entering tray 2 from tray 3 below.
However, since the liquid composition on this tray is close to the feed composition, the 100
mol/hr should be added to this tray. Therefore, the mass balance is

yC5,3V + xC5,1L + xC5,F
F = yC5,2V + xC5,2(L + F )

yC5,3 × 484.70 + 0.856 × 436.23 + 0.500 × 100 = 0.868 × 484.70 + 0.458 × 536.23

Therefore, yC5,3 = 0.501.
As the liquid leaving tray 3 is in equilibrium with the vapor of composition, yC5,3 = 0.501, a

dew point calculation is used find the tray temperature and liquid composition. The results are
xC5,3 = 0.137 and the tray temperature is 353.8 K.

Proceeding in this manner, a mass balance is then used to find the vapor composition entering
tray 3 from tray 4 below.

yC5,4V + xC5,2(L + F ) = yC5,3V + xC5,3(L + F )

yC5,3 × 484.70 + 0.458 × 536.23 = 0.501 × 484.70 + 0.137 × 536.23

Therefore, yC5,4 = 0.146 and from an equilibrium calculation the liquid leaving tray 4 is xC5,4 =
0.029 and the tray temperature is 366.7 K. As this composition is lower than the specification
for the bottoms product of xC5 = 0.0485, no further stages are needed in the distillation column.
Also, it should be pointed out that while the condenser is used to condense all the vapor, the
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reboiler vaporizes only part of the liquid. Therefore, it is an equilibrium stage, just as are each
of the trays. Consequently, the distillation column we have just “designed” requires a total con-
denser and 4 “trays” or equilibrium stages, which actually consists of three trays and a reboiler.
Also, the feed is to be added to the second tray from the top of the distillation column.

Alternative distillation
calculation

There is another method of analyzing distillation colums. This is done by starting
with the overall mass (molar) balance on the distillation column,

F = D + B (10.1-9)

and on either one of the species in a binary mixture:

zF F = xDD + xBB (10.1-10)

Using these equations, we can relate the amount of distillate D and bottoms B to the
amount of feed F and the feed and desired product compositions as follows:

D =
zF − xB

xD − xB

F and B =
xD − zF

xD − xB

F (10.1-11)

Next we do both an overall molar balance and a species molar balance on just a
section of the distillation column including stages 1, 2, . . . , i above the feed tray:

V = L + D and yi+1V = xiL + xDD (10.1-12)

Using the definition of the reflux ratio q = L/D, we obtain

yi+1 =
xDD

L + D
+

xiL

L + D
=

xD

1 + q
+

xiq

1 + q
(10.1-13)

Note that this is a linear equation between the vapor composition entering stage i, yi+1,
and the liquid composition leaving that stage, xi. Also, since the condenser being con-
sidered here condenses all of the vapor leaving stage 1, y1 = xD. Therefore, Eq. 10.1-13
results in a line that starts at xD and has a slope of q/(q + 1). This line is referred to
as the upper operating line, or rectification section operating line, and can be plotted on
an x-y diagram, as will be shown in the illustration that follows.
Finally, we do an overall molar balance and a species molar balance on a section of

the distillation column including stages below the feed tray (assuming the feed is all
liquid) up to stage I:

L + F = V + B and xI+1(L + F ) = yIV + xBB (10.1-14)

where we have used the subscript I to indicate the equilibrium stages below the feed
tray. Using the definition of the reflux ratio and the overall mass balance, we obtain

yI = xI+1

(
q + F

D

q + 1

)
− xB

( F
D
− 1

q + 1

)
(10.1-15)

This is also a linear equation between the vapor composition leaving stage I, yI,
and the liquid composition entering that stage from the stage above, xI+1. This
equation is referred to as the lower operating line, or stripping section operating line.
To plot this equation, we start at the point xI = xB and continue it with a slope of
(q+F/D)/(q+1). Since only a portion of the feed exits as distillate (so that F > D),
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this line has a slope greater than unity, as q +F/D > q +1. The following illustration
shows how the stripping section and rectification section operating lines can be used in
a simple graphical construction to determine the number of equilibrium stages needed
to accomplish a separation by distillation of a binary mixture.
(Note that in the analysis here we have assumed that the feed is at its boiling point. If it

were below its boiling point, it would condense some of the vapor, so that the vapor flow
rate above the feed tray would be less than that below the feed tray. Similarly, if the feed
were a two-phasemixture, or a vapor, the vapor and liquid flowswould be different from
those given here. However, we leave these complications to a course in mass transfer
or stagewise operations, which usually follows this course in thermodynamics.)

Illustration 10.1-7
Graphical Design of a Distillation Column

Start with the the feed of the previous illustration, consisting of 50 mol % n-pentane and 50 mol
% n-heptane, and determine how many equilibrium stages are needed to recover 95 percent of
the n-pentane in the feed in a stream that contains 98 mol % n-pentane. At the top of the column,
1 mole of product will be withdrawn for every 9 moles that are returned to the column, and the
distillation column will operate at 1.013 bar pressure.

Solution

Figure 10.1-10 shows the constant pressure x-y plot for this system. For the example considered
here, q = L/D = 9/1 = 9. Consequently, the rectification section operating line starts at
x = 0.98 and has a slope of q/(q + 1) = 9/(9 + 1) = 0.9. The stripping section operating
line starts at x = 0.0485 and has a slope of (q + F/D)/(q + 1) = (9 + 100/48.47)/(9 + 1) =
(9 + 2.063)/10 = 1.106. Both of these operating lines are drawn on the x-y diagram. Note that
these operating lines cross at the feed composition.

The rectification operating line relates the composition of the vapor entering an equilib-
rium stage (from the stage below) to the liquid leaving that stage, while the equilibrium line
relates the composition of the equilibrium liquid leaving the stage to the equilibrium vapor
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Figure 10.1-10 The graphical stage-to-stage calculation for a distilla-
tion column.
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also leaving that stage and entering the one above it (or the condenser, if it is the top stage).
Thus, starting with the vapor composition at the top stage, which is equal to the liquid distil-
late concentration (that is, the point xD = y1), a horizontal line is drawn until it intersects the
equilibrium curve. This intersection gives the liquid of composition x1 in equilibrium with y1.
Now drawing a vertical line from this point until it intersects the stripping section operating line
gives the vapor composition y2 entering stage 1. Another horizontal line then gives the liquid
composition x2 in equilibrium with this vapor, and so on. This graphical stage-to-stage construc-
tion is repeated until a liquid composition equal to or less than the feed composition is reached.
The optimal stage at which to inject feed is the one that has a liquid composition closest to that of
the feed. Therefore, once a liquid stage composition is less than that of the feed, we identify that
as the feed stage and continue the graphical construction using the stripping (lower) operating
line until a composition equal to or less than the desired bottoms composition is reached.

This graphical construction is shown in Fig. 10.1-10. From this figure, we see as before
that the desired separation can be achieved in a total of four equilibrium stages, one of which
is the reboiler, and that the feed should be on the second stage from the top of the column.
The temperature on each tray, the condenser, and the reboiler can now be determined from the
T-x-y diagram for this mixture using the liquid composition in each of these locations.

Comments

Note the difference between this method of calculation and the one used in the previous illus-
tration. There we did vapor-liquid equilibrium calculations only for the conditions needed, and
then solved the mass balance equations analytically. In this illustration we first had to do vapor-
liquid equilibrium calculations for all compositions (to construct the x-y diagram), and then
for this binary mixture we were able to do all further calculations graphically. As shown in the
following discussion, this makes it easier to consider other reflux ratios than the one used in
this illustration.

The choice of reflux ratio q = L/D, that is, the ratio of the liquid returned from the condenser
to distillate, was chosen arbitrarily to be 9 in this example. Suppose instead a value of 0.5 had
been chosen. Then the rectification section operating line would still start at x = 0.98 but now
have a slope of q/(q + 1) = 0.5/(0.5 + 1) = 0.333. The stripping section operating line would
again start at x = 0.0485 and have a slope of (q+F/D)/(q+1) = (0.5+100/48.47)/(0.5+1) =
2.563/1.5 = 1.709. The graphical stage-to-stage calculation for this case is shown below. In this
case, we need a total of six equilibrium stages, with the feed on the third stage. Thus by decreasing
the reflux ratio, we need two additional stages in the distillation column, which
increases the capital cost. However, by decreasing the reflux ratio, for a fixed amount of prod-
uct, less vapor and liquid are circulating through the column so a column of smaller diameter
can be used, which decreases the capital cost. More important, less liquid is being vaporized
in the reboiler and less vapor is being condensed in the condenser, resulting in a very signif-
icant decrease in utility costs. So by decreasing the reflux ratio, the cost of separation can be
greatly reduced.

However, the reflux ratio cannot be reduced indefinitely. There is a value of the reflux ratio
below which it is no longer possible to achieve the desired separation. This is the value of q that
results in the simultaneous intersection of two operating lines and the equilibrium line. For the
system being considered, this limiting reflux ratio is q = 0.237. At this reflux ratio the desired
separation cannot be achieved since, in stepping of stages, it is not possible to get beyond the
intersection point of the two operating lines. This point of intersection between the equilibrium
and operating lines is referred to as a pinch point and is shown in Figure 10.1-11. For any reflux
ratio greater than this minimum value, the separation is possible. As a (very) rough rule of thumb,
a reflux ratio that is 20 percent greater than the minimum required for the separation may be close
to the economic optimum between equipment and operating costs.

Another limiting case is the minimum number of stages required for a separation, which
occurs when the reflux ratio is infinity, so that all the condensed vapor is returned to the col-
umn, there is no overhead or distillate product, and also no bottoms product and therefore no
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Figure 10.1-11 Stage-to-stage calculation for a distillation column
operating at the minimum reflux ratio.
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Figure 10.1-12 Stage-to-stage calculation for a distillation column
operating at the infinite reflux ratio.

feed to the column. In this case, from Eq. 10.1-12, yi+1 = xi and from Eq. 10.1-14, xI+1 = yI,
so that the upper and lower section operating lines are coincident with the x = y or 45o line.
For the case here, from Fig. 10.1-12, this results in slightly more than three equilibrium stages

as the minimum number required to obtain the desired separation.
[
Using an Aspen Plus R© a

simulation using the distillation shortcut method DSTWU is available on Wiley website for this

book in the folder Aspen Illustration>Chapter 10.1>10.1-7.
]

The discussion presented here is meant to be a simple introduction merely to
illustrate the importance of vapor-liquid equilibrium calculations in the design of dis-
tillation columns, and to provide motivation for the study of this subject. The actual
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design of distillation columns is much more complicated than can be considered here.
Complications include the following:

a. The mixtures involved are not ideal.
b. The assumption of constant molar flow rates of liquid and vapor in the rectifying

and stripping sections is not valid, and the mass and energy balances are needed
to determine the actual vapor and liquid flow rates on each tray.

c. Equilibrium may not be achieved on each tray (which can be approximately
accounted for by an empirical tray efficiency correction factor).

d. The feed may be a liquid at saturation, a subcooled liquid, a vapor-liquid mixture,
a vapor, or a subcooled vapor.

e. A partial rather than total condenser may be used.
f. Intertray cooling, multiple feeds, and other distillation configurations may be

used.

All such issues are dealt with in textbooks on distillation, mass transfer, and unit
operations.

Differential distillation
Consider the boiling of a liquid mixture in which the vapor that is produced is contin-

ually removed. In such a process, which is called a Rayleigh distillation, the concentra-
tion of the more volatile component in the liquid will continue to decrease as the boiling
proceeds. In fact, this is the simplest type of batch distillation and has been used since
antiquity. (Should we consider the earliest distillers of alcohol who used this process
to be the first chemical engineers?) For this process the overall rate-of-change form of
the mass balance and the rate-of-change form of the mass balance for species i are

dN

dt
= Ṅ and

dNi

dt
= Ṅi

Combining these equations, we have

dNi

dt
=

d (Nxi)
dt

= xi
dN

dt
+ N

dxi

dt
= Ṅi = yiṄ = yi

dN

dt

which can be rewritten as

1
N

dN

dt
=

1
yi − xi

dxi

dt

or more simply as

Rayleigh equation
dN

N
=

dxi

yi − xi

(10.1-16)

which is known as the Rayleigh equation.
For generality, using the activity coefficient description of vapor-liquid equilibrium,

the equation can be rewritten as

dN

N
=

dxi

yi − xi

=
dxi

xi · γi (x)P vap
i (T )

P
− xi

=
dxi

xi

(
γi (x)P vap

i (T )
P

− 1
)

Note that this equation is not easily integrated, for two reasons. First, the activity coeffi-
cient is a function of the liquid-phase composition, which continually changes as addi-
tional liquid is vaporized. Second, differential distillations are usually done at constant
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pressure (in particular, open to the atmosphere), so that as the composition changes, the
equilibrium temperature of the liquid changes (following the bubble point temperature
curve), and the pure component vapor pressures are a function of temperature.
For an ideal liquid phase, this reduces slightly to

dN

N
=

dxi

xi

(
P vap

i (T )
P

− 1
)

although the temperature dependence of the vapor pressure remains.
An alternative description of differential distillation for a binary mixture is to start

from the mass balance on any one species i,

dN1

dt
= Ṅ1 = y1Ṅ = x1γ1 (x)P vap

1 (T ) Ṅ =
N1

N1 + N2

γ1 (x)P vap
1 (T ) Ṅ

so that the ratio of the rates of change in the mole numbers of each species in a binary
mixture is

dN1

dN2

=
N1

N1+N2
γ1 (x)P vap

1 (T )
N2

N1+N2
γ2 (x)P vap

2 (T )
=

N1γ1 (x)P vap
1 (T )

N2γ2 (x)P vap
2 (T )

= α12(T, x)
N1

N2

(10.1-17)

where α12(T, x) = [γ1(x)P vap
1 (T )]/[γ2(x)P vap

2 (T )] is the so-called relative volatil-
ity of the two components. For the special case where the relative volatilityα is constant
(which will occur only if the liquid is an ideal mixture in which all the activity coef-
ficients are unity and then only if the ratio of the vapor pressures is a constant) this
equation can be integrated to obtain

α12 ln
[

N2 (t)
N2 (t = 0)

]
= ln

[
N1 (t)

N1 (t = 0)

]
or

N1 (t)
N1 (t = 0)

=
[

N2 (t)
N2 (t = 0)

]α12

(10.1-18)

Illustration 10.1-8
Rayleigh Distillation

A differential distillation starting at 350 K is to be run on an equimolar mixture of n-heptane and
n-octane until 50 percent of the original mixture remains as liquid. Assuming that the relative
volatility of n-heptane to n-octane is approximately constant at a value of 2.35 over the temper-
ature range of the distillation, what is the composition of the liquid mixture after 50 percent of
the mixture has been vaporized?

Solution

Basis of the calculation: 1 mole of the initial equimolar mixture.
The equations to be solved are

NC7 (t) + NC8 (t) = 0.5
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and (
NC8 (t)

0.5

)2.35

=
NC7 (t)

0.5

The solution to these equations is NC7 = 0.178 mol, and NC8 = 0.322 mol. Therefore, the liq-
uid mole fractions after half of the initial mixture has been vaporized are xC7 = 0.356 and
xC8 = 0.644.

PROBLEMS FOR SECTION 10.1

10.1-1 The following mixture of hydrocarbons is obtained
as one stream in a petroleum refinery.

Component Mol % A B

Ethane 5 817.08 4.402 229
Propane 10 1051.38 4.517 190
n-Butane 40 1267.56 4.617 679
2-Methyl propane 45 1183.44 4.474 013

The parameters A and B in this table are the
constants in the equation

log10 P vap = −A

T
+ B

where P vap is the vapor pressure in bar and T is
the temperature in K. These paraffinic hydrocarbons
form an ideal mixture.
a. Compute the bubble point of the mixture at 5 bar.
b. Compute the dew point of the mixture at 5 bar.
c. Find the amounts and compositions of the vapor

and liquid phases that would result if this mixture
were isothermally flash-vaporized at 30◦C from
a high pressure to 5 bar.

d. Set up the equations to be used, and the infor-
mation needed, to compute the amounts, compo-
sitions, and temperature of the vapor and liquid
phases that would result if this mixture were adi-
abatically flash-vaporized from a high pressure
and 50◦C to 5 bar.

10.1-2 The binarymixture of benzene and ethylene chloride
forms an ideal solution (i.e., one that obeys Raoult’s
law) at 49.99◦C, as shown by the data of J. von Zaw-
idzki [Z. Phys. Chem., 35, 129 (1900)]. At this tem-
perature pure benzene boils at 0.357 bar, and pure
ethylene chloride boils at 0.315 bar. Develop the
analogues of Figs. 10.1-1 to 10.1-3 for this system.

10.1-3 a. Calculate the dew point pressure and liquid
composition at T = 69◦C for the mixture of
Illustration 10.1-2.

b. Calculate the bubble point pressure and vapor
composition at T = 69◦C for the mixture of
Illustration 10.1-2.

10.1-4 Compute the complete vapor-liquid phase behavior
for the mixture of Illustration 10.1-2 at T = 69◦C.

10.1-5 Compute the complete vapor-liquid phase be-
havior for the mixture of Illustration 10.1-2 at
P = 1.013 bar.

10.1-6 Relative humidity is the ratio of the partial pres-
sure of water in air to the partial pressure of water
in air saturated with water at the same temperature,
expressed as a percentage:

Relative
humidity

=
Partial pressure of water in air

Partial pressure of water in air
saturated with water at same
temperature

× 100

Among aviators it is more common to express the
moisture content of the air by giving the air temper-
ature and its dew point, that is, the temperature to
which the air must be cooled for the first drop of
water to condense. The following atmospheric con-
ditions have been reported:

Atmospheric pressure = 1.011 bar

Air temperature = 25.6◦C

Dew point of air = 20.6◦C

What is the relative humidity of the air?
(See Problem 7.12 for the necessary data.)

10.1-7 Into an evacuated 30-liter vessel is placed 0.1 mol
of n-butane dissolved in 0.9 mol of n-hexane. If
the vessel and its contents are kept at 298 K, what
is the pressure and the vapor and liquid composi-
tions when equilibrium is achieved? You may as-
sume ideal liquid and vapor behavior.
Data at 298 K: The density of liquid n-butane is
0.575 g/cc and its vapor pressure is 2.428 bar. The
density of liquid n-hexane is 0.655 g/cc and its vapor
pressure is 0.200 bar.

10.1-8 A stream contains 55 mol % n-pentane, 25 mol %
n-hexane, and 20 mol % n-heptane and is to be pro-
cessed at 69◦C. The following data are available.
Data: At 69◦C P vap

C5 = 2.755 bar, P vap
C6 = 1.021

bar, and P vap
C7 = 0.390 bar

a. What is the bubble point pressure of this mixture
and the vapor composition that results?
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b. What are the dew point pressure of this mixture
and the liquid composition that results?

10.1-9 The mixture of the previous problem at 69◦C is to
be isothermally flashed.
a. What pressure will produce a liquid stream that

contains one-tenth the number of moles of the
feed, and what will be the equilibrium vapor and
liquid compositions?

b. What pressure will produce a liquid stream that
contains nine-tenths the number of moles of the
feed, and what will be the equilibrium vapor and
liquid compositions?

10.1-10 The mixture of Problem 10.1-8 at 69◦C is to be
isothermally flashed.
a. What pressure will produce a liquid stream that

contains exactly one-half the number of moles of
the feed, and what will be the equilibrium vapor
and liquid compositions?

b. What pressure will produce a liquid stream with
an n-pentane mole fraction of 0.30, what will
be the fraction of the initial feed that is liquid
at these conditions, and what will be the equi-
librium compositions of the vapor and liquid
streams?

10.1-11 Joe Udel wanted to do an isothermal flash on
the mixture of Problem 10.1-8 at 69◦C to produce
a vapor that has an n-pentane mole fraction of
0.85, and a liquid-phase n-heptane mole fraction
of 0.80. However, he could not find a pressure or
vapor-liquid split that would result in the desired
separation.
a. By doing a degrees-of-freedom analysis, explain

the reason for Joe’s failure.
b. What should Joe do to obtain the desired

separation?
10.1-12 The lower flammability limit of a combustible

material is defined as the partial pressure in an equi-
librium vapor in air above the pure liquid that will
produce a flammable mixture at a total pressure
of 101.325 kPa. (If the partial pressure is below
the lower flammability limit, there is insufficient
combustible material to sustain combustion. There
is also an upper flammability limit at which the
vapor contains an amount of flammable material
such that there is insufficient oxygen to maintain
a flame.) If the lower flammability limit of refrig-
erant FC152a is 4.35 kPa, at what temperature of
the pure liquid will this refrigerant produce a vapor
that is flammable? The vapor pressure of FC152a
(in MPa) is

ln P sat = 8.347 − 2644

T
for T in K

10.1-13 A mixture of benzene and 2,2,4-trimethyl pentane
is to be purified using distillation. The liquid feed

to the column is 105 mol/hr with a benzene mole
fraction of 0.4 at 55◦C. The distillate is to contain
benzene at a mole fraction of 0.99 with 98 percent
of the benzene in the feed in this stream. The distilla-
tion column operates at 1.013 bar, and the distillate
and bottoms products are saturated liquids.What are
the amounts and compositions of the distillate and
bottoms products?

10.1-14 Joe Udel is trying to develop a new separation pro-
cess that combines partial vaporization with a mem-
brane separation. A diagram of the equipment for his
idea is shown below.

Membrane is permeable only to n-butane

System is initially
completely evacuated

Vapor mixture

Liquid mixture

In this equipment there are two vessels sepa-
rated by a membrane permeable only to n-butane
and capable of maintaining a pressure difference.
Initially the total system (both vessels) is evacu-
ated and then n-butane and n-hexane are added to
the main (larger) vessel, and the temperature main-
tained at 300 K throughout. After equilibrium is
established it is found that the pressure in the smaller
vessel is 0.6 bar. Determine the states (tempera-
ture, pressure and composition) of each of the phase
in the larger vessel. At 300 K the vapor pressure
of n-butane is 2.583 bar and that of n-hexane is
0.218 bar.

10.1-15 A mixture of 50 mol percent n-pentane and 50 mol
percent n-heptane at 80◦C and 1 bar is flashed at con-
stant pressure to 60◦C, and the vapor cooled further
to 50◦C. Determine the compositions of the vapor
and two liquid exit streams.

10.1-16 A mixture contains equal amounts of two isomers.
Compute the minimum amount of work required to
isothermally separate the mixture into two streams
each of 99 mol% purity.

10.1-17 Compute the bubble point and dew point curves for
the n-pentane + n-heptane mixture at 1 atm.

10.1-18 A equimolar mixture of n-pentane and n-heptane
is available at 10 bar and 398.15 K. It is adia-
batically flashed to 2.5 bar, the vapor stream is
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cooled to 325 K, and then adiabatically flashed
to 1 bar.
a. Compute the temperature and compositions of

the vapor and liquid streams leaving the first flash
unit.

b. Compute the temperature and compositions of
the vapor and liquid streams leaving the second
flash unit.

10.1-19 Redo Problem 10.1-1 using Aspen Plus R©.

10.1-20 Redo Problem 10.1-2 using Aspen Plus R©.
10.1-21 Redo Problem 10.1-3 using Aspen Plus R©.
10.1-22 Redo Problem 10.1-4 using Aspen Plus R©.
10.1-23 Redo Problem 10.1-5 using Aspen Plus R©.
10.1-24 Redo Problem 10.1-8 using Aspen Plus R©.
10.1-25 Redo Problem 10.1-9 using Aspen Plus R©.
10.1-26 Redo Problem 10.1-10 using Aspen Plus R©.
10.1-27 Redo Problem 10.1-13 using Aspen Plus R©.

10.2 LOW-PRESSURE VAPOR-LIQUID EQUILIBRIUM IN NONIDEAL MIXTURES

Since few liquid mixtures are ideal, vapor-liquid equilibrium calculations are somewhat
more complicated than for the cases in the previous section, and the phase diagrams
for nonideal systems can be more structured than Figs. 10.1-1 to 10.1-6. These com-
plications arise from the (nonlinear) composition dependence of the species activity
coefficients. For example, as a result of the composition dependence of γi, the vapor-
liquid equilibrium pressure in a fixed-temperature experiment will no longer be a linear
function of mole fraction, so that nonideal solutions exhibit deviations from Raoult’s
law. However, all the calculational methods discussed in the previous section for ideal
mixtures, including distillation column design, can be used for nonideal mixtures, as
long as the composition dependence of the activity coefficients is taken into account.
Several examples of experimental data for nonideal solutions are given in Fig. 10.2-1.

It is easy to establish that if P >
∑

xiP
vap
i (see Fig. 10.2-1a and b), then γi > 1 for at

least one of the species in the mixture, that is, Pi > xiP
vap
i (so that positive deviations

from Raoult’s law occur). Similarly, in real solutions

P <
∑

xiP
vap
i

(see Fig. 10.2-1c) occurs when the activity coefficients for one or more of the species in
the mixture are less than 1, that is, when there are negative deviations from
Raoult’s law.
Of special interest are binary mixtures in which the total pressure versus liquid com-

position curve exhibits an extremum (either a maximum or a minimum), as illustrated
in Fig. 10.2-1b and c. To locate this extremum we set (∂P/∂x1)T = 0, keeping in
mind that x2 = 1 − x1, to get

γ1P
vap
1

(
1 + x1

∂ ln γ1

∂x1

)
− γ2P

vap
2

(
1 + x2

∂ ln γ2

∂x2

)
= 0 (10.2-1)

To proceed further we note that the Gibbs-Duhem equation given in Eq. 9.3-15

0 =
Hex

T
dT − V ex dP + RT

C∑
i=1

xi d ln γi

can be rewritten as

0 =
Hex

T

(
∂T

∂x1

)
T

− V ex

(
∂P

∂x1

)
T

+ RT x1

(
∂ ln γ1

∂x1

)
T

+ RT x2

(
∂ ln γ2

∂x1

)
T

(10.2-2)
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Figure 10.2-1 (a) Equilibrium total pressure versus composition for the ethyl iodine–carbon tetrachloride system at
T = 49.99◦C. (b)Equilibrium total pressure versus composition for the carbon disulfide–acetone system at T = 35.17◦C.
(c) Equilibrium total pressure versus composition for the chloroform-acetone system at T = 35.17◦C. (d) The x-y
diagram for the chloroform-acetone system at T = 35.17◦C.

Next, using dx1 = −dx2, and observing that (∂T/∂x1)T = 0 since temperature is
fixed, and that (∂P/∂x1)T = 0 at an extreme value of the pressure, yields

x1

(
∂ ln γ1

∂x1

)
T

+ x2

(
∂ ln γ2

∂x1

)
T

= 0 (10.2-3)

Finally, using this expression in Eq. 10.2-1 and recognizing that (1+x1 ∂ ln γ1/∂x1)T �=
0 (the results of Problem 9.18 provide a verification of this) establishes that when
(∂P/∂x1) = 0,

γ1P
vap
1 − γ2P

vap
2 = 0 (10.2-4)

or, from Eq. 10.1-1b,
y1

x1

=
γ1P

vap
1

P
=

γ2P
vap
2

P
=

y2

x2

(10.2-5)
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This equation, together with the restrictions

x1 + x2 = 1 and y1 + y2 = 1

has the solution
x1 = y1

x2 = y2
(10.2-6)

Azeotrope
Thus, at fixed temperature the occurrence of either a maximum or a minimum in the
equilibrium pressure versus mole fraction curve at a given composition indicates that
both the vapor and liquid are of this composition (this is indicated in Fig. 10.2-1d by
the intersection of the x -y and x = y curves). Such a vapor-liquid mixture is called
an azeotrope or an azeotropic mixture and is of special interest (and annoyance) in
distillation processes, as will be discussed later.
The occurrence of an azeotrope is also indicated by an interior extreme value of the

equilibrium temperature on an equilibrium temperature versus composition curve at
fixed pressure (see Problem 10.2-3). If the extreme value of temperature is a maxi-
mum (i.e., the vapor-liquid equilibrium temperature of the mixture is greater than the
boiling point of either of the pure components at the chosen pressure), then the mix-
ture is said to be amaximum boiling azeotrope; a maximum boiling azeotrope occurs
when there are negative deviations from Raoult’s law, that is, when the activity coef-
ficient of one or more species is less than 1. Similarly, if the azeotropic temperature
is below the boiling points of both pure components, the mixture is a minimum boil-
ing azeotrope; the activity coefficient of at least one of the species in the mixture is
greater than unity, and there are positive deviations from Raoult’s law. This is the more
common occurrence.
At a low-pressure azeotropic point xAZ the liquid-phase activity coefficients can be

calculated from the relation

γi(xAZ) =
P

P vap
i

(10.2-7)

which results from Eqs. 10.2-5 and 10.2-6. Because of the simplicity of this result,
azeotropic data are frequently used to evaluate liquid-phase activity coefficients. In par-
ticular, given the azeotropic composition, temperature, and pressure, one can calculate
the liquid-phase activity coefficients at the azeotropic composition. This information
can be used to obtain the values of the parameters in a liquid solutionmodel (e.g., the van
Laar model), which can then be used to calculate the complete pressure-composition
and x -y diagrams for the system. This procedure is illustrated next.

Illustration 10.2-1
Using Azeotropic Data to Predict VLE of a Binary Mixture

Benzene and cyclohexane form an azeotrope at 0.525 mole fraction benzene at a temperature of
77.6◦C and a total pressure of 1.013 bar. At this temperature the vapor pressure of pure benzene
is 0.993 bar, and that of pure cyclohexane is 0.980 bar.

a. Using the van Laar model, estimate the activity coefficients of benzene and cyclohexane
over the whole composition range. Use this activity coefficient information to compute
the equilibrium pressure versus liquid composition diagram and the equilibrium vapor
composition versus liquid composition diagram at 77.6◦C.

b. Make predictions for the activity coefficients of benzene and cyclohexane using regular
solution theory, and compare these with the results obtained in part (a).
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Solution

a. The van Laar model. The starting point is the equilibrium relation

fL
i (T, P, x) = fV

i (T, P, y)

which, at the pressures here, reduces to

xiγiP
vap
i = yiP

Since xi = yi at an azeotropic point, we have γi = P/P vap
i , so that at xB = 0.525

γB(xB = 0.525) =
1.013

0.993
= 1.020

γC(xB = 0.525) =
1.013

0.980
= 1.034

Using Eqs. 9.5-10, we obtain α = 0.125 and β = 0.0919. Therefore,

ln γB =
0.125[

1 + 1.360

(
xB

xC

)]2 and ln γC =
0.0919[

1 + 0.736

(
xC

xB

)]2 (i)

The values of the activity coefficients for benzene (B) and cyclohexane (C) calculated from
these equations are given in the following table and Fig. 1.

To compute the composition of the vapor in equilibrium with the liquid we use
Eqs. 10.1-1b

xBγBP vap
B = yBP and xCγCP vap

C = yCP (ii)

and Eq. 10.1-2b

xBγBP vap
B + xCγCP vap

C = P (iii)
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Figure 1 Activity coefficients of benzene and cyclohexane in their mixture at 77.6◦C computed
from azeotropic data using the van Laar model.
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van Laar Regular Solution

xB γB γC yB P (bar) γB γC

0 1.13 1.00 0 0.980 1.14 1.00
0.1 1.10 1.00 0.110 0.992 1.11 1.00
0.2 1.07 1.01 0.212 1.001 1.09 1.00
0.3 1.05 1.01 0.311 1.006 1.07 1.01
0.4 1.03 1.02 0.406 1.012 1.06 1.02
0.5 1.02 1.03 0.501 1.013 1.04 1.03
0.525 1.02 1.03 0.525 1.013 1.04 1.04
0.6 1.01 1.04 0.596 1.010 1.03 1.05
0.7 1.01 1.05 0.693 1.006 1.02 1.07
0.8 1.00 1.07 0.792 1.005 1.01 1.10
0.9 1.00 1.08 0.894 1.000 1.00 1.13
1.0 1.00 1.10 1.0 0.993 1.00 1.17

In these equations the vapor compositions, yB and yC, and the equilibrium pressure P
are unknown (the equilibrium pressure is 1.013 bar only at xB = 0.525). The solution
is obtained by choosing a value of xB, using xC = 1 − xB, and computing γB and γC

from Eqs. i, and the total pressure from Eq. iii. The vapor-phase mole fractions are then
computed from Eqs. ii. The results of this calculation are given in the table and Fig. 2.

b. Regular solution model. Since benzene and cyclohexane are nonpolar, and their solubil-
ity parameters are given in Table 9.6-1, the activity coefficients can be predicted using
Eqs. 9.6-10. The results of this calculation are given in the table. The agreement between
the correlation of the data using the van Laar model and the predictions (without reference
to the experimental data) using the regular solution is good in this case.
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Figure 2 Total pressure versus liquid composition (solid line) and vapor composition (dashed
line) of the benzene and cyclohexane mixture at 77.6◦C computed from azeotropic data using
the van Laar model.
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Note

From Fig. 2 we see that for this mixture the compositions of the vapor and liquid in equilibrium
are very close. An important implication of this is that it will be very difficult to separate benzene
and cyclohexane from their mixture using distillation.

Illustration 10.2-2
Construction of Vapor-Liquid Equilibrium Diagrams for a Nonideal System

a. Develop the constant-temperature x-y and P-x-y diagrams for ethyl acetate–benzene
mixtures at 75oC.

b. Develop the constant-pressure x-y and T-x-y diagrams for ethyl acetate–benzene mixtures
at 1.013 bar

Data:

ln P vap
EA (bar) = 9.6830− 2842.2

T (K) − 56.3209

and

ln P vap
BZ (bar) = 9.3171− 2810.5

T (K) − 51.2586

This mixture can be described by the van Laar equation with the parameters α = 1.15 and
β = 0.92 as given in Table 9.5-1.

Solution

a. Constant temperature. At T = 75o C, P vap
EA = 0.946 bar and P vap

BZ = 0.862 bar.
For any liquid mole fraction of ethyl acetate xEA, the mole fraction of benzene is xBZ =

1 − xEA. The equilibrium pressure P (xEA) is

P (xEA) = xEA · γEA (xEA) · P vap
EA + xBZ · γBZ (xBZ) · P vap

BZ

P (xEA) = xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · xBZ

]2
⎤
⎥⎦ · P vap

EA + xBZ · exp

⎡
⎢⎣ β[

1 +
β · xBZ

α · xEA

]2
⎤
⎥⎦ · P vap

BZ

and

yEA =

xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · xBZ

]2
⎤
⎥⎦ · P vap

EA

P (xEA)

The results of the calculations are shown in Fig. 1. Note that the maximum in the P-x-y
diagram is indicative of the formation of an azeotrope, which is confirmed by the equilib-
rium line crossing the x = y line in the x-y diagram. From these diagrams we see that at a
temperature of 75oC an azeotrope occurs at an ethyl acetate mole fraction of 0.581 and a
pressure of 0.518 bar.
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Figure 1 P-x-y and x-y diagrams for the ethyl acetate–benzene system at a temperature of 75◦C.

b. Constant pressure. In this case the pressure is fixed at 1.013 bar and the temperature is
unknown, and therefore the vapor pressures are unknown. For any liquid mole fraction of
ethyl acetate xEA, the equilibrium pressure P (xEA, T ) is

P (xEA, T ) = xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · xBZ

]2
⎤
⎥⎦ · P vap

EA (T )

+ xBZ · exp

⎡
⎢⎣ β[

1 +
β · xBZ

α · xEA

]2
⎤
⎥⎦ · P vap

BZ (T )

= 1.013 bar

Since there is a nonlinear dependence of the vapor pressures on temperature, an iterative
solution (or the use of computer software such asMATHCAD) is required. The vapor phase
mole fraction is then calculated from

yEA =

xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · xBZ

]2
⎤
⎥⎦ · P vap

EA (T )

1.013 bar

The results of the calculations are shown in Fig. 2. Note that the mimumum in the T-x-y
diagram is indicative of the formation of a minimum boiling azeotrope, which is confirmed
by the equilibrium line crossing the x = y line in the x-y diagram. From these diagrams we
see that an azeotrope occurs at an ethyl acetate mole fraction of 0.515 and a temperature
of 343.92 K = 70.77oC.
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Figure 2 T-x-y and x-y diagrams for the ethyl acetate–benzene system at a pressure of 1.013 bar
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[
To do this calculation Aspen Plus R© various apwz files, depending on the thermodynamic
model choice, are used in the Properties mode using Analysis (at far right of toolbar) and then
binary. There are numerous files in the folder Aspen Illustrations>Chapter 10.2>10.2-2
on theWiley website for this book separately using the UNIQUAC,Wilson, NRTL and UNIFAC
models, all with parameters from the Aspen Plus R© databank. The folder Aspen Illustrations>
Chapter 10.2>10.2-2 on the Wiley website for this book is used for the calculations, and the
file Illustration 10.2-2.doc in that folder summarizes the results of the different models for the
complete vapor-liquid equilibrium calculations, together with reported experimental data
for this system. The results and the experimental data show that the van Laar model is not a
good one for this system using only infinite dilution data. One important advantage of using
Aspen Plus R© is the ease with which it is possible to do calculations with different thermody-
namic models.

]

Comment

Note that the azeotropic conditions found in parts (a) and (b) are slightly different. This is a
result of the difference in temperature between the two cases. Later in this section we will
show how this temperature dependence of the azeotropic composition can be used to advantage
in distillation.

Not all nonideal liquid mixtures form azeotropes, as will be seen in the some of the other sys-
tems studied in this section. However, nonideal liquid mixtures result in a nonlinear dependence
of the equilibrium pressure on composition, and do not satisfy Raoult’s law.

Finally, notice that the T -x-y diagram looks very much like the P -x-y diagram turned upside
down. There is a simple explanation for this, which is that a mixture that has a higher equi-
librium pressure at a fixed temperature will have a lower boiling point at a fixed (for example,
atmospheric) pressure. Therefore, a maximum in pressure in a T -x-y diagram will result in a
minimum in temperature at approximately the same composition on a P -x-y diagram. Also note
that the upper part of the P -x-y diagram corresponds to high pressure and a liquid, while the
upper part of a T -x-y diagram represents the high-temperature region and a vapor.

Illustration 10.2-3
Determination of Dew Point and Bubble Point Pressures

a. Estimate the bubble point and dew point pressures of a 20 mol % ethyl acetate, 80 mol %
benzene mixture at 75◦C.

b. Estimate the bubble point and dew point temperatures of a 20mol% ethyl acetate, 80mol%
benzene mixture at 1.013 bar.

Data: See previous illustration.

Solution

a. Bubble point and dew point pressures at T = 75◦C. If a P-x-y diagram is available, such as
the one constructed in the previous illustration, the bubble point and dew point pressures
can immediately be read from such a diagram. From Fig. 1 of the previous illustration, the
bubble point pressure is found to be 1.0954 bar (where a bubble of vapor with an ethyl
acetate mole fraction of 0.3367 is obtained). Similarly, from the same figure, the dew point
pressure is found to be 0.9971 bar (where a drop of liquid is formed with an ethyl acetate
mole fraction of 0.0834).

However, if such a diagram is not available, the bubble point and dew point pressures
must be found by direct calculation. As the liquid composition is known (xEA = 0.2),
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so that the activity coefficients can be computed, the bubble point is easily found, by
solving the equation

Pbubble (bar) = 0.2 · exp

⎡
⎢⎣ α[

1 +
α · 0.2

β · 0.8

]2
⎤
⎥⎦ · 0.946 + 0.8 · exp

⎡
⎢⎣ β[

1 +
β · 0.8

α · 0.2

]2
⎤
⎥⎦ · 0.862

and then the vapor mole fraction is obtained from

yEA =

0.2 · exp

⎡
⎢⎣ α[

1 +
α · 0.2

β · 0.8

]2
⎤
⎥⎦ · 0.946

Pbubble (bar)

Note that this is a direct (that is, noniterative) calculation and gives the same bubble point
results as were obtained above from the graphical solution.

Finding the dew point temperature ismore complicated, as the liquid composition (which
also appears in the expressions for the activity coefficients) is unknown. The equation to
be solved is

yEA = 0.2

=

xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · (1 − xEA)

]2
⎤
⎥⎦ · 0.946

Pbubble (bar)

=

xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · (1 − xEA)

]2
⎤
⎥⎦ · 0.946

xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · (1 − xEA)

]2
⎤
⎥⎦· 0.946 + (1 − xEA) · exp

⎡
⎢⎣ β[

1 +
β · (1 − xEA)

α · xEA

]2
⎤
⎥⎦· 0.862

which is solved iteratively (or using a program such asMATHCAD) for the dew point mole
fraction of ethyl acetate, xEA. The mole fraction found is then used in the equation

Pbubble (bar) = xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · (1 − xEA)

]2
⎤
⎥⎦ · 0.946

+ (1 − xEA) · exp

⎡
⎢⎣ β[

1 +
β · (1 − xEA)

α · xEA

]2
⎤
⎥⎦ · 0.862

to calculate the bubble point pressure. This leads to the same solution as was found graph-
ically (after the complete P-x-y diagram had been constructed.)

b. Bubble point and dew point temperatures at P= 1.013 bar. If a T-x-y diagram is available,
such as the one constructed in the previous illustration, the bubble point and dew point
temperatures can immediately be read from such a diagram. Using Fig. 2 of the previous
illustration, the bubble point temperature is found to be 345.78 K (when a bubble of vapor
with an ethyl acetate mole fraction of 0.3360 is formed). Similarly, from the same figure,
the dew point pressure is found to be 348.67 K (where a drop of liquid is formed with an
ethyl acetate mole fraction of 0.0833).
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However, if such a diagram is not available, the bubble point and dew point temperatures
must be found by direct calculation. The bubble point temperature is more easily found,
since the liquid composition is known, by solving the following equation

P = 1.013 = 0.2 · exp

⎡
⎢⎣ α[

1 +
α · 0.2

β · 0.8

]2
⎤
⎥⎦ · P vap

EA (T ) + 0.8 · exp

⎡
⎢⎣ β[

1 +
β · 0.8

α · 0.2

]2
⎤
⎥⎦ · P vap

BZ (T )

and using the solution in the equation below to obtain the vapor composition:

yEA =

0.2 · exp

⎡
⎢⎣ α[

1 +
α · 0.2

β · 0.8

]2
⎤
⎥⎦ · P vap

EA (T )

P = 1.013 bar

Finding the dew point temperature is more complicated, as both the liquid composition
and the temperature are unknown. The two equations belowmust be solved simultaneously
for the bubble point temperature and the liquid composition (which is best done with a
computer program):

P = 1.013 = xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · (1 − xEA)

]2
⎤
⎥⎦ · P vap

EA (T )

+ (1 − xEA) · exp

⎡
⎢⎣ β[

1 +
β · (1 − xEA)

α · xEA

]2
⎤
⎥⎦ · P vap

BZ (T )

and

yEA = 0.2 =

xEA · exp

⎡
⎢⎣ α[

1 +
α · xEA

β · (1 − xEA)

]2
⎤
⎥⎦ · P vap

EA (T )

P = 1.013 bar

This leads to the same solution as was found graphically (after the complete T-x-y diagram
had been constructed.)[

The Aspen Plus R© in Aspen Illustrations>Chapter 10.2>10.2-3 on the Wiley website for this
book with the NRTL model was used in the calculation. The Simulation mode was used with
an infinitesimal amount of vapor to compute the bubble point, and an infinitesimal amount of
liquid to compute the dew point. the results are summarized in the aforementioned folder in the
file NRTL.xlsx

]
Azeotropes and
distillation

The occurence of azeotropes, such as the one in the ethyl acetate–benzene system
above, results in difficulties in separations by distillation. For example, suppose it is
desired to produce a distillate containing 98 mol % ethyl acetate and a bottoms product
containing 98 mol % benzene from a feed that contains 40 mol % ethyl acetate and
60 mol % benzene. Rather than consider detailed distillation calculations at various
reflux ratios, we will consider only the case of total reflux, q = ∞, which you should
remember results in the minimum number of stages to accomplish a given separation.
Also, if the desired separation cannot be made at total reflux, it will not be possible to
accomplish the separation at any lower reflux ratio.
Using the graphical method introduced in the previous section, and the constant-

pressure x-y diagram in Fig. 10.2-2, we see that by stepping off stages we can obtain a
bottoms product of the desired composition, but the maximum ethyl acetate distillate
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Figure 10.2-2 Graphical tray-to-tray calculation for the ethyl acetate–benzene mixture at 1.013
bar and total reflux, showing that as the feed is of lower composition than the azeotropic point,
the highest purity possible of the distillate is the azeotropic composition.

composition we can obtain is that of the azeotrope, xEA = 0.518, since a pinch point
occurs where the equilibrium line crosses the operating line, which at the infinite reflux
ratio is the same as the x = y or 45o line. Also, note that this situation cannot be
resolved by changing the reflux ratio. Any lower value of the reflux ratio will result
in more equilibrium stages being required to obtain the bottoms product, while still
resulting in a distillate of the azeotropic composition.
(The feed considered above was below the azeotropic composition, and while the

desired bottoms product could be obtained by distillation, it is not possible to obtain
an overhead product purer than the azeotropic composition. Convince yourself that
if the feed composition was greater than the azeotropic composition, the desired dis-
tillate composition could be obtained, but a bottoms product of only the azeotropic
composition would be obtained.)
Consequently, when a mixture has an azeotrope, it is not possible to obtain both

a distillate and a bottoms product of any desired purity, as is the case with mixtures
that do not have azeotropes. When an azeotrope occurs, the maximum purity of either
the overhead or bottoms product that can be obtained with a single distillation column
(depending on the system and whether the feed is above or below the azeotropic com-
position) is the azeotropic composition. This is why the occurence of an azeotrope is a
problem in distillation.
There are several ways to separate an azeotropic mixture into two components of

the desired purities, and these are discussed in other chemical engineering courses.
However, one method will be mentioned here, and it is based on the fact that in gen-
eral the two components will not have the same heat of vaporization, so that by the
Clausius-Clapeyron equation the temperature dependence of their vapor pressures will
be different. Since the dominant temperature dependence in vapor-liquid equilibrium is
that of the pure component vapor pressures, the azeotropic compositionwill also change
with temperature (and pressure). Therefore, what can be done is to use two distillation
columns operating at different pressures.
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Figure 10.2-3 Graphical tray-to-tray calculation for the ethyl acetate–benzenemixture at 0.1013
bar and total reflux with a feed from column 1 that is of azeotropic composition at the higher
pressure of 1.013 bar. Since this composition is higher than the azeotropic composition at 0.1013
bar, a high-purity distillate can be obtained but the bottoms product cannot be less than the
azeotropic composition at this lower pressure.

For example, for the case being considered here, the first column could be operated
at atmospheric pressure with the feed given above that was below the azeotropic com-
position, and the column could be designed (i.e., the number of stages and reflux ratio
chosen) to produce the desired bottoms product (xBZ = 0.95) and a distillate of the
azeotropic composition (xEA = 0.518). This distillate could then be fed into a sec-
ond column operated, say, at 0.1013 bar. At this pressure the azeotropic composition
is xEA = 0.458, which is lower than the feed composition. Therefore, as shown in
Fig. 10.2-3, this column could produce the desired distillate of composition
(xEA = 0.95) and a bottoms product with the azeotropic composition of xEA = 0.458
at the operating pressure of this column. This bottoms stream could then be returned
to the first column, operating at 1.013 bar, though since its ethyl acetate composition is
higher than that of the feed, it might be fed to the column on a higher tray. This two-
column design is schematically shown in Fig. 10.2-4. Note that the only streams leaving
this process are the bottoms product of the first column and the distillate product of the
of the second column, both at their desired compositions.
The point to note here is the important role of thermodynamics, in that the schematic

design of the process to separate the feed mixture into two streams of specified purity
was based completely on vapor-liquid equilibrium. The fact that an azeotrope occurred
dictated that the desired separation could not be obtained with a single distillation col-
umn. Then how the azeotropic composition changed with temperature was the basis
for whether a second column of higher or lower pressure should be used. This exam-
ple is just one illustration of the very central role of thermodynamics in general, and
vapor-liquid equilibrium in particular, in the design of separations processes in chemi-
cal engineering.

The measurement
of vapor-liquid
equilibrium data

While we have shown various examples of vapor-liquid equilibrium data, we have not
discussed the methods by which such data are obtained. There are two general methods,
referred to as the dynamic method and the static method. In the dynamic method, the



550 Chapter 10: Vapor-Liquid Equilibrium in Mixtures

Feed
xEA = 0.4

xEA = 0.515

xEA = 0.98

xBZ = 0.98

xEA = 0.458

P =
0.1013

bar

P =
1.013
bar

Figure 10.2-4 Proposed two-column design for separation of the ethyl acetate–
benzene azeotropic mixture.
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Figure 10.2-5 Schematic diagram of a dynamic still. In this figure, 1 is the boiling flask, 2 is a
vacuum jacket so there is no heat loss from the equilibrium chamber, 3 is a device that forces
the boiling vapor-liquid mixture into the equilibrium cell 4, items 5 are condensers to insure
that no vapor is lost, items 6 are injection ports so that composition changes can be made, 7 is
a thermometer port for the bath, items 8 and 10 are valves used to divert liquid to the sampling
vials (9) for analysis and actuated by electromagnets (13), 11 is the thermometer well for the
equilibrium chamber, and 12 is a very accurate platinum resistance thermometer to measure the
temperature in the equilibrium cell.
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vapor-liquid mixture is boiling, and samples of both the vapor and liquid can be with-
drawn and their compositions determined by gas chromatographic or other methods.
As the pressure and temperature are also measured, a data point consists consists of a
P -T -x-y point. One apparatus for such measurements is shown in Fig. 10.2-5.

Correlation of
vapor-liquid
equilibrium data

It is by careful use of such equipment that data such as those used in this section are
obtained. Though it may not be evident, obtaining accurate data is tedious and requires
careful chemical analysis of the samples of liquid and condensed vapor. Once accurate
vapor-liquid equilibrium data have been obtained, they can be used to compute liquid-
phase activity coefficients and excess Gibbs energies. This is shown in the following
illustration.

Illustration 10.2-4
Correlation of Vapor-Liquid Equilibrium Data

Weissman and Wood4 have made very accurate measurements of vapor-liquid equilibria in
benzene–2,2,4-trimethyl pentane mixtures over a range of temperatures. Their data for the vapor
and liquid compositions and equilibrium total pressures at 55◦C are given in the following table:

xB yB P (bar)

0.0819 0.1869 0.268 92
0.2192 0.4065 0.315 73
0.3584 0.5509 0.354 63
0.3831 0.5748 0.360 88
0.5256 0.6786 0.391 05
0.8478 0.8741 0.432 77
0.9872 0.9863 0.436 41

The vapor pressure of pure benzene at 55◦C is 0.435 96 bar, and that of 2,2,4-trimethyl pentane
is 0.237 38 bar.

a. Calculate the activity coefficients of benzene and 2,2,4-trimethyl pentane and Gex at each
of the experimental points.

b. Obtain smoothed values for the excess Gibbs energy and activity coefficients for this system
as a function of composition using the following procedure:
i. Assume an expansion like Eq. 9.5-6 or 9.5-8 for Gex.
ii. Use the data from part (a) to compute the coefficients in this expression.
iii. Use these coefficients to compute smoothed values of Gex.
iv. Derive an expression for the activity coefficients for the assumed form of Gex and

compute smoothed values of the activity coefficients.

Solution

a. The condition for vapor-liquid equilibrium is

fL
i (T, P, x) = fV

i (T, P, y)

For the conditions here we can assume an ideal gas-phase mixture and neglect all fugacity
and Poynting corrections (although Weissman and Wood included these in their analysis

4S. Weissman and S. E. Wood, J. Chem. Phys., 32, 1153 (1960).
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of the data), so that
xiγiP

vap
i = yiP

or
γi = yiP/xiP

vap
i

The activity coefficients calculated in this manner are given in the following table. Values
of Gex computed from

Gex = x1G
ex
1 + x2G

ex
2 = RT (x1 ln γ1 + x2 ln γ2)

are also given.
b. Weissman and Wood used the Redlich-Kister–type expansion for the excess Gibbs energy

in the form
Gex = x1x2[a + b(x1 − x2) + c(x1 − x2)

2] (1)

Since this equation is linear in the unknown parameters a , b, and c, it is easily fitted, by
least-squares analysis, to the experimental data. The results, in J/mol, are

a = 1389.0 b = 419.45 and c = 109.83

Now using xi = Ni/(N1 + N2), we obtain

Gex = NGex =
N1N2

(N1 + N2)

[
a + b

(
N1 − N2

N1 + N2

)
+ c

(
N1 − N2

N1 + N2

)2
]

and from Eqs. 9.3-9 and 9.3-12,

Gex
1 = RT ln γ1 =

(
∂Gex

∂N1

)
T,P,N2

= x2
2[a + b(x1 − x2) + c(x1 − x2)

2]

+ 2x1x
2
2[b + 2c(x1 − x2)]

(2)

In a similar fashion, one finds

RT ln γ2 = x2
1[a + b(x1 − x2) + c(x1 − x2)

2]

− 2x2
1x2[b + 2c(x1 − x2)]

(3)

Equations 2 and 3, with the parameter values given above, were used to compute the
smoothed activity coefficient values and the calculated values forGex given in the following
table and plotted in Fig. 1. In Fig. 2 the partial pressures of each species (i.e., PB = yBP
andPTMP = yTMPP ) are plotted as a function of the liquid-phase composition. The dashed
lines indicate the behavior to be expected if the solution were ideal (i.e., if Raoult’s law
were obeyed).

Experimental Data Smoothed Data

xB γB γTMP Gex γB γTMP Gex ΔGmix

0.0819 1.408 1.003 84.68 1.428 1.002 83.85 −689.40
0.2192 1.343 1.011 199.74 1.342 1.013 203.34 −1231.56
0.3584 1.250 1.046 296.73 1.261 1.039 294.09 −1486.24
0.3831 1.242 1.048 305.22 1.246 1.046 306.52 −1509.50
0.5256 1.158 1.116 352.63 1.166 1.107 351.75 −1535.95
0.8478 1.023 1.508 224.30 1.023 1.508 223.72 −940.02
0.9872 1.000 1.968 23.97 1.000 1.961 24.02 −162.88

Note: All Gibbs energy data in units of J/mol.
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[
The folder Aspen Illustrations>Chapter 10.2>10.2-4 on the Wiley website for this book con-
tains numerous Aspen Plus R© files for correlating the experimental data with the UNIQUAC,
Wilson and NRTL models. This is done using the Regression option on the toolbar in the Prop-
erties mode. The results are given in the named Excel spreadsheets. Also see the subfolder Gmix
and Pxy. There are also the results using the short cut distillation (Aspen Plus R© block DSTWU)
for this system in the Illustration 10.2-4 folder.

]
Several further aspects of vapor-liquid equilibria need to be considered. The first

is the additional information that can be obtained if vapor-liquid equilibrium mea-
surements are made at a collection of temperatures. Weissman and Wood carried out
their experiments at 35, 45, 55, 65, and 75◦C and obtained data like that given in
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Illustration 10.2-4 at all these temperatures. From G = H − TS and the discussion of
Chapter 8, we have

ΔmixG = ΔmixH − TΔmixS

Gex = Hex − TSex (10.2-8)

and

∂

∂T

(
Δmix G

T

)
P, x

=
1
T

(
∂Δmix G

∂T

)
P, x

− 1
T 2

(Δmix G) (10.2-9)

Using the Maxwell relation, (
∂G

∂T

)
P

= −S

which for mixtures becomes(
∂ΔmixG

∂T

)
P,xi

= −ΔmixS

(
∂Gex

∂T

)
P,xi

= −Sex (10.2-10)

Using Eqs. 10.2-8 and 10.2-10 in Eq. 10.2-9 gives

∂

∂T

(
ΔmixG

T

)
P,xi

= − 1
T

ΔmixS − 1
T 2

(ΔmixH − TΔmixS)

= −ΔmixH

T 2
= −Hex

T 2

(10.2-11)

Therefore, given ΔmixG or Gex data at a collection of temperatures, one can obtain
information about ΔmixH (or, equivalently, Hex, since ΔmixH = Hex). This was
done by Weissman and Wood, and the results of their calculations for 40◦C are plotted
in Fig. 10.2-3. One would expect the accuracy of these results to be less than that of
ΔmixG,
since these calculations involve a differentiation of the experimental data. Also
Sex, calculated from Eq. 10.2-8 and the values ofGex andHex, is plotted in Fig. 10.2-6.
Next, one frequently would like to be able to make some assessment of the accu-

racy of a set of experimental vapor-liquid or activity coefficient measurements. Basic
thermodynamic theory (as opposed to the solution modeling of Chapter 9) provides no
means of predicting the values of liquid-phase activity coefficients to which the exper-
imental results could be compared. Also, since the liquid solution models discussed
in Chapter 9 only approximate real solution behavior, any discrepancy between these
models and experiment is undoubtedly more a reflection of the inadequacy of the model
than a test of the experimental results.
In Chapter 7 we found that although thermodynamics could not be used to predict the

equation of state of a real fluid, it did provide certain consistency tests (i.e., Eqs. 7.2-12
and 7.2-13) that had to be satisfied by any equation of state. The situation is much the
same here, in that starting from

Gex =
C∑

i=1

xiG
ex
i = RT

C∑
i=1

xi ln γi (10.2-12)
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Figure 10.2-6 Excess Gibbs energy, excess enthalpy, and excess entropy as a function of mole
fraction for the benzene–2,2,4-trimethyl pentane system.

and using the Gibbs-Duhem equation, we can develop a consistency test that must be
satisfied by activity coefficient data and thus can be used to accept or reject experimental
data. In particular, for a binary mixture, we have, from Eq. 10.2-12,

d

(
Gex

RT

)
= x1 d ln γ1 + ln γ1 dx1 + x2 d ln γ2 − ln γ2 dx1

since dx2 = −dx1. Also, from the Gibbs-Duhem equation, Eq. 9.3-15, we have

0 =
Hex

RT 2
dT − V ex

RT
dP + x1 d ln γ1 + x2 d ln γ2

Subtracting the second of these equations from the first gives

d

(
Gex

RT

)
= ln

γ1

γ2

dx1 −
Hex

RT 2
dT +

V ex

RT
dP

Now integrating this equation between x1 = 0 and x1 = 1 yields

∫ x1=1

x1=0

d

(
Gex

T

)
=

Gex

T

∣∣∣
x1=1

− Gex

T

∣∣∣
x1=0

= +R

∫ x1=1

x1=0

ln
γ1

γ2

dx1 +
∫ P (x1=1)

P (x1=0)

V ex

T
dP −

∫ T (x1=1)

T (x1=0)

Hex

T 2
dT

= 0
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where we have used the fact that Gex(x1 = 1) = Gex(x1 = 0) = 0 (cf. Section 9.5).
Therefore,∫ x1=1

x1=0

ln
γ2

γ1

dx1 = +
∫ P (x1=1)

P (x1=0)

V ex

RT
dP −

∫ T (x1=1)

T (x1=0)

Hex

RT 2
dT (10.2-13)

This equation provides a thermodynamic consistency test for experimental activity
coefficient data. As an illustration of its use, consider its application to the Weissman-
Wood measurements, which were carried out at constant temperature but varying total
pressure. In this case Eq. 10.2-13 reduces to∫ x1=1

x1=0

ln
γ2

γ1

dx1 = +
∫ P (x1=1)

P (x1=0)

V ex

RT
dP

Now since the total pressure variation in the experiments was small, and V ex is usually
very small for liquid mixtures, the integral on the right side of this equation can be
neglected. Thus to test the thermodynamic consistency of the Weissman-Wood activity
coefficient data, we use

Integral form of
thermodynamic
consistency relation

∫ x1=1

x1=0

ln
γ2

γ1

dx1 = 0 (10.2-14)

Figure 10.2-7 is a plot of ln (γ2/γ1) versus mole fraction using the activity coef-
ficient data of Illustration 10.2-4. The two areas, I and II, between the curve and the

x1

0
–0.8

–0.4

–0.6

0

0.4

–0.2

0.2

0.2 0.4 0.6 0.8 1.0

I

II

System: benzene (1) and
2,2,4-trimethyl pentane

ln
γ T

M
P

γγ B

Figure 10.2-7 Thermodynamic consistency test for the
activity coefficients of the benzene–2,2,4-trimethyl pentane
system.
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ln (γ2/γ1) = 0 line are virtually equal in size but opposite in sign, so that Eq. 10.2-14
can be considered satisfied. Of course, as a result of experimental error, this equation is
never satisfied exactly. One usually considers vapor-liquid (or activity coefficient) data
to be thermodynamically consistent if the two areas are such that

−0.02 ≤ |area I| − |area II|
|area I| + |area II| ≤ 0.02

where the vertical bars indicate that absolute values of the areas are to be used.
For activity coefficient data obtained from measurements at constant total pressure,

but varying temperature, the appropriate consistency relation is∫ x1=1

x1=0

ln
γ2

γ1

dx1 = −
∫ T (x1=1)

T (x1=0)

Hex

RT 2
dT

Depending on the system, and especially the magnitude of the excess enthalpy and the
temperature range of the experiments, the integral on the right side of this equation may
or may not be negligible.
It is possible, as a result of cancellation, to satisfy the integral test of Eq. 10.2-13

while violating the differential form of theGibbs-Duhem equation, Eq. 9.3-15, onwhich
Eq. 10.2-13 is based, at some or all data points. In this case the experimental data should
be rejected as thermodynamically inconsistent. Thus, the integral consistency test is a
necessary, but not sufficient, condition for accepting experimental data.
As another example of low-pressure vapor-liquid equilibrium, we consider the

n-pentane–propionaldehyde mixture at 40.0◦C. Eng and Sandler5 took data on this
system using the dynamic still of Fig. 10.2-5. The x -y-P -T data in Table 10.2-1 and
Fig. 10.2-8a and b were obtained by them. (Such data can be tested for thermodynamic
consistency; see Problem 10.2-12.) As is evident, this system is nonideal and has an
azeotrope at about 0.656 mole fraction pentane and 1.3640 bar. We will use these data
to test the UNIFAC prediction method.
First, we use the UNIFAC program, discussed in Appendix B.I or the program in

Aspen Plus R©, to compute the activity coefficients in the n-pentane–propionaldehyde
mixture over the complete liquid concentration range, and then, using Eqs. 10.2-1b
and 10.2-2b, we compute the vapor compositions and equilibrium pressures.
The results also appear in Fig. 10.2-8a as aP -x-y diagram and in Fig. 10.2-8b as an x-y
diagram. The UNIFAC predictions are in very good agreement with the experimental
data, including a reasonably accurate prediction of the azeotropic point. Clearly, an en-
gineer needing information on the n-pentane–propionaldehyde system, but having no
experimental data, would be better to assume the UNIFAC model applies to this mix-
ture than to assume that the system was ideal. Also, since propionaldehyde is strongly
polar, the regular solution model could not be used for this mixture.
The dynamic still method of obtaining vapor-liquid equilibrium data has several dis-

advantages. First, it is a slow and tedious process. Second, the compositions of the vapor
and liquid must be analyzed (usually by gas chromatography), which is less precise and
direct thanmeasuring temperature, pressure, or weight. Consequently, alternative meth-
ods of measuring partial vapor-liquid equilibrium data have been developed that do not
require chemical analysis.

5R. Eng and S. I. Sandler, J. Chem. Eng. Data, 29, 156 (1984).
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Figure 10.2-8 (a) P -x-y diagram for the n-pentane–propionaldehyde system at 40◦C. The lines are the UNIFAC predictions,
and the points are the experimental data of Eng and Sandler. (b) x-y diagram for the n-pentane–propionaldehyde system at
40◦C. The solid line is the UNIFAC prediction, and the points are the experimental data of Eng and Sandler.

Table 10.2-1 Vapor-Liquid Equilibrium Data for the n-Pentane
(1)–Propionaldehyde (2) System at 40◦C

x1 y1 P (bar) x1 y1 P (bar)

0 0 0.7609 0.4463 0.5877 1.3354
0.0503 0.2121 0.9398 0.5031 0.6146 1.3494
0.1014 0.3452 1.0643 0.5610 0.6311 1.3568
0.1647 0.4288 1.1622 0.6812 0.6827 1.3636
0.2212 0.4685 1.2173 0.7597 0.7293 1.3567
0.3019 0.5281 1.2756 0.8333 0.7669 1.3353
0.3476 0.5539 1.2949 0.9180 0.8452 1.2814
0.4082 0.5686 1.3197 1.0 1.0 1.1541

One method is to use a static cell, which consists of a small vessel that is evacu-
ated and almost completely filled with a gravimetrically prepared liquid binary mix-
ture. Such a device operated in the differential mode is shown in Fig. 10.2-9. In this
equipment the pure solvent is placed in one cell and the gravimetrically prepared sam-
ple in the other. These vessels are then placed in a temperature bath, and the pressure
difference between the two vessels is measured after equilibrium has been reached.
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Figure 10.2-9 Schematic diagram of a differential static cell
apparatus.

As weighing can be done very accurately, and since only a small amount of low-density
vapor is formed, the liquid composition barely changes during the vaporization pro-
cess and therefore is known very accurately. Also, by knowing the vapor pressure of
the pure solvent and measuring the small pressure difference, we obtain an accurate
pressure-liquid-composition point at the fixed temperature. By repeating this process
with a number of prepared solutions, one obtains a set of P -T -x data.
These data can be studied in two ways. The first is to use the Gibbs-Duhem equa-

tion and numerical integration methods to calculate the vapor-phase mole fractions,
as considered in Problem 10.2-6. A second method is to choose a liquid-phase activity
coefficient model and determine the values of the parameters in the model that
give the best fit of the experimental data. We have, from Eq. 10.2-2b, that at the
j th experimental point

Pj = xj
1γ

j
1P

vap
1 + (1 − xj

1)γ
j
2P

vap
2 (10.2-15)

The values of parameters in the activity coefficient model are chosen to minimize the
sum-of-squares deviation between the measured and calculated pressures over all ex-
perimental points; that is, we want to find the parameters in the activity coefficient
model that minimize the objective function

min
∑
exp
pts
j

[P exp
j −P calc

j ]2 = min
∑
exp
pts
j

[P exp
j −xj

1γ
j
1P

vap
1 −(1−xj

1)γ
j
2P

vap
2 ]2 (10.2-16)

Thus, for example, if the van Laar equation is used to describe the liquid phase, then we
want to determine the values of the parameters α and β that minimize the deviations
between the measured and calculated pressures. Once these parameters have been de-
termined, they can be used to calculate the vapor-phase compositions. This procedure
is illustrated next.
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Illustration 10.2-5
Predicting Vapor-Phase Compositions from P-T-x Data

Using only the liquid-phase mole fraction and pressure data for the n-pentane–propionaldehyde
system at 40◦C given in Table 10.2-1, estimate the vapor compositions.

Solution

Using the method just described, the van Laar equation, and a parameter estimation computer
program with the objective function of Eq. 10.2-16, we find

α = 1.4106 and β = 1.3438

With these parameter values, we obtain the calculated pressures and vapormole fractions given in
Table 10.2-2. It is clear from this table that the predictions are reasonably accurate. The azeotrope
is predicted to occur at approximately the correct composition and pressure, the calculated vapor
mole fractions usually agree to within ±0.015 of the measured composition, and the maximum
difference between the calculated and measured pressures is only 0.0174 bar. Indeed, the calcu-
lated results for this system are so close to the experimental data as to be almost indistinguishable
from them on x -y or P-x -y plots.[
The folder the folder Aspen Illustrations>Chapter 10.2>10.2-5 on the Wiley website for this
book contains the Aspen Plus R© files for correlating the experimental data using the NRTL,
UNIQUAC, Wilson and NRTL models. The results are given in separate Excel (.xlsx) files in
that folder, and summarized in the Word file Illustration 10.2-5 w three models.docx

]
These results suggest that, although not quite as good as P -T -x -y data, P -T -x data

can be useful for estimating parameters in an activity coefficient model that can then be
used to estimate the missing vapor compositions. An important disadvantage ofP -T -x
data, however, is that we cannot test its thermodynamic consistency since the activity
coefficients are obtained from a model, not directly from experimental data.

Table 10.2-2 Comparison of Measured Vapor-Phase Mole Fractions for
the n-Pentane–Propionaldehyde System at 40◦C with
Values Predicted from P -T -x Data

x1 yexp
1 ycalc

1 P exp
1 P calc

1

0 0 0 0.7609 0.7609
0.0503 0.2121 0.2211 0.9398 0.9312
0.1014 0.3452 0.3424 1.0643 1.0555
0.1647 0.4288 0.4309 1.1622 1.1618
0.2212 0.4685 0.4810 1.2173 1.2257
0.3019 0.5281 0.5286 1.2756 1.2846
0.3476 0.5539 0.5484 1.2949 1.3067
0.4082 0.5686 0.5702 1.3197 1.3208
0.4463 0.5877 0.5824 1.3354 1.3379
0.5031 0.6146 0.5996 1.3494 1.3490
0.5610 0.6311 0.6173 1.3568 1.3566
0.6812 0.6827 0.6609 1.3636 1.3604
0.7597 0.7293 0.7005 1.3567 1.3500
0.8333 0.7669 0.7529 1.3353 1.3244
0.9180 0.8452 0.8455 1.2814 1.2640
1.0 1.0 1.0 1.1541 1.1541
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Figure 10.2-10 Schematic diagram of an ebulliometer.

A second method of obtaining partial vapor-liquid equilibrium information is by
infinite-dilution ebulliometry. In this experiment a pure fluid of measured weight is
boiled, and the vapor is condensed and returned to the boiling vessel. This is shown in
Fig. 10.2-10. Then, after equilibrium is achieved, a very small measured weight of a
second component is added, and the system is allowed to re-equilibrate. Then, depend-
ing on the equipment, one measures either the change in boiling pressure (between
the pure fluid and the mixture) at fixed temperature or the change in boiling temper-
ature at fixed pressure. Since a very small amount of the second component has been
added, and the weights are known so that the mole fractions can be determined, one
measures either (

∂P

∂x2

)
T

or

(
∂T

∂x2

)
P

depending on the apparatus. Furthermore, if the amount of the added second compo-
nent is small, these quantities have been determined in the limit of x2 → 0. (Alterna-
tively, several weighed amounts of solute can be added, and then the rate of change of
temperature or pressure with respect to mole fraction extrapolated to x2 → 0.)
To analyze the data from such an experiment, assuming an ideal vapor phase, we start

from
P = x1γ1P

vap
1 + x2γ2P

vap
2

For the constant-temperature experiment (noting that the pure-component vapor
pressures depend only on temperature, which is being held fixed), we have(

∂P

∂x2

)
T

= −γ1P
vap
1 + x1

(
∂γ1

∂x2

)
T

P vap
1 + γ2P

vap
2 + x2

(
∂γ2

∂x2

)
T

P vap
2
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Now in the limit of x2 → 0, we have γ1 → 1 and (∂γ1/∂x2) = 0, as γ1 is proportional
to higher than a linear power of x2 (i.e., see Eqs. 9.5-5, 9.5-7, etc.). Thus(

∂P

∂x2

)
T,x2→0

= γ2(x2 → 0)P vap
2 − P vap

1

or

γ2(x2 → 0) = γ∞
2 =

P vap
1 +

(
∂P

∂x2

)
T,x2→0

P vap
2

(10.2-17)

In a similar fashion, for the constant-pressure ebulliometer, we have (Problem 10.2-13)

γ2(x2 → 0) = γ∞
2 =

P vap
1 −

(
dP vap

1

dT

)(
∂T

∂x2

)
P,x2→0

P vap
2

(10.2-18)

It is, of course, possible to derive equations analogous to Eqs. 10.2-17 and 10.2-18 for
a nonideal vapor phase.
Thus, from the ebulliometric experiment, one obtains the infinite-dilution activity co-

efficient directly. Now repeating the experiment by starting with pure component 2 and
adding an infinitesimal amount of component 1, γ1(x1 → 0) = γ∞

1 can be obtained.
These two data points can then be used to determine the parameters in a two-constant ac-
tivity coefficient model. For example, from the van Laar model of Eqs. 9.5-9,
we have

ln γ∞
1 = α and ln γ∞

2 = β (10.2-19)

Thus once the infinite-dilution activity coefficients have been measured and the param-
eters in an activity coefficient model determined, the complete P -T -x -y behavior of
the system can be estimated.

Illustration 10.2-6
Predicting VLE from Infinite-Dilution Activity Coefficients Determined from Ebulliometry

A recent ebulliometric study of n-pentane–propionaldehyde at 40◦C has found that γ∞
1 = 3.848

and γ∞
2 = 3.979. Use this information to prepare the P-x -y diagram for this system at 40◦C.

Solution

The van Laar activity coefficient model will be used. From Eqs. 10.2-19, we have

α = ln γ∞
1 = ln(3.848) = 1.3476 and β = ln γ∞

2 = ln(3.979) = 1.3810

These values are in reasonable agreement with, but slightly different from, those found in the
previous illustration. Using the values for the van Laar parameters, we obtain the y and P values
in Table 10.2-3. Clearly, the agreement is excellent.
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Table 10.2-3 Comparison of Measured Pressures and Vapor-Phase
Mole Fractions for the n-Pentane–Propionaldehyde
System at 40◦C with Values Calculated Using γ∞ Data

x1 yexp
1 ycalc

1 P exp
1 P calc

1

0 0 0 0.7609 0.7609
0.0503 0.2121 0.2131 0.9398 0.9214
0.1014 0.3452 0.3352 1.0643 1.0424
0.1647 0.4288 0.4267 1.1622 1.1493
0.2212 0.4685 0.4798 1.2173 1.2157
0.3019 0.5281 0.5307 1.2756 1.2784
0.3476 0.5539 0.5520 1.2949 1.3024
0.4082 0.5686 0.5752 1.3197 1.3255
0.4463 0.5877 0.5879 1.3354 1.3363
0.5031 0.6146 0.6056 1.3494 1.3483
0.5610 0.6311 0.6232 1.3568 1.3566
0.6812 0.6827 0.6652 1.3636 1.3616
0.7597 0.7293 0.7028 1.3567 1.3524
0.8333 0.7669 0.7528 1.3353 1.3283
0.9180 0.8452 0.8432 1.2814 1.2684
1.0 1.0 1.0 1.1541 1.1541

[
The folder Aspen Illustrations>Chapter 10.2>10.2-6 on theWiley website for this book con-

tains the Aspen Plus R© files for correlating the experimental data (given in this illustration) using
the NRTL andUNIQUACmodels. The results of each of these models are given in appropriately-
named Excel (.xlsx) files.

]

The previous two illustrations demonstrate the utility of bothP -T -x and ebulliomet-
ric γ∞ data in determining values in activity coefficient models, and then using these
parameters to compute the completeP -T -x-y diagram. It should be remembered, how-
ever, that in the analysis of both static cell and ebulliometric measurements, an activity
coefficient model that satisfies the Gibbs-Duhem equation has been used. Therefore,
the calculated results must satisfy the thermodynamic consistency test. Consequently,
there is no independent test of the quality of the results, as when complete P -T -x -y
data have been measured. However, both static cell and ebulliometric measurements
provide valuable data and measurements can be made quickly, which may be important
for components that chemically react or decompose.
The experimental data for the hexafluorobenzene-benzene system in Table 10.2-4

and Fig. 10.2-11 show a rarely encountered degree of complexity in low-pressure vapor-
liquid equilibrium. This system exhibits both minimum and maximum boiling
azeotropes. This occurs because the excess Gibbs energy for this system, though small,
is first positive and then negative as the concentration of hexafluorobenzene is increased.
Since the vapor pressures of hexafluorobenzene and benzene are almost identical, the
solution nonidealities produce the double azeotrope.
Although the discussion and illustrations of this section have been concerned only

with low-pressure vapor-liquid equilibria, phase equilibrium at somewhat higher pres-
sures could have been considered also. Themost important change in the analysis is that
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Table 10.2-4 Vapor-Liquid Equilibrium for the System
Hexafluorobenzene (1)–Benzene (2) at 60◦C

x1 y1 P (bar) Gex (J/mol)

0.0000 0.0000 0.52160 0
0.0941 0.0970 0.52570 32
0.1849 0.1788 0.52568 40
0.2741 0.2567 0.52287 33
0.3648 0.3383 0.51818 16
0.4538 0.4237 0.50989 −4
0.5266 0.4982 0.50773 −21
0.6013 0.5783 0.50350 −35
0.6894 0.6760 0.49974 −44
0.7852 0.7824 0.49757 −45
0.8960 0.8996 0.49794 −30
1.0000 1.0000 0.50155 0

Source: Data of W. J. Gaw and F. L. Swinton, Trans. Faraday Soc., 64,
2023 (1968).
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Figure 10.2-11 The x-y diagram for the hexafluorobenzene-benzene system at 60◦C based on
the data of Gaw and Swinton [Trans. Faraday Soc., 64 2023 (1968)].

the gas phase can no longer be considered ideal or described by the Lewis-Randall rule;
rather, an equation of state (the virial equation at low to moderate pressures, and more
complicated equations at higher pressures) would have to be used. Also, the Poynting
pressure correction of Eq. 5.4-18 may have to be used in the calculation of the pure
liquid-phase fugacities. Both of these changes add some complexity to the calculations
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but improve their accuracy. For simplicity, these factors will not be considered here.
We do, however, consider high-pressure vapor-liquid equilibria in the next section, a
situation in which an equation of state must be used.
As the final example of the section, we consider the vapor-liquid equilibria of a

polymer-solvent system.

Illustration 10.2-7
Computing the Solvent Partial Pressure above a Polymer-Solvent Mixture

In the processing of polymers, and also for polymer devolatilization (the removal of the solvent
from the polymer), it is important to be able to calculate the equilibrium partial pressure of a sol-
vent above solvent-polymer mixtures of different compositions. Calculate the partial pressure of
benzene in benzene + polyisobutylene (PIB) mixtures at 298.15 and 312.75 K. In this calculation
you can assume that polyisobutylene has a negligible vapor pressure, and that the Flory-Huggins
model describes the solution behavior of this polymer + solvent mixture. Do the calculations for
values of the Flory-Huggins χ parameter equal to 0.5 to 1.0.
Data: The molar volume of benzene is 88.26 cm3/mol, its molecular weight is 78, and its vapor
pressures are P vap

B = 0.1266 bar at 298.15 K and 0.2392 bar at 312.75 K, respectively. The
molecular weight of the PIB is 40,000, the monomeric unit in PIB has a molecular weight of
104, and the monomeric volume V PIB,m is 131.9 cm3/mol monomer.

Solution

The average number of monomer units, n , in the PIB polymer is computed as follows:

n =
Molecular weight of polymer
Molecular weight of monomer

=
40 000

104
= 384.6

The mole fraction xB and the volume fraction φB of benzene in terms of its weight fraction
WB are

xB =

WB

78
WB

78
+

WPIB

40 000

and φB =

WB

78
× V B

WB

78
× V B +

WPIB

40 000
× n × V PIB,m

=

WB

78
× 88.26

WB

78
× 88.26 +

1 − WB

40 000
× 384.6 × 131.9

Also

m =
V PIB

V B

=
V PIB,m × n

V B

=
131.9 × 384.6

88.26
= 574.8
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Since the PIB is (assumed to be) involatile, we only have to equate the fugacity of benzene in
the vapor and liquid phases. Further, since the total pressure will be low, we use

fL
B = fV

B or xBγBP vap
B = PB = partial pressure of benzene

where the activity coefficient of benzene is calculated from the Flory-Huggins equation,
Eq. 9.5-18,

ln γB = ln
φB

xB

+

(
1 − 1

m

)
(1 − φB) + χ (1 − φB)2

Using this information, we obtain the following results:

Partial pressure of benzene in PIB, bar

T = 298.15 K T = 312.75 K

wt % B χ = 0.5 χ = 1.0 expt χ = 0.5 χ = 1.0 expt

4.37 0.0715
5.00 0.0232 0.0367 0.0439 0.0693
6.33 0.0971
9.45 0.1236

10.00 0.0428 0.0648 0.0809 0.1224
15.00 0.0593 0.0861 0.1120 0.1626
15.16 0.1681
18.42 0.1818
20.00 0.0730 0.1019 0.1378 0.1925
23.43 0.1028
25.37 0.2095
29.71 0.2182
29.98 0.1117
30.00 0.0937 0.1217 0.1770 0.2299
32.12 0.2207
33.51 0.1149
34.57 0.1156
37.30 0.2267
40.00 0.1075 0.1308 0.2031 0.2472
47.62 0.1229
50.00 0.1163 0.1338 0.2198 0.2572
60.00 0.1217 0.1333 0.2299 0.2519
70.00 0.1246 0.1314 0.2355 0.2482
80.00 0.1260 0.1291 0.2381 0.2439
90.00 0.1265 0.1273 0.2390 0.2405
95.00 0.1266 0.1268 0.2392 0.2395

100.00 0.1266 0.1266 0.2392 0.2392

These results are plotted in Figures 1 and 2. These results show that the Flory-Huggins model
with a constant value of χ = 1.0 gives a reasonable representation of the experimental data of
Eichinger and Flory [Trans. Farad. Soc., 64, 2053–2060 (1968)]. The results also show the sig-
nificant effect of the value of the Flory χ parameter on the partial pressure predictions.
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Figure 1 Partial pressure of benzene above benzene-polyisobutylene mixtures at 298.15 K. The
experimental points are shown together with predictions of the Flory-Huggins model for χ = 0.5
and 1.0.
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Figure 2 Partial pressure of benzene above benzene-polyisobutylene mixtures at 312.75 K. The
experimental points are shown together with predictions of the Flory-Huggins model for χ = 0.5
and 1.0.
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PROBLEMS FOR SECTION 10.2

10.2-1 For a separations process it is necessary to deter-
mine the vapor-liquid equilibrium compositions for
a mixture of ethyl bromide and n-heptane at 30◦C.
At this temperature the vapor pressure of pure ethyl
bromide is 0.7569 bar, and the vapor pressure of pure
n-heptane is 0.0773 bar.
a. Calculate the composition of the vapor in equilib-

rium with a liquid containing 47.23 mol % ethyl
bromide at T = 30◦C, assuming the solution is
ideal.

b. Recalculate the vapor composition in part (a), as-
suming the solution is regular. The regular solu-
tion parameters are

V L (cc/mol) δ (cal/cc)1/2

Ethyl bromide 75 8.9
n-Heptane 148 7.4

c. Recalculate the vapor composition of part (a) us-
ing the UNIFAC model.

d. Recalculate the vapor composition of part (a)
given that a vapor of composition 81.5 mol
% ethyl bromide is in equilibrium with 28.43
mol % liquid ethyl bromide solution at a total
pressure of 0.3197 bar at T = 30◦C.

10.2-2 A vapor-liquid mixture of furfural (C5H4O2) and
water is maintained at 1.013 bar and 109.5◦C. It is
observed that at equilibrium the water content of the
liquid is 10 mol % and that of the vapor is 81 mol %.
The temperature of the mixture is changed to
100.6◦C, and some (but not all) of the vapor con-
denses. Assuming that the vapor phase is ideal,
and the liquid-phase activity coefficients are inde-
pendent of temperature but dependent on concen-
tration, compute the equilibrium vapor and liquid
compositions at the new temperature.

Data:

P vap
H2O(T = 109.5◦C) = 1.4088 bar

P vap
H2O(T = 100.6◦C) = 1.0352 bar

P vap
FURF(T = 109.5◦C) = 0.1690 bar

P vap
FURF(T = 100.6◦C) = 0.1193 bar

10.2-3 In this section it was shown that if the equilib-
rium pressure versus mole fraction curve for a bi-
nary mixture has an interior extreme value at some

liquid-phase mole fraction (i.e., if (∂P/∂x)T = 0
for 0 < x < 1), an azeotrope has been formed at
that composition. Show that if, at constant pres-
sure, the equilibrium temperature versus liquid-
phase mole fraction has an interior extreme value
(i.e., if (∂T/∂x)P = 0 for 0 < x < 1), the mix-
ture forms an azeotrope.

10.2-4 Benzene and ethanol form azeotropic mixtures.
Consequently, benzene is sometimes added to
solvent grades of ethanol to prevent industri-
ous chemical engineering students from purifying
solvent-grade ethanol by distillation for use at an
after-finals party. Prepare an x -y and a P-x diagram
for the benzene-ethanol system at 45◦C assuming,
separately,
a. The mixture is ideal.
b. The mixture is regular.
c. The mixture is described by the UNIFAC model.
d. The activity coefficients for this system obey the

van Laar equation and the datum point at xEA =
0.6155 is used to obtain the van Laar parameters.

Compare the results obtained in parts (a)–(d) with
the experimental data in the following table.

xEA yEA P (bar)

0 0 0.2939
0.0374 0.1965 0.3613
0.0972 0.2895 0.3953
0.2183 0.3370 0.4088
0.3141 0.3625 0.4124
0.4150 0.3842 0.4128
0.5199 0.4065 0.4100
0.5284 0.4101 0.4093
0.6155 0.4343 0.4028
0.7087 0.4751 0.3891
0.8102 0.5456 0.3615
0.9193 0.7078 0.3036
0.9591 0.8201 0.2711
1.00 1.00 0.2321

Source: I. Brown and F. Smith, Aust. J.
Chem., 7, 264 (1954).

Also compare the computed van Laar coefficients
with those given in Table 7.5-1.

10.2-5 The system toluene–acetic acid forms an azeotrope
containing 62.7 mol % toluene and having a min-
imum boiling point of 105.4◦C at 1.013 bar. The
following vapor pressure data are available:
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P vap (bar)

T (◦C) Toluene Acetic Acid

70 0.2699 0.1813
80 0.3863 0.2697
90 0.5395 0.3916

100 0.7429 0.5561
110 — 0.7744
110.7 1.0133 —
118.5 — 1.0133
120 — 1.0586

a. Calculate the van Laar constants for this sys-
tem and plot ln γT and ln γA versus xT. This is
most easily done using the MATHCAD work-
sheet ACTCOEFF on the website for this book
and discussed in Appendix B.III

b. Assuming that the activity coefficients (and van
Laar constants) are independent of tempera-
ture over the limited range of temperatures in-
volved, develop an x -y diagram for this system
at P = 1.013 bar. Compare this with the x -y di-
agram that would be obtained if the system were
ideal.

c. Assuming the activity coefficients are indepen-
dent of temperature, develop an x -y diagram for
this system at P = 1.013 bar using the UNI-
FAC model, and compare the results with those
obtained in part (b).

10.2-6 The illustrations of this section were meant to
demonstrate how one can determine activity coeffi-
cients from measurements of temperature, pressure,
and the mole fractions in both phases of a vapor-
liquid equilibrium system. An alternative procedure
is, at constant temperature, to measure the total equi-
librium pressure above liquid mixtures of known
(or measured) composition. This replaces time-
consuming measurements of vapor-phase composi-
tions with amore detailed analysis of the experimen-
tal data and more complicated calculations.
a. Starting with the Gibbs–Duhem equation, show

that at constant temperature,

RT
∑

xi d ln(xiγi) = V ex dP

and, for a binary mixture,

(
x1

y1

− x2

y2

)
dy1 =

(
PV ex

RT
− 1

)
d ln P

which can also be rewritten as

(y1 − x1)

y1(1 − y1)

dy1

dx1

=
d ln P

dx1

since PV ex/RT 
 1.
b. The equilibrium pressures above various mix-

tures of carbon tetrachloride and n-heptane at
50◦C are given in the following table.

Mole Percent of CCl4
in the Liquid Pressure (bar)

0.0 0.1873
3.32 0.1956
9.83 0.2131

17.14 0.2320
30.24 0.2649
35.14 0.2765
43.24 0.2943
50.12 0.3097
57.00 0.3263
64.96 0.3425
73.23 0.3616
81.26 0.3765
89.92 0.3939
96.49 0.4055

100.0 0.4113

Source: C. P. Smith and E. W. Engel, J. Am. Chem.
Soc., 51, 2646 (1929).

Develop the x -y diagram for this system, and
compute the liquid-phase activity coefficients of
carbon tetrachloride and n-heptane.

c. Develop the x -y diagram for this system using
the UNIFAC model.

10.2-7 For vapor-liquid equilibrium at low pressure (so the
vapor phase is an ideal gas)
a. What is the bubble point pressure of an equimo-

lar ideal liquid binary mixture?
b. What is the bubble point vapor composition of an

equimolar ideal liquid binary mixture?
c. What is the bubble point pressure of an equimo-

lar liquid binary mixture if the liquid mixture is
nonideal and described by Gex = Ax1x2?

d. What is the bubble point vapor composition
of an equimolar liquid binary mixture if the
liquid mixture is nonideal and described by
Gex = Ax1x2?

10.2-8 The following vapor-liquid equilibrium data for
the n-pentane–acetone system at 1.013 bar were
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obtained by Lo, Beiker, and Karr [J. Chem. Eng.
Data, 7, 327 (1962)].

(bar)

xP yP T (◦C) P vap
P P vap

A

0.021 0.108 49.15 1.560 0.803
0.061 0.307 45.76 1.397 0.703
0.134 0.475 39.58 1.146 0.551
0.210 0.550 36.67 1.036 0.493
0.292 0.614 34.35 0.960 0.453
0.405 0.664 32.85 0.913 0.425
0.503 0.678 32.35 0.903 0.421
0.611 0.711 31.97 0.887 0.413
0.728 0.739 31.93 0.880 0.410
0.869 0.810 32.27 0.896 0.419
0.953 0.906 33.89 0.954 0.445

a. Are these data thermodynamically consistent?
b. Determine which of the activity coefficient

models discussed in Chapter 9 best fits these
data. This is most easily done using the MATH-
CADworksheet ACTCOEFF on the website for
this book and discussed in Appendix B.III

10.2-9 Use the UNIFAC model to predict the vapor-
liquid behavior of the system in the previous prob-
lem, and compare the results with the experimental
data.

10.2-10 Estimate, as best you can, the vapor-liquid equilib-
rium coexistence pressure and the composition of
the vapor in equilibrium with a liquid containing
20 mol % ethanol, 40 mol % benzene, and 40 mol
% ethyl acetate at 78◦C.

10.2-11 The experimental data for the hexafluorobenzene-
benzene mixture in Table 10.2-4 and Fig. 10.2-10
show a double azeotrope. Test the ability of com-
mon thermodynamic models, such as the equations
of Wilson and van Laar, and the Redlich-Kister
expansion to fit these data. Also, test whether the
UNIFAC model predicts a double azeotrope for
this system. (Note that hexafluorobenzene is also
known as perfluorobenzene, and it is referred to
as such in the Property program referred to in
Chapter 6.)

10.2-12 Determine whether the data in Table 10.2-1 satisfy
the Gibbs-Duhem integral consistency test.

10.2-13 Derive Eq. 10.2-26 for the constant-pressure ebul-
liometer.

10.2-14 Using the following data, estimate the total pres-
sure and composition of the vapor in equilibrium
with a 20 mol % ethanol (1) solution in water (2)
at 78.15◦C. Data (at 78.15◦C):

Vapor pressure of ethanol (1) = 1.006 bar

Vapor pressure of water (2) = 0.439 bar

lim
x1→0

γ1 = γ∞
1 = 1.6931

lim
x2→0

γ2 = γ∞
2 = 1.9523

10.2-15 In vapor-liquid equilibrium the relative volatility
αij is defined to be the ratio of the separation or K
factor for species i to that for species j, that is,

αij =
Ki

Kj

=
yi/xi

yj/xj

In approximate distillation column calculations,
the relative volatility is sometimes assumed to be
a constant (independent of composition, temper-
ature, and pressure). Test this assumption for the
ethanol–ethyl acetate system using the following
data:

RT ln γi = 8.163x2
j kJ/mol

ln P vap
EOH =

−4728.98

T
+ 13.4643 P [=] bar; T [=] K

ln P vap
EAC =

−3570.58

T
+ 10.4575

10.2-16 Based on vapor-liquid equilibrium data, some au-
thors have claimed that the benzene (1)–cyclo-
hexane (2) mixture is described by

Gex = Ax1x2

where A (J/mol) = 3750 − 8T for T in degrees K.
a. Derive expressions for the activity coefficients

of benzene and cyclohexane.
b. Determine the enthalpy and entropy changes on

mixing when 1 mole of benzene and 2 moles of
cyclohexane are mixed at T = 300 K and con-
stant pressure.

c. Given the following vapor pressure data at
T = 320 K, P vap

B = 0.3203 bar and P vap
C =

0.3218 bar, determine the bubble point pressure
of the liquid in part (b) at T = 320 K, and the
composition of the vapor in equilibrium with
that liquid.

10.2-17 The relative volatility of component 2 to compo-
nent 1 is defined to be

α12 =
y2/x2

y1/x1

a. Develop an expression for the relative volatil-
ity for a mixture described by the one-constant
Margules equation. Discuss how the relative
volatility depends upon temperature, pressure,
and composition.

b. What would be the relative volatility at low
pressures if the two components form an ideal
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mixture, and howwould the relative volatility in
this case depend on temperature, composition,
and pressure?

10.2-18 a. Develop an expression for the vapor-phasemole
fraction of species 1 in an ideal equimolar bi-
nary mixture at low pressures in terms of only
the pure component vapor pressures.

b. Repeat the derivation of part (a) for a non-
ideal mixture described by the one-constant
Margules equation.

10.2-19 a. Develop an expression for how the bubble point
pressure of a binary mixture changes with tem-
perature at constant composition.

b. How does the result for part (a) change if
one of the components in the mixtures has
such a low vapor pressure as to be considered
involatile?

10.2-20 Estimate the vapor-liquid equilibrium of n-hexane
and toluene as a function of composition at
T = 75oC using regular solution theory and the
UNIFAC model.

10.2-21 After an esterification reaction, it is necessary to
separate the product methyl acetate from the unre-
actedmethanol to obtain both components at a high
level of purity. It is known that at 20oC, this system
forms an azeotrope with the following properties:
xMA = yMA = 0.754, xMeOH = yMeOH = 0.246,
and P = 183.54 mm Hg.

A process engineer has suggested that the way
to get two relatively pure components is to use
two distillation columns operating at different con-
ditions. The first column would be operated to
get one of the relatively pure components and the
azeotrope. This azeotrope would be fed into the
second column, operating at a higher temperature,
50oC. By this argument, the higher temperature
would shift the azeotrope, so that the products from
the second column would be the other pure com-
ponent and the new azeotrope (which would then
be fed back to the first column). To determine
whether this proposed process is possible, compute
the azeotropic composition of a methyl acetate–
methanol mixture at 50oC. For simplicity, assume
that the parameters in the activity coefficient you
use are independent of temperature.

The pure component vapor pressures are as
follows:

log10 P vap
MA (mm Hg) = 7.065 24 − 1157.630

T (K) − 53.424

log10 P vap
MeOH (mm Hg) = 8.080 97 − 1582.271

T (K) − 33.424

10.2-22 The n-octane (1)–tetraethyl methane (2) mixture
has been studied at 50◦C. From vapor pressure and
calorimetric measurements, the following informa-
tion is available:

Gex = 630x1x2 J/mol

Hex = −335x1x2 J/mol

ln P vap
i = Ai −

Bi

T + Ci

where

i Ai Bi Ci

1 9.3225 3120.29 −63.63
2 9.2508 3341.62 −57.57

with P in bar and T in K.
a. Calculate the composition of the vapor that is in

equilibrium with n-octane–tetraethyl methane
mixtures at 380 K. In this calculation assume
that the activity coefficients are independent of
pressure.

b. Repeat the calculation above at a fixed total
pressure of 380 mm Hg.

c. Repeat parts (a) and (b) using the predictive
UNIFAC model.

10.2-23 Eichinger and Flory [Trans. Farad. Soc., 64, 2053–
2060 (1968)] report the following data for the
activity of benzene (aB = xBγB) in polyisobuty-
lene (MW = 40 000) and 10◦C as a function of
the mass ratio of benzene to polyisobutylene,
mB/mPIB:

mC/mPIB aC = xBγC

0.8331 0.9811
0.5543 0.9595
0.291 0.8388

Using the data in Illustration 10.2-7, compare the
predictions of the Flory-Huggins theory using χ =
1.0 with the data above, and compute the equi-
librium partial pressure of benzene over benzene-
polyisobutylene mixtures.

10.2-24 Eichinger and Flory [Trans. Farad. Soc., 64,
2061–2065 (1968)] reported the following data
for the activity of cyclohexane (aC = xCγC) in
polyisobutylene (MW = 40 000) and 25◦C as a
function of the mass ratio of cyclohexane to poly-
isobutylene, mC/mPIB.
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mC/mPIB aC = xCγC mC/mPIB aC = xCγC

1.318 0.9598 0.307 0.6937
0.668 0.8758 0.232 0.6105
0.434 0.7836 0.198 0.5537
0.390 0.7623 0.147 0.4625

Determine the value of the Flory χ parameter in
the Flory-Huggins model that gives the best fit
of the data above, and compute the equilibrium
partial pressure of cyclohexane over cyclohexane-
polyisobutylene mixtures.

10.2-25 Eichinger and Flory [Trans. Farad. Soc., 64, 2066–
2072 (1968)] reported the following data for the
activity of n-pentane (aP = xPγP) in polyisobuty-
lene (MW = 40 000) and 10◦C as a function of
the mass ratio of n-pentane to polyisobutylene,
mP/mPIB.

mP/mPIB aP = xPγP mP/mPIB aP = xPγP

1.405 0.9897 0.227 0.7684
0.476 0.9263 0.153 0.6434
0.363 0.8804 0.0786 0.4414
0.269 0.8093 0.0294 0.2120

Determine the value of the Flory χ parameter in
the Flory-Huggins model that gives the best fit of
the data above, and compute the equilibrium partial
pressure of pentane over pentane-polyisobutylene
mixtures.

10.2-26 The partial pressure of water above aqueous
hydrochloric acid solutions can be represented by

log10 P = A − B

T

where P is the pressure in bar and T is the temper-
ature in K. The values of A and B are given in the
table:

wt % HCl A B

10 6.123 57 2295
20 6.103 70 2334
30 6.126 10 2422
40 6.464 16 2647

Source: R. H. Perry, D. W. Green, and J. O. Mal-
oney, eds., The Chemical Engineers’ Handbook, 6th
ed., McGraw-Hill, New York (1984), pp. 3–64.

The vapor pressure of pure water is given in
Problem 7.12. Compute the activity coefficient
of water in each of the hydrochloric acid solu-
tions in the table at 25◦C. (Hint: hydrogen chloride

can be assumed to completely ionize in aqueous
solution.)

10.2-27 The following data for the partial pressure of wa-
ter vapor over aqueous solutions of sodium carbon-
ate at 30◦C are given in The Chemical Engineers’
Handbook, 5th ed. (R. H. Perry and C. H. Chilton,
eds., McGraw-Hill, New York, 1973), pp. 3–68.

wt % 0 5 10 15 20 25 30
Na2CO3

PH2O kPa, 4.24 4.16 4.05 3.95 3.84 3.71 3.52

Compute the activity coefficient of water in each
of these solutions. (Hint: Does sodium carbonate
ionize in aqueous solution?)

10.2-28 In this section it was shown that the excess en-
tropy and excess enthalpy can be determined from
various temperature derivatives of the excess Gibbs
energy. These and other excess thermodynamic
functions can also be computed directly from
derivatives of the activity coefficients. Show that
in a binary mixture the following equations can be
used for such calculations:

Sex = −
(

∂Gex

∂T

)
P,x

= −RT

(
x1

∂ ln γ1

∂T
+ x2

∂ ln γ2

∂T

)
− R(x1 ln γ1 + x2 ln γ2)

Hex = −T 2
∂(Gex/T )P,x

∂T

= −RT 2

(
x1

∂ ln γ1

∂T
+ x2

∂ ln γ2

∂T

)

V ex =

(
∂Gex

∂P

)
T,x

= RT

(
x1

∂ ln γ1

∂P
+ x2

∂ ln γ2

∂P

)

Uex = −RT

{
T

(
x1

∂ ln γ1

∂T
+ x2

∂ ln γ2

∂T

)

+ P

(
x1

∂ ln γ1

∂P
+ x2

∂ ln γ2

∂P

)}

Cex
P = −2RT

(
x1

∂ ln γ1

∂T
+ x2

∂ ln γ2

∂T

)

− RT 2

(
x1

∂2 ln γ1

∂T 2
x2

∂2 ln γ2

∂T 2

)

Note that in the activity coefficient derivatives, all
variables from the set T ,P , x, other than the onebe-
ing varied, are fixed.
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10.2-29 The following vapor-liquid equilibrium data have
been reported6 for the system 1,2-dichloroethane
(1) + n-heptane (2) at 343.15 K.

P (mm Hg) x1 y1

302.87 0.0000 0.0000
372.62 0.0911 0.2485
429.28 0.1979 0.4174
466.48 0.2867 0.5052
491.02 0.3674 0.5590
509.40 0.4467 0.6078
520.41 0.5044 0.6535
525.71 0.5733 0.6646
533.44 0.6578 0.7089
536.58 0.7644 0.7696
535.78 0.8132 0.7877
530.90 0.8603 0.8201
524.21 0.8930 0.8458
515.15 0.9332 0.8900
505.15 0.9572 0.9253
498.04 0.9812 0.9537
486.41 1.0000 1.0000

a. Compute the activity coefficients for this sys-
tem at each of the reported compositions.

b. Calculate the excess Gibbs energy at each
composition

c. Obtain values of the van Laar parameters that
best fit these data.

10.2-30 A binary liquid solution, having mole fraction x of
component 1, is in equilibrium with a vapor that
has mole fraction y of that component. Show that
for this mixture the effect of a change in temper-
ature on the equilibrium pressure at fixed liquid
composition is approximately(

∂ ln P

∂T

)
x

=
(ΔvapH)mix

RT 2

where (ΔvapH)mix is the heat of vaporization of y
moles of component 1 and (1 − y) moles of com-
ponent 2 from a large volume of solution.

10.2-31 Estimate the equilibrium pressure and isobutane
vapor-phase mole fraction as a function of liq-
uid composition for the isobutane-furfural system
at 37.8◦C. At this temperature the vapor pressure
of furfural is 0.493 kPa and that of isobutane is
490.9 kPa. (Hint: See Illustration 11.2-2.)

10.2-32 Polyethylene of molecular weight 2800 is to be
dissolved in compressed ethylene at 10◦C. Assum-
ing that as a result of the similarity of ethylene to

polyethylene, there is no enthalpic interaction be-
tween these species, estimate the excess Gibbs
energy and activity coefficients of ethylene and
polyethylene as a function of composition.

10.2-33 Amixture of 80mol% acetone and 20mol%water
is to be transported in a pipeline within a chemical
plant. This mixture can be transported as either a
liquid or a gas.
a. A reciprocating pump would be used with a liq-

uid mixture. Because of vapor lock, this pump
will cease functioning if any vapor is present.
Compute the minimum pressure that must be
maintained at the pump inlet so that no vapor is
formed when the liquid temperature is 100◦C.

b. A centrifugal pump would be used with a gas
mixture. To prevent erosion of the pump blades,
only vapor should be present. If the pump ef-
fluent is 100◦C, compute the maximum pump
effluent pressure so that no liquid is formed.
Data:

Temperature (◦C) 56.6 78.6 113.0
Vapor pressure of acetone (bar) 1.013 2.026 5.065

10.2-34 The figure that follows for the ethanol + water sys-
tem is an unusual one in that it shows both vapor-
liquid equilibrium and the enthalpy concentration
diagrams on a single plot. This is done as follows.
The lower collection of heavy lines give the en-
thalpy concentration data for the liquid at various
temperatures and the upper collection of lines is
the enthalpy-concentration data for the vapor, each
at two pressures, 0.1013 and 1.013 bar. (There are
also enthalpy-concentration lines for several other
temperatures.) The middle collection of lines con-
nect the equilibrium compositions of liquid and
vapor. For example, at a pressure of 1.013 bar, a
saturated vapor containing 71 wt % ethanol with
an enthalpy of 1535 kJ/kg is in equilibrium with a
liquid containing 29 wt % ethanol with an enthalpy
of 315 kJ/kg at a temperature of 85◦C. Note also
that the azeotropes that form in the ethanol + water
system are indicated at each pressure.

Consider the vapor-liquid equilibrium discussed
above, in which 90 percent of the mixture by
weight is liquid and 10 percent is vapor. If the pres-
sure on this mixture is now reduced to 0.1013 bar
by passing through a Joule-Thomson expansion
valve, what are the compositions of the vapor
and liquid phases in equilibrium, what is the

6R. Eng and S. I. Sandler, J. Chem. Eng. Data, 29, 156 (1984).
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equilibrium temperature, and what are the weight
fractions of vapor and liquid?

10.2-35 A binary mixture of components 1 and 2 is in
vapor-liquid equilibrium.
a. At 90◦C and 1.8505 bar pressure, a vapor of

composition y1 = 0.3767 coexists with a liq-
uid of composition x1 = 0.4. Use these data
to determine the van Laar parameters for this
mixture.

b. Determine whether the mixture has an
azeotrope at 90◦C, and if so, determine its com-
position and whether it is a maximum-pressure
or minimum-pressure azeotrope.

c. Obtain the P -x-y and x-y diagrams for this sys-
tem at 90◦C.

d. An equimolar mixture of species 1 and 2 at
initially very low pressure is compressed at a
constant temperature of 90◦C. At what pres-
sure does the first drop of liquid form, and what

is its composition? At what pressure does the
last bubble of vapor disappear, and what was its
composition?
Data: The vapor pressures of the components
are given by

log10 P vap
i = Ai −

Bi

T

for pressure in bar and T in K, where
A1 = 4.125, B1 = 1500, A2 = 5.000, and
B12 = 1750.

10.2-36 The equilibrium total pressures above liquid mix-
tures (that is, P -T -x data) for the system ethylene
bromide and 1-nitropropane at 75◦C are given in
the following table.
Develop an x-y diagram for this system, and
compute the liquid-phase activity coefficients of
ethylene bromide and 1-nitropropane. Use the
UNIFAC model to predict activity coefficients at
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Mole Percent Mole Percent
of Ethylene of Ethylene
Bromide Pressure Bromide Pressure
in Liquid (bar) in Liquid (bar)

0.0 0.1533 50.85 0.1773
2.98 0.1556 65.62 0.1773
3.52 0.1568 76.48 0.1745
5.75 0.1597 88.01 0.1699

15.80 0.1659 94.31 0.1652
26.98 0.1719 100.00 0.1596
39.95 0.1760

Source: J. R. Lacher, W. B. Buck, and W. H. Parry, J. Am. Chem.
Soc., 66, 2422 (1941).

other compositions. How do the two sets of activity
coefficients compare? (Hint: See Problem 10.2-6.)

10.2-37 Use the UNIFAC model to predict the vapor-liquid
equilibria for the benzene + 2,2,4-trimethylpentane
system at 55◦C, and compare the results with the
experimental data in Illustration 10.2-4 and with
VLE predictions using the Regular Solutionmodel.

10.2-38 Use the UNIFAC model to predict the vapor-liquid
equilibria for the acetone + water system at 25◦C,
and compare the results with the experimental data
that can be found in the DECHEMA data series.

10.2-39 The following vapor-liquid equilibrium data have
been reported7 for the system water (1) + 1,4-
dioxane (2) at 323.15 K.

P (mm Hg) x1 y1

120.49 0.0000 0.0000
140.85 0.0560 0.1920
151.16 0.0970 0.2680
159.17 0.1700 0.3450
164.57 0.2160 0.3830
165.65 0.2980 0.4030
167.89 0.3660 0.4250
167.74 0.4400 0.4430
167.79 0.4460 0.4460
167.95 0.4840 0.4510
166.84 0.5390 0.4550
165.48 0.6290 0.4660
160.82 0.7490 0.4950
155.14 0.8110 0.5430
142.64 0.8900 0.6040
114.76 0.9670 0.7950
92.51 1.0000 1.0000

a. Compute the activity coefficients for this
system at each of the reported compositions.

b. Are these data thermodynamically consistent?
c. Plot the excess Gibbs energy for this system as

a function of composition.

Determining the activity coefficient parameters
values in several of the following problems is most
easily accomplished using the MATHCAD work-
sheet ACTCOEFF on the website for this book, or
using Aspen Plus R©.

10.2-40 Determine the parameter values in the two-
constant Margules equation that best fit the data of
Problem 10.2-39.

10.2-41 Determine the parameter values in the van Laar
model that best fit the data of Problem 10.2-39.

10.2-42 Determine the parameter values in the Wilson
model that best fit the data of Problem 10.2-39.

10.2-43 Determine the parameter values in the NRTL
model that best fit the data of Problem 10.2-39.

10.2-44 Determine the parameter values in the UNIQUAC
model that best fit the data of Problem 10.2-39.

10.2-45 Compare the predictions of the UNIFAC model
with the data of Problem 10.2-39.

10.2-46 The following equilibrium pressure data for the
system water (1) + 1,4-dioxane (2) at 353.15 K
have been reported.8

P (mm Hg) x1 P (mm Hg) x1

382.8 0.000 575.5 0.600
476.0 0.100 569.5 0.700
526.5 0.200 550.0 0.800
556.5 0.300 501.5 0.900
571.0 0.400 355.1 1.000
576.5 0.500

Fit the P versus x1 data with a suitable polyno-
mial. Then use the synthethic method; that is use
the equation developed in Problem 10.2-6,

(y1 − x1)

y1(1 − y1)

dy1

dx1

=
d ln P

dx1

to estimate the vapor compositions at each of the
reported liquid-phase mole fractions.

10.2-47 Determine the parameter values in the two-
constant Margules equation that best fit the P ver-
sus x1 data of Problem 10.2-46, and then use this
activity coefficient model to estimate the vapor-
phase compositions.

7G. Kortum and V. Valent, Ber. Bunsenges Phys. Chem. 81, 752 (1977).
8F. Hovorka, R. A. Schaefer, and D. Dreisbach, J. Am. Chem. Soc., 58, 2264 (1935).
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10.2-48 Determine the parameter values in the van Laar
model that best fit the the P versus x1 data of Prob-
lem 10.2-46, and then use this activity coefficient
model to estimate the vapor-phase compositions.

10.2-49 Determine the parameter values in the NRTL
model that best fit the the P versus x1 data of Prob-
lem 10.2-46, and then use this activity coefficient
model to estimate the vapor-phase compositions.

10.2-50 Determine the parameter values in the Wilson
equation that best fit the the P versus x1 data
of Problem 10.2-46, and then use this activ-
ity coefficient model to estimate the vapor-phase
compositions.

10.2-51 Determine the parameter values in the UNIQUAC
model that best fit the the P versus x1 data of Prob-
lem 10.2-46, and then use this activity coefficient
model to estimate the vapor-phase compositions.

10.2-52 Compare the predictions for total pressure from
the UNIFAC model with the data of Problem
10.2-46.

10.2-53 a. Joe Udel argues that if in a low-pressure binary
mixture,

(
∂P

∂x1

)
T,x1=0

and

(
∂P

∂x1

)
T,x1=1

have opposite signs, the system will have an
azeotrope. Can you simply prove or disprove his
contention? (The simpler the proof, the better.)

b. Will the system for which, at 65◦C, P vap
1 =

0.260 bar and P vap
2 = 0.899 bar described by

Gex = 1.7RTx1x2

have an azeotrope?
10.2-54 The following excess Gibbs energy model de-

scribes the 1-propanol (1) + n-hexane (2) system

Gex = RTx1x2(A1x1 + A2x2)

In the temperature range near 65◦C the parame-
ter values in this equation are A1 = 1.867 and A2

= 1.536. The vapor pressure of 1-propanol at this
temperature is 0.260 bar and that of n-hexane is
0.899 bar.
a. What is the excess enthalpy of mixing of this

system as a function of temperature and com-
position?

b. What is the entropy of mixing of this system as
a function of temperature and composition?

c. Obtain expressions for the activity coefficients
of each compound.

d. Obtain values for the infinite-dilution activity
coefficients for each compound in this mixture.

e. Does this system have an azeotrope?
10.2-55 Calculate the boiling point of aqueous sodium

chloride solutions at ambient pressure over the
range from 0 to 10 M NaCl. In this calculation, use
the following expression for the vapor pressure of
pure water:

ln P vap (T ) = 13.149 − 4903

T

for temperature in K and vapor pressure in bar.
10.2-56 At moderate but not low pressures, the vapor phase

of a binary mixture can be described by the follow-
ing virial equation of state truncated at the second
virial coefficient

PV mix

RT
= 1 +

Bmix

V mix

with

Bmix = y2
1B11 + 2y1y2B12 + y2

2B22

a. If this binary mixture forms an ideal liquid mix-
ture, develop an expression for each of the K
factors, Ki = yi/xi, for each species in terms
of the virial coefficients, the mixture molar vol-
ume, the pure component molar volumes, the
gas constant and the temperature.

b. Write the expressions for the K factors if the
liquid mixture was not ideal.

10.2-57 Draw the free energy versus composition dia-
gram for the regular solution model (simple lat-
tice model). Find the composition of the coexisting
phases and draw the phase boundary as a funciton
of χ/kT . Develop an analytic expression for the
compositions of the coexisting phases. Show that
if χ has a very large value the compositions of the
coexisting phases are

x1
1 = e−χ and x2

2 = e−χ

Find the expression for the spinodal composition
for the regular solution (simple lattice) model.

10.2-58 At 64.3◦C, the methanol-methyl ethyl ketone mix-
ture forms an azeotrope at 84.2 mol % methanol
at 1.013 bar. At this temperature the vapor pres-
sure of methanol is 0.988 bar and that of MEK is
0.608 bar. Assuming that the activity coefficients
of this system are functions of composition, but in-
dependent of temperature, what will be the compo-
sition of the azeotrope that forms at 80◦C. At this
higher temperature the vapor pressure of methanol
is 1.772 bar and that of methyl ethyl ketone is
1.03 bar.
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10.2-59 A two-component mixture at 10◦C has been found
to have the following properties at infinite dilution:

ln γ∞
1 = ln γ∞

2 = 0.6, Hex
1 = 15

kJ

mol
, Hex

2 = 10
kJ

mol
and

P vap
1 (T =10◦C)=1.12 bar andP vap

2 (T =10◦C)=1.28 bar

Using these data,
a. Develop an expression for Gex using the one-

constantMargules activity coefficient model for
this two-component mixture and sketch it over
the mixture composition range, quantitatively
labeling all maxima/minima intercepts and/or
asymptotic behavior.

b. Calculate the activity coefficients for each
species in a mixture with 15 mole percent
species 1.

c. Calculate the vapor composition in equilibrium
with a liquid mixture containing 15 mole per-
cent species 1.

d. Develop an expression for the partial molar en-
thalpy of each species in terms of the mole frac-
tion of species 1.

e. Evaluate the partial molar enthalpy of species
1 in a mixture with the same composition as in
part (b).

f. Develop an expression for Gex at 25◦C. State
any assumptions you make. Calculate the activ-
ity coefficients of each species at this tempera-
ture for a 15 mole percent mixture os species 1,
and compare the result with that in part (b). Is
the trend what you expected?

10.2-60 Chemical engineers frequently have to make esti-
mates based on limited data, as you have to do in
this problem. Here you need to make estimates of
the mixture behavior of species A and species B at
25◦C having only the following data.

P vap
A (25◦C) = 1 bar, P vap

B (25◦C) = 0.5 bar, and

(
∂P

∂x2

)
T,x2→0

= 0.5 bar

a. What is the bubble point of this mixture at 25◦C
and xA = 0.1?

b. Does this mixture have an azeotrope at 25◦C?
(Hint: This can be done without trial-and-error
calculations.)

10.2-61 Show that for a binary mixture

ln γ2(x
′
2) − ln γ2(x2) = −

∫ x′
2

x2

x1

x2

d ln γ1

10.2-62 Using the following data, determine the total pres-
sure P and vapor and liquid compositions for

ethanol (1) and water (2) mixtures at 78.15◦C. The
following data have been reported for this system
at this temperature:

Vapor pressure of ethanol (1) = 1.006 bar

Vapor pressure of water (2) = 0.439 bar

lim
x1→0

γ1 = γ∞
1 = 1.6931 and lim

x2→0
γ2 = γ∞

2 = 1.9523

10.2-63 For vapor-liquid equilibrium at low pressure (so the
vapor-phase is an ideal gas)
a. What is the bubble point pressure of an equimo-

lar ideal liquid binary mixture?
b. What is the bubble point vapor composition of

an equimolar ideal liquid binary mixture?
c. What is the bubble point pressure of an equimo-

lar liquid binary mixture if the liquid mixture is
nonideal and described by Gex = Ax1x2?

d. What is the bubble point vapor composition of
an equimolar liquid binary mixture if the liquid
is nonideal and described by Gex = Ax1x2?

10.2-64 a. Derive an equation that relates the temperature
derivative of the infinite dilution activity coeffi-
cient of a component to its excess partial molar
enthalpy.

b. The following data are available to the infinite
dilution activity coefficients:
2-propanone in n-heptane: 6.35 at 40◦C, 6.13 at
50◦C and 5.91 at 60◦C
n-heptane in 2-propanone: 3.58 at 70◦C, 3.72 at
80◦C, 3.90 at 90◦C and 4.10 at 100◦C.
Estimate the infinite dilution partial molar ex-
cess enthalpy of 2-propanone in n-heptane at
50◦C, and n-heptane in 2-propanone at 85◦C.

10.2-65 Use the UNIFAC model to predict the vapor-
equilibrium phase diagram of the benzene-acetone
mixture at 55.8◦C.

10.2-66 The following vapor-liquid equilibrium data are
available for the cyclohexane-isopropyl alcohol
system at 1 bar:

T (◦C) x(C6H12) y(C6H12)
80.29 0.021 0.093
78.1 0.047 0.180
78.85 0.091 0.279
73.8 0.147 0.373
72.13 0.217 0.442
70.88 0.279 0.481
70.13 0.373 0.519
69.99 0.478 0.561
69.53 0.602 0.597
69.77 0.748 0.649
70.97 0.882 0.704
74.58 0.972 0.815
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Use Aspen Plus R© to regress these data to obtain
the binary parameters in the Wilson equation.

10.2-67 Compare the UNIFAC predictions for the
cyclohexane-isopropyl alcohol system with the
data in Problem 10.2-66.

10.2-68 Use the UNIFAC model to predict x-y diagram
for the water-1,4-dioxane system at 353.15 K at
the liquid composition-pressure points in Prob-
lem 10.2-46.

10.2-69 Use Aspen Plus R© (Analysis>Binary>Txy) and
the UNIFAC model to estimate the vapor-liquid
equilibrium of n-pentane + propionaldehyde mix-
ture at 1 bar. Does this system have an azeotrope?

10.2-70 Use Aspen Plus R© (Analysis>Binary>Txy) and
the UNIFAC model to estimate the vapor-liquid
equilibrium of the benzene-trimethylpentane mix-
ture at 1 bar. Does this system have an azeotrope?

10.2-71 Use Aspen Plus R© (Analysis>Binary>Txy) and
the UNIFAC model to estimate the vapor-liquid
equilibrium of the chloroform-acetone mixture at
1 bar. Does this system have an azeotrope?

10.2-72 Use Aspen Plus R© (Analysis>Binary>Txy) and
the UNIFAC model to estimate the vapor-liquid
equilibrium of the ethyl acetate-benzene mixture at
1 bar. Does this system have an azeotrope?

10.2-73 Obtain VLE data for the cyclohexane-isopropyl al-
cohol system at 1 bar from the NIST Thermody-
namic Data Engine (TDE) in Aspen Plus R© and
then use that software to correlate the data with the
a. Wilson model, or
b. NRTL model.

10.2-74 Use Aspen Plus R© (Analysis>Binary>Txy) and
the UNIFAC model to estimate the vapor-liquid
equilibrium of the methanol-toluene mixture at 1
bar. Does this system have an azeotrope?

10.2-75 Using Aspen Plus R© and its default parameters for
the Wilson model, determine the phases present
and their compositions of a stream containing
methanol-ethanol-water inmolar ratios of 35:35:30
at 1 bar at 348 K.

10.2-76 Obtain VLE data for the ethanol-ethyl acetate sys-
tem from the NIST Thermodynamic Data Engine

(TDE) in Aspen Plus R© at the following three
conditions: 40◦C, 70◦C and 1 atm. Then use the
software to correlate all three data sets simultane-
ously with
a. the Wilson model,
b. the NRTL model and/or
c. the UNIQUAC model.

10.2-77 Use Aspen Plus R© and the default parameters in
the the NRTL model to predict the vapor-liquid
equilibrium of the ethyl iodide-carbon tetrachlo-
ride system at 1 bar. Does this system have an
azeotrope?

10.2-78 Use Aspen Plus R© (Analysis>Binary>Txy)
and the UNIFAC model to estimate the vapor-
liquid equilibrium of the carbon disulfide-acetone
mixture at 1 bar. Does this system have an
azeotrope?

10.2-79 A stream contain 126 moles of methanol,
126 moles of ethanol and 108 moles of water is
cooled from 360 K to 348 K. Using the Wilson
model with Aspen Plus R© default parameters, com-
pute the phases present at 348 K and 1 bar and their
compositions.

10.2-80 Redo Problem 10.2-1 using Aspen Plus R©.
10.2-81 Redo Problem 10.2-4 using Aspen Plus R©.
10.2-82 Redo Problem 10.2-5 using Aspen Plus R©.
10.2-83 Redo Problem 10.2-6 using Aspen Plus R©.
10.2-84 Redo Problem 10.2-8 using Aspen Plus R©.
10.2-85 Redo Problem 10.2-9 using Aspen Plus R©.
10.2-86 Redo Problem 10.2-10 using Aspen Plus R©.
10.2-87 Redo Problem 10.2-11 using Aspen Plus R©.
10.2-88 Redo Problem 10.2-16 using Aspen Plus R©.
10.2-89 Redo Problem 10.2-20 using Aspen Plus R©.
10.2-90 Redo Problem 10.2-22 using Aspen Plus R©.
10.2-91 Redo Problem 10.2-29 using Aspen Plus R©.
10.2-92 Redo Problem 10.2-31 using Aspen Plus R©.
10.2-93 Redo Problem 10.2-37 using Aspen Plus R©.
10.2-94 Redo Problem 10.2-38 using Aspen Plus R©.
10.2-95 Redo Problem 10.2-39 using Aspen Plus R©.
10.2-96 Redo Problem 10.2-45 using Aspen Plus R©.
10.2-97 Redo Problem 10.2-46 using Aspen Plus R©.
10.2-98 Redo Problem 10.2-52 using Aspen Plus R©.

10.3 HIGH-PRESSURE VAPOR-LIQUID EQUILIBRIA USING
EQUATIONS OF STATE (φ-φ METHOD)

The discussion of the previous section was concerned with low-pressure vapor-liquid
equilibria and involved the use of activity coefficient models. Here we are interested
in high-pressure phase equilibrium in fluids in which both phases are describable by
equations of state, that is, the φ-φ method. One example of the type of data we are in-
terested in describing (or predicting) is shown in Fig. 10.3-1 for the ethane-propylene
system. There we see the liquid (bubble point) and vapor (dew point) curves for this
system at three different isotherms. At each temperature the coexisting vapor and liq-
uid phases have the same pressure and thus are joined by horizontal tie lines, only one
of which has been drawn. The intersections of these tie lines with the bubble and dew



10.3 High-Pressure Vapor-Liquid Equilibria Using Equations of State (φ-φ Method) 579

0

10

15

Experiment
Vapor

Vapor

Vapor

Liquid

Tie line

Liquid

Liquid

T = 344.3 K

T = 311 K

T = 261 K

Prediction

P
re

ss
ur

e 
(b

ar
)

20

25

30

35

5

40

45

50

0.2 0.4 0.6 0.8 1.0
xC2H6

Figure 10.3-1 Constant-temperature
vapor-liquid equilibrium data for the
ethane-propylene system. [R. A.McKay,
H. H. Reamer, B. H. Sage, and W. N.
Lacey, Ind. Eng. Chem., 43, 2112
(1951).]

curves give the compositions of the coexisting equilibrium liquid and vapor phases,
respectively.
Figure 10.3-1 shows some of the variety of phase behavior that occurs in hydrocarbon

mixtures at high pressure. The lowest isotherm, 261 K, is below the critical tempera-
tures of both ethane (Tc = 305.4 K) and propylene (Tc = 365.0 K). In this case both
vapor and liquid exist at all compositions, and the isotherm is qualitatively similar to
the low-pressure isotherm for the n-hexane–triethylamine system of Fig. 10.1-1c. The
next isotherm, at T = 311 K, is slightly above the critical temperature of ethane but
below Tc for propylene. Thus, pure ethane cannot exist as a liquid at this temperature,
nor can mixtures very rich in ethane. As a result, we see the bubble point and dew point
curves join—not at pure ethane (as on the T = 261 K isotherm), but rather at an ethane
mole fraction of 0.93. That is, at T = 311 K, both vapor and liquid can exist for ethane
mole fractions in the range of 0 to 0.93, but at higher ethane mole fractions only a vapor
is present, even at very high pressures. The point at which the bubble and dew curves
intersect,

xC2H6 = 0.93
T = 311 K
P = 49.8 bar

is one critical point for the ethane-propylene mixture.
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The highest temperature isotherm in the figure, 344.3 K, is well above Tc of ethane,
so only liquids dilute in ethane are possible. Indeed, here we see that the bubble and
dew point curves intersect at

xC2H6 = 0.35
T = 344.3 K
P = 48.6 bar

which is another critical point of the ethane-propylene mixture. As should be evident
from this discussion, there is not a single critical point for a mixture, but rather a range
of critical points at a different temperature and pressure for each composition.
In Fig. 10.3-2 we have plotted, for various fixed compositions, the bubble and dew

point pressures of this mixture as a function of temperature. The leftmost curve in this
figure is the vapor pressure of pure ethane as a function of temperature, terminating
in the critical point of ethane (for a pure component, the coexisting vapor and liquid
are necessarily of the same composition, so the bubble and dew pressures are identi-
cal and equal to the vapor pressure). Similarly, the rightmost curve is the vapor pres-
sure of pure propylene, terminating at the propylene critical point. The intermediate
curves (loops) are the bubble and dew point curves relating temperature and pressure
for various fixed compositions. Finally, there is a line in Fig. 10.3-2 connecting the
critical points of the mixtures of various compositions; this line is the critical locus of
ethane-propylene mixtures.
High-pressure phase equilibria can be much more complicated than the cases shown

in Figs. 10.3-1 and 10.3-2, especially for mixtures containing dissimilar components—
for example, either water or carbon dioxide with hydrocarbons or oxygenated hydro-
carbons. Examples of the pressure-temperature (P -T ) projections of the various types
of critical loci that have been observed for binary mixtures are shown in Fig. 10.3-3.
When looking at these examples, remember that there are three independent variables
(temperature, pressure, and the composition of one of the species), so that these figures
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Figure 10.3-3 The six general categories of P-T projections of phase equilibrium lines of binary
mixtures. In each case— is a pure component vapor pressure line; – – – is a binarymixture vapor-
liquid or liquid-liquid critical line; and – - – is a mixture three-phase line (VLL in a–e, SLV in f).
[Adapted from M. E. Paulaitis, V. J. Krukonis, R. T. Kurnick, and R. C. Reid, Rev. Chem. Eng.,
1, 179 (1983). Used with permission.]

are two-dimensional projections of surfaces in a three-dimensional figure. Thus, the
mixture composition, which is not shown, varies along each of these critical lines.
The critical locus in Figure 10.3-3a is very much like that for the ethane-propylene

system in Fig. 10.3-2; this is referred to as category I phase behavior. For such sys-
tems the critical line starts at the critical point of pure component 1 (C1), and as the
mixture becomes richer in the second component, the critical line goes smoothly to the
critical point C2.
Category II behavior, an example of which is shown in Fig.10.3-3b, is slightly more

complicated in that at low temperatures and high pressures there is a region of liquid-
liquid equilibrium (LLE), whereas at low temperatures and low pressures there is a
region where three phases, two liquids (of differing composition) and a vapor, are all
in equilibrium (VLLE). Consequently, there are two sets of critical lines in a category
II system: one for vapor-liquid behavior of the type we have already considered, and
another that begins as a liquid-liquid-vapor line at low pressures and becomes a liquid-
liquid critical line at high pressures, terminating at the highest temperature at which
liquid-liquid equilibrium exists. This temperature is the upper critical solution tem-
perature and will be considered in detail in Sec. 11.2. Figure 10.3-3b is an example
of category II phase behavior. At very high pressures, usually beyond the range of in-
terest to chemical engineers, the liquid-liquid equilibrium line intersects a region of
solid-liquid-liquid equilibrium (SLLE). This is not shown in Fig. 10.3-3b.
Category III phase behavior, shown in Fig. 10.3-3c, is similar to category II be-

havior, except that the region of liquid-liquid-vapor equilibrium occurs at higher tem-
peratures and, as the composition varies, intersects the vapor-liquid critical curve at a
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critical end point K. Thus, there is one vapor-liquid critical line originating at com-
ponent 1 (C1) and terminating at the critical end point, and a second starting at C2 that
merges smoothly into the liquid-liquid equilibrium line at high pressures.
Category V phase behavior, shown in Fig 10.3-3e, is similar to category III behavior,

except that the critical line starting at component 2 intersects the liquid-liquid-vapor
three-phase region at a lower critical end point L. Note that there is no region of LLE
in a category V system and there are two critical end points (K and L) of the three-phase
region.
Category IV phase behavior, shown in Fig. 10.3-3d, has two regions of liquid-liquid-

vapor equilibrium. The low-temperature VLLE region exhibits category II behavior,
whereas the higher-temperature VLLE region behaves like a category V system.
Category VI phase behavior, shown in Fig. 10.3-3f, occurs with components that are

so dissimilar that component 2 has a melting or triple point (M2) that is well above
the critical temperature of component 1. In this case there are two regions of solid-
liquid-vapor equilibrium (SLVE). One starts at the triple point of pure component 2
(M2) and intersects the liquid-vapor critical line at the upper critical end point U.
The second solid-liquid-vapor critical line starts below the melting point M2 and in-
tersects the vapor-liquid critical line starting at component 1 at the lower critical end
point L. Between the lower and upper critical points only solid-vapor (or solid-fluid)
equilibrium exists.
A detailed analysis of the complicated phase behavior of Fig. 10.3-3 is beyond the

scope of this textbook, but can be found in the book by Rowlinson and Swinton.9 It is
useful to note that the types of phase behavior discussed here can be predicted using
equations of state, though we will restrict our attention largely to category I systems,
which are the most common.

Measurement
of high-pressure
vapor-liquid equilibria

The measurement techniques used at high pressure are similar in principle to those
used at low pressure, but different in practice since leakproof metal tubing, fittings, and
equilibrium cells (frequently with sapphire windows to enable one to see inside the
cell) are used. Also, circulation of the vapor, liquid, or both to ensure that there is good
contact between the phases and that equilibrium is obtained is usually done by pumps,
rather than by heating to promote boiling, as is the case at low pressures. One example
of a high-pressure dynamic VLE cell is shown in Fig. 10.3-4.
A static cell apparatus could also be used to measure high-pressure vapor-liquid equi-

librium. Schematically, the equipment would look similar to that in Fig. 10.2-9, except
that the glass flasks would be replaced with metal vessels.
We now turn from the qualitative description of high-pressure phase equilibria and

its measurement to the quantitative description, that is, to the correlation or predic-
tion of vapor-liquid equilibrium for hydrocarbon (and light gas) systems, of which the
ethane-propylene system is merely one example. Our interest will be only in systems
describable by a single equation of state for both the vapor and liquid phases, as the
case in which the liquid is described by an activity coefficient model was considered in
the previous section.
The starting point for any phase equilibrium calculation is, of course, the equality of

fugacities of each species in each phase, that is,

Starting point for all
phase equilibrium
calculations

fL
i (T,P, x) = fV

i (T,P, y) (10.3-1)

9J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed., Butterworths, London (1982),
Chapter 6.
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and T are ports for pressure and temperature measurement, respectively.

Here, however, we will use an equation of state to calculate species fugacities in both
phases. For example, when using the Peng-Robinson equation of state, Eq. 9.4-10 is
used to compute the fugacity of a species in the vapor phase and Eq. 9.4-11 for the liquid
phase (of course, with the composition and compressibility appropriate to each phase).
Phase equilibrium calculations with equations of state are iterative and sufficiently

complicated to be best done on a digital computer. Consider, for example, the calcula-
tion of the bubble point pressure and vapor composition for a liquid of known compo-
sition at temperature T . One would need to make an initial guess for the bubble point
pressure, PB , and the vapor mole fractions (or, perhaps more easily, for the values of
Ki = yi/xi), and then check to ensure that

∑
yi = 1 and that the equality of species

fugacities (Eq. 10.3-1) are satisfied for each species with the fugacities calculated from
the equation of state. If these restrictions are not satisfied, the pressure and Ki values
must be adjusted and the calculation repeated. A flow diagram for one algorithm for
solving this problem is given in Fig. 10.3-5.
The initial guesses for the bubble point pressure PB and for the Ki = yi/xi values

for all species in the mixture do not affect the final solution to the problem, but may
influence the number of iterations required to obtain the solution. One possible set of
initial guesses is obtained by assuming ideal liquid and vapor mixtures so that

PB =
∑

xiP
vap
i (T ) (10.3-2)

and

Ki =
yi

xi

=
P vap

i (T )
PB

(10.3-3)

where the pure component vapor pressure can be estimated using the Antoine equation,
Eq. 7.7-8, with parameters for the fluid of interest, or by using the equation of state as
described in Sec. 7.5.
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Figure 10.3-5 Flow diagram of an algorithm for the bubble point pressure
calculation using an equation of state.

Although the algorithm described in Fig. 10.3-5 is specific to the computation of
the bubble point pressure, slight changes make it applicable to other phase equilibrium
calculations. For example, by specifying P and replacing PB = PB

∑
y′

i in the it-
eration sequence by TB = TB/

∑
y′

i, an algorithm for the bubble point temperature
calculation at fixed pressure is obtained. It is only slightly more difficult to change the
calculational procedure so that the dew point pressure or temperature calculations can
be made; this is left to you (Problem 10.3-5).
We consider only one additional type of phase equilibrium calculation here, the

isothermal flash calculation discussed in Sec. 10.1. In this calculation one needs to
satisfy the equality of species fugacities relation (Eq. 10.3-1) as in other phase equilib-
rium calculations and also the mass balances (based on 1 mole of feed of mole fractions
zi,F) discussed earlier,

xiL + yiV = zi,F i = 1, 2, . . . , C (10.1-17)

L + V = 1 (10.1-18)
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and the summation conditions (Eqs. 10.1-5 and 10.1-6)∑
xi = 1 and

∑
yi = 1 (10.3-4)

In this calculation, T and P are known, but the liquid-phase mole fractions (xi), the
vapor-phase mole fractions (yi), and the liquid-to-vapor split (L/V ) are unknowns.
An algorithm for solving the flash problem is given in Fig. 10.3-6. It is based on mak-

ing initial guesses for the equilibrium ratios Ki = yi/xi (see Eq. 10.3-3) and for the
fraction of liquid, L, and using the following equations obtained by simple rearrange-
ment:

xi =
zi,F

L + Ki(1 − L)
(10.3-5)

yi = Kixi

Guess set of Ki = yi /xi

(i = 1, 2, . . ., C)
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Figure 10.3-6 Flow diagram of an algorithm for the isothermal flash
calculation using an equation of state.
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Furthermore, from Eqs. 10.3-4, we have∑
i=1

xi =
∑ zi,F

L + Ki(1 − L)
= 1 (10.3-6a)

and

∑
i=1

yi =
∑
i=1

Kizi,F

L + Ki(1 − L)
= 1 (10.3-6b)

or equivalently,

∑
i=1

xi −
∑
i=1

yi =
∑
i=1

(1 − Ki)zi,F

L + Ki(1 − L)
= 0 (10.3-6c)

It is Eqs. 10.3-5 and 10.3-6 that are used in the algorithm of Fig. 10.3-5. Com-
puter programs andMATHCADworksheets for bubble point temperature, bubble point
pressure, dew point temperature, dew point pressure, and isothermal flash calculations
using the Peng-Robinson equation of state with generalized parameters (Eqs. 6.7-1
to 6.7-4), and the van der Waals one-fluid mixing rules (Eqs. 9.4-8 and 9.4-9) are
discussed in Appendix B on the website for this book. Alternatively, Aspen Plus R©
can be used.
Now that the manner in which phase equilibrium calculations can be performed using

equations of state has been discussed, we are in a position to consider the accuracy of
such calculations. To begin, we again consider the ethane-propylene data in Fig. 10.3-1
using the isothermal flash algorithm, the Peng-Robinson equation of state, and the van
derWaals one-fluidmixing rules (Eqs. 9.4-8 and 9.4-9), and setting the single adjustable
parameter in the calculation, the binary interaction parameter kij in

Binary interaction
parameter kij

aij =
√

aiiajj(1 − kij) (10.3-7)

equal to zero (so that, in fact, there are no adjustable parameters). Using the Peng-
Robinson equation-of-state programs or MATHCAD worksheets discussed in
Appendix B, or Aspen Plus R©, the results indicated by the dashed lines in Fig. 10.3-1
are obtained. As can be seen in that figure, the predicted results are in excellent agree-
ment with experiment. Furthermore, from the equation-of-state description, we get not
only the compositions of the coexisting phases but also good estimates of the com-
pressibilities or densities. Also, starting from Eqs. 6.4-27 and 6.4-28 and using the
Peng-Robinson equation of state, one can show (Problem 10.3-4) that

H(T,P, x) − H IGM(T,P, x) = RT (Zmix − 1)

+
T

(
damix

dT

)
− amix

2
√

2bmix

ln

[
Zmix +

(
1 +

√
2
)
Bmix

Zmix +
(
1 −

√
2
)
Bmix

]

(10.3-8a)
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and

S(T,P, x) − SIGM(T,P, x) = R ln(Zmix − Bmix)

+

(
damix

dT

)
2
√

2bmix

ln

[
Zmix +

(
1 +

√
2
)
Bmix

Zmix +
(
1 −

√
2
)
Bmix

]

(10.3-8b)

where the subscript mix denotes a mixture property;B = bP/RT ; andH IGM(T,P, x)
and SIGM(T,P, x) are the ideal gas mixture enthalpy and entropy, respectively, at the
conditions of interest. Therefore, we can also compute the enthalpy and entropy of the
vapor and liquid phases.
This example shows the real power of the equation-of-state description in that starting

with relatively little information (Tc, Pc, and ω of the pure components), we can obtain
the phase equilibrium, phase densities, and other thermodynamic properties.
In the ethane-propylene system calculation just described, we have used no adjustable

parameters. A careful examination of the results shows that the predicted compositions
of ethane in the liquid are systematically approximately 0.01 mole fraction too high.
These predictions can be improved by using a regression procedure with the experi-
mental data and the Peng-Robinson equation of state. Such detailed calculations have
shown that setting kij = 0.011 in Eq. 10.3-7 improves the accuracy of the predictions,
although this improvement would be barely visible on the scale of Fig. 10.3-1, and
therefore is not shown. For other systems, containing species much more dissimilar in
size and in types of molecular interactions, the importance of the binary interaction
parameter kij is more apparent. This is evident in Fig. 10.3-7, which contains experi-
mental vapor-liquid equilibrium data for the carbon dioxide–isopentane system at two
temperatures, together with predictions (setting kij = 0) and correlations (regression
of data to obtain kij = 0.121) using the Peng-Robinson equation of state. There we
see that the predictions made with the binary interaction parameter equal to zero are
not nearly as good as those with kij = 0.121. Therefore, in engineering applications,
at least one experimental data point is needed, so that a value of kij can be obtained;
better still is to have several data points and choose the binary interaction parameter to
give an optimum fit of all the data points. The binary interaction parameters given in
Table 9.4-1 were obtained by such a regression procedure.
Although the discussion so far has been concerned with binary mixtures, the calcula-

tional procedures described here are applicable to all multicomponent mixtures. How-
ever, for accurate predictions in this case one needs a value of the interaction parameter
for each binary pair in the mixture.
As a further example of the complicated and unusual behavior that is possible in

binary and multicomponent mixtures at high pressures, consider the vapor-liquid equi-
librium for the ethane–n-heptane system shown in Fig. 10.3-8. The leftmost curve in
this figure is the vapor-pressure line as a function of temperature for pure ethane, and
the rightmost curve is the vapor-pressure curve for n-heptane. Between the two are the
bubble point and dew point curves for a mixture at the constant composition of 58.71
mol % ethane. The bubble point curve is the locus of pairs of temperatures and pres-
sures at which the first bubble of vapor will appear in a liquid of xC2H6 = 0.5871.
(Note that the composition of this coexisting vapor cannot be found from the informa-
tion in the figure. Why?) Similarly, the dew point curve is the locus of temperature-
pressure pairs at which the first drop of liquid appears in a vapor of yC2H6 = 0.5871.
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Figure 10.3-7 Vapor-liquid equilibrium of the carbon dioxide (1)–isopentane (2) system. The
experimental data of G. J. Besserer and D. B. Robinson [J. Chem. Eng. Data, 20, 93 (1976)]
are shown at 277.59 K (▼ = liquid and ▲ = vapor) and 377.65 K (● = liquid and ■ = vapor).
The dashed curves are the predictions using the Peng-Robinson equation of state and the van der
Waals mixing rule with k12 = 0, and the solid lines are the correlation using the same equation
of state with k12 = 0.121. The points ◦ and �
 are the estimated mixture critical points at 377.65
K using the same equation of state with k12 = 0 and 0.121, respectively.

(Again, the composition of the coexisting liquid cannot be found from this figure.) This
figure shows how the bubble point temperature and dew point temperature change as a
function of pressure for a mixture of fixed composition.
A number of interesting features are apparent from Fig. 10.3-8. First, the critical

point of the mixture, which is the intersection of the bubble point and dew point curves
(indicated by ●), is intermediate in temperature, but at a much higher pressure than
the critical points of the pure components (also denoted by filled circles). Second, the
critical point for the xC2H6 = 0.5871mixture is neither the highest temperature nor the
highest pressure along the phase boundary where the vapor and liquid coexist. The point
of maximum pressure along the phase boundary (indicated by ■) is referred to as the
cricondenbar, and the point of maximum temperature (denoted by �
) is called the
cricondentherm.
Next note that if one has a vapor at yC2H6 = 0.5871, P = 70 bar, and T = 475 K

(denoted by point a) and cools it at a constant pressure (following the line ----), first
the dew point curve is intersected and a drop of liquid forms. Further cooling produces
additional liquid, so that both the vapor and liquid will differ from the starting compo-
sition. Finally, at about T = 408 K, the last bit of vapor condenses, and a liquid with
xC2H6 = 0.5871 is obtained. This is usual phase equilibrium behavior.
However, starting with a fluid of ethane mole fraction 0.5871, P = 78 bar, and tem-

perature about 455 K (point b), which is above the critical point at this composition,
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Figure 10.3-8 Vapor-liquid equilibrium for pure ethane, pure n-heptane (solid lines), and a mix-
ture of fixed composition of 58.71 mol % ethane (dashed curve) as a function of temperature and
pressure. [Data of W. B. Kay, Ind. Eng. Chem., 30, 459 (1938).] The symbols ● denote critical
points, ■ is the cricondenbar, and �
 is the cricondentherm.

and cooling at constant pressure, the bubble point curve is intersected. Consequently,
the initial mixture was a liquid, and, at the bubble point curve, the first bubble of va-
por is produced. Reducing the temperature still further produces more vapor, until a
temperature of approximately 445 K is reached. On further cooling, some of this vapor
condenses until, at approximately T = 433 K, all the vapor is condensed and the bub-
ble point curve is crossed again into the region of all liquid. Vapor-liquid behavior such
as this, in which, on traversing a path of either constant temperature or constant pres-
sure, a phase first appears and then disappears so that the initial phase is again obtained,
is referred to as retrograde behavior.
Another example of retrograde behavior occurs when one starts with the vapor at

point a and reduces the pressure at constant temperature (following the line — - —).
At 70 bar, the dew point curve is intersected, and a liquid appears. Further reductions in
pressure first produce more liquid, but this liquid then begins to vaporize as the pressure
decreases further. At about P = 34.5 bar, all the liquid vaporizes, as the dew point
curve is crossed again. The behavior of an isotherm passing through two dew points is
known as retrograde behavior of the first kind. Less common is an isotherm passing
through two bubble points; this is referred to as retrograde behavior of the second
kind. For such behavior to be observed, the mixture critical point must appear after
both the cricondenbar and cricondentherm as one follows the phase boundary from the
bubble point curve to the dew point curve.
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(Question: The critical point may appear before both the cricondenbar and the cricon-
dentherm, between them, or after both as one goes from the bubble point to the dew
point curve. Sketch each of these phase boundaries, and discuss the type of retrograde
behavior that will be observed in each case.)
Equations of state do predict retrograde behavior. However, since simple cubic equa-

tions, such as the Peng-Robinson equation used for illustration in this section, are not
accurate in the critical region, retrograde predictions may not be of high accuracy.
More complicated, multiterm equations of state are needed for reasonably accurate
description of the critical region and retrograde behavior.
We note from Figures 10.3-2 and 10.3-3 that the shapes of the critical loci of mixtures

are complicated and that, in general, the critical temperature and/or pressure of a binary
mixture is not intermediate to those properties of the pure fluids. It is of interest to note
that, in analogy with the properties of a pure fluid, a pseudocritical point of a mixture
of a fixed composition is defined by the mechanical stability inflection point,(

∂P

∂V

)
T,x

=
(

∂2P

∂V 2

)
T,x

= 0

However, unlike the case for the pure fluid, this inflection point is not the real mixture
critical point. The mixture critical point is the point of intersection of the dew point
and bubble point curves, and this must be determined from phase equilibrium calcula-
tions, more complicated mixture stability conditions, or experiment, not simply from
the criterion for mechanical stability as for a pure fluid.
We close this section by considering the application of equations of state to highly

nonideal, polar mixtures. It is only recently, and by the use of combined equation-of-
state–excess Gibbs energy models such as those described in Sec. 9.9, that it has been
possible to use the equations of state for highly nonideal mixtures containing polar
fluids. The procedures are similar to those used in other equation-of-state calculations
as described earlier in this section, with the following changes. First, instead of using
the generalized expression for the equation-of-state a parameter, Eq. 6.7-4, developed
for hydrocarbons, Eqs. 7.5-1 and 7.5-2 should be used with the value of the parameter
κ1 fit to the vapor pressure for each pure compound. This is necessary to ensure that
the pure component vapor pressures are correct. Second, one has to choose an activity
coefficient model to be used for Gex in the mixing rule of Eq. 9.9-9.
How one proceeds thereafter depends on the type of calculations in which one is

interested. The following possibilities exist.

1. One can use the model in a completely correlative manner to fit vapor-liquid equi-
librium data over a large range of temperatures and pressures using the parame-
ters in the Gex expression and kij of Eq. 9.9-10 as adjustable parameters. This is
demonstrated in Fig. 10.3-9 for the water-acetone mixture using the NRTL ex-
pression (Eqs. 9.5-13 and 9.5-14) for Gex, setting α = 0.35, and fitting τ12, τ21,
and k12 to each isothermal data set.

2. Since it has been found that the parameters in the equation-of-state + Gex model
discussed in Sec. 9.9 are essentially independent of temperature, the model can be
used to fit data at low temperatures, again by adjusting theGex and kij parameters,
and then to make predictions at much higher temperatures and pressures, even
temperatures that are 100 or 200◦Chigher than the fitted experimental data. This is
demonstrated in Fig. 10.3-10, again for the water-acetone system. In this case, the
NRTL model was used with α = 0.35 and τ12, τ21, and k12 fit to the 298 K data,
and the vapor-liquid equilibrium behavior at all other temperatures predicted.



10.3 High-Pressure Vapor-Liquid Equilibria Using Equations of State (φ-φ Method) 591

523 K

423 K

P
re

ss
ur

e,
 b

ar

298 K

0.0 0.1 0.2 0.3 0.4 0.5

Mole fraction acetone

0.6 0.7 0.8 0.9 1.0

1

0.5

0.4

0.3

0.2

10

100

5

4

3

2

50

40

30

20

0.1

0.05

0.04

0.03

0.02

Figure 10.3-9 Vapor-liquid equilibria of the acetone + water binary mixture correlated using
the combination of the Peng-Robinson equation of state, the Wong-Sandler mixing rule, and the
NRTL activity coefficient model. The three parameters in this model have been fit to data for
each isotherm.

3. An important characteristic of the mixing rule in Sec. 9.9 is that parameters ob-
tained from the direct (γ-φ) correlation of vapor-liquid equilibrium data (as was
done in Sec. 10.2) can be used in the mixing rule. Thus, all the activity coefficient
model parameters reported, for example, in the vapor-liquid equilibrium collec-
tion of the DECHEMA Chemistry Data Series10 can be used in the mixing rule
without additional correlation of the vapor-liquid equilibrium data. Then only the
binary parameter kij needs to be obtained, and this is done by adjusting its value
so that the Gex predicted by the equation-of-state + Gibbs energy model is as
close as possible to the excess Gibbs energy at either a single data point (prefer-
ably near the midpoint in the composition range) or over the whole composition
range along a single isotherm or isobar. Once this is done, the phase behavior
at other temperatures and pressures can be predicted with reasonable accuracy,

10DECHEMA, Frankfurt, Germany (volumes appearing regularly from 1977 onward). Data can also be obtained
using the NIST TDE (Thermodynamic Data Engine) in Aspen Plus R©.
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Figure 10.3-10 Vapor-liquid equilibria of the acetone-water binary mixture. The combination
of the Peng-Robinson equation of state, the Wong-Sandler mixing rule, and the NRTL model fit
to the experimental data at 298 K was used to obtain the model parameters. The solid lines at the
higher temperatures are predictions using these parameters.

as demonstrated in Fig. 10.3-11 for the water-acetone mixture. Here the NRTL
parameters reported in DECHEMA for 298 K were used to predict the behavior
at all temperatures.

4. Finally, the mixing rule of Sec. 9.9 can be used to make phase equilibrium pre-
dictions even in the absence of experimental data by combining an equation of
state with the UNIFAC group contribution model of Sec. 9.6. There are a number
of ways in which this can be done. Perhaps the simplest is to use the UNIFAC
model at some convenient temperature, for example, at 25◦C, to predict the two
infinite-dilution activity coefficients in a binary mixture and also the value of Gex

at x1 = 0.5. Next, the two parameters in the UNIQUAC model of Eqs. 9.5-19
to 9.5-23 (which is algebraically equivalent to the UNIFAC model but simpler to
use because molecules rather than functional groups are involved) are adjusted
to give the same infinite-dilution coefficients. Finally, this UNIQUAC model is
used in the mixing rule of Sec. 9.9 and the value of kij adjusted to reproduce the
previously calculated value of Gex(x1 = 0.5). With the parameters determined
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Figure 10.3-11 Vapor-liquid equilibria of the acetone + water binary mixture predicted using
the combination of the Peng-Robinson equation of state, the Wong-Sandler mixing rule, and the
NRTL model with parameters reported in the DECHEMA chemistry data series.

in this way, predictions can be made at all other temperatures and pressures. This
is shown in Fig. 10.3-12 for the acetone-water mixture.

The method just described is probably the simplest and most accurate extension of
the UNIFAC prediction method to high temperatures and pressures. However, it is ac-
curate only if the UNIFAC predictions (made by the direct activity coefficient or γ-φ
method) for this system are accurate. If this is not the case, then the combination of the
UNIFACmodel with an equation of state as described here will also be inaccurate. That
is, combining the UNIFAC model with an equation of state (the φ-φ method) does not
improve its accuracy, but merely extends its range of applicability.
It should be pointed out that the results in Figs. 10.3-8 to 10.3-11 are examples of

a successful application of the mixing rule of Sec. 9.9 to highly nonideal systems.
For comparison, we show in Fig. 10.3-13 the results that would be obtained for the
acetone-water system using the van der Waals one-fluid mixing rule, Eqs. 9.4-8 and
9.4-9, with the binary parameter k12 fit to the 298 K isotherm; the results in the fig-
ure at higher temperatures are predictions. Note that both the correlation at 298 K and
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Figure 10.3-12 Vapor-liquid equilibria of the acetone-water binary mixture predicted using the
combination of the Peng-Robinson equation of state, the Wong-Sandler mixing rule, and the
UNIQUAC activity coefficient model with parameters obtained from the predictive UNIFAC
model at 25◦C.

predictions at higher temperatures with the van der Waals mixing rule are not very
good. In particular, the correlation at 298 K gives a false liquid-liquid phase separation
or phase split (seen as a local maximum in pressure as a function of composition in
the low acetone concentration range; liquid-liquid phase equilibria will be discussed in
Sec. 11.2) and fails to properly represent the pressure versus composition behavior at
all temperatures.
The dashed lines in the figure are the predictions at all temperatures for the acetone-

water system that result from setting the binary parameter k12 equal to zero. Note that
very nonideal behavior is predicted, which shows that setting k12 = 0 is not equivalent
to assuming ideal solution behavior. In fact, such extreme nonideal behavior is predicted
that vapor-liquid equilibrium calculations made with the program VLMU do not even
converge for acetone mole fractions less than about 0.15.
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PROBLEMS FOR SECTION 10.3
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Figure 10.3-13 Vapor-liquid equilibria of the acetone-water
binary mixture described by the Peng-Robinson equation of
state and the van der Waals one-fluid mixing rules. The solid
lines result from the value of the binary parameter kij being fit
to the data at 298 K. The dotted lines are the highly nonideal
(and unrealistic) behavior predicted by setting kij = 0.

All problems in this section, except for Problems
10.3-4 and 10.3-11, can be solved using the Peng-
Robinson equation-of-state programs for mixtures
discussed in Appendix B and on the website for this
book.

10.3-1 The following mixture of hydrocarbons occurs in
petroleum processing.

Component Mole Percent

Ethane 5
Propane 57
n-Butane 38

Estimate the bubble point temperature and the com-
position of the coexisting vapor for this mixture at
all pressures above 1 bar.

10.3-2 Estimate the dew point temperature and the compo-
sition of the coexisting liquid for the mixture in the
previous problem at all pressures above 1 bar.

10.3-3 A liquid mixture of the composition given in Prob-
lem 10.3-1 is to be flashed at P = 20 bar and a col-
lection of temperatures between the bubble point
temperature and the dew point temperature. Deter-
mine the compositions of the coexisting vapor and
liquid, and the vapor-liquid equilibrium split for sev-
eral temperatures in this range.

10.3-4 Derive Eqs. 10.3-8.
10.3-5 a. Develop an algorithm for the equation-of-state

prediction of the dew point pressure.
b. Develop an algorithm for the equation-of-state

prediction of the dew point temperature.
10.3-6 a. For the adiabatic, steady-flow flash process from

specified initial conditions of T1 and P1 to a
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specified final pressure P2 shown here, develop
the equilibrium and balance equations to com-
pute the final temperature, the vapor-liquid split,
and the compositions of the coexisting phases.

b. Develop an algorithm for the calculation of part
(a) using an equation of state.

c. Use the Peng-Robinson equation of state for a
multicomponent mixture to do the calculations
for an adiabatic (Joule-Thomson) expansion of
a liquid under pressure to produce a vapor-liquid
mixture at ambient pressure. The results should
include the outlet temperature, the mole fractions
of each species in each phase, and the fractions
of the outlet stream that are liquid and vapor.

T1, P1

T2 = ?

Vapor

Liquid
Liquid

P2

10.3-7 a. Make the best estimate you can of the compo-
sition of the vapor in equilibrium with a liquid
containing 30.3 mol % ethane and 69.7 mol %
ethylene at −0.01◦C. Compare your results with
the experimental data in the table.

b. Repeat the calculation in part (a) at other com-
positions for which the experimental data below
are available.

Mole Percent of Ethane

Liquid Vapor Pressure (bar)

7.8 6.2 39.73
22.8 19.7 37.07
30.3 25.5 35.60
59.0 53.1 32.13
89.0 85.4 25.45

10.3-8 Vapor-liquid equilibria in petroleum technology are
usually expressed in terms of K factors Ki = yi/xi,
where yi and xi are the mole fractions of species
i in the vapor and liquid phases, respectively. Esti-
mate the K values for methane and benzene in the
benzene-methane system at 300 K and a total pres-
sure of 30 bar.

10.3-9 In a petroleum refinery an equimolar stream con-
taining propane and n-butane is fed to a flash sep-
arator operating at 40◦C. Determine the pressure
at which this separator should be operated so that
an equal number of moles of liquid and vapor are
produced.

10.3-10 A storage tank is known to contain the following
mixture at 45◦C and 15 bar:

Species Overall Mole Fraction

Ethane 0.31
Propane 0.34
n-Butane 0.21
i-Butane 0.14

What is the composition of the coexisting vapor
and liquid phases, and what fraction (by moles) of
the contents of the tank is liquid?

10.3-11 Use the Peng-Robinson equation of state for a mul-
ticomponent mixture to do the calculations for an
isentropic expansion of a liquid under pressure to
produce a vapor-liquid mixture at ambient pres-
sure. The output results should include the outlet
temperature, the mole fractions of each species in
each phase, and the fractions of the outlet stream
that are liquid and vapor.

10.3-12 The following vapor-liquid equilibrium data are
available for the system carbon dioxide (1) +
isobutane (2) at 273.15 K.

P (bar) x1 y1 P (bar) x1 y1

1.57 0.000 0.000 14.793 0.317 0.877
2.736 0.022 0.422 16.718 0.378 0.899
3.546 0.037 0.541 17.63 0.403 0.913
4.256 0.038 0.623 18.34 0.416 0.914
5.167 0.053 0.690 21.379 0.513 0.922
6.282 0.073 0.744 23.811 0.598 0.925
7.498 0.098 0.783 26.445 0.697 0.947
8.511 0.149 0.800 29.485 0.817 0.963
9.93 0.166 0.830 32.423 0.917 0.981

11.855 0.224 0.863 34.855 1.000 1.000

a. Find the value of the binary interaction parame-
ter in the Peng-Robinson equation of state with
the van der Waals one-fluid mixing rules that
best fits these data, and plot the correlated re-
sults and experimental data on the same graph.

b. Find the partition coefficients Ki = yi/xi from
both correlation and the experimental data for
each species as a function of pressure, and plot
all the partition coefficients as a function of
pressure on a single graph.

10.3-13 To evaluate the potential use of carbon dioxide in
tertiary oil recovery, it is necessary to estimate the
vapor-liquid equilibrium between carbon dioxide
and reservoir petroleum, which we will take to be
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n-hexane, at oil well conditions, typically 140 bar
and 75◦C. Make this estimate as best you can.

10.3-14 It is desired to produce a slightly oxygen-enriched
stream from air (79 mol % nitrogen, 21 mol %
oxygen) by starting with air initially at 100 K and
25 bar and flashing it to 1 bar. What will be the
temperature of the exiting vapor and liquid streams,
and the composition of each?

10.3-15 A mixture of carbon dioxide (40 mol %), methane
(40 mol %) and n-butane (20 mol %) at 300◦C
and 1 bar is compressed to compressed to 25 bar
in a compressor that has an isentropic efficiency
of 85%. The exiting stream is then adiabatically
expanded through a Joule-Thompson expansion
valve to 3 bar.
a. How much work is required in the compres-

sor and what is the temperature of the exiting
stream?

b. What is the temperature of the streams leav-
ing the expansion valve, what are the relative
amounts of the vapor and liquid streams, and
what are their compositions?

10.3-16 A mixture of n-butane (10 mol %), n-hexane
(40 mol %) and n-octane (50 mol %) at 298 K
and 1 bar is compressed to compressed to 30 bar
in a compressor that has an isentropic efficiency
of 85%. The exiting stream is then adiabatically
expanded through a Joule-Thompson expansion
valve to 2 bar.
a. How much work is required in the compres-

sor and what is the temperature of the exiting
stream?

b. What is the temperature of the streams leav-
ing the expansion valve, what are the relative
amounts of the vapor and liquid streams, and
what are their compositions?

c. Repeat the calculations above for an isentropic
compressor.

10.3-17 A gas stream of 70 mol % methane and 30 mol %
carbon dioxide is available 15 bar and 200 K. To
decrease the concentration of carbon dioxide in the
methane, the gas stream will be flashed by flow-
ing through an adiabatic valve to 1 bar. Compute
the temperature of the exiting streams and their
compositions.

10.3-18 A refrigerant stream containing 40 mol%
dichlorodifluoromethane (R12), 30 mol% 1,1,2,2
tetrafluoroethane (R134) and 1,1,1,2 tetrafluo-
roethane (R134a) at 20 bar and 25◦C is adiabat-
ically flashed to 1 bar. Compute the temperature
of the exiting streams, their compositions and their
relative amounts.

10.3-19 A 100◦C stream from a chemical reactor at 40 bar
contains hydrogen at a flowrate of 405 kmol/hr,

methane at 95 kmol/hr, benzene at also at a flowrate
of 95 kmol/hr and toluene at 5 kmol/hr. The stream
first undergoes an adiabatic flash to 35 bar, and the
vapor is separated from the liquid. The liquid then
undergoes a second adiabatic flash to 1 bar.
a. Compute the temperature, flowrates and com-

positions of the vapor and liquid streams leav-
ing the first flash unit.

b. Compute the temperature, flowrates and com-
positions of the vapor and liquid streams leav-
ing the second flash.

10.3-20 There is a mixture with an overall equimolar com-
position of methane, propane and n-hexane at
50 bar and 45◦C.
a. What are the relative amounts of vapor and liq-

uid, and the compositions of each of the phases?
b. The liquid part of this mixture is separated from

the vapor, and adiabatically flashed to 1 bar.
What is the temperature of the exiting stream,
the relative amounts of vapor and liquid, and the
compositions of each of the phases?

10.3-21 Predict the T-xy diagram for a mixture of carbon
dioxide and isopentane at 10 bar over the whole
concentration range. Does this mixture have an
azeotrope at this pressure?

10.3-22 Amethane (70mol%) + carbon dioxide (30mol%)
mixture at 200 K and 15 bar undergoes a Joule-
Thompson expansion to 1 bar. Determine the tem-
perature of the streams exiting the valve, the rel-
ative amounts of the vapor and liquid, and the
compositions of each phase.

10.3-23 An equimolar mixture of methane + and n-butane
at 50◦C and 1 bar in compressed to 25 bar in a com-
pressor that has an isentropic efficiency of 0.72,
is cooled back down to 50◦C, and then undergoes
a Joule-Thompson expansion to 2 bar. Determine
the temperature of the stream leaving the compres-
sor, of the streams exiting the valve, the relative
amounts of the vapor and liquid from the valve, and
the compositions of each.

10.3-24 An equimolar mixture of methane and propane
at −10◦C and 1 bar in compressed to 50 bar
in a isentropic compressor, cooled back down to
−10◦C, and then undergoes a Joule-Thompson ex-
pansion to 10 bar. Determine the temperature of the
stream leaving the compressor, of the streams ex-
iting the valve, the relative amounts of the vapor
and liquid from the valve, and the compositions
of each.

10.3-25 It is desired to remove some of the n-butane from
an equimolar mixture of n-butane and ethane, ini-
tially at 25◦C and 1 bar. The procedure that will
be used is to isentropically compress the mixture
to 25 bar, cool it to 250 K, and then adiabatically
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flash the mixture. Determine the temperature of the
stream leaving the compressor, of the streams ex-
iting the valve, the relative amounts of the vapor
and liquid from the valve, and the compositions
of each.

10.3-26 Redo Problem 10.3-1 using Aspen Plus R©.
10.3-27 Redo Problem 10.3-2 using Aspen Plus R©.
10.3-28 Redo Problem 10.3-3 using Aspen Plus R©.
10.3-29 Redo Problem 10.3-7 using Aspen Plus R©.

10.3-30 Redo Problem 10.3-8 using Aspen Plus R©.
10.3-31 Redo Problem 10.3-9 using Aspen Plus R©.
10.3-32 Redo Problem 10.3-12 using Aspen Plus R©.
10.3-33 A mixture of methane (40 mol %), propane

(20 mol %) and n-hexane (40 mol %) at 70◦C and
10 bar is adiabatically flashed to 1 bar. Determine
the temperature of streams exiting the valve, the
relative amounts of the vapor and liquid, and the
compositions of each.



Chapter 11

Other Types of Phase
Equilibria in
Fluid Mixtures

In this chapter we continue the discussion of fluid phase equilibria by considering ex-
amples other than vapor-liquid equilibria. These other types of phase behavior include
the solubility of a gas (a substance above its critical temperature) in a liquid, liquid-
liquid, and vapor-liquid-liquid equilibria; osmotic equilibria; and the distribution of a
liquid solute between two liquids (the basis for liquid extraction). In each of these cases
the starting point is the same: the equality of fugacities of each species in all the phases
in which it appears,

f I
i

(
T,P, xI

)
= f II

i

(
T,P, xII

)
= · · ·

The difference in the various cases to be considered is how the fugacity of each species
is computed, and this differs for vapor-liquid equilibrium, gas solubility, and liquid-
liquid equilibrium.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 11

The goals of this chapter are for the student to:

• Be able to compute the solubility of a gas in a liquid (Sec. 11.1)
• Be able to compute the compositions when two partially miscible liquids are mixed

(Sec. 11.2)
• Be able to compute the compositions when two partially miscible liquids and a

vapor are in equilibrium (Sec. 11.3)
• Be able to compute the distribution coefficient of a solute between two liquid

phases (Sec. 11.4)
• Be able to compute the osmotic pressure when a solute is dissolved in a solvent,

or to use such data to determine the molecular weight of a solute (Sec. 11.5)

599
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NOTATION INTRODUCED IN THIS CHAPTER

K Partition coefficient
KOW,i Octanol-water partition coefficient of species i

KC Concentration-based partition coefficient of species i
Kx Mole fraction–based partition coefficient of species i
T lc Lower consolute or lower critical solution temperature (K)
T uc Upper consolute or upper critical solution temperature (K)

x Set of liquid-phase mole fractions x1, x2, . . .
Π Osmotic pressure (kPa)

11.1 THE SOLUBILITY OF A GAS IN A LIQUID

In the study of the solubility of a gas in a liquid one is interested in the equilibrium when
the mixture temperature T is greater than the critical temperature of at least one of the
components in the mixture, the gas. If the mixture can be described by an equation of
state, no special difficulties are involved, and the calculations proceed as described in
Sec. 10.3. Indeed, a number of cases encountered in Sec. 10.3 were of this type (e.g.,
ethane in the ethane-propylene mixture at 344.3 K). Consequently, it is not necessary
to consider the equation-of-state description of gas solubility, as it is another type of
equation-of-state vapor-liquid equilibrium calculation, and the methods described in
Sec. 10.3 can be used.

However, the description of gas solubility using activity coefficient models does re-
quire some explanation, and this is what is discussed in this section. The activity coef-
ficient description is of interest because it is applicable to mixtures that are not easily
describable by an equation of state, and also because it may be possible to make sim-
ple gas solubility estimates using an activity coefficient model, whereas a computer
program is required for equation-of-state calculations.

To study the solubility of a gas in a liquid using an activity coefficient model we start
with the equilibrium relation

Starting point for all
phase equilibrium
calculations

fL
i (T,P, x) = fV

i (T,P, y) i = 1, 2, . . . (11.1-1)

which, after using the Lewis-Randall rule for the gas phase and the definition of the
activity coefficient, reduces to

xiγi(T,P, x)fL
i (T,P ) = yiP

(
f

P

)
i

(11.1-2)

The situation of interest here is when the mixture temperature T is greater than the
critical temperature of one of the components, say component 1 (i.e., T > Tc,1), so that
this species exists only as a gas in the pure component state. In this case the evaluation
of the liquid-phase properties for this species, such as fL

1 (T,P ) and γ1(T,P, x), is not
straightforward. (It is this complication that distinguishes gas solubility problems from
those of vapor-liquid equilibrium, which were considered in Chapter 10.) We will refer
to species that are in the liquid phase above their critical temperatures as the solutes.
For those species below their critical temperatures, which we designate as the solvents,
Eq. 11.1-2 is used just as in Sec. 10.2.

If the temperature of the mixture is only slightly greater than the critical temper-
ature of the gaseous (solute) species, the (hypothetical) pure component liquid-phase
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Figure 11.1-1 Extrapolated liquid-
phase fugacity coefficients at 1.013
bar as a function of reduced tempera-
ture. [This figure originally appeared
in J. M. Prausnitz and F. H. Shair,
AIChE J., 7, 682 (1961). It appears
here courtesy of the copyright own-
ers, the American Institute of Chem-
ical Engineers.]

fugacity fL
i (T,P ) can be computed using the fugacity extrapolation scheme for non-

simple mixtures discussed in Sec. 9.7. In this case, the gas solubility problem is just like
the vapor-liquid equilibrium problem of Sec. 10.2 and is treated in the same manner.

However, if the temperature of the mixture is well above Tc,1, the evaluation of
fL
1 (T,P ) is more troublesome. A number of different procedures for estimating this

hypothetical liquid fugacity have been proposed. Prausnitz and Shair1 have suggested
that the simple, approximate corresponding-states correlation of Fig. 11.1-1 be used to
evaluate the liquid fugacity at 1.013 bar total pressure, that is, fL

1 (T,P = 1.013 bar).
To compute the hypothetical liquid-phase fugacity at any other pressure, a Poynting
pressure correction is made to the value at 1.013 bar as follows:

fL
1 (T,P ) = fL

1 (T,P = 1.013 bar) exp
[∫ P

1.013 bar

V L
1

RT
dP

]

∼= fL
1 (T,P = 1.013 bar) exp

[
V L

1 (P − 1.013 bar)
RT

] (11.1-3)

Equation 11.1-3 introduces another unknown quantity, the molar volume of the hypo-
thetical liquid. These values have been tabulated by Prausnitz and Shair, and are given
in Table 11.1-1.

The question of evaluating the liquid-phase activity coefficient of the solute species
still remains. Although experimental data for γ1 would be preferable, such data may not
be available. Consequently, various liquid solution models and correlations are used. If
the regular solution model is used, we have

ln γ1(x1) =
V L

1Φ2
2(δ1 − δ2)2

RT
(11.1-4a)

1J. M. Prausnitz and F. H. Shair, AIChE J., 7, 682 (1961); also, J. M. Prausnitz, R. N. Lichtenthaler, and E. G.
Azevedo, Molecular Thermodynamics of Fluid Phase Equilibrium, 2nd ed., Prentice Hall, Englewood Cliffs, N.J.
(1986), p. 392ff.
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Table 11.1-1 “Liquid” Volumes and Solubility
Parameters for Gaseous Solutes
at 25◦C

Gas V L (cc/mol) δ (cal/cc)1/2

N2 32.4 2.58
CO 32.1 3.13
O2 33.0 4.0
Ar 57.1 5.33
CH4 52 5.68
CO2 55 6.0
Kr 65 6.4
C2H4 65 6.6
C2H6 70 6.6
Cl2 74 8.7

Source: This table originally appeared in J. M. Prausnitz
and F. H. Shair, AIChE J., 7, 682 (1961). It appears here
courtesy of the copyright owners, the American Institute
of Chemical Engineers.

for pure solvents, and

ln γ1(x1) =
V L

1 (δ1 − δ)2

RT
(11.1-4b)

with

δ =
∑

j

Φjδj and Φj =
xjV

L
j∑

i

xiV
L
i

for mixed solvents. The Prausnitz and Shair estimates for the solubility parameters
of the hypothetical liquids of several common gases at 25◦C are also given in Table
11.1-1. (It is interesting to note that the values of this parameter for the hypotheti-
cal liquids at 25◦C are quite different from those for the real liquids at 90 K given in
Table 9.6-1.) Of course, any other solution model for which the necessary parameters
are available can be used to evaluate γ1. (However, as the UNIFAC model, as presented
in this book, is applicable only to substances that are liquids at 25◦C and 1.013 bar, it
cannot be used.)

Using these estimates for the liquid-phase fugacity and the activity coefficient of the
solute species, Eqs. 11.1-2 and 11.1-3 can be combined to give

Solute equilibrium
relation x1 =

y1P (f/P )1
γ1(T,P, x) fL

1 (T,P = 1.013 bar) exp
[
V L

1 (P − 1.013 bar)/RT
]

(11.1-5a)

This equation is solved together with the equilibrium relations for the solvent species,

Solvent equilibrium
relation xi =

yiP (f/P )i
γi(T,P, x)P vap

i (T )(f/P )sat,i exp[V L
i (P − P vap

i )/RT ]
(11.1-6)
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to compute the solute solubility in the liquid solvent and the solvent solubility in
the gas.

For ideal solutions (i.e., solutions for which γi = 1), the solubility of the gas depends
on its partial pressure (or gas-phase fugacity), and not on the liquid or liquid mixture
into which it dissolves. This solubility is termed the ideal solubility of the gas and is
given below.

Ideal solution
equilibrium relation xID

1 =
y1P (f/P )1

fL
1 (T,P = 1.013 bar) exp[V L

1 (P − 1.013 bar)/RT ]
(11.1-5b)

Since the fugacity of the solute species, obtained either from the extrapolation of
the vapor pressure or from Fig. 11.1-1, will be very large, the mole fraction x1 of the
gaseous species in the liquid is likely to be quite small. This observation may provide
a useful simplification in the solution of Eqs. 11.1-5 and 11.1-6. Also, if one is merely
interested in the solubility of the gas in the liquid for a given gas-phase partial pressure,
only Eq. 11.1-5 need be solved.

When a gas is only sparingly soluble in a liquid or liquid mixture (i.e., as x1 → 0),
it is observed that the liquid-phase mole fraction of the solute species is, at fixed tem-
perature, linearly proportional to its gas-phase fugacity, that is,

x1H1(T,P ) = fV
1 (T,P, y) = y1P

(
f

P

)
1

as x1 → 0 (11.1-7)

where H1 is the Henry’s law constant2 (see Sec. 9.7). Gas solubility measurements are
frequently reported in terms of the Henry’s law constant, which depends on both the
gas and the solvent; values of H for many gas-liquid pairs appear in the chemical and
chemical engineering literature.

To relate the Henry’s law constant to other thermodynamic quantities, we recognize
that since, at equilibrium,

fL
1 (T,P, x) = fV

1 (T,P, y) = x1H1(T,P ) as x1 → 0

we can take the following to be the formal definition of the Henry’s law constant:

lim
x1→0

fL
1 (T,P, x)

x1

= H1(T,P ) (11.1-8)

Comparing Eqs. 11.1-2 and 11.1-8 yields

H1(T,P ) = γ1(x1 = 0)fL
1 (T,P ) (11.1-9)

where γ1(x1 = 0) is the limiting value of the activity coefficient of the gas in the liquid
at infinite dilution. Thus, Eqs. 11.1-3 and 11.1-4 and the correlation of Fig. 11.1-1 can
be used to predict values of the Henry’s law constant.

As the pressure (and hence the solute mole fraction x1) increases, deviations from
this simple limiting law are observed (see Fig. 9.7-3a). For appreciable concentrations
of the gaseous species in the liquid phase, we write instead

2The Henry’s law “constant,” as defined in Sec. 9.7, is independent of concentration but is a function of temperature,
pressure, and the solvent.
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y1P

(
f

P

)
1

= x1γ
∗
1 (x)H1 (T,P ) (11.1-10)

where

γ∗
1(x1) =

γ1(x1)
γ1(x1 = 0)

is the renormalized activity coefficient defined by Eq. 9.7-5. Clearly, γ∗
1 → 1 as x1 → 0,

and γ∗
1 departs from unity as the mole fraction of the solute increases. The regular

solution theory prediction for γ∗
1 (see Problem 9.10) is

ln γ∗
1(x1) = ln γ1(x1) − ln γ1(x1 = 0) =

V L
1 (δ1 − δ2)2(Φ2

2 − 1)
RT

(11.1-11)

Illustration 11.1-1
Estimation of the Solubility of a Gas in a Liquid

Estimate the solubility and Henry’s law constant for carbon dioxide in a liquid mixture of toluene
and carbon disulfide as a function of the CS2 mole fraction at 25◦C and a partial pressure of CO2

of 1.013 bar.
Data: See Tables 6.6-1, 9.6-1, and 11.1-1.

Solution

Equation 11.1-5 provides the starting point for the solution of this problem. Since the partial
pressure of carbon dioxide and the vapor pressures of toluene and carbon disulfide are so low,
the total pressure must be low, and we can assume that

(
f

P

)
= 1 and exp

[
V L

CO2
(P − 1.013 bar)

RT

]
= 1

Next, using the regular solution model for γ, we obtain

xCO2 =
yCO2P

fL
CO2

(T, P = 1.013 bar) exp

[
V L

CO2
(δCO2 − δ)2

RT

]

with
δ =
∑

j

Φjδj

The reduced temperature of CO2 is Tr = 298.15 K/304.3 K = 0.98, so from the Shair-
Prausnitz correlation fL/Pc ≈ 0.60 and fL ≈ 0.60 × 73.76 bar = 44.26 bar. To calculate the
activity coefficients we will assume that CO2 is only slightly soluble in the solvents, so that its
volume fraction is small; we will then verify this assumption. Thus, as a first guess, the contri-
bution of CO2 to δ will be neglected.

To compute the solubility of CO2 in pure carbon disulfide, we note that

δ ≈ δCS2 = 10 (cal/cc)1/2 and (δCO2 − δ)2 = 16 cal/cc = 66.94 J/cc
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so that

xCO2 =
1.013 bar

44.26 bar × exp

{
55 cc/mol × 66.94 J/cc

8.314 J/(mol K) × 298.15 K

}
= 5.18 × 10−3

(The experimental value is xCO2 = 3.28 × 10−3.) Also,

H = P/xCO2 = 1.013 bar/(5.18 × 10−3)

= 195.5 bar/mole fraction

The solubility of CO2 in pure toluene is computed as follows:

δ ≈ δT = 8.9 (cal/cc)1/2 and (δCO2 − δ)2 = 8.4 cal/cc = 35.15 J/cc

so that

xCO2 =
1.013 bar

44.26 bar × exp

{
55 × 35.15

8.314 × 298.15

} = 1.05 × 10−2

and

H = 96.6 bar/mole fraction

Finally, the solubility of CO2 in a 50 mol % toluene, 50 mol % CS2 mixture is found from

V L
mix = xCS2V L

CS2
+ xTV L

T

= 0.5 × 61
cc

mol
+ 0.5 × 107

cc

mol

= 84
cc

mol

ΦCS2 =
0.5 × 61

84
= 0.363, ΦT =

0.5 × 107

84
= 0.637

δ = 0.363 × 10

(
cal

cc

)1/2

+ 0.637 × 8.9

(
cal

cc

)1/2

= 9.30 (cal/cc)1/2

and
(δ − δ)2 = 10.88 cal/cc = 45.55 J/cc

Thus

xCO2 =
1.013

44.26 × exp

{
55 × 45.52

8.314 × 298.15

} = 8.33 × 10−3

and
H = 121.6 bar/mole fraction

These results are plotted in Fig. 11.1-2. In all cases xCO2 is small, as had initially been assumed,
so that an iterative calculation is not necessary.
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Figure 11.1-2 The solubility (xCO2)
Henry’s law constant (H) of carbon diox-
ide in carbon disulfide–toluene mixtures.

Illustration 11.1-2
Prediction of the Solubility of a Gas in a Liquid Using an EOS

Predict the solubility of carbon dioxide in toluene at 25◦C and 1.013 bar carbon dioxide partial
pressure using the Peng-Robinson equation of state.

Solution

The critical properties for both carbon dioxide and toluene are given in Table 6.6-1. The bi-
nary interaction parameter for the CO2-toluene mixture is not given in Table 9.4-1. However,
as the value for CO2-benzene is 0.077 and that for CO2–n-heptane is 0.10, we estimate that the
CO2-toluene interaction parameter will be 0.09. Using this value and the bubble point pressure
calculation in either the programs or the MATHCAD worksheet for the Peng-Robinson equa-
tion of state for mixtures (described in Appendix B and on the website this book), the following
values were obtained:

xCO2 Ptot (bar) yCO2 PCO2 (bar) = yCO2Ptot

0.001 0.11 0.6579 0.072
0.002 0.20 0.7915 0.158
0.004 0.36 0.8834 0.318
0.006 0.51 0.9189 0.469
0.008 0.67 0.9378 0.628
0.010 0.83 0.9495 0.788
0.0125 1.03 0.9590 0.988
0.013 1.07 0.9605 1.028
0.015 1.23 0.9655 1.188

Therefore, using the Peng-Robinson equation of state, we estimate that at a partial pressure of
1.013 bar, carbon dioxide will be soluble in liquid toluene to the extent of 0.0128 mole fraction.
This value differs from the value of 0.0077 computed in the last illustration using the Prausnitz-
Shair correlation and regular solution theory. However, given the inaccuracy of both methods,
this difference is not unreasonable.
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Comment

Had we assumed that the CO2-toluene binary interaction parameter was zero, the predicted
CO2 solubility in toluene at 1.013 bar CO2 partial pressure would be 0.0221 mole fraction
(Problem 11.1-6).

In order to compare the results with those of the previous illustration, we can also compute the
solubility of carbon dioxide in carbon disulfide. There is no binary interaction parameter reported
for the CO2-CS2 mixture, or for any similar mixtures. If we assume the binary interaction pa-
rameter is zero, we find that the CO2 solubility in CS2 at 1.013 bar CO2 partial pressure is 0.0159
mole fraction, which is greater than the measured value by a factor of 5 (Problem 11.1-7). How-
ever, if we set kCO2−CS2 = 0.2, we obtain a CO2 solubility of 3.4 × 10−3, which is in excellent
agreement with experiment.

It is clear from Eq. 11.1-9 that the Henry’s law constant will vary with pressure,
since fL

1 and γ1 are functions of pressure. The common method of accounting for this
pressure variation is to define the Henry’s law constant to be specific to a fixed pressure
P0 (frequently taken to be atmospheric pressure) and then include a Poynting correction
for other pressures. Independent of whether we apply the correction to the fugacity of
the solute species in solution fL

1 (T,P, x1 → 0) or separately to the pure component
fugacity and the infinite-dilution activity coefficient (see Eq. 9.3-20), we obtain

fL
1 (T,P, x1 → 0) = x1γ1(T,P0, x1 → 0)fL

1 (T,P0) exp
[∫ P

P0

V L
1 (x1 = 0)

RT
dP

]
(11.1-12)

where V L
1 (x1 = 0) is the partial molar volume of the gaseous species in the liquid at

infinite dilution. Using this expression in Eq. 11.1-10 yields

y1P

(
f

P

)
1

= x1γ
∗
1(T,P0)H1(T,P0) exp

[∫ P

P0

V L
1 (x1 = 0)

RT
dP

]
(11.1-13)

Finally we note from Fig. 11.1-3 that the solubility in a liquid of some gases increases
as the temperature increases, whereas for other gases it decreases. To explain this ob-
servation, we take the derivative of Eq. 11.1-2 with respect to temperature (at constant
pressure and gas-phase composition) to get

0 =
(

∂ lnx1

∂T

)
P

+
(

∂ ln γ1

∂T

)
P

+
(

∂ ln fL
1

∂T

)
P

(11.1-14)

where we have neglected the slight temperature dependence of the gas-phase fugac-
ity coefficient. Now if we assume that the fugacity of the pure hypothetical liquid is
obtained by extrapolating the vapor pressure of the real liquid, we have(

∂ ln fL
1

∂T

)
P

=
(

∂ lnP vap
1

∂T

)
P

=
ΔvapH1

RT 2
(11.1-15)

by the Clausius-Clapeyron equation, Eq. 7.7-5. Here again, we have neglected the tem-
perature dependence of the fugacity coefficient. Next, from Eq. 9.3-21, we have(

∂ ln γ1

∂T

)
P

= −Hex
1 (T,P, x)

RT 2
(11.1-16)
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Combining Eqs. 11.1-14, 11.1-15, and 11.1-16 we get(
∂ lnx1

∂T

)
P

=
−ΔvapH1 + Hex

1

RT 2

=
−(HV

1 − HL
1 ) + (HL

1 − HL
1 )

RT 2

=
−(HV

1 − HL
1 )

RT 2

≈ −ΔvapH1

RT 2

(11.1-17)

since Hex is usually much smaller than ΔvapH1, the heat of vaporization of the pure
solute. [Note that (HV

1 − HL
1 ) may be interpreted as the heat of vaporization of species

1 from the fluid mixture.]
For all fluids below their critical temperature, ΔvapH is positive; that is, energy is

absorbed in going from the liquid to the gas. For T > Tc, but P < Pc, ΔvapH must be
evaluated by extrapolation of the liquid-phase enthalpy into the vapor region. Here one
finds that ΔvapH is positive in the vicinity of the critical temperature (but below the
critical pressure), though its magnitude decreases as T increases. Finally, above some
temperature T , where T is much greater than Tc, the extrapolated enthalpy change
becomes negative (Problem 11.1-1). Therefore,(

∂ lnx1

∂T

)
P

{
> 0 T � Tc

< 0 otherwise

Thus the solubility of a gas increases with increasing temperature for gases very much
above their critical temperature, and decreases with increasing temperature at temper-
atures near or only slightly above the critical temperature. This conclusion is in agree-
ment with the experimental data of Fig. 11.1-3.

In the chemical literature the solubility of a gas at fixed partial pressure is frequently
correlated as a function of temperature in the form

1 × 10–4

1 × 10–5

1 × 10–6

1 × 10–7

200150100500

4

3

2
1

5

x

T (°C)

Figure 11.1-3 The solubility of several gases
in liquids as a function of temperature. The
solubility is expressed as mole fraction of the
gas in the liquid at a gas partial pressure of
0.01 bar. Curve 1: Helium in water. Curve 2:
Oxygen in water. Curve 3: Carbon dioxide in
water. Curve 4: Bromine in water. Curve 5:
Methane in n-heptane.
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lnx = A +
B

T
+ C lnT + DT + ET 2 (11.1-18)

where x is the gas mole fraction in the liquid, and T is the temperature in K. Table 11.1-2
contains the values for the constants of various gases in water at 1.013 bar partial pres-
sure of the gas. Although we have used mole fractions throughout this section, other
measures of gas solubility are also used. Some are listed in Table 11.1-3.

Air stripping
One method of removing a volatile contaminant from a liquid—for example, water—

is by gas stripping, in which air or some other gas is bubbled through the liquid so
that vapor-liquid equilibrium is achieved. If the contaminent is relatively volatile (as a
result of a high value of its Henry’s constant, vapor pressure, or activity coefficient), it
will appear in the exiting air, and therefore its concentration in the remaining liquid is
reduced. An example of this is given in the next illustration.

Illustration 11.1-3
Air Stripping of Radon from Groundwater

Groundwater from some geological formations may contain radon, a gas that has been implicated
in lung disease, so its concentration should be reduced. Air stripping is one method of doing this.
Groundwater from a well is found to contain 10 parts per million by weight of radon, and it is
desired to reduce its concentration to 0.1 parts per million. This is to be done by air stripping in
the device shown here, which is open to the atmosphere, using previously humidifed air so that
water does not evaporate in the air stripping process. Assuming that the air leaving the stripper
is at 20◦C and in equilibrium with the liquid, how many kilograms of air must be supplied per
kilogram of water to reduce the radon content to the desired level? Radon has a molecular weight
of 222, and its Henry’s constant is K = PR/xR = 5.2 × 103 bar/mole fraction, where PR is the
partial pressure of radon.

Air + radonRadon-contaminated
water

Air stripping column
(filled with packing to
create high liquid
surface area)

Purified
water Air

Schematic diagram of an air strip-
ping apparatus.

Solution

Since the air has been prehumidified, no water should evaporate. Also, since the concentration
of radon in the water is so low, even if all of it was removed, there would be very little change
(indeed, only one part in 100,000) in the original mass of liquid in the air stripper, so that the
small change in total mass (or number of moles) can be neglected. Therefore, in the equations
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Table 11.1-3 Conversion Formulas of Various Expressions of Gas Solubility in Water to Mole Fraction (x ) of the
Dissolved Gas, Under a Gas Partial Pressure of 1.013 bar

Quantity Symbol Definition Conversion Formula

x =

[
1 +

1.244 × 10−3 · ρw

α

]−1Bunsen coefficient α Volume of gas, reduced to 273.15 K and
1.013 bar, absorbed by a unit volume of the
absorbing solvent at the temperature of
measurement under a gas partial pressure of
1.013 bar

x =

[
1 +

4.555 × 10−6T · ρw

L

]−1Ostwald coefficient L Ratio of the volume of gas absorbed to the
volume of absorbing liquid, both measured
at the same temperature

x =
S

S + 1244.1

Kuenen coefficient S Volume of gas (cm3) at a partial pressure of
1.013 bar reduced to 273.15 K and 1.013
bar, dissolved by the quantity of solution
containing 1 g of solvent

x =
1.013

H

Henry’s law constant H Limiting value of the ratio of the gas partial
pressure to its mole fraction in solution as
the latter tends to zero

x =
S0 · 18.015

100mS + S0 · 18.105

Weight solubility S0 Grams of gas dissolved by 100 g of solvent,
under a gas partial pressure of 1.013 bar

The ideal behavior of the solute in the gas phase is assumed. T = temperature (K); ρw = water density (g m−3); ms = solute molecular
weight. The Henry’s constant is expressed in bar. Based on a table in S. Cabani and P. Gianni, in H.-J. Hinz, ed., Thermodynamic Data for
Biochemistry and Biotechnology, Springer-Verlag, Berlin (1986), p. 260. Used with permission.

that follow, the total number of moles N is replaced by the number of moles of water NW. The
mass (mole) balance on the radon in the liquid in the air stripper is

dNR

dt
=

d(NWxR)

dt
= NW

dxR

dt
= − ṄairKRxR

Patm

or

NW

dxR

dt
= − ṄairKRxR

Patm

On integration from t = 0 we obtain

ln

[
NR (t)

NR (t = 0)

]
= − Ṅair · t · KR

NW · Patm

=
Nair · KR

NW · Patm

where Nair = Ṅair ·t is the number of moles of air that have passed through the radon-containing
water in the stripping device. Note that this equation gives the amount of radon remaining in the
water as a function of the number of moles of air that have been used. Consequently,

ln (0.01) = −4.605 =
Nair · 0.52 × 104

NW · 1.103

or
Nair

NW

= 8.97 × 10−4

so that 8.97 × 10−4 moles of air are needed for each mole of radon-contaminated water, or
equivalently, 1.45×10−3 kg of air are needed for each kg of radon-contaminated water in the air
stripper to reduce the radon content of the water to one-hundredth of its initial concentration.
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The addition of a salt S to an aqueous solution of a gas (or uncharged organic com-
pound) species i causes the solubility of the gas to change, usually to decrease. Empir-
ically, this change in solubility is described by the simple relation

log
Si (Ms)

Si (Ms = 0)
= log

Si (Ms)
Si,o

= −Ks,i · Ms (11.1-19)

where S and So are the solubilities of the gas in the aqueous salt solution and in pure
water, respectively; Ms is the molal concentration of salt; and Ks,i is referred to as
the Setchenow coefficient, which depends on the gas and the salt. Some representative
values are given below.

Ks,i (M−1)

s/i O2 CO2 Benzene Naphthalene

NaCl 0.14 0.101 0.20 0.22
KCl 0.13 0.073 0.17 0.19
NaC6H5SO3 −0.19 −0.15

Note that for some salts, such as sodium benzylsulfate in the table above, the Setche-
now constant is negative, indicating that the solubility increases with salt concentration;
this is referred to as salting in. A decrease in solubility with increasing salt concentra-
tion, salting out is the more common situation. Also, for mixed salts, the effects are
generally assumed to be additive and Eq. 11.1-19 becomes

log
Si

Si,o

= −
∑

salts,s

Ks,i · Ms (11.1-20)

Illustration 11.1-4
The Solubility of Oxygen in an Aqueous Salt Solution, Blood, and Seawater

a. Compare the solubility of oxygen in water containing 0.15 M NaCl to the solubility in pure
water.

b. Compare the solubility of oxygen in seawater and in pure water. Seawater can be approxi-
mated as containing 35 grams of NaCl per kg of water.

Solution

a. From Eq. 11.1-19 and data in the table, we have

log
SO2

SO2,o

= −KNaCl,O2 · MNaCl = −0.14 × 0.15 = −0.021

so that
SO2

SO2,o

= 10−0.021 = 0.951

Therefore, the solubility of oxygen in an aqueous solution of 0.15 M NaCl is about
95 percent that in pure water. Since a 0.15 M NaCl solution has some of the same properties
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as blood (as we show elsewhere in this book, it has the same osmotic pressure and freezing
point), we can expect that the solubility of oxygen in blood is also about 5 percent less than
in pure water.

b. Since the molecular weight of NaCl is 58.44, the molality of seawater is 35/58.44 = 0.60 M.
Thus,

SO2

SO2,o

= 10−0.14×0.6 = 0.824

Therefore, seawater contains appreciably less dissolved oxygen than pure water or blood.

We next consider the dissolution of a mixture of gases in a liquid. We separate this
situation into two different cases. First, if the concentrations of the dissolved gases in the
liquid are relatively low, so that there are no nonideality departures from Henry’s law,
it is reasonable to assume that the solubility of each gas would be the same as if it were
the only gas present at its gas-phase partial pressure. However, if the concentrations of
the gases in the liquid are high enough that there are departures from the Henry’s law
limit, so that the activity coefficients γ∗

i need be included in the description, then the
solubility of each species is affected by the presence of others through the values of the
activity coefficients.

While using an activity coefficient model will provide a quantitative relationship
between the mutual solubilities, we can get a qualitative understanding of how the
presence of one dissolved species affects others by examining the interrelation be-
tween mixed second derivatives. In particular, the Maxwell equations in Chapter 8 and
some of the pure fluid equations in Chapter 6 were derived by examining mixed sec-
ond derivatives of thermodynamic functions. Another example of this is to start with
the Gibbs energy and note that at constant temperature, pressure, and all other species
mole numbers,

(
∂2G

∂Ni∂Nj

)
T,P

=
∂

∂Ni

⏐⏐⏐
T,P,Nk�=i

(
∂G

∂Nj

)
T,P,Nk�=j

=
(

∂2G

∂Nj∂Ni

)
T,P

=
∂

∂Nj

⏐⏐⏐
T,P,Nk�=j

(
∂G

∂Ni

)
T,P,Nk�=i

or (
∂Gj

∂Ni

)
T,P,Nk�=i

=
(

∂Gi

∂Nj

)
T,P,Nk�=j

(11.1-21)

Though this equation follows directly from the work of Gibbs, it was first used by
Bjerrium (1923) and is usually referred to as the Bjerrium equation. As an example
of its use, consider the solubility of two gases, such as carbon dioxide and oxygen in
water. If adding additional carbon dioxide to the liquid (by increasing the CO2 partial
pressure and its partial molar Gibbs energy) increases the partial molar Gibbs energy of
the oxygen in the liquid, then the inverse must also be true; that is, adding more oxygen
will increase the partial molar Gibbs energy of the dissolved carbon dioxide. In fact,
this is exactly what happens in water, in that if the oxygen partial pressure above water
is increased at fixed partial pressure of carbon dioxide, additional oxygen is absorbed
into the water, and since the CO2 partial molar Gibbs energy in the liquid increases,
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some CO2 desorbs for it to remain in equilibrium with the fixed partial pressure in the
gas phase.

This thermodynamic coupling between oxygen and carbon dioxide exhibited in water
will also occur between any two gases in any solvent. A physiological example of this
is the solubility of oxygen and carbon dioxide in blood, where it is found that increasing
the partial pressure of O2 at fixed CO2 partial pressure results in an increased oxygen
concentration in blood and decreased carbon dioxide concentration. Also, the situation
is reversed if the CO2 partial pressure is increased at fixed O2 partial pressure. This
phenomenon was first experimentally observed in 1914 and is referred to as the Bohr
effect.

Finally, we close this section by presenting the following approximate empirical
model for the solubility of a gas or other compound in a solvent mixture:

log(C3)mixedsolvent = φ1 log(C3)solvent 1 + φ2 log(C3)solvent 2 (11.1-22)

In this equation, known as the Yalkowsky-Rubino model, C is the molar concentration
of the solute (component 3), and the φ terms are the solute-free volume fractions of the
solvents (components 1 and 2). This equation should be used only for compounds of
limited solubility.

PROBLEMS FOR SECTION 11.1

11.1-1 In this exercise we want to establish that the ex-
trapolated value of ΔvapĤ is positive for a liquid
at its critical temperature but below its critical pres-
sure, and becomes negative as the temperature is in-
creased significantly above the critical temperature.
Use the data in the steam tables in Appendix A.III
to prepare a plot of ĤL and ĤV for liquid water and
steam at 0.1 MPa for all temperatures above 0◦C,
and extrapolate ĤL to high temperatures from the
low-pressure liquid-phase enthalpy data.
a. Estimate the temperature at which ΔvapĤ will

equal zero.
b. Find the hypothetical ΔvapĤ of water at 1100◦C

and 1 bar.
11.1-2 Here we want to estimate the solubility of gaseous

nitrogen in liquid carbon tetrachloride at 25◦C and a
partial pressure of nitrogen of 1 bar. The (hypothet-
ical) liquid nitrogen fugacity at 25◦C is 1000 bar.
a. Calculate the mole fraction of nitrogen present in

the liquid CCl4 at equilibrium if the two species
form an ideal solution.

b. From regular solution theory it is estimated that

ln γN2 = 0.526(1 − xN2)
2

What is the equilibrium mole fraction of nitro-
gen in CCl4 under these circumstances? What is

the Henry’s law constant for this system, if the
excess volume for this system is zero?

11.1-3 The following data have been reported for the sol-
ubility of methane in various solvents at 25◦C and
1.013 bar partial pressure of methane.3

Mole Fraction of CH4

Solvent in Saturated Liquid

Benzene 2.07 × 10−3

Carbon tetrachloride 2.86 × 10−3

Cyclohexane 2.83 × 10−3

n-Hexane
{

3.15 × 10−3*
4.24 × 10−3†

*[A. S. McDaniel, J. Phys. Chem., 15, 587 (1911)]
†(D. Guerry, Jr., thesis, Vanderbilt Univ., 1944)

a. Estimate the ideal solubility of methane at 25◦C
and a partial pressure of 1.013 bar.

b. Calculate the activity coefficient of methane in
each of the solvents in the table.

c. Is the datum of either McDaniel or Guerry con-
sistent with the regular solution model?

11.1-4 a. Estimate the vapor and liquid compositions of a
nitrogen and benzene mixture in equilibrium at
75 bar and 100◦C.

3The data for this problem were abstracted from J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes,
3rd ed., Reinhold, New York (1950), Table 4, p. 243.
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b. Estimate the vapor and liquid compositions at
100 bar and 100◦C.
Data:

Temperature (◦C)

Vapor Pressure, bar Benzene Nitrogen

1.013 80.1 −195.8
2.027 103.8 −189.2
5.067 142.5 −179.1

10.133 178.8 −169.8
30.399 249.5 −148.3
50.665 290.3

11.1-5 One way to remove a dissolved gas from a liquid is
by vaporizing a small amount of the liquid in such a
way that the vapor formed is continually withdrawn
from the system. This process is known as differen-
tial distillation or Rayleigh distillation, as discussed
in Sec. 10.1.
a. If N is the total number of moles of liquid, x the

instantaneous mole fraction of dissolved gas, and
y the gas mole fraction of the vapor in equilib-
rium with that liquid, show that

dx

dN
=

y − x

N

b. If the mole fraction of the dissolved gas is low,
then

y = Hx/P

where H is the Henry’s law constant for the
gas-solvent combination, and P is the total pres-
sure above the liquid. Under these circumstances
show that

x

x0

=

(
N

N0

)(H−P )/P

or, equivalently

N

N0

=

(
x

x0

)P/(H−P )

where N0 and x0 are the initial moles of solution
and dissolved gas mole fraction, respectively.

c. The Henry’s law constant for carbon dioxide in
carbon disulfide was computed (in Illustration
11.1-1) to be 267 bar at 25◦C. At a total pressure
of 1 bar, how much liquid should be vaporized
from a solution saturated in carbon dioxide to de-
crease the CO2 concentration to 1% of its equilib-
rium value? To 0.01% of its equilibrium value?

11.1-6 Estimate the solubility of carbon dioxide in toluene
at 25◦C and 1.013 bar CO2 partial pressure us-
ing the Peng-Robinson equation of state assuming
kCO2−T = 0.0.

11.1-7 Estimate the solubility of carbon dioxide in carbon
disulfide at 25◦C and 1.013 bar CO2 partial pres-
sure using the Peng-Robinson equation of state,
assuming
a. kCO2−CS2 = 0.0
b. kCO2−CS2 = 0.2
c. Compare the results of parts (a) and (b)

with those obtained using the Prausnitz-Shair
correlation.

11.1-8 Derive the conversion factors in Table 11.1-3.
11.1-9 From Eq. 11.1-18 derive equations for the Gibbs

energy, enthalpy, entropy, and heat capacity for the
transfer of gas from the ideal gas state at 1.013
bar pressure to the (hypothetical) ideal solution at
unit mole fraction. Comment on the expected accu-
racy of the thermodynamic properties determined
in this way.

11.1-10 The vapor pressure of pure bromine at 25◦C is 28.4
kPa. The vapor pressure of bromine in dilute aque-
ous solution at that temperature obeys the equation
P = 147 M, where M is the bromine molality, and
the pressure is in kPa.
a. Calculate the Gibbs energy change for the dis-

solution process

Br2(pure liquid, 25◦C)

→ Br2(aqueous solution of molality M, 25◦C)

as a function of the bromine molality.
b. Compute the saturation molality of bromine in

water at 25◦C, and show that the Gibbs energy
change for the process,

Br2(pure liquid, 25◦C)

→ Br2(saturated aqueous solution, 25◦C)

is zero.
11.1-11 Estimate the solubility of carbon dioxide in toluene

at 25◦C and 10 bar CO2 partial pressure using
a. The Peng-Robinson equation of state with

the van der Waals one-fluid mixing rules and
kCO2−T = 0

b. The Peng-Robinson equation of state with
the van der Waals one-fluid mixing rules and
kCO2−T = 0.09

11.1-12 a. Water is carefully degassed, placed in an evac-
uated vessel that is closed, and heated to a tem-
perature of 25◦C. The vessel is approximately
half full of liquid water at these conditions.
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What will be the equilibrium pressure in the
vessel?

b. The vessel of part (a) develops a small leak so
that air enters the vessel (because of the pres-
sure difference), but no water leaves. What will
be the pressure in the vessel at equilibrium, the
mole fraction of water in air, and the mole frac-
tions of nitrogen and oxygen in the water?
Data: The Henry’s law constants for oxygen
and nitrogen in water at 25◦C are

HO2 = 4.35 × 104 bar

mole fraction

and

HN2 = 8.48 × 104 bar

mole fraction

(Hint: The Henry’s constants are so large that
the mole fractions of oxygen and nitrogen in the
water will be small.)

11.1-13 At T = 60oC the vapor pressure of methyl acetate
is 1.1260 bar, and the vapor pressure of methanol
is 0.8465 bar. Their mixtures can be described by
the one-constant Margules equation

Gex = Ax1x2 with A = 1.06RT

where R is the gas constant and T is temperature
in K.
a. Plot the fugacity of methyl acetate and methanol

in their mixtures as a function of composition at
this temperature.

b. The Henry’s law coefficient Hi is given by the
equation

Hi = limxi→0

Pi

xi

Develop an expression for the Henry’s law con-
stant as a function of theA parameter in the Mar-
gules expression, the vapor pressure, and the
composition. Compare the hypothetical pure
component fugacity based on the Henry’s law
standard state with that for the usual pure com-
ponent standard state.

11.1-14 The triple-point properties of a substance may be
experimentally determined by measuring its tem-
perature and pressure when the vapor, liquid, and
solid phases all coexist at equilibrium. There will
be an error in these measurements if air is trapped
in the system; the entrapped air will be present in
the vapor phase and dissolved in the liquid. Deter-
mine the error that would occur in the measure-
ment of the triple-point temperature and pressure
of water if, at equilibrium, the vapor contained
0.1333 kPa partial pressure of air.
Data: See Problem 7.12. The Henry’s law expres-
sion for air in water at T ∼ 0◦C is

Pair = 4.3 × 104xair

where Pair is the partial pressure of air in the va-
por phase, in bar, and xair is the equilibrium mole
fraction of air dissolved in water.

11.1-15 Derive the expression for the Henry’s law coeffi-
cient of a species in a mixture that obeys the Peng-
Robinson equation of state and the van der Waals
one-fluid mixing rules.

11.1-16 Derive the expression for the Henry’s law coeffi-
cient of a species in a mixture that obeys the Peng-
Robinson equation of state and the Wong-Sandler
mixing rules.

11.1-17 Estimate the solubility of oxygen in liquid bromine
at 25◦C and an oxygen partial pressure of 1 bar.

11.2 LIQUID-LIQUID EQUILIBRIUM

At low pressures all gases are mutually soluble in all proportions. The same is not
always true for liquids, in that the equilibrium state of many binary liquid mixtures is
two stable liquid phases of differing composition, rather than a single liquid phase, at
least over certain ranges of temperature and composition. Our aim in this section is to
obtain an understanding of why liquid-liquid phase separation occurs, and to develop
thermodynamic equations that relate the properties of the two equilibrium phases. In
this way we will be able to estimate the compositions of the coexisting phases when data
are not available, or use available liquid-liquid phase equilibrium data to get information
on the activity coefficients of each species in a mixture.



618 Chapter 11: Other Types of Phase Equilibria in Fluid Mixtures

T
 (

°C
)

180

160

140

100

120

80

0 5 10 15 20 25 30

60

40

Two liquid phases in equilibrium

Mole percent 2.6-dimethyl pyridine

The lower consolute temperature
 is 42.5°C

Single liquid phase

The upper consolute temperature 
is 163°C

Figure 11.2-1 The liquid-liquid phase diagram of 2,6-dimethyl
pyridine and water, with composition in mole percent.

Examples of liquid-liquid phase equilibrium behavior are given in Figs. 11.2-1
through 11.2-3.4 These phase diagrams are to be interpreted as follows: If the tem-
perature and overall composition of the mixture lie in the enclosed two-phase region,
two liquid phases will form; the compositions of these phases are given by the intersec-
tion of the constant temperature (horizontal) line, or tie line, with the boundaries of the
two-phase region. If, however, the temperature and composition are in the single-phase
region, the equilibrium state is a single liquid phase. For example, if one attempts to
prepare a mixture of 10 mol percent 2,6-dimethyl pyridine in water at 80◦C, he will ob-
tain, instead, two liquid phases, one containing 1.7 mol percent 2,6-dimethyl pyridine,

T
 (

°C
)

160

120

80

40

0

Two liquid phases in equilibrium

Upper consolute temperature is 150°C

xMEK

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Figure 11.2-2 The liquid-liquid
phase diagram for methyl ethyl
ketone and water.

4The experimental data for the partial solubility of perfluoro-n-heptane in various solvents has been plotted as a
function of both mole fraction and volume fraction in Fig. 11.2-3. It is of interest to notice that these solubility
data are almost symmetric functions of the volume fraction and nonsymmetric functions of the mole fraction.
Such behavior has also been found with other thermodynamic mixture properties; these observations suggest the
use of volume fractions, rather than mole fractions or mass fractions, as the appropriate concentration variables
for describing nonideal mixture behavior. Indeed, this is the reason that volume fractions have been used in both
the regular solution model and the Wohl expansion of Eq. 9.5-8 for liquid mixtures.
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Figure 11.2-3 The solubility of perfluoro-n-heptane in various solvents. Species 1 is perfluoro-
n-heptane; species 2 is the solvent. [Reprinted with permission from J. H. Hildebrand, B. B.
Fisher, and H. A. Benesi, J. Am. Chem. Soc., 72, 4348 (1950). Copyright by the American Chem-
ical Society.]

and the other containing 23.3 mol percent 2,6-dimethyl pyridine (see Fig. 11.2-1). The
relative amounts of the two phases in such cases can be computed from the species mass
balances

Mi = M I
i + M II

i (mass basis)

Ni = N I
i + N II

i (molar basis)
(11.2-1a)

Here MJ
i and NJ

i are the mass and number of moles of species i in phase J, respectively,
and Mi and Ni are the total mass and number of moles of this species. Alternative forms
of these equations are

Mi = ωI
iM

I + ωII
i M II (mass basis)

Ni = xI
iN

I + xII
i N II (molar basis)

(11.2-1b)

where ωJ
i and xJ

i are the mass fraction and mole fraction of species i in phase J, respec-
tively, and MJ and NJ are the total weight and number of moles of that phase.
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Illustration 11.2-1
Simple Liquid-Liquid Equilibrium Calculation

One kilogram of liquid 2,6-dimethyl pyridine (C7H9N, MW = 107.16) is mixed with 1 kg of
water, and the mixture is heated to 80◦C. Determine the compositions and total amounts of the
two coexisting liquid phases.

Solution

From the equilibrium phase diagram, Fig. 11.2-1, we have

xI
P = 0.0170 and xII

P = 0.233

as the mole fractions of 2,6-dimethyl pyridine in the two equilibrium phases. The water mole
fractions in the phases can be found from

xJ
H2O = 1 − xJ

P

Also, note that 1 kg of 2,6-dimethyl pyridine is equal to 9.332 mol, and 1 kg of water is
equal to 55.51 mol. To compute the amounts of each of the phases, we use the mass balances of
Eq. 11.2-1b on a molar basis, which yield

9.332 mol 2,6-dimethyl pyridine = xI
PxI + xII

PxII = 0.0170N I + 0.233N II

and
55.51 mol water = (1 − xI

P)N I + (1 − xII
P )N II = 0.983N I + 0.767N II

These equations have the solution

N I = 26.742 mol and NII = 38.10 mol

Now 1 mol of a solution with xP = 0.0170 weighs 0.0170×107.66+0.987×18.015 = 19.53 g,
and 1 mol of a solution with xP = 0.233 weighs 0.233 × 107.16 + 0.767 × 18.015 = 38.786 g.
Therefore, there are 26.742 mol× 19.53 g/mol = 522 g = 0.522 kg of phase I and 38.10 mol×
38.786 g/mol = 1478 g = 1.478 kg of phase II.

Generally, liquid-liquid phase equilibrium (or phase separation) occurs only
over certain temperature ranges, bounded above by the upper consolute or upper criti-
cal solution temperature, and bounded below by the lower consolute or lower critical
solution temperature. These critical solution temperatures are indicated on the liquid-
liquid phase diagrams given here. All partially miscible mixtures should exhibit either
one or both consolute temperatures; however, the lower consolute temperature may be
obscured by the freezing of the mixture, and the upper consolute temperature will not
be observed if it is above the bubble point temperature of the mixture, as vaporization
will have instead occurred.

Measurement
of liquid-liquid
equilibrium

The measurement of liquid-liquid equilibrium at near ambient pressures can gener-
ally be done with relatively simple equipment, such as that shown in Fig. 11.2-4. The
equilibrium cell shown consists of a small, glass, thermostated vessel with upper and
lower ports for sampling the two liquid phases. Samples are taken using a syringe in-
serted through a rubber septum. Magnetic stirring is used until equilibrium is achieved;
then the stirrer is turned off and the two liquid phases are allowed to disengage before
samples are taken. The same general idea can be used at high pressures using a metal
vessel.
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Magnetic stirrer driver

From circulating
thermostatic bath

To circulating
thermostatic
bath

Lower sample port

Stir bar

Aqueous phase

Organic phase

Fitting for
thermometer

Upper sample port

Figure 11.2-4 Schematic diagram of a simple liquid-liquid equilibrium cell.

The thermodynamic requirement for any type of phase equilibrium is that the com-
position of each species in each phase in which it appears be such that the equilibrium
criterion

Starting point for all
phase equilibrium
calculations

f I
i(T,P, xI) = f II

i (T,PxII)

is satisfied. Introducing the activity coefficient definition into this equation yields

xI
iγ

I
i (T,P, xI)fi(T,P ) = xII

i γII
i (T,P, xII)fi(T,P )

which reduces to5

General LLE
relation using activity
coefficients

xI
iγ

I
i (T,P, xI) = xII

i γII
i (T,P, xII) i = 1, 2, . . . , C (11.2-2)

Since the pure component liquid fugacities on both sides of the equation are the same,
they cancel. (Why is this different from vapor-liquid equilibrium?) The compositions
of the coexisting phases are the sets of mole fractions xI

1, x
I
2, . . . , x

I
C , x

II
1 , xII

2 , . . . , xII
C

that simultaneously satisfy Eqs. 11.2-2 and

C∑
i=1

xI
i = 1 and

C∑
i=1

xII
i = 1 (11.2-3)

5From this equation it is clear that liquid-liquid phase separation is a result of solution nonideality. If the solutions
were ideal, that is, if γI

i = γII
i = 1, then xI

i = xII
i for all species i and there would be only a single phase, not

two liquid phases of different composition, present at equilibrium.
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Equation 11.2-2 can be used with experimental phase equilibrium data to calculate
the activity coefficient of a species in one phase from its known value in the second
phase or, with Eqs. 11.2-3 and experimental activity coefficient data or appropriate
solution models, to compute the compositions of both coexisting liquid phases (see
Illustration 11.2-2). For example, using the one-constant Margules equation to represent
the activity coefficients, we obtain from Eq. 11.2-2 the following relationship between
the phase compositions:

xI
i exp

[
A(1 − xI

i)2

RT

]
= xII

i exp
[
A(1 − xII

i )2

RT

]
(11.2-4a)

whereas using the regular solution model leads to

xI
i exp

[
V L

i (ΦI
j)2(δ1 − δ2)2

RT

]
= xII

i exp

[
V L

i (ΦII
j )2(δ1 − δ2)2

RT

]
(11.2-4b)

Alternatively, the van Laar, NRTL, and UNIQUAC activity coefficient models could be
used, yielding more accurate results. (The UNIFAC method can also be used to predict
liquid-liquid equilibrium, but only with different main group interaction parameters
than are used to predict vapor-liquid equilibrium.)

Illustration 11.2-2
Prediction of LLE Using an Activity Coefficient Model

Use the van Laar equations to estimate the compositions of the coexisting liquid phases in an
isobutane-furfural mixture at 37.8◦C and a pressure of 5 bar. (You may assume that the van Laar
constants for this system given in Table 9.5-1 are applicable at this pressure.)

Solution

The compositions of the coexisting phases are the solution of the following set of algebraic
equations:

xI
1γ

I
1 = xI

1 exp

⎧⎪⎪⎨
⎪⎪⎩

α[
1 +

αxI
1

β(1 − xI
1)

]2
⎫⎪⎪⎬
⎪⎪⎭

= xII
1 exp

⎧⎪⎪⎨
⎪⎪⎩

α[
1 +

αxII
1

β(1 − xII
1 )

]2
⎫⎪⎪⎬
⎪⎪⎭

= xII
1 γII

1 (a)

xI
2γ

I
2 = xI

2 exp

⎧⎪⎪⎨
⎪⎪⎩

β[
1 +

βxI
2

α(1 − xI
2)

]2
⎫⎪⎪⎬
⎪⎪⎭

= xII
2 exp

⎧⎪⎪⎨
⎪⎪⎩

β[
1 +

βxII
2

α(1 − xII
2 )

]2
⎫⎪⎪⎬
⎪⎪⎭

= xII
2 γII

2 (b)

xI
1 + xI

2 = 1 (c)

xII
1 + xII

2 = 1 (d)

Here isobutane will be taken as species 1 and furfural as species 2; thus, from Table 9.5-1,
α = 2.62 and β = 3.02. These equations may be solved directly using an equation-solving
program such as MATHCAD. Alternatively, the following graphical procedure can be used in
solving the equations:
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i. A guess is made for the value of xI
1.

ii. Equation a is then used to compute xII
1 , and Eq. c to compute xI

2.
iii. xII

2 is then be computed using Eq. b.
iv. Finally, the check whether Eq. d is satisfied with the computed values of xII

1 and xII
2 . If it

is, we have found the solution to the equations. If Eq. d is not satisfied, a new value of xI
1

is chosen, and the calculation is repeated.

The difficult part of this computation is the solution of Eqs. a and b for xII
1 and xII

2 . One way
to solve these equations, if one does not wish to use an equation-solving program, is as follows.
First, the values of the product x1γ1 are computed for various values of x1 (see the table that
follows). From a graph of x1γ1 versus x1 (see Fig. 1), we can easily obtain the value of x1γ1 for
any choice of x1 and then locate other values of x1 that have the same value of x1γ1. Thus, given
the trial value of xI

1, xII
1 is quickly found. In a similar fashion, computing and plotting x2γ2 as

a function of x2 (or x1 = 1 − x2) provides an easy method of finding xII
2 given xI

2 = 1 − xI
1.

We then need to check whether Eq. d is satisfied. If not, the calculation is repeated with another
guess for xI

1.
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Figure 1 The product of species mole fraction and activity coefficients for the isobutane-furfural
system at 37.8◦C and 5 bar.

Using MATHCAD, we obtain the following compositions for the coexisting liquid phases:

xI
1 = 0.1128 xII

1 = 0.9284

and
xI

2 = 0.8872 xII
2 = 0.0716

At these compositions the activity coefficients are

γI
1 = 8.375 γII

1 = 1.018

γI
2 = 1.030 γII

2 = 12.77

and
xI

1γ
I
1 = 0.1128 × 8.375 = 0.945 = xII

1 γII
1 = 0.9284 × 1.018

xI
2γ

I
2 = 0.8872 × 1.030 = 0.914 = xII

2 γII
2 = 0.0716 × 12.77
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There are no experimental liquid-liquid phase equilibrium data for the isobutane-furfural sys-
tem with which we can compare our predictions. However, binary mixtures of furfural and,
separately, 2,2-dimethyl pentane, 2-methyl pentane, and hexane, which are similar to the binary
mixture here, all exhibit liquid-liquid phase separation,6 with one phase containing between 89
and 90 mol % furfural (xI

2) and the other between 6 and 7 mol % furfural (xII
2 ).

xiγi versus x1

x1 x1γ1 x2 x2γ2

0 0 1.0 1.0
0.05 0.5491 0.95 0.9555
0.10 0.8843 0.90 0.9231
0.15 1.0761 0.85 0.8965
0.20 1.1734 0.80 0.8805
0.30 1.2072 0.70 0.8739
0.40 1.1405 0.60 0.9000
0.50 1.0598 0.50 0.9594
0.60 0.9840 0.40 1.0506
0.70 0.9322 0.30 1.1607
0.80 0.9121 0.20 1.2343
0.85 0.9161 0.15 1.2071
0.90 0.9309 0.10 1.0731
0.95 0.9582 0.05 0.7325
1.00 1.0 0.0 0.0[

Using Aspen Plus R© with the folder Aspen Illustrations>Chapter 11>11.2-2 on the
Wiley website for this book that uses in the Properties mode Analysis>BINRY with
Txy and vapor-liquid-liquid as the valid phases and the UNIFAC model produces the
following results

xI
1 = 0.2461 xII

1 = 0.7539
xI

2 = 0.9520 xII
2 = 0.0480

which do not agree with the results in this illustration. This reinforces that caution
should be exercised when using completely predictive activity coefficient models, and
especially for the analysis of liquid-liquid equilibrium, which is very sensitive to the
model used and its parameter values.

]
Although by starting with Eq. 11.2-2 one can proceed directly to the calculation of

the liquid-liquid phase equilibrium state, this equation does not provide insight into the
reason that phase separation and critical solution temperature behavior occur. To obtain
this insight it is necessary to study the Gibbs energy versus composition diagram for
various mixtures. For an ideal binary mixture, we have (Table 9.3-1)

GIM = x1G1 + x2G2 + RT (x1 lnx1 + x2 lnx2) (11.2-5)

Now since x1 and x2 are always less than unity, lnx1, lnx2 ≤ 0, and the last term
in Eq. 11.2-5 is negative. Therefore, the Gibbs energy of an ideal mixture is always
less than the mole fraction–weighted sum of the pure component Gibbs energies, as
illustrated by curve a of Fig. 11.2-5. For a real mixture, we have

G = GIM + Gex (11.2-6)

6The reference for these data is H. Stephen and T. Stephen, eds., Solubilities of Inorganic and Organic Compounds,
Vol. 1, Binary Systems, Macmillan, New York (1963).
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where the excess Gibbs energy would be determined by experiment or approximated
using a liquid solution model. For the purposes of illustration, assume that the one-
constant Margules equation is satisfactory, so that

Gex = Ax1x2 (11.2-7)

with A > 0. The total Gibbs energy,

G = x1G1 + x2G2 + RT (x1 lnx1 + x2 lnx2) + Ax1x2 (11.2-8)

for two values of A is plotted as curves b and c of Fig. 11.2-5.
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Figure 11.2-5 The molar Gibbs energy
of ideal (A = 0) and nonideal (A �= 0)
binary mixtures if phase separation
does not occur (solid line) and when
phase separation occurs (dashed line).

The equilibrium criterion for a closed system at constant temperature and pressure is
that the Gibbs energy of the system be a minimum.7 For the mixture of curve c, with
an overall composition between xα and xβ , the lowest value of G is obtained when the
mixture separates into two phases, one of composition xα and the other of composition
xβ . In this case the Gibbs energy of the mixture is a linear combination of the Gibbs
energies of two coexisting equilibrium liquid phases (the lever rule, Eqs. 7.3-1) and is
represented by the dashed line (representing different amounts of the two phases) rather
than the solid line in Fig. 11.2-5. If, however, the total mixture mole fraction of species
1 is less than xα or greater than xβ , only a single phase will exist. Of course, the phase
equilibrium compositions xα and xβ can be found directly from Eq. 11.2-2 in general,
and from Eq. 11.2-4a for the case here, without this graphical construction.

The temperature range over which liquid-liquid phase separation occurs can be found
by using the requirement for intrinsic fluid stability of Chapter 7 (see also Problem 8.25),
that is,

d2G > 0 at constant N, T, and P (11.2-9)

7Since the system is closed and nonreacting, the number of moles of each species is fixed. Therefore, in the analysis
here we will consider the molar Gibbs energy of the mixture G, rather than G .
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What, in fact, we will do is look at the second composition derivative of the Gibbs
energy. If (∂2G/∂x2

1)T,P > 0 (which follows from Eq. 11.2-9), for a given temperature
and composition, the single phase is stable; if, however, (∂2G/∂x2

1)T,P < 0 at the
given values of T and x1, the single phase is unstable and phase separation occurs.
The compositions at which (∂2G/∂x2

1)T,P = 0, which are inflection points on the G
versus x1 curve, are the limits of stability of the single phase at the given temperature
(though not the equilibrium compositions).8 If a temperature Tuc exists for which

Condition for upper
consolute temperature

(
∂2G

∂x2
1

)
T,P

{
= 0 for some value of x1 at T = Tuc

> 0 for all values of x1 at T > Tuc

(11.2-10a)

it is the upper consolute temperature of the mixture. Similarly, if there is a temperature
Tlc for which

Condition for lower
consolute temperature

(
∂2G

∂x2
1

)
T,P

{
= 0 for some value of x1 at T = Tlc

> 0 for all values of x1 at T < Tlc

(11.2-10b)

it is the lower consolute temperature.
To find the consolute temperatures of a mixture obeying the one-constant Margules

model, we start from Eq. 11.2-8 and obtain9(
∂2G

∂x2
1

)
T,P

=
RT

x1x2

− 2A (11.2-11)

Consequently, (∂2G/∂x2
1)T,P > 0 and the single-liquid phase is the equilibrium state if

T >
2Ax1x2

R
(11.2-12a)

whereas (∂2G/∂x2
1)T,P < 0 and phase separation occurs if

T <
2Ax1x2

R
(11.2-12b)

The limit of stability occurs at

T =
2Ax1(1 − x1)

R
(11.2-13)

and the highest temperature at which phase separation is possible at any composition
for a Margules mixture occurs at x1 = x2 = 0.5, which gives the maximum value of
the product x1(1 − x1), so that

Tuc =
A

2R
(11.2-14)

8Remember from Sec. 7.3 that while the the condition (∂P/∂V )T = 0 on the van der Waals loop of an equation
of state gave the conditions of mechanical stability, it did not give the vapor-liquid equilibrium points (that is, the
vapor pressure). That had to be determined from the equality of species fugacities in each phase. The situation is
much the same here in that the limit of stability from Eq. 11.2-9 is not the equilibrium compositions found from
the equality of species fugacities in the coexisting liquid phases.
9In taking this derivative remember that (∂x2/∂x1)T,P = −1.
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This is the upper consolute temperature for a Margules mixture. Note that the Margules
equation does not have a lower critical solution temperature (i.e., there is no solu-
tion of Eq. 11.2-11 for which Eq. 11.2-10b is satisfied). Thus the two partially mis-
cible liquid phases of a Margules mixture cannot be made to combine by lowering the
temperature.

Equations 11.2-11 through 11.2-14 are specific to the choice of the one-constant Mar-
gules equation to represent the excess Gibbs energy of the mixture. The use of more
realistic models for Gex will lead to other predictions for phase separation, such as
the limit of stability at the upper consolute occurring away from x1 = 0.5 (Problem
11.2-1).

For very nonideal mixtures, for example, aqueous solutions in which hydrogen bond-
ing and other associative phenomena occur, the species activity coefficients may be very
different in value from unity, asymmetric in composition, and temperature dependent.
A detailed analysis of such systems is beyond the scope of this book, but it is useful
to note here that such mixtures may have a lower consolute temperature. Also, in very
nonideal mixtures the species activity coefficients can be large, so that the two species
will be relatively insoluble, as will be shown in Illustration 11.2-3. (Since species ac-
tivity coefficients are never infinite, it is evident from Eq. 11.2-2 that any liquid must
be at least sparingly soluble in any other, so that no two liquids are truly immiscible.
However, for some species the equilibrium solubilities are so low that it is convenient
to refer to them as being immiscible.)

The Gibbs energy of a binary mixture is

G(T,P, x) = x1G1(T,P ) + x2G2(T,P ) + x1RT lnx1γ1 + x2RT lnx2γ2

(11.2-15)
The change in Gibbs energy on forming this mixture from its pure components is

ΔmixG(T,P, x) = G(T,P, x) − x1G1(T,P ) − x2G2(T,P )

= x1RT lnx1γ1 + x2RT lnx2γ2

(11.2-16)

Now consider the case of a very dilute solution of species 2 (an impurity or pollutant)
in a solvent of species 1. In this case x1 → 1, so that γ1 → 1 and γ2 → γ∞

2 . Therefore,
the Gibbs energy change on forming a dilute mixture from the pure components is

ΔmixG(T,P, x1 → 1) = x1RT lnx1 + x2RT lnx2γ
∞
2 (11.2-17)

Regardless of the value γ∞
2 , for sufficiently small mole fractions of an impurity or pol-

lutant, the Gibbs energy change will be negative (since it consists of a sum of the log-
arithms of numbers less than 1). So a dilute solution has a lower Gibbs energy than its
pure components at the same temperature and pressure, and therefore is the thermo-
dynamically stable or preferred state. Thus a dilute mixture is preferred over the two
pure species. There are several practical implications of this. One is that environmental
pollutants, unless they are solids or present in very large amounts so as to saturate their
surroundings, are much more likely to be found dissolved in water or present in the air
than as a separate phase. Second, it is extremely unlikely that ultra high purity gaseous
or liquid chemicals will be found in nature.

From Eq. 11.2-2 we have

xI
iγ

I
i (T,P, xI) = xII

i γII
i (T,P, xII) (11.2-2)

Now consider the case in which compound 1 is essentially immiscible in the second
compound, though the converse need not be true. (For example, n-octanol is essentially
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insoluble in water, but water is soluble in n-octanol to about 26 mol % at 25◦C.) Taking
phase I to be the one rich in component 1, we then have xI

1 ≈ 1 and γI
1 ≈ 1, so that

1 = xII
1 γII

1 or xII
1 =

1
γII

1

(11.2-18)

This equation is useful for determining activity coefficients from liquid solubility data,
as shown in the following illustration.

Illustration 11.2-3
Determination of Activity Coefficients from Measured LLE Data for an Essentially Immiscible
Mixture

From the data in Volume III of the International Critical Tables (McGraw-Hill, New York, 1929)
we see that the equilibrium state in the carbon tetrachloride–water system at 25◦C is two phases:
one an aqueous phase containing 0.083 wt % carbon tetrachloride, and the other an organic phase
containing 0.011 wt % water. Estimate the activity coefficient of CCl4 in the aqueous phase and
H2O in the organic phase.

Solution

Since the aqueous phase, which we designate as phase I, is 99.917 wt % water, it seems reason-
able to assume that the activity coefficient of water in the aqueous phase is unity. Similarly, the
activity coefficient of carbon tetrachloride in the organic phase will be taken to be unity. There-
fore, from Eq. 11.2-2, we have

γI
CCl4

=
xII

CCl4

xI
CCl4

∼= 1

xI
CCl4

γII
H2O =

xI
H2O

xII
H2O

∼= 1

xII
H2O

where we have used the superscripts I and II to denote the aqueous and organic phases,
respectively.

The first calculation to be done is the conversion of the weight fraction data to mole fractions.
Since the organic phase is almost pure carbon tetrachloride and the aqueous phase is essentially
pure water, either the equations in this illustration or Eq. 11.2-18 can be used to compute the
activity coefficients of carbon tetrachloride in water and water in carbon tetrachloride. The results
are given in the table.

xCCl4 xH2O γCCl4 γH2O

Aqueous phase 0.9708 × 10−4 0.9999 1.029 × 104 1 (assumed)
Organic phase 0.9991 0.9403 × 10−3 1 (assumed) 1.063 × 103

Comment

The values of the activity coefficients here are very large, especially compared with those we
found previously from vapor-liquid equilibrium data. Such values for the activity coefficient of
the dilute species in a mixture with species of very different chemical nature, such as carbon
tetrachloride and water, is quite common. Note that because of the concentrations involved, the
activity coefficients found are essentially the values at infinite dilution.
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Illustration 11.2-4
Approximate Values of Activity Coefficients from LLE Data for a Partially Miscible Mixture

When n-octanol and water are mixed, two liquid phases form. The water-rich phase is essentially
pure water containing only 0.7 × 10−4 mole fraction n-octanol, while the octanol-rich phase
contains approximately 0.26 mole fraction water. Estimate approximately the activity coefficient
of n-octanol in water and water in n-octanol.

Solution

The basic equation for the solution of this problem is Eq. 11.2-2:

xI
iγ

I
i (x

I) = xII
i γII

i (xII)

Since the water-rich phase (which we designate with superscript W) is essentially pure water, so
that xW

W
∼= 1 and γW

W
∼= 1, we have for water

1 = xO
WγO

W

where the superscript O indicates the octanol-rich phase. Consequently, for water in the octanol
phase,

γO
W =

1

xO
W

=
1

0.26
= 3.846

For octanol we have
xW

O γW
O = 0.7 × 10−4γW

O = xO
OγO

O

Since the octanol-rich phase is not pure octanol, we do not know the value of γO
O . However, we

see from Fig. 11.2-4 (for the system isobutane-furfural) that in the composition range of liquid-
liquid equilibrium we do not introduce a serious error by assuming that the product xO

OγO
O is

approximately equal to unity. Therefore, as an estimate, we have

0.7 × 10−4γW
O ≈ 1 or γW

O ≈ 1

0.7 × 10−4
= 1.43 × 104 = 14 300

Comment

1. Since the concentration of n-octanol in water is so low, the value of γW
O above is essentially

the value at infinite dilution.
2. While the value of the infinite-dilution activity coefficient of n-octanol in water above is

large, in fact much larger activity coefficient values will be seen to occur in the next chap-
ter. Consequently, although an activity coefficient represents a correction to ideal solution
behavior, it can be a very large correction.

3. The value of the product xO
OγO

O cannot be greater than unity; otherwise a pure octanol phase
would form. (Can you explain why this is so?) Therefore, the value of xO

OγO
O is likely to

be somewhat less than unity, so our estimate above for the activity coefficient of octanol in
water is too high, but probably only slightly so.

Note that we can rewrite Eq. 11.2-18 as

lnxi = − ln γi = −Gex
i

RT
(11.2-19)
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where we have omitted the superscript indicating the phase. Proceeding further and
using Eq. 6.2-30, we have

⎛
⎜⎜⎝ ∂ lnxi

∂

(
1
T

)
⎞
⎟⎟⎠

P

= − 1
R

⎛
⎜⎜⎜⎝

∂

(
Gex

i

T

)

∂

(
1
T

)
⎞
⎟⎟⎟⎠

P

=
−Hex

i

R
(11.2-20)

Therefore, if the excess enthalpy is (approximately) independent of both temperature
and composition, we have, as an indefinite integral,

lnxi(T ) = A − Hex
i

RT
(11.2-21)

where A is the constant of integration. Alternatively, as a definite integral

ln
xi(T2)
xi(T1)

= −Hex
i

R

(
1
T2

− 1
T1

)
or xi(T2) = xi(T1) exp

[
−Hex

i

R

(
1
T2

− 1
T1

)]
(11.2-22)

so that the solubility of the solute increases exponentially with temperature if the ex-
cess enthalpy of mixing is positive, and decreases exponentially with temperature if
the excess enthalpy of mixing is negative. Remember, however, that Eqs. 11.2-18 to
11.2-22 are valid only for a solute that is of low solubility in a solvent.

Liquid-liquid equilibrium occurs when the species in a mixture are dissimilar. The
most common situation is the one in which the species are of a different chemical nature.
Such mixtures are best described by activity coefficient models, and that is the case
considered in Illustration 11.2-3. However, liquid-liquid equilibrium may also occur
when the two species are of similar chemical nature but differ greatly in size, as in
the methane–n-heptane system, or when the species differ in both size and chemical
nature, as in the carbon dioxide–n-octane system shown in Fig. 11.2-3b. Since both
carbon dioxide and n-octane can be described by simple equations of state, liquid-liquid
equilibrium in this system can be predicted or correlated using equations of state, though
with some difficulty.

The calculation of liquid-liquid equilibrium using equations of state proceeds as in
the equilibrium flash calculation described in Sec. 10.3 and illustrated in Fig. 10.3-6,
with two changes. First, since both phases are liquids, the liquid root for the compress-
ibility (which will differ in the two liquid phases since the compositions are different)
must be found in each case and used in the fugacity calculation. Second, the initial
guesses for Ki = xII

i /xI
i are not made using the pure component vapor pressures

as in vapor-liquid equilibrium, but are chosen arbitrarily. (For example, K1 = 10 and
K2 = 0.1 when a prediction is to be made, or using the experimental data as the initial
guess in a correlation to obtain the binary interaction parameter.)
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Illustration 11.2-5
Calculation of LLE Using an Equation of State

The experimental data for liquid-liquid equilibrium in the CO2–n-decane system appear in the
following table.

T (K) P (bar) xI
CO2

xII
CO2

235.65 10.58 0.577 0.974
236.15 10.75 0.582 0.973
238.15 11.52 0.602 0.970
240.15 12.38 0.627 0.965
242.15 13.19 0.659 0.960
244.15 14.14 0.695 0.954
246.15 15.10 0.734 0.942
248.15 16.11 0.783 0.916
248.74 16.38 0.850 0.850

Source: A. A. Kulkarni, B. Y. Zarah, K. D.
Luks, and J. P. Kohn, J. Chem. Eng. Data,
19, 92 (1974).

Make predictions for the liquid-liquid equilibrium in this system using the Peng-Robinson equa-
tion of state with the binary interaction parameter equal to 0.114, as given in Table 9.4-1, as well
as several other values of this parameter.

Solution

Using one of the Peng-Robinson equation-of-state flash programs on the website with the van
der Waals one-fluid mixing rules, modified as just described for the liquid-liquid equilibrium
calculation, gives the results shown in Fig. 11.2-6. There we see that no choice for the binary
interaction parameter k12 will result in predictions that are in complete agreement with the ex-
perimental data. In particular, the value of the binary interaction parameter determined from
higher-temperature vapor-liquid equilibrium data (k12 = 0.114) results in a much higher liquid-
liquid critical solution temperature than is observed in the laboratory. Clearly, the Peng-Robinson
equation-of-state prediction for liquid-liquid coexistence curve using the van der Waals one-fluid
mixing rules is not of the correct shape for this system.

What should be stressed is not the poor accuracy of the equation-of-state predictions for the
CO2–n-decane system, but rather the fact that the same, simple equation of state can lead to good
vapor-liquid equilibrium predictions over a wide range of temperatures and pressures, as well as
a qualitative description of liquid-liquid equilibrium at lower temperatures.

It should be noted, however, that the equation-of-state predictions for this system could be
greatly improved using the Wong-Sandler mixing rule rather than the van der Waals one-fluid
mixing rules. Using the mixing rule of Sec. 9.9 with the UNIQUAC activity coefficient model
and temperature-independent parameters that have been fit only to the data at 235.65 K, the very
good predictions at all other temperatures shown in Fig. 11.2-6 are obtained. Note that if the
UNIQUAC model were used directly (that is, not in the Wong-Sandler mixing rule), temperature-
dependent parameters would be needed to obtain a fit of comparable quality. The success of this
more complicated mixing rule with temperature-independent parameters results from the fact
that there is a temperature dependence built into the equation of state.[
The folder Aspen Illustrations>Chapter 11>11.2-5 on the Wiley website for this book provides

the Aspen Plus R© file to predict the liquid-liquid equilibrium for this system. In the folder is an
Excel file Illustration 11.2-5.docx with the results of using the Peng-Robinson equation of state,
and also with the NRTL and UNIQUAC activity coefficient models. The results are not very
accurate.

]
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Figure 11.2-6 Liquid-liquid equilibrium for the system CO2–n-decane. Experimental data and
predictions using the Peng-Robinson equation of state and the simple van der Waals one-fluid
mixing rule (dashed lines) and the Wong-Sandler mixing rule (solid line).

An interesting example of liquid–liquid equilibrium is the miscibility of molten poly-
mers. This is especially important in the recycling of commingled plastics, as may occur
when different types of used plastic containers are mixed before melting. If the plastics
are compatible—that is, do not separate into two liquid phases when their mixture is
melted—they can be recycled together. However, if there is a liquid-liquid phase sep-
aration in the molten state, the cooled and solidified plastic will have occlusions of
the different phases, resulting in a product of little strength and unsuitable as a recycled
plastic. Since polymer mixtures are usually described by the Flory-Huggins model, this
equation can be used to determine whether polymers are compatible for recycling, as
shown in the example below.

Polymer recycling
Illustration 11.2-6
Determining the Compatibility of Polymers

Determine the liquid-liquid phase boundaries for the mixture of polymers polystyrene (PS)
and polymethylmethacrylate (PMMA) over the temperature range from 25◦C to 600◦C. The
polystyrene has a degree of polymerization (number of monomer units in the polymer), NPS, of
1500, and the volume of a monomer unit, V PS,m, is 107.8 cm3/mol. The polymethylmethacry-
late has a degree of polymerization, NPMMA, of 1700 and a monomer unit volume, V PMMA,m,
of 89.7 cm3/mol. The Flory parameter for the PS–PMMA mixture is given by

χ =
0.982 × NPS

T

where T is in K.

Solution

The equations for the activity coefficients of PS and PMMA are, from Eqs. 9.5-18,

ln γPS = ln
φPS

xPS

+

(
1 − 1

m

)
φPMMA + χφ2

PMMA
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and

ln γPMMA = ln
φPMMA

xPMMA

+ (m − 1)φPS + χφ2
PS

where

m =
V PMMA

V PS

=
NPMMA × V PMMA,m

NPS × V PS,m

=
1700 × 89.7

1500 × 107.8
= 0.943

and

χ =
0.982 × 1500

T
=

1473

T

The liquid-liquid equilibrium equations to be solved are

xI
PSγI

PS = xII
PSγII

PS and xI
PMMAγI

PMMA = xII
PMMAγII

PMMA

which, using the activity coefficient expressions above, can be written as10

ln

(
φI

PS(xI
PS)

φII
PS(xII

PS)

)
+

(
1 − 1

m

)(
φI

PMMA(xI
PMMA) − φII

PMMA(xII
PMMA)

)
+ χ
[(

φI
PMMA(xI

PMMA)
)2 − (φII

PMMA(xII
PMMA)

)2]
= 0

and

ln

(
φI

PMMA(xI
PMMA)

φII
PMMA(xII

PMMA)

)
−(m−1)(φI

PS(xI
PS)−φII

PS(xII
PS))+χ

[(
φI

PS(xI
PS)
)2 − (φII

PS(xII
PS)
)2]

= 0

These equations can be solved using MATHCAD or another equation-solving program. The
results are given below.

T (◦C) xI
PS xII

PS

25 7.71 × 10−3 0.992
100 0.023 0.978
150 0.040 0.962
200 0.063 0.941
250 0.096 0.913
300 0.141 0.878
350 0.211 0.834
375 0.272 0.808
380 0.292 0.802
385 0.325 0.795
387 0.352 0.791
>390 Complete miscibility

10Note that φJ
i (xJ

i ) is used to indicate that the volume fraction of species i in phase J is a function of its mole
fraction, xJ

i .
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The decomposition temperature has been reported to be 364◦C for polystyrene and lower than
327◦C for PMMA. Consequently, any reprocessing of these polymers would have to be done at
temperatures considerably below 327◦C; at such temperatures there are only small regions of
composition in which the polymers are compatible (that is, do not phase-separate) in the melt.

For example, at 250◦C the polymers will be mutually soluble only for PS concentrations less
than 0.096 mole fraction or greater than 0.913 mole fraction. Thus the two polymers can be
commingled for recycling only in limited proportions.

So far we have considered liquid-liquid equilibrium only for binary mixtures. We next
consider multicomponent mixtures. When two solvents are partially miscible (rather
than immiscible), their mutual solubility will be affected by the addition of a third com-
ponent. In this case the equilibrium conditions are

f I
i(T,P, xI) = f II

i (T,P, xII) (11.2-23)

or, if an activity coefficient model is used,

xI
iγi(T,P, xI) = xII

i γi(T,P, xII) (11.2-2)

for each of the species i noting that the addition of a third component affects the activity
coefficients of all species in the mixture. (In writing these equations we have assumed
the existence of only two liquid phases. It is left to the reader to generalize these equa-
tions for three coexisting liquid phases.) Thus, the addition of a third component may
increase or decrease the equilibrium solubility of the two initially partially miscible sol-
vents. An increase in solubility of this type is termed salting in and a decrease salting
out (see Fig. 11.2-8).11 In some cases the addition of a solute (usually an electrolyte)
can so increase the mutual solubility of two partially miscible fluids that a completely
miscible mixture is formed.

11Usually the terms salting in and salting out are used to describe the increase or decrease in solubility that results
from the addition of a salt or electrolyte to a solute-solvent system. Their use here to describe the effects of the
addition of a nonelectrolyte is a slight generalization of the definition of these terms.
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A typical liquid-liquid equilibrium problem is to determine the amounts and com-
positions of the two or more phases that are formed when known amounts of sev-
eral chemicals are mixed. The equations to be solved are the equilibrium conditions of
Eqs. 11.2-2 and the mass balances

Ni = N I
i + N II

i (11.2-24)

Thus to compute the equilibrium state when N1 moles of species 1, N2 moles of species
2, and so on, are mixed, Eqs. 11.2-2 and 11.2-24 are to be solved. These equations can be
difficult to solve, first because of the complicated dependence of the activity coefficients
on the mole fractions (these equations are nonlinear) and second, because even in the
simplest case of a ternary mixture, there are six coupled equations to be solved. This is
best done on a computer with equation-solving software.

A difficulty that arises if there are more than two components is how to graphically
represent the phase behavior. Figures can be drawn for a ternary system, either in tri-
angular form (in which the compositions of all three components are represented) or in
rectangular form for two of the components, with the composition of the third species
obtained by difference.

Ternary systems and
triangular diagrams

Figure 11.2-7 is an example of the triangular diagram method of the two-dimensional
representation of the three composition variables, and is interpreted as follows. The
three apexes of the triangle each represent a pure species. The composition (which, de-
pending on the figure, may be either mass fraction or mole fraction) of each species
in a mixture decreases linearly with distance along the perpendicular bisector from
the apex for that species to the opposite side of the triangle. Thus each side of the
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Figure 11.2-7 Triangular diagram representation of the compo-
sitions of a ternary mixture in two dimensions.

triangle is a binary mixture lacking the species at the opposite apex (i.e., the bottom
of Fig. 11.2-7 represents an A+C binary mixture, the right side mixtures of A+B, and
the left side B+C mixtures). For convenience, the fractional concentrations are usually
indicated along one side of the triangle for each species.



636 Chapter 11: Other Types of Phase Equilibria in Fluid Mixtures

The fractional concentration of each species at a specific point on the diagram is
found by drawing a line through that point parallel to the side opposite the apex for that
substance and noting the intersection of this line with the appropriate side of the triangle.
This is illustrated in Fig. 11.2-7, where the filled point has the composition xA = 0.30,
xB = 0.45, and xC = 0.25, and the lines indicate how these compositions are to be
read on this diagram.

A simple example of the use of a triangular diagram is given in the illustration that
follows.

Illustration 11.2-7
Mass Balance Calculation on a Triangular Diagram

One kilogram of a binary mixture containing 50 wt % of species A and 50 wt % of species B
is mixed with two kilograms of a ternary mixture containing 15 wt % of A, 5 wt % of B, and
80 wt % of species C.

a. What is the composition of the final mixture (assuming there is no liquid-liquid phase
splitting)?

b. Plot the compositions of the two initial mixtures and the final mixture on a triangular
diagram.

Solution

a. The mass balance on each species is
A: 0.5 × 1 + 0.15 × 2 = 0.8 kg
B: 0.5 × 1 + 0.05 × 2 = 0.6 kg
C: 0.0 × 1 + 0.80 × 2 = 1.7 kg
Since, from an overall mass balance, there are 3 kg in the final mixture, the final composi-
tion is
A: 0.8/3 = 0.267 weight fraction or 26.7 wt %
B: 0.6/3 = 0.200 weight fraction or 20.0 wt %
C: 1.6/3 = 0.533 weight fraction or 53.3 wt %

b. The two feed compositions and the final mixture composition are plotted on the accompa-
nying triangular diagram.
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Comment

The final mixture composition is on a straight line connecting the two feed compositions. This is
another example of the lever rule, and is merely a result of the mass balances being linear equa-
tions. Note also that the composition of the final mixture is found at two-thirds of the distance
from the first feed to the second feed in accordance with their relative amounts. This graphical
linear relation between the two feeds and the final mixture is the opposite case to that of a single
feed that splits into two equilibrium streams, which is the case in liquid-liquid extraction.

The liquid-liquid phase equilibrium data for the methyl isobutyl ketone (MIK) +
acetone (A) + water (W) ternary mixture is shown Fig. 11.2-8. The inside of the dome-
shaped region in this figure is a region of compositions in which liquid-liquid phase
separation occurs, and tie lines are sometimes drawn within the phase separation re-
gion (as in this figure) to indicate the compositions of the coexisting phases. (As we will
see shortly, phase diagrams can be more complicated than the one shown here.) From
the intersection of the two-phase region with the base of the triangular diagram, we see
that water and MIK are only slightly soluble in each other, while the binary mixtures
of water + acetone and MIK + acetone are mutually soluble and so form only a single
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Figure 11.2-8 Liquid-liquid equilibrium compositions in weight
fractions for the MIK + acetone + water system at 298.15 K.

liquid phase at all compositions. Note that there is a ternary composition at which the
equilibrium tie line is of zero length, and the two equilibrium phases have the same
composition. This composition is known as the plait point of the mixture and is indi-
cated by the point labeled P in the figure.

Experimental liquid-liquid equilibrium data may be available as complete lists of the
composition of each phase, so that triangular diagrams such as the one shown here can
easily be prepared. However, it is also common for experimental data to be obtained in a
less complete way that requires fewer chemical analyses. For example, if species A and
B are mutually soluble, a mixture of a specified composition is prepared (gravimet-
rically, that is, by weighing each component before mixing), and then small weighed
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amounts of species C are added (and the solution mixed) until just enough of C has been
added for the solution to become cloudy, indicating the formation of a second liquid
phase. In this way the composition of the ternary mixture at one point of the liquid-liquid
equilibrium (or binodal) curve is obtained without the need to do a chemical analysis.
However, the composition of the coexisting equilibrium phase (that is, the other end of
the tie line) is not known. (Note that the liquid-liquid equilibrium, or binodal, curve is
also referred to as the cloud point curve, a name that is appropriate to the way it was
determined. The cloud point curve in liquid-liquid equilibrium is analogous to the dew
point or bubble point curve in vapor-liquid equilibrium in that it represents the satura-
tion of a single phase and the formation of a second phase. The new phase is a second
liquid at the cloud point, a vapor at the bubble point or a liquid at the dew point.) 12

The following data for the system methyl isobutyl ketone (MIK)–acetone–water13

are an example of such data. These data form the boundary of the dome-shaped liquid-
liquid coexistence region that was plotted in the triangular diagram of Fig. 11.2-8.

MIK Acetone Water MIK Acetone Water
(wt %) (wt %) (wt %) (wt %) (wt %) (wt %)

93.2 4.60 2.33 27.4 48.4 24.1
77.3 18.95 3.86 20.1 46.3 33.5
71.0 24.4 4.66 2.12 3.73 94.2
65.5 28.9 5.53 3.23 20.9 75.8
54.7 37.6 7.82 5.01 30.9 64.2
46.2 43.2 10.7 12.4 42.7 45.0
38.3 47.0 14.8 20.5 46.6 32.8
32.8 48.3 18.8 25.9 50.7 23.4

In addition to these data, usually several two-phase mixtures, with appreciable am-
ounts of the second phase, are prepared and the solute composition measured. Such
data for the acetone in the MIK + acetone + water system at 298.15 K are given in the
following table.

Acetone (wt %) in MIK layer Acetone (wt %) in water layer

10.66 5.58
18.0 11.83
25.5 15.35
30.5 20.6
35.3 23.8

12Aspen Plus R© can be used to prepare ternary liquid-liquid equilibrium diagrams. After the components and
methods are specified in the Properties mode, under Analysis choose Ternary Diag as in the file Acteone-Water-
MIK ternary diagram.apwz (found in Aspen Illustrations>Chapter 11>11.2-7 on the Wiley website for this book).
The results using the NRTL and UNIQUAC models are given in the Excel spreadsheet Illus 11.2-7.xlsx. Note that
Aspen Plus R© produces ternary diagrams using mole fractions while the diagram in the illustration are in terms of
mass fractions, and therefore not directly comparable.
13D. F. Othmer, R. E. White, and E. Trueger, Ind. Eng. Chem., vol. 33, 1240 (1941).
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These data are plotted in Fig. 11.2-9.
The data in Fig. 11.2-9 are used to add the tie lines in Fig. 11.2-8. The procedure is

as follows.

1. A composition of the solute, acetone, is arbitrarily chosen for one of the phases—
for example, 5 wt % in the water-rich phase. The point at which there is 5 wt %
acetone on the water-rich portion of the binodal curve is identified in Fig. 11.2-8.
This is one end of a tie line.

2. The acetone composition in the MIK-rich phase in equilibrium with 5 wt % ace-
tone in the water-rich phase is found from Fig. 11.2-9 to be approximately
10 wt %.

Acetone in water layer
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Figure 11.2-9 Distribution of acetone between the
coexisting liquid phases in the MIK + acetone +
water system at 298.15 K.

3. The point at which there is 10 wt % acetone on the MIK-rich portion of the binodal
curve is identified in Fig. 11.2-8. This is the other end of the tie line.

4. The tie line connecting these two points is drawn in Figure 11.2-8.
5. This procedure is repeated for as many other tie lines as are desired.

Note that in this way the complete liquid-liquid equilibrium curve and the tie lines
have been obtained with very few chemical analyses. In particular, the binodal curve
was obtained gravimetrically, which is generally more accurate than chemical analysis,
and the tie lines were obtained for only a few mixtures, and then only by analyzing for
the solute (here acetone), and not for all three components in the mixture.

Since only two of the mole fractions or weight fractions are independent in a ternary
system (since the three fractions must sum to unity), another way of presenting ternary
liquid-liquid equilibrium data is as shown in Fig. 11.2-10 for the MIK + acetone + water
system, in which only the MIK and acetone concentrations are presented, and the user
must determine the water concentration by difference.

Triangular diagrams and other means of presenting ternary liquid-liquid equilibrium
data can be used to design liquid-liquid extraction processes. Such applications are
considered elsewhere in the chemical engineering curriculum. However, a brief intro-
duction is given in the two illustrations that follow.
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Figure 11.2-10 Liquid-liquid phase diagram for the MIK + acetone + water system at 298.15 K
showing only the MIK and acetone weight fractions; the water weight fraction is obtained by
difference.

Application to
liquid-liquid
extraction

Illustration 11.2-8
Liquid-Liquid Extraction of an Organic Chemical from Aqueous Solution

It is desired to remove some of the acetone from a mixture that contains 60 wt % acetone and
40 wt % water by extraction with methyl isobutyl ketone (MIK). If 3 kg of MIK are contacted
with 1 kg of the acetone-water mixture, what will be the amounts and compositions of the equi-
librium phases?

Solution

This problem is solved using the triangular diagram of Fig. 11.2-8. First the concentration of the
combined streams is determined. It consists of 3 kg of MIK, 0.6 × 1 kg = 0.6 kg of acetone,
and 0.4 × 1 kg of water. So the overall feed is 75 wt % MIK, 15 wt % acetone, and 10 wt %
water. This point is located on the triangular diagram for this system, and is found to be in
the two-liquid phase region. Next, a tie line is drawn through this feed point (indicated by the
dashed line in the accompanying figure), and the compositions of the two coexisting phases are
found at the two intersections of the tie line with the binodal curve. These compositions are
given below.

MIK (wt %) Acetone (wt %) Water (wt %)

MIK-rich 80.5 15.5 4.0
Water-rich 2.0 8.0 90.0
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Next, from an overall mass balance,

LI + LII = 4 kg so that LII = 4 − LI

and a mass balance on any one of the species, say water, we have

0.04 × LI + 0.90 × LII = 0.04 × LI + 0.90 ×
(
4 − LI

)
= 0.4 × 1 = 0.4 kg

which has the solution LI = 3.721 and LII = 0.279 kg. So by liquid-liquid extraction,
we have

MIK (kg) Acetone (kg) Water (kg)

MIK-rich 2.979 0.574 0.148
Water-rich 0.005 0.024 0.27

Comment

By this single liquid-liquid extraction step we have been able to remove most of the acetone from
the water. However, a great deal of methyl isobutyl ketone has been used. Consequently, this
would not be a very useful way to recover acetone from aqueous solution. To reduce the amount
of solvent used, an alternative would be to use a number of stages, each with a smaller amount of
pure solvent. Such multistage extractions are frequently done in the chemistry laboratory. This
is shown in the next illustration.
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Illustration 11.2-9
Staged Liquid-Liquid Extraction of an Organic Chemical from Aqueous Solution

The acetone-water mixture of the previous illustration is to be treated by a two-stage extraction
with methyl isobutyl ketone (MIK). In the first stage 1 kg of MIK is contacted with 1 kg of the
acetone-water mixture. The water-rich phase will go to a second stage, where it will be contacted
with another 1 kg of pure MIK. What will be the amounts and compositions of the equilibrium
phases at the exit of each stage?

Solution

As in the previous illustration, this problem is solved using the triangular diagram of Fig.
11.2-8. First the concentration of the combined streams in stage 1 is determined. It consists
of 1 kg MIK, 0.6 × 1 kg = 0.6 kg acetone, and 0.4 × 1 kg water. So the overall feed is 50 wt %
MIK, 30 wt % acetone, and 20 wt % water. This point is located on the triangular diagram for
this system, and found to be in the two-liquid phase region. Following the procedure used in the
previous illustration, the compositions of the two phases are as follows.

MIK (wt %) Acetone (wt %) Water (wt %)

MIK-rich 62 32 6
Water-rich 2 23 75

A

0.8

1.0

0.60.4

0.40.6

0.20.8
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Next, from an overall mass balance,

LI + LII = 2 kg so LII = 2 − LI

and a mass balance on water, we have

0.06 × LI + 0.75 × LII = 0.06 × LI + 0.75 ×
(
2 − LI

)
= 0.4 × 1 = 0.4 kg

which has the solution LI = 1.59 and LII = 0.41 kg.
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The feed to the second stage is the following: MIK = 1 + 0.02 × 0.41 = 1.008 kg, acetone =
0.23 × 0.41 = 0.094 kg, and water = 0.75 × 0.41 = 0.308 kg, for a total of 1.41 kg. Therefore,
the composition of the combined feed to the second stage is 71.5 wt % MIK, 6.7 wt % acetone,
and 21.8 wt % water, which is also in the two-phase region.

Using the tie line through this new feed point, we obtain the following:

MIK (wt %) Acetone (wt %) Water (wt %)

MIK-rich 88.4 7.6 4
Water-rich 2 3 95

From the mass balances LI = 1.134 and LII = 0.276 kg., the water-rich stream leaving the
second stage extraction unit contains 0.263 kg water, 0.0083 kg acetone, and 0.0055 kg MIK.

Comment

Note that by using two liquid extraction stages instead of a single stage, more acetone has been
extracted (only 0.0083 kg in the exit water-rich stream, compared with 0.022 kg in the single-step
process), and only 2 kg MIK have been used (of which 0.0055 kg is lost in the water stream),
compared with 3 kg in the single-step process with a comparable MIK loss.

This example suggests that staging with smaller amounts of solvent (here MIK) will produce
greater recovery than a single-stage process. However, this would involve greater costs since
more equipment is needed. Clearly, a careful analysis, including costs, would be required to
design the economically optimal process. In such a design, other extraction configurations would
have to be considered, such as the countercurrent extraction process shown below and other, more
complicated processes. Such designs are considered in a stagewise operations course elsewhere
in the chemical engineering curriculum. The purpose of the illustrations here is merely to show
the importance of thermodynamic equilibrium in the design of liquid-liquid extraction processes.

MIK

Aqueous stream

Schematic diagram of a staged liquid-liquid extraction system.

While graphical methods have been used in the illustrations above, that is not what
would be done in more careful design, and especially in the design of a chemical process
using modern computer simulation software. The procedure would be to use one of the
activity coefficient models described in Chapter 9, frequently the NRTL, UNIQUAC, or
van Laar model, with parameters adjusted to fit the available liquid-liquid equilibrium
data, and solve the equilibrium equations, Eqs. 11.2-2, numerically. This leads to more
accurate results than reading numbers from triangular diagrams, as was done in the
illustrations here.

In this section we have considered liquid-liquid equilibrium in binary mixtures, and
in ternary mixtures in which there was limited mutual solubility between only one pair
of components (for example, the methyl isobutyl ketone + water binary mixture in the
methyl isobutyl ketone + water + acetone system). In fact, liquid-liquid equilibria can
be more complicated than this when two of three binary pairs in a ternary mixture, or
all three of the binary pairs, have limited solubility. Such systems can be described by
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a generalization of the equations used in this section to allow for three (or more) liquid
phases when multicomponent systems are considered:

xI
iγ

I
i (T,P, xI) = xII

i γII
i (T,P, xII) = xIII

i γIII
i (T,P, xIII) i = 1, 2, . . . , C

(11.2-25)

Though we will not analyze such systems here, we conclude this section by show-
ing examples of the types of liquid-liquid equilibria found to occur in ternary mix-
tures. Figure 11.2-11a is another example of a liquid-liquid phase diagram for a system
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Figure 11.2-11 (a) Equilibrium diagram for the acetone–water–1,1,2-trichloroethane system.
[Reprinted with permission from R. E. Treybal, L. D. Weber, and J. F. Daley, Ind. Eng. Chem.,
38, 817 (1946). Copyright by American Chemical Society.] (b) Equilibrium diagram for the
nitrobenzene-methanol-isooctane system at 15◦C. [Reprinted with permission from A. W.
Francis, Liquid-Liquid Equilibriums, John Wiley & Sons, New York (1963).] (c) Equilibrium
diagram for the furfural–water–ethyl acetate system. [Reprinted with permission from A. W.
Francis, Liquid-Liquid Equilibriums, John Wiley & Sons, New York (1963).] (d) Equilibrium
diagram for the nitroethane–glycol–decyl alcohol system at 10◦C. [Reprinted with permission
from A. W. Francis, J. Phys. Chem., 60, 20 (1956). Copyright by the American Chemical Soci-
ety.] (e) Equilibrium diagram for the nitromethane–glycol–lauryl alcohol system at 20◦C, show-
ing the presence of two and three coexisting solid and liquid phases. [Reprinted with permission
from A. W. Francis, J. Phys. Chem., 60, 20 (1956). Copyright by the American Chemical Soci-
ety.] (f) Equilibrium diagram for carbon dioxide with 10 pairs of other liquids, demonstrating
the wide variety of liquid-liquid phase equilibria that occur at 0◦C. Note that tie lines and plait
points have been included in the diagrams. [Reprinted with permission from A. W. Francis,
J. Phys. Chem., 58, 1099 (1954). Copyright by the American Chemical Society.]
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that has a single pair of components that are partially miscible. In the nitrobenzene-
methanol-isooctane system of Fig. 11.2-11b, there are 2 two-phase regions, and in the
furfural–water–ethyl acetate system of Fig. 11.2-11c the 2 two-phase regions merge
into a band. The nitroethane–glycol–decyl alcohol system of Fig. 11.2-11d has three
distinct two-phase regions, whereas Fig. 11.2-11e, for the nitromethane–glycol–lauryl
alcohol system, shows the merging of these two-phase regions (denoted by 2L) into
regions where three liquid phases coexist (denoted by 3L).

Figure 11.2-11f, for the liquid-liquid phase equilibrium behavior of liquid carbon
dioxide with pairs of other liquids, has been included to illustrate the variety of types
of ternary system phase diagrams the chemist and engineer may encounter. Complete
discussions of these different types of phase diagrams are given in numerous places
(including A. W. Francis, Liquid-Liquid Equilibriums, John Wiley & Sons, New York,
1963).

In a ternary mixture there is also the possibility of three or more liquid phases in
equilibrium, which is allowed by a generalization of the two-phase equilibrium analysis
of this section (see Problem 11.2-1). Indeed, note that some of the phase diagrams in
Fig. 11.2-11 show regions of liquid-liquid-liquid equilibrium.
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PROBLEMS FOR SECTION 11.2

11.2-1 a. Show that if two liquids form a regular solution,
the critical temperature for phase separation is

RTc =
2x1x2V

2
1V

2
2

(x1V 1 + x2V 2)
3
(δ1−δ2)

2 =
2Φ1Φ2V 1V 2

(x1V 1 + x2V 2)
(δ1−δ2)

2

b. Show that the composition at the upper consolute
temperature is

x1 = 1 − x2 =
(V 2

1 + V 2
2 − V 1V 2)

1/2 − V 1

V 2 − V 1

and develop an expression for the upper conso-
lute temperature for the regular solution model.

11.2-2 Following is a portion of a phase diagram for two
liquids that are only partially miscible. Note that
the phase diagram contains both the coexistence
curve (solid line) and a curve indicating the sta-
bility limit for each phase (dashed line) (i.e., the

dashed line represents the greatest concentration of
the dilute species, or extent of supersaturation, that
can occur in a metastable phase). This line is called
the spinodal curve. For a binary mixture for which
Gex = Ax1x2, develop the equations to be used to
a. Compute the liquid-liquid coexistence line.
b. Compute the spinodal curve.

T

x

Two-phase
region

Coexistence
curve

Spinodal
curve

One phase

11.2-3 The two figures below have been obtained from
measurements of the excess Gibbs energy and
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excess enthalpy for the benzene-CS2 and benzene-
CCl4 systems, respectively, at 25◦C.
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a. Comment on the applicability of the regular so-
lution model to these two systems.

b. Assuming that the excess Gibbs energy for the
C6H6–CS2 system is temperature independent,
estimate the upper consolute temperature of the
system. Since the melting point of benzene is
5.5◦C and that of CS2 is −108.6◦C, will a liquid-
liquid phase separation be observed?

c. At 46.5◦C, the vapor pressure of CS2 is 1.013 bar
and that of C6H6 is 0.320 bar. Will an azeotrope
occur in this system at this temperature?

11.2-4 The liquids perfluoro-n-heptane and benzene are
only partially miscible at temperatures below their
upper consolute temperature of 113.4◦C. At 100◦C
one liquid phase is approximately 0.48 mole frac-
tion benzene and the other 0.94 mole fraction ben-
zene (see Fig. 11.2-3). The liquid molar volume of
perfluoro-n-heptane at 25◦C is 0.226 m3/kmol.

a. Use these data to compute the interaction param-
eter A in a one-constant Margules equation for
the excess Gibbs energy. Is the one-constant Mar-
gules equation consistent with the experimental
data?

b. Use the experimental data to compute the value
of the regular solution theory solubility param-
eter for perfluoro-n-heptane [the value given in
Table 9.6-1 is δ = 6.0 (cal/cc)1/2]. Is regular
solution theory consistent with the experimental
data?

11.2-5 The Gibbs energy for highly nonideal solutions can
behave as shown here. Prove that liquid-liquid phase
separation will occur in this system, and that the
compositions of the coexisting liquid phases are de-
termined by the two intersections of the common
tangent line with the Gmix curve. Points B and C are
inflection points on the Gibbs energy curve. What is
the relation of these points to the stability of the co-
existing liquid phases?

x2

mix_G

B

C

11.2-6 Show that the Wilson activity coefficient model of
Eqs. 9.5-11 and 9.5-12 cannot predict the existence
of two liquid phases for any values of its parameters.

11.2-7 Polymer-polymer and polymer-solvent systems are
important in the chemical industry, and typically the
Flory-Huggins model is used to describe the activ-
ity coefficients in such systems. Assuming the va-
por phase is ideal, and that the vapor pressure of the
polymer is negligible,
a. Develop the equations that should be solved for

the bubble point pressure as a function of tem-
perature for polymer-solvent mixtures using the
Flory-Huggins model.

b. Develop the equations that should be solved
for the molten polymer–molten polymer liquid-
liquid immiscibility region as a function of tem-
perature using the Flory-Huggins model.

What data would you need to do numerical calcula-
tions for the phase behavior with the equations you
have developed above?



648 Chapter 11: Other Types of Phase Equilibria in Fluid Mixtures

11.2-8 Explain why the activity (i.e., xiγi) based on the
pure component standard state of a species in a so-
lution cannot be greater than unity.

11.2-9 Compute the range of temperatures and compo-
sitions over which the copolymer polystyrene-
acrylonitrile (SAN) and polymethylmethacrylate
(PMMA) are miscible if these polymers have the
following properties. SAN has a molar volume,
V SAN, of 1.6 × 105 cm3/mol, and PMMA has a
molar volume, V PMMA, of 1.5 × 105 cm3/mol.
The Flory parameter for the SAN-PMMA mixture
is given by

χ =
1895

T

where T is in K.
11.2-10 The excess Gibbs energy for a mixture is given by

Gex = x1x2 (a + bT + c ln T )

For this system
a. Find the expressions for Hex, Sex, and Cex

P .
b. Determine the range of values of the parameters

a, b, and c that result in liquid-liquid equilib-
rium with only an upper consolute point.

c. Determine the range of values of the parameters
a, b, and c that result in liquid-liquid equilib-
rium with only a lower consolute point.

11.2-11 a. Estimate the heat and work flows needed to
reversibly and isothermally separate an equimo-
lar mixture of two species into its pure compo-
nents if the excess Gibbs energy for the mixture
is given by

Gex = Ax1x2

where A is independent of temperature.
b. How does the temperature at which W = 0

compare with the upper consolute temperature
of the mixture?

c. How would the answers to parts (a) and (b)
change if A were a function of temperature?

11.2-12 The binary liquid mixture of nitromethane and
n-nonane exhibit liquid-liquid equilibrium. At
70◦C one phase has a nitromethane mole fraction
of 0.131 and the other phase has an n-nonane mole
fraction of 0.0247. At 90◦C the mole fractions are
0.214 and 0.0469, respectively.
a. Estimate the excess Gibbs energy of mixing at

each of the temperatures over the whole concen-
tration range (that is, extrapolate into the liquid-
liquid equilibrium region).

b. Estimate the excess enthalpy of mixing at 80◦C
over the whole concentration range.

c. Estimate the excess entropy of mixing at 80◦C
over the whole concentration range.

11.2-13 The diffusive flux is usually written as

j1 = −cD∇x1

where D is the diffusion coefficient and c is the
concentration in mol/m3; also, c1 is the concentra-
tion of species 1 in mol/m3. However, when writ-
ten this way it is found that D depends on con-
centration. Also, this relation incorrectly predicts
that if a concentration difference exists between
two phases of different composition in equilibrium,
there will be a diffusive flux. To correct for these
problems, one can instead write an expression for
the diffusive flux in terms of a gradient in chemical
potential:

j1 = −D0c1

RT
∇μ1

where D0 is assumed to be independent of compo-
sition.
a. Show that D and D0 are related via

D = D0

(
1 +

∂ ln γ1

∂ ln x1

)

b. Find the relation between D and D0 if the sys-
tem is described by the one-constant Margules
equation.

c. Consider the diffusivity as described by the
results in parts (a) and (b) in answering the fol-
lowing questions:
i. If the diffusing component 1 is at infinite di-

lution, what is the relationship between D
and D0?

ii. How does D vary with composition at the
upper L-L critical point of a binary mixture?

iii. Describe the effect on the value of D if the
mixture exhibits negative deviations from
Raoult’s law.

11.2-14 The bubble point of a liquid mixture of an alcohol
and water containing 2.0 mol % alcohol is 90◦C
at 1.013 bar. The vapor pressure of pure water is
0.7733 bar and that of the alcohol is 0.4 bar at this
temperature.
a. Assuming that the activity coefficient of water is

unity (since its concentration is 98 mol %), what
is the composition of the vapor in equilibrium
with the 2.0 mol % solution? What is the ac-
tivity coefficient of the alcohol in this solution?
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b. At 90◦C, the maximum amount of alcohol that
can be dissolved in water is 2.0 mol %. When
larger amounts are present, a second liquid
phase forms that contains 65.0 mol % alcohol.
What are the activity coefficients of the alcohol
and the water in this second liquid phase?

11.2-15 The activity coefficients for a particular binary liq-
uid mixture are given by RT ln γi = αi (1 − xi)

2+
βi (1 − xi)

3 ; for i = 1, 2 Determine whether a
mixture containing 30 mol % of component 1
forms a single, stable liquid phase or two liquid
phases at 245 K if the infinite-dilution activity
coefficients of the two components at this temper-
ature are

ln γ∞
1 = 2.0 and ln γ∞

2 = 3.0

11.2-16 The binary liquid mixture of nitromethane and
2,2,5-trimethylhexane exhibits liquid-liquid equi-
librium. At 100◦C one phase has a mole fraction of
0.361 of nitromethane, and the other phase has a
mole fraction of 2,2,5-trimethylhexane of 0.0969.
At 110◦C the mole fractions are 0.580 and 0.198,
respectively.
a. Estimate the excess Gibbs energy of mixing at

each of the temperatures over the whole concen-
tration range (that is, extrapolate into the liquid-
liquid equilibrium region).

b. Estimate the excess enthalpy of mixing at
105◦C over the whole concentration range.

c. Estimate the excess entropy of mixing at 105◦C
over the whole concentration range.

11.2-17 The greater the difference in the pure component
vapor pressures in a binary mixture, the greater
the solution nonideality must be in order for an
azeotrope to form in vapor-liquid equilibrium. As-
sume that for a mixture liquid solution nonideali-
ties can be represented by the simple one-constant
Margules equation Gex = Ax1x2.
a. Determine the values of the parameter A that

will produce an azeotrope in terms of the ra-
tio of vapor pressures and the mole fraction of
species 1.

b. Compare the values of the parameter A re-
quired to form an azeotrope determined above
with those necessary to produce a liquid-liquid
phase split as a function of the mole fraction of
species 1.

The activity coefficient model parameters in Prob-
lems 11.2-18 to 11.2-25 are easily determined
using the MATHCAD worksheet ACTCOEFF on
the website for this book and described in
Appendix B.III.

11.2-18 The following smoothed liquid-liquid equilibrium
data have been reported14 for the system nitro-
methane (1) + cyclohexane (2) as a function of
temperature.

Mole percent, Mole percent,
T (◦C) 1 in 2 1 in 2

15 2.76 2.90
20 3.20 3.33
25 3.72 3.81
30 4.33 4.35
40 5.81 5.52
50 7.77 7.38
60 10.6 9.52

a. At each temperature find the value of the two
parameters in the van Laar model that will fit
these data.

b. Develop a correlation for the parameters found
in part (a) as a function of temperature.

11.2-19 a. For the data in Problem 11.2-18 at each tem-
perature find the value of the two parameters in
the NRTL model (keeping α = 0.3) that will fit
these data.

b. Develop a correlation for the parameters found
in part (a) as a function of temperature.

11.2-20 a. For the data in Problem 11.2-18 at each tem-
perature find the value of the two parameters in
the two-constant Margules equation that will fit
these data.

b. Develop a correlation for the parameters found
in part a as a function of temperature.

11.2-21 a. For the data in Problem 11.2-18 at each temper-
ature find the value of the two parameters in the
UNIQUAC model that will fit these data.

b. Develop a correlation for the parameters found
in part a as a function of temperature.

11.2-22 The following smoothed liquid-liquid equilibrium
data have been reported15 for the system ethyl es-
ter propanoic acid (1) + water (2) as a function of
temperature.

14J. M. Sorenson and W. Arlt, Liquid-Liquid Equilibrium Data Collection: 1. Binary Systems, DECHEMA Chem-
istry Data Series, Vol. V, 1979, Frankfurt, p. 33.
15J. M. Sorenson and W. Arlt, Liquid-Liquid Equilibrium Data Collection: 1. Binary Systems. DECHEMA Chem-
istry Data Series, Vol. V, 1979, Frankfurt, p. 297.
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Mole percent, Mole percent,
T (◦C) 1 in 2 1 in 2

20 0.347 8.17
25 0.351 8.67
30 0.358 9.30
40 0.379 10.9
50 0.409 12.7
60 0.452 14.8
70 0.519 17.0
80 0.659 19.2

a. At each temperature find the value of the two
parameters in the van Laar model that will fit
these data.

b. Develop a correlation for the parameters found
in part a as a function of temperature.

11.2-23 a. For the data in Problem 11.2-22 at each tem-
perature find the value of the two parameters in
the NRTL model (keeping α = 0.3) that will fit
these data.

b. Develop a correlation for the parameters found
in part a as a function of temperature.

11.2-24 a. For the data in Problem 11.2-22 at each tem-
perature find the value of the two parameters in
the two-constant Margules equation that will fit
these data.

b. Develop a correlation for the parameters found
in part (a) as a function of temperature.

11.2-25 a. For the data in Problem 11.2-22 at each temper-
ature find the value of the two parameters in the
UNIQUAC that will fit these data.

b. Develop a correlation for the parameters found
in part (a) as a function of temperature.

11.2-26 It has been observed that an equimolar mixture of
liquid oxygen and liquid propane has an upper crit-
ical solution temperature at 112 K. Assuming the
one-constant Margules parameter for this system
is independent of temperature, compute the liquid-
liquid equilibrium phase boundary for this system
as a function of temperature.

11.2-27 a. If the Flory-Huggins χ parameter is equal to
zero, will that model exhibit liquid-liquid equi-
librium in a binary mixture? If so, what will be
(i) the mole fraction and (ii) the volume frac-
tion of the liquid-liquid critical point? (Note
that if a liquid-liquid phase split occurs, it will
be completely entropic in nature, that is, a re-
sult of only the size difference between the
molecules.)

b. Assuming the χ parameter is equal to A/T , find
the liquid-liquid critical temperature as a func-
tion of the parameters A and the volume ratio m.
Also, find the mole fraction and volume fraction
at the liquid-liquid critical point as a function of
these parameters.

11.2-28 In Problem 10.2-54 it was mentioned that the fol-
lowing excess Gibbs energy model describes the
1-propanol (1) + n-hexane (2) system:

Gex = RTx1x2 (A1x1 + A2x2)

In the temperature range near 65◦C the param-
eter values in this equation are A1 = 1.867 and
A2 = 1.536. The vapor pressure of 1-propanol at
this temperature is 0.260 bar and that of n-hexane
is 0.899 bar. Does this system have an azeotrope or
exhibit liquid-liquid phase splitting?

11.2-29 In determining the consolute temperature (criti-
cal temperature) for liquid-liquid equilibrium we
used a shortcut method described by Eqs. 11.2-11
to 11.2-14. A more rigorous method to identify a
critical point is to set both the second and third
derivatives of the Gibbs energy with respect to
the mole number of one of the species equal to
zero. Prove that doing this gives the same result as
Eq. 11.2-14.

11.2-30 To an equimolar mixture of water and n-octanol at
25◦C very small amount of phenol is added and
partitions between the two co-existing phases. De-
termine the octanol-water partition coefficient Kow

of toluene that is defined as follows:

Kow =
Concentration of phenol in the octanol-rich phase
Concentration of phenol in the water-rich phase

11.2-31 Benzene and water are almost, but not completely,
immiscible. Below are some of the data reported by
H. Chen and J. Wagner (J. Chem Eng. Data, 1994,
39, 470-474) for the equilibrium mole fraction sol-
ubilities of benzene and water at 1 bar:

Temperature (K) Benzene in Benzene in
water-rich phase benzene-rich phase

303.15 0.000424 0.99616
323.15 0.000510 0.99277

a. Determine the excess partial molar Gibbs ener-
gies of each species (that is, Gex

W and Gex
B ) at

each of these states.
b. Estimate the excess partial molar entropies of

each species (that is, Sex
W and Sex

B ) at the aver-
age temperature (313.15 K) and compositions
of the coexisting liquids.
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c. Estimate the excess partial molar enthalpies of
each species (that is, Hex

W and Hex
B ) at the aver-

age temperature (313.15 K) and compositions
of the coexisting liquids.

11.2-32 By choosing a temperature-dependent excess
Gibbs energy, it may be possible to represent
systems that has either an upper critical solu-
tion temperature (UCST), a lower critical solution
temperature (LCST) or both. One possible excess
Gibbs energy is

Gex(T, x) =

(
a +

b

T

)
RTx1x2

a. Does this expression allow for a UCST, and if
so, how is this temperature related to the values
of the parameters a and b, and

b. Does this expression allow for a LCST, and if
so, how is this temperature related to the values
of the parameters a and b.

11.2-33 The excess Gibbs energy for a binary mixture is
given by

Gex = x1x2(a + bT )

where a and b are constants and T is the tempera-
ture in K.
a. Does this model allow for mixtures that have

a i) single liquid phase and/or ii) liquid-
liquid equilibrium with an upper consolute
temperature?

b. What is the upper consolute temperature in
terms of a and b? What are the constraints on
the constants a and b?

c. What are the spinodal compositions at 300 K,
with a = 5000 J/mol and b = 10 J/(mol−K)?

d. Calculate the equilibrium compositions of the
two liquid phases that would spontaneously
form if the mixture at 300 K was within the spin-
odal region.

11.2-34 A ternary mixture of water + n-hexanol + HMF
is described by the following ternary phase
diagram.
a. Of the three possible binary pairs (water + n-

hexanol, n-hexanol + HMF, and water + HMF)
which are completely miscible and which ex-
hibit LLE?

b. What is the composition at the plait point for
this ternary mixture?

c. For mixture containing 4 kg of water, 4 kg of
HMF (hydroxylmethylfurfural) and 2 kg of n-
hexanol, how many phases will be present, what
will be their compositions, and how many total
kg will be in each phase?

Wt. fraction of n-hexanol

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

W
t. 

fr
ac

tio
n 

of
 w

at
er

W
t. fraction of H

M
F

11.2-35 a. Draw the free energy versus composition dia-
gram for the regular solution model. Find the
composition of the coexisting liquid phases and
draw the phase boundary as a function of χ/kT .

x1
1 = e−χ and x2

2 = e−χ

b. Find the expression for the spinodal composi-
tion for the regular solution model.

11.2-36 1,1,2 Trichlorethane (TCE) is used to extract ace-
tone from water. Figure 11.2-11 shows the ex-
perimental ternary phase diagram at 25◦C and 1
bar. Compute the acetone distribution coefficient

KA =
xI

A

xII
A

where I is the TCE-rich phase and II

is the water-rich phase for concentrations of ace-
tone up to ∼ 0.1 using only binary acetone-water
and acetone-TCE data and compare with the ex-
perimental value determined from Figure 11.2-11,
which is in wt%.

11.2-37 The following vapor-liquid equilibrium data are
available for the ethanol(1)-benzene(2) system at
298 K.

x1 y1 Pressure N/m2

0.0 0.0 9905.9
0.015 0.064 10399

0.0275 0.058 11426
0.065 0.216 12479
0.210 0.269 12826
0.231 0.272 12999
0.320 0.295 12999
0.335 0.298 12996
0.498 0.330 13039
0.525 0.340 12892
0.640 0.368 12359
0.724 0.604 11679
0.806 0.490 10666
0.935 0.684 8372.6

1.0 1.0 5959.6
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Qualitative questions:
a. This system may exhibit an azeotrope. Looking

at the data, do you believe this system has an
azeotrope at 293.15 K?

b. This system may or may not exhibit liquid-
liquid equilibrium at 293.15 K. Based on the
data above, do you think it is likely that LLE ex-
ists? Defend how you came to that conclusion.

c. How would you decide whether to use a one-
parameter model (for example, the one-constant
Redlich-Kister) or two-parameter models (for
example, van Laar, Wilson, UNIQUAC, etc.)
model to describe this system? Defend your
choice.

Quantitative questions:
a. Though there is not information to get true in-

finite dilution activity coefficients from these
data, there is sufficient information to make
reasonable estimates. Use that informaiton to
compute the parameters in the model you have
chosen.

b. Estimate the azeotropic composition with your
model and parameters if you believe an
azeotrope occurs.

11.2-38 At 55.8◦C the infinite dilution of activity coeffi-
cient of 2-propanone in benzene and of benzene in
2-propanone are both about 1.6. At this tempera-
ture the vapor pressure of benzene is 0.448 bar and
that of 2-propanone is 1.002 bar.
a. Over what temperature range would you expect

this system to exhibit liquid-liquid equilibrium?
b What is the bubble point pressure and compo-

sition fo a 50 mol % mixture of benzene and
2-propanone?

c. What is the dew point pressure and composi-
tion of a 50 mol % mixture of benzene and 2-
propanone?

d. Will this system have an azeotrope at this
temperature?

11.2-39 A ternary mixture of water + n-butanol + HMF
(hydroxylmethylfurfural) is described by the fol-
lowing ternary phase diagram.
a. Of the three possible binary pairs (water + n-

butanol, n-butanol + HMF, and water + HMF)
which are completely miscible and which ex-
hibit LLE?

b. What is the composition at the plait point for
this ternary mixture?

c. For mixture containing 5 kg of water, 2 kg of
HMF and 5 kg of n-butanol, how many phases
will be present, what will be their composi-
tions, and how many total kg will be in each
phase?
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11.2-40 Use UNIFAC model in Aspen Plus R© to predict the
equilibrium compositions of an equimolar mixture
of n-octanol and water at 25◦C and 1 bar.

11.2-41 Redo Problem 11.2-5 using Aspen Plus R©.
11.2-42 Redo Problem 11.2-12 using Aspen Plus R©.
11.2-43 Redo Problem 11.2-18 using Aspen Plus R©.
11.2-44 Redo Problem 11.2-22 using Aspen Plus R©.

11.3 VAPOR-LIQUID-LIQUID EQUILIBRIUM

Although the discussion of the previous section concerned only liquid-liquid equilib-
rium, the extension to vapor-liquid-liquid equilibrium is straightforward. As mentioned
in Sec. 8.7 the condition for vapor–liquid–liquid equilibrium is

GI
i = GII

i = GV
i (11.3-1)

or equivalently

f I
i = f II

i = fV
i (11.3-2)
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for each species distributed among the three phases (liquid I, liquid II, and vapor V).
Consequently, one method of computing the three phases that are in equilibrium is to
solve 2 two-phase problems. For example, one could first determine the compositions of
the two liquids that are in equilibrium, and then use the methods of Secs. 10.2 or 10.3,
as appropriate, to find the vapor that would be in equilibrium with either one of the
liquids (since, by Eq. 22, a vapor in equilibrium with one of the coexisting equilibrium
liquid phases will also be in equilibrium with the other). This is illustrated in the two
examples that follow.

Illustration 11.3-1
Vapor-Liquid-Liquid Equilibrium Calculation Using an Activity Coefficient Model

Since liquids are not very compressible, at low and moderate pressures liquid-liquid equilib-
rium compositions are almost independent of pressure. Therefore, assuming that the liquid-liquid
equilibrium of the isobutane (1)–furfural (2) mixture at 37.8◦C calculated in Illustration 11.2-2
is unaffected by pressure, compute the pressure at which the first bubble of vapor will form (i.e.,
compute the bubble point pressure of this system) and the composition of the vapor that forms.
Data:

P vap
1 (T = 37.8◦C) = 4.956 bar

P vap
2 (T = 37.8◦C) = 0.005 bar

Solution

Using the van Laar activity coefficient model as in Illustration 11.2-2 and the liquid-phase com-
positions found there, and assuming the vapor phase is ideal, we have the bubble point pressure
of liquid phase I as

P = xI
1γ

I
1P

vap
1 + xI

2γ
I
2P

vap
2

= 0.1128 × 8.375 × 4.956 + 0.8872 × 1.030 × 0.005 = 4.69 bar

The bubble point pressure of liquid phase II is

P = xII
1 γII

1 P vap
1 + xII

2 γII
2 P vap

2

= 0.9284 × 1.018 × 4.956 + 0.0716 × 12.77 × 0.005 = 4.69 bar

which is the same as for liquid phase I (as it must be since xI
1γ

I
1 = xII

1 γII
1 and xI

2γ
I
2 = xII

2 γII
2 ).

The composition of the vapor (computed using either liquid phase I or II) is obtained from
xiγiP

vap
i = yiP , so that

y1 =
x1γ1P

vap
1

P
=

0.1128 × 8.375 × 4.956

4.69
= 0.999

and

y2 =
x2γ2P

vap
2

P
=

0.8872 × 1.030 × 0.005

4.69
= 0.001
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Therefore, from the van Laar model, at T = 37.8◦C and P = 4.69 bar, the isobutane-furfural
mixture has two liquid phases and a vapor phase all coexisting at equilibrium, with the following
compositions:

Substance Liquid I Liquid II Vapor

Isobutane 0.1128 0.9284 0.999
Furfural 0.8872 0.0716 0.001

[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 11 >11.3-1 on the Wiley

website for this book with UNIFAC and the Flash3 (three phase flash) block in the Simulation
mode, the results are

P = 4.519 bar = 4.578

Substance Liquid I Liquid II Vapor

Isobutane 0.4213 0.8456 0.9986
Furfural 0.5787 0.1544 0.0014

As with other liquid-liquid (-vapor) calculations, the results are very sensitive to the activity
coefficient model and parameters used. Since UNIFAC is a completely predictive model, the
results should always be viewed with caution.

]
Comment

The Gibbs phase rule for this nonreacting (M = 0) system of two components (C = 2) and three
phases (P = 3) establishes that the number of degrees of freedom is

F = C + 2 − P −M
= 2 + 2 − 3 − 0 = 1

Therefore, at each temperature, there is only a single pressure at which the three phases will
coexist at equilibrium in this two-component system, and the compositions of these three phases
are fixed. That is, as the feed changes within the boundaries of the three-phase region, the distri-
bution of mass between the three phases will change, but not the composition of each of those
phases

Also, at a pressure higher than the equilibrium pressure at each temperature only two liquid
phases exist, while below the equilibrium pressure only a single liquid and a vapor exist. There-
fore, in a binary mixture, at each temperature there is only a single pressure at which two liquids
and a vapor are present, which may be difficult to determine experimentally. However, because
of the extra degrees of freedom, states of liquid-liquid-vapor equilibrium are much easier to find
in ternary and other multicomponent systems.[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 11>11.3-2 on the Wiley web-

site for this book 11.3-2 that contains a collection files using the NRTL model gives results n in
the Excel file Illus 11.3-2.xlsx in that folder.

]

Illustration 11.3-2
Vapor-Liquid-Liquid Equilibrium Calculation Using an EOS

Use the Peng-Robinson equation of state and the van der Waals one-fluid mixing rules, with
k12 = 0.114, to compute the bubble point pressure and vapor composition in equilibrium with
the two coexisting liquid phases in the CO2–n-decane system of Illustration 11.2-5.
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Solution

Using the bubble point pressure option in the Visual Basic program of Appendix B.I-3, the DOS-
based program VLMU, or the MATHCAD worksheet PRBUBP, and the computed composition
for the liquid richer in n-decane, we obtain the following results for the three-phase coexistence
region:

T (K) P (bar) xI
CO2

xII
CO2

yC10

235.65 10.84 0.539 0.997 1.2 × 10−6

236.15 11.01 0.540 0.996 1.3 × 10−6

238.15 11.82 0.552 0.996 1.6 × 10−6

240.15 12.66 0.563 0.995 2.0 × 10−6

242.15 13.56 0.575 0.995 2.4 × 10−6

244.15 14.49 0.586 0.994 3.0 × 10−6

246.15 15.46 0.597 0.993 3.6 × 10−6

248.74 16.76 0.609 0.992 4.7 × 10−6

As we can see from these results, there is very little n-decane in the vapor. This is because of the
large volatility difference between carbon dioxide and n-decane. The three-phase experimental
data for this system confirm this behavior.

The predictions of three-phase equilibria considered so far were done as two sepa-
rate two-phase calculations. Although applicable to the examples here, such a procedure
cannot easily be followed in a three-phase flash calculation in which the temperature
or pressure of a mixture of two or more components is changed so that three phases
are formed. In this case the equilibrium relations and mass balance equations for all
three phases must be solved simultaneously to find the compositions of the three co-
existing phases. It is left to you (Problem 11.3-7) to develop the algorithm for such
a calculation.

In Illustration 11.3-1, the bubble point pressure of a two-liquid-phase mixture of
isobutane and furfural at 37.8◦C was computed. A more complete phase diagram for
this system, calculated with the van Laar model and the parameter values given in
Illustration 11.2-2, is shown in Fig. 11.3-1. From the calculation in Illustration 11.3-1
we know that for isobutane mole fractions in the range 0.1128 < x1 < 0.9284 and
above the bubble point pressure of 4.69 bar, two liquid phases will exist. This area is
indicated as the LLE region in the figure. In the region of the figure indicated as L2 only
one liquid phase that is rich in furfural and dilute in isobutane exists; in the region L1

only a liquid phase that is rich in isobutane is present. In the area denoted as the VLE
region a liquid phase dilute in isobutane is in equilibrium with a vapor phase that is very
rich in that component. (Indeed, at pressures above 1 bar, the vapor-phase mole frac-
tion of isobutane is greater than 0.999 and appears coincident with the right axis on the
scale of Fig. 11.3-1.) Neither the vapor-liquid tie lines nor the liquid-liquid tie lines are
shown in this figure. Finally, there is a region of very low pressure and high isobutane
mole fraction in which only a vapor exists; this region is indicated by V. This vapor-
phase region starts at the pure furfural side of the diagram at pressures below 0.005 bar
(the vapor pressure of furfural at 37.8◦C) and continues to 4.956 bar (the vapor pres-
sure of isobutane at 37.8◦C) for pure isobutane. However, for most of the composition
range, the vapor region occurs at such low pressures as not to be visible on the scale of
this figure.
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Figure 11.3-1 Predicted phase behavior of the isobutane-furfural mixture at 37.8◦C. Note that
regions of a single vapor (V), single liquid (L1, L2), vapor-liquid (VLE), liquid-liquid (LLE),
and vapor-liquid-liquid (VLLE) are predicted to occur.

One question that arises in doing vapor-liquid equilibrium calculations is, when
should one be concerned about the possible existence of liquid-liquid equilibrium?
Fortunately, we get some hints from the results of vapor-liquid equilibrium calcula-
tions. For example, the solid line in Fig. 11.3-2 shows the results of a calculation of the
equilibrium pressure as a function of the isobutane liquid-phase mole fraction for this
system at 37.8◦C computed using the van Laar model and ignoring the possibility of
two liquid phases. An unusual maximum and minimum in total pressure as a function
of mole fraction is evident. Remembering from the discussion of Sec. 10.2 that a max-
imum or minimum in the pressure versus composition diagram can correspond to the
occurrence of an azeotrope, one interpretation of the results in Fig. 11.3-2 is that the
isobutane-furfural mixture has a double azeotrope, that is, both minimum-boiling and
maximum-boiling azeotropes. There are some, but very few, mixtures that have double
azeotropes, and the pure components in such mixtures have similar pure component va-
por pressures, which is not the case here. (The benzene-hexafluorobenzene mixture of
Fig. 10.2-10 was the first system observed to exhibit a double azeotrope.) Much more
common when total pressure versus composition behavior as shown in Fig. 11.3-2 is
found in calculations is the existence of two coexisting liquid phases. Consequently,
when such behavior is seen, one should undertake a liquid-liquid phase equilibrium
calculation. In the case here the correct total pressure versus liquid-phase composition
from such a calculation in the liquid-liquid equilibrium region is given by the dashed
line in the figure. Such an invariance of pressure with composition is what is found ex-
perimentally in liquid-liquid systems. (Note that since this figure plots pressure versus
composition, not pressure versus volume as in Fig. 7.3-2, we are not doing a Maxwell
construction as in Chapter 7, so that the areas above and below the dashed line need not
be equal.)
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Figure 11.3-2 Predicted pressure of the isobutane-furfural system at 37.8◦C ignoring the exis-
tence of liquid-liquid equilibrium (solid line) and allowing for LLE (dashed line).
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Figure 11.3-3 The vapor-liquid, liquid-liquid, and vapor-liquid-liquid behavior of the methanol–
n-hexane mixture as a function of temperature.

Figure 11.3-3 shows the vapor-liquid and liquid-liquid equilibrium behavior com-
puted for the system of methanol and n-hexane at various temperatures. Note that two
liquid phases coexist in equilibrium to temperatures of about 43◦C. Since liquids are
relatively incompressible, the species liquid-phase fugacities are almost independent of
pressure (see Illustrations 7.4-8 and 7.4-9), so that the liquid-liquid behavior is essen-
tially independent of pressure, unless the pressure is very high, or low enough for the
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mixture to vaporize (this possibility will be considered shortly). The vapor-liquid equi-
librium curves for this system at various pressures are also shown in the figure. Note
that since the fugacity of a species in a vapor-phase mixture is directly proportional to
pressure, the VLE curves are a function of pressure, even though the LLE curves are
not. Also, since the methanol-hexane mixture is quite nonideal, and the pure component
vapor pressures are similar in value, this system exhibits azeotropic behavior.

At the lowest pressure in the figure, P = 0.133 bar, the vapor-liquid equilibrium
curve intersects the liquid-liquid equilibrium curve. Consequently, at this pressure, de-
pending on the temperature and composition, we may have only a liquid, two liquids,
two liquids and a vapor, a vapor and a liquid, or only a vapor in equilibrium. The equi-
librium state that does exist can be found by first determining whether the composition
of the liquid is such that one or two liquid phases exist at the temperature chosen. Next,
the bubble point temperature of the one or either of the two liquids present is determined
(for example, from experimental data or from known vapor pressures and an activity
coefficient model calculation). If the liquid-phase bubble point temperature is higher
than the temperature of interest, then only a liquid or two liquids are present. If the
bubble point temperature is lower, then depending on the composition, either a vapor,
or a vapor and a liquid are present. However, if the temperature of interest is equal to
the bubble point temperature and the composition is in the range in which two liquids
are present, then a vapor and two coexisting liquids will be in equilibrium.

The method of calculation discussed above was used to construct Fig. 11.3-4, which
shows the various phase behavior regions for the methanol-hexane system at
P = 0.133 bar. This diagram looks different from Fig. 11.3-1 for two reasons. First, we
have plotted the phase behavior as a function of temperature at fixed pressure here, and
as a function of pressure at fixed temperature in Fig. 11.3-1. Consequently, the vapor
region is at the top of Fig. 11.3-4, corresponding to high temperature there, and at the
bottom, low-pressure region of Fig. 11.3-1. (In fact, Fig. 11.3-4 would look more like
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Figure 11.3-4 Phase behavior of the methanol–n-hexane
system at P = 0.133 bar.
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Fig. 11.3-1 if it were turned upside down.) The second important difference is that the
methanol-hexane system has an azeotrope, while the isobutane-furfural system does
not. This is because the vapor pressures of isobutane and furfural are so different (in-
deed, they differ by three orders of magnitude) that even though that mixture is a very
nonideal one, azeotropy does not occur (i.e., the vapor pressure difference of the species
predominates over the effect of solution nonidealities for this mixture). The azeotropic
behavior shown in Fig. 11.3-4 is interesting because the vapor-liquid equilibrium curve
that exhibits azeotropy intersects the liquid-liquid phase boundary. The vapor composi-
tion in the vapor-liquid-liquid region is indicated by the common intersection of the two
dew point curves with the liquid-liquid equilibrium line. Such a situation is referred to
as heterogeneous azeotropy. Some distillation processes make use of heterogeneous
azeotropy to purify mixtures.

Finally, we note that the equilibrium pressure above a two-phase liquid system, as
indicated in Illustration 11.3-1, is computed from

P = xI
1γ

I
1

(
xI

)
P vap

1 (T ) + xI
2γ

I
2

(
xI

)
P vap

2 (T ) (11.3-3a)

or
P = xII

1 γII
1

(
xII

)
P vap

1 (T ) + xII
2 γII

2

(
xII

)
P vap

2 (T ) (11.3-3b)

which are equivalent from the requirement for liquid-liquid equilibrium:

xI
1γ

I
1

(
xI

)
= xII

1 γII
1

(
xII

)
and xI

2γ
I
2

(
xI

)
= xII

2 γII
2

(
xII

)
(11.2-2)

An interesting case is that in which the two species are essentially insoluble in each
other. For example, liquid phase I is essentially pure species 1, and liquid phase II is
essentially pure species 2. In this case,

lim
xI
1→1

xI
1γ

I
1

(
xI

)
= 1 · γI

1

(
xI

1 → 1
)

= 1 = xII
1 γII

1

(
xII

)
(11.3-4a)

xI
2γ

I
2

(
xI

)
= lim

xII
2 →1

xII
2 γII

2

(
xII

)
= 1 · γII

2

(
xII

2 → 1
)

= 1 (11.3-4b)

Therefore, we find the very simple result that in the limit of two essentially immisible
phases,

P = P vap
1 (T ) + P vap

2 (T ) (11.3-5)

That is, that the equilibrium pressure is just the sum of the two pure component vapor
pressures.

Application to steam
distillation

While distillation, as described in Secs. 10.1 and 10.2, is frequently used for the
purification of chemicals, it may be difficult to use for a compound with a very high at-
mospheric pressure boiling point or a compound that decomposes at its boiling temper-
ature. One way to avoid these problems is to distill at subatmospheric pressure (referred
to as vacuum distillation), which can be analyzed using the methods briefly introduced
in Secs. 10.1 and 10.2. An older method, especially for an organic chemical that is
essentially insoluble in water, is to use steam distillation. Here steam is injected into
a kettle or other device containing the mixture to be purified, the more volatile com-
pounds are partially vaporized by the steam, and the steam–organic chemical vapor is
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then condensed. However, as the water and organic chemical are essentially insoluble as
liquids, the condensed water is easily separated from the organic chemical. This process
is shown schematically in Fig. 11.3-5.

Steam

Organic-rich layer

Water-rich layer

Figure 11.3-5 Schematic diagram of a steam distilla-
tion apparatus.

Illustration 11.3-3
Steam Distillation of Turpentine

It is desired to recover and reuse turpentine that has been used as a paint remover. Turpentine can
be considered insoluble in water, and the used turpentine contains small amounts of essentially
involatile paint pigments and other impurities. Steam is injected into the bottom of a kettle that
contains the used turpentine, and the temperature in the kettle is kept at 100◦C by removing the
vapor that forms. Assuming that equilibrium is achieved in the kettle, how many kilograms of
turpentine are obtained for each kilogram of steam that is condensed?

The molecular weight of turpentine is 140, and its vapor pressure at 100◦C is 0.177 bar.

Solution

Since water and turpentine are essentially insoluble, the equilibrium pressure in the kettle is

P = P vap
W (T ) + P vap

T (T ) = 1.013 + 0.177 = 1.190 bar

Therefore, the mole fraction of turpentine in the steam leaving the kettle is

yT =
0.177

1.190
= 0.149

so that the vapor leaving the kettle contains 0.149 moles of turpentine for each 0.851 moles of
water. Since the molecular weight of turpentine is 140 and that of water is 18.015, in the vapor
20.86 kg of turpentine are recovered for each 15.33 kg of steam used, or 1.36 kg of turpentine
for each kilogram of steam.

Comment

Note that any inert and insoluble fluid could be used instead of steam for this sort of distilla-
tion process. However, there are several advantages to using steam, including its high heat of
vaporization and its general availability in a chemical plant.
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PROBLEMS FOR SECTION 11.3

11.3-1 The bubble point of a liquid mixture of n-butanol
and water containing 4.0 mol % butanol is 92.7◦C
at 1.013 bar. At 92.7◦C the vapor pressure of pure
water is 0.784 bar and that of pure n-butanol is
0.427 bar.
a. Assuming the activity coefficient of water in the

4.0 mol % butanol solution is about 1, what is
the composition of the vapor in equilibrium with
the 4.0 mol % butanol-water mixture, and what
is the activity coefficient of n-butanol?

b. At 92.7◦C, the maximum amount of n-butanol
that can be dissolved in water is 4.0 mol %. When
larger amounts of n-butanol are present, a second
liquid phase, containing 40.0 mol % n-butanol,
appears. What are the activity coefficients for n-
butanol and water in this second liquid phase?

c. If the two coexisting liquids in part (b) are kept at
92.7◦C, what will be the pressure when the first
bubble of vapor is formed?

11.3-2 Estimate the pressure and vapor-phase composition
in equilibrium with a liquid whose overall composi-
tion is 50 mol % furfural and 50 mol % isobutane at
T = 37.8◦C.
Data:

P vap
iso (T = 37.8◦C) = 4.909 bar

P vap
furf (T = 37.8◦C) = 4.93 × 10−3 bar

Isobutane and furfural are only partially miscible
in the liquid phase. At 37.8◦C the two coexisting
liquid phases contain 11.8 and 92.5 mol % isobu-
tane, γiso(xiso = 0.925) = 1.019, and γfurf(xfurf =
0.882) = 1.033.

11.3-3 Ethyl alcohol and n-hexane are put into an evacu-
ated, isothermal container. After equilibrium is es-
tablished at 75◦C, it is observed that two liquid
phases and a vapor phase are in equilibrium. One
of the liquid phases contains 9.02 mol % n-hexane.
Activity coefficients for n-hexane–ethyl alcohol liq-
uid mixtures can be represented by the equation

RT ln γi = 8.163x2
j

kJ

mol

a. Compute the equilibrium composition of the co-
existing liquid phase.

b. Compute the equilibrium pressure and vapor-
phase mole fractions.
Data: Vapor pressure equations (T in K, P in
bar)

ln P vap
H =

−3570.58

T
+ 10.4575

ln P vap
EOH =

−4728.98

T
+ 13.4643

11.3-4 Glycerol and acetophenone are partially miscible at
140◦C, one liquid phase containing 9.7 mol % ace-
tophenone and the other containing 90.3 mol % ace-
tophenone. The vapor pressure of pure glycerol at
140◦C is 3.13 × 10−3 bar and that of acetophenone
is 0.167 bar. Assuming that the activity coefficients
for the glycerol-acetophenone system obey the one-
constant Margules equation, compute the pressure
versus liquid-phase mole fraction (P–x ) diagram for
this system.

11.3-5 For a separation process, it is necessary to ascer-
tain whether water and methyl ethyl ketone form
an azeotrope at 73.4◦C. The engineer needing this
information could not find any vapor-liquid equilib-
rium data for this system, but the following liquid-
liquid equilibrium data are available:

T = 20◦ C

xMEK xH2O

Liquid phase 1 0.0850 0.9150
Liquid phase 2 0.6363 0.3637

In addition, at 73.4◦C

P vap
H2O = 0.3603 bar

P vap
MEK = 0.8337 bar

Calculate, as best you can, the P-x -y diagram for
MEK and water at 73.4◦C and determine whether
this system has an azeotrope, and if so, at what com-
position the azeotrope occurs.

11.3-6 Ethanol and n-hexane form two liquid phases at
many temperatures. Assuming that the activity co-
efficients for n-hexane–ethyl alcohol mixtures can
be represented by the equation

RT ln γi = 8.163x2
j kJ/mol

and that the vapor pressures of the pure components
are given by (P in bar and T in K)

ln P vap
H =

−3570.58

T
+ 10.4575

and

ln P vap
EtOH =

−4728.98

T
+ 13.4643

a. Compute the upper consolute temperature or
upper critical solution temperature (UCST) for
the ethanol–n-hexane mixture.
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b. Develop a plot similar to Figure 11.3-3 for this
system using pressures of 0.1013 bar, 1.013 bar,
and 10.13 bar.

c. Develop a plot similar to Figure 11.3-4 for this
system at 1.013 bar.

11.3-7 Develop an algorithm for solving vapor-liquid-
liquid phase equilibrium calculations using an
equation of state.

11.3-8 The infinite dilution activity coefficient of
1-propanol in n-heptane is 16.0 at 60oC, and that of
n-heptane in 1-propanol is 6.34. At this tempera-
ture the vapor pressure of 1-propanol is 20.277 kPa,
and the vapor pressure of n-heptane is 28.022 kPa.
Prepare a P-x-y diagram for this system. Does the
system exhibit azeotropy (either homogeneous or
heterogeneous) or liquid-liquid phase splitting?

11.3-9 At 298 K it is found that component A has a vapor
pressure of 0.8 bar, and component B has a vapor
pressure of 1 bar. Also, by diluting component A
with 0.01 mole fraction of B, the equilibrium pres-
sure decreases to 0.7975 bar, while adding 0.01
mole fraction of A to B reduces the equilibrium
pressure to 0.9945 bar. Determine the phase behav-
ior of this mixture at 298 K over the whole com-
position range. (Is there an azeotrope, liquid-liquid
equilibrium, vapor-liquid-liquid equilibrium?)

11.3-10 At 110oC, a saturated liquid solution of aniline in
water contains 0.0162 mole fraction aniline, and
a saturated liquid solution of water in aniline con-
tains 0.587 mole fraction aniline. At this temper-
ature the vapor pressure of pure aniline is 0.0923
bar, and that of pure water is 1.431 bar. Construct
a P-x-y diagram for this mixture at 110oC.

11.3-11 The excess Gibbs energy of a certain liquid mix-
ture containing components A and B is found to
be given by the expression

Gex (T, x) = (4500 − 3T )xAxB J/mol

where T is in K. The vapor pressures of the com-
ponents at 320 K are

P vap
A = 1.3 bar and P vap

B = 1.0 bar

a. What is the expression for the excess enthalpy
of this mixture?

b. What is the expression for the excess entropy
of this mixture?

c. What is the expression for the excess constant-
pressure heat capacity of this mixture?

One mole per second of A is isothermally mixed
with two moles per second of B in a continuous
mixing process at 1 bar and 275 K.
d. What is the rate of heat addition or removal for

the mixing to be done isothermally?
e. What is the rate of entropy generation of this

process?
f. It is thought possible that this mixture is suffi-

ciently nonideal for a liquid-liquid phase split
to occur at some temperatures. What is the up-
per consolute temperature for this mixture?

g. Compute the vapor-liquid equilibrium behav-
ior of this mixture at 320 K. Does the system
have an azeotrope at this temperature? If so,
what is its composition?

h. A mixture of one mole of A and two moles of B
undergoes an isothermal flash vaporization at
320 K and 1.5 bar. What are the compositions
of the coexisting vapor and liquid phases, and
what is the vapor-liquid split?

11.3-12 Using the liquid-liquid equilibrium data for the
nitromethane + n-nonane system given in Prob-
lem 11.2-12, compute the vapor-liquid-liquid
equilibrium for this system at 90◦C.

11.3-13 At 333.15 K, Wu, Locke, and Sandler16 measured
the vapor pressure of pure pyrrolidine and cyclo-
hexane to be 39.920 kPa and 51.886 kPa, respec-
tively. After the isothermal addition of a small
amount of pyrrolidine to pure cyclohexane, the to-
tal pressure was found to be 52.270 kPa when the
pyrrolidine mole fraction was 0.0109. Similarly,
after the isothermal addition of a small amount
of cyclohexane to pure pyrrolidine, the total pres-
sure was 40.280 kPa when the cyclohexane mole
fraction was 0.0064.
a. Compute the infinite-dilution activity coeffi-

cients of pyrrolidine in cyclohexane, and of cy-
clohexane in pyrrolidine.

b. Compute the complete P versus x, and y versus
x diagrams for this system at 333.15 K.

c. At 333.15 K, does this system have an
azeotrope? Does it liquid-liquid phase split?

11.3-14 At 353.15 K the infinite-dilution activity coeffi-
cients of benzene in ethanol and of ethanol in
benzene are both approximately 5.0 to within ex-
perimental accuracy. At this temperature the va-
por pressure of benzene is 1.008 bar and that of
ethanol is 1.086 bar. Compute the phase behavior
of this system at 353.15 K accounting for the fact
that vapor-liquid, liquid-liquid, and vapor-liquid-

16H. S. Wu, W. E. Locke III, and S. I. Sandler, J. Chem. Eng. Data, 35, 169 (1990).
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liquid equilibrium and azeotropic behavior may be
possible.

11.3-15 The change in vapor pressure of a pure liquid with
temperature can be computed from the Clapeyron
equation,

dP

dT
=

ΔH

TΔV

where ΔH and ΔV are the enthalpy and volume
changes on going from the liquid to the vapor. The
vapor pressure and temperature must, of course, be
related, since the Gibbs phase rule indicates that the
system is univariant. Now consider two partially
miscible liquids and the vapor in equilibrium with
these two liquid phases. The system is also univari-
ant (two components and three phases).
a. Derive a “generalized” Clapeyron equation re-

lating the equilibrium pressure and temperature
for this system.

b. Qualitatively discuss the variation of the equi-
librium pressure with the overall two-phase
liquid composition for this system at fixed
temperature. How does the pressure variation
with composition differ in the one- and two-
liquid phase regions? Also, discuss the variation
of the equilibrium temperature with overall
liquid-phase composition at fixed pressure in
the single-liquid phase and two-liquid phase
regions.

11.3-16 An equimolar mixture of ethanol and ethyl acetate
is maintained at 75◦C and 10 bar. The pressure
on the system is isothermally reduced to 1.12 bar.
How many phases are present when equilibrium is
achieved under these new conditions, and what are
their compositions?
Data: For the ethanol–ethyl acetate system,

ln γi = 0.896(1 − xi)
2

P vap
EAC = 0.9460 bar and P vap

EOH = 0.8905 bar

11.3-17 Estimate the equilibrium pressure and isobutane
vapor-phase mole fraction as a function of liquid
composition for the isobutane-furfural system at
37.8◦C. At this temperature the vapor pressure of
furfural is 0.493 kPa and that of isobutane is 490.9
kPa. (Hint: See Illustration 11.3-1.)

11.3-18 At 20◦C and 101.3 kPa dichloromethane (also re-
ferred to as the refrigerant R30) is found to be
soluble in water to the extent of 2 wt %, while
the solubility limit for water in dichloromethane
is 0.5 wt %. The vapor pressures of these
compounds are

T (◦C) P vap
R30 (bar) P vap

H2O (bar)

20 0.4685 0.0234
50 1.416 0.1235
80 3.471 0.4739

100 5.769 1.0138

a. Assuming that the van Laar parameters for this
mixture are independent of temperature, obtain the
phase diagram for this system at 50◦C.

b. Assuming that the van Laar parameters for this
mixture are independent of temperature, obtain the
phase diagram for this system at 80◦C.

c. Assuming that the van Laar parameters for this
mixture are independent of temperature, obtain the
phase diagram for this system at 100◦C.

11.3-19 An equimolar mixture of liquid oxygen and
liquid propane has a liquid-liquid equilibrium
upper critical solution temperature of 112 K.
Assuming that this system can be described by a
one-constant Margules expression with a temper-
ature-independent A parameter, determine the
liquid-liquid and liquid-liquid-vapor phase dia-
gram for this system at a pressure of 0.1 bar.

11.3-20 Using the liquid-liquid equilibrium data for the ni-
tromethane + 2,2,5-trimethylhexane system given
in Problem 11.2-30, compute the vapor-liquid-
liquid equilibrium for this system at 100◦C.

11.3-21 The following data are available for the acetone +
ethanol system at 49.3◦C:

γ∞
acetone = 2.17 and γ∞

ethanol = 1.98

At this temperature the vapor pressure of ethanol
is 0.2854 bar and the vapor pressure of acetone is
0.7710 bar. Compute the phase behavior of this sys-
tem at 49.3◦C. Does this mixture have a homoge-
neous or heterogeneous azeotrope?

11-3.22 Two pure components, 1 and 2, have vapor pres-
sure P

vap
1 = 1.2 bar and P

vap
2 = 1.9 bar at 25◦C,

and melting points Tm1 = 32.2◦C and Tm2 =
−16.7◦C. In a constant-temperature experiment
at 25◦C, the slope of the change in pressure,(

∂P
∂x1

)
T,x1→0

= 0.255 bar was measured at infi-

nite dilution of species 1.
a. Assuming this obeys the 1-constant Margules

activity coefficient model, calculate the interac-
tion parameter A/RT and the infinite dilution
activity coefficients of both components.

b. Does this mixture form an azeotrope at 25◦C?
If so, what composition?



664 Chapter 11: Other Types of Phase Equilibria in Fluid Mixtures

c. Assuming the interaction parameter A is inde-
pendent of temperature, find the upper conso-
lute temperature.

d. Will a liquid-liquid phase separation occur for
this system?

11.3-23 At 298.15 K the vapor pressure of chloroform is
0.2622 bar and that of n-hexane is 0.2014 bar. It
is found that at a liquid chloroform mole fraction
0.3455, the vapor in equilibrium with that liquid
has a chloroform mole fraction of 0.4538, and the
equilibrium pressure is 0.2555 bar.
a. Predict complete VLE diagrams (x-y and P -x-

y) for this system at 298.15 K.
b. Does this system have an azeotrope at this tem-

perature? If so, at what composition and pres-
sure? If not, why not?

c. Does this system exhibit liquid-liquid equilib-
rium or vapor-liquid-liquid equilibrium at this
temperature?

d. If the system initially contained 1 mole of liq-
uid of chloroform mole fraction of 0.3455 and
1 mole of the vapor in equilibrium with it at
0.2555 bar, and then pressure was gradually in-
creased to 2 bar, which phases would be present
at each intermedate pressure, and what would
be their compositions?

11.3-24 At 40◦C a certain mixture is found to exhibit liquid-
liquid equilibrium in which component 1 is present
at 0.25 mole fraction in liquid phase L1 and 0.75
mole fraction in liquid phase L2. At this temper-
ature the vapor pressure of component 1 in 0.8
bar and the vapor pressure of component 2 is 1.2
bar. Determine the phase diagram for this system
at 40◦C.

11.3-25 The NIST TDE provides the following information
for the liquid-liquid equilibrium of water+1,1,1
trichloroethane

C2H3Cl3 xI Temperature
(K)

Pressure
(N/sqm)

C2H3Cl3 xII

0.99852 298.15 101325 1.3506E-05

(Data from Coca, J.; Diaz, R.J. Chem. Eng. Data,
1980, 25, 80-83.) At 298.15 K the vapor pressure of
water is 0.032 bar and that of 1,1,1 trichloroethane
is 0.171 bar.

Note: This problem because of the very limited
solubility of water in 1,1,1 trichloroethane and of

1,1,1 trichloroethane in water requires only very
simple calculations.
a. Determine the van Laar constants for this sys-

tem at this temperature.
b. Draw the VLLE and VLE diagram for this sys-

tem at 298.15 K over the pressure range from
0.03 to 5 bar using the mole fraction of wa-
ter as the composition variable, and keeping in
mind that two liquids have very slight mutual
solubility.

c. Compute the single pressure at which two liq-
uids and a vapor will be in equilibrium.

d. Determine the vapor composition at this VLLE
point.

e. Determine the two ranges of composition of
water over which vapor-liquid equilibrium will
exist at 0.18 bar. (Hint: one will be in the water-
rich region and the other will be in the 1,1,1
trichloroethane-rich region.)

11.3-26 The binary liquid mixture of nitromethane (1) and
n-nonane (2) exhibits liquid-liquid equilibrium. At
70◦C, one phase has a nitromethane mole fraction
of 0.131 and the other has an n-nonane mole frac-
tion of 0.0247. At 90◦C, the mole fractions are
0.214 and 0.0469, respectively.
a. Estimate the excess Gibbs energy of mixing at

each temperature over the whole concentration
range (that is, extrapolate into the liquid-liquid
equilibrium region).

b. Estimate the excess ethalpy of mixing at 80◦C
over the whole concentration range.

c. Estimate the excess entropy of mixing at 80◦C
over the whole concentration range.

d. Compute the VLLE of this system at 90◦C if
P sat

1 = 70.911 kPa and P sat
2 = 14.469 kPa.

11.3-27 Pividal et al. (J. Chem. Eng. Data, 37, 484 (1992))
used a static cell to measure the slope of the change
in pressure with composition (i.e., (∂P/∂x)T ) at
infinite dilution for the system 2-propanol and wa-
ter at 15◦C, and found that (∂P/∂x)T = 36.7
kPa/mole fraction when 2-propanol was at high
dilution, and (∂P/∂x)T = 8.12 kPa/mole fraction
when water was at high dilution. At this tempera-
ture the vapor pressure of water 1.7068 kPa, and
that of 2-propanol is 3.0333 kPa.
a. Determine the infinite dilution activity coeffi-

cients of water and 2-propanol at 15◦C.
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b. Estimate as best you can from the data above
the phase of water+2-propanol over the whole
composition range allowing for the possibilities
of VLE, LLE and VLLE.

11.3-28 Redo Problem 11.3-2 using Aspen Plus R©.
11.3-29 Redo Problem 11.3-3 using Aspen Plus R©.
11.3-30 Redo Problem 11.3-4 using Aspen Plus R©.
11.3-31 Redo Problem 11.3-5 using Aspen Plus R©.
11.3-32 Redo Problem 11.3-5 using the NRTL model and

Aspen Plus R©.

11.3-33 Redo Problem 11.3-8 using Aspen Plus R©.
11.3-34 Redo Problem 11.3-10 using Aspen Plus R©.
11.3-35 Redo Problem 11.3-12 using Aspen Plus R©.
11.3-36 Redo Problem 11.3-17 using Aspen Plus R©.
11.3-37 Redo Problem 11.3-18 using Aspen Plus R©.
11.3-38 Redo Problem 11.3-20 using Aspen Plus R©.
11.3-39 Redo Problem 11.3-21 using Aspen Plus R©.

11.4 THE PARTITIONING OF A SOLUTE AMONG TWO COEXISTING LIQUID
PHASES; THE DISTRIBUTION COEFFICIENT

When a gas, liquid, or solid is added to two partially miscible or completely immis-
cible solvents, it will, depending on the amount of solute present, either partially or
completely dissolve and be distributed unequally between the two liquid phases. Most
chemists and chemical engineers first encounter this phenomenon in the organic chem-
istry laboratory, where diethyl ether, which is virtually immiscible with water, is used
to extract organic chemical reaction products from aqueous solutions. The distribution
of a solute among coexisting liquid phases is of industrial importance in purification
procedures such as liquid extraction and partition chromatography, of pharmacological
interest in the distribution of drugs between lipids and body fluids, and of environmental
interest in determining how a pollutant is distributed between the air, water, and soil.

Experimental data on the partitioning of a solute between two liquid phases are usu-
ally reported in terms of a distribution coefficient K, defined to be the ratio of the
solute concentration in the two phases:

Distribution coefficient K =
Concentration of solute in phase I
Concentration of solute in phase II

(11.4-1)

The purpose of this section is to study some aspects of the partitioning phenomenon
and to relate the distribution coefficient to more fundamental thermodynamic quanti-
ties, so that we can (1) predict the distribution coefficient for a solute among two given
solvents if experimental data are not available, or (2) use experimental distribution co-
efficient data to obtain information on liquid-phase activity coefficients.

However, in this section we are considering only the case in which the addition of the
solute does not affect the miscibility of the solvents. The more general case of multi-
component liquid-liquid phase behavior in which the solute addition affects the mutual
solubilities of the solvents was considered in Sec. 11.2. The situation considered here
occurs when the mutual solubilities of the solvents are unchanged as a result of the
solute addition, either because so little solute has been added or the solvents are so
immiscible as to be unaffected by the solute.

The simplest type of solute distribution problem occurs when N1 moles of a solute are
completely dissolved and distributed between two immiscible solvents. The equilibrium
distribution of the solute is determined from the single equilibrium relation
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Starting point for all
phase equilibrium
calculations

f I
1(T,P, xI) = f II

1 (T,P, xII) (11.4-2)

and the constraint that the number of moles of solute be conserved

N1 = N I
1 + N II

1 (11.4-3)

where N I
1 is the number of moles of solute in phase I. Now, using the definition of the

activity coefficient,

f1(T,P, x) = x1γ1(T,P, x)fL
1 (T,P )

Eq. 11.4-2 can be rewritten as

xI
1γ

I
1(T,P, xI) = xII

1 γII
1 (T,P, xII) (11.4-4)

since the pure component solute fugacity cancels. This last equation can be
rearranged to

Liquid–liquid
equilibrium relation

xI
1

xII
1

= Kx =
γII

1 (T,P, xII)
γI

1(T,P, xI)
(11.4-5)

which establishes that the distribution coefficient for solute mole fractions is equal to the
reciprocal of the ratio of the solute activity coefficients in the two phases. Thus, given
activity coefficient information for the solute in the two phases, one can compute the
distribution of the solvent among the phases, or, given information about distribution
of the solute, one can compute the ratio of the solute activity coefficients.

Illustration 11.4-1
Calculation of Activity Coefficients from Distribution Coefficient Data

The following data are available for the concentration distribution coefficient Kc of bromine
between carbon tetrachloride and water at 25◦C.17

Concentration of Bromine
in CCl4 (kmol/m3)

Kc =

{
kmol Br2

m3 CCl4 solution

/ kmol Br2

m3 H2O solution

}

0.04 26.8
0.1 27.2
0.5 29.0
1.0 30.4
1.5 31.4
2.0 33.4
2.5 35.0

17Reference for distribution coefficient data: International Critical Tables, Vol. 3, McGraw-Hill, New York,
1929.
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Compute the ratio of the activity coefficient of bromine in water to that in carbon tetrachloride.
Data for the pure species are:

Species Molecular Weight Density ρ, kg m−3

CCl4 153.84 1.595 × 10+3

H2O 18.0 1.0 × 10+3

Br2 159.83 3.119 × 10+3

Solution

Since carbon tetrachloride and water are virtually immiscible (see Illustration 11.2-3), we will
assume that the liquid bromine is distributed between water-free carbon tetrachloride and wa-
ter free of carbon tetrachloride. Also, since solution volumetric data are not available, we will
assume that there is no volume change on mixing bromine with either carbon tetrachloride
or water.

In order to use Eq. 11.4-5 to evaluate the ratio of the activity coefficients, it is necessary to
convert all the concentration distribution data to mole fractions. To do this, let CB represent
the concentration of bromine in kmol/m3 of solution, which is known from the data, and CS

represent the concentration of solvent, again in kmol/m3 of solution, which is also known. By
the ΔmixV = 0 assumption, we have

V mix = xBV B + xSV S = xB

mB

ρB

+ (1 − xB)
mS

ρS

where V i is the molar volume of species i, and m and ρ are its molecular weight and density,
respectively. The number of moles of bromine in one mole of solution is then computed from

Moles of bromine in one
mole of solution

= CBV mix = CB

[
xB

mB

ρB

+ (1 − xB)
mS

ρS

]

= Mole fraction of bromine = xB

or

xB =
CB mS/ρS

1 + CB

(
mS

ρS

− mB

ρB

) (1)

Therefore, to compute the mole fraction of bromine in the CCl4 phase, we use

xCCl4
Br2

=

CB

(
153.84 kg/mol

1595 kg/m3

)

1 + CB

(
153.84

1595
− 159.83

3119

)
m3/kmol

=
0.096 45CB

1 + 0.045 21CB

(2)

where CB is the concentration entries in the distribution coefficient table. Similarly, to compute
the mole fraction of bromine in the aqueous phase, we again use Eq. 1, but now recognizing that
if CB is the concentration of bromine in the organic phase (i.e., the entries in the table), then
CB/Kc is the concentration of bromine in the aqueous phase. Therefore,

xH2O
Br2

=

CB

Kc

(
18 kg/mol

1000 kg/m3

)

1 +
CB

Kc

(
18

1000
− 159.83

3119

)
m3/kmol

=
0.018 CB/Kc

1 − 0.033 24 CB/Kc

(3)
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Using Eqs. 2 and 3, we obtain the following results:

Mole Fraction of Br2 in
CCl4 H2O

Concentration Bromine in CCl4 xCCl4
Br2

xH2O
Br2

xCCl4
Br2

xH2O
Br2

=
γH2O
Br2

γCCl4
Br2

0.04 3.85 × 10−3 2.7 × 10−5 142.6
0.10 9.60 × 10−3 6.6 × 10−5 145.4
0.5 4.70 × 10−2 3.1 × 10−4 151.6
1.0 9.23 × 10−2 5.93 × 10−4 155.6
1.5 0.135 8.62 × 10−4 156.6
2.0 0.177 1.08 × 10−3 163.9
2.5 0.217 1.29 × 10−3 168.2

[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 11>11.4-1 on the Wiley web-

site for this book which uses the Flash3 block, the poor results obtained are given in the Excel
file Illus 11.4-1.xlsx in that folder. There it is pointed out that the reason for the poor agreement
with experiment is the unavailability of the NRTL parameters for the bromine-water binary.

]
Comment

If, separately, we knew the activity coefficients for bromine in carbon tetrachloride, we could
use the data in the table to evaluate the activity coefficient of bromine in water (Problem 11.4-3).
Since the regular solution model can be used to represent the Br2-CCl4 mixture, we can then
surmise that γCCl4

Br2
will be on the order of magnitude of unity. This suggests that γH2O

Br2
will be a

large number, on the order of 100 or more. Such behavior for the activity coefficient of the minor
component is not unusual in mixtures of species with such different molecular characteristics as
strongly quadrupolar liquid bromine and strongly polar and hydrogen-bonded water.

A slightly more complicated situation than the one just considered arises when there
is some undissolved solute in equilibrium with two immiscible solvents. Here we will
suppose that the undissolved solute is either a solid or a gas, and that neither solvent is
present in the undissolved solute.18

In this case the equilibrium conditions are

f1(T,P ) = f I
1(T,P, xI) and f1(T,P ) = f II

1 (T,P, xII)

or
f1(T,P ) = f I

1(T,P, xI) = f II
1 (T,P, xII) (11.4-6)

since the undissolved solute must be in equilibrium with both liquid phases (which
implies that both liquid phases are saturated with the solute). In this equation f1(T,P )
is to be interpreted as the fugacity of the undissolved solute, which may be either a solid
or a pure or mixed gas. Using the definition of the activity coefficient, Eq. 9.3-11, we
obtain the equation

f1(T,P )
fL
1 (T,P )

= xI
1γ1(T,P, xI) = xII

1 γ1(T,P, xII) (11.4-7)

18When the solute is a liquid, the problem is really one of multiple liquid-phase equilibrium. This is considered in
Sec. 11.2 and Problem 11.4-1.
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for the saturation mole fractions of the solute in each phase. If the undissolved solute is
a solid, the fugacity ratio f1(T,P )/fL

1 (T,P ) is equal to the ratio fS
1 (T,P )/fL

1 (T,P ),
which can be evaluated using the prescription of Sec. 9.7 (Eq. 9.7-8a). If, on the other
hand, the solute is a gas, f1(T,P ) can be computed using an equation of state or
the Lewis-Randall rule, and fL

1 (T,P ) is evaluated using the procedure discussed in
Sec. 11.1. Note that Eqs. 11.4-5 and 11.4-7 require that the mole fraction distribution
coefficient Kx again be equal to the reciprocal of solute activity coefficients in the two
liquid phases; this is, in fact, a general result.

One interesting example of three-component liquid-liquid equilibrium is the parti-
tioning of a small amount of a chemical in a mixture of water and n-octanol that has
been allowed to equilibrate. As pointed out in Illustration 11.2-4, water is reasonably
soluble in n-octanol, but n-octanol is virtually insoluble in water. Consequently, when
these two chemicals are allowed to equilibrate at 25◦C, two liquid phases form: a denser
water-rich phase that is essentially pure water, and an octanol-rich phase that is approx-
imately 74 mol % n-octanol and 26 mol % water. If a very small amount of a third
chemical is added (so that the mutual solubility of water and n-octanol are unchanged),
this chemical will then partition between the octanol-rich and water-rich phases. The
octanol-water partition coefficient for chemical species i, KOW,i is defined as

KOW,i =
Concentration of species i in the octanol-rich phase
Concentration of species i in the water-rich phase

=
CO

i

CW
i

(11.4-8)

A chemical that is hydrophilic (water-liking) will largely partition into the water-
rich phase (resulting in a small value of KOW), while a hydrophobic (water-disliking)
compound will appear mainly in the octanol-rich phase, and KOW will be large. Most
organic chemicals produced by the chemical industry are very hydrophobic, so it is
the logarithm of the octanol-water partition coefficient that is usually reported, as in
Table 11.4-1. Note that the numeric values of the octanol-water partition coefficient
for such chemicals can be very large, and the concentration of the added solute in the
octanol-rich phase can be a factor of 105 or 106 or higher than in the water-rich phase.

The criterion for the equilibrium distribution of a small amount of solute between
two coexisting octanol and water liquid phases is, from Eqs. 11.4-4 and 11.4-5,

xO
i

xW
i

=
γW

i (T,P, xW)
γO

i (T,P, xO)
(11.4-9)

Now using CO and CW to represent the total molar concentrations of the octanol-rich
and water-rich phases, respectively, we have

COxO
i

CWxW
i

=
CO

i

CW
i

=
COγW

i (T,P, xW)
CWγO

i (T,P, xO)
= KOW,i (11.4-10)

If only a very small amount of solute is added to the octanol-water mixture, so that the
solute concentration is very low in both phases, then the activity coefficients that ap-
pear in this equation are essentially activity coefficients at infinite dilution, so that
Eq. 11.4-10 can be written as

KOW,i =
COγW,∞

i

CWγO,∞
i

(11.4-11)
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where the superscript ∞ indicates infinite dilution. In environmental engineering the
pollutant species i is generally present at very low concentrations (which is fortunate),
so that Eq. 11.4-11 is applicable.

The octanol-water partition coefficient of a chemical can be directly measured; how-
ever, the measurement is not an easy one since the concentration of a hydrophobic
organic chemical in the water-rich phase will be very low (i.e., in the parts per mil-
lion or parts per billion range, where accurate measurements are difficult). Further, the
measurement can be subject to appreciable error because if any grease or extraneous
organic matter is present in the equipment, a hydrophobic chemical will be absorbed
from the water phase, resulting in an erroneously low concentration in that phase (and
a high octanol-water partition coefficient).

A rough estimate of the octanol-water partition coefficient can be obtained by noting
that since the density of n-octanol is 0.827 g/cc and its molecular weight is 130.22, and
those of water are 1 g/cc and 18,

CO

CW
≈

0.827 g/cc
130.22 g/mol

1 g/cc
18 g/mol

= 0.114

where the “approximately equal” sign has been used since CO should be the total mo-
lar concentration of the octanol-rich phase, though we have used the properties of pure
octanol. Also, many organic chemicals that are environmental pollutants are very hy-
drophobic, so that γW,∞

i is very large (the chemical does not want to remain in the
water-rich phase), while γO,∞

i is of order 5, since the octanol-rich phase is organic and
hydrophobic. Therefore, to a reasonable approximation, we have

KOW,i = 0.114
γW,∞

i

5
= 0.0228γW,∞

i

or

log10 KOW,i = −1.642 + log10 γW,∞
i (11.4-12)

From the correlation of data for a number of chemicals, a better approximation is

log10 KOW,i = −0.486 + 0.806 log10 γW,∞
i (11.4-13)

Therefore, by knowing only the infinite-dilution activity coefficient of a very hydropho-
bic chemical in water, we can estimate its octanol-water partition coefficient from
Eq. 11.4-13, and its saturation mole fraction or solubility as in Illustration 11.2-4. Alter-
natively, knowing any one among the infinite-dilution activity coefficient, octanol-water
partition coefficient, and saturation solubility in water, the other two can be estimated.

Illustration 11.4-2
Estimating the Value of the Octanol-Water Partition Coefficient for a Pollutant

In Illustration 12.1-3 it will be shown that the value of the infinite-dilution activity coefficient
of benzo[a]pyrene in water is 3.76 × 108. Using the information, estimate the octanol-water
partition coefficient of benzo[a]pyrene and compare the value obtained to the reported value of

log10 KOW,BP = 6.04 or KOW,BP = 1.1 × 106
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Table 11.4-1 Octanol-Water Partition Coefficients and Other Properties of Some Organic Chemicals, Herbicides, and
Pesticides

Vapor Pressure Henry’s Constant Melting Solubility
Substance log10 KOW (kPa) at 25◦C (bar m3/mol) Point (◦C) (mg/L or ppm)

Acrolein −0.10 35.3 4.5 × 10−6 −88 2.08 × 105

Aldicarb 1.13 1.3 × 10−5 4.23 × 10−9 99 6 × 103

Aniline 0.90 0.065 0.138 −6.3 3.607 × 104

1,3-Butadiene 1.99 281 20.6 −108.9 735
Chlorobenzene 2.80 1.38 3.82 × 10−3 −45.6 484
Chlorodane 5.54 1.31 × 10−6 4.92 × 10−5 107 0.1
2-Chlorophenol 2.15 0.189 5.7 × 10−7 9.3 2.8 × 104

2-Cresol 1.95 0.041 1.6 × 10−6 30.9 30.8
2,4-D (herbicide) 2.81 8.0 × 10−8 1.39 × 10−10 140.5 690
1,2-Dichlorobenzene 3.38 0.196 1.2 × 10−3 −17.0 156
1,4-Dichlorobenzene 3.52 0.235 1.5 × 10−3 53.1 80
Dieldrin 4.32 5.00 × 10−7 5.9 × 10−5 ∼175 0.17
Ethylbenzene 3.15 1.27 8.19 × 10−3 −95.0 152
Formaldehyde 0.35 517.6 3.31 × 10−7 −92 ∼55%
Heptachlor 5.27 5.3 × 10−5 1.50 × 10−3 ∼95 0.18
Hexachlorobenzene 5.31 2.5 × 10−6 1.3 × 10−3 231 6.2 × 10−3

Hexachloroethane 3.82 0.028 2.8 × 10−3 ∼187 50
Lindane 3.61 7.43 × 10−6 2.96 × 10−6 112.5 7.3
Malathion 2.36 1.1 × 10−6 2.8 × 10−8 2.9 143
Methyl bromide 1.19 217.7 6.32 × 10−3 −93.7 1.52 × 104

Methyl chloride 0.91 570 9.77 × 10−3 −97 5235
Naphthalene 3.30 3.68 × 10−2 4.3 × 10−4 80.2 31.0
Nitrobenzene 1.85 0.020 2.47 × 10−5 5.7 1.9 × 103

3-Nitrophenol 2.00 0.10 1.03 × 10−7 97 1.35 × 104

Parathion 3.83 1.29 × 10−6 5.73 × 10−7 6 6.5
Phenol 1.46 0.0466 4.02 × 10−7 41 8.7 × 104

Silvex 3.41 6.9 × 10−7 1.33 × 10−8 ∼180 140
Styrene 2.95 0.88 2.85 × 10−3 −30.6 310
2,4,5-T 3.13 1.0 × 10−7 8.80 × 10−9 153 278
1,2,4-Trichlorobenzene 4.10 0.053 1.44 × 10−3 17 48.8
2,4,5-Trichlorophenol 3.72 2.9 × 10−3 5.90 × 10−6 67 982
2,4,6-Trichlorophenol 3.69 1.12 × 10−3 6.22 × 10−8 69 900

Solution

From Eq. 11.4-12, we have

KOW,BP = 0.0228γW,∞
BP

= 0.0228 × 3.76 × 108 = 8.57 × 106

or
log10 KOW,BP = 6.93

Alternatively, using Eq. 11.4-13,

log10 KOW,BP = −0.486 + 0.806 log10(3.76 × 108) = 6.43
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or

KOW,BP = 2.69 × 106

This last result agrees within a factor of 2.5 to the reported benzo[a]pyrene octanol-water parti-
tion coefficient.

Illustration 11.4-3
Purification of an Antibiotic

Benzylpenicillin is an older antibiotic effective against pneumococcal and meningoccal infec-
tions, anthrax, and Lyme disease. As part of a purification process, 200 mg of benzylpenicillin
is mixed with 25 mL of n-octanol and 25 mL of water. After equilibrium is established, there is
a water-rich phase that contains essentially no n-octanol and an octanol-rich phase that contains
74 mol % n-octanol and 26 mol % water. Determine the concentrations of benzylpenicillin in
each of these phases.
Data: The molecular weight of benzylpenicillin is 334.5, that of n-octanol is 130.23, the liquid
density of n-octanol is 0.826 g/cc, and KOW,P = 65.5.

Solution

First we need to determine the number of moles in each phase (on a benzylpenicillin-free basis).
Since n-octanol is insoluble in water, it is all in the octanol-rich phase. The number of moles of
n-octanol is

25 mL × 0.826 g/mL

130.23 g/mol
= 0.1586 mol

and the amount of water in the octanol-rich phase is

0.1586 mol octanol × 0.26 mol water

0.74 mol octanol
= 0.0557 mol water

The volume of the n-octanol-rich phase, assuming no volume change of mixing, is

VO =
0.1586 mol × 130.23 g/mol

0.826 g/mL
+

0.0557 mol × 18 g/mol

1 g/mL
= 26.0028 mL

where the first term is from the amount of n-octanol and the second from the amount of water
in the octanol-rich phase. The volume of the water-rich phase is

VW = 25 − 1.0028 = 23.997 mL

The total number of moles of benzylpenicillin is (0.2 g)/(334.4 g/mol) = 5.981 × 10−4 mol.
Now to find the concentration of benzylpenicillin in each phase we use a mass balance:

5.981 × 10−4 mol = CW
B · V W + CO

B · V O = CW
B · V W + KOW,B · CW

B · V O

= CW
B · (23.997 + 65.5 × 26.008) = CW

B · 1727.52 mL

Therefore,

CW
B = 3.462 × 10−7 mol

mL
= 1.158 × 10−4 g

mL
= 0.1158

mg

mL

and

CO
B = 3.462 × 10−7 × 65.5 = 2.268 × 10−5 mol

mL
= 7.585 × 10−3 g

mL
= 7.585

mg

mL
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An alternative method of considering the solubility of a gas in a solvent, or the dis-
tribution of a solute between two liquid phases, is by analyzing the Gibbs energy of
transfer of a species from one phase to another, for example, from an ideal gas phase
to a liquid, or from one liquid phase to another. This type of calculation is referred to
a solvation free energy calculation. The basis is as follows. Consider first the transfer
of NS moles of a species that is a gas into N1 moles of a pure liquid solvent. Before
mixing, the total Gibbs energy of the separated gas and liquid is

G (before mixing) = N1G
L
1 + NSG

V
S

and after mixing, assuming all the gas is dissolved,

G (after mixing)
= N1G

L
1 + NSG

L
S = N1

[
GL

1 + RT ln (x1γ1)
]
+ NS

[
GL

S + RT ln (xSγS)
]

Therefore, the Gibbs energy change for this transfer process is


tfrG = N1

[
GL

1 + RT ln (x1γ1)
]
− N1G

L
1 + NS

[
GL

S + RT ln (xSγS)
]
− NSG

V
S

= N1RT ln (x1γ1) + NSRT ln (xSγS) + NS

(
GL

S − GV
S

)
= N1RT ln

(
N1γ1

N1 + NS

)
+ NSRT ln

(
NSγS

N1 + NS

)
+ NS

(
GL

S − GV
S

)
(11.4-14)

Now assuming the solubility of the gas in the liquid solvent is low, so that N1 � NS,
and x1γ1 ≈ 1, we obtain for the free energy of transfer from a gas to a liquid


tfrG = NS

[
GL

S − GV
S + RT ln (xSγS)

]
or per mole of species transferred,


tfrG

NS

= 
tfrG = GL
S − GV

S + RT ln (xSγS) = RT

[
ln

(
fL
S

fV
S

)
+ ln (xSγS)

]

The ratio of the solute fugacities in the liquid and vapor phases can be computed as
described in Chapter 9 (see Eq. 9.7-8b).

Next, consider the transfer of a very dilute solute from solvent 1 to solvent 2. The
Gibbs energy of 1 mole of solvent 1 and δ moles of solute S is

G (in solvent 1) = G1 + δGS = G1 + RT ln (x1γ1) + δ [GS + RT ln (xSγS)]

and the Gibbs energy change of separating the solute from the solvent is


1G (in solvent 1) = G1 + δGS − [G1 + RT ln (x1γ1) + δGS + δRT ln (xSγS)]

= −RT ln (x1γ1) − δRT ln (xSγS)solvent 1

(11.4-15)
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Similarly, the Gibbs energy change of adding δ moles of the solute to 1 mole of
solvent 2 is


2G = RT ln (x2γ2) + δRT ln (xSγS)solvent 2

Therefore, the total Gibbs energy change of transferring δ moles of a solute from 1 mole
of solvent 1 to 1 mole of solvent 2 is


tfrG = RT ln
(

x2γ2

x1γ1

)
+ δRT ln

[
(xSγS)solvent 2

(xSγS)solvent 1

]

= RT ln
(

γ2

γ1

)
+ δRT ln

[
(γS)solvent 2

(γS)solvent 1

] (11.4-16)

Since in each of the liquids considered, there is 1 mole of solvent and δ moles of solute,
the mole fractions of solvent and solute are equal in solvents 1 and 2, and have canceled
in the equation above.

A case of special interest is if δ � 1, so that the solute is present in the solvents at
infinite dilution. In this case, the activity coefficients of both solvents, γ1 and γ2, are
unity and


tfrG = δRT ln
[
(γ∞

S )solvent 2

(γ∞
S )solvent 1

]
or


tfrG

δ
= 
tfrG = RT ln

[
(γ∞

S )solvent 2

(γ∞
S )solvent 1

]
(11.4-17)

which is the Gibbs energy of transfer of 1 mole of solute from infinite dilution in solvent
1 to infinite dilution in solvent 2. Note that if

(γ∞
S )solvent 2 > (γ∞

S )solvent 1 then 
tfrG > 0

and the transfer is unfavorable; that is, the Gibbs energy (or work) must somehow be
supplied to accomplish the change. However, if

(γ∞
S )solvent 2 < (γ∞

S )solvent 1 then 
tfrG < 0

The transfer is favorable, and Gibbs energy would be released on the transfer.

Illustration 11.4-4
The Gibbs Energy of Transfer of an Amino Acid

At 25◦C a saturated aqueous solution of L-asparagine contains 0.186 M of the amino acid, while
a saturated solution in ethanol is 2.3 × 10−5 M. What is the ratio of the activity coefficients of
L-asparagine in these two solutions, and what is the Gibbs energy of transfer of a very small
amount of L-asparagine from water to ethanol?

Solution

We first need to estimate the activity coefficients, and especially the infinite-dilution activity
coefficients for L-asparagine in water and ethanol. We can obtain this information from the
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saturated solution data. For solid L-asparagine in equilibrium with the two saturated liquid so-
lutions, we have

GS
A = GW

A = GE
A

where the superscripts W and E indicate the water-rich and ethanol-rich phases, respectively,
and the solubility concentrations are given above. Therefore,

GL
A + RT ln

(
xW

A γW
A

)
=GL

A + RT ln
(
xE

AγE
A

)
and

xW
A γW

A = xE
AγE

A or
xW

A

xE
A

=
γE
A

γW
A

To use this equation, we need to convert each of the molalities to mole fractions, and to do this
we use the fact that 1 kg of water contains 55.51 moles, and there are 21.707 moles of ethanol
in 1 kg, so that

xW
A =

0.186

0.186 + 55.51
= 3.34 × 10−3

xE
A =

2.3 × 10−5

2.3 × 10−5 + 21.707
= 1.06 × 10−6

and

γE
A

γW
A

=
3.34 × 10−3

1.06 × 10−6
= 3.15 × 103

Note that the mole fractions of L-asparagine in each of the solvents is so low that we can assume
the activity coefficient ratio we have obtained to be that at infinite dilution. Therefore,


tfrG = RT ln

(
γE
A

γW
A

)
= 8.314 × 298.15 × ln (3150) = 19 970

J

mol

and the transfer of an infinitesimal amount of L-asparagine from water to ethanol is unfavorable.

The discussion in this section has been concerned with the distribution of a solute
between two liquid phases whose equilibrium is unaffected by the added solute. This
will occur if the amount of added solute is very small, or if the solvents are essentially
immiscible at all conditions. However, if the amount of dissolved solute is so large as to
affect the miscibility of the solvents, the solute addition can have a significant effect on
the solvents, including the increase (salting in) or decrease (salting out) of the mutual
solubility of the two solvents, as was discussed in Sec. 11.2. It is important to emphasize
that such situations are described by the methods in Sec. 11.2 as a multicomponent
liquid-liquid equilibrium problem, in contrast to the procedures in this section, which
are based on the assumption that the partial or complete immiscibility of the solvents
is unaffected by the addition of the partitioning solute.

PROBLEMS FOR SECTION 11.4

11.4-1 Write the equations that are to be used to compute
the equilibrium compositions when three liquids are
mixed and form
a. Two liquid phases

b. Two liquid phases in which species 1 is dis-
tributed among completely immiscible species
2 and 3

c. Three partially miscible liquid phases
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11.4-2 An important application of liquid-phase partition-
ing is partition chromatography. There a solvent
containing several solutes is brought into contact
with another solvent, usually one that is mutually
immiscible with the first. When equilibrium is es-
tablished, some solutes are concentrated in the first
solvent and others in the second solvent. By repeat-
ing this process a number of times, it is possible to
partially separate the solutes.

The concentration distribution coefficient Kc

for gallic acid (C7H6O5) between diethyl ether
(phase I) and water (phase II) is 0.25, and that for
p-hydroxybenzoic acid is 8.0. If 2 g each of gallic
acid and p-hydroxybenzoic acid are present in one
liter of water, how much of each component would
be left in the aqueous phase if the aqueous phase
were
a. Allowed to achieve equilibrium with 5 liters of

diethyl ether?
b. Allowed to achieve equilibrium first with one

batch of 2 1
2

liters of diethyl ether, and then with
a second batch of the same amount?

c. Allowed to achieve equilibrium with five succes-
sive 1-liter batches of pure diethyl ether?

11.4-3 Use regular solution theory to calculate the activ-
ity coefficients of bromine in carbon tetrachloride
at the mole fractions found in Illustration 11.4-1,
and use this information and that in the illustra-
tion to compute the activity coefficients of bromine
in water.

11.4-4 Volume 3 of the International Critical Tables
(McGraw-Hill, New York, 1928) gives the follow-
ing data for the distribution coefficient of bromine
between carbon disulfide and various aqueous solu-
tions of potassium bromide at 25◦C:

Distribution Coefficient(
mol Br2/L of aqueous phase
mol Br2/L of organic phase

)
Bromine Concentration

in Carbon Disulfide
(mol Br2/L of solution) 1

16
Molar KBr 1

4
Molar KBr 1

2
Molar KBr

0.005 0.0696 0.1735
0.02 0.0651 0.167 0.303
0.03 0.0621 0.163 0.298
0.04 0.159 0.293
0.05 0.155 0.288
0.06 0.151 0.283
0.095 0.271

Using regular solution theory to estimate the activity
coefficient of bromine in carbon disulfide, compute
the activity coefficient of bromine in
a. The 1

16
molar KBr solution

b. The 1
4

molar KBr solution
c. The 1

2
molar KBr solution

d. Try to infer a relationship between the salt con-
centration and the activity coefficient of bromine
in aqueous solution.

11.4-5 a. For a liquid that is very slightly soluble in wa-
ter, there is a consistency relationship between
its Henry’s law coefficient in water, its solubil-
ity in water, and its vapor pressure. Show for the
Henry’s law coefficient in the equation xiHi =
Pi that

Hi =
P vap

i

xsat
i

and for the Henry’s law coefficient in the equa-
tion CiHi = Pi that

Hi =
P vap

i

Csat
i

where Ci denotes the concentration of species i,
and the superscript sat indicates the concentra-
tion at saturation.

b. Test this relationship using the data in
Table 11.4-1 for aniline, 1,2-dichlorobenzene,
ethylbenzene, naphthalene, and styrene, all of
which are above their melting point and only
slightly soluble in water.

11.4-6 At 25◦C a saturated aqueous solution contains 0.171
M of L-leucine, while a saturated solution in ethanol
contains only 1.28 ×10−3 M of this amino acid.
What is the ratio of the activity coefficients of
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L-leucine in these two solutions, and what is the
Gibbs energy of transfer of L-leucine from water to
ethanol?

11.4-7 Below is a table of the solubility of the family of
amino acids +H3NCHRCOO− in water (SW) and
in ethanol (SE) at 25◦C in units of mol/dm3.
Compute the Gibbs energy of transfer of each of
these amino acids from water to ethanol.

Amino Acid R SW SE

Glycine H 2.89 3.9 × 10−4

α-Alanine CH3 1.66 7.6 × 10−4

α-Amino-n-butyric acid C2H5 1.80 2.6 × 10−3

α-Amino-n-caproic acid C4H9 0.0866 1.04 × 10−3

11.4-8 Use UNIFAC model in Aspen Plus R© to predict
the equilibrium compositions when 0.01 moles of

benzene are added to 1 mole of an equimolar mix-
ture of n-octanol and water at 25◦C and 1 bar. Report
the mole fraction-based octanol-water partition co-
efficient KOW,B of the benzene,000,that is

KOW,B =
xB,Octanol−rich phase

xB,Water−rich phase

11.4-9 Use the UNIFAC model in Aspen Plus R© to predict
the equilibrium compositions when 0.01 moles of
methanol are added to 1 mole of an equimolar mix-
ture of n-octanol and water at 25◦C and 1 bar. Report
the mole fraction-based octanol-water partition co-
efficient KOW,M of the methanol

KOW,M =
xM,Octanol−rich phase

xM,Water−rich phase

11.5 OSMOTIC EQUILIBRIUM AND OSMOTIC PRESSURE

Next we consider the equilibrium state of liquid mixtures in two cells separated by a
membrane that is permeable to some of the species present and impermeable to others.
In particular, consider a solute-solvent system in which the solvent, but not the solute,
can pass through the membrane. We will assume that cell I contains the pure solvent
and cell II the solvent-solute mixture, and that the membrane separating the two cells is
rigid, so that the two cells need not be at the same pressure. The equilibrium criterion
for this system is

f I
solvent = f II

solvent (11.5-1)

or
fsolvent(T,P I) = xII

solventγ
II
solventfsolvent(T,P II) (11.5-2)

A similar equation is not written for the solute since it is mechanically constrained from
passing through the membrane and thus need not be in thermodynamic equilibrium in
the two cells.

Actually, the use of Eq. 11.5-1 as the equilibrium requirement for this case deserves
some discussion. We have shown that this equation is the equilibrium criterion for a
system at constant temperature and pressure. From the discussion of Sec. 8.7, it is clear
that it is also valid for systems subject to certain other constraints. Here we are inter-
ested in the equilibrium criterion for a system divided into two parts, each of which is
maintained at constant temperature and pressure, but not necessarily the same pressure
(or, for that matter, the same temperature). Though it is not obvious that Eq. 11.5-1
applies to this case, it can be shown to be valid (Problem 11.5-1).

Since P I �= P II, the fugacities of the pure solvent at the conditions in the two cells
are related by the Poynting pressure correction (see Eq. 7.4-21),

fsolvent(T,P II) = fsolvent(T,P I) exp
[
V L

solvent(P II − P I)
RT

]
(11.5-3)

where we have assumed that the liquid is incompressible, so that
∫ P II

P I V L
solvent dP �

V L
solvent(P II − P I). Using Eq. 11.5-3 in Eq. 11.5-2 yields
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1 = xII
solventγ

II
solvent exp

[
V L

solvent(P II − P I)
RT

]
or

Osmotic pressure
equation

Π = P II − P I = − RT

V L
solvent

ln(xII
solventγ

II
solvent) (11.5-4)

where Π = P II −P I, called the osmotic pressure, is the pressure difference between
the two cells needed to maintain thermodynamic equilibrium.

A very large pressure difference can be required to maintain osmotic equilibrium in a
system with only a small concentration difference. Consider, for example, the very sim-
ple case of osmotic equilibrium at room temperature between an ideal aqueous solution
containing 98 mol % water and pure water. Here

Π = P II − P I = − RT

V L
solvent

ln(xII
solvent)

= −
8.314 × 10−5 bar m3

mol K
× 298.15 K

18 × 10−6 m3

mol

ln 0.98 = 27.8 bar

Thus if cell I is at atmospheric pressure, cell II would have to be maintained at 28.8 bar
to prevent the migration of water from cell I to cell II. (A more accurate estimate of
the osmotic pressure could be obtained using experimental data or appropriate liquid
solution theories to evaluate the activity coefficient of water in aqueous solutions. See
Problem 11.5-3.)

Since pressure measurements are relatively simple, Eq. 11.5-4 can be the basis for
determining solvent activity coefficients in a solvent-solute system, provided a suit-
able leakproof membrane can be found. Osmotic pressure measurements are, how-
ever, more commonly used to determine the molecular weights of proteins and other
macromolecules (for which impermeable membranes are easily found). In such cases an
osmometer, such as the one shown in schematic form in Fig. 11.5-1, is used to measure
the equilibrium pressure difference between the pure solvent and the solvent containing
the macromolecules (which are too large to pass through the membrane); the pressure
difference ΔP , which is the osmotic pressure Π , is equal to ρgh, where ρ is the solu-
tion density and h is the difference in liquid heights. If the solute concentration is small,
we have

Π = − RT

V solvent

ln(xsolvent) ≈
RT

V solvent

(1 − xsolvent) (11.5-5)

Furthermore, since xsolvent + xsolute = 1, this reduces to

Π =
RT

V solvent

xsolute
∼= RTCsolute/msolute

V solventCsolvent/msolvent

= RTCsolute/msolute

(11.5-6)

Here the concentration C is in units of mass per volume, m is the molecular weight,
and we have used the fact that since the solute mole fraction is low,

xsolute =
Moles solute

Moles solute + Moles solvent
� Moles solute

Moles solvent
=

Csolute/msolute

Csolvent/msolvent
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Constant-temperature
bath

Solvent

Solvent-solute mixture

Semipermeable membrane
(may be supported)

h

Figure 11.5-1 A schematic drawing of a simple osmometer.

and

Csolvent

msolvent

=
1

V solvent

Relatively small concentrations of macromolecules produce easily measurable
osmotic-pressure differences. For example, suppose 1 g of a protein or polymer of
molecular weight 60 000 is dissolved in 100 mL of water and placed in the osmometer
of Fig. 11.5-1. At a temperature of 25◦C, the osmotic-pressure difference would be

Π =
0.01

g
mL

× 298.15 K × 8.314 × 10−5 bar m3

mol K
× 106 mL

m3

60 000 g/mol
= 4.13 × 10−3 bar = 4.22 cm H2O

which is easily measurable.
To determine the molecular weight of a macromolecule, a known weight of the sub-

stance is added to a weighed amount of solvent so that the mass concentration of the
solute Csolute is known. This mixture is then placed in the osmometer and Π measured.
The molecular weight is then found from

msolute =
RTCsolute

Π
(11.5-7)

For high accuracy, this measurement is repeated several times at varying solute con-
centrations, and the limiting value of Csolute/Π as Csolute approaches zero is used in
Eq. 11.5-7. This procedure allows for the fact that Csolute is imperfectly known (since
additional solvent passes through the membrane until equilibrium is established) and
that the simplifications in Eq. 11.5-6 become exact and solvent nonidealities vanish as
Csolute → 0.

The advantage of the osmotic-pressure difference method of determining the molec-
ular weights of macromolecules over alternative methods, such as the freezing-point
depression method, is evident from a comparison of the magnitudes of the effects to
be measured. In Illustration 12.3-1 it will be shown that the addition of 0.01 g/mL of a
60 000 molecular-weight protein results in a freezing-point depression of water of only
0.00031 K, whereas here we find it results in an easily measureable osmotic pressure
of 4.22 cm H2O.
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Illustration 11.5-1
Determining the Molecular Weight of a Polymer

The polymer polyvinyl chloride (PVC) is soluble in the solvent cyclohexanone. At 25◦C it is
found that if a solution with 2 g of a specific batch of PVC per liter of solvent is placed in an
osmometer, the height h to which the pure cyclohexanone rises is 0.85 cm. Use this information
to estimate the molecular weight of the PVC polymer.
Data: Cyclohexanone has a density of 0.98 g/cm3.

Solution

The osmotic pressure corresponding to 0.85 cm of cyclohexanone is

Π = ρgh = 0.98
g

cm3
× 0.85 cm × 104 cm2

m2
× 9.81

m

s2
× 10−3 kg

g

= 81.72
kg

m s2
= 81.72

kg m

s2
1

m2
= 81.72

N

m2
= 81.72 Pa

To determine the molecular weight of the polymer, we will use this value of the osmotic pressure
and Eq. 11.5-7 and find

msolute =
8.314

Pa m3

mol K
× 298.15 K × 2

g

L
× 103 L

m3

81.72 Pa
= 60 670

g

mol
= 60.67

kg

mol

Comment

Osmometry is an important method of determining the molecular weight of macromolecules such
as polymers and proteins. The advantages of this method for macromolecules are that membranes
permeable to the solvent but not to the macromolecule are easily found, and the osmotic pressure
(or height of the solvent) is large and easily measured.

Illustration 11.5-2
Determining the Molecular Weight of a Protein

The following data have been reported for the osmotic pressure of aqueous serum albumin
solutions at pH = 4.8 in an 0.05 M acetate buffer at 0◦C.
Data:

Albumin Concentration Osmotic Pressure
C (g/cc) Π (cm H2O)

0.78 2.39
1.25 4.01
2.79 8.53
3.38 10.80
4.18 13.01
8.98 27.84

12.45 37.69

Solution

From the experimental data, we have
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Albumin Concentration Molecular Weight
C (g/cc) C/Π (g)

0.78 0.3264 75 600
1.25 0.3117 72 400
2.79 0.3271 75 700
3.38 0.3127 72 600
4.18 0.3213 74 400
8.98 0.3226 74 700

12.45 0.3303 76 600

The average of all these values is approximately 74 500. (Note that in the biological literature,
this would be referred to as 74 500 daltons.)

While Eq. 11.5-4 is the correct expression for the concentration dependence of the
osmotic pressure, most experimental data are reported in forms that look much like the
virial equation of state for a gas. One such form is

Π
RT

=
CS

mS

{
1 + B2

(
CS

mS

)
+ B3

(
CS

mS

)2

+ · · ·
}

(11.5-8)

where CS is the concentration of the solute in easily measurable units of mass per unit
volume, mS is the (generally unknown) molecular weight of the solute, and B2, B3, . . .
are referred to as the osmotic virial coefficients. Consequently, having data on the os-
motic pressure as a function of solute concentration allows one to calculate the molec-
ular weight and the osmotic virial coefficients.

Illustration 11.5-3
Determining the Molecular Weight and Osmotic Virial Coefficients of a Protein

The following data have been reported for the osmotic pressure of α-chymotrypsin in water at
pH = 4.0 in an 0.01 M potassium sulfate solution at 25◦C.19

Data

CS (g/L) Π (Pa)

Π

CS

(
Pa L

g

)

0.902 74.8 82.92
1.798 142.3 79.14
3.574 276.2 77.29
5.331 398.0 74.65
7.027 513.3 73.05
8.835 625.3 70.77

Use these data to determine the molecular weight of α-chymotrypsin and the value of its osmotic
second virial coefficient, B2, at these conditions.

19C. A. Haynes, T. Tamura, H. R. Korfer, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem., 96, 905 (1992).
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Solution

As shown in the figure, these data can be fit with the following equation:

Π

CS

= 83.961 − 2.168 · CS + 0.077 · C2
S

85

80

75

70
0 2 4 6 8 10

CS

Π
/C

S

Therefore,

lim
CS→0

Π

CS

= 83.961
Pa L

g
=

RT

mS

so that the molecular weight is

mS =
8.314 × 10−3 kPa m3

mol K
× 298.15 K × 103 Pa

kPa
×103 L

m3

83.961
Pa L

g

= 29 528
g

mol

Next,
Π

RT
=

CS

mS

Π

CS

=
RT

mS

{
1 + B2

CS

mS

+ · · ·
}

so that

lim
CS→0

d
(

Π
CS

)
dCS

=
RTB2

m2
= −2.168

Pa L2

g2

and

B2 = −
2.168

Pa L2

g
×
(
2.9528 × 104 g

mol

)2

8.314 × 103 Pa L

mol K
× 298.15 K

= −762.4
L

mol

Note:When the protein (or other membrane-impermeable solute) has an appreciable net charge,
and salts that can pass through the membrane are present, the analysis of osmotic equilibrium
can be more complicated than discussed here as a result of the uneven partitioning of the ions.
This phenomenon, referred to as Gibb-Donnan equilibrium, is discussed in Sec. 15.7.
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The virial coefficients in a gas are the result of the interactions between molecules
that are separated by empty space. However, the osmotic virial coefficients here are
the result of interactions between the solute molecules when they are separated by the
solvent molecules (generally water) and, in the illustration above, potassium sulfate
and whatever other ions are present to adjust the pH. So the values of the osmotic virial
coefficients depend not only on the solute, but also on the solution conditions.

For example, in Problem 11.5-8 data are given for for the osmotic pressure of α-
chymotrypsin in water at pH = 8.0 (instead of 4.0 as above) in an 0.01 M potassium
sulfate solution at 25◦C. Those data are fit with mS = 22 725 g/mol and B2 = +257.8
L/mol. The difference in the computed molecular weights at the two values of pH may
be due to experimental uncertainties, though it is true that the charge on a protein varies
with pH, and as we show in Chapter 15, the charge affects the osmotic pressure. The
large change in the value of B2 with pH, as well as its change in sign, is striking. Since
a negative value of the osmotic virial coefficient indicates a net attraction between the
solute molecules, what is seen here is a net attraction between the α-chymotrypsin
molecules at pH = 4 and a net repulsion at pH = 8, which may be due to the change in
charge of this protein as a function of pH. (see Chapter 15)

The discussion so far has been of the osmotic pressure resulting from a single so-
lute in a solvent. If, instead, there are several solutes (proteins, polymers, salts, etc.),
Eq. 11.5-4 still applies, though now the computation of the activity coefficient of the
solvent may be more complicated because a multicomponent mixture is involved. How-
ever, if the solution is very dilute (so that the solvent activity coefficient is unity, or
equivalently, the osmotic virial coefficients can be neglected), the analogue of Eq. 11.5-6
for a multicomponent mixture is

Π =
RT

V solvent

∑
solutes i

xi = RT
∑

solutes i

Ci

mi

Osmotic pressure (times membrane area) can result in a significant force—indeed,
one so large that it can cause the membrane to deform or even rupture. It is for this
reason that any fluid used in medical applications (for example, kidney dialysis, blood
replacement, organ flushing, or preserving fluids) must have approximately the same
osmotic pressure as blood to ensure that the red blood cells do not burst. Empirically, it
has been found that a solution that contains about 0.9 wt % sodium chloride is isotonic
with, that is, has the same osmotic pressure as, blood.

Illustration 11.5-4
Estimation of the Osmotic Pressure of Human Blood

Use the information in the paragraph above to estimate the osmotic pressure of blood.

Solution

A 0.9 wt % solution of sodium chloride has 9 grams of NaCl per 1000 grams of solution that
also contains 991 grams of water. Since the molecular weight of NaCl is 58.44, 9 grams of NaCl
per 991 grams of water is equal to 9.0817 grams of NaCl per kg of water, or a molality of 0.1554
(0.1554 mol of NaCl in 55.51 mol of water). However, sodium chloride is a strong electrolyte
and ionizes completely; therefore, the mole fraction of the solute water is
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xwater =
55.51

2 × 0.1554 + 55.51
= 0.994 43

Assuming, for the moment, that the activity coefficient of water is unity, we have

Π = −
8.314 × 10−5 bar m3

mol K
× 298.15 K

18 × 10−6 m3

mol

ln (0.994 43) = 7.694 bar

However, in Appendix 9.3 we showed that the mean ionic activity coefficient in aqueous
sodium chloride solutions is reasonably well correlated with

ln γ± = −α
⏐⏐z+z−

⏐⏐√I

1 +
√

I
+ 0.137I

and provided the expression to compute the activity coefficient of water in such solutions. We
obtain a more accurate estimate of the osmotic pressure of blood using this equation and find that
γwater = 1.000 13, so that xwaterγwater = 0.994 57. Using this value, we find Π = 7.498 bar.

Comment

We see from this illustration that the osmotic pressure of this sodium chloride solution, and
therefore blood, is surprising high, above 7 bar, even though the solution is more than 99 percent
water. Also, the activity coefficient of water is almost 1; however, in the case of the osmotic
pressure, the activity coefficient correction should not be neglected.

Finally, it should be pointed out that the Gibbs phase rule, as developed in Sec. 8.9,
does not apply to osmotic equilibrium. This is because (1) the total pressure need not
be the same in each phase (cell), so that Eq. 8.9-2 is not satisfied, and (2) the equality of
partial molar Gibbs energies in each phase (cell) does not apply to all species, only to
those that can pass through the membrane. A form of the Gibbs phase rule applicable
to osmotic equilibrium can be easily developed (Problem 11.5-2).

PROBLEMS FOR SECTION 11.5

11.5-1 Show that the condition for equilibrium in a
closed isothermal system, one part of which is
maintained at P I and the remainder at P II, is
that the function G′ = U − TS + P IV I +
P IIV II be a minimum (here V I and V II are
the volumes of the portions of the system main-
tained at P I and P II, respectively). Then show
that Eq. 11.5-1 is the condition for osmotic
equilibrium.

11.5-2 Derive a form of the Gibbs phase rule that applies to
osmotic equilibrium.

11.5-3 a. The osmotic coefficient of a solvent φS is defined
by the relation

GS = GS + φSRT ln xS

where φS → 1 as xS → 1. Develop an expression
relating the activity coefficient γS to the osmotic
coefficient φS.

b. Robinson and Wood20 report the following inter-
polated values for the osmotic coefficient of sea-
water as a function of concentration at 25◦C.

I φS

0.5 0.9018
1.0 0.9155
2.0 0.9619
4.0 1.0938
6.0 1.2536

20R. A. Robinson and R. H. Wood, J. Sol. Chem., 1, 481 (1972).
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Here I is the ionic strength, defined as

I =
1

2

∑
i

z2
i Mi

where zi is the valence of the ith ionic species
and Mi is its molality. For simplicity, seawater
may be considered to be a mixture of only sodium
chloride and water. Compute the water activity
coefficient and the equilibrium osmotic pressure
for each of the solutions in the table.

11.5-4 Bruno and coworkers [Int. J. Thermophys., 7,
1033 (1986)] describe an apparatus that contains a
palladium-silver membrane that is permeable to hy-
drogen but not other gases. In their experiments af-
ter equilibration they measure the temperature T1 in
the apparatus, the pressure P1 of pure hydrogen on
one side of the semipermeable membrane, and the
equilibrium composition of hydrogen xH2 and other
gases and pressure P2 on the other side of the mem-
brane. Next, by equating the hydrogen fugacities on
both sides of the membrane,

fH2(T1, P1) = fH2(T1, P2, xH2)

and calculating the fugacity of the pure hydrogen us-
ing known virial coefficients from

ln
fH2

P1

=
BP1

RT
+

C − B2

2

(
P1

RT

)2

they have a direct measure of the fugacity of hydro-
gen in the mixture. Some of their results are given
here:

Hydrogen + propane system at 3.45 MPa:

At 80◦C
xH2 = 0.2801 0.4452 0.5935 0.7298 0.8215
φH2 = 1.283 1.106 1.058 1.028 1.033

At 130◦C
xH2 = 0.2649 0.4715 0.5449 0.7827 0.8354
φH2 = 1.22 1.116 1.096 1.047 1.038

Hydrogen + methane system at 3.45 MPa:

At 80◦C
xH2 = 0.2155 0.4594 0.5355 0.7901 0.8494
φH2 = 1.223 1.134 1.125 1.115 1.121

φH2 = fH2/xH2P

Compare these experimental results with the pre-
dicted fugacity coefficients for hydrogen in these
mixtures calculated using the Peng-Robinson equa-
tion of state. Determine the sensitivity of the predic-
tions to the value of the binary interaction parameter.

11.5-5 A rough rule of thumb in polymer solution theory is
that a 4 molar aqueous polymer solution will have
an osmotic pressure of approximately 100 bar. Is
this rule of thumb in approximate agreement with
Eq. 11.5-5?

11.5-6 Derive the form of the Gibbs phase rule that ap-
plies to a multicomponent system in osmotic equi-
librium in which all but two of the components
can pass through the membrane separating the two
compartments.

11.5-7 Joe Udel lives on the second floor of a house that is
adjacent to a well of pure water, but city water comes
out of his indoor plumbing. He would rather have
pure well water. So he has developed the following
scheme. He will mount a pipe from the well up the
side of his building into a tank in the third-floor at-
tic. The bottom of the pipe will contain a membrane
permeable to water, but not to the 1000-molecular-
weight polymer he will add to the pipe (he is propos-
ing to use a low-molecular-weight polymer so that
the mixture viscosity will not be too high). He will
add enough of the polymer so that water in the pipe
will rise to the top of the tank, a height of 15 meters.
The end of the pipe in the attic will have a second
membrane of the same type at its base, so that wa-
ter exiting the membrane will drip into a second tank
open to the atmosphere. In this way the polymer will
remain in the system, and Joe will have pure well
water from the second tank. A diagram of the pro-
posed process (with water dripping from tank 1 to
tank 2) is shown.
a. How much polymer (in kg per kg water) is

needed for this process?
b. Does the process violate the second law of ther-

modynamics? Will this process work indefinitely
without any external power?

15 m

Tank 2 containing fresh water

Well

Tank 1 with semipermeable membrane at
 its base

Pipe with semipermeable membrane at
its base
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11.5-8 The following data have been reported for the
osmotic pressure of α-chymotrypsin in water at
pH = 8.0 in an 0.01 M potassium sulfate solution at
25◦C.21

Use these data to determine the molecular weight of
α-chymotrypsin and the value of its osmotic second
virial coefficient, B2, at these conditions.
Data:

CS (g/L) Π (Pa)

0.901 58.7
1.841 121.2
4.070 271.3
5.558 376.9
7.211 476.7
9.298 615.0

11.5-9 The following data have been obtained by graduate
student Ron Maurer for the solubility of a crystalline
substance (which happens to be a protein, but that is
irrelevant) that ionizes on dissolution as a function
of the molality of the added salt MgCl2

Csalt Cprot

(Molality) (mg/ml)

0.02 6.28
0.04 6.79
0.06 6.83
0.10 6.94
0.14 6.75
0.20 5.28
0.30 4.39
0.40 3.90

a. Explain qualitatively why the solubility first in-
creases with increasing salt concentration (that
is, salts in) and then descreases (i.e., salts out)
with still higher salt concentrations.

b. Write the equations for the thermodynamic-
based model you would use to correlate the data.

c. What additional information would you need to
use the model your suggested in part b. to corre-
late these data?

11.5-10 Coca Cola R© has approximately 39 grams of fruc-
tose in 355 ml. Since the other (secret) ingredients
in Coca Cola R© are present in small quantities, they
can be neglected. Neglect the carbon dioxide in the
soda (somebody left the cap off all night so there is
no carbon dioxide left and the soda is flat). The fol-
lowing data are available:

Fructose molecular weight = 180.16g/mol

Properties of water

ln P vap
water = 13.149 − 4903

T
; P in bar and T in K

ΔfusHwater(Tm = 273.15K) = 6kJ/mol

With reference to pure water, compute:
a. The osmotic pressure of Coca Cola R©;
b. The freezing point of water due to the added fruc-

tose; and
c. The boiling temperature of Coca Cola R©.

Note: Coca Cola R© is a registered trademark.

11.5-11 An interesting question in marine biology is how
some organisms can survive the pressures encoun-
tered in the deep ocean. A possible explanation is
that these organisms contain higher concentrations
of low molecular weight compounds (for example
urea) in the deep sea than at the surface, and these
compounds in the fluids of the organism result in an
osmotic pressure that partially offsets the increase in
hydrostatic pressure. Such compounds are referred
to as osmolytes. It has been found that shrimp con-
tain about 70 mmol/kg of these osmolytes in surface
waters and 300 mmol/kg at 3 km under the sea. You
can assume that as caught, shrimp have a density of
1200 kg/m3, their dry weight is only 10% of their
wet weight, and their fluids also contain 0.9 wt %
sodium chloride.
a. Given that seawater contains 0.9 wt % sodium

chloride and the average seawater density is 1030
kg/m3, determine whether the osmotic pres-
sure produced compensates for the hydrostatic
pressure.

b. The osmolytes also serve as cryoprotectants, that
is they lower the freezing point of the body flu-
ids, thereby preventing cell damage. Estimate the
freezing point of the body fluids of shrimp found
at sea level, and those found at 3 km deep in the
ocean.

21C. A. Haynes, T. Tamura, H. R. Korfer, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem., 96, 905 (1992).
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11.5-12 A new membrane premeable only to water is to be
used for purifying water containing a pesticide. Your
employer requests that you setup a demonstration
consisting of an insulated rigid tank at 2◦C divided
equally in volume by a rigid membrane. She sug-
gests that one side of the membrane should have
pure water at 1.1 bar and the other side should be
at 1 bar and have 98 mole % water and 2 mole %
pesticide. Is this possible?

11.5-13 The osmotic pressure for a small molecule in aque-
ous solution has been found to be given by the fol-
lowing expression

Π = P II − P I =
x2RT

V 1

(
1 + B2x2 + B3x

2
2

)
where 1 is the solvent and 2 is the small; molecule
solute. Obtain expressions for the activity coeffi-
cients of the solvent and solute as a function of mole
fraction.



Chapter 12

Mixture Phase Equilibria
Involving Solids

In this chapter we consider several other types of phase equilibria, mostly involving a
fluid and a solid. This includes the solubility of a solid in a liquid, gas, and a supercritical
fluid; the partitioning of a solid (or a liquid) between two partially soluble liquids; the
freezing point of a solid from a liquid mixture; and the behavior of solid mixtures.
Also considered is the environmental problem of how a chemical partitions between
different parts of the environment. Although these areas of application appear to be
quite different, they are connected by the same starting point as for all phase equilibrium
calculations, which is the equality of fugacities of each species in each phase:

Starting point for all
phase equilibrium
calculations

f I
i(T,P, xI) = f II

i (T,P, xII)

where the superscripts I and II represent the different phases.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 12

The goals of this chapter are for the student to:

• Be able to compute the solubility of a solute in a liquid, gas, or supercritical fluid
(Sec. 12.1)

• Be able to compute the partitioning of a solid between two partially miscible liq-
uids (Sec. 12.2)

• Be able to compute the freezing points of liquid mixtures (Sec. 12.3)
• Be able to compute the phase behavior of solid mixtures (Sec. 12.4)
• Be able to estimate the environmental distribution of a chemical (Sec. 12.5)

NOTATION INTRODUCED IN THIS CHAPTER

fS
i Fugacity of species i in a solid mixture (kPa)

fF Fugacity of species i in a fluid mixture (kPa)
KOCW,i Organic carbon-water partition coefficient of species i
KAW,i Air-water partition coefficient of species i
KBW,i Biota-water partition coefficient of species i

688
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12.1 THE SOLUBILITY OF A SOLID IN A LIQUID, GAS, OR SUPERCRITICAL FLUID

We now want to consider the extent to which a solid is soluble in a liquid, a gas, or a
supercritical fluid. (This last case is of interest for supercritical extraction, a new sep-
aration method.) To analyze these phenomena we again start with the equality of the
species fugacities in each phase. However, since the fluid (either liquid, gas, or super-
critical fluid) is not present in the solid, two simplifications arise. First, the equilibrium
criterion applies only to the solid solute, which we denote by the subscript 1; and sec-
ond, the solid phase fugacity of the solute is that of the pure solid.1 Thus we have the
single equilibrium relation

Equality of fugacities,
the starting point for
all phase equilibrium
calculations

fS
1 (T,P ) = fF

1 (T,P, x) (12.1-1)

where the superscripts S and F refer to the solid and fluid (liquid, gas, or supercritical
fluid) phases, respectively.
We consider first the solubility of a solid in a liquid. Using Eq. 9.3-11 for the fugacity

of the solute in a liquid, we obtain

fS
1 (T,P ) = x1γ1(T,P, x) fL

1 (T,P ) (12.1-2)

where fS
1 (T,P ) and fL

1 (T,P ) refer to the fugacity of the pure species as a solid and
as a liquid, respectively, at the temperature and pressure of the mixture, and x1 is the
saturation mole fraction of the solid solute in the solvent.
If the temperature of the mixture is equal to the normal melting temperature of the

solid, Tm, then
fS
1 (Tm) = fL

1 (Tm) (12.1-3)

by the pure-component phase equilibrium condition, so that at the melting point
we have

x1 = 1/γ1(Tm, P, x) (12.1-4)

Thus, the solubility in a liquid of a solid at its melting point is equal to the reciprocal
of its activity coefficient in the solute–solvent mixture.
If, as is usually the case, the solid is below its melting point, fL

1 > fS
1 , and Eq. 12.1-4

is not valid. To predict the solubility in this case, Eq. 12.1-2 must be used with some
estimate for the ratio fS

1 /fL
1 . One way to make this estimate is to use the sublimation

pressure for fS
1 (see Eq. 7.4-24), and then compute the fugacity for the “subcooled”

liquid fL
1 by extrapolation of the liquid thermodynamic properties into the solid region.

This can be done graphically as indicated in Fig. 9.7-2b if the temperature is not too
far below the melting point. Alternatively, and most accurately, if the heat (enthalpy)
of fusion at the melting point is available, the fugacity ratio can be computed from
Eq. 9.7-8a:

fL
1 (T,P ) = fS

1 (T,P )

× exp
[

1
RT

[
�fusH(T )

(
1 − T

Tm

)
+

∫ T

Tm

�CP dT − T

∫ T

Tm

�CP

T
dT

]]
(9.7-8a)

1In a true solid mixture use fS
1(T, P, xS) = xS

i γS
i (T, P, xS)fS

1 (T, P ) for species 1 in the solid; see Sec. 12.4.
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Using this result in Eq. 12.1-2 gives

Equation for the
solubility of a solid in
a liquid

lnx1γ1 = −ΔfusH(Tm)
RT

[
1 − T

Tm

]
− 1

RT

∫ T

Tm

ΔCP dT +
1
R

∫ T

Tm

ΔCP

T
dT

(12.1-5)

Equation 12.1-5 is the basic equation for predicting the saturation mole fraction of a
solid in a liquid. This equation is almost exact.2

Two approximations can bemade in Eq. 12.1-5without introducing appreciable error.
First, we assume that ΔCP is independent of temperature, so that Eq. 12.1-5 becomes

lnx1γ1 = −
{

ΔfusH(Tm)
RT

[
1 − T

Tm

]
+

ΔCP

R

[
1 − Tm

T
+ ln

(
Tm

T

)]}
(12.1-6)

Next, since the melting-point temperature at any pressure and the triple-point temper-
ature (Tt) are only slightly different for most solids (see Fig. 9.7-2), we can rewrite
Eq. 12.1-6, without significant error, as

lnx1 = − ln γ1 −
{

ΔfusH(Tt)
RT

[
1 − T

Tt

]
+

ΔCP

R

[
1 − Tt

T
+ ln

(
Tt

T

)]}
(12.1-7)

Further, if heat capacity data for either the (real) solid or (hypothetical) liquid are not
available, one can assume that they are approximately equal, so that ΔCP = 0 and

lnx1 = − ln γ1 −
{

ΔfusH(Tt)
RT

[
1 − T

Tt

]}
(12.1-8)

If the liquid mixture is ideal, so that γ1 = 1, we have the case of ideal solubility
of a solid in a liquid, and the solubility can be computed from only thermodynamic
data (ΔfusH and ΔCP) for the solid species near the melting point. For nonideal solu-
tions, γ1 must be estimated from either experimental data or a liquid solution model, for
example, UNIFAC. Alternatively, the regular solution theory estimate for this activity
coefficient is

RT ln γ1 = V L
1 (δ1 − δ2)2Φ2

2 (12.1-9)

where δ1 and δ2 are the solubility parameters of the solute as a liquid and the liquid
solvent, respectively. The difficulty in using this relation is that we must be able to
estimate both the solubility parameter and the liquid molar volume for a species whose
pure-component state is a solid at the mixture temperature.
Usually one can neglect the thermal expansibility of both solids and liquids, so that

V L can be taken to be the molar volume of the liquid at the normal melting point, or it
can be computed from

V L
1 = V S

1 + ΔfusV (12.1-10)

2The approximations that have been made are to neglect the Poynting pressure correction terms to the solid and
liquid free energies (or fugacities), and to assume (f/p) = 1.
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where ΔfusV is the molar volume change on fusion at the triple point of the solid.
To compute the solubility parameter δ1, where

δ =
(

ΔvapU

V L

)1/2

(12.1-11)

it is necessary to estimate ΔvapU , the molar internal energy change on vaporization of
the subcooled liquid. The enthalpy change on vaporization of the subcooled liquid is

ΔvapH(T ) = ΔsubH(T ) − ΔfusH(T ) (12.1-12)

where ΔsubH(T ) is the heat of sublimation of the solid at the temperature T ; this
quantity can either be found in tables of thermodynamic properties or estimated from
sublimation pressure data using the Clausius-Clapeyron equation (Eq. 7.7-5a), and
ΔfusH(T ) is presumed to be available from experimental data. Thus

ΔvapU = ΔvapH − PΔvapV

= ΔsubH(T ) − ΔfusH(Tm) − ΔCP(T − Tm) − RT (12.1-13)

wherewe have assumed thatPΔvapV = P (V V − V L) ≈ PV V = RT , and thatΔCP

is independent of temperature.
Equations 12.1-8 through 12.1-13 can be used in Eq. 12.1-7 to compute the saturation

solubility for any regular solution solute-solvent pair.

Illustration 12.1-1
Solubility of a Solid in a Liquid

Estimate the solubility of solid naphthalene in liquid n-hexane at 20◦C.

Data:3

Naphthalene (C10H8, molecular weight = 128.19)
Melting point: 80.2◦C
Heat of fusion: 18.804 kJ/mol
Density of the solid: 1.0253 g/cc at 20◦C
Density of the liquid: 0.9625 g/cc at 100◦C
Sublimation pressure of the solid:

log10 P sub (bar) = 8.722 − 3783

T
(T in K)

The heat capacities of liquid and solid naphthalene may be assumed to be equal.

Solution

The solubility parameter and liquid molar volume for n-hexane are given in Table 9.6-1 as
δ2 = 7.3 and V L

2 = 132 cc/mol, respectively. Since the liquidmolar volume of naphthalene given
in the data is for a temperature 80◦C higher than the temperature of interest, and the volume
change on melting of naphthalene is small, the molar volume of liquid naphthalene below its
melting temperature will be taken to be that of the solid; that is,

V L
1 =

128.19 g/mol

1.0253 g/cc
= 125 cc/mol

3Reference: R. C. Weast, ed., Handbook of Chemistry and Physics, 68th ed., Chemical Rubber Publishing Co.,
Cleveland (1987), pp. C-357, D-214.
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The heat of sublimation of naphthalene is not given. However, we can compute this quantity
from the vapor pressure curve of the solid and the Clausius-Clapeyron equation (Eq. 7.7-5a) by
taking P to be equal to the sublimation pressure P sub, ΔH to equal the heat of sublimation, and
setting ΔV = V V − V S = ΔsubV ∼= RT/P sub. Thus

ΔsubH

RT 2
=

d ln P sub

dT
= 2.303

d log10 P sub

dT
= +2.303

(3783)

T 2

and

ΔsubH = 2.303(3783)(8.314 J/mol) = 72 434 J/mol

Next,

ΔvapU = ΔsubH − ΔfusH − RT = 72 434 − 18 804 − 8.314 × 293.15 = 51 193 J/mol

so that

δ1 =

(
51 193 J/mol

125 cc/mol × 4.184 J/cal

)1/2

= 9.9 (cal/cc)1/2

Now using Eq. 12.1-7 with ΔCP = 0, and the regular solution expression for the activity
coefficient, we obtain

ln x1 = −V L
1 (δ1 − δ2)

2Φ2
2

RT
− ΔfusH(Tm)

RT

(
1 − T

Tm

)

As a first guess, assume that x1 will be small, so that

Φ2 =
x2V

L
2

x1V
L
1 + x2V

L
2

≈ 1

In this case

ln x1 =
−125

cc

mol
× (9.9 − 7.3)2

cal

cc
× 4.184

J

cal

8.314
J

mol K
× 293.15 K

−
18 804

J

mol

8.314
J

mol K
× 293.15 K

(
1 − 293.15

353.35

)

= −1.451 − 1.314 = −2.765

x1 = 0.063

With such a large value for x1 we must go back and correct the value of Φ2 for the presence of
the solute and repeat the computation. Thus

Φ2 =
0.937 × 132

0.937 × 132 + 0.063 × 125
= 0.94

and

ln x1 = 1.282 − 1.314 = 2.596

x1 = 0.0746
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The results of the next two iterations are x1 = 0.0768 and x1 = 0.0772, respectively. This last
prediction is in reasonable agreement with the experimental result of x1 = 0.09.4

Comment

Note that had we assumed ideal solution behavior, γ1 = 1 and ln γ1 = 0, so that

ln x1 = −1.314

x1 = 0.269

which is a factor of 3 too large.

Illustration 12.1-2
Solubility of a Solid in a Liquid Using UNIFAC

Repeat Illustration 12.1-1 using the UNIFAC group contribution model to estimate the naphtha-
lene activity coefficient.

Solution

Naphthalene has eight aromatic CH (ACH) and two aromatic C (AC) groups, and n-hexane has
two CH3 and four CH2 groups. Since the output of the UNIFAC program is the list of activity
coefficients, Eq. 12.1-12 is rewritten as

x1 =

exp

(
−
{

ΔfusH(Tt)

RT

[
1 − T

Tt

]
+

ΔCP

R

[
1 − Tt

T
+ ln

(
Tt

T

)]})
γ1

(a)

or, using the same simplification as in the previous illustration,

x1 =

exp

(
−
{

ΔfusH(Tt)

RT

[
1 − Tt

T

]})
γ1

=
exp(−1.314)

γ1

(b)

Using x1 = 0.07 as the first guess, we find γ1 = 3.2726 and, from Eq. b, x1 = 0.0821. Iterating
several additional times yields x1 = 0.0856, which is in very good agreement with the experi-
mental value of 0.09 mentioned in the previous illustration.

Although the discussion of this section has centered on the solubility of a solid in a
pure liquid, the methods used can be easily extended to mixed solvents. In fact, to apply
the equations developed in this section to mixed solvents, we need only recognize that
the measured or computed value of γ1, the activity coefficient for the dissolved solid,
used in the calculations must be appropriate to the solid and mixed solvent combina-
tion being considered. In the regular solution model, for example, this means replacing
Eq. 12.1-8 with

RT ln γ1 = V L
1

(
δ1 − δ

)2
(12.1-14)

Similarly, the UNIFAC model and program are applicable to both binary and multi-
component mixtures.
If the heat of fusion and the solubility of a solid in a liquid have been measured, this

information can be used to compute the activity coefficient of the dissolved solid in the
liquid. Sometimes the results can be quite surprising, as in the next illustration.

4G. Scatchard, Chem. Rev., 8, 329 (1931).
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Illustration 12.1-3
Calculation of Activity Coefficient from Data for the Solubility of a Solid

Haines and Sandler5 reported the following data for benzo[a]pyrene and its solubility in water
at 25◦C:

Melting point: 178.1◦C
Heat of fusion: 15.1 kJ/mol
Solubility in water: xBP = 3.37 × 10−10

Estimate the activity coefficient of benzo[a]pyrene in water at 25◦C.

Solution

For this calculation we use Eq. 12.1-6 with the assumption that the contribution of the ΔCP term
is negligible (as we have no data for it). Rearranging Eq. 12.1-6, we have

γBP =
1

xBP

exp

{
−ΔfusH

RT

[
1 − T

Tm

]}

=
1

3.37 × 10−10
exp

⎧⎪⎨
⎪⎩−

15 100
J

mol

8.314
J

mol K
× (273.15 + 25) K

[
1 − 273.15 + 25

273.15 + 178.1

]⎫⎪⎬
⎪⎭

= 3.76 × 108

Comment

Although one is accustomed to thinking of activity coefficients as being small corrections to ideal
solution behavior, we see in this example of benzo[a]pyrene in water that the correction can be
very large. This is especially important in environmental applications where one is interested in
the distribution of a chemical between air, water, and soil, as will be seen in Sec. 12.5. Since
the concentration of benzo[a]pyrene is so small, the value of the activity coefficient calculated
above is effectively the activity coefficient at infinite dilution.

To estimate the solubility of a solid in a gas, we again start from Eq. 12.1-1, which,
using Eqs. 7.4-23 and 9.2-13, can be written as

P sat
i (T )

(
f
P

)
sat,T

exp
[
V S

i (P − P sat
i )

RT

]
=yiP

(
f i

yiP

)
= yiPφi (12.1-15)

where (in the Poynting factor) we have assumed the solid is incompressible. At low
pressures, the Poynting factor and the fugacity coefficients in the solid and fluid phases
can all be taken equal to unity. In this case we obtain the following expression for the
ideal solubility of a solid in a gas:

yID
i =

P sat
i (T )
P

(12.1-16)

5R. I. S. Haines and S. I. Sandler, J. Chem Eng. Data, 40, 833 (1995).
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Illustration 12.1-4
Solubility of a Solid in a Gas

Estimate the solubility of naphthalene in carbon dioxide at 1 bar and temperatures of 35.0 and
60.4◦C using Eq. 12.1-16.

Solution

Using the solid vapor pressure data in Illustration 12.1-1 and Eq. 12.1-16, we have

T (◦C) P sat
N (bar) yN (at 1 bar pressure)

35.0 2.789 × 10−4 2.8 × 10−4

60.4 2.401 × 10−3 2.4 × 10−3

Illustration 12.1-5
Estimating the Solubility of a Solid in a Gas Using the Virial EOS

Estimate the solubility of naphthalene in carbon dioxide at 35◦C and pressures ranging from
1 bar to 60 bar using the virial equation of state with the following values for the second virial
coefficient

BCO2-N = −345 cc/mol

BCO2-CO2 = −96.5 cc/mol

BN-N = −1850 cc/mol

Solution

We assume that CO2 is insoluble in solid naphthalene, and therefore only equate the fugacities
of naphthalene in the solid and vapor phases. The fugacity of solid naphthalene was calculated
in Illustration 7.4-9. To calculate fugacity of naphthalene in the vapor phase, we use Eqs. 9.4-6
and 9.4-7. The procedure is to guess a vapor-phase mole fraction of naphthalene and then calcu-
late its vapor-phase fugacity, which is compared with its solid-phase fugacity. If the two agree,
the guessed composition is correct. If they do not, a new composition guess is made, and the
calculation is repeated. The results are shown below.

P (bar) fS
N = fV

N (bar) yN

2.789 × 10−4 2.789 × 10−4 1
1 2.803 × 10−4 2.869 × 10−4

10 2.933 × 10−4 3.730 × 10−5

20 3.083 × 10−4 2.545 × 10−5

30 3.241 × 10−4 2.379 × 10−5

40 3.408 × 10−4 2.604 × 10−5

50 3.582 × 10−4 3.243 × 10−5

60 3.766 × 10−4 4.852 × 10−5

Note that the solubility first decreases then increases with increasing total pressure at fixed
temperature.
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At moderate and high pressures the solubility of a solid in a gas is computed from

Solubility of a solid in
a gas using an EOS

yi =
P sat

i (T )
(

f

P

)
sat,T

exp
[
V S

i (P − P sat
i )

RT

]

Pφ
V

i (T,P, y)
(12.1-17)

This equation usually must be solved by iteration since the solute mole fraction appears

in the fugacity coefficient φ
V

i (T,P, y). The vapor pressure of the solid is generally
small, so that the term (f/P )sat,T is usually equal to unity. Common terminology is to
define an ideal solubility yID

i and an enhancement factor E as

yID
i =

P sat
i

P
and E(T,P, y) =

(
f

P

)
sat,T

exp
[
V S

i (P − P sat
i )

RT

]

φ
V

i (T,P, y)
(12.1-18a)

so that

yi =
P sat

i (T )
P

E(T,P, y) = yID
i × E(T,P, y) (12.1-18b)

Note that the enhancement factor E has contributions from both the Poynting factor
and the vapor-phase fugacity coefficient, both of which are important at high pressure,
and that E → 1 as P → P sat

i .

Illustration 12.1-6
Solubility of a Solid in Supercritical Fluid (SCF) Using an EOS

McHugh and Paulaitis [J. Chem. Eng. Data, 25, 326 (1980)] report the following data for the
solubility of naphthalene in carbon dioxide at temperatures slightly above the CO2 critical tem-
perature and pressures considerably higher than its critical pressure.

T = 35.0◦C T = 60.4◦C

P (bar) yN P (bar) yN

86.8 0.00750 108.4 0.00524
98.2 0.00975 133.8 0.01516

133.0 0.01410 152.5 0.02589
199.5 0.01709 164.2 0.04296
255.3 0.01922 192.6 0.05386

206.0 0.06259

Assuming that the CO2-naphthalene mixture obeys the Peng-Robinson equation of state with
kCO2-N = 0.103, estimate the solubility of naphthalene in the CO2 supercritical fluid (SCF).
Also compute the predicted enhancement factors and the contribution of the Poynting factor to
the enhancement factor.

Solution

Using the data in Illustration 12.1-1 and Table 6.6-1, and one of the Peng-Robinson mixture
programs discussed in Appendix B and on the website to calculate the vapor-phase fugacities,
the following results are obtained.
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P (bar) yN yID
N (Eq. 12.1-19) E Poynting Factor

T = 35◦C:

86.8 1.99 × 10−3 3.21 × 10−6 619 1.527
98.2 2.87 × 10−3 2.84 × 10−6 1 010 1.615

199.5 1.654 × 10−2 1.40 × 10−6 11 830 2.647
255.3 1.940 × 10−2 1.09 × 10−6 17 759 3.475

T = 60.4◦C:

108.4 2.80 × 10−3 2.21 × 10−5 126 1.630
133.8 1.05 × 10−2 1.79 × 10−5 584 1.828
152.5 1.96 × 10−2 1.57 × 10−5 1246 1.989
164.0 2.64 × 10−2 1.46 × 10−5 1806 2.096
192.6 5.25 × 10−2 1.25 × 10−5 4211 2.383
206.0 6.61 × 10−2 1.17 × 10−5 5671 2.531

The predicted and measured naphthalene mole fractions in supercritical carbon dioxide are plot-
ted in Fig. 12.1-1.

P, bar
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0
1 X 10–5

0.0001

0.001

0.01

0.10

50 100 150 200 250 300

N
ap

ht
ha

le
ne

 m
ol

e 
fr

ac
ti

on

Figure 12.1-1 The solubility of naphthalene in supercritical carbon dioxide as a function of
pressure. The points ● and ■ are the experimental data of McHugh and Paulaitis [J. Chem. Eng.
Data, 25, 326 (1980)] at T = 35.0 and 60.4◦C, respectively. The lines are the correlations of the
data using the Peng-Robinson equation of state with kCO2-N = 0.103. Note the sharp increase
in naphthalene solubility with pressure near the CO2 critical pressure of 73.76 bar.
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Comments

1. Note that the predictions for these extreme conditions are good. Indeed, with only one
adjustable parameter (kCO2-N = 0.103), reasonable predictions are obtained for the solu-
bility of naphthalene in supercritical carbon dioxide for a range of temperatures in the near
critical region, and to moderately high pressures.

2. The enhancement factors here are very large, in fact, among the larger nonideal corrections
encountered in chemical engineering thermodynamics. (Enhancement factors for other
mixtures at cryogenic conditions of 109 and larger have been reported.) Note that at
T = 35◦C and P = 255.3 bar, the solubility of naphthalene is enhanced by a factor of
more than 17 700 above its ideal value; however, its total solubility is still small at less than
2 mol %.

3. The solubility of naphthalene in supercritical carbon dioxide at 60.4◦C increases from a
mole fraction of 0.00240 at 1 bar (Illustration 12.1-4) to 0.098 at 291.3 bar. This illustrates
the large increase in the solubility of a solute that may occur with increasing pressure,
which is the basis of supercritical extraction to, for example, remove caffeine from coffee
beans or fragrances and oils from plant material.

4. The Poynting corrections in this illustration are large, reaching values greater than 3. Con-
sequently, the Poynting factor could not be ignored in this example. However, the main
contribution to the enhancement factor arises from gas-phase nonidealities (the species
fugacity coefficient, φi).

Finally, note that Eq. 12.1-5 or its simplification, Eq. 12.1-8, can be used with
measured solubility data to estimate the heat of fusion (or heat of crystallization) of
a compound. This is especially useful for complex molecules and biomolecules (for
example, proteins) for which the direct measurement of the heat of fusion in a calorime-
ter might be difficult, or, in the case of proteins, too little may be available for accu-
rate calorimetric measurement. The basis for such a calculation of the heat of fusion
from solubility data is the application of Eq. 12.1-8 at two different temperatures for
which solubility data are available:

ln
[
x1(T1)γ1(x, T1)
x1(T2)γ1(x, T2)

]
= −�fusH1

RTm

[
Tm − T1

T1

− Tm − T2

T2

]

= −�fusH1

RTm

[
Tm

T1

− Tm

T2

]

or

ln
[
x1(T1)γ1(x, T1)
x1(T2)γ1(x, T2)

]
= −�fusH1

R

[
1
T1

− 1
T2

]
= −�fusH1

R

[
T2 − T1

T1T2

]
(12.1-19a)

As the activity coefficient of a protein or other biomolecule may not be known, we will
assume it cancels so that Eq. 12.1-19a can be simplified to

ln
[
x1(T1)
x1(T2)

]
= −�fusH1

R

[
1
T1

− 1
T2

]
= −�fusH1

R

[
T2 − T1

T1T2

]
(12.1-19b)

in which case the heat of fusion that appears may be thought of as an apparent heat
of fusion since the contribution of the activity coefficients and their temperature and
composition dependence have been neglected.
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Illustration 12.1-7
Determination of the Heat of Fusion of Insulin

Insulin exists as a hexamer, both in solution and as a crystal. Bergeron et al.6 report the solubility
of insulin in aqueous solution to be about 0.122 mg/mL at 10◦C and 0.182 mg/mL at 25◦C, and
the molecular weight of the insulin hexamer to be 34 800. Use these data to estimate the heat of
fusion of the insulin hexamer.

Solution

Since the molecular weight of the insulin hexamer is so high, its mole fraction at both tempera-
tures is very small. For example, at the higher concentration of 0.182 mg/mL,

x =
0.000182
34800

0.000182
34800

+ 1
18

= 9.414 × 10−8

Therefore, we can assume that the activity coefficients that appear in Eq. 12.1-19 at both tem-
peratures are the values at infinite dilution and (assuming the temperature dependence is not
very large) will cancel in the ratio term in the equation. Also, the solubilities S in the problem
statement are so low that they are linearly related to the mole fraction by

x =
S × 18

34 800

so that the reported solubilities can be used in the ratio in Eq. 12.1-19, and we have

ln

[
S1

S2

]
= −�fusH

R

[
T2 − T1

T1T2

]
or �fusH = R

[
T1T2

T1 − T2

]
ln

[
S1

S2

]

Consequently, for the crystallization of the insulin hexamer

�fusH = 8.314

[
283.13 × 298.15

283.15 − 298.15

]
ln

[
0.122

0.182

]
= 18.7

kJ

mol

Since the value of the heat of fusion (or crystallization) is positive, the solubility of insulin in-
creases with increasing temperature.

PROBLEMS FOR SECTION 12.1

12.1-1 Estimate the solubility of naphthalene in the follow-
ing solvents at 20◦C and compare with the experi-
mental results.7

Solvent Measured Solubility, xN

Chlorobenzene 0.256
Benzene 0.241
Toluene 0.224
Carbon tetrachloride 0.205

12.1-2 Estimate the solubility of naphthalene in the mixed
solvent n-hexane and carbon tetrachloride at 20◦C
as a function of the (initial) n-hexane concentration.

12.1-3 McHugh and Paulaitis (see Illustration 12.1-6) also
measured the solubility of biphenyl in supercritical
carbon dioxide. Some of their data appear here.

6L. Bergeron, L. F. Filobelo, O. Galkin, and P. G. Vekilov, Biophys. J., 85, 3935 (2003).
7Data for this problem were taken from G. Scatchard, Chem. Rev., 8, 329 (1931); and J. H. Hildebrand, J. M.
Prausnitz, and R. L. Scott, Regular and Related Solutions, Prentice Hall, Englewood Cliffs, N.J. (1970), p. 152.
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T (◦C) P (bar) yB

49.5 155.6 0.01782
49.5 204.5 0.02689
49.5 296.5 0.03605
49.5 379.4 0.03795
55.2 110.6 0.00447
55.2 132.6 0.01031
55.2 167.2 0.01829
55.2 252.5 0.03516
55.2 334.6 0.05615
55.2 412.8 0.07918
55.2 469.9 0.11054
55.2 482.7 0.12669
57.5 361.4 0.06365
57.5 430.3 0.09208

Choose a binary interaction parameter kCO2-B that
gives a reasonable correlation for these data.

12.1-4 At moderate pressures, the virial equation of state
can be used to estimate the solubility of a solid in a
supercritical fluid.
a. Compute the solubility of naphthalene in carbon

dioxide at 50◦C and 60 bar using the data here:
At 50◦C, the vapor pressure of naphtha-

lene is 1.11 × 10−3 bar, its molar volume is
0.112 m3/kmol, and the virial coefficients are:
BCO2-CO2 = −0.103 m3/kmol and BN-CO2 =
−0.405m3/kmol

b. Repeat the computation in part (a) using the
Peng-Robinson equation of state and compare
the results.

12.1-6 The following data are available for the solubility of
the crystalline amino acid leucine (molecular weight
131.17) in water at various temperatures:8

T (◦C) 19.0 23.7 28.7 33.4 38.4
g/kg 21.20 21.54 22.19 22.81 23.81
T (◦C) 43.5 48.4 53.4 58.8
g/kg 24.88 26.03 27.63 28.84

Determine the apparent heat of fusion of leucine
over this temperature range.

12.1-7 The solubility of crystalline isoleucine in water is
given in the table below (data from the same source
as for the preceding problem). Its melting point has
been reported to be 287◦C, its heat of fusion has been
estimated to be 5.825 kJ/mol, its molecular weight
is 131.17, and there are no �fusCP data available.

T (◦C) 19 30 40 50 58.4
g/kg 32.39 35.48 38.32 41.20 43.64

a. Determine the apparent heat of fusion of
isoleucine over this temperature range.

b. Estimate the solubility of crystalline isoleucine
in water over the temperature range from 19 to
58.4◦C in g/kg, and compare your estimates with
the experimental data.

12.1-8 An aqueous solution at 60◦C contains leucine and
isoleucine at concentrations of 28 g and 35 g per kg
of water, respectively. This solution is to be cooled
to crystallize the leucine, but not the isoleucine. To
what temperature can the mixture be cooled before
the isoleucine crystallizes, and what fraction of the
leucine will be recovered in this crystallization pro-
cess? Note that since the mole fractions of leucine
and isoleucine are so low in this mixture, it can be
assumed that each of these amino acids will crys-
tallize independent of the other. Solubility data for
leucine and isoleucine are given in the two preced-
ing problems.

12.1-9 Nitrofurantoin is an antibiotic that is used to elimi-
nate bacteria that cause urinary tract infections. The
following data have been reported for its solubility
in water9

T (◦C) 24 30 37 45
xN × 106 6.01 8.57 13.16 18.99

Estimate the apparent heat of fusion of nitrofuran-
toin.

12.1-10 The solubility of glucose in methanol (g/liter) is
23.5 at 22◦C, 27.1 at 30◦C and 31.6 at 40◦C. The
following data are available for glucose: MW =
180.16, Tm = 150◦C, ΔfH = 32.25 kJ/mol, and

8J. Givand, A. S. Teja, and R. W. Rousseau, AIChE J. 47, 2705 (2001).
9L.-K. Chen, D. E. Cadwallader, and H. W. Jun, J. Pharm. Sci., 65, 868 (1976).
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ΔCP = 150 J/molK. The molecular weight of
methanol is 32.04, and its density is 0.789 at 22◦C,
0.784 g/liter at 30◦C and 0.774 g/liter at 40◦C.
a. Predict what the solubility of glucose inmethanol

at each of these temperatures if glucose and
methanol formed an ideal solution.

b. Use the experimental data above to calculate the
activity coefficient of glucose in methanol.

12.1-11 The solubility of caffiene in water has been reported
by P. Bustamante et al. (J. Pharm. Sci. 91, 874-883
(2002).

Temperature (K) Solubility, mol fraction x 103

298 1.55
308 3.07
313 4.31

Assuming thatΔCP in negligible and since the solu-
bility is small that the activity coefficient is constant,
use these data to estimate the melting temperature of
caffeine, its heat of fusion and its entropy change of
fusion.

12.2 PARTITIONING OF A SOLID SOLUTE BETWEEN TWO LIQUID PHASES

In Sec. 11.2 we considered the distribution of a liquid or gaseous solute between two
partially miscible or completely immiscible phases. Here we consider the case in which
the solute is a solid at the temperature and pressure of the mixture. We will assume, as
is generally the case, that some or all of the solid solute dissolves in the liquid solvents,
but the solvents are not present in the undissolved solid, if any remains.
The starting point for the description of this phase equilibrium problem is again the

equality of fugacities of each species in all phases in which that species appears,

Starting point for all
phase equilibrium
calculations

f I
i(T,P, xI) = f II

i (T,P, xII) = · · · (12.2-1)

and the constraint that the number of moles of each species is conserved:

Ni,F = N I
i + N II

i + · · · (12.2-2)

where NJ
i is the number of moles of species i in phase J, and Ni,F is the number of

moles of species i in the feed into the system.
Here it is useful to consider two cases: one case in which no undissolved solute re-

mains, and a second in which there is undissolved solid in equilibrium with the two
liquid phases. In the case in which no undissolved solid remains, the equilibrium con-
dition for the solute and the two solvents is

f I
i(T,P, xI) = f II

i (T,P, xII) (12.2-3)

Now, using the definition of the activity coefficient,

f1(T,P, x) = x1γ1(T,P, x)fL
1 (T,P )

Eq. 12.2-3 can be rewritten as

xI
1γ

I
1(T,P, xI) = xII

1 γII
1 (T,P, xII) (12.2-4)

since the pure-component fugacities cancel on both sides (for the solvents, which are
real liquids, and for the solute, which is a hypothetical liquid). Equation 12.2-4 is then
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solved for the solvents and solutes simultaneously to obtain the compositions of both
phases. As in Sec. 11.2, we can define the distribution coefficient or partition coefficient
for the solute as

Kx =
xI

1

xII
1

=
γII

1 (T,P, xII)
γI

1(T,P, xI)
(12.2-5)

so that again we see that the distribution coefficient for solute mole fractions is equal
to the reciprocal of the ratio of the solute activity coefficients in the two phases. Thus,
given activity coefficient information for the solute in the two phases, one can compute
the distribution of the solvent among the phases, or, given information about distribution
of the solute, one can compute the ratio of the solute activity coefficients.
The situation is slightly more complicated when there is some undissolved solute in

equilibrium with two partially miscible solvents. In this case the equilibrium condition
for the solvents (species 2, 3, . . .) is

f I
j(T,P, xI) = f II

j (T,P, xII) solvents j = 2, 3, . . . (12.2-6a)

while for the solute species 1,

f I
1(T,P, xI) = f II

1 (T,P, xII) = fS
1 (T,P ) (12.2-6b)

fS
1 (T,P ) = f I

1(T,P, xI) = f II
1 (T,P, xII) (12.2-6c)

since the undissolved solute must be in equilibrium with both liquid phases, which also
implies that both liquid phases are saturated with the solute. Now using the activity
coefficient formalism, Eq. 9.3-11, we obtain the following equations.
For the solid solute,

fS
1 (T,P )

fL
1 (T,P )

= xI
1γ1(T,P, xI) = xII

1 γ1(T,P, xII) (12.2-7a)

or

ln γI
1x

I
1 = ln γII

1 xII
1

= −ΔfusH(Tm)
RT

[
1 − T

Tm

]
− 1

RT

∫ T

Tm

ΔCP dT +
1
R

∫ T

Tm

ΔCP

T
dT

(12.2-7b)

and for the solvents,

xI
jγj(T,P, xI) = xII

j γj(T,P, xII) j = 2, 3, . . . (12.2-8)

where ΔCP is usually set to zero.
These equations can be difficult to solve, first because of the complicated dependence

of the activity coefficients on the mole fractions (these equations are nonlinear), and
second because even in the simplest case of a single solute in a mixture of two partially
miscible solvents, there are six coupled equations to be solved. This is best done on a
computer with equation-solving software. Also, as mentioned in Sec. 11.2, the presence
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of a solute may result in the two solvents becoming more soluble (salting in) or less
soluble (salting out) in each other.
Before we leave the subject of the partitioning of a substance between two liquid

phases, it is useful to review the three situations that can arise.
Case 1: No undissolved solute. This is the usual liquid-liquid phase equilibrium cal-

culation for all species, that is,

f I
i

(
T,P, xI

)
= f II

i

(
T,P, xII

)
or xI

iγi

(
T,P, xI

)
= xII

i γi

(
T,P, xII

)
In this case the calculation of the state of phase equilibrium is as in Sec. 11.2.
Case 2: The undissolved solute is a pure liquid. Here the liquid-liquid phase equilib-

rium calculation for the solvents is

f I
i

(
T,P, xI

)
= f II

i

(
T,P, xII

)
or xI

iγi

(
T,P, xI

)
= xII

i γi

(
T,P, xII

)
For the solute, however, the equation to be solved is

f I
S(T,P, xI) = f II

S (T,P, xII) = fS(T,P )

or xI
SγS(T,P, xI) = xII

S γS(T,P, xII) = 1

Case 3: The undissolved solute is a pure solid. Here the liquid-liquid phase equilib-
rium calculation for the solvents is

f I
i

(
T,P, xI

)
= f II

i

(
T,P, xII

)
or xI

iγi

(
T,P, xI

)
= xII

i γi

(
T,P, xII

)
However, for the solutes we use

f I
S

(
T,P, xI

)
= f II

S

(
T,P, xII

)
= fS

S (T,P )

or

xI
SγS

(
T,P, xI

)
= xII

S γS

(
T,P, xII

)
=

fS
S (T,P )

fL
S (T,P )

This is the calculation considered in this section in which the liquid-solid fugacity ratio
is calculated using Eq. 12.3-2.
The remaining question is whether the concentration of the solute is sufficiently high

to affect the mutual solubilities of the solvents. If not, the liquid-liquid equilibrium of
the solvents is first calculated, and the solvent concentrations in each of the phases
are then calculated with the solvent concentrations fixed. However, if it is likely that
the solute concentration will affect the mutual solubility of the solvents, then all the
equations must be solved simultaneously for all the species present.

PROBLEM FOR SECTION 12.2

12.2-1 Write the equations that are to be used to compute
the equilibrium compositions when three liquids are
mixed and form
a. Two liquid phases

b. Two liquid phases in which species 1 is dis-
tributed among completely immiscible species
2 and 3

c. Three partially miscible liquid phases
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12.3 FREEZING-POINT DEPRESSION OF A SOLVENT DUE TO THE PRESENCE
OF A SOLUTE; THE FREEZING POINT OF LIQUID MIXTURES

If a small amount of solute (gas, liquid, or solid) dissolves in a liquid solvent and the
temperature of the mixture is lowered, a temperature Tf is reached at which the pure
solvent begins to separate out as a solid. This temperature is lower than the freezing
(or melting) point of the pure solvent, Tm. Here we are interested in estimating the
depression of the solvent freezing point, ΔT = Tm − Tf , due to the addition of the
solute. This equilibrium state is, in a sense, similar to the one encountered in the solu-
bility of a solid in a liquid in that there we were interested in the equilibrium between
a solid and a dilute liquid mixture of that component, whereas here we are interested
in the equilibrium between a solid and a liquid mixture that is concentrated in that
component.
The starting point for the analysis of the freezing-point depression phenomenon is the

observation that when a solid freezes out from amixture, it generally is pure and it is the
component that is concentrated in the solution, that is, the pure solvent. [Indeed, this is
the basis for zone refining, in which melting and resolidification (or recrystallization)
are used to purify metals.] The equilibrium condition when the first crystal of pure
solvent forms is

Starting point for
phase equilibrium
calculation

fS
1 (Tf , P ) = fL

1 (Tf , P, x) = x1γ1(Tf , P, x)fL
1 (Tf , P ) (12.3-1)

where x1 is the original liquid solution mole fraction of the component that precipitates
out as a solid. In writing this equation we have assumed that the solid phase is pure
solvent, and used the fact that the composition of the liquid phase is not significantly
changed by the appearance of a very small amount of solid phase (in this regard the
analysis here resembles that for dew point and bubble point phenomena considered in
Chapter 10).
Combining Eq. 12.3-1 with Eq. 12.1-9 for ln [ fS

1 (Tf , P )/fL
1 (Tf , P )] yields

General equation for
the freezing point
depression of a solvent

lnx1γ1 = ln
fS
1 (Tf , P )

fL
1 (Tf , P )

= −ΔfusH(Tm)
R

[
Tm − Tf

TmTf

]
− 1

RTf

∫ Tf

Tm

ΔCP dT +
1
R

∫ Tf

Tm

ΔCP

T
dT

= −ΔfusH(Tm)
R

[
Tm − Tf

TmTf

]
− ΔCP

R

[
1 − Tm

Tf

+ ln
(

Tm

Tf

)]

(12.3-2)

where ΔfusH(Tm) is the heat of fusion of the solid solvent at its normal melting-point
temperature Tm. To obtain the last form of Eq. 12.3-2, we have assumed that ΔCP is
independent of temperature.
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In many instances, Tm and Tf are sufficiently close that Eq. 12.3-2 can be
simplified to

lnx1γ1
∼= −ΔfusH(Tm)

R

(
Tm − Tf

TmTf

)

∼= −Δfus(Tm)H
RTm

2 (Tm − Tf) (12.3-3)

so that

ΔT = Tm − Tf = − RTm
2

ΔfusH(Tm)
ln(x1γ1) (12.3-4)

For the case of very dilute solutes we expect that γ1 ∼ 1 and lnx1 = ln(1−x2) ∼ −x2,
so that the freezing-point depression equation may be further simplified to

Simplified equation
for a freezing-point
depression of a solvent

ΔT = Tm − Tf
∼= RTm

2

ΔfusH(Tm)
x2 (12.3-5)

In the case of dilute mixed solutes the equation becomes

ΔT = Tm − Tf =
RTm

2

ΔfusH(Tm)

C∑
i=2

xi (12.3-6)

where the sum, which extends from 2 to C, is over all solute species.

Illustration 12.3-1
Calculation of the Freezing-Point Depression of Water

Determine the freezing-point depression of water as a result of the addition of 0.01 g/cm3 of (a)
methanol and (b) a protein whose molecular weight is 60 000.

Solution

Since such a small amount of solute is involved, we will assume that the density of the solution
is the same as that of pure water, 1 g/cm3. Thus the solute mole fraction is

xsolute =
Moles of solute in 1 cm3 of solution

(Moles of solute + moles of water) in 1 cm3 of solution

=

0.01

m
0.99

18
+

0.01

m

where m is the molecular weight of the solute. ΔfusH(Tm) for water is 6025 J/mol.
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a. The molecular weight of methanol is 32. Thus, xsolute = 0.005 65 and

ΔT =
8.314

J

mol K
× (273.15 K)2 × 5.65 × 10−3

6025 J/mol
= 0.58 K

b. The molecular weight of the protein is 60 000, so xsolute ∼ 3 × 10−6 and

ΔT =
8.314

J

mol K
× (273.15 K)2 × 3 × 10−6

6025 J/mol
= 3.1 × 10−4 K

This small depression of the freezing point is barely measurable. Compare this result with the
osmotic pressure difference found in Illustration 11.5.1.

One interesting application of Eq. 12.3-2 is the computation of the freezing point of
a general binary liquid mixture, that is, a liquid mixture in which neither component is
easily recognized to be either the solvent or the solute. This is considered in Illustration
12.3-2.

Illustration 12.3-2
Calculation of Freezing-Point Depression and the Eutectic Point

Compute the freezing-point temperature versus composition curve for an ethyl benzene–toluene
mixture. The physical properties for this system are given in the table.

Toluene Ethyl Benzene

δ (cal/cc)1/2 at 25◦C 8.9 8.8
V L (cc/mol) at 25◦C 107 123
Normal melting point (K) 178.16 178.2
Heat of fusion (J/mol) 6610.7 9070.9
CS

P (J/mol K) 87.0 105.9
CL

P (J/mol K) 135.6 157.4

Solution

The solubility parameters for toluene and ethyl benzene are nearly equal, so that the liquid
mixture can be considered to be ideal (γ1, γ2 = 1). Since we do not know a priori whether
pure toluene or pure ethyl benzene will freeze out as the solid component from a given mix-
ture, the calculational procedure we will follow is to first assume that toluene appears as the
solid component and compute the freezing-point temperature Tf of all toluene–ethyl benzene
mixtures.

The calculations will then be repeated assuming ethyl benzene appears as the solid phase. The
freezing point of a given mixture, and the solid that appears, will then be determined by noting
which of the two calculations leads to the higher freezing point, as it is that solid that will freeze
out first.

If we assume that toluene freezes out, Tf is found from the solution of

ln x1 = −6610.7

8.314

(
178.16 − Tf

178.16 Tf

)
− 48.6

8.314

(
1 − 178.16

Tf

+ ln
178.16

Tf

)
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where x is the mole fraction of toluene. Since ΔCP is so large, none of the terms in this equation
can be neglected. The results are given in the following table. Similarly, if we assume that the
solid precipitate is ethyl benzene, the mixture freezing point is computed from

ln x1 = −9070.9

8.314

(
178.2 − Tf

178.2 Tf

)
− 51.5

8.314

(
1 − 178.2

Tf

+ ln
178.2

Tf

)

where x is now the mole fraction of ethyl benzene. The results of this calculation are also given
in the following table. Both sets of freezing points are plotted in Fig. 12.3-1.

Tf (K)

xT Toluene as the Solid Ethyl Benzene as the Solid

1.0 178.16
0.9 174.0 122.2
0.8 169.4 137.0
0.7 164.3 146.4
0.6 158.6 153.4
0.5 151.9 159.1
0.4 144.0 163.9
0.3 134.2 168.1
0.2 121.0 171.8
0.1 99.8 175.1
0 178.2

0 0.2 0.4 0.6 0.8 1.0
140

150

160

170

180

Eutectic
point

Ethyl benzene
solid phase

Toluene
solid
phase

xT

Figure 12.3-1 The liquid-solid phase diagram for ethyl
benzene–toluene mixtures.

From the figure it is evident that below 55.8 mol % toluene, ethyl benzene precipi-
tates as the solid phase, whereas at higher concentrations toluene is the solid precipitate.
Furthermore, the minimum freezing point of the mixture is 155.9 K, which occurs at
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xT = 0.558. This point is called the eutectic point of the mixture. At the eutectic
temperature all the remaining liquid mixture solidifies into a mixed solid of the same
composition (55.8 mol % toluene) as the liquid from which it was formed.
Although the phase diagram for the toluene–ethyl benzene mixture was constructed

by determining the temperatures at which the first minute amount of solid appears in
liquid mixtures of various compositions, it may now be used to analyze the complete
solidification behavior of a liquid mixture at any composition. For example, suppose
1 mole of a 20 mol % toluene mixture is cooled. From the phase diagram we see that
at 171.8 K a minute amount of pure ethyl benzene appears as the solid. As the tem-
perature is lowered, more pure ethyl benzene precipitates out, and the remaining liq-
uid becomes increasingly richer in toluene. The temperature and composition of this
liquid, which is in equilibrium with the solid, follows the freezing-point curve in the
figure; the relative amounts of the liquid and solid phases can be found by a species
mass balance equation. Thus, at T = 163.9 K, the liquid contains 40 mol % toluene.
Letting L represent the number of moles of liquid in equilibrium with the solid, and
writing a mass (mole) balance on toluene using as a basis 1 mole of the initial mixture,
we find

(0.2)(1) = 0.4L

or

L = 0.5 mol

So when the temperature of the mixture is 163.9 K, half the original 20 mol % toluene
mixture is present as pure, solid ethyl benzene, and the remainder appears as a liquid
enriched in toluene.
As the temperature is lowered further, additional pure ethyl benzene precipitates out

and the liquid becomes richer in toluene, until the eutectic composition and temperature
is reached. At this point all the remaining liquid solidifies as two mixed solid phases.
It is interesting to compare Eq. 12.3-4 for the freezing point depression,

ΔT = Tm − Tf = − RTm
2

ΔfusH(Tm)
ln(γ1x1) (12.3-4)

with Eq. 11.5-4 for the osmotic pressure of a solution:

Π = P II − P I = − RT

V L
solvent

ln(xII
solventγ

II
solvent) (11.5-4)

Combining these two equations, we get

Π =
ΔfusH(Tm)

V solvent

Tf

T 2
m

(Tm − Tf )

which is strictly applicable if the osmotic pressure has been measured at the freezing
point.
The interesting characteristic of this equation is that it does not involve any informa-

tion about the solute. Therefore, two solutions involving the same solvent, but different
solutes, that have the same osmotic pressure will have the same freezing-point depres-
sion, and vice versa.
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Illustration 12.3-3
Estimation of the Freezing-Point Depression of Blood

Use the information in Illustration 11.5-4 on the osmotic pressure of an aqueous sodium chloride
solution and blood to estimate the freezing point of blood.

Solution

To estimate the freezing point of blood, we will use the estimate of the osmotic pressure of
blood at 25◦C, 7.498 bar, computed in Illustration 11.5-4. While the freezing point of blood
or the aqueous sodium chloride solution is not known, let us assume it is about the same as
the freezing point of water, 273.15 K. The osmotic pressure of the sodium chloride solution at
this temperature can be simply calculated from the value at 298.15 K by assuming the activity
coefficient is independent of temperature, so that

Π (T = 273.15 K) = Π (T = 298.15 K) × 273.15 K

298.15 K
= 6.869 bar

Then

6.869 bar × 105 Pa

bar
× kg

m s2 Pa
=

6025 J
mol

× 1 kg
s2 m

18 × 10−6 m3

mol

Tf

(273.15 K)2
(273.15 − Tf)

which has the solution
Tf = 272.481 K = −0.67◦C

which is in good agreement with the experimental value of −0.52◦C. Note also that the small
amount of solute (0.9 wt % NaCl) results in a very large osmotic pressure, but a relatively small
freezing-point depression.

PROBLEMS FOR SECTION 12.3

12.3-1 The addition of a nonvolatile solute, such as a pro-
tein or a salt, to a pure solvent will raise its normal
boiling point as well as lower its freezing point. De-
velop an expression relating the boiling-point eleva-
tion of a solvent to the solute concentration, heat of
vaporization, and normal boiling temperature.

12.3-2 Chemical additives are used in automotive cooling
systems to lower the freezing point of the water used
as the engine coolant. Estimate the number of grams
of methanol, ethanol, and glycerol that, when sep-
arately added to 1 kg of pure water, will lower its
freezing point to −12◦C.

12.3-3 Ethylene glycol, which forms nonideal mixtures
with water, is used as an antifreeze to lower the
freezing point of water in automotive engines in
the winter. Using the UNIFAC model to estimate
activity coefficients, develop a figure similar to
Fig. 12.3-1 for the water–ethylene glycol system.

Data: The heat of fusion for water is 6003 J/mol,
and that of ethylene glycol is 10 998 J/mol.

12.3-4 Figure 12.3-1 shows the freezing-point curves for
an ideal mixture with components with approxi-
mately equal melting points. Draw a freezing-point

diagram for a mixture in which components 1 and
2 have freezing points of 185 K and 200 K, re-
spectively, and for which the excess Gibbs energy
of mixing is described by the one-constant Mar-
gules equation with A = 3250 J/mol. Assume that
the heats of fusion of both components are 10 000
J/mol. (Hint: Does this mixture exhibit liquid-liquid
equilibrium?)

12.3-5 The following table gives the boiling point of liq-
uid mixtures containing x grams of tartaric acid
(C4H6O6, molecular weight = 150) per 100 g of
water at 1.013 bar, as well as the vapor pressure of
pure water at the boiling-point temperatures. The va-
por pressures of liquid water and ice are given in
Problem 7.12.

Boiling point (◦C) 105 110 115
x (g/100 g H2O) 87.0 177.0 272.0
Vapor pressure of 1.1848 1.4050 1.6580

pure water (bar)

a. What is the activity coefficient of water in each
of these solutions?
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b. Assuming that the activity coefficients (be they
unity or not) are independent of temperature, cal-
culate the freezing-point depression for each of
the mixtures in the table.

12.3-6 McHugh and Paulaitis [J. Chem. Eng. Data, 25, 326
(1980)], while measuring the solubilities of solid
naphthalene in supercritical carbon dioxide at ele-
vated pressures, frequently observed that the solid
would melt at temperatures well below its normal
melting temperature due to the high solubility of
CO2 in liquid naphthalene. Estimate the pressure at
which naphthalene will melt in the presence of su-
percritical CO2 at 65◦C assuming that an ideal liquid
mixture is formed.

Data: The Henry’s law constant for CO2 in liquid
naphthalene at 65◦C is 50MPa and is independent of
pressure. The normal melting point of naphthalene
is 80.2◦C, its heat of fusion is 18.804 kJ/mol, its crit-
ical temperature is 304.2 K, and its critical pressure
is 7.376 MPa.

12.3-7 In Problem 11.2-26 it was observed that an equimo-
lar mixture of liquid oxygen and liquid propane has
an upper critical solution temperature of 112 K. You
were asked to compute the liquid-liquid equilibrium

phase boundary for this system as a function of
temperature assuming the one-constant Margules
parameter for this system is independent of tem-
perature. However, on further study it was found
that the melting point of pure oxygen is 64.4 K and
that propane melts at 85.5 K. Therefore, recom-
pute the phase diagram for the oxygen + propane
system as a function of temperature, including solid-
liquid and liquid-liquid equilibria. The heat of fu-
sion of oxygen is 4448 J/mol and that of propane is
3515 J/mol.

12.3-8 Calculate the freezing point of water in a sodium
chloride solution as a function of the sodium chlo-
ride molality over the range from 0 to 10 molal
NaCl.

12.3-9 It is necessary to determine the molecular weight of
a soluble, but essentially involatile component. The
methods that can be used include dissolution in a
solvent and then measurement of (1) the freezing-
point depression of a solvent, (2) the boiling-point
elevation of a solvent, or (3) the osmotic pressure of
the solvent. Comment on these alternatives for
a. A solute of molecular weight of about 100.
b. A solute of molecular weight of about 1000.
c. A solute of molecular weight of about 1,000,000.

12.4 PHASE BEHAVIOR OF SOLID MIXTURES

Solids are different from gases and liquids in that the atoms are immobile, and the solid
may exist as a well-ordered crystalline phase. Each atomic and molecular species has
a unique size (which may or may not fit into the crystalline structure of other species),
electronic charge, and interaction energywith other species. Because of the distortion of
the crystal that would be needed to accommodate a solute, especially a molecular solute
(unless the two species are very similar), the two will not be miscible in the crystalline
phase. That is, one species will not appear in the crystal phase of the other, except in
small concentrations as impurities. This is generally the case for organic chemicals,
salts, and some metals. It is for this reason that so far in this book we have considered
solids to be pure (or at least composed of macroscopically sized regions that are pure),
so that their fugacity in a mixture can be taken to be equal to the pure component
fugacity. However, there are some groups of atomic species that do form mixtures, and
these will be considered here.
Solid solutions can form in metals if the atoms of which they are composed are sim-

ilar; also, compounds can form. In such cases, expressions for the excess Gibbs energy
of solid mixtures should contain a strain or mechanical energy term (which results from
distorting the crystal structure to accommodate an atom of different size), a valence or
coulombic term to account for the difference in charge between the solute atom and the
atoms of the host crystal, the noncoulombic interactions of the type we considered in
discussing molecular fluids in Sec. 9.5, and perhaps a chemical reaction term to account
for compound formation. Alloys, amalgams, and intermetallic compounds can occur in
solids; these more complicated situations will not be considered here.
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The simplest model of a solid solution is the regular solution in which the excess en-
tropy (Sex) and excess volume (V ex) of mixing are both zero. Though we will not
try to give an explanation here, an excess entropy of zero implies that the solution
is random in the sense of the distribution of the species on the crystal lattice (see
Appendix 9.1). The excess enthalpy of mixing is still unspecified. The simplest model
for the excess enthalpy of mixing is based on the assumptions that the lattice of the
host species is not affected by the presence of the other species (that is, a species in
its crystalline lattice can be replaced with the other species without affecting the lattice
spacing), that only nearest-neighbor energetic interactions need be considered, and, as
mentioned above, that the arrangement of atoms on the lattice sites is completely ran-
dom. In this case the internal energy change on forming a binary solid mixture from the
pure solids is

ΔmixU = U ex =
x1x2Zω

2
= x1x2Ω where Ω =

Zω

2
=

Z

2
(2ε12 − ε11 − ε22)

(12.4-1)

Here Z is the coordination number of a lattice site, εij is the interaction between a
single species i atom with a single species j atom expressed on a molar basis, and ω =
2ε12−(ε11+ε22) is the exchange energy, that is, the energy of replacing a 1-1 and a 2-2
interaction with two 1-2 interactions. (In chemical terms the exchange energy can be
thought of as the energy change on forming two 1-2 molecules in an exchange reaction
from one 1-1 molecule and one 2-2 molecule.) Therefore, for this model we have

ΔmixG = ΔmixU + PΔmixV − TΔmixS = x1x2Ω + RT
2∑

i=1

xi lnxi

and (12.4-2)
Gex = x1x2Ω

In solid-state thermodynamics, this is referred to as the regular solution model, and is
related to the regular solution model for liquids of Sec. 9.6 in that both assume that Sex

and V ex are each zero.
The simplest extension of this model is to assume that the arrangements of the atoms

on the lattice sites are not random, but rather are proportional to the Boltzmann factors
of the interaction energies. Linearizing the exponential terms that result, one finds

ΔmixU = x1x2Ω
(

1 − x1x2
2Ω

ZRT

)
ΔmixS = −x2

1x
2
2

Ω2

ZRT 2
− R

2∑
i=1

xi lnxi

ΔmixG = ΔmixU + PΔmixV − TΔmixS

= x1x2Ω
(

1 − x1x2
Ω

ZRT

)
+ RT

2∑
i=1

xi lnxi

and

Sex = −x2
1x

2
2

Ω2

ZRT 2
(12.4-3)
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so that

Gex = x1x2Ω
(

1 − x1x2
Ω

ZRT

)
This is referred to as the quasi-chemical model. More detailed solid solution models can
be found in textbooks on metallurgical thermodynamics, for example, Chemical Ther-
modynamics of Materials, by C. H. P. Lupis (Elsevier Science Publishers, Amsterdam,
1983).
With this background, we can now consider several examples of phase equilibria

involving solid solutions. The first example is a solid mixture consisting of atoms on
a lattice with holes or lattice vacancies. Isolated lattice vacancies are considered to be
point defects in the crystal, and we are interested in computing the equilibrium number
of lattice vacancies. We can visualize the formation of lattice vacancies as starting with
a well-ordered lattice of N atoms and mixing it with n holes (lattice vacancies). After
the mixing process there will be N atoms and n holes distributed over N + n lattice
sites. When such vacancies are formed, there is an enthalpy change ΔvacH (on a per-
mole-of-holes basis) resulting from the fact that the interactions between atoms in the
crystal around the vacancy have been broken to accommodate the vacancy. Since the
interactions between atoms in a crystal are attractive, energy must be supplied to add a
vacancy, so ΔvacH is positive. There are also two contributions to the entropy change
on forming a vacancy. One is the configurational contribution of the mixing process,
which we indicate as ΔconfS, which on a molar basis for n holes and N atoms is
equal to

ΔconfS = −R

[
N

N + n
ln

N

N + n
+

n

N + n
ln

n

N + n

]

= −R[xA lnxA + xH lnxH] (12.4-4)

where xA is the fraction of lattice sites occupied by atoms, and xH is the fraction of va-
cant lattice sites. In writing this it is assumed that the vacancies are randomly distributed
on the lattice. The second contribution arises because the entropy of a crystal depends
on the vibrational frequencies of the atoms on the lattice (this can be derived from
statistical mechanics), and these vibrations are changed for the atoms in the immediate
vicinity of a vacancy due to the change in intermolecular interactions and, therefore, the
force field. We will refer to this entropy change (again on a per-mole-of-holes basis)
as ΔvacS. From mechanics (to relate the vibrational frequency change to the change in
force field) and statistical mechanics (to relate the change in vibrational frequencies to
the entropy change), both of which are beyond the scope of this book, it can be shown
that ΔvacS is positive.
Therefore, the Gibbs energy of a crystal with N atoms and n lattice vacancies is

G(N,n) = NGA + n(ΔvacH − TΔvacS) + RT

[
N ln

N

N + n
+ n ln

n

N + n

]

(12.4-5)

The first term on the right-hand side of this equation is the Gibbs free energy of the
N atoms of species A on a perfect lattice; the second term, which results from the
introduction of vacancies, is generally positive; and the third, mixing term is always
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negative. Regardless of the magnitude of the second term, there will always be some
small value of the fraction of holes in the lattice that will result in the sum of the second
and third terms being negative, so that the Gibbs free energy of the imperfect lattice will
be less than that of the perfect lattice. Consequently, a crystal with lattice vacancies will
be thermodynamically more stable and is the preferred state (in the sense of being more
likely to occur naturally) than a perfect crystal. This is not good news for those in the
electronics or other solid-state industries that require perfect crystals.
Since holes do not have a fugacity, we cannot do the usual phase equilibrium calcu-

lation of equating the fugacities of a pure fluid of holes to the fugacity of holes in the
crystal. Instead, to determine the equilibrium number of holes in a lattice, we need to
determine the minimum value of the Gibbs energy of the imperfect lattice with respect
to the number of lattice vacancies, n. This is done by setting the derivative of the total
Gibbs energy with respect to the number of vacancies equal to zero,(

∂G

∂n

)
N,T,P

= 0

= (ΔvacH − TΔvacS) + RT

[
ln

n

N + n
+

n

n
− n

N + n
− N

N + n

]

= (ΔvacH − TΔvacS) + RT ln
n

N + n

(12.4-6)

so that at equilibrium

n

N + n
= Fraction of lattice sites vacant

= exp
(
− [ΔvacH − TΔvacS]

RT

)
= exp

(
−ΔvacG

RT

)
(12.4-7)

where ΔvacG = ΔvacH − TΔvacS is the Gibbs energy change on adding 6 × 1023

holes to a very large perfect lattice (i.e., N � 6 × 1023, so that there are no adjacent
lattice vacancies or holes).

Illustration 12.4-1
Estimating the Number of Lattice Vacancies

It has been estimated that the Gibbs energy change on forming vacancies in a crystal of copper
is approximately 126 kJ/mol and is independent of temperature. Estimate the fraction of the
lattice sites that are vacant at 500, 1000, and 1500 K.

Solution

From Eq. 12.4-4 we have

Fraction of lattice sites that are vacant = exp

(
−ΔvacG

RT

)

= exp

⎛
⎜⎜⎝−

126 000
J

mol

8.314

(
J

mol K

)
T K

⎞
⎟⎟⎠
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Using this equation, we find that the fraction of vacant lattice sites is 6.9 × 10−14 at 500 K,
2.6 × 10−7 at 1000 K, and 4.1 × 10−5 at 1500 K.

Another type of crystal defect is an impurity in which a foreign atom has replaced
the host atom on a lattice site. The analysis of the number of impurity defects is similar
to that used above for vacancy defects except that in this case impurity atoms instead of
holes appear in a lattice that contains N atoms of species A. Since the impurity atoms
have a free energy, the analysis of this process is as follows. We start by considering a
perfect crystal lattice containing N atoms of species A, and another region ofM atoms
of the impurity. We want to know the number n of these impurity atoms in the lattice of
species A when equilibrium has been achieved. At equilibrium we then have a lattice
with N atoms of species A and n impurity atoms in contact with a region containing
the remaining M − n impurity atoms. The Gibbs energy for this system, assuming the
impurity atoms in the species A crystal are randomly distributed, is

G(N,n,M) = G(impure crystal consisting of N atoms of species A

and n impurity atoms)
+ G(pure region consisting of M − n impurity atoms)

= NGA + nGimp + n(ΔimpH − TΔimpS)

+ RT

[
N ln

N

N + n
+ n ln

n

N + n

]
+ (M − n)Gimp

= NGA + MGimp + n(ΔimpH − TΔimpS)

+ RT

[
N ln

N

N + n
+ n ln

n

N + n

]
(12.4-8)

where GA and Gimp are the molar Gibbs energies of the pure host and impurity atoms,
and ΔimpH and ΔimpS are the enthalpy and vibrational entropy changes (on a molar
basis) that result from the addition of 1 mole of impurities into a very large crystal. Gen-
erally these two terms are smaller than the analogous terms above for the introduction
of vacancies. The equilibrium concentration of impurities is found from

(
∂G

∂n

)
N

= 0

= (ΔimpH − TΔimpS) + RT

[
ln

n

N + n
+

n

n
− n

N + n
− N

N + n

]

= (ΔimpH − TΔimpS) + RT ln
n

N + n
(12.4-9)

so that the equilibrium fractional concentration of impurities is

n

N + n
= exp

(
− [ΔimpH − TΔimpS]

RT

)

= exp
(
−ΔimpG

RT

) (12.4-10)
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Following the discussion in the lattice vacancy case, we conclude that the impure crystal
is also the thermodynamically preferred state over that of a perfect crystal. Note here
that the term ΔimpG is the molar Gibbs energy change of placing 1 mole of impurities
into a very large crystal.
Another type of crystal defect is a dislocation in which some lattice sites are shifted

with respect to the perfect lattice configuration. In such a dislocation the enthalpy
change is very large, there is no entropy-of-mixing term, and the remaining entropy
change due to changes in vibrational frequencies is small. In this case the enthalpy term
dominates, the free energy change is positive, and dislocation defects therefore are ther-
modynamically unstable and not preferred states. Consequently, dislocations are much
easier to eliminate from a crystal—for example, by annealing—than are vacancies or
impurities.
If, in contrast to the situation so far considered, both substances are at least partially

miscible in each other so that solid solutions form, a variety of solid-liquid phase be-
haviors are possible. The simplest case is that of two species that form ideal solutions
in both the liquid and the solid. The equilibrium relation then is

fS
i (T,P, xS) = fL

i (T,P, xL)

Using the ideal solution assumption, we have

xS
i f

S
i (T,P ) = xL

i fL
i (T,P )

Now from Eq. 9.7-8a,

fL
i (T,P ) = fS

i (T,P ) exp

[
1

RT

{
ΔfusH i(Tm,i)

[
1 − T

Tm,i

]

+
∫ T

Tm,i

ΔCP,i dT − T

∫ T

Tm,i

ΔCP,i

T
dT

}]

so that

xS
i = xL

i exp

×
[

1
RT

{
ΔfusH i(Tm,i)

[
1 − T

Tm,i

]
+

∫ T

Tm,i

ΔCP,idT − T

∫ T

Tm,i

ΔCP,i

T
dT

}]

(12.4-11)

In many cases the ΔCP terms can be neglected, so the equation reduces to

xS
i = xL

i exp
[
ΔfusH i(Tm,i)

RT

{
1 − T

Tm,i

}]
(12.4-12)

which relates the composition in the liquid to that in the solid.
Since in a binary mixture we have

xL
1 + xL

2 = 1 and xS
1 + xS

2 = 1

we have that for the liquidus line
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xL
1 exp

[
ΔfusH1(Tm,1)

RT

{
1 − T

Tm,1

}]
+ xL

2 exp
[
Δfus(H2Tm,2)

RT

{
1 − T

Tm,2

}]
= 1

= xL
1 exp

[
ΔfusH1(Tm,1)

RT

{
1 − T

Tm,1

}]

+ (1 − xL
1 ) exp

[
ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]
so that

xL
1 =

1 − exp
[
ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]

exp
[
ΔfusH1(Tm,1)

RT

{
1 − T

Tm,1

}]
− exp

[
ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]
(12.4-13)

Similarly, for the solidus line we have

xS
1 =

1 − exp
[
−ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]

exp
[
−ΔfusH1(Tm,1)

RT

{
1 − T

Tm,1

}]
− exp

[
−ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]
(12.4-14)

For substances that form nonideal solutions in both the liquid and solid phases, the
analogous results (Problem 12.4-2) are, for the liquidus line,

xL
1 =

1 − γL
2 (xL)

γS
2 (xS)

exp
[
ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]
γL

1 (xL)
γS

1 (xS)
exp

[
ΔfusH1(Tm,1)

RT

{
1 − T

Tm,1

}]

−γL
2 (xL)

γS
2 (xS)

exp
[
ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]
(12.4-15)

and for the solidus line,

xS
1 =

1 − γS
2 (xS)

γL
2 (xL)

exp
[
−ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]
γS

1 (xS)
γL

1 (xL)
exp

[
−ΔfusH1(Tm,1)

RT

{
1 − T

Tm,1

}]

− γS
2 (xS)

γL
2 (xL)

exp
[
−ΔfusH2(Tm,2)

RT

{
1 − T

Tm,2

}]
(12.4-16)

Note that in this equation there are activity coefficients for each species in each phase.
In general, the activity coefficient models and the values of the activity coefficients will
be different in each phase. In particular, the activity coefficient models of Secs. 9.5
and 9.6 can be used for the liquid phase, and those of this section for the solid phase.
Alternatively, the regular solution model of this section can be used for the solid and
liquid phases, but with different values of the exchange energy or Ω parameter (i.e.,
with ΩL in the liquid phase and ΩS in the solid phase).
Figure 12.4-1 shows the results predicted for three different mixtures. In the first

case the solid and liquid mixtures are ideal, and in the second case the liquid mixture
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Figure 12.4-1 Solid-liquid phase behavior of a
model system. The pure-component properties in
this figure areTm,1 = 800 K,ΔfusH1 = 6200 J/mol,
Tm,2 = 600 K, ΔfusH2 = 4900 J/mol, and CL

P =
CS

P for both species. (a) ΩL = ΩS = 0 (ideal mix-
ture in both the solid and liquid phases). (b) ΩS =
5000 J/mol and ΩL = 0 (ideal liquid phase, non-
ideal
solid phase). (c) ΩL = 5000 J/mol and ΩS = 0
(ideal solid phase, nonideal liquid phase). Figures
b and c have congruent points in which the solid
and liquid phases in equilibrium have the same
composition.
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Figure 12.4-2 Solid-liquid phase diagram for the cobalt-copper system. The melting point of
copper is 1356.6 K, and the melting point of cobalt is 1768 K.

follows the regular solution model and the solid is an ideal mixture. In the third case
both the liquid and solid mixtures form regular solutions, but with different exchange
energies. We see that a variety of phase behaviors are predicted to occur. In Fig. 12.4-1a
ideal solid-liquid behavior is predicted, similar to the vapor-liquid equilibrium phase
behavior seen in Secs. 10.1 and 10.2. In Fig. 12.4-1b and c nonideal solid-liquid phase
behavior is shown. Indeed, in these plots we see azeotropic behavior in which the liquid
and solid in equilibrium are of the same composition. In materials science, such mix-
tures are said to solidify congruently in that the solid has the same composition as the
liquid from which it was formed.
Figure 12.4-2 is an example of the liquid-solid phase diagram for the copper-cobalt

system. There we see that copper and cobalt are partially miscible in the solid phase, and
that there is a region of temperature and composition in which solid cobalt is in equilib-
riumwith molten copper-cobalt solutions. Above its melting point, cobalt is completely
miscible with copper.
The phase diagrams of solid mixtures can be considerably more complicated than in

the figures shown here. The reasons for this are as follows:

1. The species in the mixture may be only partially miscible in each other.
2. Several solids of different crystal structure can form, and the solid-phase transi-

tions may occur in the range of the liquid-solid-phase transition.
3. The species can react to form new compounds, which affects the overall phase

behavior.

PROBLEMS FOR SECTION 12.4

12.4-1 Prove that Eqs. 12.4-13 and 12.4-14 are correct.
12.4-2 Derive the equations for the liquidus and solidus

lines for two partially miscible solids for two sub-
stances that
a. Form a regular solution in the liquid phase, while

the solid phase is ideal

b. Form an ideal solution in the liquid phase and a
regular solution in the solid phase

c. Form regular solutions in both the solid and
liquid phases, but with different regular solution
parameters in the two phases
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12.4-3 Figure 12.4-1b is incomplete. Since the congru-
ent point in this mixture is below the melting
temperature of both pure components, there will
also be a region of solid-solid equilibrium. Using
the same pure-component properties, and assuming
that ΩS = 5000 J/mol in both solid phases, correct
Fig 12.4-1b by computing the region of solid-solid
equilibrium.

12.4-4 Draw the phase boundaries for the two substances
of Fig 12.4-1b, but with ΩS = 10 000 J/mol in both
solid phases.

12.4-5 Derive the expressions for the activity coefficients in
the quasi-chemical model.

12.4-6 Antimony (Sb) and silicon (Si) are completely mis-
cible in the liquid phase and mutually insoluble in
the solid state. The following data are available for
the solidification temperature of their liquid mix-
tures as a function of temperature.

Mole Fraction Silicon Solidification Temperature (◦C)

1 1410
0.9 1385
0.8 1350
0.7 1316
0.6 1290
0.5 1278
0.4 1261
0.3 1242
0.2 1215
0.1 1090
0 630.5

The following additional data are available for
silicon.

ΔfusH(T = 1683 K) = 50.626 kJ/mol

CS
P = 23.932 + 2.469 × 10−3T

− 4.142 × 10−5T 2 J/(mol K), T in K

CL
P = 25.606 J/(mol K)

Use these data to compute the activity coefficient of
silicon in the antimony-silicon mixtures as a func-
tion of the liquid composition of silicon.

12.4-7 Assuming oxygen and nitrogen form ideal liquid
mixtures and that their solid phases are immisci-
ble, compute the complete solid-liquid-vapor phase

diagram for this mixture for the temperature range
of 46 to 100 K.

Data:
Solid oxygen10

Molar volume = 0.024 62 m3/kmol
Melting point = 54.35 K

T (K) 46 48 50
Sublimation pressure (Pa) 5.252 13.02 29.86
ΔsubH (kJ/mol) 8.350 8.316 8.281

T (K) 52 54 54.35
Sublimation pressure (Pa) 64.25 130.1 146.4
ΔsubH (kJ/mol) 8.248 8.213 8.207

Liquid oxygen
Molar volume = 0.027 35 m3/kmol

T (◦C)11 −219.1 −213.4 −210.6 −204.1
Vapor pressure 0.1333 0.6665 1.333 5.332
(kPa)

T (◦C) −198.8 −188.8 −183.1
Vapor pressure 13.33 53.32 101.3
(kPa)

Solid nitrogen12

Molar volume = 0.031 86 m3/kmol
Melting point = 63.2 K
Sublimation pressure (P in kPa, T in K) =

log10 P = −381.6

T
− 0.006 237 2T + 7.535 88

ΔfusH (melting point) = 720.9 J/mol
Liquid nitrogen

Molar volume = 0.02414/(1 − 0.0039T )
m3/kmol

Vapor pressure (P in kPa, T in K) =

log10 P = −339.8

T
− 0.005 628 6T + 6.835 40

12.4-8 One intriguing problem in atmospheric physics is
the relatively long persistence of contrails emitted
from high-altitude jet aircraft when the sky is clear.
An explanation of this phenomenon is that as the wa-
ter vapor emitted from the jet engines cools, some of
it will condense to form water droplets and, on fur-
ther cooling, will form ice crystals. The claim is that
the ice crystals, although they are formed when the

10J. C. Mullins, W. T. Ziegler, and B. S. Kirk, Adv. Cryog. Eng., 8, 126 (1963).
11R. H. Perry, D. W. Green, and J. O. Maloney, eds., Chemical Engineer’s Handbook, 6th ed., McGraw-Hill, New
York (1984), pp. 3–48.
12Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 15, 3rd ed., John Wiley & Sons, New York (1981),
p. 933.



720 Chapter 12: Mixture Phase Equilibria Involving Solids

air is saturated with respect to water, will persist as
long as the air is saturated with respect to ice. There-
fore, the ice crystal contrail can persist in equilib-
rium even though all the water droplets have either
crystallized or evaporated, and the partial pressure
of water in the air is less than the liquid water vapor
pressure (i.e., the relative humidity of the air is less
than 100 percent).
a. Establish, by the principles of thermodynamics,

the validity or fallacy of the explanation given
here.

b. Estimate the relative humidity above which ice
crystals will be stable at −25◦C and 0.5 bar
pressure.

The vapor pressure of liquid water and the subli-
mation pressure of ice are given in Problem 7.12.

12.4-9 The temperature of a liquid mixture is reduced so
that solids form. However, unlike the illustrations
in Section 12.3, on solidification, a solid mixture
(rather than pure solids) is formed. Also, the liquid
phase is not ideal. Assuming that the nonideality of
the liquid and solid mixtures can be described by
the same one-constant Margules excess Gibbs en-
ergy expression, derive the equations for the com-
positions of the coexisting liquid and solid phases
as a function of the freezing point of the mixture
and the pure-component properties.

12.4-10 The temperature of a liquid mixture is reduced
so that solids form. However, as in the previous
problem, on solidification a nonideal solid mixture
(rather than pure solids) is formed, and the liquid
phase is not ideal. The following data are available.

Species 1 Species 2 Mixture

Tf (K) 150 200
ΔfusH(J/mol) 6300 8200
ΔfusCP[J/(mol/K)] 0 0
Gex(J/mol, liquid) 1.2RTx1x2

Gex(J/mol, solid) 1.2RTx1x2

Determine and plot the equilibrium solid com-
positions and freezing point as a function of the
liquid composition.

12.4-11 It has been argued that since solids form in a well-
defined crystalline structure with preferred inter-
molecular atom-atom contacts—unlike liquids, the
molecules of which are free to move and rotate—
that while the excess Gibbs energies of liquids and
solids may be described by the same expression,
the constants should be different in both phases.
Using this idea, recompute the solid-liquid phase
diagram of the previous problem if

Gex

(
J

mol
, solid

)
= 2.0RTx1x2

12.4-12 Benzene and cyclohexane are very similar com-
pounds, but their mixture is sufficiently nonideal
that an azeotrope is formed in vapor-liquid equilib-
rium. At 40◦C, the vapor pressure of cyclohexane
is 0.246 bar, and that of benzene is 0.244 bar. At
this temperature, the azeotrope occurs at 0.51 mole
fraction of cyclohexane and a total pressure of
0.2747 bar.
a. Obtain the complete dew point and bubble point

curves for this mixture at 40◦C.
b. What is the liquid-liquid upper critical solution

temperature for this mixture?
c. The melting point of benzene is 5.53◦C and its

heat of fusion is 9953 J/mol. The melting point
of cyclohexane is 6.6◦C and its heat of fusion is
2630 J/mol. The solid and liquid heat capacities
of each compound can be assumed to be equal.
Determine the eutectic point of this mixture on
freezing, assuming that the solution nonideality
is independent of temperature.

12.5 THE PHASE BEHAVIOR MODELING OF CHEMICALS IN THE ENVIRONMENT

When some chemicals are released into the environment they rapidly degrade due to
microbial action, hydrolysis, photochemical reactions, and other processes. However,
other chemicals degrade very slowly in the environment. For example, the insecticide
DDT has an environmental half-life of more than 20 years. Such long-lived chemicals
generally reach phase equilibrium among the different parts of the local environment
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in which they are in contact. The different parts of the environment are generally re-
ferred to as compartments and include air, water, soil, sediment, suspended sediment,
aquatic biota (fish), and terrestrial biota (animals, plants). The purpose of this section
is to show that phase equilibrium calculations can be used to make approximate but
reasonable estimates of the distribution of long-lived organic chemicals between these
environmental compartments.
The distribution of a chemical between different environmental compartments is usu-

ally described in terms of concentration-based partition coefficients that are ratios of the
concentrations of the chemical in two compartments. For example, the air-water parti-
tion coefficient of species i, KAW,i, is

KAW,i =
CA

i

CW
i

(12.5-1)

where the superscripts A andW indicate air and water, respectively. Similarly the biota-
water partition coefficient, KBW,i, is

KBW,i =
CB

i

CW
i

(12.5-2)

By convention, partition coefficients are usually given relative to the concentration in
water as above, since the water phase is usually the easiest to reliably sample (it is well
mixed compared with, say, the soil, and the concentrations are higher than in the air).
However, if we wanted a numerical value for the air-biota partition coefficient of the
species, KAB,i, we could easily compute it from KAW,i and KBW,i as follows:

KAB,i =
CA

i

CB
i

=
CA

i

CW
i

CW
i

CB
i

=
KAW,i

KBW,i

(12.5-3)

Similar relations are valid for other partition coefficients to be introduced shortly.
From the equality of fugacities, we have, for a component distributed between air

and water,

fW
i = fA

i or xiγiP
vap
i (T ) = yiP = yi1.013 bar (12.5-4)

Here we have recognized that at normal environmental conditions the total pressure
is 1.013 bar, which is so low that all fugacity coefficients can be neglected. Also, the
activity coefficient that appears, since pollutants are usually present only at very low
concentrations, is the activity coefficient at infinite dilution. Therefore,

yi

xi

=
γ∞

i P vap
i (T )

1.013 bar
=

Hi(T )
1.013 bar

(12.5-5)

since, from Eq. 9.7-9 (with fL
i = P vap

i ), the product γ∞
i P vap

i is equal to the Henry’s
law constant.
By convention, pollutant concentrations are frequently given in units of g/m3, and

partition coefficients are given as a ratio of such concentrations. The concentration of
a chemical in air is given above as a mole fraction; its concentration in g/m3 is
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CA
i

[ gi

m3

]
= yi

(
moli
molair

)
× 1

V

(
molair
m3

)
× MWi

(
gi

moli

)

= yi
P

RT
MWi = yi

1.013 bar

8.314 × 10−5 bar m3

mol K
T

MWi
gi

moli
=

1.218 × 104

T
yiMWi

(12.5-6)
where, since the pressure is low, the ideal gas law has been used. Similarly, given the
mole fraction in the aqueous phase, we have

CW
i

[ g
m3

]
= xi

(
moli

molwater

)
× 1 molwater

18 gwater

× 106 gwater

1 m3
× MWi

g
mol

= 5.556 × 104xiMWi

(12.5-7)

Therefore,

KAW,i

⎡
⎣ g

m3

g
m3

⎤
⎦ =

CA
i

CW
i

=
1.218 × 104 × MWi × yi

T × 5.556 × 104 × MWi × xi

=
0.2192

T

yi

xi

= 0.2164
γ∞

i P vap
i

T
= 0.2164

Hi

T

(12.5-8)

for vapor pressure in bar, T in K, and Hi in bar/mole fraction.

Illustration 12.5-1
Calculation of the Air-Water Partition Coefficient

Given that the extrapolated vapor pressure of liquid benzo[a]pyrene is 2.13 × 10−5 Pa at 25◦C
and the value of its infinite-dilution activity coefficient in water, γ∞

BP = 3.76 × 108, found in
Illustration 12.1-3, determine its air-water partition coefficient.

Solution

KAW,BP

⎡
⎢⎣

gBP

m3
A

gBP

m3
W

⎤
⎥⎦ = 0.2164

γ∞
BPP vap

BP

T
= 0.2164 × 3.76 × 108 × 2.13 × 10−5 Pa

298.15
× 1 bar

105 Pa

= 5.844 × 10−5

The value of the biota-water partition coefficient,KBW,i, is more difficult to compute
since we do not know how to chemically characterize a fish, a plant, or other biota. For
animals or fish the assumption generally made is that the hydrophobic chemicals of
interest partition mainly into the organic lipid (fat) portion of the biota, rather than the
aqueous fluid, inorganic bone, or fibrous tissue of the body. Further, it is assumed that
the lipids are chemically similar to octanol, so that the lipid-water partition coefficient
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is equal to the octanol-water partition coefficient. Also, the densities of water and biota
are approximately the same (which is why people barely float). Therefore, KBW,i, the
biota-water partition coefficient, is taken to be

KBW,i

⎡
⎢⎣

gi

m3
B

gi

m3
W

⎤
⎥⎦ = wBKOW,i (12.5-9)

where wB is the weight fraction of lipids in the biota. For fish, wB is typically 0.05, or
5 percent.

Illustration 12.5-2
Estimation of the Distribution of PCBs in the Environment

Polychlorinated biphenyls (PCBs) were manufactured as a liquid transformer oil. Due to leak-
age, PCBs are now found throughout the environment, and this long-lived chemical represents a
health hazard. PCBs have been found to be present in the St. Lawrence River at concentrations
of about 0.3 ppb (parts per billion by weight). Estimate the likely concentration of PCBs in fish
in this river. The average octanol-water partition coefficient for PCBs is

log10 KOW,PCB = 5.5

Solution

From Eq. 12.5-9, we have

KBW,PCB = wBKOW,PCB = 0.05 × 105.5 = 1.58 × 104

Therefore,

CB,PCB = KBW,PCB × CW,PCB

= 1.58 × 104 × 0.3 ppb
= 4740 ppb = 4.74 ppm

Actual field testing has found the PCB concentration in eels in the St. Lawrence River to be
7.9 ppm.

Comment

The PCB concentration of eels in this river is a factor of 26 300 higher than the PCB concentration
in the river water. The very simple phase equilibrium model for the distribution of the chemical
used here is able to predict this very large bioconcentration effect to within a factor of 2.

It is also assumed that hydrophobic organic chemicals partition only into the organic
matter in soils, sediment, and suspended sediment. Further, the organic matter in soils
and sediment is not as well represented by octanol as is the lipids in biota. Empiri-
cally it has been found that the organic carbon (in soils and sediment)–water partition
coefficient, KOCW,i, defined as

KOCW,i

⎡
⎢⎣

gi

106 g
gi

m3
water

⎤
⎥⎦ =

grams i per 106 grams organic matter
grams i per m3 of water
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is approximately 40 percent of the octanol-water partition coefficient; that is,

KOCW,i = 0.4KOW,i

Therefore, estimates for the soil-water,KSW,i, and the sediment-water,KDW,i, partition
coefficients are

KSW,i

⎡
⎢⎣

gi

106 gsoil
gi

m3
water

⎤
⎥⎦ = 0.4wSKOW,i (12.5-10)

and

KDW,i

⎡
⎢⎣

gi

106 gsediment
gi

m3
water

⎤
⎥⎦ = 0.4wDKOW,i (12.5-11)

where wS and wD are the weight fractions of organic matter in the soil and sediment,
respectively. While soils and sediments are very heterogeneous and can vary greatly
in properties, for the purposes here we will use wS = 0.02 and wD = 0.05 as average
values.

Illustration 12.5-3
Computing the Concentration of a Pollutant in the Different Environmental Compartments

The concentration of benzo[a]pyrene in water in southern Ontario has been reported to be
2.82 × 104 ng/m3. Compute the likely concentration of this chemical in ng/m3 in the air, soil,
sediment, and fish.

Data: For benzo[a]pyrene log10 KOW,BP = 6.04, and from Illustration 12.5-1we haveKAW,BP =
5.884×10−5. Also, the density of soil is approximately 1500 kg/m3 and that of sediment is about
1420 kg/m3.

Solution

Starting from

CA
BP = 5.884 × 10−5CW

BP = 5.884 × 10−5 × 2.82 × 104 = 1.66
ng

m3

and given that KOW,BP = 106.04 = 1.096 × 106, we have

KSW,BP = 0.4 × 0.02 × 1.096 × 106 = 8768

gBP

106 gsoil
gBP

m3
water
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so that

CS
BP = 8768 × CW

BP = 8768

gBP

106 gsoil
gBP

m3
water

× 2.82 × 104 ngBP

m3
water

= 2.47 × 108 ngBP

106 gsoil

= 2.47 × 108 ngBP

106 gsoil

× 1 mg

106 ng
× 103 g

1 kg
= 0.247

mgBP

kgsoil

= 0.247 ppm (by weight)

and

CS
BP = 0.247

mgBP

kgsoil

× 1500
kgsoil

m3
soil

× 106 ng

mg
= 3.71 × 108 ngBP

m3
soil

Also,

KDW,BP = 0.4 × 0.05 × 1.096 × 106 = 21 920

gBP

106 gsediment
gBP

m3
water

and

CD
BP = 21 920 × CW

BP = 21 920

gBP

106 gsediment
gBP

m3
water

× 2.82 × 104 ngBP

m3
water

= 6.18 × 108 ngBP

106 gsediment

= 6.18 × 108 ngBP

106 gsediment

× 1 mg

106 ng
× 103 g

1 kg

= 0.618
mgBP

kgsediment

= 0.618 ppm (by weight)

so that

CD
BP = 0.618

mgBP

kgsediment

× 1420
kgsediment

m3
sediment

× 106 ng

mg
= 8.78 × 108 ngBP

m3
sediment

Finally, in the biota we have

CB
BP = 0.05 × KOW,BP × CW

BP = 0.05 × 1.096 × 106 × 2.82 × 104 = 1.55 × 109 ng

m3

= 1.55
mgBP

kgbiota

= 1.55 ppm (by weight)

Since the density of biota is approximately 1 g/cc or 1000 kg/m3, this concentration is also
1.55 × 109 ng/m3. (Note that in these calculations we have used the fact that 1 m3 of water is
equal to 103 kg.)

The values computed above together with reported values of Mackay and Paterson13 are listed
below.

13D. Mackay and S. Paterson, Environ. Sci. Technol., 25, 427–436 (1991).
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Concentration (ng/m3)

Environmental Compartment Calculated Reported

Water 2.82 × 104

Air 1.66 1.3 to 7.1
Soil 3.71 × 108 1.1 × 108

Sediment 8.78 × 108 0.8 × 108 to 3 × 108

Fish 1.55 × 109 1.4 × 108

Comment

The agreement between the results of the calculation here and reported data, while not perfect, is
certainly reasonable given the simplicity of the thermodynamic model used and the complexity
of environmental processes. In particular, the calculated results show that the large, orders-of-
magnitude difference in the concentration of a long-lived pollutant in the various environmental
compartments can be explained using simple phase equilibrium concepts.

PROBLEMS FOR SECTION 12.5

12.5-1 Estimate the concentration of PCBs in the soil and
sediment of the St. Lawrence River, and in the air
above that river.
Data: Vapor pressure of PCBs at atmospheric tem-
perature is approximately 2 × 10−7 bar, PCB solu-
bility in water is about 0.1 mg/L, molecular weight
is 250, density of soil is 1500 kg/m3, and density of
sediment is 1300 kg/m3.

12.5-2 To assess bioaccumulation, four fish tanks are pre-
pared such that the water in each is saturated with
one of the four insecticides listed below, and each
fish tank contains only a single fish. Compute the ex-
pected concentration of the insecticide in each fish
after a long period of time.

Insecticide Solubility in Water (μg/L) log10 KOW

Aldrin 27 5.52
Dieldrin 140 4.32
Lindane 7 000 3.61
Diazinon 40 000 3.31

12.5-3 a. A closed terrarium is 10 m3 in total volume,
of which 4 m3 is water, 3 m3 is soil, 200 cm3

are fish and other biota, and the remainder is air.

The terrarium is accidentally contaminated with
10 mg of benzene. What is the concentration of
benzene in each of the four compartments, and
what is the fraction of the total amount of ben-
zene present in each of the compartments?

b. Repeat the preceding calculation for the case
where 10 mg of the pesticide DDT is the
contaminant.
Data: For benzene, log10 KOW = 2.13, water
solubility is 0.0405 mol %, and vapor pressure
is 0.127 bar. For DDT, log10 KOW = 6.20 and
KAW = 9.5 × 10−4. Also, the average density of
soil is 1.5 g/cc.

12.5-4 The chemical 1-chloro-2-nitrobenzene is an inter-
mediate in dye manufacture. It is very resistant to
hydrolysis and biodegradation, and so can be as-
sumed to be persistent in the environment. At 20◦C
its water solubility is 440 mg/L, its vapor pressure
is 4 × 10−5 bar, and KOW is 224. If 100 kg of this
chemical is released into a model environment that
consists of 6 × 109 m3 of air, 7 × 106 m3 of water,
4.5× 104 m3 of soil, and 2.1× 104 m3 of sediment,
determine its concentration in each compartment.
The soil can be assumed to contain 2 wt % organic
matter and to have a density of 1500 kg/m3, while
the sediment contains 5 wt % organic matter and has
a density of 1300 kg/m3.

12.6 PROCESS DESIGN AND PRODUCT DESIGN

The traditional role of thermodynamics in chemical engineering has been in the area
of process design. In such cases the starting feed streams are known, and the role of
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the chemical engineer is to design a process that can produce the desired final product
in a manner that is economical, is safe for workers and those in the vicinity of the
plant, and has minimal environmental impact and waste effluents. Thus, vapor-liquid
equilibrium, considered in Chapter 10, is used to design distillation, absorption, and
stripping columns; liquid-liquid equilibrium information is used to design extraction
systems, as mentioned in Chapter 11; and multicomponent mass and energy balances
(Chapters 8 and 14) are used in the design of chemical reactors and heat exchangers,
for example. Indeed, thermodynamics plays a very central role in all of process design.
However, in recent years chemical engineers have been involved not only in the

design of chemical plants, that is, process design, but also in developing new or re-
placement products. This is referred to as product design. Many of these efforts involve
the identification of a new compound or the formulation of a mixture with properties
tailored for a specific application—anything from a new refrigerant (discussed below),
to solvent mixtures used in the home or in medicine, to consumer products. Product
design is increasingly being considered in the chemical engineering curriculum, and a
detailed study of this subject is beyond the scope of this introductory thermodynamics
book. However, as an introduction to product design, we briefly consider some sim-
ple examples here. There are several recent books containing information on product
engineering.14–16

Illustration 12.6-1
A Drop-in Replacement for the Antifreeze Ethylene Glycol

Water (with additives to protect against corrosion) circulates between the engine block and the
radiator to cool automobile engines. Since water expands on freezing, if the water were to freeze
in the engine block of a parked car in a cold-weather climate, severe damage would occur. To
prevent this, a chemical antifreeze agent is added to the cooling water to lower the freezing
temperature of the mixture; the analysis of freezing-point depression was discussed in Sec. 12.3,
from which it is evident that the addition of any solute will lower the freezing point of water.
Ethylene glycol is most commonly used. However, some automobile radiators leak, dripping
the water + ethylene glycol mixture under parked cars. Because ethylene glycol has a pleasing,
sweet taste but is toxic, it has been implicated in the deaths of pet cats.

Your job as a "product engineer" is to find a drop-in replacement for ethylene glycol as an
antifreeze agent to ensure that the engine cooling fluid will not freeze at or above −25◦C. By
the term drop-in replacement, the following is meant. There are more than 100 million cars in
current use in the United States, and we are not interested in making major alterations to the
automobile engines currently in use; rather, we want something that we can use as a replacement
antifreeze that does not require any change to existing automobiles.

Solution

The solution to product design problems usually involves first thinking about various properties
needed to narrow down the classes of chemicals or mixtures that might be appropriate, then using
predictive methods to identify specific candidate chemicals, and finally obtaining data (hopefully
from the literature or the use of predictive methods, and perhaps by measurement) to further
discriminate between candidate compounds to choose the optimum that meets the constraints.
Of course, any choice would have to be verified by testing before being commercialized.

14E. L. Cussler and G. D. Moggridge, Chemical Product Design, Cambridge University Press, New York (2001).
15J. Wei, Molecular Structure-Property: Product Engineering, Oxford University Press, New York (2006)
16W. D. Seider, J. D. Seader, and D. R. Levin, Product and Process Design Principles, 2nd ed. JohnWiley & Sons,
New York (1999).
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Choice of an
antifreeze

For a replacement antifreeze mixture, some of the following constraints could be important:

1. Should be noncorrosive
2. Should have similar thermodynamic properties to ethylene glycol + water mixtures (so that

the size of the radiator will not have to be changed)
3. Should have similar viscosity and thermal conductivity to ethylene glycol + water mixtures

(so the water pump, plumbing, and radiator do not have to be changed)
4. Should be economical
5. Should not be very toxic or produce irritations or allergic reactions

The first decision is whether to look for a completely different fluid from the water–ethylene
glycol mixture, or to keep water as the heat transfer fluid and look only for a replacement for
ethylene glycol. If we were designing a new automobile, or at least a new automobile engine,
there would be many possible heat transfer fluids to choose from. For example, silicon oils or
mineral (petroleum-based) oils are frequently used as heat transfer fluids. However, we are look-
ing only for a drop-in replacement, so that constraints 2 and 3 need to be satisfied. Therefore,
we will restrict our search to a replacement for ethylene glycol in an aqueous mixture.

We next consider the classes of possible additives. We would not want to use a strong acid or
base, such as sulfuric acid or sodium hydroxide, as they would be too corrosive. Indeed, most
inorganic, soluble salts (for example, sodium chloride) are corrosive and further, could deposit
on heat transfer surfaces if boiling occurred. Consequently, we will restrict our attention to or-
ganic liquids. Clearly, only organic liquids with a reasonably high water solubility should be
considered. This excludes, for example, the alkanes and other hydrocarbons (benzene deriva-
tives, cyclohydrocarbons, alkenes, alkynes), silicon oils, and other relatively nonpolar organic
compounds of known low solubility in water. Also, only organic liquids with vapor pressures
equal to or less than water should be considered, so as not to result in a significant increase in
pressure in the automobile radiator. Water-soluble polymers—for example, polyethylene glycol,
already used in foods and beauty and medicinal products—result in mixtures with significantly
greater viscosity and lower heat transfer coefficients than pure water; therefore, polymers also
are not candidate additives.

While these considerations have greatly narrowed the list of possible replacements, a large
number of candidate antifreeze agents still exist. As an illustration of the methods that could
be used, we will consider only two compounds here: propylene glycol, which is very similar to
ethylene glycol but is much less toxic, and n-pentanol, which is toxic to animals and humans.
However, since it has a bitter rather than a sweet taste, it is unlikely that lethal amounts would
be ingested.

To proceed, we need to consider whether the two chemicals we have chosen have sufficient
solubility to be used, and how much of each would be needed to obtain a desired freezing-point
depression. The two pieces of data we need are the solubility of the two compounds we have
chosen, and the activity coefficient of water in mixtures with these compounds as a function of
composition at −25◦C. The most reliable information is obtained from experimental data, and
these should be obtained (from the literature or the laboratory) before a final decision is made.
However, for a preliminary study of possible compounds, it is more common to use approximate
predictive methods, such as UNIFAC, which we will do here.

Using the UNIFAC predictive method, the infinite-dilution activity coefficients in each of the
three solutions at −25◦C are as follows:

Water + ethylene glycol mixture: γ∞
W = 1.104, γ∞

EG = 2.204

Water + n-pentanol mixture: γ∞
W = 3.783, γ∞

EG = 223.9

Water + propylene glycol mixture: γ∞
W = 1.250, γ∞

EG = 6.133

The starting point for the analysis of the freezing point depression is:

ln γ1x1 = −ΔfusH(Tm)

R

[
Tm − Tf

TmTf

]
− ΔCP

R

[
1 − Tm

Tf

+ ln

(
Tm

Tf

)]
(12.3-2)
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where the properties on the right-hand side of the equation are those of pure water. Using the
heat of fusion of water given in Illustration 12.3-1 (neglecting the heat capacity term), we obtain
the following condition to obtain a freezing point of −25◦C:

ln xWγw = −0.267 or xWγw = 0.765

Therefore, if we want to achieve the same freezing-point depression with any component X as
we obtain with ethylene glycol, which we designate as EG, it is necessary that

ln
[
xEG

W γEG
W

(
xEG

W

)]
= ln

[
xX

WγX
W

(
xX

W

)]
= −0.267

Also, we want to ensure that the compound is sufficiently soluble in water, which we can check
by solving the liquid-liquid equilibrium equations

xI
WγI

W

(
xI

W

)
= xII

WγII
W

(
xII

W

)
and xI

XγI
X

(
xI

X

)
= xII

XγII
X

(
xII

X

)
(12.6-1)

While we could do UNIFAC calculations at all compositions for each of the candidate com-
pounds, we will adopt a further simplification here. We will use the simpler van Laar equations
with the parameters obtained to match the infinite-dilution activity coefficients from the UNI-
FAC model. From such a calculation, we find that the mole fractions and weight fractions of the
additives needed to attain a freezing point of −25◦C are as follows:

Compound Mole fraction Weight fraction

Ethylene glycol 0.277 0.569
Propylene glycol 0.338 0.665
n-Pentanol 0.729 0.929

To test for the possibility of liquid-liquid phase separation, which is needed to determine the
solubility of each antifreeze candidate in water, we can solve Eq. 12.6-1 or simply examine
whether the activity of water is a monotonic (i.e., steadily increasing) function of composition.
If it is, then from an analysis like that in Fig. 11.2-4, a liquid-liquid phase split will not occur, as
solubility is assured. Using the UNIFAC-based prediction discussed above, we find that all the
candidate antifreezes are predicted to be completely soluble in water.

Based on these results, it appears that propylene glycol is a better choice than n-propanol as
the antifreeze (freezing-point lowering agent) as it is less toxic, and much less is needed. Some-
what more propylene glycol than ethylene glycol will be needed, on a weight basis; however,
propylene glycol has the advantage of not being as toxic as ethylene glycol.

Of course, all the calculations here are approximate. In particular, we have used UNIFAC,
which is not meant to be applicable to liquid-liquid equilibrium, and further,−25◦C is below the
temperature at which the UNIFAC parameters were obtained, so the results we have obtained
are not expected to be accurate. Therefore, all the conclusions should be checked against exper-
imental data. As examples of the uncertainty of such predictions, from experimental data it is
found that the amount of ethylene glycol required to result in a mixture freezing point of−25◦C
is closer to 45 wt % than the ∼57 wt % estimated here, and that n-pentanol is actually only
soluble in water to about 2.5 wt %, rather than the complete miscibility found here. This should
serve as a warning concerning the use of any completely predictive method, even the UNIFAC
model, which is currently the best.

Though our results are approximate, these simple calculations suggest that propylene glycol
should be studied further as an antifreeze replacement through laboratory measurements. In fact,
it is propylene glycol that is being used.

Choice of a
refrigerant: the CFC
problem

As another example of product engineering, we return to the consideration of power
and refrigeration cycles discussed in Chapter 5. There we did not consider the choice
of the working fluid in these cycles. Here we consider the thermodynamic basis for the
choice of working fluid in refrigeration cycles.



730 Chapter 12: Mixture Phase Equilibria Involving Solids

Among the considerations in choosing a working fluid or refrigerant when refriger-
ation was first developed were the following:

1. The fluid should have moderate vapor pressures between about 0◦C and 50◦C, the
approximate operating range in the evaporator and condenser, respectively, of a
home refrigerator, so that very high-pressure piping would not be needed and the
probability of leaks would be lessened.

2. The fluid should have a reasonably high heat of vaporization, to minimize the
amount of operating fluid circulating and therefore the size of the refrigeration
system, and especially the size of the compressor.

3. The refrigerant should be noncorrosive and nontoxic. Other considerations, such
as cost, availability, chemical stability, and safety, were also considered.

Below is a list of the properties of some candidate refrigerant fluids.

�vapH P vap (bar)
Compound MW Tb (◦C) (kJ/mol) (0◦C) (50◦C) Flammable? Toxic? Reactive?

Ammonia (NH3) 17 −33.4 24 4.3 20 Yes Yes Yes
CO2 44 −78 25 34.9 >Tc No No No
SO2 64 −10 25 1.6 8.5 No Yes No
CF2Cl2 (Freon12) 121 −28.0 22 3.1 12.2 No No No

From these data, it is clear that carbon dioxide is not an appropriate working fluid for
household refrigerators or automobile air conditioners because of the high pressures
needed at the temperatures at which such devices operate, and that it could not be liq-
uefied in the condenser of a home refrigerator since its critical temperature is exceeded.
However, carbon dioxide was used for a while on some naval combat vessels, where
toxicity and flammability considerations were of utmost importance, and the operat-
ing temperature range was different. Very early refrigerators used ammonia or sulfur
dioxide. However, people died as a result of toxic leaks of both of these fluids in home
refrigeration systems, or from fires as a result of ammonia leaks. Therefore, a safer
refrigerant was needed.
Based on clever insight, chemical synthesis, and trials of new compounds, chlori-

nated fluorinated hydrocarbons (CFCs) were chosen as the class of working fluids of
choice. As can be seen from the data in the table above, CF2Cl2, also known as Freon12,
has thermodynamic properties very similar to those of ammonia. This refrigerant was
developed in 1928, and Freon12 and other CFCs became the mostly widely used fluids
for residential and commercial refrigeration. Other uses of CFCs were as propellants
in spray cans, cleaning solvents for electronic circuit boards, and blowing agents in the
manufacture of foams and expanded plastics. These latter uses resulted in the release
of large amounts of CFCs into the atmosphere.
In 1974, in a classic Nobel Prize–winning paper by Rowland and Molina [Nature,

249, 810 (1974)], it was shown that CFCs in the atmosphere could be responsible for
destroying the ozone (O3) layer that protects our planet from the strong ultraviolet
(UV) radiation from the sun that is known to cause cancer in humans. This unsus-
pected problem arises from the lack of chemical reactivity of the CFCs under normal
conditions, which results in their remaining in the atmosphere for a century or more,
allowing time for their diffusion into the upper atmosphere. Once in the stratosphere,
UV radiation from the sun breaks down the CFCs, releasing chlorine atoms that react
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in a continuing cycle (shown below) with ozone and oxygen radicals (produced by the
effect of UV radiation on oxygen atoms).

Cl + O3 −→ ClO + O2

ClO + O −→ O2 + Cl

So the net reaction is the chlorine-catalyzed process

O3 + O −→ 2O2

which destroys the ozone layer and regenerates the chlorine radical so that the process
is repeated. It has been estimated that these reactive chlorine atoms remain in the strato-
sphere for between 60 and 400 years, during which time the 80 grams of a CFC in a
typical household refrigerator could destroy as much as 6000 kilograms of ozone.
In 1987 theMontreal Protocol was agreed upon to drastically reduce the use of CFCs,

and in 1990 this treaty was strengthened to call for the complete elimination of CFCs by
the year 2000. This presented two different technological problems: finding a drop-in
replacement for existing refrigeration equipment, and finding a long-term replacement
for the CFCs. As for the first of these problems, there is a huge installed capacity of
refrigerators, air conditioners, and related equipment with relatively long lifetimes so
that it is not economically feasible to immediately replace them with new equipment.
Therefore, there is the problem of developing a drop-in replacement refrigerant that can
be used in existing equipment—an alternate working fluid that would be environmen-
tally safe and have thermodynamic properties similar to the CFCs in use. In fact, the
fluids with the most similar thermodynamic properties are HCFCs, hydrochlorofluoro-
carbons, which, as a result of replacing a halogen with a hydrogen atom, have greater
chemical reactivity and consequently less stability, so their environmental lifetime is
shorter and their impact on the ozone layer is less. (Note that they are not simply drop-
in replacements in the sense that one only has to drain the CFC from a refrigeration
system and replace it with an appropriate HCFC, as fittings, seals, and lubricants must
also be replaced.) The HCFCs, in Montreal Protocol language, are transitional refrig-
erants and must be phased out by 2015. Among the other refrigerants in use are the
HFCs, hydrofluorocarbons, which do not harm the ozone layer. However, the HCFCs
and some of the HFCs are very strong contributors to global warming and, on a per-
mass basis, are predicted to have an effect 100 to about 12 000 times greater than that of
carbon dioxide, depending on the specific compound (though their concentration in the
atmosphere is much lower than that of CO2, so that their overall impact will be less). A
separate problem is choosing working fluids for new refrigeration equipment designed
for those fluids.
There are various thermodynamic considerations involved in the choice of a refrig-

erant. We have already discussed some of them (for example, the properties in the table
above). However, other thermodynamic considerations arise, especially in the design
of drop-in replacements. As there is no chemical species with exactly the same ther-
modynamic properties (vapor pressure, heat of vaporization, etc.) as the refrigerant it is
to replace, a mixture or blend of compounds could be used instead. And, indeed, many
of the new refrigerants that have been brought to market are blends of CFC, HCFC,
and HFC compounds. However, refrigeration involves vapor-liquid equilibrium (va-
porization in the evaporator and condensation in the condenser). With a pure fluid at a
fixed operating pressure, these phase changes occur at a single temperature. A poten-
tial problem with a blend is that at fixed pressure vaporization occurs over a range of



732 Chapter 12: Mixture Phase Equilibria Involving Solids

temperatures between the bubble temperature and dew point temperature (as is gener-
ally true for mixtures). This would lead to some uncertainty in how the refrigeration
system will behave as a result of changes in load, and whether unanticipated concentra-
tion differences (and therefore temperature variations) will occur in different parts of
the system. One way to avoid this is to use a blend that is an azeotrope at the operating
pressures of the system. Indeed, some of the refrigerant blends used are azeotropic (or
near azeotropic) mixtures.
The important message from this example is that it is the thermodynamic properties

and phase behavior that determine which fluids could serve as refrigerants. Once the
range of possible fluids has been determined, questions of cost, safety, ozone depletion,
and global warming must also be taken into account.

Choice of a solvent

Choosing a solvent for a process—for example, as a degreasing agent, a liquid-liquid
extraction agent, a paint, or another coating solvent—involves some of the same con-
siderations as the choice of refrigerant, including toxicity, reactivity, moderate to low
volatility (so there is not too much evaporative loss), environmental impact, and, per-
haps most important, compatibility in the sense of high solubility for some components
and low solubility for others. To be specific, in the choice of a solvent for degreasing
electronic circuit boards during their manufacture, a desirable property is high solubil-
ity of grease, largely a moderate molecular weight hydrocarbon, while having no effect
on the plastic in the circuit board. To ensure high solubility, one would want a solvent in
which the solute (grease) had a low to moderate activity coefficient. Therefore, predic-
tive methods, such as regular solution theory (frequently used in the paint industry) or
UNIFAC (see Chapter 9), could be used to estimate values of infinite-dilution activity
coefficients; in this way one could quickly consider many possible solvents and develop
a list of solvent candidates, which could then be tested. Then, among the candidate sol-
vents that have the appropriate thermodynamic properties for a specific application, the
final choice would be made on the basis of other issues, such as cost, safety, environ-
mental impact, and ease of recovery and reuse.

PROBLEM FOR SECTION 12.6

12.6-1 The more environmentally friendly refrigerants are
made of hydrogen-containing compounds that have
a short environmental lifetime. However, these com-
pounds are also combustible. Therefore, one strat-
egy is to design less flammable refrigerant mixtures
by forming a ternary mixture of a flammable hydro-
carbon refrigerant, such as FC152a, with two other,
nonflammable components, one that is more volatile
and another that is less volatile than the flammable
component. One such refrigerant blend is a mixture
containing FC152a, FC114, and R22. What compo-
sition of this liquid mixture will have an equilibrium

pressure of 1.034MPa at 50◦C, but result in a vapor-
phase FC152a mole fraction of only 0.043 so that
the vapor will not be combustible? For this calcula-
tion, you can assume that the liquid mixture is ideal.
Also, what are the vapor-phase mole fractions of the
other components? The vapor pressures at 50◦C are
as follows:

P vap
FC152a = 1.18 MPa

P vap
FC114 = 0.43 MPa

P vap
R22 = 2.03 MPa

12.7 CONCLUDING REMARKS ON PHASE EQUILIBRIA

In this chapter and the previous two, many different types of phase equilibrium were
considered. It is our hope that by first presenting the thermodynamic basis of phase
equilibrium in Chapters 7 and 8, followed by the models for activity coefficients and
mixture equations of state in Chapter 9, and then considering many types of phase
equilibria in Chapters 10, 11, and 12, the reader will appreciate the essential unity of
this subject and its wide applicability in chemical engineering.
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It should be evident from the examples in Chapters 10, 11, and 12 that the evalu-
ation of species fugacities or partial molar Gibbs energies (or chemical potentials) is
central to any phase equilibrium calculation. Two different fugacity descriptions have
been used, equations of state and activity coefficient models. Both have adjustable pa-
rameters. If the values of these adjustable parameters are known or can be estimated,
the phase equilibrium state may be predicted. Equally important, however, is the ob-
servation that measured phase equilibria can be used to obtain these parameters. For
example, in Sec. 10.2 we demonstrated how activity coefficients could be computed
directly from P -T -x-y data and how activity coefficient models could be fit to such
data. Similarly, in Sec. 10.3 we pointed out how fitting equation-of-state predictions
to experimental high-pressure phase equilibrium data could be used to obtain a best-fit
value of the binary interaction parameter.
In a similar fashion, solubility measurements (of a gas in a liquid, a liquid in a liquid,

or a solid in a liquid) can be used to determine the activity coefficient of a solute in a
solvent at saturation. Also, measurements of the solubility of a solid solute in two liquid
phases can be used to relate the activity coefficient of the solute in one liquid to a known
activity coefficient in another liquid, and freezing-point depression or boiling-point el-
evation measurements are frequently used to determine the activity of the solvent in a
solute-solvent mixture. We have also showed that osmotic-pressure measurements can
be used to determine solvent activity coefficients, or to determine the molecular weight
of a large polymer or protein.
The body of thermodynamic information determined in the ways just described pro-

vide a base of knowledge for making the estimates and predictions needed for engi-
neering design; for testing equations of state, their mixing rules, and liquid solution
theories; and for extending our knowledge of the way molecules in mixtures interact.
Perhaps more surprisingly, thermodynamics also allows us to make estimates of how
some long-lived pollutants distribute in the environment.



Chapter 13

Chemical Equilibrium

Our interest in this chapter is with changes of state involving chemical reactions. (Bio-
chemical reactions will be considered in Chapter 15.) Of concern here is the prediction
of the equilibrium state in both simple and complicated chemical reaction systems. The
mass and energy balance equations for such systems will be discussed in Chapter 14.
Here we consider first chemical equilibrium in a single-phase, single-reaction system to
indicate the underlying chemistry and physics of reaction equilibrium. This simple case
is then generalized, in steps, to the study of equilibrium in multiphase, multireaction
systems. For simplicity, the discussion of this chapter is largely of reaction equilib-
rium in ideal mixtures. Chemical equilibrium computations for nonideal systems are
tedious and may require equation-solving programs and considerable iteration; several
examples are given in this chapter.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 13

The goals of this chapter are for the student to:

• Be able to compute the equilibrium state of a single-phase chemical reaction
(Secs. 13.1 and 13.3)

• Be able to compute the equilibrium state of a multiphase chemical reaction
(Secs. 13.2 and 13.4)

• Be able to compute the equilibrium state of the ionization and acidity of chemical
reactions (Sec. 13.5)

• Be able to compute the equilibrium state of a biochemical reaction (Sec. 13.6)

IMPORTANT NOTATION INTRODUCED IN THIS CHAPTER

�rxnG Gibbs energy change on reaction (J)
�rxnG◦ Standard-state Gibbs energy change on reaction (J)
�rxnH Enthalpy change on reaction, also called heat of reaction (J)
�rxnH◦ Standard-state enthalpy change on reaction, also called standard heat of

reaction (J)
Ka Chemical equilibrium constant
Kc Concentration chemical equilibrium ratio (units depend on reaction

stoichiometry)
Kp Partial-pressure chemical equilibrium ratio (units depend on reaction

stoichiometry)
734
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Kx Liquid-phase mole fraction chemical equilibrium ratio
Ky Vapor-phase mole fraction chemical equilibrium ratio

�rxnV Volume change on reaction (m3)
pH = − log(aH+)

pOH = − log(aOH+)
pK = − log(Ka)
M Molality concentration unit, as in 1 M solution

Mi Concentration of species i in molality units of moles per kilogram of
solvent [Note that if the solvent is water, the solution is dilute, and the
temperature is near 25◦C, molality is equal to molarity, which
is moles per liter of solution.]

13.1 CHEMICAL EQUILIBRIUM IN A SINGLE-PHASE SYSTEM

In Chapter 7 the criteria for equilibrium were found to be

S = maximum for a closed system at constant U and V
A = minimum for a closed system at constant T and V
G = minimum for a closed system at constant T and P

(13.1-1)

For chemical reaction equilibrium in a single-phase, single-reaction system, these cri-
teria lead to (see Sec. 8.8)

Starting point for
chemical equilibrium
calculations

∑
νiGi = 0 (13.1-2)

which, together with the set of mass balance and state variable constraints on the sys-
tem, can be used to identify the equilibrium state of a chemically reacting system.
The constraints on the system are important since, as will be seen shortly, a system
in a given initial state, but subject to different constraints (e.g., constant T and P ,
or constant T and V ), may have different equilibrium states (see Illustration 13.1-4).
In each case the equilibrium state will satisfy both Eq. 13.1-2 and the constraints, and it
will correspond to an extreme value of the thermodynamic function appropriate to the
imposed constraints.

As an introduction to the application of Eqs. 13.1-1 and 13.1-2 to chemical equilib-
rium problems, consider the prediction of the equilibrium state for the low-pressure,
gas-phase reaction

CO2 + H2 = CO + H2O

occurring in a closed system at constant pressure and a temperature of 1000◦C. The
total Gibbs energy for this gaseous system is

G =
∑

NiGi(T,P, y)

=
∑

NiGi(T,P ) +
∑

Ni{Gi(T,P, y) − Gi(T,P )} (13.1-3a)

=
∑

NiGi(T,P ) + RT
∑

Ni ln{f i(T,P, y)/fi(T,P )}
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G =
∑

NiGi(T,P ) + RT
∑

i

Ni ln

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yiP

(
f i(T,P, y)

yiP

)

P

(
fi(T,P )

P

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.1-3b)

where Gi(T,P, y) and Gi(T,P ) are the partial molar and pure component Gibbs ener-
gies
for gaseous species i evaluated at the reaction conditions, and (f i/yiP ) and (fi/P )
are the fugacity coefficients for species i in the mixture (Eq. 9.2-13) and as a pure com-
ponent (Eq. 7.4-8), respectively. Since the pressure is low in this case, we assume that
the gas phase is ideal, so that all fugacity coefficients are set equal to unity and Eq.
13.1-3 reduces to

G =
∑

NiGi(T,P ) + RT
∑

i

Ni ln yi (13.1-4)

As the reaction proceeds, the mole numbers and mole fractions of all species, and
the total Gibbs energy of the reacting mixture, change. The number of moles of each
reacting species in a closed system is not an independent variable (i.e., it cannot take on
any value), but is related to the mole numbers of the other species and the initial mole
numbers through the reaction stoichiometry. This is most easily taken into account using
the molar extent of reaction variable of Chapters 2 and 8

Ni = Ni,0 + νiX

or

X =
Ni − Ni,0

νi

In this case, the initial and final mole numbers of the species are related as follows:

X = (NCO − NCO,0) = (NH2O − NH2O,0)
= −(NCO2 − NCO2,0) = −(NH2 − NH2,0)

(13.1-5)

where Ni,0 is the initial number of moles of species i. The number of moles of each
species and the gas-phase mole fractions at any extent of reaction X are given in
Table 13.1-1 for the case in which NCO2,0 = NH2,0 = 1 mole and NCO,0 = NH2O,0 =
0. Balance tables such as this one are used throughout this chapter in the solution of
chemical equilibrium problems.

The first term on the right side of Eq. 13.1-4 is the sum of the Gibbs energies of
the pure components at the temperature and pressure of the mixture. The second term
is the Gibbs energy change on forming a mixture from the pure components; it arises
here because the reaction takes place not between the pure components, but between
components in a mixture. The solid curve in Fig. 13.1-1 is a plot of the Gibbs energy of
this reacting mixture as a function of the extent of reaction for the initial mole numbers
given in the table. That is, the solid line is a plot of

G =
∑

i

NiGi + RT
∑

i

Ni ln yi

= (1 − X)(GCO2
+ GH2

) + X(GCO + GH2O)
+ 2RT [(1 − X) ln{(1 − X)/2} + X ln{X/2}]

(13.1-6)
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Table 13.1-1 Mass Balance for the Reaction CO2 + H2 = CO + H2O

Species Initial Number of Moles Final Number of Moles Mole Fractions

CO2 1 1 − X (1 − X)/2
H2 1 1 − X (1 − X)/2
CO 0 X X/2
H2O 0 X X/2

Total 2 2

G
, k

J

0 0.2 0.4 0.6 0.8 1.0
–460

–450

–440
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–420

X *

X

ΔGmix

Figure 13.1-1 The Gibbs energy for
the system CO2 + H2 = CO + H2O
at 1000 K and 1.013 bar (∼0.1 MPa)
relative to each atomic species in its
standard state at 298.15 K (25◦C).

The dashed line in the figure is the Gibbs energy change as a function of the extent
of reaction neglecting the Gibbs energy of mixing (that is, the logarithmic terms in
X ). The important feature of Fig. 13.1-1 is that because of the Gibbs energy of mixing
term, there is an intermediate value of the reaction variable X for which the total Gibbs
energy of the mixture is a minimum; this value of X has been denoted X∗. Since the
condition for equilibrium at constant temperature and pressure is that G be a minimum,
X∗ is the equilibrium extent of reaction for this system.

This equilibrium state can be mathematically (rather than graphically) identified us-
ing the criterion that at equilibrium in a closed system at constant T and P , the Gibbs
energy G is a minimum, or dG = 0, for all possible mole number variations consistent
with the reaction stoichiometry. This implies that(

∂G

∂X

)
T,P

= 0 (13.1-7)

since X is the single variable describing the mole number variations consistent with
the stoichiometry and the initial amount of each species. Using this result in Eq. 13.1-6
yields

(GCO + GH2O − GCO2
− GH2

) + 2RT [− ln{(1 − X∗)/2} + ln(X∗/2)] = 0

or

−(GCO + GH2O − GCO2
− GH2

)
RT

= ln
[

X∗2

(1 − X∗)2

]
(13.1-8)
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To find the equilibrium mole fractions, Eq. 13.1-8 is first solved for the equilibrium
extent of reaction X∗, and this is used with the initial mole numbers and stoichiometric
information (i.e., Table 13.1-1) to find the mole fractions.

It is also of interest to note that using the stoichiometric relations between X and the
species mole fractions, we obtain

−(GCO + GH2O − GCO2
− GH2

)
RT

= ln
[
yCOyH2O

yCO2yH2

]
(13.1-9a)

or, equivalently (and more generally),

−
∑

i νiGi

RT
=
∑

i

ln yνi
i = ln

[∏
i

yνi
i

]
(13.1-9b)

(The symbol Πi, used here denotes a product of numbers, that is, Πiy
νi
i =

yνA
A yνB

B yνC
C . . .) Thus, the equilibrium product of species mole fractions, each taken to

the power of its stoichiometric coefficient, is related to the sum over the species of the
stoichiometric coefficients times the pure component Gibbs energies at the temperature
and pressure of the reacting mixture.

Whereas Eq. 13.1-8 is specific to the reaction and initial mole numbers of the example
being considered, Eq. 13.1-9b (of which Eq. 13.1-9a is a special case) is generally valid
for single-phase reactions in ideal mixtures; furthermore, Eq. 13.1-9b can be obtained
directly from the general equilibrium relation, Eq. 13.1-2:∑

i

νiGi(T,P, x) = 0

We show this here by first considering the more general case of chemical reactions in
either nonideal vapor or liquid systems, for which

Gi(T,P, x) = Gi(T,P ) + RT ln
f i(T,P, x)
fi(T,P )

(13.1-10)

Thus

∑
i

νiGi(T,P, x) =
∑

i

νiGi(T,P ) + RT
∑

i

νi ln
(

f i(T,P, x)
fi(T,P )

)
= 0

or

−
∑
i

νiGi(T,P )

RT
=
∑

i

νi ln
f i(T,P, x)
fi(T,P )

= ln

[∏
i

(
f i(T,P, x)
fi(T,P )

)νi
] (13.1-11)

For a gas-phase mixture,

f i(T,P, y) = yiP

(
f i

yiP

)
and fi(T,P ) = P

(
f

P

)
i
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where the fugacity coefficients can be evaluated from an equation of state (or the
principle of corresponding states). Thus Eq. 13.1-11 reduces to

Reactions in gas phase
−
∑

νiGi

RT
= ln

[∏
i

(
yi(f i/yiP )

(f/P )i

)νi
]

(13.1-12a)

which, for an ideal gas (all fugacity coefficients equal to unity), becomes

Reactions in ideal gas
phase

−
∑

νiGi

RT
= ln

[∏
i

yνi
i

]
(13.1-12b)

The last equation is identical to Eq. 13.1-9b. (Note that Eq. 13.1-12a also applies to
liquid mixtures describable by an equation of state by x replacing y.)

For a liquid mixture described by an activity coefficient model,

f i(T,P, x) = xiγifi(T,P )
so that

Reactions in liquid
phase

−
∑

νiGi

RT
= ln

[∏
i

(xiγi)νi

]
(13.1-13a)

which, for an ideal liquid mixture (all activity coefficients equal to unity), reduces to

Reactions in ideal
liquid phase

−
∑

νiGi

RT
= ln

(∏
i

xνi
i

)
(13.1-13b)

For all future chemical equilibrium calculations in single-phase, single-reaction sys-
tems, we will start from Eqs. 13.1-12 or 13 as appropriate, rather than starting at
Eq. 13.1-2 and repeating the derivation each time.

Figures like Fig. 13.1-1 provide some insight into the direction of progress of a
chemical reaction. To be specific, the equilibrium and stability analysis of Chapter 7
establishes that a system at constant temperature and pressure evolves toward a state
of minimum Gibbs energy. Here this is the state for which Eqs. 13.1-2, 13.1-12, or
13.1-13 are satisfied. Therefore, if, at any instant, the mole fractions of the reacting
species in an ideal mixture are such that

∏
i

xνi
i < exp

[
−
∑

i νiGi(T,P )
RT

]

(which, for the example in Fig. 13.1-1, occurs when the molar extent of reaction is to
the left of X∗), the reaction proceeds as written. That is, reactants (species with neg-
ative stoichiometric coefficients) are consumed to form the reaction products (species
with positive stoichiometric coefficients) until the equilibrium composition is reached.
Conversely, if the species mole fractions are such that

∏
i

xνi
i > exp

[
−
∑

i νiGi(T,P )
RT

]
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the reaction proceeds in a manner such that what heretofore had been designated as the
reaction products would be consumed to form reactants, until equilibrium was achieved,
that is, until

∏
i

xνi
i = exp

[
−
∑

i νiGi(T,P )
RT

]

Thus, our choice of reactants and products in a chemical reaction is arbitrary, in
that the reaction can proceed in either direction. Indeed, replacing each stoichiomet-
ric coefficient (νi) by its negative (−νi) in the previous equations, which is equivalent
to interchanging the choice of reactants and products, leads to the same equilibrium
state—again a state of minimum Gibbs energy. This freedom to arbitrarily choose which
species are the reactants and which are the products is also evident from the equilibrium
relation ∑

νiGi(T,P, x) = 0

since multiplying this equation by the constant −1 leaves the equation unchanged. In
fact, multiplying this equation by any constant, either positive or negative, affects nei-
ther the equation nor the equilibrium state computed from it. Thus, whether we choose
to write a reaction as

αA + βB + · · · → ρR + · · ·

2αA + 2βB + · · · → 2ρR + · · ·
or

ρR + · · · → αA + βB + · · ·

has no effect on what is ultimately predicted to be the equilibrium state of the system.
Since chemical reactions can proceed either in the direction written or in the opposite
direction, they are said to be reversible. (Note that here the word reversible is being
used in a different sense than in Chapter 4.)

A chemical reaction goes to completion if it proceeds until one of the reactants
is completely consumed. In principle, no homogeneous (i.e., single-phase) reaction
goes to completion because the balance between the Gibbs energy of mixing and the
ΔrxnG =

∑
i νiGi terms (see Fig. 13.1-1) forces the equilibrium value of X (that

is, X∗) to lie between 0 and complete reaction. However, there are many instances
when ΔrxnG is so large in magnitude compared with the Gibbs energy of mixing term,
which is of the order of magnitude of RT (see Eq. 13.1-4), that the reaction either
goes essentially to completion (−ΔrxnG/RT � 1) or does not measurably occur
(ΔrxnG/RT � 1). The room temperature oxidation of hydrogen to form water vapor,

H2 + 1
2
O2 = H2O

for which

ΔrxnG

RT
=

−228 570 J/mol
8.314 J/(mol K) × 298.15 K

= −92.21

is an example of a reaction that goes essentially to completion. To see this, note that
starting with stoichiometric amounts of hydrogen and oxygen, we have
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Species Initial Number of Moles Final Number of Moles Mole Fraction

H2 1 1 − X (1 − X)/(1.5 − 0.5X)
O2 0.5 0.5 − 0.5X 0.5(1 − X)/(1.5 − 0.5X)
H2O 0 X X/(1.5 − 0.5X)

Total 1.5 1.5 − 0.5X

so that

exp
(
−
∑

νiGi

RT

)
=
∏

xνi
i

exp(+92.21) = 1.11 × 1040 =
xH2O

xH2x
0.5
O2

=
X(1.5 − 0.5X)0.5

0.50.5(1.0 − X)1.5

The solution to this equation is X ∼ 1 (actually 1.0 − 3 × 10−27), so that, for all
practical purposes, the reaction goes to completion. It is left to you to show that the
room temperature oxidation of nitrogen

1
2
N2 + 1

2
O2 = NO

for which

ΔrxnG

RT
=

86 550 J/mol
8.314 J/(mol K) × 298.15 K

= 34.92

does not, for practical purposes, occur at all.
The identification of the equilibrium extent of reaction in the carbon dioxide–

hydrogen reaction discussed earlier was straightforward for two reasons. First, the mix-
ture was ideal, so that there were no fugacity corrections or activity coefficients to
consider. Second, it was presumed that the pure component Gibbs energies were avail-
able for the reacting species at the same temperature, pressure, and state of aggrega-
tion as the reacting mixture. Most chemical equilibrium calculations are, unfortunately,
more complicated because few mixtures (other than low-pressure gas mixtures) are
ideal, and pure component thermodynamic properties are usually tabulated only at a
single temperature and pressure (25◦C and 1 bar, as in Appendix A.IV). Thus, for most
chemical equilibrium computations one needs fugacity or activity coefficient data (or
adequate mixture models) and one must be able to estimate Gibbs energies for any pure
component state.

One possible starting point for the analysis of general single-phase chemical equi-
librium problems is the observation that the partial molar Gibbs energy of a molecular
species can be written as

Gi(T,P, x) = G◦
i (T = 25◦C, P = 1 bar, x◦

i )

+ [Gi(T,P, x) − G◦
i (T = 25◦C, P = 1 bar, x◦

i )]
(13.1-14)

where G◦
i denotes the Gibbs energy of species i at 25◦C, 1 bar, and composition x◦

i

(usually taken to be the pure component state of x◦
i = 1, the infinite-dilution state of

x◦
i = 0, or the ideal 1 molal solution, depending on the species). However, starting from
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Eq. 13.1-14 requires estimates of the changes in species partial molar Gibbs energy with
temperature, pressure, and composition—a difficult task. (The formulas of Chapter 9
account mainly for the composition and pressure variations of the species fugacity and
partial molar Gibbs energy.) A more practical procedure is to choose the standard state
of each species to be the species at composition x◦

i , the temperature of interest T, and a
pressure of 1 bar. In this case we have

Definition of standard
state

Gi(T,P, x) = G◦
i (T,P = 1 bar, x◦

i )
+ [Gi(T,P, x) − G◦

i (T,P = 1 bar, x◦
i )]

= G◦
i (T,P = 1 bar, x◦

i ) + RT ln
{

fi(T,P, x)
f◦i (T,P = 1 bar, x◦

i )

}
= G◦

i (T,P = 1 bar, x◦
i ) + RT lnai

(13.1-15)
where we have introduced the activity of species i, denoted by ai, defined to be the
ratio of the species fugacity in the mixture to the fugacity in its standard state,

Definition of activity ai =
f i(T,P, x)

f ◦
i (T,P = 1 bar, x◦

i )
= exp

(
Gi(T,P, x) − G◦

i (T,P = 1 bar, x◦
i )

RT

)
(13.1-16)

With this formulation of the Gibbs energy function, the activity or fugacity for each
species is a function of pressure and composition only, and its value can be computed
using equations of state, or liquid solution data or models, all of which are discussed in
Chapter 9. Note that once the standard state is chosen, the standard state Gibbs energy
G◦

i is a function of temperature only. The calculation of its value for any temperature
will be considered shortly.

For convenience we have listed in Table 13.1-2 species activities for several common
choices of the standard state.

With the notation introduced here, the equilibrium relation, Eq. 13.1-2, can now be
written as

0 =
C∑

i=1

νiGi =
C∑

i=1

νiG
◦
i (T,P = 1 bar, x◦

i ) + RT
C∑

i=1

νi ln ai

= ΔrxnG
◦ + RT

C∑
i=1

νi ln ai

or

−ΔrxnG◦

RT
= ln

C∏
i=1

aνi
i (13.1-17)

where we have used ΔrxnG◦ to denote the quantity
∑

νiG◦
i (T,P = 1 bar, x◦

i ), the
Gibbs energy change on reaction with each species (both reactants and products) in its
standard state or state of unit activity. Finally, the equilibrium constant Ka is defined
by the relation

Definition of the
chemical equilibrium
constant

Ka(T ) = exp
(
−ΔrxnG◦

RT

)
(13.1-18)
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Thus, Eq. 13.1-17 can be rewritten as

Relation between
the equilibrium
constant and the
species activities at
equilibrium

Ka(T ) =
C∏

i=1

aνi
i =

aρ
R · · ·

aα
Aaβ

B · · ·
(13.1-19)

This equation is equivalent to Eq. 13.1-2 and can be used in the prediction of the chemi-
cal equilibrium state, provided that we can calculate a value for the equilibrium constant
Ka and the species activities ai.

If the standard state of each component is chosen to be T = 25◦C, P = 1 bar, and
the state of aggregation given in Appendix A.IV, then, following Eq. 8.5-2,

Calculation of the
standard state Gibbs
energy change on
reaction

ΔrxnG
◦(T = 25◦C) =

∑
i

νi ΔfG
◦
i (T = 25◦C)

where ΔfG
◦, the standard state Gibbs energy of formation, discussed in Sec. 8.5, is

given in Appendix A.IV.

Illustration 13.1-1
Gas-Phase Chemical Equilibrium Calculation

Calculate the equilibrium extent of decomposition of nitrogen tetroxide as a result of the chemical
reaction N2O4(g) = 2NO2(g) at 25◦C and 1 bar.

Solution

The equilibrium relation is

Ka = exp

{
−ΔrxnG◦(T = 25◦C, P = 1 bar)

RT

}
=

a2
NO2

aN2O4

=

(
yNO2P

1 bar

)2

(
yN2O4P

1 bar

) =
y2
NO2

yN2O4

Here we have assumed the gas phase is ideal. Furthermore, since the reaction and standard state
pressures are both 1 bar, the pressure cancels out of the equation. Using the entries in Appendix
A.IV, we have

ΔrxnG◦(T = 25◦C, P = 1 bar) = 2ΔfG
◦
NO2

− ΔfG
◦
N2O4

= (2 × 51.31 − 97.89) kJ/mol = 4730 J/mol

so that

Ka = exp

{ −4730 J/mol

8.314 J/(mol K) × 298.15 K

}
= 0.1484

Next, we write the mole fractions of both NO2 and N2O4 in terms of a single extent of reaction
variable. This is most easily done using the mass balance table:

Initial Number
of Moles of
Each Species

Final Number
of Moles of
Each Species

Equilibrium
Mole Fraction

N2O4 1 1 − X yN2O4 = (1 − X)/(1 + X)
NO2 0 2X yNO2 = (2X)/(1 + X)

Total 1 + X
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Therefore,

Ka = 0.1484 =
(2X/(1 + X))2

(1 − X)/(1 + X)
=

4X2

(1 + X)(1 − X)
=

4X2

(1 − X2)

or

X =

√
Ka

4 + Ka

= 0.1926

so that the nitrogen tetroxide is 19.3 percent decomposed at the conditions given, and

yN2O4 = 0.677
yNO2 = 0.323[

Using Aspen Plus R© and the folder Aspen Illustration>Chapter 13>13.1-1 on the Wiley web-
site for this book that uses the R Gibbs reactor, the following results are obtained:

yN2O4 = 0.6862 and yNO2 = 0.3138. Thus, x = 0.1861.

The small discrepancies are the result of the different databases used for ΔfG0.
]

Equilibrium compositions in a chemically reacting system are affected by changes in
the state variables (i.e., temperature and pressure), the presence of diluents, or variations
in the initial state of the system. These effects are considered in this discussion and the
illustrations in the remainder of this section.

Effect of inert diluent

If an inert diluent is added to a reacting mixture, it may change the equilibrium state
of the system, not as a result of a change in the value of the equilibrium constant (which
depends only on the standard states and temperature), but rather as a result of the change
in the concentration, and hence the activity, of each reacting species. This effect is
illustrated in the following example.

Illustration 13.1-2
Ideal Gas-Phase Chemical Equilibrium Calculation

Pure nitrogen tetroxide at a low temperature is diluted with nitrogen and heated to 25◦C and 1 bar.
If the initial mole fraction of N2O4 in the N2O4–nitrogen mixture before dissociation begins is
0.20, what is the extent of the decomposition and the mole fractions of NO2 and N2O4 present
at equilibrium?

Solution

As in the preceding illustration,

Ka = 0.1484 =
y2
NO2

yN2O4

Here, however, we have

Initial Number
of Moles

Final Number
of Moles

Equilibrium
Mole Fraction

N2O4 0.2 0.2 − X (0.2 − X)/(1 + X)
NO2 0 2X (2X)/(1 + X)
N2 0.8 0.8 0.8/(1 + X)

Total 1 + X
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Therefore,

0.1484 =
4X2

(0.2 − X)(1 + X)

so that

X = 0.0715 yN2O4 = 0.1199 yNO2 = 0.1334 and yN2 = 0.7466[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 13>13.1-2 on the Wiley web-

site for this book the following results are obtained:

yN2O4 = 0.1210, yNO2 = 0.1317 and yN2 = 0.7473

So the extent of reaction x = 0.0705.
]

Comment

The fractional decomposition of N2O4, which is equal to

Number of moles of N2O4 reacted
Initial Number of moles of N2O4

=
X

0.2
= 0.3574

is higher here than in the case of undiluted nitrogen tetroxide (preceding illustration). At a fixed
extent of reaction, the presence of the inert diluent nitrogen decreases the mole fractions of NO2

and N2O4 equally. However, since the mole fraction of NO2 appears in the equilibrium relation
to the second power, the equilibrium must shift to the right (more dissociation of nitrogen tetrox-
ide). (Questions for the reader: How would the presence of an inert diluent affect an association
reaction, e.g., 2A → B? How would the presence of an inert diluent affect a gas-phase reaction
in which

∑
νi = 0?)

To compute the value of the equilibrium constant Ka at any temperature T , given
the Gibbs energies of formation at 25◦C, we start with the observation that

∂

∂T

(
Gi

T

)
P

=
1
T

(
∂Gi

∂T

)
P

− Gi

T 2
= −Si

T
− H i

T 2
+

Si

T
= −H i

T 2
(13.1-20a)

and use the fact that lnKa = −
∑

νiΔfG
◦
i /RT to obtain

Variation of the
equilibrium constant
with temperature

(
d lnKa

dT

)
P

= − 1
R

d

dT

[∑
i νiΔG◦

f,i

T

]
=

1
RT 2

∑
i

νiΔfH
◦
i =

ΔrxnH◦(T )
RT 2

(13.1-20b)

(Note that these are total derivatives since the equilibrium constant Ka and the stan-
dard state Gibbs energy change are functions only of temperature.) Here ΔrxnH◦=∑

νiΔfH
◦
i is the heat of reaction in the standard state, that is, the heat of reaction if the

reaction took place with each species in its standard state at the reaction temperature.
Equation 13.1-20b is known as the van’t Hoff equation. If a reaction is exothermic,
that is, if energy is released on reaction so that ΔrxnH◦ is negative, the equilibrium
constant and the equilibrium conversion from reactants to products decrease with in-
creasing temperature. Conversely, if energy is absorbed as the reaction proceeds, so that
ΔrxnH◦ is positive, the reaction is said to be endothermic, and both the equilibrium
constant and the equilibrium extent of reaction increase with increasing temperature.
These facts are easily remembered by noting that reactions that release energy are fa-
vored at lower temperatures, and reactions that absorb energy are favored at higher
temperatures.
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The standard state heat of reaction ΔrxnH◦ at 25◦C and 1 bar can be computed, as
was pointed out in Chapter 8, from

ΔrxnH
◦(T = 25◦C) =

∑
i

νiΔfH
◦
i (T = 25◦C)

and the standard state heat of formation data in Appendix A.IV. At temperatures other
than 25◦C, we start from

H i(T ) = H i(T = 25◦C) +
∫ T

T=25◦C
CP,i(T ′) dT ′

(where T ′ is a dummy variable in integration) and obtain

ΔrxnH
◦(T ) =

∑
νiH

◦
i (T ) = ΔrxnH

◦(T = 25◦C) +
∫ T

T=25◦C
(298.15 K)

ΔrxnC
◦
P(T ′) dT ′

(13.1-21)

with ΔrxnC◦
P =

∑
νiC◦

P,i where C◦
P,i is the heat capacity of species i in its standard

state. Note that in this integration ΔC◦
P may be a function of temperature.

Equation 13.1-20b can be integrated between any two temperatures T1 and T2 to give

ln
Ka(T2)
Ka(T1)

=
∫ T2

T1

ΔH◦
rxn(T )

RT 2
dT (13.1-22a)

so that if the equilibrium constant Ka is known at one temperature, usually 25◦C, its
value at any other temperature can be computed if the standard state heat of reaction
is known as a function of temperature. If ΔrxnH◦ is temperature independent, or if T1

and T2 are so close that ΔrxnH◦ may be assumed to be constant over the temperature
range, we obtain

Simplified equation for
the variation of the
equilibrium constant
with temperature

ln
Ka(T2)
Ka(T1)

= −ΔrxnH◦

R

(
1
T2

− 1
T1

)
(13.1-22b)

Equation 13.1-22b suggests that the logarithm of the equilibrium constant should be
a linear function of the reciprocal of the absolute temperature if the heat of reaction is
independent of temperature and, presumably, an almost linear function of 1/T even if
ΔrxnH◦ is a function of temperature. (Compare this behavior with that of the vapor
pressure of a pure substance in Sec. 7.7, especially Eq. 7.7-6.) Consequently, it is com-
mon practice to plot the logarithm of the equilibrium constant versus the reciprocal of
temperature. Figure 13.1-2 gives the equilibrium constants for a number of reactions as
a function of temperature plotted in this way. (Can you identify those reactions that are
endothermic and those that are exothermic?)

For the general case in which ΔrxnH◦ is a function of temperature, we start from the
observation that the constant-pressure heat capacity is usually given in the form1

CP,i = ai + biT + ciT
2 + diT

3 + eiT
−2

1The last term, eiT
−2, is usually present in expressions for the heat capacity of solids and is included here for

generality.
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Figure 13.1-2 Chemical equilibrium constants for the following gas-phase reactions as
a function of temperature computed with Aspen Plus R©.

(a)
1
2

N2 +
3
2

H2 → NH3; (b) CO +
1
2

O2 → CO2; (c) SO2 → SO +
1
2

O2;

(d)
1
2

C2H2 → C +
1
2

H2; (e) CO + H2O → CO2 + H2; (f) C + H2O → CO + H2;

(g) 2O → O2; and (h) C + CO2 → 2CO

(see Appendix A.II) and obtain, from Eq. 13.1-21 with T1 = 298.15 K,

ΔrxnH
◦(T ) = ΔrxnH

◦(T1) + Δa(T − T1) +
Δb

2
(T 2 − T 2

1 )

+
Δc

3
(T 3 − T 3

1 ) +
Δd

4
(T 4 − T 4

1 ) − Δe(T−1 − T−1
1 )

(13.1-22a)

Further, from Eq. 13.1-22a, we obtain

ln
Ka(T2)
Ka(T1)

=
Δa

R
ln

T2

T1

+
Δb

2R
(T2 − T1) +

Δc

6R
(T 2

2 − T 2
1 )

+
Δd

12R
(T 3

2 − T 3
1 ) +

Δe

2R
(T−2

2 − T−2
1 )

+
1
R

[
−ΔrxnH

◦(T1) + ΔaT1 +
Δb

2
T 2

1 +
Δc

3
T 3

1

+
Δd

4
T 4

1 − Δe

T1

]
×
[

1
T2

− 1
T1

]
(13.1-22b)
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General equation for
the variation of the
equilibrium constant
with temperature

where Δa =
∑

νiai, Δb =
∑

νibi, and so on. The chemical equilibrium constant
calculation programs of Appendix B.I or B.II can be used for calculations using Eqs.
13.1-22 and 13.1-23 for reactions involving compounds in their database. There is a
simplification of these last two equations that is sometimes useful. If �rxnCP is inde-
pendent of temperature (or can be assumed to be so), then Eq. 9.1-23a reduces to

ΔrxnH
◦(T ) = ΔrxnH

◦(T1) + ΔrxnCP(T − T1) (13.1-22c)

and

ln
Ka (T2)
Ka (T1)

= −�rxnH◦(T1)
R

(
1
T2

− 1
T1

)
+

�rxnCP

R
ln

T2

T1

+
�rxnCP

R

(
T1

T2

− 1
)

(13.1-22d)

Illustration 13.1-3
Chemical Equilibrium Calculation as a Function of Temperature

Compute the equilibrium extent of decomposition of pure nitrogen tetroxide due to the chemical
reaction N2O4(g) = 2NO2(g) over the temperature range of 200 to 400 K, at pressures of 0.1,
1, and 10 bar.
Data: See Appendices A.II and A.IV.

Solution

From the entries in the appendices, we have

ΔrxnH◦(T = 25◦C) = 2 × 33.18 − 9.16 = 57.2 kJ/mol = 57 200 J/mol

and

ΔrxnCP = ΔrxnC∗
P = 2 × C∗

P|NO2 − C∗
P|N2O4

= 12.80 − 7.239 × 10−2T + 4.301 × 10−5T 2 + 1.573 × 10−8T 3 J/(mol K)

Thus

Δa = 12.80 Δb = −7.239 × 10−2 Δc = 4.301 × 10−5

and

Δd = 1.573 × 10−8

Using these values in Eqs. 13.1-23a and b (with T1 = 298.15 K), we obtain

ΔrxnH◦(T ) = 56 189 + 12.80T − 3.62 × 10−2T 2 + 1.434 × 10−5T 3 + 3.933 × 10−9T 4

and

ln

(
Ka(T )

Ka(T = 25◦C)

)
= ln

(
Ka(T )

0.154

)
=

∫ T

298.15 K

ΔrxnH◦(T )

RT 2
dT

= −6758.4

(
1

T
− 1

298.15 K

)
+ 1.54 ln

T

298.15

− 0.435 × 10−2(T − 298.15) + 0.862 × 10−6(T 2 − 298.152)

+ 0.1577 × 10−9(T 3 − 298.153)

The numerical values for the standard state heat of reaction ΔrxnH◦(T ) and the equilibrium
constant Ka calculated from these equations are plotted in Fig. 1.
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Figure 1 Ka versus pressure for the reaction 1
2
N2 + 3

2
H2 → NH3.

Now assuming that the gas phase is ideal, we have

Ka =
a2
NO2

aN2O4

=
(yNO2P/P = 1 bar)2

(yN2O4P/P = 1 bar)
=

y2
NO2

yN2O4

(
P

1 bar

)

where, as in Illustration 13.1-1, yNO2 = 2X/(1 + X) and yN2O4 = (1 − X)/(1 + X), so that

Ka =
4X2

(1 − X2)

(
P

1 bar

)

and

X =

√
Ka/P

4 + Ka/P
P in bar

The extent of reaction X and the mole fraction of nitrogen dioxide as a function of temperature
and pressure are plotted in Fig. 2. (Note that the equilibrium constant is independent of pres-
sure, but the equilibrium activity ratio increases linearly with pressure. Therefore, the extent of
reaction for this reaction decreases as the pressure increases.)
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Figure 2 Equilibrium mole fraction xNO2 and molar extent of reaction X for the reaction N2O4 =
2NO2 as a function of temperature and pressure.



13.1 Chemical Equilibrium in a Single-Phase System 751

[
Using Aspen Plus R© and the folder Aspen Illustration>Chapter 13>13.1-3 on the Wiley web-

site for this book calculations can be done for the individual pressure-temperature points. The
file is set up to do the calculations at 1 bar and 200 K and produces the following result for this
one state point

yN2O4 = 0.99873, yNO2 = 0.00127 and X = 0.000635

However, using the subfolder Aspen Illustration>Chapter 13>13.1-3 with sensitivity allows
one to the easily produce tables of the mole fractions and extents of reaction over a range
of temperatures and/or pressures the results of which are shown in the Excel spreadsheet
Illus 13.1-3 with sensitivity.xlsx in that folder.

]
In the next illustration, the effects on the equilibrium composition of both feed

composition and maintaining reactor volume (rather than reactor pressure) constant
are considered.

Illustration 13.1-4
Effect of Pressure on Chemical Equilibrium in an Ideal Gas Mixture

Nitrogen and hydrogen react to form ammonia in the presence of a catalyst,

1
2
N2 + 3

2
H2 → NH3

The reactor in which this reaction is to be run is maintained at 450 K and has a sufficiently long
residence time that equilibrium is achieved at the reactor exit.

a. What will be the mole fractions of nitrogen, hydrogen, and ammonia exiting the reactor if
stoichiometric amounts of nitrogen and hydrogen enter the reactor, which is kept at 4 bar?

b. What will be the exit mole fractions if the reactor operates at 4 bar and the feed consists of
equal amounts of nitrogen, hydrogen, and an inert diluent?

c. The reaction is to be run in an isothermal, constant-volume reaction vessel with a feed
consisting of stoichiometric amounts of nitrogen and hydrogen. The initial pressure of the
reactant mixture (before any reaction has occurred) is 4 bar. What is the pressure in the
reactor and the species mole fractions when equilibrium is achieved?

Solution

a. The starting point for this problem is the evaluation of the equilibrium constant for the
ammonia production reaction at 450 K. From Appendices A.II and A.IV, we have

ΔfH
◦
NH3

(T = 25◦C, P = 1 bar) = −46 100 J/(mol NH3) = ΔrxnH◦

ΔfG
◦
NH3

(T = 25◦C, P = 1 bar) = −16 500 J/(mol NH3) = ΔrxnG◦

and

ΔrxnC∗
P = −30.523 + 2.928 × 10−2T − 1.40 × 10−7T 2 − 3.9465 × 10−9T 3 J/(mol K)

Thus,

ΔrxnH◦(T ) = −46 100 +

∫ T

298.15 K

ΔrxnC∗
P dT

and

ln
Ka(T = 450 K)

Ka(T = 298.15 K)
=

∫ 450 K

298.15 K

ΔrxnH◦(T )

RT 2
dT = −6.459
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Also,

ln Ka(T = 298.15 K) = −ΔrxnG◦

RT
=

16 500

8.314 × 298.15
= 6.656

so that
ln Ka(T = 450 K) = 6.656 − 6.459 = 0.197

and
Ka(T = 450 K) = 1.218 =

aNH3

a
1/2
N2

a
3/2
H2

At the low pressure here we will assume the gas phase is ideal, so that

ai =
yiPrxn

P = 1 bar

where Prxn is the reaction pressure. The mole fraction of each species is related to the inlet
mole numbers and the molar extent of reaction as indicated in the following table.

Initial Mole Number Final Mole Number Mole Fraction

NH3 0 X X/(2 − X)

N2
1
2

1
2
(1 − X) 1

2
(1 − X)/(2 − X)

H2
3
2

3
2
(1 − X) 3

2
(1 − X)/(2 − X)

Total 2 − X

Therefore,

Ka = 1.218 =
X(2 − X)[

1

2
(1 − X)

]1/2 [3

2
(1 − X)

]3/2 ( Prxn

1 bar

)

=
X(2 − X)(

1

2

)1/2 (3

2

)3/2

(1 − X)2
(

Prxn

1 bar

)

and at Prxn = 4 bar(
1

2

)1/2 (3

2

)3/2 ( Prxn

1 bar

)
Ka = 6.329 =

X(2 − X)

(1 − X)2

This equation has the solution

X = 0.6306

so that
yNH3 = 0.4605 yN2 = 0.1349 and yH2 = 0.4046

b. Here we have

Initial Mole Number Final Mole Number Mole Fraction

NH3 0 X X/(3 − X)
N2 1 1 − 1

2
X (1 − 1

2
X)/(3 − X)

H2 1 1 − 3
2
X (1 − 3

2
X)/(3 − X)

Diluent 1 1 1/(3 − X)

Total 3 − X
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and

Ka =
X(3 − X)(

1 − 1

2
X

)1/2 (
1 − 3

2
X

)3/2 ( Prxn

1 bar

)

with Ka = 1.218 and Prxn = 4 bar. The solution is X = 0.4072, and

yNH3 = 0.157 yH2 = 0.1501
yN2 = 0.3072 yDil = 0.3857

c. As in part (a), we have

(
1

2

)1/2 (3

2

)3/2

Ka

(
Prxn

1 bar

)
=

X(2 − X)

(1 − X)2

since the equilibrium criterion
∑

νiGi = 0 holds for reactions at constant T and V , just
as it does for reactions at constant T and P (see Problem 8.4). Here, however, Prxn is not
fixed at 4 bar but depends on the number of moles of gas through the ideal gas law. Since
the volume and temperature are fixed,

Prxn =
Neq

N0

P0 =
2 − X

2
P0 = 2(2 − X) bar

where P0 is the initial-state pressure, 4 bar. Thus,

2

(
1

2

)1/2 (3

2

)3/2

Ka = 3.1645 =
X

(1 − X)2

since Ka = 1.218. This equation has the solution X = 0.5741, so that

yNH3 = 0.4206

P = 2.8519 bar and yN2 = 0.1494

yH2 = 0.4481

This solution should be compared with that obtained in part (a) for a reactor maintained at
constant pressure. Can you explain why these answers differ?

[
Using Aspen Plus R© and the folders Aspen Illustrations>Chapter 13>13.1-4a and 13.1-4b on

the Wiley website for this book for parts a an b respectively with argon to represent the inert
dilutent and the following results are obtained:

Part a: yNH3 = 0.4553, yN2 = 0.1362 and yH2 = 0.4085
Part b: yNH3 = 0.1554, yN2 = 0.3074, yH2 = 0.1521 and yAr = 0.3851

The results are given in the Excel spreadsheet Illus 13.1-4.xlsx in the previously mentioned
folder.

]
The algebra involved in solving for the molar extent of reaction in general chemical

equilibrium calculations can be tedious, especially if several reactions occur simultane-
ously, because of the coupled, nonlinear equations that arise. It is frequently possible,
however, to make judicious simplifications based on the magnitude of the equilibrium
constant. This is demonstrated in the next illustration.
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Illustration 13.1-5
Chemical Equilibrium at High Temperatures

At high temperatures, hydrogen sulfide dissociates into molecular hydrogen and sulfur:

2H2S = 2H2 + S2

At 700◦C all species are gases and the equilibrium constant for this reaction, Ka, is equal to
2.17×10−5, based on standard states of the pure gases at the reaction temperature and a pressure
of 1 bar.

a. Estimate the extent of dissociation of pure hydrogen sulfide at 700◦C and P = 1 bar.
b. Show that the extent of dissociation is proportional to P−1/3, and that if N moles of an

inert diluent are added to 1 mole of hydrogen sulfide,

X(with diluent)
X(without diluent)

= (1 + N)1/3

Solution

The starting point for the solution of this problem is the construction of a species balance table
relating the mole fractions of each species to the molar extent of reaction. For brevity, this table
is presented in a form that is applicable to parts (a) and (b) of this illustration.

Mole Fraction
Initial Number Final Number

Species of Moles of Moles N = 0 N 
= 0

H2S 1 1 − 2X (1 − 2X)/(1 + X) (1 − 2X)/(1 + X + N)
H2 0 2X 2X/(1 + X) 2X/(1 + X + N)
S2 0 X X/(1 + X) X/(1 + X + N)
Diluent N N

Total 1 + X + N

The chemical equilibrium relation is

Ka = 2.17 × 10−5 =
aS2a2

H2

a2
H2S

=
yS2y2

H2
(P/1 bar)

y2
H2S

=
4X3(P/1 bar)

(1 − 2X)2(1 + X + N)
(1)

since ai = yiP/(1 bar) for low-pressure gas mixtures. Because Ka is so small, we expect that
X � 1. Therefore, it is reasonable to assume that

1 − 2X ≈ 1

and

1 + X + N ≈ 1 + N

so that

4X3P

(1 − 2X)2(1 + X + N)
≈ 4X3P

(1 + N)
= 2.17 × 10−5

or

X =

(
2.17 × 10−5(1 + N)

4P

)1/3
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Thus, it is clear that the equilibrium extent of reaction X is proportional to P−1/3, and that

X(N 
= 0)

X(N = 0)
= (1 + N)1/3

At P = 1 bar and N = 0, we have

X =

(
2.17 × 10−5

4

)1/3

= 0.0176

so that the fraction of H2S dissociated, 2X/1, is equal to 0.035. (Had we not made the simplifi-
cation, the solution, by trial and error, would be X = 0.0173.)[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 13>13.1-5 on the Wiley web-

site for this book file that produces the following result for part a.

yH2S = 0.9443, yS = 0.0186 and yH2 = 0.0372 with X = 0.0189

Again, the difference in data banks result in the differences.
]

Comment

At high temperatures Ka can become large and we can expect X to be close to 0.5. In this case
we would assume that

1 + X + N ≈ 1.5 + N

so
X3 ≈ (0.5)3 = 0.125

However, (1−2X), which appears in the denominator of Eq. 1, cannot be set equal to zero since
the equilibrium relation is not satisfied in this case. Instead, at high temperatures (large values
of Ka) we obtain an estimate of X by solving the equation

(1 − 2X)2 ≈ 4(0.125)P

(1.5 + N)Ka

or

X ≈ 0.5 −
√

0.125P

(1.5 + N)Ka

A number of other equilibrium ratios that are more easily measured than Ka fre-
quently appear in the scientific literature—for example, the concentration equilibrium
ratio Kc, defined to be

Kc =
∏

i

Cνi
i (13.1-23a)

where Ci is the concentration of species i (in kmol/m3 or similar units); the mole frac-
tion equilibrium ratios

Kx =
∏

i

xνi
i and Ky =

∏
i

yνi
i (13.1-23b)

and the partial-pressure equilibrium ratio

Kp =
∏

i

P νi
i (13.1-23c)
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In Table 13.1-3 each of these quantities is related to the equilibrium constant Ka and
the quantities

Nonideal gas and
nonideal solution
contributions to
chemical equilibrium

Kν =
∏

i

(
f i

yiP

)νi

and Kγ =
∏

i

γνi
i (13.1-23d)

which account for gas-phase and solution nonidealities, respectively. [Note that if the
Lewis-Randall rule, f i(T,P, y) = yi fi(T,P ), is used, then

Kν =
∏

i

(
fi

P

)νi

(13.1-23e)

This approximate expression, together with Fig. 7.4-1 for f/P is useful for making
rapid estimates of the importance of gas-phase nonidealities.]

There are important differences between the true equilibrium constant Ka and the
equilibrium ratios defined here. First, Ka depends only on temperature and the stan-
dard states of the reactants and products; the equilibrium ratios, such as Kc, Kx, and
Ky, however, depend on mixture nonidealities (through Kν and Kγ) and on the to-
tal pressure or the total molar concentration. Consequently, while the thermodynamic
equilibrium constant Ka can be used to study the same reaction with different diluents
or solvents, the ratios Kc, Kx, and Ky have meaning only in the situation in which they
were obtained. Finally, Ka is nondimensional, whereas Kp has units of (pressure)

∑
νi

and Kc has units of (concentration)
∑

νi .

Illustration 13.1-6
Comparing Chemical Equilibrium Ratios

Compare the numerical values of Ka, Kp, and Ky for the ammonia production reaction of
Illustration 13.1-4 at P = 4 bar and T = 450 K.

Solution

From Illustration 13.1-4, Ka = 1.218 for the pure gas, T = 450 K, P = 1 bar standard state.
From Table 13.1-3,

Ka = 1.218 = (P = 1 bar)−
∑

νiKp =

(
P

P = 1 bar

)∑νi

Ky

where we have set Kν = 1. For the reaction being considered,

∑
νi = 1 − 1

2
− 3

2
= −1

so that

Kp =
PNH3

P
1/2
N2

P
3/2
H2

= Ka(1 bar)−1 = 1.218 bar−1

and

Ky = Ka

(
P

1 bar

)−
∑

νi

= 1.218

(
4

1

)1

= 4.872 (unitless)
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Table 13.1-3 Chemical Equilibrium Ratios

Gaseous Mixture at Moderate or High Density
Standard state: Pure gases at P = 1 bar

Ka =
∏
i

aνi
i =

∏
i

⎡
⎣yiP

(
f i

yiP

)
1 bar

⎤
⎦

νi

=
∏
i

⎡
⎣Pi

(
f i

yiP

)
1 bar

⎤
⎦

νi

=
∏
i

[
Piφi(T, P, y)

1 bar

]νi

= (1 bar)−
∑

νiKpKν =

(
P

1 bar

)∑νi

KyKν

Gaseous Mixture at Low Density
Standard state: State of unit activity(

f

P

)
∼= 1 Kν

∼= 1

and

Ka = (1 bar)−
∑

νiKp =

(
P

1 bar

)∑νi

Ky

Liquid Mixture
Standard state: State of unit activity*

Ka =
∏
i

aνi
i =

∏
i

(xiγi)
νi = KxKγ

Using xi = Ci/C, where Ci is the molar concentration of species i, and C is the total molar
concentration of the mixture, we have

Ka =
∏
i

(xiγi)
νi =

∏
i

(
Ci

C
γi

)νi

= C−
∑

νiKcKγ

For an ideal mixture γi = 1, and
Ka = C−

∑
νiKc

Standard state: Ideal 1-molal solution

Ka =
∏
i

aνi
i =

∏
i

(
Miγ

�	
i

M = 1

)νi

= (M = 1)−
∑

νi
∏
i

(
Miγ

�	
i

)νi

For an ideal mixture γ�	
i = 1, and

Ka = (M = 1)−
∑

νi
∏
i

(Mi)
νi

*The expressions here have been written assuming that the standard state of each component is the pure
component state or the ideal 1-molal state. Analogous expressions can be written using the other of the
Henry’s law standard states for each component or, more generally, for the case in which the standard state
for some species in the reaction is the pure component state and for others it is the infinite-dilution or ideal 1
molal state. One has to be careful to be consistent in that the standard state for the Gibbs energy of formation
used for each component in the computation of the chemical equilibrium constant must also be considered
to be the state of unit activity of each component.
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The prediction of the reaction equilibrium state for nonideal gas-phase reactions
is more complicated than for ideal gas-phase reactions. This is demonstrated in the
following two illustrations, which show that there is an effect of pressure on reaction
equilibrium due to gas-phase nonideality (as a result of the fugacity coefficient ratio
Kν), in addition to the primary pressure effect that was shown in Illustration 13.1-3
when there is a mole number change.

Illustration 13.1-7
Effect of Pressure on an Ideal Gas-Phase Chemical Equilibrium

Compute the equilibrium mole fraction of each of the species in the gas-phase reaction

CO2 + H2 = CO + H2O

at 1000 K and (a) 1 bar total pressure and (b) 500 atm (506.7 bar) total pressure. The equilibrium
constant for this reaction Ka experimentally has been found to be equal to 0.693 at 1000 K
(standard state is the pure gases at T = 1000 K, P = 1 bar), and initially there are equal
amounts of carbon dioxide and hydrogen present.

Solution

For this reaction, we have

Ka = 0.693 =
aCOaH2O

aCO2aH2

=
yCOyH2O

yCO2yH2

×

(
fCO

yCOP

)(
fH2O

yH2OP

)
(

fCO2

yCO2P

)(
fH2

yH2P

) ×
(

P

1 bar

)∑νi

= KyKν

(
P

1 bar

)∑νi

Since
∑

νi = 0, there is no primary effect of pressure on the extent of reaction; there is, however,
a secondary effect through the pressure dependence of Kν . Eliminating the species mole fractions
in terms of the extent of reaction, we obtain

Initial Mole Numbers Final Mole Numbers Mole Fractions

CO2 1 1 − X (1 − X)/2
H2 1 1 − X (1 − X)/2
CO 0 X X/2
H2O 0 X X/2

Total 2

and

Ka = 0.693 =
X2

(1 − X)2
Kν

a. At 1 bar Kν = 1, so that to predict the equilibrium state we need to solve

0.693 = X2/(1 − X)2

The solution to this equation is X = 0.4543, so that

yCO = yH2O = 0.227 and yCO2 = yH2 = 0.273
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b. At 506.7 bar, Kν cannot be assumed to be equal to unity since each of the fugacity coef-
ficients will have values different from unity; instead, the value of Kν will be computed
by using the Peng-Robinson equation of state to calculate each of the fugacity coefficients.
However, since, in the fugacity coefficient calculation, the mole fractions are needed (first
to compute the a and b parameters in the mixture, and then for evaluation of the fugacity
coefficients after the compressibility factor has been found), the computation of the equi-
librium state will be iterative. That is, a value of Kν will be assumed (unity for the first
iteration), and the equilibrium compositions will be computed. The mole fractions that
result will then be used in the Peng-Robinson equation to compute the species fugacity
coefficients and a new value of Kν , which is then used to compute new equilibrium mole
fractions. This procedure is repeated until the calculation has converged. The final result is(

f

yP

)
H2O

= 0.9606

(
f

yP

)
CO

= 1.1805

(
f

yP

)
CO2

= 1.1283

(
f

yP

)
H2

= 1.0992

and
Kν = 0.9144

Thus X = 0.4654, so that

yCO = yH2 = 0.2327 and yCO2 = yH2O = 0.2673

which differs slightly from the low-pressure result. Note that
∏

i P
νi = P

∑
i νi is equal to

unity for the reaction being considered since
∑

νi = 0. Therefore, for this reaction, largely
because the pressures are not very high, the effect of this gas-phase nonideality is not very
large. The only effect of pressure on this reaction equilibrium is as a result of gas-phase
nonidealities. Such an effect may be much smaller than the direct effect of pressure when∑

νi 
= 0 (and
∏

i P
νi 
= 1), as found in Illustration 13.1-4.[

Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 13>13.1-7 on the Wiley
website for this book produces the following results:

Part a: yCO = yH2O = 0.2267, and yCO2 = yH2 = 0.2733

Part b: yCO = yH2O = 0.2324, and yCO2 = yH2 = 0.2676.
]

The following illustration is an example of a reaction in which the effect of gas-phase
nonideality is of greater importance.

Illustration 13.1-8
Calculation of High-Pressure Chemical Equilibrium

The nitrogen fixation reaction to form ammonia, considered in Illustration 13.1-4, is run at higher
temperatures in commercial reactors to take advantage of the faster reaction rates. However, since
the reaction is exothermic, at a fixed pressure the equilibrium conversion (extent of reaction)
decreases with increasing temperature. To overcome this, commercial reactors are operated at
high pressures. The operating range of commercial reactors is pressures of about 350 bar and
temperatures from 350◦C to 600◦C.

In trying to find the economically optimal operating conditions for design, it is frequently
necessary to consider a wide range of conditions. Therefore, determine the equilibrium extent
of reaction over the temperature range of 500 to 800 K and the pressure range from 1 bar to
1000 bar.
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Solution

The equilibrium constant for this reaction over the temperature range can be computed using the
programs in Appendix B.I or B.II, or manually using the data in Appendix A. The result is

T (K) Ka

500 0.258
600 0.02946
700 0.005754
800 0.001595

The equilibrium relationship is

Ka =
aNH3

a
1/2
N2

a
3/2
H2

=

yNH3

(
Prxn

1 bar

)
φNH3[

yN2

(
Prxn

1 bar

)
φN2

]1/2 [
yH2

(
Prxn

1 bar

)
φH2

]3/2

or

Ka =
yNH3

y
1/2
N2

y
3/2
H2

(
Prxn

1 bar

) φNH3

φ
1/2
N2

φ
3/2
H2

=
yNH3

y
1/2
N2

y
3/2
H2

(
Prxn

1 bar

)Kν

where φi is the fugacity coefficient of species i in the mixture, and Kν is the product of the
species fugacity coefficients to the power of their stoichiometric coefficients.

Using the same feed as in Illustration 13.1-4, the equation to be solved is

Ka =
X(2 − X)[

1

2
(1 − X)

]1/2 [3

2
(1 − X)

]3/2 Prxn

1 bar

Kν

The difficulty in solving this equation is that the fugacity coefficients, and therefore Kν (com-
puted using, for example, the Peng-Robinson equation of state), depend upon the mole fractions
that must be obtained from the equilibrium relation. Consequently, the calculation is a compli-
cated, iterative one. The results obtained using a specially prepared MATHCAD worksheet are
shown in Figures 1 and 2.[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 13>13.1-8 on the Wiley

website for this book at a collection of temperatures and pressures produces the results in the
Excel spreadsheet Illus 13.1-8.xlsx in that folder. These results use the Peng-Robinson equation
of state. For comparisons, there is also the high pressure results using the ideal gas equation of
state.

]

Comments

There are several things to be noted from these figures. The first is that at any temperature, the
equilibrium extent of reaction increases rapidly with increasing pressure. Second, at any pressure,
the equilibrium conversion decreases with increasing temperature. Next, the fugacity ratio Kν

can be quite small in value at high pressures, especially at low temperatures. Consequently, the
gas-phase nonidealities have an important effect on the equilibrium conversion. This is evident
in Figure 2, which shows the equilibrium extent of reaction versus temperature and pressure, and
where we have also plotted the ideal gas results (Kν = 1) at 500 and 800 K.
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Figure 2 Extent of reaction versus pressure at several temperatures.

The discussion so far has been restricted to gas-phase reactions. One reason for this
is that a large number of reactions, including many high-temperature reactions (except
metallurgical reactions), occur in the gas phase. Also, the identification of the equi-
librium state is easiest for gases, as nonidealities are generally less important than in
liquid-phase reactions. However, many reactions of interest to engineers occur in the
liquid phase. The prediction of the equilibrium state in such cases can be complicated if
the only information available is Ka or ΔrxnG◦, since liquid solutions are rarely ideal,
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so that Kγ will not be unity. Furthermore, some liquid-phase reactions, especially those
in aqueous solution, involve dissociation of the reactants into ions (which form highly
nonideal solutions), and then reaction of the ions (see Illustration 13.1-10).

Consequently, for many liquid-phase reactions one is more likely to use experimental
measurements of the equilibrium concentration ratio

Kc =
∏

i

Cνi
i = C

∑
νiKa/Kγ (13.1-24)

if such data are available, than try to calculate the equilibrium state from Ka or Gibbs
energy of formation data. However, the equilibrium ratio Kc is a function of the sol-
vent and reactant concentrations, both through the C

∑
νi term and the activity coeffi-

cient ratio Kγ . Therefore, at a given temperature and pressure, several values of Kc may
be given, each corresponding to different solvents or molar concentrations of reactants
and diluents. (Frequently, as in Illustration 13.1-10, we will be satisfied with relating
the value of Kc in one solution to its value in another, rather than trying to predict its
value a priori.)

Given a value of Kc for the reaction conditions of interest, equilibrium calculations
for liquid-phase reactions become straightforward, as indicated next.

Illustration 13.1-9
Chemical Equilibrium in a Liquid Mixture

The ester ethyl acetate is produced by the reaction

CH3COOH + C2H5OH = CH3COOC2H5 + H2O

In aqueous solution at 100◦C, the equilibrium ratio Kc for this reaction is 2.92 (which is unit-
less since

∑
νi = 0). We will assume that the value of Kc is independent of concentration.

Compute the equilibrium concentrations of each species in an aqueous solution that initially
contains 250 kg of acetic acid and 500 kg of ethyl alcohol in each 1 m3 of solution. The density
of the solution may be assumed to be constant and equal to 1040 kg/m3.

Solution

The initial concentration of each species is

CA =
250 kg/m3

60 g/mol
= 4.17 kmol/m3

CE =
500 kg/m3

46 g/mol
= 10.9 kmol/m3

CW =
(1040 − 250 − 500) kg/m3

18 g/mol
= 16.1 kmol/m3

and the concentration of each species at an extent of reaction X̂, in units of kmol/m3, is

CA = 4.17 − X̂

CE = 10.9 − X̂

CW = 16.1 + X̂

CEA = X̂

Therefore, at equilibrium, we have

Kc = 2.92 =
(16.1 + X̂)X̂

(10.9 − X̂)(4.17 − X̂)
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This equation has the solution X̂∗ = 2.39 kmol/m3, so that

CA = 1.78 kmol/m3

CE = 8.51 kmol/m3

CW = 18.49 kmol/m3

CEA = 2.39 kmol/m3

Consequently, 57.3 percent of the acid has reacted at equilibrium. (Also see Aspen Illustrations>
Chapter 13>13.1-9 on the website for this book for a solution).

The partial ionization of weak acids, bases, and salts in solution, most commonly in
aqueous solution, can be considered to be a chemical equilibrium process. Examples
include the ionization of acetic acid,

CH3COOH = CH3COO− + H+

the ionization of water,
H2O = H+ + OH−

and the dissociation of organic acids and alcohols. In the discussion here the ionization
reaction will be designated as

Aν+Bν− = ν+Az+ + ν−Bz− (13.1-25)

where ν+ and ν− are the stoichiometric coefficients of the cation and anion, respec-
tively, and z+ and z− are their valences.

The chemical equilibrium relation for this reaction is

Ka = exp
[
− 1

RT
{ν+ΔfG

◦
Az+ (ideal 1-molal solution)

+ ν−ΔfG
◦
Bz− (ideal 1-molal solution)

− ΔfG
◦
Aν+Bν−

(ideal 1-molal solution)}
]

=
a

ν+

Az+aν−
Bz+

aAν+Bν−
=

(
MAz+γ�	

Az+

1 molal

)ν+
(

MBz−γ�	
Bz−

1 molal

)ν−

(
MAν+Bν−γ�	

Aν+Bν−

1 molal

)

Chemical equilibrium
constant for an ionic
dissociation reaction Ka =

(
MAz+

1 molal

)ν+
(

MBz−

1 molal

)ν−
(γ±)ν++ν−

(
MAν+Bν−γ�	

Aν+Bν−

1 molal

) (13.1-26)

Here the standard state for the ionic species is a 1-molal ideal solution; the enthalpies
and Gibbs energies of formation for some ions in this standard state at 25◦C are given
in Table 13.1-4. In Eq. 13.1-27 the standard state for the undissociated molecule has
also been chosen to be the ideal 1-molal solution (see Eq. 9.7-20), although the pure
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Table 13.1-4 The Heats and Gibbs Energies of Formation for Ions in an Ideal 1-Molal
Solution at 25◦C

Ion ΔfH
◦ (kJ/mol) ΔfG

◦ (kJ/mol) Ion ΔfH
◦ (kJ/mol) ΔfG

◦ (kJ/mol)

Ag+ 105.90 77.11 K+ −251.21 −282.28
Al+++ 5470.33 Li+ −278.40 −293.80
Ba++ −538.36 −560.66 Mg++ −461.96 −456.01
Ca++ −542.96 −553.04 Mn++ −218.82 −223.43
Cl− −167.46 −131.17 Na+ −239.66 −261.88
Cs+ −247.69 −282.04 NH+

4 −132.80 −79.50
Cu+ 51.88 50.21 Ni++ −64.02 −46.44
Cu++ 64.39 64.98 OH− −229.94 −157.30
F− −329.11 −276.48 Pb++ 1.63 −24.31
Fe++ −87.86 −84.94 SO−−

3 −624.25 −497.06
Fe+++ −47.70 −10.54 SO−−

4 −907.51 −741.99
Hg++ 164.77 Sr++ −545.51 −557.31
HSO−

3 −627.98 −527.31 Tl+ 5.77 −32.45
HSO−

4 −885.75 −752.87 Tl+++ 115.90 209.2
I− −55.94 −51.67 Zn++ −152.42 −147.21

Source: Based on data in G. N. Lewis, M. Randall, K. S. Pitzer, and L. Brewer, Thermodynamics, 2nd ed.,
McGraw-Hill, New York (1961).

component state could have been used as well (with appropriate changes in ΔfG
◦
Aν+Bν−

and aAν+Bν−). Finally, we have used the mean molal activity coefficient, γ±, of
Eq. 9.10-11. Also remember that for the 1-molal standard state, γ�	 → 1 as the so-
lution becomes very dilute in the component.

From the electrical conductance measurements it is possible to determine the
total ionic concentration in a solution of a weak electrolyte and thus calculate the
degree of ionization. This information is usually summarized in terms of the equilibrium
concentration ratio

Kc =
(CAz+ )ν+(CBz− )ν−

CAν+Bν−
(13.1-27)

Historically, the equilibrium ratio Kc for ionization reactions has been called the ion-
ization constant or the dissociation constant; clearly, its value will depend on both
the total electrolyte concentration and the solvent.

Comparing Eqs. 13.1-27 and 13.1-28, and neglecting the difference between concen-
tration and molality, yields

Kc = Ka

(
γ�	

Aν+Bν−

(γ±)ν++ν−

)
(1 molal)ν++ν−−1 (13.1-28)

Generally, we will be interested in very dilute solutions, so that γ�	
Aν+Bν−

can be taken

to unity. Also, we define an equilibrium constant K◦
c by

K◦
c = Ka(1 molal)ν++ν−−1 (13.1-29)

and obtain

lnKc = lnK◦
c − (ν+ + ν−) ln γ± (13.1-30)
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(Note that K◦
c would be the ionization constant if the ions formed an ideal solution.)

Depending on the total ionic strength of the solution, one of Eqs. 9.10-15, 9.10-17,
9.10-18, or 9.10-19 will be used to compute ln γ±. At very low ionic strengths, the
Debye-Hückel relation applies so that

Simplified equation for
the variation of the
chemical equilibrium
constant with ionic
strength

lnKc = lnK◦
c + (ν+ + ν−)|z+z−|α

√
I (13.1-31)

where α is given in Table 9.10-1 and the ionic strength I is

I =
1
2

∑
ions

z2
i Mi

The important feature of Eq. 13.1-31 is that it can be used to predict the ionization
constant of a molecule when data on the Gibbs energy of formation of its ion fragments
are available (so that Ka and K◦

c can be computed), or, when such data are not available,
it can at least be used to interrelate the ionization constants for the same molecule at
different ionic strengths, as in Illustration 13.1-10.

Illustration 13.1-10
Calculation of the Chemical Equilibrium Constant for an Ionic Dissociation Reaction From
Concentration Data

MacInnes and Shedlovsky [J. Am. Chem. Soc., 54, 1429 (1932)] report the following data for the
ionization of acetic acid in water at 25◦C:

Total Amount of Acetic Acid Added, CH3COO− Concentration,
CT, kmol/m3 kmol/m3

0.028 × 10−3 0.1511 × 10−4

0.1532 × 10−3 0.4405 × 10−4

1.0283 × 10−3 1.273 × 10−4

2.4140 × 10−3 2.001 × 10−4

5.9115 × 10−3 3.139 × 10−4

20.000 × 10−3 5.975 × 10−4

Establish that, at low acetic acid concentrations, these data satisfy Eq. 13.1-32, and compute K◦
c

and the standard Gibbs energy change for this reaction.

Solution

The ionization reaction is

CH3COOH = CH3COO− + H+

so that ν+ = ν− = 1, z+ = 1, z− = −1 and

ln Kc = ln K◦
c + 2.356

√
I

Also, CH+ = CCH3COO− , CCH3COOH = CT − CCH3COO− , and

I =
1

2

∑
z2
i Ci =

1

2
{CH+ + CCH3COO−} = CCH3COO−



766 Chapter 13: Chemical Equilibrium

0 5 10 15 20 25 x 10 –3

I,  (kmol/m3)1/2

–10.96

–10.94

–10.92

–10.90

ln
 K

c
Figure 13.1-3 ln Kc versus

√
I for the dissociation of acetic acid.

The dissociation constant Kc is related to ionic strength as follows

Kc =
CCH3COO−CH+

CCH3COOH

=
(CCH3COO−)2

CT − CCH3COO−
=

I2

CT − I

The dissociation constant and ionic strength are tabulated and plotted here:

Total Amount of
Acetic Acid Added I = CCH3COO−

CT, kmol/m3 kmol/m3 Kc ln Kc

0.028 × 10−3 0.1511 × 10−4 1.768 × 10−5 −10.943
0.1532 × 10−3 0.4405 × 10−4 1.778 × 10−5 −10.938
1.0283 × 10−3 1.273 × 10−4 1.799 × 10−5 −10.926
2.4140 × 10−3 2.001 × 10−4 1.809 × 10−5 −10.920
5.9115 × 10−3 3.193 × 10−4 1.823 × 10−5 −10.912
20.000 × 10−3 5.975 × 10−4 1.840 × 10−5 −10.903

From Fig. 13.1-3 we see that Eq. 13.1-32 does fit the low-ionic-strength data well, and that
ln K◦

c = −10.9515. Thus, K◦
c = 1.753 × 10−5 kmol/m3 and Ka = 1.753 × 10−5. Finally, since

ΔrxnG◦ = −RT ln Ka, we have that at 25◦C

ΔrxnG◦ = GCH3COO− (ideal 1 molal solution) + GH+ (ideal 1 molal solution)

− GCH3COOH(ideal 1 molal solution) = 27.15 kJ/mol

Before leaving the subject of ionization equilibrium in electrolyte solutions, it is use-
ful to note that the total Gibbs energy of a partially ionized electrolyte in a solvent is

G = NSGS + NABGAB + NAB,DGAB,D (9.10-8)

where GAB,D is given by Eq. 9.10-14. To find the equilibrium degree of dissociation
(or ionization) at fixed temperature, pressure, and number of moles of solvent, for which
the total Gibbs energy is a minimum, we start from

dG = GS dNS + GAB dNAB + GAB,D dNAB,D
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(since NS dGS + NAB dGAB + NAB,D dGAB,D = 0 by the Gibbs-Duhem equation)
and set

(
∂G

∂NAB

)
T,P,NS

= 0 = GAB

(
∂NAB

∂NAB

)
T,P,NS

+ GAB,D

(
∂NAB,D

∂NAB

)
T,P,NS

However, NAB,D = N ◦
AB − NAB, where N ◦

AB is the initial fixed amount of the elec-
trolyte AB added to the solution. Therefore,(

∂NAB

∂NAB

)
T,P,NS

= 1 and
(

∂NAB,D

∂NAB

)
T,P,NS

=
(

∂ (N ◦
AB − NAB)
∂NAB

)
T,P,NS

= −1

and we obtain

0 = GAB − GAB,D or GAB = GAB,D

That is, the partial molar Gibbs energy of the undissociated salt is equal to, and can be
computed from, that of the dissociated ions in solution:

GAB(undissociated salt) = G�	
AB,D + νRT ln[(M±γ±)/(M = 1)] (13.1-32)

Finally, a complete chemical equilibrium stability analysis is beyond the scope of
this book.2 It is useful to note, however, that generally states of chemical equilibrium
are thermodynamically stable in that if a small change is made in the value of a state
variable or constraint on the system, the equilibrium will shift, but it will return to its
previous state, after sufficient time, if the altered state variable or constraint is restored
to its initial value. By direct calculation involving either the equilibrium constant (for
changes in temperature), activities (for changes in pressure and species concentration),
or the system constraints, we can determine the shift in the equilibrium state in response
to any external change. For example, Illustration 13.1-3 shows that both the equilib-
rium constant Ka and the molar extent of reaction X increase with increasing tempera-
ture for an endothermic (ΔrxnH > 0) reaction, whereas Illustration 13.1-4 shows that
Ka decreases with increasing temperature for an exothermic (ΔrxnH < 0) reaction.
Illustration 13.1-3 can also be interpreted as demonstrating that an increase in pressure
decreases the extent of reaction for a reaction in which ΔrxnV is positive, and would
increase X if ΔrxnV were negative (note that in an ideal gas phase reaction ΔrxnV is
proportional to Σνi). Adding an inert diluent to a reaction at constant temperature and
pressure reduces the concentration of the reactant species, and its effect can be found
accordingly. (In a gas-phase reaction the partial pressure of each species is reduced,
so that the direction of the shift in equilibrium is the same as that which accompanies
a reduction in total pressure.) Adding a diluent at constant temperature and volume,
however, has no effect on the equilibrium, except through mixture nonidealities.

These observations and others on the direction of the shift in equilibrium in response
to a given change are usually summarized by a statement referred to as the Principle

2See Chapter 9 of Thermodynamics and Its Applications, 2nd ed., by M. Modell and R. C. Reid, Prentice Hall,
Englewood Cliffs, N.J., 1983; and Chemical Thermodynamics, by I. Prigogine and R. Defay (transl. by D. H.
Everett), Longmans Green, New York, 1954.
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of Le Chatelier3 and Braun4 (but also known as the Principle of Moderation or the
Principle of Spite5):

A system in chemical equilibrium responds to an imposed change in any of
the factors governing the equilibrium (for example, temperature, pressure, or
the concentration of one of the species) in such a way that, had this same re-
sponse occurred without the imposed variation, the factor would have changed
in the opposite direction.

Although this simple statement is a good rule of thumb for inferring the effects of
changes in an equilibrium system, it is not universally valid, and exceptions to it do
occur (Problem 13.17). A more general, universally valid statement of this principle
is best given within the context of a complete thermodynamic stability analysis for a
multicomponent reacting system. For many situations, however, it may be more useful,
and even more expeditious, to ascertain the equilibrium shift by direct computation of
the new equilibrium state, rather than merely surmising the direction of that shift from
a detailed stability analysis.

13.2 HETEROGENEOUS CHEMICAL REACTIONS

The discussion of the previous section was concerned with chemical reactions that
occur in a single phase. Here our interest is with reactions that occur among species
in different phases but that do not involve combined chemical and phase equilibrium.
Examples of such reactions are

CaF2(s, fluorspar) + H2SO4(l, pure) → CaSO4(s) + 2HF(g) (13.2-1)
CH4 → C(s) + 2H2 (13.2-2)

and
CaCO3(s) → CaO(s) + CO2 (13.2-3)

where s, l, and g indicate the solid, liquid, and gas phases, respectively. In the first of
these reactions, the solubility of hydrogen fluoride in sulfuric acid is negligible, and
in all these reactions the gaseous and solid species can be considered to be mutually
insoluble. Consequently, the determination of the equilibrium state for each of these
systems involves considerations of chemical, but not phase, equilibrium.

The most important characteristic that differentiates these heterogeneous reactions
from the homogeneous reactions considered in the previous section is that in the calcu-
lation of the equilibrium state for heterogeneous reactions, the activity of each species
is affected by either dilution or mixture nonideality only by other components that
appear in the same phase. Thus, to analyze the production of hydrogen fluoride gas by
the reaction of Eq. 13.2-1, we have

Ka =
aCaSO4a

2
HF

aCaF2aH2SO4

which, at low pressures and using the 1 bar pure component gaseous standard state for
HF, the pure component liquid standard state for H2SO4, and the pure component solid

3H. Le Chatelier, “Recherches sur les equilibres chimique,” Annales des mines, 13, 200 (1888).
4F. Braun, Z. Phys. Chem., 1, 259 (1887).
5This term was used by J. Kestin in A Course in Thermodynamics, vol. 2, John Wiley & Sons, New York (1968),
p. 304.
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standard states for CaF2 and CaSO4, reduces to

Ka =
(

yHFP

1 bar

)2

=
(

PHF

1 bar

)2

since the activities of the pure liquid (H2SO4) and the unmixed solids (CaSO4 and
CaF2) are each unity (see Table 13.1-2), and

aHF =
yHFP

(P = 1 bar)

Thus the equilibrium pressure of hydrogen fluoride is easily calculated—clearly much
more easily than if all reaction species were present in the same phase.

Illustration 13.2-1
Calculation of Chemical Equilibrium for a Reaction Involving a Gas and a Solid

Carbon black is to be produced from methane in a reactor maintained at a pressure of 1 bar
and a temperature of 700◦C (the reaction of Eq. 13.2-2). Compute the equilibrium gas-phase
conversion and the fraction of pure methane charged that is reacted. The equilibrium constant
Ka for this reaction at T = 700◦C is 7.403 based on the pure component standard states (gaseous
for CH4 and H2, and solid for C) at the temperature of the reaction and 1 bar.

Solution

Basis of the calculation: 1 mole of methane

Present in Gas-Phase
Species Initial Amount Final Amount Gas Phase Mole Fraction

CH4 1 1 − X 1 − X (1 − X)/(1 + X)
C 0 X
H2 0 2X 2X (2X)/(1 + X)

Total 1 + X

Thus

Ka = 7.403 =
aCa2

H2

aCH4

=
y2
H2

yCH4

=
(2X)2

(1 + X)(1 − X)

since the activity of solid carbon is unity and therefore does not appear in the equilibrium calcu-
lation. Also, the reaction and standard-state pressures are both 1 bar. Therefore,

X =

√
Ka

4 + Ka

= 0.806 and
yCH4 = 0.108
yH2 = 0.892

[
Using Aspen Plus R© and the folder Aspen Illustrations>Chapter 13>13.2-1 on the Wiley web-

site for this book produces the following result

X = 0.824, yCH4 = 0.09635 and yH2 = 0.90365.
]

An important observation from the equilibrium calculation just performed, or, for that
matter, of any chemical equilibrium calculation in which both reactants and products
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appear in the same gaseous or liquid phase, is that the reaction will not go to com-
pletion (i.e., completely consume one of the reacting species) unless Ka is infinite.
This is because of the contribution to the total Gibbs energy from the Gibbs energy
of mixing reactant and product species, as was the case in homogeneous liquid- or
gas-phase chemical reactions (see Sec. 13.1 and Fig. 13.1-1).

The decomposition of calcium carbonate (Eq. 13.2-3), or any other reaction in which
the reaction products and reactants do not mix in the gas or liquid phase, represents
a fundamentally different situation from that just considered, and such a reaction may
go to completion. To see why this occurs, consider the reaction of Eq. 13.2-3 in a con-
stant temperature and constant pressure reaction vessel, and let NCaCO3,0 and NCO2,0

represent the number of moles of calcium carbonate and carbon dioxide, respectively,
before the decomposition has started. Also, since none of the species in the reaction
mixes with the others, we use pure component molar than partial molar Gibbs energies
in the analysis. Then,⎛
⎝Initial Gibbs

energy of
the system

⎞
⎠ = G0 = NCaCO3,0GCaCO3,0(T,P ) + NCO2,0GCO2,0(T,P )

and⎛
⎝ Gibbs energy of

the system at molar
extent of reaction X

⎞
⎠ = (NCaCO3,0 − X)GCaCO3

(T,P ) + XGCaO(T,P )

+ (NCO2,0 + X)GCO2
(T,P )

= G0 + X
∑

νiGi

= G0 + X

{
ΔrxnG

◦ + RT ln
(

PCO2

P = 1 bar

)}
(13.2-4)

where ΔrxnG◦ is the standard-state Gibbs energy change of reaction, that is, the Gibbs
energy change if the reaction took place between the pure components at the tempera-
ture T and a pressure of 1 bar. Notice that the actual (not standard state) Gibbs energy is
a function of the molar extent of reaction both explicitly and, since the system is closed
and the CO2 partial pressure depends on X , implicitly.

If the initial partial pressure of carbon dioxide is so low that

ΔrxnG
◦ + RT ln

(
PCO2

P = 1 bar

)
< 0

the minimum value of the total Gibbs energy of the system occurs when enough calcium
carbonate has decomposed to raise the partial pressure of carbon dioxide so that

ΔrxnG
◦ + RT ln

(
PCO2

P = 1 bar

)
= 0

or, if there is insufficient calcium carbonate present to do this, when all the calcium
carbonate has been consumed and the reaction has gone to completion (i.e., X =
NCaCO3). That is, if

−ΔrxnG◦

RT
> ln

(
PCO2

P = 1 bar

)
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or, equivalently, if

Ka = exp
(
−ΔrxnG◦

RT

)
> aCO2

where aCO2 = PCO2/1 bar, the reaction will proceed as written until either the equi-
librium partial pressure of CO2 is achieved or all the calcium carbonate is consumed,
whichever occurs first.

On the other hand, if initially PCO2 is so large that

ΔrxnG
◦ + RT ln

(
PCO2

P = 1 bar

)
> 0

or

Ka = exp
{
−ΔrxnG◦

RT

}
< aCO2

the minimum Gibbs energy occurs when X = 0 (i.e., when there is no decomposition
of calcium carbonate). In systems containing both CaCO3 and CaO, when the partial
pressure of carbon dioxide is such that

Ka = aCO2 =
{

PCO2

P = 1 bar

}
equilibrium is achieved; that is, calcium carbonate will neither decompose to, nor be
formed from, calcium oxide.

These various possibilities are shown in Fig. 13.2-1, where we plot, as a function of
the imposed partial pressure of carbon dioxide, the quantity

ΔG =

⎛
⎝ Gibbs energy of

system at molar extent
of reaction X

⎞
⎠−

(
Initial Gibbs

energy of system

)

=
[
G0 + X

{
ΔrxnG

◦ + RT ln
(

PCO2

P = 1 bar

)}]
− G0

= X

{
ΔrxnG

◦ + RT ln
(

PCO2

P = 1 bar

)}
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Figure 13.2-1 Gibbs energy change for the heterogeneous reaction CaCO3 → CaO + CO2 as
a function of extent of reaction at T = 1200 K.
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at T = 1200 K. At this temperature ΔrxnG◦ = −8706 J/mol (see Illustration 13.2-2).
In Fig. 13.2-1 we see that for carbon dioxide partial pressures of less than 2.393 bar,
the Gibbs energy change on reaction and the system Gibbs energy decrease as the
molar extent of reaction increases. Therefore, the reaction will proceed until all the
calcium carbonate decomposes to calcium oxide. Conversely, for carbon dioxide par-
tial pressures above 2.393 bar, the Gibbs energy change on reaction and the system
Gibbs energy increase as the reaction proceeds. Therefore, the state of minimum Gibbs
energy of the system, which is the equilibrium state, is when X = 0 and no dissociation
of the calcium carbonate occurs. However, if the partial pressure of carbon dioxide is
maintained exactly at 2.393 bar and the system temperature at 1200 K, there is no Gibbs
energy change on reaction, and any extent of reaction is allowed. Thus, independent of
whether the reaction cell, because of previous history, contained calcium carbonate in
an undecomposed or partially or fully decomposed state, that state would remain, as
there is no driving force for change. (You should compare Figs. 13.1-1 and 13.2-1 and
understand the differences between the two.)

The equilibrium partial pressure of a gaseous species that results from the
dissociation of a solid is called the decomposition pressure of the solid. In the
foregoing discussion, this is 2.393 bar for calcium carbonate at 1200 K. As is evident
from Illustration 13.2-2, the decomposition pressure of a solid is a strong function of
temperature.

Illustration 13.2-2
Calculation of the Decomposition Pressure of a Solid

Compute the decomposition pressure of calcium carbonate over the temperature range of 298.15
K to 1400 K.
Data:

CP,CaCO3 = 82.34 + 0.049 75T − 1 287 000/T 2

CP,CaO = 41.84 + 0.020 25T − 451 870/T 2

J

mol K

Solution

From the preceding discussion, we have

Ka = aCO2 = PCO2/(P = 1 bar)

so that here the calculation of the decomposition pressure, PCO2 , is equivalent to the calculation
of the equilibrium constant as a function of temperature. From Appendix A.IV, we have

ΔG◦(T = 25◦C) =
∑

νiΔfG
◦
i = 130.40 kJ/mol

and

Ka(T = 25◦C) = exp

{
− 130 401 J/mol

8.314 J/mol K × 298.15 K

}
= 1.424 × 10−23

To calculate the equilibrium constant at other temperatures, Eq. 13.1-23b and the heat capacity
data given in this problem and in Appendix A.II are used. The results for both the equilibrium
constant and the decomposition pressure are:
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T (K) Ka PCO2 (bar) ΔrxnG◦ (kJ)

298.15 1.424 × 10−23 1.424 × 10−23 130.401
400 1.259 × 10−15 1.259 × 10−15 114.095
600 6.538 × 10−8 6.538 × 10−8 82.524
800 4.313 × 10−4 4.313 × 10−4 51.539

1000 0.0788 0.0788 21.122
1200 2.393 2.393 −8.706
1400 25.959 25.959 −37.905

Note that the decomposition pressure changes by 25 orders of magnitude over the temperature
range. Also, as seen in the figure, the plot of ln Ka versus reciprocal temperature is almost a
straight line.
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Another example of heterogeneous chemical equilibrium is the dissolution and
dissociation of a weak salt in solution, most commonly aqueous solution. This process
can be represented as

Aν+Bν−(s) = ν+Az+(aq) + ν−Bz−(aq)

where the notation (s) and (aq) indicate solid and aqueous solution, respectively, and
z+ and z− are the valences of the cation and anion. The equilibrium relation for this
ionization process is

Ka = exp
[
− 1

RT
{ν+ΔfG

◦
Az+ (ideal, 1 molal)

+ ν−ΔfG
◦
Bz− (ideal, 1 molal) −ΔfG

◦
Aν+Bν−

(solid)}
]

=
(aAz+ )ν+(aBz− )ν−

(aAν+Bν− )
= (aAz+ )ν+(aBz− )ν−

=
(MAz+γ�	

Az+ )(MBz−γ�	
Bz− )ν−

(M = 1 molal)ν++ν−
=

(MAz+ )ν+(MBz− )ν−γ
(ν++ν−)
±

(M = 1 molal)ν++ν−

(13.2-5)
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since aAν+Bν− , the activity of the pure, undissociated solid is unity, and we have taken
the standard state of the ions to be an ideal 1-molal solution. Also, the mean ionic
activity coefficient, discussed in Sec. 9.10, has been used.

Common notation is to define the solubility product Ks by

Definition of the
solubility product

Ks = (CAz+ )ν+(CBz− )ν−

so that Ks and Ka are related as follows:6

Ka = Ksγ
(ν++ν−)
± /(M = 1 molal)(ν++ν−)

or
Ks = Ka(M = 1 molal)(ν++ν−)/γ

(ν++ν−)
±

If we now define K◦
s to be the solubility in an ideal solution, we have

K◦
s = Ka(M = 1 molal)(ν++ν−)

and

Ks = K◦
s/γ

(ν++ν−)
±

or

lnKs = lnK◦
s − (ν+ + ν−) ln γ± (13.2-6)

where one of Eqs. 9.10-15, 9.10-17, 9.10-18, or 9.10-19 is used for ln γ±, depending
on the ionic strength. (You should compare the relation in Eq. 13.2-6 with Eq. 13.1-31.)
At low ionic strengths, the Debye-Hückel limiting law applies, so that

Simplified expression
for the variation of the
solubility product with
ionic strength

lnKs = lnK◦
s + (ν+ + ν−)|z+z−|α

√
I (13.2-7)

where the ionic strength I is given by

I =
1
2

∑
ions

z2
i Mi

The important feature of Eq. 13.2-7 is that it can be used to predict the solubility
product of salts when data on the Gibbs energy of formation of the ions are available
(so that Ka and K◦

s can be computed) or, when such data are not available, it can be
used to interrelate the solubility products for the same salt at different ionic strengths.
These two types of calculations are demonstrated in Illustration 13.2-3.

6In writing this expression we have neglected the difference between concentration in kmol/m3 = moles/liter
and molality.
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Illustration 13.2-3
Calculation of the Solubility Product from Solubility Data

The following data give the solubility of silver chloride in aqueous solutions of potassium nitrate
at 25◦C:

Concentration of KNO3 (kmol/m3) Concentration of AgCl at Saturation (kmol/m3)

0.0 1.273 × 10−5

0.000509 1.311 × 10−5

0.009931 1.427 × 10−5

0.016431 1.469 × 10−5

0.040144 1.552 × 10−5

Source: S. Popoff and E. W. Neumann, J. Phys. Chem., 34, 1853 (1930); E. W. Neumann, J. Am.
Chem. Soc., 54, 2195 (1932).

a. Compute the solubility product for silver chloride in each of these solutions.
b. Make a prediction of the solubility product of silver chloride in the absence of any potas-

sium nitrate without using the data above.
c. Show that the silver chloride solubility data satisfy Eq. 13.2-7, at least at low potassium

nitrate concentrations, and find the numerical value of K◦
s .

Solution

a. The solubility product for silver chloride is

Ks = CAg+CCl− = (CAgCl)
2

since here the molar concentration of silver ions and chloride ions are each equal to the
molar concentration of dissolved silver chloride; that is, CAg− = CCl− = CAgCl. The
values of Ks and ln Ks are given in the table that follows.

b. To independently predict the solubility product for silver chloride, we first compute the
thermodynamic equilibrium constant Ka from Eq. 13.2-5, Appendix A.IV, and Table
13.1-4. Thus

Ka = exp

[
−{77 110 + (−131 370) − (−108 700)}

8.314 × 298.15

]
= 2.670 × 10−10

and K◦
s = 2.670 × 10−10 (kmol/m3)2. Now using Eq. 13.2-7, we have

ln Ks = 2 ln CAg+ = ln(2.670 × 10−10) + 2 × 1.178
√

CAg+

since, for this case I = 1
2
(CAg+ +CCl−) = CAg+ , and Ks = CAg+CCl− = (CAg+)2. This

equation has the solution that, at saturation, CAg+ = CCl− = 1.634× 10−5 kmol/m3, and
Ks = 2.67 × 10−10 (kmol/m3)2. Thus our prediction leads to a silver-ion concentration
and a chloride ion concentration, at saturation, that are each about 30 percent too large, and
a solubility product that is about 65 percent too large.

c. For the situation here

I =
1

2

∑
z2
i Ci =

1

2
{CAg+ + CCl− + CK+ + CNO−

3
}

=
1

2
{2CAgCl + 2CKNO3} = CAgCl + CKNO3

and √
I =

√
CAgCl + CKNO3



776 Chapter 13: Chemical Equilibrium
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Figure 13.2-2 The solubility product of silver chloride as a function of the square root of the
ionic strength in aqueous potassium nitrate solutions.

CKNO3 , kmol/m3 CAgCl, kmol/m3 Ks ln Ks

√
I, (kmol/m3)1/2

0 1.273 × 10−5 1.621 × 10−10 −22.543 3.568 × 10−3

0.000 509 1.311 × 10−5 1.719 × 10−10 −22.484 2.285 × 10−2

0.009 931 1.427 × 10−5 2.036 × 10−10 −22.315 9.973 × 10−2

0.016 431 1.469 × 10−5 2.158 × 10−10 −22.257 1.282 × 10−1

0.040 144 1.552 × 10−5 2.409 × 10−10 −22.147 2.004 × 10−1

The quantity ln Ks is plotted versus
√

I in Fig. 13.2-2, together with a dashed line, which
has a slope of 2α, that was drawn to pass through the CKNO3 = 0 datum point. Clearly,
Eq. 13.2-7 is valid up to an ionic strength of about 0.0225 kmol/m3; at higher ionic strengths
there are deviations from the Debye-Hückel limiting law (Eq. 9.10-15) and, therefore, from
Eq. 13.2-7.

Using Eq. 13.2-7 and the CKNO3 = 0.0 datum point, we find that ln K◦
s = −22.5514,

so that the ideal solution solubility product is 1.607 × 10−10 (kmol/m3)2.

An important chemical reaction for metallurgical processing is the oxidation of a
metal which, to be perfectly general, we will represent as

Metal + O2 = Oxide (rxn 1) (13.2-8)

We have written this reaction in generic form since the stoichiometry for oxidation
reactions can be quite different depending on the valence of the metal. For example, the
oxide could be PbO, Al2O3, Fe2O3, Fe3O4, P2O5, SnO2, Na2O, etc. The equilibrium
relation for this reaction is

Ka(rxn 1, T ) = exp
(
−ΔG◦(rxn 1)

RT

)
=

aoxide

ametalaO2

=
1

1 · PO2

1 bar

=
1 bar
PO2

(13.2-9)
where in writing this last form of the equation we have recognized that since the metal
and the oxide are solids and do not mix, they will be pure, and thus in their standard
states of unit activity. Alternatively, the equation above can be written as

ΔG◦(rxn 1) = RT lnPO2 = −RT lnKa(rxn 1, T ) (13.2-10)
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where here the partial pressure of oxygen is taken to be in units of bar. Thus here, as
with other heterogeneous reactions, if the partial pressure of oxygen exceeds a value
equal to

PO2(bar) = exp
(

ΔG◦(rxn 1)
RT

)
(13.2-11)

the reaction will proceed until either the partial pressure of oxygen is reduced to this
value (if the supply of oxygen is limiting) or until all the metal is oxidized (if the amount
of metal is limiting). Alternatively, if the partial pressure of oxygen is below this value,
oxidation will not occur; rather, some of the oxide will be reduced to the metal, releasing
oxygen. If the partial pressure of oxygen exactly equals the value given by Eq. 13.2-11,
no reaction will occur.

While the calculation of the standard-state Gibbs energy change as a function of
temperature needed to use Eq. 13.2-11 could be done using programs such as those in
Appendix B and on the website for this book, to permit simple hand calculations, plots
such as Fig. 13.2-3 have been used in the metallurgical industry (though the standard-
state Gibbs energy changes on reaction can more accurately be computed from heat
capacity data and the Gibbs energies of formation at 25◦C). These plots are used as
follows. First the intersection of the line corresponding to the metal oxide that is being
formed with the vertical line corresponding to the temperature of interest is located.
The standard-state Gibbs energy change is then read from the left-hand axis. Next,
drawing a straight line through the point ΔrxnG◦ = 0 on the left-hand axis to the
intersection found in the first step and extending this line to the line along the right edge
or bottom of the plot marked PO2 (bar) gives the equilibrium oxygen partial pressure
for the oxidation reaction at the temperature chosen.

The reason this last graphical construction gives the equilibrium partial pressure is
as follows. The extreme left side of Fig. 13.2-3 corresponds to T = 0 K, for which
RT lnPO2 = 0. The slope of the line drawn in the construction above is

Slope =
[RT lnPO2 ]T − [RT lnPO2 ]T=0

T − 0
= R lnPO2(T ) (13.2-12)

so that the slope of the line drawn above is simply related to the equilibrium partial
pressure. It is the slope of the line, reported in units of the partial pressure of oxygen,
that is given in the figure.

Illustration 13.2-4
Calculation of the Equilibrium Partial Pressures for the Oxidation of a Metal

Estimate the equilibrium partial pressures of oxygen for the oxidation of chromium and alu-
minum at 1000◦C.

Solution

From Fig. 13.2-3 and the construction described above, we find that the equilibrium partial pres-
sure of oxygen for the oxidation of aluminum is approximately 10−35 bar and that for chromium
is almost 10−22 bar.

It is interesting to interpret and generalize the results of the preceding illustration. For
aluminum we see that if the partial pressure of oxygen exceeds 10−35 bar at 1000 K,
the metal will oxidize. Alternatively, the oxygen partial pressure must be reduced
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Figure 13.2-3 Standard Gibbs energies of formation of selected oxides, or Ellingham diagram.
(Based on figure in Chemical Thermodynamics of Materials by C. H. P. Lupis, 1983. Reprinted
by permission of Prentice-Hall, Inc. Upper Saddle River, NJ. This figure appears as an Adobe
PDF file on the website for this book, and may be enlarged and printed for easier reading and
for use in solving problems.)

below 10−35 bar for the oxide to be reduced to the metal. Since this partial pressure
is low, Al2O3 is a very stable oxide. For the oxide of chromium the corresponding
oxygen partial pressure is 10−22 bar. Therefore, the oxide of aluminum is more stable
than that of chromium, and conversely, metallic chromium is more stable to oxida-
tion than aluminum; that is, a higher oxygen partial pressure is needed for oxidation.
The oxide is more stable and its metal less stable to oxidation as one goes vertically
down the components in Fig. 13.2-3.
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Most of the standard-state Gibbs energy changes as a function of temperature in
Fig. 13.2-3 are nearly linear. Since(

∂G

∂T

)
P

= −S (13.2-13)

the fact that the Gibbs energy change lines are nearly straight indicates that the standard-
state entropy change on reaction is almost independent of temperature (which also
means that the standard-state enthalpy change on reaction is almost independent of
temperature; that is, the contribution of the heat capacity terms is quite small. How can
you ascertain this?). Also, the slopes of most of the lines are very similar; that is because
the dominant contribution to the entropy change arises from oxygen being transformed
from a gas to a solid oxide, and this is almost independent of the particular oxide formed.
However, for the oxidation of carbon, the change is from oxygen gas to carbon dioxide
gas, which results in a much smaller entropy change. As a consequence, the standard-
state Gibbs energy change for the oxidation of carbon to carbon dioxide is almost inde-
pendent of temperature. There are some oxides in Fig. 13.2-3 for which the standard-
state Gibbs energy change shows an abrupt change of slope. These are a result of a phase
change (generally either melting or boiling, but perhaps also a solid phase change) in
either the metal or its oxide.

Metals may also be oxidized by oxygen-containing compounds such as water or even
carbon dioxide according to the reactions

Metal + 2H2O = Oxide + 2H2 (rxn 2) (13.2-14a)

and

Metal + 2CO2 = Oxide + 2CO (rxn 3) (13.2-15a)

The equilibrium relations for these reactions are

Ka(rxn 2, T ) = exp
(
−ΔrxnG◦(rxn 2)

RT

)

=
aOxidea2

H2

aMetala2
H2O

=
1
(

PH2

1 bar

)2

1
(

PH2O

1 bar

)2 =
(

PH2

PH2O

)2

(13.2-14b)

and

Ka(rxn 3, T ) = exp
(
−ΔrxnG◦(rxn 3)

RT

)

=
aOxidea2

CO

aMetala2
CO2

=
1
(

PCO

1 bar

)2

1
(

PCO2

1 bar

)2 =
(

PCO

PCO2

)2

(13.2-15b)

Therefore

ΔrxnG
◦(rxn 2) = 2RT ln

PH2

PH2O

= −RT lnKa(rxn 2, T ) (13.2-14c)
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and

ΔrxnG
◦(rxn 3) = 2RT ln

PCO

PCO2

= −RT lnKa(rxn 3, T ) (13.2-15c)

Because of the similarity of these equations to Eqs. 13.2-10 and 13.2-11, it is possible
to construct Gibbs energy–partial pressure diagrams similar to Fig. 13.2-3. In particular,
by subtracting the standard-state Gibbs energy change for the reaction

2H2 + O2 = 2H2O (rxn 4) (13.2-16)

from rxn 1 (Eq. 13.2-8) we obtain the standard-state Gibbs energy change for rxn 2,
and a new diagram could be prepared that would give the equilibrium partial pressure
ratio PH2/PH2O as a function of temperature for this reaction. In fact, it is common
practice to also include this information in Fig. 13.2-3. Note, however, that to use this
diagram to compute the equilibrium value of the partial pressure ratio PH2/PH2O, one
must start the construction of the straight line from the point marked H on the left-hand
axis, rather than the point 0 used for rxn 1 (the difference corresponding to the Gibbs
energy change of rxn 4). Also, a different scale is used to obtain the ratio PH2/PH2O.

Similarly, by subtracting the standard-state Gibbs energy change for the reaction

2CO + O2 = 2CO2 (rxn 5) (13.2-17)

from rxn 1 (Eq. 13.2-8) we obtain the standard-state Gibbs energy for rxn 3. A new dia-
gram could be prepared that would give the equilibrium partial pressure ratio PCO/PCO2

as a function of temperature; however, again this has been combined with Fig. 13.2-3.
To use this diagram to compute the equilibrium value of the partial pressure ratio
PCO/PCO2 , one must start the construction of the straight line from the point marked
C on the left-hand axis, and use the third scale to obtain the equilibrium partial pressure
ratio PCO/PCO2 .

Of course, an alternative to using these figures is to use a program described in
Appendix B on the website for this book to calculate the equilibrium constant and then
compute the equilibrium state in the usual manner.

Illustration 13.2-5
Determining Whether an Oxidation Reaction Will Occur

Lead oxide at 1400 K is placed in an atmosphere that initially contains 20 mol % carbon dioxide,
with the remainder being nitrogen. It is possible that the carbon dioxide will dissociate into car-
bon monoxide and oxygen, and that the lead oxide will be reduced to elemental lead. Determine
whether the lead oxide will be reduced in this environment.

Solution

Since the reaction between the oxygen, carbon monoxide, and carbon dioxide is fast at this
temperature, it can be assumed to be in equilibrium, so the first step is to calculate the equilibrium
composition. Using the program CHEMEQ, we find that at 1400 K for the reaction

CO2 = CO + 1
2
O2

the equilibrium constant is Ka = 1.046 × 10−6. Next the mass balance table below is used.
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Species Initial Final Mole Fraction

CO2 0.2 0.2 − X
0.2 − X

1 + 0.5X
N2 0.8 0.8

CO 0 X
X

1 + 0.5X

O2 0 0.5X
0.5X

1 + 0.5X
Total 1 + 0.5X

Consequently,

Ka = 1.046 × 10−6 =
aCOa0.5

O2

aCO2

=

X

1 + 0.5X

P

1 bar

(
0.5X

1 + 0.5X

P

1 bar

)0.5

0.2 − X

1 + 0.5X

P

1 bar

=
X(0.5X)0.5

(0.2 − X)(1 + 0.5X)0.5

(
P

1 bar

)0.5

At P = 1 bar, this equation has the solution X = 9.78 × 10−5, which gives PCO2 = 0.199 90
bar, PCO = 9.8 × 10−5 bar, and PO2 = 4.9 × 10−5 bar. Therefore,

PCO

PCO2

= 4.89 × 10−5

From Fig. 13.2-3 we see that at 1400 K the equilibrium ratio for the reaction

Pb + CO2 = PbO + CO

is PCO/PCO2 equal to about 2×10−3. As a result of rxn 5, the partial pressure of carbon monox-
ide is below the equilibrium value for this reaction, so that lead oxide would not be reduced
to elemental lead in the presence of the reacting carbon monoxide–carbon dioxide mixture
considered here.

13.3 CHEMICAL EQUILIBRIUM WHEN SEVERAL REACTIONS OCCUR
IN A SINGLE PHASE

The state of chemical equilibrium for M independent reactions occurring in a single
phase is the state that satisfies the constraints on the system, the set of stoichiometric
relations

Mass balance
equations for
simultaneous reactions

Ni = Ni,0 +
M∑
j=1

νijXj i = 1, 2, . . . , C

and the M equilibrium relations (cf. Sec. 8.8)

C∑
i=1

νijGi = 0 j = 1, 2, . . . ,M (13.3-1)
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Using the notation introduced in this chapter, the last equation can be rewritten as

Ka,j =
C∏

i=1

a
νij

i j = 1, 2, . . . ,M (13.3-2)

where Ka,j is the equilibrium constant for the jth reaction. Since a collection of equa-
tions (which are nonlinear, and usually coupled) are to be solved here, rather than
merely one equation, as when only a single reaction occurs, equilibrium calculations
for multiple-reaction systems can be complicated.

Before proceeding to a sample calculation of a multireaction equilibrium state, it is
useful to consider the simplifications that can be made in the analysis. First, the number
of reactions that must be considered (and hence the number of simultaneous equations
that must be solved) can frequently be reduced by taking into account the accuracy de-
sired in the calculations and eliminating from consideration reactions that occur to such
a small extent as to produce products with concentrations that are below our level of
interest. Such reactions are usually identified by very small equilibrium constants, that
is, equilibrium constants that are several orders of magnitude smaller than those of the
other reactions being considered, or by the fact that their reactants include the products
of reactions that occur only to a small extent. In fact, such reasoning is used here in
writing only 5 reactions among carbon, hydrogen, and oxygen, rather than the 20 reac-
tions among these substances that appear in Fig. 13.1-2 or, worse, all the reactions that
occur in organic chemistry involving these three atomic species.

We can further reduce the number of reactions by identifying, and then only including
in the equilibrium analysis, the independent reactions among the species. To see that
the independent reactions and no others need be studied, consider the following set
of reactions that occur between steam and coal (which we take to be pure carbon) at
temperatures below 2000 K:

C + 2H2O → CO2 + 2H2 (rxn 1)
C + H2O → CO + H2 (rxn 2)
C + CO2 → 2CO (rxn 3)
C + 2H2 → CH4 (rxn 4)

CO + H2O → CO2 + H2 (rxn 5)

There are only three independent chemical reactions among these five reactions [see
Problem 8.9(c)]. This is easily demonstrated using Denbigh’s method (cf. Sec. 8.3);
we start by writing the reactions

2H + O → H2O (a)
C + 2O → CO2 (b)
C + O → CO (c)

C + 4H → CH4 (d)
2H → H2 (e)

Since neither atomic hydrogen nor atomic oxygen are present below several thousand
degrees, these two species are to be eliminated from the equations. First using reaction
(e) to eliminate atomic hydrogen (i.e., H = 1

2
H2) and then reactions (a) and (e) to

eliminate atomic oxygen (i.e., O = H2O − H2) yields

C + 2H2O → CO2 + 2H2

C + H2O → CO + H2

C + 2H2 → CH4

(13.3-3)
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These three reactions form a set of independent reactions among the six chemical
species being considered.

Now the claim is that only these three reactions (or, equivalently, any other set of
three independent reactions) need be considered in computing the equilibrium state for
this system. This is easily verified by an examination of the five equilibrium relations

Ka,1 = exp
[
−

(ΔfG
◦
CO2

+ 2ΔfG
◦
H2

− ΔfG
◦
C − 2ΔfG

◦
H2O)

RT

]
=

aCO2a
2
H2

aCa2
H2O

(13.3-4a)

Ka,2 = exp
[
−

(ΔfG
◦
CO + ΔfG

◦
H2

− ΔfG
◦
C − ΔfG

◦
H2O)

RT

]
=

aCOaH2

aCaH2O

(13.3-4b)

Ka,3 = exp
[
−

(2ΔfG
◦
CO − ΔfG

◦
C − ΔfG

◦
CO2

)
RT

]
=

a2
CO

aCaCO2

(13.3-4c)

Ka,4 = exp
[
−

(ΔfG
◦
CH4

− ΔfG
◦
C − 2ΔfG

◦
H2

)
RT

]
=

aCH4

aCa2
H2

(13.3-4d)

and

Ka,5 = exp
[
−

(ΔfG
◦
CO2

+ ΔfG
◦
H2

− ΔfG
◦
CO− ΔfG

◦
H2O)

RT

]
=

aCO2aH2

aCOaH2O

(13.3-4e)

It is clear that if Eqs. 13.3-4a, b, and d are satisfied, Eqs. 13.3-4c and e will also be
satisfied, because these two equations are merely ratios of the other three; that is,

Ka,3 =
(Ka,2)2

(Ka,1)
=

(
aCOaH2

aCaH2O

)2

(
aCO2a

2
H2

aCa2
H2O

) =
a2

CO

aCaCO2

(13.3-5a)

and

Ka,5 =
Ka,1

Ka,2

=

(
aCO2a

2
H2

aCa2
H2O

)
(

aCOaH2

aCaH2O

) =
aCO2aH2

aCOaH2O

(13.3-5b)

Thus we are led to the conclusion that it is not necessary to consider all five reactions
when computing the equilibrium state of this reaction system, but merely the three
independent reactions of Eqs. 13.3-3. In fact, this result could have been anticipated by
observing that reactions 3 and 5 are linear combinations of the other reactions, that is

rxn 3 = 2(rxn 2) − rxn 1

and
rxn 5 = rxn 1 − rxn 2

In all the chemical equilibrium calculations that follow, we limit our attention to the
independent chemical reactions among the reacting species.



784 Chapter 13: Chemical Equilibrium

Illustration 13.3-1
Chemical Equilibrium When Several Reactions Occur

Compute the equilibrium mole fractions of H2O, CO, CO2, H2, and CH4 in the steam-carbon
system at a total pressure of 1 bar and over the temperature range of 600 to 1600 K.

Data:

The equilibrium constants (based on the pure component standard states at P = 1 bar and the
reaction temperature) for the set of independent reactions

C + 2H2O = CO2 + 2H2 (rxn 1)
C + H2O = CO + H2 (rxn 2)
C + 2H2 = CH4 (rxn 3)

are given in Fig. 13.3-1 or can be calculated using the chemical equilibrium constant calculation
programs in Appendix B.I or B.II.

Solution

X1, X2, and X3 will be used as the molar extents of reaction for the three reactions being con-
sidered. Basing all calculations on 1 mole of steam, we can construct the following mole balance
table for the gaseous species (as long as there is sufficient solid carbon present to ensure equi-
librium, it need not be considered, since it does not appear in the gas phase and therefore does
not affect the activities of the other species).

Number of Moles in the Gas Phase

Initial Final Equilibrium Mole Fraction

H2O 1 1 − 2X1 − X2 (1 − 2X1 − X2)/Σ
CO2 0 X1 X1/Σ
CO 0 X2 X2/Σ
H2 0 2X1 + X2 − 2X3 (2X1 + X2 − 2X3)/Σ
CH4 0 X3 X3/Σ

Total 1 Σ = 1 + X1 + X2 − X3

To solve for the three molar extents of reaction at 1 bar pressure, we use the three equilibrium
equations

Ka,1 =
aCO2a2

H2

aCa2
H2O

=
(yCO2)(yH2)

2

(yH2O)2
=

X1(2X1 + X2 − 2X3)
2

(1 − 2X1 − X2)2(1 + X1 + X2 − X3)
(a)

Ka,2 =
aCOaH2

aCaH2O

=
yCOyH2

yH2O

=
X2(2X1 + X2 − 2X3)

(1 − 2X1 − X2)(1 + X1 + X2 − X3)
(b)

and

Ka,3 =
aCH4

aCa2
H2

=
yCH4

y2
H2

=
X3(1 + X1 + X2 − X3)

(2X1 + X2 − 2X3)2
(c)

Since these equations are nonlinear, there will be more than one set of solutions for the molar
extents of reaction. The only acceptable solution to this problem is one for which

2X1 + X2 ≤ 1

and

0 ≤ 2X3 ≤ 2X1 + X2
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Figure 13.3-1 The equilibrium con-
stants for the three independent reac-
tions between coal and steam.

The first of these restrictions ensures that we do not use more steam than was supplied, and the
second that no more hydrogen is used than has been produced.

Clearly, finding the solution to this problem is a nontrivial computational task. The results
obtained using an equation-solving program are given in Fig. 13.3-2.[
Aspen Plus R© and the folder Aspen Illustrations>Chapter 13>13.3-1 and Illustration 13.3-1

with separator are used on the Wiley website for this book. In the simulation, a separator
has been added to separate the solid carbon from the gaseous stream otherwise Aspen Plus
includes the solid in the mole fraction calculation giving incorrect results. The results for a
collection of temperatures in the range of 600 to 1600 K are given in the Excel spreadsheet
ILLUS 13.3-1.

]
The dissolution and ionization of a mixture of electrolytes provides another example

of equilibrium in a multireaction system. To be specific, suppose two electrolytes
AνA

BνB
and GνG

HνH
ionize in solution as follows:

AνA
BνB

= νAAzA + νBBzB

GνG
HνH

= νGGzG + νHHzH

The equilibrium relations for these ionization processes (see Eqs. 13.1-31 and 13.2-6)
are

lnKAB = ln(CνA
A CνB

B ) = lnK◦
AB − (νA + νB) ln γ± (13.3-6)
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and

lnKGH = ln(CνG
G CνH

H ) = lnK◦
GH − (νG + νH) ln γ± (13.3-7)

where KAB and KGH are the equilibrium ratios of Eqs. 13.1-31 and 13.2-6. The dif-
ficulty in solving these equations to find the equilibrium state is that even if there is
no common ion among the electrolytes, the equations are coupled by the fact that the
activity coefficient γ± is a function of the total ionic strength I ,

I =
1
2

∑
ions

z2
i Ci =

1
2
[z2

ACA + z2
BCB + z2

GCG + z2
HCH] (13.3-8)

and thus depends on the concentration of all the ions present.
If there is an ion that is common to both electrolytes, the solubility and extent of

ionization of each can be much more strongly affected by the presence of the other than
would be the case with only an ionic-strength coupling. This phenomenon, known as
the common ion effect, is demonstrated in Illustration 13.3-2.

Illustration 13.3-2
Common Ion Effect in Chemical Reaction of Electrolytes

The solubility of silver chloride in water at 25◦C is 1.273 × 10−5 kmol/m3, and that of thallium
chloride is 0.144 kmol/m3. Estimate the simultaneous solubility of AgCl and TlCl in water.
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Solution

The first step in the calculation is to compute the constants K◦
AgCl and K◦

TlCl using the solubility
data for each of the pure salts. Recognizing that νAg = νTl = νCl = 1 and that zAg = zTl = +1
and zCl = −1, we write for the pure salts

ln K◦
AgCl = ln(CAgCCl) + 2 ln γ± = 2 ln CAgCl + 2 ln γ± (a)

and

ln K◦
TlCl = ln(CTlCCl) + 2 ln γ± = 2 ln CTlCl + 2 ln γ± (b)

Also, for the pure salts, I(silver chloride) = 1.273 × 10−5 kmol/m3 and I(thallium chloride) =
0.144 kmol/m3. Because of the high ionic strengths, Eq. 9.10-18 will be used to compute γ±;
that is,

ln γ± =
−1.178|z+z−|

√
I

1 +
√

I
+ 0.1|z+z−|I

=
−1.178

√
I

1 +
√

I
+ 0.1I

(c)

Using Eq. c and the experimental solubility data in Eqs. a and b yields

K◦
AgCl = 1.607 × 10−10 (kmol/m3)2

and

K◦
TlCl = 1.116 × 10−2 (kmol/m3)2

To find the simultaneous solubility of silver chloride and thallium chloride, we must solve the
equations

ln(CAgCCl) = ln K◦
AgCl − 2 ln γ±

and

ln(CTlCCl) = ln K◦
TlCl − 2 ln γ±

or, using Eq. c, the equations

1.607 × 10−10 exp

[
2.356

√
I

1 +
√

I
− 0.2I

]
= CAgCCl

1.116 × 10−2 exp

[
2.356

√
I

1 +
√

I
− 0.2I

]
= CTlCCl

where
I = 1

2
(CAg + CTl + CCl) = CAgCl + CTlCl

since CAg + CTl = CCl. These nonlinear equations can be solved by trial and error or using an
equation-solving program.

Because of the low solubility of silver chloride, as a first guess, we will assume that the
solubility of thallium chloride is unaffected by the presence of silver chloride, and that the ion-
ization of silver chloride has little effect on either the ionic strength I or the total chloride ion
concentration. In this case we have

CTl = CCl = 0.144 kmol/m3

I = 0.144 kmol/m3 and
√

I = 0.3975 (kmol/m3)1/2
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The silver ion concentration (and the solubility of silver chloride) can then be computed from

1.607 × 10−10 exp

[
2.356 × 0.3975

1.3975
− 0.2 × 0.144

]
= CAg × 0.144

so that
CAg = CAgCl = 2.119 × 10−9 kmol/m3

Therefore, as we assumed, AgCl is so slightly soluble in the aqueous TlCl solution that nei-
ther the ionic strength nor the solubility of thallium chloride is greatly affected by its presence.
On the other hand, owing to the common ion effect, the solubility of silver chloride is reduced
by almost four orders of magnitude from its value when only AgCl is present.

Comment

If, instead of thallium chloride, some other salt that does not have a common ion with AgCl (for
example, NaNO3) had been introduced into the aqueous solution, the solubility of silver chloride
would have increased because of the ionic-strength dependence of the ionic activity coefficient.
Thus, if NaNO3 were present in the same concentration as, but instead of, thallium chloride, we
would have

CAgCCl = 1.607 × 10−10 exp

{
2.356 × 0.3975

1.3975
− 0.2 × 0.144

}
= C2

Ag = C2
Cl

or

CAg = CCl = CAgCl = 1.75 × 10−5 kmol/m3

which is an increase of 37 percent in the solubility of silver chloride over the value when only
AgCl is present.

Comment on multiple
reactions

There is a point about multiple chemical reactions that at first can be a bit confusing,
and so is useful to mention it here. Consider, as an example, the two reactions

A + B � C + D for which Ka,1 =
aC · aD

aA · aB

(13.3-9a)

and

C + E � F for which Ka,2 =
aF

aC · aE

(13.3-9b)

Now if our interest is in the equilibrium concentrations of all the species present, the
equilibrium relations for the two reactions must be solved simultaneously. Note that the
overall reaction, obtained from the sum of the two reactions above, is

A + B + E � D + F for which Ka,3 =
aD · aF

aA · aB · aE

(13.3-9c)

However, our interest may be in the equilibrium compositions of only the reactants
A, B, and E, and the products D and F, not in the intermediate product C. In fact, almost
all reactions occur by a number of underlying intermediate steps (referred to as the re-
action mechanism) that produce intermediate products that are immediately consumed
in another reaction in the sequence. Usually, the person doing the measurements or the
engineer designing a process may not even know such intermediate reactions are occur-
ring. For the case here, the individual may be unaware that the reaction of Eq. 13.3-9c
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is actually the result of the reactions of Eqs. 13.3-9a and b. Now note that

RT lnKa,1 = ΔfG
◦
C + ΔfG

◦
D − ΔfG

◦
A − ΔfG

◦
B

RT lnKa,2 = ΔfG
◦
F − ΔfG

◦
C − ΔfG

◦
E

RT lnKa,3 = ΔfG
◦
D + ΔfG

◦
F − ΔfG

◦
A − ΔfG

◦
B − ΔfG

◦
E

= ΔfG
◦
D + ΔfG

◦
F − ΔfG

◦
A − ΔfG

◦
B − ΔfG

◦
E + ΔfG

◦
C − ΔfG

◦
C

= ΔfG
◦
D + ΔfG

◦
C − ΔfG

◦
A − ΔfG

◦
B + ΔfG

◦
F − ΔfG

◦
C − ΔfG

◦
E

= RT lnKa,1 + RT lnKa,2

or simply
Ka,3 = Ka,1 · Ka,2 (13.3-10)

which is the important result.
What Eq. 13.3-10 tells us is that we will obtain the same equilibrium ratio of the

activities of the products D and F to the activities of the reactants A, B, and E if we
solve Eqs. 13.3-9a and b, or only Eq. 13.3-9c with the equilibrium constant obtained
from Eq. 13.3-10. Though it is easier to solve, in the last case we will not get any
information about the intermediate component C, so there could be some uncertainty
in the mass balance. However, the most common situation in which this analysis would
be used is that in which the intermediate species (here C) is of very low concentration,
for example, in intermediate that is almost completely consumed by the second reaction
after production by the first reaction.

In some cases, Eq. 13.3-10 can be used to advantage. For example, consider the
case in which a reaction has such a large and negative standard-state Gibbs energy
change (and therefore such a large equilibrium constant) that the reaction goes almost to
completion, and that it is not possible to accurately measure the remaining very
small concentrations of the reactants needed to obtain an accurate value for the equilib-
rium constant. In such a circumstance it may be possible to determine the equilibrium
constant indirectly by measuring the equilibrium constants for two (or more) reactions
that include additional species but do not go to completion—provided that the sum of
the reactions is equal to the initial reaction, so that by Eq. 13.3-10 the product of the
equilibrium constants (and the sum of the standard-state Gibbs energies of the reactions)
will equal that of the initial reaction.

One example of using intermediate reactions is for the physiologically important
adenosine triphosphate (ATP) to adenosine diphosphate reaction

ATP + H2O
K� ADP + P

which has such a large equilibrium constant that it cannot be determined by experi-
ment with any accuracy. However, it is possible to accurately measure the chemical
equilibrium of the following reactions:

glutamate + ammonia + ATP
K1� glutamine + ADP + P

and

glutamine + H2O
K2� glutamate + ammonia

for which

K1 =
aglutamine · aADP · aP

aglutamate · aNH3 · aATP

and K2 =
aglutamate · aNH3

aglutamine · aH2O
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Since the reaction of interest is the sum of the two measurable reactions, it follows that

K = K1 · K2

and for the ATP hydrolysis reaction,

�rxnG
o = −RT ln K = − RT ln (K1 · K2)

In this way Rosing and Slater [Biochim. Biophys. Acta 267, 275 (1972)] were able to
measure the standard-state Gibbs free energy change for this reaction to be −34 kJ/mol
at one set of conditions.

Illustration 13.3-3
Free Energy Change of the ATP� ADP Reaction

Rosing and Slater [Biochim. Biophys. Acta 267, 275 (1972)] reported the following free energy
change extrapolated to zero ionic strength for the reaction

ATP + H2O
K� ADP + P

�rxnG◦(25◦C) �rxnG◦(37◦C)
pH (kJ/mol) (kJ/mol)

6.0 −31.77 −32.16
6.5 −32.27 −32.69
7.0 −33.51 −34.00
7.5 −35.77 −36.40
8.0 −38.67 −39.49

Determine the standard-state heat of reaction as a function of pH.

Solution

Since

ln K (T2)−ln K (T1) = −�rxnHo

R

(
1

T2

− 1

T1

)
=

(
−�rxnGo (T2)

RT2

)
−
(
−�rxnGo (T1)

RT1

)

and

�rxnH◦ =

�rxnG◦(T2)

T2

− �rxnG◦(T1)

T1(
1

T2

− 1

T1

)

we obtain

pH �rxnHo (kJ/mol)

6.0 −22.08
6.5 −21.83
7.0 −46.17
7.5 −52.04
8.0 −18.30
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Note that there is considerable scatter in the results, which is an indication of the difficulty
in obtaining accurate thermodynamic data for some biochemical reactions. It is also interesting
to notice that the results for the equilibrium constants, Gibbs energies of reaction, and heats of
reaction are all affected by pH. This is typical of reactions involving compounds that can ionize,
as discussed earlier and will be considered in greater detail in Chapter 15.

13.4 COMBINED CHEMICAL AND PHASE EQUILIBRIUM

In Sec. 8.8 we established that the conditions for equilibrium when chemical reaction
and phase equilibrium occur simultaneously are that (1) each species must be in phase
equilibrium among all the phases, that is,

GI
i = GII

i = · · · = GP
i = Gi i = 1, 2, . . . , C (13.4-1)

(2) each chemical reaction must be in chemical equilibrium in each phase

C∑
i=1

νijGi = 0 for all independent
reactions j = 1, 2, . . . ,M (13.4-2)

and (3) the stoichiometric and state-variable constraints on the system must be satisfied.
In fact, the equality of the partial molar Gibbs energy of each species in all phases at
equilibrium (Eq. 13.4-1) ensures that if the chemical equilibrium criterion is satisfied
in any one phase, it will be satisfied in all phases. Thus, in computations it is necessary
only to seek a solution for which

f I
i = f II

i = · · · = fP
i = f i i = 1, 2, . . . , C (13.4-3)

in all phases (which follows from Eq. 13.4-1), and for which

Ka,j =
C∏

i=1

a
νij

i j = 1, 2, . . . ,M (13.4-4)

is satisfied in any one phase7 (which follows from Eq. 13.4-2).
The prediction of a state of combined chemical and phase equilibrium using these

equations can be complicated because of the large number of nonlinear equations that
must be solved simultaneously. Frequently, the equations involved can be simplified or
reduced in number by recognizing that some species are only slightly soluble in certain
phases, and that some reactions may go virtually to completion or do not measurably
proceed at all in some phases. However, even with such simplifications, the calculations
are likely to be tedious, as indicated in Illustration 13.4-1.

Illustration 13.4-1
Combined Chemical and Vapor-Liquid Equilibrium

One mole of nitrogen, 3 moles of hydrogen, and 5 moles of water are placed in a closed container
maintained at 25◦C and 13.33 kPa and, using the appropriate catalyst and stirring, allowed to

7In certain instances it may be convenient to choose different states of aggregation as the standard states for the
various species in a reaction, usually because of the availability of ΔfG

◦ data. In such cases the activity of each
species is evaluated in that phase that corresponds most closely to the state of aggregation of the standard state.
(See the discussion of Eqs. 13.4-5 and 13.4-9.)
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attain phase and chemical equilibrium. Assuming that ammonia is formed by chemical reaction
and that the liquid and vapor phases are ideal, compute the amount and composition of each
phase at equilibrium (neglecting the aqueous-phase reaction of ammonia to form NH4OH, and
its subsequent ionization). The following data are available:

Vapor pressure of water at 25◦C = 3.167 kPa
Henry’s law constants:

N2 in H2O: HN2 = 13.224 × 107 kPa/mole fraction

H2 in H2O: HH2 = 7.158 × 107 kPa/mole fraction

NH3 in H2O: HNH3 = 97.58 kPa/mole fraction

(The Henry’s law constant for ammonia was computed from experimental data using the equation
PNH3 = HNH3xNH3 and assuming all of the ammonia absorbed to be present as NH3.)

Solution

The only reaction that can occur between the species at 25◦C is the formation of ammonia,

1
2
N2 + 3

2
H2 = NH3

for which
ΔrxnG =

∑
νiΔfG

◦
i

= ΔfG
◦
NH3

− 1
2
ΔfG

◦
N2

− 3
2
ΔfG

◦
H2

= −16 450 J/mol

and

Ka = exp

[
−ΔrxnG

RT

]
= 762.2

The chemical equilibrium equation is

Ka =
aNH3

a
1/2
N2

a
3/2
H2

=
yNH3

y
1/2
N2

y
3/2
H2

(
P

1 bar

) = 762.2 (1)

The mass balance constraints are most easily taken into account using the mole numbers of
each species in each phase as the independent variables, rather than the mole fractions. Also, to
reduce the number of variables we need to solve for, the mass balances will be used to eliminate
the number of moles of each species in the liquid phase in terms of the vapor-phase mole numbers
and the molar extent of reaction. Thus we have

NH2O = 5 mol = NL
H2O + NV

H2O or NL
H2O = 5 mol − NV

H2O (2)

NNH3 = X = NL
NH3

+ NV
NH3

or NL
NH3

= X − NV
NH3

(3)

NN2 = 1 − 1
2
X = NL

N2
+ NV

N2
or NL

N2
= 1 − 1

2
X − NV

N2
(4)

and

NH2 = 3

(
1 − X

2

)
= NL

H2
+ NV

H2
or NL

H2
= 3

(
1 − X

2

)
− NV

H2
(5)

The total number of moles in the liquid phase is then

NL = NL
N2

+ NL
H2

+ NL
NH3

+ NL
H2O

=
(
1 − 1

2
X − NV

N2

)
+
(
3 − 3

2
X − NV

H2

)
+ (X − NV

NH3
) + (5 − NV

H2O)

= 9 − X − NV
N2

− NV
H2

− NV
NH3

− NV
H2O

(6)



13.4 Combined Chemical and Phase Equilibrium 793

Also, the phase equilibrium relation fL
i = fV

i must be satisfied for each species in each phase.
For N2, H2, and NH3, this leads to the following equation:

Pi = yiP = Hixi or yi = Hixi/P

Thus

yN2 =
9.224 × 107

P (kPa)
xN2

or in terms of mole numbers,

NV
N2

NV
N2

+ NV
H2

+ NV
NH3

+ NV
H2O

=
9.224 × 107

P

NL
N2

NL
N2

+ NL
H2

+ NL
NH3

+ NL
H2O

=
9.224 × 107

P

1 − 1
2
X − NV

N2

9 − X − NV
N2

− NV
H2

− NV
NH3

− NV
H2O

(7)

Similarly, for hydrogen and ammonia, we have

NV
H2

NV
N2

+ NV
H2

+ NV
NH3

+ NV
H2O

=
7.158 × 107

P

3 − 3
2
X − NV

H2

9 − X − NV
N2

− NV
H2

− NV
NH3

− NV
H2O

(8)

and

NV
NH3

NV
N2

+ NV
H2

+ NV
NH3

+ NV
H2O

=
97.58

P

X − NV
NH3

9 − X − NV
N2

− NV
H2

− NV
NH3

− NV
H2O

(9)

For water, the equilibrium relation is

yH2OP = xH2OP vap
H2O or yH2O =

xH2OP vap
H2O

P
=

3.167xH2O

P
(10)

so that

NV
H2O

NV
N2

+ NV
H2

+ NV
NH3

+ NV
H2O

=
3.167

P

5 − NV
H2O

9 − X − NV
N2

− NV
H2

− NV
NH3

− NV
H2O

(11)

Finally, in terms of mole numbers the equilibrium relation, Eq. 1, is

Ka =

NV
NH3

NV(
NV

N2

NV

)0.5(
NV

H2

NV

)1.5 (
P

1 bar

)

=
NV

NH3
NV

(NV
N2

)0.5(NV
H2

)1.5

(
P

1 bar

)

=
NV

NH3
(NV

N2
+ NV

H2
+ NV

NH3
+ NV

H2O)

(NV
N2

)0.5(NV
H2

)1.5

(
P

1 bar

) = 762.2

(12)

There are five unknowns in these equations: the extent of reaction X and the number of moles
of each species in the vapor phase. There are also five equations to be solved: the four phase
equilibrium relations (Eqs. 7, 8, 9, and 11) and one vapor-phase chemical equilibrium relation
(Eq. 12). It is possible, with some difficulty, to solve these equations for the five unknowns.
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If the computations are to be done by hand, one can simplify these equations by approxima-
tion. Since the Henry’s law constants for both hydrogen and nitrogen in water are so high, a
reasonable approximation is that the amount of these gases in the liquid phase are small enough
to be neglected. With this assumption, we have

NV
N2

= 1 − 1
2
X and NV

H2
= 3 − 3

2
X = 3NV

N2

Also,
NL = NL

N2
+ NL

H2
+ NL

NH3
+ NL

H2O

= 0 + 0 + (X − NV
NH3

) + (5 − NV
H2O) = 5 + X − NV

NH3
− NV

H2O

and the three equations to be solved (since we no longer require that nitrogen and hydrogen be
in phase equilibrium) are

NV
NH3

NV
N2

+ NV
H2

+ NV
NH3

+ NV
H2O

=
97.58

P

X − NV
NH3

5 + X − NV
NH3

− NV
H2O

(13)

NV
H2O

NV
N2

+ NV
H2

+ NV
NH3

+ NV
H2O

=
3.167

P

5 − NV
H2O

5 + X − NV
NH3

− NV
H2O

(14)

and

Ka

(
P

1 bar

)
=

NV
NH3

(NV
N2

+ NV
H2

+ NV
NH3

+ NV
H2O)

(NV
N2

)1/2(NV
H2

)3/2

=
NV

NH3
(4 − 2X + NV

NH3
+ NV

H2O)(
1 − 1

2
X

)1/2 (
3 − 3

2
X

)3/2
(15)

for the three unknowns, X, NV
NH3

, and NV
H2O.

The solution, using the complete equations (without the simplification mentioned above) and
MATHCAD, is

Liquid Phase Vapor Phase

Species Moles Mole Fraction Moles Mole Fraction

N2 2.52 × 10−8 5.08 × 10−9 0.0771 0.0351
H2 9.73 × 10−8 1.96 × 10−8 0.2312 0.1054
NH3 0.4355 0.0878 1.4103 0.6428
H2O 4.5245 0.9122 0.4755 0.2167

As can be seen, the quantities of nitrogen and hydrogen in the liquid phase are indeed very small.
Therefore, a virtually identical solution is obtained with the simplified model of Eqs. 13, 14,
and 15.[
Using Aspen Plus R© with the folder Aspen Illustrations>Chapter 13>13.4-1 on the Wiley

website for this book produces the following results for the mole fractions:

Liquid Phase Vapor Phase
N2 4.72 × 10−6 0.0349
H2 9.69 × 10−7 0.1049
NH3 0.00832 0.2359
H2O 0.9917 0.6243

The results for the liquid phase are not in good agreement with the earlier results in this illustra-
tion based on use of Henry’s law constants.

]
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If the pressure is changed on a system in which phase and chemical equilibrium
occur simultaneously, the equilibrium state of the system will shift due to changes in
both the phase behavior and in the molar extent of reaction. This is illustrated in the
next example.

Illustration 13.4-2
Combined Chemical and Vapor-Liquid Equilibrium (Continued)

Repeat the calculations of the previous illustration for a range of pressures.

Solution

The formulation of the problem in the previous illustration permits solutions for various pres-
sures, and the same MATHCAD program was used to obtain solutions for most of the pressure
range. The results of such calculations are shown in the accompanying figure in terms of the
molar extent of reaction X and the molar fraction of the total mixture that is liquid, denoted by
f . There are several things to notice in the solution to this problem. First, for pressures above
about 33 kPa there is no equilibrium vapor phase (i.e., f = 1). That is, the bubble point pressure
of this equilibrium reacting mixture at 25◦C is 33 kPa, so for higher pressures only a liquid phase
is present. Also, and only coincidentally, the reaction is essentially at completion (X = 2) at this
pressure. At other temperatures and certainly for other reactions, the disappearance of the vapor
phase and the point of essentially complete reaction would not coincide.
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Two-phase ammonia production reaction.

Second, at pressures below about 4.8 kPa there is no equilibrium liquid phase (i.e., f = 0);
4.8 kPa is the dew point pressure of this reacting mixture at 25◦C. Consequently, to solve for
the equilibrium state of this system at pressures lower than 4.8 kPa, only vapor-phase chemical
equilibrium needs to be considered without any phase equilibrium constraints. In this case, the
mass balance equations are

NH2O = 5 NNH3 = X NN2 = 1 − 1
2
X

NH2 = 3

(
1 − X

2

)
= 3NN2 and N = 9 − X
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where N is the total number of moles present. The species mole fractions that appear in the
chemical equilibrium relation are

yNH3 =
X

9 − X
yN2 =

1 − 1
2
X

9 − X
and yH2 =

3
(
1 − 1

2
X
)

9 − X

The single equilibrium relation to be solved for the molar extent of reaction X is, then,

Ka =
aNH3

a
1/2
N2

a
3/2
H2

=
yNH3

y
1/2
N2

y
3/2
H2

(
P

1 bar

) =
X(9 − X)(

1 − 1

2
X

)1/2 (
3 − 3

2
X

)3/2 ( P

1 bar

)

=
X(9 − X)

33/2

(
1 − 1

2
X

)(
P

1 bar

) = 762.2

The solution to this equation in terms of the molar extent of reaction X is also plotted in the
figure. There we see that the molar extent of reaction decreases rapidly with decreasing pressure.
Notice, however, that while the molar extent of reaction curve is continuous at the dew point, its
derivative with respect to pressure is not. That is, while the molar extents of reaction approaching
the dew point pressure from lower pressures (only vapor present) and from higher pressures
(vapor-liquid mixture present) converge to the same value at the dew point pressure, the two
molar extent-of-reaction curves have different slopes at the dew point pressure. Mathematically,
this is because there are different constraining equations in these two regions. At low pressures,
when only vapor is present, one needs to solve only the chemical equilibrium equation to obtain
the equilibrium molar extent of reaction. However, at higher pressures, the equations of chemical
and phase equilibria must be simultaneously solved to find the equilibrium extent of reaction.
One should not expect the solutions for the molar extents of reaction to have the same dependence
on pressure in these two regions.

Physically what is happening is that in the high-pressure region water is condensing and am-
monia is being absorbed into this water. Therefore, at any molar extent of reaction X this results
in higher mole fractions of nitrogen and hydrogen in the vapor when a liquid is present (since
there are fewer moles of water and ammonia in the vapor) and a lower mole fraction of ammo-
nia as it is dissolving into the condensed water. By the Le Chatelier-Braun principle, we would
expect that at a given pressure, there would be a greater conversion of nitrogen and hydrogen to
ammonia when a liquid phase is also present than if only a vapor phase exists. Consequently, if
we extrapolated the molar extent-of-reaction curve when only a vapor is present to higher pres-
sures, it should be below the values when both the vapor and liquid are present. This is indeed
what we see, and it explains why the two molar extent-of-reaction curves should have different
slopes.[
Using Aspen Plus R© with the folder Aspen Illustration>Chapter 13>13.4-2 on the Wiley web-

site for this book produces the results in the Excel file Illus 13.4-2.xlsx in that folder. Note that
the results our quantitively and qualitatively different than those above. The difference is that
since nitrogen and hydrogen are so much above their critical temperatures at 25◦C, Aspen Plus
predicts there will be an appreciable gas phase containing these two components, and therefore
a much lower molar extent of reaction and liquid fraction. It is not evident which set of results
is correct without experimental measurement.

]
For relatively simple combined chemical and phase equilibrium problems, such as

the ones considered here, hand calculations or calculations using MATHCAD or other
equation-solving programs are possible. More complicated problems, especially those
involving multiple reactions (even in a single phase) and both multiple reactions and
multiple phases, require a large database of thermophysical properties and specially
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prepared computer programs. Several programs are available8 to both generate all the
thermodynamic data for the reactant and product species and identify the state of ther-
modynamic equilibrium. The computation algorithm used in these programs is different
from the procedures discussed here in that the chemical equilibrium constant concept
is not used. Instead, a general expression is written for the Gibbs energy in terms of all
the species and phases that may be present, and this function is minimized by a direct
search subject to the state-variable and mass balance constraints on the system. Com-
putationally, this method is more efficient than setting up and solving a large collec-
tion of nonlinear, coupled equilibrium equations. The two procedures are theoretically
equivalent and must lead to the same result. (For the reaction considered in Fig. 13.1-1,
the direct search would involve an iterative calculation of X∗ by searching for the value
of X for which G was a minimum, whereas in the equilibrium constant approach X∗

is found as the solution to a nonlinear algebraic equation that results from analytically
identifying the state of minimum Gibbs energy.)

We conclude this section by noting that, in some cases, states involving both chemical
and phase equilibrium can be considered to be chemical equilibrium problems only, but
with different states of aggregation for the standard states of the various species present.
Consider, for example, the dissolution of gaseous ammonia in water, and its subsequent
reaction to form ammonium hydroxide. This process can be considered either to occur
in two steps, the first involving phase equilibrium,

NH3(g) = NH3(aq)

and the second single-phase chemical equilibrium

NH3(aq) + H2O(l) = NH4OH(aq)

or to occur as a single-step multiphase chemical equilibrium process:

NH3(g) + H2O(l) = NH4OH(aq)

We now establish that the same equilibrium state will be found independent of which
of the two descriptions is used.

In the second case we take the standard state of ammonia to be the pure gas, of water
to be the pure liquid, and of ammonium hydroxide to be the ideal 1-molal solution, and
obtain

Ka,II = exp
{
− 1

RT
[ΔfG

◦
NH4OH (ideal, 1 molal) − ΔfG

◦
H2O(liquid)

−ΔfG
◦
NH3

(gas, 1 bar)]
}

=
aNH4OH

aNH3aH2O

=

(
MNH4OHγ�	

NH4OH

M = 1 molal

)
(

PNH3

1 bar

)
(xH2OγH2O)

(13.4-5)

8For a general discussion, see Chemical Reaction Equilibrium Analysis: Theory and Algorithms by W. R. Smith
and R. W. Missen, John Wiley & Sons, New York, 1982. Also see Fortran IV Computer Program for Calculation
of Thermodynamic and Transport Properties of Complex Chemical Systems by R. A. Svehla and B. J. McBride,
National Aeronautics and Space Administration Technical Note D-7056, January 1973; Rand’s Chemical Compo-
sition Program, Rand Corporation, Santa Monica, Calif.; and others.
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In the two-step description, the standard state of ammonia would be taken to be the
ideal 1-molal solution, so that

Ka,I = exp
{
− 1

RT
[ΔfG

◦
NH4OH (ideal, 1 molal) − ΔfG

◦
H2O(liquid)

−ΔfG
◦
NH3

(ideal, 1 molal)]
}

=
aNH4OH

aNH3aH2O

=

(
MNH4OHγ�	

NH4OH

M = 1 molal

)
(

MNH3γ
�	
NH3

M = 1 molal

)
(xH2OγH2O)

(13.4-6)

Clearly Ka,I 
= Ka,II. However, Eq. 13.4-6 must be solved together with the phase
equilibrium requirement

fV
NH3

= fL
NH3

or equivalently,

GV
NH3

= GL
NH3

We will use the latter of these two relations. Next, we note that

GV
NH3

(T,P, yNH3) = GV
NH3

(T,PNH3) = GV
NH3

(T,P = 1 bar) + RT ln
[
PNH3

1 bar

]
(13.4-7)

GL
NH3

(T,MNH3) = GL
NH3

(T, ideal 1 molal) + RT ln
[

MNH3γ
�	
NH3

MNH3 = 1 molal

]
(13.4-8)

and that

ΔfG
◦
NH3

(T, ideal 1 molal) + GV
NH3

(T,P = 1 bar) − GL
NH3

(T, ideal 1 molal)

= GL
NH3

(T, ideal 1 molal) − 1
2
GV

N2
(T,P = 1 bar) − 3

2
GV

H2
(T,P = 1 bar)

+GV
NH3

(T,P = 1 bar) − GL
NH3

(T, ideal 1 molal)

= ΔfG
◦
NH3

(gas, T, P = 1 bar)

(13.4-9)

Using Eqs. 13.4-7, 13.4-8, and 13.4-9 in the equilibrium relation of Eq. 13.4-6 yields
Eq. 13.4-5. Thus, precisely the same equilibrium relation is found between the ammo-
nia partial pressure in the gas phase and the ammonium hydroxide concentration in the
liquid phase, independent of the manner in which we presume the absorption-reaction
process to take place. Consequently, it is a matter of convenience whether we consider
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multiphase reactions such as the one here to be chemical equilibrium problems or prob-
lems of combined chemical and phase equilibrium.9

13.5 IONIZATION AND THE ACIDITY OF SOLUTIONS

Many chemicals and biochemicals ionize in a solvent that has a high dielectric con-
tant, and most commonly water and other aqueous solutions. That a chemical ionizes
greatly changes its properties including its behavior in solution, its solubility and the
chemical reactions that can occur. Ionization is a chemical reaction, or dissociation, and
can be described as such. In this section the ionization of water is first considered, and
with it the definition of pH. We then go on to consider the ionization of chemicals in
this section, and of biochemicals in the following section.

Water, though very polar, is only very slightly ionized. The ionization of water can
be considered a chemical reaction that occurs as follows:

H2O � H+ + OH−

or
2H2O � H3O+ + OH− (13.5-1)

For simplicity, we will use the first of these expressions; the thermodynamic equilib-
rium constant for that reaction is written as

Ka,W =
aH+ · aOH−

aW

(13.5-2a)

where the symbol ai is, as usual, the activity of species i. The pure-component standard
state is used for water. As many cases of interest in biochemical processing involve
solutions that are mostly water and relatively dilute in the other species, the activity of
water is usually taken to be unity (i.e., aW = 1).

The ideal one-molal (1 M) standard state is used for the ions.10 For solutions that are
very dilute in the ions (i.e., water without an added electrolyte), we can neglect the so-
lution nonidealities and replace the activities with concentrations in terms of molalities,

Ka,W =
(

MH+

M = 1

)(
MOH−

M = 1

)
=

MH+ · MOH−

(M = 1)2 (13.5-2b)

though we can correct for this assumption using the methods in Sec. 9.10. For mathe-
matical simplicity we will do so in some, but not all, of the illustrations in this chapter.
Values of Ka,W are given in Table 13.5-1 as a function of temperature.

9In general, considering the process to be a combined chemical and phase equilibrium problem will result in more
complicated calculations, but will yield somewhat more information—here the concentration of ammonia in the
liquid phase.
10In this chapter (as in Chapter 9) molality, which is number of moles of solute per kilogram of solvent and
indicated by the symbol M, will be used. Molarity, defined as the number of moles of solute per liter of solution,
is another commonly used concentration unit, but can be somewhat more difficult to deal with since the volume of
a solution varies with composition and temperature. However, if the solvent is water and the solution is dilute in
solute (so that one liter of solution contains one kilogram of water), as is generally the case in this chapter, molality
and molarity are equal. Therefore, in some of the calculations that follow, especially the titration calculations in
this section, we may ignore the distinction between molality (moles of solute per kilogram of water) and molarity
(moles of solute per liter of solution).
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Table 13.5-1 Values of Ka,W and
pKW as a Function
of Temperature

T (◦C) Ka,W pKW

0 1.15 × 10−15 14.94
10 2.88 × 10−15 14.54
20 6.76 × 10−15 14.17
25 1.00 × 10−14 14.00
30 1.48 × 10−14 13.83
40 2.88 × 10−14 13.54
50 5.50 × 10−14 13.26
60 9.55 × 10−14 13.02

Since the values of the equilibrium constants are so small, it is common to use the
following notation:

pKW = − log(Ka,W) (13.5-3)

where a base 10 logarithm is used, and the minus sign is included in the definition so
that the value of pKW is positive. Values of pKW are also given in the table.

Since in water without any added acids (e.g., HCl or H2SO4) or added bases (e.g.,
NaOH, NH4OH, or sodium acetate) the number of hydrogen ions equals the number of
hydroxyl ions (i.e., MH+ = MOH−), we have

10−14 =
MH+ · MOH−

(M = 1)2 =
(MH+)2

(M = 1)2

so that
MH+ = MOH− = 10−7 M

pH

Another definition frequently used is that of the pH,

pH = −log (aH+) (13.5-4)

Again, simplifying by neglecting activity coefficient departure from unity for a solution
of pure water, which has an ionic strength of 10−7 M at 25◦C, we have

pH = −log
(

10−7 M
1 M

)
= 7.0

pOH

Similarly,

pOH = −log (aOH−) = −log
(

10−7 M
1 M

)
= 7.0 (13.5-5)

Note that in the presence of added acids, bases, or salts, the ionic strength I will be
much larger. In these cases it is generally necessary to correct for solution nonideality
so that the pH of a solution is related to the hydrogen ion activity, and is not simply its
molality.

A strong acid or base is one that completely ionizes when added to water. Examples
include

NaOH → Na+ + OH−

HCl → H+ + Cl−
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and
H2SO4 → 2H+ + SO2−

4

Consequently, when a strong acid or base is added to water, the water ionization equi-
librium shifts, and the pH of the solution changes due to the added H+ ions (for an acid)
or hydroxyl ions OH− (for a base).

Illustration 13.5-1
The pH of a Solution of a Strong Acid or a Strong Base

What is the pH for each of the following solutions?

a. 0.05 M solution of HCl
b. 0.05 M solution of NaOH

Solution

a. Hydrochloric acid ionizes completely, producing a solution of 0.05 M in H+ and 0.05 M
in Cl−. The ionization of water also produces some hydrogen ions, but, by Le Chatelier’s
principle for the common ion effect discussed in Chapter 13, the concentration of hydrogen
ions produced from water will be less than 10−7. Therefore, we will neglect this source
of hydrogen ions, so MH+ = 0.05 M, and as an approximation aH+ = 0.05 M, so that
pH = 1.30.

To be more accurate, we should use

pH = − log

(
MH+γ±
M = 1

)

Now using the Debye-Hückel limiting law with I = 0.05, we find

γ± = 0.768 and pH = 1.42

So we see that even in a 0.05-M solution, the correction for electrolyte solution nonideality
is significant.

b. The ionization of the strong base sodium hydroxide produces a solution of 0.05 M OH−

ions, and here we will neglect the number of OH− ions produced by the ionization of water.
Therefore, first neglecting the solution nonideality (setting γ± = 1), we have MOH− =
0.05 M so that

10−14 = MOH− · MH+

or

MH+ =
10−14

MOH−

and

MH+ =
10−14

MOH−
=

10−14

0.05 M
= 2 × 10−13 M

Therefore,
pH = 12.70

Including solution nonideality using the Debye-Hückel limiting law gives

MH+ =
10−14

0.05 × 0.768
= 2.604 × 10−13 M and pH = 12.58
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A more accurate treatment of the ionization of a strong acid involves the two reactions

HA → H+ + A−

H2O� H+ + OH−

where the first reaction goes to completion, and the extent of the second is determined
by the value of the equilibrium constant

Ka,W =
MH+ · MOH−γ2

±
(M = 1)2

Here the total concentration of hydrogen ions MH+ is the result of both the ionization
of the acid [MH+ ]HA and the ionization of water [MH+ ]W. Also, since hydroxyl ions
present are only the result of the dissociation of water,

[MH+ ]W = [MOH− ]W

Therefore,

Ka,W (M = 1)2 =
{
[MH+ ]HA + [MH+ ]W

}
· [MH+ ]W γ2

±

=
{
MHA + [MH+ ]W

}
· [MH+ ]W γ2

±
(13.5-6)

since [MH+ ]HA is equal to the known initial concentration of the strong, completely
ionized acid MHA. The solution to this equation is

[MH+ ]W =
−MHA +

√
(MHA)2 + 4Ka,W

γ2
±

(M = 1)2

2
(13.5-7a)

and

MH+ = MHA + [MH+ ]HA =
1
2

{
MHA +

√
(MHA)2 +

4Ka,W

γ2
±

(M = 1)2
}

(13.5-7b)
As Ka,W is so small in value(∼10−14), the solution to this equation, except very close
to the neutral point, reduces to MH+ = MHA, which is what we use in the illustration
that follows.

Consider next the ionization of a weak carboxylic acid RCOOH, where R denotes
the rest of the molecule. The ionization reaction is

RCOOH� RCOO− + H+

and the equilibrium constant for this reaction is

K1 =

[
RCOO−] [H+]

[RCOOH]

where the term in brackets should be species activities, but for the moment we will
neglect this and use concentrations. In this equation, the Debye-Hückel standard state
is used for the ions and the Henry’s law standard state based on molality is used for
the undissociated acid. [Note for simplicity the equations will be written in terms of
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hydrogen ions, H+ instead of hydronium ions H3O+.] Neglecting the presence of hy-
drogen ions due to the ionization of water (of the order of 10−7 molal), we then have
for the fraction F of the acid ionized or deprotonated is

F =

[
RCOO−]

[RCOOH] +
[
RCOO−] =

[RCOOH]K1/ [H+]
[RCOOH] + [RCOOH]K1/ [H+]

=
K1/ [H+]

1 + K1/ [H+]
=

10pH−pK1

1 + 10pH−pK1

using the usual notation of pH = − log [H+] and pK1 = − log K1. We see from this
equation that when pH = pK1, half of the acid will be ionized or deprotonated, and
virtually all will be ionized at significantly higher values of pH. As an example, the
pK1 value of acetic acid is 4.76, so that for values of pH higher than that, most of the
acid will be ionized, that is the acid group will be deprotonated.

In the discussion above, we have neglected the effect of solution nonidealities.
To correct for this, one should write

K1 =

[
RCOO−] [H+] γ2

±
[RCOOH] γ∗

A

=

[
RCOO−] γ±10−pH

[RCOOH] γ∗
A

where γ∗
Ais the activity coefficient of the acid and we have used the correct definition

of pH = − log ([H+] γ±). For simplicity here, we will use only the simple Debye-
Hückel limiting law for this 1:1 electrolyte γ± = e−1.176

√
I = 10−0.5116

√
I (although

the extended Debye-Hückel expressions could be used), where I is the ionic strength of
the solution as a result of the ionization of the acid and any added salt. Now consider
a solution that is sufficiently dilute in the unionized acid that its Henry’s law activity
coefficient γ∗

Acan be taken to be unity. The fraction of the acid ionized is then

F =

[
RCOO−]

[RCOOH] +
[
RCOO−] =

γ±K110−pH

1 + γ±K110−pH
=

10−pH−pK1−0.5116
√

I

1 + 10−pH−pK1−0.5116
√

I

As an example, consider the degree of ionization of benzoyl tyrosine (BT) that exists
in an acidic form (BTCOOH) and in a deprotonated form (BTCOO−)

BTCOOH ↔ BTCOO− + H+

for which, at 25◦C,

K1 =

[
BTCOO−] [H+]

[BTCOOH]
= 10−3.7 M and pK1 = 3.7

The extent of deprotonation (or ionization)

F (pH) =
10pH+3.7−0.5116

√
I

1 + 10pH+3.7−0.5116
√

I

as a function of pH and ionic strength as a result of added sodium chloride is shown in
the Fig. 13.5-1. From the form of equation above, we see that at low ionic strength, half
of the benzoyltyrosine is deprotonated at a pH value equal to its pK value, and there is
a slight shift of the deprotonation curve to higher pH with increasing ionic strength.
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1

0.5

0
0 5

pH
10

Figure 13.5-1 The fraction of benzoyl tyrosine deproto-
nated as a function of pH at ionic strengths I of 0 (solid
line), 1 (dotted line), 5 (dash line) and 10 (dash-dot line).

For solutions of higher ionic strength, for example as a result of added salts, and
for other that 1:1 electrolytes, an extended form of the Debye-Hückel theory should be
used, such as

ln γ± = −1.178 |z+z−|
√

I

1 + A
√

I
and ln γ± = −1.178 |z+z−|

√
I

1 + A
√

I
+ ksI

In writing these equations, the general Debye-Hückel expression has been used in which
z+ and z− are the charges on the ion and its counter ion, A is a parameter whose value
is frequently assumed to be near unity for small molecules, and ks is a parameter (de-
pendent on the salt S and the solute) whose origin will be discussed later. For simplicity
of presentation here, the simple rather than extended Debye-Hückel expressions above
will be used.

For the case of an ammonium residue on a simple protein, the deprotonation
reaction is

R − NH+
3 � R − NH2 + H+

and the equilibrium constant for this reaction is

K2 =
[R − NH2] [H+][

R − NH+
3

]
The fraction of the ammonium residue ionized (for simplicity neglecting activity coef-
ficients) is

F =

[
R − NH+

3

]
[R − NH2] +

[
R − NH+

3

] =
[R − NH2] [H+] /K2

[R − NH2] + [R − NH2] [H+] /K2

=
[H+] /K2

1 + [H+] /K2

=
10pK2−pH

1 + 10pK2−pH

Illustration 13.5-2
Titration of a Strong Acid with a Strong Base

A common analytical procedure is titration, in which a solution of a strong base is quantitatively
added to an acidic solution (or a strong acid added to a basic solution) until neutrality (pH = 7) is
obtained, as indicated by a pH meter or chemical indicator. As an example of titration, a 0.20-M
solution of NaOH is added to 10 mL of a 0.20-M HCl solution at 25◦C. Compute the pH of
the solution as a function of the amount of NaOH added, neglecting the solution nonideality
of the ions.
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Solution

The solution originally contains 0.20 M × 0.010 L = 0.002 mol or 2 mmol of HCl, or more
correctly, 2.00 mmol of H+ and 2.00 mmol of Cl−. If 1 mL of the NaOH solution is added, then
0.20 × 0.001 = 0.0002 mmol of NaOH, that is, 0.0002 mmol of Na+ and 0.0002 mmol of OH−,
will have been added, and the volume of the mixture will now be 11 mL. The 0.0002 mmol of
OH− will combine with 0.0002 mmol of H+ to form water (since the water ionization constant
is so small in value), so after the NaOH addition, 0.0018 mol of H+ will remain in 11 mL of
water. Therefore,11

pH = −log

(
0.0018 mol

0.011 L

)
= 0.786

This is to be compared with the pH of the initial solution, pH = −log(0.20) = 0.70.
This calculation of the effect of adding sodium hydroxide can now be continued until 10 mL

and 0.002 mol of NaOH (or 0.002 mol of OH−) have been added, at which point the only hy-
drogen ions present would be the result of the water ionization equilibrium, and the pH of the
solution would be 7.

Continuing further, suppose 15 mL of the NaOH solution is added. At this point in the titration
the volume of the mixture is 25 mL and 0.003 mol of NaOH (and OH−) have been added to the
mixture. However, of the 0.003 mol of OH−, 0.002 mol have reacted with the H+ from HCl, so
that only 0.001 mol of OH− remain in solution. Therefore,

MOH− =
0.001 mol

0.025 mL
= 0.04 M

But from the water ionization equilibrium (neglecting solution nonideality)

Ka,W =
MH+ · MOH−

(1 M)2
= 10−14

so that

MH+ =
10−14

0.04
M = 0.25 × 10−12 M

and
pH = −log

(
0.25 × 10−12

)
= 12.60

The complete titration curve is shown in the accompanying figure as a function of the amount
X of sodium hydroxide solution added. Note that there is a very sharp pH change around the
neutral (pH = 7) point. Consequently, the indicator used to determine the pH change does not
have to be a very sensitive one.

15

10

pH

5

0
0 5 10 15

X
20

Titration curve for a strong acid (HCl) with a strong base (NaOH).

11Here we are neglecting the small difference between moles per liter of solution and moles per kilogram of water;
that is, we are assuming that the addition of a small amount of electrolyte to water results in a solution containing
1 kg of water per liter.
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Comment

In this calculation, we have neglected the hydrogen ions resulting from the ionization of wa-
ter, except at the neutrality point, where we have stated that pH = 7, and above the neutrality
point, where the hydrogen ion concentration was computed from the calculated hydroxyl ion
concentration. In fact, the calculations could be done more carefully by (1) considering the
water ionization reaction, and (2) taking into account the ion solution nonideality, which we
leave to the reader.

Using the more complete Eq. 13.5-7b in this illustration yields results that are in-
significantly different from those obtained with the simpler equations, except at the neu-
tral point. However, Eq. 13.5-7b correctly reduces to pH = − log

(√
Ka,W

)
(= 7 at 25◦C) at the neutral point, while the simpler equations lead to MH+ = 0 and a
singularity in the pH at these conditions.

In a similar manner for a strong base,

BOH −→ B+ + OH−

it is easily shown (Problem 15.2) that

MOH− =
1
2

{
MBOH +

√
(MBOH)2 +

4Ka,W

γ2
±

(M = 1)2
}

(13.5-8a)

and, except at the neutral point, MOH− ≈ MBOH. Consequently,

MH+ =
Ka,W (M = 1)2

MOH−γ2
±

=
Ka,W (M = 1)2

1
2

[
MBOH +

√
(MBOH)2 + 4Ka,W

γ2
±

(M = 1)2
]
γ2
±

≈ Ka,W (M = 1)2

MBOHγ2
±

(13.5-8b)

The ionization of a weak electrolyte is somewhat more difficult to describe since it
is only partially dissociated. Further, if on ionization the electrolyte produces either
hydrogen ions or hydroxide ions, there is a common ion effect that partially suppresses
the ionization of water. For example, acetic acid, a weak acid, dissociates as follows:

CH3COOH� CH3COO− + H+ (partially ionized acid)

with the following thermodynamic equilibrium constant (generally referred to as the
dissociation constant)

Ka,HA =
aCH3COO− · aH+

aCH3COOH

=
MCH3COO− · MH+γ2

±
MCH3COOH·γCH3COOH · (M = 1)

where we have used the ideal 1-molal standard states. These equations can be
written as

Ka,HA =
MCH3COO− · MH+

MCH3COOH

· γ2
±

γCH3COOH · (M = 1)
= KHA · γ2

±
γCH3COOH · (M = 1)

where

KHA =
MCH3COO− · MH+

MCH3COOH
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Apparent equilibrium
constant

Note the absence of the subscript a on K in the equation above, indicating that this
is not a true equilibrium constant. Instead, KHA is referred to as an apparent equi-
librium constant and is a measured quantity that depends on the solution conditions
(ionic strength, pH, etc.), unlike the thermodynamic equilibrium constant, which de-
pends only on the standard state and temperature. This apparent equilibrium constant is
one of the concentration chemical equilibrium ratios defined in Table 13.1-3. As it is the
concentrations (molalities) that have been measured to determine KHA, no correction
for solution nonidealities is made when its value is used to calculate the equilibrium
state. However, the calculated results will only be approximate if the apparent equi-
librium constant is used at concentrations or other solution conditions that are very
different from those at which its value was determined.

As the apparent equilibrium constant is more easily measured in the laboratory than
the thermodynamic equilibrium constant, most reported data on biochemical reactions
are apparent equilibrium constants. Since the thermodynamic equilibrium constant here
is based on ideal 1-molal standard states, so that the activity coefficients are unity at
infinite dilution, we have

lim
inf dilution

KHA

(M = 1)
→ Ka,HA

[Also note that as a result of the (M=1) term in the denominator, Ka,HA is unitless,
while for the ionization reaction here KHA has units of M−1.] At infinite dilution, where
all the activity coefficients are unity (based on using ideal 1-molal standard states), the
apparent equilibrium constant will have the same numerical value as the true thermody-
namic equilibrium constant. Throughout much of this chapter, the values of the equi-
librium and dissociation constants given are from experimental data for the apparent
or concentration-based equilibrium constants K rather than the thermodynamic equi-
librium constants Ka. Thus solution nonidealities will frequently (but not always) be
ignored.

In general, we can consider the following two ionization reactions to occur in a so-
lution of a weak acid (neglecting the activity coefficient of the ions):

Weak acid
HA� H+ + A− with Ka,HA =

aH+ · aA−

aHA

and

H2O� H+ + OH− with Ka,W = aH+ · aOH−

However, instead of using the thermodynamic equilibrium constant we will use the
apparent equilibrium constant (we leave the analysis of this more general case to the
reader as Problem 15.3) and therefore write

KHA =
MH+ · MA−

MHA

and KW = MH+ · MOH− (13.5-9)

We consider several special cases. The first case is that in which the dissociation of
the acid produces a sufficiently large number of ions that the number of hydrogen ions
resulting from the dissociation of water can be neglected, but that the extent of disso-
ciation is still small enough that the molality of the weak acid is essentially unchanged
from that added to the solution, MHA,o. In this case the only equilibrium relation to be
considered is

KHA =
MH+ · MA−

MHA,o
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But by stoichiometry MH+ = MA− , so that

KHA =
M2

H+

MHA,o

log KHA = 2 · log (MH+) − log (MHA,o) (13.5-10)

Now, by analogy with the definition of pH, we define12

pK
pK = −logK

so that
−pKHA = −2 · pH − log (MHA,o)

or
2pH = pKHA − log (MHA,o)

which gives the final result

pH = 1
2
· pKHA − 1

2
· log (MHA,o) (13.5-11)

The next special case is that in which the dissociation of the acid occurs to an extent
such that the amount of undissociated acid is reduced below its initial value, but the
dissociation of water can be neglected due to the presence of the hydrogen ions resulting
from the dissociation of the acid. In this case, we have

MHA = MHA,o − MH+ and MA− = MH+

so that

KHA =
MH+ · MA−

MHA

=
M2

H+

(MHA,o − MH+)

and
M2

H+ + KHA · MH+ − KHA · MHA,o = 0

which has the solution

MH+ =
−KHA +

√
K2

HA + 4KHA · MHA,o

2
=

KHA

2

(√
1 +

4 · MHA,o

KHA

− 1

)
(13.5-12a)

and

pH = pKHA − log

(√
1 +

4 · MHA,o

KHA

− 1

)
+ log (2) (13.5-12b)

Illustration 13.5-3
The pH of Solution of a Weak Acid

The value of pKHA for acetic acid in water at 298 K is 4.76. Determine the pH of solutions of
0.01 M, 0.1 M, and 1 M acetic acid in water at that temperature.

12Also we can define pKa = −logKa based on the true thermodynamic equilibrium constant.
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Solution

The equilibrium constant is sufficiently small that the equation

pH = 1
2
· pKHA − 1

2
· log (MHA,o)

can be used. Therefore,

pH = 1
2
(4.76) − 1

2
log (MHA,o) = 2.38 − 1

2
log (MHA,o)

pH =

⎧⎪⎨
⎪⎩

2.38 + 1 = 3.38 at MHA,o = 0.01 M

2.38 + 0.5 = 2.88 at MHA,o = 0.1 M

2.38 + 0 = 2.38 at MHA,o = 1 M

Suppose instead we use the more accurate

pH = pKHA − log

(√
1 +

4 · MHA,o

KHA

− 1

)
+ log (2)

then

pH =

⎧⎪⎨
⎪⎩

= 3.389 at MHA,o = 0.01 M

= 2.883 at MHA,o = 0.1 M

= 2.381 at MHA,o = 1 M

We see that the difference between using Eq. 13.5-12b and the simpler Eq. 13.5-10 is quite
small.

In the most general case the total molality of hydrogen ions includes that due to the
dissociation of the weak acid and of the water,

MH+ = (MH+)acid + (MH+)water = MA− + MOH−

since (MH+)acid = MA− and (MH+)water = MOH− . Now from the dissociation of
water,

MH+ =
KW

MOH−

and by stoichiometry,
MHA = MHA,o − MA−

so that

KHA =
MH+ · MA−

MHA

=
MH+ · MA−

(MHA,o − MA−)

MA− =
KHA · MHA,o

KHA + MH+

Therefore,

MH+ =
KHA · MHA,o

KHA + MH+
+

KW

MH+

which results in the following cubic equation for the hydrogen ion molality:

M3
H+ + KHAM2

H+ − MH+ (KHAMHA,o + KW) = KHAKW (13.5-13)
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In fact, this equation is rarely used since usually if there is sufficient dissociation of the
acid for the change in its initial molality to be taken into account, the contribution to
the hydrogen ion molality from the dissociation of water can be neglected (that is, KW

can be taken to be equal to zero), and Eqs. 13.5-12 can be used.

Illustration 13.5-4
The pH of Solutions of Weak Acids

Compute the pH of 0.01-M solutions of the following compounds at 25◦C.

a. Amino acid glycine (pK = 2.34)
b. Amino-n-capriotic acid (pK = 4.43)
c. Acetic acid (pKa = 4.76)

[These weak acids ionize as R−COOH� R−COO− + H+, where R = H2NCH2 for glycine,
R = H2NCH3(CH2)4 for amino-n-capriotic acid, and R = CH3 for acetic acid. Glycine is the
only protein-forming amino acid without a center of chirality, and amino-n-capriotic acid is the
amino acid that is used to treat hematological problems.]

Solution

Solving Eq. 13.5-11 all three cases (ignoring the difference between pK and pKa), we obtain

a. Glycine MH+ = 4.85 × 10−3 M and pH = 2.314
b. Amino-n-capriotic acid MH+ = 5.91 × 10−4M and pH = 3.238
c. Acetic acid MH+ = 4.08 × 10−4 M and pH = 3.389

However, while the equilibrium constants for glycine and amino-n-capriotic acid are apparent
ones (that is, K and pK in terms of concentrations), that for acetic acid is a true equilibrium
constant, Ka and pKa. It is of interest for this case case to determine the effect of solution
nonidealities, as the more correct starting point is

Ka,HA =
aH+ · aA−

aHA

=
MH+γ± · MA−γ±
MHA · (M = 1)

=
(MH+γ±)2

MHA · (M = 1)

Effect of electrolyte
nonideality

where ideal 1-molal standard states have been used for all species, and the activity coefficient for
the undissociated acid has been set to unity because of the high dilution of the charged species.
For this analysis we will use the extended Debye-Hückel expression

ln γ± = −a |z+z−|
√

I

1 +
√

I
= −1.178

√
I

1 +
√

I

with I = 1
2

∑
ions i z

2
i Mi = 1

2
(MH+ + MA−) = MH+ . So the equation to be solved is

10−4.76 =

(MH+)2 · exp

(
−2 × 1.178 ×√

MH+

1 +
√

MH+

)
(MHA,o − MH+) · (M = 1)

which has the solution

MH+ = 4.29 × 10−4 M and pH = 3.368

This more exact value is only slightly different from pH = 3.389 found by neglecting the solution
nonideality of the ions (that is, assuming γ± = 1 or neglecting the difference between K and
Ka). As a result of the small difference between the approximate and exact results, and also
because of the uncertainties in the measurement and characterization of biological processes, in
the biochemical literature it is common to use apparent (or measured) equilibrium constants and
to neglect the effects of solution nonidealities.
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Illustration 13.5-5
Estimating the ionization equilibrium constant of an Amino Acid from Measurements of Its pH
in Solution

The pH of a 0.15-M solution of the amino acid serine is found to be 1.56. Estimate its ionization
equilibrium constant. (Serine is one of the amino acids in proteins.)

Solution

Since the pH is known, MH+ = 10−1.56 = 2.754 × 10−2 M, and is equal to the molality of the
ionized serine (since at such a low pH the number of hydrogen ions resulting from the ionization
of water can be neglected). Therefore,

KA =
(2.754 × 10−2 M)

2

(0.15 − 2.754 × 10−2) M
= 6.195 × 10−3 M

and, analogous to the definition of pH, defining the pKA to be pKA = −log (KA)

pKA = −log
(
6.195 × 10−3

)
= 2.21

Note that using the more approximate Eq. 13.5-10 (since the amino acid concentration in the
denominator has not been corrected for the amount ionized), we obtain the less accurate

pKA = 2 pH + log (MHA,o) = 2 × 1.56 + log (0.15) = 2.296

Illustration 13.5-6
The Effect of an Added Salt on the Dissociation and pH of a Solution of a Weak Acid

The pKa,HA of acetic acid is 4.76. Assuming the activity coefficient of undissociated acetic acid
is unity, compute the extent of dissociation of acetic acid and the pH in the following solutions
of acetic acid and sodium chloride:

MA (M) MNaCl (M)

1 × 10−4 0
0.1 0
1.0 0
5.0 0
1 × 10−4 1
0.1 1
1.0 1
5.0 1
1 × 10−4 5
0.1 5
1.0 5
5.0 5

Consider two cases:

a. The activity coefficients of the ions are assumed to be unity.
b. The following extended Debye-Hückel expression is used:

ln γ± = −1.178
√

I

1 +
√

I

where I is the ionic strength due to all the ions present.
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Solution

The equilibrium relation is

Ka,HA = 10−pKHA = 10−4.76 =
aCH3COO− · aH+

aCH3COOH

Using the ideal 1-molal standard states,

10−4.76 =
MCH3COO− · MH+ · γ2

±
MCH3COO− · (1 M)

Letting α be the fractional dissociation,

MCH3COOH = (1 − α) MCH3COOH,o and MCH3COO− = MH+ = αMCH3COOH,o

the equilibrium relation is

10−4.76 =
α2 · MCH3COOH.o

(1 − α) (1 M)
γ2
±

a. Therefore, if the activity coefficients of the ions are assumed to be unity, the equation to
be solved for α is

10−4.76 =
α2 · MCH3COOH.o

(1 − α) (1 M)

and the value of α so obtained is used in

pH = −log

(
α · MCH3COOH,o

1 M

)

The results appear in the following table. Note that in this case the sodium chloride con-
centration does not affect the calculated results since the ion activity coefficients have been
neglected.

b. Including the activity coefficients of the ions, the equilibrium equation is

10−4.76 =
α2 · MCH3COOH.o

(1 − α) (1 M)
· exp

(
−2 · 1.178 ·

√
I

1 +
√

I

)

where I is the ionic strength due to all the ions, that is,

I =
1

2

∑
ions i

z2
i Mi =

1

2

(
MH+ + MCH3COO− + MNa+ + MCl−

)

=
1

2
(2 · α · MCH3COOH,o + 2 · MNaCl) = α · MCH3COOH,o + MNaCl

Therefore, the equation to be solved for α is

10−4.76 =
α2 · MCH3COOH.o

(1 − α) (1 M)
· exp

(
−2 × 1.178 ×

√
α · MCH3COOH,o + MNaCl

1 +
√

α · MCH3COOH,o + MNaCl

)

and the value of α is then used in

pH = −log

[
α · MCH3COOH,o

1 M
· exp

(
−1.178 ×

√
α · MCH3COOH,o + MNaCl

1 +
√

α · MCH3COOH,o + MNaCl

)]
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The results of this calculation also appear in the table.
Perhaps the most surprising result from the calculation is that while the extent of disso-

ciation of acetic acid is strongly affected by the amount of sodium chloride added, there is
relatively little effect on the pH of the solution, as the effect on the shift in the equilibrium
due to the ion activity coefficient is largely compensated for by the appearance of the same
activity coefficient in the definition of the pH.

Table 13.5-2 The Extent of Dissociation and pH of Solutions of Acetic Acid and Sodium
Chloride

α α
MCH3COOH,o MNaCl (γ± = 1) pH (γ± 
= 1) pH

0.0001 0 0.339 4.470 0.339 4.473
0.1 0 0.013 2.883 0.014 2.880
1 0 4.160 × 10−3 2.381 4.368 × 10−3 2.391
5 0 1.863 × 10−3 2.031 2.046 × 10−3 2.037
0.0001 1 0.339 4.470 0.520 4.540
0.1 1 0.013 2.883 0.023 2.885
1 1 4.160 × 10−3 2.381 7.493 × 10−3 2.382
5 1 1.863 × 10−3 2.031 3.362 × 10−3 2.031
0.0001 5 0.339 4.470 0.597 4.577
0.1 5 0.013 2.883 0.029 2.886
1 5 4.160 × 10−3 2.381 9.366 × 10−3 2.382
5 5 1.863 × 10−3 2.031 4.201 × 10−3 2.031

Based on the results of this illustration, if we are interested only in computing the
pH of a solution containing a weak acid (or base), it may be possible to neglect the ion
activity coefficients. However, if our interest is in the extent of dissociation of the weak
acid (or base), the activity coefficients of the ions should be included. What happens in
the calculation here (and in other examples later in this chapter) is that there is some
cancellation between the effect of the ion nonideality on the calculation of the equilib-
rium and on the calculation of the pH. This is especially true for a 1:1 acid (that is, an
acid that on ionization produces a cation of charge +1 and an anion of charge −1).

The calculation of the pH of a mixture of a weak acid and a strong base is considered
next, and is slightly more complicated. (The development of the equations for a weak
base and a strong acid is left for the reader as Problem 15.5.) For simplicity of pre-
sentation, we will neglect the ionization of water, except at the neutral point (pH = 7)
or when there is an excess of base, and also neglect solution nonidealities. Of course,
electrolyte solution nonideality can be included following a procedure such as that in
the illustration above. The dissociation reactions of a weak acid and a strong base are

Weak acid + strong
base

HA
KHA� H+ + A− and BOH → B+ + OH− (13.5-14)

The apparent equilibrium constant for the dissociation of the weak acid is

KHA =
MH+ · MA−

MHA

Now using α to represent the fraction of the acid that has dissociated, we have from the
mass balances

MHA = MHA,o(1 − α) MA− = αMHA,o and MH+ = αMHA,o − MBOH
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The last relation arises from the fact that as long as the amount of base added does
not exceed the amount of acid initially present, each hydroxyl ion formed from the
dissociation of the base will react with a hydrogen ion produced from the dissociation
of the weak acid to form a neutral water molecule.

Consequently, the equilibrium relation is

KHA =
(MHA,oα − MBOH) · αMHA,o

MHA,o(1 − α)

which has the solution

α =
− (KHA − MBOH) +

√
(KHA − MBOH)2 + 4KHA · MHA,o

2MHA,o

(13.5-15)

and

MH+ = αMHA,o − MBOH

=
− (KHA + MBOH) +

√
(KHA − MBOH)2 + 4KHA · MHA,o

2

(13.5-16)

Illustration 13.5-7
The pH of a Solution of a Weak Acid and a Strong Base

What is the pH of a solution that contains 0.1 M acetic acid (pKHA = 4.76) and 0.07 M sodium
hydroxide?

Solution

Using the equation above, we have

MH+ =
− (10−4.76 + 0.07) +

√
(10−4.76 + 0.07)2 + 4 · 10−4.76 · 0.1

2
= 7.445 × 10−6 M

and pH = 5.128.

Illustration 13.5-8
The Titration of a Weak Acid and a Strong Base

A 10-mL solution of a 0.2-M acetic acid solution is titrated with a 0.2-M sodium hydroxide
solution. What is the pH of the solution as a function of the amount of sodium hydroxide solution
added?

Solution

When 10 mL of the 0.2-M sodium hydroxide solution has been added, the solution will be neutral
with pH = 7.0. For lesser amounts of sodium hydroxide added, Eq. 13.5-16 is used with the
following concentrations for the addition of X mL of the sodium hydroxide solution to the 10 mL
of acid solution:

MHA,o =
10 · 0.2

10 + X
M and MNaOH =

0.2 · X
10 + X

M for X < 10 mL

(since the addition of the sodium hydroxide solution dilutes the initial acid concentration.)
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For additions of the sodium hydroxide solution beyond the point of neutrality, the molality of
hydroxide ions is

MOH− =
0.2 · X − 2

10 + X
M for X > 10 mL

since the first 0.2 M× 10 mL = 2 mmol of hydroxyl ions neutralize the hydrogen ions resulting
from the dissociation of the weak acid. Therefore,

MH+ =
10−14

MOH−
=

(10 + X) · 10−14

0.2 · X − 2
M X > 10 mL

and

pH = −log

[
(10 − X ) · 10−14

2 · X − 2

]
The results are shown in the following figure.

15

10

pH

5

0
0 5 10 15

X
20

It is of interest to compare the titration curves for the weak acid with a strong base with
the titration curve for a strong acid with a strong base. In Illustration 13.5-2 and here we have
used equal amounts of acidic solutions of equal concentrations, and titrated both with the same
sodium hydroxide solution. However, we see that the initial parts of the titration curve look
somewhat different while the parts beyond neutrality are identical. In particular, the titration
curve for the strong acid starts at a much lower pH than the titration curve for the weak acid.
Also, the initial shape of the titration curve has more curvature for the weak acid than is the case
here for the strong acid.

Buffer

A buffer is a compound that stabilizes the pH of a solution in spite of the addition
of an acid or a base. To be specific, sodium acetate, a salt that dissociates completely,
can be used to buffer an acidic solution such as acetic acid. For example, in an aqueous
solution of sodium acetate (which we will represent as NaAc), which has a pH of 7,
and acetic acid (HAc), the following reactions occur:

NaAc → Na+ + Ac−

HAc
KHA� H+ + Ac−

and

H2O
KW� H+ + OH− (13.5-17)

In addition, we have the mass balances

MNa+ = (MAc−)salt ≡ b
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Total acetate = MHAc + (MAc−)from acid + (MAc−)from salt

= MHAc + MAc− ≡ a + b

Note that with these definitions, a is the initial (before dissociation) molal concentration
of acetic acid MHAc,o, and b is the molal concentration of sodium acetate. Finally, from
the condition that the solution must be electrically neutral, we have

MH+ + MNa+ = MOH− + MAc− or MNa+ = b = MOH− + MAc− − MH+

so that
MAc− = b + MH+ − MOH−

and
a = MHAc + MAc− − b = MHAc + MH+ − MOH−

or
MHAc = a − MH+ + MOH−

These expressions are used in the equilibrium relations as follows:

KHA =
MH+ · MAc−

MHAc

=
MH+ · (b + MH+ − MOH−)

(a + MOH− − MH+)

Also,

KW = MH+ · MOH− or MOH− =
KW

MH+

and

KHA =
MH+ ·

(
b + MH+ − KW

M
H+

)
(
a + KW

M
H+

− MH+

) =
MH+ ·

(
bMH+ + M 2

H+ − KW

)(
aMH+ + KW − M2

H+

)
Therefore,

pKHA = pH − log
[

b + 10−pH − 10(pH−pKW)

a + 10(pH−pKW) − 10−pH

]

= pH − log
[

MNaAc + 10−pH − 10(pH−pKW)

MHAc,o + 10(pH−pKW) − 10−pH

]

or

pH = pKHA + log
[

MNaAc + 10−pH − 10(pH−pKW)

MHAc,o + 10(pH−pKW) − 10−pH

]
(13.5-18)

Since pKW is of the order of 14, for values of pH in the approximate range of 4 ≤
pH ≤ 10, this equation reduces to

pKHA = pH − log
(

b

a

)
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or

Henderson-
Hasselbalch
equation

pH = pKHA + log
(

b

a

)
= pKHA + log

(
MNaAc

MHAc,o

)
(13.5-19)

which is referred to as the Henderson-Hasselbalch equation.
The result of Eq. 13.5-18 for the pH of a solution in the presence of a buffer is an-

alytically and numerically very different from Eq. 13.5-12b, obtained earlier when no
buffering salt is present:

pH = pKHA − log

{√
1 +

4 · MHA,o

KHA

− 1

}
+ log 2 (13.5-12b)

The calculated results for the pH of acetic acid solutions with various amounts of
sodium acetate are given in the table below. There we see that the presence of sodium
acetate keeps the pH of acetic acid solutions closer to neutrality (pH = 7), though greater
amounts of the salt are needed as the acid concentration is increased.

MHAc,o MNaAc pH

1.0 0.0 2.375 (no buffer)
1.0 0.5 4.449
1.0 1.0 4.750
1.0 2.0 5.051
1.0 5.0 5.449
5.0 0.0 2.026 (no buffer)
5.0 0.5 3.750
5.0 1.0 4.051
5.0 2.0 4.352
5.0 5.0 4.750

(At these concentrations, we should include the effect of electrolyte solution nonideal-
ity. That would make the analysis is more difficult, and consequently this is left to the
reader as an exercise.)

13.6 IONIZATION OF BIOCHEMICALS

There are chemicals, especially biochemicals, that have more than a single ionization
state. Indeed, proteins, composed of many amino acids, have numerous ionization sites
and therefore multiple ionization states with different net charges. As a simple introduc-
tion to species with multiple ionization sites, consider phthalic acid, a so-called dibasic
acid that ionizes as follows:

K1

COOH COO−

+ H+

COOH COOH



818 Chapter 13: Chemical Equilibrium

and

K2

COO− COO−

+ H+

COOH COO−

Ionization of a dibasic
acid

with pK1 = 2.95 and pK2 = 5.41. To be general, we will write the reactions for an
acidic species with two ionization sites as

H2A
K1� H+ + HA− and HA− K2� H+ + A2− (13.6-1)

The reaction equilibrium relations using the apparent equilibrium constants are

K1 =
MH+ · MHA−

MH2A

and K2 =
MH+ · MA2−

MHA−
(13.6-2a)

Combining these two equations,

K1K2 =
(MH+)2 · MA2−

MH2A

(13.6-2b)

Our interest is in determining the fraction of the initial amount of the dibasic acid
in each of the states (H2A, HA−, and A2−) at each pH of the solution, which we as-
sume is being adjusted by adding a strong acid or base. That is, we will take the pH
to be known, and we want to compute the fraction of acid in each ionization state.
The total concentration of acidic species (that is, of all forms of the dibasic acid)
Macid is

Macid = MH2A + MHA− + MA2− = MH2A +
MH2A · K1

MH+
+

MH2A · K1K2

(MH+)2

= MH2A

[
1 +

K1

MH+
+

K1 · K2

(MH+)2

]
(13.6-3)

Therefore, the fraction of undissociated dibasic acid is

fH2A =
MH2A

Macid

=
1[

1 +
K1

MH+
+

K1 · K2

(MH+)2

] =
(MH+)2[

(MH+)2 + K1MH+ + K1 · K2

]

=
10−2pH

10−2pH + 10−(pK1+pH) + 10−(pK1+pK2)
(13.6-4a)
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Similarly,

fHA− =
MHA−

Macid

=
K1 · MH2A

MH+
· 1

MH2A ·
[
1 + K1

MH+
+ K1 · K2

(MH+)2

]

=
K1 · MH+

(MH+)2 + K1 · MH+ + K1 · K2

=
10−(pK1+pH)

10−2pH + 10−(pK1+pH) + 10−(pK1+pK2)
(13.6-4b)

and

fA2− =
K1 · K2

(MH+)2 + K1 · MH+ + K1 · K2

=
10−(pK1+pK2)

10−2pH + 10−(pK1+pH) + 10−(pK1+pK2)
(13.6-4c)

Illustration 13.6-1
The Ionization of a Dibasic Acid

Compute the fraction of phthalic acid in each of its ionization states as a function of pH. Also,
compute the average charge on the phthalic acid species as a function of pH.

Solution

Using the pK1 and pK2 values given earlier and the equations above, we obtain the results in
Fig. 13.6-1 for the fraction of each species present as a function of pH. Though each molecule
of phthalic acid can have a charge of only 0, −1, or −2, the average charge on the phthalic acid
components (which need not be an integer) is computed as the sum of the fractions of molecules
in each of these charge states times the integer charge in that state, that is,

Charge = 0 · fH2A − 1 · fHA− − 2 · fA2−

The results are shown in Fig. 13.6-2. There we see that at low pH, where there is no ionization
of phthalic acid, it has no net charge. However, as the pH is increased, there is an increasingly
negative charge on the acid until a pH of 7 is reached, at which point the acid is fully dissociated
with a charge of −2.

Note that the fraction singly ionized is

fHA− =
10−(pK1+pH)

10−2pH + 10−(pK1+pH) + 10−(pK1+pK2)

=
1

10−2pH

10−pK110−pH
+ 1 +

10−pK110−pK2

10−pK110−pH

=
1

10−pH10pK1 + 1 + 10pH10−pK2
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Figure 13.6-1 The fractions of undissociated fH2A

(dashed line), singly ionized fHA− (dotted line),
and completely dissociated fA2− (solid line) ph-
thalic acid as a function of pH.
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Figure 13.6-2 The net charge on phthalic acid as
a function of pH.

For fHĀ to the a maximum, denominator must be a minimum with respect to pH

d(denom)

dpH
=

d

dpH

(
10−pH10−pK1 + 1 + 10pH10−pK2

)
= 0

Since
d(au)

du
= au loge a and

d(a−u)

du
= −a−u loge a

d(denom)

dpH
= −10−pH (loge 10) 10pK1 + 0 + 10pH (loge 10) 10−pK2

⇒ 10−pH10pK1 = 10pH10−pK2 ⇒ 102pH = 10pK1+pK2

pH for maximum fHĀ ⇒ 2pH = pK1 + pK2 or

pH =
pK1 + pK2

2
=

2.95 + 5.41

2
= 4.18

Amino acids consist of acidic and basic groups on the same molecule, and at neutral
pH can be considered to be neutral or to have a negatively charged anionic part and a
positively charged cationic part. This is shown below
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or

NH2—
—

H

R — C — COOH

NH+
3—

—

H

R — C — COO−

Figure 13.6-3 Amino acid as a zwitterion.

where different amino acids have different R groups as side chains. For example, if
R = H the amino acid is glycine, if R = CH3 the amino acid is alanine, and in lysine
the side group is R = (CH2)NH2.

Compounds such as amino acids with both anionic and cationic parts are referred
to as zwitterions (coming from the German word zwitter meaning “hybrid”), and their
charge changes with pH as a result of the reactions shown below for glycine

NH+
3—

—

H

K1
H — C — COOH

NH+
3—

—

H

(A) (B)

H — C — COO− +H+

NH+
3—

—

H

K1
H — C — COO−

—
—

H

(B) (C)

NH2

H — C — COO− +H+

Figure 13.6-4 Ionization reactions of glycine (ignoring the
zwitterion effect).

in which the sequence shown starts at low pH (high hydrogen ion concentration), where
the amino acid has a positive charge. As the pH is raised (the hydrogen ion concentration
is lowered) the first reaction occurs, releasing a hydrogen ion from the amine group and
resulting in no net charge on the amino acid. As the pH increases further, the second
reaction occurs releasing a second hydrogen ion, now from the carboxylic acid, and
resulting in the negatively charged form of the amino acid.

The coupled set of equations that result from the coupled reactions, using an ap-
parent equilibrium constant, with the species denoted as A, B, and C as indicated in
Fig. 13.6-4, are

K1 =
MBMH+

MA

(13.6-5a)

and

K2 =
MCMH+

MB

(13.6-6a)

Using MB,o to represent the initial molar concentration of the uncharged amino acid in
neutral solution (pH = 7), we have

MB,o = MA + MB + MC
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A simplification that we can use in solving these equations is that since the equilib-
rium constants are generally so different in value for amino acids that one reaction will
have gone to completion before the other reaction has occurred to an appreciable extent.
For example, for glycine we have pK1 = 2.34 or K1 = 4.57× 10−3 and pK2 = 9.6 or
K2 = 2.51 × 10−10, so that the positively charged (A) form of the acid is only pre-
sentto an appreciable extent only below pH = 7, and the negatively charged (C) form is
present to an appreciable extent only above pH = 7. MB = MB,o − MA, so that to an
appreciable extent only below pH = 7, and the negatively charged (C) form is present
to an appreciable extent only above pH = 7. MB = MB,o − MA, so that

K1 =
(MB,o − MA)MH+

MA

(13.6-5b)

which has the solution

MA

MB,o

=
MH+/K1

MH+/K1 + 1
=

10(pK1−pH)

1 + 10(pK1−pH)
(13.6-5c)

The equilibrium relation for the second reaction is

K2 =
MCMH+

MB

(13.6-6a)

Now using MB = MB,o − MC, we obtain

MC

MB,o

=
1

1 + MH+/K2

=
1

1 + 10(pK2−pH)
(13.6-6b)

The average charge f on an amino acid, then, is

f(pH) = (+1) × MA

MB,o

+ (−1) × MC

MB,o

=
10(pK1−pH)

1 + 10(pK1−pH)
− 1

1 + 10(pK2−pH)

(13.6-7a)

Also, it is easy to show (and left to the reader) that for the case here of an amino acid
with a single carboxylic acid group and a single amine group, the isoelectric point, pI,
that is, the pH at which the the amino acid has zero net charge, is

pH =
pK1 + pK2

2
(13.6-7b)

[Here the isoelectric point has been taken to be the pH at which the substance has no net
charge. The experimental definition is the pH at which the substance has zero mobility
in an electrophoresis cell. In fact, these two values of pH differ so slightly, they are
frequently used interchangeably, as is done here.]

Illustration 13.6-2
The Charge on an Amino Acid as a Function of pH

The ionization equilibrium constants for glycine are pK1 = 2.34 and pK2 = 9.6. Determine the
fraction of glycine molecules in the positively charged, negatively charged, and neutral states as
a function of pH. Also, determine the average net charge on glycine as a function of pH, and the
isoelectric point of glycine.
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Solution

Using Eqs. 13.6-5c and 13.6-6b, and the pK values given above, we can easily calculate the frac-
tion of glycine in each of the ionization states, and by difference, the fraction that is uncharged.
The results are shown in Figs. 13.6-5 and 6.
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Figure 13.6-5 Fractions of neutral and charged forms
of glycine as a function of pH.
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Figure 13.6-6 Average net charge on glycine as a
function of pH.

Note that, as assumed, the positively charged (A) species have essentially disappeared at
pH = 5, and the negatively charged (C) species begin to appear only above about pH = 8.
So our assumption that the first reaction goes to completion before the second reaction occurs is
justified. Because the charge on glycine is near zero over the pH range between about 3 and 9.5,
it is very difficult to determine the isoelectric point from Fig. 13.6-6. However, from Eq. 13.6-7b,
the isoelectric point is calculated to be pH = 5.97.
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A more detailed description of the ionization states of the amino acid glycine
(H2NCH2COOH) is shown below, and is a bit more complicated than discussed
above since the neutral form should be considered to be a zwitterion that exists in
two different states.

K1 K2

+H3NCH2COOH (GH2
+)

(GH)
K4

H2NCH2COOH
K3

(GH )+H3NCH2COO−

(G)H2NCH2COO−

(13.6-8)

In this diagram the letters in parentheses indicate the notation that will be used to
represent each of these species. The equilibrium relations for the glycine reactions,
neglecting solution nonidealities, are

K1 =
MGH · MH+

M
GH+

2

K2 =
MGH′ · MH+

M
GH+

2

K3 =
MG− · MH+

MGH

and

K4 =
MG− · MH+

MGH′

Consequently,

K1K3 =
MGH · MH+

M
GH+

2

· MG− · MH+

MGH

=
MG− · (MH+)2

M
GH+

2

(13.6-9a)

and

K2K4 =
MGH′ · MH+

M
GH+

2

· MG− · MH+

MGH′
=

MG− · (MH+)2

M
GH+

2

(13.6-9b)

so that K1K3 = K2K4.
In laboratory measurements we cannot distinguish between the GH and GH′ states,

as they contain the same number of protons, and by hydrogen transfer, the molecule
will jump between these two states. Therefore, we define new equilibrium constants
that can be measured as follows:

K1 =
(MGH + MGH′) · MH+

M
GH+

2

=
MGH · MH+

M
GH+

2

+
MGH′ · MH+

M
GH+

2

= K1 + K2

(13.6-10a)
and

K2 =
MG− · MH+

(MGH + MGH′)
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so that

1
K2

=
(MGH + MGH′)

MG− · MH+
=

MGH

MG− · MH+
+

MGH′

MG− · MH+
=

1
K3

+
1

K4

=
K3 + K4

K3K4

or

K2 =
K3K4

K3 + K4

(13.6-10b)

Thus the glycine reaction system can be represented as

GH+
2

K1� GH + H+ and GH
K2� G− + H+

with GH now representing the sum of the two neutral forms of glycine, GH and GH′.
It is this description that is generally used in describing amino acids, as was done in
Illustration 13.6-2.

Proteins are long-chain molecules formed by polymerization reactions between
amino acids. For example, the first step in such a reaction to form a peptide is shown
below.

H O H ONH2 O NH2 O− = − = − = − =

− − − − −

R1 R2 R1 H R2

H − C − C − OH + NH2 − C − C − OH −→ H − C − C − N − C − C − OH + H2O

The carbon-nitrogen bond is referred to as the peptide bond. A polypeptide chain is
the result of a number of such reactions, and the characteristic of all peptides, like the
amino acids from which they have been formed, is that one end of the molecule is an
amino group and the other end is a carboxylic acid. Different peptides are characterized
by their lengths and their side chains (R groups). In fact, only twenty types of side
chains, with different sizes, shapes, charges, chemical reactivity, and hydrogen-bonding
capacity, have so far been found in the proteins on all species on earth, from bacteria
to man.

Since proteins are large polypeptides molecules and are made up of a number of
acidic (usually carboxylic acid) and basic groups (usually simple amino groups, but
also histidine, lysine, arginine, and guanidine), including on their side chains, proteins
have many ionization states. Therefore, the charge on a protein varies greatly with pH;
however, like the amino acids from which they are formed, they will have a positive
charge at low pH and a negative charge at high pH. As an example, the charge on the
protein hen egg white lysozyme as a function of pH is shown in Fig. 13.6-7. [Lysozyme
is a small protein that protects mammals (including us) from bacterial infection by
attacking the protective cell walls of bacteria.] It has 32 ionizable groups, some anionic
and others cationic, and as a result, its charge changes from +19 in very acidic solutions
to −13 in very basic solutions. Notice that at a pH of 11.2, there is zero net charge on
a lysozyme molecule, so this is the isoelectric point of this protein.

A rule of thumb is that an amino acid or protein with multiple ionization sites will
always include a primary carboxylic acid (−COOH) group that ionizes at low pH (usu-
ally 2 to 3), a primary amino (−NH2) group that ionizes in the pH range between 8 and
10, and other ionizable groups on side chains.
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Figure 13.6-7 Average net charge on hen egg white lysozyme
as a function of pH.

The isoelectric point, the pI, depends on the proportion of acidic and basic ionizable
side chains. If the number of basic (largely ammonium) side chains is greater than the
number of acidic (largely carboxyl) side chains, the pI of the protein will be high and
the net charge on the protein will be positive over most of the pH range. It is for this
reason that the pI of lysozyme, which has 19 basic groups and 13 acid groups, is 11.2.
However, if the number of basic side chains is fewer than the number of acidic groups,
the pI of the protein will be low, and its net charge will negative over most of the pH
range as occurs in the albumins, which have pI values in the range from 4.6 to 4.9.

One way that the charge on a protein changes with pH is used in the laboratory is in
a separation method called isoelectric focusing, a form of electrophoresis. The protein
or mixture of proteins is put on a conducting gel plate that has a fixed pH gradient and
is also subject to a electrostatic potential gradient in the same direction. A protein that
is in a region of the plate of pH below its pI will be positively charged and will move
towards the cathode; a protein that is a region above its pI will migrate towards the
anode. Once the protein reaches a region of the gel with a pH that is equal to its pI
it will have no net charge and stop migrating. In this way, a mixture proteins can be
separated, with each protein located in the pH region of the gel corresponding to its
pI value.

As a result of their highly polar, ionizable groups, amino acids are very soluble in
polar solvent such as water, and only slightly soluble in nonpolar organic liquids. Also,
by releasing hydrogen ions at high pH and accepting hydrogen ions at low pH, zwitte-
rions act as good buffers by keeping a solution closer to neutrality upon the addition of
an acid or a base.

Illustration 13.6-3
The pH of a Solution Containing an Amino Acid as a Buffer

Twenty-five milliliters of a 0.1-M aqueous solution of glycine is to be titrated with a 0.1-M
sodium hydroxide solution. Determine the pH of the solution, the fraction of glycine in the
GH+

2 , GH, and G− ionization states, and the charge on glycine as a function of the amount of
sodium hydroxide added.
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Solution

Initially there are 25 mL of a 0.1-M solution, so the titration starts with 2.5 mmol of glycine.
Let α be the number of mmoles of GH and β the number of mmoles of G− present at any time.
Also, as the 0.1-M NaOH solution is added, the OH− ions resulting from the sodium hydroxide
ionization react with the H+ ions from the ionization of glycine to produce water. Therefore, the
amount of each species present after the addition of X mL of NaOH is

Species Initial (mmol) Final (mmol)

GH+
2 2.5 2.5 − α

GH 0 α − β
G− 0 β
H+ 0 α + β − 0.1X

Also, the volume of the solution is 25+X, where X is the milliliters of the 0.1-M NaOH solution
added. Therefore, the equilibrium relations are

K1 =
MGH · MH+

M
GH

+
2

=
(α − β) · (α + β − 0.1X)

(2.5 − α) · (25 + X)

and

K2 =
MG− · MH+

MGH

=
β · (α + β − 0.1X)

(α − β) · (25 + X)

In principle, these equations need to be solved simultaneously. As already discussed, the equi-
librium constants are so different in value (pK1 = 2.34 and pK2 = 9.6) that the first reaction
goes to completion (i.e., α = 2.5) before the second reaction occurs to a significant extent.
Therefore, one needs solve only the simpler equations

K1 = 10−2.34 =
α · (α − 0.1X)

(2.5 − α) · (25 + X)
for X ≤ 25 mL

and

K2 = 10−9.6 =
β · (2.5 + β − 0.1X)

(2.5 − β) · (25 + X)
for 25 < X ≤ 50 mL

Also,

MH+ =
α + β − 0.1X

25 + X
M and pH = −log

(
α + β − 0.1X

25 + X

)

When X > 50 mL, all the hydrogen ions resulting from the ionization of glycine have been
neutralized, and the only hydrogen ions remaining are from the ionization of water, so that

MOH− =
0.1X

25 + X
and MH+ =

10−14

MOH−
=

10−14 (25 + X)

0.1X

and

pH = −log MH+ = −log

(
10−14 (25 + X )

0.1X

)
= 14 + log

(
0.1X

25 + X

)
for X > 50 mL

Finally, the fractions f of glycine molecules in the GH+
2 , GH, and G− states can be computed

from

f
GH

+
2

=
2.5 − α

2.5
fGH =

α − β

2.5
and fGH =

β

2.5

The results are shown in Figs. 1 and 2. For comparison, note that in water without any added
sodium hydroxide, 81 percent of the glycine is in the GH+

2 state, 19 percent is in the GH or GH′

state, and the pH of the solution is 1.72.
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Figure 13.6-9 Fractions f of glycine in the GH+
2 , GH, and G−

states as a function of the milliliters of 0.1-M sodium
hydroxide solution added.

If the glycine were not present, so that the starting solution was only 25 mL of pure water, the
molality of hydrogen ions (neglecting solution nonideality) would be given by

MH+ =
KW

MOH−
=

10−14

MNaOH

so that pH = 14 + log MNaOH

since the strong base, sodium hydroxide, is fully ionized. The molality of sodium hydroxide
when X mL of a 0.1-M NaOH solution is added is

MNaOH =
0.1X

25 + X

and

pH = 14 + log

(
0.1X

25 + X

)
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The pH of the solution without glycine is shown in Fig. 1. Note that without glycine the solution is
initially at pH 7, and that the pH initially rises rapidly upon the addition of sodium hydroxide and
then more gradually. However, with glycine present the initial pH is low and, while gradually
increasing, remains low until 25 mL of the NaOH solution has been added, as the hydrogen
ion released by carboxylic acid portion of the glycine reacts with the hydroxide ion of NaOH
to form water. Further addition of NaOH results in a sharp increase in pH to slightly above
pH = 8. Then continued additions of the strong base lead to the release of hydrogen ions from the
amino groups that react with the sodium hydroxide, resulting in only a slight increase in pH until
50 mL of NaOH solution has been added. At that point, there are no additional hydrogen ions that
can be released, and the pH of the solution increases rapidly. From Fig. 1, we see that glycine,
being a zwitterion, is an effective buffer in the pH range near 2 and also in the pH range slightly
above 8.

Consider next the reaction between benzoyl tyrosine and glycinamide when they are
in the same solution

benzoyl tyrosine (BT) + glycinamide (GA)
↔ benzoyltyrosyl glycylamide (BTGA)

The equilibrium constant for this reaction based on standard states of ideal 1-molal
solutions is

K =
[BTGA]

[BTCOOH] [GANH2]
= 0.49 M or pK= 0.31

As BT and GA are present in both the neutral and deprotonated forms, what has is
actually measured is an apparent equilibrium constant κ

κ =
[BTGA](

[BTCOOH] +
[
BTCOO−]) ([GANH2] +

[
GANH+

3

])
since analytically it may not be easy to distinguish between the neutral and ionic species
in solution. Now using the ionization equilibrium relations we have

κ =
[BTGA]

[BTCOOH]
(

1 + KA

[H+]

)
[NH2GA]

(
1 + [H+]

KB

)=
K(

1 + KA

[H+]

)(
1 + [H+]

KB

)

or

κ = K(
1+

KA

[H+]

)(
1+

[H+]
KB

) = K(
1+

KA
10−pH

)(
1+ 10−pH

KB

) = 0.49 M(
1+ 10−3.7

10−pH

)(
1+ 10−pH

10−7.93

)

= 0.49 M

(1+10pH−3.7)(1+107.93−pH)

Figure 13.6-10 is a plot of the apparent equilibrium constant κ as a function of pH.
We see that in the pH range of about 5.8 to 7.7, κ is equal to the true equilibrium
constant K. However at very low pH and very high pH, the apparent equilibrium con-
stant κ is essentially zero. That is, there is an appreciable extent of reaction around
the neutral pH of 7, but the reaction essentially does not occur very far away from
neutral pH.
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Figure 13.6-10 Apparent equilibrium constant
for the reaction between benzoyltyrosine and
glycinaminde as a function of pH.

The discussion so far has been for processes at constant temperature; here we con-
sider how the change in a protein charge changes with temperature. Acid and base ion-
izations are chemical reactions, and have temperature-dependent equilibrium constants.
For a small temperature change,

ln
K(T2)
K(T1)

= −ΔrxnH

R

(
1
T2

− 1
T1

)
or pK (T2) = pK(T1)+

ΔrxnH

2.303R

(
1
T2

− 1
T1

)
As an example, the heat of ionization of the ammonium group in glycine is about -44.77
kJ/mol, while that of the carboxylic group is approximately 0 kJ/mol. Therefore, while
the pK for ammonium group in glycine is 9.60 at 25oC, using the equation above, it is
expected to be 9.90 at body temperature of 37oC and 8.88 at 0oC. However, the pK for
the carboxylic acid group is essentially constant over that same temperature range. This
results in small changes in the charge versus pH diagram as shown in Fig. 13.6-9 for
the three temperatures. Note also (though not obvious in that figure) that the isoelectric
point shifts slightly from pH = 5.97 at 25oC, to 5.61 at 37oC and 6.12 at 0oC.
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Figure 13.6-11 Charge on glycine as a function
of pH at 25◦C (solid line), 0◦C (dotted line) and
37◦C (dashed line).

The variation of the solubility of a protein with temperature provides information on
its heat of dissolution. In particular, using the solubility product Ksp,

Ksp =
asolution

asolid

= asolution ≈ c

where asolution is the activity of biomolecule in solution which, at low concentrations,
can be taken to be its concentration, and its activity as a pure solid, asolid, is unity.
Consequently, knowing the solubility of a biomolecule at two temperatures, we can use

ln
Ksp(T2)
Ksp(T1)

= ln
c(T2)
c(T1)

= −ΔsolH

R

(
1
T2

− 1
T1

)
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to calculate its heat of solution. For example, the solubility of lactoglobulin in water is
0.35 g/liter at 5◦C and 0.58 g/liter at 25◦C, from which using Eq. 13.6-11 we estimate
its heat of solution is 17.4 kJ/mol, and can then compute that its solubility at body
temperature of 37◦C to be 0.76 g/liter. This calculation of the heat of solution contains
the assumption that the protein has not ionized in the dissolution process, that is, it is
near its pI. If the protein ionizes on dissolution, the apparent heat of solution determined
using Eq. 13.6-11 will include the heat of ionization.

13.7 PARTITIONING OF AMINO ACIDS AND PROTEINS BETWEEN TWO LIQUIDS

Next consider the partitioning of an acid between an organic and an aqueous liquid, as
occurs in liquid-liquid extraction. The measured partition coefficient KP is the ratio of
the total concentration of the acid in the organic (upper) phase (O) to that in the aqueous
phase (W)

KP =
[RCOOH]O

[RCOOH]W +
[
RCOO−]

W

(13.7-1)

where we have recognized that the weak acid may be partially (or completely) ionized,
but only in the aqueous phase denoted by the subscript W. The equilibrium constant for
the ionization of an acid at high dilution so that all activity coefficients can be considered
to be unity, is

KA =

[
RCOO−]

W
[H+]W

[RCOOH]W
(13.7-2)

Combining these two equations gives

KP =
[RCOOH]O

[RCOOH]W (1 + KA/ [H+])
=

[RCOOH]O
[RCOOH]W (1 + 10pH−pKA)

(13.7-3)

It then follows that there can be a significant variation of the partition coefficient KP

with pH. Now consider the case in which the concentration of the weak acid is at satura-
tion in both phases. The ratio R of partition coefficients for the saturated acid concentra-
tion in two separated and different aqueous solutions of differing pH but in equilibrium
with the same organic second phase (assuming the acid does not deprotonate in the
organic phase), is given by

R =
KP (pH2)
KP (pH1)

=
1 + 10pH1−pKA

1 + 10pH2−pKA
(13.7-4)

Since the saturated acid concentration in the organic phase is independent of the satu-
rated acid concentration in the aqueous phase, and the saturation concentration of undis-
sociated acid in the aqueous phase is independent of pH.

In the discussion above, we have neglected the effect of solution nonidealities.
To correct for this, we should have written

KA =

[
RCOO−]

W
[H+]W γ2

±
[RCOOH]W γA

(13.7-5)
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where γA is the activity coefficient of the unionized acid. Using that pH is more properly
defined as pH = − log ([H+] γ±) and for simplicity using the Debye-Hückel limiting
law γ± = e−1.176

√
I = 10−0.5116

√
I gives

R =
KP (pH2, I2)
KP (pH1, I1)

=
1 + γA10pH1−pKA+0.5116

√
I1

1 + γA10pH2−pKA+0.5116
√

I2
(13.7-6)

This equation shows the effects of pH and ionic strength on the partitioning of a weak
acid between organic and aqueous phases.

The analogous result for the ratio of the partition functions at saturation for an amino
acid at different pHs and ionic strengths is

R =
KP (pH2, I2)
KP (pH1, I1)

=
10pK1−pH1++0.5116

√
I1 + 1 + 10pH1−pK2+0.5116

√
I1

10pK1−pH2++0.5116
√

I2 + 1 + 10pH2−pK2+0.5116
√

I2

(13.7-7)
In Fig. 13.7-1 is shown the predicted partition function ratio R for glycine between
a upper organic phase and lower aqueous phase as a function of pH of the aqueous
phase compared to a neutral (pH = 7) aqueous phase. The solid line is the result for
a solution of low ionic strength and the dashed line is for I = 1 molal (using only the
simple Debye-Hückel limiting law).

Though glycine will partition very differently between the aqueous and organic
phases, we see in this figure that for a range of pH from about 3 to 9, the partitioning
of glycine is essentially independent of the pH of the aqueous solution and is the same
as when the aqueous phase is pH 7 water. However, for pH<3 or pH>9, where glycine
is ionized there will be more glycine in the aqueous phase (i.e., R<1) than is the case
with pH 7 water, Also, there is only a small effect of ionic strength. Such information
can be used to design liquid-liquid extraction processes.
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Figure 13.7-1 Ratio of the glycine organic-
aqueous partition coefficient in aqueous so-
lutions of various pH to that in neutral
(pH = 7) water. [Note that this is the ratio of
partition coefficients for two different aque-
ous solutions as a function of pH, not the
absolute value of the organic-aqueous par-
tition coefficients of the protein.]

Next consider how one could proceed in choosing the nonaqueous phase for extrac-
tion at a fixed pH and ionic strength of the aqueous phase to obtain the best partitioning.
To start we consider how to compute the solubility of a protein in two different solvents,
say solvent I (SI), which is water, and solvent II (SII), which is something other than
water, for example ethanol. The starting point for the phase equilibrium calculation is

μC
P(T,pH) = μSI

P (T,pH,MSI
P ) = μSII

P (T,pH,MSII
P )

or

μC
P(T,pH) = μS,o

P (T,pH) + RT ln γ∗,SI
P MSI

P = μS,o
P (T,pH) + RT ln γ∗,SII

P MSII
P

(13.7-8)
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To proceed we write

μC
P(T,pH) = μSI

P (T,pH,MSI
P ) = μSII

P (T,pH,MSII
P )

= μSI
P (T,pH,MSI

P = 1) + RT ln γ∗,SI
P M I

P

= μSII
P (T,pH,MSII

P = 1) + RT ln γ∗,SII
P MSII

P

= μSI
P (T,pH,MSI

P = 1) + RT ln γ∗,SI
P M I

P

= μSI
P (T,pH,MSI

P = 1) + Δtr,SI→SIIG + RT ln γ∗,SII
P MSII

P

(13.7-9)
where Δtr,SI→SIIG is the Gibbs energy of transfer of the solute from an ideal 1-molal
aqueous solution (solvent SI) to an ideal 1-molal solution in solvent SII. Then, at
equilibrium

γ∗,SI
P MSI

P = exp

(
Δtr,SI→SIIG

RT

)
γ∗,SII

P MSII
P or

MSII
P

MSI
P

=
γ∗,SI

P

γ∗,SII
P

exp

(
−Δtr,SI→SIIG

RT

)

(13.7-10)
where

Δtr,SI→SIIG = μSII,o
P (T,pH,MSII

P = 1) − μSI,o
P (T,pH,MSI

P = 1)

As an example consider the amino acid L-asparagine and, as approximation, assume
that the Henry’s law activity coefficients of L-asparagine in both solvents are about
unity. Using the known solubility data of 0.186 (units??) in water and 2.3 × 10(−5)

(units??) in ethanol the Gibbs energy of transfer of L-asparagine from an ideal 1-
molal solution in water to that in ethanol is

Δtr,SI→SIIG = RT ln
MSI

P

MSII
P

= 8.314 × 298.15 ln
0.186

2.3 × 10−5
= 22.30

kJ
mol

Similar calculations using experimental data show that for the family of α -amino acids
+H3NCHRCOO− results in the following for Δtr,SI→SIIG

R = H Glycine 11.116 kJ/mol
R = CH3 Alanine 9.592 kJ/mol
R = C2H5 α-amino-n-butyric acid 8.158 kJ/mol
R = C4H9 α-amino-n-caproic acid 5.516 kJ/mol

These values are all positive, indicative of water being a better solvent than ethanol for
these amino acids.

All the results above correspond to an aqueous solution of neutral pH. Since the
degree of ionization of amino acids depends on pH, the Gibbs energy of transfer from
the aqueous solution to a solvent (in this case, alcohol) will be a function of the de-
gree of ionization of the amino acid in the aqueous phase, which is a function of pH.
If the amino acid is ionized in the aqueous phase but not in the organic phase, the Gibbs
energy of transfer will include Gibbs energy of ionization.

The starting point then for considering the choice of the organic phase for partitioning
of a biologic (B) between an aqueous (W) and nonaqueous phase (S) is

μW
B (MW

B ) = μS
B(MS

B)
μo

B (ideal 1 M aqueous solution) + RT lnMW
B γ∗W

B (MW
B )

= μo
B (ideal 1 M solvent S) + RT lnMS

Bγ∗S
B (MS

B)

MW
B γ∗W

B (MW
B )

= MS
Bγ∗S

B (MS
B) exp

(
μo
B(ideal 1 M solvent S)−μo

B(ideal 1 M aqueous solution)

RT

)
MW

B γ∗W
B (MW

B ) = MS
Bγ∗S

B (MS
B) exp

(
Δtr,W→SG

RT

)
(13.7-11)
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and the partition coefficient KB for the biologic is

KB =
MS

B

MW
B

=
γ∗W

B (MW
B )

γ∗S
B (MS

B)
exp
(
−Δtr,W→SG

RT

)
(13.7-12)

In this equation, the two activity coefficients have the usual Henry’s law normalization
of unity at infinite dilution in each solvent, which for water is γ∗W

B and in the extraction
solvent is γ∗S

B . There are a number of activity coefficient models that could be used.
For screening purposes, one could set the activity coefficients to unity and obtain the
infinite dilution partition coefficient. That is

KB (MB → 0) = exp
(
−Δtr,W→SG

RT

)
(13.7-13)

So, for example, the ratio of concentrations (at high dilution) of glycine between water
and 1-butanol, for which the reported Gibbs energy of transfer is 25.56 kJ/mol, is such
that the glycine concentration in the aqueous phase will be more than 30,000 times
greater than in the 1-butanol phase. [There would be an activity coefficient correction
at higher glycine concentrations, however, comparatively it is not large.]

PROBLEMS

(Note: The Chemical Engineer’s Handbook, McGraw-Hill,
New York, contains a comprehensive list of standard-state
Gibbs energies and enthalpies of formation.)
13.1 Isopropyl alcohol is to be dehydrogenated in the

gas phase to form propionaldehyde according to the
reaction

(CH3)2CHOH(g) = CH3CH2CHO(g) + H2(g)

For this reaction,

ΔrxnG◦(T = 298.15 K) = 17.74 kJ/(mol i-propanol reacted)

ΔrxnH◦(T = 298.15 K) = 55.48 kJ/(mol i-propanol reacted)

and

ΔrxnCP =
∑

i

νiCP,i = 16.736 J/(mol i-propanol reacted K)

Compute the equilibrium fraction of isopropyl al-
cohol that would be dehydrogenated at 500 K and
1.013 bar.

13.2 The dissociation pressure of calcium oxalate in the
reaction

CaC2O4(s) = CaCO3(s) + CO

at various temperatures is

T (◦C) 375 388 403
Dissociation pressure (kPa) 1.09 4.00 17.86

T (◦C) 410 416 418
Dissociation pressure (kPa) 33.33 78.25 91.18

Source: J. H. Perry, ed., Chemical Engineers’ Handbook, 4th ed.,
McGraw-Hill, New York, 1963, pp. 3–69.

Compute the standard-state Gibbs energy change, en-
thalpy change, and entropy change for this reaction for
the temperature range in the table.

13.3 Carbon dioxide can react with graphite to form carbon
monoxide,

C(graphite) + CO2(g) = 2CO(g)

and the carbon monoxide formed can further react to
form carbon and oxygen:

2CO(g) = 2C(s) + O2(g)

Determine the equilibrium composition when pure
carbon dioxide is passed over a hot carbon bed main-
tained at 1 bar and (a) 2000 K or (b) 1000 K.

13.4 The extent of reaction generally depends on pressure
as well as temperature. For the reaction (or phase
transition)

C(graphite) = C(diamond)

the standard-state Gibbs energy change at 25◦C is
2866 J/mol. The density of graphite is 2.25 g/cc and
that of diamond is approximately 3.51 g/cc; both solids
may be considered to be incompressible. To help
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chemical engineering students pay their tuition, we are
thinking of setting up equipment to run this reaction in
the senior laboratory. Estimate what pressure, at room
temperature (T ∼ 25◦C), must be used to convert old
pencil “leads” (graphite) into diamonds.

13.5 The production of NO by the direct oxidation of nitro-
gen,

1
2
N2 + 1

2
O2 = NO

occurs naturally in internal combustion engines. This
reaction is also used to commercially produce nitric
oxide in electric arcs in the Berkeland-Eyde process.
If air is used as the feed, compute the equilibrium con-
version of oxygen at 1 atm (1.013 bar) total pressure
over the temperature range of 1500 to 3000◦C. Air
contains 21 mol % oxygen and 79 mol % nitrogen.

13.6 Crystalline sodium sulfate, in the presence of water
vapor, may form a decahydrate,

Na2SO4(s) + 10H2O(g) = Na2SO4·10H2O(s)

a. Estimate the minimum partial pressure of water at
which the decahydrate will form at 25◦C.

b. Make a rough estimate of the minimum water
partial pressure for decahydrate formation at 15◦C.

13.7 Carbon disulfide is produced from the high-
temperature reaction of carbon and sulfur:

C(s) + S2(g) = CS2(g)

This reaction is carried out in a retort at low pressure,
and in the absence of oxygen and other species that
may react with either the carbon or the sulfur. Com-
pute the equilibrium percentage conversion of sulfur
at 750◦C and 1000◦C.

13.8 The data in the following table give the solubility of
silver chloride in various aqueous solutions at 25◦C.
Show that these data can be plotted on the same ln Ks

versus
√

I curve as used in Illustration 13.2-3.

Concentration of Concentration of
Electrolyte Added Salt Silver Chloride

Added (mol/m3) (mol/m3)

0.2111 1.309 × 10−2

0.7064 1.339

⎧⎪⎪⎨
⎪⎪⎩Ba(NO3)2 4.402 1.450

5.600 1.467

0.1438 1.317 × 10−2

0.5780 1.367

⎧⎪⎪⎨
⎪⎪⎩La(NO3)3 1.660 1.432

2.807 1.477

Source: E. W. Newman, J. Am. Chem. Soc., 54, 2195 (1932).

13.9 The following data are available for the solubility of
barium sulfate in water:

Temperature (◦C) 5 10 15
Solubility (mol m−3) 0.0156 0.0167 0.0183

Temperature (◦C) 20 25
Solubility (mol m−3) 0.0198 0.0216

The mean activity coefficient γ± for ions of a salt at
low ionic strength is given by

ln γ± = −α|z+z−|
√

I

where values for the parameter α for water are given
in Table 9.10-1.
a. Compute K◦

s , the ideal solution solubility prod-
uct, for barium sulfate at each of the temperatures
in the table.

b. At each of the temperatures in the table calculate
the Gibbs energy change for the reaction

BaSO4(s) = Ba2+(aq, M = 1, ideal)

+ SO2−
4 (aq, M = 1, ideal)

Here (s) denotes the pure solid state, and (aq,
M = 1, ideal) indicates the ion in a hypothetical
ideal aqueous solution at 1-molal concentration.

c. Compute the entropy and enthalpy changes for the
reaction in part (b) at 5◦C, 15◦C, and 25◦C.

13.10 Hydrogen gas can be produced by the following
reactions between propane and steam in the presence
of a nickel catalyst:

C3H8 + 3H2O = 3CO + 7H2

C3H8 + 6H2O = 3CO2 + 10H2

a. Compute the standard heat of reaction and the
standard-state Gibbs energy change on reaction
for each of the reactions at 1000 and 1100 K.

b. What is the equilibrium composition of the prod-
uct gas at 1000 K and 1 bar if the inlet to the
catalytic reactor is pure propane and steam in a
1-to-10 ratio?

c. Repeat calculation (b) at 1100 K.
13.11 An important step in the manufacture of sulfuric acid

is the gas-phase oxidation reaction

SO2 + 1
2
O2 = SO3

Compute the equilibrium conversion of sulfur diox-
ide to sulfur trioxide over the temperature range
of 0 to 1400◦C for a reactant mixture consisting
of initially pure sulfur dioxide and a stoichiometric
amount of air at a total pressure of 1.013 bar. (Air
contains 21 mol % oxygen and 79 mol % nitrogen.)
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13.12 Ethylene dichloride is produced by the direct chlori-
nation of ethylene using small amounts of ethylene
dibromide as a catalyst:

C2H4 + Cl2 = C2H4Cl2

If stoichiometric amounts of ethylene and chlorine
are used, and the reaction is carried out at 50◦C and
1 bar, what is the equilibrium conversion of ethylene?
(Note: The normal boiling point of ethylene dichlo-
ride is 83.47◦C.)

13.13 Polar molecules interact more strongly at large dis-
tances than do nonpolar molecules, and generally
form nonideal solutions. One model for solution
nonidealities in a binary mixture consisting of a
nonpolar species, which we denote by A, and a polar
substance, designated by the symbol B, is based
on the supposition that the polar substance partially
dimerizes,

2B −→←− B2

Thus, although the mixture is considered to be a bi-
nary mixture with mole fractions

xA =
N ◦

A

N ◦
A + N ◦

B

and xB =
N ◦

B

N ◦
A + N ◦

B

where N ◦
A and N ◦

B are the initial number of moles of
A and B, respectively, it is, according to the supposi-
tion, really a ternary mixture with mole fractions

x
‡
A =

N ◦
A

N ◦
A + NB + NB2

x
‡
B =

NB

N ◦
A + NB + NB2

and

x
‡
B2

=
NB2

N ◦
A + NB + NB2

where, by conservation of B molecules,

N ◦
B = NB + 2NB2

It is further assumed that the ternary mixture is ideal,
and that the apparent nonidealities in mixture prop-
erties result from considering the A-B solution to be
a binary mixture with mole fractions xi, rather than a
ternary mixture with true fractions x

‡
i . Show that the

apparent activity coefficients for the binary mixture
that result from this model are

γA = 2k/δ

γB =

(
2

xB

)
(−xA + (x2

A + 2kxAxB + kx2
B)1/2)

δ

and

δ = (2k − 1)xA + kxB + (x2
A + 2kxAxB + kx2

B)1/2

where k = 4Ka + 1, and Ka is the equilibrium con-
stant for the dimerization reaction.

13.14 Acetaldehyde is produced from ethanol by the fol-
lowing gas-phase reactions:

C2H5OH + 1
2
O2 = CH3CHO + H2O (a)

C2H5OH = CH3CHO + H2 (b)

The reactions are carried out at 540◦C and 1 bar
pressure using a silver gauze catalyst and air as an
oxidant. If 50% excess air [sufficient air that 50 per-
cent more oxygen is present than is needed for all the
ethanol to react by reaction (a)] is used, calculate the
equilibrium composition of the reactor effluent.

13.15 When propane is heated to high temperatures, it
pyrolyzes or decomposes. Assume that the only
reactions that occur are

C3H8 = C3H6 + H2

C3H8 = C2H4 + CH4

and that these reactions take place in the gas phase.
a. Calculate the composition of the equilibrium mix-

ture of propane and its pyrolysis products at a
pressure of 1 bar and over a temperature range of
1000 to 2000 K.

b. Calculate the composition of the equilibrium mix-
ture of propane and its pyrolysis products over
a temperature range of 1000 to 2000 K if pure
propane at 25◦C and 1 bar is loaded into a
constant-volume (bomb) reactor and heated.

13.16 As part of the process of glycogen breakdown and
utilization in muscles, glucose 1-phosphate is con-
verted to glucose 6-phosphate (that is, the phosphate
group on a glucose molecule moves from the carbon
1 atom to the carbon 6 atom) as a result of the ac-
tion of the enzyme phosphoglumutase. An in vitro
analysis shows that at 25◦C and a pH of 7.0 adding
the enzyme to a solution containing 0.020 M glucose
1-phosphate reduces its concentration to 0.001 M.
Determine the apparent equilibrium constant for this
reaction, and the actual Gibbs energy change at the
reaction conditions.

13.17 The simple statement of the Le Chatelier-Braun prin-
ciple given in Sec. 13.1 leads one to expect that if the
concentration of a reactant were increased, the reac-
tion would proceed so as to consume the added reac-
tant. This, however, is not always true. Consider the
gas-phase reaction

N2 + 3H2 = 2NH3
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Show that if the mole fraction of nitrogen is less than
0.5, the addition of a small amount of nitrogen to the
system at constant temperature and pressure results
in the reaction of nitrogen and hydrogen to form am-
monia, whereas if the mole fraction of nitrogen is
greater than 0.5, the addition of a small amount of
nitrogen leads to the dissociation of some ammonia
to form more nitrogen and hydrogen. Why does this
occur?

13.18 By catalytic dehydrogenation, 1-butene can be pro-
duced from n-butane,

C4H10 = C4H8 + H2

However, 1-butene may also be dehydrogenated to
form 1,3-butadiene,

C4H8 = C4H6 + H2

Compute the equilibrium conversion of n-butane to
1-butene and 1,3-butadiene at 1 bar and

a. 900 K
b. 1000 K

13.19 Silver, when exposed to air, tarnishes. The following
reactions have been proposed for this tarnishing:

2Ag + 1
2
O2 → Ag2O 2Ag + H2O → Ag2O + H2

2Ag + H2S → Ag2S + H2 2Ag + SO2 → Ag2S + O2

The following data are available:

Species �fG, kJ/mol

Ag2O −9.33
Ag2S −31.80
SO2(g) −299.91
H2O(g) −228.59

Air can be assumed to contain 0.5 ppm H2, 0.03 ppm
(80 mg/m3) SO2, and 0.1 H2S mg/m3 and water at
a partial pressure of 2.0 kPa.

Which of these reactions are likely to occur at
normal conditions and result in the tarnishing of
silver?

13.20 The Soviet Venera VII probe, which reached Venus
on December 15, 1970, found the following condi-
tions on the planet surface:

T ≈ 747 ± 20 K

P ≈ 90 ± 15 (earth) atmospheres

Interferometric measurements indicate that there is
only a 10 to 20 K temperature variation across the
planet, and that the coldest region lies at the equa-
tor. Radar astronomy measurements suggest that the
dielectric constant of the Venus surface is typical of
mineral silicates. Furthermore, from spectroscopic
observations it has been concluded that the approxi-
mate atmospheric composition of Venus is

Species Mole Percent

CO2 99.9−
H2O 0.01
CO 0.01
HCl 1 × 10−1

HF 1 × 10−6

O2 trace

Sulfur-bearing
constituents

{
H2S, COS
SO2, SO3

0

Since the temperature of Venus is so high, and the
planet is quite old, it may be assumed that all chem-
ical reactions occurring between the atmosphere and
the surface minerals are in chemical equilibrium.

The following reactions are thought to occur:

CaCO3 + SiO2 = CaO·SiO2 + CO2

3FeO·SiO2 + CO2 = 3SiO2 + Fe3O4 + CO

3FeO·SiO2 + 1
2
O2 = Fe3O4 + 3SiO2

Determine whether the chemical equilibrium as-
sumption is consistent with the reported data.
Data: For FeO·SiO2, ΔfG

◦ = −1.060 MJ/mol and
ΔfH

◦ = −1.144 MJ/mol; other Gibbs energy of
formation data are given in Appendix A.IV and the
Chemical Engineers’ Handbook.13 The heat capacity
of the solid species is /cr

CP = a + bT + e/T 2 J/(mol K); T [=]K

Species a b × 102 e × 10−4

CaO·SiO2 116.94 0.8602 −3.120
CaCO3 82.34 4.975 −1.287
Fe3O4 172.26 7.874 −4.098
FeO·SiO2 98.28 4.269 −1.215
SiO2 45.48 3.645 −1.009

Since the temperature is so high, you may assume
that the gas phase is ideal.

13R. H. Perry, D. W. Green, and J. O. Maloney, eds., Chemical Engineers’ Handbook, 6th ed., McGraw-Hill, New
York (1984), pp. 3-129–3-135.
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13.21 Styrene can be hydrogenated to ethyl benzene at
moderate conditions in both the liquid phase and the
gas phase. Calculate the equilibrium compositions in
the vapor and liquid phases of hydrogen, styrene, and
ethyl benzene at each of the following conditions:
a. 3-bar pressure and 25◦C, with a starting mole ratio

of hydrogen to styrene of 2 to 1
b. 3-bar pressure and 150◦C, with a starting mole ra-

tio of hydrogen to styrene of 2 to 1
Data:
Reaction stoichiometry:

C6H5HC=CH2 + H2 −→ C6H5CH2CH3

Physical properties:

ΔfG
◦

δ V L (gas, 1 bar
Species (cal/cc)1/2 (cc/mol) and 25◦C)

Styrene
C8H8 9.3 116 213.9 kJ/mol

Ethyl benzene
C8H10 10.1 123 130.9 kJ/mol

Hydrogen 3.25 3.1 0.0

Heat capacity: See Appendix A.II.
Vapor pressure:

1.333 kPa 13.33 53.32 101.3 202.6 506.5

C8H8 30.8◦C 82.0 122.5 145.2
C8H10 25.9 74.1 113.8 136.2 163.5 207.5

13.22 If 1 mole of a gas in a constant-volume system is
heated, and both the heat flow and the gas tempera-
ture are measured as a function of time, the constant-
volume heat capacity can be computed from

CV =

(
∂U

∂T

)
V

=
Q̇(

∂T

∂t

)
V

This equation can also be used to calculate the effec-
tive heat capacity CV,eff of a gas that is undergoing
a chemical reaction, such as nitrogen tetroxide disso-
ciating to form nitrogen dioxide,

N2O4 −→←− 2NO2

In such cases CV,eff can be much larger than the heat
capacity of the nonreacting gas.
a. Develop an expression for CV,eff for dissociating

nitrogen tetroxide, and comment on the depen-
dence of CV,eff on the internal energy change on
chemical reaction.

b. Compute the molar effective heat capacity CV,eff

as a function of temperature for nitrogen tetroxide

over the temperature range of 300 to 600 K, if pure
N2O4 is loaded into a constant-volume reactor at
300 K at a pressure of 1.013 bar.

13.23 Consider a gaseous mixture containing the three iso-
mers n-pentane (1), iso-pentane (2), and neo-pentane
(3). These species may interconvert by reaction.
a. Determine the number of independent chemical

reactions and the number of degrees of freedom
for this system.

b. Calculate the equilibrium concentration of the
three isomers at 400 K and 1 bar.

c. What is the effect of increasing the pressure of
the system on the equilibrium concentration of the
isomers?
Data: The Gibbs energies of formation of these
compounds at 400 K are 40.2 kJ/mol, 34.4 kJ/mol,
and 37.6 kJ/mol, respectively.

13.24 Methane gas hydrates are formed from liquid water
by the following reaction:

CH4 (g) + 5.75H2O (l) → CH4 · 5.75H2O (s)

a. Calculate the Gibbs energy of formation of the hy-
drate at 278 K and 283 K using the information
that the methane partial pressure in equilibrium
with the hydrate at 278 K is 4.2 MPa and at 283 K
is 6.8 MPa.

b. One common way to prevent hydrates from form-
ing is by adding an inhibitor to the system, usu-
ally methanol or a salt (e.g., NaCl). If 10 wt
% methanol is added to water, what will be the
equilibrium partial pressure for methane for hy-
drate formation at 278 K and 283 K (assume no
methanol is present in the vapor)?

c. What phases and components are present at equi-
librium at 273.15 K? How many degrees of free-
dom are there for this system?

13.25 When pure hydrogen iodide gas enters an evacuated
cylinder, the following reactions may occur:

HI(g) = 1
2
H2(g) + 1

2
I2(g)

I2(g) = I2(s)

(Note that since Gibbs energies of formation data
are available for iodine in both the gaseous and
solid phases, it is more convenient to think of the
solid-vapor iodine phase equilibrium as a chemi-
cal equilibrium.) If the reaction mixture is gradually
compressed at 25◦C, a pressure is reached at which
the first bit of solid iodine appears. What is the pres-
sure at which this occurs, and what is the vapor com-
position at this pressure?

13.26 The calcination of sodium bicarbonate takes place ac-
cording to the reaction

2NaHCO3(s) = Na2CO3(s) + CO2(g) + H2O(g)
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When this reaction was run in the laboratory by
placing sodium bicarbonate in an initially evacuated
cylinder, it was observed that the equilibrium total
pressure was 0.826 kPa at 30◦C and 166.97 kPa at
110◦C. The heat of reaction for the calcination can
be assumed to be independent of temperature.
a. What is the heat of reaction for this reaction?
b. Develop an equation for the equilibrium constant

at any temperature.
c. At what temperature will the partial pressure of

carbon dioxide in the reaction vessel be exactly 1
bar?

13.27 Carbon is deposited on a catalytic reactor bed as a
result of the cracking of hydrocarbons. Periodically,
hydrogen gas is passed through the reactor in an ef-
fort to remove the carbon and to preserve the reduced
state of the catalyst. It has been found, by experiment,
that the effluent gas contains about 10 mol % methane
and 90 mol % hydrogen when the temperature is
1000 K and the pressure is 1 bar. Is this conversion
thermodynamically limited? Can a higher concentra-
tion of methane be produced by reducing the rate of
hydrogen flow through the reactor, thereby removing
more carbon for a given amount of hydrogen?

13.28 A gas mixture containing equimolar quantities of car-
bon dioxide and hydrogen is to be “reformed” by
passing it over a catalyst. The pressure in the re-
former will be determined by the possibility of solid
carbon deposition. Although a large number of reac-
tions are possible, only the following are believed to
occur:

C + H2O = CO + H2

C + 2H2O = CO2 + 2H2

CO2 + C = 2CO

CO + H2O = CO2 + H2

a. At temperatures between 600 and 1000 K, over
what range of pressure will carbon deposit if
each of the reactions is assumed to achieve
equilibrium?

b. For this feed, what pressure should be maintained
for exactly 30 percent of the carbon present in the
feed to precipitate as solid carbon at each temper-
ature between 600 and 1000 K?

13.29 A process is being developed to produce high-purity
titanium. As part of the proposed process, titanium
will be kept in a quartz (silicon dioxide) crucible at
1273 K. A chemical engineer working on the pro-
cess is concerned that the titanium could reduce the
silicon dioxide, producing titanium dioxide and ele-
mental silicon, which would lower the purity of the
titanium. Is this concern justified?
Data: At 1273 K

Ti(s) + O2(g, 1 bar) = TiO2(s) ΔrxnG◦ = −674 kJ/mol

Si(s) + O2(g, 1 bar) = SiO2(s) ΔrxnG◦ = −644 kJ/mol

13.30 The liquid in a two-phase, binary mixture of benzene
and cyclohexane has a composition of 20 mol % of
benzene and 80 mol % of cyclohexane at T = 80◦C.
a. Find the pressure of the system and the composi-

tion of the vapor phase.
b. The vapor is removed, heated isobarically to

550 K, and passed through a reactor, where the
following dehydrogenation reaction occurs:

C6H12 (g) → C6H6 (g) + 3H2 (g)

If the system is in chemical equilibrium when
leaving the reactor at 550 K, what is the composi-
tion of the species leaving the reactor?

c. The reactor stream is very quickly cooled
(quenched) to 80oC so that the overall mixture
composition remains the same as in part (b). Find
the dew point pressure of this stream at 80oC, and
the composition of the first drop of liquid that is
formed.
Data:

Gex (J/mol) = 100xbnzxcC6

log10P
vap
bnz (bar) = 4.018 16 − 1203.828

T (K) − 53.229

and

log10P
vap
cC6 (bar) = 3.980 22 − 1202.299

T (K) − 49.623

13.31 At 452.2 K, a total pressure of 95.9 kPa, and with an
appropriate catalyst, the equilibrium extent of disso-
ciation of pure isopropanol to acetone and hydrogen
is found to be 56.4 percent [H. J. Kolb and R. L. Bur-
well, Jr., J. Am. Chem. Soc., 67, 1084 (1945)]. Use
this information to calculate the standard-state Gibbs
energy change for this reaction at this temperature.

13.32 Liquid benzene can be catalytically hydro-
genated, with cyclohexene, cyclohexane, and
1,3-cyclohexadiene being among the products.
Determine the product distribution as a function of
the hydrogen partial pressure of 1 bar at 298.15 K.
Assume that the vapor phase contains only hydrogen,
and that its partial pressure is maintained at 1 bar as
the reaction proceeds.

13.33 Consider a closed vessel in which selenium is in equi-
librium with its vapor. Selenium, in the vapor phase,
polymerizes to Sei species where i = 1, 2, 3, 5, 7, 8.
a. At any temperature above the melting point of se-

lenium, compute the degrees of freedom in the
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system. Note that the vapor-phase reactions can
be considered to be

iSe� Sei and Se + Sei � Sei+1

b. Develop an interrelationship between the partial
molar Gibbs energies of each of the selenium
species in the vapor phase.

13.34 Formaldehyde is an important industrial solvent and
also a raw material in chemical manufacture. At
elevated temperatures, it dissociates into ammonia
and carbon monoxide in the following gas-phase
reaction:

HCONH2 � NH3 + CO

a. Compute the equilibrium constant for this reac-
tion over the temperature range of 400 to 500 K.

b. One mole of formaldehyde is placed in an evacu-
ated 25-liter vessel and heated. Compute the equi-
librium pressure and mole fractions of all species
over the temperature range of 400 to 500 K.

c. Repeat the calculation of part (b) if, instead of be-
ing evacuated, the 25-liter vessel initially contains
air (21 mol % O2 and 79 mol % N2) at ambient
conditions. Assume there is no reaction of oxygen
with any of the components in the formaldehyde
dissociation reaction at these temperatures.

13.35 Repeat the calculations of Illustrations 13.4-1 and
13.4-2 for 50◦C. The Henry’s law constant for am-
monia in water at this temperature is HHN3 = 384.5
kPa/mole fraction, and you can assume that the
Henry’s constants for nitrogen and hydrogen are un-
changed from the values given in Illustration 13.4-1.

13.36 The industrial solvent carbon disulfide can be made
from the reaction between methane and hydrogen
sulfide at elevated temperatures using the following
reaction gas-phase reaction:

2H2S + CH4 � CS2 + 4H2

a. Compute the equilibrium constant for this reac-
tion from 500 to 800◦C.

b. Starting with equal number of moles of H2S and
CH4, compute the equilibrium compositions of all
components in the reaction at 1 bar and over the
temperature range of part (a).

c. Repeat the calculation of part (b) for a pressure
of 10 bar. Ideal gas mixture behavior may be as-
sumed at this pressure at these high temperatures.

13.37 At an appropriate temperature, a larger alkane will
“crack” to form a smaller alkane and an olefin. One
example is the cracking of propane to form methane
and ethylene:

C3H8(g) → CH4(g) + C2H4(g)

a. Calculate the equilibrium compositions that
would result at 298.15 K and a total pressure of
1 bar by starting with pure propane.

b. Assuming that the standard-state heat of reaction
for this reaction is independent of temperature, re-
peat the calculation above at 650 K.

c. Repeat the calculation of part (b) for a total pres-
sure of 10 bar, assuming that an ideal gas mixture
is formed at this high temperature.

13.38 Consider the reaction

A(l) + B(s) → C(l) + D(g)

where l, s, and g indicate species in the liquid, solid,
and gas phases, respectively, and each species ap-
pears only in the phase indicated. For this reaction,
ΔrxnG◦ = −2.4 kJ/mol A at 25◦C for all pure com-
ponents in the states of aggregation indicated above.
a. Determine the equilibrium amounts and composi-

tions for substances A and C in this system if the
liquid mixture formed is ideal, there is an excess
of B present, and the partial pressure of compo-
nent D is maintained at 0.5 bar.

b. Repeat the calculation in part (a) if the two com-
ponents present in the liquid, A and C, form a non-
ideal mixture described by

Gex
AC = 0.3RTxAxC

c. What will the equilibrium amounts and concentra-
tions of all substances be if the reaction is carried
out in an initially evacuated 4-liter constant-
volume bomb, one mole of A and twice the sto-
ichiometric amount of B are initially present, and
the liquid mixture formed is ideal? (You can as-
sume that the volume of the liquid and solid are
negligible, and that the temperature is constant.)

13.39 It is possible that hydrogen and other gases dissoci-
ate when adsorbed on a solid surface, and in catalysis
it is important to know whether such a dissociation
occurs. If hydrogen did not dissociate, that is, the ad-
sorption process was

H2 → H2(ad)

the amount of hydrogen adsorbed would be given by

Amount of H2 adsorbed = K1aH2

where aH2 is the activity of molecular hydrogen in
the gas phase. However, if hydrogen dissociates, the
following two-step process occurs at the surface:

H2 → 2H and H → H(ad)

and

Amount of H2 adsorbed

= 1
2
× (Amount of H adsorbed) = 1

2
× K3aH

Using the notation that K2 is the activity-based
equilibrium constant for the dissociation reaction,
develop expressions for the amount of molecular
hydrogen adsorbed as a function of the equilibrium
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constants and the hydrogen partial pressure for the
two cases (adsorption without dissociation and ad-
sorption with dissociation). How would you discern
which process was occurring if you had experimental
data on the total hydrogen adsorption as a function of
its partial pressure?

13.40 The proteolytic enzyme α-chymotrypsin is known to
dimerize. The following data are available for this re-
action at 25◦C and pH = 7.8.

ΔrxnGo = −19.6
kJ

mol
and ΔrxnSo = −430.7

J

mol K

based on ideal 1 M standard states.
a. Determine the values of the equilibrium constant

for this reaction over the physiologically impor-
tant temperature range of 0 to 40◦C.

b. If the initial concentration of α-chymotrypsin is
0.001 M, determine the fraction that is dimerized
over the temperature range of part (a).

13.41 Gases can be (very) slightly soluble in molten met-
als. For example, the solubility of nitrogen in liquid
iron is well correlated by the empirical expression

wt % nitrogen = 0.045
√

PN2(bar)

One question that arises is whether the gas dissoci-
ates on the dissolution, that is, whether the dissolu-
tion process is

N2(gas) → N2(in metal)

or whether the process is

N2(gas) → N(in metal)

Use the equilibrium correlation above to decide
which process is occurring. (Hint: Since the con-
centration of either molecular or atomic nitrogen in
molten iron is so low, you can assume that both would
obey Henry’s law with activity coefficients equal to
unity.)

13.42 a. One mole of calcium carbonate is placed in an
evacuated 10-liter cylinder and heated to 1150 K.
Compute the extent of dissociation of calcium car-
bonate to calcium oxide and the pressure in the
cylinder as a function of temperature. The volume
of one mole of calcium carbonate is 35 cc, and you
can assume the solids volume does not change in
the course of the reaction.

b. Repeat the calculation if a 100-liter cylinder is
used.

13.43 The dissociation of hydrogen selenide gas to produce
pure selenium may be approximated as occurring by
the reaction

2H2Se(g)� 2H2(g) + Se2(s)

for which �rxnG = 89.38 − 0.0879T in kJ and T
in K. Over the temperature range of 1000 to 1250 K,
compute the equilibrium number of moles of Se2 that
will be formed for each mole of hydrogen selenide
that enters the reactor.

13.44 At high temperatures—for example, in a combus-
tion process—nitrogen and oxygen in air can react
to form nitrous oxide,

N2 + 1
2
O2 � N2O

nitric oxide,

N2 + O2 � 2NO

and/or nitrogen dioxide,

1
2
N2 + O2 � NO2

Starting with air (79 mol % nitrogen and 21 mol
% oxygen), compute the equilibrium concentrations
of all the oxides of nitrogen at atmospheric pressure
over the temperature range from 1000 to 2000 K.
[The oxides of nitrogen are referred to collec-
tively as NOx compounds, and are smog-forming air
pollutants.]

13.45 a. Use the data in Table 13.1-4 and the information
that ΔfG

◦
AgCl = −108.7 kJ/mol to predict the

solubility product K◦
AgCl of silver chloride in wa-

ter, and compare your predictions with the data
given in Illustration 13.3-2.

b. Use the data in Table 13.1-4 and the information
that ΔfG

◦
TlCl = −186.02 kJ/mol to predict the

solubility product K◦
TlCl of thallium chloride in

water, and compare your predictions with the data
given in Illustration 13.3-2.

13.46 While ethanol can be made by biological fermenta-
tion, for large-scale production the following nonbio-
logical reaction starting with ethylene and water can
be used instead:

C2H4 + H2O� C2H5OH

If stoichiometric amounts of ethylene and water are
used, compute the equilibrium constant and the equi-
librium extent of reaction at
a. 1 bar and 25◦C, assuming the liquid solution is

ideal
b. Repeat the calculation assuming a nonideal liquid

solution if formed.
13.47 The reaction

SO2 + 1
2
O2 � SO3

is used as a step in the process to convert waste sulfur
dioxide to sulfuric acid. Starting with stoichiometric
amounts of sulfur dioxide and oxygen, determine the
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equilibrium conversion to sulfur trioxide at 1000 K
and
a. 1.013 bar
b. 101.3 bar

13.48 The chemical reaction for the dissociation of nitrogen
tetroxide is

N2O4(g) → 2NO2(g)

The reported standard-state Gibbs energy change for
this reaction over a limited temperature range is

ΔrxnG◦(T ) = 57.33 − 0.17677T kJ/mol of N2O4 reacted

for the pure component, ideal gas at 1 bar standard
state and T in kelvins.
a. What is the standard-state heat of reaction for the

dissociation of nitrogen tetroxide?
b. Determine the equilibrium composition of this

mixture at 50◦C and 0.1, 1, and 10 bar.
c. Repeat the calculation at 200◦C.

13.49 Very polar molecules may associate in the gas phase.
One example is acetic acid, which, because of its
structure, can form dimers but not higher polymers.
For the reaction

2CH3COOH → (CH3COOH)2

the following information is available:

ΔrxnH◦ = −58.62 kJ/mol of dimer
and

ΔrxnS◦ = −138.2 J/mol of dimer

These values are for the ideal gas, 1 bar standard
state, and can be assumed to be independent of
temperature.
a. Compute the degree of dimerization of acetic acid

at 25◦C and at 0.1, 1, and 10 bar.
b. Compute the degree of dimerization of acetic acid

at 100◦C and at 0.1, 1, and 10 bar.
c. If one assumes that only the monomer is present,

acetic acid does not satisfy the ideal gas law.
However, it is thought that at the temperatures
and pressures considered above, the acetic acid
monomer and dimer form an equilibrium ideal
gas mixture, and that the apparent nonideality
that is found when only monomer is assumed
to be present is actually the result of the mole
number change due to dimerization. Develop an
equation of state for acetic acid that takes into ac-
count dimerization but has temperature, pressure,
volume, and the number of moles of acetic acid
if no dimerization occurred as the independent
variables.

13.50 At low temperatures mixtures of water and methane
can form a hydrate, that is, a solid containing trapped
methane. Hydrates have both positive and negative
features. For example, they are potentially a very
large source of underground trapped methane in the
Arctic and Antarctic regions that could be used to
meet future energy needs. However, in cold areas
such as the North Slope of Alaska and in the North
Sea, hydrates can form in pipelines, blocking the flow
of natural gas. The approximate stoichiometry of hy-
drate formation is

CH4(g) + 5.75H2O(s) → CH4·5.75H2O(s)

The equilibrium partial pressure of methane for hy-
drate formation at 267 K is approximately 2.0 MPa,
and at 255 K it is 1.5 MPa. Using the fact that the
standard states for this reaction are pure methane as
a gas at 1 bar, and water and the hydrate as a pure
solid:
a. Find ΔrxnG◦ for hydrate formation per mole of

methane at 267 K and 255 K.
b. Assuming that ΔrxnH◦ and ΔrxnS◦ are indepen-

dent of temperature, calculate values for these
quantities.

c. Use the information in the problem statement to
calculate the equilibrium methane partial pressure
for hydrate formation at 273 K.

13.51 Assume two species can associate in the vapor phase
according to the reactions

iA1 = Ai i = 1,2, etc.

jB1 = Bj j = 1,2, etc.

⎛
⎜⎝ but not all

integers need
be included

⎞
⎟⎠

iA1 + jB1 = AiBj

Using the notation that GA and GB are the partial mo-
lar Gibbs energies of the total species A and B (in all
its forms, unassociated and associated), prove that

GA = GA1 and GB = GB1

where GA1 and GB1 are the partial molar Gibbs en-
ergies of the monomeric species, respectively. Also
prove that

fA = fA1 and fB = fB1

13.52 The description of components that associate or
hydrogen-bond is difficult. An alternative model to
the one considered in the previous problem is the con-
tinuous association model, in which

A1 + A1 = A2

A1 + A2 = A3

A1 + An = An+1

etc.

(
here all integers

to ∞ are included

)
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Assume that this associating fluid is described by the
van der Waals equation, and in the equation-of-state
representation the parameters of the j-mer are gotten
from

aj = j2a1

and
bj = jb1

Further, the value of the equilibrium constant for the
association

Kj+1 =
aj+1

aja1

will be assumed independent of the degree of associ-
ation, that is,

K2 = K3 = · · · = Kn = K

Using the notation

N0 = number of moles if no association occurs
NT = number of moles when association occurs

and assuming the binary interaction parameters are
all zero since the species are so similar,
a. Obtain expressions for a and b for the mixture in

terms of a1, b1, N0, and NT only.
b. Show that the ratio

Pφjφ1

φj+1

is independent of index j and obtain an explicit ex-
pression for this ratio. (Note that φj is the fugacity
coefficient of species j.)

c. Obtain an expression for the equation of state of
this associating fluid that contains only P , V , T ,
N0, a1, b1, and the equilibrium constant K . (Does
your equation reduce to the van der Waals equa-
tion for a nonassociating one-component system
in the limit of K → 0?)

13.53 The behavior of hydrogen fluoride is unusual! For
example, here are the critical properties of various
hydrogen halides:

MW Tc (K) Pc (bar) Zc ω

HF 20 461.0 64.88 0.12 0.372
HCl 36.46 324.6 83.07 0.249 0.12
HBr 80.91 363.2 85.50 0.283 0.063
HI 127.9 424.0 83.07 0.309 0.05

We see that HF has a very high critical temperature
and acentric factor for its molecular weight; it also

has the lowest reported critical compressibility of
any species. Experimental data for the vapor pres-
sure and the apparent molecular weight of saturated

HF vapor are given here:

T (K) P vap (bar) (MW)apparent

227.3 0.0519 92.8
243.9 0.1265 85.0
256.4 0.2328 79.4
277.8 0.5780 69.8
303.0 1.4353 58.4
322.6 2.6178 50.3

Apparent molecular weight at a fixed pressure of
0.993 bar:

T (K) (MW)apparent

227.3 117.6
250.0 110.7

⎫⎪⎬
⎪⎭ Calculated

270.3 95.7
285.7 74.6
294.1 59.8
303.0 43.0

⎫⎪⎬
⎪⎭Measured

312.5 28.8
322.6 21.8

In each case the apparent molecular weight has been
found by measuring the mass density of the vapor and
comparing that with an ideal gas of molecular weight
20. One possible explanation for this behavior is that
hydrogen fluoride associates according to the follow-
ing set of reactions:

2HF = (HF)2

6HF = (HF)6

8HF = (HF)8

Describe how you would use these data to de-
velop a model for HF so that you could determine
the vapor-liquid equilibrium of HF and a component
that did not associate.

13.54 Using the values for the equilibrium constant for
the ionization of water in Table 13.5-1, estimate the
standard-state heat of ionization of water as a func-
tion of temperature. Also, determine the pH of water
at each of the temperatures in this table.

13.55 Derive Eqs. 13.5-8a and b.
13.56 Derive the equation that replaces Eq. 13.5-11 if

the thermodynamic equilibrium constant (rather than
the apparent equilibrium constant) is used and elec-
trolyte solution nonideality is included.
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13.57 Derive the equations that replace Eqs. 13.5-12a and
b if the thermodynamic equilibrium constant (rather
than the apparent equilibrium constant) is used and
electrolyte solution nonideality is included.

13.58 Derive the equation that replaces Eq. 13.5-16 for the
case of a weak base and a strong acid.

13.59 Derive the equation that replaces Eq. 13.5-16 if
the thermodynamic equilibrium constant (rather than
the apparent equilibrium constant) is used and elec-
trolyte solution nonideality is included.

13.60 Redo Illustration 13.5-2 including the ionization
of water and including the effect of solution
nonidealities.

13.61 The amino acid dl-alanine HCOO-CNH2H-CH3 ex-
ists in the following four forms in solution

NH+
3 CH2COOH

K1
�H+ + NH+

3 CH2COO− pK1 = 2.348

NH+
3 CH2COO− K2

�H+ + NH2CH2COO− pK2 = 9.867

NH2CH2COOH
KD
� NH+

3 CH2COO− pKD = −5.41

Determine the fraction of dl-alanine in each of these
forms at
a. pH = 3
b. pH = 10

13.62 Ammonia, air and water is to be converted to a ni-
tric acid solution. Ammonia is available as a liquid
at 25◦C and its saturation pressure, air and water
(as a liquid) are available at 1.013 bar and the same
temperature. The nitric acid solution produced is to
be 60 wt % HNO3 also at 25◦C and 1.013 bar. The
reaction is run over a platinum-rhodium catalyst, is
exothermic, and can be used as a source of heat or
work.
a. What is the maximum amount of work that can be

obtained from the chemical reaction per mole of
ammonia consumed? What is the Gibbs free en-
ergy change for the process?

b. In the industrial process for this reaction, 69 kWh
of electricity is used per ton of HNO3 solu-
tion produced, and 0.8 tons of saturated steam
at 50 psig is obtained starting from cooling
water at 25◦C. What is the Gibbs free energy
change for this process and how much entropy
is generated per mole of nitric acid solution
produced?

13.63 It has been suggested that as the carbon dioxide con-
centration in the atmosphere increases, the ocean
surface water will become more acidic, which will
have a serious effect on fish and coral. The proposed

mechanics of the acidification is

CO2(g) → CO2(l) [CO2]H = PCO2

CO2(l) + H2O → H2CO3 K1 = [H2CO3]

[CO2]

H2CO3 → HCO−
3 + H+ K2 =

[HCO−
3 ][H+]

[H2CO3]

where H is the Henry’s constant for carbon diox-
ide in water, K1 and K2 are equilibrium constants
where the effect of solution nonidealities has been
neglected, and we have assumed that since the solu-
tions are very concentrated it water, the water activity
is unity. Also, the brackets denote concentrations in
molalities.
Determine the change in pH units of the ocean sur-
face waters that
a. has occurred from the pre-industrial times when

the CO2 concentration in the atmosphere was 270
ppm (by volume) to the present day concentration
of 385 ppm.

b. will occur from pre-industrial times to 550 ppm
CO2, which is the value that is generally agreed
upon the maximum value to avoid catastrophic
environmental changes as a result of global
warming.

13.64 The following equilibrium constants have been found
experimentally when CO2 is in contact with water

CO2 (gas) ↔ CO2 (dissolved)
1

KH

=
[CO2]

PCO2

with
1

KH

= 29.76
atm − liter

mol

CO2 + H2O ↔ H2CO3 Kh = [H2CO3]

[CO2]
= 1.70 × 10−3

H2CO3 ↔ HCO−
3 + H+ Ka1 =

[HCO−
3 ][H+]

[H2CO3]

= 2.5 × 10−4 mol
liter

pKa1 = 3.60

Compute the pH of water at each of the CO2 concen-
trations in air in problem 13.64.

13.65 Formaldehyde CH2O can be produced by the gas-
phase pyrolysis of methanol CH3OH by the follow-
ing reaction

CH3OH(g) → CH2O(g) + H2(g)

Assuming the ΔrxnH is independent of temperature,
a. Compute the equilibrium extent of reaction and

compositions of starting with pure methanol at
450◦C and 1 bar

b. Repeat the calculation at 650◦C and 1 bar.
c. Set up the equations to compute the equilibrium

extent of reaction and compositions at 650◦C
starting with a mixture containing 0.5 moles of ni-
trogen per mole of methanol.
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13.66 At an appropriate temperature, a larger alkane will
“crack” to former a smaller alkane and an olefin. One
example is the cracking of propane to form methane
and ethylene

C3H8(g) → CH4(g) + C2H4(g)

a. Calculate the equilibrium compositions that
would result at 298.15 K and a total pressure of
1 bar by starting with pure propane.

b. Assuming that the standard state heat of reaction
for this reaction is independent of temperature, re-
peat the calculation above at 650 K.

c. Repeat the calculation of Part b for a total pres-
sure of 10 bar assuming that an ideal gas mixture
is formed at this high temperature.

13.67 Consider the reaction

A(l) + B(s) → C(l) + D(g)

where l, s and g indicate species in the liquid,
solid and gas phases, respectively. For this reaction,
ΔGrxno = −2.4 kJ

mol A
at 25◦C for all components in

the states of aggregation indicated above.
a. Determine the equilibrium amounts and composi-

tions for substances A and C in this system if the
liquid mixture formed is ideal, there is an excess
of B present and the partial pressure of component
D is maintained at 0.5 bar.

b. Repeat the calculation in Part a if the two compo-
nents present in the liquid, A and C, form a non-
ideal mixture described by

Gex
AC = 0.3RTxAxC

c. What would be the equilibrium amounts and
concentrations of all substances be if the reac-
tion is carried out in an initially evacuated 4
liter constant volume bomb, one mole of A and
twice the stoichiometric amount of B are initially
present, and the liquid mixture formed is ideal?
[You may assume that the volume of the liquid
and solid are negligible, and that the temperature
is constant.]

13.68 It is possible that oxygen and other gases dissociate
when adsorbed on a solid surface, and in catalysis
it is important to know whether such a dissociation
occurs. If oxygen did not dissociate, that is, the ad-
sorption process was

O2 → O2(ad)

the amount of oxygen adsorbed would be given by

Amount of H2 adsorbed = K1aH2

where aH2 is the activity of molecular oxygen in the
gas phase. However, if oxygen dissociates, the fol-
lowing two-step process occurs at the surface

O2 → 2O and O → O(ad)

and the amount of O2 adsorbed would be

Amount of O2 adsorbed = 2 × (Amount of O adsorbed)
= 2 × K3aO

Using the notation that K2 is the activity-based
equilibrium constant for the dissociation reaction,
develop expressions for the amount of molecular
oxygen adsorbed as a function of the equilibrium
constants and the oxygen partial pressure for the two
cases, adsorption without dissociation and adsorption
with dissociation. How would you discern which pro-
cess was occurring if you only had experimental data
on the total oxygen adsorption as a function of its par-
tial pressure?

13.69 Consider the following reaction for producing hydro-
gen starting from coal (carbon) at 1 bar

C + H2O → H2 + CO

Determine the equilibrium conversion of coal at
750 K and 5 bar. Is the reaction endothermic or
exothermic at 750 K?

13.70 For the reaction in Problem 13.69, at 5 bar determine
the equilibrium temperature for 95% conversion of
coal by this reaction. Is the reaction endothermic or
exothermic at this temperature?

13.71 A way to reduce the amount of nitric oxide from the
exhaust of diesel automobile engines is to inject urea
resulting in the following reaction

NO +
1

2
CO(NH2)2 +

1

4
O2 → N2 +

1

2
CO2 + H2O

Determine the equilibrium conversion of nitric
oxide at 100◦C and 5 bar by this reaction assum-
ing a stoichiometric amount of each component.
Is the reaction endothermic or exothermic at this
temperature?

13.72 Another way to reduce the amount of nitric oxide is
exhaust gasses is to inject ammonia resulting in the
following reaction

NO + NH3 +
1

4
O2 → N2 +

3

2
H2O

Determine the equilibrium conversion of nitric ox-
ide at 1000◦C and 1 bar by this reaction assum-
ing a stoichiometric amount of each component.
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Is the reaction endothermic or exothermic at this
temperature?

13.73 Photosynthesis to produce sucrose C12H22O11 can
be considered to occur by the following reaction

6CO2 + 11H2O → C12H22O11 + 6O2

How much Gibbs free energy at 25◦C must be
obtained from sunlight for each mole of sucrose
produced?

13.74 An equimolar mixture of ethylene and hydrogen
chloride react in the gas phase at 150◦C and 10 bar to
form ethyl chloride. Determine the equilibrium com-
position at these conditions.

13.75 An equimolar mixture of methanol and acetic acid
react in the liquid phase at 150◦C and 5 bar to form
methyl acetate and water. Determine the equilibrium
composition at these conditions. (Assume the mix-
ture can be described by the NRTL model with As-
pen Plus R© default parameters.)

13.76 An equimolar mixture of isopropylene and benzene
react at 275◦C and 10 bar to form isopropylbenzene.
Determine the equilibrium phases present and their
composition at these conditions.

13.77 Derive the equation that replaces Eq. 13.6-3 for a pro-
tein that has six ionizable sites.

13.78 The following values are known for the amino acid
serine C3H7NO2S:

pK1 = 2.21 and pK2 = 9.15

Determine the charge on this amino acid as a
function of pH. How does your result compare
with the reported isoelectric point (pI) for cysteine
of 5.68?

13.79 The compound levodopa C9H11NO4 (usually re-
ferred to a L-dopa) is used in the treatment of Parkin-
son’s disease. The chemical structure (not showing
its carbon atoms and attached hydrogens) is

HO

L-dopa

NH3
+

COO–

HO

The following values are known for its equi-
librium constants for the release of hydrogen
ions: pK1 = 2.20 from the carboxylic acid group,
pK2 = 8.75 from the NH+

3 group, pK3 = 9.81 from
the first OH group, and pK4 = 13.40 for a hydrogen
ion release from the remaining OH group. Determine
the charge on this amino acid as a function of pH.

13.80 Creatine C4H9N3O2 has been used by body builders
and athletes to increase muscle mass and strength.
Its chemical structure (not showing all of its carbon
atoms and attached hydrogens) is

OH

N

NH2

NH
O

The following values are known for its dissociation
constants:

pK1 = 2.63 and pK2 = 14.30

a. Determine the charge on this amino acid as a func-
tion of pH

b. Find its isoelectric point.
13.81 Oxalic acid C2H2O4 is a dibasic acid with the fol-

lowing values for its ionization constants:

pK1 = 1.2 and pK2 = 4.2

Determine the charge on oxalic acid as a function of
pH.

13.82 Oxaloacetic acid C4H4O5 has the following values
for its ionization constants:

pK1 = 2.55 pK2 = 4.37 and pK3 = 13.03

Determine the charge on oxaloacetic acid as a func-
tion of pH.

13.83 L-cystine C6H12N2O4S2 has four ionization states
with the following values for its ionization constants:

pK1 = 1.0 pK2 = 2.1 pK3 = 8.02

and pK3 = 8.71

Determine the charge on L-cystine as a function
of pH.

13.84 a. Prove that the isoelectric point for an amino acid
with two ionization sites is

pH =
pK1 + pK2

2

b. Develop an equation for the calculation of the iso-
electric point of an amino acid or protein with
three ionization sites.

13.85 Determine the charge on tyrosine as a function of pH.
Tyrosine (C9H11NO3), another amino acid in pro-
teins, has two dominant ionizable groups with pKHA

values of 2.24 and 9.04 at 25◦C (and a third, less eas-
ily ionizable group with a pK value of 10.10, which
we will neglect here).
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13.86 Starting with an equimolar mixture of lactate and
NAD+ at 25◦C, calculate and plot the extent of the
following reaction as a function of pH:

R−O2C−CH
lactate
OH−CH3 + NAD+

→ R−
pyruvate
O2C−CO−CH3 + NADH + H+

where R is a side group. For this reaction at solu-
tion conditions, the apparent Gibbs energy change is
�rxnG = 25.9 kJ. Also determine the pH at which
half the lactate will have reacted at equilibrium.

13.87 Starting with an equimolar mixture of methanol and
NAD+ at 25◦C, calculate and plot the extent of the
following reaction as a function of pH:

CH3

methanol
OH + NAD+ + H2O →

formate
HCOO− + NADH + 3H+

For this reaction at solution conditions, the apparent
Gibbs energy change is �rxnG = −15.1 kJ. Also,
assume that water is present in great excess, so that
its concentration does not change in the course of the
reaction.

13.88 Starting with an equimolar mixture of acetaldehyde
and NAD+ at 25◦C, calculate and plot the extent of
the following reaction as a function of pH. Also de-
termine the pH at which half the acetaldehyde will
have reacted at equilibrium.

acetaldehyde
CH3CHO + NAD+ + H2O →

acetate
CH3CO−

2 + NADH + 2H+

For this reaction at solution conditions, the apparent
Gibbs energy change is �rxnG = 50.2 kJ. Also, as-
sume that water is present in great excess, so that its
concentration does not change in the course of the
reaction.

13.89 Adenosine monophosphate (AMPH) is a nucleotide
that is present as a monomer in DNA and RNA. It
consists of a phosphate group, a ribose molecule and
an adenine molecule. Consequently, it can be found
in three different ionic forms in aqueous solution
(AMPH3

2+, AMPH2
+ and AMP−) plus its neutral

form AMPH depending on the solution pH. The pKa
of its double-protonated ion (z = +2) is 0.9, for its
single-protonated form (z = +1) is 3.8 and for the de-
protonated form (z = −1) is 6.1. Calculate the iso-
electric point of AMPH and the pH value at which
the fraction of AMPH2

+ reaches a maximum.
13.90 Redo Problem 13.1 using Aspen Plus R©.
13.91 Redo Problem 13.3 using Aspen Plus R©.
13.92 Redo Problem 13.5 using Aspen Plus R©.
13.93 Redo Problem 13.10 using Aspen Plus R©.
13.94 Redo Problem 13.11 using Aspen Plus R©.
13.95 Redo Problem 13.12 using Aspen Plus R©.
13.96 Redo Problem 13.14 using Aspen Plus R©.
13.97 Redo Problem 13.15 using Aspen Plus R©.
13.98 Redo Problem 13.17 using Aspen Plus R©.
13.99 Redo Problem 13.18 using Aspen Plus R©.

13.100 Redo Problem 13.21 using Aspen Plus R©.
13.101 Redo Problem 13.23 using Aspen Plus R©.
13.102 Redo Problem 13.25 using Aspen Plus R©.
13.103 Redo Problem 13.27 using Aspen Plus R©.
13.104 Redo Problem 13.28 using Aspen Plus R©.
13.105 Redo Problem 13.30 using Aspen Plus R©.
13.106 Redo Problem 13.31 using Aspen Plus R©.
13.107 Redo Problem 13.32 using Aspen Plus R©.
13.108 Redo Problem 13.35 using Aspen Plus R©.
13.109 Redo Problem 13.36 using Aspen Plus R©.
13.110 Redo Problem 13.37 using Aspen Plus R©.
13.111 Redo Problem 13.44 using Aspen Plus R©.
13.112 Redo Problem 13.46 using Aspen Plus R©.
13.113 Redo Problem 13.47 using Aspen Plus R©.
13.114 Redo Problem 13.48 using Aspen Plus R©.



Chapter 14

The Balance Equations
for Chemical Reactors,
Availability, and
Electrochemistry

Our interest in this chapter is with the mass and energy balances for chemical reac-
tors, and in electrochemical cells. We consider first the mass and energy balances for
tank and tubular reactors, and then for a general “black-box” chemical reactor, since
these balance equations are an important application of the thermodynamic equations
for reacting mixtures and the starting point for practical reactor design and analysis.
Finally, we consider equilibrium and the energy balance for electrochemical systems
such as batteries and fuel cells, and the use of electrochemical cells for thermodynamic
measurements.

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 14

The goals of this chapter are for the student to:

• Be able to use the energy balance for a tank-type chemical reactor (Sec. 14.1)
• Be able to use the energy balance for a tube-type chemical reactor (Sec. 14.2)
• Be able to use the energy balance for a general black-box chemical reactor and
compute the adiabatic reactor temperature (Sec. 14.3)

• Be able to compute the the maximum work and availability in chemically reacting
systems (Sec. 14.6)

• Be able to compute the voltage produced by an electrochemical cell (Sec. 14.7)
• Be able to use electrochemical cell voltages to compute pH (Sec. 14.7)
• Understand fuel cells, batteries and electroplating (Sec. 14.8)

848
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NOTATION INTRODUCED IN THIS CHAPTER

E Electrochemical cell potential difference (V)
E◦ Zero current cell potential (V)
F Faraday constant (C/mol)

Tad Adiabatic reaction temperature (K)

τ Reactor residence time =
V

q
(s)

X̂ Molar extent of reaction per unit volume = X
V

(mol/m3)
A,B Availability

14.1 THE BALANCE EQUATIONS FOR A TANK-TYPE CHEMICAL REACTOR

The design of a chemical reactor, that is, the choice of its size, shape, and conditions
of operation, is largely determined by the kinetics of the chemical reactions1 (i.e., the
rates at which reactions occur and whether a catalyst is needed) and the rate at which
heat is produced or absorbed during the reaction. Thermodynamics can be useful in
reactor design. In particular, the multicomponent mass and energy balances of thermo-
dynamics can provide useful information on the energy requirements and temperature
programming in reactor operations. Also, through the use of computational techniques
discussed in the previous chapter, thermodynamics can provide information on themax-
imum (equilibrium) conversions that can be obtained with any reactor at the given op-
erating conditions. Although it is not our intention to consider reactor design in great
detail here, in this section and the next we will establish the relationship between the
thermodynamic balance equations and those of reaction engineering; these are the equa-
tions that will be used in a course in chemical reaction engineering, which frequently
follows thermodynamics in the chemical engineering curriculum.
In this section we are concerned with the analysis of tank-type reactors used for

liquid-phase reactions. A schematic diagram of a tank reactor is given in Fig. 14.1-1.
To develop a quantitative description of such reactors, we will assume that its contents
are well mixed, as is the case with many industrial reactors, so that the species con-
centrations and the temperature are uniform throughout the reactor. We do not assume
that the reactor exit stream is in chemical equilibrium, since industrial reactors gen-
erally do not operate in such a manner. Using the entries of Table 8.4-1, the species
mass and total energy balances for a reactor with one inlet and one outlet stream are,
respectively,

1The relationship between the rate of a chemical reaction and the species concentrations cannot be predicted and
must be determined from experiment. Detailed discussions of the analysis of experimental reaction rate data to get
the constitutive equation relating the reaction rate to species concentrations are given in Kinetics and Mechanism,
3rd ed., by J. W. Moore and R. G. Pearson, John Wiley & Sons, New York (1981), Chaps. 2 and 3; Chemical
Reaction Engineering, 2nd ed., by O. Levenspiel, John Wiley & Sons, New York (1972), Chap. 3; and Introduc-
tion to Chemical Engineering Analysis, by T. W. F. Russell and M. M. Denn, John Wiley & Sons, New York
(1972), Chap. 5.
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_ Figure 14.1-1 A schematic diagram of a
simple stirred-tank reactor.

Mass and energy
balances for a
stirred-tank reactor

dNi

dt
= (Ṅi)in − (Ṅi)out +

M∑
j=1

νijẊj (14.1-1)

and
dU

dt
=

C∑
i=1

(ṄiH i)in −
C∑

i=1

(ṄiH i)out + Q̇ (14.1-2)

(The generalization of these equations to multiple feed streams is simple, and is left
to you.) In writing the energy balance equation, the kinetic and potential energy, shaft
work, and P (dV/dt) terms have been neglected, because these terms are usually of
little importance compared with heats of reaction and temperature change terms. Also,
since the contents of the reactor are of uniform temperature and composition (by the
“well-mixed” assumption), the species concentrations and temperature of the exit stream
are the same as those of the reactor contents.
With several small changes in notation, the mass and energy balances of Eqs. 14.1-1

and 14.1-2 can be made to look more like those commonly used in reactor analysis.
By letting qin and qout represent the volumetric flow rates into and out of the reactor,
Ci be the molar concentration of species i, V be the fluid volume in the reactor (so
that CiV = Ni), and rj = Ẋj/V be the specific reaction rate (reaction rate per unit
volume) for the jth reaction, Eqs. 14.1-1 and 14.1-2 can be rewritten as

d

dt
(CiV ) = (Ci)inqin − Ciqout + V

M∑
j=1

νijrj (14.1-3)

and

d

dt

(
V

C∑
i

CiU i

)
=

( C∑
i

CiH i

)
in

qin −
( C∑

i

CiH i

)
qout + Q̇ (14.1-4)

Here (Ci)in and (H i)in are the concentration and partial molar enthalpy, respectively,
of species i in the inlet stream, and Ci is the concentration of species i and H i its
partial molar enthalpy in both the reactor and in the outlet stream (again, this is the
“well-mixed” assumption).
It is possible that the volume of fluid in a reactor is a function of time, in which

case a total mass balance for the reactor would have to be written to obtain this
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time dependence. However, few reactors are operated in this manner, so we will ne-
glect this complication, as well as volume changes that may occur on mixing and reac-
tion, and assume that qin = qout = q. Also, since the tank-type reactor is used almost
exclusively for liquid-phase reactions, we may safely assume that U i = H i (since
PV i � RT for liquids). Thus Eqs. 14.1-3 and 14.1-4 can be rewritten as

Design equations for a
stirred-tank reactor V

dCi

dt
= q{(Ci)in − Ci} + V

M∑
j=1

νijrj (14.1-5)

V
d

dt

(∑
i

CiH i

)
= q

(∑
i

(CiH i)in −
∑

i

CiH i

)
+ Q̇ (14.1-6)

which are the equations generally used in the design of tank reactors.
An important special case of these equations is their application to the steady-state

operation of a continuous-flow reactor. At steady-state the contents of the reactor do
not change with time, so that dCi/dt = 0 and dU/dt = dH/dt = 0, and the design
equations reduce to

Steady-state mass
balance for a
stirred-tank reactor

Ci = (Ci)in +
V

q

M∑
j=1

νijrj (14.1-7)

and

Q̇ = q

(∑
i

CiH i −
∑

i

(CiH i)in

)
(14.1-8)

The first of these equations relates the exit composition of the reactor to its volume,
the inlet composition and flow rate, and the reaction kinetics (i.e., constitutive relations
for the reaction rates), whereas the second equation is used to determine the heat
load for steady isothermal operation of the reactor.
Actually, the form of Eq. 14.1-8 is a little deceptive because one expects the heat

of reaction to play an important role in determining the reactor heat load, yet it does
not seem to appear explicitly in the equation. As was indicated in Chapter 8, the heat
of reaction is imbedded in this equation. To see this, we use Eq. 14.1-7 to eliminate
either Ci or (Ci)in from Eq. 14.1-8 and obtain

Q̇ = q
∑

i

(Ci)in{H i − (H i)in} + V
∑

j

rjΔrxn,jH (14.1-9a)

if Ci is eliminated, or if (Ci)in is eliminated,

Q̇ = q
∑

i

Ci{H i − (H i)in} + V
∑

j

rj(Δrxn,jH)in (14.1-9b)

Here Δrxn,jH =
∑

i νijH i, and (Δrxn,jH)in =
∑

i νij(H i)in are both heats of reac-
tion, the first being the heat of reaction at the reactor outlet conditions (temperature and
composition), and the second at the reactor inlet conditions.
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One simplification that is usually made in writing the energy balance for a react-
ing system is to neglect solution nonidealities with respect to the much larger energy
changes that accompany the chemical reaction and temperature changes in the system
[i.e., to neglect the difference between H i(T, x) and H i(T )]. With this assumption
we have

Δrxn,jH(T, x) =
∑

i

νijH i(T, x) =
∑

i

νijH i(T )

= Δrxn,jH(T )
so that Eq. 14.1-9a becomes

Two forms of
simplified energy
balance for
stirred-tank reactor

Q̇ = q
C∑

i=1

(Ci)in{H i(T ) − H i(Tin)} + V
M∑
j=1

Δrxn,jH(T )rj (14.1-10a)

The two terms in this equation have simple physical interpretations. The first term
represents the rate of flow of energy into the reactor required to heat the inlet fluid
from Tin to T without reaction, and the second term is the energy requirement for all
chemical reactions to occur isothermally at the reactor exit temperature. Similarly, ne-
glecting solution nonidealities in Eq. 14.1-9b yields

Q̇ = q
∑

i

Ci{H i(T ) − Hi(Tin)} + V
M∑
j=1

Δrxn,jH(Tin)rj (14.1-10b)

Here the first term is the energy required for isothermal chemical reaction at the reac-
tor feed temperature, and the second term is the energy required to heat the reaction
mixture, without further reaction, from the inlet temperature to the reactor operating
temperature.
The form of Eq. 14.1-10a suggests that the first process in the reactor is the heating

of the feed to the reactor operating temperature, and then isothermal chemical reac-
tions occur, whereas Eq. 14.1-10b indicates that the chemical reactions occur, followed
by fluid heating. Of course, chemical reaction and fluid heating occur simultaneously.
These two alternative, and seemingly contradictory, descriptions of the process illus-
trate again that the enthalpy change between two given states is independent of path,
and therefore any convenient path may be used for its calculation. In this regard the
equations here are similar to those used in Sec. 6.4, where the change in thermody-
namic properties accompanying a change in state of a real fluid were computed along
any convenient path.

Illustration 14.1-1
Design of a Steady-State Stirred-Tank Reactor

The ester ethyl acetate is produced by the reversible reaction

CH3COOH + C2H5OH
k�
k′ CH3COOC2H5 + H2O

in the presence of a catalyst such as sulfuric or hydrochloric acid. The rate of ethyl acetate
production has been found, from the analysis of chemical kinetics data, to be given by the
following equation:

dCEA

dt
= kCACE − k′CEACW



14.1 The Balance Equations for a Tank-Type Chemical Reactor 853

where the subscripts EA, A, E, and W denote ethyl acetate, acetic acid, ethanol, and water,
respectively. The values of the reaction rate constants at 100◦C and the catalyst concentration of
interest are

k = 4.76 × 10−4 m3/(kmol min)

and

k′ = 1.63 × 10−4 m3/(kmol min)

The feed stream is an aqueous solution containing 250 kg of acetic acid and 500 kg of ethyl
alcohol per m3 of solution (including catalyst). The density of the solution is 1040 kg/m3 and
constant. The reaction will be carried out at 100◦C, the feed is at 100◦C, and the reactor will
be operated at a sufficiently high pressure that a negligible amount of reactants or products
vaporizes.

If a continuous-flow stirred-tank reactor is used for the reaction, determine

a. The size of the reactor needed to produce 1250 kg/hr of the ester, if 37.2 percent of the acid
reacts.

b. The heat load on the reactor for this extent of reaction.

Solution

a. Using the equations in Illustration 13.1-9, and the fact that 37.2 percent of the acid
(or 0.372 × 4.17 = 1.55 kmol/m3) reacts, we have for the reactor contents and outlet
concentrations

CA = 4.17 − 1.55 = 2.62 kmol/m3

CE = 10.9 − 1.55 = 9.35 kmol/m3

CEA = 0 + 1.55 = 1.55 kmol/m3

CW = 16.1 + 1.55 = 17.65 kmol/m3

Next, using Eq. 14.1-7 yields

CEA,in =
V

q
r =

V

q
{kCACE − k′CEACW}

r = {4.76 × 10−4 × 2.62 × 9.35 − 1.63 × 10−4 × 1.55 × 17.65}

= 7.20 × 10−3 kmol

m3 min
= 7.20

mol

m3 min

and

1.55
kmol

m3
=

V

q
7.20 × 10−3 kmol

m3 min

so that

τ =
V

q
= 215.3 min = 3.588 hr

is required to obtain the desired extent of reaction. (Note that τ has units of time and can
be interpreted to be an average time that an element of fluid is in the reactor; this is referred
to as the average residence time for fluid in the reactor.) The volumetric flow rate into and
out of the reactor must be such that

q × CEA ×mol wt of ester = 1250 kg/hr

or

q =
1250 kg/hr

1.55
kmol

m3
× 88

g

mol

= 9.164 m3/hr
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Therefore, the reactor volume should be

V = τq = 3.588 hr × 9.164 m3/hr = 32.88 m3

to obtain the desired production rate.
b. To determine the heat load on the reactor, we can use either Eqs. 14.1-9 or 14.1-10.

Assuming that liquid-phase nonidealities are unimportant, and that the reactor effluent is
at the reactor temperature (100◦C), these equations reduce to

Q = V ΔrxnH · r
since the inlet stream and reactor temperatures are equal. From part (a), V = 32.88 m3 and
r = 7.20 mol/(m3 min), and from Appendix A.IV we have

ΔfH
◦
A(T = 25◦C) = −486.1 kJ/mol

ΔfH
◦
E(T = 25◦C) = −277.7 kJ/mol

ΔfH
◦
EA(T = 25◦C) = −463.3 kJ/mol

ΔfH
◦
W(T = 25◦C) = −285.8 kJ/mol

Therefore,

ΔrxnH◦(T = 25◦C) =
∑

νiΔfH
◦
i = (−463.3) + (−285.8) − (−486.1) − (−277.7)

= 14.7 kJ/mol ester produced

and

ΔrxnH◦(T = 100◦C) = ΔrxnH◦(T = 25◦C) +

∫ T=100◦C

T=25◦C
ΔrxnCP dT

where ΔrxnCP = −13.39 J/(mol K). Therefore,

ΔrxnH◦(T = 100◦C) = 14 700 J/mol − 13.39 J/(mol K) × 75 K

= 14 700 − 1004 ∼= 13 700 J/mol

Neglecting solution nonidealities, we have ΔrxnH(T = 100◦C) = ΔH◦
rxn(T = 100◦C),

so that

Q̇ = 32.88 m3 × 7.20 mol/(m3 min) × 13.7 kJ/mol = 3243 kJ/min

(Note: The fact that Q̇ is positive indicates that the reaction is endothermic, so that heat
must be supplied to the reactor to maintain isothermal operation.)

Batch reactor

A different type of tank reactor is the batch reactor. In the batch reactor the total
charge is introduced initially, and the reaction then proceeds without mass flows into or
out of the reactor until some later time, when the contents of the reactor are discharged.
The fluid leaving the reactor may or may not be in chemical equilibrium, and the reactor
may or may not be operated in an isothermal and/or an isobaric manner.
The mass (mole) and energy balances for the batch reactor are (see Table 8.4-1)

dNi

dt
=

M∑
j=1

νijẊj (14.1-11)

and

dU

dt
=

d

dt

( C∑
i=1

NiU i

)
= Q̇ (14.1-12)



14.1 The Balance Equations for a Tank-Type Chemical Reactor 855

Note that here, as before, the kinetic energy and shaft work terms have been neglected.
The term P (dV/dt) has also been neglected since it is small for liquid-phase reac-
tions and identically zero for gaseous reactions where the reactant mixture fills the total
volume of the reactor. Making the same substitutions as were used in going from
Eqs. 14.1-5 and 14.1-6 to Eqs. 14.1-7 and 14.1-8 here yields

dCi

dt
=

M∑
j=1

νijrj (14.1-13)

and

V
d

dt

C∑
i=1

(CiU i) = Q̇ (14.1-14)

where V is the fluid volume in the reactor. The term on the left side of Eq. 14.1-14 can
be written as

V
d(

∑
CiU i)
dt

= V
C∑

i=1

U i
dCi

dt
+ V

C∑
i=1

Ci
dU i

dt

= V
C∑

i=1

U i

( M∑
j=1

νijrj

)
+ V

C∑
i=1

CiCV,i
dT

dt

= V
M∑
j=1

Δrxn,jU(T,P, x)rj + CV
dT

dt

where Δrxn,jU(T,P, x) =
∑

i νijU i(T,P, x) is the internal energy change for the jth
reaction at the reaction conditions (i.e., the temperature, pressure, and composition of
reactant mixture), and CV = V

∑
CiCV,i is the total heat capacity of the fluid in the

reactor. Thus, Eq. 14.1-14 becomes

CV
dT

dt
= −V

M∑
j=1

Δrxn,jU(T )rj + Q̇ (14.1-15)

For a liquid mixture, and again neglecting solution nonidealities, U ≈ H and CV ≈
CP, so that this equation can be rewritten as

CP
dT

dt
= −V

M∑
j=1

Δrxn,jH(T )rj + Q̇ (14.1-16)

Equations 14.1-13 and 14.1-16 are used by chemical engineers for the design of batch
reactors.

Illustration 14.1-2
Design of a Batch Reactor

Ethyl acetate is to be produced in a batch reactor operating at 100◦C and at 37.2 percent
conversion of acetic acid. If the reactor charge of the preceding example is used and 20 minutes
are needed to discharge, clean, and charge the reactor, what size reactor is required to produce,
on average, 1250 kg of the ester per hour? What heat program should be followed to ensure the
reactor remains at 100◦C?
Data: See the preceding illustration.
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Solution

The starting point here is Eq. 14.1-13, which, for the present case, can be written

dCEA

dt
= kCACE − k′CEACW (a)

where, at any extent of reaction X̂ = X/V , we have

Concentration* at the
Initial Concentration Extent of Reaction X̂

Acetic acid 4.17 kmol/m3 4.17 − X̂ kmol/m3

Ethanol 10.9 10.9 − X̂

Ethyl acetate 0 X̂

Water 16.1 16.1 + X̂

*Note that X̂ = X/V is the molar extent of reaction per unit volume and
has units of concentration.

Thus, Eq. a becomes

r ≡ dX̂

dt
= k(4.17 − X̂)(10.9 − X̂) − k′(16.1 + X̂)X̂

= 4.76 × 10−4(4.17 − X̂)(10.9 − X̂) − 1.63 × 10−4(16.1 + X̂)X̂

= 2.163 × 10−2(1 − 0.4528X̂ − 0.01447X̂2) kmol/(m3 min)

(b)

which can be rearranged to

2.163 × 10−2 dt =
dX̂

1 − 0.4528X̂ + 0.014 47X̂2

Integrating this equation between t = 0 and the time t yields2

2.163 × 10−2

∫ t

0

dt = 2.163 × 10−2 kmol

m3 min
× t =

∫ X̂

0

dX̂

1 − 0.4528X̂ + 0.014 47X̂2

or

ln

{
0.02894X̂ − 0.8364

0.02894X̂ − 0.0692

}
− ln

(
0.8364

0.0692

)
= 0.8297 × 10−2t (c)

and for X̂ = 1.55 (37.2 percent conversion of the acid) we have 0.8297 × 10−2t = 0.9896 min
or t = 119.3 min.

Thus, the total cycle time for the batch reactor is 119.3 + 20 = 139.3 min = 2.322 hr. There-
fore, 2.322 hr × 1250 kg/hr = 2902.5 kg of ester that must be produced in each reactor cycle.
Since, in this example, the conversion and feed in the batch reactor are the same as those in the
previous illustration, the effluent concentration of the ester is again

CEA = 1.55 kmol m3 = 136.4 kg/m3

Therefore, the reactor volume is

V =
2902.5 kg

136.4 kg/m3
= 21.28 m3

2Note that∫
dX

a+bX+cX2 = 1√
2

ln
[

2cX+b−√−q
2cX+b+

√−q

]
where q = 4ac − b2
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To compute the reactor heat program, that is, the heating rate as a function of time to keep the
reactor at constant temperature, Eq. 14.1-16 is used, noting that for the isothermal case dT/dt =
0, so that

Q̇ = V (ΔrxnH) · r (d)

where r is given by Eq. b and X̂ is given as a function of time by Eq. c.
The instantaneous values of X̂ and Q̇ as a function of time are plotted in the following figure.

kJ
/m

in

t, min

0 10 20 30 40 50 60 70 80 90 100 110 120

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2000

3000

4000

5000

6000

7000
X

^

X^

Q
kJ/min

The heat flow rate Q̇ and extent of reaction X̂ for ethyl acetate
production in a batch reactor.

14.2 THE BALANCE EQUATIONS FOR A TUBULAR REACTOR

Tubular reactors are commonly used in the chemical process industry. This type of re-
actor, as the name implies, is a tube that may be packed with catalytic or other material
and through which the reactant mixture flows (see Fig. 14.2-1a). Such reactors are fre-
quently used for gas-phase reactions and for reactions in which good heat transfer or
contact with a heterogeneous catalyst is needed. Our interest here will be in the “plug-
flow” tubular reactor, that is, a reactor in which the fluid flow is sufficiently turbulent
that there are no radial gradients of concentration, temperature, or fluid velocity; how-
ever, as a result of chemical reactions, concentrations and temperatures change along
the reactor from the inlet to the outlet. Also, we will assume that the fluid velocity is
much greater than the species diffusion velocity, so that diffusion along the tube axis
can be neglected.
Since the temperature and concentration vary along the length of the tube, we cannot

analyze the performance of a tubular reactor using balance equations for the whole re-
actor. Instead, we write balance equations for the differential reactor elementΔz shown
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Figure 14.2-1 The tubular
reactor.

in Fig. 14.2-1b, and then integrate the equations so obtained over the reactor length.
In writing these balance equations Δz will be taken to be so small (in fact, we will be
interested in the limit of Δz going to zero) that we can assume the species concentra-
tions and the temperature to be uniform within the element. The balance equation for
the amount of species i contained within the reactor element in Fig. 14.2-1b is⎛
⎜⎜⎜⎜⎜⎝

Rate of
accumulation
of moles of
species i in

reactor element
of length Δz

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

Rate at
which moles
of species i
enter the
reactor
element

⎞
⎟⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎝

Rate at
which moles
of species i
leave the
reactor
element

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝

Rate at
which species i is

produced in
the reactor

element by chemical
reaction

⎞
⎟⎟⎟⎟⎟⎠

AΔz
∂Ci

∂t
= (qCi)z − (qCi)z+Δz + A(Δz)

M∑
j=1

νijrj

where A is the cross-sectional area of the tubular reactor and q is the volumetric flow
rate in the reactor. Now dividing by AΔz and taking the limit as Δz → 0 gives

∂Ci

∂t
= − 1

A

∂(qCi)
∂z

+
M∑
j=1

νijrj (14.2-1)

Similarly, the energy balance for the differential element of reactor volume is

⎛
⎝Rate of accumulation

of energy in reactor
element of length Δz

⎞
⎠ =

⎛
⎜⎝

Rate at which
energy enters
reactor element
due to flow

⎞
⎟⎠ −

⎛
⎜⎝

Rate at which
energy leaves
reactor element
due to flow

⎞
⎟⎠

+

⎛
⎝ Rate of
energy input
by heat flow

⎞
⎠

AΔz
∂

∂t

(∑
CiU i

)
= q

(∑
i

CiH i

)∣∣∣∣
z

− q

(∑
i

CiH i

)∣∣∣∣
z+Δz

+ Q̇Δz
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where Q̇ is the heat flow rate per unit length of the reactor. Again dividing by AΔz and
taking the limit as Δz → 0 gives

∂

∂t

(∑
i

CiU i

)
= − 1

A

∂

∂z

(
q
∑

i

CiH i

)
+

1
A
Q̇ (14.2-2)

Equations 14.2-1 and 14.2-2 are the design equations for a general tubular reactor.
For liquid-phase reactions, U i = H i, and assuming that the volume change on reac-

tion is small, q is independent of position. Also, recognizing that q/A is equal to the
mass average velocity v, and defining the derivative with respect to the fluid motion
D/Dt by

D

Dt
=

∂

∂t
+ v

∂

∂z

(see Sec. 2.4) we have, from Eqs. 14.2-1 and 14.2-2, that

Mass and energy
balances for a tubular
reactor

DCi

Dt
=

M∑
j=1

νijrj (14.2-3)

and
D(

∑
CiU i)

Dt
=

1
A
Q̇ (14.2-4)

Equations 14.2-3 and 14.2-4 bear a striking resemblance to the mass and energy bal-
ances for a batch reactor, Eqs. 14.1-13 and 14. There is, in fact, good physical reason
why these equations should look very much alike. Our model of a plug-flow reactor,
which neglects diffusion and does not allow for velocity gradients, assumes that each
element of fluid travels through the reactor with no interaction with the fluid elements
before or after it. Therefore, if we could follow a small fluid element in a tubular re-
actor, we would find that it had precisely the same behavior in time as is found in a
batch reactor. This similarity in the physical situation is mirrored in the similarity of
the descriptive equations.
For gas-phase reactions this tubular reactor–batch reactor analogy may not be valid

since the volumetric flow rate of the gas, and therefore the gas velocity, can vary along
the reactor length as a result of mole number changes accompanying chemical reac-
tion, the thermal expansibility of the gas if the reactor temperature varies, and the
expansion of the gas accompanying the hydrodynamic pressure drop in the reactor.
Consequently, for gas-phase reactions there may not be a simple relationship between
distance traversed down the reactor and residence time. Thus, it is not surprising that
in this case Eqs. 14.2-1 and 14.2-2 cannot be rewritten in the form of Eqs. 14.2-3
and 14.2-4.

Illustration 14.2-1
Design of a Tubular Reactor

Ethyl acetate is to be produced at a rate of 1250 kg/hr in a tubular reactor operating at 100◦C.
If the feed is the same as that used in the previous examples, how large should the reactor be
to produce the desired amount of ester by achieving the same conversion as the batch reactor?
What are the heat transfer specifications for this reactor?
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Solution

The steady-state mass and energy balances for the tubular reactor are

q

A

dCi

dz
= ri (a)

and

q

A

d

dz

∑
i

CiH i =
q

A

[∑
i

dCi

dz
H i +

∑
i

Ci

dH i

dz

]
=

Q̇
A

(b)

Since we are neglecting solution nonidealities, and the temperature is constant, dH i/dz = 0,
so that Eq. b can be rewritten as

q

A

∑
i

H i

dCi

dz
=

Q̇
A

(c)

Setting τ = Az/q, we obtain

dCEA

dτ
= rEA = kCACE − k′CEACW (d)

and using Eq. a in Eq. c yields

∑ dCi

dτ
H i =

∑
riH i =

dX̂

dτ

∑
νiH i = ΔrxnH

dX̂

dτ
=

Q̇
A

(e)

If we equate the time variable t with the distance variable τ , Eqs. d and e become identical to
Eqs. a and c of the preceding batch reactor illustration. That is, the composition in a batch reactor
t minutes after start-up will be the same as that at a distance z feet down a tubular reactor, where
z is the distance traversed by the fluid in the time t . That is, z = qt/A or t = Az/q.

Thus, to convert 37.2 percent of the acid to ester, the reaction time τ in the tubular reactor must
be such that τ = AL/q = V/q = 119.3 min, where L is the total reactor length and V = AL
is its volume. Therefore, V = (119.3/139.3)Vbatch reactor = 18.22 m3, since we do not have
to allow time for discharging, cleaning, and charging of the tubular reactor, as we did with the
batch reactor. Also

Q̇
A

= ΔrxnH
dX̂

dτ
or Q̇ = AΔrxnH

dX̂

dτ

Since X̂ is known as a function of t from the previous illustration, we can use the same figure to
obtain X̂, and hence dX̂/dτ , as a function of τ (or distance down the reactor). Thus, the heat flux
at each point along the tubular reactor needed to maintain isothermal conditions can be computed
from the heat program as a function of time in a batch reactor.

14.3 OVERALL REACTOR BALANCE EQUATIONS
AND THE ADIABATIC REACTION TEMPERATURE

The mass and energy balance equations developed in Secs. 14.1 and 14.2 are the basic
equations used in reactor design and analysis. In many cases, however, our needs are
much more modest than in engineering design. In particular, we may not be interested
in such details as the type of reactor used and the concentration and temperature profiles
or time history in the reactor, but merely in the species mass and total energy balances
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for the reactor. In such situations one can use the general “black-box” equations of
Table 8.4-1:

dNi

dt
= (Ṅi)in − (Ṅi)out +

M∑
j=1

νijẊj

= (Ṅi)in − (Ṅi)out + V
M∑
j=1

νijrj

(14.3-1)

and

d(
∑

i NiU i)
dt

=
C∑

i=1

(ṄiH i)in −
C∑

i=1

(ṄiH i)out + Q̇ + Ẇ (14.3-2)

The difficulty that arises is that to evaluate each of the terms in these equations we
need chemical reaction rate data, reactor heat programs, and so forth, information we
may not have. To avoid this difficulty, instead of using these differential equations
directly, we can use the balance equations obtained by integrating these equations over
the time interval t1 to t2, chosen so that the reactor is in the same state at t2 as it was
in t1. If the reactor is a flow reactor, this corresponds to any period of steady-state op-
eration, whereas if it is a batch reactor, the time interval is such that the initially empty
reactor is charged, the reaction run, and the reactor contents discharged over the time
interval. In either of these cases the results of the integrations are

Overall steady-state
mass and energy
balances for a reactor

(Ni)out = (Ni)in +
M∑
j=1

νijXj (14.3-3)

and

Q + W =
C∑

i=1

(NiH i)out −
C∑

i=1

(NiH i)in (14.3-4)

whereQ andW are the total heat and work flows into the reactor over the time interval
t1 to t2, and X is the total molar extent of reaction in this time period. Comparing
Eqs. 14.3-1 and 14.3-2 with Eqs. 14.3-3 and 14.3-4, we find

Q =
∫ t2

t1

Q̇ dt W =
∫ t2

t1

Ẇ dt

Xj =
∫ t2

t1

Ẋj dt =
∫ t2

t1

∫
V

rj dV dt

(Ni)in =
∫ t2

t1

(Ṅi)in dt and (Ni)out =
∫ t2

t1

(Ṅi)out dt

The important feature of Eqs. 14.3-3 and 14.3-4 is that they contain only the total
mass, heat, and work flows into the system, and the total molar extents of reaction,
rather than the flow rates and rates of change of these quantities. Therefore, although
Q , W , and Xj can be evaluated from integrals here, Eqs. 14.3-3 and 14.3-4 can also
be used to interrelate Q , W , and Xj even when the detailed information needed to do
these integrations is not available. This is demonstrated in Illustration 14.3-1.
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Illustration 14.3-1
Comparison of the Calculated Heat Loads with the Overall and Specific Energy Balances

Ethyl acetate is to be produced from the acetic acid and ethyl alcohol feed used in the illustrations
of Secs. 14.1 and 14.2. If the feed and the product streams are both at 100◦C, and 37.2 percent
of the acid is converted to the ester, determine the total heat input into any reactor to produce
2500 kg of the ester. Show that this heat input is equivalent to that obtained in the illustrations
in the previous sections.

Solution

From Eqs. 14.3-3 and 14.3-4 we can immediately write

(Ni)out = (Ni)in + νiX

and

Q =
∑

(NiH i)out −
∑

(NiH i)in

=
∑

i

(Ni)in[H i(Tout) − H i(Tin)] + X
∑

νiH i(Tout)

= XΔrxnH(Tout) = 13.746X kJ

In writing this last equation we have neglected solution nonidealities; that is, we have set H i =
H i, and noted from Illustration 14.1-1 that ΔrxnH(T = 100◦C) = 13.746 kJ/mol.

The total molar extent of reaction can be computed by writing the species mass balance,
Eq. 14.3-3, for ethyl acetate to obtain

X =
(Ni)out − (Ni)in

νi

=
2500 kg × 1000 g/kg × (1 mol)/(88 g) − 0

+1

= 2.841 × 104 mol

Thus Q = 2.841 × 104 mol × 13.7 kJ/mol = 3.892 × 105 kJ.
From Illustration 14.1-1 we have that for the continuous-flow stirred-tank reactor Q̇ =

3254 kJ/min and that 120.0 min are required to produce 2500 kg of ethyl acetate. Therefore,
the total heat load is

Q = 3.243 × 103kJ/min × 1.20 × 102 min = 3.892 × 105 kJ

To obtain the total input to either the batch or tubular reactor, we must integrate the area under
the Q̇ versus t curve given in Illustration 14.1-2. The result is

Q = 3.892 × 105 kJ

Thus, the energy required to produce a given amount of product from specified amounts of
reactants all at the same temperature is independent of the type of reactor used to accomplish
the transformation. This is still another demonstration that the change in thermodynamic state
properties of a system, here ΔH , between any two states is independent of the path between
the states.

Comment

This example illustrates both the advantages and disadvantages of the black-box style of ther-
modynamic analysis. If we are interested in merely computing the total heat requirement for the
reaction, the black-box or overall analysis is clearly the most expeditious and does not require
any kinetic data. However, black-box thermodynamics gives us no information about the reactor
size or the details of the heat program (that is, the heat flow as a function of time in the batch
reactor or as a function of distance in the tubular reactor). The decision of whether to use the
black-box or more detailed thermodynamic analysis will largely depend on the amount of kinetic
information available and the degree of detail desired in the final solution.
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In order to put Eq. 14.3-4 into a form analogous to Eq. 14.1-9b, we first multiply
Eq. 14.3-3 by (H i)in, sum over all species i, and then use the result in Eq. 14.3-4
to obtain

Q + W =
C∑

i=1

(Ni)out

[
(H i)out − (H i)in

]
+

C∑
i=1

M∑
j=1

(H i)inνijXj

=
C∑

i=1

(Ni)out

[
(H i)out − (H i)in

]
+

M∑
j=1

(Δrxn,jH)inXj

(14.3-5)

Similarly, multiplying Eq. 14.3-3 by (H i)out, and following the same procedure as the
one that led to Eq. 14.1-15, yields the analogue of Eq. 14.1-9a,

Q + W =
C∑

i=1

(Ni)in
[
(H i)out − (H i)in

]
+

M∑
j=1

(Δrxn,jH)outXj (14.3-6)

For simplicity we will again neglect the effects of solution nonidealities with respect to
the heats of reaction. With this assumption we have

H i(T,P, x) = H i(T,P )

and

(H i)out − (H i)in = (H i)out − (H i)in =
∫ Tout

Tin

CP,i dT

so that

(Δrxn,jH)out = Δrxn,jH(Tout)
and

(Δrxn,jH)in = Δrxn,jH(Tin)

Using these results in Eqs. 14.3-5 and 14.3-6 yields

Q + W =
M∑
j=1

XjΔrxn,jH(Tin) +
C∑

i=1

(Ni)out

∫ Tout

Tin

CP,i dT (14.3-7)

and

Q + W =
C∑

i=1

(Ni)in
∫ Tout

Tin

CP,i dT +
M∑
j=1

XjΔrxn,jH(Tout) (14.3-8)

Equations 14.3-7 and 14.3-8 have the same dual interpretation concerning the occur-
rence of fluid heating and chemical reaction as do Eqs. 14.1-10, and the comments made
previously about those equations are equally valid here.
Equations 14.3-7 and 14.3-8 can be used to compute the steady-state outlet

temperature of an adiabatic reactor whose effluent is in chemical equilibrium; this tem-
perature is called the adiabatic reaction temperature3 and will be designated here

3The computation of the temperature of an adiabatic combustion flame is the most common adiabatic reaction
temperature calculation (see Problems 14.8 and 14.9).
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by Tad. By definition, the adiabatic reaction temperature must satisfy (1) the equilib-
rium relations

Ka,j(Tad) =
C∏

i=1

a
νij

i j = 1, 2, . . . ,M (14.3-9)

(2) one of the two equivalent energy balances

Equations to calculate
the adiabatic flame
temperature

0 =
C∑

i=1

(Ni)in
∫ Tad

Tin

CP,i dT +
M∑
j=1

[Δrxn,jH(Tad)]Xj (14.3-10a)

or

0 =
M∑
j=1

[Δrxn,jH(Tin)]Xj +
C∑

i=1

(Ni)out

∫ Tad

Tin

CP,i dT (14.3-10b)

and (3) the mass balance and state variable constraints on the system. Since the equi-
librium constants Ka,j are nonlinear functions of temperature through the van’t Hoff
relation

ln
Ka,j(Tad)
Ka,j(T0)

=
∫ Tad

T0

Δrxn,jH◦(T )
RT 2

dT (14.3-11)

the computation of Tad can be tedious. The graphical procedure illustrated next can be
used in solving Eqs. 14.3-9 through 14.3-11 for the adiabatic reaction temperature when
only a single chemical reaction is involved.More commonly, and especially formultiple
reactions,Tad is found by computer calculation using an equation-solving program such
as MATHCAD.

Illustration 14.3-2
Adiabatic Flame Temperature Calculation

An equimolar gaseous mixture of benzene and ethylene at 300 K is fed into a reactor, where
ethyl benzene is formed. If the reactor is operated adiabatically at a pressure of 1 bar, and the
reactor effluent is in chemical equilibrium, find the reactor effluent temperature and species con-
centrations.

Data: See Appendices A.II and A.IV.

Solution

Since the reactor effluent is in equilibrium, we can write

Ka(Tad) =
aEB

aEaB

=

yEB

(
P

1 bar

)

yE

(
P

1 bar

)
yB

(
P

1 bar

) =
yEB

yEyB

where we have assumed ideal gas mixture behavior and used the fact that the pressure in the
reactor is 1 bar. Using the following table, the threemole fractions in this equation can be replaced
by the single molar extent-of-reaction variable X .
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Inlet Outlet Outlet Mole Fraction

C6H6 1 1 − X (1 − X)/(2 − X)
C2H4 1 1 − X (1 − X)/(2 − X)
C6H5C2H5 0 X X/(2 − X)

2 − X

Thus, we have

Ka(Tad) =
X(2 − X)

(1 − X)2

so that

X = 1 −
√

1

1 + K(Tad)

With the data given in Appendix A, and Eq. 13.1-23b, it is possible to compute the value of
Ka at any temperature. Once Ka is known, X can be computed. The equilibrium values of X
calculated in this manner for various values of Tad are plotted in the following figure.

The adiabatic reaction temperature also must satisfy the energy balance equation; using
Eq. 14.3-10a, we have

0 =

∫ Tad

Tin

(CP,B + CP,E) dT + ΔrxnH(Tad)X

or

X =

−
∫ Tad

Tin

(CP,B + CP,E) dT

ΔrxnH(Tad)

where the heat capacity data for benzene and ethylene are given in Appendix A.II. Using this
equation, the molar extent of reaction needed to satisfy the energy balance for fixed values of Tin

and Tad can be computed. Since the inlet temperature is fixed at 300 K, we will use this equation
to compute values of the molar extent of reaction X for a number of different choices of Tad; the
results of this calculation are plotted in the figure. For illustration, energy balance X-Tad curves
for several other values of the reactor inlet temperature are given as dashed lines.
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The adiabatic reaction temperature and the equilibrium extent of reaction X that satisfy both
the equilibrium and the energy balance relations for a given value of Tin are found at the inter-
section of the equilibrium and energy balance curves in the figure. For the reactor feed at 300 K
this occurs at

Tad 
 588 K

X 
 0.955

Thus
yB = yE = 0.045/1.045 = 0.043

yEB = 0.955/1.045 = 0.914

The results for other reactor feed temperatures Tin can be computed in a similar fashion from
the data in the figure.[
Using Aspen Plus R© and the folder Aspen Illustration>Chapter 14>14.3-2 on the Wiley web-
site for this book that uses both the REquil and RGibbs reactor blocks, which led to the same
answers, the following results were obtained:

T = 640.8 K
yB = yE = 0.0949

yEB = 0.8102

These results are not in good agreement with the results above for this illustration.
]

In Illustration 14.3-2 the reaction was exothermic (ΔrxnH < 0). This implies that
(1) energy is released on reaction, which must appear as an increase in temperature of
the reactor effluent since the reactor is adiabatic, and (2) the equilibrium conversion of
reactants to products decreases with increasing temperature. Consequently, the equilib-
rium extent of reaction achieved in an adiabatic reactor is less than that which would
be obtained had the reactor been operating isothermally at the reactor inlet conditions.
For an endothermic reaction (ΔrxnH > 0), the equilibrium conversion decreases with
decreasing temperature and, since energy is absorbed on reaction, the reactor effluent is
at a lower temperature than the feed stream. Thus, the equilibrium and energy balance
curves are mirror images of those in Illustration 14.3-2 (see Problem 14.13), and again
the equilibrium extent of reaction is less than would be obtained with an isothermal
reactor operating at the feed temperature.
Another interesting application of the multicomponent balance equations for react-

ing systems is in the estimation of the maximum work that can be obtained from an
isothermal chemical reaction that occurs in a steady-state fuel cell or other work-
producing device.
The starting point here is the steady-state isothermal energy and entropy balances of

Table 8.4-1:

0 =
C∑

i=1

(ṄiH i)in −
C∑

i=1

(ṄiH i)out + Q̇ + Ẇs (14.3-12)

and

0 =
C∑

i=1

(ṄiSi)in −
C∑

i=1

(ṄiSi)out +
Q̇

T
+ Ṡgen (14.3-13)

Solving the second of these equations for the heat flow Q̇,

Q̇ = T
C∑

i=1

(ṄiSi)out − T
C∑

i=1

(ṄiSi)in − T Ṡgen (14.3-14)
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and then eliminating the heat flow from Eq. 14.3-12 yields

Ẇs =
C∑

i=1

[Ṅi(H i − TSi)]out −
C∑

i=1

[Ṅi(H i − TSi)]in + T Ṡgen

=
C∑

i=1

[ṄiGi]out −
C∑

i=1

[ṄiGi]in + T Ṡgen

(14.3-15)

Since a fuel cell is a work-producing device, Ẇs will be negative. The maximum
work (i.e., the largest negative value of Ẇs for given inlet conditions) is obtained when
the terms

∑C
i=1[ṄiGi]out and T Ṡgen are as small as possible. Since Ṡgen ≥ 0, with

the equality holding only for reversible processes, one condition for obtaining the max-
imum work is that the chemical reaction and mechanical energy production process
be carried out reversibly, so that Ṡgen is equal to zero. The first term on the right side
of Eq. 14.3-15,

∑C
i=1[ṄiGi]out, is the flow of Gibbs energy accompanying the mass

flow out of the system. The minimum value of this term for a given mass flow at fixed
temperature occurs when the exit stream is in chemical equilibrium (so that the Gibbs
energy per unit mass is a minimum). Thus, another condition for obtaining maximum
work from an isothermal flow reactor is that the exit stream be in chemical equilibrium.
When both these conditions are met,

Ẇmax =
C∑

i=1

(ṄiGi)out −
C∑

i=1

(ṄiGi)in (14.3-16a)

and

Maximum work from
a fuel cell at constant
T and P

Wmax =
C∑

i=1

(NiGi)out −
C∑

i=1

(NiGi)in (14.3-16b)

It is also possible to compute the maximum work attainable from an isothermal,
constant-volume batch reactor. It is left to you to show that

Wmax =
C∑

i=1

(NiAi)final −
C∑

i=1

(NiAi)initial (14.3-17)

Illustration 14.3-3
Calculation of Energy Produced in a Fuel Cell
4 The November 1972 issue of Fortune magazine discussed the possibility of the future energy
economy of the United States being based on hydrogen. In particular, the use of hydrogen fuel
in automobiles was considered. Assuming that pure hydrogen gas and twice the stoichiometric
amount of dry air, each at 400 K and 1 bar, are fed into a catalytic fuel cell, and that the reaction
products leave at the same temperature and pressure, compute the maximum amount of work
that can be obtained from each mole of hydrogen.

4Fuels cells are discussed in some detail in Sec. 14.7
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Fuel
cell

Air

H2

O2, N2, H2, H2O

Ws

Data:Air may be considered to be 21 mol % oxygen and 79 mol % nitrogen; the heats and Gibbs
energies of formation are given in Appendix A.IV, and the heat capacities in Appendix A.II.

Solution

From Eq. 14.3-16 we have

Wmax =

C∑
i=1

{(NiGi)out − (NiGi)in}

where the outlet compositions are related by the fact that chemical equilibrium exists. Here, since
both the reactants and products are gases (presumably ideal gases at the reaction conditions),
we have

Gi(T, P, y) = Gi(T, P ) + RT ln yi

Since hydrogen enters the fuel cell as a separate, pure stream, we have

Species (yi)in (Ni)in (mol) (Ni)out (mol) (yi)out

H2 1 1 1 − X (1 − X)/Σ
O2 0.21 1 1 − 1

2
X (1 − 1

2
2X)/Σ

N2 0.79
0.79

0.21
× 1 = 3.762 3.762 3.762/Σ

H2O 0 X X/Σ

Total Σ = 5.762 − 1
2
X

Now, from the equilibrium relation, we have

Ka =
aH2O

aH2a
1/2
O2

=
yH2O

yH2y
1/2
O2

(P/1 bar)1/2
=

X(5.762 − 1
2
X)1/2

(1 − X)(1 − 1
2
X)1/2

Using the data in the problem statement and Eq. 13.1-16, we find that Ka = 1.754 × 10+29;
a huge number. Therefore, X ∼ 1. Also, using Eq. 13.1-23b and the heat capacity data, the
values of the pure-component Gibbs energies at 400 K and 1 bar, relative to the reference states
in Appendix A.IV, can be computed; the results are

Species Gi(T = 400 K, P = 1 bar) (Ni)out (yi)out

H2 −453.1 J/mol 0 0
O2 −466.9 0.5 0.095
N2 −457.5 3.762 0.715
H2O −224 600 1 0.190
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Therefore,

Wmax(T = 400 K) =
∑

i

(NiGi)out −
∑

i

(NiGi)in

=
∑

i

[Ni(Gi + RT ln yi)]out −
∑

i

[Ni(Gi + RT ln yi)]in

= {0 + 0.5[−466.9 + 8.314 × 400 ln(0.095)]

+ 3.762[−457.5 + 8.314 × 400 ln(0.715)]

+ 1[−224, 600 + 8.314 × 400 ln(0.190)]}
−{1[−453.1 + 8.314 × 400 ln(1)]

+ 1[−466.9 + 8.314 × 400 ln(0.21)]

+ 3.762[−457.5 + 8.314 × 400 ln(0.79)] + 0}
= (0 − 4147.5 − 5918.2 − 230 122.9) − (−453.1 − 5657.0 − 4670.1) J/mol

= −229 408.4 J/mol = −229.4 kJ/mol

Comments

1. In this illustration the Gibbs energy of mixing terms make a relatively small contribution
to Wmax. This is only because for the H2 + 1

2
O2 = H2O reaction, the dominant term in

the calculation is ΔrxnG. For many reactions ΔrxnG is not so large, and the Gibbs energy
of mixing terms can be important.

2. Although the simple black-box thermodynamic analysis here permits us to calculate the
maximum work obtainable from the fuel cell, it does not provide any indication as to how
to design the fuel cell (i.e., as an internal combustion engine, electrolytic cell, etc.) to obtain
this work. The design of efficient fuel cells is currently an important unsolved engineering
problem, much like the design of heat engines at the time of Sadi Carnot.

14.4 THERMODYNAMICS OF CHEMICAL EXPLOSIONS

In Sec. 5.3 we considered the thermodynamics of explosions that did not involve chemi-
cal reaction. Here we extend this discussion to explosions with chemical reaction. Since
the energy released on an exothermic reaction may be very large, chemical explosions
are generally more devastating than purely mechanical explosions. In a chemical ex-
plosion there are extremely rapid temperature and pressure rises as some or all of the
reactants are oxidized, followed by an expanding shock wave resulting in a decrease in
the temperature and pressure of the combustion products. It is the rapid overpressuriza-
tion at the expanding shock-wave front that causes most of the damage in an explosion.
In order for a chemical explosion to occur, the heat of reaction must be reasonably large
and negative (ΔrxnH < 0), that is, the reaction must be exothermic, and the equilib-
rium constant for the reaction should be large (Keq 
 0, or ΔrxnG < 0). In this case,
the reaction will proceed to an appreciable extent and a significant amount of energy
released.
The equations describing a chemical explosion are the same as those for a mechanical

explosion (see Sec. 5.3); that is, to compute the maximum energy released in an explo-
sion, we assume the process within the region bounded by the shock wave is reversible
and adiabatic so that

U f − U i = U(T f , P f ,N f) − U(T i, P i,N i) = W (14.4-1)

Sf − Si = S(T f , P f ,N f ) − S(T i, P i,N i) = Sgen = 0 (14.4-2)
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Here the notationN has been used to indicate all the mole numbersN = (N1,N2, . . . ,
NC), and we have written these equations in terms of total thermodynamic properties
rather than molar or specific properties since, as a result of the chemical reaction, there
is a change in the number of moles of each species. Also, as before, we assume that
the entropy generation term is zero, thereby obtaining an upper bound on the energy
released in an explosion.
Multiplying Eq. 14.4-2 by the initial temperature T i and subtracting it from

Eq. 14.4-1 gives

U(T f , P f ,N f ) − T iS(T f , P f ,N f ) − [U(T i, P i,N i) − T iS(T i, P i,N i)]
= U(T f , P f ,N f ) − T iS(T f , P f ,N f ) − A(T i, P i,N i) = W

(14.4-3)

where A(T i, P i,N i) = U(T i, P i,N i) − T iS(T i, P i,N i) is the Helmholtz energy
of the initial state. [Why is U(T f , P f ,N f ) − T iS(T f , P f ,N f ) not the Helmholtz
energy of the final state?]
As in Sec. 5.3 the final pressure can be taken to be 1.013 bar when the shock wave

has dissipated, and all the damage has been done. What are unknown are the final tem-
perature and the composition of the reacting mixture. The composition is especially
difficult to estimate because the rates of chemical reaction can be slow compared with
the rates of change of temperature and pressure in an explosion. Consequently, it is not
certain that chemical equilibrium will be achieved in a chemical explosion. Further,
because of the rapid drop in temperature in the expanding shock wave, and as the rate
of reaction decreases with decreasing temperature, even if chemical equilibrium were
achieved, it is not clear towhich temperature this equilibriumwould correspond. That is,
chemical equilibrium could be achieved at some high or intermediate temperature, and
then the reaction may be quenched by the rapid temperature drop at a composition
corresponding to that unknown temperature.
Another question that arises is the amount of oxidant available for the reaction.

In a vapor cloud explosion one can generally assume that there is sufficient oxygen
present for the complete oxidation of all carbon to carbon dioxide and all hydrogen to
water. In this case the final composition is known. The situation for explosions involv-
ing liquids and solids in which there is a limited amount of oxidizing agent available is
more complicated and will be considered shortly. The final temperature of the explo-
sive mixture, after the shock wave expands so that the internal pressure is 1.013 bar,
will generally be higher than ambient. Since the quantity U f − T iSf increases with
increasing temperature, to obtain an upper bound on the energy released in a chemical
explosion, we will assume that the final temperature and pressure are ambient, as are
the initial temperature and pressure. In this case we obtain from Eq. 14.4-3

U(25◦C, 1.013 bar,N f ) − (298.15 K) × S(25◦C, 1.013 bar,N f )
− U(25◦C, 1.013 bar,N i) − (298.15 K) × S(25◦C, 1.013 bar,N i)

= A(25◦C, 1.013 bar,N f ) − A(25◦C, 1.013 bar,N i) = W
(14.4-4)

Since Gibbs energy data are more readily available than Helmholtz energies,
we note that

G = A + PV ≈ A for solids and liquids

and

G = A + PV = A + NVRT for vapors
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where in the last equation we have used the ideal gas law (as the pressure is low) and
the notation NV to indicate the total number of moles in the gas phase. With this sub-
stitution we have

W = G(25◦C, 1.013 bar,N f ) − G(25◦C, 1.013 bar,N i) − [NV,f − NV,i]RT
(14.4-5)

This is the equation that will be used to compute the energy released in an explosion. In
using this equation, we will make one further simplification. The total Gibbs energies
in this equation should be computed from

G(T,P,N) =
∑

NiGi(T,P, x) (14.4-6)

For simplicity, we assume here that vapors and liquids form ideal solutions, since the
contribution of the solution nonideality to the energy is small compared with the chem-
ical reaction term (you should verify this), so that

Gi = ΔfG
◦
i + RT lnxi (14.4-7)

and that solid phases are pure so that

Gi = ΔfG
◦
i (14.4-8)

In a vapor-phase explosion it is generally assumed that sufficient oxygen is present
for the substance to be completely oxidized. This makes estimating the explosive en-
ergy release simpler, as the reaction stoichiometry is known. Also, because of the large
amount of nitrogen present before and after the explosion (air contains about 79 percent
nitrogen), the entropy change on mixing is small and frequently can be neglected, as is
shown in the following illustration.

Illustration 14.4-1
Estimating the Energy Released in a Vapor-Phase Explosion

Estimate the energy released in a vapor-phase explosion of 1 kg of ethylene with a stoichiometric
amount of air.

Solution

The reaction stoichiometry is

C2H4 + 3O2 + 3 × 0.79

0.21
N2 = 2CO2 + 2H2O + 3 × 0.79

0.21
N2

where we have recognized that with 1 mole of oxygen in air there is 0.79/0.21 moles of nitrogen.
To proceed further we note that NV,i = 1 + 3 + 3 × (0.79/0.21) = 15.29 moles of gas present
initially, and NV,f = 2 + 2 + 3 × (0.79/0.21) = 15.29 moles of gas present finally, so that
there is no contribution to the total energy release as a result of a change in the number of moles
present in the gas phase. Next,

G(N i) = ΔfG
◦
C2H4

+ 3 × ΔfG
◦
O2

+ 11.29 × ΔfG
◦
N2

+ RT

[
1 × ln

(
1

1 + 3 + 11.29

)
+ 3 × ln

(
3

1 + 3 + 11.29

)

+11.29 × ln

(
11.29

1 + 3 + 11.29

)]

= 68.5 + 3 × 0 + 11.29 × 0 + 8.314 × 10−3 × 298.15 × (−2.7 − 4.9 − 3.4)

= 68.5 − 27.3 = 41.2 kJ/mol
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and
G(Nf ) = 2 × ΔfG

◦
CO2

+ 2 × ΔfG
◦
H2O + 11.29 × ΔfG

◦
N2

+ RT

[
2 × ln

(
2

2 + 2 + 11.29

)
+ 2 × ln

(
2

2 + 2 + 11.29

)

+ 11.29 × ln

(
11.29

2 + 2 + 11.29

)]

= 2 × (−394.4) + 2 × (−228.6) + 11.29 × 0

+ 8.314 × 10−3 × 298.15 × (−4.1 − 4.1 − 3.4)

= −488.8 − 457.2 − 28.8 = −1274.8 kJ/mol

Therefore,

W = −1274.8 − 41.2 = −1316.0
kJ

mol

and the total energy released by the explosion of 1 kg of ethylene is

W = −1316.0
kJ

mol
× 1 mol

28.054 g
× 1000 g

1 kg
= −46 910

kJ

kg

Note that the energy released on the explosion of ethylene, 46 910 kJ/kg, is more than 10 times
that for TNT, which is 4570 kJ/kg. It is of interest to note that in this example of the total energy
release of−1316 kJ/mol, the amount−1314.5 [= 2× (−394.4) + 2× (−228.6)− 68.5] kJ/mol
results from the standard-state Gibbs energy change on reaction, which is the dominant contri-
bution, and only −28.8 − (−27.3) = −1.5 kJ/mol is from the entropy-of-mixing term.

As indicated earlier, one of the difficulties in chemical explosions is ascertaining the
final composition of the exploding mixture. In explosions of a solid or a liquid, because
of mass transfer limitations usually only the oxygen present in the original compound is
involved in the reaction. In this case there may be an infinite number of partial oxidation
reaction stoichiometries possible.

Illustration 14.4-2
Examining Different Reaction Stoichiometries

List some of the possible reactions for TNT, C7H5N3O6.

Solution

Among the many possible reactions are

C7H5N3O6 → 1.0C + 2.5H2 + 1.5N2 + 6.0CO

→ 5.25C + 1.75CO2 + 1.5N2 + 2.5H2O

→ 0.96C + 6.0CO + 1.48N2 + 0.04HCN + 2.48H2

→ 3.7C + 0.4CO + 2.2CO2 + 1.5N2 + 1.1H2O + 0.7CH4

However, there is some experimental evidence that the reaction that occurs is actually

C7H5N3O6 → 3.65C + 1.98CO + 1.25CO2 + 1.32N2 + 0.16NH3 + 0.02HCN

+ 0.46H2 + 1.60H2O + 0.10CH4 + 0.004C2H6

which has an explosive energy release of about 4570 kJ/kg.
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Generally what is done in dealing with reactions involving liquids or solids to make a
conservative (which in this context means worst-case) estimate of the explosive
energy release of a chemical is to examine the different reaction stoichiometries, and
then choose the reaction with the largest negative Gibbs energy change (or equivalently,
the largest equilibrium constant). However, this assumes that the reaction is a rapid one.

Illustration 14.4-3
Estimating the Energy Released on the Explosion of a Liquid

Nitromethane (a liquid) undergoes the following reaction on explosion:

CH3NO2 → 0.2CO2 + 0.8CO + 0.8H2O + 0.7H2 + 0.5N2

Estimate the energy released on the explosion of nitromethane.

Data:
ΔfG

◦
NM = −13.0 kJ/mol

ΔfH
◦
NM = −111.7 kJ/mol

Solution

There are a number of terms that contribute to the total energy released. First we note thatNV,f =
0.2+0.8+0.8+0.7+0.5 = 3 moles of gas present finally, and NV,i = 0 moles of gas initially.
Next,

G(N i) = ΔfG
◦
NM = −13.0 kJ/mol

G(Nf ) = 0.2ΔfG
◦
CO2

+ 0.8ΔfG
◦
CO + 0.8ΔfG

◦
H2O + 0.7ΔfG

◦
H2

+ 0.5ΔfG
◦
N2

+ RT

[
0.2 ln

0.2

3
+ 0.8 ln

0.8

3
+ 0.8 ln

0.8

3
+ 0.7 ln

0.7

3
+ 0.5 ln

0.5

3

]

= −371.5
kJ

mol
+ 8.314

J

mol K
× 298.15 K × (−4.571) × 1 kJ

1000 J

= −371.5 − 11.3 = −382.8
kJ

mol

Therefore,

W = −382.8 − (−13.0) − 3 × 8.314 × 298.15

1000
= −377.2

kJ

mol

Comments

It is again interesting to assess the contributions of the various terms to the total energy release on
explosion. By far the largest contribution is the difference in Gibbs energies of the components,
that is

ΔG = 0.2ΔfG
◦
CO2

+ 0.8ΔfG
◦
CO + 0.8ΔfG

◦
H2O + 0.7ΔfG

◦
H2

+ 0.5ΔfG
◦
N2

− ΔfG
◦
NM

= −371.5 − (−13.0) = −358.5 kJ/mol

The Gibbs energy change due to the entropy of mixing is −11.1 kJ/mol, and the energy re-
leased due to the vapor-phase mole number change is −7.4 kJ/mol. Therefore, the majority of
the explosive energy release comes from the Gibbs energies of formation of the species involved.
A reasonable approximation in many cases, accurate to ±10 percent, is to neglect the
gas-formation and entropy-of-mixing terms and merely use W = ΔrxnG.
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A second condition for an explosion is that the heat of reaction be negative (i.e., the reaction
should be exothermic). For the reaction here, we have

ΔrxnH = 0.2ΔfH
◦
CO2

+ 0.8ΔfH
◦
CO + 0.8ΔfH

◦
H2O + 0.7ΔfH

◦
H2

+ 0.5ΔfH
◦
N2

− ΔfH
◦
NM

= 0.2 × (−393.5) + 0.8 × (−110.5) + 0.8 × (−241.8)

+ 0.7 × (0) + 0.5 × (0) − (−111.7)

= −78.7 − 88.4 − 193.4 + 111.7 = −248.8
kJ

mol

which is large and negative. Therefore, nitromethane is a likely candidate for a chemical
explosion.

Illustration 14.4-4
Estimating the Energy Released on the Explosion of a Solid

One possible reaction for 2,4,6-trinitrotoluene (TNT) is as follows:

C7H5O6N3 → C + 6CO + 2.5H2 + 1.5N2

Estimate the energy released on an explosion of TNT.

Data: ΔfG
◦
TNT = 273 kJ/mol

Solution

Since TNT is a solid, NV,i = 0; also NV,f = 10. Using the standard-state Gibbs energy of
formation tables in Appendix A.IV and Eqs. 14.4-7 and 14.4-8, we have at 25◦C

GTNT = 273
kJ

mol
, GC = 0

GCO = −110.5 +
8.314

J

mol K
× 298.15 K

1000
J

kJ

ln
6

10

= −110.5 − 1.3 = −111.8
kJ

mol

GH2 = 0 +
8.314

J

mol K
× 298.15 K

1000
J

kJ

ln
2.5

10
= −3.4

kJ

mol

and

GN2 = 0 +
8.314

J

mol K
× 298.15 K

1000
J

kJ

ln
1.5

10
= −4.7

kJ

mol

Therefore,

W = [1 × 0 + 6 × (−111.8) + 2.5 × (−3.4) + 1.5 × (−4.7)]

− [273] − (10 − 0) × 8.314 × 298.15

1000

= −670.8 − 8.5 − 7.1 − 273 − 2.48 = −961.9
kJ

mol TNT

= −961.9
kJ

mol TNT
× 1 mol TNT

237 g
= −4.059

kJ

g TNT
= −4059

kJ

kg TNT
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The experimentallymeasured energy release on a TNT explosion is about 4570 kJ/kg. The reason
for the discrepancy is that, as discussed in Illustration 14.4-2, the actual reaction stoichiometry
is different from that assumed here.

It is of interest to note that in this example of the total energy release of −961.9 kJ, −6 ×
110.5− 273 = −936 kJ arises from the Gibbs energy change on reaction, which is the dominant
contribution; −2.48 kJ is a result of the formation of 10 moles of gas per mole of TNT; and
RT × [6× ln(0.6) + 2.5× ln(0.25) + 1.5× ln(0.15)] = −23.24 kJ results from the entropy-of-
mixing term.

14.5 MAXIMUM USEFUL WORK AND AVAILABILITY
IN CHEMICALLY REACTING SYSTEMS

Here we are interested in the maximum useful work that can be obtained from a
chemically reacting system. This section is an extension of Section 4.6 to mixtures and
chemical reactions. As in that section, to obtain the maximum useful shaft work we
require that the temperature of the exiting stream be Tamb, that any heat transfer from
the system occur at the ambient temperature, that the exiting pressure should be Pamb,

that the velocity of the exit stream should be zero, that the height of the exit stream
should be a ground level, i.e., h2 = 0, and that the process should operate reversibly,
that is Ṡgen = 0.
The energy and entropy balances for the steady-state flow system of constant volume

in Fig. 4.6-1, now written on a molar (rather than mass) basis are:∑
species i

Ṅ1,iH̄i (T1, P1, x1) −
∑

species i

Ṅ2,iH̄ (Tamb, Pamb, x2) + Q̇ + ẆS,max = 0

∑
species i

Ṅ1,iS̄ (T1, P1, x1) −
∑

species i

Ṅ2,iS̄ (Tamb, Pamb, x2) +
Q̇

Tamb

= 0

(14.5-1)

where stream 2 is the exit stream. Now using the entropy balance to solve for the heat
flow, and the mass balance to eliminate the exit stream molar flows in terms of the inlet
flows results in∑
species i

Ṅ1,i

(
H̄i (T1, P1, x1) − TambS̄i (T1, P1, x1)

)
−

∑
species i

Ṅ2,i

(
H̄i (Tamb, Pamb, x2) − TambS̄i (Tamb, Pamb, x1)

)
+ ẆS,max = 0

(14.5-2)

Defining the partial molar steady-flow availability of species i to be

B̄i (T,P, x) = H̄i (T,P, x) − TambSi (T,P, x) (14.5-3)

leads to the following∑
species i

Ṅ1,iB̄i (T1, P1, x1) −
∑

species i

N2,iB̄i (Tamb, Pamb, x2) + ẆS,max = 0

or
ẆS,max =

∑
species i

Ṅ2,iB̄i (Tamb, Pamb, x2) −
∑

species i

Ṅ1,iB̄i (T1, P1, x1)

(14.5-4)
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Integrating this steady-state equation over any time interval gives for the maximum
shaft work

WS,max =
∑

species i

N2,iB̄i (Tamb, Pamb, x2) −
∑

species i

N1,iB̄i (T1, P1, x1) (14.5-5)

Now since B̄i (Tamb, Pamb, x) = H̄i (Tamb, Pamb, x) − TambSi (Tamb, Pamb, x) =
Ḡi (Tamb, Pamb, x)

WS,max =
∑

species i

N2,iḠi (Tamb, Pamb, x2) −
∑

species i

N1,iB̄i (T1, P1, x1) (14.5-6)

Since the partial molar properties depend on composition, one has to solve the chemical
equilibrium problem to determine the exit stream compositions.
Note that

H̄i (T,P, x) = H i (T,P ) + H̄ex
i (T,P, x) and that

S̄i (T,P, x) = Si (T,P ) + S̄ex
i (T,P, x) + R lnxi

So that

Bi(T,P, ) = Ḡi (T,P, x) − TambS̄i (T,P, x)
= Gi (T,P ) − Tamb (Si (T,P ) − R lnxi) = Bi (T,P ) + RTamb lnxi

Now generally if there is a chemical reaction the energy and Gibbs energy changes
are of the order of 100s kJ/mol or more, while the excess enthalpy and entropy and
the RTln x are of much lower magnitude (and may cancel between the inlet and outlet
streams). Therefore, a reasonable simplification is to replace the partial molar properties
with the pure component properties in the availability function to a first approximation
so that

B̄i (T,P, x) = H̄i (T,P, x)
−TambS̄i (T,P, x) ∼= H i (T,P ) − TambSi (T,P ) = Bi (T,P )

so that

WS,max =
∑

species i

N2,iGi (Tamb, Pamb) −
∑

species i

N1,iBi (T1, P1) (14.5-7)

Note that the temperature and pressure dependences of the pure component availability
B are given in Eq. 4.6-6 and 8. Also, that to compute the pure component Gibbs energy
we use Gi (25oC, 1 bar) = ΔfGo

i given in Appendix A.IV.
Two examples of the application of the availability concept of the simplified

and exact availability equations to a combustion process are given in the following
illustrations.

Illustration 14.5-1

Determine the maximum useful shaft work that can be obtained from natural gas that we will
model as methane, which is available at 25oC and 1 bar. The methane is to be burned in air that
contains nitrogen and oxygen in the mole ratio of 3.76 to 1.

[a] Use the approximate availability equation, and
[b] Use the exact availability equation.
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Solution

The stoichiometry of the reaction is
CH4 + 2O2 = CO2 +2H2O

[a]
Since methane is available at ambient conditions Eq. (14.5-7) above neglecting solution nonide-
alities and the RTlnx term reduces to

WS,max =
∑

species i

N2,iGi (25oC, 1 bar) −
∑

species i

N1,iGi (25oC, 1 bar)

=
∑

species i

N2,iΔGf,i (25oC, 1 bar) −
∑

species i

N1,iΔGf,i (25oC, 1 bar)

= ΔGf,CO2 (25oC, 1 bar) + 2ΔGf,H2O (25oC, 1 bar) − ΔGf,CH4 (25oC, 1 bar)

−2ΔGf,O2 (25oC, 1 bar)

= −394.4 − 2 × 228.6 − (−50.5 + 0) = −801.1 kJ/mol methane

Thus, the maximum amount of shaft work that can be produced per mol of methane is 801.1 kJ.

[b] Now the stoichiometry of the reaction is
CH4 + 2O2 + 2x3.76N2= CO2 +2H2O + 2x3.76N2

The stoichiometric table for the inlet conditions is

Species Initial Number of Moles Mole fraction Niln yi

CH4 1.0 0.0947 −2.3570
O2 2.0 0.1894 −3.3278
N2 7.56 0.7159 −2.5267
H2 0 0 0
CO2 0 0 0

Total 10.56 −8.2115

The stoichiometric table for the outlet conditions is

Species Final Number of Moles Mole fraction Niln yi

CH4 0 0 0
O2 0 0 0
N2 7.56 0.7159 −2.5267
H2 2 0.1894 −3.3278
CO2 1.0 0.0947 −2.3570

Total 10.56 −8.2115

Comments

Note that for combustion reactions such as the one above, the reaction generally goes to com-
pletion, that is all the fuel burns, so we do not have to solve the chemical equilibrium problem.
Also, in computation the Gibbs energy of formation at 25oC has been used for the molar Gibbs
energy. At other than 25oC, these values would have to be corrected for temperature.

Note also by the fortuitous of this reaction and that a stoichiometric amount of air has been
used, the sum of the Nilnyi terms cancel out, and the approximate and exact equations give
the same result, This would not be the case if the stoichiometry were different or excess air
was used to insure complete combustion (Problems 14.23 to 27) was used to insure complete
combustion.
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A measure of the efficiency of an electricity-generating power plant is

Efficiency =
electrical power generated

−WS,max

(14.5-8)

By this measure the U. S. Department of Energy (http://energy.gov/fe/how-gas-turbine-
power-plants-work) estimates that the average efficiency of gas-fired power plants is
only about 35%.However, this can be improved to about 60% in co-generation, inwhich
the waste heat from the power plant, that is heat contained in the high-temperature
exit stream, is used elsewhere in commercial processes or for residential heating.
(See Problem 14.28).

Illustration 14.5-2

Determine the maximum useful shaft work that can be obtained from n-octane, a model for
gasoline, which is available at 25oC and 1 bar. The octane is to be burned in air that contains
nitrogen and oxygen in the mole ratio of 3.76 to 1, and that n-octane liquid at ambient conditions

[a] Use the approximate availability equation, and
[b] Use the exact availability equation.

Solution

The stoichiometry of the reaction is
C8H18 + 12.5xO2 +12.5x3.76N2= 8CO2 +9H2O + 12.5x3.76N2

[a]
Since n-octane is available at ambient conditions Eq. (14.5-7) at which it is a liquid, neglecting
solution nonidealities and the RTlny term reduces to

WS,max =
∑

species i

N2,iGi (25oC, 1 bar) −
∑

species i

N1,iGi (25oC, 1 bar)

=
∑

species i

N2,iΔGf,i (25oC, 1 bar) −
∑

species i

N1,iΔGf,i (25oC, 1 bar)

= 8ΔGf,CO2 (25oC, 1 bar) + 9ΔGf,H2O (25oC, 1 bar) − ΔGf,C8H18 (25oC, 1 bar)

−2ΔGf,O2 (25oC, 1 bar)

= −8 × 394.4 − 9 × 228.6 − (−16.3) = −4565.3 kJ/mol octane

Thus, the maximum amount of shaft work that can be produced per mol of methane is 4565.3
kJ/mol octane.

[b] The stoichiometric table for the inlet conditions is, noting that n-octane is a liquid at
ambient conditions,

Species Initial Number of Moles Mole fraction Niln yi

C8H18 (1.0) 0 0
O2 12.5 0.2101 −19.503
N2 47 0.7899 −11.0843
H2 0 0 0
CO2 0 0 0
H2O 0 0 0

Total 59.5 −30.587
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The stoichiometric table for the outlet conditions is

Species Final Number of Moles Mole fraction Niln yi

C8H18 0 0 0
O2 0 0 0
N2 47 0.6144 −22.896
H2 9 0.1177 −3.3278
CO2 1.0 0.0947 −19.603
H2O 9 0.1177 −19.261

Total 76.5 −83.608

Comments

So the maximum shaft work available is

WS,max = −4565.26 + RTamb(83.608 − 30.587)/1000 =
= −4565.26 + 8.314 × 298.15 × 53.021/1000 = −4565.26 + 131.42J/mol
= −4433.8kJ/mol

which is not insignificant, and the error in using the approximate equation is about 2.9% in
this case.

The maximum amount of useful work that can be obtained between inlet state 1 and
any exit state 2 is

WS,max =
∑

species i

N2,iB̄i (T2, P2, x2) −
∑

species i

N1,iB̄i (T1, P1, x1) (14.5-9)

The mass, energy, and entropy balances for the non-flow system integrated over time,
neglecting the potential and kinetic energy terms that are generally negligible if a reac-
tion occurs), are

Ni,2 = Ni,1 +
∑

reactions j

νijXj

U2(T2, P2) − U1(T1, P1) =
∑

species i

Ni,2Ūi(T2, P2, x2) −
∑

species i

Ni,1Ūi(T1, P1, x1)

= WS + Q −
∫ V2

V1

PdV

and

S2(T2, P2) − S1(T1, P1) =
∑

species i

Ni,2S̄i(T2, P2, x2) −
∑

species i

Ni,1S̄i(T1, P1, x1)

=
Q

T
+ Sgen

(14.5-10)

To obtain the maximum shaft work available from the system the final state should
be at ambient temperature and pressure, the heat flow should occur at the ambient



880 Chapter 14: The Balance Equations for Chemical Reactors, Availability, and Electrochemistry

temperature and the expansion work should be at ambient pressure. Therefore, the
balance equations are:

Ni,2 = Ni,1 +
∑

reactions j

νijXj

U2(Tamb, Pamb, x2) − U1(T1, P1, x1) = WS,max + Q − Pamb (V2 − V1)

=
∑

species i

Ni,2Ūi(Tamb, Pamb, x2) −
∑

species i

Ni,1Ū(T1, P1, x1)

and

S2(Tamb, Pamb, x2) − S1(T1, P1, x1) =
Q

Tamb

=

=
∑

species i

Ni,2S̄i(Tamb, Pamb, x2) −
∑

species i

Ni,1S̄i(T1, P1, x1)

(14.5-11)
Now eliminating the heat flow Q between these equations gives∑

species i

Ni,2

(
Ūi(Tamb, Pamb, x2) − TambS̄i(Tamb, Pamb, x2)

)
−

∑
species i

Ni,1

(
Ūi(T1, P1, x1) − TambS̄i(T1, P1, x1)

)
= WS,max − Pamb (V2 − V1)∑

species i

Ni,2

(
Ūi(Tamb, Pamb, x2) + PambV̄i(Tamb, Pamb, x2)

−TambS̄i(Tamb, Pamb, x2)
)

−
∑

species i

Ni,1

(
Ūi(T1, P1, x1) + PambV̄i(T1, P1, x1) − TambS̄i(T1, P1, x1)

)
= WS,max

or∑
species i

Ni,2Āi(Tamb, Pamb, x2) −
∑

species i

Ni,1Āi(T1, P1, x1) = WS,max

and

WS,max =
∑

species i

Ni,1Āi(Tamb, Pamb, x1) −
∑

species i

Ni,2Āi(T2, P2, x2) (14.5-12)

where

Āi(T,P, x) = Ūi(T,P, x) + PambV̄i(T,P, x) − TambS̄i(T,P, x) (14.5-13)

[Generally, solution nonidealities are very small compared to the enthalpies of reaction.
Therefore, if these are neglected, the equation for computing the maximum useful work
that can be extracted from a non-flow system simplifies to

WS,max =
∑

species i

Ni,2Ai(Tamb, Pamb) −
∑

species i

Ni,1Ai(T1, P1) (14.5-14)
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Note that the chemical equilibrium problem must still be solved to compute the values
of Ni,2.]
Finally, the maximum useful shaft work that can be obtained from the change from

any initial state 1 to any final state 2 (neglecting solution nonidealities) is

WS,max =
∑

species i

Ni,2Āi(T2, P2, x2) −
∑

species i

Ni,1Āi(T1, P1, x1) (14.5-15)

Illustration 14.5-3

The common sugar glucose C6H12O6 is oxidized essentially continuously in the human body to
produce the energy needed for various metabolic processes. The reaction is

C6H12O6+6O2 → 6CO2+6H2O

This reaction is done biochemically in the body and is referred to as glycolysis. The specific
path is referred to as the Krebs cycle, and part of the energy released in the reaction is stored by
producing two adenosine triphosphate (ATP) molecules from 2 adenosine diphosphate (ADT)
molecules. The dissociation of ATP to ADT is then used as an energy source elsewhere in the
body to drive biochemical processes.
The following data are available at 25◦C:

a. Complete the table above.
b. Calculate the availability of each component and the maximum flow shaft work that can

be obtained from this reaction with respect to ambient conditions of 25◦C.
c. Calculate themaximumflow shaft work from this reactionwith respect to body temperature

of 37◦C.

Solution

a. The enthalpy, Gibbs free energy, and entropy of formation are at 25◦C. Therefore
the missing items in the table are computed using ΔfG = ΔfH−TΔfS = ΔfH−298.15 ·
ΔfS. Also, here at 25◦C the availability is equal to the Gibbs energy of formation. The
results are:

ΔfH (kJ/mol) ΔfG (kJ/mol) ΔfS (J/mol · K) CP (J/mol · K) B (kJ/mol)

Glucose −1271 −1333.4 209.2 218.6 −1333.4
O2 0 0 0 29.4 0
CO2 −393.5 −394.4 3.0 37.0 −394.4
H2O −285.8 −237.1 −163.3 73.4 −237.1

b. At 25◦C the flow availability of each compound is equal to its Gibbs free energy of forma-
tion. Therefore, the maximum shaft work available from this reactio; is

Ws,max = 6BCO2 + 6BH2O − Bglucose − 6BO2

= 6 × (−394.4) + 6 × (−237.1) − (−1333.4) − 6 × 0

= −2455.6 kJ/mol glucose

c. As the first step in the calculation, we have to correct the enthalpy and the entropy to 37◦C.
This is accomplished using the following equations

H(37oC) = H(25oC)+
∫ 310.15

298.15 CPdT = H(25oC) + 12 × CP

S(37oC) = S(25oC)+
∫ 310.15

298.15
CP
T

dT = S(25oC)+CP × ln
(

310.15
298.15

)
= S(25oC) + 0.03946 × CP

Also, here the flow availability is B(37oC) =H(37oC) − 310.15 × S(37oC).
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The results at 37◦C are given in the following table.

H (kJ/mol) S (J/mol · K) B (kJ/mol)

Glucose −1268.4 217.9 −1336.0
O2 −0.350 1.12 0.01
CO2 −393.1 4.48 −394.5
H2O −284.8 −160.44 −235.2

and WS,max = −2441.6 kJ/mol glucose

This maximum work at 310.15 K is only slightly less than at 298.15 K in part b.

Comments

In humans approximately 32% of the energy released on the glycolysis reaction is used in the
ADT to ATP reaction, the rest is released as heat. Therefore, the glycolysis reaction is only 32%
efficient.

14.6 INTRODUCTION TO ELECTROCHEMICAL PROCESSES

Electrical work can be obtained from carefully controlled chemical reactions, but not if
the reaction is allowed to proceed spontaneously. For example, in the standard state of
pure gases of hydrogen and chlorine at 1 bar and 298 K, the reaction to form hydrogen
chloride in aqueous solution

1
2
H2(g) + 1

2
Cl2(g) = HCl(aq)

has a Gibbs energy change of

ΔrxnG
◦ = −13.12 − [0 + 0] = −13.12

kJ
mol HCl

Therefore, there is a possibility of the reaction occurring spontaneously; however, this
will produce no useful work. An alternative is to run the reaction in an electrolytic
cell in which hydrogen and chlorine gases are metered into separate electrodes and the
electromotive force (EMF) or voltage produced is almost balanced by the application of
an external voltage. In this way the reaction will occur at a very slow rate and electrical
work can be obtained from the cell. In this process chemical energy is directly converted
to electrical energy.
Electrochemical processes occur in batteries, fuel cells, electrolysis, electrolytic plat-

ing, and corrosion (generally an undesirable process). Electrochemical processes can
be used to produce electricity, to recover metals from solution, and for the measure-
ment of the thermodynamic properties of electrolyte solutions. The device used to
study electrochemical reactions is an electrochemical cell, which consists of two elec-
trodes (metallic conductors) in electrolytes that are usually liquids containing salts,
but may be solids, as in solid-state batteries. The two electrodes may be in the same
electrolyte, as shown in Fig. 14.6-1a, or each electrode may be in a separate compart-
ment with its own electrolyte, as in Fig. 14.6-1b. In this case the two compartments are
connected by a salt bridge, an electrolyte that completes the electrical circuit. A third
alternative, not shown, is for the two compartments to be in direct contact through a
porous membrane.
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(a) (b)

Second electrolyteFirst electrolyteElectrolyte

Electrodes Electrodes

Electrode compartments

Salt bridge

Figure 14.6-1 Two types of electrochemical cells. (a) A cell with two electrodes and a shared
electrolyte. One example of such a cell contains a copper electrode, a zinc electrode, and a zinc
sulfate and copper sulfate electrolyte solution. The overall cell reaction is Cu2+(aq) + Zn(s) →
Cu(s) + Zn2+(aq). (b) A cell with two separate compartments connected by a salt bridge. If
the same electrodes as in the previous case were used, one compartment would contain a copper
electrode and a CuSO4 solution, the other would have a zinc electrode and a ZnSO4 solution
as the electrolyte, and the two compartments would be connected by a bridge containing, for
example, a sodium chloride solution.

When the two electrodes are connected through a potentiometer or electrical resis-
tance, and electricity is produced by the chemical reaction that occurs spontaneously,
the electrochemical cell is referred to as a galvanic cell; it is considered to be a fuel
cell if the reagents are continually supplied to the cell. Batteries are galvanic cells.
The term electrolytic cell is used to indicate an electrochemical cell operated in the
reverse manner to that just described, in that an external voltage is used to cause a non-
spontaneous reaction to occur, as in the electrolysis of water. An automobile battery
and other storage batteries can be considered galvanic cells when they are supplying
electricity, and electrolytic cells when they are being recharged. There are several ways
that thermodynamics is used to analyze electrochemical cells. One is to compute the
work, or equivalently the voltage, that can be produced by a galvanic cell. Alternatively,
measured cell voltages can be used to determine the equilibrium constant of the reac-
tion taking place within the cell. A third use of electrochemical cells is to measure the
thermodynamic activity or activity coefficients of the ions in electrolyte solutions.
The main processes occurring in electrochemical cells are simultaneous oxidation

and reduction reactions,5 or redox reactions. At one electrode, the anode, a reduced
species is oxidized here meaning to release electrons, while at the other electrode, the
cathode, an oxidized species absorbs electrons and is reduced. It is common to think
of an electrochemical cell as consisting of two half-cells (one containing the anode
and the second containing the cathode) and to describe the processes in terms of half-
cell reactions. For example, one common cell consists of a copper cathode in a copper
sulfate solution, and a zinc anode in a zinc sulfate solution. The overall reaction is

Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq) (redox reaction)

5Here the term oxidation is being used as in general chemical terminology to indicate a release of electrons. In this
sense it is not necessary for oxygen to be involved in an oxidation reaction, as unusual as this may seem.



884 Chapter 14: The Balance Equations for Chemical Reactors, Availability, and Electrochemistry

which is the sum of the two half-cell reactions

Cu2+(aq) + 2e− → Cu(s) (reduction, absorption of electrons)

and

Zn(s) → Zn2+(aq) + 2e− (oxidation, release of electrons)

The following abbreviated notation is used to describe the complete cell

Zn(s) | ZnSO4(aq) ‖ CuSO4(aq) | Cu(s)

The electrochemical processes occurring in this cell are the oxidation of zinc and the
production of zinc sulfate and electrons at the anode, the absorption of electrons and
the reduction and deposition of copper at the cathode, the flow of electrons through an
external electrical circuit (resulting in electrical work), and a balancing flow of sulfate
ions through the salt bridge.
The metallic electrode described above is the simplest of the electrode types. Another

type of electrode is the insoluble-salt electrode, in which a metal is covered with one of
its insoluble salts; silver chloride deposited on silver is one such example. The oxidation
reaction in this case is

AgCl(s) + e− → Ag(s) + Cl−(aq)

and the half-cell description is

Ag | AgCl | Cl−

A third type of electrode is the gas electrode, in which a gas is in equilibrium with a
solution of its ions in a half-cell that contains an inert metal conductor. The hydrogen
electrode, in which one bubbles hydrogen through a solution and across a platinum
electrode, is perhaps the best known of this type. The half-cell chemical reaction is

H2(g) → 2H+(aq) + 2e−

and the description used is

Pt | H2 | H+(aq)

Since hydrogen must be continually supplied from outside the cell, an electrochemical
device using a hydrogen gas electrode would be considered a fuel cell.
From Sec. 4.3 we have that for any process occurring at constant temperature and

pressure, the manner in which electrochemical cells are operated, the maximum work
that can be obtained is equal to the change in Gibbs energy of the process, that is,

Wmax = ΔG (14.6-1)

This maximum work is obtained if the process is sufficiently slow that there are no
irreversibilities, for example, no resistive heating as a result of the current flow. This
implies that the rate of reaction is very slow, and that the electrical potential produced
is just balanced by an external potential so that the current flow is infinitesimal. This
electrical potential produced by the cell (or of the balancing external potential) will be
referred to as the zero-current cell potential and designated by E. The work done by
the electrical cell Welec in moving n moles of electrons across a potential difference of
E is

Welec = −nFE (14.6-2)
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where F = 96 485 C/mol is the Faraday constant, and the negative sign indicates that
work is done by the cell on the surroundings if the cell potential is positive. [A coulomb
(abbreviated C) is a unit of electrical charge; moving one coulomb of charge through
a potential difference of one volt requires one joule of energy. Also, for later reference
we note that at 25◦C, the quantity RT/F is equal to 25.7 mV.] Consequently, we have

ΔG = Wmax = Welec = −nFE

or simply

ΔG = −nFE (14.6-3)

We write a generic electrochemical reaction as

ν1+M
z+
1

1+ (aq) + ν2M2(s) + ν1M1(s) + ν2+M
z+
2

2+ (aq) = 0

or, more generally (using our standard notation for chemical reactions),∑
i

νiMi = 0

For example, the reaction

Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq)

will be written as Zn2+(aq) + Cu(s) − Zn(s) − Cu2+(aq) = 0, so that νZn2+ = 1,
νCu = 1, νZn = −1, and νCu2+ = −1. Also, the Gibbs energy of any species can be
written as

Gi(T,P, x) = G◦
i (T,P ◦, x◦

i ) + RT ln
f i(T,P, x)

f ◦
i (T,P ◦, x◦

i )
= G◦

i (T,P ◦, x◦
i ) + RT ln ai(T,P, x)

(14.6-4)

where P ◦ and x◦
i are the standard-state pressure and composition (in units appropriate

to the standard state chosen), f ◦
i (T,P ◦, x◦

i ) and Gi(T,P ◦, x◦
i ) are the standard-state

fugacity and Gibbs energy of species i, and ai is its activity. Combining these last two
equations, we have

ΔrxnG = ΔrxnG
◦ + RT ln

∏
i

aνi
i = −nFE = −nFE◦ + RT ln

∏
i

aνi
i (14.6-5)

where E◦ would be the zero-current cell potential if the ions were in their standard
states, while E is the actual (measurable) zero-current cell potential with the ions at the
concentration of the cell. The last relation is known as the Nernst equation.
Remembering from Eq. 13.1-18 that

−ΔrxnG◦

RT
= lnKa (13.1-8)

where Ka is the chemical equilibrium constant, we have

lnKa =
nFE◦

RT
(14.6-6)
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Table 14.6-1 Standard Half-Cell Potentials at 25◦C

Oxidizing Agent Reducing Agent E◦ (V) ΔrxnG
RT

ΔrxnG(kJ)
or Oxidant or Reductant

Au+ +e− Au +1.69 −69.79 −173.0
Cl2 +2e− 2Cl− +1.36 −105.88 −262.5
Br2 +2e− 2Br− +1.09 −84.86 −210.4
Ag+ +e− Ag +0.80 −33.14 −77.2
Hg2+

2 +2e− 2Hg +0.79 −61.50 −154.4
Fe3+ +e− Fe2+ +0.77 −29.97 −74.3
Cu2+ +2e− Cu +0.34 −26.47 −65.6
AgCl +e− Ag + Cl− +0.22 −8.56 −21.2
2H+ +2e− H2 0.0 0 0 (by definition)
Fe3+ +3e− Fe −0.04 +4.67 +11.6
Pb2+ +2e− Pb −0.13 +10.12 +25.09
Zn2+ +2e− Zn −0.76 +59.17 +146.7
Al3+ +3e− Al −1.66 +193.86 +480.8
Mg2+ +2e− Mg −2.36 +183.74 +455.5
Na+ +e− Na −2.71 +105.19 +261.5
Li+ +e− Li −3.05 +118.73 +294.3

This equation allows one to compute the chemical equilibrium constant from measured
standard-state electrochemical cell potentials (usually referred to as standard cell po-
tentials). Some standard half-cell potentials are given in Table 14.6-1. The standard
potential of an electrochemical cell is obtained by combining the two relevant half-cell
potentials.
Since two connected half-cells are needed to measure a voltage, any one half-cell

potential cannot be measured directly. Therefore, by convention, half-cell potentials
are referenced to the standard hydrogen electrode (referred to as the SHE) consisting
of a platinum electrode in an aqueous solution and into which pure hydrogen gas is
bubbled through the electrode. When the hydrogen gas is pure at 1 bar pressure so that
the hydrogen ion activity in solution is unity the standard hydrogen potential is, by
convention, taken to be zero at all temperatures, and all other half-cell potentials are
referenced to it. Conceptually this is analogous to constructing a fuel cell or battery in
which one half-cell is the standard hydrogen electrode and then attributing all of the
measured voltage to the other half-cell. Table 14.6-1 was constructed in this way.
One point to note when using this table is that

ΔrxnG
◦ = −nFE◦ or E◦ = −ΔrxnG◦

nF

where n is the number of electrons transferred. Consequently, for example, for the
reaction Cl2 + 2e− → 2Cl−, E◦ is 1.36 V, and ΔrxnG◦ = −2 × 1.36F = −2.72F .
However, if instead we wrote the reaction as 1

2
Cl2 + e− → Cl−, then ΔrxnG◦ would

be one-half its previous value, or −1.36F . However, now n equals unity, so that again

E◦ = −ΔrxnG◦

nF
= −(−1.36F )

1 · F = 1.36 V

Consequently, if we multiply any of the half-cell reactions in Table 14.6-1 by an integer
or fractional constant, the standard-state Gibbs energy change will change by that same
factor, but the standard-state half-cell potential will be unchanged.
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Illustration 14.6-1
Computation of the Standard Cell Potential

Compute the standard cell potential and the equilibrium constant for the reaction

Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq)

Solution

The reaction above is the sum of the two half-cell reactions

Cu2+(aq) + 2e− → Cu(s) half-cell standard potential = +0.34 V
Zn(s) → Zn2+(aq) + 2e− half-cell standard potential = −(−0.76 V) = +0.76 V

where the negative of the reported half-cell standard potential has been used for the second
reaction, since its direction is opposite to that given in the table. Therefore, the standard cell
potential for the overall reaction is

E◦ = +0.34 + 0.76 = +1.10 V

The equilibrium constant for this reaction is then

ln Ka =
nFEo

RT
=

2 × 9.6485 × 104 C

mol
× 1.10 V

8.314
J

mol K
× 298.15 K × 1

C V

mol

= 85.6

or
Ka = 1.5 × 1037

or equivalently,

ln Ka =
nFEo

RT
=

nEo(
RT

F

) =
2 × 1.10 V × 1000 mV

V
25.7 mV

= 85.6

or
Ka = 1.5 × 1037

Illustration 14.6-2
Calculation of the Equilibrium Constant from Standard Half-Cell Potentials

Determine the equilibrium constant for the dissolution and dissociation of silver chloride in wa-
ter, and the silver chloride solubility in water.

Solution

The reaction is
AgCl → Ag+ + Cl−

which in terms of half-cell reactions we write as

AgCl + e− → Ag + Cl− half-cell standard potential = +0.22 V
Ag → Ag+ + e− half-cell standard potential = −(+0.80 V)

Thus E◦ = +0.22 − (+0.80) = −0.58 V, and

ln Ka =
nFE◦

RT
=

9.6485 × 104 C

mol
× (−0.58)V

8.314
J

mol K
× 298.15 K × 1

C V

mol

= −22.568
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or

Ka = 1.58 × 10−10

which compares well with the value of 1.607× 10−10 computed in Illustration 13.3-2. The equi-
librium relation is then

Ka = 1.58 × 10−10 =
aAg+aCl−

aAgCl

= MAg+MCl− =
(
MAg+

)2
so that

MAg+ = MAgCl = 1.257 × 10−5 M = 1.257 × 10−5 mol

kg water

Inwriting these last equationswe have recognized that the activity of the pure silver chloride solid
is unity, assumed that the ion concentrations will be so low that the activity coefficients would be
unity, and used the fact that by stoichiometry the concentrations of the silver and chloride ions
must be equal.

Following upon the illustration above, quite generally we can write

ΔG = ΔrxnG
◦ + RT ln

∏
i

aνi
i = −nFE

= ΔrxnG
◦ + RT ln aν1

M1(s)a
ν2+

M2+(aq)a
ν1+

M1+(aq)a
ν2
M2(s)

= −RT lnKa + RT ln aν1
M1(s)a

ν2+

M2+(aq)a
ν1+

M1+(aq)a
ν2
M2(s)

= ΔrxnG
◦ + RT ln a

ν2+

M2+(aq)a
ν1+

M1+(aq)

= −RT lnKa + RT ln a
ν2+

M2+(aq)a
ν1+

M1+(aq)

= −nFE◦ + RT ln a
ν2+

M2+(aq)a
ν1+

M1+(aq)

(14.6-7)

In writing these equations we have recognized that the activities of the pure metal
electrodes are unity. Note that if the electrochemical cell is in chemical equilibrium,
that is, if

Ka = a
ν2+

M2+(aq)a
ν1+

M1+(aq) (14.6-8)

then E is equal to zero (there is no voltage produced by the cell even though E◦ is
nonzero), and ΔG = 0, as must be the case for a process at equilibrium.
We have shown earlier that it is possible to produce work if there is a temperature

difference between two subsystems (for example, by connecting them through a Carnot
or other cycle). Similarly, if there is a pressure difference between two subsystems, this
can be used to drive a fluid through a turbine, again producing work. An electrochem-
ical cell is one way of producing work if there is a concentration difference between
two subsystems. To see how this could be done, suppose we had two beakers con-
taining a salt, say copper sulfate, at different concentrations. We could put a metallic
copper electrode connected to a potentiometer or other electrical circuit in each beaker
and then connect the electrolytes in the beakers by a salt bridge. In the beaker con-
taining the dilute copper sulfate solution, which we designate as beaker 1, the reaction
would be

Cu → Cu2+ + 2e−
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while in the beaker containing the concentrated solution, which we will refer to as
beaker 2, the reaction would be

Cu2+ + 2e− → Cu

In this case the two half-cell potentials cancel, but as a result of the concentration dif-
ference, we have

ΔG = nFE = RT ln

[
aCu2+aSO2−

4

]
1[

aCu2+aSO2−
4

]
2

= RT ln

[
MCu2+MSO2−

4
γCu2+γSO2−

4

]
1[

MCu2+MSO2−
4

γCu2+γSO2−
4

]
2

= RT ln

[
MCu2+MSO2−

4
γ2
±

]
1[

MCu2+MSO2−
4

γ2
±

]
2

(14.6-9)
To proceed, we use that by stoichiometry and from the fact that copper sulfate is fully
dissociated into ions,

MCu2+ = MSO2−
4

= MCuSO4

Also, for the purposes of illustration, we will use the simple Debye-Hückel limiting law
of Eq. 9.10-15 for the mean ionic activity coefficient, which here becomes

ln γ± = −α|z+z−|
√

I = −α4
√

4MCuSO4 = −α8
√

MCuSO4

since

I = 1
2
(M+z2

+ + M−z2
−) = 1

2
MCuSO4 ((2)2 + (−2)2) = 4MCuSO2

Putting this all together gives

ΔG = −nFE = −2FE = RT ln

[
MCu2+MSO4

2−γ2
±
]
1[

MCu2+MSO4
2−γ2

±
]
2

= RT ln

[
M2

CuSO4
γ2
±
]
1[

M2
CuSO4

γ2
±
]
2

= 2RT ln
[MCuSO4 ]1
[MCuSO4 ]2

+ 2RT ln
[γ±]1
[γ±]2

= 2RT ln
[MCuSO4 ]1
[MCuSO4 ]2

− RTα8
(√

[I]1 −
√

[I]2
)

= 2RT ln
[MCuSO4 ]1
[MCuSO4 ]2

− RTα16
(√

[MCuSO4 ]1 −
√

[MCuSO4 ]2

)
(14.6-10)

Illustration 14.6-3
Computing the Cell Voltage That Is Produced as a Result of the Concentration Difference

One beaker contains copper sulfate at a concentration of 0.0001 M and another contains a
0.01-M solution of the same salt. Compute the maximum voltage that could be obtained at 25◦C
with an electrochemical cell that used these two solutions as electrolytes.
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Solution

The starting point is the preceding equation written as follows:

− E =
RT

F
ln

[MCuSO4 ]1
[MCuSO4 ]2

− RT

F
· α · 8 ·

(√
[MCuSO4 ]1 −

√
[MCuSO4 ]2

)

= 25.7 mV

[
ln

0.0001 M

0.01 M
− 1.178 · 8 ·

(√
0.0001 −

√
0.01
)]

= 25.7 mV [ln 0.01 − 1.178 · 8 · (0.01 − 0.1)]

= 25.7 mV[−4.605 + 0.848] = −96.5 mV

so that E = 96.5 mV.

When a half-cell reaction involves hydrogen ions, the cell potential will depend upon
the hydrogen ion concentration of the solution, or the pH, where the pH scale is defined
as follows:

pH = − log a(H+) = − log a(H3O+) ≈ − log
[

MH+

1 molal

]
(14.6-11)

In writing this equation we have recognized that in solution the hydrogen ion is actu-
ally present as a hydronium ion, and the last expression is valid only if the hydrogen-ion
concentration is so low that its activity coefficient is unity. It is interesting to compute
how the cell potential varies with changes in pH. To do this we consider an electro-
chemical cell that contains a hydrogen electrode, and leave the other half-cell reaction
unspecified. The overall cell reaction is written as

H2(g) + 2M+ = 2H+ + 2M(s)

for which the cell potential will be

E = E◦ +
RT

2F
ln

[
a2

H+a2
M

aH2a
2
M+

]
= E◦ +

RT

2F
ln

[
a2

H+

aH2a
2
M+

]

= E◦ +
RT

F
ln [aH+ ] − RT

2F
ln[aH2a

2
M+ ]

= E◦ − 2.303
RT

F
pH − RT

2F
ln[aH2a

2
M+ ]

(14.6-12)

At 25◦C we have

E = E◦ − 59.2 · pH − 12.86 · ln[aH2a
2
M+ ] mV (14.6-13)

We see from this equation that the actual potential produced by an electrochemical cell
involving a hydrogen (or hydronium) ion depends linearly on the pH of the solution.
The total cell potential also depends on the activity of themetal ion in the other half-cell,
which usually would be approximately constant, and the activity of molecular hydro-
gen, which can be controlled by its partial pressure. Consequently, the primary variation
of the cell potential is with pH. This result suggests that an electrochemical cell can be
used to measure the pH of a solution. This is actually done in the laboratory, but by
using specially chosen liquid electrodes rather than a hydrogen gas electrode, which is
not convenient to use.
By the appropriate choice of an electrochemical cell, it is possible to measure the

mean ionic activity coefficient of an electrolyte. As an example, consider a cell con-
sisting of a hydrogen electrode and a silver–silver chloride electrode, both in the same
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solution with hydrochloric acid as the electrolyte. It is themean ionic activity coefficient
of hydrochloric acid that can be measured. The overall cell reaction is

1
2
H2(g) + AgCl(s) = HCl(aq) + Ag(s)

The cell potential for this reaction, since n = 1, is

E = E◦ − RT

2F
ln

[
aHCl(aq)aAg(s)

a0.5
H2(g)aAgCl(s)

]
= E◦ − RT

F
ln

[
aHCl(aq)

a0.5
H2(g)

]
(14.6-14)

since the solids silver and silver chloride are at unity activity. Further, the activity of hy-
drogen is regulated by its partial pressure, so that we can consider it to be independently
fixed and known. Therefore,

E = E◦ +
RT

2F
ln [aH2(aq)] −

RT

F
ln [aHCl(aq)] (14.6-15)

But

aH2(g) =
PH2

1 bar
and

aHCl = (aH+) (aCl−) =
MH+MCl−γH+γCl−

(M = 1 molal)2

=
(

M±
M = 1 molal

)2

γ2
± =

(
MHCl

M = 1 molal

)2

γ2
±

since the hydrochloric acid, being a strong electrolyte, is fully ionized. Consequently,

E = E◦ +
RT

2F
ln

[
PH2

1 bar

]
− 2RT

F
ln

[
MHCl

M = 1 molal

]
− 2RT

F
ln γ± (14.6-16)

or

ln γ± =
F

2RT

[
E◦ − E +

RT

2F
ln

[
PH2

1 bar

]
− 2RT

F
ln

[
MHCl

M = 1 molal

]]

=
F

2RT
(E◦ − E) +

1
4

ln
[

PH2

1 bar

]
− ln

[
MHCl

M = 1 molal

]
(14.6-17)

So that by fixing the value of the partial pressure of hydrogen and measuring the cell
potential E , the value of the mean ionic activity coefficient of hydrogen chloride can
be determined.

14.7 FUEL CELLS AND BATTERIES

In this section we consider electrochemical cells, fuel cells, and batteries. All electro-
chemical cells consist of two electrodes, an anode at which an oxidation reaction occurs
and a cathode at which a reduction reaction occurs, and both of which are immersed
in one or more electrolyte solutions or conductors as described below. The voltage
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produced in a fuel cell or battery, or required when operated in reverse as in an elec-
troplating process or charging a battery, is a result of the difference in the free energies
of the anode and cathode reactions. This can be expressed as free energies, or more
commonly in electrochemistry as voltages as in Table 14.6-1. So for example, an elec-
trochemical cell at which the oxidizing, electron-releasing reaction at the anode is

H2 → 2H+(aq) + 2e−

or equivalently
1
2
H2(g) → 2H+(aq) + e−

and the reduction electron-absorbing reaction at the cathode is

1
2
O2(g) + 2H+(aq) + 2e− → H2O

with all species in their standard states, is found to have a voltage of 1.229 V. So using
the standard convention in Table 14.6-1,Eo = 0 for the first reaction andE◦ = 1.229V
for the second half-cell reaction. However, it should be remembered that these standard
potentials are for all the species being at unit activity. We consider later the correction
when the species are not at unit activity.

Fuel Cells

In Chapter 5 we considered the conversion of thermal energy from a high tempera-
ture heat source to mechanical energy using a number of cyclic processes. Generally,
though not explicitly stated, the high temperature was produced by the combustion of
a fuel. The efficiency of any such cyclic processes is limited by the Carnot efficiency
(Eq. 4.3-9). An alternative is to use a fuel cell, which converts the chemical energy of
the fuel directly into electrical energy and is not limited to the Carnot efficiency. A fuel
cell, as shown in Fig. 14.7-1, has two electrodes that may or may not be chemically
similar and have catalytic surfaces in a conducting electrolyte, for example, an aqueous
solution containing a salt, a conducting polymer proton exchange membrane (PEM,
as in Fig. 14.7-1), or other electrolytes as will be mentioned later. The electrodes are
connected with wires to the load.

H2 → 2H+ + 2e− ½ O2 + 2e− + 2H+ → H2O 

Pt
H

+

Pt

oxygen

water

PEM

proton

Load

hydrogen

Figure 14.7-1 Proton Exchange Membrane Fuel Cell
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A hydrogen fuel cell is conceptually the simplest. In this case in an acidic solution
hydrogen is supplied to the anode where it is oxidized and oxygen is supplied to the
cathode where it is reduced. The reactions that occur are as follows:

Anode reaction : H2 → 2H+ + 2e−

Cathode reaction : 2H+ + 1
2
O2 + 2e− → H2O

Overall reaction : H2 + 1
2
O2 → H2O Eo(25oC) = 1.229 V

The charge carrier is the hydrogen ion, H+. The result is the production of electrical
energy that is then consumed in the external circuit with its load. The electrical work
obtained per mole of hydrogen, We, is

We = −2FΔE = ΔrxnG

[Note that the factor of 2 arises since as written, the reaction involves the transfer of
2 electrons.] The standard cell voltage is ΔE = 1.229 V if the hydrogen and oxygen
gases and the water are at unit activity. Note that the second law, because of system
irreversibilities, requires that

We ≤ ΔrxnG

In other fuel cells different electrolytes and electrode types are used for reasons includ-
ing the temperature range of interest and the voltage produced. An alkaline fuel cell
using, for example, an aqueous solution of potassium hydroxide in a porous matrix,
has the following reactions

Anode reaction : H2 + 2OH− → 2H2O + 2e−

Cathode reaction : 1
2
O2 + H2O + 2e− → 2OH−

Overall reaction : H2 + 1
2
O2 → H2O Eo(25oC) = 1.229 V

Sowhile the overall reaction is the same as in fuel cell above, here charge carrier is OH−

ion, and has a useful wide operating temperature range of 60 to 250◦C. A potential
disadvantage of the KOH fuel cell is that if carbon dioxide is present in the fuel or
oxidant, it will react with the KOH producing K2CO3 and poisoning the cell. Alkaline
fuel cells have been used by the NASA since the mid-1960s, starting with the Apollo
series of flights and continuing to the Space Shuttle.
The electrolyte in phosphoric acid fuel cell is a highly concentrated H3PO4 saturating

a silicon carbide matrix, and the electrodes are carbon paper coated with a finely dis-
persed platinum catalyst. The electrode reactions are the same in the hydrogen fuel cell,
and the hydrogen ion is the charge carrier. The useful operating range is 150 to 200◦C
and has an electrical generating efficiency of about 40%. However, an advantage of
the phosphoric acid fuel cell is that the steam produced can be used for heating air or
water. In this way, as much as 70% of the energy content of the fuel (hydrogen in the
discussion here, but could be methane, other hydrocarbons, and even gasoline) can be
used to produce the combination of electricity and heating. Phosphoric acid fuel cells
were the first to be commercialized, and have been used for stationary power generators
producing 100 to 400 kW, and more recently in buses and other large vehicles.
Solid oxide fuel cells use a solid oxide ceramic electrolyte at high temperatures (750

to 1000◦C) and generally use a mixture of hydrogen and carbon monoxide that is
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produced internally in the fuel cell by a reforming reaction between a hydrocarbon
fuel and steam. The reforming reaction, in a different region of the fuel cell and with a
different catalyst, is (starting with methane as an example)

CH4 + H2O → CO + 3H2

The electrochemical reactions are

Anode reactions : H2 + O2− → 2H2O + 2e−
CO + O2− → CO2 + 2e−

Cathode reaction : O2 + 4e− → 2O2−

Overall reaction : H2 + CO + O2 → H2O + CO2

For this overall reaction the free energy change is

ΔrxnG (25oC) =
∑

i

νiΔfG = −228.6 − 394.4 + 137.2 = −485.8
kJ
mol

and

Eo (25oC)= − ΔrxnG (25oC)
nF

=
485.8

4 × 96.485
V = 1.259 V

and the O2− ion is the charge carrier.
The molten carbonate fuel cell uses a molten alkali metal (Li/K or Li/Na) in a porous

LiAlO2 matrix, and the electrode catalysts are based on nickel. Such fuel cells operate at
temperatures of 650oC and above, and have an electrical generating efficiency of almost
60%, and when the waste heat is used productively, have an overall thermal efficiency
as high as 85%. The electrochemical reactions are:

Anode reaction : H2 + CO−2
3 → H2O + CO2 + 2e−

Cathode reaction : 1
2
CO2 + 2e− → CO−2

3

Overall reaction : H2 + 1
2
O2 → H2O Eo(25oC) = 1.229 V

In this case the charge carrier is the carbonate ion CO−2
3 .

The last type of fuel cell to be considered here is the polymer-membrane based Pro-
ton Exchange Membrane fuel cell or PEM fuel cell. In this case a solid, typically a
perfluorosulfonic polymer is the electrolyte separating the electrodes that are coated
with noble metal catalysts. The half-cell electrode and overall reactions are

Anode reaction : H2 → 2H+ + 2e−

Cathode reaction : 2H+ + 1
2
O2 + 2e− → H2O

Overall reaction : H2 + 1
2
O2 → H2O Eo(25oC) = 1.229 V

It is interesting to note that all the fuel cells considered here produce standard state
voltages between 1.23 and 1.26 V (largely because all but one of the reactions is be-
tween hydrogen and oxygen). In actual operation the voltage obtained will be lower.
First because in most fuel cells the reacting species will not be in states of unit activity.
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Second, the voltages calculated here are the open circuit voltages, that is, those that
would be measured using a voltameter connected to the two electrodes, but with no
other connection or load between the electrodes. The actual closed circuit voltage, that
is the voltage across a resistance or other load between the electrodes, would be lower
due to irreversibilities in the fuel cell operation, such as diffusion of the charge carriers
in the electrolytes or diffusion across the membrane, concentration gradients (polariza-
tion) that occur near the electrodes and electrical resistance in the circuit. The voltage
produced by a fuel cell in actual operation, depending on the operating conditions and
the states of the reactants, may be from 70 to 85% of the E◦ value.
The rate at which the charge carrier can move across the cell determines the rate

at which electrons can be delivered to a load, that is the amperage produced by the
cell. The deliverable power density, the product of the cell voltage and the amperage,
is an important characterization factor of a fuel cell. The voltage can be increased by
stacking a number of fuel cells in series, and the limiting amperage can be increased by
increasing the cross-sectional area (membranes and electrodes) of each of the cells.
The values for the half-cell potentials discussed so far are based on all the species

involved being in states of unit activity. That is, pure gases at 1 bar and ionic species at
unit activity in an ideal 1 molal solution. If this is not the case, then the voltage must be
corrected using the Nernst equation, Eq. 14.6-5.When applied to the standard hydrogen
electrode written in the form of

H+(aq) + e− → 1
2
H2(g)

the voltage is

E = E◦ − RT

2F
ln

∏
i

avi
i = E◦ +

RT

F
ln

aH+(
PH2

1 bar

)1/2

= E◦ +
RT

F
lnaH+ − RT

2F
ln

(
PH2

1 bar

)
or

E = E◦ − 2.303RT

F
pH − RT

2F
ln

(
PH2

1 bar

)

Similar corrections can be made for all the other half cell voltages.

Batteries

While a fuel cell produces electrical energy, a battery only stores electrical energy.
Like a fuel cell, a battery has two electrodes, an anode and a cathode separated by
an electrolyte. The most common battery is the lead-acid battery used, for example,
in motor vehicles. The cathode, the positive electrode, is lead oxide, the anode, the
negative electrode, is pure lead, and the electrolyte is a concentrated sulfuric acid. It is
the oldest of the rechargeable batteries.
Anode reaction:

Pb (s) + HSO−
4 (aq) → PbSO4 (s) + H+ (aq) + 2e−

Cathode reaction:

PbO2 (s) + HSO−
4 (aq) + 3H+ (aq) + 2e− → PbSO4 (s) + 2H2O(l)
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The overall reaction is

Pb (s) + PbO2 (s) + 2H2SO4 (aq) → 2PbSO4 (s) + 2H2O(l)

The hydrogen ion is the charge carrier and the lead-acid battery has an open circuit
(no load) voltage is 2.05 V. A typical lead-acid battery for an automobile delivers
12 volts by having six cells in series. The reaction is reversed on charging by applying
an external voltage greater than the cell voltage. Generally, the charging-discharging
process has an energy efficiency of about 75 to 80%.
Lithium-ion batteries are currently being used as the main energy storage device in

consumer electronics such as laptop computers, cell phones, and on a large scale in
hybrid and all-electric motor vehicles. The anode is usually carbon and the cathode
is frequently lithium cobalt oxide (LiCoO2), lithium iron phosphate or other lithium-
based materials. The electrolyte is typically a non-aqueous mixture of carbonates such
as ethylene or diethyl carbonates with lithium salts, such as LiPF6.

The cathode half-cell reaction is LiCoO2 → Li1−xCoO2 + xLi+ + xe−

The anode half cell reaction is xLi+ + xe− + xC6 → xLiC6

and the overall reaction is LiCoO2 + 6C → CoO2 + LiC6

The lithium ion is the charge carrier and the battery (or each cell of the battery) has a
no-load voltage of 3.7 V. The energy efficiency of a lithium ion battery is approximately
85%, and its cost per kilowatt-hour is approximately twice that of a lead acid battery.
Among the other batteries are the nickel-cobalt, nickel-metal hydride and sodium sulfur
batteries. These will not be considered here.
Charging or recharging a battery requires forcing all the reactions to go in the oppo-

site direction to those indicated above by providing an external voltage that is greater
than the voltage produced by the battery. Generally, but within limits, the greater the
overvoltage, that is, the difference between the applied voltage and the battery voltage,
the faster the rate of recharge.

Electroplating

The process of running an electrochemical cell with an overvoltage is used in the pro-
cess of electroplating. For example, putting a coating of gold on a metal such as silver
or copper. The electrode to be coated, the cathode, is connected to the external source
negative voltage and the electrode that is supplying the coating material is the anode
and is connected to the positive source of the external voltage. So, as an example, for
the electroplating of gold

Anode reaction : Au → Au+ + e− Eo(25oC) = −1.69 V

Cathode reaction : Au+ + e− → Au Eo(25oC) = +1.69 V

Overall reaction : Au → Au Eo(25oC) = 0 V

Therefore, any applied voltage in the direction indicated above will result in gold dis-
solving from the anode and being deposited at the cathode. Of course, the larger the
applied voltage the more rapidly the process will occur. However, a too rapid rate of
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coating, that is too high an applied voltage, will result in imperfections in the coating,
including the formation of whiskers.

Capacitors

Another type of electrical energy storage device is the capacitor. In its simplest form, it
consists of two electrically conducting electrodes separated by an insulating medium,
for example, air. When subjected to an external potential difference, equal amounts of
positive and negative charges accumulate on the surface of the electrodes. The advan-
tage of a capacitor is that the stored energy can be released extremely quickly since the
discharge process is the rapid flow of electrons through wires. This is to be compared
with the discharge rate of a battery that is determined by the rate at which the ion carriers
can travel through the electrolyte. Also, the initial voltage of a capacitor is determined
by the applied external potential unlike a battery whose voltage is determined by the
two half-cell potentials.
The disadvantage of a traditional capacitor is that since the charges are stored on

the surface of the electrodes, its total energy capacity is very limited. Recently, super-
capacitors have been developed using porous materials rather than simple plates as the
electrodes. In these supercapacitors the total volume of the electrode, rather than just its
surface, is used for energy storage resulting in energy storage densities of 10,000 times
that of a simple capacitor, and a rate of discharge (power delivered) of ten or more times
that of a lithium-ion battery. Supercapacitors have begun to appear in motor vehicles
that require high power, such as race cars, buses, trucks, and other heavy vehicles that
require high power when starting from a stop.

PROBLEMS

(Note: The Chemical Engineer’s Handbook, McGraw-Hill,
New York, contains a comprehensive list of standard-state
Gibbs energies and enthalpies of formation.)
14.1 The flame temperature attained in a torch or a burner

can be computed using the adiabatic reaction tempera-
ture analysis of Sec. 14.3 if it is assumed that the radi-
ant heat loss from the flame is negligible. Compute the
flame temperature and exit composition in a hydrogen
torch if
a. A stoichiometric amount of pure oxygen is used as

the oxidant.
b. Oxygen is the oxidant, but a 100 percent excess is

used.
c. Twice the stoichiometric amount of air is used as

the oxidant.
In each case the hydrogen and oxidant entering the
torch are at room temperature (298.15 K), and the
torch pressure is 1.013 bar.

14.2 Compute the flame temperature of an oxyacetylene
torch using pure acetylene and 50 percent more pure
oxygen than is needed to convert all the acetylene
to carbon dioxide and water. Both the oxygen and

acetylene are initially at room temperature and atmo-
spheric pressure. The following reactions may occur:

HCCH + 3
2
O2 = 2CO + H2O

HCCH + 5
2
O2 = 2CO2 + H2O

CO + 1
2
O2 = CO2

CO + H2O = CO2 + H2

HCCH = 2C(s) + H2

14.3 One mole of ethylene and one mole of benzene are
fed to a constant-volume batch reactor and heated
to 600 K. On the addition of a catalyst, an equilib-
rium mixture of ethylbenzene, benzene, and ethylene
is formed:

C6H6(g) + C2H4(g) −→←− C6H5C2H5(g)

The pressure in the reactor, before addition of the
catalyst (i.e., before any reaction has occurred), is
1.013 bar. Calculate the equilibrium conversion and
the heat that must be removed to maintain the reactor
temperature constant at 600 K.
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14.4 How would you determine the entropy change and the
enthalpy change of an electrochemical cell reaction?

14.5 One of the purposes of the kidneys is to transfer useful
chemicals from the urine to the blood, and toxins from
the blood to the urine. In the transport of glucose from
the urine to the blood, the kidneys are transporting
glucose against a concentration gradient (that is, the
direction of transport is from a low concentration to
a high concentration). This can occur only because
the transport is coupled with a chemical reaction, a
process called active transport. If the concentration
of glucose initially in the urine is 5 × 10−5 mol/kg
and after leaving the kidney is 5 × 10−6 mol/kg, and
the concentration of glucose in the blood (which has
a much larger volume) is approximately constant at
5 × 10−3 mol/kg, compute the minimum work that
must be done (or Gibbs energy supplied) per mole of
glucose transported across the kidney.

14.6 There are two beakers, each one liter in total vol-
ume. One of the beakers contains copper sulfate at a
concentration of 0.0001 M and the other contains a
0.01-M solution of the same salt. Compute the max-
imum total work that can be obtained at 25◦C with an
electrochemical cell that used these two solutions as
electrolytes.

14.7 Estimate the maximum amount of work that can be
obtained from the combustion of gasoline, which we
will take to be represented by n-octane (C8H18), in an
automobile engine. For this calculation, assume that
n-octane vapor and a stoichiometric amount of air
(21 vol % oxygen, 79 vol % nitrogen) initially at 1
bar and 25◦C react to completion, and that the exit gas
is at 1 bar and 150◦C. (You may want to compare this
result with that of Problem 8.38.)

14.8 Methane is to be burned in air. Determine the adiabatic
flame temperature as a function of the methane-to-air
ratio at a pressure of 1 bar.

14.9 Estimate the maximum amount of work that can be
obtained from the controlled combustion of methane
in air at 1 bar as a function of the methane-to-air ra-
tio. Assume that the process is as follows. First the
methane is burned adiabatically so that the adiabatic
flame temperature is obtained. Next a Carnot cycle is
used to extract heat from the combustion products un-
til they are cooled to 25◦C. Note that the work cannot
all be extracted from the combustion gases at the adi-
abatic flame temperature, but rather is extracted over
a range of temperatures starting at the adiabatic flame
temperature and ending at 25◦C.

14.10 Compare your answer above with the maximum
amount of work that could be obtained from methane
if a nonthermal energy conversion route, such as a fuel
cell, was used.

14.11 a. What is the solubility product for silver sulfate,
Ag2SO4, in water?

b. An electrolytic silver-producing cell consists of a
copper cathode, a silver anode, and a solution that
initially contains Ag2SO4 at its solubility limit and
0.5 M CuSO4. Compute the minimum electrical
potential that must initially be applied to electrolyt-
ically deposit silver in this cell.

14.12 Redo Problem 14.3 with the change that the reactor
is to operate at a constant pressure of 1.0 bar (instead
of at constant volume) and that the initial pressure is
1.0 bar.

14.13 Equal amounts of pure nitrogen and pure oxygen, each
at 3000 K and 1 bar, are continuously fed into a chem-
ical reactor, and the reactor effluent, consisting of the
reaction product nitric oxide and unreacted nitrogen
and oxygen, is continually withdrawn. Assuming that
the reactor is adiabatic and that the reactor effluent is in
chemical equilibrium, determine the temperature and
composition of the effluent.

14.14 An unsecured tank contains 20 kg of n-butane at its
vapor pressure at 25◦C. The cylinder falls over, break-
ing off the valve and releasing the entire contents of the
cylinder, and the resulting vapor cloud comes in con-
tact with an ignition source and explodes. Estimate the
energy released.

14.15 Derive Eq. 14.3-17.
14.16 Redo Problem 14.1 using Aspen Plus R©.
14.17 Redo Problem 14.2 using Aspen Plus R©.
14.18 Redo Problem 14.3 using Aspen Plus R©.
14.19 Redo Problem 14.8 using Aspen Plus R©.
14.20 Redo Problem 14.12 using Aspen Plus R©.
14.21 Redo Problem 14.13 using Aspen Plus R©.
14.22 Methanol and acetic acid can react in the liquid phase

to form methyl acetate and water. Determine the equi-
libruim compositions of this mixture at 150◦C and
50 bar using the NRTL model and either the RGibbs
or REquil model in Aspen Plus R©.

14.23 Octane can be used as a model for gasoline. If octane
is available at ambient conditions and used in an auto-
mobile engine, which can be considered to be a con-
tinuous flow reactor, what is the maximum shaft work
that can be obtained per kilogram of octane if it is used
with 20% more air than is needed for complete com-
bustion.. (Hint: Here you need to include the RTlnyi

terms to see the impact on the answer. Do these terms
turn out to be important?)

14.24 Repeat the calculation of the previous problem if
100% excess air is used

14.25 If octane is burned in a closed, constant volume re-
actor with a stoichiometric amount of oxygen, what
is the maximum amount of shaft work that can be
obtained?

14.26 If octane is burned in a closed, constant volume reac-
tor with 20% excess air, what is the maximum amount
of shaft work that can be produced?

14.27 Repeat Illustration 14.5-1 if 50% excess air is used.
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14.28 One suggestion that has been made to conserve
energy is that all new electrical power generation
plants should be cogeneration facilities. In a typi-
cal power plant the combustion of coal is used to
produce steam that is run through a turbine and the
only useful energy that results is electricity. In such
cases the pressure at the downstream end of the tur-
bine is kept as low as possible to produce the most
work (electricity). This is done by having a con-
denser after the turbine cooled by (frequently river)
water or air. Another alternative is a co-generation
power plant in which the temperature of the exiting
steam is kept higher so that the steam leaving the
turbine can be used for heating purposes (as process
steam in a chemical plant or for residential heat-
ing in a city). In a co-generation plant the useful
energy obtained is the sum of the electrical energy
and energy that can be used for heating. Calculate

the useful energy and the overall energy efficiency
obtained from:

a. a standard power generation plant, and
b. a co-generation plant.

The following data are available:
- The heat of combustion of coal is used to produce
steam at 900◦C and 25 bar from water at 1 bar and
25◦C. This is accomplished with 80% efficiency
(that is 20% of the heating value of the coal is lost
in the process);

- The steam turbines are adiabatic and reversible;
- The condensed saturated steam leaving the stan-
dard power plant is at 45◦C which sets the pressure
at the exit of the turbine; and

- The steam exit pressure in the co-generation plant
is 1 bar, and this steam is then used as a heat trans-
fer fluid until it is condensed and its temperature
is 40◦C.



Chapter 15

Some Additional
Biochemical Applications
of Thermodynamics
Though most of the applications of thermodynamics in this textbook have dealt with
chemicals and petrochemicals, there have been a few examples dealing with biochemi-
cal processes. In this chapter we focus on the use of the principles of thermodynamics,
that is, mass, energy, and entropy balances, and the concept of the equilibrium state, to
some applications involving biochemical reactions, biochemical processing, and pro-
cesses occurring in living cells. These cases are somewhat more complicated to deal
with than those of traditional chemical processing because of the large number of chem-
ical species that are involved, and becausemany of the species (cells, proteins, enzymes,
etc.) may be incompletely specified. Also, aqueous solutions of electrolytes are gener-
ally involved, and pH and ionic strength have significant effects on the thermodynamics
of such systems, including the solubility and biological activity of proteins, cells, and
other biomaterials, and on the extent of biological reactions. Therefore, we start with
a discussion of the acidity of solutions and pH, which you may have encountered in
courses in general chemistry and physical chemistry. We then move on to a number
of applications of thermodynamics to biological, physiological, and biochemical pro-
cesses. There are several very good references on the subject of biothermodynamics.1,2

INSTRUCTIONAL OBJECTIVES FOR CHAPTER 15

The goals of this chapter are for the student to:

• Be able to calculate the solubility of amino acids, proteins and pharmaceuticals as
a function of pH, ionic strength and temperature (Secs. 15.1 and 15.2)

• Be able to compute the equilibrium state in biochemical reactions including ligand
binding. (Secs. 15.3 and 15.4)

• Be able to compute the equilibrium denaturation (unfolding) of proteins (Sec. 15.5)
• Understand coupled biochemical reactions such as the ADP-to-ATP reaction
(Sec. 15.6)

1E. J. Cohn and J. T. Edsall, Proteins, Amino Acids and Peptides, Reinhold, New York (1943).
2J. T. Edsall and H. Gutfreund, Biothermodynamics: The Study of Biochemical Processes at Equilibrium,
John Wiley & Sons, New York (1983).
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• Be able to develop a thermodynamic description of fermenters and other biochem-
ical reactors (Sec. 15.7)

• Be able to compute the equilibrium state, osmotic pressure, and membrane poten-
tials of proteins and other charged species (Gibbs-Donnan equilibrium)
(Sec. 15.8)

• Understand how proteins can be concentrated in an ultracentrifuge (Sec. 15.9)

NOTATION INTRODUCED IN THIS CHAPTER

H Stoichiometric coefficient of hydrogen in a biochemical compound
O Stoichiometric coefficient of oxygen in a biochemical compound
N Stoichiometric coefficient of nitrogen in a biochemical compound
C Stoichiometric coefficient of carbon in a biochemical compound

K An apparent chemical equilibrium constant based on concentration ratios
K A product of equilibrium constants
So Saturation solubility of an electrically neutral substance (M)
ST Total solubility of the neutral and ionized forms of a substance (M)

YB/S C-moles of biomass produced per C-mole of substrate consumed
YP/S C-moles of product per C-mole of substrate consumed
YN/S Moles of nitrogen source consumed per C-mole of substrate consumed

YO2/S Moles of O2 consumed per C-mole of substrate consumed
YW/S Moles of water consumed per C-mole of substrate consumed
YC/S Moles of CO2 produced per C-mole of substrate consumed
YQ/S Heat flow per C-mole of substrate consumed

Z Charge on a protein
θ Extent of coverage in ligand binding
ω Rotational speed in an ultracentrifuge (1/s)
ξ Generalized degree of reduction

15.1 SOLUBILITIES OF WEAK ACIDS, WEAK BASES, AND AMINO ACIDS
AS A FUNCTION OF pH

Here we consider some acids, bases, proteins, pharmaceuticals, or other compounds
that ionize, and in which the undissociated species is only partially soluble in aqueous
solution while the portion that ionizes is completely soluble.
The precipitation of proteins and other pharmaceuticals from solution is important

for several reasons. For example, the precipitation of a drug from a processing broth can
be useful step during purification. Especially if a crystal can be obtained, the product
will be of high purity. Conversely, the precipitation of a drug from an aqueous liquid
formulation solution can indicate instability of the product, poor bioavailability, and
difficulties in delivery. Also, it is of interest to know how far removed a drug product is
from its solubility limit since stresses (thermal, shear, pressure, etc.) during processing
may result in undesired precipitation. It is in these areas that classical thermodynamics,
and particular the Gibbs energy of the phases, can provide some useful information.
The solubility of proteins and amino acids in solution can be considered from a num-

ber of perspectives. One is the solubility of the various ionic forms of these compounds
as a function pH, as a result of the ionic form at fixed ionic strength and temperature.
A second is the solubility as a function ionic strength at fixed temperature and pH.
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Still a third is the solubility as a function of temperature at fixed ionic strength and pH.
Each of these will be considered separately, though they also can be combined into a
model of broader applicability.
Still another issue is the character of the solid precipitate that forms when the sol-

ubility limit is exceeded, which might be a crystal (in one or more of its polymorphic
forms), an amorphous solid (or floc), a glass, or a gel. The accurate prediction of the
character of the solid that will form is beyond present capabilities because of the com-
plexity of the molecules involved, that the different possible phases may have very
small differences in Gibbs energy beyond the accuracy of present prediction methods,
and that as crystallization is a slow process, the type of solid formed may be determined
by kinetics and not thermodynamics. Nonetheless, a correlation between a measurable
thermodynamic property, the osmotic second virial coefficient, and the conditions for
crystallization is discussed here.
The charge on an amino acid or protein is important in determining its solubility. Con-

sider a compound in solution in equilibriumwith its pure solid. Generally, the solubility
in water of such compounds, because of their chemical composition and hydrophobic
character, is limited when in the neutral form and higher when in any ionized form.
It is this change in solubility that we want to model.
We first consider some acids, bases, or other compouns that ionize, and in which the

undissociated species is only partially soluble in aqueous solution while the portion
that inoizes is completely soluble. We start with an analysis of the equations for the
ionization and dissolution of an acid. We consider

HA
KHA� H+ + A−

for which the equilibrium constant is

KHA =
MH+ · MA−

MHA

where, as usual, the apparent equilibrium constant has been used and solution nonide-
alities have been neglected.
Let So be the solubility of the uncharged acidic species, which could be a pharma-

ceutical drug. This is the value of the solubility at such a low pH that ionization is
suppressed. As long as there is sufficient undissolved acid for the solution to remain
saturated, we have

So = MHA (15.1-1)

Wewill use ST to represent total solubility of the acid, that is, the concentration of both
undissociated and ionized acid:

ST = MHA + MA− = So + MA− (15.1-2)

or
MA− = ST − So

Now

KHA =
MH+ · MA−

MHA

=
MH+ · (ST − So)

So
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or

pKHA = pH − log
[
(ST − So)

So

]
Then the total acid solubility at any pH, ST (pH), is

ST (pH) = So ·
(
1 + 10−[pKHA−pH]

)
or

ST (pH) = So +
So · KHA

MH+
(15.1-3)

Clearly, if
MH+ � KHA then ST = So

while if
KHA � MH+

there is a significant increase in solubility. In particular, at pH = 7 (pure water), we have

ST (pH = 7) = So ·
(
1 + 10−[pKHA−7]

)
(15.1-4a)

so that the total solubility of a compound at any pH is related to its solubility in pure
water (which is the solubility that is usually reported) by

Solubility of a weak
acid

ST (pH) = ST (pH = 7) ·
(
1 + 10−[pKHA−pH]

)
(1 + 10−[pKHA−7])

(15.1-4b)

Illustration 15.1-1
The Solubility of a Weak Acid as a Function of pH

Hexanoic acid (C6H12O2), in biology usually referred to as caproic acid, has a solubility in water
of 9.67 g/kg at pH = 7 and 25◦C, and its pKHA is 4.85. Estimate the solubility of hexanoic acid
in the following body fluids:

Blood pH = 7.4
Saliva pH = 6.4
Stomach contents pH = 1.0 to 3.0
Urine pH = 5.8

Solution

Using Eq. 15.1-4b, the solubility of hexanoic acid in blood is found to be 24.2 g/kg, in saliva
it is 2.48 g/kg, in stomach contents the solubility is 0.068 g/kg, and in urine the solubility of
hexanoic acid is 0.68 g/kg. The observation from this calculation is that there is very different
solubility of an organic chemical (or pharmaceutical) in different bodily fluids. This can be es-
pecially important in the formulation of a drug, where one wants to ensure its solubility and
bioavailability.

The complete solubility versus pH curve is shown in the figure below. Note that the solubility
of hexanoic acid begins to increase when the value of the pH is close to the pKHA value. This
is a general result for acids, since, as we can see from Eqs. 15.1-4, there will be a significant
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change in the slope of the solubility curve of a partially soluble acid at a pH that is close to its
pKHA value.

100
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Solubility of hexanoic acid (g/kg) in aqueous
solutions as a function of pH.

Next we consider the solubility of a partially soluble weak base. The extent of ion-
ization of the weak base

BOH
KBOH� B+ + OH−

can be computed from the equilibrium relation

KBOH =
MB+ · MOH−

MBOH

Now, using the notation

So = MBOH ST = MBOH + MB+ = So + MB+ and MOH− =
KW

MH+

(15.1-5)
we obtain

KBOH =
(ST − So) · KW/MH+

So

and

ST = So ·
[
1 +

KBOH · MH+

KW

]
= So ·

(
1 + 10−[pKBOH+pH−pKW]

)
(15.1-6)

or, using pH = 7 (pure water) as the reference,

Solubility of a weak
base

ST (pH) = ST (pH = 7) ·
(
1 + 10−[pKBOH+pH−pKW]

)
(1 + 10−[pKBOH+7−pKW])

(15.1-7)

In the biological literature, equilibrium constants are sometimes written for the
reaction

BOH + H+
K∗

BOH� B+ + H2O (15.1-8)

which can be considered the combination of

BOH
KBOH� B+ + OH−
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and

H+ + OH− 1/KW� H2O

Summing these last two reactions gives the reaction of Eq. 15.1-8.
Also,

KBOH =
MB+ · MOH−

MBOH

and
1

KW

=
MH2O

MH+ · MOH−

so that

K∗
BOH =

KBOH

KW

or pK∗
BOH = pKBOH − pKW

Therefore,

ST (pH = 7) = So ·
(
1 + 10−[pK∗

BOH+pH]
)

(15.1-9a)

so that an alternative expression is

ST (pH) = ST (pH = 7) ·

(
1 + 10−[pK∗

BOH+pH]
)

(
1 + 10−[pK∗

BOH+7]
) (15.1-9b)

Illustration 15.1-2
The Solubility of a Weak Base as a Function of pH

The pyrimidine base thymine (C5H6N2O2, also known as 5-methyluracil) has a solubility in
water of 4.0 g/kg (pH = 7) at 25◦C and its pKBOH is 9.9 (there is a further dissociation at higher
pH that we will neglect here). Estimate the solubility of thymine in aqueous solutions over the
pH range of 1 to 13.

Solution

The results in the following figure calculated with Eq. 15.1-7 show a significant decrease of
thymine solubility with increasing pH until about pH = 4, beyond which the solubility remains
approximately constant at 4.0 g/kg.

1.103
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pH
141210

Thymine solubility (g/kg) in aqueous solutions as
a function of pH
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In this figure there is a marked change in the slope of the solubility curve of a base when the
pOH = (pKW −pH) = (14− pH) is equal to the pKBOH value. (This is seen here in the change
in slope at about pH = 4, corresponding to pOH = 10, which is close to the pKBOH value of
9.9.)

Note

As an aside, it is of interest to note that deoxyribonucleic acid, or DNA, which has been called the
molecule of heredity, consists of a repeated backbone with a collection of side chain groups, the
sequence of which is different in different species (and in individuals within the same species)
and contains the genetic information. The side chains on the DNA backbone consist of only four
types of bases, the two purines adenine (A) and guanine (G), and the two pyrimidines thymine
(T) and cytosine (C). What is commonly referred to as the genetic code is a long sequence of the
four letters A, G, T, and C in the order in which these bases appear on the DNA chain.

Some slightly soluble amino acids and other weak acids and bases have more than a
single ionization state. For example, at low pH the simple amino acid glycine is posi-
tively charged; it is uncharged around pH = 7 and has a negative charge at higher pH,
as shown in Fig. 2 of Illustration 13.6-2. Using the A (positively charged), B (neutral),
and C (negatively charged) species identifications of that illustration, we have

K1 =
MB · MH+

MA

and

K2 =
MC · MH+

MB

Letting So represent the equilibrium saturation solubility of the uncharged amino
acid, that is, using So = MB, we have

K1 =
So · MH+

MA

and K2 =
MC · MH+

So

Therefore, the total solubility

ST = So + MA + MC

= So + So
MH+

K1

+ So
K2

MH+
= So

(
1 +

MH+

K1

+
K2

MH+

)

is
ST = So ·

[
1 + 10(pK1−pH) + 10−(pH−pK2)

]
(15.1-10a)

and
ST

So

= 1 + 10(pK1−pH) + 10−(pH−pK2) (15.1-10b)

Note that whileSo is the solubility of the uncharged species, it is usually the solubility
of the amino acid in water pH = 7 that is reported, and that may be somewhat different
from the solubility of the unchanged amino acid, unless its isoelectric point is pH = 7.
At other pH values the total solubility will be the result of the solubility of the uncharged
and charged species. The total solubility at pH = 7 is

ST (pH = 7) = So

(
1 + 10(pK1−7) + 10−(7−pK2)

)
(15.1-11a)
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Now eliminating the unknown solubility of the uncharged amino acid gives the final
result for the total solubility at any pH value in terms of the measured solubility in
neutral water at pH = 7:

ST (pH) = ST (pH = 7) ·
(
1 + 10(pK1−pH) + 10−(pH−pK2)

)
(1 + 10(pK1−7) + 10−(7−pK2))

(15.1-11b)

The discussion that led to this equation is easily extended to amino acids, proteins, and
other biomolecules with more than two ionizable sites (Problems 15.1 and 15.4).

Illustration 15.1-3
The Solubility of a Weak Amino Acid as a Function of pH

Tyrosine (C9H11NO3), another amino acid in proteins, has two dominant ionizable groups with
pKHA values of 2.24 and 9.04 at 25◦C (and a third, less easily ionizable group with a pK value of
10.10, which we will neglect here). Its water solubility at this temperature is 0.46 g/kg of water.

a. Estimate the total solubility of tyrosine in aqueous solutions over the pH range of
0.4 to 11.

b. Estimate the solubility of the uncharged tyrosine.

Solution

a. Using Eq. 15.1-11b, we obtain the results shown in the following figure. Note that the solu-
bility of tyrosine varies little (only between 0.46 and 0.56 g/kg of water) over the pH range
of 2.9 of 8.4, and then increases rapidly as the pH either decreases below 2.9 or increases
above 8.9. The pH range of limited solubility is also where tyrosine has approximately zero
average net charge (Problem 15.20).
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The solubility S of tyrosine (g/kg) in aqueous
solutions as a function of pH.

b. Using Eq. 15.1-11a, we have

ST (pH = 7) = 0.46
g

kg
= So × 1.009 and So = 0.456

g

kg
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Understanding the solubility of weak acids and bases as a function of pH is important
in the formulation of pharmaceuticals for general use. From Illustration 15.1-1 we see
that if we had to deliver a drug with low solubility in water that had a pK value similar
to hexanoic acid, it would have to be delivered in a slightly basic solution to have appre-
ciable solubility or concentration in the aqueous solution. For example, at pH = 7.4 (the
pH of blood), its solubility would be 2.5 times greater than in water, while its solubility
would be considerably less in the fluids in the stomach, and may indeed precipitate out
of solution there. However, for a drug with a pK similar to that of thymine (9.9), the
solubility decreases with increasing pH at low pH, and is essentially unchanged from
its neutral water solubility by increasing the pH to that of blood.
Understanding the solubility of proteins and other biochemicals is also important in

developingmethods for their purification. For example, an important method for the pu-
rification of antibiotics is by liquid-liquid extraction. The procedure is as follows. The
pH of the solution is first adjusted to the isoelectric point at which the desired biochem-
ical compound has no net charge and limited solubility, while the other biochemicals in
the mixture are charged and are more soluble. This solution is then contacted with an
organic solvent, which results in the extraction of the desired biochemical compound
into the organic phase. Then by contacting this organic solution with an aqueous phase
at a pH at which desired biochemical has a charge, it is extracted back into an aqueous
phase. This method is used to separate components with different isoelectric points.
Also, the differing solubilities of species as a function of pH can be used to recover one
biochemical from a mixture by selective precipitation (or crystallization).
As a final example in this section we consider the solubility in water of the amino acid

dl-alanine HCOO-CNH2H-CH3 it needs to be recognized that it exists in the following
four forms in solution

NH+
3 CH2COOH

K1

�H+ + NH+
3 CH2COO− pK1 = 2.348

NH+
3 CH2COO− K2

�H+ + NH2CH2COO− pK2 = 9.867

NH2CH2COOH
KD

� NH+
3 CH2COO− pKD = −5.41

The equilibrium relations are

K1 =
[H+] ·

[
NH+

3 CH2COO−][
NH+

3 CH2COOH
] ; K2 =

[H+] ·
[
NH3CH2COO−][

NH+
3 CH2COO−] ;

KD =

[
NH+

3 CH2COO−]
[NH2CH2COOH]

(15.1-12)

Therefore[
NH+

3 CH2COO−]
= KD · [NH2CH2COOH] = [NH2CH2COOH] · 10−pKD[

NH+
3 CH2COOH

]
= [H+]·[NH+

3 CH2COO−]
K1

= [H+]·[NH2CH2COOH]·10−pKD

K1

= [NH2CH2COOH] · 10pK1−pH−pKD[
NH2CH2COO−]

=
K2·[NH+

3 CH2COO−]
[H+] = [NH2CH2COOH] · 10pH−pK2−pKD

(15.1-13)
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These relations can now be used to determine the fraction of the alanine in each of the
possible protonation states as follows (assuming the activity coefficients are unity)

fNH2CH2COOH = [NH2CH2COOH]

[NH2CH2COOH]+[NH+
3 CH2COO−]+[NH+

3 CH2COOH]+[NH2CH2COO−]

= 1

1+10−pKD+10pK1−pH−pKD+10pH−pK2−pKD

f
NH+

3 CH2COO− = 10−pKD

1+10−pKD+10pK1−pH−pKD+10pH−pK2−pKD
;

f
NH+

3 CH2COOH
= 10pK1−pH−pKD

1+10−pKD+10pK1−pH−pKD+10pH−pK2−pKD

fNH2CH2COO− = 10pH−pK2−pKD

1+10−pKD+10pK1−pH−pKD+10pH−pK2−pKD

(15.1-14)

Using the values of the equilibrium constants given above, we obtain the following
distribution of dl-alanine among its possible states

1

0.5f

Alanine

0
0 5 10

pH

15

Figure 15.1-1 Fraction of alanine in the
zwiterion (solid line), cation (dotted line)
and anion (dashed line) states as a funci-
ton of pH.

We see from this Fig. 15.1-1 that the NH+
3 CH2COOH form is dominant in very

acidic (low pH) solutions, the NH2CH2COO− form is dominant in very basic solu-
tions, and in the mid pH range the neutral dipolar form NH+

3 CH2COO−dominates
with virtually none of the NH2CH2COOH form present. [Note that since the pK val-
ues for dl-alanine are similar to that for glycine (Sec. 13.6), a plot of the charge on
dl-alanine as a function of pH would look very similar to Fig. 13.6-6.]
At neutral pH, the solubility of dl-alanine has been reported to be 1.893 molal. This

information and the pK values can be used to compute the solubility of dl-alanine at
other pH values as follows. Based on the analysis above, using the assumption that the
amount of NH2CH2COOH present can be neglected, we have

[
NH+

3 CH2COOH
]

= [H+]·[NH+
3 CH2COO−]
K1

=
[
NH+

3 CH2COO−]
· 10pK1−pH

[
NH2CH2COO−]

=
K2·[NH+

3 CH2COO−]
H+ =

[
NH+

3 CH2COO−]
· 10pH−pK2

(15.1-15)
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Therefore, the total solubility of dl-alanine, S, which is the sum of the solubilities in
each of the protonation states, is

S =
[
NH+

3 CH2COO−]
+

[
NH2CH2COO−]

+
[
NH+

3 CH2COOH
]

=
[
NH+

3 CH2COO−] (
1 + 10pH−pK2 + 10pK1−pH

)
= 1.893

(
1 + 10pH−pK2 + 10pK1−pH

) (15.1-16)

The predictions based on this equation together with the experimental data of Pradhan
and Vera3 are shown in the following figure.
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108 Figure 15.1-2 Alanine sol-
ubility as a function of pH.

While the agreement is not perfect, the trends andmagnitudes are correctly predicted.
One way to improve the predictions, though it will not be done here, is to include the
neglected the activity coefficients, especially the mean ionic activity coefficients of the
ionized alanine species NH+

3 CH2COOH and NH2CH2COO−. As Pradhan and Vera
used appreciable concentrations of KOH and HNO3 to achieve the far-from-neutral
pH values of their measurements, the solution nonideality effect on the equilibrium
calculations should be included. Also, as a result of specific ion effects discussed next,
slightly different solubilities were obtained when instead NaOH and HCl were used to
adjust the pH of the solution.
As a general conclusion, we have that the solubility of an amino acid, and by ex-

tension of a protein, is a minimum near its isoelectric point. Information on how the
solubility of proteins and amino acids vary with pH can be used to design a selective
precipitation separation processes. For example, albumin could be recovered as a pre-
cipitate from a reasonably concentrated albumin-lysozyme mixture by lowering the pH
of the solution to its pI of about 4.8, while lysozyme would be recovered as a precipitate
by raising the solution pH to its pI of 11.2.

3A. A. Pradhan and J. H. Vera, Fluid Phase Eq. 152, 121-132 (1988)
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15.2 THE SOLUBILITY OF AMINO ACIDS AND PROTEINS AS A FUNCITON
OF IONIC STRENGTH AND TEMPERATURE

(a) Solubility as a Function of Ionic Strength and Salt Type (The Salting In and
Salting out of Amino Acids and Proteins)

The addition of a salt, amino acid, or other compounds can also change the solubility
protein due to nonideal solution behavior, that is, the effect on the activity coefficients.
To start, consider the equilibrium between the solid protein and the protein in a non-
salt containing solution, and separately the equilibrium between the same solid protein
and the protein in a salt- containing solution. The equilibrium relations for these two
cases are

μsolid
P = μo

P (ideal 1 M solution) + RT ln (MP,nsγns) and
μsolid

P = μo
P (ideal 1 M solution) + RT ln (MP,sγs)

(15.2-1)

where the subscripts P, ns and s indicate the protein, the no-salt and the salt-containing
solutions, respectively. From the equilibrium relation, we have

ln (MP,nsγns) = ln (MP,sγs) or ln
(

MP,s

MP,ns

)
= ln

(
γns
γs

)
and

MP,s = MP,ns
γns
γs

(15.2-2)

There are a number of contributions to the activity coefficient of a protein in solution,
a entropic contribution due to size and shape differences between the solute and the
solvent, weak dispersion forces, and the strong electrostatic contributions as described,
for example, by the Debye-Hückel or the extended Debye-Hückel models. Of these, the
latter generally dominate except near the isoelectric point, so the former will be ignored
here and then added later. In this case γ will be replaced by γ±. Further, since the ionic
strength in the salt-free solution will be quite small, we can take γ±,ns ≈ 1, so that

MP,s =
MP,ns

γ±,s

or ln
(

MP,s

MP,ns

)
= − ln γ±,s (15.2-3)

There are two factors that influence the value of the mean ionic activity coefficient
of a protein upon the addition of a salt. One is the increase in ionic strength as usually
accounted for by an extended Debye-Hückel models, which I will denote as γ±|DH,
and is represented by

ln γ±|DH = −B |z+z−|
√

I

1 + A
√

I
(15.2-4)

where A is a parameter dependent of the size of the protein, and the value of the pa-
rameter B depends on the solvent and its dielectric constant; its value is 1.178 for pure
water at 25oC. The second effect is that the addition of a salt also changes the value
of the dielectric constant D of the solution. The latter effect on the activity coefficient,
which will be denoted by γ±|D, is obtained by starting with the relation4

4“Proteins, AminoAcids and Peptides as Ions andDipolar Ions”, by E. J. Cohn and J. T. Edsall, American Chemical
Society Monograph Series, Reinhold Pub. Co., New York, 1943.
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D = Do + δsMs so that to first order
1
D

= 1

Do(1+ δsMs
Do ) ≈ 1

Do

(
1 − δsMs

Do

)
= 1

Do
− δsMs

D2
o

(15.2-5)

where δs is the dielectric increment of the added salt or solute S and M is its molal-
ity (or some measure of concentration consistent with the value of δs). The dielectric
increment, that is, the amount by which the dielectric constant of the solution changes
per unit of concentration change of the added solute, may be positive (for example, for
some amino acids) or negative (as is the case for many inorganic salts). The reason for
writing the equation in this form is that the Born equation of electrostatics shows that
chemical potential (or the logarithm of the activity coefficient) of a charged particle de-
pends on the reciprocal of the dielectric constant of the surrounding medium. Without
going through the details of that equation, at fixed ionic strength,

ln γ±,s|D = α

(
1
D

− 1
Do

)
= −α

δsMs

D2
o

= −β′δsMs (15.2-6)

or equivalently ln γ±,s|D = −βδsIs (15.2-7)

where α, β and β
′
are combinations of parameters from electrostatic theory. Note that

if this were the only contribution to the activity coefficient we would have

ln
MP,s

MP,ns

= ln γ±,s|D = k
′
sMs = ksIs (15.2-8)

which provides the theoretical basis for the empirical Cohn equation5 with kS and
k
′
Sbeing empirical salt (or other solute) and protein-dependent parameters. [The inter-

relationship between ks and k
′
sis a numerical constant that depends on the charge on the

cation and anion, and the concentration units used. Note that k
′
s is generally referred

to as the Setschenow constant. ] If ks (or δs) is positive, the saturation concentration
of the protein increases with increasing solute concentration; the protein is said to salt
in. If ks (or δs) is negative, the protein salts out, that is its saturation concentration de-
creases with increasing solute concentration. As an example, the value of δ in water5

is −1.4 Debye/mol for methanol, −3.2 for acetone, and −7.5 for sucrose, all of which
will initially reduce the protein solubility upon their addition, while its value is +2.7
for urea and +22.6 for glycine, and their addition will increase protein solubility. An
example of this is that the solubility of l-asparagine in water is 0.184 moles/liter, while
it is 0.211 in an aqueous solution that also contains 1.0 moles/liter glycine, and 0.247
in a solution containing 2.80 moles/liter of glycine.
The overall effect of the addition of a salt is the product of the change in dielectric

constant, and the change the ionic strength with salt addition, that is

γ±,s = γ±,s|DH × γ±,s|D or lnγ±,s = ln γ±,s|DH + ln γ±,s|D

so that lnγ±,s = −1.178 |z+z−|
√

I

1 + A
√

I
− βδsIs

(15.2-9)

where z+ and z− are the charges on the protein and its counter-ion. Therefore, the
activity coefficients of the salt and of the protein or amino acid are the result of two con-
tributions of differing dependence on ionic strength, and sometimes of different sign.
In these cases the concentration range over which the simple Cohn equation is valid
is significantly reduced. Indeed, it is not unusual to see the solubility of a biomolecule
first increase and then decrease with increasing salt concentration (or more correctly,
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ionic strength). This can be accounted for by combining the contributions to the activity
coefficient from the Debye-Hückel term and the change in dielectric constant leading to

lnMP,s = lnMP,ns − ln γ±,s = lnMP,ns +
[
1.178 |z+z−|

√
Is

1 + A
√

Is

+ ksIs

]
(15.2-10)

or

MP,s = MP,ns exp
[
1.178 |z+z−|

√
Is

1 + A
√

Is

+ ksIs

]
(15.2-11)

where Is is the ionic strength of the salt.
Empirically, it is known that different salts affect the salting out or salting in of pro-

teins and amino acids differently. Also, anions of the salt have a greater effect than
the cations, and the strength of the effect of different anions generally (but not always)
follows the Hofmeister series5

F− ∼ SO2−
4 > HPO2−

4 > acetate > Cl− > NO−
3 > Br− > ClO−

3

> I− > ClO−
4 > SCN−

and for cations
NH+

4 > K+> Na
+
> Li+> Mg2+> Ca2+> guanidium

Thus, ammonium sulfate can be expected to have a greater effect on protein solubility
than sodium chloride, and this is what is generally observed in that on a molality basis
ammonium sulfate is found to be a better precipitant than sodium chloride. The ordering
by Hofmeister6 in 1888 was based of observations of the denaturation (unfolding) of
proteins, a topic to be considered later.
As an example of the applicability of Eq. 15.2-11 for use in correlating the solubil-

ity of proteins, including salting in and salting out effects, consider the data of Green7

solubility of carboxyhemoglobin (in units of g/1000 g water) at 25oC as a function of
the concentration of three different salts at pH about 6.7 (remember, the charge on a
protein can change significantly with pH as shown previously). The experimental sol-
ubility data of carboxyhemoglobin in solutions containing NaCl (diamonds), Na2SO4

(squares) and MgSO4 (squares) and the respective correlations using Eq. 15.2-10 are
shown in Fig. 15.2-1.

0
1

10

C
hb

100

1 2
sqrt I

3

Figure 15.2-1 The solubility of carboxy-
hemoglobin (g/kg water) as a function of
the ionic strength of NaCl (diamonds),
Na2SO4 (squares) and MgSO4 (squares).

5List from Wikipedia.
6Hofmeister
7A. A. Green, J. Biol. Chem. XCV, 47-66 (1932).
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There we see that sodium chloride increases the solubility (decreases the activity co-
efficient) of the carboxyhemoglobin at all concentrations studied, and therefore does
not precipitate, that is salt out, this protein. Magnesium sulfate does salt out this pro-
tein as does sodium sulfate. Of the two, sodium sulfate is more effective in that it
results in a lower carboxyhemoglobin solubility (greater salting out) at the same ionic
strength. (Note however, that Is = 2.5 M in a Na2SO4 solution and 4 M in a MgSO4

solution. So that Is = 4 M is achieved in a 1 M MgSO4 solution and 1.6 M Na2SO4

solution.)
We also see in Fig. 15.2-1 that the results for the solubility of carboxyhemoglobin

are in accord with the Hofmeister series in that the sulfate anion is more effective than
the chloride anion, indeed, there is no salting out with NaCl, but there is with both
sulfate salts. Further, also in agreement with the Hofmeister series, the sodium cation
is more effective than magnesium as seen by Na2SO4 being a more effective salting
out agent than MgSO4. Based on verifications such as this, an initial choice of possible
salting out agents is frequently made by Hofmeister series considerations.

(b) Solubility as a Function of Temperature

For proteins and other large molecules, the usual progression with increasing temper-
ature is from a crystal to a glass (a less well ordered solid that can be considered an
amorphous solid) and then to a liquid melt. Since the amorphous solid is the most likely
pre-melting phase for proteins, we will only consider the amorphous-to-solution tran-
sition here. In particular, the conditions for the formation of an amorphous (glassy)
phase of a protein or drug component from solution as a function of temperature and
composition (at fixed pH and ionic strength) are considered. The starting point for this
phase equilibrium calculation is again the equality of chemical potentials (or equiva-
lently partial molar Gibbs energies or fugacities) of the precipitating species in the solid
(denoted by s) and solution or liquid (denoted by l) phases, that is

μs
i (T,P ) = μl

i (T,P, xi) or Δs→lG (T,P, xi) = μl
i (T,P, xi) − μs

i (T,P ) = 0
(15.2-12)

Since we will not be concerned with pressure variations here, it will be eliminated
from the equations. Also, we will only be interested in the Gibbs energy change of
the precipitating component at incipient phase separation, so the compositions of the
other components are not changed. Therefore, the Gibbs energy change of the solution
at incipient phase separation is only that of the precipitating component. Thus

Δs→lG (T,P, xi) = μl
i (T,P, xi) −μs

i (T,P ) = μl
i (T,P ) + RT lnxiγi −μs

i (T,P )
= Δs→lG (T,P ) + RT lnxiγi = Δs→lG (T,P ) + RT lnai = 0

(15.2-13)
based on the pure component standard state, and ai is the activity of precipitating
species. Since the Gibbs energy change is from the pure solid to the pure molten liquid,
this term will be written as Δs→lG (T,P ) in what follows.
Using Δs→lH and Δs→lS to represent the enthalpy and entropy changes on protein

melting, Δs→lCP to represent the difference in heat capacities between the solid and
liquid states, and Tm to be the normal melting temperature gives

Δs→lH (T ) = Δs→lH (Tm) +
∫ T

Tm
Δs→lCP (T ) dT ≈ Δs→lH (Tm)

+Δs→lCP (T − Tm)
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and

Δs→lS (T ) = Δs→lS (Tm) +
∫ T

Tm

Δs→lCP(T )
T

dT ≈ Δs→lS (Tm) + Δs→lCP ln
(

T
Tm

)
(15.2-14)

This equation is derived in standard thermodynamics textbooks, and contains the as-
sumption of constant the heat capacities of the solid and liquid above and below the
melting point, respectively. At the Tm the Gibbs energies of the solid and (molten)
liquid states are equal at this temperature, so that

Δs→lG (Tm) = Δs→lH (Tm) − TmΔs→lS (Tm) = 0 and

Δs→lS (Tm) = Δs→lH(Tm)
Tm

(15.2-15)

and

Δs→lG (T ) = Δs→lH (T ) − TΔs→lS (T )

= Δs→lH (Tm) + Δs→lCP (T − Tm) − T

Tm

Δs→lH (Tm)

−TΔs→lCP ln
(

T

Tm

)

= Δs→lH (Tm)
(

1 − T

Tm

)
+ Δs→lCP

(
T − Tm − T ln

(
T

Tm

))
(15.2-16)

Note that all the parameters that appear in this equation, the enthalpy change, heat ca-
pacity change, and the melting temperature are readily measurable by calorimetry, and
especially differential scanning calorimetry (DSC), as long as the substance does not
decompose on melting. These parameters have been reported for a number of proteins.
The second is that the equation is nonlinear in temperature.

For proteins and other large molecules, the usual progression with increasing tem-
perature is from a crystal to a glass (a less well ordered solid that can be considered an
amorphous solid) and then to a liquid melt. Since the amorphous solid is the most likely
phase pre-melting phase for proteins, we will only consider the amorphous to solution
transition here. Fig. 15.2-2 below8are the DSC scans for two drug products (identified
only as Material A andMaterial B for intellectual property reasons). The authors of that
reference used these scans to deduce the following information (I have eliminated the
information their error estimates.)

Table I
Property Material A Material B
Tg (K) 393.4 361
Tm (K) 416 483.6
Δs→lH(kJ mol−1) 16 76
CP,c( kJ mol−1 K−1) crystal 0.6 at 373 K 1.38 at 448 K
CP,a( kJ mol−1 K−1) amorphous 1.0 at 423 K 1.9 at 373 K
CP,l( kJ mol−1 K−1) liquid 0.7 at 373 K 1.4 at 348 K

8From D. S. Hsieh, B. A. Sarsfield, M. Davidovich, L. M. Dimemmo, S.-Y. Chang and S. Kiang, J. Pharm. Sci.
99, 4096-4105 (2010).
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Figure 15.2-2 Heat capacities of Material A (left) and Material B (right) determined by differ-
ential scanning calorimetry with the glass transition Tg and melting Tm temperatures indicated.

Using these data, Fig. 15.2-3 for Material A shows the temperature of incipient pre-
cipitation to an amorphous solid, TA, as a function of its activity aA (which is equal
to the mole fraction in an ideal solution). What is seen is the typical freezing point
lowering upon dilution of a component in the liquid solution, which starts at the pure
component melting point, and results in decreasing transition temperature as the sub-
stance is diluted. From this figure one can conclude that it may be difficult to process this
substance in solution at mole fractions (activities) of less than 0.73 because the precip-
itation temperature drops sharply with further dilution. The situation is quite different
for Material B, largely because of its much higher heat of fusion. From Fig. 15.2-3
(right, note scale changes), it is seen that this substance can be processed over a very
large range of liquid compositions without precipitation. In fact, for mole fractions
(more strictly, activities) above 0.1, precipitation is unlikely as long as the temperature
is above 400 K.
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Figure 15.2-3 Amorphous precipitation temperature as a function of concentration in solution
for material A (left) and material B (right).
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15.3 BINDING OF A LIGAND TO A SUBSTRATE

Another type of chemical reaction that occurs, especially among biological molecules,
is the reversible binding of a smaller molecule (referred to as a ligand) to a binding site
on a protein or other large molecule (referred to as a substrate). We consider first the
simplest case of a substrate that has only a single binding site. The reaction is ligand
(L) plus protein (P) to form a ligated protein (PL):

L + P
K� PL (15.3-1)

for which the apparent (or measured) concentration-based equilibrium constant is

K =
MPL

ML · MP

(15.3-2)

Using this apparent equilibrium constant, we have MPL = K · ML · MP. Further,
data are frequently reported as the coverage θ, which is the ratio of concentration of
the ligated protein MPL to the total concentration of protein in solution MP + MPL.
That is,

Fractional ligand
coverage

θ =
MPL

MP + MPL

=
K · ML · MP

MP + K · ML · MP

=
K · ML

1 + K · ML

(15.3-3)

With increasing ligand concentration, the coverage initially increases linearly (though
the linear rangemay be small if the value ofK is large), and at high ligand concentration
θ saturates (for this case of a single binding site) to unity. This form of the coverage
versus concentration relation was originally derived for molecules adsorbing on a solid
surface, and is referred to as the Langmuir isotherm (isotherm designating a process
occurring at constant temperature), after Irving Langmuir, who developed the equation
to describe the adsorption of gases on metal surfaces.
Consider next a protein molecule with two different binding sites. We will designate

proteins with a single bound ligand as PL and LP, depending on which of the two sites
binds the ligand, and use LPL to represent the protein with the two ligands. The binding
reactions are

L + P
K1� LP Reaction 1

L + P
K2� PL Reaction 2

L + LP
K3� LPL Reaction 3

and

L + PL
K4� LPL Reaction 4

with

K1 =
MLP

ML · MP

K2 =
MPL

ML · MP

K3 =
MLPL

ML · MLP

and K4 =
MLPL

ML · MPL

The coverage θ, defined as the moles of bound ligand per mole of protein in any
form, is

θ =
moles of bound ligand

moles of protein
=

MLP + MPL + 2 · MLPL

MP + MLP + MPL + MLPL

(15.3-4)
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where the factor of 2 in the numerator arises because two ligands are attached in each
LPL combination resulting from reactions 3 and 4. In this case the saturation coverage
θ will be 2 when each protein binds two ligands. Now using the equilibrium constant
relations, we obtain

θ =
K1 · ML · MP + K2 · ML · MP + K3 · ML · MLP + K4 · ML · MPL

MP + K1 · ML · MP + K2 · ML · MP + 1
2
(K3 · ML · MLP + K4 · ML · MPL)

=
K1 · ML · MP + K2 · ML · MP + K3 · K1 · M2

L · MP + K4 · K1 · M2
L · MP

MP + K1 · ML · MP + K2 · ML · MP + 1
2
(K3 · K1 · M2

L · MP + K4 · K1 · M2
L · MP)

=
K1 · ML + K2 · ML + K3 · K1 · M2

L + K4 · K1 · M2
L

1 + K1 · ML + K2 · ML + 1
2
(K3 · K1 · M2

L + K4 · K1 · M2
L)

(15.3-5)

However, also note that from the equilibrium relations,

MLPL = K3 ·ML ·MLP = K3 ·K1 ·M2
L ·MP = K4 ·ML ·MPL = K4 ·K2 ·M2

L ·MP

(15.3-6)
so that K3 · K1 = K4 · K2, and therefore

θ =
(K1 + K2) · ML + 2 · K1 · K3 · M2

L

1 + (K1 + K2) · ML + K1 · K3 · M2
L

Of special interest is the case of a protein with four indistinguishable binding sites
(i.e., a case where experimentally we cannot distinguish between the LP and PL states
as above), but because of steric interference at binding sites or attractions between
bound ligands on the formation of successive ligand bonds, the equilibrium constants
for each successive ligand binding are different. The reason this is interesting is because
this is exactly the case of oxygen binding to hemoglobin in our blood. The oxygen +
hemoglobin (Hb) binding reactions are

Hemoglobin + oxygen
binding

Hb + O2

K1� HbO2

HbO2 + O2

K2� Hb(O2)2

Hb(O2)2 + O2

K3� Hb(O2)3

Hb(O2)3 + O2

K4� Hb(O2)4

and the reported apparent equilibrium constants9 are

K1 =
MHbO2

MHb · MO2

= 4.0 × 104 M−1

K2 =
MHb(O2)2

MHbO2 · MO2

= 2.73 × 104 M−1

K3 =
MHb(O2)3

MHb(O2)2
· MO2

= 5.94 × 104 M−1

9G. K. Ackers, Biophys. J. 32, 331 (1980).



15.3 Binding of a Ligand to a Substrate 919

and

K4 =
MHb(O2)4

MHb(O2)3
· MO2

= 2.02 × 106 M−1

Therefore

θ =
Number of bound oxygen molecules
Number of hemoglobin molecules

=
MHbO2 + 2 · MHb(O2)2

+ 3 · MHb(O2)3
+ 4 · MHb(O2)4

MHb + MHbO2 + MHb(O2)2
+ MHb(O2)3

+ MHb(O2)4

which, after some algebra, becomes

θ =
K1 · MO2 + 2 · K1·K2·M2

O2
+ 3 · K1·K2·K3·M3

O2
+ 4 · K1·K2·K3 · K4 · M4

O2

1 + K1 · MO2+K1·K2·M2
O2

+ K1·K2·K3 · M3
O2

+ K1·K2·K3 · K4 · M4
O2

(15.3-7)

Clearly, at saturation θ = 4.
The binding isotherm as a function of oxygen concentration is shown in Fig. 15.3-1.

Note that as a result of the sigmoidal shape of the curve, there is a large change in the
number of oxygen molecules bound to hemoglobin in the range between 0.5 × 10−5 M
and 1.5×10−5 Moxygen. This is especially important in human and animal physiology
since, as a result of the reverse reactions, a small decrease in oxygen concentration (or
partial pressure) will lead to a significant release of oxygen from hemoglobin in blood.
As the arterial blood passes through the body, it experiences a decrease in oxygen partial
pressure due to the metabolic use of oxygen and also the small pressure drop due to flow
in the capillaries, resulting in the release of a significant amount of oxygen. It is in this
way that oxygen is delivered to cells throughout the body.

3
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–5 1.5 .10

–5 2.5 .10
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–52 .10
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MO2

Figure 15.3-1 The number of oxygen molecules
(θ) bound to a molecule of hemoglobin as a func-
tion of oxygen concentration.

The efficiency of this four-site adsorption/desorption process can be seen by noting
that for a physiologically important change from 5 × 10−6 M oxygen to 5 × 10−5M,
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3.51 molecules of oxygen are released for each molecule of hemoglobin. In contrast,
if there were only a single binding site with K = 4.0 × 104 M (the value of the first
equilibrium constant of the actual four sites), the shape of the isotherm would be of the
form given by Eq. 15.3-3, with a release of only 0.50 oxygen molecules per hemoglobin
molecule for the same change in oxygen concentration. Further, if we considered the
case of single-site adsorption and used the largest value of the four equilibrium con-
stants,K = 2.02 × 106 M, the isothermwould also have the shape given by Eq. 15.3-3,
and the oxygen release would be only 0.080 molecules of oxygen per molecule of
hemoglobin since the isotherm is near saturation over this range of oxygen concentra-
tions, as shown in Figure 15.3-2. Thus, it is a result of the cooperative four-site oxygen
binding to hemoglobin that large animals (such as humans) are possible.
This sigmoidal shape of the ligand-binding isotherm, which occurs in hemoglobin-

oxygen binding, is a result of what is referred to as cooperative binding. That is, as a
result of the increasing values of the apparent equilibrium constants (i.e.,K3 > K1 and
K2, and K4 > K1, K2, and K3), the binding of oxygen molecules beyond the first be-
comes more favorable. The mechanistic reason that this occurs is that the hemoglobin
molecule, which is actually a tetramer, undergoes structural rearrangements as each
oxygen binds, resulting in the binding of the third and fourth oxygens being more fa-
vorable than the first.

Note:

Hemoglobin consists of four chains, each with a heme or iron group that can bind an
oxygen molecule. Myoglobin is a simpler molecule consisting of a single chain that
is of the same general structure as each of the chains in hemoglobin. The oxygen-
carrying and releasing capacity of myoglobin, which has only a single oxygen binding
site, is much like that shown in Figure 15.3-2, and is much less than hemoglobin. Con-
sequently, the association of myoglobin chains into hemoglobin was important to the
development of life as we know it.
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Figure 15.3-2 The number of oxygen molecules (θ) bound
to hemoglobin if it had a single binding site with a high value
of the binding constant.
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Illustration 15.3-1
The Binding of Warfarin to Human Albumin

Warfarin, also known as coumadin, is used to prevent blood clots in humans and also, at high
body doses (referred to as a high body burden in the biomedical literature), as a rat poison by
promoting internal bleeding. Warfarin binds with human plasma albumin in the reaction

W + A
K�WA

The following measured or apparent (not standard-state) data at 25◦C are available for this bind-
ing reaction, ΔbndG = −30.8 kJ mol−1, ΔbndH = −13.1 kJ mol−1, and ΔbndCP ∼ 0, where
these apparent changes are for the following equilibrium constant:

ΔbndG = RT ln K where K =
MWA

MW · MA

where M is the concentration in molality.

a. What is the entropy change for this reaction at 25◦C?
b. Starting with concentrations of warfarin and human plasma albumin of 0.0001 M, what is

the fraction of unbound (unreacted) albumin over the temperature range of 0 to 50◦C?

Solution

a. Since ΔG = ΔH − TΔS, at 25◦C

ΔS =
ΔH − ΔG

T
=

−13 100 − (−30 800) kJ mol−1

298.15 K
= 59.37

J

mol K

b. Since ΔbndCP = 0, ΔbndH is independent of temperature, and the equilibrium constant
as a function of temperature is computed from

ln
K (T )

K (T = 298.15 K)
=

∫ T

298.15 K

ΔbndH

RT 2
dT =

ΔbndH

R
·
(

1

T
− 1

298.15

)

The results are given in the table that follows. Also, letting α be the fraction of the initial
warfarin (or albumin) that has reacted, we have

MWA = α · MA,o = 0.0001α and MW = MA = 0.0001 (1 − α)

so that

K =
0.0001α

(0.1)2 · (1 − α)2
=

α

0.0001 · (1 − α)2

the solutions of which are also given in the table.

T (◦C) K(T ) α 1 − α

0 4.039 × 105 0.855 0.145
10 3.295 × 105 0.840 0.160
20 2.725 × 105 0.826 0.174
30 2.282 × 105 0.811 0.189
40 1.933 × 105 0.797 0.203
50 1.654 × 105 0.783 0.217

Consequently, we see that warfarin is strongly bound to human plasma albumin at all
temperatures.
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15.4 SOME OTHER EXAMPLES OF BIOCHEMICAL REACTIONS

In this section we consider several other examples of physiologically important bio-
chemical reactions.

Illustration 15.4-1
The Trimerization of a Pancreatic Hormone

Glucagon is a 29-amino peptide hormone of the pancreas. At pH = 10.6 it is known that glucagon
can associate or trimerize, and the following standard-state (ideal 1-molal solution at 25◦C) in-
formation is available:

G
K� 1

3
G3

ΔrxnGo = −30.6
kJ

mol
ΔrxnHo = −131

kJ

mol
and ΔrxnCo

P = −1.8
kJ

mol K

If the initial concentration of glucagon is 0.01 M (which is sufficiently low for the solution
to be considered ideal), what is the fraction of glucagon trimerized over the temperature range
from 0 to 50◦C?

Solution

The equilibrium relation is

Ka = e−(ΔrxnGo/RT ) =
(aG3)

1/3

aG

∼=
(MG3)

1/3 · (1 M)2/3

MG

and the mass balances are

MG = MG,o − α = 0.01 − α and MG3 =
α

3

so that

Ka =

(α

3

)1/3

· (1 M)2/3

0.01 − α

To calculate the equilibrium constant at any temperature, we use

ln
Ka(T )

Ka(T = 298.15 K)
=

∫ T

298.15 K

ΔrxnH◦(T )

RT 2
dT

with

ΔrxnHo(T ) = ΔrxnHo(T = 298.15 K) +

∫ T

298.15 K


rxnCo
P dT

= ΔrxnHo(T = 298.15 K) + 
rxnCo
P · (T − 298.15 K)

so that

ln
Ka(T )

Ka(T = 298.15 K)
=

∫ T

298.15 K

ΔrxnHo(T = 298.15 K)

RT 2
dT

+

∫ T

298.15 K

ΔrxnCo
P · (T − 298.15 K)

RT 2
dT

= −ΔrxnHo(T = 298.15 K) ·
(

1

T
− 1

298.15 K

)

+
ΔrxnCo

P

R

[
ln

T

298.15 K
+ (298.15 K) ·

(
1

T
− 1

298.15 K

)]
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We obtain the following values:

T (◦C) Ka(T ) α(M) Percent Trimerized

0 1.237 × 107 0.01000 100.0
25 2.297 × 105 0.009999 99.99
50 1.944 × 103 0.009923 99.23

Therefore, over the temperature range of 0 to 50◦C glucagon is almost completely
trimerized.

Polymers are formed by the polymerization of monomers, and proteins can aggregate
(or associate) as in the illustration above. It is sometimes of use to know the relationship
between the partial molar Gibbs energies of the polymer and the monomer or protein
from which it is formed. To be completely general, suppose species A (whether it be a
protein or polymer) polymerizes according to the reaction

βA� Aβ (15.4-1)

The total Gibbs energy of the system is

G = NAGA + NAβ
GAβ

If the initial number of moles of species A isN, after chemical equilibrium is established
we have

NA = N − α and NAβ
=

α

β

where α is the number of moles of species A that has reacted. Therefore,

G = (N − α)GA +
α

β
GAβ

At equilibrium at constant temperature and pressure
(

∂G
∂α

)
T,P

= 0, and using theGibbs-
Duhem equation (Eq. 8.2-9a) gives

−GA +
1
β

GAβ
= 0 or GAβ

= βGA (15.4-2)

That is, the partial molar Gibbs energy of a polymer containing β monomeric units
is just β times the partial molar Gibbs energy of the monomer. Note that this is true
whether or not the solution is ideal.
We next consider the pH dependence of a biochemical reaction. To be specific we

examine the oxidation reaction of ethanol by dehydrogenase enzyme and the oxidized
form of nicotinamide adenine dinucleotide (NAD+) to produce acetaldehyde and the
reduced form NADH:

pH dependence of a
biochemical reaction

NAD+ + CH3CH2OH
Ka� CH3CHO + NADH + H+

The equilibrium relation for this reaction is

ΔrxnG
o = −RT lnKa = −RT ln

aCH3CHO · aNADH · aH+

aNAD+ · aCH3CH2OH
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based on ideal, 1-molal standard states. This equilibrium relation can be rewritten as

− RT lnKa = −RT ln
aCH3CHO · aNADH

aNAD+ · aCH3CH2OH

− RT ln aH+

= −RT ln
aCH3CHO · aNADH

aNAD+ · aCH3CH2OH

− RT ln(10) log(aH+)

= −RT ln
aCH3CHO · aNADH

aNAD+ · aCH3CH2OH

+ 2.303RT · pH (15.4-3)

At reaction conditions, the pH will normally be controlled externally—for exam-
ple, by a buffer solution—rather than being determined by the ionization of water
or by hydrogen ion production from the reaction. Consequently, we can write this
equation as

ln Ka + 2.303 · pH = ln
aCH3CHO · aNADH

aNAD+ · aCH3CH2OH

So increasing the pH of the solution results in an increased equilibrium dehydrogenation
of ethanol to acetaldehyde. (Note: The dehydrogenation of ethanol is an enzymatic
reaction. In this reaction NAD+ is what is referred to as a cofactor, that is, a substance
that is needed for the reaction and that will be regenerated by another reaction, but is
not a catalyst for the reaction; the enzymes involved are the catalysts. Vitamins and
minerals are common cofactors.)

Illustration 15.4-2
The pH Dependence of a Biochemical Reaction

At 25◦C and pH = 7, ΔrxnGo for the reaction above based on ideal 1-molal standard states is
+23.8 kJ/mol. Assuming an initial concentration of both NAD+ and ethanol of 0.1 M, compute
the extent of reaction as a function of the externally controlled pH.

Solution

The mass balance, using α as the fraction of ethanol oxidized, is

MNAD+ = MCH3CH2OH = 0.1(1 − α) and MNADH = MCH3CHO = 0.1α

Now neglecting solution nonidealities (or equivalently, assuming they cancel in the numerator
and denominator of the equilibrium relation), we have

ln Ka + 2.303 · pH = ln
aCH3CHO · aNADH

aNAD+ · aCH3CH2OH

= ln
0.12α2

0.12 (1 − α)2
= ln

α2

(1 − α)2

and

α2

(1 − α)2
= Ka · e2.303·pH or

α

1 − α
=

√
Ka · e(2.303·pH/2)

Alternatively, this can be written as

α

1 − α
= e

2.303
2(pH−pKa)
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and

α =
8.224 × 10−3 × e(2.303·pH/2)

1 + 8.224 × 10−3 × e(2.303·pH/2)

The figure below shows how the extent of this reaction, and the fraction of ethanol oxidized,
change dramatically with the pH of the solution, with very little reaction at low pH (acid solu-
tion), a rapid increase with pH between pH = 2 and pH = 6, and the reaction being essentially
complete above pH = 7.

0.8

0.6

0.4

0.2

1

α

0
0 2 4 6

pH
8 10 12

Extent of the reaction α as a function of pH

Note that α = 0.5 when pH = pKa, also α < 0.5 when pH < pKa, and the extent of reaction
α > 0.5 when pH > pKa. Thus in the case of reactions, as already mentioned in the discussion
on solubility, large changes occur at pH values near the pKa value.

15.5 THE DENATURATION OF PROTEINS

Protein unfolding
(denaturation)

The unfolding of proteins can be considered to be a type of biochemical reaction.
Proteins in the native state exist in a specific folded state that is necessary for their
biological catalytic activity. With changes in temperature, pressure, or chemical envi-
ronment (e.g., changes in pH or ionic strength, or the addition of denaturants such as
urea), the protein will unfold or denature and lose its biological activity. This unfolding
and denaturation, depending on the protein, may be reversible or irreversible. Though
many intermediate steps are involved, protein unfolding is frequently treated as a two-
state process (folded or unfolded). Also, since the transition occurs over a range of
conditions (for example, over a temperature range rather than at a single temperature),
the process is considered to be a unimolecular chemical reaction, not a first-order phase
transition (such as the boiling of a pure liquid that occurs at a single temperature). In
the biological literature the temperature at which half of the initial amount of protein
has unfolded is referred to as the “melting point” of the protein, though that is a mis-
nomer since the protein does not melt (which would be a first-order phase transition).
Also, this melting point can be a function of state conditions such as pH, pressure, ionic
strength, etc.
We consider first protein denaturation as a result of changes in temperature.

Eq. 15.2-13 discussed earlier can be used, but nowwith the interpretation ofΔunfH and
ΔunfS to being the enthalpy and entropy changes on protein unfolding, ΔunfCP be-
ing the difference in heat capacities between the unfolded and folded states, and Tm
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referred to in the biological literature as the melting temperature (though experimen-
tally it is the temperature at which half the proteins in a sample are denatured) gives

ΔunfG (T ) = ΔunfH (T ) − TΔunfS (T )

= ΔunfH (Tm) + ΔunfCP (T − Tm) − T
Tm

ΔunfH (Tm)

−TΔunfCP ln
(

T
Tm

)

= ΔunfH (Tm)
(
1 − T

Tm

)
+ ΔunfCP

(
T − Tm − T ln

(
T

Tm

))
(15.5-1)

Illustration 15.5-1
Unfolding of a Protein as a Function of Temperature

G-actin is a globular dimer of actin, a cytoskeleton protein. In solutions at pH = 7.5 the following
data are available for the unfolding of G-actin at 25◦C:

ΔunfG = 27
kJ

mol
ΔunfH = 197

kJ

mol
and ΔunfCP = 27

J

mol K

Determine the temperature at which half of the G-actin is unfolded (that is, find its “melting
temperature”).

Solution

The apparent equilibrium constant for this unimolecular chemical reaction is

K(T ) =
Munfolded(T )

Mfolded(T )
=

α(T ) · Mo · γunfolded(T )

(Mo − α(T ) · Mo) · γfolded(T )
=

α(T )

(1 − α(T ))

where α(T ) is the fraction of the initial G-actin that has been denatured at the temperature T,
and since there is only a conformational change between the folded and unfolded protein, we
have assumed that their activity coefficients are equal, and therefore cancel from the equation.
Also, we are interested in the melting temperature, that is, the temperature Tm at which α = 1/2,
so that K = 1 and ln K = 0. Therefore, the equation to be solved is

ln K(Tm) = 0

However,

ln K(Tm) = −
unfG(25◦C)

R · 298.15
− 
unfH(25◦C)

R

(
1

Tm

− 1

298.15

)

+

unfCP

R

[
ln

(
Tm

298.15

)
+

298.15

Tm

− 1

]

or

0 = − 27 000

8.314 · 298.15
− 197 000

8.314
P

(
1

Tm

− 1

298.15

)

+
54 000

R

[
ln

(
Tm

298.15

)
+

298.15

Tm

− 1

]
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which has the solution of Tm = 330.0 K = 56.8◦C, which is close to the measured value
of 57.1◦C.

It is also of interest to determine the fraction of G-actin that is unfolded at any temperature.
To do this we solve the equation

K(T ) =
α

1 − α
or α =

K(T )

1 + K(T )

where

K(T ) = exp

[
− 27 000

8.314 · 298.15
− 197 000

8.314

(
1

T
− 1

298.15

)

+
54 000

R

[
ln

(
T

298.15

)
+

298.15

T
− 1

]]

The results are shown in the following figure. Note that the unfolding of G-actin occurs over
a temperature interval of more than 20◦C.

0.5

1

α

0
310 320 330 340 350

T (K)

Fractionα of the proteinG-actin unfolded (“melted”)
as a function of temperature.

Note that all the parameters that appear in Eq. 15.5-1, the enthalpy change, heat ca-
pacity change, and unfolding temperature can be obtained from calorimetry, and these
parameters have been reported for a number of proteins. An interesting characteristic
of this equation is that it is nonlinear in temperature, and so can have two values of Tm

for a value ofΔunfG. Privalov and Khechinashvili10 reported data for the denaturation
of proteins; here we consider only one, metmyoglobin, which is the oxidized form of
the oxygen-carrying protein myoglobin (which is brown in color, and is why meat turns
brown as it ages and oxidizes). Reading from the graphical presentation of their data
and retaining their original units, ΔunfCP = 0.16 cal/gr · K and ΔunfH (50oC) =
4.1 cal/gr in a buffered solution in the pH range of 9.5 to 12.5. Using these values,
the calculated enthalpy and the product of temperature and entropy (the difference
of which is the Gibbs energy) for unfolding as a function of temperature are shown
in Fig. 15.5-1.

10P. L. Privalov and N. N. Khechinashvili, J. Mol. Biol. 86, 665 (1974)
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–10
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0
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260 280 300 320

T (K)

340

Figure 15.5-1 The enthalpy (solid line)
and the product of temperature times en-
tropy (dashed line) for the unfolding of
metmyoglobin as a function of tempera-
ture. Units of kcal/g.

In this figure we see that the changes on unfolding of the enthalpy and the product of
the temperature and the entropy TΔunfS are very close in value, and that below about
274 K and above 323 K the entropic term is slightly greater than the enthalpic term,
while between these temperatures the enthalpy term is slightly larger. Further, at these
two temperatures, the two terms are equal, and therefore the Gibbs energy of unfolding
is zero. These are the equilibrium (or melting) temperatures for unfolding.
The Gibbs energy of unfolding ΔunfG calculated above is shown on a greatly ex-

panded scale in the Fig. 15.5-2. There are several things to note in this figure. First
is that the magnitude of the Gibbs energy of unfolding is small, indeed one to two
orders of magnitude less than the separate enthalpy and TΔunfS contributions. There-
fore, protein unfolding is a result of a delicate balance between these two contributions.
Second, is that the unfolded state is favorable when the Gibbs energy change on unfold-
ing is negative, and the native or folded state is favored when the Gibbs energy change
is positive. Consequently, we find that the unfolded native state of metmyoglobin will
dominate between 274 K and 323 K, but the protein will unfold and denature below
274 K (the “cold denaturation temperature”) and above 323 K (the “hot denaturation
temperature”).

–0.3

–0.1

–0.2

0

0.1

260 280 290 320

T (K)

340270 300 330310

ΔunfG

Figure 15.5-2 The Gibbs
energy of unfolding ofmet-
myoglobin as a function of
temperature. The two tem-
peratures at whichTΔunfG
are zero the cold and hot
denaturation temperatures.
Note that TΔunfG is of the
order of 0.1 kcal/g, while
TΔunfH and TΔunfS are
at least an order of magni-
tude greater over most of
the temperature range.
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There is a temperature between the cold and hot denaturation temperatures at which
the protein is most stable to unfolding, that is, there is temperature at which ΔunfG has
a maximum value. For metmyoglobin is occurs at 298.5 K. An interesting result is that
at the temperature of maximum stability(

∂ΔunfG

∂T

)
P

= 0 = −ΔuS (15.5-2)

where this relationship between the temperature derivative of the Gibbs energy and the
entropy comes from classical thermodynamics. So the conclusion is that at the tem-
perature of maximum stability there is no entropy change on unfolding of the protein.
That is, at this temperature the stabilization of the native protein structure is completely
enthalpic in nature.
The reversible unfolding of many proteins is being considered here as a two-state

process,u� f and using αto represent the fraction of the initial amount of protein that
has unfolded gives

Keq =
[unf]
[f]

=
Fα

F (1 − α)
=

α

(1 − α)
= exp

(
−ΔunfG

RT

)
or

α=
exp

(
−ΔunfG

RT

)
1 + exp

(
−ΔunfG

RT

) (15.5-3)

The fraction of metmyoglobin molecules unfolded, α,is shown as a function of tem-
perature in Fig. 15.5-3. The Gibbs energy penalty for denaturation at the point of
maximum stability is about 0.158 cal/g or 11.2 kJ/mol.

0

0.5

1

260 320

T (K)

Figure Fraction of Proteins Unfolded

340280 300

α

Figure 15.5-3 Fraction of met-
myoglobin denaturedα as a func-
tion of temperature.

Human prions (proteinaceous infectious particles) are proteins that cause encephali-
tis, Creutzfeldt-Jakob disease, and Mad Cow disease. Human prions have a value11 of
ΔunfG of 26.3 kJ/mol, ΔunfH of 294 kJ/mol, and a denaturation (melting) temper-
ature of approximately 70oC. Consequently prions are much more stable with respect
to temperature (and also chemical agents) than most other proteins, and is the reason

11W. Swietnicki, R. B. Petersen, P. Gambetti, and W. K. Surewicz, J. Biol. Chem. 273, 31048 (1998).
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that their deactivation and disposal is difficult. The fraction of human prions denatured
as a function of temperature is shown Fig. 15.5-4.

0

0.5
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320

T (K)

Fraction of Prions Denatured

380340 360

α

Figure 15.5-4 The fraction α of human prion
denatured as a function of temperature.

There are also proteins that have adapted to withstand high temperatures (hyper-
thermophiles), high salinity (halophiles), pH (acidophiles or alkaliphiles) and pressure
(barophiles) or other extreme conditions; collectively these are called extremophiles.
As an example, one such thermophile is the β-lactoglobulin12 that at pH = 2 has a re-
portedΔunfH of 312 kJ/mol at its (hot) thermal denaturation temperature of 351 K and
ΔunfCP of 5.58 kJ/mol K. The calculated stability curve for this protein (in units of
kJ/mol) from these data is a shown as the solid line Fig. 15.5-5. So in addition to the
hot denaturation temperature of 351 K, this protein has a predicted cold denaturation
temperature of 250 K. This 101 K stability range is to be compared with 49 K (274 to
323 K) for metmyoglobin.
Denaturation temperatures are also a function of other components in the solution.

This is illustrated in Fig. 15.5-5 in which the solid lines are for the protein in a urea-
free solution, and the dashed lines are for the protein in a 2 M urea solution. The range
of thermal stability is reduced by more than 30oC by the addition of urea as shown in
Fig. 15.5-6.
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Figure 15.5-5 Gibbs energy of un-
folding of the thermophile protein
β-lactoglobulin as a function of
temperature; solid line protein In a
urea-free solution; dashed line pro-
tein in 2 M urea solution.

12Yu. V. Griko and P. L. Privalov, Biochem. 31, 8810 (1992).
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Figure 15.5-6 Fraction of α of
β-lactoglobulin unfolded as a func-
tion of temperature; solid line pro-
tein in buffer; dashed line protein
in 2 M urea solution.

Proteins can also unfold or denature as a result of increasing external pressure, pre-
sumably because a pressure increase results in an increase in solution density that pro-
duces a structural rearrangement of the protein. Consequently, the melting temperature
of a protein will also be a function of pressure.
To determine how the melting temperature of a protein changes with pressure, we

start from the observation that at the melting temperature at any pressure


unfG(Tm) = −RT lnKa(Tm) = 0 = 
unfH(Tm)− Tm · 
unfS(Tm) (15.5-4a)

since Ka (Tm) = 1. Therefore,


unfS (Tm) =

unfH (Tm)

Tm

(15.5-4b)

Since, along the melting curve

Gnat(T,P ) = Gunf(T,P )

where the subscripts nat and unf refer to the native (folded) and unfolded proteins,
respectively. Therefore, for a small change in pressure following the melting curve,
we have

dGnat(T,P ) = dGunf(T,P )

V nat dP − Snat dT = V unf dP − Sunf dT

or (
dP

dT

)
Gnat=Gunf

=
Sunf − Snat

V unf − V nat

=

unfS


unfV
=


unfH

Tm · 
unfV
(15.5-5)

(Compare this equation with the Clapeyron equation, Eq. 7.7-4.) Consequently, along
the melting curve

Tm =

unfH


unfV
·
(

dT

dP

)
Gnat=Gunf

(15.5-6)
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Illustration 15.5-2
Unfolding of a Protein as a Function of Pressure

It has been observed13 that at 1.013 bar the cell membrane compound dipalmitoylphosphatidyl-
choline (DPPC) melts at 313 K, and that the melting temperature increases by 0.04 K for each
increase of 1 bar in pressure. Also, when this compound unfolds, there is a volume change of
26 cm3/mol. Use these data to estimate

a. The enthalpy change on the denaturation of DPPC
b. The entropy change on this pressure-induced denaturation of DPPC

Solution

a. To obtain the enthalpy change, we use


unfH = Tm · 
unfV

(
dP

dT

)
Gnat=Gunf

= 313 K × 26
cm3

mol
× 1 bar

0.04 K
× 10−6 m3

cm3
× 105 J

bar m3

= 20 345
J

mol
= 20.345

kJ

mol

b. To compute the entropy change, we use


unfS (Tm) =

unfH (Tm)

Tm

=
20 345 J

mol

313 K
= 65

J

mol K

Proteins can also be unfolded or denatured as a result of chemical interaction or
changes in solution conditions. Common chemical denaturants include urea and guani-
dine hydrochloride; we do not consider this type of denaturation here.

15.6 COUPLED BIOCHEMICAL REACTIONS: THE ATP-ADP ENERGY STORAGE
AND DELIVERY MECHANISM

The most important energy storage method in cells is as the chemical adenosine
triphosphate (ATP). In the dissociation of ATP to adenosine diphosphate (ADP) and a
phosphate ion, schematically shown as

H H

OH OH

OH

H

Adenine

H

OO

O

P CH2
+ H2O

OH

O

O

P

OH

O

O

HO P

H H

OH OH

OH

H

Adenine

H

OO

O

P CH2
+ H2PO4

OH

O

O

HO P

13D. B. Mountcastle, R. L. Biltonen, and M. J. Halsey, Proc. Nat’l. Acad. Sci. USA 75, 4906 (1978).
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which is usually written simply as

ATP ⇐⇒ ADP + phosphate (15.6-1)

a large amount of Gibbs energy is released that, for example, muscles convert to me-
chanical work by contraction, and by coupled reactions is used elsewhere in the body to
provide the Gibbs energy for the synthesis of physiologically important molecules. In
fact, ATP, which is present in the cytoplasm and nucleoplasm, provides the energy for
most processes in cells. For example, as mentioned earlier, the sodium ion concentra-
tion within a cell is usually about 10 mM, while the concentration in the external plasma
outside the cell membrane is much higher, about 140 mM. This concentration differ-
ence is maintained by a set of biological reactions and transport processes, the sodium
ion pump, that uses Gibbs energy from ATP hydrolysis to expel sodium ions from the
cell. Also, ATP hydrolysis provides energy for the functioning of nerves and muscle.
Consequently, ATP has been called the energy currency of biological systems; it can be
used to store energy in the body, supply energy when necessary, and be regenerated by
a series of chemical reactions coupled to the partial oxidation of carbohydrates.
For this and other biological reactions the standard state chosen depends on temper-

ature, the ionic strength, pH of the solution, and the presence of other ions (especially
magnesium ions for this reaction). At very low ionic strength, pH = 7, and in the ab-
sence of magnesium ions, the values14 of the standard-state Gibbs energy of reaction,
based on ideal 1-molal aqueous solutions, is 33.5 kJ/mol at 25◦C and 34.0 kJ/mol at
37◦C. However, physiological conditions are quite different, and the actual free energy
change, neglecting solution nonidealities, is computed from


rxnG = 
rxnG
◦ + RT ln

[
aADP · aP

aATP

]
= 
rxnG

◦ + RT ln

[(
MADP
M=1

)
·
(

MP
M=1

)
(

MATP
M=1

)
]

(15.6-2)

While the concentrations of ATP, ADP, and the phosphate ion are neither constant nor
known exactly, it is possible to make an estimate of the Gibbs energy released on the
ATP hydrolysis reaction in muscles at body temperature (37◦C) as in the illustration
below.

Illustration 15.6-1
Energy Release by ATP Hydrolysis in the Body

Assuming the following concentrations in human muscle,

MATP = 1 × 10−3 M MADP = 1 × 10−5 and MP = 1 × 10−3 M

estimate theGibbs energy released on the hydrolysis of 1mol of ATP at body temperature (37◦C).

Solution

Using these values of the concentration, we have


rxnG = −34.0 + 8.314 × 10−3 × 310.15 × ln

[
1 × 10−5 × 1 × 10−3

1 × 10−3

]
= −63.7

kJ

mol

14As reported in Biothermodynamics: The Study of Biochemical Processes at Equilibrium, by J. T. Edsall and
H. Gutfreund, John Wiley & Sons, New York (1983).
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which is almost twice that of the standard-state Gibbs energy release. (It has been suggested15 that
the Gibbs energy change for this reaction in vivo is about−50 kJ/mol, though the concentrations
of the species were not reported, and undoubtedly are different from the estimates used here.)
Nonetheless, we can conclude that 50 to 60 kJ of Gibbs energy becomes physiologically available
per mole of ATP hydrolyzed in muscles or other parts of the body.

It should be pointed out that the mechanism by which the reaction occurs is much
more complicated than Eq. 15.6-1 implies. Many intermediate compounds, and also
enzymes acting as biological catalysts, are involved. The precise mechanism of this
reaction is discussed in basic biology courses. However, as the sum of all the reactions
is as shown in Eq. 15.6-1, from the point of view of thermodynamics, that is the only
reaction we need to consider if our interest is solely in the net energy release (Sec. 13.1).
Given that there is such a large Gibbs energy release on the hydrolysis reaction of

ATP to form ADP, we can ask the question of how ATP can be formed by the reverse
reaction so that, for example, a relaxed muscle can regenerate ATP in preparation for
the next contraction. We consider this next, but first have to introduce the concept of
coupled chemical reactions.
From the second law of thermodynamics, any spontaneous process must occur with

a net production of entropy. As shown in Chapter 5, a result of the second law is that the
Gibbs energy of a system must decrease for a spontaneous process to occur at constant
temperature and pressure. At first glance it might appear that this would mean that every
process that occurs spontaneously must lower the Gibbs energy of the system. However,
if there is a sequence of coupled processes, and they must be coupled, then as long as
the total Gibbs energy of the system is lowered, the collection of coupled processes can
occur even if some of the intermediate steps by themselves would increase the Gibbs
energy of the system.
Before considering how this may occur in chemical reactions, we consider an analogy

with the simple mechanical system shown in Fig. 15.6-1a. There we see two weights;
weight A is at a low level, and the somewhat heavier weight B is at a higher level.
Raising weight A to the higher level would increase its potential energy (and had we
included mechanical potential and kinetic energy in our thermodynamic description,
would increase its Gibbs energy as well); we know that this process will not occur
spontaneously.Movingweight B to the lower level will decrease its potential energy and
could occur easily, for example, if the weight were given a slight sideways push off the
ledge. Now suppose that we couple the two weights, for example, by connecting them
with the rope-and-pulley system shown in Fig. 15.6-1b. Since weight B is somewhat
heavier than weight A, in this arrangement it is possible to raise weight A to the higher
level, lower weight B, and still decrease the total potential (or Gibbs) energy of the
system. Thus by coupling the two processes, it is possible to make one process occur
that has a positive Gibbs energy change by driving it with a coupled process that has a
larger negative free energy change.
A similar coupling of processes occurs frequently in nature. In fact, many chemical

reactions consist of a number of molecular-level steps, the so-called elementary steps,
one or more of which have a positive Gibbs energy change and would not occur spon-
taneously. However, the total reaction process, which consists of coupled elementary
steps in which the products of one elementary step are the reactants for the next step,
results in a net decrease in the Gibbs energy of the system.

15A. L. Lehninger, Bioenergetics, 2nd ed., Benjamin, London (1971).
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(a) (b)

A

B

A

B

Figure 15.6-1 (a) Two weights that are not coupled. (b) Two
weights that are coupled.

As a simple example of coupled reactions, consider an electrochemical cell con-
sisting of lead and magnesium electrodes in a lead sulfate electrolyte. The half-cell
reactions are

Pb2+ + 2e− → Pb E = −0.13 V ΔG◦ = 0.13 F = 12.5 kJ

and

Mg → Mg2+ + 2e− E = +2.36 V ΔG◦ = −2.36 F = −227.6 kJ
(15.6-3)

In this case the standard-state Gibbs energy change for the first half-cell reaction is
positive, so that the reaction is not favorable, while the standard-state Gibbs energy
change for the second half-cell reaction is strongly negative. For the overall process

Pb2+ + Mg → Pb + Mg2+ ΔG◦ = −215.1 kJ (15.6-4)

The Gibbs energy change for this overall process is very negative, so that the reaction
can (and will) occur, even though it is the result of one process with a positive Gibbs en-
ergy change coupled with a second process with a larger negative Gibbs energy change.
It is only by looking at the details of the process, here the two half-cell reactions, that
we see that a process with a positive Gibbs energy change is being driven by another
process with a larger negative Gibbs energy change. This is not evident by looking only
at the overall process of Eq. 15.6-4.
Many naturally occurring processes are of the type discussed above, in that the overall

process results in a negative Gibbs energy change, even though one or more of the
elementary steps that are part of the overall process result in a positive Gibbs energy
change. Some of the most important examples of this occur in biological processes.
Of interest here is the phosphorylation of adenosine diphosphate (ADP) to regenerate
adenosine triphosphate (ATP). The reaction is

ADP + phosphate → ATP ΔG◦ = 33.5 kJ (15.6-5)

Since the standard-state Gibbs energy change is positive, one would expect that this
reaction would occur to only a very limited extent in biological systems. (Of course,
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the reason it would occur to any extent is that the reacting components are not in their
standard states.) However, through a complicated series of enzymatic reactions, the
phosphorylation of ATP is coupled to a reaction in which glucose is oxidized with an
extremely large negative Gibbs energy change,

C6H12O6 + 6O2 → 6CO2 + 6H2O ΔG◦ = −2870.2 kJ (15.6-6)

Indeed, the Gibbs energy change is so large that in many biological systems the oxida-
tion of one molecule of glucose can result in the production of 38 molecules of ATP,
that is,

C6H12O6 +6O2 +38ADP+38 phosphate → 6CO2 +6H2O+38ATP (15.6-7)

for which ΔG◦ = −1756.8 kJ. Written in this manner, we would conclude that this
reaction is thermodynamically possible and will occur to an appreciable extent. One
measure of the efficiency of this process is to note that 38 × 33.5 = 1273 kJ of Gibbs
energy (in the standard state) is stored as ATP for each mole of glucose oxidized, which
releases 2870.2 kJ, so that only about 44 percent of the Gibbs energy released on oxi-
dation is stored, the rest going to heat. The actual “in vivo” efficiency will be somewhat
different, as the reactants and products are not in their standard states. The important
observation here is that it is from coupled reactions resulting from the oxidation of
glucose that ATP is regenerated in cells.
As we have seen by looking one level deeper, the reaction of Eq. 15.6-7 is composed

of two reactions, one of which is thermodynamically favored and the second of which
is not. If we examined the mechanism still further by considering all the coupled reac-
tions, as biologists do, we would find that there is a very large collection of enzymati-
cally catalyzed intermediate reactions that occur, and that some of them have negative
Gibbs energy changes and others have positive Gibbs energy changes. Thermodynam-
ics provides us with the information that the overall reaction is possible regardless of
the internal mechanisms that might be necessary to drive this reaction. Nature has de-
veloped a coupled reaction mechanism in biological systems that is more clever than
any developed by humans to make this reaction occur. However, even nature is con-
strained by the fact that the overall Gibbs energy change for any process at constant
temperature and pressure must be negative! It is only within this limitation that inter-
esting biological processes, such as active transport (the transport of species against a
concentration gradient), occur.
The discussion of ATP synthesis above is for the case in which sufficient oxygen is

present for the reaction to occur as described. That is, the glucose oxidation reaction
occurs aerobically. It is also possible that as a result of extreme exercise or circulatory
impairment there is not sufficient oxygen for the oxidation of glucose to occur. Under
anaerobic conditions glucose can be used to form ATP from ADP, but by a different
biochemical pathway (referred to as anaerobic glycolysis). In this process only about
2 percent of the energy in a glucose molecule is stored in ATP. However, even this small
amount of ATP generated by anaerobic glycolysis can be important to the survival of a
cell (and of organisms) during a temporary disruption of its oxygen supply.
While this book is not the appropriate place for a detailed discussion of the ADP-

ATP cycle, perhaps a bit more mechanistic detail is useful. The aerobic metabolism
of glucose to produce ATP from ADP can be considered to consist of three parts: the
fermentation of glucose to form pyruvate (and a small amount of ATP from ADP), the
conversion of the pyruvate to carbon dioxide in the citric acid cycle in which NAD+
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and FAD (the oxidized form of flavin adenine dinucleotide) are converted to NADH
and FADH2, and their oxidation in the respiratory chain, resulting in the formation
of a larger quantity of ATP from ADP. If oxygen is not available, so the reaction is
anaerobic, only the first step, formation of pyruvate, occurs with a small amount of
ATP production.
In this discussion the concept of the reactions being coupled has been stressed, and

this is an important point. If there were two reactions that were not coupled—for ex-
ample, by the product of one reaction not being the reactant of the second—then the
reactions would be independent, and the Gibbs energy of the system would be mini-
mized when the Gibbs energy of each reaction is separately a minimum. That is, each
reaction would achieve an equilibrium state independent of the other (except for the
possibility of a weak coupling as a result of solution nonidealities that depend on the
compositions of all species present). However, if the two reactions are coupled as in
the examples here, the equilibrium state of minimum Gibbs energy is a function of
both reactions and is in general different from the state in which each reaction sepa-
rately goes to equilibrium.

15.7 THERMODYNAMIC ANALYSIS OF FERMENTERS AND OTHER BIOREACTORS

A bioreactor or fermenter is a chemical reactor in which microbes (e.g., bacteria or
yeast) act on an organic material (referred to as a substrate) to produce additional mi-
crobes and other desired or undesired products. A schematic diagram of a bioreac-
tor is given in Fig. 15.7-1. Mass balances for a biochemical reactor or fermenter are
slightly more complicated than those for a usual chemical reactor because one of the
products is cells or biomass (in the case of a wastewater or sewage treatment plant,
which is another form of bioreactor, is referred to as sludge, which is a complicated
chemically-undefined mixture of biochemical species). Likewise, other products of a
bioreactor may also not be well-defined compounds of known molecular weight. The
usual procedure, then, is that an elemental analysis is done on such products, and re-
ported as the number of atoms of hydrogen, oxygen, and nitrogen (perhaps also sulfur,
phosphorus, and other trace atoms that we will neglect here) for each carbon atom. For
example, Roels16 has suggested that in the analysis of bioreactors, one can use an “aver-
age biomass” of CH1.8O0.5N0.2 to represent cells and bacteria. An elemental analysis
can also be used for the substrate, especially if it contains a mixture of compounds,
as, for example, in the mixed organic wastes entering a sewage treatment facility from
an industrial or farming process. In these cases we do not have well-defined chemi-
cal species, but cells, other products, or substrates identified only by their atom ratios
(usually referred to carbon). Consequently, mass balances for bioreactors are usually
done for each atomic element, rather than for molecules, as was the case elsewhere in
this book.
As a simple example, consider the fermentation of carbon monoxide in aqueous so-

lution using the bacterium Methylotrophicum to produce acetic acid, butyric acid, and
additional cells, which has the reported stoichiometry

CO + xO2 + yN2 + zH2O → 0.52CO2 + 0.21CH3COOH
+ 0.006CH3CH2CH2COOH + 0.036 C-mole cells

16J. A. Roels, Energetics and Kinetics in Biotechnology, Elsevier Biomedical Press, Amsterdam (1983).
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Figure 15.9-1 A schematic diagram of a fermenter (bioreactor) showing mass, heat, and work
flows. The heat flow is generally to keep the reactor at constant temperature, and the work flow,
which is usually small, is for stirring the reactor contents.

where we have used the abbreviated notation C-mole cells to indicate the number of
moles of elemental carbon present in cells. In the biochemical literature it is common
notation to write stoichiometric equations in terms of each species on a C-mole basis,
even though familiar compounds then appear in a less familiar way. For example, the
reaction above would be written as

CO + xO2 + yN2 + zH2O → 0.52CO2 + 0.42CH2O
+ 0.024CH2O0.5 + 0.036 C-mole cells

where in this second equation the stoichiometric coefficients have changed since acetic
acid contains two carbon atoms (so its initial stoichiometric coefficient is multiplied by
2 in this abbreviated notation), and butyric acid has four carbon atoms.

Illustration 15.7-1
Mass Balance on a Bioreactor

Assuming that cells produced in this biochemical reaction can be represented by the Roels av-
erage biomass (that is, 1 C-mole cells = CH1.8O0.5N0.2), how many moles of oxygen, nitrogen,
and water are consumed for each mole of carbon monoxide consumed?

Solution

First, we test the consistency of the reported stoichiometry by checking that the number of moles
of carbon atoms balance on each side of the equation.

C-balance: 1 = 0.52 + 0.42 + 0.024 + 0.036 = 1

So the carbon-atom balance is correct. The other atom balances are as follows.

O-balance: 1 + 2x + z = 0.52 · 2 + 0.42 + 0.024 · 0.5 + 0.036 · 0.5 = 1.49

N-balance: 2 · y = 0.036 · 2 = 0.0072 or y = 0.0036

H-balance: 2 · z = 0.42 · 2 + 0.024 · 2 + 0.036 · 1.8 = 0.9528 or z = 0.4764
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Using this last result in the oxygen-atom balance, we obtain

2 · x = 1.49 − 1 − z = 0.49 − 0.4764 = 0.0136 or x = 0.0068

so that the complete stoichiometry for this biochemical reaction (based on the assumed compo-
sition of the average biomass) is

CO + 0.0068 · O2 + 0.0036 · N2 + 0.4764 · H2O → 0.52 · CO2 + 0.42 · CH2O

+ 0.024 · CH2O0.5 + 0.036CH1.8O0.5N0.2 (a)

or, returning to common chemical notation,

CO + 0.0068 · O2 + 0.0036 · N2 + 0.4764 · H2O → 0.52 · CO2 + 0.21 · CH3COOH

+ 0.006 · CH3CH2CH2COOH + 0.036CH1.8O0.5N0.2

In the analysis of biochemical reactors, it is common to report results in terms of
yield factors that relate the production or consumption of one species relative to that
of another. For example, the yield factor for biomass produced per mole of substrate
consumed YB/S is defined to be

YB/S =
Number of C-moles of biomass produced
Number of C-moles of substrate consumed

The substrate is the carbonaceous material consumed, carbon monoxide in the example
above. Some common yield factors are listed in Table 15.7-1.

Table 15.7-1. Yield Factors Based on Substrate Consumed

YB/S =
Number of C-moles of biomass produced
Number of C-moles of substrate consumed

Yi/S =
Number of C-moles of product i produced
Number of C-moles of substrate consumed

YN/S =
Number of C-moles of nitrogen source consumed

Number of C-moles of substrate consumed

YO2/S =
Number of moles of O2 consumed

Number of C-moles of substrate consumed

YW/S =
Number of moles of water consumed

Number of C-moles of substrate consumed

YC/S =
Number of moles of CO2 produced

Number of C-moles of substrate consumed

Illustration 15.7-2
Yield Factors for a Biochemical Reaction

What are the yield factors for the reaction in the previous illustration?

Solution

From Eq. (a) of the previous illustration, we have YB/S = 0.036, YCH2O/S = 0.42,
YCH2O0.5/S = 0.024, YN/S = 0.0036, YO2/S = 0.0068, YC/S = 0.52, and YW/S = 0.4764.
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Note that for generality, the reaction so far considered in this section could be
written as

CO + YO2/S · O2 + YN2/S · N2 + YW/S · H2O → YC/S · CO2 + YCH2O/S · CH2O
+ YCH2O0.5/S · CH2O0.5 + YB/S C-mol cells

Consider next the fermentation of some nonnitrogenous, but otherwise unspecified,
substrate (for example, a sugar such as glucose) in aqueous solution with dissolved
ammonia as the nitrogen source to produce “average” biomass, carbon dioxide, and
water. On a carbon mole basis, this reaction is

Substrate + YO2/S · O2 + YN/S · NH3 + YW/S · H2O →
YB/S · CH1.8O0.5N0.2 + YC/S · CO2

The carbon balance is
1 = YB/S + YC/S or YB/S = 1 − YC/S

and the nitrogen balance is

YN2/S = 0.2 · YB/S or YB/S = 5 · YN2/S

Since we do not know the oxygen or hydrogen contents of the substrate, we cannot
write any other complete balance equations for this system or solve for the other yield
factors. All that we can say with certainty is (1) the number of C-moles of biomass
produced per C-mole of substrate consumed will be less than unity by the number of
moles of carbon dioxide produced per mole of substrate consumed, and (2) five C-moles
of biomass will be produced for each mole of ammonia substrate consumed.
We nowwant to consider the completely general steady-state mass balance equations

for the bioreactor of Fig. 15.7-1. The balances will be written for each species of atoms
C, H, N, and O, and we will use the following notation:
[The equations to follow equally well be written for one cycle of a batch reactor in

which case (ṄI)i is replaced with (NI)i]

Flows:
(ṄI)i = molar flow rate of species I in flow stream i

Subscripts:
S = substrate
N = nitrogen source substance
B = biomass produced
P = other product
C = carbon dioxide
W = water
N2 = nitrogen
O2 = oxygen

Atomic stoichiometric notation:
CS = moles of carbon per C-mole of substrate = 1
CN = moles of carbon per C-mole of nitrogen source (e.g., 0 in ammonia)
CB = moles of carbon per C-mole of biomass = 1
CP = moles of carbon per C-mole of product = 1
CC = moles of carbon per mole of carbon dioxide = 1
NS = moles of nitrogen atoms per C-mole of substrate
NN = moles of nitrogen atoms per C-mole of nitrogen source (e.g., 1 in ammonia)



15.7 Thermodynamic Analysis of Fermenters and Other Bioreactors 941

NB = moles of nitrogen atoms per C-mole of biomass (e.g., 0.2 in average biomass)
NP = moles of nitrogen atoms per C-mole of product
NN2 = moles of nitrogen atoms per mole of molecular nitrogen = 2
HS = moles of hydrogen atoms per C-mole of substrate
HN = moles of hydrogen atoms per C-mole of nitrogen source (e.g., 3 in ammonia)
HB =moles of hydrogen atoms per C-mole of biomass (e.g., 1.8 in average biomass)
HP = moles of hydrogen atoms per C-mole of product
HW = moles of hydrogen atoms per mole of water = 2
OS = moles of oxygen atoms per C-mole of substrate
ON = moles of oxygen atoms per C-mole of nitrogen source (e.g., 0 in ammonia)
OB = moles of oxygen atoms per C-mole of biomass (e.g., 1.8 in average biomass)
OP = moles of oxygen atoms per C-mole of product
OW = moles of oxygen atoms per mole of water = 1
OO2 = moles of oxygen atoms per mole of molecular oxygen = 2

With this notation, we have for the steady-state carbon balance

0 = (ṄS)1 + (ṄN)1 · CN − (ṄS)3 − (ṄN)3 · CN − (ṄB)3 − (ṄP)3 − (ṄC)4 · CC

or

0 =
[
(ṄS)1 − (ṄS)3

]
+

[
(ṄN)1 − (ṄN)3

]
· CN − (ṄB)3 − (ṄP)3 − (ṄC)4 · CC

and

0 = 1 +
(ṄN)1 − (ṄN)3
(ṄS)1 − (ṄS)3

· CN − (ṄB)3
(ṄS)1 − (ṄS)3

− (ṄP)3
(ṄS)1 − (ṄS)3

− (ṄC)4
(ṄS)1 − (ṄS)3

· CC

Finally, in terms of the yield factors, we obtain the simpler equation

Carbon balance 1 + YN/S · CS = YB/S + YP/S + YC/S (15.7-1)

since in the notation used here to describe the flows into and out of the reactor,

YN/S =
(ṄN)1 − (ṄN)3
(ṄS)1 − (ṄS)3

YB/S =
(ṄB)3

(ṄS)1 − (ṄS)3
YP/S =

(ṄP)3
(ṄS)1 − (ṄS)3

YC/S =
(ṄC)4

(ṄS)1 − (ṄS)3
YW/S =

(ṄW)1 − (ṄW)3 − (ṄW)4
(ṄS)1 − (ṄS)3

and

YO2/S =
(ṄO2)2 − (ṄO2)4
(ṄS)1 − (ṄS)3

Note that defined in this way, the yield factors should be positive, with the exception of
YW/S, which may be positive if water is consumed in the reaction or negative if water
is produced in the reaction.
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The hydrogen balance is as follows:

0 = (ṄS)1 · HS + (ṄN)1 · HN + (ṄW)1 · HW − (ṄS)3 · HS − (ṄN)3 · HN

− (ṄB)3 · HB − (ṄP)3 · HP − (ṄW)3 · HW − (ṄW)4 · HW

or

0 = HS +
(ṄN)1 − (ṄN)3
(ṄS)1 − (ṄS)3

· HN +
(ṄW)1−(ṄW)3−(ṄW)4

(ṄS)1 − (ṄS)3
· HW

− (ṄB)3
(ṄS)1 − (ṄS)3

· HB − (ṄP)3
(ṄS)1 − (ṄS)3

· HP

and

HS + YN/S · HN + YW/S · HW = YB/S · HB + YP/S · HP

or

Hydrogen balance HS + YN/S · HN + YW/S · 2 = YB/S · HB + YP/S · HP (15.7-2)

The nitrogen balance is

0 = (ṄS)1 · NS + (ṄN)1 · NN + (ṄN2)2 · NN2 − (ṄS)3 · NS

− (ṄN)3 · NN − (ṄB)3 · NB − (ṄP)3 · NP − (ṄN2)4 · NN2

which reduces to

Nitrogen balance NS + YN/S · NN = YB/S · NB + YP/S · NP (15.7-3)

In the last form of this equation we have assumed that the number of moles of N2 en-
tering the reactor (for example, in the air) equals that leaving, since molecular nitrogen
is not usually produced in a biochemical reaction.
Finally, the oxygen balance is

0 = (ṄS)1 · OS + (ṄN)1 · ON + (ṄW)1 · OW + (ṄO2)2 · OO2

−(ṄS)3 · OS − (ṄN)3 · ON − (ṄB)3 · OB − (ṄP)3 · OP

− (ṄW)3 · OW − (ṄO2)4 · OO2 − (ṄW)4 · OW

which reduces to

Oxygen balance OS + YN/S · ON + 2 · YO2/S + YW/S = 2 · YC/S + YB/S · OB + YP/S · OP

(15.7-4)

The advantage of using the yield factor notation can be seen by comparing the rather
complicated initial forms of each of these balance equations for the atomic species in
terms of the flows or flow rates to the much simpler final equations in terms of the yield
factors. Note that while the steady-flow fermenter was considered here, precisely the
same equations, Eqs. 15.7-1, 2, 3, and 4, would be obtained from the analysis of one
cycle of a batch fermenter.
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The following two illustrations are based on data in the book by Roels.

Illustration 15.7-3
Mass Balance Using the Yield Factors

The yeast Saccharomyces cerevisiae is used in beer making and other fermentation processes
to produce ethanol from the common plant sugar glucose in an anaerobic (no added oxygen)
process in which dissolved ammonia is used as the nitrogen source. The production of biomass
also occurs to the extent of 0.14 C-moles per C-mole of glucose. The biomass has an elemental
composition of CH1.8O0.5N0.2. What is the fractional conversion of glucose to ethanol (on a
C-mole basis), the amount of ammonia used, and the amount of carbon dioxide produced per
C-mole of glucose consumed?

Solution

The chemical formula for glucose is C6H12O6, which on a C-mole basis is CH2O. The formula
for ethanol is C2H5OH or CH3O0.5. Therefore, the set of algebraic equations to be solved is

C-balance: 1 = YB/S + YP/S + YC/S

H-balance: 2 + 3 · YN/S + 2 · YW/S = 1.8 · YB/S + 3 · YP/S

N-balance: YN/S = 0.2 · YB/S

and
O-balance: 1 + YW/S = 2 · YC/S + 0.5 · YB/S + 0.5 · YrmP/S

The solution to this set of algebraic equations is

YP/S = 0.569; that is, 0.569 C-moles of the product ethanol are produced for each C-mole of
glucose consumed, or 1.707 (= 0.569× 6/2) moles of ethanol are produced per mole of glucose
consumed.
YC/S = 0.291; that is, 0.291 C-moles of carbon dioxide are produced for each C-mole of glucose
consumed, or 1.748 ( = 0.291 × 6) moles of carbon dioxide are produced per mole of glucose
consumed.
YW/S = −0.063; that is, 0.063 moles of water are produced for each C-mole of glucose con-
sumed, or 0.378 ( = 0.063 × 6) moles of water are produced per mole of glucose consumed.
YN/S = 0.028; that is, 0.028 moles of ammonia are consumed for each C-mole of glucose con-
sumed, or 0.168 ( = 0.028 × 6) moles of ammonia are consumed per mole of glucose
consumed.

Illustration 15.7-4
Production of Saccharomyces cerevisiae

The yeast Saccharomyces cerevisiae of the previous illustration is grown in a continuous, aerobic
(oxygen-consuming) fermentation using glucose as the substrate and dissolved ammonia as the
nitrogen source. It has been observed that the consumption of 4.26 C-moles of glucose results
in 1 C-mole of the yeast and 1.92 C-moles of ethanol. Determine how much carbon dioxide is
evolved and howmuch oxygen, ammonia, andwater are consumed per C-mole of yeast produced.
The elemental composition of the yeast is CH1.8O0.56N0.17.

Solution

From the problem statement, we have

YB/S =
1

4.26
= 0.235 and YP/S=

1.92

4.26
= 0.451
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To calculate the other information needed, we use the four balance equations.

C-balance: 1 = YB/S + YP/S + YC/S

H-balance: 2 + 3 · YN/S + 2 · YW/S = 1.8 · YB/S + 3 · YP/S

N-balance: YN/S = 0.17 · YB/S

and

O-balance: 1 + 2 · YW/S + YW/S = 2 · YC/S + 0.56 · YB/S + 0.5 · YP/S

The solution to this set of equations is

YC/S = 0.3145; that is, 0.3145 C-moles of carbon dioxide are produced for each C-mole of
glucose consumed, or 1.887 ( = 0.3145 × 6) moles of carbon dioxide are produced per mole of
glucose consumed.
YN/S = 0.0399; that is, 0.0399 moles of ammonia are consumed for each C-mole of glucose
consumed, or 1.748 ( = 0.291 × 6) moles of ammonia are consumed per mole of glucose con-
sumed.
YW/S = −0.1725; that is, 0.1725 moles of water are produced for each C-mole of glucose
consumed, or 1.035 (= 0.1725× 6) moles of water are produced per mole of glucose consumed.
YO2/S = 0.07923; that is, 0.00792 moles of molecular oxygen are consumed for each C-mole
of glucose consumed, or 0.475 ( = 0.0792 × 6) moles of O2 are consumed per mole of glucose
consumed.

Available experimental data indicate that about 0.35 moles of O2 are consumed for each
mole of yeast produced. Since 4.26 C-moles of glucose are required to produce 1 C-mole of
yeast, it follows that 0.0792 × 4.26 = 0.3375moles of molecular oxygen are required to produce
1 C-mole of yeast, which is close to the experimental value.

The energy balance for a steady-state bioreactor is

0 = (ṄH)1 + (ṄH)2 + (ṄH)3 + (ṄH)4 + Q̇ + Ẇ (15.7-5)

where we have recognized that at steady state the reactor volume is not changing. Pro-
ceeding further, we have

0 = (ṄSHS)1 + (ṄNHN)1 + (ṄWHW)1 + (ṄO2HO2)2 + (ṄN2HN2)2
− (ṄSHS)3 − (ṄNHN)3 − (ṄWHW)3 − (ṄBHB)3 − (ṄPHP)3
− (ṄO2HO2)4 − (ṄN2HN2)4 − (ṄCO2HCO2)4 + Q̇ + Ẇ

Because of the number of flow streams and components involved, here we are departing
from the usual notation in this textbook by writing the energy balance so that each flow
rate of each species Ṅ is positive, and the sign in front of the term indicates whether it
is a flow into the reactor (+) or a flow out of the reactor (−).
Generally, in chemical reactions, the effect of solution nonidealities on the enthalpy

is small compared with the very much larger heats of reaction. Therefore, as an ap-
proximation, the partial molar enthalpies can be replaced by the pure-component en-
thalpies. Also, for simplicity, we will assume that the temperatures of the streams
entering and leaving the fermenter are the same. (This may not be exactly true, but
this effect will also be small compared with the heat of reaction, and could easily be
included, if needed.) Finally, unless the solution is very viscous, the energy input from
stirring is small compared with the heat of reaction. Therefore, we will also neglect the
work term Ẇ .
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With these assumptions, the energy balance is

0 =
[
(ṄS)1 − (ṄS)3

]
HS +

[
(ṄN)1 − (ṄN)3

]
HN +

[
(ṄW)1 − (ṄW)3

]
HW

+
[
(ṄO2)2 − (ṄO2)4

]
HO2

+
[
(ṄN2)2 − (ṄN2)4

]
HN2

− (ṄB)3HB − (ṄP)3HP − (ṄCO2)4HCO2
+ Q̇

Note that in this equation, the enthalpies of oxygen, nitrogen, carbon dioxide, and water
are on a per-mole basis, while that of the substrate, the product, and the biomass are on
a per–C-mole basis. The enthalpy of the nitrogen source is on a per-mole basis if the
source does not contain carbon (for example, ammonia), and on a per–C-mole basis for
a carbon-containing nitrogen source (for example, glutamic acid C5H9NO4, which on
a C-mole basis is CH1.8N0.2O0.8).
Next we use the yield factors defined earlier and introduce one additional yield factor

YQ/S =
Q̇

(ṄS)1 − (ṄS)3
(15.7-6)

to obtain the energy balance written on a per C-mole of substrate consumed basis and
in terms of yield factors,

Bioreactor energy
balance I

HS + YN/SHN + YO2/SHO2 + YW/SHW + YN2/SHN2 + YQ/S

= YB/SHB + YP/SHP + YCO2/SHCO2 (15.7-7)

The first difficulty in using the energy balance is that enthalpy of formation data may
not be available, especially for the biochemical species that are not completely defined.
Also, the substrate may be a mixture of substances, and an incompletely characterized
mixture of products may be produced in a fermenter. The information that is more likely
to be available are the elemental analysis and the heat of combustion (it is relatively easy
to put any substance in a calorimeter and measure the heat released on combustion). As
a simple example, suppose we wanted to know the enthalpy of benzene at 25◦C. We
could put one mole of benzene in an isothermal calorimeter with 7.5 moles of oxygen
and provide an ignition source to cause the reaction

C6H6 + 7.5O2 −→ 6CO2 + 3H2O

The energy balance is

0 = HC6H6 + 7.5HO2 − 6HCO2 − 3HH2O + Q

where Q is the heat flow as a result of the combustion process, which we know from
experience will be a negative number since heat is released on combustion, that is,
Q = −
cH . Here a negative sign is used because while there is an energy release
on combustion, the heat of combustion is reported as a positive number and applies
to complete combustion—that is, for all carbon being converted to carbon dioxide,
all hydrogen to water, and all nitrogen to N2 (and other elements, if present, to their
oxides)17:

0 = HC6H6 + 7.5HO2 − 6HCO2 − 3HH2O −
cHC6H6

17In fact, two heats of combustion may be reported for a compound, one in which all the water formed is present as
liquid, and a smaller value inwhichwater is a vapor. The two valueswill differ by the product of heat of vaporization
of water times the number of moles of water produced. We will generally use the liquid water reference state here.
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It is important to note that when using heats of combustion, the reference states (i.e.,
the states of zero enthalpy) are nitrogen as molecular nitrogen, hydrogen as water, car-
bon as carbon dioxide, oxygen as molecular oxygen, and other elements that are present
in their oxidized states (e.g., sulfur as SO2). This is different from the reference states
used for heats of formation, in which each element is in its simplest pure, stable state.
Therefore, in the example being considered, if all species enter and leave at 25◦C,

HO2 = 0 HCO2 = 0 and HH2O = 0 so that HC6H6 = 
cHC6H6

Now using the heat of combustion in the general energy balance for a bioreactor,
we have


cHS + YN/S
cHN + YQ/S = YB/S
cHB + YP/S
cHP (15.7-8a)

or

Bioreactor energy
balance II

YQ/S = YB/S
cHB + YP/S
cHP −
cHS − YN/S
cHN (15.7-8b)

The next difficulty in using the energy balance is that thermodynamic property data,
such as the heat of combustion, may not be known for some identifiedmolecular species
compounds, and is not likely to been measured for incompletely defined species such
as the “average biomass” CH1.8O0.5N0.2. To estimate the properties in these cases, we
will use the generalized degree of reduction,18 ξ, defined as follows:

Generalized degree of
reduction

ξi =
4 × Ci + Hi − 2 ×Oi

Ci

for carbon-containing compounds

and

ξi = Hi − 2 ×Oi for compounds without carbon but with H or O atoms (15.7-9)

where the numerical coefficients in Eq. 15.7-9 are the valences of the atoms. (Note that
there are alternative definitions of the generalized degree of reduction. In the one used
here, nitrogen does not appear, so that ξ = 0 for N2 and ξ = 3 for NH3. Also, ξ = 0 for
O2.) To a reasonable approximation, based on the data in Table 15.7-2 for the organic
compounds,

ΔcG = 112 · ξ kJ
C-mole

and ΔcH = 110.9 · ξ kJ
C-mole

(15.7-10)

Equations 15.7-10 are referred to as the energy regularity principles in the biochemical
literature.

Illustration 15.7-5
Properties of Average Biomass

The “average biomass” used to represent many yeasts and bacteria has an elemental compo-
sition, on a C-mole basis, of CH1.8O0.5N0.2. Compute its generalized degree of reduction, and
estimate its Gibbs energy and heat of combustion.

Solution

The generalized degree of reduction for the average biomass is

ξ =
4 × C + H− 2 ×O

C =
4 × 1+1.8 − 2 × 0.5

1
= 4.8

18V. K. Eroshin and I. J. Minkevich, Biotech. Bioeng., 24, 2263 (1982).
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Table 15.7-2 The Degree of Reduction ξ, Gibbs Energy, and Heat of Combustion of
Biochemicals and Hydrocarbons on a Carbon Mole Basis (kJ/C-mole)a,b


cG 
cH
Compound ξ (kJ/C-mole) (kJ/C-mole) 
cG/ξ 
cH/ξ

Acetic acid 4.00 447.0 438.0 111.8 109.5
Propionic acid 4.67 511.0 509.7 109.5 109.2
Butyric acid 5.00 543.3 548.5 108.7 109.7
Valeric acid 5.20 562.6 568.2 108.3 109.3
Palmitic acid 5.75 612.5 624.3 106.5 108.6
Lactic acid 4.00 459.0 456.3 114.8 114.1
Oxalic acid 1.00 163.5 123.0 163.5 123.0
Succinic acid 3.50 399.8 373.3 114.2 106.6
Fumaric acid 3.00 362.0 334.3 120.7 111.4
Malic acid 3.00 361.0 332.3 120.3 110.8
Citric acid 3.00 357.8 327.2 119.3 109.1
Glucose 4.00 478.7 467.8 119.7 117.0
Ethanol 6.00 659.5 684.5 109.9 114.1
i-Propanol 6.00 648.7 663.0 108.1 110.5
n-Butanol 6.00 648.0 670.0 108.0 111.7
Ethylene glycol 5.00 585.0 590.5 117.0 118.1
Glycerol 4.67 547.7 554.3 117.4 118.8
Glucitol 4.33 514.0 508.2 118.6 117.3
Acetone 5.33 578.0 597.7 108.4 112.1
Acetaldehyde 5.00 561.5 584.0 112.3 116.8
Alanine 5.00 547.3 569.0 109.5 113.8
Arginine 5.67 631.0 624.0 111.4 110.1
Asparagine 4.50 499.8 484.0 111.1 107.6
Glutamic acid 4.20 463.0 450.0 110.2 107.1
Aspartic acid 3.75 421.5 402.0 112.4 107.2
Glutamine 4.80 525.6 514.0 109.5 107.1
Glycine 4.50 505.5 487.0 112.3 108.2
Leucine 5.50 594.2 598.0 108.0 108.7
Isoleucine 5.50 594.0 598.0 108.0 108.7
Phenylalanine 4.78 516.3 517.0 108.0 108.2
Serine 4.33 500.7 485.0 115.6 111.9
Threonine 4.75 532.5 526.0 112.1 110.7
Trytophane 4.73 513.6 512.0 108.6 108.3
Tyrosine 4.56 498.1 493.0 109.3 108.2
Valine 5.40 584.0 584.0 108.2 108.2
Guanine 4.60 522.4 500.0 113.6 108.7
n-Hexane (l) 6.33 670.5 693.9 105.9 109.6
n-Heptane (l) 6.29 665.7 688.1 105.9 109.5
n-Octane (l) 6.25 662.2 683.9 106.0 109.4
n-Decane (l) 6.20 657.1 677.7 106.0 109.3
n-Dodecane (l) 6.17 653.7 673.5 106.0 109.2
n-Hexadecane (l) 6.13 649.5 667.9 106.0 109.0
n-Eicosane (l) 6.10 646.8 663.9 106.0 108.8
Toluene (l) 5.14 547.7 563.0 106.6 109.7
Cyclohexane (l) 6.00 636.1 652.0 106.0 108.7
Ethyl acetate (l) 5.00 552.0 563.6 110.0 112.7
Average 112.0 110.9
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Table 15.7-2 (Continued) The Degree of Reduction ξ, Gibbs Energy, and Heat of Combustion
of Biochemicals and Hydrocarbons on a Carbon Mole Basis
(kJ/C-mole)a,b


cG 
cH
Compound ξ (kJ/C-mole) (kJ/C-mole) 
cG/ξ 
cH/ξ

Other compounds
Ammonia (l, 0.01 M) 3.00 391.9 348.1 130.6 116.0
Hydrogen 2.00 238.0 286.0 119.0 143.0
Carbon monoxide 2.00 257.0 283.0 128.5 141.5
Nitric acid −5.00 7.3 −30.0 −1.5 6.0
Hydrazine 4.00 602.4 622.0 150.6 155.6
Hydrogen sulfide 2.00 323.0 247.0 161.5 123.5
Sulfuric acid −6.00 −507.4 −602.0 84.6 100.3

aThe heat and Gibbs energy of combustion are based on liquid water and gaseous carbon dioxide and
nitrogen as combustion products. Also, the Gibbs energy is based on liquid phase reactants and products at
unit molality.
bBased on a table in Roels.

Therefore, from the energy regularity approximation

ΔcG = 112 · ξ = 112 · 4.8 = 537.6
kJ

C-mole

and

ΔcH = 110.9 · ξ = 110.9 · 4.8 = 532.3
kJ

C-mole

While measured enthalpies or heats of combustion should be used whenever possible,
the energy regularity estimate for the heat of combustion can be used in the energy
balance, Eq. 15.9-8, for those species for which such data are not available. The most
approximate form for the energy balance obtained when using the energy regularity
estimate for all species is

Approximate
bioreactor energy
balance

YQ/S = 110.9 (YB/SξB + YP/SξP − ξS − YN/SξN) kJ (15.7-11)

for each C-mole of substrate consumed.

Illustration 15.7-6
Energy Balance on an Isothermal Fermenter

In Illustration 15.7-4 we considered the production of ethanol from glucose using the yeast
Saccharomyces cerevisiae. In that illustration 0.451 C-moles of ethanol and 0.235 C-moles of
biomass of elemental composition CH1.8O0.56N0.17 were produced per C-mole of glucose, us-
ing 0.0399 moles of ammonia. Assuming the inlet and outlet streams are maintained at 25◦C,
and that the work input is negligible, what is the heat load on the reactor?

Solution

From Table 15.7-2, the heat of combustion of ammonia is 383.0 kJ/mol, that of glucose is 467.8
kJ/C-mole, and ethanol is 684.5 kJ/mol. The heat of combustion of the biomass is unknown, so
the energy regularity method will be used:

ξ = 4 × 1 + 1 × 1.8 − 2 × 0.56 = 4.68
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Therefore,

ΔcH = 110.9 · ξ = 110.9 · 4.68 = 519.0
kJ

C-mole
So that, for each C-mole of glucose consumed,

YQ/S = 0.235 × 519.0 + 0.451 × 684.5 − 467.8 − 0.0399 × 348.1 = −51.0 kJ

of heat must be removed.

Note

It is useful to compare this answer with the more approximate one that is obtained using the
generalized degree of reduction for all components:

YQ/S = 110.9 (0.235 × 4.68 + 0.451 × 6.00 − 4.00 − 0.0399 × 3) = −34.8 kJ

per C-mole of glucose consumed. The difference between the two results largely arises from the
error in the generalized degree of reduction approximation for the heat of combustion of glucose
(4 × 110.9 = 443.6 kJ/C-mole, compared with the experimental value of 467.8).

There is one linear combination of the carbon, nitrogen, and oxygen balances that
is especially useful. If we take the sum of four times the carbon balance plus the hy-
drogen balance and subtract twice the oxygen balance (note that the multipliers are
the valences, and are the same numbers that appear in the definition of the generalized
degree of reduction), we obtain

Alternative form of
oxygen balance

(4 + HS − 2OS) + (4 + HN − 2ON)YN/S − 4YO2/S

= (4 + HB − 2OB)YB/S + (4 + HP − 2OP)YP/S

or
ξS + ξNYN/S − 4YO2/S = ξBYB/S + ξPYP/S

and

YO/S =
ξS + ξNYN/S − ξBYB/S − ξPYP/S

4
(15.7-12)

This last equation has several uses, as we will see shortly.
Now we move on to the entropy balance. Following the same type of analysis used

for the energy balance on a bioreactor, we obtain the following equation for the entropy
balance:

0 =
[
(ṄS)1 − (ṄS)3

]
SS +

[
(ṄN)1 − (ṄN)3

]
SN +

[
(ṄW)1 − (ṄW)3

]
SW

+
[
(ṄO2)2 − (ṄO2)4

]
SO2 +

[
(ṄN2)2 − (ṄN2)4

]
SN2 − (ṄB)3SB

− (ṄP)3SP − (ṄCO2)4SCO2 +
Q̇

T
+ Ṡgen (15.7-13)

For an isothermal system, we can eliminate the heat flow between the energy and en-
tropy balances, and use the partial molar Gibbs energy Gi = H i − TSi to obtain

0 =
[
(ṄS)1 − (ṄS)3

]
GS +

[
(ṄN)1 − (ṄN)3

]
GN +

[
(ṄW)1 − (ṄW)3

]
GW

+
[
(ṄO2)2 − (ṄO2)4

]
GO2 +

[
(ṄN2)2 − (ṄN2)4

]
GN2 − (ṄB)3GB

− (ṄP)3GP − (ṄCO2)4GCO2 − T Ṡgen (15.7-14)
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The use of this equation is more complicated than using the energy balance because
the partial molar Gibbs energy contains both the activity coefficient and the mole frac-
tion of each component (which in the case of biomass is really a complex mixture);
that is,

Gi = Gi + RT ln (xiγi) (15.7-15)

Evaluation of this logarithmic term is very difficult since the mole fractions are not
likely to be known (we may know only the elemental compositions of the biomass and
perhaps other species, but not their molecular formulae), and little or no information is
available on solution nonidealities in the mixtures containing yeast, bacteria, or other
incompletely characterized substances. Consequently, we will make what might appear
to be a rather severe assumption, that the logarithmic term can be neglected—that is,
that we can replace the partial molar Gibbs energies with the pure-component Gibbs
energies. Why is such an assumption not unreasonable here? There are four reasons:

1. There are an equal number of inlet and outlet streams, and each one has a term
of this form, so there will be some degree of cancellation of this term among the
four streams.

2. The contribution of any one species to the Gibbs energy of the stream is Ni(Gi

+ RT lnxiγi). When Ṅi is large, the mole fraction of that species will be near 1,
so that the logarithmic term will be small. When the mole fraction of the species
is very small (so that the logarithmic term is larger), the flow term Ṅi multiplying
that term is small. Therefore, in both cases the contribution will not be large.

3. The value of RT that is the multiplier for the logarithmic term has a value of
2.5 kJ/mole, which, while not insignificant, is much smaller in value than the
pure-component Gibbs energy terms.

4. The logarithmic terms being neglected here are of great importance in determining
the equilibrium state, as was shown in Chapter 13. However, in manufacturing
processes chemical reactors, fermenters, and other bioreactors are not generally
operated to achieve equilibrium as the residence time required, and therefore the
reactor size, would be so large as to be uneconomical. For the reasons stated in
points 1, 2, and 3, these logarithmic terms are of less importance away from the
equilibrium state.

(Note that the comments made here about the contributions of the solution nonidealities
and the mixing terms are similar to those made in Sec. 14.5 in discussing calculations
involving the availability function.)
Therefore, it is reasonable to simplify the equation to

0 =
[
(ṄS)1 − (ṄS)3

]
GS +

[
(ṄN)1 − (ṄN)3

]
GN +

[
(ṄW)1 − (ṄW)3

]
GW

+
[
(ṄO2)2 − (ṄO2)4

]
GO2 +

[
(ṄN2)2 − (ṄN2)4

]
GN2 − (ṄB)3GB

− (ṄP)3GP − (ṄCO2)4GCO2
− T Ṡgen (15.7-16)

(where G is a pure-component Gibbs energy on a per–C-mole basis). Now rewriting
this equation in terms of the yield factors gives

0 = GS + YN/SGN + YO2/SGO2
+ YW/SGW + YN2/SGN2

+ YB/SGB + YP/SGP + YCO2/SGCO2
− TSgen (15.7-17)
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and Sgen is the entropy generated per C-mole of substrate consumed. Here, as with the
energy balance, we can use Gibbs energies of combustion (see Table 15.7-2) in place
of the Gibbs energies and simplify the equation to

Second-law balance

cGS + YN/S
cGN = YB/S
cGB + YP/S
cGP + TSgen (15.7-18)

Our interest in this equation will be in determining the constraint that thermody-
namics (and, in particular, the second law or entropy balance) places on the maximum
conversion possible of substrate to product and additional biomass. Based on discus-
sions elsewhere in this textbook, the maximum production of product will occur when
the process is operated such that Sgen = 0. However, for real processes, Sgen ≥ 0.
Therefore, the form of the equation that will be used is

Second-law constraint

cGS + YN/S
cGN ≥ YB/S
cGB + YP/S
cGP (15.7-19)

Finally, for the purposes of making an approximate calculation of the maximum pos-
sible conversion, we can use the energy regularity correlation and obtain the following
constraint based on a C-mole of substrate consumed:

Approximate
second-law constraint

ξS + ξNYN/S ≥ ξBYB/S + ξPYP/S (15.7-20)

The interesting and important result of Eq. 15.7-19 (and its simplification, Eq. 15.7-20)
is that it provides a thermodynamic limit on the amount of product and biomass that
can be produced from a given substrate and nitrogen source based on the Gibbs energy
(or availability) of the reactants.
One should recognize that the constraint of Eq. 15.7-19 has a simple interpretation,

which is that the Gibbs energy of the substrate and nitrogen source consumed must
exceed (or at least equal) that of the biomass and products produced.

Illustration 15.7-7
Second-Law Limitation on a Fermenter

In Illustration 15.7-4, 0.451 C-moles of ethanol and 0.235 C-moles of biomass were produced
per C-mole of glucose consumed. How does this compare with the second-law limit on the pro-
duction of ethanol and biomass?

Solution

Using the data in Table 15.7-2, we have per C-mole of glucose consumed

478.7 + 0.0399 × 391.9 ≥ 0.235 × 4.68 × 112 + 0.451 × 659.5 kJ

or
494.3 > 420.6 kJ

Sowe conclude that the fermentation satisfies the second law of thermodynamics. Further, we can
say that 420.6

494.3
× 100 = 85.1 percent of the Gibbs energy in the glucose and dissolved ammonia

appears in the products of ethanol and biomass. Presumably the rest is a result of inefficiencies in
the conversion process, and in the respiration and metabolism processes to keep the yeast alive.

Since the second-law constraint has been satisfied, the data reported for the production
of ethanol from glucose using the yeast Saccharomyces cerevisiae are thermodynamically
consistent.
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Note

It is of interest to examine the simplified version of the second-law constraint in terms of the
generalized degrees of reduction. In this case we have

4.00 + 3 × 0.0399 = 4.1197 > 4.68 × 0.235 + 6.00 × 0.451 = 3.8058

so again the second-law constraint is satisfied, though this approximate result gives a somewhat
higher thermodynamic efficiency of 3.8058

4.1197
× 100 = 92.4 percent.

Illustration 15.7-8
The Thermodynamic Analysis of Fermentation Data

In Illustration 15.7-3 the yeast Saccharomyces cerevisiae was produced anaerobically (without
oxygen) from the fermentation of glucose using ammonia as the nitrogen source. In that illus-
tration it was found using the atom balance that

YP/S = 0.569 YB/S = 0.14 YW/S = −0.063 and YN/S = 0.028

Determine the heat load required to keep the fermenter at a constant temperature of 25◦C, with
the reactants entering at that temperature; whether the data satisfy the second-law consistency
requirement; and the fraction of the Gibbs energy of the reactants that appears in the products.
All calculations should be on a per C-mole of glucose consumed basis.

Solution

The heat load on the fermenter is found using the energy balance, Eq. 15.7-8,

YQ/S = 0.14 × 532.3 + 0.569 × 684.5 − 467.8 − 0.028 × 348.1 = −13.5 kJ

So 13.5 kJ per C-mole of glucose consumed, or 6 × 14.5 = 81 kJ per mole of glucose con-
sumed, must be removed from the fermenter to keep the temperature constant. Note that if the
glucose was merely burned, 467.8 kJ per C-mole of glucose would have to be removed to keep
the temperature at 25◦C.

To see if the second-law constraint is satisfied, Eq. 15.7-19 is used:

478.7 + 0.028 × 391.9
?
> 0.14 × 537.6 + 0.569 × 659.5

or
489.6 > 450.2 kJ

Therefore, the second-law constraint is satisfied. Finally, 450.5
489.6

×100 = 92.0 percent of the Gibbs
energy of the feed appears in the two products, ethanol and the yeast.

A complete thermodynamic analysis of a fermenter involves the following:

a. Elemental mass balances for each of the atoms present (usually carbon, hydrogen,
nitrogen, and oxygen, but perhaps also including sulfur, phosphorus, and other
trace atoms that may be present in proteins and other biomass);

b. The energy balance (Eq. 15.7-8 or 15.7-11); and
c. The second-law constraint (Eq. 15.7-19 or 15.7-20).

All of these can be used together to decide on the effect of using different substrates to
carry out a fermentation to produce a specified product and biomass. What we expect
is that different amounts of product and biomass will be produced depending on the
substrate chosen, and that the thermodynamic analysis in this section can provide some
guidance. This is demonstrated in the illustration below.
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Illustration 15.7-9
Determining the Maximum Amount of Product That Can Be Obtained from a Substrate

A biologist is trying to genetically engineer bacteria to produce valuable organic chemicals from
the inexpensive organic sugar xylose found in a variety of plants and berries. One such organism
appears capable of producing 2,3-butanediol. The following data are available.

Chemical Formula 
cH , J/mol

2,3-butanediol C4H10O2 2461.0
Xylose C5H10O5 2345.2

a. Test the generalized degree of reduction approximation for each of these compounds using
the reported heat of combustion data.

b. Estimate the maximum amount of 2,3-butanediol that can be be produced per mole of
xylose consumed assuming no additional biomass production.

c. Assuming that no biomass is produced (and therefore no nitrogen source is needed), deter-
mine the amount of carbon dioxide produced and oxygen and water consumed as a function
of the amount of 2,3-butanediol produced.

d. Determine the amount of heat produced as a function of the amount of 2,3-butanediol
produced.

Solution

a. The definition of the generalized degree of reduction is

ξ =
4 · C + H− 2 · O

C
so that

ξX =
4 × 5 + 10 − 2 × 5

5
= 4 and ξB =

4 × 4 + 10 − 2 × 2

4
= 5.5

Using the correlation of Eq. 15.7-10, we have for 2,3-butanediol


cHB = 110.9 × 5.5
kJ

C-mole
× 4

C-mole
mole

= 2439.8
kJ

mole

compared with the measured value of 2461.0 kJ/mole, and for xylose


cHX = 110.9 × 4
kJ

C-mole
× 5

C-mole
mole

= 2218
kJ

mole

compared with the measured value of 2345.2 kJ/mole. So that while the correlation is not
exact, the estimates are reasonable.

b. Since there is no nitrogen source, no products other than 2,3-butanediol, and no biomass
produced, the second-law constraint, Eq. 15.9-20, reduces to

ξS ≥ ξPYP/S so that here YP/S ≤ ξS

ξP

=
4

5.5
= 0.727

So there is a limit of 0.727 C-moles of 2,3-butanediol produced per C-mole of xylose
consumed. Since xylose has five carbons and a molecular weight of 150, one C-mole of
xylose is 30 g. Similarly 2,3-butanediol has four carbon atoms and a molecular weight
of 90, so one C-mole is 22.5 g. Therefore, 0.727 C-moles of 2,3-butanediol per C-mole
of xylose equals 0.727 × 22.5/30 = 0.545 g 2,3-butanediol per g of xylose, or 545 g/kg of
xylose.
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c. The overall fermentation reaction can be written as

CH2O + YO2/SO2 + YW/SH2O → YP/SCH2.5O0.5 + YC/SCO2

The carbon mass balance is

1 = YP/S + YC/S or YC/S = 1 − YP/S

The hydrogen mass balance is

2 + 2YW/S = 2.5YP/S or YW/S = 1.25YP/S − 1

The oxygen mass balance can be developed two different but equivalent ways. The first is

1 + YW/S + 2YO/S = 0.5YP/S + 2YC/S

which, substituting in the carbon and hydrogen balances, reduces to

YO/S = 1 − 1.375YP/S

The second method of obtaining the oxygen balance comes from Eq. 15.7-12, which here
reduces to

YO/S =
ξS − ξPYP/S

4
=

4 − 5.5YP/S

4
= 1 − 1.375YP/S

The results are shown in Fig. 15.7-2. Note that this figure and the one that follows end at
YP/S = 0.727, which is the second-law (or availability) limit for the maximum production
of 2,3-butanediol.
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Figure 15.7-2

d. The energy balance, from Eq. 15.7-11, is

YQ/S = 110.9
(
YB/SξB + YP/SξP − ξS − YN/SξN

)
= 110.9

(
5.5YP/S − 4

)
kJ

The result is shown in Fig. 15.7-3.
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Figure 15.7-3Heat flow as a function of 2,3-butanediol
formed.

Illustration 15.7-10
Choosing a Substrate for a Fermentation

An unspecified substrate that does not contain nitrogen, characterized only by its generalized
degree of reduction ξS, together with dissolved ammonia as the nitrogen source is to be fermented
to produce “average biomass” and no other products. As a function of the generalized degree of
reduction of the substrate, determine the following:

a. The maximum product yield per C-mole of substrate consumed if the amount of ammonia
is limited

b. The maximum product yield per C-mole of substrate consumed if the amount of oxygen is
limited

c. The second-law limitation on the amount of product that can be formed
d. The heat that must be removed to keep the fermenter at a constant temperature per C-mole

of substrate consumed

Solution

This fermentation is written as

Substrate + YN/SNH3 + YO2/SO2 + YW/SH2O → YB/SCH1.8O0.5N0.2 + YC/SCO2

a. The nitrogen balance is

YN/S = YB/S · 0.2 or YB/S = 5 · YN/S

so that if the nitrogen source, ammonia, is limited, there is a mass balance limitation on the
amount of biomass (cells) that can be produced. This limit is shown as solid lines in the
figure that follows.

b. For the oxygen balance, we use Eq. 15.9-12, which here becomes

YO2/S =
ξS + ξNYN/S − ξBYB/S

4
=

ξS + 3YN/S − 4.8YB/S

4
=

ξS + 3
5
YB/S − 4.8YB/S

4

=
ξS − 4.2YB/S

4
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Values of YB/S as a function of ξS and YO2/S are also plotted in the figure as dashed-dotted
lines. Of special interest is the YO2/S = 0 line (corresponding to anaerobic fermentation),
which is

YB/S = 0.2381 · ξS

(
YO2/S = 0

)
We will come back to this result shortly.

The carbon balance is

1 = YB/S + YC/S or YB/S = 1 − YC/S

Note that the result of this constraint is independent of the properties of the substrate, and
merely requires that for the case here in which there is no other product, the carbon in the
substrate can be completely converted to biomass if there is no carbon dioxide evolved. If
there is CO2 evolution, only a fraction of the substrate will appear as biomass.

(We cannot do a hydrogen balance because we do not know the hydrogen content of the
substrate; only its degree of reduction is being specified.)

c. The last restriction is the second-law constraint, which for the case here of no product,
and with the Gibbs energy of the dissolved ammonia known but that of the substrate and
biomass unknown, has the form

112 · ξS + YN/S · 391.9 ≥ 112 · ξB · YB/S

Now using the nitrogen balance, the second-law maximum conversion of substrate to
biomass is

112 · ξB · YB/S = 112 · ξS + 0.2 · YB/S · 391.9

or

(112 · 4.8 − 0.2 · 391.9) YB/S = 112 · ξS or YB/S = 0.2439 · ξS

This constraint is also plotted in the following figure. Note that it is almost identical to the
YO2/S = 0 line, and differs from it only to the extent that the dissolved ammonia is not
exactly described by the energy regularity principle.

The interpretation of this figure is as follows. For any substrate, characterized only by
its degree of reduction ξS, the maximum conversion to biomass, YB/S, is governed by
whichever is the limiting constraint:

1. The availability of a nitrogen source;
2. The availability of oxygen; or
3. The second law constraint.

In particular, assuming complete availability of a nitrogen source, themaximum conversion
of a substrate of a given value of ξS to biomass for this system, Y max

B/S , can be determined
from the second-law constraint line. However, since no fermentation or other biologi-
cal process operates without irreversibilities (i.e., the generation of entropy), the actual
biomass production will be less than the theoretical maximum, that is, Y max

B/S ≥ YB/S.
d. Finally, the energy balance on the fermenter (using the nitrogen balance) is

YQ/S(kJ/C-mole) = 110.9YB/SξB − 110.9ξS − 348.1YN/S

= 532.3YB/S − 110.9ξS − 0.2 · 348.1YB/S

= 462.7YB/S − 110.9ξSkJ

The relationship between YQ/S, YB/S, and ξS is also plotted in the figure as the light
dotted line.
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YN/S consumption, and heat release YQ/S as a function of degree of
reduction of the substrate ξS and biomass production YB/S.

Before leaving this section, it is useful to consider two further implications of the
second-law constraint on bioreactors. To do this, we will consider the approximate
forms of the energy balance and the second-law constraint based on the energy reg-
ularity assumption. While the simple conclusions obtained will not be exact, the errors
should not be great. For simplicity, we first repeat the oxygen and energy balances and
the second-law constraint here.

Oxygen balance

YO2/S =
ξS + ξNYN/S − ξBYB/S − ξPYP/S

4
(15.7-21)

Energy balance

YQ/S = 110.9 (YB/SξB + YP/SξP − ξS − YN/SξN) kJ/C-mole (15.7-22)

and the second-law constraint written as

ξS + ξNYN/S ≥ ξBYB/S + ξPYP/S (15.7-23)

ξS + ξNYN/S − ξBYB/S − ξPYP/S ≥ 0 (15.7-24)

The important thing to notice is that the same term that appears in the second-law con-
straint and must be greater than or at best equal to zero also appears in the oxygen
balance and the energy balance. By comparing these equations, we conclude that as a
result of the second law of thermodynamics (and the energy regularity assumption),

YO2/S ≥ 0
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that is, oxygen can only be consumed, and not produced by a fermentation process, and

YQ/S ≤ 0

so that all fermentation processes are exothermic; that is, cooling is needed to keep the
temperature constant. Finally, by comparing Eqs. 15.7-11 and 15.7-12, we also con-
clude that

YQ/S = −443.6YO2/S
kJ

C-mole substrate consumed
(15.7-25)

that is, in a fermentation there is a linear relation between the oxygen consumption
and the heat released. In fact, such a linear relationship has been found in laboratory
measurements19.
From Eq. 15.7-18 we have

Sgen =
(
cGS + YN/S
cGN − YB/S
cGB − YP/S
cGP)

T
(15.7-26a)

or more approximately, using the energy regularity principle,

Sgen =
(ξS + ξNYN/S − ξBYB/S − ξPYP/S)

T
= 4

YO2/S

T
= − YQ/S

110.9T
(15.7-26b)

These equations can be used to compute the entropy generation of a biochemical
process.

Illustration 15.7-11
Entropy Generation in a Fermentation

The following data have been reported by von Stockar andBirou20 for the fermentation of glucose
by K. fragilis at 25◦C to produce ethanol as the product and biomass of elemental composition
CH1.75O0.52N0.15:

YB/S = 0.572 YCO2/S = 0.398 and YQ/S = −180.9
kJ

C-mole

Compute the following per C-mole of substrate consumed:

a. The amount of product formed (YP/S)
b. The amount of ammonia consumed (YN/S)
c. The amount of oxygen consumed (YO2/S)
d. The amount of heat released (YQ/S)
e. The amount of entropy generated (Sgen)

Solution

To begin, we compute the generalized degree of reduction of the biomass produced:

ξB = 4 × C + H− 2 ×O = 4 + 1.75 − 2 × 0.52 = 4.71

19C. L. Cooney, D. I. C. Wang, and R. I. Mateles, Biotech. Bioeng., 11, 269 (1968).
20U. von Stockar and B. Birou, Biotech. Bioeng., 34, 86 (1989).
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Therefore, for the biomass,


cGB = 112 × ξB = 527.5
kJ

C-mole
and 
cHB = 110.9 × ξB = 522.3

kJ

C-mole

The heats and Gibbs energies of all other components are available in Table 15.7-2.

a. By the carbon balance,

1 = YB/S + YP/S + YCO2/S

so that
YP/S = 1 − YB/S − YCO2/S = 1 − 0.572 − 0.398 = 0.030

b. By the nitrogen balance,

YN/S = 0.15 × YN/S = 0.15 × 0.572 = 0.086

c. From Eq. 15.7-12, we have

YO2/S =
ξS + ξN · YN/S − ξB · YB/S − ξP · YP/S

4

=
4 + 0.086 × 3 − 4.71 × 0.572 − 0.030 × 6

4
= 0.346

d. From the energy balance,

YQ/S = YB/S · 
cHB + YP/S · 
cHP −
cHS − YN/S · 
cHN

= 0.572 · 522.3 + 0.030 · 684.5 − 467.8 − 0.086 · 348.1 = −178.5
kJ

C-mole

e. From the entropy balance, we have

Sgen =
1

T
(
cGS + YN/S · 
cGN − YB/S · 
cGB − YP/S · 
cGP)

=
(478.7 + 0.086 · 391.9 − 0.572 · 527.5 − 0.030 · 684.5)

298.15
= 0.640

kJ

C-mol K

Finally, it is of interest to compare the heat release calculated in part (d) above, YQ/S =
−178.5 kJ/ C-mole, with the more approximate result from Eq. 15.9-22:

YQ/S = −443.6 × YO/S = −443.6 × 0.346 = −153.5
kJ

C-mole

Though the approximate result is not very accurate, it is not unreasonable given the sim-
plicity of the calculation.

The results of this illustration, and previous ones in this section, show that the meth-
ods of thermodynamics are just as applicable to biochemical processes as they are to
more classical problems in chemical engineering.
As a final comment on this section it is interesting to note that Eq. 15.7-22 established

a linear relationship between the heat released in fermentation and the oxygen con-
sumed. The following similar linear correlation exists in the mammalian animal world
between the average metabolic rate (directly proportional to the energy released as heat,
muscular work, and in basic metabolic processes) and the rate of oxygen consumed:

Metabolic rate
(

kJ
day

)
= 21 800 × Oxygen consumption

(
m3

day

)
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This correlation is shown in Figure 15.7-5 for a number of warm-blooded (39◦C) mam-
mals, including a shrew (average bodyweight of 0.0048 kg), a cat (2.5 kg), dog (11.7 kg),
a human (70 kg), a horse (650 kg), and an elephant (3833 kg). It is amusing to note
that this correlation spans animals whose body weight varies by almost a factor of
one million! [There are similar but different correlations for cold-blooded (20◦C) ani-
mals, which have lower heat losses and slower metabolic rates.] Using this correlation,
since the average human male consumes about 15 liters of oxygen per hour (0.36 m3

per day), we estimate that the average human metabolic energy release is about 7850
kJ/day or 1875 kcal/day, which is close to the recommended daily food allowance for
weight control.
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Figure 15.7-5 Correlation between averagemetabolic
rate and oxygen consumption for warm-blooded
animals.

15.8 GIBBS-DONNAN EQUILIBRIUM ANDMEMBRANE POTENTIALS

In Sec. 11.5 we considered the osmotic pressure that arose between two cells separated
by a membrane that was permeable to some components (there the solvent) but not
permeable to the solute. Here we revisit the phenomenon of osmotic pressure for a
somewhat more complicated case in which the solvent (usually water) contains a strong
electrolyte, such as sodium hydroxide

NaOH −→ Na+ + OH−

the ions of which can pass through the membrane, and a protein that ionizes to a net
charge of Z−

P (H)Z ⇐⇒ PZ− + ZH+

that cannot pass through the membrane, though the hydrogen ions produced can.
There are also hydrogen and hydroxyl ions present that result from the ionization of

water; however, those concentrations are very low and can be neglected. Consequently,
the hydrogen ions formed by the ionization of the protein can react with the hydroxyl
ions to form water. By charge neutrality the molality of the free hydroxyl ions is related
to the molality of the sodium ions and the molality of the ionized protein as follows:

MOH = MNa − ZMP
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For notational simplicity, wewill not use the superscripts + and− to indicate the charges
of the ions. The situation we will consider is that in which the water, sodium ions, and
hydroxide ions can pass through the membrane, but the protein cannot.
We will designate the protein-free side of the membrane with the superscript I and

the protein-containing side by II. Each of the compartments must itself be electrically
neutral (because considerable energy is required to create a charge imbalance). There-
fore, in compartment I, in which there is no protein, we have (using molality for the
unit of concentration)

M I
Na = M I

OH (15.8-1)

and in compartment II
M II

Na = ZM II
P + M II

OH (15.8-2)

Because both the sodium and hydroxyl ions are free to pass through the membrane,
their partial molar Gibbs energies are the same in both compartments:

GI
Na = GII

Na and GI
OH = GII

OH (15.8-3a)

However, here as in Sec. 9.10, the partial molar Gibbs energies of each species cannot
be separately determined, so in fact we use

GI
Na + GI

OH = GII
Na + GII

OH (15.8-3b)

which leads to

M I
NaM

I
OH

(
γI
±
)2 = M II

NaM
II
OH

(
γII
±
)2

(15.8-3c)

For simplicity, we will neglect the activity coefficients (or assume they cancel from both
sides of the equation) so that

M I
NaM

I
OH =

(
M I

Na

)2 = M II
NaM

II
OH (15.8-4)

since the sodium ion and hydroxyl ion concentrations are equal in compartment I.
Combining Eq. 15.8-2 and 15.8-4, we obtain

M II
Na = M I

Na ·
M I

OH

M II
OH

=
(M I

Na)
2

M II
Na − Z · M II

P

or (
M II

Na

)2 − Z · M II
P · M II

Na −
(
M I

Na

)2 = 0 (15.8-5)

which has the solution

Gibbs-Donnan
equilibrium

M II
Na =

Z · M II
P

2
+

⎡
⎣

√(
Z · M II

P

2

)2

+ (M I
Na)

2

⎤
⎦ (15.8-6a)

and

M II
OH =

√(
Z · M II

P

2

)2

+ (M I
Na)

2 − Z · M II
P

2
(15.8-6b)
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Therefore, if the sodium hydroxide molality in compartment I and the protein molality
in compartment II are known, the sodium and hydroxyl ion molalities in the protein-
containing compartment II can be computed. We see from these equations that if the
protein is not ionized (i.e., Z = 0), the sodium ion concentrations and the hydrox-
ide ion concentrations will be the same in compartments I and II. Also, if the sodium
hydroxide concentration is much greater than the protein concentration (and especially
if M I

Na = M I
NaOH � Z · M II

P ), the sodium ion concentrations and the hydroxyl ion
concentrationswill be the same in compartments I and II. Under any other circumstance,
the sodium and hydroxyl ion concentrations will be different in the two compartments.
This is the Gibbs-Donnan equilibrium effect. (It is left to the reader to develop the equa-
tions for the case in which a positively charged protein is produced on ionization. See
Problem 15.25.)
In this analysis it has been assumed that the activity coefficients are unity in going

from Eq. 15.8-3c to Eq. 15.8-4. Including the activity coefficients would make the anal-
ysis and final results more complicated. However, the correction is usually small since
the activity coefficients in both compartments may be close in value, and so may cancel
in Eq. 15.8-3c.

Illustration 15.8-1
Gibbs-Donnan Equilibrium of a Lysozyme Solution

One compartment in an osmotic cell contains lysozyme, which has a molecular weight of
14 000 at a concentration of 50 mg/g water.

a. The second compartment contains a sodium hydroxide solution that is maintained at
1.585 × 10−3 M, which keeps the pH at 11.2, the isoelectric point of lysozyme. Find the
concentration of sodium and hydroxyl ions in the lysozyme-containing compartment.

b. The second compartment contains a sodium hydroxide solution that is maintained at 0.1M,
which keeps the pH at 13.0. Find the concentration of sodium and hydroxyl ions in the
lysozyme-containing compartment.

Solution

a. At a pH = 11.2, which is the isoelectric point of lysozyme, its net charge is zero, so that
from the equations above, the sodium and hydroxide ion concentrations in compartment II
will be the same as in compartment I, that is,

M II
Na = 1.585 × 10−3 M and M II

OH = 1.585 × 10−3 M

b. At pH = 13, from Fig. 15.1-1, the average charge on lysozyme is−9, so that in the equation
above, Z = 9. Also, at 50 mg/g water, the protein molality is

MP =

50
mg

g water
× 1000 g

kg
× 1 g

1000 mg

14000
glysozyme

mol

= 3.571 × 10−3 mol

kg
= 3.571 × 10−3 M

The solutions to Eqs. 15.7-6a and b (with M I
Na = M I

OH = 0.1 M) are

M II
Na = 0.117 352 M and M II

OH = 0.085 213 M
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Comment

Note that the sodium ion concentrations in the two compartments are quite different in this last
case, as are the hydroxyl ion concentrations. This is the Gibbs-Donnan equilibrium effect.

The fact that each ion partitions unevenly between the two compartments results in a
contribution to the osmotic pressure from the ions in addition to that which results from
the protein. Also, the fact that neither of the two phases is pure water (or another pure
solvent) requires a modification to the derivation of the osmotic pressure of Sec. 11.5.
The starting point now is

f I
solvent = f II

solvent (15.8-7)

which leads to

xI
solventγ

I
solvent fsolvent(T,P I) = xII

solventγ
II
solvent fsolvent(T,P II) (15.8-8)

Next, neglecting the activity coefficients of the solvent (which are usually close to 1
in value unless the solutions are concentrated in the solutes) and using the Poynting
pressure correction, we obtain

xI
solvent = xII

solvent exp
[
V solvent(P II − P I)

RT

]
(15.8-9a)

or

Osmotic pressure
in Gibbs-Donnan
equilibrium

P II − P I = Π =
RT

V solvent

ln
(

xI
solvent

xII
solvent

)
(15.8-9b)

Illustration 15.8-2
Osmotic Pressure of a Lysozyme Solution

a. One compartment of an osmotic cell contains lysozyme at a concentration of 50 mg/g of
water, and the second cell contains an aqueous solution of NaOHmaintained at a concentra-
tion of 1.585 × 10−3 M, which has a pH of 11.2. Compute the osmotic pressure difference
between the two cells.

b. One compartment of an osmotic cell contains lysozyme at a concentration of 50 mg/g of
water, and the second cell contains an aqueous solution of NaOH maintained at a concen-
tration of 0.1 M, which has a pH of 13. Compute the osmotic pressure difference between
the two cells.

Solution

a. Since at pH = 11.2, lysozyme is at its isoelectric point and therefore uncharged. Conse-
quently, the concentration of sodium ions and hydroxyl ions in each phase is the same,
1.585 × 10−3 moles per kg of water. Also, from the previous illustration, the lysozyme
concentration is 3.517 × 10−3 moles per kg of water, so that the water mole fractions in
each cell are

xI
water =

55.51

2 × 1.585 × 10−3 + 55.51
= 0.999 943
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and

xII
water =

55.51

2 × 1.585 × 10−3 + 55.51 + 3.571 × 10−3
= 0.999 879

Therefore, the osmotic pressure is

Π =
RT

V solvent

ln

(
xI

solvent

xII
solvent

)
=

8.314 × 10−5 bar m3

mol K
× 298.15 K

18 × 10−6 m3

mol

ln

(
0.999 943

0.999 879

)
= 0.881 bar

b. Using the results from Illustration 15.7-1, the water mole fraction in compartment I is

xI
water =

55.51

2 × 0.1 + 55.51
= 0.996 410

the water mole fraction in compartment II is

xII
water =

55.51

0.085 213 + 0.117 352 + 55.51 + 3.571 × 10−3
= 0.996 300

and the osmotic pressure difference is

Π =
RT

V solvent

ln

(
xI

solvent

xII
solvent

)
=

8.314 × 10−5 bar m3

mol K
× 298.15 K

18 × 10−6 m3

mol

ln

(
0.996 410

0.996 300

)
= 1.520 bar

Comment

If the sodium ions partitioned equally in this last case, the concentrations in compartment II
would be

M II
lys = 3.571 × 10−3 M M II

Na = 0.1 M

and
M II

OH = 0.1 − 9 × 3.571 × 10−3 = 0.067 861 M

xII
water =

55.51

0.1 + 0.067 861 + 55.51 + 3.571 × 10−3
= 0.996 921

and the osmotic pressure difference would be

Π =
8.314 × 10−5 bar m3

mol K
× 298.15 K

18 × 10−6 m3

mol

ln

(
0.996 410

0.996 921

)
= −7.060 bar

We see from this the importance of including the Gibbs-Donnan equilibrium effect when
determining the partitioning of ions across a membrane when there is an ionic species (here
the protein) that cannot pass through the membrane. In this case we see that by neglecting this
effect, not only is the magnitude of the osmotic pressure changed, but so is its sign.

If there is a difference in ion concentrations across amembrane, an electrical potential
difference will arise. To compute the magnitude of that potential difference, we start
with the Nernst equation, Eq. 14.6-5, which can be applied to any one of the ions that
can pass through the membrane:


G = RT ln
aII

i

aI
i

= W = ZiF
(
EII − EI

)
= ZiF
E (14.6-5)
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where ai is the activity of ion species i,Zi is its charge, andF is the Faraday constant. If,
as we have frequently done, we neglect the activity coefficients of the ions, this equation
reduces to

Electrostatic potential
in Gibbs-Donnan
equilibrium

(
EII − EI

)
=

RT

ZiF
ln

M II
i

M I
i

(15.8-10)

Illustration 15.8-3
Electrostatic Potential of Lysozyme Solutions in an Osmometer

a. One compartment of an osmotic cell contains lysozyme at a concentration of 50 mg/g of
water, and the second cell contains an aqueous solution of NaOH maintained at a concen-
tration of 1.585 × 10−3 M, which has a pH of 11.2. Compute the electrostatic potential
difference between the two cells.

b. One compartment of an osmotic cell contains lysozyme at a concentration of 50 mg/g of
water, and the second cell contains an aqueous solution of NaOH maintained at a con-
centration of 0.1 M, which has a pH of 13. Compute the electrostatic potential difference
between the two cells.

Solution

a. At pH = 11.2, lysozyme is at its isoelectric point and therefore uncharged. Consequently,
the concentration of sodium ions and hydroxyl ions in each phase is the same, and there is
no electrostatic potential difference between the two compartments.

b. From Illustration 15.7-1, we have for the sodium ions that

M I
Na = 0.1 M and M I

Na = 0.117 352 M

Therefore,

EII − EI =
25.7 mV

1
ln

0.117 352

0.1
= 4.11 mV

As a check on this calculation, we can also calculate the potential difference resulting from
the difference in hydroxyl ion concentrations:

EII − EI =
25.7 mV

−1
ln

0.085 213

0.1
= 4.11 mV

which agrees with the calculation based on the sodium ion concentration, as must be the
case based on Eq. 15.7-3c or 15.7-4.

Gibbs-Donnan equilibrium determines the concentration difference across simple
membranes made of polymers, porous ceramic media, and other ultrafiltration devices.
However, the difference of ion concentrations across the membranes of living cells
and nerves is more complicated because of the existence of “ion pumps” as a result of
carrier-mediated or facilitated diffusion, so that the concentrations of some ions are not
in thermodynamic equilibrium. For example, there is a much higher sodium concen-
tration outside cells than there is inside, while the reverse is true for potassium ions.
This occurs because there is a carrier (probably a lipoprotein) that binds with a sodium
ion inside the cell, transports the ion across membrane, and then releases it into the
fluid outside the cell. The carrier is then transformed and binds with a potassium ion,
which is then transported into the cell. This mechanism is discussed in courses in bi-
ology and physiology. The resulting concentration difference leads to diffusion of the
sodium ion across the membrane, so that the steady-state (not equilibrium) sodium ion
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concentration gradient is a result of rapid active transport by the ion pump out of the
cell, and much slower diffusion into the cell.
This pump does not operate equally in both directions, and two to three sodium ions

are transported out of the cell for each potassium ion that enters the cell. Also, cell mem-
branes are almost 100 times more permeable to potassium ions than to sodium ions, so
that it is reasonable to assume the potassium ion concentration difference across a cell
is an equilibrium state. On average, for a resting nerve fiber, the sodium ion concen-
trations are 10 millimolar (mM) within cells and 142 mM outside the cell, while the
potassium ion concentrations are 5 mM outside the cell (in the extracellular fluid, ECF)
and 140 mM inside the cell. (Note that the actual situation is further complicated by
the fact that the ion channels open and close depending on the physiological situation.
For example, during a nerve impulse the permeability of the membrane to sodium ions
can increase by a factor of a thousand, almost eliminating the sodium ion concentration
difference.)

Illustration 15.8-4
Estimate of the Cell Membrane Potential

Using the potassium ion concentrations mentioned above, estimate the cell membrane potential
in a nerve fiber.

Solution

The potassium ion concentrations are approximately 140 mM within the cell and 5 mM in the
plasma outside the cell. Consequently, at body temperature of 37◦C the electrostatic potential
across the cell membrane, referred to as the membrane potential, is


E =
RT

F
ln

Mcell
K

MECF
K

=
8.314

J

mol K
· 310.15 K

96 485
C

mol
· 1 J

C V

ln
140

5
= 0.0891 V = 89.1 mV

(At a laboratory temperature of 25◦C, the electrostatic potential difference is 85.6 mV.)

Chloride ions (and many other anions) diffuse easily through cell membranes, even
though there is not a chloride ion pump. Consequently, the chloride ion concentration
difference inside and outside of a cell is determined by the electrostatic potential.

Illustration 15.8-5
Chloride Ion Concentration within a Nerve Cell

The chloride ion concentration in extracellular fluid is approximately 100 mM. Using the cell
membrane potential as a result of potassium ions from the illustration above, estimate the chloride
ion concentration within a resting nerve cell.

Solution

Using the Nernst equation, we have


E = −RT

F
ln

Mcell
Cl

MECF
Cl

= −0.0891 V =
8.314

J

mol K
· 310.15 K

96 485
C

mol
· 1 J

C V

ln
Mcell

Cl

100

which has the solution Mcell
Cl = 5.0 mM, which agrees with reported values of 4 to 5 mM.

This illustration shows how the unequal distribution of a dominant ion, here K+,
across a cell membrane can establish an electrostatic potential difference that then re-
sults in the unequal distribution of other ions, many of which are vital to processes in
the human body.
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15.9 PROTEIN CONCENTRATION IN AN ULTRACENTRIFUGE

While we have generally neglected the effect of kinetic and potential energies in this
textbook, there are some cases in which such contributions can be important. One ex-
ample is the case of an ultracentrifuge, a very-high-speed centrifuge that can be used to
concentrate or separate proteins and other biological molecules based on their molecu-
lar weights.
Figure 15.9-1 is a very simple schematic diagram of a short centrifuge tube in an

ultracentrifuge. The steady-state mass, energy, and entropy balance equations will be
written for the region of the centrifuge tube between distances r and r + Δr from
the axis of rotation of the ultracentrifuge tube. The steady-state mass balance for each
species i is

0 = Ṅi

∣∣
r
+ Ṅi

∣∣
r+
r

or Ṅi

∣∣
r+
r

= −Ṅi

∣∣
r

(15.9-1)

The energy balance for this same volume element is

0 =
∑

i

Ṅi

(
H i −

miω2r2

2

)
r

+
∑

i

Ṅi

(
H i −

miω2r2

2

)
r+
r

+ Q̇ (15.9-2)

where ω is the angular velocity, mi is the molecular weight of species i (and Ṅimi is
its mass flow rate), and −miω2r2/2 is the potential energy per unit mass of species i
at a distance r from the center of a centrifuge with a rotational velocity ω.
The entropy balance on this same volume element is

0 =
∑

i

ṄiSi

⏐⏐
r
+

∑
i

ṄiSi

⏐⏐
r+
r

+
Q̇

T
+ Ṡgen (15.9-3)

r r + Δr
Figure 15.9-1 Schematic diagram of a tube containing a protein
solution in an ultracentrifuge.

Now recognizing that during operation the temperature is constant, and combining the
mass, energy, and entropy balances, we have

0 =
∑

i

Ṅi

[(
H i − TSi − Mi

ω2r2

2

)
r

−
(

H i − TSi − Mi
ω2r2

2

)
r+
r

]
− T Ṡgen

Therefore, at equilibrium

0 =
∑

i

Ṅi

[(
Gi − Mi

ω2r2

2

)
r

−
(

Gi − Mi
ω2r2

2

)
r+
r

]
(15.9-4)
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Since this equation must be satisfied for all values of Ṅi, it then follows that the equi-
librium condition for each species is(

Gi − Mi
ω2r2

2

)
r

=
(

Gi − Mi
ω2r2

2

)
r+
r

(15.9-5a)

where r and r+Δr are any two points along the centrifuge tube. Indeed, to emphasize
this we will write the equilibrium relation as(

Gi − Mi
ω2r2

2

)
1

=
(

Gi − Mi
ω2r2

2

)
2

(15.9-5b)

Therefore, the basic equation describing the concentration of each species in an ultra-
centrifuge at any two points is

Gi,1 (T,P1, x1) − Gi,2 (T,P2, x2) = mi
ω2

2
(
r2
1 − r2

2

)
(15.9-6)

but by definition

Gi,1 (T,P1, x1) − Gi,2 (T,P2, x2) = RT ln
[
f i,1 (T,P1, x1)
f i,2 (T,P2, x2)

]
(15.9-7)

Now using the Poynting factor to correct for the effect of pressure on fugacity, as-
suming that the partial molar volume is not dependent on concentration or pressure,

f̄i(T,P1, x1)
f̄i(T,P2, x2)

=
f̄i(T,P1, x1)
f̄i(T,P1, x2)

exp
[
(P1 − P2)V i

RT

]
=

xi,1γi,1

xi,2γi,2

exp
[
(P1 − P2)V i

RT

]
(15.9-8)

we obtain

RT ln
(

xi,1γi,1

xi,2γi,2

)
+ (P1 − P2)V i = mi

ω2

2
(r2

1 − r2
2) (15.9-9)

As a result of the centrifugal force, the pressure varies at each point in the centrifuge
as follows:

(P1 − P2)V = m
ω2

2
(
r2
1 − r2

2

)
or

(P1 − P2) =
m

V

ω2

2
(
r2
1 − r2

2

)
(Note that we can derive this equation simply by taking the pure-component limit of
Eq. 15.6-9. That is, for a pure component xi = 1 and γi = 1, so the logarithmic term
vanishes, and m/V becomes the density of the pure component, which is the solvent.)
For the case of water as the solvent, ρ = 1 g/cc, we have

RT ln
(

xi,1γi,1

xi,2γi,2

)
= mi

ω2

2
(r2

1 − r2
2) − ρiV i

ω2

2
(r2

1 − r2
2)

= mi

(
1 − ρV i

mi

)
ω2

2
(r2

1 − r2
2)

= mi

(
1 − ρ

ρi

)
ω2

2
(r2

1 − r2
2) (15.9-10)
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where ρi = mi/V i is the effective mass density of the protein in solution. As a sim-
plification, we will neglect the departures from ideality (either because the system is
ideal, or particularly for systems with biochemical compounds, there are so many other
uncertainties due to their complexity, that the effects of nonidealities are frequently
neglected.) Consequently, the final equation is

Ultracentrifuge
equation

RT ln
(

xi,1

xi,2

)
= mi

(
1 − ρ

ρi

)
ω2

2
(
r2
1 − r2

2

)
(15.9-11)

Illustration 15.9-1
Use of an Ultracentrifuge to Concentrate a Protein

The protein lysozyme has a molecular weight (mi) of about 14 000 and a partial molar volume
(V i) of 0.75mi, for an effective density (ρi) of 1.333 g/cc (which is a typical value for proteins).
An aqueous solution of lysozyme is placed in an ultracentrifuge tube, the top of which is 2 cm and
the bottom of which is 6 cm from the axis of rotation of the ultracentrifuge. The ultracentrifuge
is at room temperature and operating at 10 000 revolutions per minute (rpm). What will be the
ratio of the lysozyme concentration at the bottom of the tube to that at the top of the tube at
equilibrium?

Solution

Since the lysozyme is in aqueous solution, the solvent density ρ ≈ 1 g/cc. Also,

ω = 2π × (revolutions per second) =
2π × 10 000

60
= 1047 s−1

Therefore,

ln

(
xi,1

xi,2

)
=

mi

(
1 − ρ

ρi

)
ω2

2
(r2

1 − r2
2)

RT

=

14 000
g

mol
×
(

1 − 1

1.333

)
g

cc
× 10472 s−2 × (22 − 62)cm2

2 × 8.314
J

mol K
× 298.15 K

=
14 000

g

mol
× 0.2498 × 1.0962 × 106 s−2 × (22 − 62)cm2 × 10−4 m2

cm2

2 × 8.314
J

mol K
× 298.15 K × 1

kg m2

s2 J
× 1000

g

kg

= −2.023

ln

(
xi,1

xi,2

)
= −2.023 or xi,2 = xi,1e

2.023 = 7.56xi,1

Thus, at 10 000 rpm, the lysozyme equilibrium concentration at the bottom of the centrifuge tube
should be a factor of 7.56 higher than at the top of the centrifuge tube.
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PROBLEMS

15.1 The solubility of creatine in water is 16 g/kg of water.
Problem 13.80 provides the structure and dissociation
constants for this compound. Determine the solubility
of creatine in water as a function of pH.

15.2 The solubility of of the amino acid L-cystine of wa-
ter is 280 g/L, and its molecular weight is 121.16.
Problem 13.83 provides the dissociation constants for
this compound. Determine the solubility of L-cystine
in water as a function of pH.

15.3 The solubility of oxalic acid in water is 1.350 g/kg of
water. Problem 13.81 provides the dissociation con-
stants for this compound. Determine the solubility of
oxalic in water as a function of pH.

15.4 The solubility of the amino acid tyrosine in wa-
ter is 0.453 g/kg of water. Problem 13.85 provides
the dissociation constants for this compound. Deter-
mine the solubility of tyrosine in water as a function
of pH.

15.5 Reading from the graphs in the paper by M. M.
Santoro and D. W. Bolen, Biochem. 31, 4901-4907
(1992) the following data are obtained for the Gibbs
energy change on chemical denaturation (folded-
unfolded transition) of E. coli Thioredoxin separately
guanidine hydrochloride and urea as a function of the
concentrations of.

[M] ΔunfG (kcal/mol)
MGdnHCl = 0 7.9
MGdnHCl = 2.5 0
Murea = 0 9.3
Murea = 6.5 0

Further, with both chemical denaturants, the Gibbs en-
ergy of unfolding is found to be a linear function of the
molarity of the denaturant.
Plot on the same graph the molar extents of the unfold-
ing reaction separately with guanidine hydrochloride
and urea as a function of denaturant molarity over the
range of 0 to 10 molar.

15.6 M. M. Santoro and D. W. Bolen, Biochem. 31, 4901-
4907 (1992) report the following data for the thermal
denaturation (folded-unfolded transition) of E. coli
Thioredoxin as a function of NaCl concentration.

NaCl [M] Tunf(
oC) ΔunfH (kcal/mol) ΔunfG (kcal/mol)

0.1 87.0 106.9 ± 1.1 8.9 ± 0.3

0.5 87.0 103.5 ± 1.1 8.4 ± 0.3
1.0 87.1 98.1 ± 0.2 7.5 ± 0.3
1.5 88.0 99.8 ± 0.6 7.7 ± 0.3

Use these data to compute ΔunfS (kcal/mol · K) at
each of the salt molarities.

15.7 Derive the equations that replace Eqs. 15.1-3 and
15.3-4b if electrolyte solution nonideality is included.

15.8 From data in the literature it has been estimated that
when the bacteria K. fragilis is used in the aero-
bic (that is, with added oxygen) fermentation of glu-
coseC6H12O6, using dissolved ammonia as a nitrogen
source produces a biomass of atomic composition
CH1.75O0.52N0.15 and ethanol C2H5OH. The follow-
ing yield factors have been reported: YB/S = 0.569
and YC/S = 0.407. Determine the other yield factors
for this fermentation. What fraction of the carbon
atoms present in glucose are converted to ethanol?

15.9 When a yeast of average biomass composition is
grown on an aqueous solution of methanol with dis-
solved nitrogen, it is found that 400 g of dry yeast are
produced for each kilogram of methanol consumed.
No other products are formed. Compute the oxygen
consumed and carbon dioxide produced per kilogram
of methanol consumed.

15.10 When the bacterium Zymomonas mobilis is used to
produce ethanol from glucose in an anaerobic pro-
cess with ammonia as the nitrogen source, it is found
that bacteria biomass is produced to the extent of 0.06
C-moles per C-mole of glucose. The biomass has an
elemental composition of CH1.8O0.5N0.2. What are
the fractional conversion of glucose to ethanol (on a
C-mole basis), the amount of ammonia used, and the
amount of carbon dioxide produced per C-mole of
glucose consumed?

15.11 The following data have been reported by von Stockar
and Birou for biomass production and heat release for
the fermentation of glucose by K. fragilis, which also
produces ethanol as the product.

YQ/S

YB/S YC/S (kJ/C-mole)

0.569 0.407 −186.7
0.567 0.403 −199.8
0.584 0.375 −192.0
0.552 0.373 −166.7
0.492 0.339 −129.0
0.456 0.329 −108.9
0.345 0.320 −83.6
0.294 0.307 −59.4

Assuming the biomass has the elemental composition
CH1.75O0.52N0.15 and dissolved ammonia is used as
the nitrogen source, compute the following for each
data point:
a. The ethanol yield factor, YP/S.
b. The amount of oxygen consumed, YO2/S.
c. The amount of heat released, YQ/S. Compare the

predicted values with those reported in the table
above.

d. The amount of entropy generated.
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15.12 Repeat Illustration 15.7-10 if nitric acid C5H9NO4 is
used as the nitrogen source instead of ammonia.

15.13 Derive the analogue of Eqs. 15.7-6 for Gibbs-Donnan
equilibrium involving a negatively charged protein.

15.14 Glucose and fructose both have the composition
C6H12O6, but differ slightly in structure, as shown
below, and more so in sweetness. Repeat Illustration
15.7-9 using these sugars instead of xylose.

C
H

Glucose Fructose

OHH

O

O
C

OHH C

OH

OH

H C

H C H

HHO C

OHH C

H

HO C H

OH

OH

H C

OHH C

H C H

C

a. Estimate the maximum amount of 2,3-butanediol
that can be produced per kg of glucose and fruc-
tose consumed, assuming no additional biomass
production.

b. Estimate the amount of water and oxygen con-
sumed, and carbon dioxide produced per C-mole
of 2,3-butanediol produced assuming no additional
biomass production.

c. Estimate the amount of heat released to keep the
fermenter at 25◦C per C-mole of 2,3-butanediol
produced assuming no additional biomass
production.

15.15 The biologist of Illustration 15.7-9 is examining
other genetically engineered bacteria to produce 2,3-
butanediol from lignins, which are derived from abun-
dant and renewable resources such as trees, plants, and
agricultural crops. While lignin polymerizes, the re-
peating unit is believed to have the following general
formula: C10H12O3.
a. Estimate the maximum amount of 2,3-butanediol

that can be produced per kg of lignin consumed,
assuming no additional biomass production.

b. Estimate the amount of water and oxygen con-
sumed, and carbon dioxide produced per C-mole of
2,3-butanediol produced, assuming no additional
biomass production.

c. Estimate the amount of heat released to keep
the fermenter at 25◦C per C-mole of 2,3-butanediol
produced, assuming no additional biomass
production.

15.16 Succinic acid, which has the structure HOOC—
CH2—CH2—COOH and on a C-mole basis is repre-
sented by CH3/2O, is useful as a starting material in
the manufacture of solvents and polymers. It is typi-
cally made by the catalytic oxidation of butane. How-
ever, by that route only about 40 percent of the carbon
initially present in the butane is converted to succinic
acid. It has been suggested instead to use glucose as a
starting material and a biochemical pathway with the
following proposed reaction stoichiometry:

CH2O +
1

7
CO2 → 8

7
CH3/2 +

1

7
H2O

a. Is this reaction stoichiometry possible?
b. Determine the maximum kg of succinic acid that

can be produced per kg of glucose.
c. Estimate the heat released per C-mole of glucose

consumed.
d. What fraction of the Gibbs energy of the glucose

appears in the succinic acid?
15.17 A considerable amount of methane is produced in Nor-

way from its North Sea oil and gas wells. Some of this
methane is converted to methanol by partial oxidation,
and then biochemically converted to biomass that is
used as animal feed. The reported stoichiometry for
the biochemical reaction is

CH3OH + 0.731 · O2 + 0.146 · NH3

→ 0.269 · CO2 + 0.731C-mol biomass

a. What is the atomic composition of the biomass
produced?

b. How much heat is released per mole of methanol
consumed?

c. What fraction of the Gibbs energy of the reactants
is present in the biomass?

15.18 Another possibility is to convert the methane directly
to biomass that is used as animal feed. The stoichiom-
etry for this biochemical reaction is

CH4 + YO2/S · O2 + YN/S · NH3 + YW/S · H2O

→ YB/S · CH1.8O0.5N0.2 + YC/S · CO2

It has been found that the consumption of 2.5 m3 of
methane (measured at 273 K and 1.013 bar) results in
the production of 1 kg of biomass.
a. Determine all the yield factors for this reaction.
b. How much heat is released per m3 of methane

consumed?
c. What fraction of the Gibbs energy of the methane

is present in the biomass?
15.19 The compound 1,3-propanediol, which has the struc-

ture HO—CH2—CH2—CH2—OH, is a monomer
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used in the production of polyester fibers and in the
manufacture of polyurethanes. 1,3 Propanediol can
be produced by chemical processes and also by the
fermentation of glycerol in a two-step process using
certain bacterial strains. However, neither the chemi-
cal nor biological method is well suited for industrial
production, because the chemical processes are energy
intensive and the biological processes are based on
glycerol, an expensive starting material. The DuPont
Company has developed a process using a microor-
ganism containing the dehydratase enzyme that can
convert other carbon sources, such as carbohydrates
or sugars, to 1,3-propanediol.
a. What is the maximum number of kg of 1,3-

propanediol that can be biologically produced from
each kg of glycerol, assuming no other energy
source is used? What is the stoichiometry of the re-
action at the maximum product yield?

b. What is the maximum number of kg of 1,3-
propanediol that can be biologically produced from
each kg of glucose, assuming no other energy
source is used? What is the stoichiometry of the re-
action at the maximum product yield?

15.20 Various different substrates are being considered for
the biochemical production of 1,3-propanediol (see
previous problem) using dissolved ammonia as the
nitrogen source. Determine the maximum amount of
1,3-propanediol that can be produced as a function of
the generalized degree of reduction of the substrate
if there are no other by-products. Also, when less than
the maximum amount of 1,3-propanediol is produced,
determine the oxygen and heat flow yield factors as a
function of the generalized degree of reduction of the
substrate and the 1,3-propanediol yield factor.

15.21 The bacterium Zymomonas mobilis can reproduce
while producing ethanol from glucose in an anaerobic
(i.e., without added oxygen) continuous process using
ammonia as the nitrogen source. It has been found that
0.06 C-moles of bacterium are produced per C-mole
of glucose, and that the bacterium can be represented
as CH1.8O0.5N0.2. How much ethanol, carbon dioxide
and water are produced per C-mole of glucose con-
sumed?

15.22 It has been claimed that coal, which we can consider
to be pure carbon, can as a result of microbial action
react with water in situ and be converted to methane
by the reaction:

2C + 2H2O → CH4 + CO2

Is this reaction possible without the use of nutrients
or another free energy source.

15.23 A proposed chemical composition for anthracite coal
is C240H90O4NS. The stoichiometry for a biochemical
reaction of anthracite with water is as follows:

C240H90O4NS + xH2O → aCH4 + bCO2 + NO2 + SO2

Determine the maximum thermodynamically al-
lowed value of the extent of conversion of anthracite
to methane, and is the value of a, for this reaction if no
nutrients or other energy sources are provided. How
many moles of carbon dioxide are produced per mole
of coal (that is, the value of b)?

15.24 Biogas is produced as in an anaerobic digester that
treats farm wastes or energy crops. During the pro-
cess, an air-tight tank transforms biomass waste into
methane, producing renewable energy that can be used
for heating, to generate electricity, and or fuel for a
gas engines and turbines. The composition of biogas
from one such plant has been reported, by volume,
to be 62% methane, 8% nitrogen and 30% carbon
dioxide.
a. Compute the heat that would be produced per

100 m3 of biogas if it was isothermally combusted
with a stoichiometric amount of pure oxygen at
298 K.

b. Compute the maximum amount of work that could
be produced if the biogas was isothermally com-
busted in fuel cell with a stoichiometric amount of
pure oxygen at 298 K.

c. Compute the maximum amount of work that could
be produced if the biogas was isothermally com-
busted in a fuel cell with a stoichiometric amount
of air (21 mole % oxygen and 79 mole % nitrogen)
at 298 K.

15.25 An ultracentrifuge is found to have a lysozyme con-
centration of 1 mg/g of water 2 cm from the axis of
rotation. Determine the equilibrium concentration pro-
file over the range from 2 cm to 4 cm from the rotation
axis if the temperature is 25◦C and
a. The rotational speed is 10 000 rpm;
b. The rotational speed is 15 000 rpm.

15.26 A centrifuge operating at 5000 rpm and 25◦C is to
being used to partially separate antipneumococcus
serum globulin (molecular weight 195 000 and par-
tial molar volume of 0.745 cc/g) from hemoglobin
(molecular weight 68 000 and partial molar volume of
0.749 cc/g) in aqueous solution. If the concentrations
of hemoglobin and antipneumococcus serum globulin
are both 0.1 mg/g of water 2 cm from the centrifuge
axis of rotation, what are their concentrations at 4 cm
from the axis of rotation?



Appendix A

Thermodynamic Data

A.I Conversion Factors to SI Units

To Convert from: To: Multiply by:

atmosphere (standard) Pa 1.013 25 × 105

bar Pa 1 × 105

British thermal unit* J 1.054 × 103

BTU/lb J kg−1 2.324 × 103

BTU/lb ◦F J kg−1K−1 4.184 × 103

calorie* J 4.184
cal/g J kg−1 4.184 × 103

cal/g ◦C J kg−1K−1 4.184 × 103

cm of mercury (0◦C) Pa 1.33 × 103

cm3 m3 1 × 10−6

dyne N 1 × 10−5

dyne cm N m 1 × 10−7

dyne/cm2 Pa 1 × 10−1

erg J 1 × 10−7

foot m 3.048 × 10−1

gallon (U.S., liquid) m3 3.785 × 10−3

g/cm3 kg m−3 1 × 103

g/liter kg m−3 1
horsepower W 7.457 × 102

inch m 2.540 × 10−2

inch water (60◦F) Pa 2.488 × 102

kilogram-force N 9.807
kilowatt hour J 3.600 × 106

liter m3 1 × 10−3

millibar Pa 1 × 102

millimeter of mercury (0◦C) Pa 1.333 × 102

ounce (avoirdupois) kg 2.835 × 10−2

pound (avoirdupois) kg 4.536 × 10−1

lb/ft3 kg m−3 1.602 × 101

lb/gal (U.S.) kg m−3 1.198 × 102

lb-force/ft2 Pa 4.788 × 101

lb-force/in2 (psi) Pa 6.895 × 103

ton (refrigeration) W 3.517 × 103

ton (2000 lb) kg 9.072 × 102

torr (mm Hg, 0◦C) Pa 1.333 × 102

yard m 9.144 × 10−1

degree Celsius K T (K) = T (◦C) + 273.15
degree Fahrenheit K T (K)= [T (◦F) + 459.67]/1.8
degree Rankine K T (K) = T (◦R)/1.8
∗Thermochemical unit that is used, for example, in the tables in the Chemical Engineers Handbook. For
International Table units use the constant 4.1868 instead of 4.184, and for mean calorie use 4.190 02.
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A.II The Molar Heat Capacities of Gases in the Ideal Gas
(Zero-Pressure) State*

Temperature
a b × 102 c × 105 d × 109 Range (K)

Paraffinic Hydrocarbons
Methane CH4 19.875 5.021 1.268 −11.004 273–1500
Ethane C2H6 6.895 17.255 −6.402 7.280 273–1500
Propane C3H8 −4.042 30.456 −15.711 31.716 273–1500
n-Butane C4H10 3.954 37.126 −18.326 34.979 273–1500
i-Butane C4H10 −7.908 41.573 −22.992 49.875 273–1500
n-Pentane C5H12 6.770 45.398 −22.448 42.259 273–1500
n-Hexane C6H14 6.933 55.188 −28.636 57.657 273–1500

Monoolefinic Hydrocarbons
Ethylene C2H4 3.950 15.628 −8.339 17.657 273–1500
Propylene C3H6 3.151 23.812 −12.176 24.603 273–1500
1-Butene C4H8 −1.004 36.193 −21.381 50.502 273–1500
i-Butene C4H8 6.904 32.226 −16.657 33.557 273–1500
cis-2-Butene C4H8 −7.439 33.799 −17.046 33.013 273–1500
trans-2-Butene C4H8 9.791 30.209 −14.239 25.398 273–1500

Cycloparaffinic Hydrocarbons
Cyclopentane C5H10 −54.213 54.757 −31.159 68.661 273–1500
Methylcyclopentane C6H12 −50.686 64.352 −37.301 83.808 273–1500
Cyclohexane C6H12 −66.674 68.845 −38.506 80.628 273–1500
Methylcyclohexane C7H14 −63.054 79.381 −45.979 100.795 273–1500

Aromatic Hydrocarbons
Benzene C6H6 −36.193 48.444 −31.548 77.573 273–1500
Toluene C7H8 −34.364 55.887 −34.435 80.335 273–1500
Ethylbenzene C8H10 −35.138 66.674 −41.854 100.209 273–1500
Styrene C8H8 −24.971 60.059 −38.285 92.176 273–1500
Cumene C9H12 −39.548 78.184 −49.661 120.502 273–1500

Oxygenated Hydrocarbons
Formaldehyde CH2O 22.791 4.075 0.713 −8.695 273–1500
Acetaldehyde C2H4O 17.531 13.239 −2.155 −15.900 273–1000
Methanol CH4O 19.038 9.146 −1.218 −8.034 273–1000
Ethanol C2H6O 19.875 20.946 −10.372 20.042 273–1500
Ethylene oxide C2H4O −4.686 20.607 −9.996 13.176 273–1000
Ketene C2H2O 17.197 12.410 −7.502 17.657 273–1500

Miscellaneous Hydrocarbons
Cyclopropane C3H6 −27.117 34.335 −23.335 65.314 273–1000
Isopentane C5H12 −9.511 52.025 −29.695 66.360 273–1500
Neopentane C5H12 16.172 55.670 −33.548 78.787 273–1500
o-Xylene C8H10 −15.854 59.795 −34.954 78.661 273–1500
m-Xylene C8H10 −27.335 62.364 −36.950 83.891 273–1500
p-Xylene C8H10 −22.318 59.498 −33.406 71.255 273–1500

*Constants are for the equation C∗
P = a + bT + cT 2 + dT 3, where T is in Kelvins and C∗

P in J(mol K)−1.
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Appendix II (Continued)

Temperature
a b × 102 c × 105 d × 109 Range (K)

C3 Oxygenated Hydrocarbons
Carbon suboxide C3O2 34.322 12.858 −8.707 21.682 273–1500
Acetone C3H6O 6.799 27.870 −15.636 34.757 273–1500
i-Propyl alcohol C3H8O 3.321 35.573 −20.987 48.368 273–1500
n-Propyl alcohol C3H8O −5.469 38.640 −24.268 59.163 273–1500
Allyl alcohol C3H6O 2.177 29.799 −17.820 41.623 273–1500

Chloroethenes
Chloroethene C2H3Cl 10.046 17.866 −11.511 28.439 273–1500
1,1-Dichloroethene C2H2Cl2 24.682 18.339 −13.314 35.632 273–1500
cis-1,2-Dichloroethene C2H2Cl2 18.142 19.628 −14.213 37.699 273–1500
trans-1,2-Dichloroethene C2H2Cl2 23.686 17.971 −12.644 33.017 273–1500
Trichloroethene C2HCl3 38.494 18.900 −15.063 42.259 273–1500
Tetrachloroethene C2Cl4 63.222 15.895 −13.301 38.029 273–1500

Nitrogen Compounds
Ammonia NH3 27.551 2.563 0.990 −6.687 273–1500
Hydrazine N2H4 16.276 14.870 −9.640 25.063 273–1500
Methylamine CH5N 12.534 15.105 −6.881 12.345 273–1500
Dimethylamine C2H7N −1.151 27.679 −14.572 29.921 273–1500
Trimethylamine C3H9N −8.778 40.246 −23.217 52.017 273–1500

Halogens and Halogen Acids
Fluorine F2 25.586 2.454 −1.752 4.099 273–2000
Chlorine Cl2 28.541 2.389 −2.137 6.473 273–1500
Bromine Br2 33.686 1.030 −0.890 2.680 273–1500
Iodine I2 35.582 0.550 −0.447 1.308 273–1800
Hydrogen fluoride HF 30.130 −0.493 0.659 −1.573 273–2000
Hydrogen chloride HCl 30.310 −0.762 1.326 −4.335 273–1500
Hydrogen bromide HBr 29.996 −0.671 1.387 −4.858 273–1500
Hydrogen iodide HI 28.042 0.190 0.509 −2.014 273–1900

Chloromethanes
Methyl chloride CH3Cl 12.762 10.862 −5.205 9.623 273–1500
Methylene chloride CH2Cl2 17.573 14.305 −9.833 25.389 273–1500
Chloroform CHCl3 31.841 14.481 −11.163 30.728 273–1500
Carbon tetrachloride CCl4 51.213 14.226 −12.531 36.937 273–1500
Phosgene COCl2 43.305 6.916 −3.518 273–1000
Thiophosgene CSCl2 45.188 7.778 −4.372 273–1000

Cyanogens
Cyanogen (CN)2 41.088 6.217 −2.749 273–1000
Hydrogen cyanide HCN 26.527 3.504 −1.093 273–1500
Cyanogen chloride CNCl 33.347 4.496 −2.203 273–1000
Cyanogen bromide CNBr 36.904 3.801 −1.827 273–1000
Cyanogen iodide CNI 40.544 3.018 −1.366 273–1000
Acetonitrile CH3CN 21.297 11.562 −3.812 273–1200
Acrylic nitrile CH2CHCl 19.038 17.171 −7.087 273–1000

Oxides of Nitrogen
Nitric oxide NO 27.034 0.987 −0.322 0.365 273–3800
Nitric oxide NO 29.322 −0.094 0.974 −4.184 273–1500
Nitrous oxide N2O 24.092 5.859 −3.560 10.569 273–1500
Nitrogen dioxide NO2 22.929 5.711 −3.519 7.866 273–1500
Nitrogen tetroxide N2O4 33.054 18.661 −11.339 273–600
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Appendix II (Continued)

Temperature
a b × 102 c × 105 d × 109 Range (K)

Acetylenes and Diolefins
Acetylene C2H2 21.799 9.208 −6.523 18.197 273–1500
Methylacetylene C3H4 17.615 17.042 −9.172 19.720 273–1500
Dimethylacetylene C4H6 14.812 24.427 −11.548 20.812 273–1500
Propadiene C3H4 10.167 19.636 −11.636 27.130 273–1500
1,3-Butadiene C4H6 −5.398 34.937 −23.356 59.582 273–1500
Isoprene C5H8 −1.841 43.590 −28.293 70.837 273–1500

Combustion Gases (Low Temperature Range)
Nitrogen N2 28.883 −0.157 0.808 −2.871 273–1800
Oxygen O2 25.460 1.519 −0.715 1.311 273–1800
Air 28.088 0.197 0.480 −1.965 273–1800
Hydrogen H2 29.088 −0.192 0.400 −0.870 273–1800
Carbon monoxide CO 28.142 0.167 0.537 −2.221 273–1800
Carbon dioxide CO2 22.243 5.977 −3.499 7.464 273–1800
Water vapor H2O 32.218 0.192 1.055 −3.593 273–1800
Ammonia NH3 24.619 3.75 −0.138 300–1500

Combustion Gases (High Temperature Range)†
Nitrogen N2 27.318 0.623 −0.095 273-3800
Oxygen O2 28.167 0.630 −0.075 273–3800
Air 27.435 0.618 −0.090 273–3800
Hydrogen H2 26.879 0.435 −0.033 273–3800
Carbon monoxide CO 27.113 0.655 −0.100 273–3800
Water vapor H2O 29.163 1.449 −0.202 273–3800

Sulfur Compounds
Sulfur S2 27.193 2.217 −1.627 3.983 273–1800
Sulfur dioxide SO2 25.762 5.791 −3.809 8.607 273–1800
Sulfur trioxide SO3 16.393 14.573 −11.193 32.402 273–1300
Hydrogen sulfide H2S 29.582 1.309 0.571 −3.292 273–1800
Carbon disulfide CS2 30.921 6.230 −4.586 11.548 273–1800
Carbonyl sulfide COS 26.034 6.427 −4.427 10.711 273–1800

†The equation for CO2 in the temperature range of 273–3800 K is C∗
P = 75.464 − 1.872 × 10−4T − 661.42/

√
T .

Based on data in O. Hougen, K. Watson, and R. A. Ragatz, Chemical Process Principles, Part 1, John Wiley & Sons, New York (1954).
Used with permission.
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A.III The Thermodynamic Properties of Water and Steam1

THERMODYNAMIC PROPERTIES OF STEAM

Saturated Steam: Temperature Table

Specific Volume Internal Energy Enthalpy Entropy
Temp
(◦C)

T

Press.
(kPa)

P

Sat.
Liquid

V̂ L

Sat.
Vapor

V̂ V

Sat.
Liquid

ÛL

Evap.

ΔÛ

Sat.
Vapor

ÛV

Sat.
Liquid

ĤL

Evap.

ΔĤ

Sat.
Vapor

ĤV

Sat.
Liquid

ŜL

Evap.

ΔŜ

Sat.
Vapor

ŜV

0.01 0.6113 0.001 000 206.14 0.00 2375.3 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 9.1562
5 0.8721 0.001 000 147.12 20.97 2361.3 2382.3 20.98 2489.6 2510.6 0.0761 8.9496 9.0257

10 1.2276 0.001 000 106.38 42.00 2347.2 2389.2 42.01 2477.7 2519.8 0.1510 8.7498 8.9008
15 1.7051 0.001 001 77.93 62.99 2333.1 2396.1 62.99 2465.9 2528.9 0.2245 8.5569 8.7814
20 2.339 0.001 002 57.79 83.95 2319.0 2402.9 83.96 2454.1 2538.1 0.2966 8.3706 8.6672
25 3.169 0.001 003 43.36 104.88 2304.9 2409.8 104.89 2442.3 2547.2 0.3674 8.1905 8.5580
30 4.246 0.001 004 32.89 125.78 2290.8 2416.6 125.79 2430.5 2556.3 0.4369 8.0164 8.4533
35 5.628 0.001 006 25.22 146.67 2276.7 2423.4 146.68 2418.6 2565.3 0.5053 7.8478 8.3531
40 7.384 0.001 008 19.52 167.56 2262.6 2430.1 167.57 2406.7 2574.3 0.5725 7.6845 8.2570
45 9.593 0.001 010 15.26 188.44 2248.4 2436.8 188.45 2394.8 2583.2 0.6387 7.5261 8.1648
50 12.349 0.001 012 12.03 209.32 2234.2 2443.5 209.33 2382.7 2592.1 0.7038 7.3725 8.0763
55 15.758 0.001 015 9.568 230.21 2219.9 2450.1 230.23 2370.7 2600.9 0.7679 7.2234 7.9913
60 19.940 0.001 017 7.671 251.11 2205.5 2456.6 251.13 2358.5 2609.6 0.8312 7.0784 7.9096
65 25.03 0.001 020 6.197 272.02 2191.1 2463.1 272.06 2346.2 2618.3 0.8935 6.9375 7.8310
70 31.19 0.001 023 5.042 292.95 2176.6 2469.6 292.98 2333.8 2626.8 0.9549 6.8004 7.7553
75 38.58 0.001 026 4.131 313.90 2162.0 2475.9 313.93 2321.4 2635.3 1.0155 6.6669 7.6824
80 47.39 0.001 029 3.407 334.86 2147.4 2482.2 334.91 2308.8 2643.7 1.0753 6.5369 7.6122
85 57.83 0.001 033 2.828 355.84 2132.6 2488.4 355.90 2296.0 2651.9 1.1343 6.4102 7.5445
90 70.14 0.001 036 2.361 376.85 2117.7 2494.5 376.92 2283.2 2660.1 1.1925 6.2866 7.4791
95 84.55 0.001 040 1.982 397.88 2102.7 2500.6 397.96 2270.2 2668.1 1.2500 6.1659 7.4159

MPa

100 0.101 35 0.001 044 1.6729 418.94 2087.6 2506.5 419.04 2257.0 2676.1 1.3069 6.0480 7.3549
105 0.120 82 0.001 048 1.4194 440.02 2072.3 2512.4 440.15 2243.7 2683.8 1.3630 5.9328 7.2958
110 0.143 27 0.001 052 1.2102 461.14 2057.0 2518.1 461.30 2230.2 2691.5 1.4185 5.8202 7.2387
115 0.169 06 0.001 056 1.0366 482.30 2041.4 2523.7 482.48 2216.5 2699.0 1.4734 5.7100 7.1833
120 0.198 53 0.001 060 0.8919 503.50 2025.8 2529.3 503.71 2202.6 2706.3 1.5276 5.6020 7.1296
125 0.2321 0.001 065 0.7706 524.74 2009.9 2534.6 524.99 2188.5 2713.5 1.5813 5.4962 7.0775
130 0.2701 0.001 070 0.6685 546.02 1993.9 2539.9 546.31 2174.2 2720.5 1.6344 5.3925 7.0269
135 0.3130 0.001 075 0.5822 567.35 1977.7 2545.0 567.69 2159.6 2727.3 1.6870 5.2907 6.9777
140 0.3613 0.001 080 0.5089 588.74 1961.3 2550.0 589.13 2144.7 2733.9 1.7391 5.1908 6.9299
145 0.4154 0.001 085 0.4463 610.18 1944.7 2554.9 610.63 2129.6 2740.3 1.7907 5.0926 6.8833
150 0.4758 0.001 091 0.3928 631.68 1927.9 2559.5 632.20 2114.3 2746.5 1.8418 4.9960 6.8379
155 0.5431 0.001 096 0.3468 653.24 1910.8 2564.1 653.84 2098.6 2752.4 1.8925 4.9010 6.7935
160 0.6178 0.001 102 0.3071 674.87 1893.5 2568.4 675.55 2082.6 2758.1 1.9427 4.8075 6.7502
165 0.7005 0.001 108 0.2727 696.56 1876.0 2572.5 697.34 2066.2 2763.5 1.9925 4.7153 6.7078
170 0.7917 0.001 114 0.2428 718.33 1858.1 2576.5 719.21 2049.5 2768.7 2.0419 4.6244 6.6663

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K

1From G. J. Van Wylen and R. E. Sontag, Fundamentals of Classical Thermodynamics, S. I. Version. 2nd ed.,
John Wiley & Sons, New York (1978). Used with permission.
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Saturated Steam: Temperature Table (Continued)

Specific Volume Internal Energy Enthalpy Entropy
Temp
(◦C)

T

Press.
(MPa)

P

Sat.
Liquid

V̂ L

Sat.
Vapor

V̂ V

Sat.
Liquid

ÛL

Evap.

ΔÛ

Sat.
Vapor

ÛV

Sat.
Liquid

ĤL

Evap.

ΔĤ

Sat.
Vapor

ĤV

Sat.
Liquid

ŜL

Evap.

ΔŜ

Sat.
Vapor

ŜV

175 0.8920 0.001 121 0.2168 740.17 1840.0 2580.2 741.17 2032.4 2773.6 2.0909 4.5347 6.6256
180 1.0021 0.001 127 0.194 05 762.09 1821.6 2583.7 763.22 2015.0 2778.2 2.1396 4.4461 6.5857
185 1.1227 0.001 134 0.174 09 784.10 1802.9 2587.0 785.37 1997.1 2782.4 2.1879 4.3586 6.5465
190 1.2544 0.001 141 0.156 54 806.19 1783.8 2590.0 807.62 1978.8 2786.4 2.2359 4.2720 6.5079
195 1.3978 0.001 149 0.141 05 828.37 1764.4 2592.8 829.98 1960.0 2790.0 2.2835 4.1863 6.4698
200 1.5538 0.001 157 0.127 36 850.65 1744.7 2595.3 852.45 1940.7 2793.2 2.3309 4.1014 6.4323
205 1.7230 0.001 164 0.115 21 873.04 1724.5 2597.5 875.04 1921.0 2796.0 2.3780 4.0172 6.3952
210 1.9062 0.001 173 0.104 41 895.53 1703.9 2599.5 897.76 1900.7 2798.5 2.4248 3.9337 6.3585
215 2.104 0.001 181 0.094 79 918.14 1682.9 2601.1 920.62 1879.9 2800.5 2.4714 3.8507 6.3221
220 2.318 0.001 190 0.086 19 940.87 1661.5 2602.4 943.62 1858.5 2802.1 2.5178 3.7683 6.2861
225 2.548 0.001 199 0.078 49 963.73 1639.6 2603.3 966.78 1836.5 2803.3 2.5639 3.6863 6.2503
230 2.795 0.001 209 0.071 58 986.74 1617.2 2603.9 990.12 1813.8 2804.0 2.6099 3.6047 6.2146
235 3.060 0.001 219 0.065 37 1009.89 1594.2 2604.1 1013.62 1790.5 2804.2 2.6558 3.5233 6.1791
240 3.344 0.001 229 0.059 76 1033.21 1570.8 2604.0 1037.32 1766.5 2803.8 2.7015 3.4422 6.1437
245 3.648 0.001 240 0.054 71 1056.71 1546.7 2603.4 1061.23 1741.7 2803.0 2.7472 3.3612 6.1083
250 3.973 0.001 251 0.050 13 1080.39 1522.0 2602.4 1085.36 1716.2 2801.5 2.7927 3.2802 6.0730
255 4.319 0.001 263 0.045 98 1104.28 1496.7 2600.9 1109.73 1689.8 2799.5 2.8383 3.1992 6.0375
260 4.688 0.001 276 0.042 21 1128.39 1470.6 2599.0 1134.37 1662.5 2796.9 2.8838 3.1181 6.0019
265 5.081 0.001 289 0.038 77 1152.74 1443.9 2596.6 1159.28 1634.4 2793.6 2.9294 3.0368 5.9662
270 5.499 0.001 302 0.035 64 1177.36 1416.3 2593.7 1184.51 1605.2 2789.7 2.9751 2.9551 5.9301
275 5.942 0.001 317 0.032 79 1202.25 1387.9 2590.2 1210.07 1574.9 2785.0 3.0208 2.8730 5.8938
280 6.412 0.001 332 0.030 17 1227.46 1358.7 2586.1 1235.99 1543.6 2779.6 3.0668 2.7903 5.8571
285 6.909 0.001 348 0.027 77 1253.00 1328.4 2581.4 1262.31 1511.0 2773.3 3.1130 2.7070 5.8199
290 7.436 0.001 366 0.025 57 1278.92 1297.1 2576.0 1289.07 1477.1 2766.2 3.1594 2.6227 5.7821
295 7.993 0.001 384 0.023 54 1305.2 1264.7 2569.9 1316.3 1441.8 2758.1 3.2062 2.5375 5.7437
300 8.581 0.001 404 0.021 67 1332.0 1231.0 2563.0 1344.0 1404.9 2749.0 3.2534 2.4511 5.7045
305 9.202 0.001 425 0.019 948 1359.3 1195.9 2555.2 1372.4 1366.4 2738.7 3.3010 2.3633 5.6643
310 9.856 0.001 447 0.018 350 1387.1 1159.4 2546.4 1401.3 1326.0 2727.3 3.3493 2.2737 5.6230
315 10.547 0.001 472 0.016 867 1415.5 1121.1 2536.6 1431.0 1283.5 2714.5 3.3982 2.1821 5.5804
320 11.274 0.001 499 0.015 488 1444.6 1080.9 2525.5 1461.5 1238.6 2700.1 3.4480 2.0882 5.5362
330 12.845 0.001 561 0.012 996 1505.3 993.7 2498.9 1525.3 1140.6 2665.9 3.5507 1.8909 5.4417
340 14.586 0.001 638 0.010 797 1570.3 894.3 2464.6 1594.2 1027.9 2622.0 3.6594 1.6763 5.3357
350 16.513 0.001 740 0.008 813 1641.9 776.6 2418.4 1670.6 893.4 2563.9 3.7777 1.4335 5.2112
360 18.651 0.001 893 0.006 945 1725.2 626.3 2351.5 1760.5 720.5 2481.0 3.9147 1.1379 5.0526
370 21.03 0.002 213 0.004 925 1844.0 384.5 2228.5 1890.5 441.6 2332.1 4.1106 .6865 4.7971
374.14 22.09 0.003 155 0.003 155 2029.6 0 2029.6 2099.3 0 2099.3 4.4298 0 4.4298

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Saturated Steam: Pressure Table

Specific Volume Internal Energy Enthalpy Entropy
Press.
(kPa)

P

Temp
(◦C)

T

Sat.
Liquid

V̂ L

Sat.
Vapor

V̂ V

Sat.
Liquid

ÛL

Evap.

ΔÛ

Sat.
Vapor

ÛV

Sat.
Liquid

ĤL

Evap.

ΔĤ

Sat.
Vapor

ĤV

Sat.
Liquid

ŜL

Evap.

ΔŜ

Sat.
Vapor

ŜV

0.6113 0.01 0.001 000 206.14 0.00 2375.3 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 9.1562
1.0 6.98 0.001 000 129.21 29.30 2355.7 2385.0 29.30 2484.9 2514.2 0.1059 8.8697 8.9756
1.5 13.03 0.001 001 87.98 54.71 2338.6 2393.3 54.71 2470.6 2525.3 0.1957 8.6322 8.8279
2.0 17.50 0.001 001 67.00 73.48 2326.0 2399.5 73.48 2460.0 2533.5 0.2607 8.4629 8.7237
2.5 21.08 0.001 002 54.25 88.48 2315.9 2404.4 88.49 2451.6 2540.0 0.3120 8.3311 8.6432
3.0 24.08 0.001 003 45.67 101.04 2307.5 2408.5 101.05 2444.5 2545.5 0.3545 8.2231 8.5776
4.0 28.96 0.001 004 34.80 121.45 2293.7 2415.2 121.46 2432.9 2554.4 0.4226 8.0520 8.4746
5.0 32.88 0.001 005 28.19 137.81 2282.7 2420.5 137.82 2423.7 2561.5 0.4764 7.9187 8.3951
7.5 40.29 0.001 008 19.24 168.78 2261.7 2430.5 168.79 2406.0 2574.8 0.5764 7.6750 8.2515

10 45.81 0.001 010 14.67 191.82 2246.1 2437.9 191.83 2392.8 2584.7 0.6493 7.5009 8.1502
15 53.97 0.001 014 10.02 225.92 2222.8 2448.7 225.94 2373.1 2599.1 0.7549 7.2536 8.0085
20 60.06 0.001 017 7.649 251.38 2205.4 2456.7 251.40 2358.3 2609.7 0.8320 7.0766 7.9085
25 64.97 0.001 020 6.204 271.90 2191.2 2463.1 271.93 2346.3 2618.2 0.8931 6.9383 7.8314
30 69.10 0.001 022 5.229 289.20 2179.2 2468.4 289.23 2336.1 2625.3 0.9439 6.8247 7.7686
40 75.87 0.001 027 3.993 317.53 2159.5 2477.0 317.58 2319.2 2636.8 1.0259 6.6441 7.6700
50 81.33 0.001 030 3.240 340.44 2143.4 2483.9 340.49 2305.4 2645.9 1.0910 6.5029 7.5939
75 91.78 0.001 037 2.217 384.31 2112.4 2496.7 384.39 2278.6 2663.0 1.2130 6.2434 7.4564

MPa

0.100 99.63 0.001 043 1.6940 417.36 2088.7 2506.1 417.46 2258.0 2675.5 1.3026 6.0568 7.3594
0.125 105.99 0.001 048 1.3749 444.19 2069.3 2513.5 444.32 2241.0 2685.4 1.3740 5.9104 7.2844
0.150 111.37 0.001 053 1.1593 466.94 2052.7 2519.7 467.11 2226.5 2693.6 1.4336 5.7897 7.2233
0.175 116.06 0.001 057 1.0036 486.80 2038.1 2524.9 486.99 2213.6 2700.6 1.4849 5.6868 7.1717
0.200 120.23 0.001 061 0.8857 504.49 2025.0 2529.5 504.70 2201.9 2706.7 1.5301 5.5970 7.1271
0.225 124.00 0.001 064 0.7933 520.47 2013.1 2533.6 520.72 2191.3 2712.1 1.5706 5.5173 7.0878
0.250 127.44 0.001 067 0.7187 535.10 2002.1 2537.2 535.37 2181.5 2716.9 1.6072 5.4455 7.0527
0.275 130.60 0.001 070 0.6573 548.59 1991.9 2540.5 548.89 2172.4 2721.3 1.6408 5.3801 7.0209
0.300 133.55 0.001 073 0.6058 561.15 1982.4 2543.6 561.47 2163.8 2725.3 1.6718 5.3201 6.9919
0.325 136.30 0.001 076 0.5620 572.90 1973.5 2546.4 573.25 2155.8 2729.0 1.7006 5.2646 6.9652
0.350 138.88 0.001 079 0.5243 583.95 1965.0 2548.9 584.33 2148.1 2732.4 1.7275 5.2130 6.9405
0.375 141.32 0.001 081 0.4914 594.40 1956.9 2551.3 594.81 2140.8 2735.6 1.7528 5.1647 6.9175
0.40 143.63 0.001 084 0.4625 604.31 1949.3 2553.6 604.74 2133.8 2738.6 1.7766 5.1193 6.8959
0.45 147.93 0.001 088 0.4140 622.77 1934.9 2557.6 623.25 2120.7 2743.9 1.8207 5.0359 6.8565
0.50 151.86 0.001 093 0.3749 639.68 1921.6 2561.2 640.23 2108.5 2748.7 1.8607 4.9606 6.8213
0.55 155.48 0.001 097 0.3427 655.32 1909.2 2564.5 655.93 2097.0 2753.0 1.8973 4.8920 6.7893
0.60 158.85 0.001 101 0.3157 669.90 1897.5 2567.4 670.56 2086.3 2756.8 1.9312 4.8288 6.7600
0.65 162.01 0.001 104 0.2927 683.56 1886.5 2570.1 684.28 2076.0 2760.3 1.9627 4.7703 6.7331
0.70 164.97 0.001 108 0.2729 696.44 1876.1 2572.5 697.22 2066.3 2763.5 1.9922 4.7158 6.7080
0.75 167.78 0.001 112 0.2556 708.64 1866.1 2574.7 709.47 2057.0 2766.4 2.0200 4.6647 6.6847
0.80 170.43 0.001 115 0.2404 720.22 1856.6 2576.8 721.11 2048.0 2769.1 2.0462 4.6166 6.6628
0.85 172.96 0.001 118 0.2270 731.27 1847.4 2578.7 732.22 2039.4 2771.6 2.0710 4.5711 6.6421
0.90 175.38 0.001 121 0.2150 741.83 1838.6 2580.5 742.83 2031.1 2773.9 2.0946 4.5280 6.6226
0.95 177.69 0.001 124 0.2042 751.95 1830.2 2582.1 753.02 2023.1 2776.1 2.1172 4.4869 6.6041

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Saturated Steam: Pressure Table (Continued)

Specific Volume Internal Energy Enthalpy Entropy
Press.
(MPa)

P

Temp
(◦C)

T

Sat.
Liquid

V̂ L

Sat.
Vapor

V̂ V

Sat.
Liquid

ÛL

Evap.

ΔÛ

Sat.
Vapor

ÛV

Sat.
Liquid

ĤL

Evap.

ΔĤ

Sat.
Vapor

ĤV

Sat.
Liquid

ŜL

Evap.

ΔŜ

Sat.
Vapor

ŜV

1.00 179.91 0.001 127 0.194 44 761.68 1822.0 2583.6 762.81 2015.3 2778.1 2.1387 4.4478 6.5865
1.10 184.09 0.001 133 0.177 53 780.09 1806.3 2586.4 781.34 2000.4 2781.7 2.1792 4.3744 6.5536
1.20 187.99 0.001 139 0.163 33 797.29 1791.5 2588.8 798.65 1986.2 2784.8 2.2166 4.3067 6.5233
1.30 191.64 0.001 144 0.151 25 813.44 1777.5 2591.0 814.93 1972.7 2787.6 2.2515 4.2438 6.4953
1.40 195.07 0.001 149 0.140 84 828.70 1764.1 2592.8 830.30 1959.7 2790.6 2.2842 4.1850 6.4693
1.50 198.32 0.001 154 0.131 77 843.16 1751.3 2594.5 844.89 1947.3 2792.2 2.3150 4.1298 6.4448
1.75 205.76 0.001 166 0.113 49 876.46 1721.4 2597.8 878.50 1917.9 2796.4 2.3851 4.0044 6.3896
2.00 212.42 0.001 177 0.099 63 906.44 1693.8 2600.3 908.79 1890.7 2799.5 2.4474 3.8935 6.3409
2.25 218.45 0.001 187 0.088 75 933.83 1668.2 2602.0 936.49 1865.2 2801.7 2.5035 3.7937 6.2972
2.5 223.99 0.001 197 0.079 98 959.11 1644.0 2603.1 962.11 1841.0 2803.1 2.5547 3.7028 6.2575
3.00 233.90 0.001 217 0.066 68 1004.78 1599.3 2604.1 1008.42 1795.7 2804.2 2.6457 3.5412 6.1869
3.5 242.60 0.001 235 0.057 07 1045.43 1558.3 2603.7 1049.75 1753.7 2803.4 2.7253 3.4000 6.1253
4 250.40 0.001 252 0.049 78 1082.31 1520.0 2602.3 1087.31 1714.1 2801.4 2.7964 3.2737 6.0701
5 263.99 0.001 286 0.039 44 1147.81 1449.3 2597.1 1154.23 1640.1 2794.3 2.9202 3.0532 5.9734
6 275.64 0.001 319 0.032 44 1205.44 1384.3 2589.7 1213.35 1571.0 2784.3 3.0267 2.8625 5.8892
7 285.88 0.001 351 0.027 37 1257.55 1323.0 2580.5 1267.00 1505.1 2772.1 3.1211 2.6922 5.8133
8 295.06 0.001 384 0.023 52 1305.57 1264.2 2569.8 1316.64 1441.3 2758.0 3.2068 2.5364 5.7432
9 303.40 0.001 418 0.020 48 1350.51 1207.3 2557.8 1363.26 1378.9 2742.1 3.2858 2.3915 5.6772

10 311.06 0.001 452 0.018 026 1393.04 1151.4 2544.4 1407.56 1317.1 2724.7 3.3596 2.2544 5.6141
11 318.15 0.001 489 0.015 987 1433.7 1096.0 2529.8 1450.1 1255.5 2705.6 3.4295 2.1233 5.5527
12 324.75 0.001 527 0.014 263 1473.0 1040.7 2513.7 1491.3 1193.6 2684.9 3.4962 1.9962 5.4924
13 330.93 0.001 567 0.012 780 1511.1 985.0 2496.1 1531.5 1130.7 2662.2 3.5606 1.8718 5.4323
14 336.75 0.001 611 0.011 485 1548.6 928.2 2476.8 1571.1 1066.5 2637.6 3.6232 1.7485 5.3717
15 342.24 0.001 658 0.010 337 1585.6 869.8 2455.5 1610.5 1000.0 2610.5 3.6848 1.6249 5.3098
16 347.44 0.001 711 0.009 306 1622.7 809.0 2431.7 1650.1 930.6 2580.6 3.7461 1.4994 5.2455
17 352.37 0.001 770 0.008 364 1660.2 744.8 2405.0 1690.3 856.9 2547.2 3.8079 1.3698 5.1777
18 357.06 0.001 840 0.007 489 1698.9 675.4 2374.3 1732.0 777.1 2509.1 3.8715 1.2329 5.1044
19 361.54 0.001 924 0.006 657 1739.9 598.1 2338.1 1776.5 688.0 2464.5 3.9388 1.0839 5.0228
20 365.81 0.002 036 0.005 834 1785.6 507.5 2293.0 1826.3 583.4 2409.7 4.0139 0.9130 4.9269
21 369.89 0.002 207 0.004 952 1842.1 388.5 2230.6 1888.4 446.2 2334.6 4.1075 0.6938 4.8013
22 373.80 0.002 742 0.003 568 1961.9 125.2 2087.1 2022.2 143.4 2165.6 4.3110 0.2216 4.5327
22.09 374.14 0.003 155 0.003 155 2029.6 0.0 2029.6 2099.3 0.0 2099.3 4.4298 0.0 4.4298

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Superheated Vapor‡
P = 0.010 MPa (45.81) P = 0.050 MPa (81.33) P = 0.10 MPa (99.63)

T (◦C) V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ

Sat. 14.674 2437.9 2584.7 8.1502 3.240 2483.9 2645.9 7.5939 1.6940 2506.1 2675.5 7.3594
50 14.869 2443.9 2592.6 8.1749 — — — — — — — —
100 17.196 2515.5 2687.5 8.4479 3.418 2511.6 2682.5 7.6947 1.6958 2506.7 2676.2 7.3614
150 19.512 2587.9 2783.0 8.6882 3.889 2585.6 2780.1 7.9401 1.9364 2582.8 2776.4 7.6134
200 21.825 2661.3 2879.5 8.9038 4.356 2659.9 2877.7 8.1580 2.172 2658.1 2875.3 7.8343
250 24.136 2736.0 2977.3 9.1002 4.820 2735.0 2976.0 8.3556 2.406 2733.7 2974.3 8.0333
300 26.445 2812.1 3076.5 9.2813 5.284 2811.3 3075.5 8.5373 2.639 2810.4 3074.3 8.2158
400 31.063 2968.9 3279.6 9.6077 6.209 2968.5 3278.9 8.8642 3.103 2967.9 3278.2 8.5435
500 35.679 3132.3 3489.1 9.8978 7.134 3132.0 3488.7 9.1546 3.565 3131.6 3488.1 8.8342
600 40.295 3302.5 3705.4 10.1608 8.057 3302.2 3705.1 9.4178 4.028 3301.9 3704.7 9.0976
700 44.911 3479.6 3928.7 10.4028 8.981 3479.4 3928.5 9.6599 4.490 3479.2 3928.2 9.3398
800 49.526 3663.8 4159.0 10.6281 9.904 3663.6 4158.9 9.8852 4.952 3663.5 4158.6 9.5652
900 54.141 3855.0 4396.4 10.8396 10.828 3854.9 4396.3 10.0967 5.414 3854.8 4396.1 9.7767

1000 58.757 4053.0 4640.6 11.0393 11.751 4052.9 4640.5 10.2964 5.875 4052.8 4640.3 9.9764
1100 63.372 4257.5 4891.2 11.2287 12.674 4257.4 4891.1 10.4859 6.337 4257.3 4891.0 10.1659
1200 67.987 4467.9 5147.8 11.4091 13.597 4467.8 5147.7 10.6662 6.799 4467.7 5147.6 10.3463
1300 72.602 4683.7 5409.7 11.5811 14.521 4683.6 5409.6 10.8382 7.260 4683.5 5409.5 10.5183

P = 0.20 MPa (120.23) P = 0.30 MPa (133.55) P = 0.40 MPa (143.63)

Sat. 0.8857 2529.5 2706.7 7.1272 0.6058 2543.6 2725.3 6.9919 0.4625 2553.6 2738.6 6.8959
150 0.9596 2576.9 2768.8 7.2795 0.6339 2570.8 2761.0 7.0778 0.4708 2564.5 2752.8 6.9299
200 1.0803 2654.4 2870.5 7.5066 0.7163 2650.7 2865.6 7.3115 0.5342 2646.8 2860.5 7.1706
250 1.1988 2731.2 2971.0 7.7086 0.7964 2728.7 2967.6 7.5166 0.5951 2726.1 2964.2 7.3789
300 1.3162 2808.6 3071.8 7.8926 0.8753 2806.7 3069.3 7.7022 0.6548 2804.8 3066.8 7.5662
400 1.5493 2966.7 3276.6 8.2218 1.0315 2965.6 3275.0 8.0330 0.7726 2964.4 3273.4 7.8985
500 1.7814 3130.8 3487.1 8.5133 1.1867 3130.0 3486.0 8.3251 0.8893 3129.2 3484.9 8.1913
600 2.013 3301.4 3704.0 8.7770 1.3414 3300.8 3703.2 8.5892 1.0055 3300.2 3702.4 8.4558
700 2.244 3478.8 3927.6 9.0194 1.4957 3478.1 3927.1 8.8319 1.1215 3477.9 3926.5 8.6987
800 2.475 3663.1 4158.2 9.2449 1.6499 3662.9 4157.8 9.0576 1.2372 3662.4 4157.3 8.9244
900 2.706 3854.5 4395.8 9.4566 1.8041 3854.2 4395.4 9.2692 1.3529 3853.9 4395.1 9.1362

1000 2.937 4052.5 4640.0 9.6563 1.9581 4052.3 4639.7 9.4690 1.4685 4052.0 4639.4 9.3360
1100 3.168 4257.0 4890.7 9.8458 2.1121 4256.8 4890.4 9.6585 1.5840 4256.5 4890.2 9.5256
1200 3.399 4467.5 5147.3 10.0262 2.2661 4467.2 5147.1 9.8389 1.6996 4467.0 5146.8 9.7060
1300 3.630 4683.2 5409.3 10.1982 2.4201 4683.0 5409.0 10.0110 1.8151 4682.8 5408.8 9.8780

P = 0.50 MPa (151.86) P = 0.60 MPa (158.85) P = 0.80 MPa (170.43)

Sat. 0.3749 2561.2 2748.7 6.8213 0.3157 2567.4 2756.8 6.7600 0.2404 2576.8 2769.1 6.6628
200 0.4249 2642.9 2855.4 7.0592 0.3520 2638.9 2850.1 6.9665 0.2608 2630.6 2839.3 6.8158
250 0.4744 2723.5 2960.7 7.2709 0.3938 2720.9 2957.2 7.1816 0.2931 2715.5 2950.0 7.0384
300 0.5226 2802.9 3064.2 7.4599 0.4344 2801.0 3061.6 7.3724 0.3241 2797.2 3056.5 7.2328
350 0.5701 2882.6 3167.7 7.6329 0.4742 2881.2 3165.7 7.5464 0.3544 2878.2 3161.7 7.4089
400 0.6173 2963.2 3271.9 7.7938 0.5137 2962.1 3270.3 7.7079 0.3843 2959.7 3267.1 7.5716
500 0.7109 3128.4 3483.9 8.0873 0.5920 3127.6 3482.8 8.0021 0.4433 3126.0 3480.6 7.8673
600 0.8041 3299.6 3701.7 8.3522 0.6697 3299.1 3700.9 8.2674 0.5018 3297.9 3699.4 8.1333
700 0.8969 3477.5 3925.9 8.5952 0.7472 3477.0 3925.3 8.5107 0.5601 3476.2 3924.2 8.3770
800 0.9896 3662.1 4156.9 8.8211 0.8245 3661.8 4156.5 8.7367 0.6181 3661.1 4155.6 8.6033
900 1.0822 3853.6 4394.7 9.0329 0.9017 3853.4 4394.4 8.9486 0.6761 3852.8 4393.7 8.8153

1000 1.1747 4051.8 4639.1 9.2328 0.9788 4051.5 4638.8 9.1485 0.7340 4051.0 4638.2 9.0153
1100 1.2672 4256.3 4889.9 9.4224 1.0559 4256.1 4889.6 9.3381 0.7919 4255.6 4889.1 9.2050
1200 1.3596 4466.8 5146.6 9.6029 1.1330 4466.5 5146.3 9.5185 0.8497 4466.1 5145.9 9.3855
1300 1.4521 4682.5 5408.6 9.7749 1.2101 4682.3 5408.3 9.6906 0.9076 4681.8 5407.9 9.5575

‡Note: Number in parentheses is temperature of saturated steam at the specified pressure.

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Superheated Vapor (Continued)

P = 1.00 MPa (179.91) P = 1.20 MPa (187.99) P = 1.40 MPa (195.07)

T (◦C) V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ

Sat. 0.194 44 2583.6 2778.1 6.5865 0.163 33 2588.8 2784.8 6.5233 0.140 84 2592.8 2790.0 6.4693
200 0.2060 2621.9 2827.9 6.6940 0.169 30 2612.8 2815.9 6.5898 0.143 02 2603.1 2803.3 6.4975
250 0.2327 2709.9 2942.6 6.9247 0.192 34 2704.2 2935.0 6.8294 0.163 50 2698.3 2927.2 6.7467
300 0.2579 2793.2 3051.2 7.1229 0.2138 2789.2 3045.8 7.0317 0.182 28 2785.2 3040.4 6.9534
350 0.2825 2875.2 3157.7 7.3011 0.2345 2872.2 3153.6 7.2121 0.2003 2869.2 3149.5 7.1360
400 0.3066 2957.3 3263.9 7.4651 0.2548 2954.9 3260.7 7.3774 0.2178 2952.5 3257.5 7.3026
500 0.3541 3124.4 3478.5 7.7622 0.2946 3122.8 3476.3 7.6759 0.2521 3121.1 3474.1 7.6027
600 0.4011 3296.8 3697.9 8.0290 0.3339 3295.6 3696.3 7.9435 0.2860 3294.4 3694.8 7.8710
700 0.4478 3475.3 3923.1 8.2731 0.3729 3474.4 3922.0 8.1881 0.3195 3473.6 3920.8 8.1160
800 0.4943 3660.4 4154.7 8.4996 0.4118 3659.7 4153.8 8.4148 0.3528 3659.0 4153.0 8.3431
900 0.5407 3852.2 4392.9 8.7118 0.4505 3851.6 4392.2 8.6272 0.3861 3851.1 4391.5 8.5556

1000 0.5871 4050.5 4637.6 8.9119 0.4892 4050.0 4637.0 8.8274 0.4192 4049.5 4636.4 8.7559
1100 0.6335 4255.1 4888.6 9.1017 0.5278 4254.6 4888.0 9.0172 0.4524 4254.1 4887.5 8.9457
1200 0.6798 4465.6 5145.4 9.2822 0.5665 4465.1 5144.9 9.1977 0.4855 4464.7 5144.4 9.1262
1300 0.7261 4681.3 5407.4 9.4543 0.6051 4680.9 5407.0 9.3698 0.5186 4680.4 5406.5 9.2984

P = 1.60 MPa (201.41) P = 1.80 MPa (207.15) P = 2.00 MPa (212.42)

Sat. 0.123 80 2596.0 2794.0 6.4218 0.110 42 2598.4 2797.1 6.3794 0.099 63 2600.3 2799.5 6.3409
225 0.132 87 2644.7 2857.3 6.5518 0.116 73 2636.6 2846.7 6.4808 0.103 77 2628.3 2835.8 6.4147
250 0.141 84 2692.3 2919.2 6.6732 0.124 97 2686.0 2911.0 6.6066 0.111 44 2679.6 2902.5 6.5453
300 0.158 62 2781.1 3034.8 6.8844 0.140 21 2776.9 3029.2 6.8226 0.125 47 2772.6 3023.5 6.7664
350 0.174 56 2866.1 3145.4 7.0694 0.154 57 2863.0 3141.2 7.0100 0.138 57 2859.8 3137.0 6.9563
400 0.190 05 2950.1 3254.2 7.2374 0.168 47 2947.7 3250.9 7.1794 0.151 20 2945.2 3247.6 7.1271
500 0.2203 3119.5 3472.0 7.5390 0.195 50 3117.9 3469.8 7.4825 0.175 68 3116.2 3467.6 7.4317
600 0.2500 3293.3 3693.2 7.8080 0.2220 3292.1 3691.7 7.7523 0.199 60 3290.9 3690.1 7.7024
700 0.2794 3472.7 3919.7 8.0535 0.2482 3471.8 3918.5 7.9983 0.2232 3470.9 3917.4 7.9487
800 0.3086 3658.3 4152.1 8.2808 0.2742 3657.6 4151.2 8.2258 0.2467 3657.0 4150.3 8.1765
900 0.3377 3850.5 4390.8 8.4935 0.3001 3849.9 4390.1 8.4386 0.2700 3849.3 4389.4 8.3895

1000 0.3668 4049.0 4635.8 8.6938 0.3260 4048.5 4635.2 8.6391 0.2933 4048.0 4634.6 8.5901
1100 0.3958 4253.7 4887.0 8.8837 0.3518 4253.2 4886.4 8.8290 0.3166 4252.7 4885.9 8.7800
1200 0.4248 4464.2 5143.9 9.0643 0.3776 4463.7 5143.4 9.0096 0.3398 4463.3 5142.9 8.9607
1300 0.4538 4679.9 5406.0 9.2364 0.4034 4679.5 5405.6 9.1818 0.3631 4679.0 5405.1 9.1329

P = 2.50 MPa (223.99) P = 3.00 MPa (233.90) P = 3.50 MPa (242.60)

Sat. 0.079 98 2603.1 2803.1 6.2575 0.066 68 2604.1 2804.2 6.1869 0.057 07 2603.7 2803.4 6.1253
225 0.080 27 2605.6 2806.3 6.2639 — — — — — — — —
250 0.087 00 2662.6 2880.1 6.4085 0.070 58 2644.0 2855.8 6.2872 0.058 72 2623.7 2829.2 6.1749
300 0.098 90 2761.6 3008.8 6.6438 0.081 14 2750.1 2993.5 6.5390 0.068 42 2738.0 2977.5 6.4461
350 0.109 76 2851.9 3126.3 6.8403 0.090 53 2843.7 3115.3 6.7428 0.076 78 2835.3 3104.0 6.6579
400 0.120 10 2939.1 3239.3 7.0148 0.099 36 2932.8 3230.9 6.9212 0.084 53 2926.4 3222.3 6.8405
450 0.130 14 3025.5 3350.8 7.1746 0.107 87 3020.4 3344.0 7.0834 0.091 96 3015.3 3337.2 7.0052
500 0.139 98 3112.1 3462.1 7.3234 0.116 19 3108.0 3456.5 7.2338 0.099 18 3103.0 3450.9 7.1572
600 0.159 30 3288.0 3686.3 7.5960 0.132 43 3285.0 3682.3 7.5085 0.113 24 3282.1 3678.4 7.4339
700 0.178 32 3468.7 3914.5 7.8435 0.148 38 3466.5 3911.7 7.7571 0.126 99 3464.3 3908.8 7.6837
800 0.197 16 3655.3 4148.2 8.0720 0.164 14 3653.5 4145.9 7.9862 0.140 56 3651.8 4143.7 7.9134
900 0.215 90 3847.9 4387.6 8.2853 0.179 80 3846.5 4385.9 8.1999 0.154 02 3845.0 4384.1 8.1276

1000 0.2346 4046.7 4633.1 8.4861 0.195 41 4045.4 4631.6 8.4009 0.167 43 4044.1 4630.1 8.3288
1100 0.2532 4251.5 4884.6 8.6762 0.210 98 4250.3 4883.3 8.5912 0.180 80 4249.2 4881.9 8.5192
1200 0.2718 4462.1 5141.7 8.8569 0.226 52 4460.9 5140.5 8.7720 0.194 15 4459.8 5139.3 8.7000
1300 0.2905 4677.8 5404.0 9.0291 0.242 06 4676.6 5402.8 8.9442 0.207 49 4675.5 5401.7 8.8723

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Superheated Vapor (Continued)

P = 4.0 MPa (250.40) P = 4.5 MPa (257.49) P = 5.0 MPa (263.99)

T (◦C) V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ

Sat. 0.049 78 2602.3 2801.4 6.0701 0.044 06 2600.1 2798.3 6.0198 0.039 44 2597.1 2794.3 5.9734
275 0.054 57 2667.9 2886.2 6.2285 0.047 30 2650.3 2863.2 6.1401 0.041 41 2631.3 2838.3 6.0544
300 0.058 84 2725.3 2960.7 6.3615 0.051 35 2712.0 2943.1 6.2828 0.045 32 2698.0 2924.5 6.2084
350 0.066 45 2826.7 3092.5 6.5821 0.058 40 2817.8 3080.6 6.5131 0.051 94 2808.7 3068.4 6.4493
400 0.073 41 2919.9 3213.6 6.7690 0.064 75 2913.3 3204.7 6.7047 0.057 81 2906.6 3195.7 6.6459
450 0.080 02 3010.2 3330.3 6.9363 0.070 74 3005.0 3323.3 6.8746 0.063 30 2999.7 3316.2 6.8186
500 0.086 43 3099.5 3445.3 7.0901 0.076 51 3095.3 3439.6 7.0301 0.068 57 3091.0 3433.8 6.9759
600 0.098 85 3279.1 3674.4 7.3688 0.087 65 3276.0 3670.5 7.3110 0.078 69 3273.0 3666.5 7.2589
700 0.110 95 3462.1 3905.9 7.6198 0.098 47 3459.9 3903.0 7.5631 0.088 49 3457.6 3900.1 7.5122
800 0.122 87 3650.0 4141.5 7.8502 0.109 11 3648.3 4139.3 7.7942 0.098 11 3646.6 4137.1 7.7440
900 0.134 69 3843.6 4382.3 8.0647 0.119 65 3842.2 4380.6 8.0091 0.107 62 3840.7 4378.8 7.9593

1000 0.146 45 4042.9 4628.7 8.2662 0.130 13 4041.6 4627.2 8.2108 0.117 07 4040.4 4625.7 8.1612
1100 0.158 17 4248.0 4880.6 8.4567 0.140 56 4246.8 4879.3 8.4015 0.126 48 4245.6 4878.0 8.3520
1200 0.169 87 4458.6 5138.1 8.6376 0.150 98 4457.5 5136.9 8.5825 0.135 87 4456.3 5135.7 8.5331
1300 0.181 56 4674.3 5400.5 8.8100 0.161 39 4673.1 5399.4 8.7549 0.145 26 4672.0 5398.2 8.7055

P = 6.0 MPa (275.64) P = 7.0 MPa (285.88) P = 8.0 MPa (295.06)

Sat. 0.032 44 2589.7 2784.3 5.8892 0.027 37 2580.5 2772.1 5.8133 0.023 52 2569.8 2758.0 5.7432
300 0.036 16 2667.2 2884.2 6.0674 0.029 47 2632.2 2838.4 5.9305 0.024 26 2590.9 2785.0 5.7906
350 0.042 23 2789.6 3043.0 6.3335 0.035 24 2769.4 3016.0 6.2283 0.029 95 2747.7 2987.3 6.1301
400 0.047 39 2892.9 3177.2 6.5408 0.039 93 2878.6 3158.1 6.4478 0.034 32 2863.8 3138.3 6.3634
450 0.052 14 2988.9 3301.8 6.7193 0.044 16 2978.0 3287.1 6.6327 0.038 17 2966.7 3272.0 6.5551
500 0.056 65 3082.2 3422.2 6.8803 0.048 14 3073.4 3410.3 6.7975 0.041 75 3064.3 3398.3 6.7240
550 0.061 01 3174.6 3540.6 7.0288 0.051 95 3167.2 3530.9 6.9486 0.045 16 3159.8 3521.0 6.8778
600 0.065 25 3266.9 3658.4 7.1677 0.055 65 3260.7 3650.3 7.0894 0.048 45 3254.4 3642.0 7.0206
700 0.073 52 3453.1 3894.2 7.4234 0.062 83 3448.5 3888.3 7.3476 0.054 81 3443.9 3882.4 7.2812
800 0.081 60 3643.1 4132.7 7.6566 0.069 81 3639.5 4128.2 7.5822 0.060 97 3636.0 4123.8 7.5173
900 0.089 58 3837.8 4375.3 7.8727 0.076 69 3835.0 4371.8 7.7991 0.067 02 3832.1 4368.3 7.7351

1000 0.097 49 4037.8 4622.7 8.0751 0.083 50 4035.3 4619.8 8.0020 0.073 01 4032.8 4616.9 7.9384
1100 0.105 36 4243.3 4875.4 8.2661 0.090 27 4240.9 4872.8 8.1933 0.078 96 4238.6 4870.3 8.1300
1200 0.113 21 4454.0 5133.3 8.4474 0.097 03 4451.7 5130.9 8.3747 0.084 89 4449.5 5128.5 8.3115
1300 0.121 06 4669.6 5396.0 8.6199 0.103 77 4667.3 5393.7 8.5473 0.090 80 4665.0 5391.5 8.4842

P = 9.0 MPa (303.40) P = 10.0 MPa (311.06) P = 12.5 MPa (327.89)

Sat. 0.020 48 2557.8 2742.1 5.6772 0.018 026 2544.4 2724.7 5.6141 0.013 495 2505.1 2673.8 5.4624
325 0.023 27 2646.6 2856.0 5.8712 0.019 861 2610.4 2809.1 5.7568 — — — —
350 0.025 80 2724.4 2956.6 6.0361 0.022 42 2699.2 2923.4 5.9443 0.016 126 2624.6 2826.2 5.7118
400 0.029 93 2848.4 3117.8 6.2854 0.026 41 2832.4 3096.5 6.2120 0.020 00 2789.3 3039.3 6.0417
450 0.033 50 2955.2 3256.6 6.4844 0.029 75 2943.4 3240.9 6.4190 0.022 99 2912.5 3199.8 6.2719
500 0.036 77 3055.2 3386.1 6.6576 0.032 79 3045.8 3373.7 6.5966 0.025 60 3021.7 3341.8 6.4618
550 0.039 87 3152.2 3511.0 6.8142 0.035 64 3144.6 3500.9 6.7561 0.028 01 3125.0 3475.2 6.6290
600 0.042 85 3248.1 3633.7 6.9589 0.038 37 3241.7 3625.3 6.9029 0.030 29 3225.4 3604.0 6.7810
650 0.045 74 3343.6 3755.3 7.0943 0.041 0l 3338.2 3748.2 7.0398 0.032 48 3324.4 3730.4 6.9218
700 0.048 57 3439.3 3876.5 7.2221 0.043 58 3434.7 3870.5 7.1687 0.034 60 3422.9 3855.3 7.0536
800 0.054 09 3632.5 4119.3 7.4596 0.048 59 3628.9 4114.8 7.4077 0.038 69 3620.0 4103.6 7.2965
900 0.059 50 3829.2 4364.8 7.6783 0.053 49 3826.3 4361.2 7.6272 0.042 67 3819.1 4352.5 7.5182

1000 0.064 85 4030.3 4614.0 7.8821 0.058 32 4027.8 4611.0 7.8315 0.046 58 4021.6 4603.8 7.7237
1100 0.070 16 4236.3 4867.7 8.0740 0.063 12 4234.0 4865.1 8.0237 0.050 45 4228.2 4858.8 7.9165
1200 0.075 44 4447.2 5126.2 8.2556 0.067 89 4444.9 5123.8 8.2055 0.054 30 4439.3 5118.0 8.0987
1300 0.080 72 4662.7 5389.2 8.4284 0.072 65 4460.5 5387.0 8.3783 0.058 13 4654.8 5381.4 8.2717

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Superheated Vapor (Continued)

P = 15.0 MPa (342.24) P = 17.5 MPa (354.75) P = 20.0 MPa (365.81)

T (◦C) V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ

Sat. 0.010 337 2455.5 2610.5 5.3098 0.007 920 2390.2 2528.8 5.1419 0.005 834 2293.0 2409.7 4.9269
350 0.011 470 2520.4 2692.4 5.4421 — — — — — — — —
400 0.015 649 2740.7 2975.5 5.8811 0.012 447 2685.0 2902.9 5.7213 0.009 942 2619.3 2818.1 5.5540
450 0.018 445 2879.5 3156.2 6.1404 0.015 174 2844.2 3109.7 6.0184 0.012 695 2806.2 3060.1 5.9017
500 0.020 80 2996.6 3308.6 6.3443 0.017 358 2970.3 3274.1 6.2383 0.014 768 2942.9 3238.2 6.1401
550 0.022 93 3104.7 3448.6 6.5199 0.019 288 3083.9 3421.4 6.4230 0.016 555 3062.4 3393.5 6.3348
600 0.024 91 3208.6 3582.3 6.6776 0.021 06 3191.5 3560.1 6.5866 0.018 178 3174.0 3537.6 6.5048
650 0.026 80 3310.3 3712.3 6.8224 0.022 74 3296.0 3693.9 6.7357 0.019 693 3281.4 3675.3 6.6582
700 0.028 61 3410.9 3840.1 6.9572 0.024 34 3398.7 3824.6 6.8736 0.021 13 3386.4 3809.0 6.7993
800 0.032 10 3610.9 4092.4 7.2040 0.027 38 3601.8 4081.1 7.1244 0.023 85 3592.7 4069.7 7.0544
900 0.035 46 3811.9 4343.8 7.4279 0.030 31 3804.7 4335.1 7.3507 0.026 45 3797.5 4326.4 7.2830

1000 0.038 75 4015.4 4596.6 7.6348 0.033 16 4009.3 4589.5 7.5589 0.028 97 4003.1 4582.5 7.4925
1100 0.042 00 4222.6 4852.6 7.8283 0.035 97 4216.9 4846.4 7.7531 0.031 45 4211.3 4840.2 7.6874
1200 0.045 23 4433.8 5112.3 8.0108 0.038 76 4428.3 5106.6 7.9360 0.033 91 4422.8 5101.0 7.8707
1300 0.048 45 4649.1 5376.0 8.1840 0.041 54 4643.5 5370.5 8.1093 0.036 36 4638.0 5365.1 8.0442

P = 25.0 MPa P = 30.0 MPa P = 35.0 MPa

375 0.001 973 1798.7 1848.0 4.0320 0.001 789 1737.8 1791.5 3.9305 0.001 700 1702.9 1762.4 3.8722
400 0.006 004 2430.1 2580.2 5.1418 0.002 790 2067.4 2151.1 4.4728 0.002 100 1914.1 1987.6 4.2126
425 0.007 881 2609.2 2806.3 5.4723 0.005 303 2455.1 2614.2 5.1504 0.003 428 2253.4 2373.4 4.7747
450 0.009 162 2720.7 2949.7 5.6744 0.006 735 2619.3 2821.4 5.4424 0.004 961 2498.7 2672.4 5.1962
500 0.011 123 2884.3 3162.4 5.9592 0.008 678 2820.7 3081.1 5.7905 0.006 927 2751.9 2994.4 5.6282
550 0.012 724 3017.5 3335.6 6.1765 0.010 168 2970.3 3275.4 6.0342 0.008 345 2921.0 3213.0 5.9026
600 0.014 137 3137.9 3491.4 6.3602 0.011 446 3100.5 3443.9 6.2331 0.009 527 3062.0 3395.5 6.1179
650 0.015 433 3251.6 3637.4 6.5229 0.012 596 3221.0 3598.9 6.4058 0.010 575 3189.8 3559.9 6.3010
700 0.016 646 3361.3 3777.5 6.6707 0.013 661 3335.8 3745.6 6.5606 0.011 533 3309.8 3713.5 6.4631
800 0.018 912 3574.3 4047.1 6.9345 0.015 623 3555.5 4024.2 6.8332 0.013 278 3536.7 4001.5 6.7450
900 0.021 045 3783.0 4309.1 7.1680 0.017 448 3768.5 4291.9 7.0718 0.014 883 3754.0 4274.9 6.9886

1000 0.023 10 3990.9 4568.5 7.3802 0.019 196 3978.8 4554.7 7.2867 0.016 410 3966.7 4541.1 7.2064
1100 0.025 12 4200.2 4828.2 7.5765 0.020 903 4189.2 4816.3 7.4845 0.017 895 4178.3 4804.6 7.4057
1200 0.027 11 4412.0 5089.9 7.7605 0.022 589 4401.3 5079.0 7.6692 0.019 360 4390.7 5068.3 7.5910
1300 0.029 10 4626.9 5354.4 7.9342 0.024 266 4616.0 5344.0 7.8432 0.020 815 4605.1 5333.6 7.7653

P = 40.0 MPa P = 50.0 MPa P = 60.0 MPa

375 0.001 641 1677.1 1742.8 3.8290 0.001 559 1638.6 1716.6 3.7639 0.001 503 1609.4 1699.5 3.7141
400 0.001 908 1854.6 1930.9 4.1135 0.001 731 1788.1 1874.6 4.0031 0.001 634 1745.4 1843.4 3.9318
425 0.002 532 2096.9 2198.1 4.5029 0.002 007 1959.7 2060.0 4.2734 0.001 817 1892.7 2001.7 4.1626
450 0.003 693 2365.1 2512.8 4.9459 0.002 486 2159.6 2284.0 4.5884 0.002 085 2053.9 2179.0 4.4121
500 0.005 622 2678.4 2903.3 5.4700 0.003 892 2525.5 2720.1 5.1726 0.002 956 2390.6 2567.9 4.9321
550 0.006 984 2869.7 3149.1 5.7785 0.005 118 2763.6 3019.5 5.5485 0.003 956 2658.8 2896.2 5.3441
600 0.008 094 3022.6 3346.4 6.0114 0.006 112 2942.0 3247.6 5.8178 0.004 834 2861.1 3151.2 5.6452
650 0.009 063 3158.0 3520.6 6.2054 0.006 966 3093.5 3441.8 6.0342 0.005 595 3028.8 3364.5 5.8829
700 0.009 941 3283.6 3681.2 6.3750 0.007 727 3230.5 3616.8 6.2189 0.006 272 3177.2 3553.5 6.0824
800 0.011 523 3517.8 3978.7 6.6662 0.009 076 3479.8 3933.6 6.5290 0.007 459 3441.5 3889.1 6.4109
900 0.012 962 3739.4 4257.9 6.9150 0.010 283 3710.3 4224.4 6.7882 0.008 508 3681.0 4191.5 6.6805

1000 0.014 324 3954.6 4527.6 7.1356 0.011 411 3930.5 4501.1 7.0146 0.009 480 3906.4 4475.2 6.9127
1100 0.015 642 4167.4 4793.1 7.3364 0.012 496 4145.7 4770.5 7.2184 0.010 409 4124.1 4748.6 7.1195
1200 0.016 940 4380.1 5057.7 7.5224 0.013 561 4359.1 5037.2 7.4058 0.011 317 4338.2 5017.2 7.3083
1300 0.018 229 4594.3 5323.5 7.6969 0.014 616 4572.8 5303.6 7.5808 0.012 215 4551.4 5284.3 7.4837

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Compressed Liquid

P = 5 MPa (263.99) P = 10 MPa (311.06) P = 15 MPa (342.24)

T (◦C) V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ V̂ Û Ĥ Ŝ

Sat. 0.001 285 9 1147.8 1154.2 2.9202 0.001 452 4 1393.0 1407.6 3.3596 0.001 658 1 1585.6 1610.5 3.6848
0 0.000 997 7 0.04 5.04 0.0001 0.000 995 2 0.09 10.04 0.0002 0.000 992 8 0.15 15.05 0.0004
20 0.000 999 5 83.65 88.65 0.2956 0.000 997 2 83.36 93.33 0.2945 0.000 995 0 83.06 97.99 0.2934
40 0.001 005 6 166.95 171.97 0.5705 0.001 003 4 166.35 176.38 0.5686 0.001 001 3 165.76 180.78 0.5666
60 0.001 014 9 250.23 255.30 0.8285 0.001 012 7 249.36 259.49 0.8258 0.001 010 5 248.51 263.67 0.8232
80 0.001 026 8 333.72 338.85 1.0720 0.001 024 5 332.59 342.83 1.0688 0.001 022 2 331.48 346.81 1.0656
100 0.001 041 0 417.52 422.72 1.3030 0.001 038 5 416.12 426.50 1.2992 0.001 036 1 414.74 430.28 1.2955
120 0.001 057 6 501.80 507.09 1.5233 0.001 054 9 500.08 510.64 1.5189 0.001 052 2 498.40 514.19 1.5145
140 0.001 076 8 586.76 592.15 1.7343 0.001 073 7 584.68 595.42 1.7292 0.001 070 7 582.66 598.72 1.7242
160 0.001 098 8 672.62 678.12 1.9375 0.001 095 3 670.13 681.08 1.9317 0.001 091 8 667.71 684.09 1.9260
180 0.001 124 0 759.63 765.25 2.1341 0.001 119 9 756.65 767.84 2.1275 0.001 115 9 753.76 770.50 2.1210
200 0.001 153 0 848.1 853.9 2.3255 0.001 148 0 844.5 856.0 2.3178 0.001 143 3 841.0 858.2 2.3104
220 0.001 186 6 938.4 944.4 2.5128 0.001 180 5 934.1 945.9 2.5039 0.001 174 8 929.9 947.5 2.4953
240 0.001 226 4 1031.4 1037.5 2.6979 0.001 218 7 1026.0 1038.1 2.6872 0.001 211 4 1020.8 1039.0 2.6771
260 0.001 274 9 1127.9 1134.3 2.8830 0.001 264 5 1121.1 1133.7 2.8699 0.001 255 0 1114.6 1133.4 2.8576
280 0.001 321 6 1220.9 1234.1 3.0548 0.001 308 4 1212.5 1232.1 3.0393
300 0.001 397 2 1328.4 1342.3 3.2469 0.001 377 0 1316.6 1337.3 3.2260
320 0.001 472 4 1431.1 1453.2 3.4247
340 0.001 631 1 1567.5 1591.9 3.6546

P = 20 MPa (365.81) P = 30 MPa P = 50 MPa

Sat. 0.002 036 1785.6 1826.3 4.0139
0 0.000 990 4 0.19 20.01 0.0004 0.000 985 6 0.25 29.82 0.0001 0.000 976 6 0.20 49.03 0.0014
20 0.000 992 8 82.77 102.62 0.2923 0.000 988 6 82.17 111.84 0.2899 0.000 980 4 81.00 130.02 0.2848
40 0.000 999 2 165.17 185.16 0.5646 0.000 995 1 164.04 193.89 0.5607 0.000 987 2 161.86 211.21 0.5527
60 0.001 008 4 247.68 267.85 0.8206 0.001 004 2 246.06 276.19 0.8154 0.000 996 2 242.98 292.79 0.8502
80 0.001 019 9 330.40 350.80 1.0624 0.001 015 6 328.30 358.77 1.0561 0.001 007 3 324.34 374.70 1.0440
100 0.001 033 7 413.39 434.06 1.2917 0.001 029 0 410.78 441.66 1.2844 0.001 020 1 405.88 456.89 1.2703
120 0.001 049 6 496.76 517.76 1.5102 0.001 044 5 493.59 524.93 1.5018 0.001 034 8 487.65 539.39 1.4857
140 0.001 067 8 580.69 602.04 1.7193 0.001 062 1 576.88 608.75 1.7098 0.001 051 5 569.77 622.35 1.6915
160 0.001 088 5 665.35 687.12 1.9204 0.001 082 1 660.82 693.28 1.9096 0.001 070 3 652.41 705.92 1.8891
180 0.001 112 0 750.95 773.20 2.1147 0.001 104 7 745.59 778.73 2.1024 0.001 091 2 735.69 790.25 2.0794
200 0.001 138 8 837.7 860.5 2.3031 0.001 130 2 831.4 865.3 2.2893 0.001 114 6 819.7 875.5 2.2634
220 0.001 169 3 925.9 949.3 2.4870 0.001 159 0 918.3 953.1 2.4711 0.001 140 8 904.7 961.7 2.4419
240 0.001 204 6 1016.0 1040.0 2.6674 0.001 192 0 1006.9 1042.6 2.6490 0.001 107 2 990.7 1049.2 2.6158
260 0.001 246 2 1108.6 1133.5 2.8459 0.001 230 3 1097.4 1134.3 2.8243 0.001 203 4 1078.1 1138.2 2.7860
280 0.001 296 5 1204.7 1230.6 3.0248 0.001 275 5 1190.7 1229.0 2.9986 0.001 241 5 1167.2 1229.3 2.9537
300 0.001 359 6 1306.1 1333.3 3.2071 0.001 330 4 1287.9 1327.8 3.1741 0.001 286 0 1258.7 1323.0 3.1200
320 0.001 443 7 1415.7 1444.6 3.3979 0.001 399 7 1390.7 1432.7 3.3539 0.001 338 8 1353.3 1420.2 3.2868
340 0.001 568 4 1539.7 1571.0 3.6075 0.001 492 0 1501.7 1546.5 3.5426 0.001 403 2 1452.0 1522.1 3.4557
360 0.001 822 6 1702.8 1739.3 3.8772 0.001 626 5 1626.6 1675.4 3.7494 0.001 483 8 1556.0 1630.2 3.6291
380 0.001 869 1 1781.4 1837.5 4.0012 0.001 588 4 1667.2 1746.6 3.8101

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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Saturated Solid–Vapor

Specific Volume Internal Energy Enthalpy Entropy
Temp
(◦C)

T

Press.
(kPa)

P

Sat.
Solid

V̂ S × 103

Sat.
Vapor

V̂ V

Sat.
Solid

ÛS

Evap.

ΔÛ

Sat.
Vapor

ÛV

Sat.
Liquid

ĤS

Evap.

ΔĤ

Sat.
Vapor

ĤV

Sat.
Liquid

ŜS

Evap.

ΔŜ

Sat.
Vapor

ŜV

0.01 0.6113 1.0908 206.1 −333.40 2708.7 2375.3 −333.40 2834.8 2501.4 −1.221 10.378 9.156
0 0.6108 1.0908 206.3 −333.43 2708.8 2375.3 −333.43 2834.8 2501.3 −1.221 10.378 9.157

−2 0.5176 1.0904 241.7 −337.62 2710.2 2372.6 −337.62 2835.3 2497.7 −1.237 10.456 9.219
−4 0.4375 1.0901 283.8 −341.78 2711.6 2369.8 −341.78 2835.7 2494.0 −1.253 10.536 9.283
−6 0.3689 1.0898 334.2 −345.91 2712.9 2367.0 −345.91 2836.2 2490.3 −1.268 10.616 9.348
−8 0.3102 1.0894 394.4 −350.02 2714.2 2364.2 −350.02 2836.6 2486.6 −1.284 10.698 9.414
−10 0.2602 1.0891 466.7 −354.09 2715.5 2361.4 −354.09 2837.0 2482.9 −1.299 10.781 9.481
−12 0.2176 1.0888 553.7 −358.14 2716.8 2358.7 −358.14 2837.3 2479.2 −1.315 10.865 9.550
−14 0.1815 1.0884 658.8 −362.15 2718.0 2355.9 −362.15 2837.6 2475.5 −1.331 10.950 9.619
−16 0.1510 1.0881 786.0 −366.14 2719.2 2353.1 −366.14 2837.9 2471.8 −1.346 11.036 9.690
−18 0.1252 1.0878 940.5 −370.10 2720.4 2350.3 −370.10 2838.2 2468.1 −1.362 11.123 9.762
−20 0.1035 1.0874 1128.6 −374.03 2721.6 2347.5 −374.03 2838.4 2464.3 −1.377 11.212 9.835
−22 0.0853 1.0871 1358.4 −377.93 2722.7 2344.7 −377.93 2838.6 2460.6 −1.393 11.302 9.909
−24 0.0701 1.0868 1640.1 −381.80 2723.7 2342.0 −381.80 2838.7 2456.9 −1.408 11.394 9.985
−26 0.0574 1.0864 1986.4 −385.64 2724.8 2339.2 −385.64 2838.9 2453.2 −1.424 11.486 10.062
−28 0.0469 1.0861 2413.7 −389.45 2725.8 2336.4 −389.45 2839.0 2449.5 −1.439 11.580 10.141
−30 0.0381 1.0858 2943 −393.23 2726.8 2333.6 −393.23 2839.0 2445.8 −1.455 11.676 10.221
−32 0.0309 1.0854 3600 −396.98 2727.8 2330.8 −396.98 2839.1 2442.1 −1.471 11.773 10.303
−34 0.0250 1.0851 4419 −400.71 2728.7 2328.0 −400.71 2839.1 2438.4 −1.486 11.872 10.386
−36 0.0201 1.0848 5444 −404.40 2729.6 2325.2 −404.40 2839.1 2434.7 −1.501 11.972 10.470
−38 0.0161 1.0844 6731 −408.06 2730.5 2322.4 −408.06 2839.0 2430.9 −1.517 12.073 10.556
−40 0.0129 1.0841 8354 −411.70 2731.3 2319.6 −411.70 2838.9 2427.2 −1.532 12.176 10.644

V̂ [=] m3/kg; Û , Ĥ [=] J/g = kJ/kg; Ŝ [=] kJ/kg K
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A.IV Enthalpies and Gibbs Energies of Formation

Standard Enthalpies and Gibbs Energies of Formation at 298.15 K for One Mole of Each
Substance from Its Elements

State ΔfH
◦ ΔfG

◦

Chemical Species (See Note) kJ/mol of the Substance Formed

Paraffinic Hydrocarbons
Methane CH4 (g) −74.5 −50.5
Ethane C2H6 (g) −83.8 −31.9
Propane C3H8 (g) −104.7 −24.3
n-Butane C4H10 (g) −125.8 −16.6
n-Pentane C5H12 (g) −146.8 −8.7
n-Pentane C5H12 (l) −173.1 −9.2
n-Hexane C6H14 (g) −166.9 0.2
n-Heptane C7H16 (g) −187.8 8.3
n-Octane C8H18 (g) −208.8 16.3
n-Octane C8H18 (l) −255.1 —

Unsaturated Hydrocarbons
Acetylene C2H2 (g) 227.5 210.0
Ethylene C2H4 (g) 52.5 68.5
Propylene C3H6 (g) 19.7 62.2
1-Butene C4H8 (g) 1.2 70.3
1-Pentene C5H10 (g) −21.3 78.4
1-Hexene C6H12 (g) −42.0 86.8
1-Heptene C7H14 (g) −62.8 —
1,3-Butadiene C4H6 (g) 109.2 149.8

Aromatic Hydrocarbons
Benzene C6H6 (g) 82.9 129.7
Benzene C6H6 (l) 49.1 124.5
Ethylbenzene C8H10 (g) 29.9 130.9
Naphthalene C10H8 (s) 78.5 —
Styrene C8H8 (g) 147.4 213.9
Toluene C7H8 (g) 50.2 122.1
Toluene C7H8 (l) 12.2 113.6

Cyclic Hydrocarbons
Cyclohexane C6H12 (g) −123.1 31.9
Cyclohexane C6H12 (l) −156.2 26.9
Cyclopropane C3H6 (g) 53.3 104.5
Methylcyclohexane C7H14 (g) −154.8 27.5
Methylcyclohexane C7H14 (l) −190.2 20.6
Cyclohexene C6H10 (l) 102.5

Oxygenated Hydrocarbons
Acetaldehyde C2H4O (g) −166.2 −134.4
Acetic Acid CH3COOH (l) −484.5 −389.9
Acetic Acid CH3COOH (aq) −486.1 −396.5
1,2-Ethanediol C2H6O2 (l) −454.8 −323.1
Ethanol C2H6O (g) −235.1 −168.5
Ethanol C2H6O (l) −277.7 −174.8
Ethyl acetate CH3COOC2H5 (l) −478.8 −332.4
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Appendix A.IV (Continued)

State ΔfH
◦ ΔfG

◦

Chemical Species (See Note) kJ/mol of the Substance Formed

Ethylene oxide C2H4O (g) −52.6 −13.0
Formaldehyde CH2O (g) −108.6 −102.5
Formic acid HCOOH (l) −424.7 −361.4
Methanol CH4O (g) −200.7 −162.0
Methanol CH4O (l) 238.7 −166.3
Phenol C6H5OH (s) −165.0 −50.9

Inorganic Compounds
Aluminum oxide Al2O3 (s, α) −1675.7 −1582.3
Aluminum chloride AlCl3 (s) −704.2 −628.8
Ammonia NH3 (g) −46.1 −16.5
Ammonia NH3 (aq) — −26.5
Ammonium nitrate NH4NO3 (s) −365.6 −183.9
Ammonium chloride NH4Cl (s) −314.4 −202.9
Barium oxide BaO (s) −553.5 −525.1
Barium chloride BaCl2 (s) −858.6 −810.4
Bromine Br2 (l) 0 0
Bromine Br2 (g) 30.9 3.1
Calcium carbide CaC2 (s) −59.8 −64.9
Calcium carbonate CaCO3 (s) −1206.9 −1128.8
Calcium chloride CaCl2 (s) −795.8 −748.1
Calcium chloride CaCl2 (aq) — −8101.9
Calcium chloride CaCl2·6H2O (s) −2607.9 —
Calcium hydroxide Ca(OH)2 (s) −986.1 −898.5
Calcium hydroxide Ca(OH)2 (aq) — −868.1
Calcium oxide CaO (s) −635.1 −604.0
Carbon dioxide CO2 (g) −393.5 −394.4
Carbon dioxide CO2 (aq) −413.8 −386.0
Carbon disulfide CS2 (l) 89.7 65.3
Carbon monoxide CO (g) −110.5 −137.2
Carbon tetrachloride CCl4 (l) −128.4 −65.2
Carbonic acid H2CO3 (aq) −699.7 −623.1
Hydrochloric acid HCl (g) −92.3 −95.3
Hydrochloric acid HCl (aq) −167.2 −131.2
Hydrogen bromide HBr (g) −36.4 −53.5
Hydrogen cyanide HCN (g) 135.1 124.7
Hydrogen cyanide HCN (l) 108.9 125.0
Hydrogen flouride HF (g) −271.1 −273.2
Hydrogen iodide HI (g) 26.5 1.7
Hydrogen peroxide H2O2 (l) −187.8 −120.4
Hydrogen sulfide H2S (g) −20.6 −33.6
Hydrogen sulfide H2S (aq) −39.7 −27.8
Iodine I2 (g) 62.3 19.8
Iodine I2 (s) 0 0
Iron (II) FeO (s) −272.0 —
Iron (III) oxide (hematite) Fe2O3 (s) −824.2 −742.2
Iron (II) sulfide FeS (s, α) −100.0 −100.4
Iron sulfide (pyrite) FeS2 (s) −178.2 −166.9
Lead oxide PbO (s, yellow) −217.3 −187.9
Lead oxide PbO (s, red) −219.0 −188.9
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Appendix A.IV (Continued)

State ΔfH
◦ ΔfG

◦

Chemical Species (See Note) kJ/mol of the Substance Formed

Lead dioxide PbO2 (s) −277.4 −217.3
Lithium chloride LiCl (s) −408.6 —
Lithium chloride LiCl·H2O (s) −712.6 —
Lithium chloride LiCl·2H2O (s) −1012.7 —
Lithium chloride LiCl·3H2O (s) −1311.3 —
Magnesium oxide MgO (s) −601.7 −569.4
Magnesium carbonate MgCO3 (s) −1095.8 −1012.1
Magnesium chloride MgCl2 (s) −641.3 −591.8
Mercury (I) chloride Hg2Cl2 (s) −265.2 −210.8
Mercury (II) chloride HgCl2 (s) −224.3 −178.6
Nitric acid HNO3 (l) −174.1 −80.7
Nitric acid HNO3 (aq) — −111.3
Nitric oxide NO (g) 90.3 86.6
Nitrogen dioxide NO2 (g) 33.2 51.3
Nitrous oxide N2O (g) 82.1 104.2
Nitrogen tetroxide N2O4 (g) 9.2 97.9
Potassium chloride KCl (s) −436.8 −409.1
Silicon dioxide SiO2 (s, α) −910.9 −856.6
Silver bromide AgBr (s) −100.4 −96.9
Silver chloride AgCl (s) −127.1 −109.8
Silver nitrate AgNO3 (s) −124.4 −33.4
Sodium bicarbonate NaHCO3 (s) −945.6 −847.9
Sodium carbonate Na2CO3 (s) −1130.7 −1044.4
Sodium carbonate Na2CO3·10H2O (s) −4081.3 —
Sodium chloride NaCl (s) −411.2 −384.1
Sodium chloride NaCl (aq) — −393.1
Sodium hydroxide NaOH (s) −425.6 −379.5
Sodium hydroxide NaOH (aq) — −419.2
Sodium sulfate Na2SO4 (s) −1382.8 −1265.2
Sodium sulfate·decahydrate Na2SO4·10H2O (s) −4322.5 −3642.3
Sulfur S2 (g) 129.8 81.0
Sulfur S2 (l) 1.1 0.3
Sulfur S2 (s) 0 0
Sulfur dioxide SO2 (g) −296.8 −300.2
Sulfur trioxide SO3 (g) −395.7 −371.1
Sulfur trioxide SO3 (l) −441.0 —
Sulfuric acid H2SO4 (l) −814.0 −690.0
Sulfuric acid H2SO4 (aq) — −744.5
Water H2O (g) −241.8 −228.6
Water H2O (l) −285.8 −237.1
Zinc oxide ZnO (s) −348.3 −318.3

Taken from TRC Thermodynamic Tables—Hydrocarbons, Thermodynamics Research Center, Texas A&M
University System, College Station, Tex.; “The NBS Tables of Chemical Thermodynamic Properties,” I.
Physical and Chemical Reference Data, Vol. 11, Suppl. 2, 1982; and a collection of other sources. Because
of the variety of sources used here and in the PROPERTY program, there may be very small differences
between the data here and in that program.
Note: All standard states are at 25◦C. The standard state for a gas, designated by (g), is the pure ideal gas at
1 bar. For liquids (l) and solids (s), the standard state is the substance in that state of aggregation at 1 bar and
25◦C. For solutes in aqueous solution, denoted by (aq), the standard state is the hypothetical ideal 1-molal
solution of the solute in water at 1 bar and 25◦C.
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A.V Heats of Combustion

Heat of Combustion in kJ/mol

H2O (l) H2O (g)
Compound Formula State CO2 (g) CO2 (g)

Hydrogen H2 (g) 285.840 241.826
Carbon C (s, graphite) 393.513 —
Carbon monoxide CO (g) 282.989 —
Methane CH4 (g) 890.35 802.32
Ethane C2H6 (g) 1559.88 1427.84
Propane C3H8 (g) 2220.05 2044.00
Propane C3H8 (l) 2204.06 2028.00
n-Butane C4H10 (g) 2878.52 2658.45
n-Butane C4H10 (l) 2857.02 2636.95
2-Methylpropane (isobutane) C4H10 (g) 2871.65 2651.58
2-Methylpropane (isobutane) C4H10 (l) 2851.92 2631.85
n-Pentane C5H12 (g) 3536.15 3272.06
n-Pentane C5H12 (l) 3509.54 3245.45
n-Hexane C6H14 (g) 4194.75 3886.64
n-Hexane C6H14 (l) 4163.12 3855.01
n-Heptane C7H16 (g) 4853.48 4501.36
n-Heptane C7H16 (l) 4816.91 4464.79
n-Octane C8H18 (g) 5512.21 5116.07
n-Octane C8H18 (l) 5470.71 5074.56
n-Nonane C9H20 (g) 6170.98 5730.82
n-Nonane C9H20 (l) 6124.54 5684.38
n-Decane C10H22 (g) 6829.71 6345.58
n-Decane C10H22 (l) 6778.33 6294.20
n-Dodecane C12H26 (g) 8147.21 7575.05
n-Dodecane C12H26 (l) 8085.96 7513.79
n-Hexadecane C16H34 (g) 10782.17 10033.94
n-Hexadecane C16H34 (l) 10701.17 9952.94
n-Eicosane C20H42 (g) 13417.13 12492.84
n-Eicosane C20H42 (l) 13316.37 12392.09
Benzene C6H6 (g) 3301.51 3169.46
Benzene C6H6 (l) 3267.62 3135.57
Methylbenzene (toluene) C7H8 (g) 3947.94 3771.88
Methylbenzene (toluene) C7H8 (l) 3909.95 3733.89
Ethylbenzene C8H10 (g) 4607.13 4387.05
Ethylbenzene C8H10 (l) 4564.87 4344.79
1,2-Dimethylbenzene (o-xylene) C8H10 (g) 4596.29 4376.21
1,2-Dimethylbenzene (o-xylene) C8H10 (l) 4552.86 4332.78
1,3-Dimethylbenzene (m-xylene) C8H10 (g) 4594.53 4374.46
1,3-Dimethylbenzene (m-xylene) C8H10 (l) 4551.86 4331.78
1,4-Dimethylbenzene (p-xylene) C8H10 (g) 4595.25 4375.17
1,4-Dimethylbenzene (p-xylene) C8H10 (l) 4552.86 4332.78
Cyclopentane C5H10 (g) 3319.54 3099.47
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Appendix A.V (Continued)

Heat of Combustion in kJ/mol

H2O (l) H2O (g)
Compound Formula State CO2 (g) CO2 (g)

Cyclopentane C5H10 (l) 3290.88 3070.80
Methylcyclopentane C6H12 (g) 3969.44 3705.35
Methylcyclopentane C6H12 (l) 3937.73 3673.64
Cyclohexane C6H12 (g) 3953.00 3688.91
Cyclohexane C6H12 (l) 3919.91 3655.81
Methylcyclohexane C7H14 (g) 4600.68 4292.57
Methylcyclohexane C7H14 (l) 4565.29 4257.18
Ethene (ethylene) C2H4 (g) 1410.99 1322.96
Propene (propylene) C3H6 (g) 2058.47 1926.43
1-Butene C4H8 (g) 2718.58 2542.53
Ethyne (acetylene) C2H2 (g) 1299.61 1255.60
Propyne (methylacetylene) C3H4 (g) 1937.65 1849.62
1-Butyne (ethylacetylene) C4H6 (g) 2597.68 2465.64
2-Butyne (dimethylacetylene) C4H6 (g) 2579.57 2447.53



Appendix B

Brief Descriptions of Computer Aids for Use with
This Book—A more detailed description of the
programs and worksheets appear on the Wiley
website for this book

Programs and worksheets to enhance the use of this book are on the website www.wiley
.com/college/sandler, with instructions on how to use them. These programs are in
the folder Appendix B on the website. However, the user is encouraged instead to use
the thermodynamics package in Aspen Plus(R). That program has updated data bases
and a very nice interface.
The most easily understood computational aids are the MATHCAD worksheets

because in this computer-algebra package equations are written, in general, in the ex-
act same form as in this book. Consequently, the MATHCAD worksheets are easily
changed to accommodate a different equation of state or activity coefficient model. The
suite of MATHCAD worksheets allows calculations of the thermodynamic properies
and phase behavior for both pure fluids and mixtures, including various flash calcula-
tions, activity coefficient fitting and phase behavior calculations, and chemical equilib-
rium constant and adiabatic flame temperature computations. However, theMATHCAD
package is required to use these worksheets.
VISUAL BASIC programs are provided in two forms. One is as easy-to-use stan-

dalone Windows-based executable programs. The second form is as VISUAL BASIC
code that can be modified if the user has access to a VISUAL BASIC compiler. The first
VISUAL BASIC program, called PROPERTY, retrieves pure component data from a
database of over 600 compounds, and can also be used to calculate vapor pressures and
heat capacities at a given temperature or over a range of temperatures. This program
is also called by the others in this suite to provide the pure component data needed
in those calculations. The pure fluid Peng-Robinson equation of state program can be
used to calculate thermodynamic properies and phase behavior at any temperature and
pressure. The Peng-Robinson mixture program is for the calculation of mixture vapor-
liquid equilibrium. The UNIFAC program uses the modified UNIFAC model for
vapor-liquid equilibrium calculations with the most recent parameters available at the
time of publication of this book. The final program in this set is used to calculate chem-
ical equilibrium constants at a given temperature or over a temperature range.
TheDOSBASIC programswere providedwith the third edition, and are also supplied

in stand-alone executable and BASIC code forms. They are a similar suite of VISUAL
BASIC programs, except that there is no PROPERTY database. The stand-alone ver-
sions run in a DOS window, and have less functionality and are not as user-friendly
as the VISUAL BASIC programs. Also, the DOS BASIC UNIFAC program uses the
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original version of UNIFAC (as a result of DOS BASIC memory limitations).
The BASIC code programs can be modified if a BASIC or QUICKBASIC compiler
is available.
We also supply three MATLAB programs: a pure fluid Peng-Robinson program,

a mixture Peng-Robinson program and a modified UNIFAC program. As there is no
property database for the MATLAB programs, all component data must be entered
manually. To run these either MATLAB 7.0 (or higher) must be installed on the com-
puter or the file MCRInstaller.exe must first be run (as described in Appendix B.IV).
The MCRInstaller is available from MATHWORKS, Inc.
The programs and worksheets mentioned here are available on the website for this

book. Once again I want to stress that using the Aspen Plus(R) is preferrable to using
the programs mentioned here.



Appendix C

Aspen Illustration Input Files. These are on the Website
for this Book

Illustrations 3.4-1, 3.4-2, and 3.4-4
Illustrations 4.5-1
Illustrations 5.1-1a and b, 5.2-1, 5.2-2, and 5.2-6
Illustrations 8.5-1, and 8.5-2
Illustrations 10.1-1, 10.1-2, 10.1-3, 10.1-4, 10.1-5, 10.1-7, and 10.1-8
Illustrations 10.2-2, 10.2-3, 10.2-4 (both NRTL and UNIQUAC),10.2-5 (NRTL),
10.2-6 (both NRTL, and UNIQUAC)

Illustrations 11.2-2, 11.2-5, 11.2-7, 11.2-11, 11.3-1, 11.3-2, and 11.4-1
Illustrations 13.1-1, 13.1-2, 13.1-3, 13.1-4, 13.1-5, 13.1-17, 13.1-8, 13.1-9,
13.2-1, 13.4-1, and 13.4-2

Illustration 14.3-2
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Appendix D

Answers to Selected Problems

This appendix contains answers to selected problems so that the user can check his or her work. However, only
the final answers are provided, not the complete solution. Therefore, these answers must be used with some
discretion. Unlike a simple algebra problem, for which there will be an exact solution, here the user should
remember that if the thermodynamic property chart is read somewhat differently than was done here, a slightly
different answer will be obtained. Likewise, if you have used one equation of state and I have used another in
the solution, or if you have used one activity coefficient model and I have used another, or even if you have fit
the parameters in an activity coefficient or equation-of-state model somewhat differently than I have, the final
answers will be somewhat different. Also, since there are slight differences in the databases used, there may be
some differences in the calculated results usingAspenPlus R© or the using the DOS- andWindows-based programs
I have provided. Therefore, except for the simplest problems (for example, those involving ideal gases), you may
not get exactly the same answers as I did. However, the differences should not be large.
Finally, because the world is not an ideal gas, equations of state or activity coefficients frequently must be

used to describe a real system of interest. This results in considerable mathematical complexity. Consequently,
many problems are best solved using AspenPlus R© or the computer software I have provided that is discussed
in the previous appendix, or with MATHCAD, MATLAB, MATHEMATICA, POLYMATH, or equation-solving
software and programs you develop on your own.
The solutions presented here were obtained with the software I developed, so the solutions may differ from

those obtained with “AspenPlus R© as a result of the difference in the thermodynamic databases used.”

Chapter 1

1.2 a. Water is inappropriate as a thermometric fluid
between 0◦C and 10◦C, since the volume is not
a unique function of temperature in this range.
b. The thermal expansion of mercury is not linear
with temperature, which introduces an error. For
example, at 10◦C the error is −0.068◦C.

Chapter 2

2.1 a. 0.1 g/m3. b. 32.35 minutes.
2.4 a. 0.5 moles of NO2. b. 1.32 hours.

Chapter 3

3.1 a. h = 1.57 m. b. vf = 134.9 m/s, which is
much too high because of neglected air and road
resistance.

3.5 With steam the final temperature is about 383 K or
656◦C, while with an ideal gas it is 600◦C.

3.14 Initial amount of steam in the tank is 194.9 kg. At
end of the process there is 215.3 kg of liquid and
67.5 kg of steam. Fraction of contents by weight
that is liquid is 0.761.

3.22 At 5 minutes T = 152.5 K, P = 0.69 bar, and the
rate of temperature change is −1.15 K/s.

3.25 Final pressure in both tanks is 133.3 bar; the final
temperature in tank 1 is 223.4 K; and in tank 2 is
328.0 K.

3.32 a. Using the pressure-enthalpy diagram, Ĥ = 153
kJ/kg, leading to T = ∼90 K with 55 percent of
the nitrogen being liquid. b. T = 135 K, and no
liquid is formed. Why?

Chapter 4

4.1 a. T = 8.31◦C. b. �S = Sgen = 64.6 J/K.
4.4 a. T = 308◦C. b. Sgen = 1.62 kJ/kg · K.
4.9 a. 627 kW. b. Sgen = 843 kJ/kg · h. c. 415 kW.
4.12 a.�N = −1768 mol. b. �N = −1152 mol.
4.16 a. W = 9334 J/mol and T = 549.4 K. b. W =

9191 J/mol and T = 520.9 K.
4.22 P f

1 = P f
2 = 133.3 bar, T f

1 = 226 K and T f
2 =

285 K.
4.23 a. P f

1 = P f
2 = 5 bar, T f

1 = 275.6◦C and T f
2 =

497.7◦C . b. P f
1 = P f

2 = 5 bar, T f
1 = T f

2 =
366◦C.
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Chapter 5

5.1 a. If the turbine does not drive the compressor, the
work is 30 kJ/kg, and C.O.P. = 4.30. b. The com-
pressor work is 34.8 kJ/kg and C.O.P. = 3.18.

5.8 a.Work = 533 kJ/kgmethane through compressors.
b. Work is 1713 kJ for each kg of LNG, and the
fraction of vapor is 0.689. c.Work is 1168 kJ/kg of
LNG produced.

5.9 0.535 kg of TNT.
5.12 a. 610 kJ/kg. b. 630 kJ/kg. c. 685 kJ/kg.

Chapter 6

6.1 a. 4.463◦C/MPa. b. 17.02◦C/MPa. 0.262.
6.12 3186 J/mol.
6.17 From P-R EOS, V = 1.667 × 10−3 m3/mol,

H = 21, 033 J/mol, S = 7.061 J/mol K; from
corresponding states V = 0.967 × 10−3 m3/mol,
H = 7253 J/mol, S = 27.5 J/mol K.

6.21 a. Q = −14088 J/mol, W = 11 540 J/mol.
b. Q = −12 136 J/mol, W = 12 319 J/mol.

6.31 a. T = 300◦C. b. T = 301.9◦C. c. T = 299.9◦C.
d. T = 267◦C.

Chapter 7

7.1 a. Ĝ = −307.8 J/g in both phases. b. At 225◦C
Ĝ = −314.1 J/g. c. At 210◦C Ĝ = −273.8 J/g.

7.13 a. �vapH ∼ 42.7 kJ/mol. b. �vapH ∼ 313.6
kJ/mol.

7.15 a. f = 15.3 bar. b. f = 69.25 kPa at 100 bar and
129.6 kPa at 1000 bar.

7.19 a. 31.8%. b. 28.3%.
7.24 PTP = 0.483 bar, TTP = 278.7 K.
7.35 a. Using the Peng-Robinson equation of state, by

trial and error, T = 225.35 K. b. 47.4 wt % liquid
and 52.6 wt % vapor (which corresponds to only
3.1 vol % liquid).

Chapter 8

8.9 a. 2. b. 3. c. 3.
8.10 a. 1. b. 4. c(i) 2, c(ii) 1.
8.13 a. 5. b. 3. c. 2.
8.15 a.−59.6 kJ. b.−6.59 kJ. c.−357 kJ. e.H1−H1 =

−46.0 kJ/mol and H2 − H2 = −2.3 kJ/mol.
8.29 170.5 kg ethylene glycol per minute.
8.35 59.9 kJ/mol of nitrogen entering the reactor.

Chapter 9

9.12 a. fO2 = 820 bar from corresponding states
and 735.1 bar from Peng-Robinson program.

b. fN2 = 1088 bar from corresponding states and
1043 bar from Peng-Robinson program. c. Lewis-
Randall rule with pure component correspond-
ing states fN2 = 761.6, and fN2 = 246.0 bar.
d. fN2 = 732.3, and fN2 = 224.9 bar.

9.23 a. γCH4 = 1.080 and γN2 = 1.073. b. 88.8 J/mol.
c. 5.984 J/mol K.

Chapter 10

Section 10.1

10.1-1 a. T = 293.7 K, yET = 0.4167, yP = 0.3730,
yNB = 0.1610, and yMP = 0.2502. b. T = 314.2
K, yET = 0.0039, yP = 0.0337, yNB = 0.5215,
and yMP = 0.4409. c. L = 0.8667, xET = 0.0225,
xP = 0.0858, xNB = 0.4258, and xMP = 0.4659.
V = 0.1333, yET = 0.2289, yP = 0.1921,
yNB = 0.2326, and yMP = 0.3464.

10.1-3 a. Pdew = 0.768 bar, y5 = 0.071, y6 = 0.338,
y7 = 0.592. b. Pbub = 1.258 bar, y5 = 0.541,
y6 = 0.36, y7 = 0.093.

10.1-6 21.8%.

Section 10.2

10.2-2 Using the Van Laar expression, xW = 0.075,
xFURF = 0.925, yW = 0.867, and yFURF =
0.129.

10.2-5 a. α = 1.075, β = 1.029.
10.2-14 P = 0.6482 bar, y1 = 0.4483, and y2 = 0.5517.
10.2-33 a. 3.658 bar. b. 3.601 bar.

Section 10.3

10.3-1 At 1 bar, T = 231.31 K, yC2 = 0.3444,
yC3 = 0.5907, and yC4 = 0.0649. At 20 bar,
T = 341.99 K, yC2 = 0.1261, yC3 = 0.6642,
and yC4 = 0.2097. At 40 bar, T = 384.56 K,
yC2 = 0.0699, yC3 = 0.6135, and yC4 = 0.3168.

10.3-3 At 20 bar, at T = 350 K, xC2 = 0.0258, xC3 =
0.4928, and xC4 = 0.4814. yC2 = 0.0690, yC3 =
0.6304, and yC4 = 0.3007; also V/L = 0.5612/
0.4388.

10.3-8 KM = 13.95, and KB = 0.009 08.

Chapter 11

Section 11.1

11.1-3 a. xN = 0.0001. b. xN = 0.000 059 1, HN =
1692 bar.

11.1-6 xCO2 = 0.022 15.
11.1-12 a. From the Steam Tables P = 3.169 kPa.

b. P = 101.3 kPa, yW = 0.0313.
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Section 11.2

11.2-4 a.One-constant Margules is not consistent with the
data; using the liquid compositions of both species
gives two different A values. b. δP = 12.0 or 6.4.

Section 11.3

11.3-1 a. γB = 15.24, γB = 0.257, and yW = 0.743.
b. γB = 1.524, and γW = 1.60. c. 1.013 bar.

11.3-3 a. xI
H = 0.0902, and xII

H = 0.9098. b. P = 1.9657
bar, yH = 0.5795, and yEtOH = 0.4205.

Section 11.4

11.4-3 Sample answer: At xBr = 0.047, γCCl4
Br = 1.990,

and γH2O
Br = 298.8.

Section 11.5

11.5-5 The calculated osmotic pressure is 96.68 bar,
which is reasonably close to the rule-of-thumb
value of 100 bar.

Chapter 12

Section 12.1

12.1-1 Using the regular solution model, xN is predicted
to be 0.2655 in chlorobenzene, 0.256 in benzene,
0.239 in toluene, and 0.221 in CCl4.

12.1-3 The 49.5◦C isotherm is fit reasonably well with
kCO2−B = 0.08.

12.1-4 a. yN = 0.006 92. b. yN = 0.002 25.
12.1-7 Heat of fusion is 6.093 kJ/mol

Section 12.3

12.3-2 221.6 g of methanol, 318.6 g of ethanol, or
636.9 g of glycerol, assuming the solutions are
ideal. These correspond to 16.5 wt % (vs. 18.1 wt
% exp) methanol, 21 wt% (24.4 wt% exp) ethanol,
and 35.5 wt % (38.9 wt % exp) glycerol.

12.3-5 a. γW = 0.9445 (87 g), 0.8744 (177 g), and 0.8105
(272 g). b. �T (K) = −15.95 (87 g), −33.76
(177 g) and −49.99 (272 g) including the �CP

term.

Section 12.4

12.4-4 Sample result: At z = 0.5, TS = 393.54 K, TL =
372.61 K, TLLE = 500 K, xI

1 = 0.256, xI
1 =

0.744.

12.4-7 Sample result: At 85 K, xN = 0.158, yN = 0.512,
P vap

N = 3.284 bar, and P vap
O = 0.5867 bar.

Section 12.5

12.5-3 a. CB,H2O = 1.05×10−3 g/m3, CB,soil = 1.070×
10−3 g/m3, and CB,air = 0.239 × 10−3 g/m3,
CB,fish = 0.707 × 10−3 g/m3.

Section 12.6

12.6-1 b. x152 = 0.0377, x114 = 0.6025, and x22 =
0.3598.

Chapter 13

(Note that all the calculations were done with the DOS-
based CHEMEQ program. Slightly different answers will
be obtained if AspenPlus R© or the Windows-based pro-
gram is used to calculate the chemical equilibrium
constants.)

13.1 94.4%.
13.4 14970 bar.
13.6 a. 0.0253 bar. b. 0.0122 bar.

13.14 yC2H5OH = yH2 ∼ 0, yCH3CHO = yH2O ∼ 0.197,
and yO2 ∼ 0.049.

13.18 a. Ka,1 = 0.9731, Ka,2 = 0.1191, yC4H10 =
0.147, yC4H10 = 0.308, and yH2 = 0.446.

13.32 �rxnGo = 30.2 kJ/mol.
13.50 a.�rxnGo (267 K) = 6.65 kJ,�rxnGo (255 K) =

5.47 kJ. b. �rxnHo = 13.57 kJ,�rxnSo =
−75.74 kJ/mol. c. 288.8 kPa.

13.78 Sample result: At pH = 5.6 the charge is calculated
to be +1.255 × 10−4.

Chapter 14

14.1 a. Tad = 3553 K, X = 0.659, yH2 = 0.291,
yO2 = 0.146, yH2O = 0.563. b. Tad = 3343 K,
X = 0.835, yH2 = 0.104, yO2 = 0.368, yH2O =
0.528. c. Tad = 1646 K, X = 1.0, yH2 = 0, yO2 =
0.095, yH2O = 0.190, yN2 = 0.715.

14.3 Using the CHEMEQ program, Ka = 345, X =
0.927, P = 0.5434 bar, and Q = −96.7 kJ.

14.5 11.87 kJ/mol at a body temperature of 310.1 K.

Chapter 15

15.21 YP/S = 0.024, YN/S = 0.08535, YW/S = −0.594,
YO/S = 0.3579, and only 2.4% of carbon in glu-
cose is converted to ethanol.

15.25 Sample results: At 4 cm the concentration is 0.649
mg/g. b. 6.763 mg/g.
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Absolute entropy, 384
Absolute pressure. See Pressure
Absolute temperature scale, 14, 187, 219
Absolute-pressure scale, 12
Acentric factor, 255–256
Acidity of solutions, 799–817

apparent equilibrium constant, 807
buffer, 815–816
effect of added salt on weak acid
solution, 811–813

estimating pK of amino acid in solution,
811

Henderson-Hasselbalch equation, 817
strong acid with strong base

pH of solution with, 800–804
titration of, 805

weak acid, 807–808
pH of solution with, 807–810

weak acid + strong base, 813–815
pH of solution with, 814
titration of, 814–815

Activity coefficient
calculation of

from data for the solubility of a solid,
696

from distribution coefficient data,
666–670

consistency test for, 434–435, 557
defined, 429
essentially immiscible mixture, 628
experimental determination of, 541,
552–566

for a partially miscible mixture, 629–630
from the Gibbs energy, 432–433
general liquid-liquid equilibrium
relation using, 621

Gibbs-Duhem equation for, 434–435
group contribution model, see UNIFAC
infinite dilution, 562–565
interrelating two in a binary mixture, 459
mean ionic, 485
multicomponent excess Gibbs energy
models, 493

of a solvent in an electrolyte solution,
495–498

of hemoglobin, 477–478
of proteins, 477
of water in an aqueous sodium chloride
solution, 498

one-constant Margules, 448
pressure dependence of, 435
temperature dependence of, 435–436
vapor-liquid equilibrium (γ-φ method),
538–568

Activity coefficient models
Analytical Solution of Groups (ASOG),
466

correlative liquid mixture, 446–460
Flory-Huggins, 454
in choosing the appropriate
thermodynamic model, 490–493

Margules, 449–450
multicomponent excess Gibbs energy,
493–495

NRTL, 453–454
recommended, 492
regular solution, 463–467
to calculate vapor-liquid-liquid
equilibrium, 654–659

to predict liquid-liquid equilibrium,
622–626

to predict vapor-liquid-liquid
equilibrium, 654–659

UNIFAC, 466–468
UNIQUAC, 455–456
use of to correlate data, 452–453
van Laar, 451
Wilson, 453

Activity coefficient models and species
activities at equilibrium, aqueous. See
Electrolyte solutions

Activity, defined, 477, 742
Adiabatic flame temperature, equations to
calculate, 864–867

Adiabatic flash vaporization, 522
Adiabatic mixing of acid and water,
temperature change on, 376–377

Adiabatic reaction temperature, 863–867
Adiabatic system, defined, 3, 4
Air stripping, 2, 609–615
Air-water partition coefficient, calculation
of, 721–722

Anode, 883
Antifreeze, choice of, 728–729
Antoine equation, 337–339
Apparent equilibrium constant, 807
Aqueous solutions. See Electrolyte
solutions

Atmospheric pressure, 11, 12
ATP-ADP energy storage and delivery
mechanism, 932–937

Availability function, 140, 876, 950
Average biomass, 946–948
Azeotrope(s)

and distillation, 548–549
defined, 540–547
maximum boiling, minimum boiling,
540

Azeotropic data, to predict vapor-liquid
equilibrium of a binary mixture, 527–530

Azeotropic mixtures, 540

Balance equations. See also Energy balance
equations; Mass balance equations
applications of, 69–92

change in state variables between
fixed initial and final states, 80–83

for a batch reactor, 854–857
for a biochemical reactor, 937–960
for a black-box system, 861, 862, 869
for a chemical reactor, see Secs.
14.1–14.4

for a closed system, 286
for energy, Chapter 3, 372–373
for entropy, Chapter 4, 374–376
for mass, Chapter 2, 371–372
for mixtures, 371–378
for momentum, 93
in a frictionless process, 86
tank-type chemical reactor, 849–857
tubular reactor, 857–860
vapor-liquid explosion, 178–181
vapor-phase explosion, 186–189

overall reactor, Sec. 14.3, 860–869
Batch reactor, 854–857
Batteries, 895–896
Bender equarion, 244
Benedict-Webb-Rubin equation of state,
250

Binary interaction parameter kij , 440,
586–595
table of, 441

Biochemical reactions, 922–925
pH dependence of, 923–925
protein unfolding (denaturation),
925–932
as a function of pressure, 932, 968
as a function of temperature, 925–932

trimerization of a pancreatic hormone,
922–923

yield factors for, 939–941
Bioconcentration, 723
Bioreactors, 937–960

approximate bioreactor energy balance,
945–946

average biomass, properties of,
946–948

carbon balance, 941
data from, thermodynamic analysis of,
952

energy balance, 945–946
on an isothermal fermenter, 948–949

998
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entropy generation, 959
generalized degree of reduction, 947
hydrogen balance, 942
mass balance on, 938–943
nitrogen balance, 942
oxygen balance, 942–964

alternative form of, 949–951
production of Saccharomyces cerevisiae,
943–945

second law limitation on, 951–952
substrate

choosing, 955–958
maximum amount of product
obtainable from, 953–955

yield factors for, 939–941
Biota-water partition coefficient, 722–723
Bjerrium equation, 614
Boiling liquid-evaporating vapor
explosions (BLEVE), 189, 192

Boiling-point temperature, 153
Brayton power generation cycle, 174–176
British thermal unit (Btu), 5, 18
Bubble point pressure, 515–516

determination of, 545–547
estimation of, 521

Bubble point temperature, 515–521
estimation of, 519–521, 583

Buffer
amino acid as, 826–831
defined, 815–816

Calorie, defined, 18
Carbon balance in a biochemical reaction,
941–945

Carnot cycle, 116–118, 158, 160
efficiency, 118–122
heat pump, 176
schematic diagram of, 117
work, 116–118

Carnot engine, 116
Carnot, Nicolas Léonard Sadi, 116
Cathode, 883
Celsius temperature scale, 13
Chain rule, 204
Change of state

in thermodynamic properties of real
substances accompanying, 220–245

of a real gas, 245–250
Chemical equilibrium, 5, 734–843

combined chemical and phase
equilibrium, 399–404, 791–799

criteria for, 400–404
in multiple reactions, 400–404
in single reaction, 400–401

for a reaction involving gas and solid,
769–772

in a single-phase system, 735–739
as a function of temperature,
749–755

at high temperatures, 754–756
effect of pressure on an ideal
gas-phase, 758–759

effect of pressure on in an ideal gas,
751–753

gas phase chemical equilibrium
calculation, 744–745

high-pressure chemical equilibrium,
759–762

ideal gas-phase chemical equilibrium
calculation, 745–746

in a liquid mixture, 762–763
ionic dissociation reaction from
concentration data, 763–765

ratios, comparing, 757
reactions in gas phase, 739
reactions in ideal gas phase, 739
reactions in ideal liquid phase,
739–742

reactions in liquid phase, 739
nonideal gas/nonideal solution
contributions to, 756–759

several reactions occurring in a single
phase, 781–791
chemical equilibrium, 781–791
common ion effect in chemical
reaction of electrolytes, 786–788

starting point for calculations of,
735–739

Chemical equilibrium constant
and species activities at equilibrium, 744
as a function of temperature, 749–751
defined, 742
for ionic dissociation reaction, 763–765
variation of with temperature, 746–747
with ionic strength, simplified equation
for, 765–768

Chemical explosions, 869–875
energy released in, estimating

liquid, 873–874
solid, 874–875
vapor-phase, 871–872

reaction stoichiometry, 871
Chemical kinetics, 5
Chemical potential, 363–365
Chemical reaction(s)

availability and available work in,
882

biochemical, 938, 945, 958
completion, 741
coupled, 932–937
endothermic, 747
equilibria, 3
equilibrium state of, 745
exothermic, 747
heat of and convention for, 378–385
heterogeneous, 768–781
independent, 369
ionic, 763–765, 889–896
maximum work from, 882
notation for, 35, 368, 372
of electrolytes, common ion effect in,
786–788

standard state Gibbs energy change on,
381

standard state heat of, 380–382
third law reference state, 384–385

Chemical reactors
availability and available work, 882,
950, 951

bioreactors,, 937–960
black box, 860–866
electrochemical processes, 882–891

overall balance equations and adiabatic
reaction temperature, 860–869

tank-type, 849–857
thermodynamics of chemical explosions,
869–875

tubular reactor, 857–860
Chlorinated fluorinated hydrocarbons
(CFCs), 729–732

Clapeyron equation, 335
Clausius statement, Second Law of
Thermodynamics, 105, 115

Clausius, Rudolf, 106
Clausius-Clapeyron equation, 336, 513,
607

Closed system
defined, 3, 4
differential entropy change for, 114
energy balance, 57, 58
entropy balance for, 103–105, 135, 136

Coefficient of performance (C.O.P.)
defined, 165
for refrigeration, heat pump, 176–180
of an automobile air conditioner, 167
vapor compression cycle, 177, 178

Coexistence curves, 10, 11, 303–307, 332
Combined equation-of-state and excess
Gibbs energy model, 479–482

Combined equilibrium
chemical and phase, 399–405, 791–808,
891

chemical and vapor-liquid, 791–794
Combining rule, 440
Completion of a chemical reaction, 769,
773

Compressibility factor, 223, 253–256,
437–442
critical, 251–255
isothermal, 205, 213

Compressor, defined, 75
Concentration equilibrium ratios, 755
Congruent solidification, 718
Conservation of energy, 47–54
Conservation of mass equations, 29–35
Conservation of momentum, 93, 99
Constant-pressure heat capacity, 61

and constant-volume heat capacity,
calculating the difference between,
243–245

of liquid water, calculation of, 218–219
Constant-volume heat capacity, 60, 61
Continuous-flow stirred tank reactor,
373–378

Corresponding states, 250–262, 348
acentric factor, 255–256
critical-point conditions, 251–252
enthalpy change from, 258–260
entropy change from, 260–262
for van der Waals equation of state, 251,
253

fugacity coefficient, 315–316
three-parameter, 256–258
two-parameter, 255

Coupled chemical reactions, 932–937
Cricondenbar, 588
Cricondentherm, 588
Critical end point K, 582
Critical locus, 580
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Critical point, 251–252, 304, 491
Critical properties

estimation methods for, 268–272
for selected fluids, 254
of a pure fluid, 271–272

Critical solution temperature, 581
Cubic equations of state, 221–223

binary interaction parameters for, 440
Cubic equations of state. See also specific
equation names

Cycles:
Brayton, 174–176
Carnot, 116–122, 177
Ericsson, 170–174
Rankine, 158–165
Refrigeration, 164–167, 171, 176, 185
Stirling, 169–170
vapor compression refrigeration, 176, 185

Cyclic process, 3, 18, 22

Debye-Hückel limiting law, 485–486
Decomposition pressure, 772–774
Degrees of freedom, 330, 404–405
Denaturation of a protien

as a function of pressure, 932–935
as a function of temperature, 926–928
defined, 926

Denbigh procedure, 369
Density, defined, 4
Departure functions, 229–230
Derivatives of extensive properties at
constant mole number, 202

Dew point pressure, 514–515
determination of, 545–550
estimation of, 521–522

Dew point temperature, 515–521
estimation of, 519–521

Dibasic acid, ionization of, 818–828
Differential entropy change, 114
Diffusion, Fick’s first law of, 23
Dissociation constant, 764, 811–814
Distillation, 1

azeotropes and, 549
calculation of, 529–534
Rayleigh, 535
steam, of turpentine, 659–660
vapor-liquid equilibrium and, 527–529,
551–556

Distillation column
graphical design of, 531–535
simple design of, 528–535

Distribution coefficient, 663–677
calculation of activity coefficients from,
664–675

environmental, 614–617
Gibbs energy of transfer of an amino
acid, 674–675

liquid-liquid equilibrium relation, 664
octanol-water partition coefficient for a
pollutant, 670–675

purification of an antibiotic, 672–674

Ebulliometer, 561–563
Efficiency, engine, 114–116
Ehrenfest equations, 345
Electrical energy, 15

conversion of radiant energy to, 123–124
maximum conversion of solar energy to,
124–125

Electrical neutrality, 483–485
Electrical work, units of, 18, 884–886
Electrochemical cell

chemical equilibrium, 888
uses of, 883
voltage, 889–891

Electrochemical processes, 882–891
cell voltage from concentration
difference, 889–891

equilibrium constant from standard
half-cell potentials, 887–889

standard cell potential, 887
Electrolyte solution(s), 482–490

activity coefficient of a solvent in,
495–506

Debye-Hückel limiting law, 485, 486
electrical neutrality in, 483–435
ionic strength, 485–486
mean ionic activity coefficient, 485
mean ionic molality, 485
models, use of, 486–488
molality and molarity, 489–490

Electrostatic potential, in Gibbs-Donnan
equilibrium, 963–965

Ellingham diagram, 778
Endothermic chemical reaction, 746, 767,
866

Energy
conservation of, 47–54
conversion of heat to, 114–125
electrical, 15
equivalence of work and heat,
experiments designed to prove, 16, 17

flow problems, 5
general conservation principle, 17, 18
Gibbs, 111–114, 290, 307–322,
331–334, 361, 398–409, 416–506

Helmholtz, 111, 361
internal, 4, 47–54, 201–203, 207–224,
444
variation with T and V , 60–63, 228

kinetic, 4, 47–53, 73, 84–90
mechanical, 17, 18
potential, 4, 47–54, 84–90, 960, 967
thermal, 17, 18
transfer, 15

Energy balance
and calculated heat loads, 862–864
bioreactor, 946–948
closed and open systems, 57–58
commonly used forms of, 51–54
complete, 50–51
difference form of, 53
differential form of, 51
examples of using, 54–59
final result and choice of system, 54–57
for a continuous-flow stirred-tank
reactor, 373–377, 784

for a nonreacting system, 377–378
for a reacting system, 372–385
in an isothermal fermenter, 948–949
stirred-tank reactor, 850

Energy flow accompanying mass
flow, 47

Engine
Carnot, 116–119
efficiency, 117–119

Enhancement factor, 696
Enthalpy, 50

differential expression for, 207
effect of temperature and pressure on,
61–63, 225
gas, 61–63
liquid, 67, 225–231
solid, 67

excess change on mixing, 428–429
experimental determination of, 385–395
of formation, 380–381, 765
of fusion (melting), 335, 689–693, 704
partial molar, 359–360, 387–390

Enthalpy change
and departure functions, 229
between two states, 226–227
from corresponding states, 258–260
on mixing, 355

Enthalpy departure equation, 230–231
Enthalpy-entropy diagram, 63–64
Entropy, 99–108

absolute, 384
at equilibrium in a closed, isolated
system, 134–135

defined, 101–102
effect of temperature and pressure,
124–126, 225–231, 260

effect of temperature and volume,
126–127, 226–231

excess change on mixing, 429, 454
generation, 102–105, 127, 374–376
heat, work, engines and, 114–125
ideal gas, 125–126
internal generation of, 102–104, 127,
374

of all substances in perfect crystalline or
liquid state, 267

partial molar, 359–360, 418–421, 429
Entropy balance

and reversibility, 108–114
applications of, 128–140

and change in state variables,
123–125

at equilibrium in a closed, isolated
system, 134–137

to determine possibility of a process,
135–137

difference form of, 104–105
differential form of, 104
for a closed system, 102–104
for an open system, 102
rate-of-change form of, 104

Entropy change
and departure functions, 229
between two states, 227–228
for a solid or liquid, 126–128
from corresponding states, 260
of an ideal gas, 126
of matter, 125–128

Entropy generation
calculation of for a process, 127
in a fermentation, 841, 958–959

Environment. See Sec. 12.5
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Equations of change, for a multicomponent
system, 370–378
difference forms of, 376
differential forms of, 375
energy balance

for a continuous-flow stirred-tank
reactor, 373–378

for a reacting system, 372–377
formulation of, 371
species mass balance for a reacting
system, 371

total mass balance for a reacting system,
371–372

Equations of change, for a pure fluid
difference forms of, 32, 53, 104–107
differential forms of, 32, 51, 104

Equations of state, 20–21
Bender, 224
Benedict-Webb-Rubin, 250
Clausius, 222
combining rule, 440
computation of vapor pressure from,
322–330

corresponding states, 250–267
fundamental, 215–216
generalized, 263–268
ideal gas, 247–248
in choosing appropriate thermodynamic
model, 490

mixing rule, 439, 440, 479–482
models, recommended, 493
Peng-Robinson, 221–223, 231,
233–236, 250, 263–266, 268, 314–315,
323, 329, 341–344

Soave-Redlich-Kwong, 223, 266–267
thermal, 20
to calculate liquid-liquid equilibrium,
631–632

to calculate vapor-liquid-liquid
equilibrium, 654–660

to construct thermodynamics properties
chart, 231–232, 236–238, 325–330

to predict solubility of a gas in a liquid,
606–609

to predict solubility of a solid in
supercritical fluid (SCF), 696–698

van der Waals, 245–253, 314, 462
vapor-liquid equilibrium (φ-φ method),
510, 578–596

virial, 221–234, 313–314, 438, 695–696
volumetric, 20, 220–225, 250

Equilibrium
chemical, 286–294, 309–310, 734–843
combined chemical and phase, 402–405,
791–809

criteria for, 286–296, 309–310
in design of separation and purification
processes, 1

liquid-liquid, 617–653
local, 21
metastable, unstable, 8–9, 307
osmotic, 677–686, 960–965
phase, 10–12, 300–307, 322–330
reaction in a single phase, 735–768
solid-liquid, 689–694
solid-supercritical fluid, 696–699
stable, 8–9

vapor-liquid, 10, 299–307, 322–330
vapor-liquid-liquid, 652–663

Equilibrium constant
and species-activities at equilibrium,
relation between, 744

calculation of from standard half-cell
potentials, 887–893

variation of with temperature, 747, 780
general equation, 749
simplified equation, 749

Equilibrium partial pressure, calculation of
for oxidation of a metal, 778–780

Equilibrium state, 7–10, 15
defined, 5, 8, 22
evolution from nonequilibrium state, 10,
22

for the low pressure, gas-phase reaction,
735

of a chemically reacting system, 735
specification of, 18–19, 404–408
stable, 18

Ericsson cycle, 170–174
Excess Gibbs energy models

for binary mixtures, 446–460
for multicomponent mixtures, 493, 495

Excess mixing property, 429
Excess properties, Gibbs-Duhem equation
for, 435

Exothermic chemical reaction, 746
Exothermic mixing process, energy release
of, 362

Explosions
chemical, 869–875
energy release, 185–197, 872–873
mechanical, 185–197

Extensive variables, 19
Extent of reaction, molar, 37–39, 737
External energy, defined, 4

Fahrenheit temperature scale, 13
Fermentation

choosing a substrate for, 955–958
data, thermodynamic analysis of, 952
entropy generation in, 958–962
isothermal, energy balance in,
948–952

second-law limitations, 951, 952
Fermenters. See Bioreactors
Fick’s first law of diffusion, 23
First Law of Thermodynamics, 50–52, 105,
267–268

First Law of Thermodynamics. See also
Energy balance

First-order phase transition, 340
Flame temperature, adiabatic, 863
Flash calculations, 521–527, 584–587, 595

defined, 523
Flory-Huggins equations, 454–455

interaction parameter, 454
Flow compressor process, energy balance
equation, 57

Fluid mechanics, 5, 45
Fourier’s law of heat conduction, 23
Fractional ligand coverage, 917–918
Freezing point of liquid mixtures, 704–710

depression and eutectic point,
calculating, 706–708

of blood, 709
of water, 705

Freezing-point depression of a solvent due
to solute presence, 704–710
general equation, 704–705
simplified equation, 705

Fuel cell, calculation of energy produced
in, 867–869

Fugacity
approximation of, 318–319
computing from density data, 311–312
defined, 308
developing expressionsfor, from the
Gibbs energy, 432–434

equality of, as starting point of all phase
equilibrium calculations, 689

for a hydrocarbon mixture, 444–446
in phase equilibrium, 424–425
of a gas

using the Peng-Robinson equation of
state, 314–315

using the virial equation, 314–315
of a liquid using the Peng-Robinson
equation of state, 317–318

of a pure gas, 310
of a pure liquid, 316–318
of a solid, 320–322
of a subcooled liquid, 471
of ice from density data, 320–321
of species in mixtures, 422

gaseous mixtures, 436–443
in nonsimple mixtures, 468–478
liquid mixtures, 443–445

saturated steam, calculation of, 313
using the Lewis-Randall Rule, 436–438
using the Peng-Robinson equation of
state, 314–315, 440–445

using the virial equation of state,
438–439

Fugacity coefficient
corresponding states, 315–316
defined, 308–309
equation, 310–313
for a species in a mixture, 422–424
from Peng-Robinson equation of state,
314–318, 440–443

from van der Waals equation of state,
314

from virial equation of state, 313–314,
438–439

of gases and vapors, 471
Functional groups, 456
Fundamental equations of state, 215–216
Fusion, Gibbs energy of, 689–691, 704

γ-φ method for the calculation of
vapor-liquid equilibrium, Sec. 11.2,
509–510

Gas, chemical reaction in, 736, 739
constant, 13
heat capacity, 60–63, 205, 225–226
ideal, 12, 61, 125, 126, 417–421
solubility, 600–617

Gaseous mixtures, fugacity of species in,
436–443

Generalized degree of reduction,
946–948
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Generalized equations of state, 263–267
Gibbs-Duhem equation, 363–367, 387,
401, 459, 495, 557, 559

Peng-Robinson, 264–266
Soave-Redlich-Kwong, 266–267

Gibbs energy, 111–114, 290, 307–322,
335, 361, 385, 416–506
developing expressions for activity
coefficient and special fugacities from,
432–434

of formation, 379
selected oxides, 778

of mixing, 355–363, 419, 420, 428, 470
of transfer of an amino acid, 674–675
partial molar, 363–367, 372, 416–506
pure component, 738
to determine whether a mixture is ideal,
431–432

Gibbs phase rule
applications of, 406
defined, 410
for a one-component system, 330–334
multicomponent, multiphase system,
404–415

use of, 333–334
Gibbs, Josiah Willard, 215
Gibbs-Donnan equilibrium, 960–966

electrostatic potential in, 965–966
of a lysozyme solution, 963–965
osmotic pressure in, 963–965

Gibbs-Duhem equation
at constant T and P , 365–367
for activity coefficients, 435–436, 488
for binary mixture at constant T and P ,
367

for excess properties, 434
generalized, 363–367

Group contribution method, 456
Group contribution method. See also
Joback, UNIFAC and UNIQUAC

Half-cell reaction, 884–887
Harlecher-Braun equation, 338
Heat

conversion of mechanical energy or
work, 114

flow of, 15, 21
in conservation of energy, 47–54
of formation, 379, 764
of fusion, 335, 689, 704
of mixing, 355–359, 389, 420, 428
of reaction, 378–385, 747–749, 849,
852–854

standard states, 380–384, 747–749
of vaporization, 336, 463
sign convention for, 48

Heat capacity, 60–61, 225, 250
constant pressure, 61
constant volume, 60–61
of an ideal gas, 61–63, 226, 250

Heat conduction, Fourier’s law of, 23
Heat engine, 114–125, 158–180
Heat flow, by radiation, 107–108
Heat flux, 22
Heat load on a reactor, 851–863, 944
Heat of fusion, 335, 691–693, 704

Heat of mixing, 361
Heat of reaction

and convention for the thermodynamic
properties of reacting mixtures,
378–385

standard state, 380–384
Heat pump, 176–180
Helmholtz energy, 111, 360
Henderson-Hasselbalch equation, 817
Henry’s law

based on molality, 475–477
based on mole fraction, 474–475
constant, 473, 603
standard state, 478–479

Heterogeneous azeotropy, 659
Heterogeneous chemical reactions,
768–781
calculation of

chemical equilibrium for a reaction
involving a gas and a solid,
769–772

equilibrium partial pressures for the
oxidation of a metal, 777–780

solubility product from solubility
data, 775–777

the decomposition pressure of a solid,
772–774

components that appear in the same
phase, 768

determining whether an oxidation
reaction will occur, 780–781

solubility product, definition of, 774
High-pressure chemical equilibrium,
759–762

High-pressure vapor-liquid equilibrium
using equations of state (φ-φ method),
578–598

Hildebrand, Joel H., 463
Hilsch-Ranque vortex tube, 136
Horsepower, 5
Hydrocarbon mixture, species fugacity
calculation for, 444–446

Hydrogen balance for a biochemical
reactor, 942

Ice point, 14
Ideal gas equation of state, 60–63,
226–229, 246–274

Ideal gas heat capacity, 61–63, 226, 250
Ideal gas mixing properties, 499
Ideal gas mixture, 417–421

defined, 419
determining whether a gas mixture is
ideal, 421

hypothetical, 418
partial molar properties for,
418–421

properties of, 420
Ideal gas problem

entropy change to solve, 132
mass and energy balances to solve,
69–92

Ideal gas(es), 60–63, 226–229
defined, 12, 60, 417
effect of pressure on chemical
equilibrium of, 751–753

entropy change, 126
mass and energy balances, use of with,
74–75

pressure and heat and work flows in
computing, 90–92

temperature scale, 14, 219–220
thermometer, 14

Ideal gas-phase chemical equilibrium,
739
calculation, 745–746
effect of pressure on, 758–759

Ideal mixture(s)
defined, 426–428
Gibbs energy of, 431–433
vapor-liquid equilibrium in, 510–538

Ideal solution equilibrium relations,
603–604

Idealized incompressible fluid, 67–69
Incompressible fluid, 67
Independent chemical reactions, 368

example, 369, 375
Inert diluent, effect of, 745–746
Infinite-dilution activity coefficients,
determined from ebulliometry, 562–565

Insecticides, 720, 726
Integral mass balance, 31–35
Intensive variables, 19
Internal energy, defined, 4
Internal generation, 28–30, 99–103, 125,
373–376

International Association for the Properties
of Water and Steam (IAPWS), 224

International System (SI) of units, 6
International Table calorie, 18
Intrinsic stability, 293–300, 398
Inversion temperature, 279
Ion activity coefficient. See Electrolyte
Solutions

Ion dissociation reaction, chemical
equilibrium constant for, 763–765

Ionic strength, 485
Ionization constant, 764
Ionization of biochemicals, 817–831

charge on an amino acid as function of
pH, 822–826

dibasic acid, 818–831
pH of solution containing amino acid as
buffer, 826–831

Irreversible processes, 109–110, 139.
See also Entropy generation

Isenthalpic expansion, 58–59. See also
Joule-Thomson expansion

Isentropic process, 123. See also
Reversible processes

Isolated system, defined, 3–4
Isotherm, defined, 917
Isothermal compressibility, 205, 213
Isothermal enthalpy change of mixing,
calculation of, 395

Isothermal heat of reaction, 374
Isothermal partial vaporization (flash),
521–527, 584–586

Joback group contribution method,
269–271

Joule, 7, 18
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Joule’s experiments, 16–18
Joule, James Prescott, 16, 23
Joule-Thomson coefficient of steam,
calculation of, 216–217

Joule-Thomson expansion, 59, 70–71, 77,
93, 128, 153–155, 165
inversion temperature, 279

Kelvin temperature scale, 13–15
Kelvin, Lord, 106
Kelvin-Planck statement, Second Law of
Thermodynamics, 105–106, 115

Kinetic energy, 4, 47–54, 73–74, 83–89

Lagrange multiplier, 400
Langmuir isotherm, 917
Lattice vacancies, 713–718
LeChatelier and Braun, Principle of, 768,
836

Lever rule, 63–67
Lewis-Randall rule, 436–438, 510, 600
Ligand binding to a substrate, 917–921

fractional ligand coverage, 917–918
hemoglobin + oxygen binding, 918–921
warfarin, binding to human albumin, 921

Limit of stability, 293–300
Linde liquefaction process, 154–158
Liquefaction, 153–158
Liquid mixtures

activity coefficient of a species in, 429,
446–460, 493

fugacity of species in, 443–445
models, 446–460
nonsimple, 446
recommended equation-of-state models,
493

simple, 446
Liquid(s)

at low pressure, 67
critical point of, 304
effect of pressure on

enthalpy, 239–245
entropy, 241–242
internal energy, 240–241
volume, 239–242

energy required to pressurize, 242–243
entropy change for, 125–128
fugacity of, 316–317
solubility of a gas in, 606–609
solubility of a liquid in, 617–652
subcooled, 307
superheated, 307

Liquid-liquid equilibrium, 652–665
application to liquid-liquid extraction,
640–646

calculation of using an equation of state,
631–632

for a partially miscible mixture, 629–630
for an essentially immiscible mixture,
628–629

general relation using activity
coefficients, 621–626

mass balance calculation on a triangular
diagram, 636–640

measurement of, 620–621
polymer recycling, 632–635

prediction of using an activity coefficient
model, 622–626

Liquid-liquid extraction, 2, 640–646
Liquid-liquid-vapor equilibrium,
654–659

Liquid-solid equilibrium, 689
Liquid-vapor equilibrium, 322–330, 335,
507–598

Liquid-vapor interface, surface tension at,
342

Local equilibrium, 21
Low-pressure gas-phase reaction,
equilibrium state for, 735

Low-pressure vapor-liquid equilibrium
equation, 510
in nonideal mixtures, 538–578

Lower consulate/critical solution
temperature, 620, 626

Lower critical end point, 582

Mass balance, 2–3
calculation of on a triangular diagram,
635–640

difference form, 31–32
differential form, 31–32
for a nonreacting system, 377–378
for liquid mixture with a reversible
reaction, 40–42

for mixture with chemical reaction,
38–40, 860–864

for simultaneous reactions, 781–783
modeling of simple environmental
problem, 42–43

molar extent of reaction notation, 37–38
on a bioreactor, 940–941
on a black-box reactor, 855–857
rate-of-change form, 2, 30–35, 38
species, for a reacting system, 371
stirred-tank reactor, 850
total, for a reacting system, 371–372
tubular reactor, 857–860
using biochemical yield factors,
938–941

vapor-liquid equilibrium, 521–522
Mass flux, 22
Mass transfer, 5
Matter, thermodynamic properties of,
59–69
constant-pressure heat capacity, 61
constant-volume heat capacity, 60–61
entropy changes of, 125–128
ideal gas heat capacity, 61–63
idealized incompressible fluid or solid,
67–69

lever rule, 63, 66–67
solids or liquids at low pressure, 67

Maximum boiling azeotrope, 540
Maximum useful work, Sec. 14.5, 875–881
Maxwell relations, 207–208
Mayer, J. R., 23
Mean calorie, 18
Mean ionic activity coefficient, 485–487
Mean ionic molality, 485
Mechanical contact, 4
Mechanical energy, 17–18, 119

conversion of radiant energy to, 123–124

maximum conversion of solar energy to,
122–123

Mechanical explosions, 185–193
boiling liquid-evaporating vapor
explosions (BLEVEs), 191–193

compressed air tank, 188–190
steam tank, 187–188
steam-water, energy released from,
190–192

two-phase, energy released from, 193
vapor-phase, 186–187

Mechanical stability, 626
Mechanical stability criterion, 297–299
Mechanical work, units of, 18
Membrane potentials

chloride ion concentration within a
nerve cell, 932–936

estimate of, 966
Metal oxides, 777–780
Metastable region, 300–307
Methane, thermodynamic properties of, 66
Minimum boiling azeotrope, 540
Minimzation of Gibbs energy, 290,
396–404, 735–739, 797

Mixing
at constant T and P , 385–395, 417–420
at constant T and V , 499
enthalpy change on, 355, 426, 430
entropy change on, 429, 454
Gibbs energy change on, 354–363,
419–421, 470

Helmholtz energy change on, 361,
396–397

of ideal gases, 416–421
volume change on, 355–359, 385–395

Mixing rules for equations of state,
439–440, 479–482

Mixture(s)
azeotropic, 540–549
Clapeyron equation for, 335–336
critical point of, 491
enthalpy change on mixing, 355
equations of change for, 370–378
excess property, 429
exothermic mixing process, energy
release of, 362–363

fugacity of a species
by two methods, 442–443
gaseous, 436–446
hydrocarbon mixture, 444–445
liquid, 443–445
solid, 445–446

generalized Gibbs-Duhem equation,
363–367

Gibbs energy, analysis of, 431–432
heat of mixing, 361–363
ideal gas, 417–421
ideal mixture, 425–436
isothermal enthalpy change of mixing,
calculation of, 395

liquid, 493
mass and energy balances, nonreacting
system, 377–378

multicomponent, 493
nonsimple, 446, 468–478
partial molar Gibbs energy, 363–367
partial molar properties, 359–360
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polymer-solvent, 565
pure component thermodynamic
properties, 359

Redlich-Kister expansion, 388–391
Solid, 445–446, 714–718
species concentration in, 354, 357–358
temperature change on adiabatic mixing
of acid and water, 362–363

thermodynamic description of,
354–363

thermodynamic properties
at constant T and P , 444
estimating, 426–427

thermodynamic theory of, 3
two-phase, properties of, 302
van Laar constants for selected binary,
451

vapor, 446–535
vapor-liquid equilibrium in, 2, 507–594
volume change on mixing, 355–357, 361

Moderation, Principle of, 767
Molality, 475–477, 489–490, 903

mean ionic, 485
Molar extent of reaction, 37–38, 736
Molar Gibbs energy, 307–322
Molar properties, 20
Molarity, 489–490, 799
Mole fractions, 365, 436

Henry’s law based on, 473–474
Molecular motion, 4
Molecules, classes of, 250
Mollier diagram, 63–64, 70–73
Momentum, conservation of, 93, 99
Montreal protocol, 731
Multicomponent excess Gibbs energy
(activity coefficient) models, 493

Multicomponent system, equations of
change for, 370–378

Multiphase system, equilibrium state,
404–406

Multiple chemical reactions, 367–370, 788

Natural flows, 8
Natural processes, unidirectional character
of, 99

Nernst equation, 885
Newton’s law of viscosity, 23
Nitrogen balance in a biochemical reaction,
942

Nitrogen, thermodynamic properties of, 67
Nonconserved properties, 26–30, 102,
373–375

Nonequilibrium state, evolution from
equilibrium state to, 10, 22

Nonideal gases. See Equations of state
Nonideal mixtures, low-pressure
vapor-liquid equilibrium in, 538–578

Nonreacting system, mass and energy
balances on, 377–378

Nonsimple mixture
fugacity of species in, 468–478
liquid, 446

NRTL model, 453–454

Ocean Thermal Energy Conversion
(OTEC) project, 146

Octanol-water partition coefficient, 670,
721–726

One-constant Margules activity coefficient,
448

One-constant Margules equation, 448–449,
452

Open system
defined, 4
differential entropy change for, 114
energy balance for, 57–58
entropy balance for, 102

Osmotic equilibrium, 677–684
molecular weight and osmotic viral
coefficients of a protein, 681–683

molecular weight of a polymer, 680
molecular weight of a protein, 680–681

Osmotic pressure
defined, 678
equation, 677–679
estimation of in human blood, 683–684
in Gibbs-Donnan equilibrium, 965

Ostwald ripening, 344
Overall reactor balance equations and the
adiabatic reaction temperature, 860–869
adiabatic flame temperature calculation,
864–867

calculated load and overall/specific
energy balances compared, 862–864

energy produced in a fuel cell,
calculation of, 867–869

maximum work from a fuel cell at
constant T and P , 867

overall steady-state mass and energy
balances for a reactor, 861–864

Oxidation reaction, 780
Oxidation, defined, 883
Oxygen balance in a biochemical reaction,
942–945, 949–951

pK, 800
Partial molar enthalpy, calculation of

from experimental data, 394–395
heat of mixing, 361–363
infinite dilution from experimental data,
394–395

Partial molar entropy, 359–361, 418–421,
429

Partial molar Gibbs energy, 363–367,
421–425

Partial molar thermodynamic property,
359–361
at infinite dilution, 388–390, 474–475,
607

for an ideal gas mixture, 418–421
general equation relating to pure
component property, 391–394

method of intercepts, 385–395
Partial molar volume

equation for calculation of, 387–388
experimental determination of,
385–395

volume change on mixing, 361
Partial pressure, 419, 510, 777
Partial vaporization, calculation of,
521–527

Partition chromatography, 665

Partitioning
of a solid solute between two liquid
phases, 701–703

of a solute among two coexisting liquid
phases, 665–675, see also Distribution
coefficient

Path-dependent properties, 10, 81–83,
111–114, 132–134

PCBs, 723, 726
Peng-Robinson equation of state, 221–225,
250, 264–266
binary interaction parameters for, 440
enthalpy and entropy changes for, 231,
236

fugacity coefficient from, 314–317,
440–442

generalized, 263–264
to calculate thermodynamic properties
of oxygen, 234–235

to calculate vapor pressure, 322–330
to solve a real gas problem, 265–266

Performance, coefficient of, 165–168,
177–180

pH, 800
Phase, defined, 4
Phase behavior modeling of chemicals in
the environment, 720–726
air-water partition coefficient, 722–723
concentration of pollutant in different
environmental compartments, 724–726

distribution of PCBs, 723–724
Phase behavior of solid mixtures, 710–720

estimating lattice vacancies, 713–718
Phase diagrams, 303–307, 472, 512–516,
538, 544, 573, 578–594, 618, 654–659

Phase equilibrium, 5
application of equilibrium and stability
criteria to the equation of state,
300–307

calculations, starting point for all, 511,
582–586, 600–602, 621, 666, 688–690,
701–704

combined chemical and phase
equilibrium, 399–404

fugacity in, 424–425
in multicomponent systems, criteria for,
396–399
first criterion, 397–398
second criterion, 398
third criterion, 398–399

involving solids, 688–733
under all constraints, important criteria
for, 299–300

Phase rule, 330–334, 404–408
Phase stability, 293–300, 399–404
Phase transitions

first-order, 340
second order, 340
thermodynamic properties of, 334–340
φ-φ method for the calculation of
vapor-liquid equilibrium, 578–594

Piston-and-cylinder process, energy
balance equation, 57

Pitzer, Kenneth, 255, 764
Plait point, 637
Planck, Max, 106–107
pOH, 800–806



Index 1005

Polymer solutions, 454, 565–567, 632–635
Polymerization reaction, 2
Polymers, recycling of, 632–635
Polytropic process, work in, 122–123
Potential energy, 3, 47–54, 84–90, 967–969
Power generation and refrigeration cycles,
164–167, 171–176, 178–190, 196
Brayton cycle, 174–176
coefficient of performance (C.O.P.),
165–167

Ericsson cycle, 170–174
heat pump, 176–180
Rankine power generation cycle,
161–165

Rankine refrigeration cycle, 164–169
Stirling cycle, 169–171, 173–174

Poynting pressure correction, 318
Prausnitz, John M., 224, 254, 256, 437,
453, 455, 463, 464, 601–602

Prausnitz-Shair correlation, 606
Predictive activity coefficient models,
460–468

Pressure, 10–12
-composition diagram, 511–513, 518,
538–594, 655

absolute, 12
critical, 251–252
decomposition, 772
explicit equation of state, 220–245
partial, 419, 510, 780
reduced, 253
sublimation, 320–322, 338–339
vapor, 303–307, 317–319, 322–330,
335–336

Pressure gauge, 11
Pressure-enthalpy diagram

for methane, 66
for nitrogen, 67

Principle of corresponding states, 250–262,
348

Process design, 726–732
antifreeze, choice of, 727
drop-in replacement for the antifreeze
ethylene glycol, 727

refrigerant, choice of, 729–732
solvent, choice of, 732

Process engineering, 268
Product design, 726–732
Product engineering, 268
Protein unfolding. See Denaturation
P -T -x data, predicting vapor-phase
compositions from, 560–562

Pure component properties of, Joback
group contributions, 269–271

Pure fluid-phase equilibrium, computation
of vapor pressure from an equation of
state, 322–330

Purification
of an antibiotic, 672–674
processes, 1

Quality, of steam, 63
Quasistatic process, 103

Radiant energy, conversion to mechanical
and electrical energy, 123–124

Radiation, heat flow by, 107, 108
Rankine power generation cycle, 161–165
Rankine refrigeration cycle, 164–167
Rankine temperature scale, 13, 15
Raoult’s law, 510–512, 519

deviations from, 538–565
Rayleigh distillation, 534
Rayleigh equation, 534–535
Reacting system

energy balance for, 372–385
regular, see Regular solutions
species mass balance for, 371
total mass balance for, 371–372

Reaction stoichiometry, 737, 871–872
Redlich-Kister expansion, 388–389
Redlich-Kwong equation of state, 223,
266–267, 280

Reduced pressure, 253
Reduced temperature, 253
Reduced volume, 253
Reduction, generalized degree of,
946–948

Reference state, 62, 478
Refrigerant, choice of, 729–732
Refrigeration cycles, 164–167, 171,
176, 185

Regular solutions
defined, 463
model, activity coefficients, 463–464,
541

Retrograde behavior
defined, 589
of the first kind, 589
of the second kind, 589

Reversible chemical reactions, 740
Reversible heat, 104–117, 139
Reversible process(es), 108–114, 139,
374, 867

Reversible work, 105–117, 139
Riedel equation, 337

Salting in/out, 613
Salts, dissociation of a weak, 763, 773–774
Saturated liquid, 156, 157. See also
Coexistence curves

Saturated vapor. See Coexistence curves
Second Law of Thermodynamics, 102,
105, 267, 286–289, 951. See also Entropy
balance
Clausius statement of, 106, 115
constraint, 951
Kelvin-Planck statement of, 106–107,
115

limitation on a fermenter, 951–952
Second order phase transition, 340
Sediment-water partition coefficient,
723–724

Separation processes. See Distillation and
Liquid-liquid extraction

Shaft work, 47–48, 110–113
Shock wave, 185, 869–870
SI unit system, 6–7
Simple heat engine, 115
Simple liquefaction, 153–157
Simple liquid mixture, 446
Simultaneous reactions, mass balance
equations for, 781–783

Soave-Redlich-Kwong equation of state,
223, 266–267

Soil-water partition coefficient, 723–724
Solar energy, conversion of to mechanical
or electrical energy, 124–125

Solid(s)
at low pressure, 67
decomposition pressure, calculation of,
772–774

effect of pressure on
enthalpy, 239–240
entropy, 241–242
internal energy, 239–240
volume, 238–239

entropy change for, 126–127
fugacity of, 320
idealized incompressible, 67–69
mixtures, fugacity of species in,
445–446

phase behavior of, 710–718
Solid-liquid phase transition, 689–701,
715–718

Solubilities as function of pH, 900–910
weak acids, 901–910
weak amino acid, 907–908
weak base, 901–910

Solubility of a gas in a liquid, 600–615
air stripping of radon from groundwater,
609–613

conversion formulas of various
expressions of gas solubility, 612

estimation of, 604–606
ideal solution equilibrium relation,
603–604

mole fraction solubility of gases in
water, 610–611

prediction of using an equation of state,
606–609

solubility of oxygen in an aqueous salt
solution, blood, and seawater,
613–615

solvent equilibrium relation, 603–604
Solubility of a liquid in a liquid, 652–665
Solubility of a solid, 617–621

calculation of activity coefficient from
data for, 694

in a gas, 695–696
estimating using the virial equation of
state, 695–696

in a liquid, 690–696
equation for, 690
using UNIFAC, 693

in supercritical fluid (SCF), 696–698
determination of the heat of fusion of
insulin, 699

using an equation of state, 696–698
Solubility parameter, 463
Solubility product

calculation of from solubility data,
775–777

defined, 774
simplified expression for the variation of
with ionic strength, 774

Solution
aqueous, see Electrolyte solutions
polymer, 454, 565–547, 632–635
regular, see Regular solutions
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Solution acidity. See Acidity of solutions
Solvent equilibrium relation, 602–603
Solvent partial pressure, computing,
565–567

Solvent, choice of, 732
Species activity, based on different choices
of standard-state activity, 743

Species mass balance for a reacting system,
38–40, 371, 860–863

Specific heat. See Heat capacity
Specification of the equilibrium state,
18–21, 330–334, 404–405, 412, 521

Spite, Principle of, 768
Stability, 293–300

first or thermal criterion, 296, 297
intrinsic, 293–300
limit of, 293–300
mutual, 300
of chemical equilibrium, 767
phase equilibria criteria for, 299–300
second or mechanical criterion, 297

Stable equilibrium state, 18, 22
Stable system, 7–10
Standard cell potential, computation of,
887

Standard Gibbs energy change on reaction,
381–382, 744–745

Standard half-cell potentials, equilibrium
constant from, 886–889

Standard heat of combustion, 382
Standard heat of reaction, 381–382

calculation of as a function of
temperature, 383–384

calculation of at 25◦C, 382–383
Standard state, 478–479, 742

defined, 381, 742
species activity based on, 743

State variable(s), 19–21, 354–363, 366
change in between fixed initial and final
states, 130, 131

entropy balance in change of,
131–133

reversible path to calculate change in,
123

State, defined, 4
Static cell, 558
Steady states, 8
Steady-state system, defined, 3
Steam

distillation, of turpentine, 659–660
Mollier diagram, 64
thermodynamic properties of, 64–65,
973–991

Steam power cycle, calculating the
efficiency of, 161–162

Steam-water explosion, energy released
from, 190–193

Stefan-Boltzmann law, 107
Stirling cycle, 169–174
Stirred-tank reactor

design equations for, 851
mass and energy balances for, 851
simplified energy balance, two forms of,
851–854

steady-state design of, 852–854
steady-state mass balance for, 851

Stoichiometric coefficient, 36, 368, 938

Subcooled liquid fugacity, estimate of, 471
Subcooled vapor, 307
Subcooling, 341–344
Sublimation pressure, 320–322, 338–339
Substrate

binding of a ligand to, 917–921
choosing, for fermentation, 955–956
maximum of product obtainable from,
953–955

Supercritical fluid (SCF), solubility of a
solid in, 696–698

Superheated liquid, 307, 341–344
Surroundings, defined, 4
Systéme International d’Unités. See SI unit
system

System
adiabatic, 3–4
choice of, 54–59, 103, 127–128
closed, 3–4
constraints imposed upon, 5
defined, 4
driven, 8

System dynamics, 5
System of units, 5

Tank-type chemical reactor, 849–857
batch reactor, 854–857
design equations for a stirred-tank
reactor, 851

design of a steady-state stirred-tank
reactor, 851–852

mass and energy balances for a
stirred-tank reactor, 850–851

steady-state mass balance for a
stirred-tank reactor, 851–852

two forms of simplified energy balance
for stirred-tank reactor, 852–854

Temperature, 12–15
defined, 12
scales of, 12–13, 219–220

Temperature-composition diagram,
513–514, 519, 545

Temperature-entropy diagram for steam, 65
Ternary systems, 493–495, 635
Thermal contact, 4
Thermal energy, 17–18

conversion of to mechanical energy, 119
Thermal equation of state, 20
Thermal equilibrium, 12. See also
Temperature

Thermal stability criterion, 296–297
Thermochemical calorie, 18
Thermodynamic consistency relation, 366,
556–561

Thermodynamic model, criteria for
choosing, 490–493

Thermodynamic partial derivatives
definitions and identities, 209
evaluation of, 205–219
with different state variables held
constant, different values, 211–213

with different state variables held
constant, not equal, 208–211

Thermodynamic properties
effect of pressure on volume of liquids
and solids, 238–239

estimation of, 2
of matter, 59–69
of phase transitions, 334–340
of reacting mixtures, 378–385
of real substances

changes in, accompanying a change
of state, 220–245

estimation methods for, 268–272
example, involving change of state of
a real gas, 245–250

generalized equations of state,
263–267

heat capacity data, 225–231
ideal gas and absolute temperature,
219–220

partial derivatives, evaluation of,
205–219

principle of corresponding states,
250–263

volumetric equation-of-state data,
220–225

of small systems, 341–344
of water and steam, 977–986
two-phase mixture, 63, 66–67

Thermodynamic properties chart,
construction of, 231–238, 325–329

Thermodynamic systems, stability of,
293–300

Thermodynamics
development of, 23
First Law of, 50–51, 105, 267
Second Law of, 102, 105–107, 267,
286–289

Third Law of, 267–268, 384–385
Thermometer, calibration of, 15
Thermometric property, 14–15
Third Law of Thermodynamics, 267–268,
384–385
reference state, 384–385

Tie line, 512–514, 579, 618, 637–641
Time-invariant state, 5, 8, 22
Triangular diagrams, 635–636

mass balance calculation in, 636–640
Triple point, 306
Triple product rule, 204
Trivial solution, 324
Tubular reactor, 857–860

design of, 859–860
mass and energy balances for, 859–860
uses of, 857–858

Turbine, efficiency of, 146
Two-constant Margules expansion,
449–450

Two-phase explosion, simplified equation
for estimating the energy released in, 193

Two-phase thermodynamic mixture,
properties of, 63, 66–67

Ultracentrifuge
equation, 969
protein concentration in, 967–969

Unidirectional character of natural
processes, 10, 101–107

UNIFAC (UNIquac Functional-group
Activity Coefficient) model,
466–468, 709
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UNIQUAC equation, 455
computation of volume and surface area
fractions for use in, 456–460

Universal temperature scale, 13
Unstable system, 8–9, 307
Upper consulate/upper critical solution
temperature, 620, 626

Upper critical end point, 582

van der Waals equation of state, 221,
245–253, 314, 462

van der Waals loops, 303, 626
van der Waals, J. D., 221
van Laar equations, 450–453, 460

constants for, 451
for a ternary system, 493–495

van’t Hoff equation, 746
Vapor compression cycle, 176–179, 185
Vapor mixtures, recommended
equation-of-state models, 493

Vapor pressure, 303
computation of from equation of state,
322–330

Vapor-liquid equilibrium. See Chapter 10
activity coefficient (γ-φ method),
509–510
measurement of, 551

coexistence pressure, 303–307
composition (x-y) diagram, 512–514
data, correlation of, 551–560
equation-of-state (φ-φ method), 508
high-pressure, using equations of state
(φ-φ method), 578–598
binary interaction parameter kij ,
586–598

measurement of, 582
in ideal mixtures, 510–535

bubble point pressure and bubble
point pressure, 514–521

development of diagrams for a
mixture that obeys Raoult’s law,
516–519

dew point temperature and dew point
temperature, 514–521

distillation, 527–531, 549
distillation column, design of,
527–532, 549

low-pressure vapor-liquid equilibrium
equation, 510

partial vaporization of,
522–525

Raoult’s law, 510–512
Rayleigh distillation, 535
Rayleigh equation, 534

low-pressure, in nonideal mixtures,
538–567, 579
azeotropes and distillation, 547–550
azeotropic mixture, 540
composition diagram (x-y),
construction of, 512–514, 543–545

computing the solvent partial pressure
above a polymer-solvent mixture,
565–567

construction of vapor-liquid
equilibrium diagrams for a nonideal
system, 543–545

correlation of vapor-liquid data,
551–556

determination of dew point and
bubble point pressures, 545–546

integral form of thermodynamic
consistency relation, 556–559

measurement of vapor-liquid
equilibrium data, 554

of a binary mixture, predicting from
azeotropic data, 540–543

mass balances for, 521–522
predicting from infinite dilution activity
coefficients, 562–565

predicting vapor-phase compositions
from P -T -x data, 560–562

relevance of to distillation, 527, 529
Vapor-liquid explosion (BLEVE), balance
equations for, 189–193

Vapor-liquid-liquid equilibrium, 652–665
application to steam distillation,
659–660

calculation using an activity coefficient
model, 634–635

calculation using an equation of state,
634–659

Vapor-phase compositions, predicting from
P -T -x data, 560–562

Vapor-phase explosion, 871–872
balance equations for, 186–187
examples, 189–190

Variables
extensive, 18–21, 202–204,
354–358

intensive, 18–21, see also State variables
state, 19–21, 113, 132–133, 226–228,
354, 852, 864

Virial equation of state, 223–225, 313–314,
439, 695–696
coefficients, 275, 279–281, 439

Viscosity, Newton’s law of, 23
Volume

critical, 251–252
partial molar, 385–395

at infinite dilution, 394–396
reduced, 253

Volume change
on melting, 335
on mixing, 355, 361

Volumetric equation-of-state, 20, 220–225,
250

Water and steam, thermodynamic
properties of, 977–986

Weak acid, 807–810
+ strong base, 813–815
pH of solution of, 808–810
solubility of, 901–910

Weak base, solubility of, 901–910
Well-mixed assumption, 850
Wilson equation, 453, 494
Wohl equation, 450
Wohl, Kurt, 450
Wong-Sandler mixing rules, 481
Work

and conservation of energy, 47–48
Carnot cycle, 116–118
conversion of heat to, 114
defined, 15
flow of, 21
in a polytropic process, 122–123
maximum useful, Sec. 14.5, 875–881
of a flowing fluid against pressure,
48–50

reversible, 110

x-y (vapor-liquid equilibrium composition)
diagram, 512–514

Yield factors, biochemical, 856–857

Zwitterions, 821
γ-φ method for the calculation of
vapor-liquid equilibrium, Sec. 10.2

φ-φ method for the calculation of
vapor-liquid equilibrium, Sec. 10.3



SUBSCRIPTS

Symbol Designates

A, B, C, . . . , species
AB, D dissociated electrolyte AB
ad adiabatic process
conf configurational
c critical property
EOS equation of state
eq equilibrium state
i ith species, i = 1, . . . , C
imp impurities
in inlet conditions
j generally denotes jth reaction,

j = 1,. . .,M
k kth flow stream, k = 1, . . . , K
m mixture property
mix mixing or mixture
R reference property
rxn reaction
sat property along a two-phase

coexistence line
x, y, z coordinate direction
vac vacancy

SUPERSCRIPTS

Symbol Designates

I, II phase
calc calculated property
ex excess property on mixing
exp measured property
fus property change on melting or

fusion
i, f initial and final states, respectively
ID ideal property
IG ideal gas property
IGM ideal gas mixture property
IM ideal mixture property
max maximum
res residual
rev reversible process
sat property along vapor–liquid

coexistence line
sub property change on sublimation
V, L, S vapor, liquid, and solid phase,

respectively
vap property change on vaporization
z+, z− charge on an ionic species



Abbreviated list of SI units

Physical Quantity SI Unit Symbol Relation to Other SI Units
Basic units
Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Derived units with assigned names
Energy joule J J = kg m2 s−2

Force newton N N = kg m s−2 = J m−1

Power watt W W = kg m2 s−3 = J s−1

Electric charge coloumb C C = A s
Electric potential difference volt V V = kg m2 s−3 A−1 = J A−1 s−1

Pressure pascal Pa Pa = kg m−1 s−2 = N m−2

Frequency hertz Hz s−1

Derived units without assigned names
Area square meter m2

Volume cubic meter m3

Density cubic meter kilogram per kg m−1

Molar heat capacity joule per mole Kelvin J mol−1 K−1

Specific heat capacity joule per kilogram Kelvin J kg−1 K−1

Concentration mole per cubic meter mol m−3

Units and conversion factors

Length: 1 m = 3.281 feet

Mass: 1 kg = 2.2046 pounds

Energy: 1 J = 1 watt-second
= 107 ergs = 107 dyne-cm
= 0.2390 cal
= 0.948 × 10−3 BTU
= 0.7376 ft-lb
= 0.9868 × 10−2 liter-atm

Pressure: 1 Pa = 1 newton m−2 = 1 joule m−3

= 0.9869 × 10−5 atmospheres
= 0.750× 10−2 millimeters of energy
= 1 × 10−5 bars
= 1.450 × 10−4 psi

Molar Heat Capacity: 1 J mol−1 K−1 = 0.2390 cal(mol K)−1

= 0.2390 BTU(lb-mol ◦F)−1

Specific Heat Capacity: 1 J g−1 K−1 = 0.2390 cal(g K)−1

= 0.2390 BTU(lb ◦F)−1

= 1 kJ (kg K)−1

Power: 1 J sec−1 = 1 watt
= 0.1341 × 10−2 horsepower (hp)
= 0.7356 ft-lbf /sec
= 0.948 × 10−3 BTU/sec

The Gas Constant

R = 8.314 J/mol K
= 8.314 N m/mol K
= 8.314 × 10−3 kPa m3/mol K
= 8.314 × 10−5 bar m3/mol K
= 8.314 × 10−2 bar m3/kmol K
= 8.314 × 10−6 MPa m3/mol K



TABLES OF THERMODYNAMIC DATA

The Gas Constant, Table 1.4-1 13
Parmeters for the van der Waals Equation of State, Table 6.4-1 221
Molar Volume, Coefficient of Thermal Expansion, and Coefficient of Isothermal
Compressiblity at 20◦C for Some Condensed Phases, Table 6.4-5 238
The Critical and Other Constants for Selected Fluids, Table 6.6-1 254
Binary Interaction Parameters k12 for the Peng-Robinson Equation of State, Table 9.4-1 441
The van Laar Constants for Some Binary Mixtures, Table 9.5-1 451
The Group Volume and Surface Area Parameters, R and Q, for Use with the
UNIQUAC and UNIFAC Models, Table 9.5-2 457
Molar Liquid Volumes and Solubility Parameters of Some Nonpolar Liquids, Table 9.6-1 464
Values of the Parameters in the Equations for γ± for Aqueous Solutions, Table 9.10-1 486
“Liquid” Volumes and Solubility Parameters for Gaseous Solutes at 25◦C, Table 11.1-1 602
Mole Fraction Solubility of Gases in Water at 1.013 bar Partial Pressure as a Function
of Temperature, ln x = A + B/T + C ln T + DT + ET 2; (T in K), Table 11.1-2 610
Octanol-Water Partition Coefficients and Other Properties of Some Organic Chemicals,
Herbicides, and Pesticides, Table 11.4-1 671
The Heats and Gibbs Energies of Formation for Ions in an Ideal 1-Molal Solution
at 25◦C, Table 13.1-4 764
Standard Half-Cell Potentials at 25◦C, Table 14.6-1 886
Yield Factors Based on Substrate Consumed, Table 15.7-1. 939
The Degree of Reduction ξ, Gibbs Energy, and Heat of Combustion of Biochemicals
and Hydrocarbons on a Carbon Mole Basis (kJ/C-mole)a,b, Table 15.7-2 947
Conversion Factors to SI Units, Appendix A.I 973
The Molar Heat Capacities of Gases in the Ideal Gas (Zero-Pressure) State*,
Appendix A.II 974
The Thermodynamic Properties of Water and Steam, Appendix A.III 977
Enthalpies and Gibbs Energies of Formation, Appendix A.IV 987
Heats of Combustion, Appendix A.V 990

DIAGRAMS OF THERMODYNAMIC DATA

Enthalpy-Entropy (Mollier) Diagram for Steam, Figure 3.3-1a 64
Temperature-entropy diagram for steam, Figure 3.3-1b 65
Pressure-enthalpy diagram for methane, Figure 3.3-2 66
Pressure-enthalpy diagram for nitrogen, Figure 3.3-3 67
Pressure-enthalpy diagram for HFC-134a, Figure 3.3-4 68
Generalized Compressibility Factor Diagram, Figure 6.6-3 257
Generalized Enthalpy Departure Diagram, Figure 6.6-4 259
Generalized Entropy Departure Diagram, Figure 6.6-5 261
Enthalpy-concentration diagram for aqueous sulfuric acid at 0.1MPa., Figure 8.1-1 356
Enthalpy-Concentration Diagram for the Ethanol + Water System 574
Chemical equilibrium constants as a function of temperature, Figure 13.1-2 748
Standard Gibbs energies of formation of selected oxides of Ellingham diagram,
Figure 13.2-3 778

All the thermodynamic data diagrams that are listed above appear as ADOBE PDF files on the
website for this book, and may be enlarged and printed for easier reading and for use in solving
problems.



Notation

Standard, generally accepted notation has been used throughout this text. This list con-
tains the important symbols, their definition, and, when appropriate, the page of first
occurrence (where a more detailed definition is given). Symbols used only once, or
within only a single section are not listed. In a few cases it has been necessary to use
the same symbol twice. These occurrences are rare and widely separated, so it is hoped
no confusion will result.

SPECIAL NOTATION

Symbol Designates

ˆ (caret as in Ĥ) property per unit mass (enthalpy per unit mass)
(overbar as in Hi) partial molar property (partial molar enthalpy)
(underscore as in H) property per mole (enthalpy per mole)

± (as in M±) mean ionic property (mean ionic molality)
∗(as in G∗

i ) property (Gibbs energy) in hypothetical pure component state
extrapolated from infinite dilution behavior

� (as in G�
i ) ideal unit molal property (Gibbs energy) extrapolated from

infinite dilution behavior
◦ standard state

GENERAL NOTATION

Symbol Designates

A Helmholtz energy (111)
ai activity of species i (742)
a, b, c, . . . constants in heat capacity equation, equation of state, etc.
Â, B̂ availability (141)
B(T), C(T), . . . virial coefficients (223)
C number of components (354)
◦C degrees Celsius (13)
Ci concentration of species i (667)
CV, CP constant-volume and constant-pressure heat capacities (60)
C∗

V, C∗
P ideal gas heat capacity (61)

∂, d, D partial, total, and substantial derivative symbols
D diffusion coefficient (22)
F degrees of freedom (331)
◦F degrees Fahrenheit (13)
f pure component fugacity (308)
f̄i fugacity of a species in a mixture (422)
Ffr frictional forces (84)
g acceleration of gravity (11)
G Gibbs energy (111)
ΔfusG, ΔrxnG, ΔmixG Gibbs free energy changes on fusion (472), reaction (381),

and mixing (420)
ΔfG

◦
i molar Gibbs free energy of formation of species i (363)

H enthalpy (50)
H,O,N , C stoichiometric coefficient in a biochemical compound (888)
Hi, Hi Henry’s law constants (474, 475)
ΔfusH , ΔmixH, ΔrxnH enthalpy changes on fusion (335), mixing (355), and reaction (380)



Symbol Designates

ΔsubH, ΔvapH enthalpy changes on sublimation (338) and vaporization (336)
ΔcH

◦
i standard heat of combustion of species i (382)

ΔfH
◦
i molar heat of formation of species i (380)

ΔsH molar integral heat solution (410)
I ionic strength (485) in Chapters 9–15
K number of flow streams (28)
K degrees Kelvin (13)
K, Kc, Kx distribution coefficients (523, 665, 666)
Ka chemical equilibrium constant (742)
Kc, Kp, Kx, Ky chemical equilibrium ratios (755) in Chapter 13
K◦

c , K◦
s ideal solution ionization (762) and solubility (774) products

kfr coefficient of sliding friction (86)
Ki K−factor, yi/xi (523)
KOW octanol-water position coefficient (723)
Ks solubility product (742)
Kγ product of activity coefficients (756)
Kν product of fugacity coefficients (756)
kij equation of state binary interation parameter (440)
L moles of liquid phase (522)
M mass (30)
Ṁ mass flow rate (30)
mw molecular weight (30)
M number of independent chemical reactions (70)
ΔMk amount of mass that entered from kth flow stream (31)
M1 mass of system in state 1 (31)
N number of moles (30)
Ni,0 initial number of moles of species i (370)
P pressure (11)
P number of phases (331)
P vap, P sub, P sat vapor (335), sublimation (338), and saturation pressures (335)
Patm atmospheric pressure (12)
Pc critical pressure (251)
pH measure of solution acidity (800)
pKa -log(Ka) (808)
Pt triple point pressure (305)
Pi partial pressure of species i (510)
Pr reduced pressure (251)
Prxn reaction pressure (752)
Q, Q̇ heat flow (22) and heat flow rate (47)
q volumetric flow rate (850)
R gas constant (13)
r drop radius (341) or specific reaction rate (370)
SO solubility (902)
ST total solubility (902)
S entropy (101)
Sgen, Ṡgen entropy generated (102) and entropy generation rate (102)
SUV, SUN, etc. second partial derivatives of entropy (294)
T temperature (13)
Tc critical temperature (251)
Tf mixture freezing temperature (708)
Tlc, Tuc lower and upper consolute temperatures (620)
Tm melting temperature (708)



Symbol Designates

Tr reduced temperature (252)
Tt triple point temperature (305)
U internal energy (47)
V volume (12) (also moles of vapor in Secs. 10.1 and 10.2)
ΔfusV volume change on melting or fusion (690)
v velocity (23)
V c molar critical volume (251)
ΔmixV volume change on mixing (355)
Vr reduced volume (252)
wi mass fraction of species i (355)
wI, wII fraction of mass in a phase (63)
W , Ẇ work (48) and rate at which work is supplied to system (48)
WNET net work supplied from surroundings (86)
Wfr work against function (87)
Ws, Ẇs shaft work (48) and rate of shaft work (48)
X any thermodynamic variable in Chapter 6, molar extent of

chemical reaction (37) elsewhere
x coordinate direction
xi mole fraction of species i in vapor or liquid phase (354)
Y any thermodynamic variable (203)
y coordinate direction
yi vapor-phase mole fraction (436)
YX/S C-moles of X produced per C-mole substrate consumed (939)
YQ/S Heat flow per C-mole substrate consumed (945)
Z compressibility factor (231) or charge on a protein (960)
z coordinate direction
Zc critical compressibility (252)
z+, z− ionic valence (484)
α coefficient of thermal expansion (205) (in Chapter 6)
α, β coefficients in van Laar and Debye-Hückel equations

(Chapters 9–15)
γ specific heat ratio (188)
γi, γ

∗
i , γ

�
i activity coefficients of species i (447, 474, 475)

γ± mean ionic activity coefficient (485)
δ solubility parameter (463)
θ general thermodynamic variable (28)
κS adiabatic compressibility (275)
κT isothermal compressibility (205)
μ viscosity (23), Joule-Thomson coefficient (275), chemical

potential (398)
ν stoichiometric coefficient (36)
ν+, ν− ionic stoichiometric coefficient (483)
ρ mass density (22)
Π osmotic pressure (678)
σ surface tension (341)
φ, Φ volume fraction (455, 463)
ξ generalized degree of reduction (946)
ψ potential energy (47)
φi, φ̄i fugacity coefficient of pure species i (308), and species i in a

mixture (422)
ω acentric factor (255)
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