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xiii

The sixteenth edition of Design of Concrete Structures continues the dual objectives 
of establishing a firm understanding of the behavior of structural concrete and of 
developing proficiency in the methods of design practice. It is generally recognized 
that mere training in special design skills and codified procedures is inadequate for 
a successful career in professional practice. As new research becomes available and 
new design methods are introduced, these procedures are subject to frequent changes. 
To understand and keep abreast of these rapid developments and to engage safely in 
innovative design, the engineer needs a thorough grounding in the fundamental per-
formance of concrete and steel as structural materials and in the behavior of reinforced 
concrete members and structures. At the same time, the main business of the structural 
engineer is to design structures safely, economically, and efficiently. Consequently, 
with this basic understanding as a firm foundation, familiarity with current design 
procedures is essential. This edition, like the preceding ones, addresses both needs.

The text presents the basic mechanics of structural concrete and methods for 
the design of individual members subjected to bending, shear, torsion, and axial 
forces. It additionally addresses in detail applications of the various types of struc-
tural members and systems, including an extensive presentation of slabs, beams, 
columns, walls, footings, retaining walls, and the integration of building systems. 

The 2019 ACI Building Code, which governs design practice in most of the 
United States and serves as a model code in many other countries, underwent a 
number of significant changes, many due to increases in the specified strengths of 
reinforcing steels that can used for building construction.

Changes of note include the addition of Grade 100 steel for use as principal 
reinforcement for gravity and lateral loads and the recognition that changes were 
needed in the Code, even for Grade 80 reinforcement. The use of steels with grades 
above 60, long the standard in U.S. practice, has led to changes in the approaches to 
both strength and serviceability, including the limits on both maximum and minimum 
reinforcement; development lengths of straight, hooked, and headed reinforcement; 
and requirements for the effective moment of inertia when calculating deflections. 
Shear design has changed through the addition of a size effect term that recognizes 
that shear stress at failure decreases as member depth increases. Inclusion of the size 
effect affects foundation walls, as well as beams and slabs—a point that is highlighted 
in this edition. The techniques used for two-way slab design were deleted from the 
2019 ACI Building Code with the understanding that those techniques would be 
covered by textbooks. That information has been retained in Chapters 13, 22, and 23. 
Finally, the requirements for the strut-and-tie method have been updated. 

www.konkur.in

Telegram: @uni_k



xiv        Preface

In addition to changes in the ACI Code, the text also includes the modified 
compression field theory method of shear design presented in the 2017 edition of 
the American Association of State Highway and Transportation Officials (AASHTO) 
LRFD Bridge Design Specifications. Chapters on yield line and strip methods, on 
the McGraw-Hill Education website in the previous edition, have been returned to 
the printed version of the text. 

A strength of the text is the analysis chapter, which includes load combinations 
for use in design, a description of envelope curves for moment and shear, guidelines 
for proportioning members under both gravity and lateral loads, and procedures for 
developing preliminary designs of reinforced concrete structures. The chapter also 
includes the ACI moment and shear coefficients.

Present-day design is performed using computer programs, either general-purpose 
commercially available software or individual programs written for special needs. Pro-
cedures given throughout the book guide the student and engineer through the increas-
ingly complex methodology of design, with the emphasis on understanding the design 
process. Once mastered, these procedures are easily converted into flow charts to aid 
in preparing design aids or to validate commercial computer program output. 

The text is suitable for either a one- or two-semester course in the design of 
concrete structures. If the curriculum permits only a single course, probably taught 
in the fourth undergraduate year, the following will provide a good basis: the intro-
duction and treatment of materials found in Chapters 1 through 3; the material on 
flexure, shear, and anchorage in Chapters 4, 5, and 6; Chapter 7 on serviceability; 
Chapter 9 on short columns; the introduction to one-way slabs found in Chapter 12; 
and footings, Chapter 15. Time may or may not permit classroom coverage of frame 
analysis or building systems, Chapters 11 and 19, but these could well be assigned 
as independent reading, concurrent with the earlier work of the course. In the authors’ 
experience, such complementary outside reading tends to enhance student motivation.

The text is more than adequate for a second course, most likely taught in the 
senior year or first year of graduate study. The authors have found that this is an 
excellent opportunity to provide students with a more general understanding of 
reinforced concrete structural design, often beginning with analysis and building 
systems, Chapters 11 and 19, followed by the increasingly important behavioral 
topics of torsion, Chapter 8; slender columns, Chapter 10; the strut-and-tie method 
of Chapter 17; and the design and detailing of joints, Chapter 18. It should also 
offer an opportunity for a much-expanded study of slabs, including Chapter 13, plus 
the methods for slab analysis and design based on plasticity theory found in  
Chapters 23 and 24, yield line analysis, and the strip method of design. Other top-
ics appropriate to a second course include retaining walls, Chapter 16, and the 
introduction to earthquake-resistant design in the expanded Chapter 20. Prestressed 
concrete in Chapter 22 is sufficiently important to justify a separate course in con-
junction with anchoring to concrete, Chapter 21, and strut-and-tie methods, Chapter 17. 
If time constraints do not permit this, Chapter 22 provides an introduction and can 
be used as the text for a one-credit-hour course.

At the end of each chapter, the user will find extensive reference lists, which 
provide an entry into the literature for those wishing to increase their knowledge 
through individual study. For professors, the Instructor’s Solution Manual is availa-
ble online at the McGraw-Hill Education website. 

A word must be said about units. In the United States, customary inch-pound 
units remain prominent. Accordingly, inch-pound units are used throughout the text, 
although some graphs and basic data in Chapter 2 are given in dual units. Appendix B 
gives the SI equivalents of inch-pound units. 
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A brief historical note may be of interest. This book is the sixteenth edition of 
a textbook originated in 1923 by Leonard C. Urquhart and Charles E. O’Rourke, 
both professors of structural engineering at Cornell University. Over its remarkable 
97-year history, new editions have kept pace with research, improved materials, and 
new methods of analysis and design. The second, third, and fourth editions firmly 
established the work as a leading text for elementary courses in the subject area. 
Professor George Winter, also of Cornell, collaborated with Urquhart in preparing 
the fifth and sixth editions. Winter and Professor Arthur Nilson were responsible for 
the seventh, eighth, and ninth editions, which substantially expanded both the scope 
and the depth of the presentation. The tenth, eleventh, and twelfth editions were 
prepared by Professor Nilson subsequent to Professor Winter’s passing in 1982.

Professor Nilson was joined by Professor David Darwin of the University of 
Kansas and by Professor Charles Dolan of the University of Wyoming for the thir-
teenth, fourteenth, and fifteenth editions, although Professor Nilson passed away 
prior to completion of the fifteenth. Like Professors Winter and Nilson, the current 
authors have been deeply involved in research and teaching in the fields of reinforced 
and prestressed concrete, as well as professional Code-writing committees, and have 
spent significant time in professional practice, invaluable in developing the perspec-
tive and structural judgment that sets this book apart.

Special thanks are due to the McGraw-Hill Education project team, notably, 
Sarah Paratore, Sue Nodine, Carey Lange, and Jane Mohr.

We gladly acknowledge our indebtedness to the original authors. Although it 
is safe to say that neither Urquhart or O’Rourke would recognize much of the detail 
and that Winter would be impressed by the many changes, the approach to the sub-
ject and the educational philosophy that did so much to account for the success of 
the early editions would be familiar. The imprint of Arthur Nilson—our longstanding 
mentor, colleague, and friend—remains clear in the organization and approach taken 
to the material in this text.

David Darwin
Charles W. Dolan

Preface        xv
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1

Introduction

	 1.1	 CONCRETE, REINFORCED CONCRETE,  
AND PRESTRESSED CONCRETE

Concrete is a stonelike material obtained by permitting a carefully proportioned 
mixture of cement, sand and gravel or other coarse aggregate, and water to harden in 
forms of the shape and dimensions of the desired structure. The bulk of the material 
consists of fine and coarse aggregate. Cement and water interact chemically to bind 
the aggregate particles into a solid mass. Additional water, over and above that needed 
for this chemical reaction, is necessary to give the mixture the workability that enables 
it to fill the forms and surround the embedded reinforcing steel prior to hardening. 
Concretes with a wide range of properties can be obtained by appropriate adjustment 
of the proportions of the constituent materials. Special cements (such as high early 
strength cements), special aggregates (such as various lightweight or heavyweight 
aggregates), admixtures (such as plasticizers, air-entraining agents, silica fume, and 
fly ash), and special curing methods (such as steam-curing) permit an even wider vari-
ety of properties to be obtained.

These properties depend to a very substantial degree on the proportions of the 
mixture, on the thoroughness with which the various constituents are intermixed, and 
on the conditions of humidity and temperature in which the mixture is maintained from 
the moment it is placed in the forms until it is fully hardened. The process of control-
ling conditions after placement is known as curing. To protect against the unintentional 
production of substandard concrete, a high degree of skillful control and supervision 
is necessary throughout the process, from the proportioning by weight of the individual 
components, through mixing and placing, until the completion of curing.

The factors that make concrete a universal building material are so pronounced 
that it has been used, in more primitive kinds and ways than at present, for thousands 
of years, starting with lime mortars from 12,000 to 6000 BCE in Crete, Cyprus, 
Greece, and the Middle East. The facility with which, while plastic, it can be deposited 
and made to fill forms or molds of almost any practical shape is one of these factors. 
Its high fire and weather resistance is an evident advantage. Most of the constituent 
materials, with the exception of cement and additives, are usually available at low cost 
locally or at small distances from the construction site. Its compressive strength, like 
that of natural stones, is high, which makes it suitable for members primarily subject 
to compression, such as columns and arches. On the other hand, again as in natural 
stones, it is a relatively brittle material whose tensile strength is low compared with 
its compressive strength. This prevents its economical use as the sole building material 
in structural members that are subject to tension either entirely (such as in tie-rods) or 
over part of their cross sections (such as in beams or other flexural members).
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2      DESIGN OF CONCRETE STRUCTURES  Chapter 1

To offset this limitation, it was found possible, in the second half of the 
nineteenth century, to use steel with its high tensile strength to reinforce concrete, 
chiefly in those places where its low tensile strength would limit the carrying capac-
ity of the member. The reinforcement, usually round steel rods with appropriate 
surface deformations to provide interlocking, is placed in the forms in advance of the 
concrete. When completely surrounded by the hardened concrete mass, it forms an 
integral part of the member. The resulting combination of two materials, known as 
reinforced concrete, combines many of the advantages of each: the relatively low cost, 
good weather and fire resistance, good compressive strength, and excellent formabil-
ity of concrete and the high tensile strength and much greater ductility and toughness 
of steel. It is this combination that allows the almost unlimited range of uses and 
possibilities of reinforced concrete in the construction of buildings, bridges, dams, 
tanks, reservoirs, and a host of other structures.

It is possible to produce steels, at relatively low cost, whose yield strength is 
3 to 4 times and more that of ordinary reinforcing steels. Likewise, it is possible to 
produce concrete 4 to 5 times as strong in compression as the more ordinary concretes. 
These high-strength materials offer many advantages, including smaller member 
cross sections, reduced dead load, and longer spans. However, there are limits to  
the strengths of the constituent materials beyond which certain problems arise. To 
be sure, the strength of such a member would increase roughly in proportion to those 
of the materials. However, the high strains that result from the high stresses that 
would otherwise be permissible would lead to large deformations and consequently 
large deflections of such members under ordinary loading conditions. Equally impor-
tant, the large strains in such high-strength reinforcing steel would induce large 
cracks in the surrounding low tensile strength concrete, cracks that not only would 
be unsightly but also could significantly reduce the durability of the structure. This 
limits the useful yield strength of high-strength reinforcing steel to 100 ksi† accord-
ing to many codes and specifications; 60 and 80 ksi steel is most commonly used.

Construction known as prestressed concrete, however, does use steels and con-
cretes of very high strength in combination. The steel, in the form of wires, strands, 
or bars, is embedded in the concrete under high tension that is held in equilibrium 
by compressive stresses in the concrete after hardening. Because of this precompres-
sion, the concrete in a flexural member will crack on the tension side at a much 
larger load than when not so precompressed. Prestressing greatly reduces both the 
deflections and the tensile cracks at ordinary loads in such structures and thereby 
enables these high-strength materials to be used effectively. Prestressed concrete has 
extended, to a very significant extent, the range of spans of structural concrete and 
the types of structures for which it is suited.

	 1.2	 STRUCTURAL FORMS

The figures that follow show some of the principal structural forms of reinforced con-
crete. Pertinent design methods for many of them are discussed later in this volume.

Floor support systems for buildings include the monolithic slab-and-beam floor 
shown in Fig.  1.1, the one-way joist system of Fig.  1.2, and the flat plate floor, 
without beams or girders, shown in Fig. 1.3. The flat slab floor of Fig. 1.4, frequently 
used for more heavily loaded buildings, is similar to the flat plate floor, but makes 
use of increased slab thickness in the vicinity of the columns, as well as flared 

†Abbreviation for kips per square inch, or thousands of pounds per square inch.
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INTRODUCTION      3

column tops, to reduce stresses and increase strength in the support region. The 
choice among these and other systems for floors and roofs depends upon functional 
requirements, loads, spans, and permissible member depths, as well as on cost and 
esthetic factors.

Where long clear spans are required for roofs, concrete shells permit use of 
extremely thin surfaces, often thinner, relatively, than an eggshell. The folded plate roof 
of Fig. 1.5 is simple to form because it is composed of flat surfaces; such roofs have 
been employed for spans of 200 ft and more. The cylindrical shell of Fig. 1.6 is also 
relatively easy to form because it has only a single curvature; it is similar to the folded 
plate in its structural behavior and range of spans and loads. Shells of this type were 
once quite popular in the United States and remain popular in other parts of the world.

Doubly curved shell surfaces may be generated by simple mathematical curves 
such as circular arcs, parabolas, and hyperbolas, or they may be composed of com-
plex combinations of shapes. Hemispherical concrete domes are commonly used for 
storage of bulk materials. The dome shown in Fig. 1.7 is for storage of dry cement, 

FIGURE 1.1
One-way reinforced concrete 
floor slab with monolithic 
supporting beams. (Courtesy of 

Portland Cement Association)

FIGURE 1.2
One-way joist floor system, 
with closely spaced ribs 
supported by monolithic 
concrete beams; transverse 
ribs provide for lateral 
distribution of localized 
loads. (Courtesy of Portland 

Cement Association)
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4      DESIGN OF CONCRETE STRUCTURES  Chapter 1

and the piping around the perimeter is for the pneumatic movement of the cement. 
Domed structures are commonly constructed using shotcrete, a form of concrete that is 
sprayed onto a liner and requires formwork or backing on only one side. The dome in 
Fig. 1.7 was constructed by inflating a membrane, spraying insulation on the mem-
brane, placing the reinforcement on the insulation, then spraying the concrete on 

FIGURE 1.3
Flat plate floor slab, carried 
directly by columns without 
beams or girders. (Courtesy of 

Portland Cement Association)

FIGURE 1.4
Flat slab floor, without  
beams but with slab  
thickness increased at the 
columns and with flared 
column tops to provide  
for local concentration of 
forces. (Courtesy of Portland 

Cement Association)
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INTRODUCTION      5

both sides of the insulation to the prescribed thickness using the insulation as a 
backing form, as shown in Fig. 1.8. Piers and wharf facilities (shown in Fig. 1.7), 
silos, waters tanks, reservoirs, and other industrial facilities are commonly con-
structed of reinforced or prestressed concrete.

FIGURE 1.5
Folded plate roof of 125 ft  
span that, in addition to 
carrying ordinary roof loads, 
carries the second floor as 
well using a system of cable 
hangers; the ground floor is 
kept free of columns. 
(Photograph by Arthur H. Nilson)

FIGURE 1.6
Cylindrical shell roof 
providing column-free 
interior space. (Photograph by 

Arthur H. Nilson)
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6      DESIGN OF CONCRETE STRUCTURES  Chapter 1

Bridge design has provided the opportunity for some of the most challenging 
and creative applications of structural engineering. The award-winning Napoleon 
Bonaparte Broward Bridge, shown in Fig.  1.9, is a six-lane, cable-stayed structure 
that spans St. John’s River at Dame Point, Jacksonville, Florida. It has a 1300 ft 
center span. Figure 1.10 shows the Bennett Bay Centennial Bridge, a four-span con-
tinuous, segmentally cast-in-place box girder structure. Special attention was given 
to esthetics in this award-winning design. The spectacular Natchez Trace Parkway 
Bridge in Fig. 1.11, a two-span arch structure using hollow precast concrete elements, 
carries a two-lane highway 155 ft above the valley floor. 

FIGURE 1.8
Shotcrete being applied to the 
interior of a dome structure. 
(Photograph courtesy of Michael 

Hunter, Domtec, Inc.)

FIGURE 1.7
Hemispherical cement 
storage dome in New 
Zealand. (Photograph courtesy 

of Michael Hunter, Domtec, Inc.)
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INTRODUCTION      7

FIGURE 1.9
Napoleon Bonaparte Broward 
Bridge, with a 1300 ft center 
span at Dame Point, 
Jacksonville, Florida.  
(HNTB Corporation, Kansas 

City, Missouri)

FIGURE 1.10
Bennett Bay Centennial 
Bridge, Coeur d’Alene, 
Idaho, a four-span continuous 
concrete box girder structure 
of length 1730 ft. (HNTB 

Corporation, Kansas City, 

Missouri)
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8      DESIGN OF CONCRETE STRUCTURES  Chapter 1

FIGURE 1.11
Natchez Trace Parkway 
Bridge near Franklin, 
Tennessee, an award-winning 
two-span concrete arch 
structure rising 155 ft above 
the valley floor. (Designed by 

Figg Bridge Group)

FIGURE 1.12
Premier on Pine under 
construction. The cover photo 
is the competed building. 
(Photograph provided by Cary 

Kopczynski and Company, 

Structural Engineers)
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INTRODUCTION      9

Buildings clad in glass or other fascia materials do not immediately indicate the 
underlying structural framing. The Premiere on Pine building in downtown Seattle is 
a case in point. The 42-story building contains condominiums, underground parking, 
and a hotel-type sky lounge. The 450,000 square foot flat slab cast-in-place concrete 
construction uses 15,000 psi concrete for columns to increase available floor space 
and to resist gravity and earthquake loads; see Fig. 1.12.  

The structural forms shown in Figs. 1.1 to 1.12 hardly constitute a complete 
inventory but are illustrative of the shapes appropriate to the properties of rein-
forced or prestressed concrete. They illustrate the adaptability of the material to 
a great variety of one-dimensional (beams, girders, columns), two-dimensional 
(slabs, arches, rigid frames), and three-dimensional (shells, tanks) structures and 
structural components. This variability allows the shape of the structure to be 
adapted to its function in an economical manner, and furnishes the architect and 
design engineer with a wide variety of possibilities for esthetically satisfying 
structural solutions.

	 1.3	 LOADS

Loads that act on structures can be divided into three broad categories: dead loads, live 
loads, and environmental loads.

Dead loads are those that are constant in magnitude and fixed in location 
throughout the lifetime of the structure. Usually the major part of the dead load is 
the weight of the structure itself. This can be calculated with good accuracy from the 
design configuration, dimensions of the structure, and density of the material. For 
buildings, floor fill, finish floors, and plastered ceilings are usually included as dead 
loads, and an allowance is made for suspended loads such as piping and lighting 
fixtures. For bridges, dead loads may include wearing surfaces, sidewalks, and curbs, 
and an allowance is made for piping and other suspended loads.

Live loads consist chiefly of occupancy loads in buildings and traffic loads on 
bridges. They may be either fully or partially in place or not present at all, and may 
also change in location. Their magnitude and distribution at any given time are 
uncertain, and even their maximum intensities throughout the lifetime of the structure 
are not known with precision. The minimum live loads for which the floors and roof 
of a building should be designed are usually specified in the building code that 
governs at the site of construction. Representative values of minimum live loads to 
be used in a wide variety of buildings are found in Minimum Design Loads and 
Other Associated Criteria for Buildings and Other Structures (Ref. 1.1), a portion 
of which is reprinted in Table 1.1. The table gives uniformly distributed live loads 
for various types of occupancies; these include impact and concentrated load provi-
sions where necessary. These loads are expected maxima and considerably exceed 
average values.

In addition to these uniformly distributed loads, it is recommended that, as an 
alternative to the uniform load, floors be designed to support safely certain concen-
trated loads if these produce a greater stress. For example, according to Ref. 1.1, office 
floors are to be designed to carry a load of 2000 lb distributed over an area 2.5 ft 
square (6.25 ft2), to allow for heavy equipment, and stair treads must safely support a 
300 lb load applied on the center of the tread. Certain reductions are often permitted 
in live loads for members supporting large areas with the understanding that it is 
unlikely that the entire area would be fully loaded at one time (Refs. 1.1 and 1.2).
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10      DESIGN OF CONCRETE STRUCTURES  Chapter 1

Tabulated live loads cannot always be used. The type of occupancy should be 
considered and the probable loads computed as accurately as possible. Warehouses 
for heavy storage may be designed for loads as high as 500 psf or more; unusually 
heavy operations in manufacturing buildings may require an increase in the 250 psf 
value specified in Table  1.1; special provisions must be made for all definitely 
located heavy concentrated loads.

Live loads for highway bridges are specified by the American Association of 
State Highway and Transportation Officials (AASHTO) in its LRFD Bridge Design 
Specifications (Ref. 1.3). For railway bridges, the American Railway Engineering 
and Maintenance-of-Way Association (AREMA) has published the Manual of Railway 
Engineering (Ref. 1.4), which specifies traffic loads.

Environmental loads consist mainly of snow loads, wind pressure and suction, 
earthquake load effects (that is, inertia forces caused by earthquake motions), soil 
and hydraulic pressures on subsurface portions of structures, loads from possible 
ponding of rainwater on flat surfaces, and forces caused by temperature differentials. 
Like live loads, environmental loads at any given time are uncertain in both mag-
nitude and distribution. Reference 1.1 contains much information on environmental 
loads, which is often modified locally depending, for instance, on local climatic or 
seismic conditions.

Occupancy or Use
Live Load, 

psf

Apartments (see Residential)
Access floor systems
  Office use 50
  Computer use 100
Armories and drill roomsa 150
Assembly areas and theaters
  Fixed seats (fastened to floor)a 60
  Lobbiesa 100
  Movable seatsa 100
  Platforms (assembly)a 100
  Stage floorsa 150
Balconies and decksb

Catwalks for maintenance access 40
Corridors
  First floor 100
  Other floors, same as occupancy served  
    except as indicated
Dining rooms and restaurantsa 100
Dwellings (see Residential)
Fire escapes 100
  On single-family dwellings only 40
Garages (passenger vehicles only)a,c,d 40
  Trucks and busesc

TABLE 1.1 
Minimum uniformly distributed live loads in pounds per square foot (psf)

Occupancy or Use
Live Load, 

psf

Hospitals
  Operating rooms, laboratories 60
  Patient rooms 40
  Corridors above first floor 80
Hotels (see Residential)
Libraries
  Reading rooms 60
  Stack roomsa,e 150
  Corridors above first floor 80
Manufacturing
  Lighta 125
  Heavya 250
Office buildings
  File and computer rooms shall be designed for  
    heavier loads based on anticipated occupancy
  Lobbies and first floor corridors 100
  Offices 50
  Corridors above first floor 80
Penal institutions
  Cell blocks 40
  Corridors 100
Recreational uses
  Bowling alleysa 75

(continued )
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Figure 1.13, from the 1972 edition of Ref. 1.1, gives snow loads for the continen-
tal United States and is included here for illustration only. The 2016 edition of Ref. 1.1 
gives much more detailed information. In either case, specified values represent not 
average values, but expected upper limits. A minimum roof load of 20 psf is often 
specified to provide for construction and repair loads and to ensure reasonable stiffness.

Occupancy or Use
Live Load, 

psf

  Dances halls 100
  Gymnasiumsa 100
Residential
  One- and two-family dwellings
    Uninhabitable attics without storagef 10
    Uninhabitable attics with storageg 20
    Habitable attics and sleeping areas 30
    All other areas except stairs 40
  All other residential occupancies, hotels,
      and multifamily houses
  �  Private rooms and corridors  

    serving them 40
  �  Public rooms and corridors  

    serving them 100
Roofs
  Ordinary flat, pitched, and curved roofsh 20
  Roofs used for roof gardens 100
  Roofs used for assembly purposes
  Roofs used for other occupanciesi

  Awnings and canopies
    Fabric construction supported by a  
        lightweight rigid skeleton structure 5
    All other construction 20

Occupancy or Use
Live Load, 

psf

Schools
  Classrooms 40
  Corridors above first floor 80
  First floor corridors 100
Sidewalks, vehicular driveways, and yards, subject  
    to truckinga,j 250
Stairs and exit-ways 100
  One- and two-family residences only 40
Storage areas above ceilings 20
Storage warehouses (shall be designed for 
 � heavier loads if required for anticipated storage)
  Lighta 125
  Heavya 250
Stores
  Retail
  First floor 100
  Upper floors 73
  Wholesale, all floorsa 125
Walkways and elevated platforms (other than  
    exit-ways) 60
Yards and terraces, pedestrians 100

a Live load reduction for this use is not permitted unless specific exceptions apply.
b 1.5 times live load for area served. Not required to exceed 100 psf.
c �Floors of garages or portions of a building used for storage of motor vehicles shall be designed for the uniformly distributed live loads of this 

table or for concentrated loads specified in Ref. 1.1.
d Design for trucks and buses shall be in accordance with Ref. 1.3; however, provisions for fatigue and dynamic load are not required.
e �The loading applies to stack room floors that support nonmobile, double-faced library book stacks subject to the following limitations: (1) The 

nominal book stack unit height shall not exceed 90 in.; (2) the nominal shelf depth shall not exceed 12 in. for each face; and (3) parallel rows 
of double-faced book stacks shall be separated by aisles not less than 36 in. wide.

f �See Ref. 1.1 for description of uninhabitable attic areas without storage. This live load need not be assumed to act concurrently with any other 
live load requirement.

g �See Ref. 1.1 for description of uninhabitable attic areas with storage and where this provision applies.
h �Where uniform roof live loads are reduced to less than 20 psf in accordance with Section 4.8.2 of Ref. 1.1 and are applied to the design of 

structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans, 
whichever produces the greatest unfavorable load effect.

i Roofs used for other special purposes shall be designed for appropriate loads as approved by the authority having jurisdiction.
j �Other uniform loads in accordance with an approved method that contains provisions for truck loadings shall also be considered where appropriate.
Data Source: Minimum Design Loads and Other Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-16). American Society of 
Civil Engineers, Reston, VA, 2010.

TABLE 1.1
(Continued)
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12      DESIGN OF CONCRETE STRUCTURES  Chapter 1

Much progress has been made in developing rational methods for predicting 
horizontal forces on structures due to wind and seismic action. Reference 1.1 sum-
marizes current thinking regarding wind forces and earthquake loads. Reference 1.5 
presents detailed recommendations for lateral forces from earthquakes.

Reference 1.1 specifies design wind pressures per square foot of vertical wall 
surface. Depending upon locality, these equivalent static forces vary from about 10 
to 50 psf. Factors include basic wind speed, exposure (urban vs. open terrain, for 
example), height of the structure, the importance of the structure (that is, conse-
quences of failure), and gust effect factors to account for the fluctuating nature of 
the wind and its interaction with the structure.

Seismic forces may be found for a particular structure by elastic or inelastic 
dynamic analysis, considering expected ground accelerations and the mass, stiffness, 
and damping characteristics of the construction. In less seismically active areas, the 
design is often based on equivalent static forces calculated from provisions such as 
those of Refs. 1.1 and 1.5. The base shear is found by considering such factors as 
location, type of structure and its occupancy, total dead load, and the particular soil 
condition. The total lateral force is distributed to floors over the entire height of the 
structure in such a way as to approximate the distribution of forces obtained from a 
dynamic analysis.

	 1.4	 SERVICEABILITY, STRENGTH, AND STRUCTURAL SAFETY

To serve its purpose, a structure must be safe against collapse and serviceable in use. 
Serviceability requires that deflections be adequately small; that cracks, if any, be kept 
to tolerable limits; and that vibrations be minimized. Safety requires that the strength of 
the structure be adequate for all loads that may foreseeably act on it. If the strength of 
a structure, built as designed, could be predicted accurately, and if the loads and their 
internal effects (bending moments, shears, axial forces, and torsional moments) were 
known accurately, safety could be ensured by providing a carrying capacity just barely 

FIGURE 1.13
Snow load in pounds per 
square foot (psf) on the 
ground, 50-year mean 
recurrence interval. (Minimum 

Design Loads for Buildings  

and Other Structures, ANSI 

A58.1–1972, American  

National Standards Institute, 

New York, 1972.)
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INTRODUCTION      13

in excess of the known loads. However, there are a number of sources of uncertainty in 
the analysis, design, and construction of reinforced concrete structures. These sources 
of uncertainty, which require a definite margin of safety, may be listed as follows:

	 1.	 Actual loads may differ from those assumed.
	 2.	 Actual loads may be distributed in a manner different from that assumed.
	 3.	 The assumptions and simplifications inherent in any analysis may result in calcu-

lated load effects—moments, shears, etc.—different from those that, in fact, act in  
the structure.

	 4.	 The actual structural behavior may differ from that assumed, owing to imperfect 
knowledge.

	 5.	 Actual member dimensions may differ from those specified.
	 6.	 Reinforcement may not be in its proper position.
	 7.	 Actual material strength may be different from that specified.

In the establishment of safety requirements, consideration must be given to the 
consequences of failure. In some cases, a failure would be merely an inconvenience. 
In other cases, loss of life and significant loss of property may be involved. A further 
consideration should be the nature of the failure, should it occur. A gradual failure 
with ample warning permitting remedial measures is preferable to a sudden, unex-
pected collapse.

It is evident that the selection of an appropriate margin of safety is not a sim-
ple matter. However, progress has been made toward rational safety provisions in 
design codes (Refs. 1.6 to 1.11).

	 a.	 Variability of Loads

Since the maximum load that occurs during the life of a structure is uncertain, it can 
be considered a random variable. In spite of this uncertainty, the engineer must pro-
vide an adequate structure. A probability model for the maximum load can be devised 
by means of a probability density function for loads (Ref. 1.8), as represented by the 
frequency curve of Fig. 1.14a. The exact form of this distribution curve, for a par-
ticular type of loading such as office loads, can be determined only on the basis of 
statistical data obtained from large-scale load surveys. A number of such surveys have 
been completed. For types of loads for which such data are scarce, fairly reliable infor-
mation can be obtained from experience, observation, and judgment.

For such a frequency curve (Fig. 1.14a), the area under the curve between two 
abscissas, such as loads Q1 and Q2, represents the probability of occurrence of loads 
Q of magnitude Q1  <  Q  <  Q2. A specified service load Qd for design is selected 
conservatively in the upper region of Q in the distribution curve, as shown. The 
probability of occurrence of loads larger than Qd is then given by the shaded area 
to the right of Qd. It is seen that this specified service load is considerably larger 
than the mean load Q acting on the structure. This mean load is much more typical 
of average load conditions than the design load Qd.

	 b.	 Strength

The strength of a structure depends on the strength of the materials from which it 
is made. For this purpose, minimum material strengths are specified in standardized 
ways. Actual material strengths cannot be known precisely and therefore also consti-
tute random variables (see Section 2.6). Structural strength depends, furthermore, on 
the care with which a structure is built, which in turn reflects the quality of supervision 
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14      DESIGN OF CONCRETE STRUCTURES  Chapter 1

and inspection. Member sizes may differ from specified dimensions, reinforcement 
may be out of position, poorly placed concrete may show voids, etc.

The strength of the entire structure or of a population of repetitive structures, 
such as highway overpasses, can also be considered a random variable with a 
probability density function of the type shown in Fig. 1.14b. As in the case of loads, 
the exact form of this function cannot be known but can be approximated from 
known data, such as statistics of actual, measured materials and member strengths 
and similar information. Considerable information of this type has been, or is being, 
developed and used.

	 c.	 Structural Safety

A given structure has a safety margin M if

	 M = S − Q > 0	 (1.1)

that is, if the strength of the structure is larger than the load acting on it. Since S and Q 
are random variables, the safety margin M = S − Q is also a random variable. A plot of 
the probability function of M may appear as in Fig. 1.14c. Failure occurs when M is less 
than zero. Thus, the probability of failure is represented by the shaded area in the figure.

Even though the precise form of the probability density functions for S and Q, 
and therefore for M, is not known, much can be achieved in the way of a rational 
approach to structural safety. One such approach is to require that the mean safety 

FIGURE 1.14
Frequency curves for  
(a) loads Q, (b) strengths S,  
and (c) safety margin M.
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margin M be a specified number β of standard deviations σm above zero. It can be 
demonstrated that this results in the requirement that

	 ψs ​‾ S​ ≥ ψL ​‾‾ Q​	 (1.2)

where ψs is a partial safety coefficient smaller than 1.0 applied to the mean strength ​
‾ S​ and ψL is a partial safety coefficient larger than 1.0 applied to the mean load ​‾‾ Q​. 
The magnitude of each partial safety coefficient depends on the variance of the quan-
tity to which it applies, S or Q, and on the chosen value of β, the reliability index of 
the structure. As a general guide, a value of the safety index β between 3 and 4 corre-
sponds to a probability of failure of the order of 1:100,000 (Ref. 1.9). The value of β is 
often established by calibration against well-proved and established designs.

In practice, it is more convenient to introduce partial safety coefficients with 
respect to code-specified loads that considerably exceed average values, rather than 
with respect to mean loads as in Eq. (1.2); similarly, the partial safety coefficient 
for strength is applied to nominal strength† generally computed somewhat conserv-
atively, rather than to mean strengths as in Eq. (1.2). A restatement of the safety 
requirement in these terms is

	 ϕ Sn ≥ γ Qd	 (1.3a)

in which ϕ is a strength reduction factor applied to nominal strength Sn and γ is a load 
factor applied to calculated or code-specified design loads Qd. Furthermore, recogniz-
ing the differences in variability between, say, dead loads D and live loads L, it is both 
reasonable and easy to introduce different load factors for different types of loads. The 
preceding equation can thus be written

	 ϕ Sn ≥ γd D + γl L	 (1.3b)

in which γd is a load factor somewhat greater than 1.0 applied to the calculated dead 
load D and γl is a larger load factor applied to the code-specified live load L. When 
additional loads, such as the wind load W, are to be considered, the reduced probabil-
ity that maximum dead, live, and wind or other loads will act simultaneously can be 
incorporated by using modified load factors such that

	 ϕ Sn ≥ γdi
 D + γli L + γwi

W + . . .	 (1.3c)

Present U.S. design codes follow the format of Eqs. (1.3b) and (1.3c).

	 1.5	 DESIGN BASIS

The single most important characteristic of any structural member is its actual strength, 
which must be large enough to resist, with some margin to spare, all foreseeable loads 
that may act on it during the life of the structure, without failure or other distress. It 
is logical, therefore, to proportion members, that is, to select concrete dimensions and 
reinforcement, so that member strengths are adequate to resist forces resulting from 
certain hypothetical overload stages, significantly above loads expected actually to 
occur in service. This design concept is known as strength design.

†  �Throughout this book quantities that refer to the strength of members, calculated by accepted analysis methods, are furnished with the 
subscript n, which stands for “nominal.” This notation is in agreement with the ACI Code. It is intended to convey that the actual strength of 
any member is bound to deviate to some extent from its calculated, nominal value because of inevitable variations of dimensions, materials 
properties, and other parameters. Design in all cases is based on this nominal strength, which represents the best available estimate of the 
actual member strength.
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16      DESIGN OF CONCRETE STRUCTURES  Chapter 1

For reinforced concrete structures at loads close to and at failure, one or both 
of the materials, concrete and steel, are invariably in their nonlinear inelastic range. 
That is, concrete in a structural member reaches its maximum strength and subse-
quent fracture at stresses and strains far beyond the initial elastic range in which 
stresses and strains are fairly proportional. Similarly, steel close to and at failure of 
the member is usually stressed beyond its elastic domain into and even beyond the 
yield region. Consequently, the nominal strength of a member must be calculated on 
the basis of this inelastic behavior of the materials.

A member designed by the strength method must also perform in a satisfactory 
way under normal service loading. For example, beam deflections must be limited 
to acceptable values, and the number and width of flexural cracks at service loads 
must be controlled. Serviceability limit conditions are an important part of the total 
design, although attention is focused initially on strength.

Historically, members were proportioned so that stresses in the steel and concrete 
resulting from normal service loads were within specified limits. These limits, known 
as allowable stresses, were only fractions of the failure stresses of the materials. For 
members proportioned on such a service load basis, the margin of safety was provided 
by stipulating allowable stresses under service loads that were appropriately small 
fractions of the compressive concrete strength and the steel yield stress. We now refer 
to this basis for design as service load design. Allowable stresses, in practice, were  
set at about one-half the concrete compressive strength and one-half the yield stress 
of the steel.

Because of the difference in realism and reliability, the strength design method 
has displaced the older service load design method. However, the older method 
provides the basis for some serviceability checks and is the design basis for many 
older structures. Throughout this text, strength design is presented almost exclusively.

	 1.6	 DESIGN CODES AND SPECIFICATIONS

The design of concrete structures such as those of Figs. 1.1 to 1.12 is generally done 
within the framework of codes giving specific requirements for materials, structural 
analysis, member proportioning, etc. The International Building Code (Ref. 1.2) is an 
example of a consensus code governing structural design and is often adopted by local 
municipalities. The responsibility of preparing material-specific portions of the codes 
rests with various professional groups, trade associations, and technical institutes. In 
contrast with many other industrialized nations, the United States does not have an 
official, government-sanctioned, national code.

The American Concrete Institute (ACI) has long been a leader in such efforts. 
As one part of its activity, the American Concrete Institute has published the widely 
recognized Building Code Requirements for Structural Concrete and Commentary 
(Ref. 1.12), which serves as a guide in the design and construction of reinforced con-
crete buildings. The ACI Code has no official status in itself. However, it is generally 
regarded as an authoritative statement of current good practice in the field of reinforced 
concrete. As a result, it has been incorporated by reference into the International 
Building Code and similar codes that are, in turn, adopted by law into municipal and 
regional building codes that do have legal status. Its provisions thereby attain, in effect, 
legal standing. Most reinforced concrete buildings and related construction in the 
United States are designed in accordance with the current ACI Code. It has also served 
as a model document for many other countries. The commentary incorporated in  
Ref. 1.12 provides background material and rationale for the Code provisions. The 
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INTRODUCTION      17

American Concrete Institute also publishes important journals and standards, as well 
as recommendations for the analysis and design of special types of concrete structures 
such as shown in Fig. 1.7.

Most highway bridges in the United States are designed according to the 
requirements of the AASHTO bridge specifications (Ref. 1.3), which not only con-
tain the provisions relating to loads and load distributions mentioned earlier but also 
include detailed provisions for the design and construction of concrete bridges. Some 
of the provisions follow ACI Code provisions closely, although a number of signif-
icant differences will be found.

The design of railway bridges is done according to the specifications of the 
AREMA Manual of Railway Engineering (Ref. 1.4). It, too, is patterned after the 
ACI Code in most respects, but it contains much additional material pertaining to 
railway structures of all types.

No code or design specification can be construed as a substitute for sound 
engineering judgment in the design of concrete structures. In structural practice, 
circumstances are frequently encountered where code provisions can serve only as 
a guide, and the engineer must rely upon a firm understanding of the basic principles 
of structural mechanics applied to reinforced or prestressed concrete, and an intimate 
knowledge of the nature of the materials.

	 1.7	 SAFETY PROVISIONS OF THE ACI CODE

The safety provisions of the ACI Code are given in the form of Eqs. (1.3b) and (1.3c) 
using strength reduction factors and load factors. These factors are based on statistical 
information, experience, engineering judgment, and compromise. In words, the design 
strength ϕSn of a structure or member must be at least equal to the required strength U 
calculated from the factored loads, that is,

	 Design strength ≥ Required strength	

or

	 ϕ Sn ≥ U	 (1.4)

The nominal strength Sn is computed (usually somewhat conservatively) by accepted 
methods. The required strength U is calculated by applying appropriate load factors 
to the respective service loads: dead load D; live load L; wind load W; earthquake 
load E; snow load S; rain load R; cumulative effects T due to differential settlement 
and restrained volume change due to creep, shrinkage, and temperature change; fluid 
pressure F; and earth pressure H. Loads are defined in a general sense, to include 
either loads or the related internal effects such as moments, shears, and thrusts. Thus, 
in specific terms for a member subjected, say, to moment, shear, axial load, and 
torsional moment

	 ϕMn ≥ Mu	 (1.5a)

	 ϕVn ≥ Vu	 (1.5b)

	 ϕPn ≥ Pu	 (1.5c)

	 ϕTn ≥ Tu	 (1.5d)

where the subscripts n denote the nominal strengths in flexure, shear, and axial load, 
respectively, and the subscripts u denote the factored load moment, shear, axial  
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18      DESIGN OF CONCRETE STRUCTURES  Chapter 1

load and torsion. In computing the factored load effects on the right, load factors may 
be applied either to the service loads themselves or to the internal load effects calcu-
lated from the service loads.

The load factors specified in the ACI Code, to be applied to calculated dead 
loads and those live and environmental loads specified in the appropriate codes or 
standards, are summarized in Table 1.2. A maximum load factor of 1.0 is used for 
wind load W and earthquake load E because these loads are expressed at strength 
level in Ref. 1.1. In addition to the load combinations shown in Table 1.2, Chapter 5 
of the ACI Code addresses how load effects due to differential settlement, creep, 
shrinkage, temperature change, fluid pressure, and earth pressure should be handled 
depending on the load combination and whether they add or counteract the effects 
of the primary load. The load combinations in Table  1.2 are consistent with the 
concepts introduced in Section 1.4 and with ASCE∕SEI 7, Minimum Design Loads 
and Other Associated Criteria for Buildings and Other Structures (Ref. 1.1). For 
individual loads, lower factors are used for loads known with greater certainty, such 
as dead load, compared with loads of greater variability, such as live loads. Further, 
for load combinations such as dead plus live loads plus wind forces, reductions are 
applied to one load or the other that reflect the improbability that an excessively 
large live load coincides with an unusually high windstorm. The factors also reflect, 
in a general way, uncertainties with which internal load effects are calculated from 
external loads in systems as complex as highly indeterminate, inelastic reinforced 
concrete structures which, in addition, consist of variable-section members (because 
of tension cracking, discontinuous reinforcement, etc.). Finally, the load factors also 
distinguish between two situations, particularly when horizontal forces are present 

Primary Loada Factored Load or Load Effect U

Basicb U = 1.2D + 1.6L

Dead U = 1.4D

Live U = 1.2D + 1.6L + 0.5(Lr or S or R)
Roof, snow, rainc U = 1.2D + 1.6(Lr or S or R) + 0.5(1.0L or 0.5W)
Windc,d U = 1.2D + 1.0W + 1.0L + 0.5(Lr or S or R)

U = 0.9D + 1.0W

Earthquakec,e U = 1.2D + 1.0E + 1.0L + 0.2S

U = 0.9D + 1.0E

a �Where the following represent the loads or related internal moments or forces resulting from the listed 
factors: D = dead load; E = earthquake; L =  live load; Lr = roof live load; R = rain; S = snow; and 
W = wind. In addition to the loads shown in this table, the ACI Code also requires consideration of loads 
due to F =  fluids; H = earth pressure; and T = cumulative effects of differential settlement and restraint 
of volume change (creep, shrinkage, temperature change).

b �The “basic” load condition of U = 1.2D + 1.6L reflects the fact that interior members in buildings 
generally are not subjected to Lr or S or R and that 1.4D rarely governs design.

c �The load factor on live load L in these load combinations may be reduced up to 0.5, except for garages, 
areas occupied as places of public assembly, and areas where L is greater than 100 psf.

d �Versions of ASCE/SEI 7 before 2010 provided wind speeds based on service-level design. If service-level 
winds are used, 1.6W should be used for strength design.

e �The vertical effects of earthquake are additive to the the dead load effects.

TABLE 1.2
Factored load combinations for determining required strength  
U in the ACI Code
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INTRODUCTION      19

in addition to gravity, that is, the situation where the effects of all simultaneous loads 
are additive, as distinct from that in which various load effects counteract one 
another. For example, wind load produces an overturning moment, and the gravity 
forces produce a counteracting stabilizing moment.

In all cases in Table  1.2, the controlling equation is the one that gives the 
largest factored load effect U.

The strength reduction factors ϕ in the ACI Code are given different values 
depending on the state of knowledge, that is, the accuracy with which various 
strengths can be calculated. Thus, the value for bending is higher than that for shear 
or bearing. Also, ϕ values reflect the probable importance, for the survival of the 
structure, of the particular member and of the probable quality control achievable. 
For both these reasons, a lower value is used for columns than for beams. Table 1.3 
gives some of the ϕ values specified in Chapter 21 of the ACI Code.

The joint application of strength reduction factors (Table 1.3) and load factors 
(Table 1.2) is aimed at producing approximate probabilities of understrength of the 
order of 1∕100 and of overloads of 1∕1000. This results in a probability of structural 
failure on the order of 1∕100,000.

	 1.8	 DEVELOPING FACTORED GRAVITY LOADS

To be of use in design, the live loads in Table 1.1 and information on the self-weight 
of the structural members and other dead loads must be converted into forces acting on 
the structure. By way of several examples, this section describes the conventions by 
which this is done for gravity loads.

Figure  1.15 shows a hospital building with a reinforced concrete frame. The 
masonry fascia and steel entrance give little indication of the underlying structure. 
Figure 1.16 shows the same building under construction. The slabs, beams, columns, 
and stairwells are identified. Temporary formwork and shoring for the cast-in-place 

Strength Condition
Strength Reduction 

Factor ϕ

Tension-controlled sectionsa 0.90
Compression-controlled sectionsb

  Members with spiral reinforcement 0.75
  Other reinforced members 0.65
Shear and torsion 0.75
Bearing on concrete 0.65
Post-tensioned anchorage zones 0.85
Strut-and-tie modelsc 0.75

a �Chapter 22 discusses reductions in ϕ for pretensioned members where strand embedment is less than the 
development length.

b �Chapter 4 contains a discussion of the linear variation of ϕ between tension and compression-controlled 
sections. Chapter 9 discusses the conditions that allow an increase in ϕ for spirally reinforced columns.

c Chapter 17 describes strut-and-tie models.

TABLE 1.3
Strength reduction factors in the ACI Code
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20      DESIGN OF CONCRETE STRUCTURES  Chapter 1

framing system are visible in the upper stories. This structure is designed for wind 
and gravity loads because wind loads exceed the earthquake effects at this location. 
The stairwell walls provide lateral stability and resistance to wind load. The remain-
ing structural elements are designed for gravity loads.

Figure  1.17 shows a schematic floor plan of the building and a photograph 
of the one-way joist floor system. The slab is 5 in. thick, and the joists (narrow 
beams not shown in the floor plan) are 6 in. wide, 24 in. deep, spaced at 5 ft, and 
run in the East–West direction between supporting girders that run North–South 
between columns. The bays adjacent to building line C are selected to illustrate 
the development of factored gravity loads to be used in design. Operating rooms 
are located in this portion of the building. Preliminary sizing of a typical floor 
indicates that the girder cross section will be 24 in. deep by 16 in. wide. In addi-
tion to the live load, the floor supports a suspended ceiling and duct work below 
weighing 6.5 psf. Normalweight concrete, producing reinforced concrete with a 
unit weight of 150 pcf, is used for construction.

FIGURE 1.15
Hospital building  
(Photograph by Charles  

W. Dolan)

Area detailed in Figure 1.16

FIGURE 1.16
Details of framing system  
(Photograph by Charles  

W. Dolan) Formwork and temporary
construction loads

Slab and beams

Columns

Walls and stairwells
(for lateral support)

Suspended ceiling
and utilities
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FIGURE 1.17
(a) Building floor plan and 
(b) joist floor system  
(Photograph by Charles  

W. Dolan)
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	 EXAMPLE 1.1	 Loads on slab∕joist system.  Determine the service and factored loads acting on the slab∕joist 
system between lines C and D.

Solution.  Slab loads are typically defined as surface loads in pounds per square foot (psf). From 
Table 1.1, the live load for hospital operating rooms is 60 psf. The slab is 5 in. thick. The joists 
are 6 in. wide by 24 in. deep, extending 19 in. below the bottom of the slab and spaced 5 ft on 
center. The joists can be considered as adding to the thickness of the slab for the purpose of 
calculating the dead load of the system. The equivalent increase in slab thickness equals the cross-
sectional area of the joist below the bottom of the slab divided by the spacing of the joists in in. or 
(6 × 19)∕(5 × 12) = 1.9 in., giving an equivalent total slab thickness for calculation of dead load 
of 6.9 in. The dead load of the slab∕joist system is then the equivalent total slab thickness in feet 
times the concrete density, 150 pcf, resulting in a slab dead weight of (6.9∕12) × 150 pcf = 86.3 psf. 
The service load qs on the slab is then 86.3 psf + 6.5 psf superimposed dead load + 60 psf live 
load, giving qs = 152.8 psf. The factored load for this example is determined using the basic load 
factor condition from Table  1.2. Thus, the factored load on the slab qu is 1.2 × (86.3 psf + 
6.5 psf) + 1.6 × 60 psf = 207.4 psf, which is rounded to qu = 207 psf.
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22      DESIGN OF CONCRETE STRUCTURES  Chapter 1

	 1.9	 CONTRACT DOCUMENTS AND INSPECTION

Design information is transmitted from the licensed design professional, sometimes 
called the engineer of record, to the contractor through the contract documents. These 
documents typically consist of plans, specifications, and estimates. A typical set of 
plans includes the graphical information describing the architectural, structural, 
mechanical, and electrical components of the building. The structural plans contain 
the concrete sections, reinforcement, reinforcement details and placement, and other 
technical information based on the engineer’s calculations. The licensed design pro-
fessional commonly includes sketches or drawings of specific details in the calcula-
tions to allow the information to be accurately incorporated into the plans. 

Specifications consist of two parts: the contract terms and conditions and the 
technical specifications. Contract terms and conditions include what is to be con-
structed, the time and cost of the construction, bonding requirements, and other 
specific issues between the owner and the contractor. Technical specifications con-
tain the detailed information the contractor needs to complete a project and are 
provided by the licensed design professional. They include the ASTM specifications 
for concrete and steel, requirements for concrete strength and placement, grade of 
reinforcement to be used, considerations for hot and cold weather concreting, and 
other project specific information. During design, the licensed design professional 

	 EXAMPLE 1.2	 Load on girder.  Determine the factored load applied to the interior girder on line C between 
lines 3 and 4.

Solution.  Beam and girder loads are typically defined in pounds per linear foot (plf) or kips 
per linear foot (klf) along the length of the beam. The loads are developed using a 1 ft wide 
tributary strip perpendicular to the girder, shown in Fig. 1.17a. In this example, the length of the 
tributary strip goes halfway across the slabs loading the girder and is, thus, 7.5 ft long on the B-C 
side and 17.5 ft long on the C-D side of building line C for a total length of 25 feet. From 
Example 1.1, the factored load on the slab, 207 psf, is applied to the 1 ft wide strip, giving a 
load on the girder of 207 psf × 1 ft wide × 25 ft total tributary width = 5175 plf. To this must 
be added the factored girder self-weight. Only the 19 in. deep portion below the slab need be 
added, thus the load must be increased by 16 in. wide × 19 in. deep × 150 pcf∕144 in2∕ft2 = 317 plf. 
The uniform factored design load on the girder wu is then 5175 plf + 1.2 × 317 plf = 5555.4 plf. 
Using three significant figures, the load to be used in design is wu = 5.56 kip∕ft.

	 EXAMPLE 1.3	 Load on column.  Determine the factored axial load transferred to column C4.

Solution.  Column axial loads are expressed in pounds or kips and are established using a 
tributary area. The tributary area for column C4, shown in Fig. 1.17a, is a rectangular area 
measure halfway between column lines (that is, half the distance to the adjacent columns) 
equal to (15 ft∕2 + 35 ft∕2) × (25 ft∕2 + 35 ft∕2) = 25 × 30 = 750 ft2. From Example 1.1, 
the factored load of the slab is qu = 207 psf to which must be added the factored weight of 
the beam from Example 2, 1.2 × 317 plf, within the tributary area. Thus, the load transferred 
to the column is Pu = 207 psf × 750 ft2 + 1.2 × 317 plf × (35 ft∕2 + 25 ft∕2) = 166,650 lb 
or 166.7 kips. Using three significant figures, the factored axial load would be Pu = 167 kips. 
The determination of axial loads for use in design is discussed further in Section 11.3.
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makes decisions about the materials and details needed to comply with the design 
intent and the building code requirements. A contractor is not required to be famil-
iar with the ACI Building Code nor is the contractor responsible for assuring that 
code requirements are satisfied. Therefore, the licensed design professional must 
include all relevant project and code requirements in the plans and specifications. 
Chapter 26 of the ACI Building Code (Ref. 1.12) contains a comprehensive descrip-
tion of information that the engineer must include in the plans and specifications. 
Pointers to this chapter are included throughout the ACI Code to assist the licensed 
design professional in finding and recording the correct information.

Inclusion of information in the project specifications does not, by itself, assure 
that construction will be executed according to the design intent. Rather, compliance 
requirements and inspection provide the licensed design professional and the owner 
with confirmation that the design intent is being met. Compliance requirements asso-
ciated with project specifications are provided in Chapter 26 of the ACI Code. These 
compliance requirements complement the technical specifications by providing direct 
feedback to the licensed design professional. For example, if the specifications 
require the concrete strength to be 6000 psi, the compliance requirement would be 
that the strength test results, based on ASTM specifications for testing concrete, 
demonstrate the concrete meets or exceeds the specified strength. Actual testing of 
materials is done by testing agencies and technicians certified by the American 
Concrete Institute or other qualification agencies.

Inspection further advances compliance with the design intent. Inspection can 
range from onsite observations to detailed investigation of reinforcement placement. 
Onsite observations are conducted intermittently as a general overview of the con-
struction with the intent of confirming overall design intent. Such observations may 
lead to discussions with the contractor regarding the way the work is done but do 
not direct the contractor’s work. In areas prone to earthquakes, special inspection 
may be required. Special inspection requires the licensed design professional or a 
certified designee to conduct the inspections. These inspections specifically examine 
those elements of the design required to resist earthquake load effects and to certify 
that the construction meets the design details. The General Building Code and the 
ACI Building Code specify situations where special inspection is required.

The licensed design professional is sometimes required to provide an estimate of 
the cost of construction. This estimate addresses several issues. The estimate initially 
provides the owner with information to indicate that the available project funding is 
adequate. It can also provide a basis for estimating the degree of completion during 
construction. Cost estimates solely by the engineer are most often associated with engi-
neered projects, such as bridges, piers, and industrial facilities. Cost estimates for build-
ing construction are typically provided by the architect with input from the engineer.
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Problems
		  All problems refer to Table  1.1 for live loads and Fig.  P1.1 for the building 

layout. No live load reduction factors are considered. Figure  P1.1 provides a 
plan and elevation of a reinforced concrete building 7 bays long by 4 bays 
wide. The building has beams along building lines A through E and one-way 
slabs spanning between building lines A through E. A central stairwell∕elevator 
shaft between building lines 5 and 6 provides the lateral support, so only grav-
ity loads need to be calculated. The bay dimensions, beam dimensions, and 
occupancy uses are given in the individual problem statements below. Con-
struction is with normalweight concrete with a density of 150 pcf for the 
purposes of calculating dead load.

1.1.	 The building in Fig. P1.1 is used for general office space. The slab is 8 in. thick. 
The beams are 12 in. wide and have a total depth of 18 in., the bay dimensions 
are 18.5 ft in the X direction and 21 ft in the Y direction, and the superimposed 
service dead load is 25 psf. Calculate the slab service load in psf and the inte-
rior beam service load in klf. (Solution: qs = 175 psf, ws = 3.36 klf.)

1.2.	 The building in Fig. P1.1 is used for general office space. The slab is 8 in. 
thick. The beams are 12 in. wide and have a total depth of 18 in., the bay 
dimensions are 18.5 ft in the X direction and 21 ft in the Y direction, and the 
superimposed service dead load is 25 psf. Calculate the factored axial column 
load transferred to column C3 on the third floor. (Solution: Pu = 92.5 kips.)

1.3.	 The building in Fig. P1.1 is used for general office space. The slab is 8 in. thick. 
The beams are 12 in. wide and have a total depth of 18 in., the bay dimensions 
are 18.5 ft in the X direction and 21 ft in the Y direction, and the superimposed 
service dead load is 25 psf. Calculate the slab factored load in psf and the beam 
factored load in klf. Comment on your solution in comparison with Problem 1.1.

1.4.	 A slab in Fig.  P1.1 is used for lobby space. The slab is 10 in. thick. The 
beams are 14 in. wide and have a total depth of 24 in., the bay dimensions 
are 21 ft in the X direction and 26 ft in the Y direction, and the superimposed 
service dead load is 15 psf. Calculate the slab factored load in psf and the 
beam factored load in klf.

1.5.	 The building in Fig. P1.1 is used for light storage space. The slab is 10 in. 
thick. The beams are 16 in. wide and have a total depth of 20 in., the bay 
dimensions are 20 ft in the X direction and 25 ft in the Y direction, and the 
superimposed sprinkler dead load is 4 psf. Calculate the slab factored load 
in psf and the beam factored load in klf.
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1.6.	 The roof on the building in Fig. P1.1 has a slab that is 7 in. thick. The beams 
are 12 in. wide and have a total depth of 16 in., the bay dimensions are 19 ft 
in the X direction and 21 ft in the Y direction, and the superimposed service 
dead load is 6 psf. Calculate the slab factored load in psf and the beam 
factored load in klf given the roof snow load is 30 psf.

FIGURE P1.1
Building plan and elevation
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	 2.1	 INTRODUCTION

The structures and component members treated in this text are composed of concrete 
reinforced with steel bars, and in some cases prestressed with steel wire, strand, or 
alloy bars. An understanding of the materials characteristics and behavior under load 
is fundamental to understanding the performance of structural concrete, and to safe, 
economical, and serviceable design of concrete structures. Although prior exposure to 
the fundamentals of material behavior is assumed, a brief review is presented in this 
chapter, as well as a description of the types of bar reinforcement and prestressing 
steels in common use. Numerous references are given as a guide for those seeking 
more information on any of the topics discussed.

	 2.2	 CEMENT

A cementitious material is one that has the adhesive and cohesive properties nec-
essary to bond inert aggregates into a solid mass of adequate strength and durabil-
ity. This technologically important category of materials includes not only cements 
proper but also limes, asphalts, and tars as they are used in road building, and others. 
For making structural concrete, hydraulic cements are used exclusively. Water is 
needed for the chemical process (hydration) in which the cement powder sets and 
hardens into one solid mass. Of the various hydraulic cements that have been devel-
oped, portland cement, which was first patented in England in 1824, is by far the 
most common.

Portland cement is a finely powdered, grayish material that consists chiefly of 
calcium and aluminum silicates.† The common raw materials from which it is made 
are limestones, which provide CaO, and clays or shales, which furnish SiO2 and 
Al2O3. These are ground, blended, fused to clinkers in a kiln, and cooled. Gypsum 
and additional unreacted limestone are added and the mixture is ground to the required 
fineness. The material is shipped in bulk or in bags containing 94 lb of cement.

Over the years, five standard types of portland cement have been developed. 
Type I, normal portland cement, is used for over 90 percent of construction in the 
United States. Concretes made with Type I portland cement generally need one to 
two weeks to reach sufficient strength so that forms of beams and slabs can be 

† �See ASTM C150, “Standard Specification for Portland Cement.” This and other ASTM references are published and periodically updated by 
ASTM International (formerly the American Society for Testing and Materials), West Conshohoken, PA.
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removed and reasonable loads applied; they reach their design strength after 28 days 
and continue to gain strength thereafter at a decreasing rate. To speed construction 
when needed, high early strength cements such as Type III have been developed. 
They are costlier than ordinary portland cement, but within 7 to 14 days they reach 
the strength achieved using Type I at 28 days. Type III portland cement contains the 
same basic compounds as Type I, but the relative proportions differ and it is ground 
more finely.

When cement is mixed with water to form a soft paste, it gradually stiffens 
until it becomes a solid. This process is known as setting and hardening. The cement 
is said to have set when it has gained sufficient rigidity to support an arbitrarily 
defined pressure, after which it continues for a long time to harden, that is, to gain 
further strength. The water in the paste dissolves material at the surfaces of the 
cement grains and forms a gel that gradually increases in volume and stiffness. This 
leads to a rapid stiffening of the paste 2 to 4 hours after water has been added to 
the cement. Hydration continues to proceed deeper into the cement grains, at decreas-
ing speed, with continued stiffening and hardening of the mass. The principal prod-
ucts of hydration are calcium silicate hydrate, which is insoluble, and calcium 
hydroxide, which is soluble.

In ordinary concrete, the cement is probably never completely hydrated. The 
gel structure of the hardened paste seems to be the chief reason for the volume 
changes that are caused in concrete by variations in moisture, such as the shrinkage 
of concrete as it dries.

For complete hydration of a given amount of cement, an amount of water 
equal to about 25 percent of that of cement, by weight—that is, a water-cement 
ratio of 0.25—is needed chemically. An additional amount must be present, how-
ever, to provide mobility for the water in the cement paste during the hydration 
process so that it can reach the cement particles and to provide the necessary 
workability of the concrete mix. For normal concretes, the water-cement ratio is 
generally in the range of about 0.40 to 0.60, although for high-strength concretes, 
ratios as low as 0.21 have been used. In this case, the needed workability is obtained 
through the use of admixtures.

Any amount of water above that consumed in the chemical reaction produces 
pores in the cement paste. The strength of the hardened paste decreases in inverse 
proportion to the fraction of the total volume occupied by pores. Put differently, since 
only the solids, and not the voids, resist stress, strength increases directly as the fraction 
of the total volume occupied by the solids. That is why the strength of the cement paste 
depends primarily on, and decreases directly with, an increasing water-cement ratio.

The chemical process involved in the setting and hardening liberates heat, 
known as heat of hydration. In large concrete masses, such as dams, this heat is 
dissipated very slowly and results in a temperature rise and volume expansion of the 
concrete during hydration, with subsequent cooling and contraction. To avoid the 
serious cracking and weakening that may result from this process, special measures 
must be taken for its control.

	 2.3	 AGGREGATES

In ordinary structural concretes the aggregates occupy 65 to 75 percent of the 
volume of the hardened mass. The remainder consists of hardened cement paste, 
uncombined water (that is, water not involved in the hydration of the cement), and 
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air voids. The latter two do not contribute to the strength of the concrete. In general, 
the more densely the aggregate can be packed, the better the durability and economy 
of the concrete. For this reason the gradation of the particle sizes in the aggregate, to 
produce close packing, is important. It is also important that the aggregate have good 
strength, durability, and weather resistance; that its surface be free from impurities 
such as loam, clay, silt, and organic matter that may weaken the bond with cement 
paste; and that no unfavorable chemical reaction take place between it and the cement.

Natural aggregates are generally classified as fine and coarse. Fine aggregate 
(typically natural sand) is any material that will pass a No. 4 sieve, that is, a sieve 
with four openings per linear inch. Material coarser than this is classified as coarse 
aggregate. When favorable gradation is desired, aggregates are separated by screen-
ing into two or three size groups of sand and several size groups of coarse aggre-
gate. These can then be combined according to grading criteria to provide a densely 
packed aggregate. The maximum size of coarse aggregate in reinforced concrete is 
governed by the requirement that it must easily fit into the forms and between the 
reinforcing bars. For this purpose it should not be larger than one-fifth of the nar-
rowest dimension of the forms or one-third of the depth of slabs, nor three-quarters 
of the minimum distance between reinforcing bars. Requirements for satisfactory 
aggregates are found in ASTM C33, “Standard Specification for Concrete Aggre-
gates,” and authoritative information on aggregate properties and their influence on 
concrete properties, as well as guidance in selection, preparation, and handling of 
aggregate, is found in Refs. 2.1 and 2.2.

The unit weight of normalweight concrete, that is, concrete with natural aggre-
gates, varies from about 140 to 152 pounds per cubic foot (pcf) and can generally 
be assumed to be 145 pcf. For special purposes, lightweight concretes, on one hand, 
and heavy concretes, on the other, are used.

A variety of lightweight aggregates are available. Some unprocessed aggre-
gates, such as pumice or cinders, are suitable for insulating concretes, but for struc-
tural lightweight concrete, processed aggregates are used because of better control. 
These consist of expanded shales, clays, slates, slags, or pelletized fly ash. They are 
light in weight because of the porous, cellular structure of the individual aggregate 
particles, which is achieved by gas or steam formation in processing the aggregates 
in rotary kilns at high temperatures (generally in excess of 2000°F). Requirements 
for satisfactory lightweight aggregates are found in ASTM C330, “Standard Speci-
fication for Lightweight Aggregates for Structural Concrete.”

Structural lightweight concretes have unit weights between 70 and 120 pcf, 
with most in the range of 105 to 120 pcf. Lower density lightweight concretes typ-
ically have compressive strengths of 1000 to 2500 psi and are chiefly used as fill, 
such as over light-gage steel floor panels. Lightweight concretes with unit weights 
between 90 and 120 pcf have compressive strengths comparable to those of normal-
weight concretes. Similarities and differences in structural characteristics of light-
weight and normalweight concretes are discussed in Sections 2.8 and 2.9.

Heavyweight concrete is sometimes required for shielding against gamma and 
X-radiation in nuclear reactors and similar installations, for protective structures, and 
for special purposes, such as counterweights of lift bridges. Heavy aggregates are 
used for such concretes. These consist of heavy iron ores or barite (barium sulfate) 
rock crushed to suitable sizes. Steel in the form of scrap, punchings, or shot (as 
fines) is also used. Unit weights of heavyweight concretes with natural heavy rock 
aggregates range from about 200 to 230 pcf; if iron punchings are added to high-
density ores, weights as high as 270 pcf are achieved. The weight may be as high 
as 330 pcf if ores are used for the fines only and steel for the coarse aggregate.
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	 2.4	 PROPORTIONING AND MIXING CONCRETE

The various components of a mix are proportioned so that the resulting concrete has 
adequate strength, proper workability for placing, and low cost. The third calls for 
use of the minimum amount of cement (the most costly of the components) that will 
achieve adequate properties. The better the gradation of aggregates, that is, the smaller 
the volume of voids, the less cement paste is needed to fill these voids. In addition to the 
water required for hydration, water is needed for wetting the surface of the aggregate. 
As water is added, the plasticity and fluidity of the mix increase (that is, its workability 
improves), but the strength decreases because of the larger volume of voids created by 
the free water. To reduce the free water while retaining the workability, cement must 
be added. Therefore, as for the cement paste, the water-cement ratio is the chief factor 
that controls the strength of the concrete. For a given water-cement ratio, one selects 
the minimum amount of cement that will secure the desired workability.

Figure 2.1 shows the decisive influence of the water-cement ratio on the compres-
sive strength of concrete. Its influence on tensile strength, as measured by the nominal 
flexural strength or modulus of rupture, is also seen to be pronounced but much less 
than its effect on compressive strength. This seems to be so because, in addition to the 

FIGURE 2.1
Effect of water-cement ratio 
on 28-day compressive and 
flexural tensile strength.  
(Adapted from Ref. 2.3.)
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void ratio, the tensile strength depends on the strength of the bond between coarse 
aggregate and mortar (that is, cement paste plus fine aggregate). Tests show that this 
bond strength is only slightly affected by the water-cement ratio (Ref. 2.4).

It is customary to define the proportions of a concrete mix in terms of the total 
weight of each component needed to make up 1 yd3 of concrete, such as 517 lb of 
cement, 300 lb of water, 1270 lb of sand, and 1940 lb of coarse aggregate, plus the 
total volume of air, in percent. Air content is typically 4 to 7 percent when air is 
deliberately entrained in the mix and 1 to 2 percent when it is not. The weights of 
the fine and coarse aggregates are based on material in the saturated surface dry 
condition, in which, as the description implies, the aggregates are fully saturated but 
have no water on the exterior of the particles.

Various methods of proportioning are used to obtain mixes of the desired prop-
erties from the cements and aggregates at hand. One is the trial-batch method. Select-
ing a water-cement ratio from information such as that in Fig.  2.1, one produces 
several small trial batches with varying amounts of aggregate to obtain the required 
strength, consistency, and other properties with a minimum amount of paste. Concrete 
consistency is most frequently measured by the slump test. A metal mold in the shape 
of a truncated cone 12 in. high is filled with fresh concrete in a carefully specified 
manner. Immediately upon being filled, the mold is lifted off, and the slump of the 
concrete is measured as the difference in height between the mold and the pile of 
concrete. The slump is a good measure of the total water content in the mix and 
should be kept as low as is compatible with workability. Slumps for concretes in 
building construction generally range from 2 to 5 in., although higher slumps are used 
with the aid of chemical admixtures, especially when very fluid mixtures are needed 
to allow the concrete to be placed between closely spaced reinforcing bars.

The so-called ACI method of proportioning makes use of the slump test in 
connection with a set of tables that, for a variety of conditions (types of structures, 
dimensions of members, degree of exposure to weathering, etc.), permit one to esti-
mate proportions that will result in the desired properties (Ref. 2.5). These prelimi-
nary selected proportions are checked and adjusted by means of trial batches to result 
in concrete of the desired quality. Inevitably, strength properties of a concrete of 
given proportions scatter from batch to batch. It is therefore necessary to select 
proportions that will furnish an average strength sufficiently greater than the speci-
fied design strength for even the accidentally weaker batches to be of adequate 
quality (for details, see Section 2.6). Discussion in detail of practices for proportion-
ing concrete is beyond the scope of this volume; this topic is treated fully in Refs. 2.5 
and 2.6, respectively, for normalweight and lightweight concrete.

If the results of trial batches or field experience are not available, the ACI  
Code allows concrete to be proportioned based on other experience or information, 
if approved by the licensed design professional overseeing the project. This alterna-
tive may not be applied for specified compressive strengths greater than 5000 psi.

On all but the smallest jobs, batching takes place in special batching plants. 
Separate hoppers contain cement and the various fractions of aggregate. Proportions 
are controlled, by weight, by means of manually operated or automatic scales con-
nected to the hoppers. The mixing water is batched either by measuring tanks or by 
water meters.

The principal purpose of mixing is to produce an intimate mixture of cement, 
water, fine and coarse aggregate, and possible admixtures of uniform consistency 
throughout each batch. This is typically achieved in machine mixers of the revolving- 
drum type. Minimum mixing time is 1 min for mixers of not more than 1 yd3 capacity, 
with an additional 15 sec for each additional 1 yd3. Mixing can be continued for a 
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considerable time without adverse effect. This fact is particularly important in connec-
tion with ready mixed concrete.

On large projects, particularly in the open country where ample space is available, 
movable mixing plants are installed and operated at the site. On the other hand, in 
construction under congested city conditions, on smaller jobs, and frequently in highway 
construction, ready mixed concrete is used. Such concrete is batched in a stationary 
plant and then hauled to the site in trucks in one of three ways: (1) mixed completely 
at the stationary plant and hauled in a truck agitator, (2) transit-mixed, that is, batched 
at the plant but mixed in a truck mixer, or (3) partially mixed at the plant with mixing 
completed in a truck mixer. Concrete should be discharged from the mixer or agitator 
within a limited time after the water is added to the batch. Although specifications often 
provide a single value for all conditions, the maximum mixing time should be based 
on the concrete temperature because higher temperatures lead to increased rates of 
slump loss and rapid setting. Conversely, lower temperatures increase the period during 
which the concrete remains workable. A good guide for maximum mixing time is to 
allow 1 hour at a temperature of 70°F, plus (or minus) 15 min for each 5°F drop (or 
rise) in concrete temperature for concrete temperatures between 40 and 90°F. Ten min-
utes may be used at 95°F, the practical upper limit for normal mixing and placing.

Much information on proportioning and other aspects of design and control of 
concrete mixtures will be found in Refs. 2.7 and 2.8.

	 2.5	 CONVEYING, PLACING, CONSOLIDATING, AND CURING

Conveying of most building concrete from the mixer or truck to the forms is done in 
bottom-dump buckets or by pumping through steel pipelines. The chief danger dur-
ing conveying is that of segregation, the separation of the individual components of 
concrete because of their dissimilarity. In overly wet concrete standing in containers 
or forms, the heavier coarse aggregate particles tend to settle, and the lighter materi-
als, particularly water, tend to rise. Lateral movement, such as flow within the forms, 
tends to separate the coarse aggregate particles from the finer components of the mix.

Placing is the process of transferring the fresh concrete from the conveying 
device to its final place in the forms. Prior to placing, loose rust must be removed 
from reinforcement, forms must be cleaned, and hardened surfaces of previous concrete 
lifts must be cleaned and treated appropriately. Placing and consolidating are critical 
in their effect on the final quality of the concrete. Proper placement must avoid seg-
regation, displacement of forms or of reinforcement in the forms, and poor bond 
between successive layers of concrete. Immediately upon placing, the concrete should 
be consolidated, usually by means of vibrators. Consolidation prevents honeycombing, 
ensures close contact with forms and reinforcement, and serves as a partial remedy to 
possible prior segregation. Consolidation is achieved by high-frequency, power-driven 
vibrators. These are of the internal type, immersed in the concrete, or of the external 
type, attached to the forms. The former are preferable but must be supplemented by 
the latter where narrow forms or other obstacles make immersion impossible (Ref. 2.9). 
Vibration is not needed for self-consolidating concrete, a fluid concrete that consolidates 
under its own weight, discussed in more detail in Section 2.7.

Fresh concrete gains strength most rapidly during the first few days and weeks. 
Structural design is generally based on the 28-day strength, about 70 percent of which 
is reached at the end of the first week after placing. The final concrete strength depends 
greatly on the conditions of moisture and temperature during this initial period. The 
maintenance of proper conditions during this time is known as curing. Thirty percent 
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of the strength or more can be lost by premature drying out of the concrete; similar 
amounts may be lost by permitting the concrete temperature to drop to 40°F or lower 
during the first few days unless the concrete is kept continuously moist for a long time 
thereafter. Freezing of fresh concrete may reduce its strength by 50 percent or more.

To prevent such damage, concrete should be protected from loss of moisture for at 
least 7 days and, in more sensitive work, up to 14 days. When high early strength cements 
are used, curing periods can be cut in half. Curing can be achieved by keeping exposed 
surfaces continually wet through sprinkling, ponding, or covering with plastic film or by 
the use of sealing compounds, which, when properly used, form evaporation-retarding 
membranes. In addition to improving strength, proper moist-curing provides better shrink-
age control. To protect concrete against low temperatures during cold weather, the mixing 
water, and occasionally the aggregates, is heated; thermal insulation is used where possi-
ble; and special admixtures are employed. When air temperatures are very low, external 
heat may have to be supplied in addition to insulation (Refs. 2.7, 2.8, 2.10, and 2.11).

	 2.6	 QUALITY CONTROL

The quality of mill-produced materials, such as structural or reinforcing steel, is ensured 
by the producer, who must exercise systematic quality controls, usually specified by 
pertinent ASTM standards. Concrete, in contrast, is produced at or close to the site, 
and its final qualities are affected by a number of factors, which have been discussed 
briefly. Thus, systematic quality control must be instituted at the construction site.

The main measure of the structural quality of concrete is its compressive 
strength. Tests for this property are made on cylindrical specimens of height equal 
to twice the diameter, usually 6 × 12 in. or 4 × 8 in. Impervious molds of this shape 
are filled with concrete during construction as specified by ASTM C172, “Standard 
Method of Sampling Freshly Mixed Concrete,” and ASTM C31, “Standard Practice 
for Making and Curing Concrete Test Specimens in the Field.” The cylinders are 
moist-cured at about 70°F, generally for 28 days, and then tested in the laboratory 
at a specified rate of loading. The compressive strength obtained from such tests is 
known as the cylinder strength, which is compared to the specified compressive 
strength ​​f​c​ ′​​, the main property specified for design.

To provide structural safety, continuous control is necessary to ensure that the 
strength of the concrete as furnished is in satisfactory agreement with the value 
called for by the designer. The ACI Code specifies that at least two 6  ×  12  in. or 
three 4  ×  8  in. cylinders must be tested for each 150 yd3 of concrete or for each 
5000 ft2 of surface area actually placed, but not less than once a day. As mentioned 
in Section 2.4, the results of strength tests of different batches mixed to identical 
proportions show inevitable scatter. The scatter can be reduced by closer control, but 
occasional tests below the cylinder strength specified in the design cannot be avoided.

To ensure adequate concrete strength in spite of such scatter, the ACI Code 
stipulates that concrete quality is satisfactory if
	 1.	 Every average of any three consecutive strength tests equals or exceeds ​​f​c​ ′​​, and
	 2.	 No strength test (the average of two or three cylinder tests depending on cylinder 

size) falls below the required ​​f​c​ ′​​ by more than 500 psi if ​​f​c​ ′​​ is 5000 psi or less or by 
more than 0.10 ​​f​c​ ′​​ if ​​f​c​ ′​​ exceeds 5000 psi.
It is evident that if concrete were proportioned so that its mean strength were 

just equal to the required strength ​​f​c​ ′​​, it would not pass these quality requirements, 
because about one-half of the strength test results would fall below the required ​​f​c​ ′​​. 
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It is therefore necessary to proportion the concrete so that its mean strength ​​f​cr​ ′ ​​, used 
as the basis for selection of suitable proportions, exceeds the specified design strength ​​
f​c​ ′​​ by an amount sufficient to ensure that the two quoted requirements are met. The 
minimum amount by which the required mean strength must exceed ​​f​c​ ′​​ can be deter-
mined only by statistical methods because of the random nature of test scatter. 
Requirements have been derived, based on statistical analysis, to be used as a guide 
to proper proportioning of the concrete at the plant so that the probability of strength 
deficiency at the construction site is acceptably low.

The basis for these requirements is illustrated in Fig.  2.2, which shows three 
normal frequency distribution curves giving the distribution of strength test results. 
The specified design strength is ​​f​c​ ′​​. The curves correspond to three different degrees 
of quality control, curve A representing the best control, that is, the least scatter, and 
curve C the worst control, with the most scatter. The degree of control is measured 
statistically by the standard deviation σ (σa for curve A, σb for curve B, and σc for 
curve C), which is relatively small for producer A and relatively large for producer C. 
All three distributions have the same probability of strength less than the specified 
value ​​f​c​ ′​​; that is, each has the same fractional part of the total area under the curve 
to the left of ​​f​c​ ′​​. For any normal distribution, that fractional part is defined by the 
index βs , a multiplier applied to the standard deviation σ; βs is the same for all three 
distributions of Fig.  2.2. As demonstrated in the figure, to satisfy the requirement 
that, say, 1 test in 100 will fall below ​​f​c​ ′​​ (with the value of βs thus determined), for 
producer A with the best quality control the mean strength ​​f​cr​ ′ ​​ can be much closer 
to the specified ​​f​c​ ′​​ than for producer C with the most poorly controlled operation.

On the basis of such studies, ACI Code 26.4.3.1 requires that mixture propor-
tions be established in accordance with ACI 301, “Specifications for Structural Con-
crete” (Ref. 2.13). ACI 301 requires concrete production facilities to maintain records 

FIGURE 2.2
Frequency curves and 
average strengths for various 
degrees of control of 
concretes with specified 
design strength ​​f​c​ ′​​.   
(Adapted from Ref. 2.12.)
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from which the standard deviation achieved in the particular facility can be deter-
mined. ACI 301 also stipulates the minimum amount by which the required average 
compressive strength ​​f​cr​ ′ ​​, aimed at when selecting concrete proportions, must exceed 
the specified compressive strength ​​f​c​ ′​​. In accordance with ACI 301, the value of ​​f ​cr​ ′ ​​ 
is equal to the larger of the values in Eqs. (2.1) and (2.2).

	​​ f​ cr​ ′ ​​ = ​​f​c​ ′​​ + 1.34kss	 (2.1)

or

	
f ′cr =    ​

​f​c​ ′​​ + 2.33kss − 500          for ​​f​c​ ′​​ ≤ 5000 psi	 (2.2a)
	 0.9​​f​c​ ′​​ + 2.33kss               for ​​f​c​ ′​​ > 5000 psi	 (2.2b)

where ss is the standard deviation of the test sample. The value of k is given in 
Table 2.1.

Equation (2.1) provides a probability of 1 in 100 that averages of three consecu-
tive tests will be below the specified strength ​​f​c​ ′​​. Equations (2.2a) and (2.2b) provide a 
probability of 1 in 100 that an individual strength test will be more than 500 psi below 
the specified ​​f​c​ ′​​ for ​​f​c​ ′​​ up to 5000 psi or below 0.90​​f​c​ ′​​ for ​​f​c​ ′​​ over 5000 psi.

To use Eqs. (2.1) and (2.2), ACI 301 (Ref. 2.13) requires that a minimum of 
15 consecutive test results be available. The tests must represent concrete with (1) a 
specified compressive strength within 1000 psi of ​​f​c​ ′​​ for the project and (2) materials, 
quality control, and conditions similar to those expected for the building in question. If 
fewer than 15 tests have been made, ​​f​cr​ ′ ​​ must exceed ​​f​c​ ′​​ + 1000 psi for ​​f​c​ ′​​ less than or 
equal to 3000 psi, ​​f​c​ ′​​ + 1200 psi for ​​f​c​ ′​​ between 3000 and 5000 psi, and 0.1 ​​f​c​ ′​​ + 700 psi 
for ​​f​c​ ′​​ over 5000 psi.

It is seen that this method of control recognizes the fact that occasional 
deficient batches are inevitable. The requirements for ​​f​cr​ ′ ​​ ensure (1) a small prob-
ability that such strength deficiencies, as are bound to occur, will be large enough 
to represent a serious danger and (2) an equally small probability that a sizable 
portion of the structure, as represented by three consecutive strength tests, will be 
made of below-par concrete.

Both the requirements described earlier in this section for determining if con-
crete, as produced, is of satisfactory quality and the process just described of select-
ing ​​f​cr​ ′ ​​ are based on the same basic considerations but are applied independently, as 
demonstrated in Examples 2.1 and 2.2.

{

No. of Tests†
Modification Factor k for Sample  

Standard Deviation

Less than 15 See paragraph following  
Eqs. (2.1) and (2.2)

15 1.16
20 1.08
25 1.03

30 or more 1.00

† Interpolate for intermediate values.

TABLE 2.1
Modification factor k for sample standard deviation ss when less 
than 30 tests are available
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	 EXAMPLE 2.1	 Average required strength.  A building design calls for specified concrete strength ​​f​c​ ′​​ of 
4000 psi. Calculate the average required strength ​​f​cr​ ′ ​​ if (a) 30 consecutive tests for concrete with 
similar strength and materials produce a sample standard deviation ss of 535 psi, (b) 15 con
secutive tests for concrete with similar strength and materials produce a sample standard 
deviation ss of 510 psi, and (c) less than 15 tests are available.

Solution. 
(a)  30 tests available. Using ss = 535 psi and k = 1.0 (from Table 2.1), Eq. (2.1) gives

​​f​cr​ ′ ​​ = ​​f​c​ ′​​ + 1.34kss = 4000 + 1.34 × 1.0 × 535 = 4720 psi†

		  Because the specified strength ​​f​c​ ′​​ is less than 5000 psi, Eq. (2.2a) must be used.

​​f​cr​ ′ ​​ = ​​f​c​ ′​​ + 2.33kss − 500 = 4000 + 2.33 × 1.0 × 535 − 500 = 4750 psi

		  The required average strength ​​f​cr​ ′ ​​ is equal to the larger value, 4750 psi.
	(b)	 15 tests available. Because only 15 tests are available, ss the factor k = 1.16 from Table 2.1.

1.16 × ss = 1.16 × 510 = 590 psi

		  Using ss = 510 and k = 1.16, Eqs. (2.1) and (2.2a) give, respectively,

​​f​cr​ ′ ​​ = 4000 + 1.34 × 1.16 × 510 = 4790 psi

​​f​cr​ ′ ​​ = 4000 + 2.33 × 1.16 × 510 − 500 = 4880 psi

		  The larger value, 4880 psi, is selected as the required average strength ​​f​cr​ ′ ​​.
	(c)	 Less than 15 tests available. Because ​​f​c​ ′​​ is between 3000 and 5000 psi, the required average 

strength is

​​f​cr​ ′ ​​ = ​​f​c​ ′​​ + 1200 = 4000 + 1200 = 5200 psi
	 	 This example demonstrates that in cases where test data are available, good quality con-

trol, represented by a low sample standard deviation ss, can be used to reduce the required 
average strength ​​f​cr​ ′ ​​. The example also demonstrates that a lack of certainty in the value of 
the standard deviation due to the limited availability of data results in higher values for ​​f​cr​ ′ ​​, 
as shown in parts (b) and (c). As additional test results become available, the higher safety 
margins can be reduced.

	 EXAMPLE 2.2	 Satisfactory test results.  The first eight compressive strength test results for the building 
described in Example 2.1c are 4730, 4280, 3940, 4370, 5180, 4870, 4930, and 4850 psi.

(a)  Are the test results satisfactory, and (b) in what fashion, if any, should the mixture pro-
portions of the concrete be altered?

Solution.
	(a)	 For concrete to be considered satisfactory, every arithmetic mean of any three consecutive 

tests must equal or exceed ​​f​c​ ′​​, and no individual test may fall below ​​f​c​ ′​​ − 500 psi. The eight 
tests meet these criteria. The average of all sets of three consecutive tests exceeds ​​f​c​ ′​​ [for 
example, (4730 + 4280 + 3940)∕3 = 4320, (4280 + 3940 + 4370)∕3 = 4200, etc.], and no 
test is less than ​​f​c​ ′​​ − 500 psi = 4000 − 500 = 3500 psi.

	(b)	 To determine if the mixture proportions must be altered, we note that the solution to Exam-
ple 2.1c requires that ​​f​cr​ ′ ​​ equal or exceed 5200 psi. The average of the first eight tests is 

† �ASTM International specifies that concrete cylinder strengths be recorded to the nearest 10 psi. Hence the values used for test results and ​​f​cr​ ′ ​​ 
are rounded accordingly.
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In spite of advances, building in general and concrete making in particular 
retain some elements of an art; they depend on many skills and imponderables. It is 
the task of systematic inspection to ensure close correspondence between plans and 
specifications and the finished structure. Inspection during construction should be 
performed by a competent engineer, preferably the one who produced the design or 
one who is responsible to the design engineer. The inspector’s main functions in 
regard to materials quality control are sampling, examination, and field testing of 
materials; control of concrete proportioning; inspection of batching, mixing, convey-
ing, placing, compacting, and curing; and supervision of the preparation of speci-
mens for laboratory tests. In addition, the inspector must inspect foundations, 
formwork, placing of reinforcing steel, and other pertinent features of the general 
progress of work; keep records of all the inspected items; and prepare periodic 
reports. The importance of thorough inspection to the correctness and adequate qual-
ity of the finished structure cannot be emphasized too strongly.

This brief account of concrete technology represents the merest outline of an impor-
tant subject. Anyone in practice who is actually responsible for any of the phases of 
producing and placing concrete must be familiar with the details in much greater depth.

	 2.7	 ADMIXTURES

In addition to the main components of concretes, admixtures are often used to improve 
concrete performance. There are admixtures to accelerate or retard setting and hardening, 
improve workability, increase strength, improve durability, decrease permeability, and 
impart other properties (Ref. 2.14). The beneficial effects of particular admixtures are 
well established. Chemical admixtures should meet the requirements of ASTM C494, 
“Standard Specification for Chemical Admixtures for Concrete.”

Air-entraining agents are widely used. They cause the formation of small dis-
persed air bubbles in the concrete. These improve workability and durability (chiefly 
resistance to freezing and thawing) and reduce segregation during placing. They 
decrease concrete density because of the increased void ratio and thereby decrease 
strength; however, this decrease can be largely offset by a reduction of mixing water 
without loss of workability. The chief use of air-entrained concretes is in pavements 
and structures exposed to the elements (Ref. 2.7).

Accelerating admixtures are used to reduce setting time and accelerate early 
strength development. Calcium chloride is the most widely used accelerator because 
of its cost effectiveness, but it should not be used in prestressed concrete and should 
be used with caution in reinforced concrete in a moist environment, because of its 
tendency to promote corrosion of steel, or in architectural concrete, because of  
its tendency to discolor concrete. Nonchloride, noncorrosive accelerating admixtures 
are available, the principal one being calcium nitrite (Ref. 2.14).

Set-retarding admixtures are used primarily to offset the accelerating effect of 
high ambient temperature and to keep the concrete workable during the entire plac-
ing period. This helps to eliminate cracking due to form deflection and also keeps 

4640 psi, well below the value of ​​f​cr​ ′ ​​. Thus, the mixture proportions should be modified by 
decreasing the water-cement ratio to increase the concrete strength. Once at least 15 tests 
are available, the value of ​​f​cr​ ′ ​​ can be recalculated using Eqs. (2.1) and (2.2) with the appro-
priate factor k from Table  2.1. The mixture proportions can then be adjusted based on 
the new value of ​​f​cr​ ′ ​​, the strength of the concrete being produced, and the level of quality 
control, as represented by the sample standard deviation ss.

www.konkur.in

Telegram: @uni_k



MATERIALS      37

concrete workable long enough that succeeding lifts can be placed without the devel-
opment of “cold” joints.

Certain organic compounds are used to reduce the water requirement of a 
concrete mix for a given slump. Such compounds are termed water-reducing admix-
tures or plasticizers. Reduction in water demand may result in either a reduction in 
the water-cement ratio for a given slump and cement content or an increase in slump 
for the same water-cement ratio and cement content. Plasticizers work by reducing 
the interparticle forces that exist between cement grains in the fresh paste, thereby 
increasing the paste fluidity. High-range water-reducing admixtures, often termed as 
superplasticizers, are used to produce high-strength concrete (see Section 2.12) with 
a very low water-cement ratio while maintaining the higher slumps needed for proper 
placement and compaction of the concrete. They are also used to produce flowable 
concrete at conventional water-cement ratios. Superplasticizers differ from conven-
tional water-reducing admixtures in that they do not act as retarders at high dosages; 
therefore, they can be used at higher dosage rates without severely slowing hydration 
(Ref. 2.14). The specific effects of water-reducing admixtures vary with different 
cements, changes in water-cement ratio, mixing temperature, ambient temperature, and 
other job conditions, and trial batches are generally required.

When superplasticizers are combined with viscosity-modifying admixtures, they 
can be used to produce self-consolidating concrete (SCC) (Ref. 2.15). Self-consolidating 
concrete is highly fluid and does not require vibration to remove entrapped air. The 
viscosity-modifying agents allow the concrete to remain cohesive even with a very high 
degree of fluidity. As a result, SCC can be used for members with congested reinforce-
ment, such as beam-column joints in earthquake-resistant structures, and is widely used 
for precast concrete, especially precast prestressed concrete, a manufactured product 
(prestressed concrete is discussed in Chapter 22). The high fluidity of the mix, however, 
has been shown to have a negative impact on the bond strength between the concrete 
and prestressing steel located in the upper portions of a member, a shortcoming that 
should be considered in design (Ref. 2.16) but is not currently addressed in the ACI 
Code, and the composition of SCC mixtures may result in moduli of elasticity, creep, 
and shrinkage properties that differ from those of more traditional mixtures.

Fly ash and silica fume are pozzolans, highly active silicas, that combine with 
calcium hydroxide, the soluble product of cement hydration (Section 2.2), to form 
more calcium silicate hydrate, the insoluble product of cement hydration (Refs. 2.17 
and 2.18). Pozzolans qualify as supplementary cementitious materials, also referred 
to as mineral admixtures, which are used to replace a part of the portland cement 
in concrete mixes. Fly ash, which is specified under ASTM C618, “Standard Spec-
ification for Coal Fly Ash and Raw or Calcified Natural Pozzolan for Use in Con-
crete,” is precipitated electrostatically as a by-product of the exhaust fumes of 
coal-fired power stations. It is very finely divided and reacts with calcium hydroxide 
in the presence of moisture to form a cementitious material. It tends to increase the 
strength of concrete at ages over 28 days. Silica fume, which is specified under 
ASTM C1240, “Standard Specification for Silica Fume Used in Cementitious Mix-
tures,” is a by-product resulting from the manufacture, in electric-arc furnaces, of 
ferro-silicon alloys and silicon metal. It is extremely finely divided and is highly 
cementitious when combined with portland cement. In contrast to fly ash, silica fume 
contributes mainly to strength gain at early ages, from 3 to 28 days. Both fly ash 
and silica fume, particularly the latter, have been important in the production of 
high-strength concrete (see Section 2.12).

Slag cement, which is specified under ASTM C989, “Standard Specification for 
Slag Cement for Use in Concrete and Mortars,” is another supplementary cementitious 
material. It is produced by water quenching and grinding slag from the production 
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38      DESIGN OF CONCRETE STRUCTURES  Chapter 2

of pig iron, the key ingredient used to make steel (Ref. 2.19). Slag cement consists 
primarily of calcium silicates, making it very similar to portland cement. As a result 
of the similarity, slag cement can be used in higher quantities than fly ash or silica 
fume, and the resulting material generally has similar or improved properties to those 
exhibited by concrete made with 100 percent portland cement.

When slag cement, silica fume, fly ash, or a combination is used, it is custom-
ary to refer to the water-cementitious material ratio rather than the water-cement 
ratio. This typically may be as low as 0.25 for high-strength concrete, and ratios as 
low as 0.21 have been used (Refs. 2.20 and 2.21).

Historically, the high durability and high thermal mass of concrete structures 
have played a key role in sustainable development, that is, development that min-
imizes both its impact on the environment and the resources used both during and 
after construction. In sustainable development, the “cost” of concrete lies primar-
ily in the manufacture of portland cement. The production of a ton of portland 
cement requires roughly the energy needed to operate a typical U.S. household for 
two weeks and generates approximately 0.9 ton of CO2 (a greenhouse gas). The 
latter translates to about 250 lb of CO2 for every cubic yard of concrete that is 
placed. The energy and greenhouse gases involved in the production of concrete, 
however, can be viewed as investments because properly designed reinforced con-
crete structures that take advantage of concrete’s thermal mass provide significant 
reductions in the energy and CO2 needed for heating and cooling, and concrete’s 
inherent durability results in structures with long service lives. Because by-products, 
such as the mineral admixtures fly ash and blast furnace slag, involve minimal 
energy usage or greenhouse gas production, they have the potential to further 
improve the sustainability of concrete construction when used as a partial replace-
ment for portland cement.

	 2.8	 PROPERTIES IN COMPRESSION

	 a.	 Short-Term Loading

Performance of a structure under load depends to a large degree on the stress-strain 
relationship of the material from which it is made, under the type of stress to which the 
material is subjected in the structure. Since concrete is used mostly in compression, 
its compressive stress-strain curve is of primary interest. Such a curve is obtained by 
appropriate strain measurements in cylinder tests (Section 2.6) or on the compression 
side in beams. Figure 2.3 shows a typical set of such curves for normalweight con-
crete, obtained from uniaxial compressive tests performed at normal, moderate testing 
speeds on concretes that are 28 days old. Figure 2.4 shows corresponding curves for 
lightweight concretes having a density of 100 pcf.

All of the curves have somewhat similar character. They consist of an initial 
relatively straight elastic portion in which stress and strain are closely proportional, 
then begin to curve to the horizontal, reaching the maximum stress, that is, the com-
pressive strength, at a strain that ranges from about 0.002 to 0.003 for normalweight 
concretes, and from about 0.003 to 0.0035 for lightweight concretes (Refs. 2.22 and 
2.23), the larger values in each case corresponding to the higher strengths. All curves 
show a descending branch after the peak stress is reached; however, the characteristics 
of the curves after peak stress are highly dependent upon the method of testing. If 
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special procedures are followed in testing to ensure a constant strain rate while cylinder 
resistance is decreasing, long stable descending branches can be obtained (Ref. 2.24). 
In the absence of special devices, unloading past the point of peak stress may be rapid, 
particularly for the higher-strength concretes, which are generally more brittle than 
low-strength concrete.

In present practice, the specified compressive strength ​​f​c​ ′​​ is commonly in the 
range from 3000 to 6000 psi for normalweight cast-in-place concrete, and up to about 
10,000 psi for precast prestressed concrete members. Lightweight concrete strengths 
are typically below these values. High-strength concretes, with ​​f​c​ ′​​ to 15,000 psi or 
more, are used with increasing frequency, particularly for heavily loaded columns in 
high-rise concrete buildings and for long-span bridges (mostly prestressed) where a 
significant reduction in dead load may be realized by minimizing member cross 
section dimensions. (See Section 2.12.)

The modulus of elasticity Ec (in psi units), that is, the slope of the initial straight 
portion of the stress-strain curve, is seen to be larger as the strength of the concrete 
increases. For concretes in the strength range to about 6000 psi, it can be computed 
with reasonable accuracy from the empirical equation found in ACI Code 19.2.2

	​ Ec = 33​w​c​ 1.5​​√
__

 ​f​c​ ′​​​	 (2.3)

where wc is the unit weight of the hardened concrete in pcf and ​​f​c​ ′​​ is its strength in psi. 
Equation (2.3) was obtained by testing structural concretes with values of wc from 90 
to 155 pcf. For normalweight concrete, with wc = 145 pcf, Ec may be taken as

	 Ec = 57,000​​√
__

 ​f​c​ ′​​​	 (2.4)

FIGURE 2.3
Typical compressive stress-strain curves for normal-density 
concrete with wc = 145 pcf. (Adapted from Refs. 2.22 and 2.23.)
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FIGURE 2.4
Typical compressive stress-strain curves for lightweight 
concrete with wc = 100 pcf. (Adapted from Refs. 2.22 and 2.23.)
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40      DESIGN OF CONCRETE STRUCTURES  Chapter 2

For compressive strengths in the range from 6000 to 12,000 psi, the ACI Code equation 
may overestimate Ec for both normalweight and lightweight material by as much as 
20 percent. According to Refs. 2.22 and 2.23, the following equation is recommended 
for normalweight concretes with ​​f​c​ ′​​ from 3000 to 12,000 psi, and for lightweight 
concretes with ​​f​c​ ′​​ from 3000 to 9000 psi:

	​ Ec = (40,000​√
__

 ​f​c​ ′​​ + 1,000,000)​​( ​ ​w​ c​
 ____ 

145
 ​ )​​1.5

​​	 (2.5)

where terms and units are as defined in Eqs. (2.3) and (2.4). When coarse aggregates 
with high moduli of elasticity are used, however, Eq. (2.4) may underestimate Ec. 
In cases where Ec is a key design criterion, or where it is specified based on tests, as 
permitted by ACI Code 19.2.2, it should be measured, rather than estimated, using  
Eq. (2.3), (2.4), or (2.5).

Information on concrete strength properties such as those discussed is usually 
obtained through tests made 28 days after placing. However, cement continues to 
hydrate, and consequently concrete continues to gain strength, long after this age, at 
a decreasing rate. Figure 2.5 shows a typical curve of the gain of concrete strength 
with age for concrete made using Type I (normal) cement and also Type III (high 
early strength) cement, each curve normalized with respect to the 28-day compres-
sive strength. High early strength cements produce more rapid strength gain at early 
ages, although the rate of strength gain at later ages is generally less. Concretes made 
with Type III cement are often used in precasting plants, and often the strength ​​f​c​ ′​​ 
is specified at 7 days, rather than 28 days.

Note that the shape of the stress-strain curve for various concretes of the same 
cylinder strength, and even for the same concrete under various conditions of loading, 
varies considerably. An example of this is shown in Fig. 2.6, where different specimens 
of the same concrete are loaded at different rates of strain, from one corresponding to 
a relatively fast loading (0.001 per min) to one corresponding to an extremely slow 
application of load (0.001 per 100 days). It is seen that the descending branch of the 
curve, indicative of internal disintegration of the material, is much more pronounced at 
fast than at slow rates of loading. It is also seen that the peaks of the curves, that is, 
the maximum strengths reached, are somewhat lower at slower rates of strain.

When compressed in one direction, concrete, like other materials, expands in 
the direction transverse to that of the applied stress. The ratio of the transverse to 
the longitudinal strain is known as Poisson’s ratio and depends somewhat on strength, 

FIGURE 2.5
Effect of age on compressive 
strength f ′c for moist-cured 
concrete. (Adapted from  

Ref. 2.25.)
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composition, and other factors. At stresses lower than about ​​0.7f​c​ ′​​, Poisson’s ratio for 
concrete is between 0.15 and 0.20.

	 b.	 Long-Term Loading

In some engineering materials, such as steel, strength and the stress-strain relationships 
are independent of rate and duration of loading, at least within the usual ranges of rate of 
stress, temperature, and other variables. In contrast, Fig. 2.6 illustrates the fact that the 
influence of time, in this case of rate of loading, on the behavior of concrete under load 
is pronounced. The main reason is that concrete creeps under load, while steel does not 
exhibit creep under conditions prevailing in buildings, bridges, and similar structures.

Creep is the slow deformation of a material over considerable lengths of time 
at constant stress or load. The nature of the creep process is shown schematically in 
Fig. 2.7. This particular concrete was loaded after 28 days, resulting in instantaneous 
strain εinst. The load was then maintained for 230 days, during which time creep 
increased the total deformation to almost 3 times its instantaneous value. If the load 
were maintained, the deformation would follow the solid curve. If the load is 
removed, as shown by the dashed curve, most of the elastic instantaneous strain εinst 
is recovered, and some creep recovery is seen to occur. If the concrete is reloaded 
at some later date, instantaneous and creep deformations develop again, as shown.

Creep deformations for a given concrete are practically proportional to the 
magnitude of the applied stress; at any given stress, and even at the same ratio of 
stress to compressive strength, high-strength concretes show less creep than low-
er-strength concretes (Ref. 2.27). As shown in Fig.  2.7, with elapsing time, creep 
proceeds at a decreasing rate and ceases after 2 to 5 years at a final value which, 
depending on concrete strength and other factors, is 1.2 to 3 times the magnitude of 
the instantaneous strain. If, instead of being applied quickly and thereafter kept 
constant, the load is increased slowly and gradually, as is the case in many structures 

FIGURE 2.6
Stress-strain curves at  
various strain rates, 
concentric compression.  
(Adapted from Ref. 2.26.)
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during and after construction, then instantaneous and creep deformations proceed 
simultaneously. The effect is shown in Fig.  2.6; that is, the previously discussed 
difference in the shape of the stress-strain curve for various rates of loading is chiefly 
the result of the creep deformation of concrete.

For stresses not exceeding about one-half the cylinder strength, creep strains 
are approximately proportional to stress. Because initial elastic strains are also pro-
portional to stress in this range, this permits definition of the creep coefficient

	​ Ccu = ​ 
εcu ___ εci

 ​​	 (2.6)

where εcu is the final asymptotic value of the additional creep strain and εci is the ini-
tial, instantaneous strain when the load is first applied. Creep may also be expressed in 
terms of the specific creep δcu, defined as the additional time-dependent strain per psi 
stress. For a given stress, fc, εi = fc ∕Ec and εcu = δcu fc. Thus, based on Eq. (2.6),

	 Ccu = Ecδcu	 (2.7)

In addition to the stress level, creep depends on the average ambient relative 
humidity, being more than twice as large for 50 percent as for 100 percent humidity 
(Ref. 2.8). This is so because part of the reduction in volume under sustained load is 
caused by outward migration of free pore water, which evaporates into the surrounding 
atmosphere. Other factors of importance include the type of cement and aggregate, age 
of the concrete when first loaded, and concrete strength (Ref. 2.8). The creep coefficient 
for high-strength concrete is much less than that for low-strength concrete. However, 
sustained load stresses are apt to be higher so that the creep deformation may be as 
great for high-strength concrete, even though the creep coefficient is less.

The values of specific creep and creep coefficient in Table  2.2, quoted from 
Ref.  2.28 and extended for high-strength concrete, are for average humidity condi-
tions, for concretes loaded at the age of 7 days.

FIGURE 2.7
Typical creep curve (concrete 
loaded to 600 psi at age  
28 days).
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To illustrate, if the concrete in a column with ​​f​c​ ′​​ = 4000 psi is subject to a long-
term load that causes sustained stress fc of 1200 psi, then after several years under load, 
the final value of the creep strain will be about εcu = δcu fc = 1200 × 0.80 × 10−6 =   
0.00096. Thus, if the column were 20 ft long, creep would shorten it by εcu  ×  ℓ  =   
0.00096 × 20 ft × 12 in.∕ft = 0.23 in. or about ​​ 1 _ 4 ​​ in.

The creep coefficient at any time Cct can be related to the ultimate creep coef-
ficient Ccu. In Ref. 2.25, Branson suggests the equation

	​ Cct = ​  t 0.60
 ________ 

10 +  t 0.60
 ​ Ccu​	 (2.8)

where t = time in days after loading.
In many special situations, for example, slender members or frames, or in pre-

stressed construction, the designer must take account of the combined effects of creep 
and shrinkage (Section 2.11). In such cases, rather than rely on the sample values of 
Table 2.2, more accurate information on creep parameters should be obtained, such as 
from Ref. 2.25 or 2.28.

Sustained loads affect not only the deformation but also the strength of con-
crete. The cylinder strength ​​f​c​ ′​​ is determined at normal rates of test loading (about 
35  psi∕sec). For concentrically loaded unreinforced concrete prisms and cylinders, 
the strength under sustained load is significantly lower than ​​f​c​ ′​​, on the order of 
75 percent of ​​f​c​ ′​​ for loads maintained for a year or more (Refs. 2.26, 2.29, and 2.30). 
Thus, a member subjected to a sustained overload causing compressive stress of over 
75 percent of ​​f​c​ ′​​ may fail after a period of time, even though the load is not increased.

	 c.	 Fatigue

When concrete is subject to fluctuating rather than sustained loading, its fatigue 
strength, as for all other materials, is considerably lower than its static strength. When 
plain concrete in compression is stressed cyclically from zero to maximum stress, its 
fatigue limit is from 50 to 60 percent of the static compressive strength, for 2,000,000 
cycles. For other types of applied stress, such as flexural compressive stress in rein-
forced concrete beams or flexural tension in unreinforced beams or on the tension side 
of reinforced beams, the fatigue limit likewise appears to be about 55 percent of the 
corresponding static strength. These figures, however, are for general guidance only. It 
is known that the fatigue strength of concrete depends not only on its static strength but 
also on moisture condition, age, and rate of loading (see Ref. 2.31).

Compressive  
Strength Specific Creep δcu

psi MPa 10−6 per psi 10−6 per MPa Creep Coefficient Ccu

  3,000 21 1.00 145 3.1
  4,000 28 0.80 116 2.9
  6,000 41 0.55   80 2.4
  8,000 55 0.40   58 2.0
10,000 69 0.28   41 1.6
12,000 83 0.22   33 1.4

TABLE 2.2
Typical creep parameters
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	 2.9	 PROPERTIES IN TENSION

While concrete is best employed in a manner that uses its favorable compressive 
strength, its behavior in tension is also important. The conditions under which cracks 
form and propagate on the tension side of reinforced concrete flexural members 
depend strongly on both the tensile strength and the fracture properties of the concrete, 
the latter dealing with the ease with which a crack progresses once it has formed. Con-
crete tensile stresses also occur as a result of shear, torsion, and other actions, and in 
most cases member behavior changes upon cracking. Thus, it is important to be able 
to predict, with reasonable accuracy, the tensile strength of concrete and to understand 
the factors that control crack propagation.

	 a.	 Tensile Strength

There are considerable experimental difficulties in determining the true tensile strength 
of concrete. In direct tension tests, minor misalignments and stress concentrations in 
the gripping devices are apt to mar the results. For many years, tensile strength has 
been measured in terms of the modulus of rupture fr , the computed flexural tensile 
stress at which a test beam of plain concrete (shown in Fig. 2.8) fractures. Because this 
nominal stress is computed on the assumption that concrete is an elastic material, and 
because this bending stress is localized at the outermost surface, it is apt to be larger 
than the strength of concrete in uniform axial tension. It is thus a measure of, but not 
identical with, the real axial tensile strength.

The splitting tensile strength test also provides a measure of the tensile strength 
of concrete. A concrete cylinder, the same as is used for compressive tests, is inserted 
in a compression testing machine in the horizontal position, so that compression is 
applied uniformly along two opposite generators, as shown in Fig.  2.9. Pads are 
inserted between the compression platens of the machine and the cylinder to equal-
ize and distribute the pressure. When an elastic cylinder so loaded, a nearly uniform 

FIGURE 2.8
Schematic of flexure test to determine the modulus of rupture.
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FIGURE 2.9
Schematic of splitting tensile strength test. Cylinder diameter 
= d and length = L.
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tensile stress of magnitude 2P∕(πdL) exists at right angles to the plane of load 
application. Correspondingly, such cylinders, when tested, split into two halves along 
that plane, at a stress fct that can be computed from the above expression. P is the 
applied compressive load at failure, and d and L are the diameter and length of  
the cylinder, respectively. Because of local stress conditions at the load lines and the 
presence of stresses at right angles to the aforementioned tension stresses, the results 
of the split-cylinder tests likewise are not identical with (but are believed to be a 
good measure of) the true axial tensile strength. The results of all types of tensile 
tests show considerably more scatter than those of compression tests.

Tensile strength, however determined, does not correlate well with the com-
pressive strength ​​f​c​ ′​​. It appears that for normalweight concrete, the tensile strength 
depends primarily on the strength of bond between hardened cement paste and aggre-
gate, whereas for lightweight concretes it depends largely on the tensile strength of 
the porous aggregate. The compressive strength, on the other hand, is much less 
determined by these particular characteristics.

Better correlation is found between the various measures of tensile strength and 
the square root of the compressive strength. Typical ranges of values for direct tensile 
strength, split-cylinder strength, and modulus of rupture are summarized in Table 2.3. 
The direct tensile strength, for example, ranges from 3​​√

__
 ​f​c​ ′​​​ to 5​​√

__
 ​f​c​ ′​​​ for normalweight 

concrete and from 2​​√
__

 ​f​c​ ′​​​ to 3​​√
__

 ​f​c​ ′​​​ for all-lightweight concrete, while the modulus  
of rupture ranges from 8​​√

__
 ​f​c​ ′​​​ to 12​​√

__
 ​f​c​ ′​​​ for normalweight concrete and from 6​​√

__
 ​f​c​ ′​​​ to 

8​​√
__

 ​f​c​ ′​​​ for all-lightweight concrete. In these expressions, ​​f​c​ ′​​ is expressed in psi units, and 
the resulting tensile strengths are obtained in psi. The relationship between the modulus 
of rupture fr and 8​​√

__
 ​f​c​ ′​​​ and 12​​√

__
 ​f​c​ ′​​​ is illustrated in Fig. 2.10.

These approximate expressions show that tensile and compressive strengths are 
by no means proportional and that any increase in compressive strength, such as that 
achieved by lowering the water-cement ratio, is accompanied by a much smaller 
percentage increase in tensile strength.

According to ACI Code 19.2.4, the modulus of rupture fr is equal to 7.5λ​​√
__

 ​f​c​ ′​​​, 
where λ can be based on either the equilibrium density of the concrete wc (density 
after drying at 50 percent relative humidity of 73.4 ± 3.5 °F) or the composition of 
the aggregate. When based on wc, λ equals 1.00 for wc ≥ 135 lb/ft3 and 0.75 for  
wc ≤ 100 lb/ft3. λ varies linearly between 1.00 and 0,75 for wc between 135 and  
100 lb/ft3. When based on aggregate composition, λ equals 1.00 for normalweight 
concrete, 0.85 for “sand-lightweight” concrete, and 0.75 for “all-lightweight” con-
crete, giving values of 7.5​​√

__
 ​f​c​ ′​​​, ​6.4​√

__
 ​f​c​ ′​​​, and ​5.6​√

__
 ​f​c​ ′​​​, respectively, for the three con-

crete types. In this case, values of λ between 0.75 and 1.00 are possible depending on 
the particular blend of lightweight and normalweight aggregates used in the concrete. 
Based on the test results shown in Fig. 2.10, fr = 7.5​​√

__
 ​f​c​ ′​​​ is a safe lower bound for 

normalweight concretes with compressive strengths above 2000 psi. 

Normalweight  
Concrete, psi

Lightweight  
Concrete, psi

Direct tensile strength ft′ 3 to 5​​√
__

 ​f​c​ ′​​​ 2 to 3​​√
__

 ​f​c​ ′​​​
Split-cylinder strength fct 6 to 8​​√

__
 ​f​c​ ′​​​ 4 to 6​​√

__
 ​f​c​ ′​​​

Modulus of rupture fr 8 to 12​​√
__

 ​f​c​ ′​​​ 6 to 8​​√
__

 ​f​c​ ′​​​

TABLE 2.3
Approximate range of tensile strengths of concrete
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	 b.	 Tensile Fracture

The failure of concrete in tension involves both the formation and the propagation 
of cracks. The field of fracture mechanics deals with the latter. While reinforced 
concrete structures have been successfully designed and built for over 150 years 
without the use of fracture mechanics, the brittle response of high-strength concretes 
(Section 2.12), in tension as well as compression, increases the importance of the 
fracture properties of the material as distinct from tensile strength. Research dealing 
with the shear strength of high-strength concrete beams and the bond between rein-
forcing steel and high-strength concrete indicates relatively low increases in these 
structural properties with increases in concrete compressive strength (Refs. 2.33 and 
2.34). While shear and bond strength are associated with the ​​√

__
 ​f​c​ ′​​​ for normal-strength 

concrete, tests of high-strength concrete indicate that increases in shear and bond 
strengths are well below values predicted using ​​√

__
 ​f​c​ ′​​​, indicating that concrete tensile 

strength alone is not the governing factor. An explanation for this behavior is pro-
vided by research at the University of Kansas and elsewhere (Refs. 2.35 and 2.36) 
that demonstrates that the fracture energy, the energy required to fully open a crack 
(that is, after the crack has started to grow), is largely independent of compressive 
strength, water-cement ratio, and age, but is a function of the coarse aggregate. These 
points are illustrated in Fig. 2.11 for concretes with two types of coarse aggregate 

FIGURE 2.10
Modulus of rupture versus 
compressive strength for 
normalweight concrete. 
(Based on data summarized  

in Ref. 2.32)
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and compressive strengths between 3,000 and 15,000 psi. Design expressions reflect-
ing this research are not yet available. The behavior is, however, recognized in the 
ACI Code by limitations on the maximum value of ​​√

__
 ​f​c​ ′​​​ that may be used to calculate 

shear and bond strength, as will be discussed in Chapters 5 and 6.

	 2.10	 STRENGTH UNDER COMBINED STRESS

In many structural situations, concrete is subjected simultaneously to various stresses 
acting in various directions. For instance, in beams much of the concrete is subject 
simultaneously to compression and shear stresses, and in slabs and footings to com-
pression in two perpendicular directions plus shear. By methods well known from the 
study of engineering mechanics, any state of combined stress, no matter how com-
plex, can be reduced to three principal stresses acting at right angles to one another on 
an appropriately oriented elementary cube in the material. Any or all of the principal 
stresses can be either tension or compression. If any one of them is zero, a state of biax-
ial stress is said to exist; if two of them are zero, the state of stress is uniaxial, either 
simple compression or simple tension. In most cases, only the uniaxial strength proper-
ties of a material are known from simple tests, such as the cylinder strength ​​f​c​ ′​​ and the 
tensile strength ft′. For predicting the strengths of structures in which concrete is subject 
to biaxial or triaxial stress, it would be desirable to be able to calculate the strength of 
concrete in such states of stress, knowing from tests only either ​​f​c​ ′​​ or ​​f​c​ ′​​ and ft′.

In spite of extensive and continuing research, no general theory of the strength 
of concrete under combined stress has yet emerged. Modifications of various strength 
theories, such as maximum stress, maximum strain, the Mohr-Coulomb, and the 
octahedral shear stress theories, all of which are discussed in structural mechanics 
texts, have been adapted with varying partial success to concrete. At present, none 
of these theories has been generally accepted, and many have obvious internal con-
tradictions. The main difficulty in developing an adequate general strength theory 
lies in the highly nonhomogeneous nature of concrete, and in the degree to which 

FIGURE 2.11
Fracture energy versus 
compressive strength for 
concretes with basalt and 
limestone coarse aggregates. 
(Based on data presented  

by Ref. 2.35)
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48      DESIGN OF CONCRETE STRUCTURES  Chapter 2

its behavior at high stresses and at fracture is influenced by microcracking and other 
discontinuity phenomena (Refs. 2.8 and 2.37).

The strength of concrete, however, has been well established by tests, at least for 
the biaxial stress state (Refs. 2.38 and 2.39). Results may be presented in the form of 
an interaction diagram such as Fig. 2.12, which shows the strength in direction 1 as a 
function of the stress applied in direction 2. All stresses are normalized in terms of 
the uniaxial compressive strength ​​f​c​ ′​​. It is seen that in the quadrant representing biax-
ial compression a strength increase as great as about 20 percent over the uniaxial 
compressive strength is attained, the amount of increase depending upon the ratio of 
f2 to f1. In the biaxial tension quadrant, the strength in direction 1 is almost independ-
ent of stress in direction 2. When tension in direction 2 is combined with compression 
in direction 1, the compressive strength is reduced almost linearly, and vice versa. For 
example, lateral compression of about one-half the uniaxial compressive strength will 
reduce the tensile strength by almost one-half compared with its uniaxial value. This 
fact is of great importance in predicting diagonal tension cracking in deep beams or 
shear walls, for example.

Experimental investigations into the triaxial strength of concrete have been  
few, due mainly to the practical difficulty of applying load in three directions simul-
taneously without introducing significant restraint from the loading equipment  
(Ref. 2.40). From information now available, the following conclusions can be drawn 
relative to the triaxial strength of concrete: (1) in a state of equal triaxial compres-
sion, concrete strength may be an order of magnitude larger than the uniaxial com-
pressive strength; (2) for equal biaxial compression combined with a smaller value 
of compression in the third direction, a strength increase greater than 20 percent can 
be expected; and (3) for stress states including compression combined with tension 
in at least one other direction, the intermediate principal stress is of little conse-
quence, and the compressive strength can be predicted safely based on Fig. 2.12.

FIGURE 2.12
Strength of concrete in 
biaxial stress. (Adapted from 

Ref. 2.39.) f2
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In fact, the strength of concrete under combined stress cannot yet be calculated 
rationally, and, equally important, in many situations in concrete structures it is 
nearly impossible to calculate all of the acting stresses and their directions; these are 
two of the main reasons for continued reliance on tests. Because of this, the design 
of reinforced concrete structures continues to be based more on extensive experi-
mental information than on consistent analytical theory, particularly in the many 
situations where combined stresses occur.

	 2.11	 SHRINKAGE AND TEMPERATURE EFFECTS

The deformations discussed in Section 2.8 were induced by stresses caused by exter-
nal loads. Influences of a different nature cause concrete, even when free of any exter-
nal loading, to undergo deformations and volume changes. The most important of 
these are shrinkage and the effects of temperature variations.

	 a.	 Shrinkage

As discussed in Sections 2.2 and 2.4, any workable concrete mix contains more water 
than is needed for hydration. If the concrete is exposed to air, the larger part of this 
free water evaporates in time, the rate and completeness of drying depending on ambi-
ent temperature and humidity conditions. As the concrete dries, it shrinks in volume, 
due initially to the capillary tension that develops in the water remaining in the con-
crete (Ref. 2.7). Conversely, if dry concrete is immersed in water, it expands, regain-
ing much of the volume loss from prior shrinkage. Shrinkage, which continues at a 
decreasing rate for years, depending on the configuration of the member, is a detri-
mental property of concrete in several respects. When not adequately controlled, it 
will cause unsightly and often deleterious cracks, as in slabs and walls. In structures 
that are statically indeterminate (and most concrete structures are), it can cause large 
and harmful stresses. In prestressed concrete it leads to partial loss of initial prestress. 
For these reasons it is essential that shrinkage be minimized and controlled.

As is clear from the nature of the process, a key factor in determining the 
amount of final shrinkage is the unit water content of the fresh concrete. This is 
illustrated in Fig.  2.13, which shows the amount of shrinkage for varying amounts 
of mixing water. The same aggregates were used for all tests, but in addition to and 
independently of the water content, the amount of cement was also varied from 376 
to 1034 lb∕yd3 of concrete. This very large variation of cement content causes a 20 
to 30 percent variation in shrinkage strain for water contents between 250 to 350 lb∕yd3, 
the range used for most structural concretes. Increasing the cement content increases 
the cement paste constituent of the concrete, where the shrinkage actually takes 
place, while reducing the aggregate content. Since most aggregates do not contribute 
to shrinkage, an increase in aggregate content can significantly decrease shrinkage. 
This is shown in Fig. 2.14, which compares the shrinkage of concretes with various 
aggregate contents with the shrinkage obtained for neat cement paste (cement and 
water alone). For example, increasing the aggregate content from 71 to 74 percent 
(at the same water-cement ratio) results in a 20 percent reduction in shrinkage (Ref. 
2.28). Increased aggregate content may be obtained through the use of (1) a larger 
maximum size coarse aggregate (which also reduces the water content required for 
a given workability), (2) a concrete with lower workability, and (3) chemical admix-
tures to increase workability at lower water contents. It is evident that an effective 
means of reducing shrinkage involves both a reduction in water content and an 
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increase in aggregate content. In addition, prolonged and careful curing is beneficial 
for shrinkage control.

Values of final shrinkage for ordinary concretes are generally on the order of 
400 × 10−6 to 800 × 10−6, depending on the initial water content, ambient temper-
ature and humidity conditions, and the nature of the aggregate. Highly absorptive 
aggregates with low moduli of elasticity, such as some sandstones and slates, result 
in shrinkage values 2 or more times those obtained with less absorptive materials, 
such as granites and some limestones. Some lightweight aggregates, in view of their 

FIGURE 2.13
Effect of water content on 
drying shrinkage.  
(Adapted from Ref. 2.3.)
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great porosity, can result in much larger shrinkage values than ordinary concretes. 
On the other hand, pre-wetted fine lightweight aggregate can be used to provide 
internal curing and reduce early-age shrinkage.

For some purposes, such as predicting the time-dependent loss of force in pre-
stressed concrete beams, it is important to estimate the amount of shrinkage as a func-
tion of time. Long-term studies (Ref. 2.25) show that, for moist-cured concrete at any 
time t after the initial 7 days, shrinkage can be predicted satisfactorily by the equation

	​ εsh,t = ​  t
 ______ 

35 +  t
 ​ εsh,u​	 (2.9)

where εsh,t is the unit shrinkage strain at time t in days and εsh,u is the ultimate value 
after a long period of time. Equation (2.9) pertains to “standard” conditions, defined in 
Ref. 2.25 to exist for humidity not in excess of 40 percent and for an average thickness 
of member of 6 in., and it applies both for normalweight and lightweight concretes. 
Modification factors are applied for nonstandard conditions, and separate equations 
are given for steam-cured members. Other, more detailed models for shrinkage are 
available that incorporate the ratio of volume to surface are for the member and envi-
ronment factors, such as relative humidity (Ref. 2.42).

For structures in which a reduction in cracking is of particular importance, such 
as bridge decks, pavement slabs, and liquid storage tanks, expansive cement concrete 
or concretes containing shrinkage compensating admixtures or shrinkage reducing 
admixtures may be appropriate. Expansive cement concrete is made with shrink-
age-compensating cement, which is constituted and proportioned so that the concrete 
will increase in volume after setting and during hardening. When the concrete is 
restrained by reinforcement or other means, the tendency to expand will result in 
compression. With subsequent drying, the shrinkage so produced, instead of causing 
a tension stress in the concrete that would result in cracking, merely reduces or 
relieves the expansive strains caused by the initial expansion (Ref. 2.43). Expansive 
cement is produced by adding a source of reactive aluminate to ordinary portland 
cement; approximately 90 percent of shrinkage-compensating cement is made up of 
the constituents of conventional portland cement. Of the three main types of expan-
sive cements produced, only type K is commercially available in the United States; 
it is about 20 percent more expensive than ordinary portland cement (Ref. 2.44). 
Requirements for expansive cement are given in ASTM C845, “Standard Specifica-
tion for Expansive Hydraulic Cement.” Shrinkage-compensating admixtures, consist-
ing of calcium oxide or magnesium oxide, also provide early expansion, and they 
are converted, respectively, to calcium hydroxide or magnesium hydroxide. Concretes 
containing shrinkage-compensating admixtures behave much like concrete containing 
an expansive cement. Shrinkage-reducing admixtures do not cause appreciable 
expansion but reduce shrinkage by reducing the surface tension of water and, thus, 
capillary tension. The usual admixtures can be used in concretes containing expan-
sive or shrinkage-reducing agents, but trial mixes are necessary because some admix-
tures, particularly air-entraining agents, are not compatible with all expansive or 
shrinkage-reducing agents.

	 b.	 Effect of Temperature Change

Like most other materials, concrete expands with increasing temperature and con-
tracts with decreasing temperature. The effects of such volume changes are similar 
to those caused by shrinkage; that is, temperature contraction can lead to objec-
tionable cracking, particularly when superimposed on shrinkage. In indeterminate 
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structures, deformations due to temperature changes can cause large and occasion-
ally harmful stresses.

The coefficient of thermal expansion and contraction varies somewhat, depend-
ing upon the type of aggregate and richness of the mix. It is generally within the 
range of 4  ×  10−6 to 7  ×  10−6 per °F. A value of 5.5  ×  10−6 per °F is generally 
accepted as satisfactory for calculating stresses and deformations caused by temper-
ature changes (Ref. 2.7).

	 2.12	 HIGH-STRENGTH CONCRETE

There are a number of applications in which high-strength concrete will provide 
improved structural performance. Although the exact definition is arbitrary, the term 
generally refers to concrete having uniaxial compressive strength in the range of about 
8000 to 20,000 psi or higher. Such concretes can be made using carefully selected but 
widely available cements, sands, and coarse aggregates; certain admixtures including 
high-range water-reducing superplasticizers, fly ash, and silica fume; and very careful 
quality control during production (Refs. 2.45 and 2.46). In addition to higher strength 
in compression, most other engineering properties are improved, leading to use of the 
alternative term high-performance concrete.

The most common application of high-strength concretes has been in the col-
umns of tall concrete buildings, where normal concrete would result in unacceptably 
large cross sections, with loss of valuable floor space. It has been shown that the 
use of the more expensive high-strength concrete mixes in columns not only saves 
floor area but also is more economical than increasing the amount of steel reinforce-
ment. Concrete of up to 12,000 psi was specified for the lower-story columns of 311 
South Wacker Drive in Chicago (see Fig. 2.15), a pioneering structure with a total 
height of 946 ft. Once holding the height record, it has been superseded by taller 
buildings; the present record is held by the tallest building and the tallest structure 
of any type in the world, the Burj Khalifa in Dubai, United Arab Emirates, shown 
in Fig. 19.2, which has a total height of 2717 ft.

For bridges, too, smaller cross sections bring significant advantages, and the 
resulting reduction in dead load permits longer spans. The higher elastic modulus 
and lower creep coefficient result in reduced initial and long-term deflections, and 
in the case of prestressed concrete bridges, initial and time-dependent losses of pre-
stress force are less. Other applications of high-strength concrete include offshore 
oil structures, parking garages, bridge deck overlays, dam spillways, warehouses, and 
heavy industrial slabs.

An essential requirement for high-strength concrete is a low water–cementitious 
material ratio. For normal concretes, this usually falls in the range from about 0.40 
to 0.60 by weight, but for high-strength mixes it may be 0.25 or even lower. To 
permit proper placement of what would otherwise be a zero slump mix, high-range 
water-reducing admixtures, or superplasticizers, are essential and may increase 
slumps to as much as 6 or 8 in. and even higher when viscosity-modifying admix-
tures are used to produce self-consolidating concrete. Other additives include fly ash 
and, most notably, silica fume (see Section 2.7).

Much research has been devoted to establishing the fundamental and 
engineering properties of high-strength concretes, as well as the engineering char-
acteristics of structural members made with the material (Refs. 2.29, 2.30, and 
2.46 to 2.50). A large body of information is available, permitting the engineer 

www.konkur.in

Telegram: @uni_k



MATERIALS      53

to use high-strength concrete with confidence when its advantages justify the 
higher cost. The compressive strength curves in Figs. 2.3 and 2.4 illustrate impor-
tant differences compared with normal concrete, including a higher elastic mod-
ulus and an extended range of linear elastic response. Creep coefficients are 
reduced, as indicated in Table 2.2. Disadvantages include brittle behavior in com-
pression (see Fig.  2.16), somewhat reduced ultimate strain capacity, and an 
increased tendency to crack when drying shrinkage is restrained (Ref. 2.51), the 
latter resulting from the lower creep exhibited by the material. Strength under 
sustained load is a higher fraction of standard cylinder strength (Refs. 2.20 and 
2.30), and high-strength concrete exhibits improved durability and abrasion resist-
ance (Refs. 2.52 and 2.53). As broader experience has been gained in practical 
applications, and as design codes have been gradually updated to recognize the 
special properties of higher-strength concrete, it is now recognized as the material 
of choice where minimum member sizes are desired for compressive loading and 
where maximum member stiffness is needed.

FIGURE 2.15
311 South Wacker Drive, Chicago, which is among the  
world’s tallest buildings. High-strength concrete with ​​f​c​ ′ ​​ =  
12,000 psi was used in the lower stories. (Courtesy of Portland 

Cement Association)

FIGURE 2.16
High-strength concrete test cylinder after uniaxial loading to 
failure; note the typically smooth fracture surface, with little 
aggregate interlock. (Photograph by Arthur H. Nilson)
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	 2.13	 REINFORCING STEELS FOR CONCRETE

The useful strength of ordinary reinforcing steels in tension as well as compres-
sion, that is, the yield strength, is about 15 times the compressive strength of 
common structural concrete and well over 100 times its tensile strength. On the 
other hand, steel is a high-cost material compared with concrete. It follows that 
the two materials are best used in combination if the concrete is made to resist the 
compressive stresses and the steel the tensile stresses. Thus, in reinforced con-
crete beams, the concrete resists the compressive force, longitudinal steel rein-
forcing bars are located close to the tension face to resist the tension force, and 
usually additional steel bars are so placed to resist the inclined tension stresses 
that are caused by the shear force in the beams. Reinforcement, however, is also 
used for resisting compressive forces primarily where it is desired to reduce the 
cross-sectional dimensions of compression members, as in the lower-floor col-
umns of multistory buildings. Even if no such necessity exists, a minimum amount 
of reinforcement is placed in all compression members to safeguard them against 
the effects of small accidental bending moments that might crack and even fail an 
unreinforced member.

For most effective reinforcing action, it is essential that steel and concrete 
deform together, that is, that there be a sufficiently strong bond between the two 
materials to ensure that no relative movements of the steel bars and the surrounding 
concrete occur. This bond is provided primarily by the natural roughness of the mill 
scale on the surface of hot-rolled reinforcing bars and by the closely spaced rib-
shaped surface deformations that provide a high degree of interlock between the bars 
and the surrounding concrete.

Additional features that make for the satisfactory joint performance of steel and 
concrete are the following:

	 1.	 The thermal expansion coefficients of the two materials, about 6.5 × 10−6 per 
°F for steel vs. an average of 5.5 × 10−6 per °F for concrete, are sufficiently 
close to forestall cracking and other undesirable effects of differential thermal 
deformations.

	 2.	 While the corrosion resistance of bare steel is poor, the concrete that surrounds 
the steel reinforcement provides excellent corrosion protection, minimizing cor-
rosion problems and corresponding maintenance costs.

	 3.	 The fire resistance of unprotected steel is impaired by its high thermal conduc-
tivity and by the fact that its strength decreases sizably at high temperatures. 
Conversely, the thermal conductivity of concrete is relatively low. Thus, damage 
caused by even prolonged fire exposure, if any, is generally limited to the outer 
layer of concrete, and a moderate amount of concrete cover provides sufficient 
thermal insulation for the embedded reinforcement.

Steel is used in two different ways in concrete structures: as reinforcing steel 
and as prestressing steel. Reinforcing steel is placed in the forms prior to casting of 
the concrete. Stresses in the steel, as in the hardened concrete, are caused only by 
the loads on the structure, except for possible parasitic stresses from shrinkage or 
similar causes. In contrast, in prestressed concrete structures, large tension forces are 
applied to the reinforcement prior to letting it act jointly with the concrete in resist-
ing external loads. The steels for these two uses are very different and will be dis-
cussed separately.
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	 2.14	 REINFORCING BARS

The most common type of reinforcing steel (as distinct from prestressing steel) is in 
the form of round bars, often called rebars, available in a large range of diameters 
from about ​​ 3 _ 8 ​​ to ​1​ 3 _ 8 ​​ in. for ordinary applications and in two heavy bar sizes of about ​
1​ 3 _ 4 ​​ and ​2​ 1 _ 4 ​​ in. These bars are furnished with surface deformations for the purpose of 
increasing resistance to slip between steel and concrete. Minimum requirements for 
these deformations (spacing, projection, etc.) have been developed in experimental 
research. Different bar producers use different patterns, all of which satisfy these 
requirements. Figure 2.17 shows a variety of current types of deformations.

For many years, bar sizes have been designated by numbers, Nos. 3 to 11 being 
commonly used and Nos. 14 and 18 representing the two special large-sized bars 
previously mentioned. Designation by number, instead of by diameter, was intro-
duced because the surface deformations make it impossible to define a single easily 
measured value of the diameter. The numbers are so arranged that the unit in the 
number designation corresponds closely to the number of ​​ 1 _ 8 ​​ in. of diameter size. A 
No. 5 bar, for example, has a nominal diameter of ​​ 5 _ 8 ​​ in. Bar sizes are rolled into the 
surface of the bars for easy identification.

In addition to the usual numbering, bars can also be designated in accordance 
with the International System of Units (SI), with the size being identified using the 
nominal diameter in millimeters. Thus, Nos. 3 to 11 bars can be marked with Nos. 10 
to 36, and Nos. 14 and 18 bars with Nos. 43 and 57. Both systems are used in the 
ASTM standards, but the customary system is used in the ACI Code. To recognize 
the dual system of identifying and marking the bars, the customary bar designation 
system is retained throughout this text, followed by the SI bar designations in paren-
theses, such as No. 6 (No. 19). Table A.1 of Appendix A gives areas and weights 
of standard bars. Tables A.2 and A.3 give similar information for groups of bars.

FIGURE 2.17
Types of deformed 
reinforcing bars. (Photograph 

by Arthur H. Nilson)
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	 a.	 Grades and Strengths

In reinforced concrete, a long-term trend is evident toward the use of higher-strength 
materials, both steel and concrete. Reinforcing bars with 40 ksi yield strength, once 
standard, have largely been replaced by bars with 60 ksi yield strength, both because 
they are more economical and because their use tends to reduce steel congestion in the 
forms. Bars with yield strengths of 80 and 100 ksi are often used in columns and walls 
and as confining reinforcement. Bars with a yield strength of 120 ksi are also available 
but not yet recognized by the ACI Code. Table 2.4 lists all presently available rein-
forcing steels, their grade designations, the ASTM specifications that define their 
properties (including deformations) in detail, and their two main minimum specified 
strength values. Grade 40 bars are no longer available in sizes larger than No. 6 (No. 
19) and Grade 50 bars are available in sizes up to No. 8 (No. 25).†

The conversion to SI units described above also applies to the strength grades. 
Thus, Grade 40 is also designated as Grade 280 (for a yield strength of 280 MPa), 
Grades 60 and 80 are designated Grades 420 and 550, and Grades 100 and 120 are 
designated Grades 690 and 830. The values 280, 420, 550, 690, and 830 result in 
minimum yield strengths of 40.6, 60.9, 79.8, 100.1, and 120.4 ksi. Grades based on 
inch-pound units are used in this text.

Most reinforced concrete in the U.S. is constructed using ASTM A615 carbon- 
steel bars. ASTM A706 low-alloy steel bars are usually specified, however, for 
structures designed for seismic loading because they are more ductile than A615 
bars. ASTM A1035 is often used when high-strength steel is needed.

Welding of reinforcing bars in making splices, or for convenience in fabricating 
reinforcing cages for placement in the forms, may result in metallurgical changes 
that reduce both strength and ductility, and special restrictions must be placed both 
on the type of steel used and the welding procedures. The provisions of ASTM A706 
relate to welding, as well as ductility.

The ACI Code permits reinforcing steels up to fy = 100 ksi for most applica-
tions. Higher-strength steels usually yield gradually but have no yield plateau. In this 
situation yield strength is based on the stress determined by the 0.2% offset method, 
explained in the description of stress-strain curves that follows (see Section 2.13c). 
This alternate method of defining yield strength allows current design methods, 
which were developed for sharp-yielding steels with a yield plateau, to be used with 
higher-strength steels. Steel in this higher-strength range is often used in cases where 
high deflections are not of major concern, such as in lower-story columns of high-
rise buildings.

	 b.	 Bar Markings

To allow bars of various grades and sizes to be easily distinguished, which is neces-
sary to avoid accidental use of lower-strength or smaller-size bars than called for in 
the design, all deformed bars are furnished with rolled-in markings. These identify the 
producing mill (usually with an initial), the bar size (Nos. 3 to 18 under the inch-
pound system and Nos. 10 to 57 under the SI), the type of steel (S for carbon steel,  
W for low-alloy steel, a rail sign for rail steel, A for axle steel, and CL, CM, or CS for 
the various types of low-carbon chromium steel, corresponding, respectively, to 
ASTM Specifications A615, A706, A996 for both rail and axle steel, and A1035), and 
an additional marking to identify higher-strength steels. Grade 60 (420) bars have 

† In practice, very little Grade 50 reinforcement is produced.
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Product
ASTM 

Specification Designation
Minimum Yield 

Strength, psi (MPa)
Minimum Tensile 

Strength, psi (MPa)
Reinforcing bars A615 Grade 40

Grade 60
Grade 80
Grade 100

  40,000 (280)
  60,000 (420)
  80,000 (550)
100,000 (690)

  60,000 (420)
  90,000 (620)
105,000 (725)
115,000 (790)

A706 Grade 60

Grade 80

  60,000 (420)
 [78,000 (540)

maximum]
  80,000 (550)
 [98,000 (540)

maximum]

  80,000 (550)a

100,000 (690)a

A996 Grade 40
Grade 50
Grade 60

  40,000 (280)
  50,000 (350)
  60,000 (420)

  60,000 (420)
  80,000 (550)
  90,000 (620)

A1035 Grade 100
Grade 120

100,000 (690)
120,000 (830)

150,000 (1030)
150,000 (1030)

Deformed bar mats A184 Same as Grades 40 and 60 A615 and A706 reinforcing bars
Zinc-coated bars A767, A1094 Same as reinforcing bars
Epoxy-coated bars A775, A934,  

A1055 Same as reinforcing bars

Stainless steel bars A955 Available in Grades 60, 75, and 80
Wire
  Plain
  Deformed

A1064 Grades 70 to 80b    70,000 (485)
   80,000 (550)

  80,000 (550)
  90,000 (620)

Grades 75 to 80b    75,000 (515)
   80,000 (550)

  85,000 (585)
  90,000 (620)

Welded wire reinforcement
  Plain
    W1.2 and larger
    Smaller than W1.2
  Deformed

A1064
Grades 65 to 80b

Grade 56

  
  65,000 (450)
  80,000 (550)
  56,000 (385)

  
  75,000 (515)
  90,000 (620)
  70,000 (485)

Grades 70 to 80b   70,000 (485)
  80,000 (550)

  80,000 (550)
  90,000 (620)

Prestressed reinforcement
 � Low-relaxation, seven-

wire strand

A416
Grade 250 225,000 (1555) 250,000 (1725)
Grade 270 243,000 (1675) 270,000 (1860)

  Wire A421 BA wire 199,750 (1377) or  
204,000 (1407)c

235,000 (1620) or  
240,000 (1620)c

WA wire 199,750 (1377) to
212,500 (1465)c

235,000 (1620) to  
250,000 (1725)c

  Bars A722 Type I (plain)
Type II (deformed)

127,500 (800)
120,000 (825)

150,000 (1035)
150,000 (1035)

  Compacted strand A779 Grades 245 to 270 
(normal-relaxation)
Grades 245 to 270 
(low-relaxation)

214,800 (1481) to
235,000 (1620)c

222,300 (1533) to
243,000 (1675)c

247,000 (1700) to
270,000 (1860)c

247,000 (1700) to
270,000 (1860)c

a But not less than 1.25 times the actual yield strength.
b Intermediate grades above 70 increase by 2.5 (72.5, 75, etc.).
c Minimum strengths depend on wire or strand size. 

TABLE 2.4
Summary of minimum ASTM strength requirements
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either one longitudinal line or the number 60 (4); Grade 80 (550) bars have either three 
longitudinal lines or the number 80 (6); Grade 100 (690) bars have either three or four 
longitudinal lines or the number 100 (6 or 7 in SI)*; and Grade 120 (830) bars have 
either four longitudinal lines or the number 120 (8). The identification marks are 
shown in Fig. 2.18 for Grade 60 (420) bars.

	 c.	 Stress-Strain Curves

The two chief numerical characteristics that determine the character of bar reinforce-
ment are its yield point (generally identical in tension and compression) and its modu-
lus of elasticity Es. The latter is practically the same for all reinforcing steels (but not 
for prestressing steels) and is taken as Es = 29,000,000 psi.

In addition, however, the shape of the stress-strain curve, and particularly of 
its initial portion, has significant influence on the performance of reinforced concrete 
members. Typical stress-strain curves for U.S. reinforcing steels are shown in 
Fig. 2.19. The complete stress-strain curves are shown in the left part of the figure; 
the right part gives the initial portions of the curves magnified 10 times.

Low-carbon steels, typified by the Grade 40 curve, show an elastic portion 
followed by a yield plateau, that is, a horizontal portion of the curve where strain 
continues to increase at constant stress. For such steels, the yield point is that stress 
at which the yield plateau establishes itself. With further strains, the stress begins to 
increase again, though at a slower rate, a process that is known as strain-hardening. 
The curve flattens out when the tensile strength is reached; it then turns down until 
fracture occurs. Higher-strength carbon steels, for example, those with 60 ksi yield 

* �Grade 100 (690) A615 bars use four longitudinal lines and, in SI, the number 7, while Grade 100 A1035 bars use three longitudinal lines and, 
in SI, the number 6 to designate grade. They can, however, be distinguished by the marking indicating the type of steel.

FIGURE 2.18
Marking system for reinforcing bars meeting ASTM Specifications A615, A706, and A996. (Adapted from Ref. 2.54.) 

11

S

H

11

S

60

H

Grade 60

Inch-pound

Grade line
(one line only)

Longitudinal ribs

Letter or symbol
for producing mill

Bar si ze No. 11

Type steel

Grade mark

36

S

H

36

S

4

H

Grade 420

SI

Grade line
(one line only)

Longitudinal ribs

Letter or symbol
for producing mill

Bar size No. 36

Type steel

Grade mark

www.konkur.in

Telegram: @uni_k



MATERIALS      59

stress or higher, either have a yield plateau of much shorter length or enter strain-
hardening immediately without any continued yielding at constant stress. In the latter 
case, the yield stress fy is determined using the 0.2 percent offset method. Using this 
method, a line with a strain intercept of 0.2 percent (or 0.002) is drawn parallel to 
the initial elastic portion of the stress-strain curve. The yield stress fy is defined by 
the point at which this line intercepts the stress-strain curve, as shown in Fig. 2.19b. 
Low-alloy, high-strength steels rarely show any yield plateau and usually enter 
strain-hardening immediately upon beginning to yield.

	 d.	 Fatigue Strength

In highway bridges and some other situations, both steel and concrete are subject to 
large numbers of stress fluctuations. Under such conditions, steel, just like concrete 
(Section 2.8c), is subject to fatigue. In metal fatigue, one or more microscopic cracks 
form after cyclic stress has been applied a significant number of times. These fatigue 
cracks occur at points of stress concentrations or other discontinuities and gradually 
increase with increasing numbers of stress fluctuations. This reduces the remain-
ing uncracked cross-sectional area of the bar until it becomes too small to resist the 
applied force. At this point the bar fails in a sudden, brittle manner.

For reinforcing bars it has been found (Refs. 2.31 and 2.55) that the fatigue 
strength, that is, the stress at which a given stress fluctuation between fmax and fmin 
can be applied 2 million times or more without causing failure, is practically inde-
pendent of the grade of steel. It has also been found that the stress range, that is, 
the algebraic difference between maximum and minimum stress, f1 = fmax − fmin, that 
can be sustained without fatigue failure depends on fmin. Further, in deformed bars, 
the degree of stress concentration at the location where the deformation joins the 
main cylindrical body of the bar tends to reduce the safe stress range. This stress 

FIGURE 2.19
Typical stress-strain curves for reinforcing bars.
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60      DESIGN OF CONCRETE STRUCTURES  Chapter 2

concentration depends on the ratio r∕h, where r is the base radius of the deformation 
and h its height. The radius r is the transition radius from the surface of the bar to 
that of the deformation; it is a fairly uncertain quantity that changes with roll wear 
as bars are being rolled.

On the basis of extensive tests (Ref. 2.55), the following expression has been 
developed for design:

	​ fr = 21 − 0.33fmin + 8 ​ r __ 
h
 ​​	 (2.10)

where	 fr = safe stress range, ksi
	 	 fmin = minimum stress; positive if tension, negative if compression
	 	 r∕h = �ratio of base radius to height of rolled-on deformation (in the common 

situation where r∕h is not known, a value of 0.3 may be used)

Where bars are exposed to fatigue regimes, stress concentrations such as welds or 
sharp bends should be avoided since they may impair fatigue strength.

	 e.	 Coated Reinforcing Bars

Galvanized or epoxy-coated reinforcing bars are often specified to minimize corrosion 
of reinforcement and consequent spalling of concrete under severe environmental con-
ditions, such as in bridge decks or parking garages subject to deicing chemicals, port 
and marine structures, and wastewater treatment plants.

Epoxy-coated bars, presently more widely used than galvanized bars, are gov-
erned by ASTM A775, “Standard Specification for Epoxy-Coated Reinforcing Steel 
Bars,” ASTM A934, “Standard Specification for Epoxy-Coated Prefabricated Steel 
Reinforcing Bars,” and ASTM A1055, “Standard Specification for Zinc-Epoxy Dual-
Coated Steel Reinforcing Bars,” which includes requirements for the coating mate-
rial, surface preparation prior to coating, method of application, and limits on 
coating thickness. Under ASTM A775, the coating is applied to straight bars in a 
production-line operation, and the bars are cut and bent after coating. Under ASTM 
A934, bars are bent to final shape prior to coating. ASTM A1055 covers bars that 
are sprayed with zinc followed by a conventional epoxy coating. Cut ends and small 
spots of damaged coating are suitably repaired after fabrication. Extra care is required 
in the field to ensure that the coating is not damaged during shipment and placing 
and that repairs are made if necessary.

ASTM A767, “Standard Specification for Zinc-Coated (Galvanized) Steel Bars 
for Concrete Reinforcement,” and ASTM A1094, “Standard Specification for Con-
tinuous Hot-Dip Galvanized Steel Bars for Concrete Reinforcement,” include require-
ments for the zinc-coating material, the galvanizing process, the class or weight of 
coating, finish and adherence of the coating, and the method of fabrication. Supple-
mentary requirements pertain to coating of sheared ends and repair of damaged 
coating when bars are fabricated after galvanizing.

	 2.15	 WELDED WIRE REINFORCEMENT

Apart from single reinforcing bars, welded wire reinforcement (also described as 
welded wire fabric) is often used for reinforcing slabs and other surfaces, such as 
shells, and for shear reinforcement in thin beam webs, particularly in prestressed 
beams. Welded wire reinforcement consists of sets of longitudinal and transverse 
cold-drawn steel wires at right angles to each other and welded together at all points of 
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intersection. The size and spacing of wires may be the same in both directions or may 
be different, depending on the requirements of the design.

The notation used to describe the type and size of welded wire fabric involves 
a letter-number combination. ASTM uses the letter “W” to designate plain wire and 
letter “D” to describe deformed wire. In most cases, deformed wire is produced by 
indenting the wire during the cold-drawing process. The number following the letter 
gives the cross-sectional area of the wire in hundredths of a square inch. For exam-
ple, a W5.0 wire is a smooth wire with a cross-sectional area of 0.05  in2. A W5.5 
wire has a cross-sectional area of 0.055  in2. D6.0 indicates a deformed wire with a 
cross-sectional area of 0.06  in2. Welded wire fabric having a designation 
4  ×  4  −  W5.0  ×  W5.0 has wire spacings 4 in. in each way with smooth wire of 
cross-sectional area 0.05 in2 in each direction. Sizes and spacings for common types 
of welded wire fabric and cross-sectional areas of steel per foot, as well as weight 
per 100 ft2, are shown in Table A.12 of Appendix A.

ASTM Specification A1064 covers both smooth and deformed welded wire 
reinforcement, as shown in Table 2.4. Deformed wire larger than D31 must be treated 
as plain wire because these larger size wires exhibit reduced bond strength compared 
to deformed bars.

	 2.16	 PRESTRESSING STEELS

Prestressing steel is used in three forms: round wires, strands, and alloy steel bars. 
Prestressing wire ranges in diameter from 0.192 to 0.276 in. It is made by cold-
drawing high-carbon steel after which the wire is stress-relieved by heat treatment to 
produce the prescribed mechanical properties. Wires are normally bundled in groups 
of up to about 50 individual wires to produce prestressing tendons of the required 
strength. Strands, more common than wire in U.S. practice, are fabricated with six 
wires wound around a seventh of slightly larger diameter. The pitch of the spiral wind-
ing is between 12 and 16 times the nominal diameter of the strand. Strand diame-
ters range from 0.250  to 0.700 in. Alloy steel bars for prestressing are available in 
diameters from 0.750 to 1.375 in. as plain round bars and from 0.625 to 3.00 in. as 
deformed bars, with the largest size deformed bars serving as ground anchors. Specific 
requirements for prestressing steels are found in ASTM A421, “Standard Specifica-
tion for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete”; ASTM A416, 
“Standard Specification for Low-Relaxation, Seven-Wire Strand for Prestressed Con-
crete”; and ASTM A722, “Standard Specification for High-Strength Steel Bars for 
Prestressed Concrete.” Table A.15 of Appendix A provides design information for 
U.S. prestressing steels.

	 a.	 Grades and Strengths

The tensile strengths of prestressing steels range from about 2.5 to 6 times the yield 
strengths of commonly used reinforcing bars. The grade designations correspond to 
the minimum specified tensile strength in ksi. For the widely used seven-wire strand, 
three grades are available: Grade 250 ( fpu  =  250  ksi), Grade 270, and Grade 300, 
although the last is not yet recognized in ASTM A416. Grade 270 strand is used most 
often. For alloy steel bars, two grades are used: the regular Grade 150 is most com-
mon, but special Grade 160 bars may be ordered. Round wires may be obtained in 
Grades 235, 240, and 250, depending on diameter.
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	 b.	 Stress-Strain Curves

Figure 2.20 shows stress-strain curves for prestressing wires, strand, and alloy bars of 
various grades. For comparison, the stress-strain curve for a Grade 60 reinforcing bar 
is also shown. It is seen that, in contrast to reinforcing bars, prestressing steels do not 
show a sharp yield point or yield plateau; that is, they do not yield at constant or nearly 
constant stress. Yielding develops gradually, and in the inelastic range the curve contin-
ues to rise smoothly until the tensile strength is reached. Because well-defined yielding 
is not observed in these steels, the yield strength is somewhat arbitrarily defined as the 
stress at a total elongation of 1 percent for strand and wire and at 0.7 percent for alloy 
steel bars. Figure 2.20 shows that the yield strengths so defined represent a good limit 
below which stress and strain are fairly proportional and above which strain increases 
much more rapidly with increasing stress. It is also seen that the spread between tensile 
strength and yield strength is smaller in prestressing steels than in reinforcing steels. It 
may further be noted that prestressing steels have significantly less ductility.

While the modulus of elasticity Es for deformed bars is taken as 29,000,000 
psi, the effective modulus of prestressing steel varies, depending on the type of steel 
(for example, strand vs. wire or bars) and type of use, and is best determined by test 
or supplied by the manufacturer. The modulus of elasticity of prestressing steel Ep 
has been shown to have values of 26,000,000 psi for unbonded strand (that is, strand 
not embedded in concrete), 27,000,000 psi for bonded strand and alloy steel bars, 
and about 29,000,000 psi for smooth wires, the same as for deformed reinforcing 
bars. ACI Commentary 20.3.2.1, however, indicates that values between 28,500,000 
and 29,000,000 psi are often used in design but states that values based on tests may 
be needed when checking elongation during stressing operations.

FIGURE 2.20
Typical stress-strain curves 
for prestressing steels.
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	 c.	 Relaxation

When prestressing steel is stressed to the levels that are customary during initial ten-
sioning and at service loads, it exhibits a property known as relaxation. Relaxation 
is defined as the loss of stress in stressed material held at constant length. (The same 
basic phenomenon is known as creep when defined in terms of change in strain of 
a material under constant stress.) To be specific, if a length of prestressing steel is 
stressed to a sizable fraction of its yield strength fpy (say, 80 to 90 percent) and held 
at a constant strain between fixed points such as the ends of a beam, the steel stress fp 
will gradually decrease from its initial value fpi. In prestressed concrete members this 
stress relaxation is important because it modifies the internal stresses in the concrete 
and changes the deflections of the beam some time after initial prestress was applied.

The amount of relaxation varies, depending on the type and grade of steel, the 
time under load, and the initial stress level. A satisfactory estimate for stress-relieved 
compacted strand and wires can be obtained from Eq. (2.11), which was derived 
from more than 400 relaxation tests of up to 9 years’ duration:

	​​ 
fp

 __ 
fpi

 ​ = 1 − ​ 
log t

 ____ 
10

 ​  ​( ​ fpi
 __ 

fpy

 ​ − 0.55 )​​	 (2.11)

where fp is the final stress after t hours, fpi is the initial stress, and fpy is the nominal yield 
stress (Ref. 2.56). In Eq. (2.11), log t is to the base 10, and fpi∕fpy not less than 0.55; 
below that value essentially no relaxation occurs.

The tests on which Eq. (2.11) is based were carried out on round, stress-
relieved wires and are equally applicable to stress-relieved strand. In the absence of 
other information, results may be used for alloy steel bars as well.

Low-relaxation strand, now the industry standard, is specified under ASTM 
A416. Such steel must exhibit relaxation after 1000 hours of not more than 2.5 percent 
when initially stressed to 70 percent of specified tensile strength and not more than 
3.5 percent when loaded to 80 percent of tensile strength. For low-relaxation strand, 
Eq. (2.11) is replaced by

	​​ 
fp

 __ 
fpi

 ​ = 1 − ​ 
log t

 ____ 
45

 ​  ​( ​ fpi
 __ 

fpy

 ​ − 0.55 )​​	 (2.12)

	 2.17	 FIBER REINFORCEMENT

In addition to using bars, wire, welded wire reinforcement, and prestressing steel, 
the ACI Code recognizes that discrete steel fibers can, on a limited basis, be used to 
improve the tensile properties of concrete. The application—to serve as a design alter-
native to minimum shear reinforcement—is discussed in Chapter 5.

Steel fibers may provide a small increase in concrete tensile strength, but their 
main contribution is to increase the toughness of the concrete, that is, allowing the 
concrete to continue to carry a tensile load once the peak tensile strength has been 
reached, as shown for mortar in Fig 2.21.

To qualify as an alternative to minimum shear reinforcement, fiber-reinforced 
concrete must exhibit minimum values of residual strength when tested in flexure 
in accordance with ASTM C1609. Figure  2.22 shows an example load-deflection 
curve for a fiber-reinforced concrete beam with length L loaded in flexure.  
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FIGURE 2.21
Stress-displacement curves for mortars with volume fractions Vf of steel fibers ranging from 0 to 1.5%. (Adapted from Ref. 2.57.)
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ACI Code 26.12.7.1 requires that (1) the residual strength PL∕300 obtained at a mid-
span deflection of L∕300 be at least equal to the greater of 90 percent of the meas-
ured peak strength Pp obtained from the test and 90 percent of the strength 
corresponding to a stress of 7.5​​√

__
 ​f​c​ ′​​​ and (2) the residual strength PL∕150 obtained at 

a midspan deflection of L∕150 be at least equal to the greater of 75 percent of the 
measured peak strength Pp obtained from the test and 75 percent of the strength 
corresponding to 7.5​​√

__
 ​f​c​ ′​​​.
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Problems
2.1.	 The specified concrete strength ​​f​c​ ′​​ for a new building is 5000 psi. Calculate 

the required average ​​f​cr​ ′ ​​ for the concrete (a) if there are no prior test results 
for concrete with a compressive strength within 1000 psi of ​​f​c​ ′​​ made with 
similar materials, (b) if 20 test results for concrete with ​​f​c​ ′​​ = 5500 psi made 
with similar materials produce a sample standard deviation ss of 560 psi, and 
(c) if 30  tests with ​​f​c​ ′​​ = 4500 psi made with similar materials produce a 
sample standard deviation ss of 540 psi.

2.2.	 Ten consecutive strength tests are available for a new concrete mixture with 
 ​​f​c​ ′​​ = 4000 psi: 4830, 4980, 3840, 4370, 4410, 4890, 4450, 3970, 4780, and 
4040 psi.
(a)	 Do the strength results represent concrete of satisfactory quality? Explain 

your reasoning.
(b)	 If ​​f​cr​ ′ ​​ has been selected based on 30 consecutive test results from an 

earlier project with a sample standard deviation ss of 570 psi, must the 
mixture proportions be adjusted? Explain.

2.3.	 The specified concrete strength ​​f​c​ ′​​ for the columns in a high-rise building is 
12,000 psi. Calculate the required average ​​f​cr​ ′ ​​ for the concrete (a) if there are 
no prior test results for concrete with a compressive strength within 1000 psi 
of ​​f​c​ ′​​ made with similar materials, (b) if 15 test results for concrete with  
 ​​f​c​ ′​​ = 11,000 psi made with similar materials produce a sample standard devi-
ation ss of 930 psi, and (c) if 30 tests with ​​f​c​ ′​​ = 12,000 made with similar 
materials produce a sample standard deviation ss of 950 psi.
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	 3.1	 INTRODUCTION

Design is the determination of the general shape and specific dimensions so that a 
structure will perform the function for which it was created and will safely withstand 
the influences that will act on it throughout its useful life. These influences are primar-
ily the loads and other forces to which it will be subjected, as well as other detrimental 
agents, such as temperature fluctuations and foundation settlements.

The basic form of the structure is defined by its intended use. In the case of a 
building, an architect may present an overall concept and with the engineer develop a 
structural system. For bridges and industrial facilities, the engineer is often directly 
involved in selecting both the concept and the structural system. Regardless of the 
application, the design of concrete structures follows the same general sequence. First, 
an initial structural system is defined, the initial member sizes are selected, and a math-
ematical model of the structure is generated. Second, gravity and lateral loads are 
determined based on the selected system, member sizes, and external loads. Building 
loads typically are defined in ASCE∕SEI 7 (Ref 3.1), as discussed in Chapter 1. Third, 
the loads are applied to the structural model and the load effects calculated for each 
member. This step may be done on a preliminary basis or by using computer modeling 
software. This step is more complex for buildings in Seismic Design Categories D 
though F where the seismic analysis requires close coordination of the structural fram-
ing system and the earthquake loads (discussed in Chapter 20). Fourth, maximum load 
effects at critical member sections are identified and each critical section is designed 
for moment, axial load, shear, and torsion as needed. At this step, the process may 
become iterative. For example, if the member initially selected is too small, its size must 
be increased, load effects recalculated for the larger member, and the members rede-
signed. If the initial member is too large, a smaller section is selected. Loads, however, 
are usually not recalculated for small changes in member size as gravity effects are often 
conservative. Fifth, each member is checked for serviceability. Sixth, the reinforcement 
for each member is detailed, that is, the number and size of reinforcing bars are selected 
for the critical sections to provide the required strength. Seventh, connections are 
designed to ensure that the building performs as intended. Finally, the design informa-
tion is incorporated in the construction documents. This process is illustrated in Fig. 3.1. 
In addition to the design methodology, Fig. 3.1 indicates the chapters in this book and 
in the ACI Code (Ref. 3.2) where the topics are covered. The ACI Code is written based 
on the assumption that the user understands concrete structural behavior and the design 
process, whereas this text builds that understanding. The text is organized so that the 
fundamental theory is presented first, followed by the Code interpretation of the theory. 
Thus, the text remains relevant even as Code provisions are updated.

Design of Concrete Structures 
and Fundamental Assumptions
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FIGURE 3.1
Design development sequence.

Text Chapters ACI 318
Code

Chapters

1. Select structural system,
define preliminary member
sizes, and idealize the
structure into a mathematical
model.

4, 9, 11–16, 19

2. Determine applied and self-
weight loads

1 ASCE 7–10
(Ref. 3.1)

3. Analyze structure to obtain
member required capacity

11 6

4. Design each member for
moment, shear, axial load,
stability, and torsion.

Moment – 4
Shear – 5
Axial load – 9, 10
Torsion – 8

22

4a. Design sections or
members that require strut-
and-tie procedures

17 23

5. Check serviceability
requirements

7 24

6. Detail each member for
selected reinforcement

6 25

7. Design connections 18, 21 15, 16, 17

8. Prepared detailed drawings
and specifications

26

3a. Conduct
earthquake analysis
Text: Chapter 20
ACI Code: Chapter 18

Revise member sizes
as needed so capacity
exceeds the demand,
that is, ϕSn ≥ U.

Action

7–13
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	 3.2	 MEMBERS AND SECTIONS

The term member refers to an individual portion of the structure, such as a beam, col-
umn, slab, or footing. Moment, axial load, and shear are distributed along the member, 
and the member is designed at discrete locations. The engineer identifies the maxi-
mum value of these loads and designs the member at these discrete locations so that 
the strength at the section exceeds these values. It is not necessary to design every sec-
tion of a member. The requirement ϕSn ≥ U [Eq. (1.4)] implies that reinforcement for 
maximum loads can be carried beyond the critical section to ensure that the strength 
requirements are satisfied for the entire member. In addition to strength, the reinforce-
ment is designed to provide overall structural integrity and to ensure that it is anchored 
to the concrete.

	 3.3	 THEORY, CODES, AND PRACTICE

The design of concrete structures requires an understanding of structural theory and the 
role of building codes, and experience in the practice of structural design itself. These 
three elements interact. For example, a structural failure may lead to a code revision. 
The failure may also lead to research, which in turn provides a new theoretical model. 
Changes in practice may also be made to preclude similar failures, even without a code 
change. The following discussion of theory, codes, and practice provides a frame-
work for understanding the behavior and design of concrete structures. As described in 
Section 3.1, this text follows a format of providing the theory of behavior of concrete 
structures followed by the code interpretation of that behavior and includes practical 
considerations for the design. Insight to the interplay of each of these elements is essen-
tial for the engineer to design safe, serviceable, and economical structures.

	 a.	 Theory

Structural theory includes mathematical, physical, or empirical models of the behavior 
of structures. These models have evolved over decades of research and practice. They 
are used to predict the nominal strength of members. The most robust theories derive 
from statics, equilibrium, and mechanics of materials. Examples include equations for 
the strength of a concrete section for bending (Chapter 4) and bending plus axial load 
(Chapters 9 and 10). For these conditions, mathematical models provide representa-
tions of actual behavior that agree within a few percent of experimental results.

In other cases, an empirical understanding of structural behavior, derived from 
experimental observation, is combined with theory to develop the prediction of mem-
ber strength. In this case, equations are then fitted to the experimental data to predict 
the strength. If the experimental strength of a section is highly variable, then the 
predictive equations are adjusted for use in design to provide a lower bound of the 
section capacity. This approach is used, for example, to calculate the shear strength 
of a section (Chapter 5) and anchorage capacity (Chapter 21).

Because theoretical and empirical expressions are used to predict the strength 
at a specific section, the strength at many locations may need to be verified to ensure 
that the overall member strength is adequate.

In addition to supporting the applied load at each section, members work 
together to transfer load from the point of application, through the structure, to the 
point where the force exits the structure, such as the foundation or other support 

www.konkur.in

Telegram: @uni_k



DESIGN OF CONCRETE STRUCTURES AND FUNDAMENTAL ASSUMPTIONS      71

location. For  example, as described in Section 1.8, live load is applied to a slab, the 
live load and slab gravity loads are carried to a girder, the girder load is carried to the 
column, and the column carries the load to the foundation. Similarly, when wind applies 
a force to an external wall, the wind load is transferred by the wall to the floors, which 
act as diaphragms, and in turn transfer the load to the lateral load resisting system for 
the building, such as a moment frame or shear wall. The load path is the sequence of 
members and connections that transfers the factored loads through the structure.

The engineer’s responsibility is to provide at least one load path, and preferably 
multiple paths, for any force applied to the structure. When multiple load paths are 
present, the loads will follow the stiffest path, that is, the sequence of members and 
connections that tend to deform the least. In “The Wisdom of the Structure” (Ref. 3.3), 
Halvard Birkeland points out that a structure will exhaust every possible load path 
before collapsing. Load paths are dependent on equilibrium and the ability to deform 
and redistribute loads.

When applied to design, structural theory is typically presented in a deterministic 
format. That is, an equation results in a single nominal strength for a given section. 
Thus, the moment capacity of a beam can be calculated. The theory, however, provides 
no guidance as to approach the selection of member size or reinforcement to attain the 
desired capacity. Equally valid solutions for the given nominal strength range from large 
cross sections containing small amounts of reinforcement to small sections with large 
quantities of reinforcement. Building codes provide some guidance for these decisions.

	 b.	 Codes

Building codes provide minimum requirements for the life safety and serviceability for 
structures. In their simplest application, codes present the theory needed to ensure that 
sectional and member strengths are provided and define the limits on that theory. For 
example, a structure could be constructed using a large unreinforced concrete beam 
that relies solely on the tensile strength of the concrete. Such a structure would be 
brittle, and an unanticipated load would lead to sudden collapse. Codes prohibit such 
designs. In a similar manner, codes prescribe the maximum and minimum amount of 
reinforcement allowed in a member. Codes also address serviceability considerations, 
such as deflection and crack control. In addition to providing the theoretical or empir-
ical basis for design, codes may also contain restrictions resulting from failures in 
practice that were not predicted by the theory upon which the code is based.

Structural integrity provisions in concrete building codes require reinforcement 
to limit progressive or disproportional collapse. Disproportional collapse occurs 
when the failure of a single member leads to the failure of multiple adjacent mem-
bers. The failure of a single apartment wall in the Ronan Point apartment complex 
in 1968 led to the failure of several other units (Ref. 3.4). In response to this collapse, 
codes added requirements for integrity reinforcement based on a rational assessment 
of the failure. This integrity reinforcement is a prescriptive provision, that is, the 
requirements are detailed in the code and must be incorporated in the structure 
without associated detailed calculations.

Codes are written in terse language, based on the assumption that the user is 
a competent engineer, and typically adopt lower-bound approaches to structural 
safety. (See Section 23.2 for a description of upper- and lower-bound theorems.) 
Because codes provide the minimum requirements for safety and serviceability, the 
engineer is allowed to exceed these requirements—providing less than code require-
ments is imprudent. A commentary accompanies most codes and assists in under-
standing, provides references or background, and offers rationale for the provisions.
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	 c.	 Practice

Structural engineering practice encompasses both the art and the technical practice 
of structural design. Throughout history, many extraordinary structures, such as the 
gothic cathedrals, have been designed and constructed without the benefit of mod-
ern theory and codes. While theory and codes provide the mechanics for establishing 
the strength and serviceability of structures, neither provides the aesthetic, economic, 
or functional guidance needed for member selection. Questions such as “Should a 
beam be slender or stout within the code limits?” or “How should the concrete mixture 
be adjusted for corrosive environments?” need to be answered by the engineer. To 
respond, the engineer relies on judgment, personal experience, and the broader expe-
rience of the profession to adapt the design to meet the overall project requirements. 
Inclusion of long-standing design guidelines for the selection of member sizes is an 
example of how that broader experience of the profession is used.

The following sections introduce the fundamental assumptions needed to develop 
the equations for member design that are presented in this text starting in Chapter 4.

	 3.4	� FUNDAMENTAL ASSUMPTIONS FOR REINFORCED  
CONCRETE BEHAVIOR

Structural mechanics is one of the main tools in the process of design. As here under-
stood, it is the body of knowledge that permits one to predict, with a good degree of 
certainty, how a structure of given shape and dimensions will behave when acted upon 
by known forces or other mechanical influences. The chief items of behavior that are 
of practical interest are (1) the strength of the structure, that is, the magnitude of loads 
of a given distribution that will cause the structure to fail, and (2) the deformations, 
such as deflections and extent of cracking, that the structure will undergo when loaded 
under service conditions.

The fundamental propositions on which the mechanics of reinforced concrete 
is based are as follows:

	 1.	 The internal forces, such as bending moments, shear forces, normal and shear 
stresses, and torsional moments, at any section of a member are in equilibrium 
with the effects of the external loads at that section. This proposition is not an 
assumption but a fact, because any body or any portion thereof can be at rest only 
if all forces acting on it are in equilibrium.

	 2.	 The strain in an embedded reinforcing bar (unit extension or compression) is the 
same as that of the surrounding concrete. Expressed differently, it is assumed 
that perfect bonding exists between concrete and steel at the interface, so that no 
slip occurs between the two materials. Hence, as the one deforms, so must the 
other. With modern deformed bars (see Section 2.14), a high degree of mechan-
ical interlocking is provided in addition to the natural surface adhesion, so this 
assumption is very close to correct.

	 3.	 Cross sections that were plane prior to loading continue to be plane in the mem-
ber under load. Accurate measurements have shown that when a reinforced con-
crete member is loaded close to failure, this assumption is not absolutely accurate. 
However, the deviations are usually minor, and the results of theory based on this 
assumption check well with extensive test information.

	 4.	 In view of the fact that the tensile strength of concrete is only a small fraction 
of its compressive strength (see Section 2.9), the concrete in that part of a mem-
ber which is in tension is usually cracked. While these cracks, in well-designed 
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members, are generally so narrow as to be hardly visible (they are known as 
hairline cracks), they effectively render the cracked concrete incapable of resist-
ing tension stress. Correspondingly, it is assumed that concrete is not capable of 
resisting any tension stress whatever. This assumption is evidently a simplifica-
tion of the actual situation because, in fact, concrete prior to cracking, as well as 
the concrete located between cracks, does resist tension stresses of small magni-
tude. Later in discussions of the resistance of reinforced concrete beams to shear, 
it will become apparent that under certain conditions this particular assumption is 
dispensed with and advantage is taken of the modest tensile strength that concrete 
can develop.

	 5.	 The theory is based on the actual stress-strain relationships and strength prop-
erties of the two constituent materials (see Sections 2.8 and 2.14) or some rea-
sonable equivalent simplifications thereof. The fact that nonelastic behavior is 
reflected in modern theory, that concrete is assumed to be ineffective in tension, 
and that the joint action of the two materials is taken into consideration results 
in analytical methods that are considerably more complex, and also more chal-
lenging, than those that are adequate for members made of a single, substantially 
elastic material.

These five propositions permit one to predict by calculation the performance of 
reinforced concrete members in a number of important cases. Because, however the 
joint action of two materials as dissimilar and complicated as concrete and steel is 
complex, it cannot be fully represented using a purely analytical treatment. For this 
reason, methods of design and analysis, while using these assumptions, are very largely 
based on the results of extensive and continuing experimental and analytical research. 
They are modified and improved as the results of additional research become available.

	 3.5	 BEHAVIOR OF MEMBERS SUBJECT TO AXIAL LOADS

Many of the fundamentals of the behavior of reinforced concrete, through the full range 
of loading from zero to ultimate, can be illustrated clearly in the context of members 
subject to simple axial compression or tension. The basic concepts illustrated here will 
be recognized in later chapters in the analysis and design of beams, slabs, eccentrically 
loaded columns, and other members subject to more complex loadings.

	 a.	 Axial Compression

In members that sustain chiefly or exclusively axial compression loads, such as build-
ing columns, it is economical to make the concrete carry most of the load. Still, some 
steel reinforcement is always provided for various reasons. For one, very few mem-
bers are subjected to truly axial load; steel is essential for resisting any bending that 
may exist. For another, if part of the total load is carried by steel with its much greater 
strength, the cross-sectional dimensions of the member can be reduced—the more so, 
the larger the amount of reinforcement.

The two chief forms of reinforced concrete columns are shown in Fig. 3.2. In 
the square column, the four longitudinal bars serve as main reinforcement. They are 
held in place by transverse small-diameter steel ties that prevent displacement of the 
main bars during construction operations and counteract any tendency of the compression- 
loaded bars to buckle out of the concrete by bursting the thin outer cover. A round 
column is shown with eight main reinforcing bars. These are surrounded by a closely 
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spaced spiral that serves the same purpose as the more widely spaced ties but also 
acts to confine the concrete within it, thereby increasing its resistance to axial com-
pression. The discussion that follows applies to tied columns.

When axial load is applied, the compression strain is the same over the entire 
cross section and, in view of the bonding between concrete and steel, is the same in 
the two materials (see propositions 2 and 3 in Section 3.4). To illustrate the action 
of such a member as load is applied, Fig. 3.3 shows two representative stress-strain 
curves, one for a concrete with compressive strength ​​f​c​ ′​​ = 4000 psi and the other for 
a steel with yield stress fy = 60,000 psi. The curves for the two materials are drawn 
on the same graph using different vertical stress scales. Curve b has the shape that 
would be obtained in a concrete cylinder test. The rate of loading in most structures 
is considerably slower than that in a cylinder test, and this affects the shape of the 
curve. Curve c, therefore, is drawn as being characteristic of the performance of 
concrete under slow loading. Under these conditions, tests have shown that the max-
imum reliable compressive strength of reinforced concrete is about 0.85​​f​c  ​ ′​​, as shown.

Elastic Behavior  At low stresses, up to about ​​f​c​ ′​​∕2, the concrete is seen to 
behave nearly elastically, that is, stresses and strains are quite closely proportional; 
the straight line d represents this range of behavior with little error for both rates of 
loading. For the given concrete, the range extends to a strain of about 0.0005. The 
steel, on the other hand, is seen to be elastic nearly to its yield point of 60 ksi, or 
to the much greater strain of about 0.002.

Within this elastic range, the compression strain in the concrete, at any given 
load, is equal to the compression strain in the steel,

	​ εc = ​ 
fc
 __ 

Ec

 ​ = εs = ​ 
fs
 __ 

Es

 ​​	

FIGURE 3.2
Reinforced concrete columns.
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from which the relation between the steel stress fs and the concrete stress fc is obtained as

	​ fs = ​ 
Es

 __ 
Ec

 ​ fc = nfc​	 (3.1)

where n = Es∕Ec is known as the modular ratio.

Let
	 Ac = net area of concrete, that is, gross area minus area occupied by reinforcing bars
	 Ag = gross area
	 Ast =  total area of reinforcing bars
	 P = axial load

Then

	 P = fc  Ac + fs Ast = fc Ac + nfc Ast	

or

	 P = fc(Ac + nAst)	 (3.2)

The term Ac + nAst can be interpreted as the area of a fictitious concrete cross section, 
the transformed area, which when subjected to the particular concrete stress fc results 
in the same axial load P as the actual section composed of both steel and concrete. 
This transformed concrete area is seen to consist of the actual concrete area plus n 
times the area of the reinforcement. It can be visualized as shown in Fig. 3.4. That is, 
in Fig. 3.4b the three bars along each of the two faces are thought of as being removed 
and replaced, at the same distance from the axis of the section, with added areas of 

FIGURE 3.3
Concrete and steel stress-
strain curves. a

b

c

d
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fictitious concrete of total amount nAst. Alternatively, as shown in Fig. 3.4c, one can 
think of the area of the steel bars as replaced with concrete, in which case one has to 
add to the gross concrete area Ag so obtained only (n − 1)Ast to obtain the same total 
transformed area. Therefore, alternatively,

	 P = fc[Ag + (n − 1)Ast]	 (3.3)

If load and cross-sectional dimensions are known, the concrete stress can be 
found by solving Eq. (3.2) or (3.3) for fc , and the steel stress can be calculated from 
Eq. (3.1). These relations hold in the range in which the concrete behaves nearly 
elastically, that is, up to about 50 to 60 percent of ​​f​c​ ′​​. For reasons of safety and 
serviceability, concrete stresses in structures under normal conditions are kept within 
this range. Therefore, these relations permit one to calculate service load stresses.

FIGURE 3.4
Transformed section in axial 
compression.

Ast

2
nAst

2

Actual section

(a ) (b )

Transformed section
At = Ac + nAst

=

(n – 1)Ast

2

(c )

Transformed section
At = Ag + (n – 1)Ast

	 EXAMPLE 3.1	 Axial load to produce given stress.  A column made of the materials defined in Fig.  3.3 
has a cross section of 16  ×  20  in. and is reinforced by six No. 9 (No. 29) bars, placed as 
shown in Fig. 3.4. (See Tables A.1 and A.2 of Appendix A for bar diameters and areas and 
Section 2.14 for a description of bar size designations.) Determine the axial load that will 
stress the concrete to 1200 psi. The modular ratio n may be assumed equal to 8. (In view of 
the scatter inherent in Ec, it is customary and satisfactory to round off the value of n to the 
nearest integer and never justified to use more than two significant figures.)

Solution.  One finds Ag = 16 × 20 = 320 in2, and from Appendix A, Table A.2, six No. 9 
(No. 29) bars provide steel area Ast  =  6.00  in2 or 1.88 percent of the gross area. The load 
on  the column, from Eq. (3.3), is P = 1200[320 + (8 − 1)6.00] = 434,000  lb. Of this total 
load, the concrete is seen to carry Pc =  fc Ac =  fc(Ag − Ast) = 1200(320 − 6) = 377,000  lb, 
and the steel Ps = fs Ast = (nfc)Ast = 9600 × 6 = 57,600 lb, which is 13.3 percent of the total  
axial load.

Inelastic Range  Inspection of Fig. 3.3 shows that the elastic relationships that 
have been used so far cannot be applied beyond a strain of about 0.0005 for the 
given concrete. To obtain information on the behavior of the member at larger strains 
and, correspondingly, at larger loads, it is therefore necessary to make direct use of 
the information in Fig. 3.3.
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Comparison of the results for fast and slow loading shows the following. Owing 
to creep of concrete, a given shortening of the column is produced by a smaller load 
when slowly applied or sustained over some length of time than when quickly 
applied. More importantly, the farther the stress is beyond the proportional limit of 
the concrete, and the more slowly the load is applied or the longer it is sustained, 
the smaller the share of the total load carried by the concrete and the larger the share 
carried by the steel. In the sample column, the steel was seen to carry 13.3 percent 
of the load in the elastic range, 14.7 percent for a strain of 0.001 under fast loading, 
and 18.8 percent at the same strain under slow or sustained loading.

Strength  The quantity of chief interest to the structural designer is strength, that 
is, the maximum load that the structure or member will carry. Information on stresses, 
strains, and similar quantities serves chiefly as a tool for determining carrying capac-
ity. The performance of the column discussed so far emphasizes two points: (1) in 
the range of large stresses and strains that precede attainment of the maximum load 
and subsequent failure, elastic relationships cannot be used; (2) the member behaves 
differently under fast and under slow or sustained loading and shows less resistance 
to the latter than to the former. In usual construction, many types of loads, such as 
the weight of the structure and any permanent equipment housed therein, are sus-
tained, and others are applied at slow rates. For this reason, to calculate a reliable 
magnitude of compressive strength, curve c of Fig.  3.3 must be used as far as the 
concrete is concerned.

The steel reaches its tensile strength (peak of the curve) at strains on the order 
of 0.08 (see Fig. 2.19). Concrete, on the other hand, fails by crushing at the much 
smaller strain of about 0.003 and, as seen from Fig. 3.3 (curve c), reaches its max-
imum stress in the strain range of 0.002 to 0.003. Because the strains in steel and 
concrete are equal in axial compression, the load at which the steel begins to yield 
can be calculated from the information in Fig. 3.3.

	 EXAMPLE 3.2	 Axial load to produce given strain.  Calculate the magnitude of the axial load that will 
produce a strain or unit shortening εc = εs = 0.0010 in the column of Example 3.1.

Solution.  At this strain the steel is seen to be still elastic, so that the steel stress 
fs = εs Es = 0.001 × 29,000,000 = 29,000 psi. The concrete is in the inelastic range, so that its 
stress cannot be directly calculated, but it can be read from the stress-strain curve for the 
given value of strain.

	 1.	 If the member has been loaded at a fast rate, curve b holds at the instant when the entire 
load is applied. The stress for ε  =  0.001 can be read from Fig.  3.3 as fc  =  3200  psi. 
Consequently, the total load can be obtained from

	 P = fc Ac + fs Ast	 (3.4)

	  which applies in the inelastic as well as in the elastic range. Hence, P = 3200(320 − 6)  
+ 29,000 × 6 = 1,005,000 + 174,000 = 1,179,000 lb. Of this total load, the steel is seen to 
carry 174,000 lb, or 14.7 percent.

	 2.	 For slowly applied or sustained loading, curve c represents the behavior of the concrete. 
Its stress at a strain of 0.001 can be read as fc  =  2400  psi. Then P  =  2400  ×  314  +   
29,000 × 6 = 754,000 + 174,000 = 928,000 lb. Of this total load, the steel is seen to 
carry 18.8 percent.
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If the small knee prior to yielding of the steel is disregarded, that is, if the 
steel is assumed to be sharp-yielding, the strain at which it yields is

	​ εy = ​ 
fy
 __ 

Es

 ​​	 (3.5)

or for Grade 60 reinforcement

	​ εy = ​ 
60,000
 __________ 

29,000,000
 ​ = 0.00207​	

At this strain, curve c of Fig. 3.3 indicates a stress of 3200 psi in the concrete; there-
fore, by Eq. (3.4), the load in the member when the steel starts yielding is Py = 3200 ×  
314 + 60,000 × 6 = 1,365,000 lb. At this load the concrete has not yet reached its full 
strength, which, as mentioned before, can be assumed as 0.85​​f​c​ ′​​ = 3400 psi for slow or sus-
tained loading, and therefore the load on the member can be further increased. During this 
stage of loading, the steel keeps yielding at constant stress. Finally, the nominal capacity of 
the member is reached when the concrete crushes while the steel yields, that is,

	 Pn = 0.85​​f​c​ ′​​ Ac + fy Ast	 (3.6)

Numerous careful tests have shown the reliability of Eq. (3.6) in predicting the ulti-
mate strength of a concentrically loaded reinforced concrete column, provided its 
slenderness ratio is small so that buckling will not reduce its strength.

For the particular numerical example, Pn  =  3400  ×  314  +  60,000  ×  6  =   
1,068,000 + 360,000 = 1,428,000 lb. At this stage the steel carries 25.2 percent of the load.

Summary  In the elastic range, the steel carries a relatively small portion of the total load 
of an axially compressed member. As member strength is approached, there occurs a 
redistribution of the relative shares of the load resisted by concrete and steel, the latter 
taking an increasing amount. The nominal capacity, at which the member is on the point 
of failure, consists of the contribution of the steel when it is stressed to the yield point plus 
that of the concrete when its stress has attained a value of 0.85​​f​c​ ′​​, as reflected in Eq. (3.6).

	 b.	 Axial Tension

The tension strength of concrete is only a small fraction of its compressive strength. It 
follows that reinforced concrete is not well suited for use in tension members because 
the concrete will contribute little, if anything, to their strength. Still, there are situa-
tions in which reinforced concrete is stressed in tension, chiefly in tie-rods in struc-
tures such as arches. Such members consist of one or more bars embedded in concrete 
in a symmetric arrangement similar to compression members (see Figs. 3.2 and 3.4).

When the tension force in the member is small enough for the stress in the con-
crete to be considerably below its tensile strength, both steel and concrete behave 
elastically. In this situation, all the expressions derived for elastic behavior in compres-
sion in Section 3.5a are identically valid for tension. In particular, Eq. (3.2) becomes

	 P = fct(Ac + nAst)	 (3.7)

where fct is the tensile stress in the concrete.
When the load is further increased, however, the concrete reaches its tensile 

strength at a stress and strain on the order of one-tenth of what it could sustain in 
compression. At this stage, the concrete cracks across the entire cross section. When 
this happens, it ceases to resist any part of the applied tension force, since, evidently, 
no force can be transmitted across the air gap in the crack. At any load larger than 
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that which caused the concrete to crack, the steel is called upon to resist the entire 
tension force. Correspondingly, at this stage,

	 P = fs Ast	 (3.8)

With further increased load, the tensile stress fs in the steel reaches the yield 
point fy. When this occurs, the tension members cease to exhibit small, elastic defor-
mations but instead stretch a sizable and permanent amount at substantially constant 
load. This does not impair the strength of the member. Its elongation, however, 
becomes so large (on the order of 1 percent or more of its length) as to render it 
unserviceable. Therefore, the maximum useful strength Pnt of a tension member is 
the force that will just cause the steel stress to reach the yield point. That is,

	 Pnt = fy Ast	 (3.9)

To provide adequate safety, the force permitted in a tension member under normal ser-
vice loads should be limited to about ​​ 1 _ 2 ​​Pnt. Because the concrete has cracked at loads 
considerably smaller than this, concrete does not contribute to the carrying capacity 
of the member in service. It does serve, however, as fire and corrosion protection and 
often improves the appearance of the structure.

There are situations, though, in which reinforced concrete is used in axial ten-
sion under conditions in which the occurrence of tension cracks must be prevented. 
A case in point is a circular tank. To provide watertightness, the hoop tension caused 
by the fluid pressure must be prevented from causing the concrete to crack. In this 
case, Eq. (3.7) can be used to determine a safe value for the axial tension force P 
by using, for the concrete tension stress fct, an appropriate fraction of the tensile 
strength of the concrete, that is, of the stress that would cause the concrete to crack.

	 3.6	 BENDING OF HOMOGENEOUS BEAMS

Reinforced concrete beams are nonhomogeneous in that they are made of two entirely 
different materials. The methods used in the analysis of reinforced concrete beams are 
therefore different from those used in the design or investigation of beams composed 
entirely of steel, wood, or any other structural material. The fundamental principles 
involved are, however, essentially the same. Briefly, these principles are as follows.

At any cross section there exist internal forces that can be resolved into com-
ponents normal and tangential to the section. Those components that are normal to 
the section are the bending stresses (tension on one side of the neutral axis and 
compression on the other, Fig. 3.5). Their function is to resist the bending moment 
at the section. The tangential components are known as the shear stresses, and they 
resist the transverse or shear forces.

Fundamental assumptions relating to flexure and flexural shear are as follows:

	 1.	 A cross section that was plane before loading remains plane under load. This 
means that the unit strains in a beam above and below the neutral axis are propor-
tional to the distance from that axis.

	 2.	 The bending stress f at any point depends on the strain at that point in a man-
ner given by the stress-strain diagram of the material. If the beam is made of a 
homogeneous material whose stress-strain diagram in tension and compression 
is that of Fig. 3.5a, the following holds. If the maximum strain at the outer fibers 
is smaller than the strain εp up to which stress and strain are proportional for the 
given material, then the compression and tension stresses on either side of the axis 
are proportional to the distance from the axis, as shown in Fig. 3.5b. However, if 
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the maximum strain at the outer fibers is larger than εp, this is no longer true. The 
situation that then occurs is shown in Fig. 3.5c; that is, in the outer portions of 
the beam, where ε > εp, stresses and strains are no longer proportional. In these 
regions, the magnitude of stress at any level, such as f2 in Fig. 3.5c, depends on 
the strain ε2 at that level in the manner given by the stress-strain diagram of the 
material. In other words, for a given strain in the beam, the stress at a point is the 
same as that given by the stress-strain diagram for the same strain.

	 3.	 The distribution of the shear stresses v over the depth of the section depends 
on the shape of the cross section and of the stress-strain diagram. These shear 
stresses are largest at the neutral axis and equal to zero at the outer fibers. The 
shear stresses on horizontal and vertical planes through any point are equal.

	 4.	 Owing to the combined action of shear stresses (horizontal and vertical) and flex-
ure stresses, at any point in a beam there are inclined stresses of tension and com-
pression, the largest of which form an angle of 90° with each other. The intensity 
of the inclined maximum or principal stress t at any point is given by

	 t = ​​ 
f
 __ 

2
 ​​ ± ​​√

______

 ​ 
f  2

 __ 
4
 ​ + v 2​​	 (3.10)

where f =  intensity of normal fiber stress
	 	          v = intensity of tangential shearing stress

	 	 The inclined stress makes an angle α with the horizontal such that tan 2α = 2v∕f.
	 5.	 Since horizontal and vertical shear stresses are equal and the flexural stresses are 

zero along the neutral axis, the inclined tensile and compressive stresses at any 
point on the neutral axis form an angle of 45° with the horizontal, the intensity of 
each being equal to the unit shear at the point.

	 6.	 When the stresses in the outer fibers are smaller than the proportional limit fp, 
the beam behaves elastically, as shown in Fig. 3.5b. In this case the following 
pertains:
(a)	 The neutral axis passes through the center of gravity of the cross section.

FIGURE 3.5
Elastic and inelastic stress 
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(b)	 The intensity of the bending stress normal to the section increases directly with 
the distance from the neutral axis and is a maximum at the extreme fibers. The 
stress at any given point in the cross section is represented by the equation

	​ f = ​ 
My

 ___ 
I
 ​ ​	 (3.11)

where  f = bending stress at a distance y from neutral axis
	 	              M = external bending moment at section
	 	              I = moment of inertia of cross section about neutral axis

The maximum bending stress occurs at the outer fibers and is equal to

	​ fmax = ​ Mc
 ___ 

I
 ​  = ​ M __ 

S
 ​​	 (3.12)

where  c = distance from neutral axis to outer fiber
	 	              S = I∕c = section modulus of cross section

(c)	 The shear stress (horizontal equals vertical) v at any point in the cross section 
is given by

	​ v = ​ 
VQ

 ___ 
Ib

 ​​	 (3.13)

where  V =  total shear at section
	 	            Q = �statical moment about neutral axis of that portion of cross section 

lying between a line through point in question parallel to neutral axis 
and nearest face (upper or lower) of beam

	 	           I = moment of inertia of cross section about neutral axis
	 	                  b = width of beam at a given point

(d)	 The intensity of shear along a vertical cross section in a rectangular beam varies 
as the ordinates of a parabola, the intensity being zero at the outer fibers of the 
beam and a maximum at the neutral axis. For a total depth h, the maximum shear 
stress is ​​ 3 _ 2 ​​V∕bh, since at the neutral axis Q = bh2∕8 and I = bh3∕12 in Eq. (3.13).

With the fundamentals now established for homogeneous beams, the next step 
is to address the behavior and design of reinforced concrete beams. This is done in 
Chapter 4 for bending and in Chapter 5 for shear.
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Problems
Problems 3.1 through 3.5 reinforce the understanding of elastic and inelastic behav-
ior of a member under axial load.

	3.1.	 A 16 × 20 in. column is made of the same concrete and reinforced with the 
same six No. 9 (No. 29) bars as the column in Examples 3.1 and 3.2, except 
that a steel with yield strength fy = 40 ksi is used. The stress-strain diagram 
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of this reinforcing steel is shown in Fig. 2.19 for fy = 40 ksi. For this column 
determine (a) the axial load that will stress the concrete to 1200 psi; (b) the 
load at which the steel starts yielding; (c) the maximum load; and (d) the 
share of the total load carried by the reinforcement at these three stages of 
loading. Compare results with those calculated in the examples for fy = 60 ksi, 
keeping in mind, in regard to relative economy, that the price per pound for 
reinforcing steels with 40 and 60 ksi yield points is about the same.

	3.2.	 The area of steel, expressed as a percentage of gross concrete area, for the 
column of Problem 3.1 is lower than would often be used in practice. Recal-
culate the comparisons of Problem 3.1, using fy of 40 ksi and 60 ksi as before, 
but for a 16  ×  20  in. column reinforced with eight No. 11 (No. 36) bars. 
Compare your results with those of Problem 3.1.

	3.3.	 A square concrete column with dimensions 22 × 22  in. is reinforced with a 
total of eight No. 10 (No. 32) bars arranged uniformly around the column 
perimeter. Material strengths are fy = 60 ksi and ​​f​c​ ′​​ = 4000 psi, with stress-
strain curves as given by curves a and c of Fig. 3.3. Calculate the percentages 
of total load carried by the concrete and by the steel as load is gradually 
increased from 0 to failure, which is assumed to occur when the concrete strain 
reaches a limit value of 0.0030. Determine the loads at strain increments of 
0.0005 up to the failure strain, and graph your results, plotting load percentages 
vs. strain. The modular ratio may be assumed at n = 8 for these materials.

	3.4.	 A 20 × 24 in. column is made of the same concrete as used in Examples 3.1 
and 3.2. It is reinforced with six No. 11 (No. 36) bars with fy = 60 ksi. For 
this column section, determine (a) the axial load that the section will carry 
at a concrete stress of 1400 psi; (b) the load on the section when the steel 
begins to yield; (c) the maximum load if the section is loaded slowly; and 
(d) the maximum load if the section is loaded rapidly. The area of one No. 
11 (No. 36) bar is 1.56 in2. Determine the percent of the load carried by the 
steel and the concrete for each combination.

	3.5.	 A 24 in. diameter column is made of the same concrete as used in Examples 
3.1 and 3.2. The area of reinforcement equals 2.1 percent of the gross cross 
section (that is, As  =  0.021Ag) and fy  =  60  ksi. For this column section, 
determine (a) the axial load the section will carry at a concrete stress of 1200 
psi; (b) the load on the section when the steel begins to yield; (c) the max-
imum load if the section is loaded slowly; (d) the maximum load if the 
section is loaded rapidly; and (e) the maximum load if the reinforcement in 
the column is raised to 6.5 percent of the gross cross section and the column 
is loaded slowly. Comment on your answer, especially the percent of the load 
carried by the steel and the concrete for each combination.
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Flexural Analysis  
and Design of Beams

	 4.1	 INTRODUCTION

The fundamental assumptions upon which the analysis and design of reinforced concrete 
members are based were introduced in Section 3.4, and the application of those assump-
tions to the simple case of axial loading was developed in Section 3.5. Bending of homo-
geneous beams was covered in Section 3.6. The student should review Sections 3.4, 3.5, 
and 3.6 at this time. In developing methods for the analysis and design of beams in this 
chapter, the same assumptions apply, and identical concepts will be used. This chapter 
includes analysis and design for flexure, including the dimensioning of the concrete cross 
section and the selection and placement of reinforcing steel. Other important aspects of 
beam design, including shear reinforcement, bond, and anchorage of reinforcing bars, 
and the important questions of serviceability (for example, limiting deflections and con-
trolling concrete cracking) will be treated in Chapters 5, 6, and 7.

	 4.2	 REINFORCED CONCRETE BEAM BEHAVIOR

Plain concrete beams are inefficient as flexural members because the tensile strength 
in bending (modulus of rupture, see Section 2.9) is a small fraction of the compressive 
strength. As a consequence, such beams fail on the tension side at low loads long before 
the strength of the concrete on the compression side has been fully utilized. For this 
reason, steel reinforcing bars are placed on the tension side as close to the extreme 
tension fiber as is compatible with proper fire and corrosion protection of the steel. 
In such a reinforced concrete beam, the tension caused by the bending moments is 
chiefly resisted by the steel reinforcement, while the concrete alone is usually capable 
of resisting the corresponding compression. Such joint action of the two materials is 
ensured if relative slip is prevented. This is achieved by using deformed bars with their 
high bond strength at the steel-concrete interface (see Section 2.14) and, if necessary, 
by special anchorage of the ends of the bars. A simple example of such a beam, with 
the customary designations for the cross-sectional dimensions, is shown in Fig. 4.1. For 
simplicity, the discussion that follows deals with beams of rectangular cross section, 
even though members of other shapes are very common in most concrete structures. 
A beam elevation is shown in Fig. 4.1a. Figure 4.1b shows the beam cross section, 
followed by the strain distribution and the corresponding stresses acting on the cross 
section in Fig. 4.1c. This representation of a beam cross section, followed by a strain 
and stress distribution is used throughout this text.

When the load on such a beam is gradually increased from zero to the magnitude 
that will cause the beam to fail, several different stages of behavior can be clearly 
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distinguished. At low loads, as long as the maximum tensile stress in the concrete is 
smaller than the modulus of rupture, the entire concrete section is effective in resist-
ing stress, in compression on one side and in tension on the other side of the neutral 
axis. In addition, the reinforcement, deforming the same amount as the adjacent con-
crete, is also subject to tensile stresses. At this stage, all stresses in the concrete are 
of small magnitude and are proportional to strains. The distribution of strains and 
stresses in concrete and steel over the depth of the section is shown in Fig. 4.1c.

When the load is further increased, the tensile strength of the concrete is soon 
reached, and at this stage tension cracks develop. These propagate quickly upward to 
or close to the level of the neutral axis, which in turn shifts upward with progressive 
cracking. The general shape and distribution of these tension cracks is shown in 
Fig. 4.1d. In well-designed beams, the width of these cracks is so small (hairline cracks) 
that they are not objectionable from the viewpoint of either corrosion protection or 

FIGURE 4.1
Behavior of reinforced 
concrete beam under 
increasing load.
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appearance. Their presence, however, profoundly affects the behavior of the beam under 
load. At a cracked section, that is, at a cross section located at a crack such as a-a in 
Fig.  4.1d, it is appropriate to treat the concrete as transmitting no tensile stresses. 
Hence, just as in tension members (Section 3.5b), the steel is called upon to resist the 
entire tension. At moderate loads, if the concrete stresses do not exceed approximately ​​
f​c ​  ′​∕2​, stresses and strains continue to be closely proportional (see Fig. 3.3). The distri-
bution of strains and stresses at or near a cracked section is then that shown in Fig. 4.1e. 
When the load is still further increased, stresses and strains rise correspondingly and 
are no longer proportional. The ensuing nonlinear relation between stresses and strains 
is that given by the concrete stress-strain curve. Therefore, just as in homogeneous 
beams (see Fig. 3.5), the distribution of concrete stresses on the compression side of 
the beam is of the same shape as the stress-strain curve. Figure 4.1f shows the distri-
bution of strains and stresses close to the ultimate load.

Eventually, the carrying capacity of the beam is reached. Failure can be caused 
in one of two ways. When relatively moderate amounts of reinforcement are employed, 
at some value of the load the steel will reach its yield point. At that stress, the rein-
forcement yields suddenly and stretches a large amount (see Fig. 2.19), and the 
tension cracks in the concrete widen visibly and propagate upward, with simultane-
ous significant deflection of the beam. When this happens, the strains in the remain-
ing compression zone of the concrete increase to such a degree that crushing of the 
concrete, the secondary compression failure, ensues at a load only slightly larger 
than that which caused the steel to yield. Effectively, therefore, attainment of the 
yield point in the steel determines the carrying capacity of moderately reinforced 
beams. Such yield failure is gradual and is preceded by visible signs of distress, such 
as the widening and lengthening of cracks and the marked increase in deflection.

On the other hand, if large amounts of reinforcement or normal amounts of 
steel of very high strength are employed, the compressive strength of the concrete 
may be exhausted before the steel starts yielding. Concrete fails by crushing when 
strains become so large that they disrupt the integrity of the concrete. Exact criteria 
for this occurrence have yet to be established, but it has been observed that rectan-
gular beams fail in compression when the concrete strains reach values of 0.003 to 
0.004. Compression failure through crushing of the concrete is sudden, of an almost 
explosive nature, and occurs without warning. For this reason it is good practice to 
dimension beams in such a manner that, should they be overloaded, failure would 
be initiated by yielding of the steel rather than by crushing of the concrete.

The analysis of stresses and strength in the different stages just described are 
discussed in the next several sections.

	 a.	 Stresses Elastic and Section Uncracked

As long as the tensile stress in the concrete is smaller than the modulus of rupture, so 
that no tension cracks develop, the strain and stress distribution as shown in Fig. 4.1c 
is essentially the same as in an elastic, homogeneous beam (Fig. 3.5b). The only 
difference is the presence of another material, the steel reinforcement. As shown in 
Section 3.5a, in the elastic range, for any given value of strain, the stress in the steel 
is n times that of the concrete [Eq. (3.1)]. In the same section, it was shown that one 
can take account of this fact in calculations by replacing the actual steel-and-concrete 
cross section with a fictitious section thought of as consisting of concrete only. In 
this “transformed section,” the actual area of the reinforcement is replaced with an 
equivalent concrete area equal to nAs located at the level of the steel. The transformed, 
uncracked section pertaining to the beam of Fig. 4.1b is shown in Fig. 4.2. The open 
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86      DESIGN OF CONCRETE STRUCTURES  Chapter 4

circles in Fig. 4.2a represent the reinforcement that has been removed and replaced by 
the equivalent area of concrete. It is often convenient to use the representation shown 
in Fig. 4.2b, treating the member as monolithic within its original boundaries while 
adding an equivalent area of concrete equal to (n − 1)As.

Once the transformed section has been obtained, the usual methods of analysis 
of elastic homogeneous beams apply. That is, the section properties (location of 
neutral axis, moment of inertia, section modulus, etc.) are calculated in the usual 
manner, and, in particular, stresses are calculated with Eqs. (3.11) to (3.13).

FIGURE 4.2
Uncracked transformed beam 
section.

(a)

nAs

(b)

(n–1)As

FIGURE 4.3
Transformed beam section of 
Example 4.1.

10″

3 No. 8 (No. 25)

8.29 in2 8.29 in2

25″ 23″

y

	 EXAMPLE 4.1	 A rectangular beam has the dimensions (see Fig. 4.3) b = 10 in., h = 25 in., and d = 23 in. 
and is reinforced with three No. 8 (No. 25) bars so that As  =  2.37  in2. The concrete com-
pressive strength ​​f​c​ ′​​ is 4000 psi, and the tensile strength in bending (modulus of rupture) is 
475 psi. The yield point of the steel fy is 60,000 psi, the stress-strain curves of the materials 
being those of Fig. 3.3. Determine the stresses caused by a bending moment M = 45 ft-kips.

Solution.  With a value n  =  Es  ∕Ec  =  29,000,000∕3,600,000  =  8, one has to add to the 
rectangular outline an area (n − 1)As = 7 × 2.37 = 16.59 in2, rounded slightly and distributed 
as shown in Fig. 4.3, to obtain the uncracked, transformed section. Conventional calculations 
show that the location of the neutral axis of this section is given by ​​‾ y​​ = 13.2 in. from the top 
of the section, and its moment of inertia about this axis is 14,740  in4. For M  =  45  ft-kips  =   
540,000 in-lb, the concrete compression stress at the top fiber is, from Eq. (3.11),

	 fc = ​​ 
M ​‾ y​

 ___ 
I
 ​​  = ​​ 

 540,000 × 13.2
  _____________ 

14,740
 ​​  = 484 psi	
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	 b.	 Stresses Elastic and Section Cracked

When the tensile stress fct exceeds the modulus of rupture, cracks form, as shown in 
Fig. 4.1d. If the concrete compressive stress is less than approximately ​​ 1 _ 2 ​​ ​​f​c​ ′​​ and the 
steel stress has not reached the yield point, both materials continue to behave elas-
tically, or very nearly so. This situation generally occurs in structures under normal 
service conditions and loads, since at these loads the stresses are generally of the order 
of magnitude just discussed. At this stage, for simplicity and with little if any error, it 
is assumed that tension cracks have progressed all the way to the neutral axis and that 
sections plane before bending are plane in the deformed member. The situation with 
regard to strain and stress distribution is that shown in Fig. 4.1e.

To calculate stresses, and strains if desired, the device of the transformed sec-
tion can still be used. One need only take account of the fact that all of the concrete 
that is stressed in tension is assumed cracked, and therefore effectively absent. As 
shown in Fig.  4.4a, the transformed section then consists of the concrete in com-
pression on one side of the axis and n times the steel area on the other. The distance 
to the neutral axis, in this stage, is conventionally expressed as a fraction kd of the 
effective depth d. (Once the concrete is cracked, any material located below the steel 

FIGURE 4.4
Cracked transformed section 
and stresses on the section.
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and, similarly, the concrete tension stress at the bottom fiber, 11.8 in. from the neutral axis, is

	​ fct = ​ 
 540,000 × 11.8

  _____________ 
14,740

 ​  = 432 psi​	

Since this value is below the given tensile bending strength of the concrete, 475 psi, no tension 
cracks will form, and calculation by the uncracked, transformed section is justified. The stress 
in the steel, from Eqs. (3.1) and (3.11), is

	​ fs = n ​ 
My

 ___ 
I
 ​  = 8​( ​ 540,000 × 9.8

  ____________ 
14,740

 ​  )​ = 2870 psi​	

By comparing fc and fs with the concrete cylinder strength and the yield point, respectively, it is 
seen that at this stage the actual stresses are quite small compared with the available strengths 
of the two materials.
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is ineffective, which is why d is the effective depth of the beam.) To determine the 
location of the neutral axis, the moment of the tension area about the axis is set 
equal to the moment of the compression area, which gives

	​ b ​ 
(kd)2

 ____ 
2
 ​  − nAs (d − kd) = 0​	 (4.1)

Having obtained kd by solving this quadratic equation, one can determine the 
moment of inertia and other properties of the transformed section as in the preced-
ing case. Alternatively, one can proceed from basic principles by accounting directly 
for the forces that act on the cross section. These are shown in Fig. 4.4b. The con-
crete stress, with maximum value fc at the outer edge, is distributed linearly as shown. 
The entire steel area As is subject to the stress fs. Correspondingly, the total com-
pression force C and the total tension force T are

	​ C = ​ 
fc

 __ 
2
 ​ bkd    and    T = As    fs​	 (4.2)

The requirement that these two forces be equal numerically has been taken care of by 
the manner in which the location of the neutral axis has been determined.

Equilibrium requires that the couple constituted by the two forces C and T be 
equal numerically to the external bending moment M. Hence, taking moments about 
compression resultant C gives

	​ M = Tjd = As fs  jd​	 (4.3)

where jd is the internal lever arm between C and T. From Eq. (4.3), the steel stress is

	​ fs = ​  M
 ____ 

As jd
 ​​	 (4.4)

Conversely, taking moments about the tension force T gives

	​ M = Cjd = ​ 
fc

 __ 
2
 ​ bkdjd = ​ 

fc
 __ 

2
 ​ kjbd  2​	 (4.5)

from which the concrete stress is

	​ fc = ​  2M
 _____ 

kjbd 2
 ​​	 (4.6)

In using Eqs. (4.2) through (4.6), it is convenient to have equations by which 
k and j may be found directly, to establish the neutral axis distance kd and the inter-
nal lever arm jd. First defining the reinforcement ratio as

	​ ρ = ​ 
As

 ___ 
bd

 ​​	 (4.7)

then substituting As = ρbd into Eq. (4.1) and solving for k, one obtains

	​ k = ​√
__________

  (ρn)2 + 2ρn ​ − ρn​	 (4.8)

From Fig. 4.4b it is seen that jd = d − kd∕3, or

	​ j = 1 − ​ k __ 
3
 ​​	 (4.9)

Values of k and j for elastic cracked section analysis, for common reinforcement ratios 
and modular ratios, are found in Table A.6 of Appendix A.
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	 c.	 Flexural Strength

It is of interest in structural practice to calculate those stresses and deformations that 
occur in a structure in service under the design load. For reinforced concrete beams, 
this can be done by the methods just presented, which assume elastic behavior of both 
materials. It is equally, if not more, important that the structural engineer be able to 
predict with satisfactory accuracy the strength of a structure or structural member. 
By making this strength larger by an appropriate amount than the largest loads that 
can be expected during the lifetime of the structure, an adequate margin of safety is 
ensured. Historically, methods based on elastic analysis, like those just presented or 
variations thereof, have been used for this purpose. It is clear, however, that at or near 
the ultimate load, stresses are no longer proportional to strains. In regard to axial com-
pression, this has been discussed in detail in Section 3.5, and in regard to bending, it 
has been pointed out that at high loads, close to failure, the distribution of stresses and 
strains is that of Fig. 4.1f rather than the elastic distribution of Fig. 4.1e. More realistic 
methods of analysis, based on actual inelastic rather than assumed elastic behavior of 
the materials and on results of extremely extensive experimental research, have been 
developed to predict the member strength. They are now used almost exclusively in 
structural design practice.

If the distribution of concrete compressive stresses at or near ultimate load 
(Fig.  4.1f ) had a well-defined and invariable shape—parabolic, trapezoidal, or 
otherwise—it would be possible to derive a completely rational theory of bending 
strength, just as the theory of elastic bending with its known triangular shape of 
stress distribution (Figs. 3.5b and 4.1c and e) is straightforward and rational. 
Actually, inspection of Figs. 2.3, 2.4, and 2.6, and of many more concrete stress-
strain curves that have been published, shows that the geometric shape of the 
stress distribution is quite varied and depends on a number of factors, such as the 
cylinder strength and the rate and duration of loading. For this and other reasons, 
a wholly rational flexural theory for reinforced concrete has not yet been developed 

	 EXAMPLE 4.2	 The beam of Example 4.1 is subject to a bending moment M  =  90  ft-kips (rather than 45 
ft-kips as previously). Calculate the relevant properties and stresses.

Solution.  If the section were to remain uncracked, the tensile stress in the concrete would 
now be twice its previous value, that is, 864 psi. Since this exceeds by far the modulus of 
rupture of the given concrete (475 psi), cracks will have formed and the analysis must be 
adapted consistent with Fig.  4.4. Equation (4.1), with the known quantities b, n, and As 
inserted, gives the distance to the neutral axis kd  =  7.6  in., or k  =  7.6∕23  =  0.33. From  
Eq. (4.9), j = 1 − 0.33∕3 = 0.89. With these values the steel stress is obtained from Eq. (4.4) 
as fs = 22,300 psi, and the maximum concrete stress from Eq. (4.6) as fc = 1390 psi.

Comparing the results with the pertinent values for the same beam when subject to 
one-half the moment, as previously calculated, one notices that (1) the neutral axis has 
migrated upward so that its distance from the top fiber has changed from 13.2 to 7.6 in.; (2) 
even though the bending moment has only been doubled, the steel stress has increased from 
2870 to 22,300  psi, or about 7.8 times, and the concrete compression stress has increased 
from 484 to 1390 psi, or 2.9 times; (3) the moment of inertia of the cracked transformed 
section is easily calculated to be 5910  in4, compared with 14,740  in4 for the uncracked sec-
tion. This affects the magnitude of the deflection, as discussed in Chapter 7. Thus, it is seen 
how radical is the influence of the formation of tension cracks on the behavior of reinforced 
concrete beams.
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(Refs. 4.1 to 4.3). Present methods of analysis, therefore, are based in part on 
known laws of mechanics and are supplemented, where needed, by extensive test 
information.

Let Fig. 4.5 represent the distribution of internal stresses and strains when the 
beam is about to fail. One desires a method to calculate that moment Mn (nominal 
moment) at which the beam will fail either by tension yielding of the steel or by 
crushing of the concrete in the outer compression fiber. For the first mode of failure, 
the criterion is that the steel stress equal the yield point, fs = fy. It has been mentioned 
before that an exact criterion for concrete compression failure is not yet known, but 
that for rectangular beams, strains of 0.003 to 0.004 have been measured immediately 
preceding failure. If one assumes, usually slightly conservatively, that the concrete 
is about to crush when the maximum strain reaches εu = 0.003, comparison with a 
great many tests of beams and columns of a considerable variety of shapes and 
conditions of loading shows that a satisfactorily accurate and safe strength prediction 
can be made (Ref.  4.4). In addition to these two criteria (yielding of the steel at a 
stress of fy and crushing of the concrete at a strain of 0.003), it is not really necessary 
to know the exact shape of the concrete stress distribution in Fig. 4.5. What is nec-
essary is to know, for a given distance c of the neutral axis, (1) the total resultant 
compression force C in the concrete and (2) its vertical location, that is, its distance 
from the outer compression fiber.

In a rectangular beam, the area that is in compression is bc, and the total 
compression force on this area can be expressed as C =  fav bc, where fav is the aver-
age compression stress on the area bc. Evidently, the average compressive stress that 
can be developed before failure occurs becomes larger, the higher the cylinder 
strength ​​f​c​ ′​​ of the particular concrete. Let

	​ α = ​ 
 fav ___ 
​f​c​ ′​

 ​​	 (4.10)

Then

	​ C = α​f​c​ ′​bc​	 (4.11)

For a given distance c to the neutral axis, the location of C can be defined as some frac-
tion β of this distance. Thus, as indicated in Fig. 4.5, for a concrete of given strength 
it is necessary to know only α and β to completely define the effect of the concrete 
compressive stresses.

FIGURE 4.5
Stress and strain distributions 
at ultimate load.
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Extensive direct measurements, as well as indirect evaluations of numerous 
beam tests, have shown that the following values for α and β are satisfactorily accu-
rate (see Ref. 4.5, where α is designated as k1k3 and β as k2):

α equals 0.72 for ​​f​c​ ′​​ ≤ 4000 psi and decreases by 0.04 for every 1000 psi above 
4000 up to 8000 psi. For ​​f​c​ ′​​ > 8000 psi, α = 0.56.

β equals 0.425 for ​​f​c​ ′​​ ≤ 4000 psi and decreases by 0.025 for every 1000 psi 
above 4000 up to 8000 psi. For ​​f​c​ ′​​ > 8000 psi, β = 0.325.

The decrease in α and β for high-strength concretes is related to the fact that such 
concretes are more brittle; that is, they show a more sharply curved stress-strain plot 
with a smaller near-horizontal portion (see Figs. 2.3 and 2.4). Figure 4.6 shows these 
simple relations.

If this experimental information is accepted, the maximum moment can be 
calculated from the laws of equilibrium and from the assumption that plane cross 
sections remain plane. Equilibrium requires that

	​ C = T    or    α​f​c​ ′​bc = As  fs​	 (4.12)

Also, the bending moment, being the couple of the forces C and T, can be written as 
either

	​ M = Tz = As fs (d − βc)​	 (4.13)

or

	​ M = Cz = α​f​c​ ′​ bc (d − βc)​	 (4.14)

For failure initiated by yielding of the tension steel, fs  =  fy. Substituting this 
value in Eq. (4.12), one obtains the distance to the neutral axis

	​ c = ​ 
As fy

 ____ 
​αf​c​ ′​b

 ​​	 (4.15a)

Alternatively, using As = ρbd, the neutral axis distance is

	​ c = ​ 
ρfy d

 ____ 
α​f​c​ ′​

 ​​	 (4.15b)

FIGURE 4.6
Variation of α and β with 
concrete strength ​​f​c​ ′​​.
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giving the distance to the neutral axis when tension failure occurs. The nominal 
moment Mn is then obtained from Eq. (4.13) with the value for c just determined, and 
fs = fy; that is,

	​ Mn = ρfy bd 2 ​( 1 − ​ 
βfyρ

 ____ 
α​f​c​ ′​

 ​ )​​	 (4.16a)

With the specific, experimentally obtained values for α and β given previously, this 
becomes

	​ Mn = ρfybd2 ​( 1 − 0.59 ​ 
ρfy

 ___ 
​f​c​ ′​

 ​ )​​	 (4.16b)

If, for larger reinforcement ratios, the steel does not reach yield at failure, then 
the strain in the concrete becomes εu  =  0.003, as previously discussed. The steel 
stress fs, not having reached the yield point, is proportional to the steel strain εs; that 
is, according to Hooke’s law,

​fs = εsEs​

From the strain distribution shown in Fig. 4.5, the steel strain εs can be expressed in 
terms of the distance c by evaluating similar triangles, after which it is seen that

	​ fs = εu Es​ 
 d − c

 _____ c ​ ​	 (4.17)

Then, from Eq. (4.12),

	​ α ​f​c​ ′​ bc = Asεu Es​ 
 d − c

 _____ c ​ ​	 (4.18)

and this quadratic may be solved for c, the only unknown for the given beam. With 
both c and fs known, the nominal moment of the beam, so heavily reinforced that 
failure occurs by crushing of the concrete, may be found from either Eq. (4.13) or 
Eq. (4.14).

Whether or not the steel has yielded at failure can be determined by comparing 
the actual reinforcement ratio with the balanced reinforcement ratio ρb, representing 
that amount of reinforcement necessary for the beam to fail by crushing of the con-
crete at the same load that causes the steel to yield. This means that the neutral axis 
must be so located that at the load at which the steel starts yielding, the concrete 
reaches its compressive strain limit εu. Correspondingly, setting fs =  fy in Eq. (4.17) 
and substituting the yield strain εy for fy  ∕Es  gives the value of c defining the unique 
position of the neutral axis corresponding to simultaneous crushing of the concrete 
and initiation of yielding in the steel

	​ c = ​ 
εu
 _______ 

εu + εy 
 ​d​	 (4.19)

Substituting that value of c into Eq. (4.12), with As fs = ρbdfy, gives the balanced rein-
forcement ratio

	​ ρb = ​ 
α​f​c​ ′​ ___ 
fy

 ​  ​ 
εu
 ______ 

εu + εy 
 ​​	 (4.20)
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It is informative to compare this result with those of Examples 4.1 and 4.2. In the 
previous calculations, it was found that at low loads, when the concrete had not yet 
cracked in tension, the neutral axis was located at a distance of 13.2 in. from the com-
pression edge; at higher loads, when the tension concrete was cracked but stresses were 
still sufficiently small to be elastic, this distance was 7.6 in. Immediately before the beam 
fails, as has just been shown, this distance has further decreased to 4.9 in. For these same 
stages of loading, the stress in the steel increased from 2870 psi in the uncracked section 
to 22,300 psi in the cracked elastic section and to 60,000 psi at the nominal moment 
capacity. This migration of the neutral axis toward the compression edge and the increase 
in steel stress as load is increased is a graphic illustration of the differences between the 
various stages of behavior through which a reinforced concrete beam passes as its load 
is increased from zero to the value that causes it to fail. The examples also illustrate the 
fact that nominal moments cannot be determined accurately by elastic calculations.

	 4.3	 DESIGN OF TENSION-REINFORCED RECTANGULAR BEAMS

For reasons that were explained in Chapter 1, the present design of reinforced concrete 
structures is based on the concept of providing sufficient strength to resist hypothetical 
overloads. The nominal strength of a proposed member is calculated based on the best 
current knowledge of member and material behavior. That nominal strength is modi-
fied by a strength reduction factor ϕ, less than unity, to obtain the design strength. The 
required strength, should the hypothetical overload stage actually be realized, is found by 
applying load factors γ, greater than unity, to the loads actually expected. These expected 
service loads include the calculated dead load, the calculated or legally specified live 
load, and environmental loads such as those due to wind, earthquake action, or tempera-
ture. Thus reinforced concrete members are proportioned so that, as shown in Eq. (1.5),

​ϕMn ≥ Mu

ϕPn ≥ Pu

ϕVn ≥ Vu

ϕTn ≥ Tu​

	 EXAMPLE 4.3	 Determine the nominal moment Mn at which the beam of Examples 4.1 and 4.2 will fail.

Solution.  For this beam the reinforcement ratio ρ = As∕(bd) = 2.37∕(10 × 23) = 0.0103. 
The balanced reinforcement ratio is found from Eq. (4.20) to be 0.0284. Since the amount of 
steel in the beam is less than that which would cause failure by crushing of the concrete, the 
beam will fail in tension by yielding of the steel. Its nominal moment, from Eq. (4.16b), is

​Mn = ρfy bd 2 ​( 1 − 0.59 ​ 
ρfy

 ___ 
​f​c​ ′​

 ​ )​ = 0.0103 × 60,000 × 10 × 232 ​( 1 − 0.59​ 
 0.0103 × 60,000

  ______________ 
4000

 ​  )​​
​   = 2,970,000 in-lb = 248 ft-kips​

When the beam reaches Mn, the distance to its neutral axis, from Eq. (4.15b), is

​c = ​ 
ρfy d

 ____ 
α ​f​c​ ′​

 ​ =​ 
 0.0103 × 60,000 × 23

  ___________________  
0.72 × 4000

 ​  = 4.94​
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where the subscripts n denote the nominal strengths in flexure, thrust, shear, and 
torsion respectively, and the subscripts u denote the factored load moment, thrust, 
shear, and torsion. The strength reduction factors ϕ differ, depending upon the type 
of strength to be calculated, the importance of the member in the structure, and other 
considerations discussed in detail in Chapter 1.

A member proportioned on the basis of adequate strength at a specified overload 
stage must also perform in a satisfactory way under normal service load conditions. 
In specific terms, the deflection must be limited to an acceptable value, and concrete 
tensile cracks, which inevitably occur, must be of narrow width and well distributed 
throughout the tensile zone. Therefore, after proportioning for adequate strength, 
deflections are calculated and compared against limiting values (or otherwise con-
trolled), and crack widths limited by specific means. This approach to design, referred 
to in Europe, and to some extent in U.S. practice, as limit states design, is the basis 
of the ACI Code, and it is the approach followed in this and later chapters.

	 a.	 Equivalent Rectangular Stress Distribution

The method presented in Section 4.2c for calculating the flexural strength of reinforced 
concrete beams, derived from basic concepts of structural mechanics and pertinent 
experimental research information, also applies to situations other than the case of 
rectangular beams reinforced on the tension side. It can be used and gives valid answers 
for beams of other cross-sectional shapes, reinforced in other manners, and for members 
subject not only to simple bending but also to the simultaneous action of bending and 
axial force (compression or tension). However, the pertinent equations for these more 
complex cases become increasingly cumbersome and lengthy. What is more important, 
it becomes increasingly difficult for the designer to visualize the physical basis for the 
design methods and formulas; this could lead to a blind reliance on formulas, with a 
resulting lack of actual understanding. This is not only undesirable on general grounds 
but also, practically, more likely to lead to numerical errors in design work than when 
the designer at all times has a clear picture of the physical situation in the member 
being dimensioned or analyzed. Fortunately, it is possible, using a conceptual model, to 
formulate the strength analysis of reinforced concrete members in a different manner, 
which gives the same answers as the general analysis just developed but which is much 
more easily visualized and much more easily applied to cases of greater complexity 
than that of the simple rectangular beam. Its consistency is shown, and its application to 
more complex cases has been checked against the results of a vast number of tests on a 
great variety of types of members and conditions of loading (Ref. 4.4).

It was noted in the preceding section that the actual geometric shape of the 
concrete compressive stress distribution varies considerably and that, in fact, one 
need not know this shape exactly, provided one does know two things: (1) the mag-
nitude C of the resultant of the concrete compressive stresses and (2) the location 
of this resultant. Information on these two quantities was obtained from the results 
of experimental research and expressed in the two parameters α and β.

Evidently, then, one can think of the actual complex stress distribution as 
replaced by a fictitious one of some simple geometric shape, provided that this 
fictitious distribution results in the same total compression force C applied at the 
same location as in the actual member when it is on the point of failure. Histori-
cally, a number of simplified, fictitious equivalent stress distributions have been 
proposed by investigators in various countries. The one generally accepted world-
wide, and in the ACI Code, was first proposed by C. S. Whitney (Ref. 4.4) and 
was subsequently elaborated and checked experimentally by others (see, for example, 
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Refs. 4.5 and 4.6). The actual stress distribution immediately before failure and 
the fictitious equivalent distribution are shown in Fig. 4.7.

It is seen that the actual stress distribution is replaced by an equivalent one of 
simple rectangular outline. The intensity γ​ f​c​ ′​ of this equivalent constant stress and 
its depth a  =  β1c are easily calculated from the two conditions that (1) the total 
compression force C and (2) its location, that is, distance from the top fiber, must 
be the same in the equivalent rectangular as in the actual stress distribution. From 
Fig. 4.7a and b the first condition gives

​C = α ​f​c​ ′​ cb = γ ​f​c​ ′​ ab    from which    γ = α​ c __ a ​​

With a = β1c, this gives γ = α ∕β1. The second condition simply requires that in the 
equivalent rectangular stress block, the force C be located at the same distance βc from 
the top fiber as in the actual distribution. It follows that β1 = 2β.

To supply the details, the upper two lines of Table 4.1 present the experimen-
tal evidence of Fig.  4.6 in tabular form. The lower two lines give the just-derived 
parameters β1 and γ for the rectangular stress block. It is seen that the intensity 
factor for compressive stress γ is essentially independent of ​​f​c​ ′​​ and can be taken as 
0.85 throughout. Hence, regardless of ​​f​c ​ ′​​, the concrete compression force at failure 
in a rectangular beam of width b is

	​ C = 0.85​f​c​ ′​ab​	 (4.21)

FIGURE 4.7
Actual and equivalent 
rectangular stress 
distributions at ultimate load.

T = Asfs

fs fs

c

d

Actual

C = αfccb′ C = γfc ab′

fc′

T = Asfs

2
= βca

a

(b)(a)

Equivalent

β1

a
c =

βc

γ

​​f​c​ ′​​′ psi

≤ 4000 5000 6000 7000 ≥ 8000

α 0.72 0.68 0.64 0.60 0.56
β 0.425 0.400 0.375 0.350 0.325
β1 = 2β 0.85 0.80 0.75 0.70 0.65
γ = α ∕β1 0.85 0.85 0.85 0.86 0.86

TABLE 4.1
Concrete stress block parameters

www.konkur.in

Telegram: @uni_k



96      DESIGN OF CONCRETE STRUCTURES  Chapter 4

Also, for commonly used concretes with ​​f​c​ ′​​ ≤ 4000 psi, the depth of the rectangular 
stress block is a = 0.85c, with c being the distance to the neutral axis. For higher- 
strength concretes, this distance is a = β1c, with the β1 values shown in Table 4.1. This 
is expressed as follows: For ​​f​c​ ′​​ between 2500 and 4000 psi, β1 shall be taken as 0.85; 
for ​​f​c​ ′​​ above 4000 psi, β1 shall be reduced linearly at a rate of 0.05 for each 1000 psi of 
strength in excess of 4000 psi, but β1 shall not be taken as less than 0.65. In mathemat-
ical terms, the relationship between β1 and ​​f​c​ ′​​ can be expressed as

	​ β1 = 0.85 − 0.05​ 
 ​f​c​ ′​ − 4000

 _________ 
1000

 ​     and    0.65 ≤ β1 ≤ 0.85​	 (4.22)

The equivalent rectangular stress distribution can be used for deriving the equations 
that have been developed in Section 4.2c. The failure criteria, of course, are the same 
as before: yielding of the steel at fs =  fy or crushing of the concrete at εu = 0.003. 
Because the rectangular stress block is easily visualized and its geometric properties 
are extremely simple, many calculations are carried out directly without reference to 
formally derived equations, as will be seen in the following sections.

	 b.	 Balanced Strain Condition

A reinforcement ratio ρb producing balanced strain conditions can be established based 
on the condition that, at balanced failure, the steel strain is exactly equal to εy when 
the strain in the concrete simultaneously reaches the crushing strain of εu = 0.003. 
Referring to Fig. 4.5,

	​ c = ​ 
 εu
 _______ 

εu + εy
 ​d​	 (4.23)

which is seen to be identical to Eq. (4.19). Then from the equilibrium requirement that 
C = T

​ρb  fy bd = 0.85​f​c​ ′​ab = 0.85β1​ f​c​ ′​bc​

from which

	​ ρb = 0.85 β1 ​ 
 ​f​c​ ′​ ___ 
fy

 ​ ​ c __ 
d
 ​ = 0.85β1 ​ 

 ​f​c​ ′​ ___ 
fy

 ​ ​ 
εu
 ______ 

εu + εy
 ​​	 (4.24)

This is easily shown to be equivalent to Eq. (4.20).

	 c.	 Underreinforced Beams

A compression failure in flexure, should it occur, gives little if any warning of distress, 
while a tension failure, initiated by yielding of the steel, typically is gradual. Distress 
is obvious from observing the large deflections and widening of concrete cracks asso-
ciated with yielding of the steel reinforcement, and measures can be taken to avoid 
total collapse. In addition, most beams for which failure initiates by yielding possess 
substantial strength based on strain-hardening of the reinforcing steel, which is not 
accounted for in the calculations of Mn.

Because of these differences in behavior, it is prudent to require that beams be 
designed such that failure, if it occurs, will be by yielding of the steel, not by crush-
ing of the concrete. This can be done, theoretically, by requiring that the reinforce-
ment ratio ρ be less than the balance ratio ρb given by Eq. (4.24). Such a beam is 
described as being underreinforced.

In actual practice, the upper limit on ρ should be below ρb for the following 
reasons: (1) for a beam with ρ exactly equal to ρb, the compressive strain limit of 
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the concrete would be reached, theoretically, at precisely the same moment that the 
steel reaches its yield stress, without significant yielding before failure; (2) material 
properties are never known precisely; (3) strain-hardening of the reinforcing steel, 
not accounted for in design, may lead to a brittle concrete compression failure even 
though ρ may be somewhat less than ρb; (4) the actual steel area provided, consid-
ering standard reinforcing bar sizes, will always be equal to or larger than required, 
based on selected reinforcement ratio ρ, tending toward overreinforcement; and (5) 
the extra ductility provided by beams with lower values of ρ increases the deflection 
capability substantially and thus provides warning prior to failure.

	 d.	 ACI Code Provisions for Underreinforced Beams

While the nominal strength of a member may be calculated based on principles of 
mechanics, the mechanics alone cannot establish safe limits for maximum reinforce-
ment ratios, as discussed in Chapter 3. These limits are defined by the ACI Code. The 
limitations take two forms. First, the Code addresses the minimum tensile reinforce-
ment strain allowed at nominal strength in the design of beams. Second, the Code 
defines strength reduction factors that may depend on the tensile strain at nominal 
strength. Both limitations are based on the net tensile strain εt of the reinforcement 
farthest from the compression face of the concrete at the depth dt. The net tensile strain 
is exclusive of prestress, temperature, and shrinkage effects. For beams with a single 
layer of reinforcement, the depth to the centroid of the steel d is the same as dt. For 
beams with multiple layers of reinforcement, dt is greater than the depth to the cen-
troid of the reinforcement d, as shown in Fig. 4.8. Substituting dt for d and εt for εy in 
Eq. (4.23), the net tensile strain may be represented as

	​ εt = εu​ 
 dt − c

 _____ c ​ ​	 (4.25)

Then based on Eq. (4.24), the reinforcement ratio to produce a selected value of net 
tensile strain is

	​ ρ = 0.85β1 ​ 
 ​f​c​ ′​ ___ 
fy

 ​ ​ 
dt

 __ 
d
 ​ ​ 

εu
 ______ 

εu + εt 
 ​​	 (4.26a)

or somewhat conservatively

	​ ρ = 0.85β1 ​ 
 ​f​c​ ′​ ___ 
fy

 ​ ​ 
εu
 ______ 

εu + εt 
 ​​	 (4.26b)

To ensure truly underreinforced behavior, ACI Code Table 21.2.2 establishes a 
minimum net tensile strain εt, min at nominal member strength for beams subjected to 
axial loads less than 0.10 ​​f​c​ ′​​Ag, where Ag is the gross area of the cross section. 

	​ εt, min = εty + 0.003​	  (4.26c)

where εty = fy∕Es.

FIGURE 4.8
Beam with two layers of 
reinforcement showing 
difference between the 
effective depth d and the 
distance to the reinforcement 
farthest from the compressive 
face of the concrete dt.

d dt
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The ACI Code defines members that meet this requirement, that is, εt  ≥  εt,min, 
as tension-controlled. The corresponding strength reduction factor is ϕ  =  0.9. The 
requirement that εt ≥ εt,min applies to all grades of reinforcing steel, including prestress-
ing steel. The ACI Code additionally defines compression-controlled members as those 
having a net tensile strain εt  ≤  εy. The strength reduction factor for compression-
controlled members is 0.65; a value of ϕ  =  0.75 may be used if the members are 
spirally reinforced. Members with net tensile strains between εy and εt,min are classified 
as transition, and the ACI Code allows a linear interpolation of ϕ based on εt, as shown 
in Fig. 4.9 for members with axial loads greater than 0.10 ​​f​c​ ′​​ Ag. For the purposes of 
defining compression-controlled members and calculating ϕ, ACI Code 21.2.2.1 
permits a value of εy  =  0.002 to be used for Grade  60 reinforcement, in place of  
the calculated value 0.00207. A value of εty = 0.200 is required for all prestressed 
reinforcement.

Based on Eq. (4.26b), the maximum reinforcement ratio for a tension-controlled 
beam is

	​ ρmax = 0.85β1 ​ 
 ​f​c​ ′​ ___ 
fy

 ​ ​ 
 εu
 _________ 

εu + εt,min 
 ​​	 (4.26d)

Calculation of the nominal moment capacity frequently involves determination 
of the depth of the equivalent rectangular stress block a. Since c = a∕β1, it is some-
times more convenient to calculate c∕dt ratios than either ρ or the net tensile strain. 
The assumption that plane sections remain plane ensures a direct correlation between 
net tensile strain and the c∕dt ratio. Values of c∕dt corresponding to tension-controlled 
sections with εt = εt,min for Grades 60, 80, and 100 reinforcement are shown in 
Fig. 4.10. A strength reduction factor of 0.90 is permitted for sections with c∕dt 
values less than or equal to the values shown. 

Comparing Eqs. (4.26a) and (4.26b), it can be seen that the maximum rein-
forcement ratio in Eq. (4.26d) is exact for beams with a single layer of reinforcement 
and slightly conservative for beams with multiple layers of reinforcement, where dt 
is greater than d. Because εt ≥ εt,min ensures that steel is yielding in tension, fs =  fy 

FIGURE 4.9
Variation of strength 
reduction factor with net 
tensile strain in the steel.

Net tensile strain εt = εt,min = εty + 0.003εt = εty

Other

Spiral

TransitionCompression-controlled Tension-controlled

0.65

0.70

0.75

0.80

0.85

0.90

ϕ
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at failure. Referring to Fig.  4.11, the nominal flexural strength Mn is obtained by 
summing moments about the centroid of the compression force C.

	​ Mn = As fy ​( d − ​ a __ 
2
 ​ )​​	 (4.27)

The depth of the equivalent stress block a can be found based on equilibrium, C = T. 
Hence, 0.85 ​​f​c​ ′​​ ab = As  fy, giving

	​ a = ​ 
 As fy
 _______ 

0.85​f​c​ ′​ b
 ​​	 (4.28)

FIGURE 4.10
Minimum net tensile strain 
εt,min and maximum c∕dt for 
tension-controlled sections 
for Grades 60, 80, and 100 
reinforcement.

d

c

dt

εu = 0.003

εt,min = εty + 0.003 0.005
εty = 0.002
c/dt = 0.375

Grade 60

0.00576
εty = 0.00276
c/dt = 0.342

Grade 80

0.00645
εty = 0.00345

c/dt = 0.317
Grade 100

0.003 0.003 0.003

FIGURE 4.11
Singly reinforced rectangular 
beam.

0.85f ′c

C = 0.85f ′c ab
c a = β1c
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s
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b
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ε

2
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	 EXAMPLE 4.4	 Using the equivalent rectangular stress distribution, directly calculate the nominal strength of 
the beam previously analyzed in Example 4.3. Recall that b = 10 in., d = 23 in., As = 2.37 in2., ​​
f​c​ ′​​ = 4000 psi, fy = 60,000 psi, εy = 0.002, and β1 = 0.85.

Solution.  The distribution of stresses, internal forces, and strains is shown in Fig.  4.11. 
With εu = 0.003 and εt,min = 0.002 + 0.003 = 0.005 for Grade 60 reinforcement, the maximum 
reinforcement ratio is calculated from Eq. (4.26d) as

​ρmax = 0.85 × 0.85 ​  4000 ______ 
60,000

 ​ ​   0.003 ____________  
0.003 + 0.005 

 ​= 0.0181​

www.konkur.in

Telegram: @uni_k



100      DESIGN OF CONCRETE STRUCTURES  Chapter 4

The results of this simple and direct numerical analysis, based on the equivalent 
rectangular stress distribution, are identical with those previously determined from 
the general strength analysis described in Section 4.2c.

It is convenient when developing design aids to combine Eqs. (4.27) and (4.28) 
as follows. Noting that As = ρbd, Eq. (4.28) can be rewritten as

	​ a = ​ 
ρfyd
 ______ 

0.85​f​c​ ′​
 ​​	 (4.29)

This is then substituted into Eq. (4.27) to obtain

	​ Mn = ρfy bd 2 ​( 1 − 0.59 ​ 
ρfy

 ___ 
​f​c​ ′​

 ​ )​​	 (4.30)

which is identical to Eq. (4.16b) derived in Section 4.2c. This basic equation can be 
simplified further as follows:
	​ Mn = Rbd 2​	 (4.31)
in which
	​ R = ρfy ​( 1 − 0.59 ​ 

ρfy
 ___ 

​f​c​ ′​
 ​ )​​	 (4.32)

The flexural resistance factor R depends only on the reinforcement ratio and 
the strengths of the materials and is easily tabulated. Tables A.5a and A.5b and 
Graphs A.1a and A.1b of Appendix A give R values for ordinary combinations of 
steel and concrete and the full practical range of reinforcement ratios.

In accordance with the safety provisions of the ACI Code, the nominal flexural 
strength Mn is reduced by imposing the strength reduction factor ϕ to obtain the 
design strength ϕMn

	​ ϕMn = ϕAs  fy ​( d − ​ a __ 
2
 ​ )​​	 (4.33)

or, alternatively,
	​ ϕMn = ϕρfy  bd2 ​( 1 − 0.59 ​ 

ρfy
 ___ 

​f​c​ ′​
 ​ )​​	 (4.34)

or
	​ ϕMn = ϕRbd 2​	 (4.35)

and comparison with the actual reinforcement ratio of 0.0103 confirms that the member is 
underreinforced and will fail by yielding of the steel. Alternatively, recalling that c = 4.94 in.,

​​ 
c
 __ 

dt

 ​ = ​ c __ 
d
 ​  = ​ 4.94 ____ 

23
 ​  = 0.215​

which is less than 0.375 for Grade 60 reinforcement, the value of c∕dt corresponding to εt,min = 0.005 
for Grade 60 reinforcement, also confirming that the member is underreinforced. Hence,  
0.85​​f​c​ ′​​ ab = As fy, or a = 2.37 × 60,000∕(0.85 × 4000 × 10) = 4.18. The nominal moment is

​Mn = As fy ​( d − ​ a __ 
2
 ​ )​ = 2.37 × 60,000(23 − 2.09) = 2,970,000 in-lb = 248 ft-kips​

	 EXAMPLE 4.4	 Calculate the design moment capacity ϕMn for the beam analyzed earlier in Example 4.4.

Solution.  Comparing ρ with ρmax or c∕dt for the beam with the value of c∕dt corresponding 
to εt,min = 0.005 demonstrates that εt > 0.005. Therefore, ϕ = 0.90 and the design capacity is

​ϕMn = 0.9 × 248 = 223 ft-kips​

(continued)
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	 e.	 Minimum Reinforcement Ratio

Another mode of failure may occur in very lightly reinforced beams. If the flexural 
strength of the cracked section is less than the moment that produced cracking of the 
previously uncracked section, the beam will fail immediately and without warning 
of distress upon formation of the first flexural crack. To ensure against this type of 
failure, a lower limit can be established for the reinforcement ratio by equating the 
cracking moment, calculated from the concrete modulus of rupture (Section 2.9), to 
the strength of the cracked section.

For a rectangular section having width b, total depth h, and effective depth d 
(see Fig. 4.1b), the section modulus with respect to the tension fiber is bh2∕6. For 
typical cross sections, it is satisfactory to assume that h∕d  =  1.1 and that the 
internal lever arm at flexural failure is 0.95d. If the modulus of rupture is taken 
as ​fr = 7.5​√

__
 ​f​c​ ′​​,​ as usual, then an analysis equating the cracking moment to the 

flexural strength results in

	​ As,min = ​ 
1.6 ​√

__
 ​f​c​ ′​​ _______ 

fy

 ​  bd​	 (4.36a)

This development can be generalized to apply to beams having a T cross section (see 
Section 4.7 and Fig. 4.17). The corresponding equations depend on the proportions 
of the cross section and on whether the beam is bent with the flange (slab) in tension 
or in compression. For T beams of typical proportions that are bent with the flange in 
compression, analysis confirms that the minimum steel area should be

	​ As,min = ​ 
2.7​√

__
 ​f​c​ ′​​ _______ 

fy

 ​  bw d​	 (4.36b)

where bw is the width of the web, or stem, projecting below the slab. For T beams that 
are bent with the flange in tension, from a similar analysis, the minimum steel area is

	 As,min = ​​ 
6.2​√

__
 ​f​c​ ′​​ _______ 

fy

 ​​  bw d	 (4.36c)

The ACI Code requirements for minimum steel area are based on the results 
just discussed, but there are some differences. According to ACI Code 9.6.1, at any 
section where tensile reinforcement is required by analysis, with some exceptions as 
noted below, the area As provided must not be less than

	 As,min = ​​ 
3​√

__
 ​f​c​ ′​​ _____ 

fy

 ​​  bwd ≥ ​​ 
200bw d

 _______ 
fy

 ​​ 	 (4.37a)

This applies to both positive and negative bending sections. The inclusion of the 
additional limit of 200bwd∕fy is merely for historical reasons; it happens to give 
the same minimum reinforcement ratio that was imposed in earlier codes for then-
common material strengths. Note that in Eq. (4.37a) the section width bw is used; it is 
understood that for rectangular sections bw = b. Note further that the ACI coefficient 
of 3 is a conservatively rounded value compared with 2.7 in Eq. (4.36b) for T beams 
with the flange in compression, and is very conservative when applied to rectangular 
beam sections, for which a rational analysis gives 1.6 in Eq. (4.36a). This probably 
reflects the view that the minimum steel for the negative bending sections of a contin-
uous T beam (which are, in effect, rectangular sections, as discussed in Section 4.7c) 
should be no less than that for the positive bending sections, where the moment is 
generally smaller.
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ACI Code 9.6.1 treats statically determinate T beams with the flange in tension 
as a special case, for which the minimum steel area is equal to or greater than the 
value given by Eq. (4.37a) with bw replaced by either 2bw or the width of the flange, 
whichever is smaller.

ACI Code Eq. (4.37a) is conveniently expressed in terms of a minimum tensile 
reinforcement ratio ρmin by dividing both sides by bw d.

	​ ρmin = ​ 
3​√

__
 ​f​c​ ′​​ _____ 

fy

 ​  ≥ ​ 200 ____ 
fy

 ​ ​	 (4.37b)

According to ACI Code 9.6.1, the requirements of Eq. (4.37a) need not be 
imposed if, at every section, the area of tensile reinforcement provided is at least 
one-third greater than that required by analysis. This provides sufficient reinforce-
ment for large members such as grade beams, where the usual equations would 
require excessive amounts of steel.

For structural slabs and footings of uniform thickness, the minimum area of 
tensile reinforcement in the direction of the span is that required for shrinkage and 
temperature steel (see Section 12.3 and Table 12.2), and the above minimums need 
not be imposed. The maximum spacing of such steel is the smaller of 3 times the 
total slab thickness or 18 in.

	 f.	 Examples of Rectangular Beam Analysis and Design

Flexural problems can be classified broadly as analysis problems or design problems. 
In analysis problems, the section dimensions, reinforcement, and material strengths 
are known, and the moment capacity is required. In the case of design problems, the 
required moment capacity is given, as are the material strengths, and it is required to 
find the section dimensions and reinforcement. Examples 4.5 and 4.6 illustrate analysis 
and design, respectively.

	 EXAMPLE 4.5	 Flexural strength of a given member.  A rectangular beam has width 12 in. and effective 
depth 17.5 in. It is reinforced with four No. 8 (No. 25) bars in one row. If fy = 60,000 psi 
and ​​f​c​ ′​​ = 4000 psi, what is the nominal flexural strength, and what is the maximum moment 
that can be utilized in design, according to the ACI Code?

Solution.  From Table A.2 of Appendix A, the area of four No. 8 (No. 25) bars is 3.16 in2. 
Assuming that the beam is underreinforced and using Eq. (4.28),

	​ a = ​ 
As  fy
 _______ 

0.85 ​ f​c​ ′​ b
 ​ =​   3.16 × 60  ____________  

0.85 × 4 × 12 
 ​= 4.65 in.​	

The depth of the neutral axis is c = a∕β1 = 4.65∕0.85 = 5.47, giving

	​​  c __ 
dt 

 ​ = ​ 5.47 ____ 
17.5

 ​ = 0.313​	

which is less than 0.375, the value corresponding to εt = 0.005, as shown in Fig. 4.10. Thus, the beam 
is, as assumed, underreinforced, and from Eq. (4.27)

​Mn = As  fy ​( d − ​ a __ 
2

 ​ )​ = 3.16 × 60 ​( 17.5 − ​ 4.65 ____ 
2
 ​  )​ = 2880 in-kips​
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FIGURE 4.12
Structural loads for  
Example 4.6.

Service live load = 2.15 kips/ft
Calculated dead load = 1.27 kips/ft

(including beam self-weight)
15′-0″

The fact that the beam is underreinforced could also have been established by calculating  
ρ = 3.16∕(12 × 17.5) = 0.0151, which is less than ρmax, which is calculated using Eq. (4.26d).

​ρmax = 0.85β1 ​ 
 ​f​c​ ′​

 __ 
fy

 ​ ​ 
 εu
 ______________  

εu + εy + 0.003 
 ​= 0.85 × 0.85 ​( ​ 4 ___ 

60
 ​ )​ ​( ​   0.003 ____________  

0.003 + 0.005 
 ​ )​ = 0.0181​

Thus, ϕ = 0.90, and the design strength is taken as

​ϕMn = 0.90 × 2880 = 2590 in-kips​

The ACI Code limit for the minimum reinforcement ratio

​ρmin = ​ 
3​√

__
 ​f​c​ ′​​ _____ 

fy

 ​  ≥ ​ 200 ____ 
fy

 ​  = ​ 3​√
____

 4000​ ________ 
60,000

 ​  ≥ ​  200 ______ 
60,000

 ​ = 0.0033​

is satisfied for this beam.

	 EXAMPLE 4.6	 Concrete dimensions and steel area to resist a given moment.  Find the concrete cross 
section and the steel area required for a simply supported rectangular beam with a span of 15 ft 
that is to carry a calculated dead load of 1.27 kips∕ft and a service live load of 2.15 kips∕ft, as 
shown in Fig. 4.12. Material strengths are ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

Solution.  Load factors are first applied to the given service loads to obtain the factored 
load for which the beam is to be designed, and the corresponding moment:

​  wu = 1.2 × 1.27 + 1.6 × 2.15 = 4.96 kips∕ft

Mu = ​ 1 __ 
8
 ​ × 4.96 × 152 × 12 = 1670 in-kips​

The concrete dimensions depend on the designer’s choice of reinforcement ratio. To minimize 
the concrete section, it is desirable to select the maximum permissible reinforcement ratio. To 
maintain ϕ = 0.9, the maximum reinforcement ratio corresponding to a net tensile strain of 
0.005 for Grade 60 reinforcement is selected (see Fig. 4.9). Then, from Eq. (4.26d)

​ρmax = 0.85β1 ​ 
 ​f​c​ ′​ ___ 
fy

 ​  ​ 
εu
 _________ 

εu + εt,min 
 ​= 0.85 × 0.85 ​( ​ 4 ___ 

60
 ​ )​ ​( ​   0.003 ____________  

0.003 + 0.005 
 ​ )​ = 0.0181​

Setting the required flexural strength equal to the design strength from Eq. (4.34), and substituting 
the selected values for ρ and material strengths,

​  Mu = ϕMn

1670 = 0.90 × 0.0181 × 60bd 2 ​( 1 − 0.59​  0.0181 × 60  ___________ 
4
 ​  )​​

from which
​bd 2 = 2040 in3​

A beam with width b = 10 in. and d = 14.3 in. satisfies this requirement. The required steel 
area is found by applying the chosen reinforcement ratio to the required concrete dimensions:

​As = 0.0181 × 10 × 14.3 = 2.59 in2​

Two No. 10 (No. 32) bars provide 2.54 in2, which is very close to the required area.

www.konkur.in

Telegram: @uni_k



104      DESIGN OF CONCRETE STRUCTURES  Chapter 4

It is apparent that an infinite number of solutions to the stated problem are 
possible, depending upon the reinforcement ratio selected. That ratio may vary from 
an upper limit of ρmax to a lower limit of ​3​√

__
 ​f​c​ ′​​∕fy ≥ 200∕fy​ for beams, according to 

the ACI Code. To compare the two solutions (using the theoretical dimensions, 
unrounded for the comparison, and assuming h is 2.5 in. greater than d in each case), 
increasing the concrete section area by 14 percent achieves a steel saving of 20 percent. 
The second solution would likely be more economical and would be preferred, unless 
beam dimensions must be minimized for architectural or functional reasons. Economical 
designs typically have reinforcement ratios between 0.50ρmax and 0.75ρmax.

There is a type of problem, occurring frequently, that does not fall strictly into 
either the analysis or the design category. The concrete dimensions are given and 
are known to be adequate to carry the required moment, and it is necessary only to 

Assuming 2.5 in. concrete cover from the centroid of the bars, the required total depth 
is h  =  16.8  in. In actual practice, however, the concrete dimensions b and h are always 
rounded up to the nearest inch, and often to the nearest multiple of 2 in. (see Section 4.4). 
The actual d is then found by subtracting the required concrete cover dimension from h. For 
the present example, b  =  10  in. and h  =  18  in. are selected, resulting in effective depth 
d  =  15.5  in. Improved economy then may be possible, refining the steel area based on the 
actual, larger, effective depth. One can obtain the revised steel requirement directly by solv-
ing Eq. (4.34) for ρ, with ϕMn = Mu. A quicker solution can be obtained by iteration. First 
a reasonable value of a is assumed, and As is found from Eq. (4.33). From Eq. (4.28) a revised 
estimate of a is obtained, and As is revised. This method converges very rapidly. For example, 
assume a = 5  in. Then

​As = ​ 
Mu
 _________ 

ϕ fy ​( d − ​ a __ 
2
 ​ )​
 ​ = ​   1670  ___________________   

0.90 × 60(15.5 − 5∕2) 
 ​= 2.38 in2​

Checking the assumed a gives

​a = ​ 
As fy
 _______ 

0.85 ​f​c​ ′​ b
 ​ = ​   2.38 × 60  ____________  

0.85 × 4 × 10 
 ​= 4.20 in.​

This is close enough to the assumed value that no further calculation is required. The required 
steel area of 2.38 in2 could be provided using three No. 8 (No. 25) bars, but for simplicity of 
construction, two No. 10 (No. 32) bars will be used as before.

A somewhat larger beam cross section using less steel may be more economical and 
will tend to reduce deflections. As an alternative solution, the beam will be redesigned with 
a lower reinforcement ratio of ρ = 0.60ρmax = 0.60 × 0.0181 = 0.0109. Setting the required 
strength equal to the design strength [Eq. (4.34)] as before,

​1670 = 0.90 × 0.0109 × 60bd 2 ​( 1 − 0.59​  0.0109 × 60  ___________ 
4 

 ​  )​​
and

​bd 2 = 3140 in3​

A beam with b = 10 in. and d = 17.7 in. meets the requirement, for which

​As = 0.0109 × 10 × 17.7 = 1.93 in2​

Two No. 9 (No. 29) bars are sufficient, providing an area of 2.00 in2. If the total concrete height 
is rounded to 20 in., a 17.5 in. effective depth results, increasing the required steel area to 
1.96 in2. Two No. 9 (No. 29) bars remain the best choice.
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find the steel area. Typically, this is the situation at critical design sections of con-
tinuous beams, in which the concrete dimensions are often kept constant, although 
the steel reinforcement varies along the span according to the required flexural resist-
ance. Dimensions b, d, and h are determined at the maximum moment section, 
usually at one of the supports. At other supports, and at midspan locations, where 
moments are usually smaller, the concrete dimensions are known to be adequate and 
only the tensile steel remains to be found. An identical situation was encountered in 
the design problem of Example 4.6, in which concrete dimensions were rounded up 
from the minimum required values, and the required steel area was to be found. In 
either case, the iterative approach demonstrated in Example 4.6 is convenient.

	 EXAMPLE 4.7	 Determination of steel area.  Using the same concrete dimensions as were used for the 
second solution of Example 4.6 (b  =  10  in.,  d  =  17.5  in., and h  =  20  in.) and the same 
material strengths, find the steel area required to resist a moment Mu of 1300 in-kips.

Solution.  Assume a = 4.0  in. Then

​As = ​   1300  _____________________   
0.90 × 60(17.5 − 4.0∕2) 

 ​= 1.55 in2​

Checking the assumed a gives

​a =​   1.55 × 60  ____________  
0.85 × 4 × 10 

 ​= 2.74 in.​

Next assume a = 2.6 in. and recalculate As:

As = ​​   1300  ___________________  
0.90 × 60(17.5 − 1.3) 

 ​​= 1.49 in2

No further iteration is required. Use As = 1.49 in2. Two No. 8 (No. 25) bars, As = 1.58 in2, will 
be used. A check of the reinforcement ratio shows ρ < ρmax and ϕ = 0.9.

	 EXAMPLE 4.8	 Determination of steel area for a fixed concrete section.  Architectural considerations 
limit the height of a 20 ft long simple span beam to 16 in. and the width to 12 in. The fol-
lowing loads and material properties are given: wd = 0.79 kips∕ft, wl = 1.65 kips∕ft, ​​f​c​ ′​​ = 
5000 psi, and fy = 60,000 psi. Determine the reinforcement for the beam.

Solution.  Calculating the factored loads gives

​ wu = 1.2 × 0.79 + 1.6 × 1.65 = 3.59 kips∕ft

Mu = 3.59 × ​ 20 2 ___ 
8
 ​  = 179 ft-kips = 2150 in-kips​

Assume a = 4.0 in. and ϕ = 0.90. The effective depth is (16 − 2.5) in. = 13.5 in. Calculating 
As gives

​As = ​ 
 Mu∕ϕ
 __________  

fy(d − a∕2) 
 ​= ​ 

 2150∕0.90
  _____________  

60(13.5 − 2.0) 
 ​= 3.46 in2​

Try two No. 10 (No. 32) and one No. 9 (No. 29) bar, As = 3.54 in2.
Check a = 3.54 × 60∕(0.85 × 5 × 12) = 4.16  in. from Eq. (4.28). This is more than 

assumed; therefore, continue to check the moment capacity.

​Mn = 3.54 × 60(13.5 − 4.16∕2) = 2426 in-kips​
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In solving these examples, the basic equations have been used to develop familiarity 
with them. In actual practice, however, design aids such as Table A.4 of Appendix A, 
giving values of maximum and minimum reinforcement ratios, and Table A.5 and 
Graph A.1, providing values of flexural resistance factor R, are more convenient. The 
example problems are repeated in Section 4.4 to demonstrate the use of these aids.

Using a ϕ of 0.90 gives ϕMn = 2183 in-kips, which is adequate; however, the net tensile strain 
must be checked to validate the selection of ϕ = 0.9. In this case c = a∕β1 = 4.16∕0.80 = 5.20 in. 
The c∕d ratio is 0.385 > 0.375, indicating that the criterion for a tension-controlled section for 
Grade 60 reinforcement of εt > 0.005 is not satisfied. In this case, the net tensile strain is

​εt = εu​ 
 d − c

 _____ c ​  = 0.003 ​ 13.5 − 5.2 ______________ 
5.2 

 ​  = 0.00479​

To maintain the architectural depth limitations, two design options are possible: increase the 
width of the beam or increase the strength of the concrete. 
Option 1: Increase the beam width by 2 inches.  

	​ a =​   3.81 × 60  ____________  
0.85 × 5 × 14 

 ​= 3.84 in.​

	​ c = ​  3.84 _____ 
0.80 

 ​ = 4.80 in.​

	​​ 
c
 __ 

​d​ t​
 ​ = ​ 4.80 ____ 

13.5
 ​ = 0.356 < 0.375 and ϕ = 0.90​

	​​ M​ n​ = 3.81 × 60 ​( 13.5 − ​ 3.84 ____ 
2
 ​  )​ = 265 in-kips​

	​​ M​ u​ = ϕ​M​ n​ = 0.90 × 2650 = 2380 in-kips​

The nominal and design moments increase slightly and ϕ = 0.90, allowing the section to meet 
the design requirements.
Option 2: Increase the concrete strength to 6000 psi.

	​ a =​   3.81 × 60  ____________  
0.85 × 6 × 12 

 ​= 3.74 in.​

	​ c = ​ 3.74 ____ 
0.75

 ​ = 4.98 in.​

	​​ 
c
 __ 

​d​ t​
 ​ = ​ 4.98 ____ 

13.5
 ​ = 0.369 < 0.375 and ϕ = 0.90​

	​​ M​ n​ = 3.81 × 60 ​( 13.5 − ​ 3.74 ____ 
2
 ​  )​ = 2660 in-kips​

	​​ M​ u​ = ϕ​M​ n​ = 0.90 × 2660 = 2390 in-kips​

Again, the nominal and design moments increase slightly and ϕ = 0.90, allowing the section to 
meet the design requirements.

In actuality, the first solution deviates less than 1 percent from the desired value and 
would likely be acceptable. The remaining portion of the example demonstrates the design 
implications of requiring a tension-controlled section. Option 1 is preferable to maintain a 
common concrete strength in the structure. Option 2 may require different concrete strengths 
in the structure and would be selected only if the width dimension of the section could not 
be revised.
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	 g.	 Overreinforced Beams

According to the ACI Code, all beams are to be designed for yielding of the tension 
steel with εt ≥ εt,min or ρ ≤ ρmax. Occasionally, however, such as when analyzing the 
capacity of existing construction or members built under earlier Codes, it may be nec-
essary to calculate the flexural strength of an overreinforced compression-controlled 
member, for which fs is less than fy at flexural failure.

In this case, the steel strain, in Fig.  4.11b, will be less than the yield strain, 
but can be expressed in terms of the concrete strain εu and the still-unknown distance 
c to the neutral axis:

	​ εs = εu​ 
 d − c

 _____ c ​ ​	 (4.38)

From the equilibrium requirement that C = T, one can write

​0.85β1 ​f​c​ ′​ bc = ρεsEs bd​

Substituting the steel strain from Eq. (4.38) in the last equation, and defining ku = c∕d, 
one obtains a quadratic equation in ku as follows:

​​k​ u​ 
2​ + mρku − mρ = 0​

Here, ρ = As ∕bd as usual, and m is a material parameter given by

	​ m = ​ 
Esεu
 ________ 

0.85β1 ​f​c​ ′​
 ​​	 (4.39)

Solving the quadratic equation for ku,

	​ ku = ​√
__________

  mρ + ​​( ​ mρ
 ___ 

2
 ​  )​​2 

​​− ​ 
mρ

 ___ 
2
 ​​	  (4.40)

The neutral axis depth for the overreinforced beam can then easily be found from 
c = kud, after which the stress-block depth a = β1c. With steel strain εs then calculated 
from Eq. (4.38), and with fs = Esεs, the nominal flexural strength is

	​ Mn = As fs ​( d − ​ a __ 
2
 ​ )​​	 (4.41)

The strength reduction factor ϕ will equal 0.65 for beams in this range or slightly 
higher if the net tensile strain is in the transition zone shown in Fig. 4.9.

	 4.4	 DESIGN AIDS

Basic equations were developed in Section 4.3 for the analysis and design of rein-
forced concrete beams, and these were used directly in the examples. In practice, 
the design of beams and other reinforced concrete members is greatly facilitated 
by the use of aids such as computer software and those in Appendix A of this text 
and in Refs. 4.7 through 4.9. Tables A.1, A.2, A.4 through A.7, and Graph A.1 of 
Appendix A relate directly to this chapter, and the student can scan this material 
to become familiar with the coverage. Other aids will be discussed, and their use 
demonstrated, in later chapters.
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Equation (4.35) gives the flexural design strength ϕMn of an underreinforced 
rectangular beam with a reinforcement ratio at or below ρb. The flexural resistance 
factor R, from Eq. (4.32), is given in Table A.5a for lower reinforcement ratios or 
Table A.5b for higher reinforcement ratios. Alternatively, R can be obtained from 
Graph A.1. For analysis of the capacity of a section with known concrete dimensions 
b and d, having known reinforcement ratio ρ, and with known materials strengths, 
the design strength ϕMn can be obtained directly by Eq. (4.35).

For design purposes, where concrete dimensions and reinforcement are to be 
found and the factored load moment Mu is to be resisted, there are two possible 
approaches. One approach starts with selecting the optimum reinforcement ratio and 
then calculating concrete dimensions, as follows:

	 1.	 Set the required strength Mu equal to the design strength ϕMn from Eq. (4.35):

​Mu = ϕRbd 2​

	 2.	 With the aid of Table A.4, select an appropriate reinforcement ratio between 
ρmax and ρmin. Often a ratio of about 0.60ρmax will be an economical and practical 
choice. Selection of ρ ≤ ρmax (εt ≥ εt,min) ensures that ϕ remains equal to 0.90. 

	 3.	 From Table A.5, for the specified material strengths and selected reinforcement 
ratio, find the flexural resistance factor R. Then

	​ bd 2 = ​ 
Mu

 ___ 
ϕR

 ​​	

	 4.	 Choose b and d to meet that requirement. Unless construction depth must be lim-
ited or other constraints exist (see Section 11.6), an effective depth about 2 to 
3 times the width is often appropriate.

	 5.	 Calculate the required steel area

​As = ρbd​

	 	 Then, referring to Table A.2, choose the size and number of bars, giving prefer-
ence to the larger bar sizes to minimize placement costs.

	 6.	 Refer to Table A.7 to ensure that the selected beam width provides room for the 
bars chosen, with adequate concrete cover and spacing. (These points are discussed 
further in Section 4.5.)

The alternative approach starts with selecting concrete dimensions (see 
Section 11.6 for practical guidelines), after which the required reinforcement is 
found, as follows:

	 1.	 Select beam width b and effective depth d. Then calculate the required R:

​R = ​ 
Mu
 _____ 

ϕbd 2
 ​​

	 2.	 Using Table A.5 for specified material strengths, find the reinforcement ratio 
ρ < ρmax that provides the required value of R.

	 3.	 Calculate the required steel area

​As = ρbd​

	 	 and from Table A.2 select the size and number of bars.
	 4.	 Using Table A.7, confirm that the beam width is sufficient to contain the selected 

reinforcement.
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Use of design aids to solve the example problems of Section 4.3 is illustrated 
as follows.

	 EXAMPLE 4.9	 Flexural strength of a given member.  Find the nominal flexural strength and design strength 
of the beam in Example 4.5, which has b = 12 in. and d = 17.5 in. and is reinforced with four 
No. 8 (No. 25) bars. Make use of the design aids of Appendix A. Material strengths are  
​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

Solution.  From Table A.2, four No. 8 (No. 25) bars provide As  =  3.16  in2, and with 
b  =  12  in. and d  =  17.5  in., the reinforcement ratio is ρ  =  3.16∕(12  ×  17.5)  =  0.0150. 
According to Table A.4, this is less than ρmax = 0.0181 and above ρmin = 0.0033. Then from 
Table A.5b, with ​f​c​ ′​ = 4000 psi, fy = 60,000 psi, and ρ  =  0.015, the value R  =  781  psi is 
found. The nominal and design strengths with ϕ = 0.90 from Example 4.5 are, respectively,

​Mn = Rbd 2 = 781 × 12 × ​ 17.52
 _____ 

1000
 ​ = 2870 in-kips

  ϕMn = 0.90 × 2870 = 2580 in-kips​

If R had been interpolated based on ρ = 0.0151, as used in Example 4.5, the solution would 
have been as before.

	EXAMPLE 4.10	 Concrete dimensions and steel area to resist a given moment.  Find the cross section of 
concrete and the area of steel required for the beam in Example 4.6, making use of the design 
aids of Appendix A. Mu = 1670 in-kips, ​​f​c​ ′​​ = 4000 psi, and fy = 60,000 psi. Use a reinforce-
ment ratio of 0.60ρmax.

Solution.  From Table A.4, the maximum reinforcement ratio is ρmax = 0.0181. For economy, 
a value of ρ = 0.60ρmax = 0.0109 will be used. For that value, by interpolation from Table A.5a, 
the required value of R is 596. Then

​bd 2 = ​ 
Mu

 ___ 
ϕR

 ​ =​  1670 × 1000  ___________  
0.90 × 596 

 ​ = 3113 in3​

Concrete dimensions b = 10 in. and d = 17.6 in. satisfy this, but the depth will be rounded to 
17.5 in. to provide a total beam depth of 20.0 in. It follows that

​R = ​ 
Mu
 _____ 

ϕbd 2
 ​ =​   1670 × 1000  _______________  

0.90 × 10 × 17.52 
 ​= 606 psi​

and from Table A.5a, by interpolation, ρ  =  0.0112. This leads to a steel requirement of  
As = 0.0112 × 10 × 17.5 = 1.96 in2 as before.

	EXAMPLE 4.11	 Determination of steel area.  Find the steel area required for the beam in Example 4.7, 
with concrete dimensions b  =  10  in. and d  =  17.5  in. known to be adequate to carry the 
factored load moment of 1300 in-lb. Material strengths are ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.
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The tables and graphs of Appendix A give basic information and are used 
extensively throughout this text for illustrative purposes. The reader should be aware, 
however, of the greatly expanded versions of these tables, plus many other useful 
aids, that are found in Refs. 4.7 through 4.9 and in commercial design software.

	 4.5	 PRACTICAL CONSIDERATIONS IN THE DESIGN OF BEAMS

To focus attention initially on the basic aspects of flexural design, the preceding exam-
ples were carried out with only minimum regard for certain practical considerations 
that always influence the actual design of beams. These relate to optimal concrete pro-
portions for beams, rounding of dimensions, standardization of dimensions, required 
cover for main and auxiliary reinforcement, and selection of bar combinations. Good 
judgment on the part of the design engineer is particularly important in translating 
from theoretical requirements to practical design. Several of the more important 
aspects are discussed here; much additional guidance is provided by the publications 
of ACI (Refs. 4.7 and 4.8) and CRSI (Refs. 4.9 to 4.11).

	 a.	 Concrete Protection for Reinforcement

To provide the steel with adequate concrete protection against fire and corrosion, the 
designer must maintain a certain minimum thickness of concrete cover outside of the 
outermost steel. The thickness required will vary, depending upon the type of member 
and conditions of exposure. According to ACI Code 20.5.1, for cast-in-place concrete, 
concrete protection at surfaces not exposed directly to the ground or weather should 
be not less than ​​ 3 _ 4 ​​ in. for slabs and walls and 1​​ 1 _ 2 ​​ in. for beams and columns. If the con-
crete surface is to be exposed to the weather or in contact with the ground, a protective 
covering of at least 2 in. is required [1​​ 1 _ 2 ​​ in. for No. 5 (No. 16) and smaller bars], except 
that if the concrete is cast in direct contact with the ground without the use of forms, a 
cover of at least 3 in. must be furnished.

In general, the centers of main flexural bars in beams should be placed 2​​ 1 _ 2 ​​ to 3 in. 
from the top or bottom surface of the beam to furnish at least 1​​ 1 _ 2 ​​ in. of clear cover 
for the bars and the stirrups (see Fig. 4.13). In slabs, 1 in. to the center of the bar 
is ordinarily sufficient to give the required ​​ 3 _ 4 ​​ in. cover.

To simplify construction and thereby to reduce costs, the overall concrete 
dimensions of beams, b and h, are almost always rounded up to the nearest inch, 
and often to the next multiple of 2 in. As a result, the actual effective depth d, found 

Solution.  Note that in cases in which the concrete dimensions are known to be adequate 
and only the reinforcement must be found, the iterative method used earlier is not required. 
The necessary flexural resistance factor is

​R = ​ 
Mu
 _____ 

ϕbd 2
 ​ =​   1300 × 1000  _______________  

0.90 × 10 × 17.52 
 ​= 472 psi​

According to Table A.5a, with the specified material strengths, this corresponds to a reinforce-
ment ratio of ρ = 0.0085, giving a steel area of

​As = 0.0085 × 10 × 17.5 = 1.49 in2​

as before. Two No. 8 (No. 25) bars will be used, providing As = 1.58 in2.
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by subtracting the sum of cover distance, stirrup diameter, and one-half the main 
reinforcing bar diameter from the total depth h, is seldom an even dimension. For 
slabs, the total depth is generally rounded up to the nearest ​​ 1 _ 2 ​​ in. The differences 
between h and d shown in Fig.  4.13 are not exact, but are satisfactory for design 
purposes for beams with No. 4 (No. 13) stirrups and No. 10 (No. 32) longitudinal 
bars or smaller, and for slabs using No. 4 (No. 13) or smaller bars. If larger bars are 
used for the main flexural reinforcement or for the stirrups, as is frequently the case, 
the corresponding dimensions are easily calculated.

Recognizing the closer tolerances that can be maintained under plant-control 
conditions, ACI Code 20.5.1 permits some reduction in concrete protection for rein-
forcement in precast concrete. 

	 b.	 Concrete Section Proportions

Reinforced concrete beams may be wide and shallow, or relatively narrow and deep. Con-
sideration of maximum material economy often leads to proportions with effective depth d 
in the range from about 2 to 3 times the width b (or web width bw for T beams). However, 
constraints may dictate other choices, and as will be discussed in Section 11.6, maximum 
material economy may not translate to maximum structural economy. For example, with 
one-way concrete joists supported by monolithic beams (see Fig. 1.2 and Chapter 19), use 
of beams and joists with the same total depth will permit the use of a single flat-bottom 
form, resulting in fast, economical construction and permitting level ceilings. The beams 
will generally be wide and shallow, with heavier reinforcement than otherwise, but the 
result will be an overall saving in construction cost. In other cases, it may be necessary 
to limit the total depth of floor or roof construction for architectural or other reasons. An 
advantage of reinforced concrete is its adaptability to such special needs.

	 c.	 Selection of Bars and Bar Spacing

As noted in Section 2.14, common reinforcing bar sizes range from No. 3 to No. 11 
(No. 10 to No. 36), the bar number corresponding closely to the number of eighth-inches 
(millimeters) of bar diameter. The two larger sizes, No. 14 (No. 43) [1​​ 3 _ 4 ​​ in. (43 mm) 
diameter] and No. 18 (No. 57) [2​​ 1 _ 4 ​​ in. (57 mm) diameter] are used mainly in columns.

FIGURE 4.13
Requirements for concrete 
cover in beams and slabs not 
exposed to weather or in 
contact with ground.

h

b

(a) Beam with stirrups (b) Slab

No. 4 (No. 13) stirrups

d

1″

Bars
No. 3 or No. 4
(No. 10 or No. 13)

Bars
Nos. 4 to 10
(Nos. 10 to 32)

2 min.1 ″1

2 min.1 ″1

2 min.1 ″1

4 min.″32
″12

2
″12
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It is often desirable to mix bar sizes to meet steel area requirements more 
closely. In general, mixed bars should be of comparable diameter, for practical 
as well as theoretical reasons, and generally should be arranged symmetrically 
about the vertical centerline. Many designers limit the variation in diameter of 
bars in a single layer to two bar sizes, using, say, No. 10 and No. 8 (No. 32 and 
No. 25) bars together, but not Nos. 11 and 6 (Nos. 36 and 19). There is some 
practical advantage to minimizing the number of different bar sizes used for a 
given structure.

Normally, it is necessary to maintain a certain minimum distance between 
adjacent bars to ensure proper placement of concrete around them. Air pockets 
below the steel are to be avoided, and full surface contact between the bars and 
the concrete is desirable to optimize bond strength. ACI Code 25.2 specifies that 
the minimum clear distance between adjacent bars not be less than the nominal 
diameter of the bars, or 1 in. (For columns, these requirements are increased to 1​​ 1 _ 2 ​​ 
bar diameters and 1​​ 1 _ 2 ​​ in.) Where beam reinforcement is placed in two or more 
layers, the clear distance between layers must not be less than 1 in., and the bars 
in the upper layer should be placed directly above those in the bottom layer. In no 
case should the clear spacing of reinforcement be less than ​​ 4 _ 3 ​​ of the maximum 
aggregate size, a requirement that good practice suggests should be applied to the 
clear cover of reinforcement as well.

The maximum number of bars that can be placed in a beam of given width is 
limited by bar diameter and spacing requirements and is also influenced by stirrup 
diameter, concrete cover requirement, and the maximum size of concrete aggregate 
specified. Table A.7 of Appendix A gives the maximum number of bars that can be 
placed in a single layer in beams, assuming 1​​ 1 _ 2 ​​ in. concrete cover and the use of No. 4  
(No. 13) stirrups. When using the minimum bar spacing in conjunction with a large 
number of bars in a single plane of reinforcement, the designer should be aware that 
problems may arise in the placement and consolidation of concrete, especially when 
multiple layers of bars are used or when the bar spacing is smaller than the size of the 
vibrator head.

There are also restrictions on the minimum number of bars that can be placed 
in a single layer, based on requirements for the distribution of reinforcement to 
control the width of flexural cracks (see Section 7.3). Table A.8 gives the minimum 
number of bars that satisfy ACI Code requirements, which will be discussed in 
Chapter 7.

In large girders and columns, it is sometimes advantageous to “bundle” 
tensile or compressive reinforcement with two, three, or four bars in contact to 
provide for better deposition of concrete around and between adjacent bundles. 
These bars may be assumed to act as a unit, with not more than four bars in 
any bundle, provided that stirrups or ties enclose the bundle. No more than two 
bars should be bundled in one plane; typical bundle shapes are triangular, square, 
or L-shaped patterns. Individual bars in a bundle, cut off within the span of 
flexural members, should terminate at different points. ACI Code 25.6.1 requires 
at least 40 bar diameters stagger between points of cutoff. Where spacing lim-
itations and minimum concrete cover requirements are based on bar diameter, a 
unit of bundled bars is treated as a single bar with a diameter that provides the 
same total area.

ACI Code 25.6.1 states that bars larger than No. 11 (No. 36) shall not be bun-
dled in beams, although the AASHTO Specifications permit bundling of No. 14 and 
No. 18 (No. 43 and No. 57) bars in highway bridges.
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	 4.6	 RECTANGULAR BEAMS WITH TENSION  
AND COMPRESSION REINFORCEMENT

If a beam cross section is limited because of architectural or other considerations, it may 
happen that the concrete cannot develop the compression force required to resist the 
given bending moment. In this case, reinforcement is added in the compression zone, 
resulting in a doubly reinforced beam, that is, one with compression as well as tension 
reinforcement (see Fig.  4.14). The use of compression reinforcement has decreased 
markedly with the use of strength design methods, which account for the full-strength 
potential of the concrete on the compressive side of the neutral axis. However, there are 
situations in which compressive reinforcement is used for reasons other than strength. 
It has been found that the inclusion of some compression steel will reduce the long-
term deflections of members (see Section 7.5). In addition, in some cases, bars will be 
placed in the compression zone for minimum-moment loading (see Section 11.2) or as 
stirrup support bars continuous throughout the beam span (see Chapter 5). It may be 
desirable to account for the presence of such reinforcement in flexural design, although 
in many cases it is neglected in flexural calculations.

	 a.	 Tension and Compression Steel Both at Yield Stress

If, in a doubly reinforced beam, the tensile reinforcement ratio ρ is less than or equal 
to ρb, the strength of the beam may be approximated within acceptable limits by dis-
regarding the compression bars. The strength of such a beam will be controlled by 
tensile yielding, and the lever arm of the resisting moment will ordinarily be little 
affected by the presence of the compression bars.

If the tensile reinforcement ratio is larger than ρb, a somewhat more elaborate 
analysis is required. In Fig.  4.14a, a rectangular beam cross section is shown with 
compression steel ​​A​s​ ′​​ placed a distance d ′ from the compression face and with tensile 
steel As at effective depth d. It is assumed initially that both ​​A​s​ ′​​ and As are stressed 
to fy at failure. The total resisting moment can be thought of as the sum of two parts. 
The first part, Mn1, is provided by the couple consisting of the force in the compres-
sion steel ​​A​s​ ′​​ and the force in an equal area of tension steel

	​ Mn1 = ​A​s​ ′​ fy(d − d ′)​	 (4.42a)

FIGURE 4.14
Doubly reinforced rectangular beam.
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as shown in Fig.  4.14d. The second part, Mn2, is the contribution of the remaining 
tension steel ​As − ​A​s​ ′​​ acting with the compression concrete

	​ Mn2 = (As − ​A​s​ ′​)fy ​( d − ​ a __ 
2
 ​ )​​	 (4.42b)

as shown in Fig. 4.14e, where the depth of the stress block is

	​ a =​ 
 (As − ​A​s​ ′​)fy

 _________ 
0.85​f​c​ ′​ b

 ​ ​	 (4.43a)

With the definitions ρ = As∕bd and ρ′ = ​​A​s​ ′​∕bd​, this can be written

	​ a =​ 
 (ρ − ρ′)fy d

 __________ 
0.85​f​c​ ′​

 ​​	  (4.43b)

The total nominal moment is then

	​ Mn = Mn1 + Mn2 = ​A​s​ ′​ fy (d − d′) + (As − ​A​s​ ′​)fy ​( d − ​ a __ 
2
 ​ )​​	 (4.44)

In accordance with the safety provisions of the ACI Code, the net tensile strain is 
checked; and if εt ≥ εt,min, this nominal capacity is reduced by the factor ϕ = 0.90 to 
obtain the design strength. 

It is highly desirable, for reasons given earlier, that failure, should it occur, be 
precipitated by tensile yielding rather than crushing of the concrete. This can be 
ensured by setting an upper limit on the tensile reinforcement ratio. By setting the 
tensile steel strain in Fig.  4.14b equal to εy to establish the location of the neutral 
axis for the failure condition and then summing horizontal forces shown in Fig. 4.14c 
(still assuming the compressive steel to be at the yield stress at failure), it is easily 
shown that the balanced reinforcement ratio ​​‾‾ ρ​b​ for a doubly reinforced beam is

	​​ ‾‾ ρ​b = ρb + ρ′​	 (4.45)

where ρb is the balanced reinforcement ratio for the corresponding singly reinforced 
beam and is calculated from Eq. (4.24). The ACI Code establishes the strength reduc-
tion factor ϕ based on the net tensile strain, not the reinforcement ratio. The maximum 
reinforcement ratio for ϕ = 0.90 is

	​​ ‾‾ ρ​max = ρmax + ρ′​	 (4.46)

Since ​​‾‾ ρ​max​ corresponds to εt = εt,min, no check of εt is required to determine the strength 
reduction factor ϕ if ​​‾‾ ρ​ ≤ ​‾‾ ρ​max​. 

	 b.	 Compression Steel below Yield Stress

The preceding equations, through which the fundamental analysis of doubly rein-
forced beams is developed clearly and concisely, are valid only if the compression 
steel yields when the beam reaches its nominal capacity. In many cases, such as for 
wide, shallow beams, beams with more than the usual concrete cover over the com-
pression bars, beams with high yield strength steel, or beams with relatively small 
amounts of tensile reinforcement, the compression bars will be below the yield stress 
at failure. It is necessary, therefore, to develop more generally applicable equations to 
account for the possibility that the compression reinforcement has not yielded when 
the doubly reinforced beam fails in flexure.
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Whether or not the compression steel yields at failure can be determined as 
follows. Referring to Fig. 4.14b, and taking as the limiting case ​​ε​s​ ′​​ = εy, one obtains, 
from geometry,

	​​  c __ 
d′

 ​ = ​ 
εu
 _______ εu − εy 

 ​    or    c = ​ 
εu
 _______ εu − εy  ​d′​	

Summing forces in the horizontal direction (Fig.  4.14c) gives the minimum tensile 
reinforcement ratio ​​‾‾ ρ​cy​ that will ensure yielding of the compression steel at failure:

	​​ ‾‾ ρ​cy = 0.85β1 ​ 
 ​f​c​ ′​

 __ 
fy

 ​ ​ d′ __ 
d
 ​ ​ 

εu
 _______ εu − εy  ​+ ρ′​	 (4.47)

If the tensile reinforcement ratio is less than this limiting value, the neutral 
axis is sufficiently high that the compression steel stress at failure will be less than 
the yield stress. In this case, it can easily be shown on the basis of Fig. 4.14b and 
c that the balanced reinforcement ratio is

	​​ ‾‾ ρ​b = ρb + ρ′  ​ 
​f​s​ ′​

 __ 
fy

 ​​	 (4.48)

where

	​​ f​s​ ′​ = Es​ε​s​ ′​ = Es ​[ εu − ​  d′ ___ 
d
 ​ (εu + εy) ]​ ≤ fy​	 (4.49a)

To determine ρmax, εt = εt,min is substituted for εy in Eq. (4.49a), giving

	​​ f​s​ ′​ = Es ​[ εu − ​  d′ ___ 
d
 ​ (εu + εt,min) ]​ ≤ fy​	 (4.49b)

Hence, the maximum reinforcement ratio permitted for ϕ = 0.90 is

	​​ ‾‾ ρ​​max = ρmax + ρ′  ​​ 
 ​f​s​ ′​

 __ 
fy

 ​​	 (4.50)

where ​​f​s​ ′​​ is given by Eq. (4.49b). A simple comparison shows that Eqs. (4.48) and 
(4.50), with ​​f​s​ ′​​ given by Eqs. (4.49a) and (4.49b), respectively, are the generalized 
forms of Eqs. (4.45) and (4.46).

It should be emphasized that Eqs. (4.49a) and (4.49b) for compression steel 
stress apply only for beams with exact strain values in the extreme tensile reinforce-
ment of εy and εt = εt,min, respectively.

If the tensile reinforcement ratio is less than ​​‾‾ ρ​b​, as given by Eq. (4.48), and 
less than ​​‾‾ ρ​cy​, as given by Eq. (4.47), then the tensile steel is at the yield stress at 
failure but the compression steel is not, and new equations must be developed for 
compression steel stress and flexural strength. The compression steel stress can be 
expressed in terms of the still-unknown neutral axis depth as

	​​ f​s​ ′​​ = εu Es​​ 
 c − d′ ______ c  ​​ 	 (4.51)

Consideration of horizontal force equilibrium (Fig. 4.14c with compression steel stress 
equal to ​​f​s​ ′​​) then gives

	​ As fy = 0.85β1 ​f​c​ ′​bc + ​A​s​ ′​εu Es​ 
 c − d′ ______ c  ​ ​	 (4.52)
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This is a quadratic equation in c, the only unknown, and is easily solved for c. The 
nominal flexural strength is found using the value of ​​f​s​ ′​​ from Eq. (4.41), and a = β1c 
in the expression

	​ Mn = 0.85​f​c​ ′​ ab ​( d − ​ a __ 
2
 ​ )​ + ​A​s​ ′​ ​f​s​ ′​ (d − d′)​	 (4.53)

This nominal capacity is reduced by the strength reduction factor ϕ to obtain the 
design strength. As the yield strength of the reinforcement is increased, yielding of the 
compression reinforcement becomes more unlikely. For example, the yield strain of 
Grade 100 reinforcement is 0.0034, yet the maximum strain in the concrete is 0.003; 
thus Grade 100 reinforcement cannot yield in compression.

If compression bars are used in a flexural member, precautions must be taken 
to ensure that these bars will not buckle outward under load, spalling off the outer 
concrete. ACI Code 9.7.6.4 imposes the requirement that such bars be enclosed by 
closed stirrups or hoops much in the same way that compression bars in columns are 
enclosed by transverse ties (Section 9.2). Such transverse reinforcement must be used 
throughout the distance where the compression reinforcement is required.

	 c.	� Examples of Analysis and Design of Beams with Tension  
and Compression Steel

As was the case for beams with only tension reinforcement, doubly reinforced beam 
problems can be placed in one of two categories: analysis problems or design prob-
lems. For analysis, in which the concrete dimensions, reinforcement, and material 
strengths are given, one can find the flexural strength directly from the equations in 
Section 4.6a or 4.6b. First, it must be confirmed that the tensile reinforcement ratio is 
less than ​​‾‾ ρ​b​ given by Eq. (4.48), with compression steel stress from Eq. (4.49a). Once 
it is established that the tensile steel has yielded, the tensile reinforcement ratio 
defining compression steel yielding is calculated from Eq. (4.47), and compared  
to the actual tensile reinforcement ratio. If it is greater than ​​‾ ρ​cy​, then ​​f​s​ ′​ = fy​,  
and Mn is found from Eq. (4.44). If it is less than ​​‾ ρ​cy​, then ​​f​s​ ′​ < fy​. In this case,  
c is calculated by solving Eq. (4.52), ​​f​s​ ′​​ comes from Eq. (4.53), and Mn is found from 
Eq. (4.53).

For design, in which case the factored moment Mu to be resisted is known 
and the section dimensions and reinforcement are to be found, a direct solution is 
impossible. The steel areas to be provided depend on the steel stresses, which are 
not known before the section is proportioned. It can be assumed that the compres-
sion steel stress is equal to the yield stress, but this must be confirmed; if it has 
not yielded, the design must be adjusted. The design procedure can be outlined as 
follows:

	 1.	 Calculate the maximum moment that can be resisted by the underreinforced 
section with ρ = ρmax to ensure that ϕ = 0.90. The corresponding tensile steel area 
is As = ρbd, and, as usual,

​Mn = As  fy ​( d − ​ a __ 
2
 ​ )​​

	 	 with

a = ​​ 
 As  fy
 _______ 

0.85​f​c​ ′​ b
 ​​
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	 2.	 Find the excess moment, if any, that must be resisted, and set M2  =  Mn, as 
calculated in step 1.

M1 = ​​ 
 Mu

 ___ 
ϕ

  ​​ − M2

	 	 Now As from step 1 is defined as As2, that is, that part of the tension steel area 
in the doubly reinforced beam that works with the compression force in the con-
crete. In Fig. 4.14e, ​As − ​A​s​ ′​ = As2​.

	 3.	 Tentatively assume that ​​f​s​ ′​ = fy​. Then

​​A​s​ ′​ = ​ 
 M1 ________ 

fy (d − d′)
 ​​

	 4.	 Add an additional amount of tensile steel ​As1 = ​A​s​ ′​​. Thus, the total tensile steel 
area As is As2 from step 2 plus As1.

	 5.	 Analyze the doubly reinforced beam to see if ​​f​s​ ′​ = fy​; that is, check the tensile 
reinforcement ratio against ​​‾ ρ​cy​.

	 6.	 If ​ρ < ​‾ ρ​cy​, then the compression steel stress is less than fy and the compression 
steel area must be increased to provide the needed force. This can be done as 
follows. The stress block depth is found from the requirement of horizontal equi-
librium (Fig. 4.14e),

	​ a =​ 
 (As − ​A​s​ ′​)fy

 _________ 
0.85​f​c​ ′​b 

 ​     or    a =​ 
 ​[ As − ​A​s​ ′​(  ​f​s​ ′​∕fy) ]​ fy

  _______________  
0.85​f​c​ ′​b 

 ​ ​	

	 	 and the neutral axis depth is c = a∕β1. From Eq. (4.51),

​f​s​ ′​ = εuEs​ 
 c − d′ __________ c  ​

	 	 The revised compression steel area, acting at ​​f​s​ ′​​, must provide the same force as 
the trial steel area that was assumed to act at fy. Therefore,

​​A​
s,revised​ ′  ​ = ​A​

s,trial​ ′  ​ ​ 
 fy

 __ 
​f​s​ ′​

 ​​

	 	 The tensile steel area need not be revised, because it acts at fy as assumed. Using 
a spreadsheet or MathCAD, steps 3 through 6 are easily solved by varying ​​f​s​ ′​​.

	EXAMPLE 4.12	 Flexural strength of a given member.  A rectangular beam, shown in Fig.  4.15, has a 
width of 12 in. and an effective depth to the centroid of the tension reinforcement of 24 in. 
The tension reinforcement consists of six No. 10 (No. 32) bars in two rows. For simplicity 
in calculating εt, dt will be taken as d. Compression reinforcement consisting of two No. 8 
(No. 25) bars is placed 2.5 in. from the compression face of the beam. If fy  =  60,000  psi 
and ​​f​c​ ′​​ = 5000 psi, what is the design moment capacity of the beam?

Solution.  The steel areas and ratios are

	​ As = 7.62 in2    ρ = ​   7.62 _______ 
12 × 24 

 ​= 0.0265​

	​​ A​s​ ′ ​ = 1.58 in2    ρ′ = ​   1.58 _______ 
12 × 24 

 ​= 0.0055​

Check the beam first as a singly reinforced beam to see if the compression bars can be disregarded,

ρmax = 0.0243    from Table A.4 or Eq. (4.26d)
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FIGURE 4.15
Doubly reinforced beam of 
Example 4.12.
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The actual ρ = 0.0265 is larger than ρmax, so the beam must be analyzed as doubly reinforced. 
From Eq. (4.47), with β1 = 0.80,

​​‾‾ ρ​cy = 0.85 × 0.80 × ​ 5 ___ 
60

 ​ × ​ 2.5 ___ 
24

 ​ × ​   0.003  ______________  
0.003 − 0.00207 

 ​+ 0.0055 = 0.0245​

The tensile reinforcement ratio is greater than this, so the compression bars yield when the 
beam fails. The maximum reinforcement ratio thus can be found from Eq. (4.46),

​​‾‾ ρ​max = 0.0213 + 0.0055 = 0.0268​

The actual tensile reinforcement ratio is below the maximum value, as required. Then, from 
Eq. (4.43a),

​  a =​ 
 (As − ​A​s​ ′​) fy

  __________ 
0.85 ​f​c​ ′​b 

 ​  =​ 
 (7.62 − 1.58)60

  ______________  
0.85 × 5 × 12 

 ​ = 7.11 in.​

​  c = a ∕β1 = ​ 7.11 ____ 
0.80

 ​ = 8.89 in.​

​εt = εu ​( ​  dt − c
 _____ c  ​  )​ = 0.003 ​( ​  24 − 8.89 _________ 

8.89
 ​  )​ = 0.0051 > 0.005​

and thus,
ϕ = 0.90

and from Eq. (4.44),

​Mn = 1.58 × 60 (24 − 2.5) + 6.04 × 60 ​( 24 − ​ 7.11 ____ 
2
 ​  )​ = 9450 in-kips​

The design strength is
ϕMn = 0.90 × 9450 = 8500 in-kips

	EXAMPLE 4.13	 Design of a doubly reinforced beam.  A rectangular beam that must carry a service live 
load of 2.47 kips∕ft and a calculated dead load of 1.05 kips∕ft on an 18 ft simple span is 
limited in cross section for architectural reasons to 10 in. width and 20 in. total depth. If 
fy = 60,000 psi and ​​f​c​ ′​​ = 4000 psi, what steel area(s) must be provided?
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Solution.  The service loads are first increased by load factors to obtain the factored load 
of 1.2 × 1.05 + 1.6 × 2.47 = 5.21 kips∕ft. Then Mu = 5.21 × 182∕8 = 211  ft-kips = 2530   
in-kips. To satisfy spacing and cover requirements (see Section 4.5), assume that the tension 
steel centroid will be 4 in. above the bottom face of the beam and that compression steel, if 
required, will be placed 2.5 in. below the beam’s top surface. Then d = 16 in. and d′ = 2.5 in.

First, check the capacity of the section if singly reinforced. Table A.4 shows that ρmax, 
the maximum value of ρ for ϕ = 0.90, to be 0.0181. So As = 10 × 16 × 0.0181 = 2.90 in2. 
Then with

​a =​   2.90 × 60  ____________  
0.85 × 4 × 10 

 ​= 5.12 in.​

c = a∕β1 = 5.12∕0.85 = 6.02 in., and the maximum nominal moment that can be developed is

​Mn = 2.90 × 60 (16 − 5.12∕2) = 2340 in-kips​

Alternatively, using R  =  913 from Table A.5b, the nominal moment is Mn  =  913  ×  10  ×   
162∕1000 = 2340 in-kips. Because the corresponding design moment ϕMn = 2100 in-kips is 
less than the required capacity 2530 in-kips, compression steel is needed as well as additional 
tension steel.

The remaining moment to be carried by the compression steel couple is

​M1 = ​ 2530 _____ 
0.90

 ​ − 2340 = 470 in-kips​

Assume d is less than the value required to develop the compression reinforcement yield stress, 
in which case a reduced stress in the compression reinforcement must be used. Using the strain 
distribution in Fig. 4.11b, ​​ε​s​ ′ ​​ and ​​f​c​ ′​​ can be calculated as

​​ε​s​ ′ ​​ = 0.003​​  6.02 − 2.5 _________ 
6.02 

 ​​  = 0.00175    and  ​​  f​s​ ′​​ = 0.00175 × 29,000 = 50.9 ksi

Try ​​f​s​ ′​​ = 50 ksi for the compression reinforcement to obtain the required area of compression steel.

​​A​s​ ′ ​ = ​   470 ___________  
50(16 − 2.5) 

 ​= 0.70 in2​

The total area of tensile reinforcement at 60 ksi is

​As = 2.90 + 0.70​( ​ 50 ___ 
60

 ​ )​ = 3.48 in2​

Two No. 7 (No. 22) bars will be used for the compression reinforcement, and four No. 9 
(No. 29) bars will be used for the tension reinforcement, as shown in Fig. 4.16. To place the 
tension bars in a 10 in. wide beam, two rows of reinforcement of two bars each will be used.

A final check is made to ensure that the design selections meet the problem requirements.

​As − ​A​s​ ′ ​ = 4.0 − 1.20​( ​ 50 ___ 
60

 ​ )​ = 3.00 in2​

​a =​ 
 (As − ​A​s​ ′​) ​f​ y​

  __________ 
0.85 ​f​c​ ′​ b 

 ​  =​   3.00 × 60  ____________  
0.85 × 4 × 10 

 ​= 5.29 in.​

​        c = ​ a __ 
​β​ 1​

 ​ = ​ 5.29 ____ 
0.85

 ​ = 6.23 in.​

​​f​s​ ′​ = ​E​ s​​ε​ c​ ​( ​ c − d′ _____ c ​  )​ = 29,000 × 0.003​( ​  6.23 − 2.5 _________ 
6.23 

 ​  )​ = 52.1 ksi​

Which is close enough to the assumed value to continue.

​εt = εc  ​( ​ dt − c
 _____ c ​  )​ = 0.003 ​( ​  17.5 − 6.23  __________ 

6.23 
 ​  )​ = 0.0054​
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	 d.	 Tensile Steel below the Yield Stress

All doubly reinforced beams designed according to the ACI Code must be underre-
inforced, in the sense that the tensile reinforcement ratio is limited to ensure yielding 
at beam failure. Two cases were considered in Sections 4.6a and 4.6b, respectively:  
(a) both tension steel and compression steel yield and (b) tension steel yields but com-
pression steel does not. Two other combinations may be encountered in analyzing 
the capacity of existing beams: (c) tension steel does not yield, but compression steel 
does, and (d) neither tension steel nor compression steel yields. The last two cases are 
unusual, and in fact, it would be difficult to place sufficient tension reinforcement to 
create such conditions, but it is possible. The solution in such cases is obtained as a 
simple extension of the treatment of Section 4.6b. An equation for horizontal equilib-
rium is written, in which both tension and compression steel stress are expressed in 
terms of the unknown neutral axis depth c. The resulting quadratic equation is solved 
for c, after which steel stresses can be calculated and the nominal flexural strength 
determined.

	 4.7	 T BEAMS

With the exception of precast systems, reinforced concrete floors, roofs, decks, and 
beams are almost always monolithic. Forms are built for beam soffits and sides and for 
the underside of slabs, and the entire construction is cast at once, from the bottom of 
the deepest beam to the top of the slab. Beam stirrups and bent bars extend up into the 
slab. It is evident, therefore, that a part of the slab will act with the upper part of the 
beam to resist longitudinal compression. The resulting beam cross section is T-shaped 

FIGURE 4.16
Doubly reinforced beam of 
Example 4.13.
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εt is greater than the 0.005 limit allowing ϕ = 0.90. Then

	​ ϕMn = ϕ​[ (As − ​A​s​ ′ ​) fy ​( d − ​ 
a

 __ 
2
 ​ )​ + ​A​s​ ′ ​ ​f​s​ ′​ (d − d′ ) ]​​

	​ = 0.90 ​[ 3.00 × 60 ​( 16 − ​ 5.29 ____ 
2
 ​  )​ + 1.20 × 50(16 − 2.5) ]​ = 2890 in-kips​

This is greater than Mu, so no further refinement is necessary.
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rather than rectangular. The slab forms the beam flange, while the part of the beam 
projecting below the slab forms what is called the web or stem. The upper part of 
such a T beam is stressed laterally due to slab action in that direction. Although trans-
verse compression at the level of the bottom of the slab may increase the longitudinal 
compressive strength by as much as 25 percent, transverse tension at the top surface 
reduces the longitudinal compressive strength (see Section 2.10). Neither effect is usu-
ally taken into account in design.

	 a.	 Effective Flange Width

The next issue to be resolved is that of the effective width of flange. In Fig. 4.17a, 
it is evident that if the flange is but little wider than the stem width, the entire 
flange can be considered effective in resisting compression. For the floor system 
shown in Fig.  4.17b, however, it may be equally obvious that elements of the 
flange midway between the beam stems are less highly stressed in longitudinal 
compression than those elements directly over the stem. This is so because of 
shearing deformation of the flange, which relieves the more remote elements of 
some compressive stress.

The effect of this shear-lag on the stresses in the flange of a beam under posi-
tive bending is illustrated in Fig.  4.18, with higher stress near the web and lower 
stresses farther out in the flange. Rather than attempting to work with the variable 
stresses, it is convenient to make use of an effective flange width bf , which may be 
smaller than the actual flange width but is considered to be uniformly stressed. This 
effective flange width has been found to depend on the span length and the relative 
thickness of the flange.

FIGURE 4.17
Effective flange width of  
T beams.
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FIGURE 4.18
Stress distribution in T beam.
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The criteria for effective width bf given in ACI Code 6.3.2 can be summarized 
as follows:

	 1.	 For T beams with flanges on both sides of the web, the overhanging slab width on 
either side of the beam web shall not exceed one-eighth of the beam clear span ℓn, 
8 times the thickness of the slab h, or go beyond one-half the clear distance to the 
next beam sw.

	 2.	 For beams having a slab on one side only, the effective overhanging slab width 
shall not exceed one-twelfth the beam clear span ℓn, 6 times the thickness of the 
slab h, or go beyond one-half the clear distance to the next beam sw.

	 3.	 For isolated beams in which the flange is used only for the purpose of providing 
additional compressive area, the flange thickness shall not be less than one-half 
the width of the web bw, and the total flange width shall not be more than 4 times 
the web width bw.

	 b.	 Strength Analysis

The neutral axis of a T beam may be either in the flange or in the web, depending 
upon the proportions of the cross section, the amount of tensile steel, and the strengths 
of the materials. If the calculated depth to the neutral axis is less than or equal to the 
flange thickness hf , the beam can be analyzed as if it were a rectangular beam of width 
equal to bf , the effective flange width. The reason is illustrated in Fig. 4.19a, which 
shows a T beam with the neutral axis in the flange. The compressive area is indicated 
by the shaded portion of the figure. If the additional concrete indicated by areas 1 and 
2 had been added when the beam was cast, the physical cross section would have been 
rectangular with a width bf . No bending strength would have been added because 
areas 1 and 2 are entirely in the tension zone, and tension concrete is disregarded in 
flexural calculations. The original T beam and the rectangular beam are equal in flex-
ural strength, and rectangular beam analysis for flexure applies.

When the neutral axis is in the web, as in Fig. 4.19b, the preceding argument 
is no longer valid. In this case, methods must be developed to account for the actual 
T-shaped compressive zone.

In treating T beams, it is convenient to adopt the same equivalent stress distri-
bution that is used for beams of rectangular cross section. The rectangular stress 
block, having a uniform compressive-stress intensity 0.85​​f​c​ ′​​, was devised originally 
on the basis of tests of rectangular beams (see Section 4.3a), and its suitability for 
T beams may be questioned. However, extensive calculations based on actual stress-
strain curves (reported in Ref. 4.12) indicate that its use for T beams, as well as for 
beams of circular or triangular cross section, introduces only minor deviations and 
is fully justified.

FIGURE 4.19
Effective cross sections of  
T beams.
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Accordingly, a T beam may be treated as a rectangular beam if the depth of 
the equivalent stress block is less than or equal to the flange thickness. Figure 4.20 
shows a tensile-reinforced T beam with effective flange width bf , web width bw, 
effective depth to the steel centroid d, and flange thickness hf. If for trial purposes 
the stress block is assumed to be completely within the flange,

	​ a = ​ 
As  fy
 _______ 

0.85​f​c​ ′​ bf

 ​ = ​ 
ρfy d

 ______ 
0.85​f​c​ ′​

 ​​	 (4.54)

where ρ = As∕bf d. If a is less than or equal to the flange thickness hf , the member 
may be treated as a rectangular beam of width bf and depth d. If a is greater than hf , a 
T beam analysis is required as follows.

It is assumed that the strength of the T beam is controlled by yielding of the 
tensile steel. This is nearly always the case because of the large compressive concrete 
area provided by the flange. In addition, an upper limit can be established for the 
reinforcement ratio to ensure that this is so, as will be shown.

As a computational device, it is convenient to divide the total tensile steel into 
two parts, as shown in Fig. 4.21. The first part, Asf , represents the steel area that, when 
stressed to fy , is required to balance the longitudinal compressive force in the over
hanging portions of the flange that are stressed uniformly at 0.85​​f​c​ ′​​ (Fig. 4.21b). Thus,

	​ Asf =​ 
 0.85​f​c​ ′​(bf − bw)hf

  _______________ 
fy 

 ​ ​	 (4.55)

The force Asf fy and the equal and opposite force 0.85 ​​f​c​ ′​​ (bf − bw)hf act with a lever arm 
d − hf ∕2 to provide the nominal resisting moment

	​ Mn1 = Asf fy ​( d − ​ 
hf

 __ 
2
 ​ )​​	 (4.56)

FIGURE 4.20
Strain and equivalent stress 
distributions for T beams.
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The remaining steel area As − Asf, at a stress fy, is balanced by the compression 
in the rectangular portion of the beam (Fig.  4.21c). The depth of the equivalent 
rectangular stress block in this zone is found from horizontal equilibrium.

	​ a =​ 
 (As − Asf)fy

  __________ 
0.85​f​c​ ′​ bw 

 ​ ​	 (4.57)

An additional moment Mn2 is thus provided by the forces (As − Asf)fy and 0.85​​f​c​ ′​​ abw 
acting at the lever arm d − a∕2.

	​ Mn2 = (As − Asf)fy ​( d − ​ a __ 
2
 ​ )​​	 (4.58)

and the total nominal resisting moment is the sum of the parts:

	​ Mn = Mn1 + Mn2 = Asf fy ​( d − ​ 
hf

 __ 
2
 ​ )​ + (As − Asf) fy ​( d − ​ a __ 

2
 ​ )​​	 (4.59)

This moment is reduced by the strength reduction factor ϕ in accordance with the 
safety provisions of the ACI Code to obtain the design strength.

As for rectangular beams, the tensile steel should yield prior to sudden crush-
ing of the compression concrete, as assumed in the preceding development. Yielding 
of the tensile reinforcement and Code compliance are ensured if the net tensile strain 
εt is greater than εt,min, in which case a strength reduction factor ϕ  =  0.90 may be 
used. From the geometry of the section,

	​​  c __ 
dt

 ​ ≤ ​ 
 εu
 ______ 

εu + εt 
 ​​	 (4.60)

Setting εu = 0.003 and εt = 0.005 for Grade 60 reinforcement provides a maximum 
c∕dt ratio of 0.375, as shown in Fig. 4.10. Thus, as long as the depth to the neutral axis 
is less than 0.375dt, the net tensile strain requirements are satisfied, as they are for 
rectangular beam sections. This will occur if ρw = As ∕bwd is less than

	​ ρw, max = ρmax + ρf​	 (4.61)

where ρf = Asf ∕bwd and ρmax is as previously defined for a rectangular cross section 
[Eq. (4.26d)]. 

The practical result of applying Eq. (4.61) is that the stress block of T beams 
will almost always be within the flange, except for unusual geometry or combina-
tions of material strength. Consequently, rectangular beam equations may be applied 
in most cases.

The ACI Code restriction that the tensile reinforcement ratio for beams not be 
less than ρmin = ​3​√

__
 ​f​c​ ′​​∕fy​ and ≥ 200∕fy (see Section 4.3d) applies to T beams as well 

as rectangular beams. For T beams, the ratio ρ should be calculated for this purpose 
based on the web width bw.

	 c.	 Proportions of Cross Section

When designing T beams, in contrast to analyzing the capacity of a given section, nor-
mally the slab dimensions and beam spacing will have been established by transverse 
flexural requirements. Consequently, the only additional section dimensions that must 
be determined from flexural considerations are the width and depth of the web and the 
area of the tensile steel.
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If the stem dimensions were selected on the basis of concrete stress capacity in 
compression, they would be very small because of the large compression flange width 
furnished by the presence of the slab. Such a design would not represent the optimum 
solution because of the large tensile steel requirement resulting from the small effective 
depth, because of the excessive web reinforcement that would be required for shear, 
and because of large deflections associated with such a shallow member. It is better 
practice to select the proportions of the web (1) so as to keep an arbitrarily low web 
reinforcement ratio ρw or (2) so as to keep web-shear stress at desirably low limits 
(Chapter 5) or (3) for continuous T beams, on the basis of the flexural requirements 
at the supports, where the effective cross section is rectangular and of width bw.

In addition to the main reinforcement calculated according to the preceding 
requirements, it is necessary to ensure the integrity of the compressive flange of T 
beams by providing steel in the flange in the direction transverse to the main span. 
In typical construction, the slab steel serves this purpose. In other cases, additional 
bars must be added to permit the effective overhanging flanges to carry, as cantilever 
beams, the loads directly applied. According to ACI Code 7.7.2, the spacing of such bars 
must not exceed 5 times the thickness of the flange or in any case exceed 18 in.

	 d.	 Examples of Analysis and Design of T Beams

For analyzing the capacity of a T beam with known concrete dimensions and tensile 
steel area, it is reasonable to start with the assumption that the stress block depth a does 
not exceed the flange thickness hf . In that case, all ordinary rectangular beam equa-
tions (see Section 4.3) apply, with beam width taken equal to the effective width of the 
flange. If, upon checking that assumption, a proves to exceed hf , then T beam analysis 
must be applied. Equations (4.55) through (4.59) can be used, in sequence, to obtain 
the nominal flexural strength, after which the design strength is easily calculated.

For design, the following sequence of calculations may be followed:

	 1.	 Establish flange thickness hf based on flexural requirements of the slab, which 
normally spans transversely between parallel T beams.

	 2.	 Determine the effective flange width bf according to ACI limits.
	 3.	 Choose web dimensions bw and d based on either of the following:

(a)	 Negative bending requirements at the supports, if a continuous T beam
(b)	 Shear requirements, setting a reasonable upper limit on the nominal unit shear 

stress vu in the beam web (see Chapter 5)
	 4.	 With all concrete dimensions thus established, calculate a trial value of As, assum-

ing that a does not exceed hf , with beam width equal to flange width bf . Use ordi-
nary rectangular beam design methods.

	 5.	 For the trial As, check the depth of stress block a to confirm that it does not exceed 
hf . If it should exceed that value, revise As, using the T beam equations.

	 6.	 Check to ensure that εt ≥ εt,min or c∕d is less than the appropriate limit in Fig. 4.9 
to ensure that ϕ = 0.90. (This will almost invariably be the case.)

	 7.	 Check to ensure that ρw ≥ ρw, min.

	EXAMPLE 4.14	 Moment capacity of a given section.  The isolated T beam shown in Fig. 4.22 is composed 
of a flange 28 in. wide and 6 in. deep cast monolithically with a web of 10 in. width that 
extends 24 in. below the bottom surface of the flange to produce a beam of 30 in. total depth. 
Tensile reinforcement consists of six No. 10 (No. 32) bars placed in two horizontal rows sep-
arated by 1 in. clear spacing. The centroid of the bar group is 26 in. from the top of the beam. 
The concrete has a strength of 3000 psi, and the yield strength of the steel is 60,000 psi. What 
is the design moment capacity of the beam?
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FIGURE 4.22
T beam of Example 4.14.
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Solution.  It is easily confirmed that the flange dimensions are satisfactory according to the 
ACI Code for an isolated beam. The entire flange can be considered effective. For six No. 10 
(No. 32) bars, As = 7.62 in2. First check the location of the neutral axis, on the assumption that 
rectangular beam equations may be applied. Using Eq. (4.28) with bf = b

​a = ​ 
As fy
 ________ 

0.85 ​f​c​ ′​ bf

 ​ =​   7.62 × 60  ____________  
0.85 × 3 × 28 

 ​= 6.40 in.​

This exceeds the flange thickness, and so a T beam analysis is required. From Eq. (4.55) and 
Fig. 4.20b,

​Asf = 0.85 ​ 
​ f​c​ ′​ __ 
fy

 ​ (bf − bw) hf = 0.85 × ​ 3 ___ 
60

 ​ (28 − 10) × 6 = 4.59 in2​

Then, from Eq. (4.56),

​Mn1 = Asf fy ​( d − ​ 
hf

 __ 
2
 ​ )​ = 4.59 × 60(26 − 3) = 6330 in-kips​

Then, from Fig. 4.20c,

​As − Asf = 7.62 − 4.59 = 3.03 in2​

and from Eqs. (4.54) and (4.55)

​  a = ​ 
As fy
 ________ 

0.85​f​c​ ′​bw

 ​ =​   3.03 × 60  ____________  
0.85 × 3 × 10 

 ​= 7.13 in.​

​Mn2 = (As − Asf) fy ​( d − ​ a __ 
2
 ​ )​ = 3.03 × 60(26 − 3.56) = 4080 in-kips​

The depth to the neutral axis is c = a∕β1 = 7.13∕0.85 = 8.39 and dt = 27.5 in. to the lowest 
bar. The c∕dt ratio is 8.39∕27.5 = 0.305 < 0.375, so the εt > 0.005 for Grade 60 reinforcement 
requirement is met and ϕ = 0.90. When the ACI strength reduction factor is incorporated, the 
design strength is

​ϕMn = ϕ(Mn1 + Mn2) = 0.90(6330 + 4080) = 9370 in-kips​
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	EXAMPLE 4.15	 Determination of steel area for a given moment.  A floor system, shown in Fig.  4.23, 
consists of a 3 in. concrete slab supported by continuous T beams with a clear span ℓn = 24 ft, 
47 in. on centers. Web dimensions, as determined by negative-moment requirements at the 
supports, are bw  =  11  in. and d  =  20  in. What tensile steel area is required at midspan to 
resist a factored moment of 6400 in-kips if fy = 60,000 psi and ​​f​c​ ′​​ = 3000 psi?

Solution.  First determining the effective flange width bf ,

​16hf + bw = 16 × 3 + 11 = 59 in.

2​ 
ℓn

 __ 
8
 ​ + bw = 2 ×​  24 × 12 _______ 

8 
 ​  + 11 = 83 in.

Centerline beam spacing = 47 in.​

The centerline T beam spacing controls in this case, and bf = 47 in. The concrete dimensions 
bw and d are known to be adequate in this case, since they have been selected for the larger 
negative support moment applied to the effective rectangular section bwd. The tensile steel at 
midspan is most conveniently found by trial. Assuming the stress-block depth a is equal to the 
flange thickness of hf = 3 in., one gets

​d − ​ a __ 
2
 ​ = 20 − ​ 3 __ 

2
 ​ = 18.50 in.​

Trial:

​As = ​ 
 Mu
 ___________  

ϕfy (d − a∕2) 
 ​ = ​   6400  ________________  

0.90 × 60 × 18.50 
 ​= 6.41 in2​

Checking the assumed value for a,

​a = ​ 
As fy
 _______ 

0.85​f​c​ ′​ bf

 ​ =​   6.41 × 60  ____________  
0.85 × 3 × 47 

 ​= 3.21 in.​

Since a is greater than hf , a T beam design is required and ϕ = 0.90 is assumed.

​ Asf =​ 
 0.85​f​c​ ′​ (bf − bw)hf

  _______________ 
fy 

 ​  = ​ 
0.85 × 3 × (47 − 11) × 3

   ______________________  
60

 ​  = 4.59 in2

 ϕMn1 = ϕAsf fy ​( d − ​ 
hf

 __ 
2
 ​ )​ = 0.90 × 4.59 × 60 × ​( 20 − ​ 3 __ 

2
 ​ )​ = 4590 in-kips

ϕMn2 = Mu − ϕMn1 = 6400 − 4590 = 1810 in-kips​

Assume a = 4.0 in.:

As − Asf = ​​ 
ϕMn2 ___________  

ϕfy (d − a∕2)
 ​​ = ​​  1810  _____________________   

0.90 × 60 × (20 − 4∕2)
 ​​ = 1.86 in2

Check:

a = ​​ 
(As − Asf)fy

  __________ 
0.85​f​c​ ′​ bw

 ​​  = ​​  1.86 × 60  ____________  
0.85 × 3 × 11

 ​​ = 3.98 in.

FIGURE 4.23
T beam of Example 4.15.
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Problems
Problems 4.1 through 4.8 address service-level behavior, Problems 4.9 through 4.16 
are sectional analysis problems, Problems 4.17 through 4.22 are sectional design 
problems, and Problems 4.23 through 4.30 are comprehensive problems requiring 
discussion of findings.

	4.1.	 Compare the cracking moment based on the gross section properties and the 
transformed section properties with four No. 11 (No. 36) bars in Fig. P4.1a 
based on a concrete tensile capacity of 7.5​​√

__
 ​f​c​ ′​​​.

	4.2.	 Compare the cracking moment based on the gross section properties and the 
transformed section properties with two No. 10 (No. 32) bars in Fig. P4.1b 
based on a concrete tensile capacity of 7.5​​√

__
 ​f​c​ ′​​​.

This is satisfactorily close to the assumed value of 4 in. Then

​As = Asf + As − Asf = 4.59 + 1.86 = 6.45 in2​

Checking to ensure that the net tensile strain requirement is met to allow ϕ = 0.90,

​ c = ​ a __ 
β1

 ​ = ​ 3.98 ____ 
0.85

 ​ = 4.68

​ 
c
 __ 

dt

 ​ = ​ 4.68 ____ 
20

 ​  = 0.23 < 0.325​

indicating that the design is satisfactory.
The close agreement should be noted between the approximate tensile steel area of 

6.41 in2 found by assuming the stress-block depth equal to the flange thickness and the more 
exact value of 6.45 in2 found by T beam analysis. The approximate solution would be satis-
factory in most cases.
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	  4.3.	 Compare the cracking moment based on the gross section properties and the 
transformed section properties with four No. 9 (No. 29) bars in Fig. P4.1c 
based on a concrete tensile capacity of 7.5​​√

__
 ​f​c​ ′​​​.

	  4.4.	 Compare the cracking moment based on the gross section properties and the 
transformed section properties with two No. 11 (No. 36) bars in Fig. P4.1d 
based on a concrete tensile capacity of 7.5​​√

__
 ​f​c​ ′​​​.

	  4.5.	 Determine the cracking moment based on the gross section properties in  
Fig. P4.1d if the section is prestressed such that there is a 300 psi compression 
stress in the extreme tension zone and the concrete tensile capacity is 7.5​​√

__
 ​f​c​ ′​​​.

	  4.6.	 Determine the service level moment capacity of the section in Fig. P4.1a if the 
allowable stress for concrete is 0.45 ​​f​c​ ′​​ and the allowable stress for the 
reinforcement is 30,000 psi. Use the areas of reinforcement from Problem 4.1.

	  4.7.	 Determine the service level moment capacity of the section in Fig. P4.1b if 
the allowable stress for concrete is 0.45 ​​f​c​ ′​​ and the allowable stress for the 
reinforcement is 30,000 psi. Use the areas of reinforcement from Problem 4.2.

	  4.8.	 Determine the service level moment capacity of the section in Fig. P4.1c if 
the allowable stress for concrete is 0.45 ​​f​c​ ′​​ and the allowable stress for the 
reinforcement is 30,000 psi. Use the areas of reinforcement from Problem 4.3.

	  4.9.	 Determine the nominal moment capacity of the section in Fig. 4.1a using the 
reinforcement areas from Problem 4.1. fy = 60,000 psi.

	4.10.	 Determine the nominal moment capacity of the section in Fig. 4.1b using the 
reinforcement areas from Problem 4.2. fy = 60,000 psi.

	4.11.	 Determine the nominal moment capacity of the section in Fig.  4.1c using 
the reinforcement areas from Problem 4.3. fy = 60,000 psi.

	4.12.	 Determine the nominal moment capacity of the section in Fig. 4.1d using the 
reinforcement areas from Problem 4.4. fy = 60,000 psi.

	4.13.	 Determine the nominal and design moment capacity of the section in  
Fig. 4.1d using the reinforcement areas from Problem 4.4. fy = 80,000 psi.

	4.14.	 Determine the nominal and design moment capacity of the section in  
Fig. 4.1a using the reinforcement areas from Problem 4.1 and two No. 10 
(No. 32) compression bars at d′ = 2.5 in. fy = 60,000 psi.

	4.15.	 Calculate the moment capacity of the section in Fig. 4.1a using eight No. 11 
(No. 36) bars positive reinforcement and four No. 10 (No. 32) compression 
bars at d′ = 2.5 in. fy = 60,000 psi.

FIGURE P4.1

(a) f ′  = 4000 psic c c c(b) f ′  = 5000 psi (c) f ′  = 6000 psi (d) f ′  = 3000 psi
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	4.16.	 Calculate the moment capacity of a section 30 in. wide and 16 in. deep 
having eight No. 11 (No. 36) bars positive reinforcement and four No. 10 (No. 
32) compression bars at d′ = 2.5 in. fy = 60,000 psi.

	4.17.	 Determine the required area of reinforcement and the corresponding rein-
forcement ratio for the section in Fig  P4.1a if the ultimate moment is  
(a) 10,000  in-kips and (b) 5000 in-kips. fy = 60,000 psi.

	4.18.	 Determine the required area of reinforcement and the corresponding rein-
forcement ratio for the section in Fig  P4.1b if the ultimate moment is  
(a) 7,000 in-kips (b) 3500 in-kips. fy = 60,000 psi.

	4.19.	 Determine the required area of reinforcement and the corresponding rein-
forcement ratio for the section in Fig  P4.1c if the ultimate moment is  
(a) 10,000 in-kips (b) 5000 in-kips. fy = 60,000 psi.

	4.20.	 Determine the required area of reinforcement and the corresponding reinforce-
ment ratio for the section in Fig  P4.1d if the ultimate moment is (a) 10,000 
in-kips and (b) 5000 in-kips. fy = 60,000 psi. Comment on your solutions.

	4.21.	 Determine the required area of reinforcement and the corresponding rein-
forcement ratio for the section in Fig P4.1a if the ultimate moment is  
(a) 10,000 in-kips and (b) 5000 in-kips. fy = 80,000 psi.

	4.22.	 Determine the required area of reinforcement and the corresponding rein-
forcement ratio for the section in Fig P4.1b if the ultimate moment is  
(a) 7,000 in-kips (b) 3500 in-kips. fy = 80,000 psi.

	4.23.	 A rectangular beam made using concrete with ​f​c​ ′​ = 6000 psi and steel with 
fy  =  60,000  psi has a width b  =  20  in., an effective depth of d  =  17.5  in., 
and a total depth of h = 20 in. The concrete modulus of rupture fr = 530 psi. 
The elastic moduli of the concrete and steel are, respectively, Ec = 4,030,000 psi 
and Es = 29,000,000 psi. The tensile steel consists of four No. 11 (No. 36) bars.
(a)	 Find the maximum service load moment that can be resisted without 

stressing the concrete above 0.45​​f​c​ ′​​ or the steel above 0.40fy.
(b)	 Determine whether the beam cracks before reaching the service load.
(c)	 Calculate the nominal flexural strength of the beam.
(d)	 Calculate the ratio of the nominal flexural strength of the beam to the 

maximum service load moment, and compare your findings to the ACI 
load factors and strength reduction factor.

	4.24.	 A rectangular reinforced concrete beam with dimensions b = 14 in., d = 25 in., 
and h = 28 in. is reinforced with three No. 10 (No. 32) bars. Material strengths 
are fy = 60,000 psi and ​​f​c​ ′​​ = 5000 psi.
(a)	 Find the moment that produces the first cracking at the bottom surface 

of the beam, basing your calculation on Ig, the moment of inertia of the 
gross concrete section.

(b)	 Repeat the calculation, using Iut, the moment of inertia of the uncracked 
transformed section.

(c)	 Determine the maximum moment that can be carried without stressing 
the concrete beyond 0.45​​f​c​ ′​​ or the steel beyond 0.60fy.

(d)	 Find the nominal flexural strength of this beam.
(e)	 Calculate the ratio of the flexural strength from part (d) to the service 

capacity from part (c).
(f)	 Comment on your results, paying particular attention to comparing parts 

(a) and (b) and comparing the result in part (e) with the load factors in 
the ACI Code.

	4.25.	 A rectangular, tension-reinforced beam is to be designed for dead load of  
500 lb∕ft plus self-weight and service live load of 1200 lb∕ft, with a 22 ft 
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simple span. Material strengths are fy = 60 ksi and ​f​c​ ′​ = 3 ksi for steel and 
concrete, respectively. The total beam depth must not exceed 16 in. Calculate 
the required beam width and tensile steel requirement, using a reinforcement 
ratio of approximately 0.60ρmax. Use ACI load factors and strength reduction 
factors. The effective depth may be assumed to be 2.5 in. less than the total depth.

	4.26.	 A four-span continuous beam of constant rectangular cross section is sup-
ported at A, B, C, D, and E. The factored moments resulting from analysis 
are as follows:

At Supports, ft-kips At Midspan, ft-kips

Ma = 138 Mab = 158
Mb = 220 Mbc = 138
Mc = 200 Mcd = 138
Md = 220 Mde = 158
Me = 138

	 	 Determine the required final concrete dimensions for this beam, using 
d  =  1.75b, and determine the reinforcement requirements at each critical 
moment section. Your final reinforcement ratio should not exceed = 0.6ρmax. 
Use fy = 60,000 psi and ​f​c​ ′​ = 6000 psi.

	4.27.	 A two-span continuous concrete beam is to be supported by three concrete 
walls spaced 30 ft on centers. A service live load of 1.5 kips∕ft is to be carried 
in addition to the self-weight of the beam. Use pattern loading; that is, consider 
two loading conditions: (1) live load on both spans and (2) live load on a 
single span. A constant rectangular cross section is to be used with d = 2b, but 
reinforcement is to be varied according to requirements. Find the required concrete 
dimensions and reinforcement at all critical sections. Allow for No. 3 (No. 10) 
stirrups. Use a span-to-depth ratio of 15 as the first estimate of the depth. 
Adjust the depth if the reinforcement ratio is too high. Include sketches, drawn 
to scale, of the critical cross sections. Use fy = 60,000 psi and ​​f​c​ ′​​ = 6000 psi.

	4.28.	 A rectangular concrete beam of width b = 24  in. is limited by architectural 
considerations to a maximum total depth h  =  16  in. It must carry a total 
factored load moment Mu  =  400  ft-kips. Design the flexural reinforcement 
for this member, using compression steel if necessary. Allow 3 in. to the 
center of the bars from the compression or tension face of the beam. Material 
strengths are fy  =  60,000  psi and ​f​c​ ′​ = 4000 psi. Select reinforcement to 
provide the needed areas, and show a sketch of your final design, including 
provision for No. 4 (No. 13) stirrups.

	4.29.	 A precast T beam is to be used as a bridge over a small roadway. Concrete 
dimensions are b = 48 in., bw = 16 in., hf = 5 in., and h = 25 in. The effec-
tive depth d  =  20  in. Concrete and steel strengths are 6000 psi and 60,000 
psi, respectively. Using approximately one-half the maximum tensile rein-
forcement permitted by the ACI Code (select the actual size of bar and num-
ber to be used), determine the design moment capacity of the girder. If the 
beam is used on a 30 ft simple span, and if in addition to its own weight it 
must support railings, curbs, and suspended loads totaling 0.475 kip∕ft, what 
uniform service live load limit should be posted?

	4.30	 Using Eq. (4.27) and assuming that d = 0.9h, show that As is approximately 
equal to Mu∕4h for Grade 60 reinforcement and where Mu is in kip-ft.
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	 5.1	 INTRODUCTION

Chapter 4 dealt with the flexural behavior and flexural strength of beams. Beams must 
also have an adequate safety margin against other types of failure, some of which may 
be more dangerous than flexural failure. This may be so because of greater uncertainty 
in predicting certain other modes of collapse, or because of the catastrophic nature of 
some other types of failure, should they occur.

Shear failure of reinforced concrete, more properly called diagonal tension 
failure, is one example. Shear failure is difficult to predict accurately. In spite of 
many decades of experimental research (Refs. 5.1 to 5.6) and the use of highly 
sophisticated analytical tools (Refs. 5.7 and 5.8), it is not fully understood. Further-
more, if a beam without properly designed shear reinforcement is overloaded to 
failure, shear collapse is likely to occur suddenly, with no advance warning of dis-
tress. This is in strong contrast with the nature of flexural failure. For typically 
underreinforced beams, flexural failure is initiated by gradual yielding of the tension 
steel, accompanied by obvious cracking of the concrete and large deflections, giving 
ample warning and providing the opportunity to take corrective measures. Because 
of these differences in behavior, reinforced concrete beams are generally provided 
with special shear reinforcement to ensure that flexural failure would occur before 
shear failure if the member were severely overloaded.

Figure 5.1 shows a shear-critical beam tested under third point loading. With 
no shear reinforcement provided, the member failed immediately upon formation of 
the critical crack in the high-shear region near the right support.

It is important to realize that shear analysis and design are not really concerned 
with shear as such. The shear stresses in most beams are far below the direct shear 
strength of the concrete. The real concern is with diagonal tension stress, resulting 
from the combination of shear stress and longitudinal flexural stress. Most of this 
chapter deals with analysis and design for diagonal tension, and it provides back-
ground for understanding and using the shear provisions of the ACI Code. Members 
without web reinforcement are studied first to establish the location and orientation 
of cracks and the diagonal cracking load. Methods are then developed for the design 
of shear reinforcement according to the present ACI Code, both in ordinary beams 
and in special types of members, such as deep beams.

Over the years, alternative methods of shear design have been proposed, based 
on variable angle truss models and diagonal compression field theory (Refs. 5.9 and 
5.10). These approaches will be reviewed briefly later in this chapter, with one such 
approach, the modified compression field theory, presented in detail.

Shear and Diagonal Tension 
in Beams
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Finally, there are some circumstances in which consideration of direct shear is 
appropriate. One example is in the design of composite members combining precast 
beams with a cast-in-place top slab. Horizontal shear stresses on the interface between 
components are important. The shear-friction theory, useful in this and other cases, 
will be presented following development of methods for the analysis and design of 
beams for diagonal tension.

	 5.2	 DIAGONAL TENSION IN HOMOGENEOUS  
ELASTIC BEAMS

The stresses acting in homogeneous beams were briefly reviewed in Section 3.6. It 
was pointed out that when the material is elastic (stresses proportional to strains), 
shear stresses

	​ v = ​ 
VQ

 ___ 
Ib

 ​​	 (3.13)

act at any section in addition to the bending stresses

	​ f = ​ 
My

 ___ 
I
 ​ ​	 (3.11)

except for those locations at which the shear force V happens to be zero.
The role of shear stresses is easily visualized by the performance under load of 

the laminated beam of Fig. 5.2; it consists of two rectangular pieces bonded together 
along the contact surface. If the adhesive is strong enough, the member will deform 
as one single beam, as shown in Fig. 5.2a. On the other hand, if the adhesive is weak, 
the two pieces will separate and slide relative to each other, as shown in Fig.  5.2b. 

FIGURE 5.1
Shear failure of reinforced 
concrete beam: (a) overall 
view and (b) detail near right 
support. (Photograph by Arthur 

H. Nilson.)
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Evidently, then, when the adhesive is effective, there are forces or stresses acting in 
it that prevent this sliding or shearing. These horizontal shear stresses are shown in 
Fig.  5.2c as they act, separately, on the top and bottom pieces. The same stresses 
occur in horizontal planes in single-piece beams; they are different in intensity at 
different distances from the neutral axis.

Figure 5.2d shows a differential length of a single-piece rectangular beam acted 
upon by a shear force of magnitude V. Upward translation is prevented; that is, 
vertical equilibrium is provided by the vertical shear stresses v. Their average value 
is equal to the shear force divided by the cross-sectional area vav = V∕ab, but their 
intensity varies over the depth of the section. As is easily computed from Eq. (3.13), 
the shear stress is zero at the outer fibers and has a maximum of 1.5vav at the neutral 
axis, the variation being parabolic as shown. Other values and distributions are found 
for other shapes of the cross section, the shear stress always being zero at the outer 
fibers and of maximum value at the neutral axis.

Figure  5.3 shows a simply supported beam under uniform load. If a small 
square  element located at the neutral axis of such a beam is isolated, as shown in 
Fig.  5.3b, the vertical shear stresses on it, equal and opposite on the two faces for 
reasons of equilibrium, act as shown. However, if these were the only stresses pres-
ent, the element would not be in equilibrium; it would spin. Therefore, on the two 
horizontal faces there exist equilibrating horizontal shear stresses of the same mag-
nitude. That is, at any point within the beam, the horizontal shear stresses of Fig. 5.3b 
are equal in magnitude to the vertical shear stresses of Fig. 5.2d.

As demonstrated in any strength-of-materials text for an element cut at 45° these 
shear stresses combine in such a manner that their effect is as shown in Fig. 5.3c. That 
is, the action of the two pairs of shear stresses on the vertical and horizontal faces is 
the same as that of two pairs of normal stresses, one tensile and one compressive, 
acting on the 45° faces and of numerical value equal to that of the shear stresses. If 
an element of the beam is considered that is located neither at the neutral axis nor at 
the outer edges, its vertical faces are subject not only to the shear stresses but also to 
the familiar bending stresses whose magnitude is given by Eq. (3.11) (Fig. 5.3d). The 
six stresses that now act on the element can again be combined into a pair of inclined 

FIGURE 5.2
Shear in homogeneous 
rectangular beams.
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compressive stresses and a pair of inclined tensile stresses that act at right angles to 
each other. They are known as principal stresses (Fig.  5.3e). Their value, as men-
tioned in Section 3.6, is given by

	 t = ​ 
f
 __ 

2
 ​ ± ​​√

_______

 ​ 
f 2

 __ 
4
 ​ + v2  ​​	 (3.10)

and their inclination α by tan 2α = 2v∕f.
Since the magnitudes of the shear stresses v and the bending stresses f change 

both along the beam and vertically with distance from the neutral axis, the inclina-
tions as well as the magnitudes of the resulting principal stresses t also vary from 
one place to another. Figure  5.3f shows the inclinations of these principal stresses 
for a rectangular beam uniformly loaded. That is, these stress trajectories are lines 
which, at any point, are drawn in that direction in which the particular principal 
stress, tension or compression, acts at that point. It is seen that at the neutral axis 
the principal stresses in a beam are always inclined at 45° to the axis. In the vicin-
ity of the outer fibers they are horizontal near midspan.

An important point follows from this discussion. Tensile stresses, which are of 
particular concern in view of the low tensile strength of the concrete, are not con-
fined to the horizontal bending stresses f that are caused by bending alone. Tensile 
stresses of various inclinations and magnitudes, resulting from shear alone (at the 
neutral axis) or from the combined action of shear and bending, exist in all parts of 
a beam and can impair its integrity if not adequately provided for. It is for this rea-
son that the inclined tensile stresses, known as diagonal tension, must be carefully 
considered in reinforced concrete design.

FIGURE 5.3
Stress trajectories in 
homogeneous rectangular 
beam. 1

2

(a )

(e )

t1

t1

t =  v

t = v

t = v
t2

t2

2

(d )

(f )

v

v
v

v

f f

(c )

Tension trajectories
Compression trajectories

45°
1

(b )

v

v

v

v

–

t = v–

α

www.konkur.in

Telegram: @uni_k



136      DESIGN OF CONCRETE STRUCTURES  Chapter 5

	 5.3	 REINFORCED CONCRETE BEAMS WITHOUT SHEAR 
REINFORCEMENT

The discussion of shear in a homogeneous elastic beam applies very closely to a plain 
concrete beam without reinforcement. As the load is increased in such a beam, a ten-
sion crack will form where the tensile stresses are largest and will immediately cause 
the beam to fail. Except for beams of very unusual proportions, the largest tensile 
stresses are those caused at the outer fiber by bending alone, at the section of maxi-
mum bending moment. In this case, shear has little, if any, influence on the strength 
of a beam.

However, when tension reinforcement is provided, the situation is quite different. 
Even though tension cracks form in the concrete, the required flexural tension strength 
is furnished by the steel, and much higher loads can be carried. Shear stresses increase 
proportionally to the loads. In consequence, diagonal tension stresses of significant 
intensity are created in regions of high shear forces, chiefly close to the supports. The 
longitudinal tension reinforcement has been so calculated and placed that it is chiefly 
effective in resisting longitudinal tension near the tension face. It does not reinforce 
the tensionally weak concrete against the diagonal tension stresses that occur else-
where, caused by shear alone or by the combined effect of shear and flexure. Eventu-
ally, these stresses attain magnitudes sufficient to open additional tension cracks in a 
direction perpendicular to the local tension stress. These are known as diagonal cracks, 
in distinction to the vertical flexural cracks. The latter occur in regions of large 
moments, the former in regions in which the shear forces are high. In beams in which 
no reinforcement is provided to counteract the formation of large diagonal tension 
cracks, their appearance has far-reaching and detrimental effects. For this reason, meth-
ods of predicting the loads at which these cracks will form are desired.

	 a.	 Criteria for Formation of Diagonal Cracks

It is seen from Eq. (3.10) that the diagonal tension stresses t represent the combined 
effect of the shear stresses v and the bending stresses f. These in turn are, respectively, 
proportional to the shear force V and the bending moment M at the particular location 
in the beam [Eqs. (3.11) and (3.13)]. Depending on configuration, support conditions, 
and load distribution, a given location in a beam may have a large moment combined 
with a small shear force, or the reverse, or large or small values for both shear and 
moment. Evidently, the relative values of M and V will affect the magnitude as well 
as the direction of the diagonal tension stresses. Figure 5.4 shows a few typical beams 
and their moment and shear diagrams and draws attention to locations at which vari-
ous combinations of high or low V and M occur.

At a location of large shear force V and small bending moment M, there will 
be little flexural cracking, if any, prior to the development of a diagonal tension 
crack. Consequently, the average shear stress prior to crack formation is

	​ v = ​ V ___ 
bd

 ​​	 (5.1)

The exact distribution of these shear stresses over the depth of the cross section is not 
known. It cannot be computed from Eq. (3.13) because this equation does not account 
for the influence of the reinforcement and because concrete is not an elastic homoge-
neous material. The value computed from Eq. (5.1) must therefore be regarded merely 
as a measure of the average intensity of shear stresses in the section. The maximum 
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FIGURE 5.4
Typical locations of critical 
combinations of shear and 
moment.
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value, which occurs at the neutral axis, will exceed this average by an unknown but 
moderate amount.

If flexural stresses are negligibly small at the particular location, the diagonal 
tensile stresses, as in Fig. 5.3b and c, are inclined at about 45° and are numerically 
equal to the shear stresses, with a maximum at the neutral axis. Consequently, diag-
onal cracks form mostly at or near the neutral axis and propagate from that location, 
as shown in Fig.  5.5a. These web-shear cracks can be expected to form when the 
diagonal tension stress in the vicinity of the neutral axis becomes equal to the tensile 
strength of the concrete. The former, as was indicated, is of the order of, and some-
what larger than, v = V∕bd; the latter, as discussed in Section 2.9, varies from about  
3​​√

__
 ​f​c​ ′​​​ to about 5​​√

__
 ​f​c​ ′​​​. An evaluation of a very large number of beam tests is in fair 

agreement with this reasoning (Ref. 5.1). It was found that in regions with large 
shear and small moment, diagonal tension cracks form at an average or nominal 
shear stress vcr of about 3.5​​√

__
 ​f​c​ ′​​​, that is,

	​ vcr = ​ 
Vcr

 ___ 
bd

 ​ = 3.5​√
__

 ​f​c​ ′​​​	 (5.2a)

where Vcr is that shear force at which the formation of the crack was observed.† Web-
shear cracking is relatively rare and occurs chiefly near supports of deep, thin-webbed 
beams or at inflection points of continuous beams.

†�Actually, diagonal tension cracks form at places where a compressive stress acts in addition to and perpendicular to the diagonal tension stress, 
as shown in Fig. 5.3d and e. The crack, therefore, occurs at a location of biaxial stress rather than uniaxial tension. However, the effect of this 
simultaneous compressive stress on the cracking strength appears to be small, in agreement with the information in Fig. 2.12.
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The situation is different when both the shear force and the bending moment 
have large values. At such locations, in a well-proportioned and reinforced beam, 
flexural tension cracks form first. Their width and length are well controlled and 
kept small by the presence of longitudinal reinforcement. However, when the diag-
onal tension stress at the upper end of one or more of these cracks exceeds the 
tensile strength of the concrete, the crack bends in a diagonal direction and continues 
to grow in length and width (see Fig. 5.5b). These cracks are known as flexure-shear 
cracks and are more common than web-shear cracks.

It is evident that at the instant at which a diagonal tension crack of this type 
develops, the average shear stress is larger than that given by Eq. (5.1). This is so 
because the preexisting tension crack has reduced the area of uncracked concrete 
that is available to resist shear to a value smaller than that of the uncracked area bd 
used in Eq. (5.1). The amount of this reduction will vary, depending on the unpre-
dictable length of the preexisting flexural tension crack. Furthermore, the simulta-
neous bending stress f combines with the shear stress v to increase the diagonal 
tension stress t further [see Eq. (3.10)]. No way has been found to calculate reliable 
values of the diagonal tension stress under these conditions, and recourse must be 
made to test results.

A large number of beam tests have been evaluated for this purpose (Ref. 5.1). 
They show that in the presence of large moments (for which adequate longitudinal 
reinforcement has been provided) the nominal shear stress at which diagonal tension 
cracks form and propagate is, in most cases, conservatively given by

	​ vcr = ​ 
Vcr

 ___ 
bd

 ​ = 1.9​√
__

 ​f​c​ ′​​​	 (5.2b)

Comparison with Eq. (5.2a) shows that large bending moments can reduce the shear 
force at which diagonal cracks form to roughly one-half the value at which they would 
form if the moment were zero or nearly so. This is in qualitative agreement with the 
discussion just given.

FIGURE 5.5
Diagonal tension cracking in 
reinforced concrete beams.

(a ) Web-shear cracking

Web-shear crack Flexural crack

(b ) Flexure-shear cracking

Flexure-shear crack Flexural cracks
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It is evident, then, that the shear at which diagonal cracks develop depends on 
the ratio of shear force to bending moment, or, more precisely, on the ratio of shear 
stress v to bending stress f near the top of the flexural crack. Neither of these can 
be accurately calculated. It is clear, though, that v = K1(V∕bd) , where, by compari-
son with Eq. (5.1), constant K1 depends chiefly on the depth of penetration of the 
flexural crack. On the other hand [see Eq. (4.6)], f  =  K2(M∕bd 2), where K2 also 
depends on crack configuration. Hence, the ratio

	​​  v __ 
f
 ​ = ​ 

K1 ___ 
K2

 ​ ​ Vd
 ___ 

M
 ​​	

must be expected to affect that load at which flexural cracks develop into flexure-shear 
cracks, the unknown quantity K1∕K2 to be explored by tests. Equation (5.2a) gives 
the cracking shear for very large values of Vd∕M, and Eq. (5.2b) for very small val-
ues. Moderate values of Vd∕M result in magnitudes of vcr intermediate between these 
extremes.

In addition to the effect of bending moment, there are two other important 
factors dealing with the shear strength of reinforced concrete members without shear 
reinforcement that must be considered. The first is tied to the experimental obser-
vation that increasing the quantity of flexural reinforcement, which, in turn, limits 
the width of flexural cracks, results in an increase in the average shear stress at which 
flexure-shear cracks form. For typical laboratory test specimens with depths between 
8 and 13 in., the combined relationship can be conservatively expressed by the 
empirical relationship (Ref. 5.11)

	 vcr = ​​ 
Vcr

 ___ 
bd

 ​​ = 59 ​​​( ​f​c​ ′​ρ ​ 
Vd  ___ 
M

 ​ )​​1/3
​​	 (5.3a)

where ρ = As∕bd, as before, and 59 is an empirical constant. The effect of concrete 
compressive strength in Eq. (5.3a) is represented by ​​f​c​ ′​​1/3 because the developers of 
the equation found that it gave a better match with test results than ​​√

__
 ​f​c​ ′​​​. A graph of 

this relation and comparison with test data are given in Fig. 5.6.

FIGURE 5.6
Correlation of Eq. (5.3a) with 
test results.
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The second factor becomes apparent when specimens are tested that match the 
size of larger beams used in practice. As the depth of a member increases above that 
typical of laboratory specimens, Eq. (5.3a) becomes progressively unconservative 
(that is, progressively overestimates vcr). This is illustrated in Fig. 5.7 for members 
with effective depths d of up to 84 in. This lower relative strength, known as the 
size effect, is directly tied to the fact that shear failure results from both the formation 
and the propagation of a critical shear crack at failure. As demonstrated in Fig. 5.7, 
the size effect can be quite adequately described for members that fail in shear using 
the concepts of fracture mechanics as

	​​ √
_________

 ​  2 _________ 
​( 1 + d/10 )​

 ​​​	 (5.3b)

	 b.	 Behavior of Diagonally Cracked Beams

In regard to flexural cracks, as distinct from diagonal tension cracks, it was explained 
in Section 4.2 that cracks on the tension side of a beam are permitted to occur and 
are in no way detrimental to the strength of the member. One might expect a similar 
situation in regard to diagonal cracking caused chiefly by shear. The analogy, how-
ever, is not that simple. Flexural tension cracks are harmless only because adequate 
longitudinal reinforcement has been provided to resist the flexural tension stresses 
that the cracked concrete is no longer able to transmit. In contrast, the beams now 
being discussed, although furnished with the usual longitudinal reinforcement, are 
not equipped with any other reinforcement to offset the effects of diagonal cracking. 
This makes the diagonal cracks much more decisive in subsequent performance and 
strength of the beam than the flexural cracks.

Two types of behavior have been observed in the many tests on which present 
knowledge is based:

	 1.	 The diagonal crack, once formed, spreads either immediately or at only slightly 
higher load, traversing the entire beam from the tension reinforcement to the com-
pression face, splitting it in two and failing the beam. This process is sudden 

FIGURE 5.7
Comparison of ratio of shear 
strength predicted by 
Eq. (5.3a) to test results with 
the effective depth of the 
members d.
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and without warning and occurs chiefly in the shallower beams, that is, beams 
with span-depth ratios of about 8 or more. Beams in this range of dimensions are 
very common. Complete absence of shear reinforcement would make them very 
vulnerable to accidental large overloads, which would result in catastrophic fail-
ures without warning. For this reason, it is good practice to provide a minimum 
amount of shear reinforcement even if calculation does not require it, because 
such reinforcement restrains growth of diagonal cracks, thereby increasing duc-
tility and providing warning in advance of actual failure. Only in situations where 
an unusually large safety factor against inclined cracking is provided, that is, 
where actual shear stresses are very small compared with vcr , as in some slabs and 
most footings, is it permissible to omit shear reinforcement.

	 2.	 Alternatively, the diagonal crack, once formed, spreads toward and partially into 
the compression zone but stops short of penetrating to the compression face. In 
this case no sudden collapse occurs, and the failure load may be significantly 
higher than that at which the diagonal crack first formed. This behavior is chiefly 
observed in the deeper beams with smaller span to depth ratios and will be ana-
lyzed now.

Figure 5.8a shows a portion of a beam, arbitrarily loaded, in which a diagonal 
tension crack has formed. Consider the part of the beam to the left of the crack, 
shown in solid lines. There is an external upward shear force Vext = Rl − P1 acting 
on this portion.

Once a crack is formed, no tension force perpendicular to the crack can be 
transmitted across it. However, as long as the crack is narrow, it can still transmit 
forces in its own plane through interlocking of the surface roughnesses. Sizable inter-
lock forces Vi of this kind have in fact been measured, amounting to one-third and 
more of the total shear force. The components Vix and Viy of Vi are shown in Fig. 5.8a. 

FIGURE 5.8
Forces at a diagonal crack  
in a beam without web 
reinforcement.
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The other internal vertical forces are those in the uncracked portion of the concrete Vcz 
and across the longitudinal steel, acting as a dowel, Vd. Thus, the internal shear force is

	​ Vint = Vcz + Vd + Viy​	

Equilibrium requires that Vint  =  Vext so that the part of the shear resisted by the 
uncracked concrete is

	​ Vcz = Vext − Vd − Viy​	 (5.4)

In a beam provided with longitudinal reinforcement only, the portion of the shear 
force resisted by the steel in dowel action is usually quite small. In fact, the reinforcing 
bars on which the dowel force Vd acts are supported against vertical displacement 
chiefly by the thin concrete layer below. The bearing pressure caused by Vd creates, 
in this concrete, vertical tension stresses as shown in Fig.  5.8b. Because of these 
stresses, diagonal cracks often result in splitting of the concrete along the tension 
reinforcement, as shown. (See also Fig. 5.1.) This reduces the dowel force Vd and also 
permits the diagonal crack to widen. This, in turn, reduces the interface force Vi and 
frequently leads to immediate failure.

Next consider moments about point a at the intersection of Vcz and C; the exter-
nal moment Mext,a acts at a and happens to be Rl xa  −  P1(xa  −  x1) for the loading 
shown. The internal moment is

	​ Mint,a = Tb z + Vd p − Vi m​	

Here p is the horizontal projection of the diagonal crack and m is the moment arm of 
the force Vi with respect to point a. The designation Tb for T is meant to emphasize that 
this force in the steel acts at point b rather than vertically below point a. Equilibrium 
requires that Mint,a = Mext,a so that the longitudinal tension in the steel at b is

	​ Tb =  ​ 
Mext,a − Vd p + Vi m

  _________________ z ​ ​	 (5.5)

Neglecting the forces Vd and Vi, which decrease with increasing crack opening, one 
has, with very little error,

	​ Tb =  ​ 
Mext,a

 _____ z ​ ​	 (5.6)

The formation of the diagonal crack, then, is seen to produce the following 
redistribution of internal forces and stresses:

	 1.	 At the vertical section through point a, the average shear stress before crack for-
mation was Vext ∕bd. After crack formation, the shear force is resisted by a com-
bination of the dowel shear, the interface shear, and the shear force on the much 
smaller area by of the remaining uncracked concrete. As tension splitting develops 
along the longitudinal bars, Vd and Vi decrease; this, in turn, increases the shear 
force and the resulting shear stress on the remaining uncracked concrete area.

	 2.	 The diagonal crack, as described previously, usually rises above the neutral axis 
and traverses some part of the compression zone before it is arrested by the com-
pression stresses. Consequently, the compression force C also acts on an area 
equal to y times the width of the beam, which is smaller than the area on which it 
acted before the crack was formed. Correspondingly, formation of the crack has 
increased the compression stresses in the remaining uncracked concrete.

	 3.	 Prior to diagonal cracking, the tension force in the steel at point b was caused by, 
and was proportional to, the bending moment in a vertical section through the 
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same point b. As a consequence of the diagonal crack, however, Eq. (5.6) shows 
that the tension in the steel at b is now caused by, and is proportional to, the 
bending moment at a. Since the moment at a is evidently larger than that at b, 
formation of the crack has caused a sudden increase in the steel stress at b.

If the two materials are capable of resisting these increased stresses, equilibrium 
will establish itself after internal redistribution and further load can be applied before 
failure occurs. Such failure can then develop in various ways. For one, if only enough 
steel has been provided at b to resist the moment at that section, the increase of the 
steel force, described in item 3, will cause the steel to yield because of the larger 
moment at a, thus failing the beam. If the beam is properly designed to prevent this 
occurrence, it is usually the concrete at the head of the crack that will eventually crush. 
This concrete is subject simultaneously to large compression and shear stresses, and 
this biaxial stress combination is conducive to earlier failure than would take place if 
either of these stresses were acting alone. Finally, if there is splitting along the rein-
forcement, it will cause the bond between steel and concrete to weaken to such a degree 
that the reinforcement may pull loose. This either may be the cause of failure of the 
beam or may occur simultaneously with crushing of the remaining uncracked concrete.

It was noted earlier that relatively deep beams will usually show continued and 
increasing resistance after formation of a critical diagonal tension crack, but rela-
tively shallow beams will fail almost immediately upon formation of the crack. The 
amount of reserve strength, if any, was found to be erratic. In fact, in several test 
series in which two specimens as identical as one can make them were tested, one 
failed immediately upon formation of a diagonal crack, while the other reached 
equilibrium under the described redistribution and failed at a higher load.

For this reason, this reserve strength is discounted in modern design proce-
dures. As previously mentioned, most beams are furnished with at least a minimum 
of web reinforcement. For those flexural members that are not, such as slabs, foot-
ings, and others as described in Section 5.5b, design is based on that shear force Vcr 
or shear stress vcr at which formation of inclined cracks must be expected. 

	 5.4	 REINFORCED CONCRETE BEAMS WITH  
WEB REINFORCEMENT

Economy of design demands, in most cases, that a flexural member be capable of 
developing its full moment capacity rather than having its strength limited by pre-
mature shear failure. This is also desirable because structures, if overloaded, should 
not fail in the sudden and explosive manner characteristic of many shear failures, 
but should show adequate ductility and warning of impending distress. The latter, as 
pointed out earlier, is typical of flexural failure caused by yielding of the longitudinal 
bars, which is preceded by gradual excessively large deflections and noticeable wid-
ening of cracks. Therefore, if a fairly large safety margin relative to the available shear 
strength of the concrete alone does not exist, special shear reinforcement, known as 
web reinforcement, is used to increase this strength.

	 a.	 Types of Web Reinforcement

Typically, web reinforcement is provided in the form of vertical stirrups, spaced at 
varying intervals along the axis of the beam depending on requirements, as shown 
in Fig. 5.9a. Relatively small bars are used, generally Nos. 3 to 5 (Nos. 10 to 16). 
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Simple U-shaped bars similar to Fig. 5.9b are most common. Multiple-leg stirrups, such 
as shown in Fig. 5.9c, are required in beams with widths larger than the depth, where 
U-shaped stirrups at the boundary of the members may not provide adequate shear 
capacity across the width of the members (Refs. 5.13 to 5.15). Stirrups are formed to fit 
around the main longitudinal bars at the bottom and hooked or bent around longitudinal 
bars at the top of the member to improve anchorage and provide support during con-
struction. Detailed requirements for anchorage of stirrups will be discussed in Chapter 6.

Alternatively, shear reinforcement may be provided by bending up a part of the 
longitudinal steel where it is no longer needed to resist flexural tension, as suggested 
by Fig.  5.9d. In continuous beams, these bent-up bars may also provide all or part 
of the necessary reinforcement for negative moments. The requirements for longitu-
dinal flexural reinforcement often conflict with those for diagonal tension, and 
because the savings in steel resulting from use of the capacity of bent bars as shear 
resistance is small, most designers prefer to include vertical stirrups to provide for 
all the shear requirement, counting on the bent part of the longitudinal bars, if bent 
bars are used, only to increase the overall safety against diagonal tension failure.

Welded wire reinforcement is also used for shear reinforcement, particularly 
for small, lightly loaded members with thin webs, and for certain types of precast, 
prestressed beams.

	 b.	 Behavior of Web-Reinforced Concrete Beams

Web reinforcement has no noticeable effect prior to the formation of diagonal cracks. 
In fact, measurements show that the web steel is practically free of stress prior to crack 

FIGURE 5.9
Types of web reinforcement.
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formation. After diagonal cracks have developed, web reinforcement augments the 
shear resistance of a beam in four separate ways:

	 1.	 Part of the shear force is resisted by the bars that traverse a particular crack. The 
mechanism of this added resistance is discussed below.

	 2.	 The presence of these same bars restricts the growth of diagonal cracks and 
reduces their penetration into the compression zone. This leaves more uncracked 
concrete available at the head of the crack for resisting the combined action of 
shear and compression, already discussed.

	 3.	 The stirrups also counteract the widening of the cracks, so that the two crack 
faces stay in close contact. This makes for a significant and reliable interface 
force Vi (see Fig. 5.8).

	 4.	 As shown in Fig. 5.9, the stirrups are arranged so that they tie the longitudinal 
reinforcement into the main bulk of the concrete. This provides some measure 
of restraint against the splitting of concrete along the longitudinal reinforcement, 
shown in Figs. 5.1 and 5.8b, and increases the share of the shear force resisted by 
dowel action.

From this it is clear that failure will be imminent when the stirrups start 
yielding. This not only exhausts their own resistance but also permits a wider crack 
opening with consequent reduction of the beneficial restraining effects, points 2 to 
4, above.

It becomes clear from this description that member behavior, once a crack is 
formed, is quite complex and dependent in its details on the particulars of crack 
configuration (length, inclination, and location of the main or critical crack). The 
latter, in turn, is quite erratic and has so far defied purely analytical prediction. For 
this reason, the concepts that underlie present design practice are not wholly rational. 
They are based partly on rational analysis, partly on test evidence, and partly on 
successful long-time experience with structures in which certain procedures for 
designing web reinforcement have resulted in satisfactory performance.

Beams with Vertical Stirrups.  Since web reinforcement is ineffective in the 
uncracked beam, the magnitude of the shear force or stress that causes cracking to 
occur is the same as in a beam without web reinforcement and is approximated by 
Eq. (5.3a). Most frequently, web reinforcement consists of vertical stirrups; the 
forces acting on the portion of such a beam between the crack and the nearby support 
are shown in Fig.  5.10. They are the same as those of Fig.  5.8, except that each 
stirrup traversing the crack exerts a force Av  fv on the given portion of the beam. 
Here Av is the cross-sectional area of the stirrup (in the case of the U-shaped stirrup 

FIGURE 5.10
Forces at a diagonal crack in 
a beam with vertical stirrups.
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of Fig. 5.9b it is twice the area of one bar), and fv is the tensile stress in the stirrup. 
Equilibrium in the vertical direction requires

	 Vext = Vcz + Vd + Viy + Vs	 (a)

where Vs = nAv  fv is the vertical force in the stirrups, n being the number of stirrups 
traversing the crack. If s is the stirrup spacing and p the horizontal projection of the 
crack, as shown, then n = p∕s.

The approximate distribution of the four components of the internal shear force 
with increasing external shear Vext is shown schematically in Fig. 5.11. It is seen that 
after inclined cracking, the portion of the shear Vs  =  nAv fv carried by the stirrups 
increases linearly, while the sum of the three other components, Vcz + Vd + Viy, stays 
nearly constant. When the stirrups yield, their contribution remains constant at the 
yield value Vs  =  nAv  fyt, where fyt represents the yield strength of the stirrup (or 
transverse) reinforcement. However, because of widening of the inclined cracks and 
longitudinal splitting, Viy and Vd fall off rapidly. This overloads the remaining 
uncracked concrete and very soon precipitates failure.

While total shear carried by the stirrups at yielding is known, the individual 
magnitudes of the three other components are not. Limited amounts of test evidence 
have led to the conservative assumption in present-day methods that just prior to 
failure of a web-reinforced beam, the sum of these three internal shear components 
is equal to the cracking shear Vcr. This sum is generally (somewhat loosely) referred 
to as the contribution of the concrete to the total shear resistance and is denoted Vc. 
Thus, Vc = Vcr and

	​ Vc = Vcz + Vd + Viy​	 (b)

FIGURE 5.11
Redistribution of internal 
shear forces in a beam with 
stirrups. (Adapted from Ref. 5.3.)
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The number of stirrups n spaced a distance s apart was seen to depend on the 
length p of the horizontal projection of the diagonal crack. This length is conserva-
tively assumed to be equal to the effective depth of the beam; thus n = d∕s, imply-
ing a crack somewhat flatter than 45°. Then, at failure, when Vext = Vn, Eqs. (a) and 
(b) yield for the nominal shear strength

	​ Vn = Vc + ​ 
Av fyt d

 ______ s ​ ​	 (5.7a)

Dividing both sides of Eq. (5.7a) by bd, the same relation is expressed in terms 
of the nominal shear stress:

	​ vn = ​ 
Vn

 ___ 
bd

 ​  =  vc  +  ​ 
Av fyt

 ____ 
bs

 ​ ​	 (5.7b)

Beams with Inclined Bars.  The function of inclined web reinforcement 
(Fig. 5.9d) can be discussed in very similar terms. Figure 5.12 again indicates the forces 
that act on the portion of the beam to one side of the diagonal crack that results in 
eventual failure. The crack with horizontal projection p and inclined length  
i  =  p∕cos  θ is crossed by inclined bars horizontally spaced a distance s apart. The 
inclination of the bars is α and that of the crack θ, as shown. The distance between bars 
measured parallel to the direction of the crack is seen from the irregular triangle to be

	​ a = ​  s
 __________________  

sin θ  (cot θ + cot α)
 ​​	 (a)

The number of bars crossing the crack n =  i∕a, after some transformation, is

	​ n = ​ 
p

 __ s ​ (1 + cot α tan θ)​	 (b)

The vertical component of the force in one bar or stirrup is Av  fv sin α, so that the total 
vertical component of the forces in all bars that cross the crack is

	​ Vs = n Av fv sin α = Av  fv ​ 
p

 __ s ​ (sin α + cos α tan θ )​	 (5.8)

As in the case of vertical stirrups, shear failure occurs when the stress in the 
web reinforcement reaches the yield point. Also, the same assumptions are made as 
in the case of stirrups, namely, that the horizontal projection of the diagonal crack 
is equal to the effective depth d, and that Vcz + Vd + Viy is equal to Vc. Lastly, the 

FIGURE 5.12
Forces at a diagonal crack in 
a beam with inclined web 
reinforcement.
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inclination θ of the diagonal crack, which varies somewhat depending on various 
influences, is generally assumed to be 45°. On this basis, when failure is caused by 
shear, the nominal strength is

	​ Vn = Vc + ​ 
Av fyt d (sin α + cos α)

   ___________________  s ​ ​	 (5.9)

It is seen that Eq. (5.7a), developed for vertical stirrups, is only a special case, for 
α = 90°, of the more general expression in Eq. (5.9).

Note that Eqs. (5.7) and (5.9) apply only if web reinforcement is so spaced that 
any conceivable diagonal crack is traversed by at least one stirrup or inclined bar. 
Otherwise web reinforcement would not contribute to the shear strength of the beam, 
because diagonal cracks that could form between widely spaced web reinforcement 
would fail the beam at the load at which it would fail if no web reinforcement were 
present. This imposes upper limits on the permissible spacing s to ensure that the 
web reinforcement is actually effective as calculated.

To summarize, at this time the nature and mechanism of diagonal tension 
failure are clearly understood qualitatively, but some of the quantitative assumptions 
that have been made in the preceding development cannot be proved by rational 
analysis. However, the calculated results are in acceptable and generally conservative 
agreement with a very large body of empirical data, and structures designed on this 
basis have proved satisfactory. Newer methods, introduced in Section 5.8, provide 
alternatives that are slowly being incorporated into the ACI Code and the AASHTO 
Bridge Specifications (Ref. 5.12). Chapter 17 presents a detailed description of one 
such alternative, the so-called strut-and-tie model, which appears in Chapter 23 of 
the ACI Code.

	 5.5	 ACI CODE PROVISIONS FOR SHEAR DESIGN

According to ACI Code 9.5.1.1, the design of beams for shear is to be based on the 
relation

	​ Vu ≤ ϕ Vn​	 (5.10)

where Vu is the total shear force applied at a given section of the beam due to factored 
loads and Vn = Vc + Vs is the nominal shear strength, equal to the sum of the contribu-
tions of the concrete and the web steel if present. Thus for vertical stirrups

	​ Vu ≤ ϕVc + ​ 
ϕAv fyt d

 _______ s ​ ​	 (5.11a)

and for inclined bars

	​ Vu ≤ ϕVc + ​ 
ϕAv fyt d (sin α + cos α)

   ____________________  s ​ ​	 (5.11b)

where all terms are as previously defined. The strength reduction factor ϕ is to be 
taken equal to 0.75 for shear. The additional conservatism, compared with the value 
of ϕ = 0.90 for bending for typical beam designs, reflects both the sudden nature of 
diagonal tension failure and the large scatter of test results.

For typical support conditions, where the reaction from the support surface or 
from a monolithic column introduces vertical compression at the end of the beam, 
sections located less than a distance d from the face of the support may be designed 
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for the same shear Vu as that computed at a distance d, as shown in Fig. 5.13a and b.  
However, the critical design section should be taken at the face of the support if 
concentrated loads act within that distance (Fig.  5.13c), if the beam is loaded near 
its bottom edge (as may occur for an inverted T beam, as shown in Fig. 5.13d), or 
if the reaction causes vertical tension rather than compression [for example, if the 
beam is supported by a girder of similar depth (Fig. 5.13e) or at the end of a mon-
olithic vertical element (Fig. 5.13f  )].

	 a.	 Shear Strength Provided by the Concrete

To establish the nominal shear strength contribution of the concrete (including the 
contributions from aggregate interlock, dowel action of the main reinforcing bars, and 
that of the uncracked concrete), ACI Code 22.5.5.1 uses an approach that simplifies 
that shown in Eqs. (5.3a) and (5.3b). It does so by (1) neglecting the effect of bending 
moment on the shear stress at which diagonal tension cracks form vcr

† and (2) represent-
ing the contribution of concrete compressive strength on vcr using ​​√

__
 ​f ​c​ ′​​​  in place of ​​f​c​ ′​​1/3, 

FIGURE 5.13
Location of critical section 
for shear design: (a) end-
supported beam; (b) beam 
supported by columns;  
(c) concentrated load within  
d of the face of the support; 
(d) member loaded near the 
bottom; (e) beam supported 
by girder of similar depth; 
and (f ) beam supported by 
monolithic vertical element.
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†�The effect of bending moment on the shear stress at which diagonal tension cracks form is considered for prestressed concrete members, as 
discussed in Chapter 22.
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with an upper limit on ​​√
__

 ​f​c​ ′​​​ of 100 psi unless a minimum amount of web reinforcement 
(defined in Section 5.5b) is used. 

To permit application of the Code provisions to T beams having web width 
bw, the rectangular beam width b is replaced by bw with the understanding that for 
rectangular beams b is used for bw. Thus, for members without a minimum amount 
of web reinforcement, according to ACI Code 22.5.5.1, the concrete contribution to 
shear strength is

	​ Vc = 8λsλ(ρw)1/3​√
__

 ​f​c​ ′​​bwd​	 (5.12a)

where λs is the size effect factor given in Eq. (5.3b)

	 λs = ​​√
__________

  ​  2 __________  
​( 1 + d∕10 )​

 ​​​	 (5.12b)

and ρw is the longitudinal reinforcement ratio As∕bwd or As∕bd, with As taken as the 
sum of the areas of longitudinal bars located more than two-thirds of the overall mem-
ber depth away from the extreme compression fiber.

The term λ in Eq. (5.12a) is a modification factor reflecting the lower tensile 
strength of lightweight concrete compared with normalweight concrete of the same 
compressive strength (see Table 2.3 and Ref. 5.13). Lightweight aggregate concretes 
having densities from 90 to 135 pcf are used widely, particularly for precast elements. 
For these concretes, λ may be taken as 0.75. In accordance with ACI Code 19.2.4.1 
and 19.2.4.2, however, values between 0.75 and 1.0 may be used based on either the 
equilibrium density wc or composition of the aggregate. Following ACI Code 19.2.4.1, 
λ = 0.75 for wc ≤ 100 pcf and 1.0 for wc ≥ 135 pcf. Linear interpolation between 0.75 
and 1.0 is used for values of wc between 100 and 135 pcf. Alternatively, in accordance 
with ACI Code 19.2.4.2, λ = 0.75 for “all-lightweight” concrete and 0.85 for “sand- 
lightweight” concrete. Linear interpolation between 0.75 and 0.85, based on volumetric 
fractions, is permitted when a portion of the lightweight fine aggregate is replaced by 
normalweight fine aggregate. Linear interpolation between 0.85 and 1.0 is also per-
mitted for concretes containing normalweight fine aggregate and a blend of lightweight 
and normalweight coarse aggregate. For normalweight concrete, λ = 1.0.

For members with a minimum amount of web reinforcement, the ACI Code 
recognizes that because web reinforcement limits crack width, it both increases the 
effective contribution of concrete to the shear strength of the member Vc and reduces 
the size effect, as represented by λs. Based on these observations, ACI Code 22.5.5.1 
permits the concrete contribution to shear strength to be calculated for members with 
a minimum amount of web reinforcement as either

	​ Vc = 2λ​√
__

 ​f​c​ ′​​bwd​	 (5.12c)
or
	​ Vc = 8λ(ρw)1/3​√

__
 ​f​c​ ′​​bwd​	 (5.12d)

Equation (5.12c) is close to the conservative value shown in Eq. (5.2b). It has been 
used successfully for many years, and because of its simplicity, is often used in prac-
tice. Equation (5.12d) is Eq. (5.12a) with λs set to 1.0. The value of Vc calculated using 
Eq. (5.12d) will exceed Vc calculated using (5.12c) for ρw greater than 0.0156. 

For members with a circular cross section, ACI Code 22.5.2.2 provides that Vc 
in Eqs. (5.12a), (5.12c), and (5.12d) be calculated using bw equal to the diameter of 
solid sections and twice the wall thickness for hollow sections and d equal to  
0.8 times the diameter of the member.

The upper limit on ​​√
__

 ​f​c​ ′​​​ of 100 psi is based on experimental results (Refs. 5.14 
to 5.17) for beams constructed using concrete with ​​f​c​ ′​​ above 6000 psi (see Section 2.12) 
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showing that the concrete contribution to shear strength Vc increases more slowly than ​​
√

__
 ​f​c​ ′​​​ as ​​f​c​ ′​​ increases. This effect, however, is greatly reduced in the presence of web 

reinforcement. Thus, values of ​​√
__

 ​f​c​ ′​​​ greater than 100 psi may be used in computing Vc 
if a minimum amount of web reinforcement is used (see Section 5.5b).

	 b.	 Minimum Web Reinforcement

If Vu, the shear force at factored loads, is no larger than ϕVc, calculated by Eq. (5.12a), 
then theoretically no web reinforcement is required. Even in such a case, however, ACI 
Code 9.6.3 requires provision of at least a minimum area of web reinforcement equal to

	​ Av,min = 0.75 ​√
__

 ​f​c​ ′​​ ​ 
bws

 ___ 
fyt

 ​ ≥ 50 ​ 
bws

 ___ 
fyt

 ​​	 (5.13a)

where  s = longitudinal spacing of web reinforcement, in.
	 	     fyt = yield strength of web steel, psi, and
	 	 Av,min = total cross-sectional area of web steel within distance s, in2.

This provision holds unless Vu is one-half or less of the design strength provided 
by the concrete based on Eq. (5.12c), that is, unless 

	 Vu ≤ ϕλ​​√
__

 ​f​c​ ′​​​bwd	 (5.13b)

corresponding to

	 Vc = λ​​√
__

 ​f​c​ ′​​​bwd	 (5.13c)

Specific exceptions to this requirement for minimum web steel are made for concrete 
joist floor construction; for beams with total depth h not greater than 10 in.; and for 
beams integral with slabs with h not greater than 24 in. and not greater than the larger of 
2.5 times the thickness of the flange and 0.5 times the thickness of the web. These 
members are excluded because of their capacity to redistribute internal forces before 
diagonal tension failure, as confirmed by both tests and successful design experience. 
In addition, beams constructed of steel fiber reinforced, normalweight concrete with ​​f​c​ ′​​ 
not exceeding 6000 psi, total depth h not greater than 24 in., and Vu not greater than ϕ 2​​
√

__
 ​f​c​ ′​​​bwd are not required to meet the requirements for minimum web reinforcement 

because beams meeting these requirements have been shown to have shear strength in 
excess of 3.5​​√

__
 ​f​c​ ′​​​bwd (Ref. 5.16).†

For beams without web reinforcement, Eq. (5.12a) will govern in place of Eqs. 
(5.13b) and (5.13c) in cases where the product 8λs(ρw)1/3 is less than 1.0. This will 
occur, for example, for members with reinforcement ratios ρw of 0.008, 0.010, and 
0.012 with effective depths d that exceed, respectively, 41, 49, and 57 in. For shallower 
members, Eqs. (5.13b) and (5.13c) will govern.

For high-strength concrete beams, the limitation of 100 psi imposed on  
the value of ​​√

__
 ​f​c​ ′​​​ used in calculating Vc is waived by ACI Code 22.5.3.2 if such 

beams are designed with minimum web reinforcement equal to the amount required 
by Eq. (5.13a). In this case, the concrete contribution to shear strength may be 
calculated based on the full concrete compressive strength. Tests described in Refs. 5.17 
and 5.18 indicate that for beams with concrete strength above about 6000 psi, the 
concrete contribution Vc was significantly less than predicted by the ACI Code equations, 
although the steel contribution Vs was higher. The total nominal shear strength Vn 

†�To qualify, the fiber-reinforced concrete must conform to requirements in ACI Code 26.4.1.5, 26.4.2.2(i), and 26.12.7.1 that specify a minimum 
deformed steel fiber content of 100  lb∕yd3 and minimum residual flexural strength values when the concrete is tested in accordance with 
ASTM C1609, “Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading).”
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was greater than predicted by ACI Code methods in all cases. The use of minimum 
web steel for high-strength concrete beams is intended to enhance the post-cracking 
capacity, thus resulting in safe designs even though the concrete contribution to shear 
strength is overestimated.‡

‡ �The shortcomings of the ACI Code “Vc + Vs” approach to shear design, particularly the provisions relating to the concrete contribution Vc, 
have provided motivation for the development of more rational procedures, as will be discussed in Section 5.8.

	 c.	 Region in which Web Reinforcement is Required

If the required shear strength Vu is greater than the design shear strength ϕVc provided 
by the concrete in any portion of a beam, with Vc based on Eq. (5.12a), there is a theo-
retical requirement for web reinforcement. Following ACI Code 22.5.5.1, the quantity 
of web reinforcement would be based on Vc given in Eq. (5.12c) or Eq. (5.12d). In 
addition, web reinforcement at least equal to the amount given by Eq. (5.13a) must be 
provided, unless the factored shear force is low enough to satisfy Eq. (5.13b).

The portion of any span through which web reinforcement is theoretically 
necessary can be found from the shear diagram for the span, superimposing a plot 
of the shear strength of the concrete. Where the shear force Vu exceeds ϕVc, shear 
reinforcement must provide for the excess. The additional length through which at 
least the minimum web steel is needed can be found by superimposing a plot of  
ϕλ​​√

__
 ​f​c​ ′​​​bwd, as given in Eq. (5.13b).

	 EXAMPLE 5.1	 Beam without web reinforcement.  A rectangular beam, with ρw estimated to be 0.01, is 
designed to carry a shear force Vu of 27 kips. No web reinforcement is used, and ​​f​c​ ′​​ is 4000 psi. 
What is the minimum cross section if controlled by shear?

Solution.  If no web reinforcement is used, the cross-sectional dimensions must be selected 
so that the applied shear Vu is no larger than design strength given in Eq. (5.13b). 

	​ Vu = ϕλ​√
__

 ​f​c​ ′​​bwd​

	​ bwd = ​ 
27,000

  _______________  
0.75 × 1.0​√

____
 4000​
 ​ = 569 in2​

A beam with bw = 18 in. and d = 32 in. is required. As described earlier, because the beam 
is relatively shallow, Eq. (5.13b) will govern this design because 8λs(ρw)1/3 in Eq. (5.12a) 
exceeds 1.0. For comparison, however, the cross section will also be checked based on  
Eq. (5.12a) with 

​λs = ​√
__________

  ​  2 __________  
​( 1 + d∕10 )​

 ​​ = ​√
___________

  ​  2 ___________  
​( 1 + 32∕10 )​

 ​​ = 0.69

​and ρw = 0.01, giving 8λs(ρw)1/3 = 8 × 0.69 × (0.01)1/3 = 1.19.

	​ Vu = ϕ8λsλ(ρw)1/3​√
__

 ​f​c​ ′​​bwd

​	​ bwd = ​ 
27,000

   __________________________________    
0.75 × 8 × 0.69 × 1.0 × (0.01)1/3​√

____
 4000​
 ​ = 479 in2​

As expected, the section calculated using Eq. (5.12a) is too small, and the cross section with  
bw = 18 in. and d = 32 in. will be used. Alternately, if the minimum amount of web reinforce-
ment given by Eq. (5.13a) is used, the concrete shear resistance may be taken at its full value 
ϕVc, with Vc given by Eq. (5.12c), and it is easily confirmed that a beam with bw = 12 in. and  
d = 24 in. will be sufficient.
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	 EXAMPLE 5.2	 Limits of web reinforcement.  A simply supported rectangular beam 16 in. wide having an 
effective depth of 22 in. carries a total factored load of 9.4 kips∕ft on a 20 ft clear span.  
It is reinforced with 7.62 in2 of tensile steel, which continues uninterrupted into the supports.  
If ​​f​c​ ′​​ = 4000 psi, throughout what part of the beam is web reinforcement required?

Solution.  The variation of Vu along the beam is shown in Fig.  5.14a. The maximum 
external shear force occurs at the ends of the span, where Vu = 9.4 × 20∕2 = 94 kips. At the 
critical section for shear, a distance d from the support, Vu = 94 − 9.4 × 1.83 = 76.8 kips. 
The shear force varies linearly to zero at midspan. 

The size effect factor λs = ​​√ 
____________

  2∕(1 + d∕10)  ​​= ​​√ 
_____________

  2∕(1 + 22∕10)  ​​= 0.79,  and the rein-
forcement ratio ρw = As∕bwd = 7.62∕(16 × 22) = 0.0216. Using these values to calculate Vc 
for a member without web reinforcement gives

​Vc = 8λsλ(ρw)1/3​√
__

 ​f​c​ ′​​bwd = 8 × 0.79 × 1.0 × (0.0216)1/3​√
____

 4000​ × 16 × 22 = 39,200 lb​

By inspection, web reinforcement is needed.
Adopting Eq. (5.12c) for Vc where web reinforcement is used gives

​Vc = 2λ​√
__

 ​f​c​ ′​​bw d = 2 × 1.0​√
____

 4000​ × 16 × 22 = 44,500 lb​

Hence ϕVc = 0.75 × 44.5 = 33.4 kips. This value is superimposed on the shear diagram in 
Fig. 5.14a, and from geometry, the point at which web reinforcement theoretically is no longer 
required is

​10​( ​ 94.0 − 33.4  __________ 
94.0

 ​  )​ = 6.45 ft​

FIGURE 5.14
Shear design example.
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	 d.	 Design of Web Reinforcement

The design of web reinforcement, under the provisions of the ACI Code, is based on 
Eq. (5.11a) for vertical stirrups and Eq. (5.11b) for inclined stirrups or bent bars. In 
design, it is usually convenient to select a trial web-steel area Av based on standard 
stirrup sizes [usually in the range from No. 3 to 5 (No. 10 to 16) for stirrups, and 
according to the longitudinal bar size for bent-up bars], for which the required spac-
ing s can be found. Equating the design strength ϕVn to the required strength Vu and 
transposing Eqs. (5.11a) and (5.11b) accordingly, one finds that the required spacing 
of web reinforcement is, for vertical stirrups,

	​ s = ​ 
ϕAv fyt d

 ________ 
Vu − ϕVc

 ​​	 (5.14a)

and for bent bars

	​ s = ​ 
ϕAv fyt d (sin α + cos α)

   ___________________  
Vu − ϕVc

 ​ ​	 (5.14b)

It should be emphasized that when conventional U stirrups such as in Fig. 5.9b are 
used, the web area Av provided by each stirrup is twice the cross-sectional area of 
the bar; for stirrups such as those of Fig. 5.9c, Av is 4 times the area of the bar used. 
Equation (5.14a) is applicable to members with circular, as well as rectangular, cross 
sections. For circular members, d is taken as 0.8 times the effective depth, as defined 
earlier in Section 5.5a, and Av is taken as 2 times the area of the bar, hoop, or spiral.

While the ACI Code requires only that the inclined part of a bent bar make an 
angle of at least 30° with the longitudinal part, bars are usually bent at a 45° angle. 
Only the center three-fourths of the inclined part of any bar is to be considered 
effective as web reinforcement.

It is undesirable to space vertical stirrups closer than about 4 in.; the size of 
the stirrups should be chosen to avoid a closer spacing. When vertical stirrups are 
required over a comparatively short distance, it is good practice to space them uni-
formly over the entire distance, the spacing being calculated for the point of greatest 
shear (minimum spacing). If the web reinforcement is required over a long distance, 
and if the shear varies materially throughout this distance, it is more economical to 
compute the spacings required at several sections and to place the stirrups accord-
ingly, in groups of varying spacing.

Where web reinforcement is needed, ACI Code 9.7.6.2 requires the legs of 
vertical shear reinforcement to be spaced no more than d/2 along the length of the 
member and no more than d across the width of the member, with neither exceeding 
24 in. The maximum spacing across the width of the member is to provide a uniform 
transfer of force from the stirrups to the concrete across the beam web of wide 

from the support face. According to the ACI Code, however, at least a minimum amount of web 
reinforcement is required wherever the shear force exceeds ϕλ​​√

__
 ​f​c​ ′​​​bwd, or 16.7 kips in this case. 

As shown in Fig. 5.14a, this applies to a distance

​10​( ​ 94.0 − 16.7  __________ 
94.0

 ​  )​ = 8.22 ft​

from the support face. To summarize, at least the minimum web steel must be provided within a 
distance of 8.22 ft from the supports, and within 6.45 ft the web steel must provide for the shear 
force corresponding to the shaded area.
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beams. When Vs exceeds 4​​√
__

 ​f​c​ ′​​​bwd, these maximum spacings are halved. Inclined 
stirrups or bars must be spaced so that every 45° line, representing a potential diag-
onal crack and extending from the mid-depth d∕2 of the member to the longitudinal 
tension bars, is crossed by at least one line of web reinforcement. These limitations 
are shown in Fig. 5.15 for both vertical stirrups and inclined bars, for situations in 
which the excess shear does not exceed the stated limit.

For design purposes, Eq. (5.13) giving the minimum web-steel area Av is more 
conveniently inverted to permit calculation of maximum spacing s for the selected Av. 
Thus, for the usual case of vertical stirrups, with Vs ≤ 4​​√

__
 ​f​c​ ′​​​ bw d, the maximum 

spacing of stirrups is the smallest of

	​    smax = ​ 
Av fyt
 _________ 

0.75​√
__

 ​f​c​ ′​​bw

 ​  ≤ ​ 
Av fyt

 _____ 
50bw

 ​​	 (5.15a)

	​ smax = ​ d __ 
2
 ​​	 (5.15b)

	​  smax = 24 in.​	 (5.15c)

For longitudinal bars bent at 45°, Eq. (5.15b) is replaced by smax = 3d∕4, as confirmed 
by Fig. 5.15.

To avoid excessive crack width in beam webs, ACI Code 20.2.2.4 limits the 
yield strength of the reinforcement to fyt = 60,000 psi or less for reinforcing bars 
and 80,000 psi or less for welded wire reinforcement. In no case, according to 
ACI Code 22.5.1, is Vs to exceed 8​​√

__
 ​f​c​ ′​​​bwd, regardless of the amount of web steel 

used.

FIGURE 5.15
Maximum spacing of  
web reinforcement for  
Vs ≤ 4​​√

__
 ​f​c​ ′​​​ bw d (a) along the 

length of the member as 
governed by diagonal crack 
interception and (b) across 
the width of the member.
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	 EXAMPLE 5.3	 Design of web reinforcement.  Using vertical U stirrups with fyt = 60,000 psi, design the 
web reinforcement for the beam in Example 5.2.

Solution.  The solution will be based on the shear diagram in Fig.  5.14a. The stirrups must 
be designed to resist that part of the shear shown shaded. With No. 3 (No. 10) stirrups used for 
trial, the three maximum spacing criteria are first applied. For ϕVs  =  Vu  −  ϕVc  =  43,400  lb, 
which is less than 4ϕ​​√

__
 ​f​c​ ′​​​bw d = 66,800 lb, the maximum spacing along the length of the member 

must exceed neither d∕2 = 11 in. nor 24 in. The spacing across the width of the member may not 
exceed d = 22 in. nor 24 in., criteria that are satisfied because bw = 16 in. Also, from Eq. (5.15a),

	 smax = ​ 
Av fyt
 __________  

0.75​√
__

 ​f​c​ ′​ ​bw

 ​ = ​ 
0.22 × 60,000

  ______________  
0.75​√

____
 4000​ × 16

 ​ = 17.4 in.

	 ≤ ​ 
Av fyt

 _____ 
50bw

 ​ = ​ 
0.22 × 60,000

  ____________ 
50 × 16

 ​  = 16.5 in.

The first criterion for longitudinal spacing controls in this case, and a maximum spacing of  
11 in. is imposed. From the support to a distance d from the support, the excess shear Vu − ϕVc 
is 43,400 lb. In this region, the required spacing is

s = ​​ 
ϕAv fyt d

 ________ 
Vu − ϕVc

 ​​ = ​​ 
0.75 × 0.22 × 60,000 × 22

   _______________________  
43,400

 ​ ​ = 5.0 in.

This is neither so small that placement problems would result nor so large that maximum spac-
ing criteria would control, and the choice of No. 3 (No. 10) stirrups is confirmed. Solving  
Eq. (5.14a) for the excess shear at which the maximum spacing can be used gives

Vu − ϕVc = ​ 
ϕAv fyt d

 _______ s ​  = ​​ 
0.75 × 0.22 × 60,000 × 22

   _______________________  
11

 ​​  = 19,800 lb

With reference to Fig. 5.14a, this is attained at a distance x1 from the point of zero excess shear, 
where x1 = 6.45 × 19,800∕60,600 = 2.10 ft. This is 4.35 ft from the support face. With this 
information, a satisfactory spacing pattern can be selected. The first stirrup is usually placed at 
a distance s∕2 from the support. The following spacing pattern is satisfactory:

	   1 space at 2 in. =   2 in.
	   7 spaces at 5 in. = 35 in.
	   2 spaces at 7 in. = 14 in.
	 4 spaces at 11 in. = 44 in.

	     Total = 95 in. = 7 ft 11 in.

The resulting stirrup pattern is shown in Fig. 5.14b. As an alternative solution, it is possible 
to plot a curve showing required spacing as a function of distance from the support. Once the 
required spacing at some reference section, say at the support, is determined,

s0 = ​ 
ϕAv fyt d

 ________ 
Vu − ϕVc

 ​ = ​​ 
0.75 × 0.22 × 60,000 × 22

   _______________________   
94,000 − 33,400

 ​​  = 3.59 in.

it is easy to obtain the required spacings elsewhere. In Eq. (5.14a), only Vu − ϕVc changes with 
distance from the support. For uniform load, this quantity is a linear function of distance from 
the point of zero excess shear, 6.45 ft from the support face. Hence, at 1 ft intervals,

s1 = 3.59 × 6.45∕5.45 =   4.25 in.
s2 = 3.59 × 6.45∕4.45 =   5.20 in.
s3 = 3.59 × 6.45∕3.45 =   6.70 in.
s4 = 3.59 × 6.45∕2.45 =   9.45 in.
s5 = 3.59 × 6.45∕1.45 = 15.97 in.
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	 5.6	 EFFECT OF AXIAL FORCES

The beams considered in the preceding sections were subjected to shear and flexure 
only. Reinforced concrete beams may also be subjected to axial forces, acting simulta-
neously with shear and flexure, due to a variety of causes. These include external axial 
loads, longitudinal prestressing, and restraint forces introduced as a result of shrinkage 
of the concrete or temperature changes. Beams may have their strength in shear sig-
nificantly modified in the presence of axial tension or compression, as is evident from 
a review of Sections 5.1 through 5.4.

Prestressed concrete members are treated by somewhat specialized methods, 
according to present practice, based largely on results of testing prestressed concrete 
beams. They will be considered separately in Chapter 22, and only nonprestressed 
reinforced concrete beams will be treated here.

The main effect of axial load is to modify the diagonal cracking load of the mem-
ber. It was shown in Section 5.3 that diagonal tension cracking will occur when the 
principal tensile stress in the web of a beam, resulting from combined action of shear 
and bending, reaches the tensile strength of the concrete. It is clear that the introduction 
of longitudinal force, which modifies the magnitude and direction of the principal tensile 
stresses, may significantly alter the diagonal cracking load. Axial compression will 
increase the cracking load, while axial tension will decrease it. The effect of axial 

This is plotted in Fig. 5.16 together with the maximum spacing of 11 in., and a practical spacing 
pattern is selected. The spacing at a distance d from the support face is selected as the minimum 
requirement, in accordance with the ACI Code. The pattern of No. 3 (No. 10) U-shaped stirrups 
selected (shown on the graph) is identical with the previous solution. In most cases, the experienced 
designer would find it unnecessary actually to plot the spacing diagram of Fig. 5.16 and would select 
a spacing pattern directly after calculating the required spacing at intervals along the beam.

Although not required by the ACI Code, it is good design practice to continue the 
stirrups (at maximum spacing) through the middle region of the beam, even though the 
calculated shear is low. Doing so satisfies the dual purposes of providing continuing support 
for the top longitudinal reinforcement that is required wherever stirrups are used and provid-
ing additional shear capacity in the region to handle load cases not considered in developing 
the shear diagram. If this were done, the number of stirrups would increase from 14 to  
16​ 1 _ 2 ​ per half-span (that is, one stirrup at midspan), respectively.

FIGURE 5.16
Required stirrup spacings for 
Example 5.3.
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compression or tension on the maximum tensile stress t in Eq. (3.10) can be easily vis-
ualized by adding the stress due to axial load to the stress due to flexure f.

For members carrying only flexural and shear loading, the shear force at which 
diagonal cracking occurs Vcr is predicted by Eq. (5.3a), based on a combination of theory 
and experimental evidence. Furthermore, for reasons that were explained in Section 5.4b, 
in beams with web reinforcement, the contribution of the concrete to shear strength Vc 
is taken equal to the diagonal cracking load Vcr. Thus, according to the ACI Code, val-
ues of Vc = Vcr for members without axial load are given by Eqs. (5.12a), (5.12c), and 
(5.12d). Based on comparisons with tests, however, the ACI Code has added modified 
versions of these equations that include the effect of axial load. Indeed, the earlier equa-
tions represent the special case of zero axial load of those that follow.

For members with axial load and web reinforcement below Av,min, as given in 
Eq. (5.13a), the concrete contribution to shear strength is given by

	 Vc = ​​
[

8λs λ(ρw)1/3​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​
]

​​bwd	 (5.16a)

For members with axial load and web reinforcement of at least Av,min, the concrete 
contribution to shear strength is given by 

	 Vc = ​​
[

2λ​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​
]

​​bwd	 (5.16b)

or

	 Vc = ​​[8λ (ρw)1/3​√ 
__

 ​f​c​ ′​ ​ + ​ 
Nu

 ____ 
6Ag

 ​ ]​​bwd	 (5.16c)

where Nu is the axial load, taken as positive for compression and negative for tension, 
and Ag is the gross area of the concrete cross section. Ag does not include voids if a  
member is hollow. According to ACI Code 22.5.5, Nu∕6Ag may not be taken greater 
than 0.05 ​​f​c​ ′​​, and Vc may not be taken greater than 5λ​​√

__
 ​f​c​ ′​​​bwd nor less than zero. 

	 EXAMPLE 5.4	 Effect of axial forces on Vc.  A beam with dimensions b = 12 in., d = 24 in., and h = 27 in., 
with ​​f​c​ ′​​ = 4000 psi, carries a single concentrated factored load of 100 kips at midspan. Find the 
maximum shear strength of the concrete Vc at the first critical section for shear at a distance d from  
the support (a) if no axial forces are present, (b) if axial compression of 60 kips acts, and (c) if 
axial tension of 60 kips acts. In each case, compute Vc by both the more complex and simplified 
expressions of the ACI Code. Neglect the self-weight of the beam. At the section considered, 
tensile reinforcement consists of three No. 10 (No. 32) bars with a total area of 3.81 in2.

Solution.  At the critical section, Vu = 50 kips, while λs = ​√
____________

  2∕(1 + d∕10)​​ = ​√
_____________

  2∕(1 + 24∕10)​​ 
= 0.77 and ρ = 3.81∕(12 × 24) = 0.013.

(a)	 If Nu = 0, Eq. (5.16a) gives

Vc = ​​[8λs λ(ρw)1/3​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​]​​bwd 

= ​​[8 × 0.77 × 1.0(0.013)1/3​√
____

 4000​ + 0]​​12 × ​​  24 _____ 
1000

 ​​ = 26.4 kips
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		  Since ϕVc based on Eq. (5.16b) is below Vu, web reinforcement will be needed and 
Eq. (5.16b) will be used to calculate Vc.

Vc = ​​
[

2λ​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​
]

​​bwd = ​​[2 × 1.0​√
____

 4000​ + 0]​​12 × ​​  24 _____ 
1000

 ​​ = 36.4 kips

	(b)	 With a compression force of 60 kips introduced and Nu taken as positive,
  Nu∕6Ag = 60,000∕(6 × 12 × 24) = 35 psi, which is less than the upper limit of 0.05 ​​f​c​ ′​​ = 

0.05 × 4000 = 200 psi.
		  Vc based on Eq. (5.16b) gives

Vc = ​​[2λ​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​]​​bwd = ​​[2 × 1.0​√
____

 4000​ + 35]​​12 × ​​  24 _____ 
1000

 ​​ = 46.5 kips

		  By inspection, Vc does not exceed 5λ​​√
__

 ​f​c​ ′​​​bwd.
	(c)	 With an axial tension of 60 kips acting (Nu is now negative), the reduced Vc is also found 

using Eq. (5.16b).

Vc = ​​[2λ​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​]​​bwd = ​​[2 × 1.0​√
____

 4000​ − 35]​​12 × ​​  24 _____ 
1000

 ​​ = 26.3 kips

		  a reduction of nearly 30 percent from the value for Nu = 0.
		  In all cases above, the strength reduction factor ϕ = 0.75 must be applied to Vc to obtain  

the design strength.

	 5.7	 BEAMS WITH VARYING DEPTH

Reinforced concrete members having varying depth are frequently used in the form 
of haunched beams for bridges or portal frames, as shown in Fig. 5.17a, as precast 
roof girders such as shown in Fig. 5.17b, or as cantilever slabs. Generally the depth 
increases in the direction of increasing moments. For beams with varying depth, the 
inclination of the internal compressive and tensile stress resultants may significantly 
affect the shear for which the beam should be designed. In addition, the shear resist-
ance of such members may differ from that of prismatic beams.

Figure 5.17c shows a cantilever beam, with fixed support at the left end, carrying 
a single concentrated load P at the right. The depth increases linearly in the direction 
of increasing moment. In such cases, the internal tension in the steel and the compres-
sive stress resultant in the concrete are inclined, and introduce components transverse 
to the axis of the member. With reference to Fig. 5.17d, showing a short length dx of 
the beam, if the slope of the top surface is θ1 and that of the bottom is θ2, the net shear 
force ​​   V ​​u for which the beam should be designed is very nearly equal to

​​   V ​​u = Vu − T tan θ1 − C tan θ2

where Vu is the external shear force equal to the load P here, and C = T = Mu ∕z. The 
internal lever arm z = d − a∕2 as usual. Thus, in a case for which the beam depth 
increases in the direction of increasing moment, the shear for which the member 
should be designed is approximately

	​​    V ​​u = Vu − ​​ 
Mu

 ___ z ​​  (tan θ1 + tan θ2)	 (5.17a)
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160      DESIGN OF CONCRETE STRUCTURES  Chapter 5

For the infrequent case in which the member depth decreases in the direction of 
increasing moment, it is easily confirmed that the corresponding equation is

	​​    V ​​u = Vu + ​ 
Mu ___ z ​  (tan θ1 + tan θ2)	 (5.17b)

These equations are approximate because the direction of the internal forces is not 
exactly as assumed; however, the equations may be used without significant error 
provided the slope angles do not exceed about 30°.

There has been very little research studying the shear strength of beams having 
varying depth. Tests reported in Ref. 5.19 on simple span beams with haunches at 
slopes up to about 15° and with depths both increasing and decreasing in the direc-
tion of increasing moments indicate no appreciable change in the cracking load Vcr 
compared with that for prismatic members. Furthermore, the strength of the haunched 
beams, which contained vertical stirrups as web reinforcement, was not significantly 
decreased or increased, regardless of the direction of decreasing depth. Based on this 
information, it appears safe to design beams with varying depth for shear using 
equations for Vc and Vs developed for prismatic members, provided the actual depth 
d at the section under consideration is used in the calculations.

	 5.8	 ALTERNATIVE MODELS FOR SHEAR ANALYSIS  
AND DESIGN

The ACI Code method of design for shear and diagonal tension in beams, presented in 
preceding sections of this chapter, is essentially empirical. While generally leading to 
safe designs, the ACI Code “Vc + Vs” approach lacks a physical model for the behavior 
of beams subject to shear combined with bending, and its shortcomings are now gen-
erally recognized. The “concrete contribution” Vc is generally considered to be some 
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FIGURE 5.17
Effect of varying beam depth 
on shear.
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combination of force transfer by dowel action of the main steel, aggregate interlock along 
a diagonal crack, and shear in the uncracked concrete beyond the end of the crack. The 
values of each contribution are not identified. Furthermore, as discussed in Section 5.4,  
Eqs. (5.12a), (5.12c), and (5.12d) ignore the influence of Vud∕Mu (Ref. 5.3). 

Ad hoc procedures are built into the ACI Code to adjust for some of these 
deficiencies, but it follows that it is necessary to include equations, also empirically 
developed for the most part, for specific classes of members (such as, deep beams 
vs. normal beams, beams with axial loads, prestressed vs. nonprestressed beams, 
high-strength concrete beams)—with restrictions on the range of applicability of such 
equations. And it is necessary to incorporate seemingly arbitrary provisions for the 
maximum nominal shear stress and for the extension of flexural reinforcement past 
the theoretical point of need. The end result is that the number of ACI Code equa-
tions for shear design has grown from 4 prior to 1963 to 38 in the current Code.

With this as background, attention has been given to the development of design 
approaches based on rational behavioral models, generally applicable, rather than on 
empirical evidence alone (Ref. 5.6).

The truss model was originally introduced by Ritter (Ref. 5.20) and Morsch 
(Ref. 5.21) at the turn of the last century. A simplified version has long provided 
the basis for the ACI Code design of shear steel. The essential features of the truss 
model are reviewed with reference to Fig. 5.18a, which shows one-half the span of 
a simply supported, uniformly loaded beam. The combined action of flexure and 
shear produces the pattern of cracking shown. Reinforcement consists of the main 
flexural steel near the tension face and vertical stirrups distributed over the span.

The structural action can be represented by the truss of Fig.  5.18b, with the 
main steel providing the tension chord, the concrete top flange acting as the com-
pression chord, the stirrups providing the vertical tension web members, and the 
concrete between inclined cracks acting as 45° compression diagonals. The truss is 
formed by lumping all the stirrups cut by section a-a into one vertical member and 
all the diagonal concrete struts cut by section b-b into one compression diagonal. 
Experience shows that for typical cases, the results of the model described are quite 
conservative, particularly for beams with small amounts of web reinforcement. As 
noted above, in the ACI Code the observed excess shear capacity is taken equal to 
the shear at the commencement of diagonal cracking and is referred to as the con-
crete contribution Vc.

The truss concept has been greatly extended by the work of Schlaich, Marti, 
Collins, MacGregor, and others (Refs. 5.6, 5.22 to 5.27). It was realized that the angle 
of inclination of the concrete struts is generally not 45° but may range between about 
25° and 65°, depending to a large extent on the arrangement of reinforcement. This led 
to what has become known as the variable-angle truss model, shown in Fig.  5.18c, 
which illustrates the five basic components of the improved model: (a) struts or concrete 
compression members uniaxially loaded; (b) ties or steel tension members; (c) joints at 
the intersection of truss members assumed to be pin-connected; (d) compression fans, 
which form at “disturbed” regions, such as at the supports or under concentrated loads, 
transmitting the forces into the beam; and (e) diagonal compression fields, occurring 
where parallel compression struts transmit force from one stirrup to another. As in the 
ACI Code development, stirrups are typically assumed to reach yield stress at failure. 
With the force in all the verticals known and equal to Av  fyt, the truss of Fig.  5.18c 
becomes statically determinate. Direct design equations can be based on the variable- 
angle truss model for ordinary cases. The model also permits direct numerical solution 
for the required reinforcement for special cases. The truss model does not include 
components of the shear failure mechanism such as aggregate interlock and friction, 
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dowel action of the longitudinal steel, and shear carried across uncracked concrete. 
Furthermore, in the format originally proposed, the truss model does not account for 
compatibility requirements; that is, it is based on plasticity theory. One form of the truss 
model is incorporated in Chapter 23 of the ACI Code; strut-and-tie models are discussed 
in detail in Chapter 17.

	 a.	 Compression Field Theory

The Canadian National Standard for reinforced concrete (Ref. 5.28) includes a method 
of shear design that is essentially the same as the present ACI method but also includes 
an alternative “general method” based on the variable-angle truss and the compres-
sion field theory (Refs. 5.25 and 5.29). The latter is incorporated in AASHTO LRFD 
Bridge Design Specifications (Ref. 5.12). In its complete form, known as the modi-
fied compression field theory, it accounts for requirements of compatibility as well as 
equilibrium and incorporates stress-strain characteristics of both materials. Thus, it is 
capable of predicting not only the failure load but also the complete load-deformation 
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FIGURE 5.18
Truss model for beams with 
web reinforcement:  
(a) uniformly loaded beam; 
(b) simple truss model; and 
(c) more realistic model.
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response. The most basic elements of the compression field theory, applied to members 
carrying combined flexure and shear, will be clear from Fig. 5.19. Figure 5.19a shows 
a simple-span concrete beam, reinforced with longitudinal bars and transverse stirrups, 
and carrying a uniformly distributed loading along the top face. The light diagonal lines 
are an idealized representation of potential tensile cracking in the concrete.

Figure 5.19b illustrates that the net shear V at a section a distance x from the 
support is resisted by the vertical component of the diagonal compression force in 
the concrete struts. The horizontal component of the compression in the struts must 
be equilibrated by the total tension force ΔN in the longitudinal steel. Thus, with 
reference to Fig.  5.19b and c, the magnitude of the longitudinal tension resulting 
from shear is

	 ΔN = ​​  V
 _____ 

tan θ
 ​​ = V cot θ	 (5.18)

where θ is the angle of inclination of the diagonal struts. These forces superimpose on 
the longitudinal forces owing to flexure, not shown in Fig. 5.19b.

FIGURE 5.19
Basis of compression field 
theory for shear: (a) beam 
with shear and longitudinal 
steel; (b) tension in  
horizontal bars due to shear; 
(c) diagonal compression  
on beam web; (d) vertical 
tension in stirrups; and  
(e) equilibrium diagram of 
forces due to shear. (Adapted 

from Ref. 5.25.)
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The effective depth for shear calculations, according to this method, is taken 
at the distance between longitudinal force resultants dv. Thus, from Fig.  5.19d, the 
diagonal compressive stress in a web having width bv is

	 fd = ​​  V
 _____________  

bv dv sin θ cos θ
 ​​	 (5.19)

The tensile force in the vertical stirrups, each having area Av and assumed to 
act at the yield stress fyt, can be found from the free body of Fig. 5.19e. With stirrups 
assumed to be at uniform spacing s,

	 Av fyt = ​​ Vs tan θ
 _______ 

dv

 ​​ 	 (5.20)

Note, with reference to the free-body diagram, that the transverse reinforcement within 
the length dv ∕tan θ can be designed to resist the lowest shear that occurs within this 
length, that is, the shear at the right end.

In the ACI Code method developed in Section 5.4, it was assumed that the angle 
θ was 45°. With that assumption, and if d is substituted for dv, Eq. (5.20) is identical 
to that used earlier for the design of vertical stirrups. It is generally recognized, 
however, that the slope angle of the compression struts is not necessarily 45°, and 
following Refs. 5.12 and 5.28 that angle can range from 20° to 75°, provided the same 
value of θ is used in satisfying all requirements at a section. It is evident from  
Eqs. (5.18) and (5.20) that if a lower slope angle is selected, less vertical reinforcement 
but more horizontal reinforcement will be required. In addition, the compression in the 
concrete diagonals will be increased. Conversely, if a higher slope angle is used, more 
vertical steel but less horizontal steel will be needed, and the diagonal thrust will be 
less. It is generally economical to use a slope angle θ somewhat less than 45°, with 
the limitation that the concrete diagonal struts not be overstressed in compression.

In addition to providing an improved basis for the design of reinforcement for 
shear, the variable angle truss model gives important insights into detailing needs. 
For example, it becomes clear from the above that the increase in longitudinal steel 
tension resulting from the diagonal compression in the struts requires that flexural 
steel be extended beyond the point at which it is theoretically not needed for flexure, 
to account for the increased horizontal tensile force resulting from the thrust in the 
compression diagonals. This is not recognized explicitly in the ACI Code method 
for beam design. (The ACI Code, however, does contain the requirement that the 
flexural steel be extended a distance equal to the greater of d or 12 bar diameters 
beyond the point indicated by flexural requirements.) Also, it is clear from the basic 
concept of the truss model that stirrups must be capable of developing their full 
tensile strength throughout the entire stirrup height. For wide beams, focus on truss 
action indicates that special attention should be given to lateral distribution of web 
reinforcement. It is often the practice to use conventional U stirrups for wide beams, 
with the vertical tension from the stirrups concentrated around the outermost bars. 
According to the discussion above, diagonal compression struts transmit forces only 
at the joints. Lack of stirrup joints at the interior of the wide-beam web would force 
joints to form only at the exterior longitudinal bars, which would concentrate the 
diagonal compression at the outer faces of the beam and possibly result in premature 
failure. It is best to form a truss joint at each of the longitudinal bars, and as in the 
ACI Code, multiple leg stirrups should always be used in wide beams (see Fig. 5.9c).

References 5.12 and 5.28 incorporate a refined version of the approach just 
described, known as the modified compression field theory (MCFT), in which the 
cracked concrete is treated as a new material with its own stress-strain characteristics, 
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including the ability to carry tension following crack formation. The compressive strength 
and the stress-strain curve of the concrete in the diagonal compression struts decrease as 
the diagonal tensile strain in the concrete increases. Equilibrium, compatibility, and con-
stitutive relationships are formulated in terms of average stresses and average strains. 
Variability in the angle of inclination of the compression struts and stress-strain softening 
effects in the response of the concrete are taken into account. Consideration is also given 
to local stress conditions at crack locations. The method is capable of accurately predict-
ing the response of complex elements such as shear walls, diaphragms, and membrane 
elements subjected to in-plane shear and axial loads through the full range of loading, 
from zero load to failure (Refs. 5.26 and 5.27). The version of the method adopted in 
Ref. 5.12 has been simplified to allow its use for routine design.

	 b.	 Design Provisions

The version of the MCFT adopted in the AASHTO LRFD Bridge Design Specifications 
(Ref. 5.12) is, like the shear provisions in the ACI Code, based on nominal shear 
capacity, with Vn equal to the lesser of

	 Vn = Vc + Vs	 (5.21)

	 Vn = 0.25​​f​c​ ′​​ bv dv	 (5.22)

where bv = web width (the same as bw in the ACI Code) and dv = effective depth in 
shear, taken as equal to the flexural lever arm (the distance between the centroids of 
the tensile and compressive forces), but not less than the greater of 0.9d or 0.72h.

The values of Vc and Vs differ from those used by the ACI, with

	 Vc = β​​√
__

 ​f​c​ ′​​​ bv dv	 (5.23)

and

	 Vs = ​​ 
Av fyt dv (cot θ + cot α) sin α

   ________________________  s ​​ 	 (5.24)

where Av, fyt, s, α, and θ are as defined before. β is the concrete tensile stress factor and 
is based on the ability of diagonally cracked concrete to resist tension, which also 
controls the angle of the diagonal tension crack θ. In Ref. 5.12, the values of β and θ 
are determined based on the strain in the longitudinal tension reinforcement, which 
can be approximated by†

	 εs =  ​​ 
​| Mu |​∕dv − 0.5Nu +  ​| Vu |​

   ____________________  
Es As

 ​​  ≤ 0.006	 (5.25)

The sign convention for Nu is the same as used in Section 5.6 and the ACI Code: 
compression is positive and tension is negative (the opposite sign convention is used 
in Ref. 5.12). Mu should not be taken less than Vudv; when calculating As , the area of 
bars terminated less than their development length (see Chapter 6) from the section 
under consideration should be reduced in proportion to the decreased development; εs 
should be taken as zero if the value calculated in Eq. (5.25) is negative; and εs should 
be doubled if Nu is high enough to cause cracking to the flexural compression face of 
the member. For sections closer than dv to the face of the support, εs calculated at dv 

from the face of the support may be used to determine β and θ.

† �Equation (5.25) is a simplification of εs = ​​ 
​| Mu∕dv |​ − 0.5Nu + 0.5  ​| Vu |​ cot θ

  ___________________  
EsAs

  ​​, with 0.5​​| Vu |​​ cot θ approximated by ​​| Vu |​​. The simplification eliminates the 
need for an iterative solution between εs and θ.
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For members with at least the minimum shear reinforcement, the concrete 
tensile stress factor is given by

	 β = ​  4.8 _________ 
1 + 750εs

 ​	 (5.26)

The angle θ, in degrees, is given by

	 θ  = 29 + 3500εs	 (5.27)

As shown in Eq. (5.18), the strength of the longitudinal reinforcement must be 
adequate to carry the additional forces induced by shear. Referring to Fig. 5.20, this 
leads to

	 As  fy ≥ T = ​ 
​| Mu |​

 ____ 
ϕf

 ​  − ​ 
0.5Nu _____ 

ϕc

 ​  + ​​( ​ ​| Vu |​
 ____ 

ϕv

 ​ − 0.5Vs )​​ cot θ	 (5.28)

where ϕf , ϕc, and ϕv are, respectively, the capacity reduction factors for flexure, axial 
load (tension or compression), and shear. Vs need not be taken greater than Vu ∕ϕ. 
Since the inclination of the compression struts changes, tension in the longitudinal 
reinforcement does not exceed that required to resist the maximum moment alone.

For members with less than the minimum transverse reinforcement, the angle 
θ is given by Eq. (5.27), while the value of β becomes a function of εs and a crack 
spacing parameter sxe.

	 β = ​  4.8 _________ 
1 + 750εs

 ​ ​  51 _______ 
39 + sxe

 ​	 (5.29)

The crack spacing parameter is

	 sxe = sx ​ 
1.38 ________ 

ag + 0.63
 ​	 (5.30)

where 12.0 in. ≤ sxe ≤ 80.0 in., sx = lesser of the shear depth dv or the spacing between 
layers of longitudinal crack control reinforcement, each layer with an area of steel 
of at least 0.003bvsx, and ag  =  maximum size of the coarse aggregate. Note that  
sxe = sx for ​ 3 _ 4 ​ in. coarse aggregate.

Since θ is not, in general, equal to 45°, the critical section might appropriately be 
taken as dv cot θ from the face of the support if all the load were applied to the upper 

Vs

0.5dv cot

dv

Vu

Nu

T

C

0.5dv cot θθ

FIGURE 5.20
Equilibrium diagram for 
calculating tensile force in 
reinforcement. (Adapted from 

Ref. 5.12.)
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	EXAMPLE 5.5	 Design by modified compression field approach.  Resolve the problem given in Examples 
5.2 and 5.3 based on the MCFT. Use ACI load factors and ϕ = 0.9 for shear, as used in 
AASHTO LRFD Bridge Design Specifications (Ref. 5.12). Assume an aggregate size ag 
of ​ 3 _ 4 ​ in.

Solution.  For simplicity, the effective depth for shear dv will be set at the minimum 
allowable value  =  0.9d  =  0.9  ×  22  =  19.8  in. The values of Mu and Vu are tabulated in 
Table 5.1.

The critical section for shear is located a distance dv  =  19.8  in.  =  1.65  ft from the 
support where Vu = 94 − 9.4 × 1.65 = 78.5 kips. Calculating 0.125​​f​c​ ′​​bv dv = 0.125 × 4000 
× 16 × 19.8 = 158,400 lb leads to maximum stirrup spacing equal to the smallest of 
0.8dv = 0.8 × 19.8 = 15.8  in., 24 in., and [for No. 3 (No. 10) stirrups]

	 smax = ​​ 
Av fyt

 ______ 
​√

__
 ​f​c​ ′​​ bv

 ​​ = ​​ 
0.22 × 60,000

  ____________  
​√

____
 4000​ × 16

 ​​ = 13.0 in.	

surface of the member. For simplicity, however, the critical section is taken a distance dv 
from the face of the support when the reaction introduces compression into the end region 
of the member, similar to the loading cases shown in Fig. 5.13a and b. For all other cases, 
the crucial section is taken at the face of the support, as shown in Fig. 5.13c to f.

AASHTO requires a minimum amount of transverse reinforcement Av =  
​​√

__
 ​f​c​ ′​​​ bv s∕fyt (compared to 0.75​​√

__
 ​f​c​ ′​​​ bw s∕fyt for ACI), when Vu > 0.5ϕVc, and specifies maxi­

mum spacings of transverse reinforcement of s ≤ 0.8dv ≤ 24 in. when vu < 0.125​​f​c​ ′​​ and  
s  ≤  0.4dv  ≤  12 in. when vu ≥ 0.125​​f​c​ ′​​. AASHTO allows fyt up to 75 ksi (compared to 
60  ksi for ACI). Because the predictions obtained with the MCFT are generally more 
accurate than those obtained with the ACI method, AASHTO allows the use of ϕ = 0.90 
for shear in normalweight concrete and ϕ = 0.80 in lightweight concrete. 

TABLE 5.1
Modified compression field design example using ϕ = 0.9 for shear

Distance 
from  

Support, 
ft

ϕVC for at Least  
Minimum Stirrups

ϕVC for Less Than  
Minimum Stirrups

Mu,  
ft- 

kips
Vu,  

kips εs ×  1000 θ β

ϕVc,   
kips

Vs,  
kips

s,  
in. β

ϕVc,  
kips

ϕVc ∕2,   
kips

0 0 94.0 0.85 32.0 2.93 52.8 45.7 9.2 2.54 45.8 22.9
1 89 84.6 0.77 31.7 3.05 55.0 32.9 12.9 2.64 47.7 23.8
1.65† 144 78.5 0.75 31.6 3.07 55.4 25.6 16.5 2.66 48.1 24.0
2 169 75.2 0.80 31.8 2.99 54.0 23.6 17.9 2.60 46.8 23.4
3 240 65.8 0.96 32.3 2.80 50.4 17.1 24.2 2.43 43.7 21.9
4 301 56.4 1.08 32.8 2.65 47.8 9.5 42.6 2.30 41.5 20.7
5 353 47.0 1.18 33.1 2.55 45.9 1.2 336 2.21 39.8 19.9
6 395 37.6 1.25 33.4 2.47 44.6 — — 2.15 38.7 19.4
7 428 28.2 1.30 33.6 2.43 43.8 — — 2.11 38.0 19.0
8 451 18.8 1.32 33.6 2.41 43.5 — — 2.09 37.7 18.8
9 465 9.4 1.32 33.6 2.41 43.5 — — 2.09 37.7 18.9

10 470 0.0 1.29 33.5 2.44 44.0 — — 2.12 38.2 19.1

†dv from face of support.
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FIGURE 5.21
Modified compression field 
design for Example 5.5. Vu = 94.0 kips

Vu =  78.5 kips

Vc (≥ minimum stirrups)
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Using Eq. (5.25), the strain in the longitudinal tension steel is approximated as

	 εs = ​​ 
​| Mu |​∕19.8 +  ​| Vu |​

  ______________  
29,000 × 7.62

 ​​	

with Mu and Vu in in-kips and kips, respectively.
The values of Mu, Vu, and εs are tabulated in Table 5.1. These values are used to cal-

culate θ using Eq. (5.27) and β using Eqs. (5.26) and (5.29) for sections with and without 
minimum stirrups, respectively. Where the section meets the minimum stirrup criterion, the 
values of β are used to calculate the values of Vc, which are then used, along with the values 
of θ, to calculate Vs and the required stirrup spacing s (see Table 5.1).

For transverse reinforcement less than the minimum, the values of β are based on εs 
and sx. The latter may be taken as the lesser of dv or the spacing of longitudinal crack 
control reinforcement. In this case, dv = 19.8 in. controls since crack control reinforcement 
is not used. The equivalent crack spacing parameter sxe  =  sx because ag  =  0.75  in. These 
values of β are used to determine the point where ϕVc ∕2 ≥ Vu, the point at which stirrups 
may be terminated (Table 5.1). The values of Vu, ϕVc with at least minimum stirrups, and 
ϕVc ∕2 for less than minimum stirrups are plotted in Fig. 5.21a. The following stirrup spac-
ings can be used for this case:

   1 space at 6 in. =   6 in.
6 spaces at 13 in. = 78 in.

              Total = 84 in. = 7 ft

For this example, Vs is selected based on Vu at each point, not the minimum Vu on a crack with 
angle θ. This simplifies the design procedure and results in a somewhat more conservative 
design. Even so, only 7 No. 3 (No. 10) stirrups are needed, or 9 stirrups if the stirrups are con-
tinued at the maximum spacing through the middle region of the beam. These values compare 
favorably with the minimum number of stirrups per half-span, 11 and 14, previously calculated 
(Example 5.3) using the two methods required by the ACI Code. The resulting stirrup pattern 
is shown in Fig. 5.21b.
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The MCFT is not included in the ACI Code. ACI Code 1.10.1, however, 
permits the use of “any system of design or construction . . . , the adequacy of which 
has been shown by successful use or by analysis or test,” if approved by the appro-
priate building official. The application of the MCFT in Canada and in U.S. bridge 
practice provides the evidence needed to demonstrate “successful use.”

	 5.9	 SHEAR-FRICTION DESIGN METHOD

Generally, in reinforced concrete design, shear is used merely as a convenient measure 
of diagonal tension, which is the real concern. In contrast, there are circumstances 
such that direct shear may cause failure of reinforced concrete members. Such situ-
ations occur commonly in precast concrete structures, particularly in the vicinity of 
connections, as well as in composite construction combining cast-in-place concrete 
with either precast concrete or structural steel elements. Potential failure planes can 
be established for such cases along which direct shear stresses are high, and failure to 
provide adequate reinforcement across such planes may produce disastrous results.

The necessary reinforcement may be determined on the basis of the shear-
friction method of design (Refs. 5.30 to 5.36). The basic approach is to assume that 
the concrete may crack in an unfavorable manner, or that slip may occur along a 
predetermined plane of weakness. Reinforcement must be provided crossing the 
potential or actual crack or shear plane to prevent direct shear failure.

The shear-friction theory is very simple, and the behavior is easily visualized. 
Figure  5.22a shows a cracked block of concrete, with the crack crossed by rein-
forcement. A shear force Vn acts parallel to the crack, and the resulting tendency 
for the upper block to slip relative to the lower is resisted largely by friction along 
the concrete interface at the crack. Since the crack surface is naturally rough and 
irregular, the effective coefficient of friction may be quite high. In addition, the 
irregular surface will cause the two blocks of concrete to separate slightly, as shown 
in Fig. 5.22b.

If reinforcement is present normal to the crack, then slippage and subsequent 
separation of the concrete will stress the steel in tension. Tests have confirmed that 
well-anchored steel will be stressed to its yield strength when shear failure is obtained 
(Ref. 5.32). The resulting tensile force sets up an equal and opposite pressure between 
the concrete faces on either side of the crack. It is clear from the free body of 
Fig.  5.22c that the maximum value of this interface pressure is Avf fy, where Avf is 
the total area of steel crossing the crack and fy is its yield strength.

By way of comparison, had ϕshear = 0.75 been used in this example, the stirrup spacing 
would have been

   1 space at 4 in. =   4 in.
  4 spaces at 9 in. = 36 in.
4 spaces at 13 in. = 52 in.

             Total = 92 in. = 7 ft 8 in.

for a total of 9 stirrups.
The MCFT recognizes that shear increases the force in the flexural steel, although, as 

explained earlier, the maximum tensile force in the steel is not affected. Equation (5.28) 
should be used to calculate the tensile force T along the span, which will then govern the 
locations where tensile steel may be terminated. This will be discussed further in Chapter 6.
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The concrete resistance to sliding may be expressed in terms of the normal 
force times a coefficient of friction μ. By setting the summation of horizontal forces 
equal to zero

	 Vn = μAvf fy	 (5.31)

Based on tests, μ may be taken as 1.4 for cracks in monolithic concrete, but 
Vn should not be assumed to be greater than 0.2​​f​c​ ′​​ Ac, (480 + 0.08​​f​c​ ′​​)Ac, or 1600Ac  
(Refs. 5.30, 5.35, and 5.36).

The relative movement of the concrete on opposite sides of the crack also 
subjects the individual reinforcing bars to shearing action, and the dowel resistance 
of the bars to this shearing action contributes to shear resistance. However, it is 
customary to neglect the dowel effect for simplicity in design and to compensate for 
this by using an artificially high value of the friction coefficient.

The provisions of ACI Code 22.9 are based on Eq. (5.31). The design strength 
is equal to ϕVn, where ϕ = 0.75 for shear-friction design, and Vn must not exceed the 
smallest of 0.2​​f​c​ ′​​ Ac, (480 + 0.08​​f​c​ ′​​)Ac, and 1600Ac for monolithic or intentionally 
roughened normalweight concrete or the smaller of 0.2​​f​c​ ′​​ Ac and 800Ac lb for other 
cases. When concretes of different strengths are cast against each another, Vn should 
be based on the lower value of ​​f​c ​ ′​​. Recommendations for friction factor μ are as 
follows:

Concrete placed monolithically 1.4λ
Concrete placed against hardened concrete with surface  
  intentionally roughened 1.0λ
Concrete placed against hardened concrete not intentionally  
  roughened 0.6λ
Concrete anchored to as-rolled structural steel by headed  
  studs or reinforcing bars 0.7λ

where λ is 1.0 for normalweight concrete. In other cases, λ is as described in Section 
5.5a and specified in ACI Code 19.2.4, but not greater than 0.85. The yield strength of 
the reinforcement fy may not exceed 60,000 psi. Direct tension across the shear plane, 
if present, must be carried by additional reinforcement, and permanent net compres-
sion across the shear plane may be taken as additive to the force in the shear-friction 
reinforcement Avf fy when calculating the required Avf .

Vn

Vn

(b)(a)

Shear-transfer
reinforcement Crack Crack

separation
due to slip

Vn

Avffy

Avffy

(c)

μ

FIGURE 5.22
Basis of shear-friction design method: (a) applied shear; (b) enlarged representation of crack surface; and (c) free-body sketch of 
concrete above crack.
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Avffy

Avffy

sin

Avffy cos

(a) (b)

Vn

Vn

Shear transfer
reinforcement

Crack
α

α
α

α

FIGURE 5.23
Shear-friction reinforcement 
inclined with respect to  
crack face.

	 EXAMPLE 5.6	 Design of beam bearing detail.  A precast beam must be designed to resist a support reac-
tion, at factored loads, of Vu = 100 kips applied to a 3 × 3 steel angle, as shown in Fig. 5.24. 
In lieu of a calculated value, a horizontal force Nuc, owing to restrained volume change, will be 
assumed to be 20 percent of the vertical reaction, or 20 kips. Determine the required auxiliary 
reinforcement, using steel of yield strength fy = 60,000 psi. Concrete strength ​​f​c​ ′​​ = 5000 psi.

Solution.  A potential crack will be assumed at 20°, initiating at a point 4 in. from the end 
of the beam, as shown in Fig. 5.24a. The total required steel Avf is the sum of that required to 

When shear is transferred between concrete newly placed against hardened 
concrete, the surface roughness is an important variable; an intentionally roughened 
surface is defined to have a full amplitude of approximately ​ 1 _ 4 ​ in. In any case, the 
old surface must be clean and free of laitance. When shear is to be transferred 
between as-rolled steel and concrete, the steel must be clean and without paint, 
according to ACI Code 25.5.6.1(d).

If Vu is the shear force to be resisted at factored loads, then with Vu  =  ϕVn, 
the required steel area is found by transposition of Eq. (5.31):

	 Avf = ​ 
Vu _____ 

ϕμfy

 ​	 (5.32)

In some cases, the shear-friction reinforcement may not cross the shear plane 
at 90° as described in the preceding paragraphs. If the shear-friction reinforcement 
is inclined to the shear plane so that the shear force is applied in the direction to 
increase tension in the steel, as in Fig.  5.23a, then the component of that tension 
parallel to the shear plane, shown in Fig. 5.23b, contributes to the resistance to slip. 
Then the shear strength may be computed from

	​ Vn = Avf fy (μ sin α + cos α)​	 (5.33)

in lieu of Eq. (5.31). Here α is the angle between the shear-friction reinforcement  
and the shear plane. If α is larger than 90°, that is, if the inclination of the steel is such that 
the tension in the bars tends to be reduced by the shear force, then the assumption that the 
steel stress equals fy is not valid, and a better arrangement of bars should be made.

Certain precautions should be observed in applying the shear-friction method of 
design. Reinforcement, of whatever type, should be well anchored to develop the yield 
strength of the steel, by the full development length or by hooks or bends, in the case 
of reinforcing bars, or by proper heads and welding, in the case of studs joining con-
crete to structural steel. The concrete should be well confined, and the liberal use of 
hoops has been recommended (Ref. 5.30). Care must be taken to consider all possible 
failure planes and to provide sufficient well-anchored steel across these planes.
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FIGURE 5.24
Design of beam bearing  
shoe: (a) diagonal crack;  
(b) horizontal crack;  
(c) reinforcement; (d) cross 
section.
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30″
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resist the resultant of Vu and Nuc acting parallel to the cracks  =  Vu  cos  20°  +  Nuc  sin  20°. 
Equation (5.32) is modified accordingly:

	​ Avf = ​ 
Vu cos 20° + Nuc  sin 20°

   _____________________  
ϕ μfy

 ​

​	​ = ​ 100 × 0.940 + 20 × 0.340   _______________________  
0.75 × 1.4 × 60

 ​  = ​ 
101 kips

 ________ 
63 ksi

 ​ ​

	​ = 1.60 in2​

The net compression normal to the potential crack would be no less than Vu  sin  20°  −  Nuc   
cos 20° = 15.4 kips. This could be counted upon to reduce the required shear-friction steel, accord-
ing to the ACI Code, but it will be discounted conservatively here. Four No. 6 (No. 19) bars will 
be used, providing an area of 1.76 in2. They will be welded to the 3 × 3 angle and will extend into 
the beam a sufficient distance to develop the yield strength of the bars. According to the ACI Code, 
the development length for a No. 6 (No. 19) bar is 26 in., 32 in. without the ψs factor (see Chapter 
6). Considering the uncertainty of the exact crack location, the bars will be extended 32 in. into the 
beam as shown in Fig. 5.24a. The bars will be placed at an angle of 15° with the bottom face of the 
member. For the crack oriented at an angle of 20°, as assumed, the area of the crack is

Ac = 16 ​​( ​  4 ______ 
sin 20°

 ​ )​​ = 187 in2

Thus, according to the ACI Code, the maximum nominal shear strength of the surface is not 
to exceed Vn = 0.2​f​c​ ′​ Ac = 187 kips, Vn = (480 + 0.08​f​c​ ′​)Ac = 165 kips, or Vn = 1600Ac = 299 kips. 
The maximum design strength to be used is ϕVn  =  0.75  ×  165  =  124  kips. As calculated 
earlier, the applied shear on the interface at factored loads is

​Vu = 100 cos 20° + 20 sin 20° = 101 kips​

and so the design is judged satisfactory to this point.
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Problems
	  5.1.	 A rectangular beam is 10 in. wide and has an effective depth of 13.5 in. 

Flexural reinforcement consists of two No. 8 (No. 25) bars. For ​f​c​ ′​ = 4000 psi 
and no shear reinforcement, determine the nominal shear capacity in accordance 
with the ACI Code.

	  5.2.	 A rectangular beam is 14 in. wide and has an effective depth of 20.5 in. 
Flexural reinforcement consists of three No. 9 (No. 29) bars. The beam con-
tains No. 3 (No. 10) stirrups spaced at 9 in. For ​f​c​ ′​ = 3000 psi and fyt = 60,000 
psi, calculate the nominal shear capacity of the section.

	  5.3.	 A rectangular beam is 16 in. wide and has an effective depth of 26 in. Flex-
ural reinforcement consists of three No. 10 (No. 32) bars. The beam contains 
No. 3 (No. 10) stirrups spaced at 13 in. For ​f​c​ ′​ = 4000 psi and fyt = 60,000 
psi, calculate the nominal shear capacity of the section.

	  5.4.	 A rectangular beam is 16 in. wide and has an effective depth of 26 in. Flex-
ural reinforcement consists of six No. 10 (No. 32) bars. The beam contains 
No. 4 (No. 13) stirrups spaced at 13 in. For ​f​c​ ′​ = 4000 psi and fyt = 60,000 
psi, calculate the nominal shear capacity of the section.
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	  5.6.	 A rectangular beam is 16 in. wide and has an effective depth of 26.5 in. 
Flexural reinforcement consists of five No. 9 (No. 29) bars. For ​f​c​ ′​ = 4000 psi 
and fyt = 60,000 psi, determine the required spacing of No. 4 (No. 13) stirrups 
for a factored shear of 90 kips.

	  5.7.	 The T beam shown in Fig. P5.5 has an effective depth d  =  24 in., a web 
width bw  =  8 in., and a flange width of bf  =  36 in. Flexural reinforcement 
consists of six No. 8 (No. 25) bars. For ​f​c​ ′​ = 5000 psi, fyt = 60,000 psi, and 
a factored shear of 50 kips, determine the spacing of No. 3 (No. 10) stirrups.

	  5.8.	 A simple span rectangular beam has an effective length of 18 ft, a width  
of 14  in., and an effective depth of 24 in. It is reinforced with three No. 9 
(No. 29) bars longitudinally and No. 3 (No. 10) stirrups at 12 in. on center 
over the entire length. Determine the maximum factored load the beam can 
carry in plf. ​f​c​ ′​ = 5000 psi, fy = 60,000 psi, and fyt = 40,000 psi.

	  5.9.	 A beam is to be designed for loads causing a maximum factored shear of 
60.0  kips, using concrete with ​f​c​ ′​ = 5000 psi. Proceeding on the basis that 
the concrete dimensions will be determined by diagonal tension, select the 
appropriate width and effective depth (a) for a beam in which no web 
reinforcement is to be used, (b) for a beam in which only the minimum 
web reinforcement is provided, as given by Eq. (5.13a), and (c) for a beam 
in which web reinforcement provides shear strength Vs  =  2Vc. Follow  
the ACI Code requirements, and let d  =  2b in each case. Assume that  
ρw = 0.012.

	5.10.	 A rectangular beam having b = 10 in. and d = 17.5 in. spans 15 ft face to 
face of simple supports. It is reinforced for flexure with three No. 9 (No. 29) 
bars that continue uninterrupted to the ends of the span. It is to carry service 
dead load D  =  1.27  kips∕ft (including self-weight) and service live load 
L = 3.70 kips∕ft, both uniformly distributed along the span. Design the shear 
reinforcement, using No. 3 (No. 10) vertical U stirrups. Equation (5.12c) for 
Vc may be used. Material strengths are ​f​c​ ′​ = 4000 psi and fy = 60,000 psi.

	5.11.	 Redesign the shear reinforcement for the beam of Problem 5.10, basing Vc 
on Eq. (5.12d). Comment on your results, with respect to design time and 
probable construction cost difference.

	5.12.	 Design the shear reinforcement, using No. 4 (No. 13) vertical U stirrups for 
the independent T beam shown in Fig. P5.12. The beam spans 24 ft face to 
face between simple supports, has an effective depth d  =  31 in., and is 

FIGURE P5.5
bf

d

bw

	  5.5.	 The T beam shown in Fig. P5.5 has an effective depth d  =  22 in., a web 
width bw  =  8 in., and a flange width of bf  =  36 in. Flexural reinforcement 
consists of four No. 8 (No. 25) bars. For ​f​c​ ′​ = 5000 psi, fyt = 60,000 psi, and 
No. 3 (No. 10) stirrups spaced at 10 in, determine the nominal shear capacity 
of the section.
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reinforced for flexure with six No. 10 (No. 32) bars in two layers that con-
tinue uninterrupted to the ends of the span. It is to carry service dead load 
D  =  2.67 kips∕ft (including self-weight) and service live load L  =  5.36 
kips∕ft, both uniformly distributed along the span. Equation (5.12c) for Vc 
may be used. Material strengths are ​f​c​ ′​ = 5000 psi and fy = 60,000 psi.

	5.13.	 A beam of 11 in. width and effective depth of 16 in. carries a factored uni-
formly distributed load of 5.3 kips∕ft, including its own weight, in addition 
to a central, concentrated factored load of 12 kips. It spans 18 ft, and restrain-
ing end moments at full factored load are 137 ft-kips at each support. It is 
reinforced with three No. 9 (No. 29) bars for both positive and negative 
bending. If ​f​c​ ′​ = 4000 psi, through what part of the beam is web reinforcement 
theoretically required (a) if Eq. (5.12c) is used and (b) if Eq. (5.12d) is used? 
Comment.

	5.14.	 The beam of Problem 5.10 will be subjected to a factored axial compression 
load of 88 kips on the 10  ×  20 in. gross cross section, in addition to the 
loads described earlier. What is the effect on concrete shear strength Vc?

	5.15.	 The beam of Problem 5.10 will be subjected to a factored axial tension load 
of 44 kips on the 10  ×  20 in. gross cross section, in addition to the loads 
described earlier. What is the effect on concrete shear strength Vc?

	5.16.	 Redesign the shear reinforcement for the beam of Problem 5.10, using the 
modified compression field theory with (a) ϕshear = 0.90 and (b) ϕshear = 0.75.

	5.17.	 Redesign the shear reinforcement for the beam of Problem 5.12, using the 
modified compression field theory with (a) ϕshear = 0.90 and (b) ϕshear = 0.75.

	5.18.	 A precast concrete beam with cross-sectional dimensions b  =  10 in. and 
h  =  24 in. is designed to act in a composite sense with a cast-in-place top 
slab having depth hf = 5 in. and width 48 in. At factored loads, the maximum 
compressive stress in the flange at midspan is 2400 psi; at the supports of 
the 28 ft simple span the flange force must be zero. Vertical stirrups provided 
for flexural shear will be extended into the slab and suitably anchored to 
provide also for transfer of the flange force by shear friction. Find the min-
imum number of No. 4 (No. 13) stirrups that must be provided, based on 
shear-friction requirements. Concrete in both precast and cast-in-place parts 
will have ​f​c​ ′​ = 4000 psi and fy = 60,000 psi. The top surface of the precast 
web will be intentionally roughened according to the ACI Code definition.

	5.19.	 Redesign the beam-end reinforcement of Example 5.6, given that a roller 
support will be provided so that Nuc = 0.

FIGURE P5.12
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Bond, Anchorage,  
and Development Length

	 6.1	 FUNDAMENTALS OF FLEXURAL BOND

If the reinforced concrete beam of Fig. 6.1a were constructed using plain round rein­
forcing bars, and, furthermore, if those bars were greased or otherwise lubricated 
before the concrete were cast, the beam would be very little stronger than if it were 
built of plain concrete, without reinforcement. If a load were applied, as shown in 
Fig. 6.1b, the bars would tend to maintain their original length as the beam deflected. 
The bars would slip longitudinally with respect to the adjacent concrete, which would 
experience tensile strain due to flexure. Proposition 2 of Section 3.4, the assumption 
that the strain in an embedded reinforcing bar is the same as that in the surround­
ing concrete, would not be valid. For reinforced concrete to behave as intended, it is 
essential that bond forces be developed on the interface between concrete and steel, 
such as to prevent significant slip from occurring at that interface.

Figure 6.1c shows the bond forces that act on the concrete at the interface as a 
result of bending, while Fig. 6.1d shows the equal and opposite bond forces acting on 
the reinforcement. It is through the action of these interface bond forces that the slip 
indicated in Fig. 6.1b is prevented.

Some years ago, when plain bars without surface deformations were used, ini­
tial bond strength was provided only by the relatively weak chemical adhesion and 
mechanical friction between steel and concrete. Once adhesion and static friction were 
overcome at larger loads, small amounts of slip led to interlocking of the natural 
roughness of the bar with the concrete. However, this natural bond strength is so low 
that in beams reinforced with plain bars, the bond between steel and concrete was 
frequently broken. Such a beam will collapse as the bar is pulled through the concrete. 
To prevent this, end anchorage was provided, chiefly in the form of hooks, as in 
Fig. 6.2. If the anchorage is adequate, such a beam will not collapse, even if the bond 
is broken over the entire length between anchorages. This is so because the member 
acts as a tied arch, as shown in Fig. 6.2, with the uncracked concrete shown shaded 
representing the arch and the anchored bars the tie-rod. In this case, over the length 
in which the bond is broken, bond forces are zero. This means that over the entire 
unbonded length the force in the steel is constant and equal to T  =  Mmax∕jd. As a 
consequence, the total steel elongation in such beams is larger than in beams in which 
bond is preserved, resulting in larger deflections and greater crack widths.

To improve this situation, deformed bars are now universally used in the  
United States and many other countries (see Section 2.14). With such bars, the shoulders 
of the projecting deformations bear on the surrounding concrete and result in greatly 
increased bond strength. It is then possible in most cases to dispense with special anchor­
age devices such as hooks. In addition, crack widths as well as deflections are reduced.
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178      DESIGN OF CONCRETE STRUCTURES  Chapter 6

	 a.	 Bond Force Based on Simple Cracked Section Analysis

In a short piece of a beam of length dx, such as shown in Fig. 6.3a, the moment at one 
end will generally differ from that at the other end by a small amount dM. If this piece 
is isolated, and if one assumes that, after cracking, the concrete does not resist any ten­
sion stresses, the internal forces are those shown in Fig. 6.3a. The change in bending 
moment dM produces a change in the bar force

	 dT = ​​ dM
 ___ 

jd
 ​​	 (a)

where jd is the internal lever arm between tensile and compressive force resultants. 
Since the bar or bars must be in equilibrium, this change in bar force is resisted at the 
contact surface between steel and concrete by an equal and opposite force produced by 
bond, as indicated by Fig. 6.3b.

FIGURE 6.1
Bond forces due to flexure: 
(a) beam before loading;  
(b) unrestrained slip between 
concrete and steel; (c) bond 
forces acting on concrete; and 
(d ) bond forces acting on 
steel.

(a)

P

(b)

Reinforcing bar

Concrete

End slip

(c)

(d)

Mmax

jd

Little or no bond

FIGURE 6.2
Tied-arch action in a beam 
with little or no bond.
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If U is the magnitude of the local bond force per unit length of bar, then, by 
summing horizontal forces

	 U dx = dT	 (b)

Thus,

	 U = ​​ dT
 ___ 

dx
 ​​	 (6.1)

indicating that the local unit bond force is proportional to the rate of change of bar 
force along the span. Alternatively, substituting Eq. (a) in Eq. (6.1), the unit bond 
force can be written as

	 U = ​​ 1 __ 
jd

 ​​ ​​ dM
 ___ 

dx
 ​​	 (c)

from which

	 U = ​​ V __ 
jd

 ​​	 (6.2)

Equation (6.2) is the “elastic cracked section equation” for flexural bond force, and it 
indicates that the bond force per unit length is proportional to the shear at a particular 
section, that is, to the rate of change of bending moment.

Note that Eq. (6.2) applies to the tension bars in a concrete zone that is assumed 
to be fully cracked, with the concrete resisting no tension. It applies, therefore, to the 
tensile bars in simple spans, or, in continuous spans, either to the bottom bars in  
the positive bending region between inflection points or to the top bars in the negative 
bending region between the inflection points and the supports. It does not apply to 
compression reinforcement, which bears against the concrete at the end of the bar.

	 b.	 Actual Distribution of Flexural Bond Force

The actual distribution of bond force along deformed reinforcing bars is much more 
complex than that represented by Eq. (6.2), and Eq. (6.1) provides a better basis for 
understanding beam behavior. Figure 6.4 shows a beam segment subject to pure bend­
ing. The concrete fails to resist tensile stresses only where the actual crack is located; 
there the steel tension is maximum and has the value predicted by simple theory: 
T = M∕jd. Between cracks, the concrete does resist moderate amounts of tension, intro­
duced by bond forces acting along the interface in the direction shown in Fig. 6.4a. 

FIGURE 6.3
Forces acting on elemental 
length of beam: (a) free-body 
sketch of reinforced concrete 
element and (b) free-body 
sketch of steel element.

T

C + dC C

T + dT
U

T + dT

T

dx

jd
VV

(a)

dx

(b)
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This reduces the tensile force in the steel, as illustrated by Fig. 6.4c. From Eq. (6.1), it 
is clear that U is proportional to the rate of change of bar force, and thus will vary as 
shown in Fig. 6.4d; unit bond forces are highest where the slope of the steel force curve 
is greatest and are zero where the slope is zero. Very high local bond forces adjacent to 
cracks have been measured in tests (Refs. 6.1 and 6.2). They are so high that inevitably 
some slip occurs between concrete and steel adjacent to each crack.

Beams are seldom subject to pure bending moment; they generally carry trans­
verse loads producing shear and moment that vary along the span. Figure 6.5a shows 
a beam carrying a distributed load. The cracking indicated is typical. The steel force 
T predicted by simple cracked section analysis is proportional to the moment diagram 
and is as shown by the dashed line in Fig. 6.5b. The actual value of T, however, is 
less than that predicted by the simple analysis everywhere except at the actual crack 
locations. The actual variation of T is shown by the solid line of Fig. 6.5b. In Fig. 6.5c, 
the bond forces predicted by the simplified theory are shown by the dashed line, and 
the actual variation is shown by the solid line. Note that the value of U is equal to 
that given by Eq. (6.2) only at those locations where the slope of the steel force diagram 
equals that of the simple theory. Elsewhere, if the slope is greater than assumed, the 
local bond force is greater; if the slope is less, local bond force is less. Just to the left 
of the cracks, for the present example, U is higher than predicted by Eq. (6.2), and in 

FIGURE 6.4
Variation of steel and bond 
forces in a reinforced 
concrete member subject to 
pure bending: (a) cracked 
concrete segment; (b) bond 
forces acting on reinforcing 
bar; (c) variation of  
tensile force in steel; and  
(d) variation of bond force 
along steel.

(a)

(b)

(c)

Bond
force U

(d)

U forces on bar

U forces on
concrete

Steel tension T 

Slope = dT
dx

M M 
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all probability will result in local bond failure. Just to the right of the cracks, U is 
much lower than predicted and in fact is generally negative very close to the crack; 
that is, the bond forces act in the reverse direction.

It is evident that actual bond forces in beams bear very little relation to those 
predicted by Eq. (6.2), except in the general sense that they are highest in the regions 
of high shear.

	 6.2	 BOND STRENGTH AND DEVELOPMENT LENGTH

For reinforcing bars in tension, two types of bond failure have been observed. The 
first is direct pullout of the bar, which occurs when ample confinement is provided by 
the surrounding concrete. This could be expected when relatively small-diameter bars  
are used with sufficiently large concrete cover distances and bar spacing. The second 
type of failure is splitting of the concrete along the bar when cover, confinement, 
or bar spacing is insufficient to resist the lateral concrete tension resulting from the 
wedging effect of the bar deformations. Present-day design methods require that both 
possible failure modes be accounted for.

	 a.	 Bond Strength

If the bar is sufficiently confined by a mass of surrounding concrete, then as the tensile 
force on the bar is increased, adhesive bond and friction are overcome, the concrete 
eventually crushes locally ahead of the bar deformations, and bar pullout results.  
The surrounding concrete remains intact, except for the crushing that takes place 

FIGURE 6.5
Effect of flexural cracks on 
bond forces in beam:  
(a) beam with flexural 
cracks; (b) variation of tensile 
force T in steel along span; 
and (c) variation of bond 
force per unit length U along 
span.

Actual U

Actual T

U = V
jd

(a)

(b)

(c)

CL span 

T = M
jd
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ahead of the deformations immediately adjacent to the bar interface. For deformed 
bars, adhesion and friction are much less important than the mechanical interlock of 
the deformations with the surrounding concrete.

Bond failure resulting from splitting of the concrete is more common in beams 
than direct pullout. Such splitting comes mainly from wedging action when the 
deformations on the bars bear against the concrete (Refs. 6.3 and 6.4). It may occur 
either in a vertical plane as in Fig. 6.6a or horizontally in the plane of the bars as in 
Fig. 6.6b. The horizontal type of splitting of Fig 6.6b frequently begins at a diagonal 
crack. In this case, as discussed in connection with Fig. 5.8b and shown in Fig. 5.1, 
dowel action increases the tendency toward splitting. This indicates that shear and bond 
failures are often intricately interrelated.

When pullout resistance is overcome or when splitting has spread all the way 
to the end of an unanchored bar, complete bond failure occurs. Sliding of the steel 
relative to the concrete leads to immediate collapse of the beam.

If one considers the large local variations of bond force caused by flexural and 
diagonal cracks (see Figs. 6.4 and 6.5), it becomes clear that local bond failures imme­
diately adjacent to cracks will often occur at loads considerably below the failure load 
of the beam. These local failures result in small local slips and some widening of cracks 
and increase of deflections, but will be harmless as long as failure does not propagate 
all along the bar, with resultant total slip. In fact, as discussed in connection with 
Fig. 6.2, when end anchorage is reliable, bond can be severed along the entire length 
of the bar, excluding the anchorages, without endangering the carrying capacity of the 
beam. End anchorage can be provided by hooks, as suggested by Fig. 6.2 and discussed 
in Section 6.4, or by heads, as discussed in Section 6.5, or much more commonly, by 
extending the straight bar a sufficient distance from the point of maximum stress.

Extensive testing (Refs. 6.5 to 6.15), using beam specimens, has established 
limiting values of bond strength. This testing provides the basis for current design 
requirements.

	 b.	 Development Length

The preceding discussion suggests the concept of development length of a reinforcing 
bar. In the ACI Code, the development length is defined as that length of embedment 
necessary to develop the specified yield strength of the bar, controlled by either pull­
out or splitting. With reference to Fig. 6.7, the moment, and therefore the steel stress, 
is evidently maximum at point a (neglecting the weight of the beam) and zero at the 
supports. If the bar stress is fs at a, then the total tension force Ab fs must be transferred 

FIGURE 6.6
Splitting of concrete along 
reinforcement.

(a)

Splitting

(b)

Splitting
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from the bar to the concrete in the distance ℓ by bond forces. To fully develop the yield 
strength of the bar Ab fy, the distance ℓ must be at least equal to the development length 
of the bar, established by tests. In the beam shown in Fig. 6.7, if the actual length ℓ 
is equal to or greater than the development length ℓd, no premature bond failure will 
occur. That is, the beam will fail in bending or shear rather than by bond failure. This 
will be so even if in the vicinity of cracks local slip may have occurred over small 
regions along the beam.

It is seen that the main requirement for safety against bond failure is this: the 
length of the bar, from any point of given steel stress ( fs or at most fy) to its nearby 
free end, must be at least equal to its development length. If this requirement is 
satisfied, the magnitude of the nominal flexural bond force along the beam, as given 
by Eq.  (6.2), is of only secondary importance, since the integrity of the member is 
ensured even in the face of possible minor local bond failures. However, if the actual 
available length is inadequate for full development, special anchorage, such as by 
hooks or heads, must be provided.

	 c.	 Factors Influencing Development Length

Experimental research has identified the factors that influence bond strength and, thus, 
development length, and analysis of the test data has resulted in the empirical equa­
tions used in present design practice. The most basic factors will be clear from review 
of the preceding paragraphs and include concrete tensile strength, cover distance, 
spacing of the reinforcing bars, and the presence of transverse steel reinforcement.

Clearly, the tensile strength of the concrete is important because the most 
common type of bond failure in beams is the type of splitting shown in Fig.  6.6. 
Although tensile strength does not appear explicitly in experimentally derived equa­
tions for development length (see Section 6.3), a term representing the tensile 
strength of concrete, typically ​​√

__
 ​f​c​ ′​​​, appears in the denominator of those equations 

and reflects the influence of concrete tensile strength.
As discussed in Section 2.9, the fracture energy of concrete plays an important 

role in bond failure because a splitting crack must propagate after it has formed. 
Since, as shown in Fig. 2.11, fracture energy is largely independent of compressive 
strength, bond strength increases more slowly than ​​√

__
 ​f​c​ ′​​​, and as data for higher-strength 

concretes have become available, ​​​f​c​ ′​​
1∕4​​ has been shown to provide a better representa­

tion of the effect of concrete strength on bond than ​​√
__

 ​f​c​ ′​​​ (Refs. 6.12 to 6.14). This 
point is recognized by ACI Committee 408, Bond and Development of Reinforce­
ment (Ref. 6.15), in proposed design expressions based on ​​​f​c​ ′​​

1∕4​​ and within the ACI 
Code, which sets an upper limit on the value of ​​√

__
 ​f​c​ ′​​​ for use in design.

For lightweight concretes, the tensile strength is usually less than for normal-
density concrete having the same compressive strength; accordingly, if lightweight 
concrete is used, development lengths must be increased. 

Cover distance—conventionally measured from the center of the bar to the nearest 
concrete face and measured either in the plane of the bars or perpendicular to that 

FIGURE 6.7
Development length.

a
�
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plane—also influences splitting. Clearly, if the vertical or horizontal cover is increased, 
more concrete is available to resist the tension resulting from the wedging effect of the 
deformed bars, resistance to splitting is improved, and development length is less.

Similarly, Fig.  6.6b illustrates that if the bar spacing is increased (such as, if 
only two instead of three bars are used), more concrete per bar will be available to 
resist horizontal splitting (Ref. 6.16). In beams, bars are typically spaced about one or 
two bar diameters apart. On the other hand, for slabs, footings, and certain other types 
of member, bar spacings are typically much greater, and the required development 
length is reduced, if not limited by cover.

Transverse reinforcement, such as that provided by stirrups of the types shown 
in Fig. 5.8, improves the resistance of tensile bars to both vertical or horizontal 
splitting failure because the tensile force in the transverse steel tends to prevent 
opening of the actual or potential crack. The effectiveness of such transverse rein­
forcement depends on its cross-sectional area and spacing along the development 
length. Its effectiveness does not depend on its yield strength fyt, because transverse 
reinforcement rarely yields during a bond failure (Refs. 6.12 to 6.15).

Based on the results of a statistical analysis of test data available in the 1970s 
(Ref. 6.10), it was found that the length ℓd needed to develop stress fs in a reinforc­
ing bar could be expressed (with some modification and updating to reflect more 
recent test results) as

	 ℓd = ​​( ​  ​  fs
 ____ 

​√
__

 ​f​c​ ′​​
 ​ − 200

  ___________  
12​( ​ cb + Ktr ______ 

db
 ​  )​ ​ )​​ db	 (6.3)

where db = bar diameter
cb =  �smaller of minimum cover or one-half of bar spacing measured to 

center of bar
Ktr = 40Atr∕sn, which represents effect of confining reinforcement
Atr =  �area of transverse reinforcement normal to plane of splitting through 

the bars being developed
s = spacing of transverse reinforcement
n = number of bars developed or spliced at same location

Equation (6.3) has been simplified to

	 ℓd = ​​( ​ 3 ___ 
40

 ​ ​  fs ____________  
​√

__
 ​f​c​ ′​​​( ​ cb + Ktr _______ 

db
 ​  )​ ​ )​​ db	 (6.4)

which serves as the basis for calculating development length in the ACI Code.
An important difference between Eqs. (6.3) and (6.4) is that Eq. (6.3) reflects the 

experimental result that the required development length increases disproportionately  
more than the bar stress fs, while in Eq. (6.4) development length is proportional to fs. To 
address this shortcoming, a special factor must be added to Eq. (6.4) to account for the 
extra length needed for bars with higher yield strengths, as will be shown in Section 6.3. 
Although both equations are written to express development length as a multiple of bar 
diameter, the presence of db in the denominator leads to development lengths that actually 
increase with the square of the bar diameter and, thus, the area of the bar. 

Equation (6.4) captures the effects of concrete strength, concrete cover, and 
transverse reinforcement on ℓd and serves as the basis for design in the ACI Code. 
For full development of the bar, fs is set equal to fy.
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In addition to the factors just discussed, other influences have been identified. 
The vertical location of horizontal bars relative to beam depth has been found to have 
an effect (Ref. 6.17). If bars are placed in the forms during construction such that a 
substantial depth of concrete is placed below those bars, there is a tendency for excess 
water, often used in the mix for workability, and for entrapped air to rise to the top 
of the concrete during consolidation. Air and water tend to accumulate on the under­
side of the bars. Tests have shown a loss in bond strength for bars with more than 
12  in. of fresh concrete cast beneath them, and accordingly the development length 
must be increased. This effect increases as the slump of the concrete increases and is 
greatest for bars cast near the upper surface of a concrete placement (Ref. 6.18).

Epoxy-coated reinforcing bars are used regularly in projects where the structure 
may be subjected to corrosive environmental conditions or deicing chemicals, such 
as for highway bridge decks and parking garages. Zinc and epoxy dual-coated bars 
have also been produced. Studies have shown that bond strength is reduced because 
the epoxy coating reduces the friction between the concrete and the bar, and the 
required development length must be increased (Refs. 6.19 to 6.23). Early evi­
dence  showed that if cover and bar spacing were large, the effect of the epoxy 
coating would not be so pronounced, and as a result, a smaller increase was felt 
justified under these conditions (Ref. 6.20). Although later research (Ref. 6.12) does 
not support this conclusion, provisions to allow for a smaller increase remain in the 
ACI Code. Since the bond strength of epoxy-coated bars is already reduced because 
of lack of adhesion, an upper limit has been established for the product of develop­
ment length factors accounting for the depth of concrete cast below horizontal bars 
and epoxy coating.

Not infrequently, tensile reinforcement somewhat in excess of the calculated 
requirement is provided, for example, as a result of upward rounding As when bars are 
selected or when minimum steel requirements govern. Logically, in this case, the required 
development length may be reduced by the ratio of steel area required to steel area 
actually provided. The modification for excess reinforcement should be applied only 
where anchorage or development for the full yield strength of the bar is not required.

Finally, based on bars with very short development lengths (most with values 
of ℓd∕db < 15), it was observed that smaller-diameter bars required lower development 
lengths than predicted by Eq. (6.4). As a result, the required development lengths for 
No. 6 (No. 19) and smaller bars were reduced below the values required by Eq. (6.4).†

Reference 6.15 presents a detailed discussion of the factors that control the bond 
and development of reinforcing bars in tension. Except as noted, these influences are 
accounted for in the basic equation for development length in the ACI Code. All 
modification factors for development length are defined explicitly in the Code, with 
appropriate restrictions. Details are given next.

	 6.3	� ACI CODE PROVISIONS FOR DEVELOPMENT  
OF TENSION REINFORCEMENT

The approach to bond strength incorporated in the ACI Code follows from the dis­
cussion presented in Section 6.2. The fundamental requirement is that the calculated 
force in the reinforcement at each section of a reinforced concrete member be devel­
oped on each side of that section by adequate embedment length, hooks, mechanical 

† �The use of Eq. (6.4) for low values of ℓd∕db greatly underestimates the actual value of bond strength and makes it appear that a lower value  
of ℓd can be used safely. An evaluation of test results for small bars with more realistic development lengths (ℓd∕db ≥ 16), however, has shown 
that the special provision in the ACI Code for smaller bars is not justified (Refs. 6.14, 6.15, and 6.24). Because of the unconservative nature of 
the small bar provision, ACI Committee 408 (Ref. 6.15) recommends that it not be applied in design.

www.konkur.in

Telegram: @uni_k



186      DESIGN OF CONCRETE STRUCTURES  Chapter 6

anchorage, or a combination of these, to ensure against pullout. Local high bond 
forces, such as are known to exist adjacent to cracks in beams, are not considered to be 
significant. Generally, the force to be developed is calculated based on the yield stress 
in the reinforcement; that is, the bar strength is to be fully developed.

In the ACI Code, the required development length for deformed bars in ten­
sion is based on Eq. (6.4). A single basic equation is given that includes all the 
influences discussed in Section 6.2 and thus appears highly complex because of 
its inclusiveness. It does, however, permit the designer to see the effects of all the 
controlling variables and allows more rigorous calculation of the required devel­
opment length when it is critical. The ACI Code also includes simplified equations 
that can be used for most cases in ordinary design, provided that some restrictions 
are accepted on bar spacing, cover values, and minimum transverse reinforcement. 
These alternative equations can be further simplified for normalweight concrete 
and uncoated bars.

In the following presentation of development length, the basic ACI equation is 
given first and its terms are defined and discussed. After this, the alternative equa­
tions, also part of the ACI Code, are presented. Note that, in any case, development 
length ℓd must not be less than 12  in.

	 a.	 Equation for Development Length for Bars and Wires in Tension

According to ACI Code 25.4.2.3, for deformed bars or deformed wires,

	 ℓd = ​​( ​ 3 ___ 
40

 ​ ​ 
fy
 _____ 

λ​√
__

 ​f​c​ ′​​ 
 ​​ 
ψt ψe ψs ψg

 _________ 
​( ​ cb + Ktr _______ 

db
 ​  )​ ​ )​​ db	 (6.5)

in which the term (cb + Ktr)∕db may not be taken greater than 2.5. In Eq. (6.5), the 
terms are defined and values established as follows.

ψt = casting position factor
More than 12  in. of fresh concrete is placed below horizontal 

	 reinforcement:	 1.3
Other situations:	 1.0

ψe = epoxy coating factor
Epoxy-coated or zinc and epoxy dual-coated bars or wires  

	 with cover less than 3db or clear spacing less than 6db:	 1.5
All other epoxy-coated or zinc and epoxy dual-coated bars or wires:	 1.2
Uncoated and zinc-coated (galvanized) reinforcement:	 1.0
However, the product of ψtψe need not be taken greater than 1.7.

ψs = reinforcement size factor
No. 6 (No. 19) and smaller bars and deformed wires:	 0.8†

No. 7 (No. 22) and larger bars:	 1.0
ψg = reinforcement grade factor

Grade 40 or 60	 1.0
Grade 80� 1.15
Grade 100	 1.3

† �ACI Committee 408 recommends a value of 1.0 for all bar sizes based on experimental evidence. The ACI Code value of 0.8, however, is 
used in what follows.
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λ = lightweight aggregate concrete factor	
When lightweight aggregate concrete is used:� 0.75
When normalweight concrete is used:	 1.0

cb = spacing or cover dimension,  in.
Use the smaller of either the distance from the center of the bar to the 

nearest concrete surface or one-half the center-to-center spacing of the bars 
being developed.

Ktr =  transverse reinforcement index: 40Atr∕sn
where Atr =  �total cross-sectional area of all transverse reinforcement that is 

within the spacing s and that crosses the potential plane of 
splitting through the reinforcement being developed, in2

s =  �maximum spacing of transverse reinforcement within ℓd center 
to center,  in.

n =  �number of bars or wires being developed along the plane of 
splitting

As a simplification, the designer is permitted to use Ktr = 0 even if transverse rein­
forcement is present.

According to ACI Code 25.4.2.2, for reinforcement with fy ≥ 80,000 psi spaced 
closer than 6 in. on center, transverse reinforcement must be provided such that Ktr 
is not smaller than 0.5db. According to ACI Code 9.7.1.4 and 10.7.1.3, however, Ktr 
must be at least 0.5db in all beams and columns where reinforcement with fy ≥ 80,000 
psi is developed or spliced, independent of the bar spacing.

The limit of 2.5 on (c + Ktr)∕db is imposed to avoid pullout failure. With that term 
taken equal to its limit of 2.5, evaluation of Eq. (6.4) results in ℓd = 0.03db  fy∕​​√

__
 ​f​c​ ′​​​,  

the experimentally derived limit found in earlier ACI Codes when pullout failure 
controls. Note that in Eq. (6.5) and in all other ACI Code equations relating to the 
development length and splices of reinforcement, values of ​​√

__
 ​f​c​ ′​​​ are not to be taken 

greater than 100 psi because, as explained in Section 6.2c and recognized in ACI 
Commentary 25.4.1.4, bond strength increases more slowly than ​​√

__
 ​f​c​ ′​​​. The ​​√

__
 ​f​c​ ′​​​, 

however, is reasonably accurate for values of ​​f​c​ ′​​ up to 10,000 psi.

	 b.	 Simplified Equations for Development Length

Calculation of required development length (in terms of bar diameter) by Eq. (6.5) 
requires that the term (cb + Ktr)∕db be calculated for each particular combination of 
cover, spacing, and transverse reinforcement. Alternatively, according to the Code, 
a simplified form of Eq. (6.5) may be used in which (cb + Ktr)∕db is set equal to 1.5, 
provided that certain restrictions are placed on cover, spacing, and transverse rein­
forcement. Two cases of practical importance are:

	 1.	 Minimum clear cover of 1.0db, minimum clear spacing of 1.0db, and at least the 
Code required minimum stirrups or ties (see Section 5.5b) throughout ℓd

	 2.	 Minimum clear cover of 1.0db and minimum clear spacing of 2db

For either of these common cases, it is easily confirmed from Eq. (6.4) that for No. 7 
(No. 22) and larger bars

	 ℓd = ​​
(

​ 
fyψt ψe ψg

 _______ 
20λ​√

__
 ​f​c​ ′​​
 ​
)

​​ db	 (6.6a)
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and for No. 6 (No. 19) bars and smaller

	 ℓd = ​​
(

​ 
fyψt ψeψg

 _______ 
25λ​√

__
 ​f​c​ ′​​
 ​ 
)

​​db	 (6.6b)

If these restrictions on spacing are not met, then, provided that Code-imposed mini­
mum spacing requirements are met (see Section 4.5c), the term (cb + Ktr)∕db will have 
a value not less than 1.0 (rather than 1.5 as before) whether or not transverse steel 
is used. The values given by Eqs. (6.6a) and (6.6b) are then multiplied by the factor 
1.5∕1.0.

Thus, if the designer accepts certain restrictions on bar cover, spacing, and 
transverse reinforcement, simplified calculation of development requirements is pos­
sible. The simplified equations are summarized in Table 6.1.

Further simplification is possible for the most common condition of normalweight 
concrete and uncoated reinforcement. Then λ and ψe in Table 6.1 take the value 1.0, 
and the development length, in terms of bar diameters, is simply a function of fy, ​f​c​ ′​, 
and the bar location factor ψt. Thus, development lengths are easily tabulated for the 
usual combinations of material strengths and bottom or top bars and for the restrictions 
on bar spacing, cover, and transverse steel defined.† Results are given in Table A.10 
of Appendix A.

Regardless of whether development length is calculated using the basic Eq. (6.5) 
or the more approximate Eqs. (6.6a) and (6.6b), development length may be reduced 
where reinforcement in a flexural member is in excess of that required by analysis, 
except where anchorage or development for fy is specifically required in seismic- 
force-resisting systems in structures assigned to Seismic Design Categories D, E, or 
F (discussed in Chapter 20). According to ACI Code 25.4.10, the reduction in ℓd is 
made according to the ratio (As required∕As provided).

† �Note that, for convenient reference, the term top bar is used for any horizontal reinforcing bar placed with more than 12 in. of fresh concrete cast 
below the development length or splice. This definition may require that bars relatively near the bottom of a deep member be treated as top bars.

No. 6 (No. 19) and  
Smaller Bars and  
Deformed Wires†

No. 7 (No. 22)  
and Larger Bars

Clear spacing of bars or wires being developed or 
spliced ≥ db, clear cover ≥ db, and stirrups or ties 
throughout ℓd not less than the Code minimum

ℓd = ​​(  ​  fy ψt ψe ψg
 ________ 

25λ​√
__

 ​f​c​ ′​​
 ​  )​​db ℓd = ​​(  ​  fy ψt ψe ψg

 ________ 
20λ​√

__
 ​f​c​ ′​​
 ​   )​​db

Clear spacing of bars or wires being developed or 
spliced ≥ 2db, and clear cover ≥ db

Same as above Same as above

Other cases ℓd = ​​(  ​ 3fy ψt ψe ψg
 _________ 

50λ​√
__

 ​f​c​ ′​​ 
 ​   )​​db ℓd = ​​(  ​ 3fy ψt ψe ψg

 _________ 
40λ​√

__
 ​f​c​ ′​​
 ​  )​​db

† For reasons discussed in Section 6.3a, ACI Committee 408 recommends that ℓd for No. 7 (No. 22) and larger bars be used for all bar sizes.

TABLE 6.1
Simplified tension development length in bar diameters according to the ACI Code
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	 EXAMPLE 6.1	 Development length in tension.  Figure 6.8 shows a beam-column joint in a continuous build­
ing frame. Based on frame analysis, the negative steel required at the end of the beam is 1.80 in2; 
two No. 9 (No. 29) bars are used, providing As = 2.00 in2. Beam dimensions are b = 10 in.,  
d = 18 in., and h = 21 in. The design will include No. 3 (No. 10) stirrups spaced four at 3 in., 
followed by a constant 5 in. spacing in the region of the support, with 1.5 in. clear cover. Normal­
weight concrete is to be used, with ​​f​c​ ′​​ = 4000 psi, and the reinforcing bars have fy = 60,000 psi. 

Find the minimum distance ℓd at which the negative bars can be cut off, based on devel­
opment of the required steel area at the face of the column, (a) using the simplified equations 
of Table 6.1, (b) using Table A.10 of Appendix A, and (c) using the more accurate Eq. (6.5).

Solution.  Checking for lateral spacing of the No. 9 (No. 29) bars determines that the clear 
distance between the bars is 10 − 2(1.50 + 0.38 + 1.128) = 4 in., or 3.55 times the bar 
diameter db. The clear cover of the No. 9 (No. 29) bars to the side face of the beam is 1.50 + 
0.38 = 1.88 in., or 1.67 bar diameters, and that to the top of the beam is 3.00 − 1.128∕2 = 
2.44 in., or 2.16 bar diameters. These dimensions meet the restrictions stated in the second 
row of Table 6.1. Then for top bars, uncoated, Grade 60 reinforcement cast in normalweight 
concrete, we have values of ψt = 1.3, ψe = 1.0, ψg = 1.0, and λ = 1.0. From Table 6.1,

ℓd = ​​( ​ fy ψt ψe ψg
 ________ 

20λ​√
__

 ​f​c​ ′​​ 
 ​ )​​ db = ​​ 

60,000 × 1.3 × 1.0 × 1.0
   ______________________  

20 × 1.0​√
_____

 4000 ​
 ​​  1.128 = 62 × 1.128 = 70  in.

This can be reduced by the ratio of steel required to that provided, so that the final development 
length is 70 × 1.80∕2.00 = 63 in.

Alternatively, from the lower portion of Table A.10, ℓd∕db = 62. The required length 
to point of cutoff is 62 × 1.128 × 1.80∕2.00 = 63 in., as before.

The more accurate Eq. (6.5) will now be used. The center-to-center spacing of the 
No. 9 (No. 29) bars is 10 − 2(1.50 + 0.38 + 1.128∕2) = 5.11 in., one-half of which is 2.56 
in. The side cover to the bar centerline is 1.50 + 0.38 + 1.128∕2 = 2.44 in., and the top 
cover to the bar centerline is 3.00 in. The smallest of these three dimensions controls, giving  
cb = 2.44 in. Potential splitting would be in the horizontal plane of the bars, and in calculating 
Atr, two times the stirrup bar area is used.† Based on No. 3 (No. 10) stirrups at 5 in. spacing:

Ktr = ​​ 
40 Atr

 _____ sn ​​  = ​​ 40 × 0.11 × 2  ____________ 
5 × 2

 ​​  = 0.88    and  ​​  
cb + Ktr

 _______ 
db

 ​​  = ​​ 2.44 + 0.88  __________ 
1.128

 ​​  = 2.94

† �If the top cover had controlled, the potential splitting plane would be vertical and one times the stirrup bar area would be used in calculating 
Atr with n = 1.

FIGURE 6.8
Bar details at beam-column 
joint for bar development 
examples.

�d

(a) (b)

2″ clear

Column
splice

No. 10 (No. 32)

2 No. 9 (No. 29)

No. 11 (No. 36) No. 3 (No. 10)
stirrups

No. 4 (No. 13) ties

21″

10″

1 1
2

″ 21″18″
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	 6.4	 ANCHORAGE OF TENSION BARS BY HOOKS

	 a.	 Standard Dimensions

In the event that the desired tensile stress in a bar cannot be developed by bond along 
the length of the bar alone, it is necessary to provide special anchorage at the ends of 
the bar, usually by means of a 90° or a 180° hook or a headed bar (the latter is dis­
cussed in Section 6.5). The dimensions and bend radii for hooks have been standard­
ized in ACI Code 25.3.1 and 25.3.2 as follows (see Figs. 6.9 and 6.10 and Table 6.2):

	 1.	 A 90° bend plus an extension of at least 12 bar diameters at the free end of the bar, 
or

	 2.	 A 180° bend plus an extension of at least 4 bar diameters, but not less than 2​ 1 _ 2 ​ in. 
at the free end of the bar, or

This exceeds the limit value of 2.5, so (cb + Ktr)∕db is set to 2.5. Then from Eq. (6.5) with  
ψs = 1.0,

ℓd = ​​( ​ 3 ___ 40 ​ ​ 
fy
 _____ 

λ​√
__

 ​f​c​ ′​​
 ​ ​ 
ψt ψe ψs ψg

 _________ 
​( ​ cb + Ktr _______ 

db
 ​  )​ ​ )​​ db = ​​( ​ 3 ___ 40 ​ ​  60,000 _________ 

1.0​√
____

 4000​
 ​ ​ 1.3 × 1.0 × 1.0 × 1.0  ___________________  (2.5) ​  )​​ 1.128

= 37.0 × 1.128 = 41.7  in.

and the required development length is 41.7 × 1.80∕2.00 = 41.7 × 0.90 = 37.5 in. rather than 
63 in. as before. Clearly, the use of the more accurate Eq. (6.5) permits a considerable reduction 
in development length. Even though its use requires much more time and effort, it is justified if 
the design is to be repeated many times in a structure.

FIGURE 6.9
Standard bar hooks: (a) main reinforcement and (b) stirrups and ties. ACI Code 25.3.2 requires that standard 
hooks for stirrups and ties enclose longitudinal reinforcement.

D

(a)

Inside bend diameter = D4db ≥ 2

6db ≥ 3″

6db ≥ 3″

12db

db

″1
2

db

(b)

No. 5 (No. 16)
bar or smaller

db

12db

db

135°

db

Nos. 6, 7, or 8
(Nos. 19, 22, or 25)
bar

No. 8 (No. 25)
bar or smaller

No. 8 (No. 25)
bar or smaller

D
4db ≥ 2

db

″1
2

D

D D D
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	 3.	 For stirrup and tie anchorage only:
(a)	 For Nos. 3, 4, 5 (Nos. 10, 13, and 16) bars, a 90° bend plus an extension of at 

least 6 bar diameters, but not less than 3  in., at the free end of the bar, or
(b)	 For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) bars, a 90° bend plus an extension 

of at least 12 bar diameters at the free end of the bar, or
(c)	 For No. 8 (No. 25) bars and smaller, a 135° bend plus an extension of at least 

6 bar diameters, but not less than 3  in., at the free end of the bar, or
(d)	 For No. 8 (No. 25) bars and smaller, a 180° bend plus an extension of at least 

4 bar diameters, but not less than 2.5  in., at the free end of the bar.

The minimum diameter of bend, measured on the inside of the bar, for stand­
ard hooks other than for stirrups or ties in sizes Nos. 3 through 5 (Nos. 10 through 
16), should be not less than the values shown in Table 6.2. For stirrup and tie hooks, 
for bar sizes No. 5 (No. 16) and smaller, the inside diameter of bend is reduced to 
4 bar diameters, according to ACI Code 25.3.2.

When welded wire reinforcement (smooth or deformed wires) is used for stirrups 
or ties, the inside diameter of bend should not be less than 4 wire diameters for 
deformed wire larger than D6 and 2 wire diameters for all other wires. Bends with 
an inside diameter of less than 8 wire diameters should not be less than 4 wire 
diameters from the nearest welded intersection.

	 b.	 Behavior of Hooked Bars 

Hooked bars resist pullout by the combined actions of bond along the straight length 
of the bar leading to the hook and anchorage provided by the hook. Tests indicate that 
the failure of hooked bars in tension is accompanied by breakout of the concrete in 

Bar Size Minimum Diameter

Nos. 3 through 8 (Nos. 10 through 25) 6 bar diametersa

Nos. 9, 10, and 11 (Nos. 29, 32, and 36) 8 bar diameters
Nos. 14 and 18 (Nos. 43 and 57) 10 bar diameters

a Nos. 3, 4, and 5 (Nos. 10, 13, and 16): 4 bar diameters for stirrups and ties.

TABLE 6.2
Minimum inside bend diameters for standard hooks

FIGURE 6.10
Bar details for development 
of standard hooks. Critical

section

6db for Nos. 14 and 18 (Nos. 43 and 57) bars

12db

�dh

db

db

5db for Nos. 9 through 11 (Nos. 29 through 36) bars
4db for Nos. 3 through 8 (Nos. 10 through 25) bars

4db ≥ 2 ″1
2
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the direction of the tensile force and, to a lesser degree, splitting of the concrete par-
allel to the plane of the hook. Splitting failure becomes more prevalent as the cover 
decreases and the bar size increases (Ref. 6.25). These modes of failure are illustrated 
in Figs. 6.11 and 6.12.

Tests demonstrate that the anchorage strength of hooked bars:

	 1. 	 Increases with the compressive strength of the concrete, but to a power of ​​f​c​ ′ ​​close 
to ¼ rather than to ½, as traditionally represented by

 ​
​√

__
 ​f​c​ ′​​​.

	 2. 	 Increases with the center-to-center spacing s of hooked bars up to about 6db and 
then remains constant for higher values of s.

	 3. 	 Increases with confinement provided by the surrounding concrete. Hooks located 
within a column core with at least 2.5 in. of side cover or in other members with 
at least 6db of side cover on the outer hook have about 25 percent greater anchor-
age strength than hooked bars with lower levels of confinement.

	 4. 	 Increases with confinement provided in the form of closed stirrups, ties, or other 
reinforcement enclosing the hook. Based on the ACI Code, the confining reinforce-
ment must extend at least 0.75ℓdh in the direction of the bar in tension, as shown in 

FIGURE 6.11
Failure mode of beam-column 
test specimen used to determine 
anchorage strength of hooked 
bars (Ref. 6.25).

(a) (b)

FIGURE 6.12
Beam-column test specimens 
containing hooked bars at 
failure: (a) breakout failure 
and (b) side splitting failure 
(Ref. 6.25).
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Fig. 6.13, where ℓdh is the development length of the hooked bar. The confining rein-
forcement may be parallel to ℓdh, enclosing the hooks within 15db of the centerline of 
the straight portion of the hooked bars (Fig. 6.13a), or perpendicular to ℓdh enclosing 
the hooked bars along ℓdh (Fig. 6.13b). The contribution of confining reinforcement 
to anchorage strength is based on the ratio of the total area of the confining reinforce-
ment Ath (all legs of stirrups or ties) to the total area of the enclosed hooked bars Ahs. 

The ACI Code includes other criteria, which are described in Section 6.4c. The 
contribution of confining reinforcement is greatest for closely spaced hooks, becom-
ing less effective as the spacing between the hooked bars increases. Thus, the effects 
of increased spacing and increased confinement are not strictly additive.

The provisions in ACI Code 25.4.3 for hooked bars in tension are based on 
research summarized in Refs. 6.25 to 6.29. Based on that research, the development 
length of hooked bars ℓdh was shown to be a function of the bar diameter to the  
1.5 power, as shown in Eq. (6.7):

	 ℓdh = ​​( ​   fy ψcs ψo
 ________ 

500 ​​f​c​ ′​​0.25​
 ​ )​​  ​​d​ b​ 

1.5​​	 (6.7)

where �ψcs = factor that increases with the level of the confinement provided by stir-
rups or ties enclosing the hooked bars and the spacing of the hooked bars, as 
shown in Table 6.3.
�ψo = 1.0 for hooked bars terminating inside a column core with side cover normal to 
the plane of hook ≥ 2.5 in., or with a side cover normal to the plane of hook ≥ 6db;
   = 1.25 otherwise.

Based on the limited test results for higher-strength concretes, an upper limit of 
16,000 psi is placed on ​​f​c​ ′​​ in Eq. (6.7). Due to a lack of experimental data, the effect 
of confining reinforcement is not considered for hooked bars larger than No. 11 (No. 36), 
as shown in Table 6.3 (Refs. 6.25 to 6.29).

	 c.	 Development Length and Modification Factors for Hooked Bars

The development length ℓdh is defined as shown in Fig. 6.10 and is measured from 
the critical section to the farthest point on the bar, parallel to the straight part of the 
bar. The ACI Code requirements for the development length of hooked bars are based 
on Eq. (6.7) but with a number of modifications, as shown in Eq. (6.8). Rather than 

FIGURE 6.13
Confining reinforcement that 
contributes to the anchorage 
strength of hooked bars:  
(a) confining reinforcement 
parallel to bar in tension and 
(b) confining reinforcement 
perpendicular to bar in 
tension. 

Ties or stirrups

15db

db≥ 0.75�dh

≤ 8db

�dh

(a)

Ties or stirrups

db≥ 0.75�dh

≤ 8db

�dh

(b)
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represent the effect of concrete compressive strength as ​​​f​c​ ′​​0.25​​, as it is in Eq. (6.7), the 
ACI Code approximates ​​​f​c​ ′​​0.25​​ (for concrete compressive strengths below 6000 psi) as ​​
√

__
 ​f​c​ ′​​​∕ψc, where ψc is defined following Eq. (6.8). Above 6000 psi, ψc = 1.0. The ACI 

Code also simplifies ψcs by replacing it with ψr, also defined following Eq. (6.8). Like 
Eq. (6.5) for straight bar development, Eq. (6.8) includes a term for epoxy-coated rein­
forcement ψe. In accordance with ACI Code 25.4.3, the development length of hooked 
bars in tension is

	 ℓdh = ​​( ​ fy ψe ψr ψo ψc
 _________ 

55λ​√
__

 ​f​c​ ′​​
 ​  )​​ ​​d​ b​ 

1.5​​	 (6.8)

In Eq. (6.8), the terms are defined as follows:
ψe = epoxy coating factor

For epoxy-coated or zinc and epoxy dual-coated reinforcement:	 1.2
For uncoated and zinc-coated (galvanized) reinforcement:	 1.0

ψr = confining reinforcement factor
For No. 11 (No. 36) and smaller bars with Ath ≥ 0.4Ahs or  

minimum spacing between hooked bars s ≥ 6db	 1.0
Other:	 1.6

ψo = location factor
For No. 11 (No. 36) and smaller diameter hooked bars  

(1) terminating inside a column core with side cover normal to  
the plane of hook ≥ 2.5 in., or (2) with side cover normal to the  
plane of the hook ≥ 6db	 1.0

Other:� 1.25
ψc = concrete strength factor

For ​​f​c​ ′​​ < 6000 psi	​​ f​c​ ′​​∕15,000 + 0.6
Other	 1.0

λ = lightweight concrete factor
For lightweight concrete:� 0.75
Other:	 1.0

Bar size and confinement level
ψcs

s/db‡ = 2 s/db‡ ≥ 6

For No. 11 (No. 36) bar and smaller hooks with 

​​ 
Ath

 ___ 
Ahs

 ​​ ≥ 0.4 1.0 5/6

For No. 11 (No. 36) bar and smaller hooks with 

​​ 
Ath

 ___ 
Ahs

 ​​ = 0 

(no confining reinforcement)

5/3 1.0

Hooked bars larger than No. 11 (No. 36) with any  
value of Ath/Ahs

5/3 1.0

†Interpolation permitted.
‡db = diameter of hooked bar.

TABLE 6.3
Confinement and spacing factor ψcs for use in Eq. (6.7) for 
hooked bars†
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In any case, ​​√
__

 ​f​c​ ′​​​ may not exceed 100 psi in Eq. (6.8), and ℓdh may not be less than 8db 
and not less than 6 in. Finally, unlike straight reinforcement, ℓdh may not be reduced 
by the ratio (As required∕As provided).

Transverse confinement steel is essential if the full bar strength must be devel­
oped with minimum concrete confinement, such as when hooks may be required at 
the ends of a simply supported beam or where a beam in a continuous structure 
frames into an end column and does not extend past the column or when bars must 
be anchored in a short cantilever, as shown in Fig.  6.14 (Ref. 6.11). According to 
ACI Code 25.4.3.4, for bars hooked at the discontinuous ends of members with both 
side cover and top or bottom cover less than 2​ 1 _ 2 ​  in., hooks must be enclosed with 
closed stirrups or ties along the full development length, as shown in Fig. 6.14. The 
spacing of the confinement steel must not exceed 3 times the diameter of the hooked 
bar db, and the first stirrup or tie must enclose the bent portion of the hook within a 
distance equal to 2db of the outside of the bend. 

FIGURE 6.14
Transverse reinforcement 
requirements at discontinuous 
ends of members with small 
cover distances.

db

�dh

≤ 2db

≤ 3db

Section a–a

Ties or stirrups
required

a

a

	 EXAMPLE 6.2	 Development of hooked bars in tension.  Referring to the beam-column joint shown in 
Fig. 6.8, the No. 9 (No. 29) negative bars are to be extended into the column and terminated 
in a standard 90° hook, keeping 2  in. clear to the outside face of the column. The column 
width in the direction of beam width is 16  in. Find the minimum length of embedment of 
the hook past the column face, and specify the hook details.

Solution.  The development length for hooked bars, measured from the critical section along 
the bar to the far side of the vertical hook, is given by Eq. (6.8). In this case, the bars are uncoated, 
giving an epoxy coating factor of ψe = 1.0. The No. 9 (No. 29) bars are anchored within the 
column core and the side cover exceeds 2.5 in., so the location factor ψo = 1.0. From Example 6.1, 
the spacing between the bars is 5.11 in., or less than 6db, but the confining reinforcement  
consists of two No. 4 (No. 13) closed ties with a total area Ath = 4 × 0.4 in2 = 0.8 in2, giving 
Ath∕Ahs = 0.4; thus, ψr = 1.0. For ​​f​c​ ′​​ = 4000 psi, ψc = ​​f​c​ ′​​∕15,000 + 0.6 = 4000∕15,000 + 0.6 
= 0.867. This gives 

ℓdh = ​​( ​ fy ψe ψr ψo ψc
  __________ 

55λ​√
__

 ​f​c​ ′​​
 ​   )​​ ​​d​ b​ 

1.5​​ = ​​( ​ 60,000 × 1.0 × 1.0 × 1.0 × 0.867    _____________________________   
55 × 1.0​√

____
 4000​
 ​  )​​​​1.128​1.5​​ = 17.9 in.
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	 6.5	 ANCHORAGE IN TENSION USING HEADED BARS

	 a.	 Requirements for Headed Bars

Headed bars provide an alternative to hooks when the desired tensile stress in the bar 
cannot be developed by bond alone. ACI Code 20.2.1.6 requires that headed deformed 
bars conform to the requirements for HA heads in Annex A1 of ASTM A970. Both 
ASTM A970 and ACI Code 25.4.4.1 require that bearing area of the head Abrg be equal 
to at least 4 times the area of the bar Ab. For headed bars with obstructions, Abrg is taken 
as the gross area of the head minus the maximum area of the obstruction. Figure 6.15a 
shows the maximum dimensions of an obstruction as permitted by ASTM A970. When 
an obstruction has a gap adjacent to the head, as shown in Fig. 6.15b, Abrg is taken as 
the gross area of the head minus the area of the obstruction adjacent to the bearing face 
provided that the gap has a width at least equal to the larger of ​​ 3 _ 8 ​​ in. (10 mm) and ​​ 3 _ 8 ​​db, 
the depth of the gap does not exceed the width of the gap, and the obstruction every­
where within the gap falls inside a straight line connecting the outer dimension of the 
obstruction at the initiation of the gap with the dimension of the obstruction at the 
bearing face of the head. Test results (Refs. 6.29 to 6.32) show that small obstructions, 
no larger than the dimensions shown in Fig. 6.16, do not affect that anchorage strength 
of headed bars and, as a result, according to ASTM A970 are not considered to detract 
from the net bearing area of the head.

The available length within the column is 21 − 2 = 19 in. and can thus accommodate 
ℓdh. Note that although ℓdh is less that the available length, the hook should be placed to the 
far side of the column to use the full 19 in. available. The hook will be bent to a minimum 
diameter of 8 × 1.128 = 9.02 in. The bar will continue for 12 bar diameters, or 13.5 in. past 
the end of the bend in the vertical direction.

FIGURE 6.15
Headed deformed reinforcing 
bar: (a) maximum dimensions 
for obstruction of the 
deformations and (b) details 
of gap in obstruction adjacent 
to a head [gap width ≥ larger 
of ​​ 3 _ 8 ​​ in. (10 mm) and ​​ 3 _ 8 ​​db, 
depth of gap ≤ width of gap, 
obstruction within gap falls 
inside straight line connecting 
outer dimension of obstruction 
at initiation of gap with 
dimension of obstruction at 
bearing face of head]. 

db

≤ 2.2db

≤ 5.25db

Gap

Bearing face

(a ) 

Width of gap

Depth of gap

(b) 

www.konkur.in

Telegram: @uni_k



BOND, ANCHORAGE, AND DEVELOPMENT LENGTH      197

	 b.	 Behavior of Headed Bars

Headed deformed bars resist pullout by a combination of bond along the straight 
length of the bar leading to the head and bearing resistance provided by the head. 
Many aspects of the anchorage behavior of headed bars are similar to those of hooked 
bars, but with some important differences. Tests indicate that failure of headed bars in 
tension is most often accompanied by breakout of the concrete in the direction of the 
tensile force, sometimes accompanied by side-face blowout. Two types of breakout 
failure surface were observed in the beam-column test specimens that served as the 
basis for the ACI Code provisions: a cone-shaped failure, as shown in Fig. 6.17a, and 
a similar failure where a crack extended above the joint region toward the top of the 
column, as shown in Fig. 6.17b.

Tests demonstrate that the anchorage strength of deformed headed bars: 

	 1.	 Increases with the compressive strength of the concrete to a power of ​​f​c​ ′​​ close to ​​ 1 _ 4 ​​, 
as observed for hooked bars. 

db

≤ 1.5db

≤ 0.6db for ≥ No. 8 bar
≤ Min  (0.6 in., db) for < No. 8 bar

FIGURE 6.16
Headed deformed bar with an 
obstruction not considered to 
detract from the net bearing 
area of the head.

(a) (b)

FIGURE 6.17
Breakout failure in beam-
column test specimens 
containing headed deformed 
bars: (a) cone-shaped and  
(b) back cover splitting  
(Ref. 6.29).
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	 2.	 Increases with the center-to-center spacing s of hooked bars up to about 8db and 
then remains constant for higher values of s.

	 3.	 Increases with confinement provided by the surrounding concrete. Headed deformed 
bars located within a column core with at least 2.5 in. of side cover or in other mem­
bers with at least 8db of side cover on the outer headed bar have about 25 percent 
greater anchorage strength than headed bars with lower levels of confinement.

	 4.	 Increases with confinement provided in the form of “parallel tie reinforcement” 
(closed stirrups or ties parallel to the development length ℓdt) in beam-column 
joints and located within 8db of the centerline of the headed bar toward the mid­
dle of the joint, as shown in Fig. 6.18.  As for hooked bars, the contribution of 
parallel tie reinforcement to anchorage strength is based on the ratio of the total 
area of the parallel tie reinforcement Att (all legs of stirrups or ties) to the total 
area of the enclosed headed bars Ahs. Unlike hooked bars, however, the anchorage 
strength of headed bars is not increased by confining reinforcement perpendicular 
to the development length. Because of a lack of test data, Att is not considered for 
anchorages other than beam-column joints.

The ACI Code includes other criteria that are described in Section 6.5c. As 
with hooked bars, the contribution of confining reinforcement (for headed bars in 
the form of parallel ties) is greatest for closely spaced headed bars, becoming less 
effective as the spacing between the hooked bars increases. Thus, the effects of 
increased spacing and increased confinement are not strictly additive.

The provisions in ACI Code 25.4.4 for headed deformed bars in tension are 
based on research summarized in Refs. 6.29 to 6.32. Like hooked bars, the develop­
ment length of headed deformed bars ℓdt is a function of the bar diameter to the  
1.5 power, as shown in Eq. (6.9):

	 ℓdt = ​​( ​  fy ψcs ψo
 ________ 

800 ​​f​c​ ′​​0.25​
 ​ )​​ ​​d​ b​ 

1.5​​	 (6.9)

where �ψcs = factor that increases with the level of the confinement provided by parallel 
ties and spacing of headed deformed bars, as shown in Table 6.4.
�ψo = 1.0 for headed deformed bars terminating inside a column core with side 
cover to the bar ≥ 2.5 in., or in any member with a side cover to the bar ≥ 8db; 

= 1.25 otherwise.
Because of a lack of experimental data, no recommendations were made for 

headed deformed bars larger than No. 11 (No. 36). 

db

8db

�dt

Parallel tie reinforcement
within 8db of centerline of
headed bar 

FIGURE 6.18
Parallel ties located within 
8db of the centerline of the 
headed bar toward the middle 
of the joint contribute to the 
anchorage strength of headed 
bars in beam-column joints.
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	 c.	 Development Length and Modification Factors for Headed Bars

The development length ℓdt is defined as shown in Fig. 6.19 and is measured from 
the bearing face of the head to the critical section. The ACI Code requirements for 
development length of headed bars are based on Eq. (6.9) but with the modifications 
shown in Eq. (6.10). As in the case of hooked bars, rather than represent the effect of 
concrete compressive strength as ​​​f​c​ ′​​0.25​​, as shown in Eq. (6.9), the ACI Code approx­
imates ​​​f​c​ ′​​0.25​​ as ​​√

__
 ​f​c​ ′​​​∕ψc, where ψc is defined following Eqs. (6.8) and (6.10). Also, as 

with hooked bars, the ACI Code simplifies ψcs by replacing it with another term, in 
this case ψp, defined following Eq. (6.10), and although the limits on ψcs are based on 
values of s/db between 2 and 8, the limits on ψp are based on values of s/db between 
3 and 6. Equation (6.10) includes a term for epoxy-coated reinforcement ψe but does 
not include a term for lightweight concrete because no tests have been performed to 
evaluate the anchorage strength of headed deformed bars in lightweight concrete, and 
for that reason, their use is limited to normalweight concrete. In accordance with ACI 
Code 25.4.4, the development length of headed deformed bars in tension is

	 ℓdt = ​​( ​ fy ψe ψp ψo ψc
 __________ 

75​√
__

 ​f​c​ ′​​
 ​  )​​ ​​d​ b​ 

1.5​​	 (6.10)

In Eq. (6.10), the terms are defined as follows:
ψe = epoxy coating factor

For epoxy-coated or zinc and epoxy dual-coated reinforcement:� 1.2
For uncoated and zinc-coated (galvanized) reinforcement:� 1.0

Bar size and confinement level
ψcs

s/db‡ = 2 s/db‡ ≥ 8

​​ 
Ath

 ___ 
Ahs

 ​​ ≥ 0.3 1.2 0.8

​​ 
Ath

 ___ 
Ahs

 ​​ = 0

(no confining reinforcement)

2.0 1.0

†Interpolation permitted.
‡db = diameter of headed deformed bar.

TABLE 6.4
Confinement and spacing factor ψcs for use in Eq. (6.9) for 
deformed headed bars†

FIGURE 6.19
Development length of 
headed deformed bars.

Critical
section

�dt
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ψp = parallel tie reinforcement factor
�For No. 11 (No. 36) and smaller bars with Ath ≥ 0.3Ahs or minimum  
  spacing between hooked bars s ≥ 6db� 1.0
Other:� 1.6

ψo = location factor
�For headed bars (1) terminating inside a column core with side  
  cover to bar ≥ 2.5 in., or (2) with side cover to bar ≥ 6db� 1.0 
Other:� 1.25

ψc = concrete strength factor
For ​​f​c​ ′​​ < 6000 psi�​​ f​c​ ′​​∕15,000 + 0.6
Other:� 1.0

The design provisions are restricted to No. 11 (No. 36) and smaller headed 
bars. The bars, as distinct from the heads, must have a clear cover of at least 2db 
and a center-to-center spacing between bars of at least 3db. The value of ​​√

__
 ​f​c​ ′​​​ may 

not exceed 100 psi in Eq. (6.10), and ℓdt may not be less than 8db and not less than 
6 in. Like ℓdh, ℓdt may not be reduced by the ratio (As required/As provided).

When headed bars from a member, such as a beam or slab, terminate in a 
supporting member, such as the column shown in Fig. 6.20, ACI Commentary 
25.4.4.2 recommends that the bar be extended “through the joint of the far face of 
the confined core of the supporting member, allowing for cover and avoidance of 
interference with column reinforcement, even though the resulting anchorage length 
may exceed ℓdt.” Doing so helps adequately anchor the compressive forces that are 
developed at the face of the head and improves the performance of the beam column 
connection. 

	 d.	 Mechanical Anchorage

In cases where headed bars do not meet the requirements specified in ACI Code 
25.4.4.1 or in cases where bars are terminated by mechanisms such as welded plates 
or other manufactured devices, ACI Code 25.4.5 allows such devices to be used to 
develop the reinforcement if the adequacy of the devices is established by tests. In 
such cases, the development of the reinforcement may consist of the combined con-
tributions of bond along the length of the bar leading to the critical section, plus that 
of the mechanical anchorage, much in the way that the total resistance of headed 
bars is provided.

FIGURE 6.20
Headed deformed bar 
extended to far side of 
column with anchorage 
length that exceeds ℓdt.

�dt

www.konkur.in

Telegram: @uni_k



BOND, ANCHORAGE, AND DEVELOPMENT LENGTH      201

	 EXAMPLE 6.3	 Development of headed deformed bars in tension.  Two No. 7 (No. 22) bars serve as top 
reinforcement for a bracket framing into a 16 × 16 in. column (Fig. 6.21). The bracket projects 
15 in. from the column and is the same width as the column. The top cover to the center of 
the bars is 3  in., and the side cover to the center of the bars is 3.5  in. The bars are spaced 
laterally at 4.9  in. These dimensions are inadequate for straight development length or for 
standard hooks. Based on other reinforcement, cover requirements, and head thickness, total 
development lengths for headed bars of 13.5 in. in the column and 12.5 in. in the bracket are 
available. The reinforcing bars have fy = 60,000 psi, and the concrete is normalweight with ​
f​c​ ′​ = 5000 psi. Determine if a bar with heads at both ends can be used in this application.

Solution.  The minimum head size is Abrg = 4Ab = 2.4 in2. The smaller available anchorage 
length in the bracket governs. The bars are uncoated, giving an epoxy coating factor of ψe = 1.0. 
The No. 7 (No. 22) bars are not anchored in a column core and have less than 6db of side 
cover, so the location factor ψo = 1.25. The center-to-center bar spacing between the bars is 
9 in., which is greater than 6db; thus, ψp = 1.0. For ​f​c​ ′​​ = 5000 psi, ψp = ​f​c​ ′​​∕15,000 + 0.6 = 
5000∕15,000 + 0.6 = 0.933. The development length ℓdt calculated using Eq. (6.10) is

ℓdt = ​​( ​ fy ψe ψp ψo ψc 
  __________ 

75​√
__

 ​f​c​ ′​​
 ​   )​​ ​​d​ b​ 

1.5​​ = ​​( ​ 60,000 × 1.0 × 1.0 × 1.25 × 0.93    _____________________________  
75​√

____
 5000​
 ​  ) ​​​​0.875​1.5​​ = 10.8  in.

which must be checked against the minimum values for ℓdt, which are

ℓdt ≥ 8db = 7  in.
ℓdt ≥ 6  in.

The value of ℓdt obtained using Eq. (6.10) governs and is less than the available anchorage 
lengths in both the column and the bracket. Thus, a bar with heads at both ends can be used. As 
shown in Fig. 6.21, the heads are located at the far faces of the column and the bracket, with a 
distance between the faces of the heads of 26 in.

FIGURE 6.21
Column and bracket for 
headed deformed bar 
development example.

16″

12.5″13.5″

Bracket

Column

Available
anchorage
lengths

15″
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	 6.6	 ANCHORAGE REQUIREMENTS FOR WEB REINFORCEMENT

Stirrups should be carried as close as possible to the compression and tension faces of 
a beam, and special attention must be given to proper anchorage. The truss model (see 
Section 5.8 and Fig. 5.18) for design of shear reinforcement indicates the development of 
diagonal compressive struts, the thrust from which is equilibrated, near the top and bottom 
of the beam, by the tension web members (i.e., the stirrups). Thus, at the factored load, 
the tensile strength of the stirrups must be developed for almost their full height. Clearly, 
it is impossible to do this by development length. For this reason, stirrups normally are 
provided with 90°, 135°, or 180° hooks at their upper end (see Fig. 6.9b for standard hook 
details) and at their lower end are bent 90° to pass around the longitudinal reinforcement. 
In simple spans, or in the positive bending region of continuous spans, where no top bars 
are required for flexure, stirrup support bars must be used. These are usually about the 
same diameter as the stirrups themselves, and they not only provide improved anchorage 
of the hooks but also facilitate fabrication of the reinforcement cage, holding the stirrups 
in position during placement of the concrete.

ACI Code 25.7.1 includes special provisions for anchorage of web reinforce­
ment. The ends of single-leg, simple-U, or multiple-U stirrups are to be anchored 
by one of the following means:

	 1.	 For No. 5 (No. 16) bars and smaller, and for Nos. 6, 7, and 8 (Nos. 19, 22, and 25) 
bars with fyt of 40,000 psi or less, a standard hook around longitudinal reinforce­
ment, as shown in Fig. 6.22a.

	 2.	 For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) stirrups with fyt greater than 40,000 psi, 
a standard hook around a longitudinal bar, plus an embedment between mid­
height of the member and the outside end of the hook equal to or greater than 
0.014db fyt∕λ​​√

__
 ​f​c​ ′​​​ in., as shown in Fig. 6.22b.

ACI Code 25.7.1 specifies further that, between anchored ends, each bend in 
the continuous portion of a simple-U or multiple-U stirrup must enclose a longitu­
dinal bar, as in Fig.  6.22c. Longitudinal bars bent to act as shear reinforcement, if 
extended into a region of tension, must be continuous with longitudinal reinforce­
ment and, if extended into a region of compression, must be anchored beyond 
middepth d∕2 as specified for development length. Pairs of U stirrups or ties so 
placed as to form a closed unit are considered properly spliced when length of laps 
are 1.3ℓd as shown in Fig. 6.22d. In members at least 18  in. deep, such splices are 

FIGURE 6.22
ACI requirements for stirrup 
anchorage: (a) No. 5 (No. 16) 
stirrups and smaller, and Nos. 
6, 7, and 8 (Nos. 19, 22, and 
25) stirrups with yield stress 
not exceeding 40,000 psi;  
(b) Nos. 6, 7, and 8 (Nos.  
19, 22, and 25) stirrups with 
yield stress exceeding 40,000 
psi; (c) wide beam with 
multiple-leg U stirrups; and  
(d) pairs of U stirrups 
forming a closed unit. See 
Fig. 6.9b for alternative 
standard hook details.

(a)

d
2

(b)

 ≥ 

 ≥ 

0.014dbfyt

fc′

(c) (d)

1.3�d
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considered adequate if Ab fyt ≤ 9000  lb and the stirrup legs extend the full depth of 
the member. As will be discussed in Sections 6.11 and 8.5e, respectively, pairs of 
U stirrups may not be used in perimeter beams or for torsional reinforcement.

Other provisions are contained in ACI Code 25.7.1 relating to the use of welded 
wire reinforcement, which is sometimes used for web reinforcement in precast and 
prestressed concrete beams.

	 6.7	 WELDED WIRE REINFORCEMENT

Tensile steel consisting of welded wire reinforcement, with either deformed or smooth 
wires, is commonly used in one-way and two-way slabs and certain other types of 
members (see Section 2.15). For deformed wire reinforcement, some of the develop­
ment is assigned to the welded cross wires and some to the embedded length of the 
deformed wire. According to ACI Code 25.4.6, the development length of welded 
deformed wire reinforcement measured from the point of the critical section to the end 
of the wire is computed as the product of the development length ℓd from Table 6.1 
or from the more accurate Eq. (6.5) and the appropriate modification factor or factors 
related to those equations, except that the development length may not to be less than 
8 in. For welded deformed wire reinforcement with at least one cross wire within the 
development length and not less than 2  in. from the point of the critical section, as 
shown in Fig. 6.23a, a deformed wire factor ψw equal to the greater of

	​​ 
fy − 35,000

  __________ 
fy

 ​​ 	 (6.11a)

and

	​​ 
5db

 ___ s ​​ 	 (6.11b)

is applied, where s is the lateral spacing of the wires being developed; but this factor 
need not exceed 1.0. When ψw from Eq. (6.11a) or (6.11b) is used, the epoxy coating 
factor ψe is taken as 1.0. For welded deformed wire reinforcement with no cross wires 

FIGURE 6.23
Development of (a) welded 
deformed wire reinforcement 
and (b) welded plain wire 
reinforcement.

2″ min.

�d   ≥ 8″

2″ min.

�d  ≥ 6″

Critical section

Critical section

(a) 

(b) 
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within the development length or with a single cross wire less than 2 in. from the point 
of the critical section, the wire fabric factor is taken to be equal to 1.0 and the develop­
ment length determined as for the deformed wire.

For welded plain wire reinforcement, development is considered to be pro­
vided by embedment of two cross wires, with the closer wire not less than 2  in. 
from the critical section, as shown in Fig. 6.23b. However, the development 
length measured from the critical section to the outermost cross wire is not to 
be less than

	 ℓd = 0.27 ​​( ​  fy
 _____ 

λ​√
__

 ​f​c​ ′​​
 ​ )​​ ​​( ​ Ab

 ___ s ​ )​​	 (6.12)

according to ACI Code 25.4.7, where Ab is the cross-sectional area of an individual 
wire to be developed or spliced. The modification factor for excess reinforcement 
may be applied, but ℓd is not to be less than 6  in. for the welded plain wire 
reinforcement.†

	 6.8	 DEVELOPMENT OF BARS IN COMPRESSION

Reinforcement may be required to develop its compressive strength by embedment 
under various circumstances, for example, where bars transfer their share of column 
loads to a supporting footing or where lap splices are made of compression bars in 
a column (see Section 6.13). In the case of bars in compression, a part of the total 
force is transferred by bond along the embedded length, and a part is transferred by 
end bearing of the bars on the concrete. Because the surrounding concrete is rela­
tively free of cracks and because of the beneficial effect of end bearing, shorter basic 
development lengths are permissible for compression bars than for tension bars. If 
transverse confinement steel is present, such as spiral column reinforcement, special 
spiral steel around an individual bar, or column ties with a minimum spacing, the 
required development length is further reduced. Hooks and heads such as are shown 
in Figs. 6.9 and 6.15 are not effective in transferring compression from bars to con­
crete, and, if present for other reasons, should be disregarded in determining required 
embedment length.

According to ACI Code 25.4.9, the development length in compression is the 
greater of

	 ℓdc = ​​( ​  fy ψr
 _______ 

50λ​√
__

 ​f​c​ ′​​
 ​ )​​ db	 (6.13a)

and

	 ℓdc = 0.0003 fy ψr db	 (6.13b)

The factor ψr is based on confining reinforcement and along with the factor for excess 
reinforcement is given in Table 6.5. ψr may be taken as 1.0. 

In no case is ℓdc to be less than 8  in., according to the ACI Code. Basic  
and modified compressive development lengths are given in Table A.11 of 
Appendix A.

† �The ACI Code offers no explanation as to why ℓd,min = 6 in. for welded plain wire reinforcement, but 8 in. for welded deformed wire reinforcement, 
but two cross wires are required for welded plain wire reinforcement versus one cross wire for welded deformed wire reinforcement.
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	 6.9	 BUNDLED BARS

It was pointed out in Section 4.5c that it is sometimes advantageous to “bundle” ten­
sile reinforcement in large beams, with two, three, or four bars in contact, to provide 
for improved placement of concrete around and between bundles of bars. Bar bundles 
are typically triangular or L-shaped for three bars, and square for four and must be 
enclosed in transverse reinforcement. If the bars are in compression, the transverse 
reinforcement must be at least No. 4 (No. 13) bars. When bars are cut off in a bun­
dled group, the cutoff points must be staggered at least 40 diameters. According to 
ACI Code 25.6.1, the development length of individual bars within a bundle, for both 
tension and compression, is that of the individual bar increased by 20 percent for a 
three-bar bundle and by 33 percent for a four-bar bundle, to account for the probable 
deficiency of bond at the inside of the bar group.

A unit of bundled bars is treated as a single bar with a diameter db derived 
from the equivalent total area and having a centroid that coincides with that of the 
bar group (1) to determine the appropriate spacing limitations and cover requirements 
based on db, (2) for use in Table 6.1, (3) when calculating the confinement term Ktr 
in Eq. (6.5), and (4) when selecting the epoxy coating factor ψe.

	 6.10	 BAR CUTOFF AND BEND POINTS IN BEAMS

Chapter 4 deals with moments, flexural stresses, concrete dimensions, and longitudi­
nal bar areas at the critical moment sections of beams. These critical moment sections 
are generally at the face of the supports (negative bending) and near the middle of the 
span (positive bending). Occasionally, haunched members having variable depth or 
width are used so that the concrete flexural capacity will agree more closely with the 
variation of bending moment along a span or series of spans. Usually, however, pris­
matic beams with constant concrete cross-sectional dimensions are used to simplify 
formwork and thus to reduce cost.

The steel requirement, on the other hand, is easily varied in accordance with 
requirements for flexure, and it is common practice either to cut off bars where they 

A. Basic development length ℓdc ≥ ​​( ​  fy ψr
 ________ 

50λ​√
__

 ​f​c​ ′​​ 
 ​ )​​ db

≥ 0.0003 fy ψr db

B. Modification factors to be applied to ℓdc

ψr Reinforcement enclosed within a spiral, a circular continuously 
wound tie with db ≥ ​​ 1 _ 4 ​​ in. and a pitch of 4 in., No. 4 (No. 13) 
bar ties spaced ≤ 4 in. on center, or hoops (closed tie or 
continuously wound tie with seismic hooks at both ends) spaced 
≤ 4 in. on center 0.75
Other 1.0

Reinforcement in excess of that required by analysis ​​ 
As  required

  __________  
As provided

 ​​

TABLE 6.5
Development lengths for deformed bars in compression
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are no longer needed to resist stress or, sometimes in the case of continuous beams, 
to bend up the bottom steel (usually at 45°) so that it provides tensile reinforcement 
at the top of the beam over the supports.

	 a.	 Theoretical Points of Cutoff or Bend

The tensile force to be resisted by the reinforcement at any cross section is

T = As fs = ​​ M __ 
jd

 ​​

where M is the value of bending moment at that section and jd is the internal lever arm of 
the resisting moment. The lever arm jd varies only within narrow limits and is never less 
than the value at the maximum-moment section. Consequently, the tensile force can be 
taken with good accuracy directly proportional to the bending moment. Since it is desira­
ble to design so that the steel everywhere in the beam is as nearly fully stressed as possible, 
it follows that the required steel area is very nearly proportional to the bending moment.

To illustrate, the moment diagram for a uniformly loaded simple-span  
beam shown in Fig.  6.24a can be used as a steel requirement diagram. At the 

FIGURE 6.24
Bar cutoff points from 
moment diagrams.

(a)

(b)
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maximum-moment section, 100 percent of the tensile steel is required (0 percent can 
be discontinued or bent), while at the supports, 0 percent of the steel is theoretically 
required (100 percent can be discontinued or bent). The percentage of bars that could 
be discontinued elsewhere along the span is obtainable directly from the moment 
diagram, drawn to scale. To facilitate the determination of cutoff or bend points for 
simple spans, Graph A.2 of Appendix A has been prepared. It represents a half-
moment diagram for a uniformly loaded simple span.

To determine cutoff or bend points for continuous beams, the moment dia­
grams resulting from loading for maximum span moment and maximum support 
moment are drawn. A moment envelope results that defines the range of values 
of moment at any section. Cutoff or bend points can be found from the appropri­
ate moment curve as for simple spans. Figure  6.24b illustrates, for example, a 
continuous beam with moment envelope resulting from alternate loadings to pro­
duce maximum span and maximum support moments. The locations of the points 
at which 50 percent of the bottom and top steel may theoretically be discontinued 
are shown.

According to ACI Code 6.5, uniformly loaded, continuous reinforced concrete 
beams of fairly regular span may be designed using moment coefficients (see Table 11.1). 
These coefficients, analogous to the numerical constant in the expression ​ 1 _ 8 ​wL2 for 
simple-beam bending moment, give a conservative approximation of span and sup­
port moments for continuous beams. When such coefficients are used in design, 
cutoff and bend points may conveniently be found from Graph A.3 of Appendix A. 
Moment curves corresponding to the various span and support-moment coefficients 
are given at the top and bottom of the chart, respectively.

Alternatively, if moments are found by frame analysis rather than from ACI 
moment coefficients, the location along the span where bending moment reduces to 
any particular value (e.g., as determined by the bar group after some bars are cut 
off), or to zero, is easily computed by statics.

	 b.	 Practical Considerations and ACI Code Requirements

Actually, in no case should the tensile steel be discontinued exactly at the theoretically 
described points. As described in Section 5.3 and shown in Fig. 5.8, when diagonal 
tension cracks form, an internal redistribution of forces occurs in a beam. Prior to 
cracking, the steel tensile force at any point is proportional to the moment at a vertical 
section passing through the point. However, after the crack has formed, the tensile 
force in the steel at the crack is governed by the moment at a section nearer midspan, 
which may be much larger. Furthermore, the actual moment diagram may differ from 
that used as a design basis, due to approximation of the real loads, approximations in 
the analysis, or the superimposed effect of settlement or lateral loads. In recognition of 
these facts, ACI Code 7.7.3.3 and 9.7.3.3, covering one-way slabs and beams, respec­
tively, require that every bar be continued at least a distance equal to the effective 
depth of the beam or 12 bar diameters (whichever is larger) beyond the point at which 
it is theoretically no longer required to resist stress, except at supports of simple spans 
and at the free end of cantilevers.

In addition, it is necessary that the calculated stress in the steel at each section 
be developed by adequate embedded length or end anchorage, or a combination of 
the two. For the usual case, with no special end anchorage, this means that the full 
development length ℓd must be provided beyond critical sections at which peak 
stress exists in the bars. These critical sections are located at points of maximum 
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moment and at points where adjacent terminated reinforcement is no longer needed 
to resist bending.†

Further reflecting the possible change in peak stress location, ACI Code 7.7.3.8 
and 9.7.3.8 require that at least one-third of the positive-moment steel (one-fourth 
in continuous spans) be continued uninterrupted along the same face of the beam a 
distance at least 6 in. into the support. When a flexural member is a part of a primary 
lateral load resisting system, positive-moment reinforcement required to be extended 
into the support must be anchored to develop the yield strength of the bars at the 
face of support to account for the possibility of reversal of moment at the supports. 
According to ACI Code 7.7.3.8 and 9.7.3.8, at least one-third of the total reinforce­
ment provided for negative moment at the support must be extended beyond the 
extreme position of the point of inflection a distance not less than one-sixteenth the 
clear span, or d, or 12db, whichever is greatest.

Requirements for bar cutoff or bend point locations are summarized in Fig. 6.25. 
If negative bars L are to be cut off, they must extend a full development length ℓd 
beyond the face of the support. In addition, they must extend a distance d or 12db beyond 
the theoretical point of cutoff defined by the moment diagram. The remaining negative 
bars M (at least one-third of the total negative area) must extend at least ℓd beyond the 
theoretical point of cutoff of bars L and in addition must extend d, 12db, or ℓn∕16 
(whichever is greatest) past the point of inflection of the negative-moment diagram.

If the positive bars N are to be cut off, they must project ℓd past the point of 
theoretical maximum moment, as well as d or 12db beyond the cutoff point from the 
positive-moment diagram. The remaining positive bars O must extend ℓd past the theo­
retical point of cutoff of bars N and must extend at least 6 in. into the face of the support.

When bars are cut off in a tension zone, there is a tendency toward the formation 
of premature flexural and diagonal tension cracks in the vicinity of the cut end. This 
may result in a reduction of shear capacity and a loss in overall ductility of the beam. 
ACI Code 7.7.3.5 and 9.7.3.5 require special precautions, specifying that no flexural 
bar may be terminated in a tension zone unless one of the following conditions is 
satisfied:

	 1.	 The shear is not over two-thirds of the design strength ϕVn.
	 2.	 For No. 11 (No. 36) or smaller bars, continuing bars provide twice the area 

required for flexure at that point, and the shear does not exceed three-quarters of 
the design strength ϕVn.

	 3.	 Stirrups in excess of those normally required are provided over a distance along 
each terminated bar from the point of cutoff equal to ​ 3 _ 4 ​ d. These “binder” stirrups 
shall provide an area Av  ≥  60bws∕fyt. In addition, the stirrup spacing must not 
exceed d∕8βb, where βb is the ratio of the area of bars cut off to the total area of 
bars at the section.

As an alternative to cutting off the steel, tension bars may be anchored by bending 
them across the web and making them continuous with the reinforcement on the oppo­
site face. Although this leads to some complication in detailing and placing the steel, 
thus adding to construction cost, some engineers prefer the arrangement because added 
insurance is provided against the spread of diagonal tension cracks. In some cases, 
particularly for relatively deep beams in which a large percentage of the total bottom 

† �The ACI Code is ambiguous as to whether or not the extension length d or 12db is to be added to the required development length ℓd. The 
Code Commentary presents the view that these requirements need not be superimposed, and Fig. 6.25 has been prepared on that basis. 
However, the argument just presented regarding possible shifts in moment curves or steel stress distribution curves leads to the conclusion that 
these requirements should be superimposed. In such cases, each bar should be continued a distance ℓd plus the greater of d or 12db beyond the 
peak stress location.
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steel is to be bent, it may be impossible to locate the bend-up point for bottom bars 
far enough from the support for the same bars to meet the requirements for top  
steel. The theoretical points of bend should be checked carefully for both bottom and 
top steel.

Because the determination of cutoff or bend points may be rather tedious, 
particularly for frames that have been analyzed by elastic methods rather than by 
moment coefficients, many designers specify that bars be cut off or bent at more or 
less arbitrarily defined points that experience has proved to be safe. For nearly equal 
spans, uniformly loaded, in which not more than about one-half the tensile steel is 
to be cut off or bent, the locations shown in Fig.  6.26 are satisfactory. Note, in 
Fig.  6.26, that the beam at the exterior support at the left is shown to be simply 
supported. If the beam is monolithic with exterior columns or with a concrete wall 
at that end, details for a typical interior span could be used for the end span as well.

	 c.	 Special Requirements near the Point of Zero Moment

While the basic requirement for flexural tensile reinforcement is that a full develop­
ment length ℓd be provided beyond the point where the bar is assumed fully stressed 
to fy, this requirement may not be sufficient to ensure safety against bond distress. 

FIGURE 6.25
Bar cutoff requirements of 
the ACI Code.
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Figure  6.27 shows the moment and shear diagram representative of a uniformly 
loaded continuous beam. Positive bars provided to resist the maximum moment at 3 
are required to have a full development length beyond the point 3, measured in the 
direction of decreasing moment. Thus, ℓd in the limiting case could be exactly equal 
to the distance from point 3 to the point of inflection. However, if that requirement 
were exactly met, then at point 2, halfway from 3 to the point of inflection, those bars 

FIGURE 6.26
Cutoff or bend points for  
bars in approximately equal 
spans with uniformly 
distributed loads.
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would have only one-half their development length remaining, whereas the moment 
would be three-quarters of that at point 3, and three-quarters of the bar force must 
yet be developed. This situation arises whenever the moments over the development 
length are greater than those corresponding to a linear reduction to zero. Therefore, the 
problem is a concern in the positive-moment region of continuous uniformly loaded 
spans, but not in the negative-moment region.

As discussed in Section 6.1, the bond force U per unit length along the tensile 
reinforcement in a beam is U = dT∕dx, where dT is the change in bar tension in the 
length dx. Since dT = dM∕jd, this can be written

	 U = ​​  dM
 _____ 

jd dx
 ​​	 (a)

that is, the bond force per unit length of bar, generated by bending, is proportional to 
the slope of the moment diagram. In reference to Fig. 6.27a, the maximum bond force 
U in the positive-moment region would therefore be at the point of inflection, and 
U would gradually diminish along the beam toward point 3. Clearly, a conservative 
approach in evaluating adequacy in bond for those bars that are continued as far as 
the point of inflection (not necessarily the full As provided for Mu at point 3) would 
be to require that the bond resistance, which is assumed to increase linearly along the 
bar from its end, be governed by the maximum rate of moment increase, that is, the 
maximum slope dM∕dx of the moment diagram, which for positive bending is seen to 
occur at the inflection point.

Because the slope of the moment diagram at any point is equal to the value of 
the shear force at that point, the slope of the moment diagram at the point of inflec­
tion is Vu. With reference to Fig. 6.27, a dashed line may therefore be drawn tangent 
to the moment curve at the point of inflection having the slope equal to the value 
of shear force Vu. Then if Mn is the nominal flexural strength provided by those bars 
that extend to the point of inflection, and if the moment diagram were conservatively 
assumed to vary linearly along the dashed line tangent to the actual moment curve, 
from the basic relation that Mn∕a = Vu, a distance a is established:

	 a = ​​ 
Mn

 ___ 
Vu

 ​​	 (b)

If the bars in question were fully stressed at a distance a to the right of the point of 
inflection, and if the moments diminished linearly to the point of inflection, as sug­
gested by the dashed line, then bond failure would not occur if the development length 
ℓd did not exceed the distance a. The actual moments are less than indicated by the 
dashed line, so the requirement is on the safe side.

If the bars extend past the point of inflection toward the support, as is always 
required, then the extension can be counted as contributing toward satisfying the 
requirement for embedded length. Arbitrarily, according to ACI Code 7.7.3.8 and 
9.7.3.8, a length past the point of inflection not greater than the larger of the beam 
depth d or 12 times the bar diameter db may be counted toward satisfying the require­
ment. Thus, the requirement for tensile bars at the point of inflection is that

	 ℓd ≤ ​​ 
Mn

 ___ 
Vu

 ​​ + ℓa	 (6.14)

where  Mn = �nominal flexural strength assuming all reinforcement at section to be 
stressed to fy
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Vu = factored shear force at section
ℓa =  �embedded length of bar past point of zero moment, but not to 

exceed the greater of d or 12db

A corresponding situation occurs near the supports of simple spans carrying uni­
form loads, and similar requirements must be imposed. However, because of the bene­
ficial effect of vertical compression in the concrete at the end of a simply supported span, 
which tends to prevent splitting and bond failure along the bars, the value Mn∕Vu may 
be increased 30 percent for such cases, according to ACI Code 7.7.3.8 and 9.7.3.8. Thus, 
at the ends of a simply supported span, the requirement for tension reinforcement is

	 ℓd ≤ 1.3 ​​ 
Mn

 ___ 
Vu

 ​​ + ℓa	 (6.15)

The consequence of these special requirements at the point of zero moment is 
that, in some cases, smaller bar sizes must be used to obtain smaller ℓd, even though 
requirements for development past the point of maximum stress are met.

It may be evident from review of Sections 6.10b and 6.10c that the determi­
nation of cutoff or bend points in flexural members is complicated and can be 
extremely time-consuming in design. It is important to keep the matter in perspective 
and to recognize that the overall cost of construction will be increased very little if 
some bars are slightly longer than absolutely necessary, according to calculation, or 
as dictated by ACI Code provisions. In addition, simplicity in construction is a 
desired goal, and can, in itself, produce compensating cost savings. Accordingly, 
many engineers in practice continue all positive reinforcement into the face of the 
supports the required 6  in. and extend all negative reinforcement the required dis­
tance past the points of inflection, rather than using staggered cutoff points.

	 6.11	 STRUCTURAL INTEGRITY PROVISIONS

Experience with structures that have been subjected to damage to a major supporting 
element, such as a column, owing to accident or abnormal loading has indicated that 
total collapse can be prevented through relatively minor changes in bar detailing. If 
some reinforcement, properly confined, is carried continuously through a support, then 
even if that support is damaged or destroyed, catenary action of the beams can prevent 
total collapse. In general, if beams have bottom and top steel meeting or exceeding the 
requirements summarized in Sections 6.10b and 6.10c, and if binding steel is provided in 
the form of properly detailed stirrups, then that catenary action can usually be ensured.

According to ACI Code 9.7.7.1, beams at the perimeter of the structure (span­
drel beams) must have continuous reinforcement passing through the region bounded 
by the longitudinal reinforcement of the columns consisting of at least one-sixth of 
the tension reinforcement required for negative moment at the support, but not less 
than two bars, and at least one-quarter of the tension reinforcement required for 
positive moment at midspan, but not less than two bars. At noncontinuous supports, 
the reinforcement must be anchored using a standard hook or a headed deformed bar 
to develop fy at the face of the support. The continuous reinforcement must be 
enclosed in accordance with ACI Code 25.7.1.6 by closed stirrups perpendicular to 
the axis of the member, hoops as used in seismic design (see Section 20.4), or a 
closed cage of welded wire reinforcement with transverse wires perpendicular to the 
axis of the member. This transverse reinforcement must be anchored by a 135° 
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standard hook (Fig. 6.9b) around a longitudinal bar, or where the concrete surround­
ing the anchorage is restrained against spalling by a flange or slab, by either a 90° 
or 135° standard hook around a longitudinal bar.

Figure 6.28 shows a two-piece stirrup that meets the requirements of ACI Code 
25.7.1.6. Although the spacing of these stirrups is not specified, the requirements 
for minimum shear steel given in Section 5.5b provide guidance in regions where 
shear does not require closer spacing. The stirrups need not be extended through the 
joints. Overlapping pairs of U stirrups of the type shown in Fig. 6.22d are not per­
mitted in perimeter beams because damage to the side cover concrete may cause 
both the stirrups and top longitudinal reinforcement to tear out of the concrete, thus 
preventing the longitudinal reinforcement from acting as a catenary.

The required continuity of longitudinal steel can be provided using top rein­
forcement spliced at midspan and bottom reinforcement spliced at or near the supports 
using Class B tension splices, or mechanical or welded splices (see Section 6.13).

In other than perimeter beams, ACI Code 9.7.7.2 requires that at least one-quarter 
of the positive-moment reinforcement required at midspan, but not less than two bars, 
must pass through the column longitudinal reinforcement and must be continuous. The 
requirements for anchoring this longitudinal reinforcement at noncontinuous supports 
and for splicing the bars to provide continuity are the same as for perimeter beams.

For one-way slabs, ACI Code 7.7.7 requires that at least one-quarter of the 
maximum positive-moment reinforcement be continuous and, at noncontinuous sup­
ports, the reinforcement be anchored to develop fy at the face of the support. If splices 
are necessary in the structural integrity reinforcement, the reinforcement must be 
spliced near supports using Class B tension splices, or mechanical or welded splices. 

Note that these provisions require very little additional steel in the structure. 
At least one-quarter of the bottom bars must be extended 6 in. into the support by 
other ACI Code provisions; the structural integrity provisions merely require that 
these bars be made continuous or spliced. Similarly, ACI Code 9.7.3.8 requires that 
at least one-third of the negative bars in beams be extended a certain minimum 
distance past the point of inflection; the structural integrity provisions for perimeter 
beams require only that one-half of those bars (that is, one-sixth of the negative bars 
at the face of the support) be further extended and spliced at midspan.

	 6.12	 INTEGRATED BEAM DESIGN EXAMPLE

In this and in the preceding chapters, the several aspects of the design of reinforced 
concrete beams have been studied more or less separately: first the flexural design, 
then design for shear, and finally for bond and anchorage. The following example is 
presented to show how the various requirements for beams, which are often in some 
respects conflicting, are satisfied in the overall design of a representative member.

FIGURE 6.28
Two-piece stirrup meeting 
the requirements of ACI 
Code 25.7.1.6 for 
confinement of longitudinal 
integrity reinforcement in 
perimeter beams. The 90° 
hook must be placed adjacent 
to the slab.

Confinement
from slab
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	 EXAMPLE 6.4	 Integrated design of T beam.  A floor system consists of single-span T beams 8 ft on centers, 
supported by 12 in. masonry walls spaced at 25 ft between inside faces. The general arrange­
ment is shown in Fig. 6.29a. A 5  in. monolithic slab carries a uniformly distributed service 
live load of 165 psf. The T beams, in addition to the slab load and their own weight, must 
carry two 16,000 lb equipment loads applied over the stem of the T beam 3 ft from the span 

FIGURE 6.29
T beam design for Example 6.4.

9.0 kips

5″

1.0″

8.0′ typical

1.0′

1.0′ 1.0′6′

10.0′ 10.0′

14.70′

10.00′ 3.00′

9″

2″

6″

22″ 18″

5″

12″
8@5″ 5@9″ 2 No. 9 (N0.29) +

2 No. 8 (N0.25)

2 No. 9 (N0.29) +
2 No. 8 (N0.25)

7@4″

3′–4″
1′–1

2.00′

6.0′
26.0′

64.6 kips
58.6 kips

20.5 kips

25.6
kips

25.6
kips

3.00 kips/ft

Section A–A

Equipment
 loads

4 No. 3 (No. 10)
U stirrups @ 4

CL

2 No. 3 (No. 10)

No. 3 (No. 10)
U stirrups

(b)

(c)

(d)
(e)

1″
2

1″
2

Equipment loads

A

A

16 kips 16 kips

Elevation view

Masonry wall

(a)

www.konkur.in

Telegram: @uni_k



BOND, ANCHORAGE, AND DEVELOPMENT LENGTH      215

centerline as shown. A complete design is to be provided for the T beams, using concrete of 
4000 psi strength and bars with 60,000 psi yield stress. (Note: Because normalweight concrete 
and uncoated reinforcement with a yield strength of 60,000 psi are used, λ, ψe, and ψg = 1.0. λ 
is dropped from the calculations for shear and bond, and ψe and ψg are dropped from the 
calculations for bond.)

Solution.  According to the ACI Code, the span length is to be taken as the clear span plus 
the beam depth, but need not exceed the distance between the centers of supports. The latter 
provision controls in this case, and the effective span is 26 ft. Estimating the beam web 
dimensions to be 12 × 24  in., the calculated and factored dead loads are as follows:

Slab:

​ 5 ___ 
12

 ​ × 150 × 7 = 440 lb∕ft

Beam:

​​ 12 × 24 _______ 
144

 ​​  150 = 300 lb∕ft

         wd = 740 lb∕ft

      1.2wd = 890 lb∕ft

The uniformly distributed live load is

 wl = 165 × 8 = 1320 lb∕ft

1.6wl = 2110 lb∕ft

The factored live load is

wu = 1.2wd + 1.6wl = 890 + 2110 = 3000 lb∕ft = 3.0 kips∕ft

Live load factors are applied to the two concentrated loads to obtain Pu  =  16,000  ×  1.6  =   
25,600 lb. Factored loads are summarized in Fig. 6.29b.

In lieu of other controlling criteria, the beam web dimensions will be selected on the basis 
of shear. The left and right reactions under factored load are 25.6 + 3.00 × 13 = 64.6 kips. With  
the effective beam depth estimated to be 20 in., the maximum shear that need be considered 
in design is 64.6  −  3.00(0.50  +  1.67)  =  58.1  kips. Although the ACI Code permits Vs as 
high as 8 ​​√

__
 ​f​c​ ′​​​bwd, this would require very heavy web reinforcement. A lower limit of  

4 ​​√
__

 ​f​c​ ′​​​ bwd will be adopted. With Vc = 2 ​​√
__

 ​f​c​ ′ ​​​bwd this results in a maximum Vn = 6 ​​√
__

 ​f​c​ ′ ​​​bwd. Then 
bw d = Vu∕(6ϕ ​​√

__
 ​f​c​ ′​​​) = 58,100∕(6 × 0.75​​√

_____
 4000​​) = 204 in2. Cross-sectional dimensions 

bw = 12 in. and d = 18 in. are selected, providing a total beam depth of 22 in. The assumed 
dead load of the beam need not be revised.

According to the Code, the effective flange width b is the smallest of the three quantities

16hf + bw = 80 + 12 = 92  in.

 ​​ 
2ℓn

 ___ 
8
 ​​  + bw = ​​ 26 × 12 _______ 

4
 ​​  + 12 = 90  in.

Centerline beam spacing = 96  in.

The second controls in this case. The maximum moment is at midspan, where

Mu = ​​( ​ 
1 __ 
8
 ​ × 3.00 × 262

)​​ + (25.6 × 10) = 510 ft-kips
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Assuming for trial that the stress-block depth will equal the slab thickness leads to

As = ​​ 
Mu
 ___________  

ϕfy(d − a∕2)
 ​​ = ​​  510 × 12  _______________  

0.90 × 60 × 15.5
 ​​ = 7.31 in2

Then

a = ​​ 
As fy
 _______ 

0.85​f​c​ ′​b
 ​​ = ​​  7.31 × 60  ____________  

0.85 × 4 × 90
 ​​ = 1.43  in.

The stress-block depth is seen to be less than the slab depth; rectangular beam equations are 
valid. An improved determination of As is

As = ​​  510 × 12  ________________  
0.90 × 60 × 17.28

 ​​ = 6.56 in2

A check confirms that this is well below the maximum permitted reinforcement ratio. Four 
No. 9 (No. 29) plus four No. 8 (No. 25) bars will be used, providing a total area of 7.14 in2. 
They will be arranged in two rows, as shown in Fig. 6.29d, with No. 9 (No. 29) bars at the outer 
end of each row. Beam width bw is adequate for this bar arrangement.

While the ACI Code permits discontinuation of two-thirds of the longitudinal reinforce­
ment for simple spans, in the present case it is convenient to discontinue only the upper layer 
of steel, consisting of one-half of the total area. The moment capacity of the member after 
the upper layer of bars has been discontinued is then found:

a = ​​  3.57 × 60  ____________  
0.85 × 4 × 78

 ​​ = 0.81  in.

ϕMn = ϕAs fy ​​( d −  ​ a __ 
2
 ​ )​​ = 0.90 × 3.57 × 60 × 18.66 × ​​ 1 ___ 

12
 ​​ = 300 ft-kips

For the present case, with a moment diagram resulting from combined distributed and con­
centrated loads, the point at which the applied moment is equal to this amount must be 
calculated. (In the case of uniformly loaded beams, Graphs A.2 and A.3 in Appendix A are 
helpful.) If x is the distance from the support centerline to the point at which the moment is 
300 ft-kips, then

64.6x − ​​ 3.00x2
 ______ 

2
 ​​  = 300

             x = 5.30

The upper bars must be continued at least d = 1.50 ft or 12db = 1.13 ft beyond this theoretical 
point of cutoff. In addition, the full development length ℓd must be provided past the maximum-
moment section at which the stress in the bars to be cut is assumed to be fy. Because of the 
heavy concentrated loads near the midspan, the point of peak stress will be assumed to be at the 
concentrated load rather than at midspan. For the four upper bars, assuming 1.50 in. clear cover 
to the outside of the No. 3 (No. 10) stirrups, the clear side cover is 1.50 + 0.38 = 1.88 in., or 
1.66db. Assuming equal clear spacing between all four bars, that clear spacing is [12.00 − 2 ×  
(1.50 + 0.38 + 1.13 + 1.00)]∕3 = 1.33 in., or 1.18db. Noting that the ACI Code requirements 
for minimum stirrups are met, it is clear that all restrictions for the use of the simplified equa­
tion for development length are met. From Table 6.1 (Section 6.3), the required development 
length is

ℓd = ​​ 
60,000

 ________ 
20​√

____
 4000​
 ​​ 1.13 = 47 × 1.13 = 53  in.

or 4.42 ft. Thus, the bars must be continued at least 3.00 + 4.42 = 7.42 ft past the midspan 
point, but in addition they must continue to a point 5.30 − 1.50 = 3.80  ft from the support 
centerline. The second requirement controls and the upper layer of the bars will be terminated, 

www.konkur.in

Telegram: @uni_k



BOND, ANCHORAGE, AND DEVELOPMENT LENGTH      217

as shown in Fig. 6.29e, 3.30 ft from the support face. The bottom layer of bars will be extended 
to a point 3 in. from the end of the beam, providing 5.55 ft embedment past the critical section 
for cutoff of the upper bars. This exceeds the development length of the lower set of bars, con-
firming that cutoff and extension requirements are met.

Note that a simpler design, using very little extra steel, would result from extending 
all eight positive bars into the support. Whether or not the more elaborate calculations and 
more complicated placement are justified would depend largely on the number of repetitions 
of the design in the total structure.

Checking by Eq. (6.15) to ensure that the continued steel is of sufficiently small diameter 
determines that

ℓd ≤ 1.3 ​​ 333 × 12 ________ 
64.6

 ​​  + 3 = 83  in.

The actual ℓd of 53 in. meets this restriction.
Since the cut bars are located in the tension zone, special binding stirrups will be used 

to control cracking; these will be selected after the normal shear reinforcement has been 
determined.

The shear diagram resulting from application of factored loads is shown in Fig. 6.29c. 
The shear contribution of the concrete is

ϕVc = 0.75 × 2​​√
____

 4000​​ × 12 × 18 = 20,500 lb

Thus, web reinforcement must be provided for that part of the shear diagram shown shaded.
No. 3 (No. 10) stirrups are selected. The maximum spacings must not exceed d∕2 = 9 in., 

24 in., or Av fyt∕(0.75​​√
__

 ​f​c​ ′​​​ bw) = 0.22 × 60,000∕(0.75​​√
____

 4000​​ × 12) = 23 in. ≤ Av fyt∕50bw = 0.22 × 
60,000∕(50 × 12) = 22  in. The first criterion controls here. For reference, from Eq. (5.14a) 
the hypothetical stirrup spacing at the support is

s0 = ​​ 0.75 × 0.22 × 60 × 18   ____________________  
64.6 − 20.5

 ​​  = 4.04  in.

and at 2 ft intervals along the span, 
 s2 =   4.68  in.
 s4 =   5.55  in.
 s6 =   6.83  in.
 s8 =   8.87  in.
s10 = 12.64  in.

The spacing need not be closer than that required 2.00 ft from the support centerline (d = 18 in. 
at the face of the support). In addition, stirrups are not required past the point of application 
of concentrated load, since beyond that point the shear is less than one-half of ϕVc. The final 
spacing of vertical stirrups selected is

 1 space at 2  in. =     2  in.
7 spaces at 4  in. =   28  in.
8 spaces at 5  in. =   40  in.
5 spaces at 9  in. =   45  in.

Total = 115 in. = �9 ft 7 in. from the face of the 
support (121 in. = 10 ft 1 in. 
from the support centerline)

Two No. 3 (No. 10) longitudinal bars will be added to meet anchorage requirements and fix the 
top of the stirrups.

In addition to the shear reinforcement just specified, it is necessary to provide extra web 
reinforcement over a distance equal to ​ 3 _ 4 ​ d, or 13.5 in., from the cut ends of the discontinued steel. 
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 	 6.13	 BAR SPLICES

In general, reinforcing bars are stocked by suppliers in lengths of 60 ft for bars from 
No. 5 to No. 18 (No. 16 to No. 57) and in 20 or 40 ft lengths for smaller sizes. For this 
reason, and because it is often more convenient to work with shorter bar lengths, it is 
frequently necessary to splice bars in the field. Splices in reinforcement at points of 
maximum stress should be avoided, and when splices are used, they should be stag­
gered, although neither condition is practical, for example, in compression splices in 
columns.

Splices for No. 11 (No. 36) bars and smaller are usually made simply by lap­
ping the bars a sufficient distance to transfer stress by bond from one bar to the 
other. The lapped bars are usually placed in contact and lightly wired so that they 
stay in position as the concrete is placed. Alternatively, splicing may be accom­
plished by welding or by sleeves or mechanical devices. ACI Code 25.5.1.5 requires 
that for spliced reinforcement with fy ≥ 80,000 psi spaced closer than 6 in. on center, 
transverse reinforcement must be provided so that Ktr is not smaller than 0.5db. As 
pointed out in Section 6.3a, however, ACI Code 9.7.1.4 and 10.7.1.3 require that Ktr 
be at least 0.5db in beams and columns where reinforcement with fy ≥ 80,000 psi is 
developed or spliced, independent of the bar spacing. ACI Code 25.5.1.1 prohibits 
use of lapped splices for bars larger than No. 11 (No. 36), except that No. 14 and 
No. 18 (No. 43 and No.  57) bars may be lapped in compression with No. 11 (No. 
36) and smaller bars per ACI Code 16.3.5.4 and 25.5.5.3. For bars that carry only 
compression, it is possible to transfer load by end bearing of square cut ends, if the 
bars are accurately held in position by a sleeve or other device. If bars of different 
sizes must be spliced, the splice length must equal or exceed the greater of the splice 
length of the smaller bar and the development length of the larger bar.

Lap splices of bars in bundles are based on the lap splice length required for 
individual bars within the bundle but must be increased in length by 20 percent for 
three-bar bundles and by 33 percent for four-bar bundles because of the reduced 
effective perimeter. Individual bar splices within a bundle should not overlap, and 
entire bundles must not be lap-spliced.

According to ACI Code 25.5.7.1, welded splices must develop at least 125 percent 
of the specified yield strength of the bar. The same requirement applies to full 
mechanical connections. This ensures that an overloaded spliced bar would fail by 
ductile yielding in the region away from the splice, rather than at the splice where 
brittle failure is likely.

	 a.	 Lap Splices in Tension

The required length of lap for tension splices ℓst is stated in terms of the development 
length ℓd. In the process of calculating ℓd, the usual modification factors are applied, 
except that the reduction factor for excess reinforcement should not be applied because 
that factor is already accounted for in the splice specification.

The spacing of this extra web reinforcement must not exceed d∕8βb = 18∕(8 × ​ 1 _ 2 ​) = 4.5  in. In 
addition, the area of added steel within the distance s must not be less than 60bw s∕fyt = 60 ×  
12 × 4.5∕60,000 = 0.054 in2. For convenience, No. 3 (No. 10) stirrups will be used for this 
purpose also, providing an area of 0.22 in2 in the distance s. The placement of the four extra 
stirrups is shown in Fig. 6.29e.
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Two different classifications of lap splices are established, corresponding to the 
minimum length of lap required: a Class A splice requires a lap of 1.0ℓd, and a Class B 
splice requires a lap of 1.3ℓd. In either case, a minimum length of 12 in. applies. For 
Class B splices, the 12  in. minimum applies to 1.3ℓd, not to the value of ℓd used to 
calculate the lap length. Lap splices, in general, must be Class B splices, according to 
ACI Code 25.5.2.1, except that Class A splices are allowed when the area of reinforce­
ment provided is at least twice that required by analysis over the entire length of the 
splice and when one-half or less of the total reinforcement is spliced within the required 
lap length. The effect of these requirements is to encourage designers to locate splices 
away from regions of maximum stress, to a location where the actual steel area is at 
least twice that required by analysis, and to stagger splices.

Spiral reinforcement is spliced with a lap of 48db for uncoated bars and 72db for 
epoxy-coated bars, in accordance with ACI Code 25.7.3.6. The lap for epoxy-coated 
bars is reduced to 48db if the bars are anchored with a standard stirrup or tie hook.

	 b.	 Compression Splices

Reinforcing bars in compression are spliced mainly in columns, where bars are most 
often terminated just above each floor or every other floor. This is done partly for 
construction convenience, to avoid handling and supporting very long column bars, 
but it is also done to permit column steel area to be reduced in steps, as loads become 
lighter at higher floors.

Compression bars may be spliced by lapping, by direct end bearing, or by 
welding or mechanical devices that provide positive connection. The minimum 
length of lap for compression splices is set according to ACI Code 25.5.5.1:

	 For bars with fy ≤ 60,000 psi    ℓsc = 0.0005fy db

	For bars with 60,000 psi < fy ≤ 80,000 psi    ℓsc = (0.0009fy – 24)db

	 For bars with fy > 80,000 psi    ℓsc = �longer of (0.0009fy – 24)db 
and ℓst

but not less than 12 in. For ​​f​c​ ′​​ less than 3000 psi, the required lap is increased by one-
third. When bars of different size are lap-spliced in compression, the splice length is 
to be the larger of the development length of the larger bar and the splice length of the 
smaller bar. In exception to the usual restriction on lap splices for large-diameter bars, 
No. 14 and No. 18 (No. 43 and No. 57) bars may be lap-spliced to No. 11 (No. 36) and 
smaller bars.

Direct end bearing of the bars has been found by test and experience to be an 
effective means for transmitting compression. In such a case, the bars must be held 
in proper alignment by a suitable device. The bar ends must terminate in flat surfaces 
within 1.5° of a right angle, and the bars must be fitted within 3° of full bearing 
after assembly, according to ACI Code 25.5.6. End bearing splices are limited to 
members where ties, closed stirrups, or spirals are used. 

	 c.	 Column Splices

Lap splices, butt-welded splices, mechanical connections, or end-bearing splices may 
be used in columns, with certain restrictions. Reinforcing bars in columns may be 
subjected to compression or tension, or, for different load combinations, both tension 
and compression. Accordingly, column splices must conform in some cases to the 
requirements for compression splices only or tension splices only or to requirements 
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for both. ACI Code 10.7.5.2 requires that a minimum tension capacity be provided in 
each face of all columns, even where analysis indicates compression only. Ordinary 
compressive lap splices provide sufficient tensile resistance, but end-bearing splices 
may require additional bars for tension, unless the splices are staggered.

For lap splices, where the bar stress due to factored loads is compression, 
column lap splices must conform to the requirements presented in Section 6.13b for 
compression splices. Where the stress is tension and does not exceed 0.5fy, ACI Code 
10.7.5.2 requires that lap splices must be Class B if more than one-half the bars are 
spliced at any section, or Class A if one-half or fewer are spliced and alternate lap 
splices are staggered by ℓd. If the stress is tension and exceeds 0.5fy, then lap splices 
must be Class B, according to ACI Code 10.7.5.2.

If lateral ties are used throughout the splice length having an effective area of 
at least 0.0015hs in both directions, where s is the spacing of ties and h is the over­
all thickness of the member, the required splice length may be multiplied by 0.83 
but must be at least 12  in. The tie legs perpendicular to the dimension h are used 
to calculate the effective tie area. If spiral reinforcement confines the splice, the 
length required may be multiplied by 0.75 but again must be at least 12  in.

End-bearing splices, as described above, may be used for column bars stressed 
in compression, if the splices are staggered or additional bars are provided at splice 
locations. The continuing bars in each face must have a tensile strength of not less 
than 0.25fy times the area of reinforcement in that face.

As mentioned in Section 6.13b, column splices are commonly made just above 
a floor. However, for frames subjected to lateral loads, a better location is within the 
center half of the column height, where the moments due to lateral loads are much 
lower than at floor level. Such placement is mandatory for columns in “special 
moment frames” designed for seismic loads, as will be discussed in Chapter 20.

	 EXAMPLE 6.5	 Compression splice of column reinforcement.  In reference to Fig. 6.8, four No. 11 (No. 36)  
column bars from the floor below are to be lap-spliced with four No. 10 (No. 32) column 
bars from above, and the splice is to be made just above a construction joint at floor level. 
The column, measuring 12 × 21 in. in cross section, will be subject to compression only for 
all load combinations. Transverse reinforcement consists of No. 4 (No. 13) ties at 16  in. 
spacing. All vertical bars may be assumed to be fully stressed. Calculate the required splice 
length. Material strengths are fy = 60,000 psi and ​​f​c​ ′​​ = 4000 psi.

Solution.  The length of the splice must be the larger of the development length ℓdc of the 
No. 11 (No. 36) bars and the splice length ℓsc of the No. 10 (No. 32) bars. For the No. 11 
(No.  36) bars, the development length is equal to the larger of the values obtained with  
Eqs. (6.10a) and (6.10b):

ℓdc = ​​( ​  fy ψr
 _______ 

50λ​√
__

 ​f​c​ ′​​
 ​ )​​ db = ​​( ​  60,000 × 1.0  ________________  

50 × 1.0 ×  ​√
____

 4000​
 ​ )​​ 1.41 = 27  in.

ℓdc = 0.0003 fy db = 0.0003 × 60,000 × 1.41 = 25  in.

The first criterion controls. No modification factors apply. For the No. 10 (No. 32) bars, the 
compression splice length is

ℓsc = 0.0005 fy db = 0.0005 × 60,000 × 1.27 = 38  in.

In the check for use of the modification factor for tied columns, the critical column dimension is 
21 in., and the required effective tie area is thus 0.0015 × 21 × 16 × 0.50 in2. The No. 4 (No. 13) 
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Problems
	6.1.	 For the beam cross section shown in Fig. 4.16, what are the development 

lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4 
(No. 13) stirrups with 1​ 1 _ 2 ​ in. clear side cover spaced at 6 in. using Eqs. (6.5) 
and (6.6)? Normalweight concrete, ​f​c​ ′​ = 4000 psi, fy = 60,000 psi. Comment.

	6.2.	 For the beam cross section shown in Fig. 4.16, what are the development 
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4 
(No. 13) stirrups with 1​ 1 _ 2 ​ in. clear side cover spaced at 4 in. using Eqs. (6.5) 
and (6.6)? Lightweight concrete, ​f​c​ ′​ = 4000 psi, fy = 80,000 psi. Comment.

	6.3.	 For the beam cross section shown in Fig. 4.16, what are the development 
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4 
(No. 13) stirrups with 1​ 1 _ 2 ​ in. clear side cover spaced at 6 in. using Eqs. (6.5) 
and (6.6)? Normalweight concrete, ​f​c​ ′​ = 8000 psi, fy = 60,000 psi. Comment.

	6.4.	 For the beam cross section shown in Fig. 4.16, what are the development 
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4 
(No. 13) stirrups with 1​ 1 _ 2 ​ in. clear side cover spaced at 6 in. using Eqs. (6.5) 
and (6.6)? The bars are epoxy coated. Lightweight concrete, ​​f​c​ ′​​ = 8000 psi, 
fy = 60,000 psi. Comment.

	6.5.	 For the beam cross section shown in Fig. 4.16, what are the development 
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4 
(No. 13) stirrups with 1​ 1 _ 2 ​ in. clear side cover spaced at 3 in. using Eqs. (6.5) 
and (6.6)? Normalweight concrete, ​​f​c​ ′​​ = 4000 psi, fy = 80,000 psi. Comment.

	6.6.	 For the beam cross section shown in Fig. 4.16, what are the development 
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4 
(No. 13) stirrups with 1​ 1 _ 2 ​ in. clear side cover spaced at 6 in. using Eqs. (6.5) 
and (6.6)? Normalweight concrete, ​f​c​ ′​ = 12,000 psi, fy = 60,000 psi. Comment.

	6.7.	 Compare the development lengths of No. 8 (No. 25) hooked (180° bend) and 
headed bars cast in a beam-column joint with 2​ 1 _ 2 ​ in. clear cover on the bars and 
4  in. clear spacing between the bars. Ath > 0.4Ahs and Att > 0.3Ahs. Normal­
weight concrete, ​f​c​ ′​ = 4000 psi, fy = 60,000 psi. Comment.

	6.8.	 Compare the development lengths of No. 11 (No. 36) hooked (90° bend) and 
headed bars cast in a beam-column joint with 3  in. clear cover on the bars 
and 6  in. clear spacing between the bars. Ath = 0.2Ahs and Att = 0.15Ahs. 
Normalweight concrete, ​f​c​ ′​ = 7000 psi, fy = 60,000 psi. Comment.
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	6.9.	 The short beam shown in Fig. P6.9 cantilevers from a supporting column at 
the left. The beam must carry a calculated dead load of 2.0 kips∕ft including 
its own weight and a service live load of 2.6 kips∕ft. Tensile flexural 
reinforcement consists of two No. 10 (No. 32) bars at a 21 in. effective depth. 
Transverse No. 3 (No. 10) U stirrups with 1.5  in. cover are provided at the 
following spacings from the face of the column: 4 in., 3 at 8 in., 5 at 10.5 in. 
Within the beam-column joint, No. 4 (No. 13) closed ties are provided at  
an 8 in. spacing, with the first tie located 2 in. below the centerline of the  
hooked  bar.
(a)	 If the flexural and shear steel use fy = 60,000 psi and if the beam uses 

lightweight concrete having ​f​c​ ′​ = 4000 psi, check to see if proper 
development length can be provided for the No. 10 (No. 32) bars. Use 
the simplified development length equations, Eq. (6.6a) or (6.6b), as 
appropriate.

(b)	 Recalculate the required development length for the beam bars using the 
basic Eq. (6.5). Comment on your results.

(c)	 If the column material strengths are fy  =  60,000  psi and ​f​c​ ′​ = 5000 psi 
(normalweight concrete), check to see if adequate embedment can be 
provided within the column for the No. 10 (No. 32) bars. If hooks are 
required, specify detailed dimensions.

FIGURE P6.9

21″ 24″

96″

2 No. 10 (No. 32)

2″ clear 3″ clear

24″ 18″

11″

	6.10.	 The beam shown in Fig. P6.10 is simply supported with a clear span of 26 ft 
and is to carry a distributed dead load of 1.05 kips∕ft including its own 
weight and live load of 1.62 kips∕ft, unfactored, in service. The reinforcement 
consists of five No. 10 (No. 32) bars at a 16 in. effective depth, two of which 
are to be discontinued where no longer needed. Material strengths specified 
are fy = 60,000 psi and ​f​c​ ′​ = 5000 psi. No. 3 (No. 10) stirrups are used with 
a cover of 1.5  in. at spacing less than ACI Code maximum.
(a)	 Calculate the point where two bars can be discontinued.
(b)	 Check to be sure that adequate embedded length is provided for contin­

ued and discontinued bars.
(c)	 Check special requirements at the support, where Mu = 0.
(d)	 If No. 3 (No. 10) bars are used for transverse reinforcement, specify 

special reinforcing details in the vicinity where the No. 10 (No. 32) bar 
is cut off.

(e)	 Comment on the practical aspects of the proposed design. Would you 
recommend cutting off the steel as suggested? Could three bars be dis­
continued rather than two?
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	6.11.	 Figure P6.11 shows the column reinforcement for a 16 in. diameter concrete 
column, with fy  =  80,000 psi and ​f​c​ ′​ = 8000 psi. Analysis of the building 
frame indicates a required As = 7.30 in2 in the lower column and 5.80 in2 in 
the upper column. Spiral reinforcement consists of a ​ 3 _ 8 ​  in. diameter rod with 
a 2  in. pitch. Column bars are to be spliced in compression just above the 
construction joint at the floor level, as shown in the sketch. Calculate the 
minimum permitted length of splice.

FIGURE P6.10
3 No. 10 (No. 32)

2 No. 10 (No. 32)

2″ clear

1′-0″ 1′-0″

19″ 16″

22″

26′-0″

0″

FIGURE P6.11

Splice

No. 3 (No. 10)
spiral at 2″ pitch

6 No. 9 (No. 29) bars

16″

16″

6 No. 10 (No. 32) bars

	6.12.	 The short cantilever shown in Fig. P6.12 carries a heavy concentrated load  
6  in. from its outer end. Flexural analysis indicates that three No. 8 (No. 25) 
bars are required, suitably anchored in the supporting wall and extending to a 
point no closer than 2 in. from the free end. The bars will be fully stressed to 
fy at the fixed support. Investigate the need for hooks and transverse confine­
ment steel at the right end of the member. Material strengths are fy = 60,000 psi 
and ​f​c​ ′​ = 4000 psi. If hooks and transverse steel are required, show details in 
a sketch.

FIGURE P6.12 Pu

18″

10″

6″

20 ″1
2

40″

Minimum 2″ cover

2″ cover
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	6.13.	 A continuous-strip wall footing is shown in cross section in Fig. P6.13. It is 
proposed that tensile reinforcement be provided using No. 8 (No. 25) bars at 16 in. 
spacing along the length of the wall, to provide a bar area of 0.59 in2∕ft. The 
bars have strength fy = 60,000 psi, and the footing concrete has ​f​c​ ′​ = 4000 psi. 
The critical section for bending is assumed to be at the face of the supported 
wall, and the effective depth to the tensile steel is 12 in. Check to ensure that 
sufficient development length is available for the No. 8 (No. 25) bars, and if 
hooks are required, sketch details of the hooks, giving dimensions.

	 		  Note: If hooks are required for the No. 8 (No. 25) bars, prepare an alter­
nate design using bars having the same area per foot but of smaller diameter 
such that hooks could be eliminated; use the largest bar size possible to 
minimize the cost of steel placement.

FIGURE P6.13 66″

27″ 27″12″

12″

No. 8 (No. 25) bars at 16″ spacing

Wall

16″

	6.14.	 A closure strip is to be used between two 8 in. precast slabs (Fig. P6.14). 
The slabs contain No. 5 (No. 16) bars spaced at 10  in. Determine the mini­
mum width of the closure strip for use with headed bars spliced within the 
strip. Abrg  =  4Ab. Material strengths are fy  =  60,000  psi and ​f​c​ ′​ = 5000 psi. 
The maximum size aggregate = ​  3 __ 4 ​  in. Assume head thickness = 0.5  in.

FIGURE P6.14

Precast slabNo. 5 (No. 16)

10″

Closure strip

	6.15.	 The continuous beam shown in Fig. P6.15 has been designed to carry a service 
dead load of 2.25 kips∕ft including self-weight and service live load of  
3.25 kips∕ft. Flexural design has been based on ACI moment coefficients of ​ 1 __ 11 ​  
and ​ 1 __ 16 ​ at the face of support and midspan, respectively, resulting in a concrete  
section with b = 14 in. and d = 22 in. Negative reinforcement at the support 
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face is provided by four No. 10 (No. 32) bars, which will be cut off in pairs 
where no longer required by the ACI Code. Positive bars consist of four No. 8 
(No. 25) bars, which will also be cut off in pairs. Specify the exact point of 
cutoff for all negative and positive steel. Specify also any supplementary web 
reinforcement that may be required. Check for satisfaction of ACI Code require­
ments at the point of inflection, and suggest modifications of reinforcement if 
appropriate. Material strengths are fy = 60,000 psi and ​f​c​ ′​ = 4000 psi.

FIGURE P6.15 4 No. 10 (No. 32)

4 No. 8 (No. 25)

4 No. 10 (No. 32)

0″

0″

24′-0″

	6.16.	 Figure P6.16 shows a deep transfer girder that carries two heavy column 
loads at its outer ends from a high-rise concrete building. Ground-floor col­
umns must be offset 8 ft as shown. The loading produces an essentially 
constant moment (neglect self-weight of girder) calling for a concrete section 
with b  =  22  in. and d  =  50  in., with main tensile reinforcement at the top 
of the girder comprised of 12 No. 11 (No. 36) bars in three layers of four 
bars each. The maximum available bar length is 60 ft, so tensile splices must 
be provided. Design and detail all splices, following ACI Code provisions. 
Splices will be staggered, with no more than four bars spliced at any section. 
Also, investigate the need for special anchorage at the outer ends of main 
reinforcement, and specify details of special anchorage if required. Material 
strengths are fy = 60,000 psi and ​f​c​ ′​ = 5000 psi.

FIGURE P6.16 Pu = 465 kips Pu = 465 kips

d = 50″

58′

12 No. 11 (No. 36) (3 rows)

8′ 8′
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Serviceability

	 7.1	 INTRODUCTION

Chapters 4, 5, and 6 have dealt mainly with the strength design of reinforced concrete 
beams. Methods have been developed to ensure that beams will have a proper safety 
margin against failure in flexure or shear, or due to inadequate bond and anchorage 
of the reinforcement. The member has been assumed to be at a hypothetical overload 
state for this purpose.

It is also important that member performance in normal service be satisfactory, 
when loads are those actually expected to act, that is, when load factors are 1.0. This 
is not guaranteed simply by providing adequate strength. Service load deflections 
under full load may be excessively large, or long-term deflections due to sustained 
loads may cause damage. Tension cracks in beams may be wide enough to be visually 
disturbing, and in some cases may reduce the durability of the structure. These and 
other questions, such as vibration or fatigue, require consideration.

Serviceability studies are carried out based on elastic theory, with stresses in 
both concrete and steel assumed to be proportional to strain. The concrete on the 
tension side of the neutral axis may be assumed uncracked, partially cracked, or fully 
cracked, depending on the loads and material strengths (see Section 4.2).

In early reinforced concrete designs, questions of serviceability were dealt with 
indirectly, by limiting the stresses in concrete and steel at service loads to the rather 
conservative values that had resulted in satisfactory performance. In contrast, with 
current design methods that permit more slender members through more accurate 
assessment of capacity, and with higher-strength materials further contributing to  
the trend toward smaller member sizes, such indirect methods no longer work. The 
current approach is to investigate service load cracking and deflections specifically, 
after proportioning members based on strength requirements.

In this chapter, methods will be developed to ensure that the cracks associated 
with flexure of reinforced concrete beams are narrow and well distributed, and 
that short- and long-term deflections at loads up to the full service load are not 
objectionably large.

	 7.2	 CRACKING IN FLEXURAL MEMBERS

All reinforced concrete beams crack, generally starting at loads well below service 
level, and possibly even prior to loading due to restrained shrinkage. Flexural cracking 
due to loads is not only inevitable but actually necessary for the reinforcement to be 
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used effectively. Prior to the formation of flexural cracks, the steel stress is no more 
than n times the stress in the adjacent concrete, where n is the modular ratio Es∕Ec. 
For materials common in current practice, n is approximately 8. Thus, when the con-
crete is close to its modulus of rupture of about 500 psi, the steel stress will be only 
8 × 500 = 4000 psi, far too low to be very effective as reinforcement. At normal ser-
vice loads, steel stresses 8 or 9 times that value can be expected.

In a well-designed beam, flexural cracks are fine, so-called hairline cracks, 
almost invisible to the casual observer, and they permit little if any corrosion of the 
reinforcement. As loads are gradually increased above the cracking load, both the 
number and the width of cracks increase, and at service load level a maximum width 
of crack of about 0.016 in. is typical. If loads are further increased, crack widths 
increase further, although the number of cracks is more or less stable.

Cracking of concrete is a random process, highly variable and influenced by 
many factors. Because of the complexity of the problem, present methods for pre-
dicting crack widths are based primarily on test observations. Most equations that 
have been developed predict the probable maximum crack width, which usually 
means that about 90 percent of the crack widths in the member are below the cal-
culated value. However, isolated cracks exceeding twice the computed width can 
sometimes occur (Ref. 7.1).

	 a.	 Variables Affecting Width of Cracks

In the discussion of the importance of a good bond between steel and concrete in 
Section 6.1, it was pointed out that if proper end anchorage is provided, a beam will 
not fail prematurely, even though the bond is destroyed along the entire span. How-
ever, crack widths will be greater than for an otherwise identical beam in which good 
resistance to slip is provided along the length of the span. In general, beams with 
smooth round bars will display a relatively small number of rather wide cracks in ser-
vice, while beams with good slip resistance ensured by proper surface deformations 
on the bars will show a larger number of very fine, almost invisible cracks. Because 
of this improvement, reinforcing bars in current practice are always provided with 
surface deformations, the maximum spacing and minimum height of which are estab-
lished by ASTM Specifications A615, A706, A996, and A1035.

A second variable of importance is the stress in the reinforcement. Studies by 
Gergely and Lutz and others (Refs. 7.2 to 7.4) have confirmed that crack width is 
proportional to fs

n, where fs is the steel stress and n is an exponent that varies in the 
range from about 1.0 to 1.4. For steel stresses in the range of practical interest, say 
from 20  to 40 ksi, n may be taken equal to 1.0. The steel stress is easily computed 
based on elastic cracked-section analysis (Section 4.2b). Alternatively, fs may be 
taken equal to ​ 2 _ 3 ​ fy according to ACI Code 24.3.2.

Experiments by Broms (Ref. 7.5) and others have shown that both crack spacing 
and crack width are related to the concrete cover distance dc, measured from the center 
of the bar to the face of the concrete. In general, increasing the cover increases the 
spacing of cracks and also increases crack width. Furthermore, the distribution of the 
reinforcement in the tension zone of the beam is important. Generally, to control 
cracking, it is better to use a larger number of smaller-diameter bars to provide the 
required As than to use the minimum number of larger bars, and the bars should be 
well distributed over the tensile zone of the concrete. For deep flexural members, this 
includes additional reinforcement on the sides of the web to prevent excessive surface 
crack widths above or below the level of the main flexural reinforcement.
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	 b.	 Equations for Crack Width

A number of expressions for maximum crack width have been developed based on 
the statistical analysis of experimental data. Two expressions that have figured prom-
inently in the development of the crack control provisions in the ACI Code are those 
developed by Gergely and Lutz (Ref. 7.2) and Frosch (Ref. 7.4) for the maximum 
crack width at the tension face of a beam. They are, respectively,

	 w = 0.076βfs ​​ 3 √ 
____

 dc A ​​	 (7.1)

and

	 w = 2000 ​​ 
fs
 __ 

Es

 ​​ β ​​√
_________

 ​d​ c​ 2​ + ​​( ​ s __ 
2
 ​ )​​2​ ​​	 (7.2)

where w = maximum width of crack, thousandth inches
fs = steel stress at load for which crack width is to be determined, ksi

Es = modulus of elasticity of steel, ksi

The geometric parameters are shown in Fig. 7.1 and are as follows:

dc = �thickness of concrete cover measured from tension face to center of bar 
closest to that face, in.

β = �ratio of distances from tension face and from steel centroid to neutral axis, 
equal to h2∕h1

A = �concrete area surrounding one bar, equal to total effective tension area of 
concrete surrounding reinforcement and having same centroid, divided by 
number of bars, in2

s = maximum bar spacing, in.

Equations (7.1) and (7.2), which apply only to beams in which deformed bars are 
used, include all the factors just named as having an important influence on the width 
of cracks: steel stress, concrete cover, and the distribution of the reinforcement in the 
concrete tensile zone. In addition, the factor β is added to account for the increase in 
crack width with distance from the neutral axis (see Fig. 7.1b).

	 c.	 Cyclic and Sustained Load Effects

Both cyclic and sustained loading account for increasing crack width. While there is a 
large amount of scatter in test data, results of fatigue tests and sustained loading tests 
indicate that a doubling of crack width can be expected with time (Ref. 7.1). Under 
most conditions, the spacing of cracks does not change with time at constant levels of 
sustained stress or cyclic stress range.

FIGURE 7.1
Geometric basis of crack 
width calculations.

dc

h1 h2

s

2y
y
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	 7.3	 ACI CODE PROVISIONS FOR CRACK CONTROL

In view of the random nature of cracking and the wide scatter of crack width meas-
urements, even under laboratory conditions, crack width is controlled in accordance 
with ACI Code 24.3.2 by establishing a maximum center-to-center spacing s for the 
reinforcement closest to the surface of a tension member as a function of the bar stress 
under service conditions fs (in psi) and the clear cover from the nearest surface in ten-
sion to the surface of the flexural tension reinforcement cc, as shown in Fig. 7.1.

	 s = 15 ​​( ​ 40,000
 ______ 

fs

 ​  )​​ − 2.5cc ≤ 12 ​​( ​ 40,000
 ______ 

fs

 ​  )​​	 (7.3)

The choice of clear cover cc, rather than the cover to the center of the bar dc, was 
made to simplify design, since this allows s to be independent of bar size. As a con-
sequence, maximum crack widths will be somewhat greater for larger bars than for 
smaller bars.

As shown in Eq. (7.3), the ACI Code sets an upper limit on s of 12(40,000∕fs). 
The stress fs is calculated by dividing the service load moment by the product of the 
area of reinforcement and the internal moment arm, as shown in Eq. (4.4). Alterna-
tively, the ACI Code permits fs to be taken as two-thirds of the specified yield 
strength fy. For members with only a single bar, the width of the extreme tension 
face may not exceed s, in accordance with ACI Code 24.3.3.

Figure 7.2a compares the values of spacing s obtained using Eqs. (7.1) and (7.2) 
for a beam containing No. 8 (No. 25) reinforcing bars, for fs  =  40,000 psi (corre-
sponding to fy = 60,000 psi), β = 1.2, and a maximum crack width w = 0.016 in., 
to the values calculated using Eq. (7.3). Equations (7.1) and (7.2) give identical 
spacings for two values of clear cover, but significantly different spacings for other 
values of cc. Equation (7.3) provides a practical representation of the values of s that 
are calculated using the two experimentally based expressions. The equation is 
plotted in Fig.  7.2b for fs  =  26,667, 40,000, and 53,333 psi, corresponding to ​ 2 _ 3 ​ fy 
for Grade 40, 60, and 80 bars, respectively.

ACI Code 24.3.5 points out that the spacing s in structures subject to fatigue, 
designed to be watertight, or exposed to corrosion should be based on “investigations or 
precautions specific to those conditions.” These include the use of expressions such as 
Eqs. (7.1) and (7.2) to determine the probable maximum crack width. Further guidance 
is given in Ref. 7.1. In any case, s should not exceed the value obtained using Eq. (7.3).

When concrete T beam flanges are in tension, as in the negative-moment region 
of continuous T beams, concentration of the reinforcement over the web may result 
in excessive crack width in the overhanging slab, even though cracks directly over 
the web are fine and well distributed. To prevent this, the tensile reinforcement 
should be distributed over the width of the flange, rather than concentrated. However, 
because of shear lag, the outer bars in such a distribution would be considerably less 
highly stressed than those directly over the web, producing an uneconomical design. 
As a reasonable compromise, ACI Code 24.3.4 requires that the tension reinforce-
ment in such cases be distributed over the effective flange width or a width equal 
to one-tenth the span, whichever is smaller. If the effective flange width exceeds 
one-tenth of the span, some longitudinal reinforcement must be provided in the outer 
portions of the flange. The amount of such additional reinforcement is left to the 
discretion of the  designer; it should at least be the equivalent of temperature rein-
forcement for the slab (see Section 12.3) and is often taken as twice that amount.
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For beams with relatively deep webs, some “skin” reinforcement should be 
placed near the vertical faces of the web to control the width of cracks in the concrete 
tension zone above the level of the main reinforcement. Without such steel, well-
distributed cracks at the level of the main bars tend to consolidate into a smaller 
number of wider cracks closer to the neutral axis (Ref. 7.7), as shown in Fig. 7.3a. 
With such steel, the cracks do not consolidate, and remain narrow, as shown in Fig. 7.3b. 
According to ACI Code 9.7.2.3, if the total depth of the beam h exceeds 36 in., 
longitudinal skin reinforcement must be uniformly distributed along both side faces 
of the member for a distance h∕2 from the tension face, as shown in Fig. 7.4. The 
spacing s between longitudinal bars or wires is as specified in Eq. (7.3). The size of 
the bars or wires is not specified, but as indicated in ACI Commentary 9.7.2.3, No. 3 
to No. 5 (No. 10 to No. 16) bars or welded wire reinforcement with a minimum area 

FIGURE 7.2
Maximum bar spacing versus 
clear cover: (a) Comparison 
of Eqs. (7.1), (7.2), and  
(7.3) for wc = 0.016 in.,  
fs = 40,000 psi, β = 1.2, bar 
size = No. 8 (No. 25) and  
(b) Eq. (7.3) for fs = 26,667, 
40,000, and 53,333 psi, 
corresponding to ​ 2 _ 3 ​ fy  
for Grades 40, 60, and 80 
reinforcement, respectively.  
[Part (a) after Ref. 7.6.]
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of 0.1 in2 per foot of depth are typically used. The contribution of the skin reinforce-
ment to flexural strength is usually disregarded, although it may be included in the 
strength calculations if a strain compatibility analysis is used to establish the stress 
in the skin steel at the flexural failure load.

Figure  7.2b provides a convenient design aid for determining the maximum 
center-to-center bar spacing as a function of clear cover for the usual case used in 
design, fs = ​ 2 _ 3 ​ fy. From a practical point of view, it is even more helpful to know the 
minimum number of bars across the width of a beam stem that is needed to satisfy 
the ACI Code requirements for crack control. That number depends on side cover, 
as well as clear cover to the tension face, and is dependent on bar size. Table A.8 
in Appendix A gives the minimum number of Grade 60 bars across a beam stem for 
two common cases, 2 in. clear cover on the sides and bottom, which corresponds to 
using No. 3 or No. 4 (No. 10 or No. 13) stirrups, and 1​ 1 _ 2 ​ in. clear cover on the sides 
and bottom, representing beams in which no stirrups are used.

FIGURE 7.3
Cracking in beams with 
relatively deep webs:  
(a) beam with only flexural 
reinforcement and (b) beam 
with both flexural and skin 
reinforcement. (After  
Ref. 7.7.) 

(a)

(b)

FIGURE 7.4
Skin reinforcement for 
flexural members with total 
depth h greater than 36 in.
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	 7.4	 CONTROL OF DEFLECTIONS

In addition to limitations on cracking, described in the preceding sections, it is usually 
necessary to impose certain controls on deflections of beams to ensure serviceabil-
ity. Excessive deflections can lead to cracking of supported walls and partitions, ill-
fitting doors and windows, poor roof drainage, misalignment of sensitive machinery 
and equipment, or visually offensive sag. It is important, therefore, to maintain control 
of deflections, in one way or another, so that members designed mainly for strength at 
prescribed overloads will also perform well in normal service.

There are presently two approaches to deflection control. The first is indirect 
and consists in setting suitable upper limits on the span-depth ratio. This is simple, 
and it is satisfactory in many cases where spans, loads and load distributions, and 
member sizes and proportions fall in the usual ranges. Otherwise, it is essential to 
calculate deflections and to compare those predicted values with specific limitations 
that may be imposed by codes or by special requirements.

	 EXAMPLE 7.1	 Check crack control criteria.  Figure 7.5 shows the main flexural reinforcement at midspan 
for a T girder in a high-rise building that carries a service load moment of 8630 in-kips. The 
clear cover on the side and bottom of the beam stem is 2​ 1 _ 4 ​ in. fy = 60 ksi. Determine if the 
beam meets the crack control criteria in the ACI Code.

Solution.  Since the depth of the beam equals but does not exceed 36 in., skin reinforcement 
is not needed. To check the bar spacing criteria, the steel stress can be estimated closely by 
taking the internal lever arm equal to the distance d − hf∕2:

fs = ​​ 
Ms
 ___________  

As  (d − hf∕2)
 ​​ = ​​  8630 __________  

7.9 × 29.25
 ​​ = 37.3 ksi

(Alternately, the ACI Code permits using fs = ​ 2 _ 3 ​ fy, giving 40.0 ksi.)
Using fs = 40.0 ksi in Eq. (7.3) gives

s = 15 ​​( ​ 40,000
 ______ 

fs

 ​  )​​ − 2.5cc = 15 ​​( ​ 40,000
 ______ 

37,300
 ​ )​​ − 2.5 × 2.25 = 10.5 in.

By inspection, it is clear that this requirement is satisfied for the beam. If the results had been un
favorable, a redesign using a larger number of smaller-diameter bars would have been indicated.

FIGURE 7.5
T beam for crack width 
determination in  
Example 7.1.
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It will become clear, in the sections that follow, that calculations can, at best, 
provide a guide to probable actual deflections. This is so because of uncertainties 
regarding material properties, effects of cracking, and load history for the member 
under consideration. Extreme precision in the calculations, therefore, is never justified, 
because highly accurate results are unlikely. However, it is generally sufficient to 
know, for example, that the deflection under load will be about ​ 1 _ 2 ​ in. rather than 
2 in., while it is relatively unimportant to know whether it will actually be ​ 5 _ 8 ​ in.  
rather than ​ 1 _ 2 ​ in.

The deflections of concern are generally those that occur during the normal 
service life of the member. In service, a member sustains the full dead load, plus 
some fraction or all of the specified service live load. Safety provisions of the ACI 
Code and similar design specifications ensure that, under loads up to the full service 
load, stresses in both steel and concrete remain within the elastic ranges. Conse-
quently, deflections that occur at once upon application of load, the immediate 
deflections, can be calculated based on the properties of the uncracked elastic mem-
ber, the cracked elastic member, or some combination of these (see Section 4.2).

It was pointed out in Sections 2.8 and 2.11, however, that in addition to con-
crete deformations that occur immediately when load is applied, there are other 
deformations that take place gradually over an extended time. These time-dependent 
deformations are chiefly due to concrete creep and shrinkage. As a result of these 
influences, reinforced concrete members continue to deflect with the passage of time. 
Long-term deflections continue over a period of several years, and may eventually 
be 2 or more times the initial elastic deflections. Clearly, methods for predicting both 
instantaneous and time-dependent deflections are essential.

	 7.5	 IMMEDIATE DEFLECTIONS

Elastic deflections can be expressed in the general form

Δ = ​​ 
 f (loads, spans, supports)

   _____________________  
EI

 ​​

where EI is the flexural rigidity and f (loads, spans, supports) is a function of the par-
ticular load, span, and support arrangement. For instance, the deflection of a uniformly 
loaded simple beam is 5wl 4∕384EI, so that f = 5wl 4∕384. Similar deflection equa-
tions have been tabulated or can easily be computed for many other loadings and span 
arrangements, simple, fixed, or continuous, and the corresponding f functions can be 
determined. The particular problem in reinforced concrete structures is therefore the 
determination of the appropriate flexural rigidity EI for a member consisting of two 
materials with properties and behavior as widely different as steel and concrete.

If the maximum moment in a flexural member is so small that the tensile stress 
in the concrete does not exceed the modulus of rupture fr, no flexural tension cracks 
will occur. The full, uncracked section is then available for resisting stress and pro-
viding rigidity. This stage of loading was analyzed in Section 4.2a based on the 
uncracked, transformed section (see Fig. 4.2). In agreement with this analysis, the 
effective moment of inertia for this low range of loads is that of the uncracked 
transformed section Iut, and E is the modulus of concrete Ec as given by Eq. (2.3). 
Correspondingly, for this load range,

	 Δiu = ​​ 
f
 _____ 

Ec  Iut

 ​​	 (a)
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At higher loads, flexural tension cracks form. In addition, if shear stresses 
exceed vcr [see Eq. (5.3)] and web reinforcement is employed to resist them, diago-
nal cracks can exist at service loads. In the region of flexural cracks, the position of 
the neutral axis varies: directly at each crack, it is located at the level calculated for 
the cracked transformed section (see Section 4.2b); midway between cracks, it dips 
to a location closer to that calculated for the uncracked transformed section. Corre-
spondingly, flexural-tension cracking causes the effective moment of inertia to be 
that of the cracked transformed section (Fig. 4.4) in the immediate neighborhood of 
flexural-tension cracks and closer to that of the uncracked transformed section mid-
way between cracks, with a gradual transition between these extremes.

The value of the local moment of inertia varies in those portions of the beam 
in which the bending moment exceeds the cracking moment of the section

	 Mcr = ​​ 
 fr  Iut

 ____ yt
 ​​ 	 (7.4)

where yt is the distance from the neutral axis to the tension face and fr is the modu-
lus of rupture. The exact variation of I depends on the shape of the moment diagram 
and on the crack pattern and is difficult to determine. This makes an exact deflection 
calculation impossible.

However, extensively documented studies (Refs. 7.8 to 7.11) have shown that 
deflections Δic occurring in a beam after the maximum moment Ma has reached and 
exceeded the cracking moment Mcr can be calculated by using an effective moment 
of inertia Ie; that  is,

	 Δic = ​​ 
f
 ____ 

Ec  Ie

 ​​	 (b)

For many years, Ie was approximated as

	 Ie = ​​( ​ Mcr
 ___ 

Ma

 ​ )​​3 Iut + ​​[ 1 − ​( ​ Mcr
 ___ 

Ma

 ​ )​3 ]​​ Icr ≤ Iut	 (7.5)

where Icr is the moment of inertia of the cracked transformed section.
More recent studies (Refs 7.9 to 7.11) have demonstrated that Eq. (7.5) under-

estimates the deflection of beams and slabs with reinforcement ratios ρ below 0.01 
and members where cracking occurs for Ma < Mcr because the member has been 
subjected to tensile stresses caused by restrained shrinkage. In such cases, a more 
appropriate expression for reinforced concrete flexural members is

	​​ I​ e​​ = ​​  ​I​ cr​  _____________________   

1 − ​​( ​ (2∕3)​M​ cr​
 ________ 

​M​ a​
 ​  )​​2​​( 1 − ​ ​I​ cr​

 __ 
​I​ ut​

 ​ )​
 ​​ ≤ ​​I​ ut​​	 (7.6)

The term (2∕3)Mcr approximates the effective cracking moment under combined 
bending and restraint. Equations (7.5) and (7.6) produce similar results for members 
with ρ ≥ 0.01 and Ma ≥ 2Mcr. Equation (7.5) remains the basis in the ACI Code for 
calculating Ie for prestressed concrete members.

In Fig. 7.6, the effective moment of inertia, given by Eq. (7.6), is plotted as a 
function of the ratio Ma∕Mcr (the reciprocal of the moment ratio used in the equa-
tion). As shown in the figure for values of maximum moment Ma less than the two-
thirds of the cracking moment Mcr (that is, Ma∕Mcr < ​ 2 _ 3 ​), Ie = Iut. With increasing 
values of Ma, Ie approaches Icr; for values of Ma∕Mcr of 3 or more, Ie is almost the 
same as Icr. Typical values of Ma∕Mcr at full service load range from about 1.5 to 3.
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Figure 7.7 shows the growth of deflections with increasing moment for a simple- 
span beam and illustrates the use of Eq. (7.6). For moments no larger than ​ 2 _ 3 ​ Mcr, 
deflections are practically proportional to moments, and the deflection at which 
cracking begins (assuming that the member is subject to restraint of shrinkage) is 
obtained from Eq. (a) with M = ​ 2 _ 3 ​ Mcr. At larger moments, the effective moment of 
inertia Ie becomes progressively smaller, according to Eq. (7.6), and deflections are 
found by Eq. (b) for the load level of interest.

The moment M2 might correspond to the full service load, for example, while 
the moment M1 would represent the dead load moment for a typical case. A 
moment-deflection curve corresponding to the line EcIcr represents an upper bound 
for deflections, consistent with Fig.  7.6, except that at loads somewhat beyond the 
service load, the nonlinear response of steel, concrete, or both causes a further non-
linear increase in deflections.

FIGURE 7.6
Variation of Ie with moment 
ratio.
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Note that to calculate the increment of deflection due to live load, causing a 
moment increase M2 − M1, a two-step computation is required: the first for deflection 
Δ2 due to live and dead load and the second for deflection Δ1 due to dead load 
alone, each with the appropriate value of Ie. Then the deflection increment due to 
live load is found, equal to Δ2 − Δ1.

Most reinforced concrete spans are continuous, not simply supported. The con-
cepts just introduced for simple spans can be applied, but the moment diagram for 
a given span will include both negative and positive regions, reflecting the rotational 
restraint provided at the ends of the spans by continuous frame action. The effective 
moment of inertia for a continuous span can be found by a simple averaging proce-
dure, according to the ACI Code, that will be described in Section 7.7c.

A fundamental problem for continuous spans is that although the deflections 
are based on the moment diagram, the moment diagram depends, in turn, on the 
flexural rigidity EI for each member of the frame. The flexural rigidity depends on 
the extent of cracking, as has been demonstrated. Cracking, in turn, depends on the 
moments, which are to be found. The circular nature of the problem is evident.

One could use an iterative procedure, initially basing the frame analysis on 
uncracked concrete members, determining the moments, calculating effective EI 
terms for all members, then recalculating moments, adjusting the EI values, etc. The 
process could be continued for as many iterations as needed, until changes are not 
significant. However, such an approach would be expensive and time-consuming, 
even with computer use.

Usually, a very approximate approach is adopted. Member flexural stiffnesses 
for the frame analysis are based simply on properties of uncracked rectangular con-
crete cross sections. This can be defended by noting that the moments in a contin-
uous frame depend only on the relative values of EI in its members, not the absolute 
values. Hence, if a consistent assumption, that is, uncracked section, is used for all 
members, the results should be valid. Although cracking is certainly more prevalent 
in beams than in columns, thus reducing the relative EI for the beams, this is com-
pensated to a large extent, in typical cases, by the stiffening effect of the flanges in 
the positive bending regions of continuous T beam construction. This subject is 
discussed at greater length in Section 11.5.

	 7.6	 DEFLECTIONS DUE TO LONG-TERM LOADS

Initial deflections are increased significantly if loads are sustained over a long period 
of time, due to the effects of shrinkage and creep. These two effects are usually com-
bined in deflection calculations. Creep generally dominates, but for some types of 
members, shrinkage deflections are large and should be considered separately (see 
Section 7.8).

It was pointed out in Section 2.8 that creep deformations of concrete are directly 
proportional to the compressive stress up to and beyond the usual service load range. 
They increase asymptotically with time and, for the same stress, are larger for low-
strength than for high-strength concretes. The ratio of additional time-dependent strain 
to initial elastic strain is given by the creep coefficient Ccu (see Table 2.2).

For a reinforced concrete beam, the long-term deformation is much more com-
plicated than for an axially loaded cylinder, because while the concrete creeps under 
sustained load, the steel does not. The situation in a reinforced concrete beam is 
illustrated by Fig.  7.8. Under sustained load, the initial strain εi at the top face of 
the beam increases, due to creep, by the amount εt, while the strain εs in the steel 
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is essentially unchanged. Because the rotation of the strain distribution diagram is 
therefore about a point at the level of the steel, rather than about the cracked elastic 
neutral axis, the neutral axis moves down as a result of creep, and

	​ 
θt __ 
θi

 ​ < ​ 
εt __ εi

 ​	 (a)

demonstrating that the usual creep coefficients cannot be applied to initial curvatures 
to obtain creep curvatures (hence deflections).

The situation is further complicated. Due to the lowering of the neutral axis 
associated with creep (see Fig. 7.8b) and the resulting increase in compression area, 
the compressive stress required to produce a given resultant C to equilibrate T = As fs 
is less than before, in contrast to the situation in a creep test of a compressed 
cylinder, because the beam creep occurs at a gradually diminishing stress. On the 
other hand, with the new lower neutral axis, the internal lever arm between com-
pressive and tensile resultant forces is less, calling for an increase in both resultants 
for a constant moment. This, in turn, will require a small increase in stress, and 
hence strain, in the steel; thus, εs is not constant as assumed originally.

Because of such complexities, it is necessary in practice to calculate additional, 
time-dependent deflections of beams due to creep (and shrinkage) using a simplified, 
empirical approach by which the initial elastic deflections are multiplied by a factor λΔ 
to obtain the additional long-time deflections. Values of λΔ for use in design are based 
on long-term deflection data for reinforced concrete beams (Refs. 7.12 to 7.15). Thus,
	 Δt = λΔ Δi	 (7.7)
where Δt is the additional long-term deflection due to the combined effect of creep and 
shrinkage and Δi is the initial elastic deflection calculated by the methods described 
in Section 7.5.

The coefficient λΔ depends on the duration of the sustained load. It also depends 
on whether the beam has only reinforcement As on the tension side or whether additional 
longitudinal reinforcement ​A​s​ ′​ is provided on the compression side. In the latter case, 
the long-term deflections are much reduced. This is so because when no compression 
reinforcement is provided, the compression concrete is subject to unrestrained creep and 
shrinkage. On the other hand, since steel is not subject to creep, if additional bars are 
located close to the compression face, they will resist and thereby reduce the amount 
of creep and shrinkage and the corresponding deflection (Ref. 7.15). Compression steel 
may be included for this reason alone. Specific values of λΔ, used to account for the 
influence of creep and compression reinforcement, will be given in Section 7.7.

FIGURE 7.8
Effect of concrete creep on 
curvature: (a) beam cross 
section; (b) strains; and 
(c) stresses and forces.  
(Adapted from Ref. 7.8.)
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If a beam carries a certain sustained load W (such as the dead load plus the 
average traffic load on a bridge) and is subject to a short-term heavy live load P 
(such as the weight of an unusually heavy vehicle), the maximum total deflection 
under this combined loading is obtained as follows:

	 1.	 Calculate the instantaneous deflection Δiw caused by the sustained load W by 
methods given in Section 7.5.

	 2.	 Calculate the additional long-term deflection caused by W, that is,
Δtw = λΔ Δiw

	 3.	 Then the total deflection caused by the sustained part of the load is
Δw = Δiw + Δtw

	 4.	 In calculating the additional instantaneous deflection caused by the short-term 
load P, account must be taken of the fact that the load-deflection relation after 
cracking is nonlinear, as illustrated by Fig. 7.7. Hence,

Δip = Δi(w + p) − Δiw

	 	 where Δi(w + p) is the total instantaneous deflection that would be obtained if W 
and P were applied simultaneously, calculated by using Ie determined for the 
moment caused by W + P.

	 5.	 Then the total deflection under the sustained load plus heavy short-term load is

Δ = Δw + Δip

In calculations of deflections, careful attention must be paid to the load history, 
that is, the time sequence in which loads are applied, as well as to the magnitude of 
the loads. The short-term peak load on the bridge girder just described might be applied 
early in the life of the member, before time-dependent deflections had taken place. 
Similarly, for buildings, heavy loads such as stacked material are often placed during 
construction. These temporary loads may be equal to, or even greater than, the design 
live load. The state of cracking will correspond to the maximum load that was carried, 
and the sustained load deflection, on which the long-term effects are based, would 
correspond to that cracked condition. Ie for the maximum load reached should be used 
to recalculate the sustained load deflection before calculating long-term effects.

This will be illustrated referring to Fig.  7.9, showing the load-deflection plot 
for a building girder that is designed to carry a specified dead and live load. Assume 
first that the dead and live loads increase monotonically. As the full dead load Wd is 
applied, the load deflection curve follows the path 0-1, and the dead load deflection 
Δd is found using Ie1 calculated from Eq. (7.6), with Ma = Md. The time-dependent 
effect of the dead load would be λΔΔd. As live load is then applied, path 1-2 would 
be followed. Live load deflection Δl would be found in two steps, as described in 
Section 7.5, first finding Δd + l based on Ie2, with Ma in Eq. (7.6) equal to Md + l, and 
then subtracting dead load deflection Δd.

If, on the other hand, short-term construction loads were applied, then removed, 
the deflection path 1-2-3 would be followed. Then, under dead load only, the resulting 
deflection would be ​Δ​d​ ′​. Note that this deflection can be found in one step using Wd, 
but with Ie2 corresponding to the maximum load reached. The long-term deflection 
now would be λΔ​Δ​d​ ′​, significantly larger than before. Should the full design live load 
then be applied, the deflection would follow path 3-4, and the live load deflection 
would be less than for the first case. It, too, can be calculated by a simple one-step 
calculation using Wl alone, in this case, and with moment of inertia equal to Ie2.
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Clearly, in calculating deflections, the engineer must anticipate, as nearly as 
possible, both the magnitude and the time sequence of the loadings. Although long-
term deflections are often calculated assuming monotonic loading, with both imme-
diate and long-term effects of dead load occurring before application of live load, 
in many cases this is not realistic.

	 7.7	 ACI CODE PROVISIONS FOR CONTROL OF DEFLECTIONS

	 a.	 Minimum Depth-Span Ratios

As pointed out in Section 7.4, two approaches to deflection control are in current use, 
both acceptable under the provisions of the ACI Code, within prescribed limits. The 
simpler of these is to impose restrictions on the minimum member depth h, relative to 
the span l, to ensure that the beam will be sufficiently stiff that deflections are unlikely 
to cause problems in service. Deflections are greatly influenced by support conditions 
(for example, a simply supported uniformly loaded beam will deflect 5 times as much 
as an otherwise identical beam with fixed supports), so minimum depths must vary 
depending on conditions of restraint at the ends of the spans.

According to ACI Code 7.3.1 and 9.3.1, the minimum depths of Table  7.1 
apply to one-way construction not supporting or attached to partitions or other con-
struction likely to be damaged by large deflections, unless computation of deflections 
indicates that a lesser depth can be used without adverse effects. The values given 
in Table  7.1 are to be used directly for normalweight concrete with wc  =  145 pcf 
and reinforcement with fy = 60,000 psi. For members using lightweight concrete with 
density in the range from 90 to 115 pcf, the values of Table 7.1 should be multiplied 
by 1.65  −  0.005wc  ≥  1.09. For reinforcing steel with yield strengths other than 
60,000 psi, the values should be multiplied by 0.4 +  fy∕100,000.

FIGURE 7.9
Effect of load history on 
deflection of a building 
girder.
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	 b.	 Calculation of Immediate Deflections

When there is need to use member depths shallower than are permitted by Table 7.1, 
when members support construction that is likely to be damaged by large deflections, 
or for prestressed members, deflections must be calculated and compared with limit-
ing values (see Section 7.7e). The calculation of deflections, when required, proceeds 
along the lines described in Sections 7.5 and 7.6. For design purposes, the moment 
of the uncracked transformed section Iut can be replaced by that of the gross concrete 
section Ig, neglecting reinforcement, without serious error. With this simplification,  
Eqs. (7.4) and (7.6) are replaced by the following:

	 Mcr = ​​ 
 fr  Ig

 ____ yt
 ​​ 	 (7.8)

and

	 Ie = ​​  Icr  _____________________   

1 − ​( ​ (2∕3)Mcr
 ________ 

Ma

 ​  )​2 ​( 1 − ​ 
Icr

 __ 
Ig

 ​ )​
 ​​≤ Ig	 (7.9)

The modulus of rupture is to be taken equal to

	 fr = 7.5λ​​√
__

 ​f​c​ ′​​​	 (7.10)

As explained in Section 5.5a, in accordance with ACI Code 19.2.4, λ may be taken as 
1.0 for normalweight concrete and 0.75 for lightweight concrete. Values between 0.75 
and 1.0 may also be used by applying linear interpolation between λ = 0.75 and 1.0 
for concretes with unit weights of wc ≤ 100 pcf and wc ≥ 135 pcf, respectively. Alter-
natively, λ =  0.75 for all-lightweight concrete and 0.85 for sand-lightweight concrete, 
using linear interpolation between 0.75 and 0.85 when a portion of the lightweight 
fine aggregate is replaced by normalweight fine aggregate and between 0.85 and 1.0 
for concretes containing normalweight fine aggregate and a blend of lightweight and 
normalweight coarse aggregate. 

	 c.	 Continuous Spans

For continuous spans, ACI Code 24.2.3.6 calls for a simple average of values obtained 
from Eq. (7.9) for the critical positive- and negative-moment sections, that is,

	 Ie = 0.50Iem + 0.25 (Ie1 + Ie2)	 (7.11a)

Minimum Thickness h

Member Simply  
Supported

One End  
Continuous

Both Ends  
Continuous Cantilever

Members Not Supporting or Attached to Partitions or Other 
Construction Likely to Be Damaged by Large Deflections

Solid one-way slabs ℓ∕20 ℓ∕24 ℓ∕28 ℓ∕10

Beams or ribbed one-way slabs ℓ∕16 ℓ∕18.5 ℓ∕21 ℓ∕8

TABLE 7.1
Minimum thickness of nonprestressed beams or one-way slabs unless deflections are 
computed
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where Iem is the effective moment of inertia for the midspan section and Ie1 and Ie2 are 
those for the negative-moment sections at the respective beam ends, each calculated 
from Eq. (7.9) using the applicable value of Ma. It is shown in Ref. 7.16 that a some-
what improved result can be had for continuous prismatic members using a weighted 
average for beams with both ends continuous of

	 Ie = 0.70Iem + 0.15 (Ie1 + Ie2)	 (7.11b)

and for beams with one end continuous and the other simply supported of

	 Ie = 0.85Iem + 0.15Ie1	 (7.11c)

where Ie1 is the effective moment of inertia at the continuous end. As an option, ACI Code 
24.2.3.7 permits Ie for continuous prismatic beams to be taken equal to the value obtained 
from Eq. (7.9) at midspan; for cantilevers, Ie calculated at the support section may be used.

After Ie is found, deflections may be computed with due regard for rotations 
of the tangent to the elastic curve at the supports. In general, in computing the 
maximum deflection, the loading producing the maximum positive moment may be 
used, and the midspan deflection may normally be used as an acceptable approxi-
mation of the maximum deflection. For members where supports may be considered 
fully fixed or hinged, handbook equations for deflections may be used.

	 d.	 Long-Term Deflection Multipliers

On the basis of empirical studies (Refs. 7.8, 7.13, and 7.14), ACI Code 24.2.4.1 spec-
ifies that additional long-term deflections Δt due to the combined effects of creep and 
shrinkage be calculated by multiplying the immediate deflection Δi by the factor

	 λΔ = ​​ 
ξ
 ________ 

1 + 50​ρ​′​
 ​​	 (7.12)

where ​ρ​ ​ ′​ = ​A​s​ ′ ​∕bd and ξ is a time-dependent coefficient that varies as shown in Fig. 7.10. 
In Eq. (7.12), the quantity 1∕(1 + 50​ρ​ ​ ′​ ) is a reduction factor that is essentially a section 
property, reflecting the beneficial effect of compression reinforcement ​A​s​ ′ ​ in reducing 
long-term deflections, whereas ξ is a material property depending on creep and shrink-
age characteristics. For simple and continuous spans, the value of ​ρ​ ​ ′​ used in Eq. (7.12) 
should be that at the midspan section, according to the ACI Code, or that at the support 
for cantilevers. Equation (7.12) and the values of ξ given by Fig. 7.10 apply to both 
normalweight and lightweight concrete beams. The additional, time-dependent deflec-
tions are thus found using values of λΔ from Eq. (7.12) in Eq. (7.7).

FIGURE 7.10
Time variation of ξ for  
long-term deflections.
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Values of ξ given in the ACI Code and Commentary are satisfactory for ordi-
nary beams and one-way slabs, but may result in underestimation of time-dependent 
deflections of two-way slabs, for which Branson has suggested a 5-year value of 
ξ = 3.0 (Ref. 7.8).

Research described in Ref. 7.17 indicates that Eq. (7.12) does not properly 
reflect the reduced creep that is characteristic of higher-strength concretes. As indi-
cated in Table 2.2, the creep coefficient for high-strength concrete may be as low as 
one-half the value for normal concrete. Clearly, the long-term deflection of high-
strength concrete beams under sustained load, expressed as a ratio of immediate 
elastic deflection, correspondingly will be less. This suggests a lower value of the 
material modifier ξ in Eq. (7.12) and Fig. 7.10. On the other hand, in high-strength 
concrete beams, the influence of compression steel in reducing creep deflections is 
less pronounced, requiring an adjustment in the section modifier 1∕(1 + 50​​ρ​′​​) in that 
equation.

Based on long-term tests involving six experimental programs, the following 
modified form of Eq. (7.12) is recommended (Ref. 7.17):

	 λΔ = ​​ 
μξ
 _________ 

1 + 50 μ​ρ​′​
 ​​	 (7.13)

in which
μ = 1.4 − ​f​c​ ′​ ∕10,000

	 0.4 ≤ μ ≤ 1.0	 (7.14)

The proposed equation gives results identical to Eq. (7.12) for concrete strengths of 
4000 psi and below, and much improved predictions for concrete strengths between 
4000 and 12,000 psi.

	 e.	 Permissible Deflections

To ensure satisfactory performance in service, ACI Code 24.2.2 imposes certain limits 
on deflections calculated according to the procedures just described. These limits are 
given in Table 7.2. Limits depend on whether or not the member supports or is attached 

Member Condition Deflection to Be Considered
Deflection 
Limitation

Flat roofs Not supporting or attached to nonstructural 
elements likely to be damaged by large 
deflections

Immediate deflection due to maximum of 
roof live load Lr, snow load S, and rain 
load R

​  ℓ ____ 
180

 ​

Floors Immediate deflection due to live load L ​​  ℓ ____ 
360

 ​​

Roof or 
floors

Supporting or 
attached to  
nonstructural 
elements

Likely to be 
damaged by large 
deflections

That part of the total deflection occurring 
after attachment of nonstructural elements, 
which is the sum of the time-dependent 
deflection due to all sustained loads and 
the immediate deflection due to any 
additional live load

​  ℓ ____ 
480

 ​

Not likely to be 
damaged by large 
deflections

​ 
ℓ
 ____ 

240
 ​

TABLE 7.2
Maximum permissible calculated deflections
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to other nonstructural elements, and whether or not those nonstructural elements are 
likely to be damaged by large deflections. When long-term deflections are computed, 
that part of the deflection that occurs before attachment of the nonstructural elements 
may be deducted; information from Fig. 7.10 is useful for this purpose. The last two lim-
its of Table 7.2 may be exceeded under certain conditions, according to the ACI Code.

	EXAMPLE 7.2	 Deflection calculation.  The beam shown in Fig.  7.11 is a part of the floor system of an 
apartment house and is designed to carry a dead load wd of 1.65 kips∕ft and a service live 
load wl of 3.3 kips∕ft. Of the total live load, 20 percent is sustained in nature, while 80 per-
cent will be applied only intermittently over the life of the structure. Under full dead and live 
load, the moment diagram is as shown in Fig.  7.11c. The beam will support nonstructural 
partitions that would be damaged if large deflections were to occur. They will be installed 
shortly after construction shoring is removed and dead loads take effect, but before significant 
creep occurs. Calculate that part of the total deflection that would adversely affect the parti-
tions, that is, the sum of long-time deflection due to dead and partial live load plus the 
immediate deflection due to the nonsustained part of the live load. Material strengths are  
​f​c​ ′​ = 4000 psi and fy = 60 ksi.

Solution.  For the specified materials, Ec = 57,000​​√
_____

 4000​​ = 3.60 × 106 psi, and with 
Es = 29 × 106 psi, the modular ratio n = 8. The modulus of rupture fr = 7.5 × 1.0​​√

_____
 4000​​ = 

474 psi. The effective moment of inertia will be calculated for the moment diagram shown 
in Fig. 7.11c corresponding to the full service load, on the basis that the extent of cracking 
will be governed by the full service load, even though that load is intermittent. In the positive-
moment region, the centroidal axis of the uncracked T section of Fig. 7.11b is found by taking 
moments about the top surface, to be at 7.66 in. depth, and Ig = 33,160 in4. By similar means, 
the centroidal axis of the cracked transformed T section shown in Fig. 7.11d is located 3.73 in. 
below the top of the slab and Icr = 10,860 in4. The cracking moment is then found by means 
of Eq. (7.8):

Mcr = ​​ 
 fr  Ig

 ____ yt
 ​​  = ​​ 

474 × 33,160
  ____________ 

16.84
 ​​  × ​​  1 ______ 

12,000
 ​​ = 78 ft-kips

With Mcr∕Ma = 78∕162 = 0.481, the effective moment of inertia in the positive bending region 
is found from Eq. (7.9) to be

Ie = ​​ 
Icr
  ________________________   

1 − ​(​ 
(2∕3)Mcr

 ________ 
Ma

 ​ )​
2
​(1 − ​ 

Icr
 __ 

Ig

 ​ )​

 ​​ = ​​ 
10,860
  ___________________________   

1 − ​(​ 2 __ 
3
 ​ × 0.481)​

2
​(1 − ​ 10,860 ______ 

33,160
 ​)​

 ​​ = 11,667 in4

In the negative bending region, the gross moment of inertia will be based on the rectangu-
lar section shown in Fig. 7.11b. For this area, the centroid is 12.25 in. from the top surface 
and Ig = 17,200 in4. For the cracked transformed section shown in Fig. 7.11e, the centroidal 
axis is found, taking moments about the bottom surface, to be 8.65 in. from that level, and 
Icr = 11,366 in4. Then

Mcr = ​​ 
474 × 17,200

  ____________ 
12.25

 ​​  × ​​  1 ______ 
12,000

 ​​ = 55.5 ft-kips

giving Mcr∕Ma = 55.5∕225 = 0.247. Thus, for the negative-moment regions,

Ie = ​​ 
11,366
  __________________________   

1 − ​( ​ 2 __ 
3
 ​ × 0.247 )​2 ​( 1 −  ​ 

11,366
 ______ 

17,260
 ​ )​
 ​​ = 11,472 in4
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FIGURE 7.11
Continuous T beam for 
deflection calculations in 
Example 7.2. The uncracked 
section is shown in (b), the 
cracked transformed section 
in the positive-moment 
region is shown in (d), and 
the cracked transformed 
section in the negative-
moment region is shown  
in (e).

(a )

(b)

75″
7.66″

24.5″

5″

12.25″
I for rect.

14″

(c )

25′

26.00′

25.00′

2 – No. 9 (No. 29)

2 – No. 9 (No. 29)

2 – No. 9 (No. 29)
2 – No. 9 (No. 29)

2 – No. 8 (No. 25) continuous

1 – No. 11
(No. 36)

1 – No. 11
(No. 36)

2 – No. 9 (No. 29)

I for T 387 ft-kips

162 ft-kips

225 ft-kips

(d ) (e )

75″

5″

nAs = 28.64

nAs = 44.48

(n – 1)As = 11.06′

y

22″

14″

14″

22″2.5″

The average value of Ie to be used in calculation of deflection is

Ie,av = ​ 1 __ 
2
 ​ (11,667 + 11,472) = 11,570 in4

It is next necessary to find the sustained-load deflection multiplier given by Eq. (7.12) and 
Fig. 7.10. For the positive bending zone, with no compression reinforcement, λΔ pos = 2.00.

For convenient reference, the deflection of the member under full dead plus live load 
of 4.95 kips∕ft, corresponding to the moment diagram of Fig. 7.11c, will be found. Making 
use of the moment-area principles,

Δd + ℓ = ​ 1 ___ 
EI

 ​ ​[ ​( ​ 2 __ 
3
 ​ × 387 × 12.5 × ​ 5 __ 

8
 ​ × 12.5 )​ − (225 × 12.5 × 6.25) ]​ = ​ 7620 _____ 

EI
 ​

= ​​  7620 × 1728  _____________  
3600 × 11,570

 ​​ = 0.316 in.

Using this figure as a basis, the time-dependent portion of dead load deflection (the only part of 
the total that would affect the partitions) is

Δd = 0.316 × ​ 1.65 ____ 
4.95

 ​ × 2.00 = 0.211 in.
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	 7.8	� DEFLECTIONS DUE TO SHRINKAGE AND TEMPERATURE  
CHANGES

Concrete shrinkage will produce compressive stress in the longitudinal reinforcement 
in beams and slabs and equilibrating tensile stress in the concrete. If, as usual, the 
reinforcement is not symmetrically placed with respect to the concrete centroid, then 
shrinkage will produce curvature and corresponding deflection. The deflections will 
be in the same direction as those produced by the loads, if the reinforcement is mainly 
on the side of the member subject to flexural tension.

Shrinkage deflection is not usually calculated separately, but is combined with 
creep deflection, according to ACI Code procedures (see Section 7.7d). However, 
there are circumstances where a separate and more accurate estimation of shrinkage 
deflection may be necessary, particularly for thin, lightly loaded slabs. Compression 
steel, while it has only a small effect in reducing immediate elastic deflections, 
contributes significantly in reducing deflections due to shrinkage (as well as creep), 
and is sometimes added for this reason.

Curvatures due to shrinkage of concrete in an unsymmetrically reinforced con-
crete member can be found by the fictitious tensile force method (Ref. 7.8). Figure 7.12a 
shows the member cross section, with compression steel area ​A​s​ ′​ and tensile steel area 
As, at depths d ′ and d, respectively, from the top surface. In Fig. 7.12b, the concrete 
and steel are imagined to be temporarily separated, so that the concrete can assume 
its free shrinkage strain εsh. Then a fictitious compressive force Tsh = (As + ​A​s​ ′​)  
εsh Es is applied to the steel, at the centroid of all the bars, a distance e below  
the concrete centroid, such that the steel shortening will exactly equal the free shrink-
age strain of the concrete. The equilibrating tension force Tsh is then applied to the 

while the sum of the immediate and time-dependent deflection due to the sustained portion of 
the live load is

Δ0.20l = 0.316 × ​ 3.3 ____ 
4.95

 ​ × 0.20 × 3.00 = 0.126 in.

and the instantaneous deflection due to application of the short-term portion of the live load is

Δ0.80l = 0.316 × ​ 3.3 ____ 
4.95

 ​ × 0.80 = 0.169 in.

Thus, the total deflection that would adversely affect the partitions, from the time they are 
installed until all long-time and subsequent instantaneous deflections have occurred, is

Δ = 0.211 + 0.126 + 0.169 = 0.506 in.

For comparison, as shown in Table 7.2, the limitation imposed by the ACI Code in such cir-
cumstances is ℓ∕480 = 26 × 12∕480 = 0.650 in., indicating that the stiffness of the proposed 
member is sufficient.

Note that essentially no error would have been introduced in the above solution if the 
cracked-section moment of inertia had been used for both positive and negative sections rather than 
Ie. Significant savings in computational effort would have resulted. If Mcr∕Ma is less than ​ 1 _ 3 ​,  
use of Icr would almost always be acceptable. Note further that computation of the moment 
of inertia for both uncracked and cracked sections is greatly facilitated by design aids like 
those included in Ref. 7.18.
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recombined section, as in Fig.  7.12c. This produces a moment Tshe, and the corre-
sponding shrinkage curvature is

​ϕsh = ​ 
Tshe ____ 
EI

 ​

​The effects of concrete cracking and creep complicate the analysis, but comparisons 
with experimental data (Ref. 7.8) indicate that good results can be obtained using eg 
and Ig for the uncracked gross concrete section and by using a reduced modulus Ect 
equal to ​ 1 _ 2 ​Ec to account for creep. Thus,

	​ ϕsh = ​ 
2Tsheg

 _____ 
Ec Ig

 ​​	  (7.15)

where Ec is the usual value of concrete modulus given by Eq. (2.3).
Empirical methods are also used, in place of the fictitious tensile force 

method, to calculate shrinkage curvatures. These methods are based on the simple 
but reasonable proposition that the shrinkage curvature is a direct function of the 
free shrinkage and steel percentage, and an inverse function of the section depth 
(Ref. 7.8). Branson suggests that for steel percentage p  −  ​p​ ​ ′​  ≤  3 percent (where 
p = 100As∕bd and ​p​ ​ ′​ = 100​A​s​ ′​∕bd),

	​ ϕsh = 0.7 ​ 
εsh ___ 
h
 ​ (p − ​p​ ​ ′​)1∕3 ​( ​ p − ​p​ ​ ′​ ______ p ​  )​1∕2​	 (7.16a)

and for p − ​p​ ​ ′​ > 3 percent,

	​ ϕsh = ​ 
εsh ___ 
h
 ​​	 (7.16b)

With shrinkage curvature calculated by either method, the corresponding 
member deflection can be determined by any convenient means such as the moment-
area or conjugate-beam method. If steel percentages and eccentricities are constant 
along the span, the deflection εsh resulting from the shrinkage curvature can be 
determined from

	​ Δsh = Ksh ϕshℓ2​	 (7.17)

where Ksh is a coefficient equal to 0.500 for cantilevers, 0.125 for simple spans, 0.065 
for interior spans of continuous beams, and 0.090 for end spans of continuous beams 
(Ref. 7.8).

FIGURE 7.12
Shrinkage curvature of a 
reinforced concrete beam or 
slab: (a) cross section;  
(b) free shrinkage strain; and 
(c) shrinkage curvature.
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248      DESIGN OF CONCRETE STRUCTURES  Chapter 7

Deflections will be produced as a result of differential temperatures varying 
from top to bottom of a member also. Such variation will result in a strain vari-
ation with member depth that may usually be assumed to be linear. For such cases, 
the deflection due to differential temperature can be calculated using Eq. (7.17) 
in which ϕsh is replaced by αΔT∕h, where the thermal coefficient α for concrete 
may be taken as 5.5  ×  10−6 per °F and ΔT is the temperature differential in 
degrees Fahrenheit from one side to the other. The presence of the reinforcement 
has little influence on curvatures and deflections resulting from differential tem-
peratures, because the thermal coefficient for the steel (6.5 × 10−6) is very close 
to that for concrete.

	 7.9	 MOMENT VS. CURVATURE FOR REINFORCED CONCRETE  
SECTIONS

Although it is not needed explicitly in ordinary design and is not a part of ACI 
Code procedures, the relation between moment applied to a given beam section 
and the resulting curvature, through the full range of loading to failure, is impor-
tant in several ways. It is basic to the study of member ductility, understanding 
the development of plastic hinges, and accounting for the redistribution of elastic 

	 EXAMPLE 7.3	 Shrinkage deflection.  Calculate the midspan deflection of a simply supported beam of 20 ft 
span due to shrinkage of the concrete for which εsh = 780 × 10−6. With reference to Fig. 7.12a, 
b  =  10  in.,  d  =  17.5  in.,  h  =  20  in.,  As  =  3.00  in2, and ​A​s​ ′​ = 0. The elastic moduli are 
Ec = 3.6 × 106 psi and Es = 29 × 106 psi.

Solution.  By the fictitious tensile force method,

Tsh = (As + ​A​s​ ′​) εsh Es = 3.00 × 780 × 10−6 × 29 × 106 = 67,900 lb

and from Eq. (7.15) with Ig = 6670,

​ϕsh = ​ 
2Tsh eg

 ______ 
Ec Ig

 ​  =​ 
 2 × 67,900 × 7.5

  _______________  
3.6 × ​10​6​ × 6670 

 ​= 42.4 × 10−6​

while from Eq. (7.17) with Ksh = 0.125 for the simple span,

​Δsh = Kshϕshℓ2 = 0.125 × 42.4 × 10−6 × 2402 = 0.305 in.​

Alternatively, by Branson’s approximate Eq. (7.16a) with p = 100 × 3∕175 = 1.7 per-
cent and ​p​ ​ ′​ = 0,

​ϕsh = 0.7 ​ 
εsh ___ 
h
 ​ (p − ​p​ ​ ′​ )1∕3 ​( ​ p − ​p​ ​ ′​ ______ p ​  )​1∕2

 = 0.7 ​ 780 × 10−6
  __________ 

20
 ​  (1.7)1∕3 (1)1∕2 = 32.5 × 10−6​

compared with 42.4 × 10−6 obtained by the equivalent tensile force method. Considering the 
uncertainties such as the effects of cracking and creep, the approximate approach can usually 
be considered satisfactory.
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moments that occurs in most reinforced concrete structures before collapse (see 
Section 11.9).

It will be recalled, with reference to Fig. 7.13, that curvature is defined as the 
angle change per unit length at any given location along the axis of a member sub-
jected to bending loads:

	​ ϕ = ​ 1 __ r ​​	 (7.18)

where ϕ  =  unit curvature and r  =  radius of curvature. With the stress-strain rela-
tionships for steel and concrete, represented in idealized form in Fig.  7.14a and b, 
respectively, and the usual assumptions regarding perfect bond and plane sections, it is 
possible to calculate the relation between moment and curvature for a typical underre-
inforced concrete beam section, subject to flexural cracking, as follows.

Figure  7.15a shows the transformed cross section of a rectangular, tensile-
reinforced beam in the uncracked elastic stage of loading, with steel represented by 
the equivalent concrete area nAs, that is, with area (n  −  1)As added outside of the 
rectangular concrete section.† The neutral axis, a distance c1 below the top surface 
of the beam, is easily found (see Section 4.2a). In the limiting case, the concrete 
stress at the  tension face is just equal to the modulus of rupture fr and the strain is 
εr  =  fr∕Ec. The steel is well below yield at this stage, which can be confirmed by 
computing, from the strain diagram, the steel strain εs = εcs, where εcs is the concrete 

† �Note that compression reinforcement, or multiple layers of tension reinforcement, can easily be included in the analysis with no essential 
complication.

FIGURE 7.13
Unit curvature resulting from 
bending of beam section.
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Unit length

FIGURE 7.14
Idealized stress-strain curves: 
(a) steel and (b) concrete.
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strain at the level of the steel. It is easily confirmed, also, that the maximum concrete 
compressive stress is well below the proportional limit. The curvature is seen, in 
Fig. 7.15b, to be

	​ ϕcr = ​ 
ε1 __ c1

 ​ = ​ 
εr __ c2

 ​​	 (7.19)

and the corresponding moment is

	​ Mcr = ​ 
fr Iut ____ c2

 ​​	  (7.20)

where Iut is the moment of inertia of the uncracked transformed section. Equations 
(7.19) and (7.20) provide the information needed to plot point 1 of the moment-
curvature graph of Fig. 7.18.

When tensile cracking occurs at the section, the stiffness is immediately 
reduced, and curvature increases to point 2 in Fig. 7.18 with no increase in moment. 
The analysis now is based on the cracked transformed section of Fig.  7.16a, with 
steel represented by the transformed area nAs and tension concrete deleted. The 
cracked, elastic neutral axis distance c1  =  kd is easily found by the usual methods 
(see Section 4.2b). In the limiting case, the concrete strain just reaches the propor-
tional limit, as shown in Fig.  7.16b, and typically the steel is still below the yield 
strain. The curvature is easily computed by

	​ ϕel = ​ 
ε1 __ c1

 ​ = ​ 
εel ___ c1

 ​​	 (7.21)

and the corresponding moment is

	​ Mel = ​ 1 __ 
2
 ​ fel kj bd 2​	 (7.22)

FIGURE 7.15
Uncracked beam in the 
elastic range of loading:  
(a) transformed cross  
section; (b) strains; and 
(c) stresses and forces.
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FIGURE 7.16
Cracked beam in the elastic 
range of material response: 
(a) transformed cross section; 
(b) strains; and (c) stresses 
and forces.
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as was derived in Section 4.2b. This provides point 3 in Fig. 7.18. The curvature at 
point 2 can now be found from the ratio Mcr∕Meℓ.

Next, the cracked, inelastic stage of loading is shown in Fig.  7.17. Here the 
concrete is well into the inelastic range, although the steel has not yet yielded. The 
neutral axis depth c1 is less than the elastic kd and is changing with increasing load 
as the shape of the concrete stress distribution changes and the steel stress changes.

It is now convenient to adopt a numerical representation of the concrete com-
pressive stress distribution, to find both the total concrete compressive force C and 
the location of its centroid, for any arbitrarily selected value of maximum concrete 
strain ε1 in this range. The compressive strain diagram is divided into an arbitrary 
number of steps (such as, four in Fig.  7.17b), and the corresponding compressive 
stresses for each strain are read from the stress-strain curve of Fig. 7.14b. The step-
wise representation of the actual continuous stress block is integrated numerically to 
find C, and its point of application is located, taking moments of the concrete forces 
about the top of the section. The basic equilibrium requirement C = T then can be 
used to find the correct location of the neutral axis, for the particular compressive 
strain selected, following an iterative procedure.

The entire process can be summarized as follows:

	 1.	 Select any top face concrete strain ε1 in the inelastic range, that is, between εel and εu.
	 2.	 Assume the neutral axis depth, a distance c1 below the top face.

FIGURE 7.17
Cracked beam with concrete 
in the inelastic range of 
loading: (a) cross section;  
(b) strains; and (c) stresses 
and forces.
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FIGURE 7.18 
Moment-curvature relation 
for tensile-reinforced beam.
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	 3.	 From the strain diagram geometry, determine εs = εcs.
	 4.	 Compute fs = εs  Es ≤ fy and T = As fs.
	 5.	 Determine C by integrating numerically under the concrete stress distribution curve.
	 6.	 Check to see if C = T. If not, the neutral axis must be adjusted upward or down-

ward, for the particular concrete strain that was selected in step 1, until equilib-
rium is satisfied. This determines the correct value of c1.

Curvature can then be found from

	​ ϕinel = ​ 
ε1 __ c1

 ​​	 (7.23)

The internal lever arm jd from the centroid of the concrete stress distribution to the 
tensile resultant, Fig. 7.17c, is calculated, after which

	​ Minel = Cjd = Tjd​	 (7.24)

The sequence of steps 1 through 6 is then repeated for newly selected values 
of concrete strain ε1. The end result will be a series of points, such as 4, 5, 6, and 
7 in Fig. 7.18. The limit of the moment-curvature plot is reached when the concrete 
top face strain equals εu, corresponding to point 7. The steel would be well past the 
yield strain at this loading, and at the yield stress.

It is important to be aware of the difference between a moment-unit curvature 
plot, such as Fig. 7.18, and a moment-rotation diagram for the hinging region of a 
reinforced concrete beam. The hinging region normally includes a number of discrete 
cracks, but between those cracks, the uncracked concrete reduces the steel strain, 
leading to what is termed the tension stiffening effect. The result is that the total 
rotation at the hinge is much less than would be calculated by multiplying the cur-
vature per unit length at the cracked section by the observed or assumed length of 
the hinging region. Furthermore, the sharp increase in unit curvature shown in 
Fig. 7.18 at cracking would not be seen on the moment-rotation plot, only a small, 
but progressive, reduction of the slope of the diagram.
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Problems
	7.1.	 A rectangular beam of width b  =  15 in., effective depth d  =  21.5 in., and 

total depth h = 24 in. spans 18.5 ft between simple supports. It will carry a 
dead load of 1.08 kips∕ft including self-weight, plus a service live load of 
4.00 kips∕ft. Reinforcement consists of four evenly spaced No. 7 (No.  22) 
bars in one row. The clear cover on the sides is 2 in. Material strengths are 
fy = 80,000 psi and ​f​c​ ′​ = 4000 psi.
(a)	 Compute the stress in the steel at full service load, and using the Gergely-

Lutz equation, estimate the maximum crack width.
(b)	 Confirm the suitability of the proposed design based on Eq. (7.3).

	7.2.	 To save steel-handling costs, an alternative design is proposed for the beam 
in Problem 7.1, using two No. 9 (No. 29) Grade 80 bars to provide approx-
imately the same steel strength as the originally proposed four No. 7 (No. 22) 
Grade 60 bars. Check to determine if the redesigned beam is satisfactory with 
respect to cracking according to the ACI Code. What modification could you 
suggest that would minimize the number of bars to reduce cost, yet satisfy 
requirements of crack control?

	7.3.	 For the beam in Problem 7.1:
(a)	 Calculate the increment of deflection resulting from the first application 

of the short-term live load.
(b)	 Find the creep portion of the sustained load deflection plus the immediate 

deflection due to live load.
(c)	 Compare your results with the limitations imposed by the ACI Code, as 

summarized in Table 7.2.
      Assume that the beam is a part of a floor system and supports cinder 
block partitions susceptible to cracking if deflections are excessive.

	7.4.	 A beam having b = 12 in., d = 21.5 in., and h = 24 in. is reinforced with 
three No. 11 (No. 36) bars. Material strengths are fy  =  60,000 psi and ​
f​c​ ′​ = 4000 psi. It is used on a 28 ft simple span to carry a total service load 
of 2430 lb∕ft. For this member, the sustained loads include self-weight of 
the beam plus additional superimposed dead load of 510 lb∕ft, plus 400 lb∕ft 
representing that part of the live load that acts more or less continuously, 
such as furniture, equipment, and time-average occupancy load. The remain-
ing 1220 lb∕ft live load consists of short-duration loads, such as the brief 
peak load in the corridors of an office building at the end of a workday.
(a)	 Find the increment of deflection under sustained loads due to creep.
(b)	 Find the additional deflection increment due to the intermittent part of 

the live load.

www.konkur.in

Telegram: @uni_k



254      DESIGN OF CONCRETE STRUCTURES  Chapter 7

     In your calculations, you may assume that the peak load is applied almost 
immediately after the building is placed in service, then reapplied intermit-
tently. Compare with ACI Code limits from Table 7.2. Assume that, for this 
long-span floor beam, construction details are provided that will avoid dam-
age to supported elements due to deflections. If ACI Code limitations are not 
met, what changes would you recommend to improve the design?

	7.5.	 A reinforced concrete beam is continuous over two equal 22 ft spans, simply 
supported at the two exterior supports, and fully continuous at the interior 
support. Concrete cross-sectional dimensions are b = 10 in., h = 22 in., and 
d = 19.5 in. for both positive and negative bending regions. Positive reinforce-
ment in each span consists of two No. 9 (No. 29) bars, and negative reinforcement 
at the interior support is made up of three No. 10 (No. 32) bars. No compression 
steel is used. Material strengths are fy  =  60,000 psi and ​f​c​ ′​ = 5000 psi. The 
beam will carry a service live load, applied early in the life of the member, 
of 1800 lb∕ft distributed uniformly over both spans; 20 percent of this load 
will be sustained more or less permanently, while the rest is intermittent. The 
total service dead load is 1000 lb∕ft including self-weight.
(a)	 Find the immediate deflection when shores are removed and the full dead 

load is applied.
(b)	 Find the long-term deflection under sustained load.
(c)	 Find the increment of deflection when the short-term part of the live load 

is applied.
     Compare with ACI Code deflection limits; piping and brittle conduits 
are carried that would be damaged by large deflections. Note that midspan 
deflection may be used as a close approximation of maximum deflection.

	7.6.	 Recalculate the deflections of Problem 7.5 based on the assumption that 
20 percent of the live load represents the normal service condition of loading 
and is sustained more or less continuously, while the remaining 80 percent 
is a short-term peak loading that would probably not be applied until most 
creep deflections have occurred. Compare with your earlier results.

	7.7.	 The tensile-reinforced rectangular beam shown in Fig.  P7.7 is made using 
steel with fy  =  60,000 psi and Es  =  29,000,000 psi. A perfectly plastic 
response after yielding can be assumed. The concrete has a stress-strain curve 
in compression that may be approximated by the parabola fc = ​f​c​ ′​ [2εc∕ε0 − ​
(εc∕​ε​ 0​)​

2​], where fc and εc are the stress and strain in the concrete. The vari-
able ε0 is the strain at the peak stress = 0.002, and ​f​c​ ′​ = 4000 psi. The ultimate 
strain in the concrete is 0.003. The concrete responds elastically in tension 
up to the modulus of rupture fr = 475 psi. Based on this information, plot a 
curve relating applied moment to unit curvature at a section subjected to 
flexural cracking. Label points corresponding to first cracking, first yielding 
of steel, and peak moment.

FIGURE P7.7
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Analysis and Design 
for Torsion

	 8.1	 INTRODUCTION

Reinforced concrete members are commonly subjected to bending moments, trans-
verse shears associated with those bending moments, and, in the case of columns, 
axial forces often combined with bending and shear. In addition, torsional forces may 
act, tending to twist a member about its longitudinal axis. Such torsional forces 
seldom act alone and are almost always concurrent with bending moment and trans-
verse shear, and sometimes with axial force as well.

For many years, torsion was regarded as a secondary effect and was not con-
sidered explicitly in design, its influence being absorbed in the overall factor of safety 
of rather conservatively designed structures. Current methods of analysis and design, 
however, have resulted in less conservatism, leading to somewhat smaller members 
that, in many cases, must be reinforced to increase torsional strength. In addition, 
there is increasing use of structural members for which torsion is a central feature of 
behavior; examples include curved bridge girders, eccentrically loaded box beams, 
and helical stairway slabs. The design procedures in the ACI Code were first proposed 
in Switzerland (Refs. 8.1 and 8.2) and are also included in the European and Canadian 
model codes (Refs. 8.3 and 8.4). Reference 8.5 provides a summary of the develop-
ment of design procedures for reinforced concrete members subjected to torsion.

It is useful in considering torsion to distinguish between primary and second-
ary torsion in reinforced concrete structures. Primary torsion, sometimes called equi-
librium torsion or statically determinate torsion, exists when the external load has 
no alternative load path but must be supported by torsion. For such cases, the torsion 
required to maintain static equilibrium can be uniquely determined. An example is 
the cantilevered slab of Fig.  8.1a. Loads applied to the slab surface cause twisting 
moments mt to act along the length of the supporting beam. These are equilibrated 
by the resisting torque T provided at the columns. Without the torsional moments, 
the structure will collapse.

In contrast to this condition, secondary torsion, also called compatibility torsion 
or statically indeterminate torsion, arises from the requirements of continuity, that is, 
compatibility of deformation between adjacent parts of a structure. For this case, the 
torsional moments cannot be found based on static equilibrium alone. Disregard of 
continuity in the design will often lead to extensive cracking, but generally will not 
cause collapse. An internal readjustment of forces is usually possible and an alterna-
tive equilibrium of forces found. An example of secondary torsion is found in the 
spandrel or edge beam supporting a monolithic concrete slab, shown in Fig. 8.1b. If 
the spandrel beam is torsionally stiff and suitably reinforced, and if the columns can 
provide the necessary resisting torque T, then the slab moments will approximate 
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those for a rigid exterior support as shown in Fig.  8.1c. However, if the beam has 
little torsional stiffness and inadequate torsional reinforcement, cracking will occur to 
further reduce its torsional stiffness, and the slab moments will approximate those for 
a hinged edge, as shown in Fig.  8.1d. If the slab is designed to resist the altered 
moment diagram, collapse will not occur (see discussion in Section 11.10).

Although current techniques for analysis permit the realistic evaluation of tor-
sional moments for statically indeterminate conditions as well as determinate, design-
ers often neglect secondary torsional effects when torsional stresses are low and 
alternative equilibrium states are possible. This is permitted according to the ACI 
Code and many other design specifications. On the other hand, when torsional 
strength is an essential feature of the design, such as for the bridge shown in Fig. 8.2, 
special analysis and special torsional reinforcement are required, as described in the 
remainder of this chapter.

	 8.2	 TORSION IN PLAIN CONCRETE MEMBERS

Figure 8.3 shows a portion of a prismatic member subjected to equal and opposite 
torques T at the ends. If the material is elastic, St. Venant’s torsion theory indicates 

FIGURE 8.1
Torsional effects in  
reinforced concrete:  
(a) primary or equilibrium 
torsion at a cantilevered slab; 
(b) secondary or compatibility 
torsion at an edge beam;  
(c) slab moments if edge 
beam is stiff torsionally;  
and (d) slab moments if edge 
beam is flexible torsionally.
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that torsional shear stresses are distributed over the cross section, as shown in 
Fig.  8.3b. The largest shear stresses occur at the middle of the wide faces. If the 
material deforms inelastically, as expected for concrete, the stress distribution is 
closer to that shown by the dashed line.

FIGURE 8.2
Curved continuous beam 
bridge, Las Vegas, Nevada, 
designed for torsional effects.  
(Courtesy of Portland Cement 

Association.)

FIGURE 8.3
Stresses caused by torsion.
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Shear stresses in pairs act on an element at or near the wide surface, as shown 
in Fig.  8.3a. As explained in strength of materials texts, this state of stress corre-
sponds to equal tension and compression stresses on the faces of an element at 45° 
to the direction of shear. These inclined tension stresses are of the same kind as 
those caused by transverse shear, discussed in Section 5.2. However, in the case of 
torsion, since the torsional shear stresses are of opposite sign on opposing sides of 
the member (Fig.  8.3b), the corresponding diagonal tension stresses are at right 
angles to each other (Fig. 8.3a).

When the diagonal tension stresses exceed the tensile resistance of the concrete, 
a crack forms at some accidentally weaker location and spreads immediately across 
the beam. The value of torque corresponding to the formation of this diagonal crack 
is known as the cracking  torque Tcr.

There are several ways of analyzing members subjected to torsion. The non-
linear stress distribution shown by the dotted lines in Fig. 8.3b lends itself to the use 
of the thin-walled tube, space truss analogy. Using this analogy, the shear stresses 
are treated as constant over a finite thickness t around the periphery of the member, 
allowing the beam to be represented by an equivalent tube, as shown in Fig.  8.4. 
Within the walls of the tube, torque is resisted by the shear flow q, which has units 
of force per unit length. In the analogy, q is treated as a constant around the perim-
eter of the tube. As shown in Fig.  8.4, the resultants of the individual components 
of shear flow are located within the walls of the tube and act along lengths yo in the 
vertical walls and along lengths xo in the horizontal walls, with yo and xo measured 
at the center of the walls.

The relationship between the applied torque and the shear flow can be obtained 
by summing the moments about the axial centerline of the tube, giving

	 T = 2qxoyo∕2 + 2qyoxo∕2	 (a)

where the two terms on the right-hand side represent the contributions of the hori-
zontal and vertical walls to the resting torque, respectively. Thus,

	 T = 2qxoyo	 (b)

The product xoyo represents the area enclosed by the shear flow path Ao, giving

	 T = 2qAo	 (c)

and

	 q = ​  T ____ 
2Ao

 ​	 (d)

FIGURE 8.4
Thin-walled tube under 
torsion.
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Note that although Ao is an area, it derives from the moment calculation shown in  
Eq. (a) above. Thus, Ao is applicable for hollow box sections, as well as solid sec-
tions, and in such case includes the area of the central void.

For a tube wall thickness t, the unit shear stress acting within the walls of the 
tube is

	 τ = ​ 
q
 __ 

t
 ​ = ​  T ____ 

2Aot
 ​	 (8.1)

As shown in Fig.  8.3a, the principal tensile stress σ  =  τ. Thus, the concrete 
will crack only when τ = σ = ​​f​t​ ′​​, the tensile strength of concrete. Considering that 
concrete is under biaxial tension and compression, ​​f​t​ ′​​ can be conservatively repre-
sented by 4​​√

__
 ​f​c​ ′​​​ rather than the value typically used for the modulus of rupture of 

concrete, which is taken as fr = 7.5​​√
__

 ​f​c​ ′​​​ for normal-density concrete. Substituting  
τ = τcr = 4​​√

__
 ​f​c​ ′​​​ in Eq. (8.1) and solving for T give the value of the cracking torque:

	 Tcr = 4​​√
__

 ​f​c​ ′​​​ (2Aot)� (8.2)

Remembering that Ao represents the area enclosed by the shear flow path, Ao 
must be some fraction of the area enclosed by the outside perimeter of the full con-
crete cross section Acp. The value of t can, in general, be approximated as a fraction 
of the ratio Acp∕pcp, where pcp is the perimeter of the cross section. For solid mem-
bers with rectangular cross sections, t is typically one-sixth to one-fourth of the 
minimum width. Using a value of one-fourth for a member with a width-to-depth 
ratio of 0.5 yields a value of Ao approximately equal to ​ 2 _ 3 ​ Acp. For the same member, 
t = ​ 3 _ 4 ​ Acp∕pcp. Using these values for Ao and t in Eq. (8.2) gives

	 Tcr = 4​​√
__

 ​f​c​ ′​​​ ​ 
​A​ cp​ 2 ​

 ___ pcp
 ​     in.-lb	 (8.3)

It has been found that Eq. (8.3) gives a reasonable estimate of the cracking torque of 
solid reinforced concrete members regardless of the cross-sectional shape. For hollow 
sections, Tcr in Eq. (8.3) should be reduced by the ratio Ag∕Acp, where Ag is the gross 
cross section of the concrete, that is, not including the area of the voids (Ref. 8.6).

	 8.3	 TORSION IN REINFORCED CONCRETE MEMBERS

To resist torsion for values of T above Tcr, reinforcement must consist of closely 
spaced stirrups and longitudinal bars. Tests have shown that longitudinal bars alone 
hardly increase the torsional strength, with test results showing an improvement of 
at most 15 percent (Ref. 8.6). This is understandable because the only way in which 
longitudinal steel can directly contribute to torsional strength is by dowel action, 
which is particularly weak and unreliable if longitudinal splitting along bars is not 
restrained by transverse reinforcement. Thus, the torsional strength of members rein-
forced only with longitudinal steel is satisfactorily, and somewhat conservatively, 
predicted by Eqs. (8.2) and (8.3).

When members are adequately reinforced, as in Fig. 8.5a, the concrete cracks 
at a torque that is equal to or only somewhat larger than in an unreinforced member, 
as given by Eq. (8.3). The cracks form a spiral pattern, as shown in Fig. 8.5b. Upon 
cracking, the torsional resistance of the concrete drops to about one-half of that of 

www.konkur.in

Telegram: @uni_k



260      DESIGN OF CONCRETE STRUCTURES  Chapter 8

the uncracked member, the remainder being now resisted by reinforcement. This 
redistribution of internal resistance is reflected in the torque-twist curve (Fig. 8.6), 
which at the cracking torque shows continued twist at constant torque until the 
internal forces have been redistributed from the concrete to the steel. As the section 
approaches the ultimate load, the concrete outside the reinforcing cage cracks and 
begins to spall off, contributing progressively less to the torsional capacity of the 
member.

Tests show that, after cracking, the area enclosed by the shear path is defined 
by the dimensions xo and yo measured to the centerline of the outermost closed 
transverse reinforcement, rather than to the center of the tube walls as before. These 
dimensions define the gross area Aoh = xoyo and the shear perimeter ph = 2(xo + yo) 
measured at the steel centerline.

Analysis of the torsional resistance of the member is aided by treating the 
member as a space truss consisting of spiral concrete diagonals that are able to take 

FIGURE 8.5
Reinforced concrete beam  
in torsion: (a) torsional 
reinforcement and  
(b) torsional cracks.
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FIGURE 8.6
Torque-twist curve in 
reinforced concrete member.
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load parallel but not perpendicular to the torsional cracks, transverse tension tie 
members that are provided by closed stirrups or ties, and tension chords that are 
provided by longitudinal reinforcement. The hollow-tube, space truss analogy repre-
sents a simplification of actual behavior, since, as will be demonstrated, the calcu-
lated torsional strength is controlled by the strength of the transverse reinforcement, 
independent of concrete strength. Such a simplification will be used here because it 
aids understanding, although it greatly underestimates torsional capacity and does 
not reflect the higher torsional capacities obtained with higher concrete strengths 
(Refs. 8.7 and 8.8).

With reference to Fig. 8.7, the torsional resistance provided by a member with 
a rectangular cross section can be represented as the sum of the contributions of the 
shears in each of the four walls of the equivalent hollow tube. The contribution of 
the shear acting in the right-hand vertical wall of the tube to the torsional resistance, 
for example, is

	​ T4 = ​ 
V4 xo _____ 

2
 ​​	  (a)

Following a procedure similar to that used for analyzing the variable-angle 
truss shear model discussed in Section 5.8 and shown in Figs. 5.18 and 5.19, the 
equilibrium of a section of the vertical wall—with one edge parallel to a torsional 
crack with angle θ—can be evaluated using Fig. 8.8a.

Assuming that the stirrups crossing the crack are yielding, the shear in the wall 
under consideration is

	​ V4 = At fyt n​	 (b)

where  At = area of one leg of a closed stirrup
fyt = yield strength of transverse reinforcement
n = number of stirrups intercepted by torsional crack

Since the horizontal projection of the crack is yo cot θ and n  =  yo  cot  θ∕s, 
where θ is the slope angle of the strut and s is the spacing of the stirrups,

	​ V4 = ​ 
At fytyo

 ______ s ​  cot θ​	 (c)

Combining Eqs. (c) and (a) gives

	​ T4 = ​ 
 At  fyt yo xo

 ________ 
2s

 ​  cot θ​	 (d)

FIGURE 8.7
Space truss analogy. Cracks

Stirrups

Longitudinal
barConcrete

compression
struts
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Again with reference to Fig. 8.7, the contribution of the shear in the left-hand 
vertical wall V2 to the torsional resistance T2 can be obtained by following the steps 
outlined for Eqs. (a), (b), and (c), giving a value that is identical with that for T4 in 
Eq.  (d). The contributions of the horizontal walls T1 and T3 can be determined in 
the same way, except that the internal moment arm in Eq. (a) becomes yo and the 
horizontal projection of the crack becomes xo cot θ, which leads to expressions for 
T1 and T3 that are also identical to that for T4 in Eq. (d). Thus, summing over all 
four sides, the nominal capacity of the section is

	 Tn = ​ ∑ 
i = 1

​ 
4
 ​​  Ti = ​​ 

2At fyt yo xo
 _________ s ​​  cot θ	 (e)

Noting that yo xo = Aoh and rearranging slightly give

	​ Tn = ​ 
 2Aoh At  fyt

 ________ s ​  cot θ​	 (8.4)

The diagonal compression struts that form parallel to the torsional cracks are 
necessary for the equilibrium of the cross section. As shown in Fig. 8.8b and c, the 
horizontal component of compression in the struts in the vertical wall must be equil-
ibrated by an axial tensile force ΔN4. Based on the assumed uniform distribution of 
shear flow around the perimeter of the member, the diagonal stresses in the struts 
must be uniformly distributed, resulting in a line of action of the resultant axial force 
that coincides with the midheight of the wall. Referring to Fig. 8.8c, the total con-
tribution of the right-hand vertical wall to the change in axial force of the member 
due to the presence of torsion is

​ΔN4 = V4 cot θ = ​ 
At  fyt yo

 ______ s ​  cot2 θ​

FIGURE 8.8
Basis for torsional design:  
(a) vertical tension in 
stirrups; (b) diagonal 
compression in vertical wall 
of beam; and (c) equilibrium 
diagram of forces due to 
shear in vertical wall.
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Again, summing over all four sides, the total increase in axial force for the  
member is

	 ΔN = ​​ ∑ 
i = 1

​ 
4
 ​​​  ΔNi = ​ 

​A​ t​  ​f​ yt​
 _____ s ​  2 (xo + yo) cot2 θ	 (8.5a)

	​ ΔN = ​ 
​A​ t​  ​f​ yt​ ​p​ h​

 _______ s ​  ​cot​2​ θ​	 (8.5b)

where ph is the perimeter of the centerline of the closed stirrups.
Longitudinal reinforcement must be provided to carry the added axial force 

ΔN. If that steel is designed to yield, then

	​ Aℓ fy = ​ 
At fyt ph

 ______ s ​  cot2 θ​	 (8.6)

and

	​ Aℓ = ​ 
At __ s ​ ph ​ 

fyt
 __ 

fy

 ​ cot2 θ​	 (8.7)

where Aℓ =  total area of longitudinal reinforcement to resist torsion, in2

fy = yield strength of longitudinal torsional reinforcement, psi

Solving Eq. (8.4) for At fyt, substituting the value in Eq. (8.7), and solving for 
Tn gives the limiting value of the nominal torsional capacity Tn based on Aℓ.

	​ Tn = ​ 
2Aoh Aℓ  fy

 ________ ph
 ​  tan θ​	 (8.8)

It has been found experimentally that, after cracking, the effective area enclosed 
by the shear flow path is somewhat less than the value of Aoh used in the previous 
development. It is recommended in Ref. 8.8 that the reduced value be taken as 
Ao  =  0.85Aoh, where, it will be recalled, Aoh is the area enclosed by the centerline 
of the transverse reinforcement. This recommendation is incorporated in the ACI 
Code (see Section 8.5) and in a modified form of Eq. (8.4) with Ao substituted for 
Aoh. It has further been found experimentally that the thickness of the equivalent tube 
at loads near ultimate is closely approximated by t = Aoh∕ph, where ph is the perimeter 
of Aoh.

	 8.4	 TORSION PLUS SHEAR

Members are rarely subjected to torsion alone. The prevalent situation is that of a 
beam subject to the usual flexural moments and shear forces, which, in addition, 
must resist torsional moments. In an uncracked member, shear forces as well as 
torque produce shear stresses. In a cracked member, both shear and torsion increase 
the forces in the diagonal struts (Figs. 5.19d and 8.8b), increase the width of diagonal 
cracks, and increase the forces required in the transverse reinforcement (Figs. 5.19e 
and 8.8a).

Using the usual representation for reinforced concrete, the nominal shear stress 
caused by an applied shear force V is τv = V∕bwd. The shear stress caused by torsion, 
given in Eq. (8.1), is τt = T∕(2Aot). As shown in Fig 8.9a for hollow sections, these 
stresses are directly additive on one side of the member. Thus, for a cracked concrete 
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cross section with Ao  =  0.85Aoh and t  =  Aoh∕ph, the maximum shear stress can be 
expressed as

	​ τ = τv + τt = ​  V ____ 
bwd

 ​ + ​ 
Tph ______ 

1.7​A​ oh​ 
2 ​

 ​​	 (8.9)

For a member with a solid section, Fig.  8.9b, τt is predominately distributed 
around the perimeter, as represented by the hollow tube analogy, but the full cross 
section contributes to carrying τv. Comparisons with experimental results show that  
Eq. (8.9) is somewhat overconservative for solid sections and that a better representa-
tion for maximum shear stress is provided by the square root of the sum of the 
squares of the nominal shear stresses:

	​ τ = ​√
________________

  ​​( ​  V
 ____ 

​b​ w​d
 ​ )​​2​ +  ​​( ​  ​Tp​ h​

 ______ 
​1.7A​ oh​ 

2
  ​
 ​ )​​2​​​	 (8.10)

Equations (8.9) and (8.10) serve as a measure of the shear stresses in the 
concrete under both service and ultimate loading.

	 8.5	 ACI CODE PROVISIONS FOR TORSION DESIGN

The basic principles upon which ACI Code design provisions are based have been 
presented in the preceding sections. ACI Code 9.5.1.1 safety provisions require that

	​ Tn ≥ ϕTu​	 (8.11)

where Tn = nominal torsional strength of member
Tu = required torsional strength at factored loads

The strength reduction factor ϕ = 0.75 applies for torsion. Strength Tn as a function 
of the transverse reinforcement is based on Eq. (8.4) with Ao substituted for Aoh, thus

	​ Tn = ​ 
2Ao  At  fyt

 ________ s ​  cot θ​	 (8.12)

With the same substitution, Tn as a function of the longitudinal reinforcement, based 
on Eq. (8.8), is

	​ Tn = ​ 
2Ao Aℓ  fy

 _______ ph
 ​  tan θ​	 (8.13)

FIGURE 8.9
Addition of torsional and 
shear stresses: (a) hollow 
section and (b) solid section.  
(Adapted from Ref. 8.8.)
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In accordance with ACI Code 9.4.4.3, sections located less than a distance d 
from the face of a support may be designed for the same torsional moment Tu as that 
computed at a distance d, recognizing the beneficial effects of support compression. 
However, if a concentrated torque is applied within this distance, the critical section 
must be taken at the face of the support. These provisions parallel those used in shear 
design. For beams supporting slabs such as are shown in Fig. 8.1, the torsional load-
ing from the slab may be treated as being uniformly distributed along the beam.

	 a.	 T Beams and Box Sections

For T beams, a portion of the overhanging flange contributes to the cracking tor-
sional capacity and, if reinforced with closed stirrups, to the torsional strength. 
According to ACI Code 9.2.4.4, the contributing width of the overhanging flange on 
either side of the web is equal to the smaller of (1) the projection of the beam above 
or below the slab, whichever is greater, and (2) 4 times the slab thickness, as shown 
in Fig.  8.10. As with solid sections, Acp for box sections, with or without flanges, 
represents the area enclosed by the outside perimeter of the concrete section.

After torsional cracking, the applied torque is resisted by the portion of the 
section represented by Aoh, the area enclosed by the centerline of the outermost 
closed transverse torsional reinforcement. For rectangular, box, and T sections, Aoh 
is illustrated in Fig. 8.11. For sections with flanges, the Code does not require that 
the section used to establish Acp coincide with that used to establish Aoh.

	 b.	 Threshold Torsion

If the value of factored torsional moment Tu is low enough, the effects of torsion 
may be neglected, according to ACI Code 22.7.1.1. This lower limit is ϕ times the 
threshold torsion Tth, which equals 25 percent of the cracking torque, given by 
Eq.  (8.3). The presence of torsional moment at or below this limit will have a 
negligible effect on the flexural and shear strength of the member.

FIGURE 8.10
Portion of slab to be included 
with beam for torsional 
design.

bw

bw + 2hw ≤ bw + 8hf

(a ) Symmetric slab

hf

hw

bw

hw ≤ 4hf

(b ) Single side slab

hf

hw

FIGURE 8.11
Definition of Aoh.  
(Adapted from Ref. 8.8.)

Aoh = shaded area

Closed
stirrup
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For solid cross sections without axial load, ACI Code 22.7.4 defines the threshold 
torsion as

	 Tth = λ​√
__

 ​f​c​ ′​​ ​​( ​ ​A​ cp​ 2
 ​
 ___ pcp
 ​ )​​	 (8.14a)

and for members with axial load Nu and gross area Ag as

	 ​Tth = λ​√
__

 ​f​c​ ′​​ ​( ​ ​A​ cp​ 2
 ​
 ___ pcp
 ​ )​ ​√

____________

  1 + ​ 
Nu
 ________ 

4Ag λ​√
__

 ​f​c​ ′​​
 ​​​	 (8.14b)

For hollow cross sections without axial load, the threshold torsion is

	​ Tth = λ​√
__

 ​f​c​ ′​​ ​( ​ ​A​ g​ 2​
 ___ pcp
 ​ )​​	 (8.15a)

and for hollow members with axial load, the threshold torsion is

	​ Tth = λ​√
__

 ​f​c​ ′​​ ​( ​ ​A​ g​ 2​
 ___ pcp
 ​ )​ ​√

____________

  1 + ​ 
Nu
 ________ 

4Ag λ​√
__

 ​f​c​ ′​​
 ​​​	 (8.15b)

Thus, if Tu ≥ ϕTth, the member must be designed for torsion.
When calculating ​​A​ cp​ 2 ​∕pcp​ for solid sections and Ag

2∕pcp for hollow sections  
for beams with flanges, ACI Code 9.2.4.4 requires that the flanges must be neglected 
when doing so produces higher values for these terms than when the flanges are 
included.

The value of λ is specified in ACI Code 19.2.4.2 and previously described in 
Section 5.5a. λ may be taken as 1.0 for normalweight concrete and 0.75 for light-
weight concrete. Values between 0.75 and 1.0 may also be used by applying linear 
interpolation between λ = 0.75 and 1.0 for concretes with unit weights of wc ≤ 100 
pcf and wc ≥ 135 pcf, respectively. Alternatively, λ = 0.75 for all-lightweight con-
crete and 0.85 for sand-lightweight concrete, using linear interpolation between 0.75 
and 0.85 when a portion of the lightweight fine aggregate is replaced by normal-
weight fine aggregate and between 0.85 and 1.0 for concretes containing normal-
weight fine aggregate and a blend of lightweight and normalweight coarse aggregate.

A comparison of Eqs. (8.14) and (8.15) shows that for hollow sections (with  
or without axial load), Acp has been replaced by the gross area of the concrete Ag to 
determine if torsional effects may be neglected. This has the effect of multiplying  
25 percent of the cracking torque by the ratio Ag∕Acp twice—once to account for the 
reduction in cracking torque for hollow sections from the value shown in Eq. (8.3) 
and a second time to account for the transition from the circular interaction of com-
bined shear and torsion stresses in Eq. (8.10) to the linear interaction represented by 
Eq.  (8.9).

	 c.	 Equilibrium vs. Compatibility Torsion

A distinction is made in the ACI Code between equilibrium (primary) torsion and 
compatibility (secondary) torsion. For the first condition, described earlier with refer-
ence to Fig.  8.1a, the supporting member must be designed to provide the torsional 
resistance required by static equilibrium. For secondary torsion resulting from 
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compatibility requirements, shown in Fig. 8.1b, it is assumed that cracking will result 
in a redistribution of internal forces; and according to ACI Code 22.7.3.2, the maximum 
torsional moment Tu may be reduced to ϕ times the cracking torque Tcr or  
​4ϕλ​√

__
 ​f​c​ ′​​ (A2

cp∕pcp)​ for members not subjected to axial load and ​4ϕλ​√
__

 ​f​c​ ′​​(A2
cp∕pcp)​ × 

​​√
_______________

  1  +  Nu∕(4Ag λ​√
__

 ​f​c​ ′​​)​​ for members subjected to axial load. In the case of hollow 
sections, Acp is not replaced by Ag, and unlike the Code requirements for the thresh-
old torsion of members with flanges, the designer is free to include or exclude 
flanges when calculating ​​A​ cp​ 

2
 ​∕pcp​ and ​​A​ g​ 

2​∕pcp​, but the choice should be consistent 
with the section properties used to calculate Tn. The design moments and shears in 
the supported member must be adjusted accordingly. The reduced value of Tu per-
mitted by the ACI Code is intended to approximate the torsional cracking strength 
of the supporting beam, for combined torsional and flexural loading. The large rota-
tions that occur at essentially constant torsional load result in significant redistribu-
tion of internal forces, justifying use of the reduced value for design of the torsional 
member and the supported elements.

	 d.	 Limitations on Shear Stress

Based largely on empirical observations, the width of diagonal cracks caused by 
combined shear and torsion under service loads can be limited by limiting the 
calculated shear stress under factored shear and torsion (Ref. 8.4) so that

	​ vmax ≤ ϕ ​( ​ Vc
 ____ 

bwd
 ​ + 8​√

__
 ​f​c​ ′​​ )​​	 (8.16)

where vmax in Eq. (8.16) corresponds to the upper limits on shear capacity described 
in Section 5.5d. Combining Eq. (8.16) with Eq. (8.9) provides limits on the 
cross-sectional dimensions of hollow sections, in accordance with ACI Code 22.7.7.1.

	​​ 
Vu ____ 
bwd

 ​ + ​ 
Tu ph ______ 

1.7​A​ oh​ 
2 ​

 ​ ≤ ϕ ​( ​ Vc
 ____ 

bwd
 ​ + 8​√

__
 ​f​c​ ′​​ )​​	 (8.17)

Likewise, for solid sections, combining Eq. (8.16) with Eq. (8.10) gives

	​​ √
________________

  ​​( ​ ​V​ u​ ____ 
​b​ w​d

 ​ )​​2​ +  ​​( ​  ​T​ u​ ​p​ h​
 ______ 

​1.7A​ oh​ 
2
  ​
 ​ )​​2​​​ ≤ ϕ ​( ​ Vc

 ____ 
bwd

 ​ + 8​√
__

 ​f​c​ ′​​ )​	 (8.18)

Either member dimensions or concrete strength must be increased if the crite-
ria in Eq. (8.17) or (8.18) are not satisfied.

ACI Code 22.7.7.1 requires that if the wall thickness varies around the perim-
eter of a hollow section, Eq. (8.17) be evaluated at the location where the left-hand 
side of the expression is a maximum. If the wall thickness is less than the assumed 
value of t used in the development of Eq. (8.9) Aoh∕ph, the actual value of t must be 
used in the calculation of torsional shear stress. As a result, the second term on the 
left-hand side of Eq. (8.17) must be taken as

​​ 
Tu ______ 

1.7Aoht
 ​​

where t is the thickness of the wall of the hollow section at the location where the 
stresses are being checked.
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	 e.	 Reinforcement for Torsion

The nominal torsional strength based on the capacity of the transverse reinforcement 
is given by Eq. (8.12).

	 Tn = ​​ 
2Ao At fyt

 _______ s ​​  cot θ	 (8.12)

According to ACI Code 22.7.6.1, the angle θ may assume any value between 
30 and 60°, with a value of θ = 45° suggested. The area enclosed by the shear flow 
Ao may be determined by analysis using procedures such as suggested in Ref. 8.9, 
or Ao may be taken as equal to 0.85Aoh. Combining Eq. (8.12) with Eq. (8.11), the 
required cross-sectional area of one stirrup leg for torsion is

	 At = ​​ 
Tu s
 ____________  

2ϕAo  fyt cot θ
 ​​	 (8.19)

The Code limits fyt to a maximum of 60,000 psi for reasons of crack control.
The reinforcement provided for torsion must be combined with that required 

for shear. Based on the typical two-leg stirrup, this may be expressed as

	​​ 
Av+t

 ____ s ​  = ​ 
Av __ s ​ + 2 ​ 

At __ s ​​	 (8.20)

As described in Section 8.3, the transverse stirrups used for torsional reinforce-
ment must be of a closed form to provide the required tensile capacity across the 
diagonal cracks of all faces of the beam. U-shaped stirrups commonly used for 
transverse shear reinforcement are not suitable for torsional reinforcement. On the 
other hand, one-piece closed stirrups make field assembly of beam reinforcement 
difficult, and for practical reasons, torsional stirrups are generally two-piece 
stirrup-ties, as shown in Fig. 8.12. A U-shaped stirrup is combined with a horizon-
tal top bar, suitably anchored.

FIGURE 8.12
Stirrup-ties and longitudinal 
reinforcement for torsion:  
(a) spandrel beam with 
flanges on one side;  
(b) interior beam; (c) isolated 
rectangular beam; (d) wide 
spandrel beam; and  
(e) T beam with torsional 
reinforcement in flanges.

Confinement
from slab

(a )

(d ) (e )

0″

Confinement
from slab

No confinement–
135° hooks

(b ) (c )
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Because concrete outside the reinforcing cage tends to spall off when the mem-
ber is subjected to high torque, transverse torsional reinforcement must be anchored 
within the concrete core (Ref. 8.10). ACI Code 25.7.1.6 and 25.7.2.5 require that 
stirrups or ties used for transverse longitudinal reinforcement be anchored with a 
135° standard hook around a longitudinal bar, unless the concrete surrounding the 
anchorage is restrained against spalling by a flange or a slab, in which case 90° 
standard hooks may be used, as shown in Fig. 8.12a, b, and d. Overlapping U-shaped 
stirrups, such as shown in Fig. 6.22d, may not be used. If flanges are included in 
the computation of torsional strength for T- or L-shaped beams, closed torsional 
stirrups must be provided in the flanges, as shown in Fig. 8.12e.

The required spacing of closed stirrups, satisfying Eq. (8.20), is selected for 
the trial design based on standard bar sizes.

To control spiral cracking, the maximum spacing of torsional stirrups should not 
exceed ph∕8 or 12 in., whichever is smaller. In addition, for members requiring both 
shear and torsion reinforcement, the minimum area of closed stirrups is equal to

	​ Av + 2At = 0.75​√
__

 ​f​c​ ′​​ ​ 
bws

 ___ 
fyt

 ​ ≥ 50 ​ 
bws

 ___ 
fyt

 ​​	 (8.21)

according to ACI Code 9.6.4.2.
The area of longitudinal bar reinforcement Aℓ required to resist Tn in Eq. (8.13) 

is given by Eq. (8.7)

	​ Aℓ = ​ 
At __ s ​ ph ​ 

fyt
 __ 

fy

 ​ cot2 θ​	 (8.7)

where θ must have the same value used to calculate At.
The term At∕s in Eq. (8.7) should be taken as the value calculated using  

Eq. (8.19), not modified based on minimum transverse steel requirements. ACI Code 
9.5.4.5 permits the portion of Aℓ in the flexural compression zone to be reduced by 
an amount equal to Mu∕(0.9dfy), where Mu is the factored moment acting at the 
section in combination with Tu.

Based on an evaluation of the performance of reinforced concrete beam tor-
sional test specimens, ACI Code 9.6.4.3 requires a minimum value of Aℓ equal to 
the lesser of Eqs. (8.22a) and (8.22b).

	​ Aℓ,min = ​ 
5​√

__
 ​f​c​ ′​​ Acp
 ________ 

fy

 ​  − ​ 
At __ s ​ ph ​ 

fyt
 __ 

fy

 ​​	 (8.22a)

	​ Aℓ,min = ​ 
5​√

__
 ​f​c​ ′​​ Acp
 ________ 

fy

 ​  − ​( ​ 25bw _____ 
fyt

 ​  )​ ph ​ 
fyt

 __ 
fy

 ​​	 (8.22b)

with fyt in Eq. (8.22b) in psi. As a general rule, the term (25bw∕fyt) in Eq. (8.22b) 
serves as a lower bound for the term At∕s in Eq. (8.22a).

According to ACI Code 9.7.5, the spacing of the longitudinal bars should not 
exceed 12 in., and they should be distributed around the perimeter of the cross sec-
tion to control cracking. The bars may not be less than No. 3 (No. 10) in size or 
have a diameter less than 0.042 times the spacing of the transverse stirrups. At least 
one longitudinal bar must be placed at each corner of the stirrups. Careful attention 
must be paid to the anchorage of longitudinal torsional reinforcement so that it is 
able to develop its yield strength at the face of the supporting columns, where 
torsional moments are often maximum.
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Reinforcement required for torsion may be combined with that required for 
other forces, provided that the area furnished is the sum of the individually required 
areas and that the most restrictive requirements of spacing and placement are met. 
According to ACI Code 9.7.6.3, torsional reinforcement must be provided at least a 
distance bt + d beyond the point theoretically required, where bt is the width of that 
part of the cross section containing the closed stirrups resisting torsion. According 
to the provisions of the ACI Code, the point at which the torsional reinforcement is 
no longer required is the point at which Tu < ϕTth, where Tth is the threshold torque 
given in Section 8.5b.

The subject of torsional design of prestressed concrete is not treated here, but 
as presented in the ACI Code, it differs only in certain details from the above pres-
entation for nonprestressed reinforced concrete beams.

	 f.	 Design for Torsion

Designing a reinforced concrete flexural member for torsion involves a series of 
steps. The following sequence ensures that each is covered:

	 1.	 Determine if the factored torque is less than ​ϕTth = ϕλ​√
__

 ​f​c​ ′​​ (​A​ cp​ 2 ​∕pcp)​ or ​ϕλ​√
__

 ​f​c​ ′​​  
(​A​ cp​ 2 ​∕pcp)​√

________________
  1 + Nu∕(4Agλ​√

__
 ​f​c​ ′​​)​​  for members subjected to axial load. If so, torsion 

may be neglected. If not, proceed with the design. Note that in this step, portions 
of over hanging flanges, as defined in Section 8.5a, must be included in the 
calculation of Acp and pcp.

	 2.	 If the torsion is compatibility torsion, rather than equilibrium torsion, as 
described in Sections 8.1 and 8.5c, the maximum factored torque may be reduced 
to ​4ϕλ​√

__
 ​f​c​ ′​​ (​A​ cp​ 2 ​∕pcp)​ or ​4ϕλ​√

__
 ​f​c​ ′​​ (​A​ cp​ 2 ​∕pcp)​√

________________
  1 + Nu∕(4Agλ​√

__
 ​f​c​ ′​​)​​ for members sub-

jected to axial load, with the moments and shears in the supported members 
adjusted accordingly. Equilibrium torsion cannot be adjusted.

	 3.	 Check the shear stresses in the section under combined torsion and shear, using 
the criteria of Section 8.5d.

	 4.	 Calculate the required transverse reinforcement for torsion using Eq. (8.19) and 
shear using Eq. (5.14a). Combine At and Av using Eq. (8.20).

	 5.	 Check that the minimum transverse reinforcement requirements are met for both 
torsion and shear. These include the maximum spacing, as described in Sections 
8.5e and 5.5d, and minimum area, as given in Eq. (8.21).

	 6.	 Calculate the required longitudinal torsional reinforcement Aℓ, using the larger 
of the values given in Eqs. (8.7) and (8.22), and satisfy the spacing and bar size 
requirements given in Section 8.5e. The portion of Aℓ in the flexural compres-
sion zone may be reduced by Mu∕(0.9dfy), providing that Eq. (8.22) and the 
spacing and bar size requirements are satisfied.

	 7.	 Continue torsional reinforcement bt  +  d past the point where Tu is less than  
​ϕλ​√

__
 ​f​c​ ′​​ (​A​ cp​ 2 ​∕pcp)​ or ​ϕλ​√

__
 ​f​c​ ′​​ (​A​ cp​ 2 ​∕pcp)​√

________________
  1 + Nu∕(4Ag λ ​√

__
 ​f​c​ ′​​​)​ for members subjected 

to axial load.

	EXAMPLE 8.1	 Design for torsion with shear.  The 28 ft span beam shown in Fig. 8.13a and b carries a 
monolithic slab cantilevering 6 ft past the beam centerline. The resulting L beam supports 
a live load of 900 lb∕ft along the beam centerline plus 50 psf uniformly distributed over the 
upper slab surface. The effective depth to the flexural steel centroid is 21.5 in., and the 
distance from the beam surfaces to the centroid of stirrup steel is ​1​ 3 _ 4 ​​ in. Material strengths 
are ​​f​c​ ′​ = 5000​ psi and fy  =  60,000 psi. Design the torsional and shear reinforcement for  
the beam.
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Solution.  Applying ACI load factors gives the slab load as

1.2wd = 1.2 × 75 × 5.5 = 495 lb∕ft

 1.6wl = 1.6 × 50 × 5.5 = 440 lb∕ft

Total = 935 lb∕ft at 3.25 ft eccentricity

while the beam carries directly

    1.2wd = 1.2 × 300 =   360 lb∕ft

1.6wl = 1.6(900 + 50) = 1520 lb∕ft

              Total = 1880 lb∕ft

FIGURE 8.13
Shear and torsion design 
example.
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Thus, the uniformly distributed load on the beam is 2815 lb∕ft, acting together with a uniformly 
distributed torque of 935 × 3.25 = 3040 ft-lb∕ft. At the face of the column, the design shear 
force is Vu = 2.815 × 28∕2 = 39.4 kips. At the same location, the design torsional moment is 
Tu = 3.040 × 28∕2 = 42.6 ft-kips.

The variation of Vu and Tu with distance from the face of the supporting column is 
shown in Fig. 8.13c and d, respectively. The values of Vu and Tu at the critical design section, 
a distance d from the column face, are

​Vu = 39.4 × ​ 12.21 _____ 
14

 ​  = 34.4 kips​

​Tu = 42.6 × ​ 12.21 _____ 
14

 ​  = 37.2 ft-kips​

For the effective beam, Acp = 12 × 24 + 6 × 18 = 396 in2 and pcp = 2 × 24 + 2 × 30 = 108 in.  
According to the ACI Code, torsion may be neglected for normalweight concrete (λ = 1.0) 
if ​Tu ≤ ϕTth = ϕλ​√

__
 ​f​c​ ′​​ ​( ​A​ cp​ 2

 ​∕pcp )​​ = 0.75 × ​1.0​√
____

 5000​​ (3962∕108)∕12,000 = 6.4 ft-kips. Clearly, 
torsion must be considered in the present case. Since the torsional resistance of the beam is 
required for equilibrium, no reduction in Tu may be made.

Before designing the torsional reinforcement, the section will be checked for adequacy 
in accordance with Eq. (8.18). Although Acp was calculated considering the flange to check 
if torsion could be neglected (as required by ACI Code 22.7.4), subsequent calculations for 
serviceability and strength will neglect the flange and no torsional reinforcement will be 
provided in the flange. For reference, bwd = 12 × 21.5 = 258  in2. With 1​ 3 _ 4 ​ in. cover to the 
center of the stirrup bars from all faces, xo = 12 − 3.5 = 8.5 in. and yo = 24.0 − 3.5 = 20.5 in. 
Thus, Aoh = 8.5 × 20.5 = 174 in2, Ao = 0.85 × 174 = 148 in2, and ph = 2(8.5 + 20.5) = 58 in. 
Because minimum shear reinforcement must be used, ​Vc = 2​√

__
 ​f​c​ ′​​​. Using Eq. (8.18),

​​√
________________

  ​​( ​  ​V​ u​ ____ 
​b​ w​ d

 ​ )​​2​ + ​​( ​  ​T​ u​ ​p​ h​
 ______ 

​1.7A​ oh​ 
2
  ​
 ​ )​​2​ ​≤ ϕ ​( ​  ​V​ c​ ____ 

​b​ w​ d
 ​ + 8​√

__
 ​f​c​ ′​​ )​​​

​√
________________________

   ​​( ​ 34.4 ____ 
258

 ​ )​​2​ +  ​​( ​ 37.2 × 12 × 58  _____________  
1.7 ×  ​174​2​

 ​  )​​2​​ ≤ ​ 0.75 _____ 
1000

 ​ ​( 2​√
____

 5000​ + 8​√
____

 5000​ )​

​0.520 ksi ≤ 0.530 ksi

Therefore, the cross section is of adequate size for the given concrete strength.
The values of At and Av will now be calculated at the column face (for reference only). 

Using Eq. (8.19) and choosing θ = 45°,

​At = ​ 
Tus
 ___________  

2ϕAo fy cot θ
 ​

​​     = ​  42.6 × 12s
  ______________________   

2 × 0.75 × 148 × 60 × 1
 ​ = 0.0384s​

for one leg of a closed vertical stirrup or 0.0768s for two legs.
The shear capacity of the concrete alone, obtained using Eq. (5.12c), is

​ϕVc = 0.75 × 2λ​√
__

 ​f​c​ ′​​ bw d

​     ​= ​ 0.75 × 2 × 1.0​√
____

 5000​ × 258   _________________________  
1000

 ​  = 27.4 kips​

From Eq. (5.14a), the web reinforcement for transverse shear, again computed at the column 
face, is

​Av = ​ 
(Vu − ϕVc)s  __________ 

ϕ fyt d
 ​  = ​ 

(39.4 − 27.4)s
  _______________  

0.75 × 60 × 21.5
 ​ = 0.0124s​

to be provided in two vertical legs.
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The calculated value of At will decrease linearly to zero at the midspan, and the cal-
culated value of Av will decrease linearly to zero 4.26 ft from the face of the support, the 
point at which Vu = ϕVc. Thus, the total area to be provided by the two vertical legs is

​2At + Av = 0.0768s ​( 1 − ​ x ___ 
14

 ​ )​ + 0.0124s ​( 1 − ​  x ____ 
4.26

 ​ )​​
for 0 ≤ x ≤ 4.26 ft., where x is the distance from the face of the support, and

​2At + Av = 0.0768s ​( 1 − ​ x ___ 
14

 ​ )​​
for 4.26 ≤ x ≤ 14 ft.

No. 4 (No. 13) closed stirrups will provide a total area in the two legs of 0.40 in2. For 
2At  +  Av  =  0.40  in2, the required spacing at d and at 2 ft intervals along the span can be 
found using the given relationships between stirrup area and spacing:

 sd =   5.39 in.
 s2 =   5.52 in.
 s4 =   7.19 in.
 s6 =   9.11 in.
 s8 = 12.2 in.
s10 = 18.2 in.

These values of s are plotted in Fig. 8.13e. ACI provisions for maximum spacing should now be 
checked. For torsion reinforcement, the maximum spacing is the lesser of

​​ 
ph __ 
8
 ​ = ​ 58 ___ 

8
 ​ = 7.25 in.​

or 12 in., whereas for shear reinforcement, the maximum spacing is d∕2 = 10.75 in. ≤ 24 in. 
The most restrictive provision is the first, and the maximum spacing of 7.25 in. is plotted in 
Fig. 8.13e. Stirrups between the face of the support and the distance d can be spaced at sd. The 
resulting spacing requirements are shown by the solid line in the figure. These requirements are 
met in a practical way by No. 4 (No. 13) closed stirrups, the first placed 2 in. from the face of 
the column, followed by 9 at 5 in. spacing and 17 at 7 in. spacing. According to the ACI Code, 
stirrups may be discontinued at the point where Vu < ϕVc∕2 (4.9 ft from the span centerline) 
or bt + d = 2.8 ft past the point at which Tu < ​ϕλ​√

__
 ​f​c​ ′​​ (​A​ cp​ 2 ​∕pcp)​. The latter point is past the 

centerline of the member; therefore, minimum stirrups are required throughout the span. The 
minimum web steel provided, 0.40 in2, satisfies the ACI Code minimum = ​0.75​√

__
 ​f​c​ ′​​ bw s∕fyt​ =  

​0.75​√
____

 5000​ (12)​ × 7∕60,000 = 0.074 in2 ≥ 50bws∕fyt = 50 × 12 × 7∕60,000 = 0.070 in2.
The longitudinal steel required for torsion at a distance d from the column face is 

computed next. At that location

​​ 
At __ s ​ = 0.0384 ​( 1 − ​ 1.79 ____ 

14
 ​  )​ = 0.0335

​and from Eq. (8.7)

​Aℓ = ​ 
At __ s ​ ph ​ 

fyt
 __ 

fy

 ​ cot2 θ​

= 0.0335 × 58 × ​​ 60 ___ 
60

 ​​ × 12 = 1.94 in2

with a total not less than the lower value from Eqs. (8.22a) and (8.22b), which are, respectively,

​Aℓ,min = ​ 
5​√

__
 ​f​c​ ′​​ Acp
 ________ 

fy

 ​  − ​ 
At __ s ​ ph ​ 

fyt
 __ 

fy

 ​​
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Problems
	8.1.	 A rectangular beam is 15 in. wide and 30 in. deep. For ​​f​c​ ′​​ = 4000 psi and 

fyt  =  60,000 psi, determine the required spacing of No. 4 (No. 13) closed 
stirrups for a factored shear of 80 kips and factored torsional moment of 
50  ft-kips. The stirrup centroid is located 1.75 in. from each concrete face. 
The effective depth is 26.5 in.

	8.2.	 A beam of rectangular cross section having b = 22 in. and h = 15 in. is to 
carry a total factored load of 3600 lb∕ft uniformly distributed over its 26 ft 
span, and in addition the beam will be subjected to a uniformly distributed 
torsion of 1800 ft-lb∕ft at factored loads. Closed stirrup-ties will be used to 

​Aℓ,min = ​ 
5​√

__
 ​f​c​ ′​​ Acp
 ________ 

fy

 ​  − ​( ​ 25bw _____ 
fyt

 ​  )​ ph ​ 
fyt

 __ 
fy

 ​​

Because 25bw∕fyt = 25 × 12∕60,000 = 0.005 is less than At∕s, Eq. (8.22a) will give the lower 
value of Aℓ,min.

​Aℓ,min = ​ 5​√
____

 5000​ × 396  _____________  
60 × 1000

 ​  − 0.0335 × 58 ×  ​ 60 ___ 
60

 ​ = 0.39 in2​

According to the ACI Code, the spacing must not exceed 12 in., and the bars may not 
be less than No. 3 (No. 10) in size or have a diameter less than 0.042s = 0.29 in. Reinforcement 
will be placed at the top, middepth, and bottom of the member—each level to provide not less 
than 1.94∕3 = 0.65 in2. Two No. 6 (No. 19) bars will be used at middepth, and reinforcement 
to be placed for flexure will be increased by 0.65 in2 at the top and bottom of the member.

Although Aℓ reduces in direct proportion to At and, hence, decreases linearly starting at 
d from the face of the column to the midspan, for simplicity of construction, the added bars 
and the increment in the flexural steel will be maintained throughout the length of the member. 
Although ACI Code 9.5.4.5 states that Aℓ may be decreased in flexural compression zones by 
an amount equal to Mu∕(0.9dfy), that reduction will not be made here. Adequate embedment 
must be provided past the face of the column to fully develop fy in the bars at that location.
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provide for flexural shear and torsion, placed with the stirrup steel centroid 
1.75 in. from each concrete face. The corresponding flexural effective depth 
will be approximately 12.5 in. Design the transverse reinforcement for this 
beam and calculate the increment of longitudinal steel area needed to provide 
for torsion, using ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

	8.3.	 Architectural and clearance requirements call for the use of a transfer girder, 
shown in Fig. P8.3, spanning 20 ft between supporting column faces. The 
girder must carry from above a concentrated column load of 17.5 kips at 
midspan, applied with eccentricity 2 ft from the girder centerline. (Load 
factors are already included, as is an allowance for girder self-weight.) The 
member is to have dimensions b = 10 in., h = 20 in., xo = 6.5 in., yo = 16.5 in., 
and d  =  17 in. Supporting columns provide full torsional rigidity; flexural 
rigidity at the ends of the span can be assumed to develop 40 percent of the 
maximum moment that would be obtained if the girder were simply sup-
ported. Design both transverse and longitudinal steel for the beam. Material 
strengths are ​​f​c​ ′​​ = 5000 psi and fy = 60,000 psi.

FIGURE P8.3
Transfer girder: (a) top view; 
(b) front view; and (c) side 
view.

(a )

(b ) (c )

17.5 kips 17.5 kips
24″

10″

20″

10′ 10′

	8.4.	 The beam shown in cross section in Fig. P8.4 is a typical interior member 
of a continuous building frame, with span 30 ft between support faces. At 
factored loads, it will carry a uniformly distributed vertical load of 3200 lb∕ft, 
acting simultaneously with a uniformly distributed torsion of 2700 ft-lb∕ft. 
Transverse reinforcement for shear and torsion will consist of No. 4 (No. 13) 
stirrup-ties, as shown, with 1.5 in. clear to all concrete faces. The effective 
depth to flexural steel is taken equal to 22.5 in. for both negative and positive 

FIGURE P8.4

14″

22.5″
25″

5″

No. 4 (No. 13) stirrup-ties
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bending regions. Design the transverse reinforcement for shear and torsion, 
and calculate the longitudinal steel to be added to the flexural requirements 
to provide for torsion. Torsional reinforcement will be provided only in  
the web, not in the flanges. Material strengths are ​​f​c​ ′​​  =  4000 psi and 
fy = 60,000 psi.

	8.5.	 The single-span T beam bridge described in Problem 4.29 is reinforced for 
flexure with four No. 10 (No. 32) bars in two layers, which continue unin-
terrupted into the supports, permitting a service live load of 1.50 kips∕ft to 
be carried, in addition to the dead load of 0.93 kip∕ft, including self-weight. 
Assume now that only one-half of that live load acts but that it is applied 
over only one-half the width of the member, entirely to the right of the sec-
tion centerline. Design the transverse reinforcement for shear and torsion, and 
calculate the modified longitudinal steel needed for this eccentric load con-
dition. Torsional reinforcement can be provided in the slab if needed, as well 
as in the web. Stirrup-ties will be No. 3 or No. 4 (No. 10 or No. 13) bars, 
with 1.5 in. clear to all concrete faces. Supports provide no restraint against 
flexural rotations but do provide full restraint against twist. Show a sketch 
of your final design, detailing all reinforcement. Material strengths are as 
given for Problem 4.29.

	8.6.	 Design a spandrel (edge) girder for shear and torsion that is loaded with a 
uniform factored load of 1.1 kips∕ft. In addition, beams framing into the 
girder apply concentrated factored vertical loads Fu1 and Fu2 and torsional 
moments Tu1 and Tu2, as shown in Fig. P8.6. Girder dimensions are h = 32 in. 
and bw  =  28 in., and slab thickness (one side of girder only) =  6 in. An 
analysis of various loading combinations indicates the following results:

Case 1          Fu1 = Fu2 = 80 kips
              Tu1 = Tu2 = 160 ft-kips
Case 2         Fu1 = 83 kips; Fu2 = 22 kips
              Tu1 = 160 ft-kips; Tu2 = 53 ft-kips
Case 3          Fu1 = 22 kips; Fu2 = 83 kips
              Tu1 = 53 ft-kips; Tu2 = 160 ft-kips

	 	 To calculate reactions, treat the ends of the girder as fixed. Use fy = 60,000 
psi and ​​f​c​ ′​​ = 4000 psi. Provide design drawings showing the transverse steel 
and the longitudinal steel required in addition to the flexural steel.

FIGURE P8.6
Face of support

Fu1 Fu2

Tu1 Tu2

12′ 12′ 12′

1.1 kips/ft

	8.7.	 A 20 ft long rectangular beam, free-standing except for being fixed at each 
end against rotation, must carry a midspan live load of 35 kips. The load can 
be as much as 12 in. off the axis of the beam. Beam dimensions are b = 12 in., 
d  =  20 in., and h  =  23 in. Use fy  =  60,000 psi and ​​f​c​ ′​​ = 4000 psi. Design 
the shear and torsion reinforcement.
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Short Columns

	 9.1	 INTRODUCTION: AXIAL COMPRESSION

Columns are defined as members that carry loads chiefly in compression. Usu-
ally columns carry bending moments as well, about one or both axes of the cross 
section, and the bending action may produce tensile forces over a part of the cross 
section. Even  in such cases, columns are generally referred to as compression 
members, because the compression forces dominate their behavior. In addition to 
the most common type of compression member, that is, vertical elements in struc-
tures, compression members include arch ribs; rigid frame members inclined or 
otherwise; compression elements in trusses, shells, or portions thereof that carry 
axial compression; and other forms. In this chapter the term column will be used 
interchangeably with the term compression member, for brevity and in conformity 
with general usage.

Two types of reinforced concrete compression members are in use:

	 1.	 Members reinforced with longitudinal bars and transverse ties.
	 2.	 Members reinforced with longitudinal bars and continuous spirals.

The main reinforcement in columns is longitudinal, parallel to the direction of 
the load, and consists of bars arranged in a square, rectangular, or circular pattern, as 
was shown in Fig. 3.2. Figure 9.1 shows an ironworker tightening splices for the main 
reinforcing steel during construction of the 60-story Bank of America Corporate Center 
in Charlotte, North Carolina. The ratio of longitudinal steel area Ast to gross concrete 
cross section Ag is in the range from 0.01 to 0.08, according to ACI Code 10.6.1.1. 
The lower limit is necessary to ensure resistance to bending moments not accounted 
for in the analysis and to reduce the effects of creep and shrinkage of the concrete 
under sustained compression. Ratios higher than 0.08 not only are uneconomical but 
also would cause difficulty owing to congestion of the reinforcement, particularly 
where the steel must be spliced. Most columns are designed with ratios below 0.04. 
Larger-diameter bars are used to reduce placement costs and to avoid unnecessary 
congestion. The largest bars, No. 14 and No. 18 (No. 43 and No. 57), are produced 
mainly for use in columns. According to ACI Code 10.7.3.1, a minimum of four lon-
gitudinal bars is required when the bars are enclosed by spaced rectangular or circular 
ties, and a minimum of six bars must be used when the longitudinal bars are enclosed 
by a continuous spiral. A minimum of three longitudinal bars must be used when the 
bars are enclosed by triangular ties.

Columns may be divided into two broad categories: short columns, for 
which the strength is governed by the strength of the materials and the geometry 
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of the cross section, and slender columns, for which the strength may be signif-
icantly reduced by lateral deflections. A number of years ago, an ACI-ASCE 
survey indicated that 90  percent of columns braced against sidesway and  
40 percent of unbraced columns could be designed as short columns. Effective 
lateral bracing, which prevents relative lateral movement of the two ends of a 
column, is commonly provided by shear walls, elevator and stairwell shafts, diag-
onal bracing, or a combination of these. Although slender columns are more 
common now because of the wider use of high-strength materials and improved 
methods of dimensioning members, it is still true that most columns in ordinary 
practice can be considered short columns. Only short columns will be discussed 
in this chapter; the effects of slenderness in reducing column strength will be 
covered in Chapter 10.

The behavior of short, axially loaded compression members was discussed in 
Section 3.5 in introducing the basic aspects of reinforced concrete. It is suggested 
that the earlier material be reviewed at this point. In Section 3.5, it was demonstrated 
that, for lower loads at which both materials remain elastic, the steel carries a rela-
tively small portion of the total load. The steel stress fs is equal to n times the con-
crete stress:

	 fs = nfc	 (9.1)

FIGURE 9.1
Reinforcement for primary 
column of 60-story Bank of 
America Corporate Center in 
Charlotte, North Carolina.  
(Courtesy of Walter P. Moore 

and Associates.)
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where n = Es∕Ec is the modular ratio. In this range, the axial load P is given by

	 P = fc[Ag + (n − 1)Ast]	 (9.2)

where Ag is the gross area of the cross section, Ast is the total area of the reinforcing 
steel, and the term in brackets is the area of the transformed section (see Fig. 9.2). 
Equations (9.2) and (9.1) can be used to find concrete and steel stresses, respectively, 
for given loads, provided both materials remain elastic. Example 3.1 demonstrated the 
use of these equations.

In Section 3.5, it was further shown that the nominal strength of an axially loaded 
column can be found, recognizing the nonlinear response of both materials, by

	 Pn = 0.85​​f​c​ ′​​Ac + fy  Ast	 (9.3a)

where Ac = net area of concrete, or

	 Pn = 0.85 ​​f​c​ ′​​(Ag − Ast) + fy  Ast	 (9.3b)

that is, by summing the strength contributions of the two components of the column. 
At this stage, the steel carries a significantly larger fraction of the load than was the 
case at lower total load.

Equations (9.3a) and (9.3b) are based on the assumption that fy in compression 
will be attained once the concrete reaches its limiting strain εu = 0.003. For fy much 
above 80,000 psi, however, concrete will surpass a strain of 0.003 and, thus, may no 
longer provide an average stress of 0.85 ​​f​c​ ′​​ at a strain corresponding to fy. For this 
reason, ACI Code 22.4.2 places an upper limit on fy in compression of 80,000 psi. 

The calculation of the nominal strength of an axially loaded column was 
demonstrated in Section 3.5.

According to ACI Code 22.4.2, the design strength of an axially loaded col-
umn is to be found based on Eq. (9.3b) with the introduction of certain strength 
reduction factors. These strength reduction factors are lower for columns than for 
beams, reflecting the greater effect of column failure on a structure. A beam failure 
would normally affect only a local region, whereas a column failure could result 
in the collapse of the entire structure. In addition, these factors reflect differences 
in the behavior of tied columns and spirally reinforced columns that will be dis-
cussed in Section 9.2. A basic ϕ factor of 0.75 is used for spirally reinforced 
columns and 0.65 for tied columns, vs. ϕ = 0.90 for most beams.

A further limitation on column strength is imposed by ACI Code 22.4.2 to 
allow for accidental eccentricities of loading not considered in the analysis. This is 
done by imposing an upper limit on the axial load that is less than the calculated 
design strength. This upper limit is taken as 0.85 times the design strength for spirally 

FIGURE 9.2
Transformed section in axial 
compression.

Ast

2
nAst

2

Actual section

(a ) (b )

Transformed section
At = Ac + nAst

=

(n–1)Ast

2

(c )

Transformed section
At = Ag + (n–1)Ast
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reinforced columns and 0.80 times the calculated strength for tied columns. Thus, 
according to ACI Code 22.4.2, for spirally reinforced columns

	 ϕPn,max = 0.85ϕ [0.85​f​c​ ′​(Ag − Ast) + fy Ast]	 (9.4a)

with ϕ = 0.75. For tied columns

	 ϕPn,max = 0.80ϕ [0.85​f​c​ ′​(Ag − Ast) + fy Ast]	 (9.4b)

with ϕ = 0.65.

	 9.2	 TRANSVERSE TIES AND SPIRALS

Figure 3.2 shows cross sections of the simplest types of columns, spirally reinforced 
or provided with transverse ties. Other cross sections frequently found in buildings 
and bridges are shown in Fig.  9.3. In general, in members with large axial forces 
and small moments, longitudinal bars are spaced more or less uniformly around the 
perimeter (Fig. 9.3a to d). When bending moments are large, much of the longitu-
dinal steel is concentrated at the faces of highest compression or tension, that is, at 
maximum distances from the axis of bending (Fig. 9.3e to h). Specific recommended 
patterns for many combinations and arrangements of bars are found in Refs. 9.1 and 
9.2. In heavily loaded columns with large steel percentages, the result of a large num-
ber of bars, each of them positioned and held individually by ties, is steel congestion 
in the forms and difficulties in placing the concrete. In such cases, bundled bars 
are frequently employed. Bundles consist of two to four bars tied in direct contact, 

FIGURE 9.3
Tie arrangements for square 
and rectangular columns.

(a )
Spacing < 6″

(b )
Spacing > 6″

Crossties

Crosstie

135° max

(c )

(d )
Spacing < 6″

(e )
Spacing > 6″

(f )

(g ) (h ) (i ) ( j )
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wired, or otherwise fastened together. These are usually placed in the corners, as 
shown in Fig. 9.3i. Tests have shown that adequately bundled bars act as one unit; 
that is, they are detailed as if a bundle constituted a single round bar of area equal to 
the sum of the bundled bars.

Transverse reinforcement, in the form of individual relatively widely spaced ties or 
a continuous closely spaced spiral, serves several functions. For one, such reinforcement 
is needed to hold the longitudinal bars in position in the forms while the concrete is 
being placed. For this purpose, longitudinal and transverse steel is wired together to form 
cages, which are then moved into the forms and properly positioned before placing the 
concrete. For another, transverse reinforcement is needed to prevent the highly stressed, 
slender longitudinal bars from buckling outward by bursting the thin concrete cover.

Closely spaced spirals serve these two functions. Ties, which can be arranged and 
spaced in various ways, must be so designed that these two requirements are met. This 
means that the spacing must be sufficiently small to prevent buckling between ties and 
that, in any tie plane, a sufficient number of ties must be provided to position and hold 
all bars. On the other hand, in columns with many longitudinal bars, if the column 
section is crisscrossed by too many ties, they interfere with the placement of concrete 
in the forms. To achieve adequate tying yet hold the number of ties to a minimum, ACI 
Code 10.7.6 and 25.7.2 give rules for tie arrangement that may be summarized as:

Longitudinal reinforcement shall be laterally supported using ties or hoops (the latter 
are discussed in Chapter 20).
Tie bars or wire shall be at least No. 3 (No. 10) for No. 10 (No. 32) or smaller longi-
tudinal bars and at least No. 4 (No. 13) for No. 11 (No. 36) or larger longitudinal bars 
and bundled longitudinal bars.
Center-to-center tie spacing shall not exceed the least of 16db of the longitudinal bar, 
48db of the tie bar, and smallest dimension of member.
Rectilinear ties shall be arranged so that every corner and alternate longitudinal bar shall 
have lateral support provided by the corner of a tie with an included angle of not more 
than 135°, as shown in Fig. 9.3j, and no bar shall be farther than 6 in. clear on each 
side along the tie from a laterally supported bar, as illustrated in Fig. 9.3b, c, e, and f.
Intermediate lateral support can be provided by crossties, such as those shown in Fig. 9.3c 
and e, which must be continuous with a hook at one end with a bend not less than 135° 
and a standard hook at the other end, both of which must engage a longitudinal bar.
Deformed wire or welded wire reinforcement of equivalent area may be used in place of ties.
Circular ties may be used where longitudinal bars are located around the perimeter of 
a circle.

For spirally reinforced columns, ACI Code 25.7.3 gives requirements for lateral rein-
forcement that may be summarized as follows:

Spirals shall consist of evenly spaced continuous bar or wire at least ​ 3 _ 8 ​ in. in diameter, 
with a clear spacing between turns of the spiral not greater than 3 in. nor less than 1 in.

In addition, a minimum ratio of spiral steel is imposed such that the structural perfor-
mance of the column is significantly improved, with respect to both ultimate load and 
the type of failure, compared with an otherwise identical tied column.

The structural effect of a spiral is easily visualized by considering as a model 
a steel drum filled with sand (Fig. 9.4). When a load is placed on the sand, a lateral 
pressure is exerted by the sand on the drum, which causes hoop tension in the steel 
wall. The load on the sand can be increased until the hoop tension becomes large 
enough to burst the drum. The sand pile alone, if not confined in the drum, would 
have been able to support little load. A cylindrical concrete column, to be sure, does 

FIGURE 9.4
Model for action of a spiral.

P

p

pr pr 

www.konkur.in

Telegram: @uni_k



282      DESIGN OF CONCRETE STRUCTURES  Chapter 9

have a definite strength without any transverse confinement. As it is being loaded, 
it shortens longitudinally and expands laterally, depending on Poisson’s ratio. A 
closely spaced spiral confining the column counteracts the expansion, as did the steel 
drum in the model. This causes hoop tension in the spiral, while the carrying capac-
ity of the confined concrete in the core is greatly increased. Failure occurs only when 
the spiral steel yields, which greatly reduces its confining effect, or when it fractures.

A tied column fails at the load given by Eq. (9.3a or b). At this load, the 
concrete fails by crushing and shearing outward along inclined planes, and the 
longitudinal steel by buckling outward between ties (Fig.  9.5). In a spirally rein-
forced column, when the same load is reached, the longitudinal steel and the con-
crete within the core are prevented from moving outward by the spiral. The concrete 
in the outer shell, however, not being so confined, does fail; that is, the outer shell 
spalls off when the load Pn is reached. It is at this stage that the confining action 
of the spiral has a significant effect, and if sizable spiral steel is provided, the load 
that will ultimately fail the column by causing the spiral steel to yield or fracture 
can be much larger than that at which the shell spalled off. Furthermore, the axial 
strain limit when the column fails will be much greater than otherwise; the tough-
ness of the column has been much increased.

In contrast to the practice in some foreign countries, it is reasoned in the 
United States that any excess capacity beyond the spalling load of the shell is 
wasted because the member, although not actually failed, would no longer be con-
sidered serviceable. For this reason, the ACI Code provides a minimum spiral 
reinforcement of such an amount that its contribution to the carrying capacity is 
just slightly larger than that of the concrete in the shell. The situation is best 
understood from Fig. 9.6, which compares the performance of a tied column with 
that of a spiral column whose spalling load is equal to the ultimate load of the tied 
column. The failure of the tied column is abrupt and complete. This is true, to 
almost the same degree, of a spiral column with a spiral so light that its strength 
contribution is considerably less than the strength lost in the spalled shell. With a 
heavy spiral the reverse is true, and with considerable prior deformation the spalled 
column would fail at a higher load. The “ACI spiral,” its strength contribution about 
compensating for that lost in the spalled shell, hardly increases the ultimate load. 
However, by preventing instantaneous crushing of concrete and buckling of steel, 
it produces a more gradual and ductile failure, that is, a tougher column.

FIGURE 9.5
Failure of a tied column.

FIGURE 9.6
Behavior of spirally 
reinforced and tied columns.

Longitudinal strain (shortening)

Heavy spiral

ACI spiral

Light spiral

Spiral column
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tied or with very
light spirals
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It has been found experimentally (Refs. 9.3 to 9.5) that the increase in compres-
sive strength of the core concrete in a column provided through the confining effect 
of spiral steel is closely represented by the equation

	​​ f​ c​  *​​ − 0.85​​f​c​ ′​​ = 4.0​​f​2​ ′​​	 (a)

where  ​​ f​ c​  *​​ = compressive strength of spirally confined core concrete
0.85​f​c​ ′​ = compressive strength of concrete if unconfined

​f​2​ ′​ = lateral confinement stress in core concrete produced by spiral

The confinement stress ​f​2​ ′​ is calculated assuming that the spiral steel reaches its yield 
stress fyt when the column eventually fails. With reference to Fig. 9.7, a hoop tension 
analysis of an idealized model of a short segment of column confined by one turn of 
transverse steel shows that

	​​ f​2​ ′​​ = ​ 
2fyt Asp

 ______ 
dcs

 ​ 	 (b)

where fyt = yield strength of spiral steel
Asp = cross-sectional area of spiral wire
dc = outside diameter of spiral
s = spacing or pitch of spiral wire

A volumetric ratio is defined as the ratio of the volume of spiral steel to the volume 
of core concrete:

	 ρs = ​ 
2πdc Asp

 _______ 
2
 ​  ​  4 _____ 

π​d​ c​ 
2​ s

 ​	

from which

	 Asp = ​​ 
ρs dc s

 ______ 
4
 ​​	  (c)

Substituting the value of Asp from Eq. (c) into Eq. (b) results in

	​​ f​2​ ′​​ = ​ 
ρs  fyt

 ____ 
2
 ​	  (d)

To find the right amount of spiral steel, one calculates

	 Strength contribution of the shell = 0.85​​f​c​ ′​​ (Ag − Ach)	 (e)

where Ag and Ach are, respectively, the gross and core concrete areas. Then substituting 
the confinement stress from Eq. (d) into Eq. (a) and multiplying by the core concrete 
area, one finds

	 Strength provided by spiral = 2ρs fyt Ach	 (  f  )

The basis for the design of the spiral is that the strength gain provided by the spiral 
should be at least equal to that lost when the shell spalls, so combining Eqs. (e) and 
(  f  ) yields

	 0.85​​f​c​ ′​​ (Ag − Ach) = 2ρs fyt Ach	

from which

	 ρs = 0.425 ​( ​ Ag
 ___ 

Ach

 ​ − 1 )​ ​​ ​f​c​ ′​ __ 
fyt

 ​​	 (g)

FIGURE 9.7
Confinement of core concrete 
due to hoop tension.
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284      DESIGN OF CONCRETE STRUCTURES  Chapter 9

According to the ACI Code, this result is rounded upward slightly, and ACI Code 
25.7.3.3 states that the ratio of spiral reinforcement shall not be less than

	 ρs = 0.45 ​( ​ Ag
 ___ 

Ach

 ​ − 1 )​ ​​ ​f​c​ ′​ __ 
fyt

 ​​	 (9.5)

It is further stipulated in the ACI Code that fyt should not be taken greater than 100,000 
psi and that spiral reinforcement should not be spliced if fyt is greater than 60,000 psi.

It follows from this development that two concentrically loaded columns 
designed in accordance with the ACI Code, one tied and one with spiral but other-
wise identical, will fail at about the same load, the former in a sudden and brittle 
manner, the latter gradually with prior spalling of the shell and with more ductile 
behavior. This advantage of the spiral column is much less pronounced if the load 
is applied with significant eccentricity or when bending from other sources is pres-
ent simultaneously with axial load. For this reason, while the ACI Code permits 
somewhat larger design loads on spiral than on tied columns when the moments are 
small or zero (ϕ = 0.75 for spirally reinforced columns vs. ϕ = 0.65 for tied), the 
difference is not large, and it is even further reduced for large eccentricities, for 
which ϕ approaches 0.90 for both.

The design of spiral reinforcement according to the ACI Code provisions is 
easily reduced to tabular form, as in Table A.14 of Appendix A.

	 9.3	 COMPRESSION PLUS BENDING OF RECTANGULAR  
COLUMNS

Members that are axially, that is, concentrically, compressed occur rarely, if ever, in 
buildings and other structures. Components such as columns and arches chiefly carry 
loads in compression, but simultaneous bending is almost always present. Bending 
moments are caused by continuity, that is, by the fact that building columns are parts 
of monolithic frames in which the support moments of the girders are partly resisted 
by the abutting columns, by transverse loads such as wind forces, by loads carried 
eccentrically on column brackets, or in arches when the arch axis does not coincide 
with the pressure line. Even when design calculations show a member to be loaded 
purely axially, inevitable imperfections of construction will introduce eccentricities 
and consequent bending in the member as built. For this reason, members that must 
be designed for simultaneous compression and bending are very frequent in almost all 
types of concrete structures.

When a member is subjected to combined axial compression P and moment M, 
as in Fig.  9.8a, it is usually convenient to replace the axial load and moment with 
an equal load P applied at eccentricity e = M∕P, as in Fig. 9.8b. The two loadings 
are statically equivalent. All columns may then be classified in terms of the equiv-
alent eccentricity. Those having relatively small e are generally characterized by 
compression over the entire concrete section, and if overloaded, will fail by crushing 
of the concrete accompanied by yielding of the steel in compression on the more 
heavily loaded side. Columns with large eccentricity are subject to tension over at 
least a part of the section, and if overloaded, may fail due to tensile yielding of the 
steel on the side farthest from the load.

For columns, load stages below the ultimate are generally not important. Crack-
ing of concrete, even for columns with large eccentricity, is usually not a serious 
problem, and lateral deflections at service load levels are seldom, if ever, a factor. 
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Design of columns is therefore based on the factored load, which must not exceed 
the design strength, as usual, that is,

	 ϕMn ≥ Mu	 (9.6a)

	 ϕPn ≥ Pu	 (9.6b)

	 9.4	 STRAIN COMPATIBILITY ANALYSIS AND INTERACTION 
DIAGRAMS

Figure 9.9a shows a member loaded parallel to its axis by a compressive force Pn at 
an eccentricity e measured from the centerline. The distribution of strains at a section 
a-a along its length, at incipient failure, is shown in Fig. 9.9b. With plane sections 
assumed to remain plane, concrete strains vary linearly with distance from the neutral 
axis, which is located a distance c from the more heavily loaded side of the member. 
With full compatibility of deformations, the steel strains at any location are the same 
as the strains in the adjacent concrete; thus, if the ultimate concrete strain is εu, the 
strain in the bars nearest the load is ​ε​s​ ′ ​, while that in the tension bars at the far side is εs. 
Compression steel with area ​A​s​ ′ ​ and tension steel with area As are located at distances ​
d​ ​ ′​ and d, respectively, from the compression face.

The corresponding stresses and forces are shown in Fig. 9.9c. Just as for sim-
ple bending, the actual concrete compressive stress distribution is replaced by an 
equivalent rectangular distribution having depth a = β1c. A large number of tests on 
columns with a variety of shapes have shown that the strengths computed on this 
basis are in satisfactory agreement with test results (Ref. 9.6).

Equilibrium between external and internal axial forces shown in Fig.  9.9c 
requires that

	 Pn = 0.85​​f​c​ ′​​ ab + ​​f​s​ ′​​ ​​A​s​ ′​​ − fs As	 (9.7)

Also, the moment about the centerline of the section of the internal stresses and forces 
must be equal and opposite to the moment of the external force Pn, so that

	 Mn = Pne = 0.85​​f​c​ ′​​ ab ​( ​ h __ 
2
 ​ − ​ a __ 

2
 ​ )​ + ​​f​s​ ′​​ ​​A​s​ ′​​ ​( ​ h __ 

2
 ​ − d′ )​ + fs As ​( d − ​ h __ 

2
 ​ )​	 (9.8)

These are the two basic equilibrium relations for rectangular eccentrically compressed 
members. For reasons discussed in Section 9.1, an upper limit of 80,000 psi should be 
placed on stress in the compression steel ​f​s​ ′​.

FIGURE 9.8
Equivalent eccentricity of 
column load. P

M

M
P

(a )

P 
e =

(b )
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The fact that the presence of the compression reinforcement ​A​s​ ′ ​has displaced 
a corresponding amount of concrete of area ​​A​s​ ′​​ is neglected in writing these equa-
tions. If necessary, particularly for large reinforcement ratios, one can account for 
this very simply. Evidently, in the above equations, a nonexistent concrete compres-
sion force of amount ​​A​s​ ′​​ (0.85​​f​c​ ′​​) has been included as acting in the displaced concrete 
at the level of the compression steel. This excess force can be removed in both 
equations by multiplying ​​A​s​ ′​​ by ​​f​s​ ′​​ − 0.85​​f​c​ ′​​ rather than by ​​f​s​ ′​​.

For large eccentricities, failure is initiated by yielding of the tension steel As. 
Hence, for this case, fs  =  fy. When the concrete reaches its ultimate strain εu, the 
compression steel may or may not have yielded; this must be determined based on 
compatibility of strains. For small eccentricities, the concrete will reach its limit 
strain εu before the tension steel starts yielding; in fact, the bars on the side of the 
column farther from the load may be in compression, not tension. For small eccen-
tricities, too, the analysis must be based on compatibility of strains between the steel 
and the adjacent concrete.

For a given eccentricity determined from the frame analysis (that is, e = Mu∕Pu) 
it is possible to solve Eqs. (9.7) and (9.8) for the load Pn and moment Mn that would 
result in failure as follows. In both equations, ​​f​s​ ′​​, fs, and a can be expressed in terms 
of a single unknown c, the distance to the neutral axis. This is easily done based on 
the geometry of the strain diagram, with εu taken equal to 0.003 as usual, and using 
the stress-strain curve of the reinforcement. The result is that the two equations 
contain only two unknowns, Pn and c, and can be solved for those values simulta-
neously. However, to do so in practice would be complicated algebraically, particu-
larly because of the need to incorporate the limit fy on both ​​f​s​ ′​​ and fs.

A better approach, providing the basis for practical design, is to construct a 
strength interaction diagram defining the failure load and failure moment for a given 
column for the full range of eccentricities from zero to infinity. For any eccentricity, 
there is a unique pair of values of Pn and Mn that will produce the state of incipient 
failure. That pair of values can be plotted as a point on a graph relating Pn and Mn, 

FIGURE 9.9
Column subject to eccentric 
compression: (a) loaded 
column; (b) strain  
distribution at section a-a; 
and (c) stresses and forces at  
nominal strength.
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such as shown in Fig.  9.10. A series of such calculations, each corresponding to a 
different eccentricity, will result in a curve having a shape typically as shown in 
Fig.  9.10. On such a diagram, any radial line represents a particular eccentricity 
e = M∕P. For that eccentricity, gradually increasing the load will define a load path 
as shown, and when that load path reaches the limit curve, failure will result. Note 
that the vertical axis corresponds to e = 0, and P0 is the capacity of the column if 
concentrically loaded, as given by Eq. (9.3b). The horizontal axis corresponds to an 
infinite value of e, that is, pure bending at moment capacity M0. Small eccentricities 
will produce failure governed by concrete compression, while large eccentricities 
give a failure triggered by yielding of the tension steel.

For a given column, selected for trial, the interaction diagram is most easily 
constructed by selecting successive choices of neutral axis distance c, from infinity 
(axial load with eccentricity 0) to a very small value found by trial to give Pn = 0 
(pure bending). For each selected value of c, the steel strains and stresses and the 
concrete force are easily calculated as follows. For the tension steel,

	 εs = εu ​​ 
d − c

 _____ c ​​ 	 (9.9)

	 fs = εuEs ​​ 
d − c

 _____ c ​​  ≤ fy	 (9.10)

while for the compression steel,

	​​ ε​s​ ′​​ = εu ​​ 
c −  ​d​ ​ ′​ ______ c ​​ 	 (9.11)

	​​ f​s​ ′​​ = εuEs ​​ 
c −  ​d​ ​ ′​ ______ c ​​  ≤ fy ≤ 80,000 psi 	 (9.12)

The concrete stress block has depth

	 a = β1c ≤ h	 (9.13)

and consequently the concrete compressive resultant is

	 C = 0.85​​f​c​ ′​​ab	 (9.14)

FIGURE 9.10
Interaction diagram for 
nominal column strength  
in combined bending and  
axial load.
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The nominal axial force Pn and nominal moment Mn corresponding to the selected 
neutral axis location can then be calculated from Eqs. (9.7) and (9.8), respectively, and 
thus a single point on the strength interaction diagram is established. The calculations 
are then repeated for successive choices of neutral axis to establish the curve defining 
the strength limits, as in Fig. 9.10. The calculations, of a repetitive nature, are easily 
programmed for the computer or performed using a spreadsheet.

	 9.5	 BALANCED FAILURE

As already noted, the interaction curve is divided into a compression failure range and 
a tension failure range.† It is useful to define what is termed a balanced failure mode 
and corresponding eccentricity eb with the load Pb and moment Mb acting in combina-
tion to produce failure, with the concrete reaching its limiting strain εu at precisely the 
same instant that the tensile steel on the far side of the column reaches yield strain. 
This point on the interaction diagram is the dividing point between compression 
failure (small eccentricities) and tension failure (large eccentricities).

The values of Pb and Mb are easily computed with reference to Fig.  9.9. For 
balanced failure,

	 c = cb = d ​​ 
εu
 ______ 

εu + εy
 ​​	 (9.15)

and

	 a = ab = β1cb	 (9.16)

Equations (9.9) through (9.14) are then used to obtain the steel stresses and the 
compressive resultant, after which Pb and Mb are found from Eqs. (9.7) and (9.8).

Note that, in contrast to beam design, one cannot restrict column designs such 
that yielding failure rather than crushing failure would always be the result of over-
loading. The type of failure for a column depends on the value of eccentricity e, 
which in turn is defined by the load analysis of the building or other structure.

It is important to observe, in Fig. 9.10, that in the region of compression fail-
ure the larger the axial load Pn, the smaller the moment Mn that the section is able 
to sustain before failing. However, in the region of tension failure, the reverse is true; 
the larger the axial load, the larger the simultaneous moment capacity. This is easily 
understood. In the compression failure region, failure occurs through overstraining 
of the concrete. The larger the concrete compressive strain caused by the axial load 
alone, the smaller the margin of additional strain available for the added compression 
caused by bending. On the other hand, in the tension failure region, yielding of the 
steel initiates failure. If the member is loaded in simple bending to the point at which 
yielding begins in the tension steel, and if an axial compression load is then added, 
the steel compressive stresses caused by this load will be superimposed on the pre-
vious tensile stresses. This reduces the total steel stress to a value below its yield 
strength. Consequently, an additional moment can now be sustained of such magni-
tude that the combination of the steel stress from the axial load and the increased 
moment again reaches the yield strength.

† �The terms compression failure range and tension failure range are used for the purpose of general description and are distinct from  
tension-controlled and compression-controlled failures, as described in Chapter 4 and Section 9.9.

www.konkur.in

Telegram: @uni_k



SHORT COLUMNS      289

The typical shape of a column interaction diagram shown in Fig.  9.10 has 
important design implications. In the range of tension failure, a reduction in axial 
load may produce failure for a given moment. When performing a frame analysis, 
the designer must consider all combinations of loading that may occur, including the 
combination that produces minimum axial load paired with a moment because the 
combined loading may place the column in the tension failure range. Within this 
range, only the compressive load that is certain to be present should be used to 
calculate the capacity of the column subject to the given moment.

	 EXAMPLE 9.1	 Column strength interaction diagram.  A 12 × 20 in. column is reinforced with four No. 9 
(No. 29) bars of area 1.0  in2 each, one in each corner as shown in Fig.  9.11a. The concrete 
cylinder strength is ​f​c​ ′​ = 4000 psi and the steel yield strength is 60 ksi. Determine (a) the load 
Pb, moment Mb, and corresponding eccentricity eb for balanced failure; (b) the load and 
moment for a representative point in the tension failure region of the interaction curve; (c) the 
load and moment for a representative point in the compression failure region; and (d) the axial 
load strength for zero eccentricity. Then (e) sketch the strength interaction diagram for this 
column. Finally, (  f  ) design the transverse reinforcement, based on ACI Code provisions.

FIGURE 9.11
Column interaction diagram for Example 9.1: (a) cross section; (b) strain distribution; (c) stresses and forces; and 
(d) strength interaction diagram.
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Solution.
	(a)	 The neutral axis for the balanced failure condition is easily found from Eq. (9.15) with 

εu = 0.003 and εy = 60∕29,000 = 0.0021:

cb = 17.5 × ​ 0.003 ______ 
0.0051

 ​ = 10.3 in.

	 giving a stress-block depth a = 0.85 × 10.3 = 8.76 in. For the balanced failure condition, 
by definition, fs =  fy. The compressive steel stress is found from Eq. (9.12):

​f​s​ ′​ = 0.003 × 29,000 ​ 10.3 − 2.5 _________ 
10.3

 ​  = 65.9 ksi    but    ≤ 60 ksi

	 confirming that the compression steel, too, is at the yield. The concrete compressive resultant is

C = 0.85 × 4 × 8.76 × 12 = 357 kips

	 The balanced load Pb is then found from Eq. (9.7) to be

Pb = 0.85 ​f​c​ ′​ab + ​f​s​ ′​​A​s​ ′​ − fs As

    = 357 + 60 × 2.0 − 60 × 2.0 = 357 kips

	 and the balanced moment from Eq. (9.8) is

Mb = 0.85 ​f​c​ ′​ab ​( ​ h __ 
2
 ​ − ​ a __ 

2
 ​ )​ + ​f​s​ ′​​A​s​ ′​ ​( ​ h __ 

2
 ​ − d′ )​ − fs As ​( d − ​ h __ 

2
 ​ )​

  = 357 (10 − 4.38) + 60 × 2.0 (10 − 2.5) + 60 × 2.0 (17.5 − 10)

  = 3806 in-kips = 317 ft-kips

	 The corresponding eccentricity of load is eb = 3806∕357 = 10.66  in.

	(b)	 Any choice of c smaller than cb = 10.3 in. will give a point in the tension failure region 
of the interaction curve, with eccentricity larger than eb. For example, choose c = 5.0 in. 
By definition, fs = fy. The compressive steel stress is found to be

​f​s​ ′​ = 0.003 × 29,000 ​ 5.0 − 2.5 ________ 
5.0

 ​  = 43.5 ksi

	 With the stress-block depth a = 0.85 × 5.0 = 4.25, the compressive resultant is C = 0.85 × 
4 × 4.25 × 12 = 173 kips. Then from Eq. (9.7), the thrust is

Pn = 173 + 43.5 × 2.0 − 60 × 2.0 = 140 kips

	 and the moment capacity from Eq. (9.8) is

Mn = 173 (10 − 2.12) + 43.5 × 2.0 (10 − 2.5) + 60 × 2.0 (17.5 − 10)
  = 2916 in-kips = 243 ft-kips

	 giving eccentricity e = 2916∕140 = 20.83 in., well above the balanced value.

	(c)	 Now selecting a c value larger than cb to demonstrate a compression failure point on the 
interaction curve, choose c = 18.0 in., for which a = 0.85 × 18.0 = 15.3 in. The compres-
sive concrete resultant is C = 0.85 × 4 × 15.3 × 12 = 624 kips. From Eq. (9.10) the stress 
in the steel at the left side of the column is

fs = εuEs ​ 
d − c _____ c ​  = 0.003 × 29,000 ​ 17.5 − 18.0  __________ 

18.0
 ​  = −2 ksi

	 Note that the negative value of fs indicates correctly that As is in compression if c is greater 
than d, as in the present case. The compressive steel stress is found from Eq. (9.12) to be

​f​s​ ′​ = εuEs ​ 
c − ​ d​ ​ ′​ ______ c ​  = 0.003 × 29,000 ​ 18.0 − 2.5 _________ 

18.0
 ​  = 75 ksi    but    ≤ 60 ksi
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	 9.6	 DISTRIBUTED REINFORCEMENT

When large bending moments are present, it is most economical to concentrate all or 
most of the steel along the outer faces parallel to the axis of bending. Such arrange-
ments are shown in Figs. 9.3e to h. On the other hand, with small eccentricities so 
that axial compression is predominant, and when a small cross section is desired, it 

	 Then the column capacity is

Pn = 624 + 60 × 2.0 + 2 × 2.0 = 748 kips
Mn = 624 (10 − 7.65) + 60 × 2.0 (10 − 2.5) − 2 × 2.0 (17.5 − 10)

  = 2336 in-kips = 195 ft-kips

	 giving eccentricity e = 2336∕748 = 3.12 in.
	(d)	 The axial strength of the column if concentrically loaded corresponds to c = ∞ and e = 0. 

For this case,

Pn = 0.85 ​f​c​ ′​Ag + fy Ast

     = 0.85 × 4 × 12 × 20 + 60 × 4.0 = 1056 kips

	 Note that, for this as well as the preceding calculations, subtraction of the concrete 
displaced by the steel has been neglected. For comparison, if the deduction were made 
in the last calculation as done in Fig. 9.3b,

Pn = 0.85 ​f​c​ ′​(Ag − Ast) + fy Ast

     = 0.85 × 4 (12 × 20 − 4) + (60 × 4.0) = 1042 kips

	 The error in neglecting this deduction is only 1 percent in this case; the difference generally 
can be neglected, except perhaps for columns with reinforcement ratios close to the maximum 
of 8 percent. In the case of design aids, however, such as those presented in Refs. 9.2 and 9.7 
and discussed in Section 9.10, the deduction is usually included for all reinforcement ratios.

	(e)	 From the calculations just completed, plus similar repetitive calculations that will not be 
given here, the strength interaction curve of Fig. 9.11d is constructed. Note the characteris-
tic shape, described earlier, the location of the balanced failure point as well as the “small 
eccentricity” and “large eccentricity” points just found, and the axial load capacity.

	 In the process of developing a strength interaction curve, it is possible to select the 
values of steel strain εs, as done in step a, for use in steps b and c. Selecting εs uniquely 
establishes the neutral axis depth c, as shown by Eqs. (9.9) and (9.15), and is useful in 
determining Mn and Pn for values of steel strain that correspond to changes in the strength 
reduction factor ϕ, as will be discussed in Section 9.9.

	( f )	 The design of the column ties will be carried out following the ACI Code restrictions. For 
the minimum permitted tie, a No. 3 (No. 10) bar, which has a diameter of ​ 3 _ 8 ​ in., used with 
No. 9 (No. 29) longitudinal bars having a diameter of 1.128 in a column the least dimen-
sion of which is 12 in., the tie spacing is not to exceed

     48 × ​ 3 __ 
8
 ​ = 18 in.

16 × 1.128 = 18.05 in.
        b = 12 in.

	 The last restriction controls in this case, and No. 3 (No. 10) ties will be used at 12 in. 
spacing, detailed as shown in Fig. 9.11a. Note that the permitted spacing as controlled by 
the first and second criteria, 18 in., must be reduced because of the 12 in. column dimension.
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is often advantageous to place the steel more uniformly around the perimeter, as in 
Fig. 9.3a to d. In this case, special attention must be paid to the intermediate bars, 
that is, those that are not placed along the two faces that are most highly stressed. 
This is so because when the ultimate load is reached, the stresses in these interme-
diate bars are usually below the yield point, even though the bars along one or both 
extreme faces may be yielding. This situation can be analyzed by a simple and obvi-
ous extension of the previous analysis based on compatibility of strains. A strength 
interaction diagram may be constructed just as before. A sequence of choices of neu-
tral axis location results in a set of paired values of Pn and Mn, each corresponding to 
a particular eccentricity of load.

	 EXAMPLE 9.2	 Analysis of eccentrically loaded column with distributed reinforcement.  The column in 
Fig.  9.12a is reinforced with ten No. 11 (No. 36) bars distributed around the perimeter as 
shown. Load Pn will be applied with eccentricity e about the strong axis. Material strengths 
are ​f​c​ ′​ = 6000 psi and fy = 75 ksi. Find the load and moment corresponding to a failure point 
with neutral axis c = 18 in. from the right face.

FIGURE 9.12
Column in Example 9.2:  
(a) cross section; (b) strain 
distribution; and (c) stresses 
and forces.
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Two general conclusions can be made from this example:

	 1.	 Even with the relatively small eccentricity of about one-third of the depth of the 
section, only the bars of group 1 just barely reached their yield strain, and conse-
quently their yield stress. All other bar groups of the relatively high-strength steel 
that was used are stressed far below their yield strength, which would also have been 
true for group 1 for a slightly larger eccentricity. It follows that the use of the more 
expensive high-strength steel is economical in symmetrically reinforced columns 
only for very small eccentricities, for example, in the lower stories of tall buildings.

	 2.	 The contribution of the intermediate bars of groups 2 and 3 to both Pn and Mn is quite 
small because of their low stresses. Again, intermediate bars, except as they are needed 
to hold ties in place, are economical only for columns with very small eccentricities.

	 9.7	 UNSYMMETRICAL REINFORCEMENT

Most reinforced concrete columns are symmetrically reinforced about the axis of 
bending. However, for some cases, such as the columns of rigid portal frames in which 
the moments are uniaxial and the eccentricity is large, it is more economical to use  

Solution.  When the concrete reaches its limit strain of 0.003, the strain distribution is that 
shown in Fig. 9.12b, the strains at the locations of the four bar groups are found from similar 
triangles, after which the stresses are found by multiplying strains by Es = 29,000 ksi applying 
the limit value fy:

εs1 = 0.00258    fs1 = 74.8 ksi compression
εs2 = 0.00142    fs2 = 41.2 ksi compression
εs3 = 0.00025    fs3 =   7.3 ksi compression
εs4 = 0.00091    fs4 = 26.4 ksi tension

For ​f​c​ ′​ = 6000 psi, β1  =  0.75 and the depth of the equivalent rectangular stress block is 
a = 0.75 × 18 = 13.5 in. The concrete compressive resultant is C = 0.85 × 6 × 13.5 × 12 =  
826 kips, and the respective steel forces in Fig. 9.12c are

Cs1 = 4.68 × 74.8 = 350 kips
Cs2 = 3.12 × 41.2 = 129 kips
Cs3 = 3.12 × 7.3   =   23 kips
Ts4 = 4.68 × 26.4 = 124 kips

The axial load and moment that would produce failure for a neutral axis 18 in. from the right 
face are found by the obvious extensions of Eqs. (9.7) and (9.8):

Pn = 826 + 350 + 129 + 23 − 124 = 1204 kips
Mn = 826 (13 − 6.75) + 350 (13 − 2.5) + 129 (13 − 9.5) − 23 (13 − 9.5)
    + 124 (13 − 2.5)
  = 10,510 in-kips
  = 876 ft-kips

The corresponding eccentricity is e = 10,510∕1204 = 8.73 in. Other points on the interaction 
diagram can be computed in a similar way.
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294      DESIGN OF CONCRETE STRUCTURES  Chapter 9

an unsymmetrical pattern of bars, with most of the bars on the tension side, as shown 
in Fig. 9.13. Such columns can be analyzed by the same strain compatibility approach 
as described above. However, for an unsymmetrically reinforced column to be loaded 
concentrically, the load must pass through a point known as the plastic centroid. The 
plastic centroid is defined as the point of application of the resultant force for the col-
umn cross section (including concrete and steel forces) if the column is compressed 
uniformly to the failure strain εu = 0.003 over its entire cross section. Eccentricity of 
the applied load must be measured with respect to the plastic centroid, because only 
then will e = 0 correspond to an axial load with no moment. The location of the plastic 
centroid for the column of Fig. 9.13 is the resultant of the three internal forces to be 
accounted for. Its distance from the left face is

	 x = ​​ 
0.85​f​c​ ′​ b​h​

2​∕2 +  fy As d +  fy ​A​s​ ′​ ​d​
 
​ ′​
   _________________________   

0.85​f​c​ ′​bh +  fy As +  fy ​A​s​ ′​
 ​​ 	 (9.17)

Clearly, in a symmetrically reinforced cross section, the plastic centroid and the 
geometric center coincide.

	 9.8	 CIRCULAR COLUMNS

The transverse reinforcement in circular columns may consist of ties or spirals. It was 
mentioned in Section 9.2 that when load eccentricities are small, spirally reinforced 
columns show greater toughness, that is, greater ductility, than tied columns, although 
this difference fades out as the eccentricity is increased. For this reason, as discussed 
in Section 9.2, the ACI Code provides a more favorable strength reduction factor 
ϕ = 0.75 for spiral columns, compared with ϕ = 0.65 for tied columns. Also, the max-
imum stipulated design load for entirely or nearly axially loaded members is larger for 
spirally reinforced members than for comparable tied members (see Section 9.9). It 
follows that spirally reinforced columns permit a somewhat more economical utiliza-
tion of the materials, particularly for small calculated eccentricities, although the cost  

FIGURE 9.13
Plastic centroid of an 
unsymmetrically reinforced 
column.
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of spirals is greater than the cost of circular ties. A further advantage lies in the fact 
that the circular shape is frequently desired by the architect.

Figure 9.14 shows the cross section of a circular-reinforced concrete column. 
The reinforcement is as required for a spirally reinforced column, where six or 
more longitudinal bars of equal size must be provided for longitudinal reinforce-
ment. The strain distribution at the instant at which the ultimate load is reached 
is shown in Fig. 9.14b. Bar groups 2 and 3 are seen to be strained to much smaller 
values than groups 1 and 4. The stresses in the four bar groups are easily found. 
For any of the bars with strains in excess of yield strain εy  =  fy∕Es, the stress at 
failure is evidently the yield stress of the bar. For bars with smaller strains, the 
stress is found from fs = εsEs.

One then has the internal forces shown in Fig. 9.14c. Note that the situation is 
analogous to that discussed in Sections 9.4 to 9.6 for rectangular columns. Calcula-
tions for Pn and Mn can be carried out exactly as in Example 9.1, except that for 
circular columns the concrete compression zone subject to the equivalent rectangular 
stress distribution has the shape of a segment of a circle, shown shaded in Fig. 9.14a.

Although the shape of the compression zone and the strain variation in the 
different groups of bars make longhand calculations awkward, no new principles are 
involved and computer solutions are easily developed.

Design or analysis of spirally reinforced columns is usually carried out by means 
of design aids, such as Graphs A.13 to A.16 of Appendix A. Additional tables and 
graphs are available, for example, in Ref. 9.7. In developing such design aids, the 

FIGURE 9.14
Circular column with 
compression plus bending.
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entire steel area is often assumed to be arranged in a uniform, concentric ring, rather 
than being concentrated in the actual bar locations; this simplifies calculations with-
out noticeably affecting the results if the column contains at least eight longitudinal 
bars. When fewer bars are used, the interaction curve should be calculated based on 
the weakest orientation in bending.

Note that to qualify for the more favorable safety provisions for spiral columns, 
the reinforcement ratio of the spiral must be at least equal to that given by Eq. (9.5) 
for reasons discussed in Section 9.2.

	 9.9	 ACI CODE PROVISIONS FOR COLUMN DESIGN

For columns, as for all members designed according to the ACI Code, adequate safety 
margins are established by applying load factors to the service loads and strength 
reduction factors to the nominal strengths. Thus, for columns, ϕPn ≥ Pu and ϕMn ≥ Mu 
are the basic safety criteria. For most members subject to axial compression or com-
pression plus flexure (compression-controlled members, as described in Chapter 4), 
the ACI Code provides basic reduction factors:

ϕ = 0.65 for tied columns	

	 ϕ = 0.75 for spirally reinforced columns

The spread between these two values reflects the added safety furnished by the greater 
toughness of spirally reinforced columns.

There are various reasons why the ϕ values for columns are lower than those for 
flexure or shear (0.90 and 0.75, respectively). One is that the strength of underrein-
forced flexural members is not much affected by variations in concrete strength, since 
it depends primarily on the yield strength of the steel, while the strength of axially 
loaded members depends strongly on the concrete compressive strength. Because the 
cylinder strength of concrete under site conditions is less closely controlled than  
the yield strength of mill-produced steel, a larger occasional strength deficiency must 
be allowed for. This is particularly true for columns, in which concrete, being placed 
from the top down in a long, narrow form, is more subject to segregation than in 
horizontally cast beams. Moreover, electrical and other conduits are frequently located 
in building columns; this reduces their effective cross sections, often to an extent 
unknown to the designer, even though this is poor practice and restricted by the ACI 
Code. Finally, the consequences of a column failure, say in a lower story, would be 
more catastrophic than those of a single beam failure in the same building.

For high eccentricities, as the eccentricity increases from eb to infinity (pure 
bending), the ACI Code recognizes that the member behaves progressively more like 
a flexural member and less like a column. As described in Chapter 4 and shown in 
Fig. 4.9d, this is acknowledged in ACI Code 21.2.2 by providing a linear transition 
in ϕ from values of 0.65 and 0.75 to 0.90 as the net tensile strain in the extreme 
tensile steel εt increases from εty  =  fy∕Es (which may be taken as 0.002 for Grade 
60 reinforcement) to εty + 0.003.

Within the transition between tension-controlled and compression-controlled 
sections:

	 ϕ = 0.75 + 0.15 ​​ 
(εt − εty)

 ________ 
0.003

 ​​  for sections with an ACI spiral� (9.18a)

	 ϕ = 0.65 + 0.25 ​​ 
(εt − εty)

 ________ 
0.003

 ​​  for other sections� (9.18b)
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At the other extreme, for columns with very small or zero calculated eccen-
tricities, the ACI Code recognizes that accidental construction misalignments and 
other unforeseen factors may produce actual eccentricities in excess of these small 
design values. Also, the concrete strength under high, sustained axial loads may be 
somewhat smaller than the short-term cylinder strength. Therefore, regardless of the 
magnitude of the calculated eccentricity, ACI Code 22.4.2 limits the maximum 
design strength to 0.80ϕP0 for tied columns (with ϕ  =  0.65) and to 0.85ϕP0 for 
spirally reinforced columns (with ϕ = 0.75), where P0 is the nominal strength of the 
axially loaded column with zero eccentricity [see Eq. (9.4)].

The effects of the safety provisions of the ACI Code are shown in Fig.  9.15. 
The solid curve labeled “nominal strength” is the same as Fig. 9.10 and represents 
the actual carrying capacity, as nearly as can be predicted. The smooth curve shown 
partially dashed, then solid, then dashed, represents the basic design strength obtained 
by reducing the nominal strengths Pn and Mn, for each eccentricity, by ϕ = 0.65 for 
tied columns and ϕ = 0.75 for spiral columns. The horizontal cutoff at αϕP0 repre-
sents the maximum design load stipulated in the ACI Code for small eccentricities, 
that is, large axial loads, as just discussed. At the other end, for large eccentricities, 
that is, small axial loads, the ACI Code permits a linear transition of ϕ from 0.65 
or 0.75, applicable for εt  ≤  fy∕Es (or 0.002 for Grade 60 reinforcement) to 0.90 at 
εt  =  εty  +  0.003. By definition, εt  =  fy∕Es at the balanced condition. The effect of 
the transition in ϕ is shown at the lower right end of the design strength curve.†

As mentioned in Section 4.5c, the spacing between longitudinal reinforcement 
in columns must be at least 1​ 1 _ 2 ​ db, 1​ 1 _ 2 ​ in., and ​ 4 _ 3 ​ the maximum aggregate size.

	 9.10	 DESIGN AIDS

The design of eccentrically loaded columns using the strain compatibility method of 
analysis described requires that a trial column be selected. The trial column is then inves-
tigated to determine if it is adequate to carry any combination of Pu and Mu that may act 
on it should the structure be overloaded, that is, to see if Pu and Mu from the analysis of 

† �While the general intent of the ACI Code safety provisions relating to eccentric columns is clear and fundamentally sound, the end result is a 
set of strangely shaped column design curves following no discernible physical law, as is demonstrated in Fig. 9.15. Improved column safety 
provisions, resulting in a smooth design curve appropriately related to the strength curve, would be simpler to use and more rational as well.

FIGURE 9.15
ACI safety provisions 
superimposed on column 
strength interaction diagram. P0

Ties:     ϕ = 0.65; α = 0.80
Spirals: ϕ = 0.75; α = 0.85
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the structure, when plotted on a strength interaction diagram as in Fig. 9.15, fall within 
the region bounded by the curve labeled “ACI design strength.” Furthermore, economical 
design requires that the controlling combination of Pu and Mu be close to the limit curve. 
If these conditions are not met, a new column must be selected for trial.

While a simple computer program or spreadsheet can be developed, based on 
the strain compatibility analysis, to calculate points on the design strength curve, and 
even to plot the curve, for any trial column, in practice, design aids are used such 
as are available in handbooks and special volumes published by the American Con-
crete Institute (Ref. 9.7) and the Concrete Reinforcing Steel Institute (Ref. 9.2). They 
cover the most frequent practical cases, such as symmetrically reinforced rectangular 
and square columns and circular spirally reinforced columns. There are also a  
number of commercially available computer programs (for example, spCOLUMN, 
Structure Point, Skokie, Illinois).

Graphs A.5 through A.16 of Appendix A are representative of column design 
charts (as found in Ref. 9.7), in this case for concrete with ​f​c​ ′​ = 4000 psi and steel with 
yield strength fy = 60 ksi, for varying cover distances.† Reference 9.7 includes charts for 
a broad range of material strengths. Graphs A.5 through A.8 are drawn for rectangular 
columns with reinforcement distributed around the column perimeter; Graphs A.9 through 
A.12 are for rectangular columns with reinforcement along two opposite faces. Circular 
columns with bars in a circular pattern are shown in Graphs A.13 through A.16.

The graphs consist of nominal strength interaction curves of the type shown in 
Fig. 9.15. However, instead of plotting Pn versus Mn, corresponding parameters have 
been used to make the charts more generally applicable, that is, load is plotted as 
Kn = Pn∕(  ​f​c​ ′​Ag), while moment is expressed as Rn = Pne∕(​  f​c​ ′​Agh). Families of curves 
are drawn for various values of ρg = Ast∕Ag between 0.01 and 0.08. The graphs also 
include radial lines representing different eccentricity ratios e∕h, as well as lines 
representing different ratios of stress fs∕fy or values of strain εt  =  0.002 and 0.005 
in the extreme tension steel.

Charts such as these permit the direct design of eccentrically loaded columns 
throughout the common range of strength and geometric variables. They may be 
used in one of two ways as follows. For a given factored load Pu and equivalent 
eccentricity e = Mu∕Pu:

	 1.	 (a)	 Select trial cross-sectional dimensions b and h (refer to Fig. 9.16).
(b)	 Calculate the ratio γ (see Fig. 9.16) based on required cover distances to the 

bar centroids, and select the corresponding column design chart.
(c)	 Calculate Kn = Pu∕(ϕ ​f​c​ ′​Ag) and Rn = Pue∕(ϕ​f​c​ ′​Agh), where Ag = bh.
(d)	� From the graph, for the values found in (c), read the required reinforcement 

ratio ρg.
(e)	 Calculate the total steel area Ast = ρgbh.

	 2.	 (a)	 Select the reinforcement ratio ρg.
(b)	 Choose a trial value of h and calculate e∕h and γ.
(c)	 From the corresponding graph, read Kn = Pu∕(ϕ ​f​c​ ′​Ag) and calculate the 

required Ag.
(d)	 Calculate b = Ag∕h.
(e)	 Revise the trial value of h if necessary to obtain a well-proportioned section.
(f)	 Calculate the total steel area Ast = ρgbh.

† �Graphs A.5 through A.16 were developed for the specific bar configurations shown on the graphs. The curves exhibit changes in curvature, 
especially apparent near the balanced load, that result when bars within the cross section yield. The values provided in the graphs, however, 
are largely insensitive to the exact number of bars in the cross section and may be used for columns with similar bar configurations, but with 
smaller or larger numbers of bars.

FIGURE 9.16
Column cross section and 
loading for use with 
interaction diagrams in 
Graphs A.5 through A.16 in 
Appendix A. 
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Use of the column design charts will be illustrated in Examples 9.3 and 9.4.
Other design aids pertaining to ties and spirals, as well as recommendations 

for standard practice, will be found in Refs. 9.2 and 9.7.

	 EXAMPLE 9.3	 Selection of reinforcement for column of given size.  In a three-story structure, an exterior 
column is to be designed for a service dead load of 222 kips, maximum live load of 297 kips, 
dead load moment of 136 ft-kips, and live load moment of 194 ft-kips. The minimum live 
load compatible with the full live load moment is 166 kips, obtained when no live load is 
placed on the roof but a full live load is placed on the second floor. Architectural considerations 
require that a rectangular column be used, with dimensions b = 20 in. and h = 25 in.
	(a)	 Find the required column reinforcement for the condition that the full live load acts.
	(b)	 Check to ensure that the column is adequate for the condition of no live load on the roof. 

Material strengths are ​f​c​ ′​ = 4000 psi and fy = 60,000 psi.

Solution.
	(a)	 The column will be designed initially for full load, then checked for adequacy when live 

load is partially removed. According to the ACI safety provisions, the column must be 
designed for a factored load Pu = 1.2 × 222 + 1.6 × 297 = 742 kips and a factored moment 
Mu = 1.2 × 136 + 1.6 × 194 = 474 ft-kips. A column 20 × 25 in. is specified, and rein-
forcement distributed around the column perimeter will be used. Bar cover is estimated to 
be 2.5 in. from the column face to the steel centerline for each bar. The column parameters 
(assuming bending about the strong axis) are

Kn = ​ 
Pu
 ______ 

ϕ ​f​c​ ′​Ag

 ​ = ​  742 _____________  
0.65 × 4 × 500

 ​ = 0.570

Rn = ​ 
Mu
 _______ 

ϕ ​f​c​ ′​Agh
 ​ = ​  474 × 12  __________________  

0.65 × 4 × 500 × 25
 ​ = 0.175

	 With 2.5 in. cover, the parameter γ  =  (25  −  5)∕25  =  0.80. For this column geometry  
and material strengths, Graph A.7 of Appendix A applies. From that figure, with the 
calculated values of Kn and Rn,  ρg  =  0.024. Thus, the required reinforcement is 
Ast  =  0.024  ×  500  =  12.00  in2. Twelve No. 9 (No. 29) bars will be used, one at each 
corner and two evenly spaced along each face of the column, providing Ast = 12.00 in2.

	(b)	 With the roof live load absent, the column will carry a factored load Pu = 1.2 × 222 + 1.6 ×  
166 = 532 kips and factored moment Mu = 474 ft-kips, as before. Thus, the column param-
eters for this condition are

Kn = ​ 
Pu
 ______ 

ϕ ​f​c​ ′​Ag

 ​ = ​  532 _____________  
0.65 × 4 × 500

 ​ = 0.409

Rn = ​ 
Mu
 _______ 

ϕ ​f​c​ ′​Agh
 ​ = ​  474 × 12  __________________  

0.65 × 4 × 500 × 25
 ​ = 0.175

	 and γ  =  0.80 as before. From Graph A.7 it is found that a reinforcement ratio of 
ρg = 0.017 is sufficient for this condition, less than that required in part (a), so no mod-
ification is required.

	       Selecting No. 3 (No. 10) ties for trial, the maximum tie spacing must not exceed 
48  ×  0.375  =  18 in., 16  ×  1.128  =  18.05 in., or 20 in. Spacing is controlled by the 
diameter of the ties, and No. 3 (No. 10) ties will be used at 18 in. spacing, in the pattern 
shown in Fig. 9.3d.
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	 9.11	 BIAXIAL BENDING

The methods discussed in the preceding sections permit rectangular or square columns 
to be designed if bending is present about only one of the principal axes. There are 
situations, by no means exceptional, in which axial compression is accompanied by 
simultaneous bending about both principal axes of the section. Such is the case, for 
instance, in corner columns of buildings where beams and girders frame into the col-
umns in the directions of both walls and transfer their end moments into the columns 
in two perpendicular planes. Similar loading may occur at interior columns, particu-
larly if the column layout is irregular.

The situation with respect to strength of biaxially loaded columns is shown in 
Fig. 9.17. Let X and Y denote the directions of the principal axes of the cross section. 
In Fig.  9.17a, the section is shown subject to bending about the Y axis only, with 
load eccentricity ex measured in the X direction. The corresponding strength inter-
action curve is shown as case (a) in the three-dimensional sketch in Fig. 9.17d and 
is drawn in the plane defined by the axes Pn and Mny. Such a curve can be established 
by the usual methods for uniaxial bending. Similarly, Fig. 9.17b shows bending about 
the X axis only, with eccentricity ey measured in the Y direction. The corresponding 
interaction curve is shown as case (b) in the plane of Pn and Mnx in Fig. 9.17d. For 
case (c), which combines X and Y axis bending, the orientation of the resultant 
eccentricity is defined by the angle λ:

	 λ = arctan ​ 
ex __ ey

 ​ = arctan ​ 
Mny

 ____ 
Mnx

 ​	

Bending for this case is about an axis defined by the angle θ with respect to the X 
axis. The angle λ in Fig. 9.17c establishes a plane in Fig. 9.17d, passing through the 
vertical Pn axis and making an angle λ with the Mnx axis, as shown. In that plane, 

	 EXAMPLE 9.4	 Selection of column size for a given reinforcement ratio.  A column is to be designed to 
carry a factored load Pu = 481 kips and factored moment Mu = 492 ft-kips. Material strengths 
fy = 60,000 psi and ​f​c​ ′​ = 4000 psi are specified. Cost studies for the particular location indi-
cate that a reinforcement ratio ρg of about 0.03 is optimum. Find the required dimensions  
b and h of the column. Bending will be about the strong axis, and an arrangement of steel 
with bars concentrated in two layers, adjacent to the outer faces of the column and parallel 
to the axis of bending, will be used.

Solution.  It is convenient to select a trial column dimension h, perpendicular to the axis 
of bending; a value of h = 25 in. will be selected, and assuming a concrete cover of 2.5 in. 
to the bar centers, the parameter γ = 0.80. Graph A.11 of Appendix A applies. For the stated 
loads, the eccentricity is e  =  492  ×  12∕481  =  12.3 in., and e∕h  =  12.3∕25  =  0.49. From 
Graph A.11 with e∕h = 0.49 and ρg = 0.03, Kn = Pw∕ϕ ​f​c​ ′​Ag = 0.51. For the trial dimension 
h = 25 in., the required column width is

b = ​ 
Pu
 _______ 

ϕ​f​c​ ′​Knh
 ​ = ​  481  __________________  

0.65 × 4 × 0.51 × 25
 ​ = 14.5 in.

A column 15 × 25 in. will be used, for which the required steel area is Ast = 0.03 × 15 × 25 =  
11.25 in2. Eight No. 11 (No. 36) bars will be used, providing Ast = 12.48 in2, arranged in two 
layers of four bars each, similar to the sketch shown in Graph A.11.
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column strength is defined by the interaction curve labeled case (c). For other values 
of λ, similar curves are obtained to define a failure surface for axial load plus biaxial 
bending, as shown in Fig. 9.17d. The surface is exactly analogous to the interaction 
curve for axial load plus uniaxial bending. Any combination of Pu, Mux, and Muy fall-
ing inside the surface can be applied safely, but any point falling outside the surface 
would represent failure. Note that the failure surface can be described either by a set 
of curves defined by radial planes passing through the Pn axis, as shown by case (c), 
or by a set of curves defined by horizontal plane intersections, each for a constant Pn, 
defining load contours.

Constructing such an interaction surface for a given column would appear to 
be an obvious extension of uniaxial bending analysis. In Fig.  9.17c, for a selected 
value of θ, successive choices of neutral axis distance c could be taken. For each, 
using strain compatibility and stress-strain relations to establish bar forces and the 
concrete compressive resultant, then using the equilibrium equations to find Pn, Mnx, 
and Mny, one can determine a single point on the interaction surface. Repetitive 
calculations, easily done by computer, then establish sufficient points to define the 
surface. The triangular or trapezoidal compression zone, as shown in Fig. 9.17c, is 
a complication, and in general the strain in each reinforcing bar will be different, 
but these features can be incorporated.

The main difficulty, however, is that the neutral axis will not, in general, be 
perpendicular to the resultant eccentricity, drawn from the column center to the load 
Pn. For each successive choice of neutral axis, there are unique values of Pn, Mnx, and 
Mny, and only for special cases will the ratio of Mny∕Mnx be such that the eccentricity 
is perpendicular to the neutral axis chosen for the calculation. The result is that, for 
successive choices of c for any given θ, the value of λ in Fig. 9.17c and d will vary. 

FIGURE 9.17
Interaction diagram for 
compression plus biaxial 
bending: (a) uniaxial bending 
about Y axis; (b) uniaxial 
bending about X axis;  
(c) biaxial bending about 
diagonal axis; and  
(d) interaction surface.
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Points on the failure surface established in this way will wander up the failure surface 
for increasing Pn, not representing a plane intersection, as shown for case (c) in 
Fig. 9.17d.

In practice, the factored load Pu and the factored moments Mux and Muy to be 
resisted are known from the frame analysis of the structure. Therefore, the actual 
value of λ = arctan(Muy∕Mux) is established, and one needs only the curve of case (c), 
Fig.  9.17d, to test the adequacy of the trial column. An iterative computer method 
to establish the interaction line for the particular value of λ that applies will be 
described in Section 9.14.

Alternatively, simple approximate methods are widely used. These will be 
described in Sections 9.12 and 9.13.

	 9.12	 LOAD CONTOUR METHOD

The load contour method is based on representing the failure surface of Fig. 9.17d by 
a family of curves corresponding to constant values of Pn (Ref. 9.8). The general form 
of these curves can be approximated by a nondimensional interaction equation

	​​ ( ​ Mnx ____ 
Mnx0

 ​ )​​α1

​+ ​​(  ​ Mny
 ____ 

Mny0
 ​ )​​α2

​ = 1.0	 (9.19)

where

	 Mnx = Pney	

	 Mnx0 = Mnx    when Mny = 0

	 Mny = Pnex

 	 Mny0 = Mny    when Mnx = 0

and α1 and α2 are exponents depending on column dimensions, amount and distribu-
tion of steel reinforcement, stress-strain characteristics of steel and concrete, amount 
of concrete cover, and size of transverse ties or spiral. When α1 = α2 = α, the shapes of 
such interaction contours are as shown in Fig. 9.18 for specific α values.

Calculations reported by Bresler in Ref. 9.9 indicate that α falls in the range 
from 1.15 to 1.55 for square and rectangular columns. Values near the lower end of 
that range are the more conservative. Methods and design aids permitting a more 
defined estimation of α are found in Ref. 9.7.

In practice, the values of Pu,  Mux, and Muy are known from the analysis of the 
structure. For a trial column section, the values of Mnx 0 and Mny 0 corresponding to the 
load Pu∕ϕ can easily be found by the usual methods for uniaxial bending. Then replac-
ing Mnx with Mux∕ϕ and Mny with Muy∕ϕ and using α1 = α2 = α in Eq. (9.19), or alter-
natively by plotting (Mnx∕ϕ)∕Mnx 0 and (Mny∕ϕ)∕Mny 0 in Fig.  9.18, it can be confirmed 
that a particular combination of factored moments falls within the load contour (safe 
design) or outside the contour (failure), and the design modified if necessary.

An approximate approach to the load contour method, in which the curved load 
contour is represented by a bilinear approximation, will be found in Ref. 9.10. It 
leads to a method of trial design in which the biaxial bending moments are repre-
sented by an equivalent uniaxial bending moment. Design charts based on this 
approximate approach will be found in the ACI Design Manual (Ref. 9.7). Trial 
designs arrived at in this way should be checked for adequacy by the load contour 
method, described above, or by the method of reciprocal loads that follows.
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	 9.13	 RECIPROCAL LOAD METHOD

A simple, approximate design method developed by Bresler (Ref. 9.9) has been sat-
isfactorily verified by comparison with results of extensive tests and accurate calcu-
lations (Ref. 9.11). It is noted that the column interaction surface in Fig. 9.17d can, 
alternatively, be plotted as a function of the axial load Pn and eccentricities ex = Mny∕Pn 
and ey = Mnx∕Pn, as is shown in Fig. 9.19a. The surface S1 of Fig. 9.19a can be trans-
formed into an equivalent failure surface S2, as shown in Fig. 9.19b, where ex and ey 

FIGURE 9.18
Interaction contours at 
constant Pn for varying α.  
(Adapted from Ref. 9.8.)
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are plotted against 1∕Pn rather than Pn. Thus, ex = ey = 0 corresponds to the inverse 
of the capacity of the column if it were concentrically loaded P0, and this is plotted 
as point C. For ey = 0 and any given value of ex, there is a load Pny 0 (corresponding 
to moment Mny0) that would result in failure. The reciprocal of this load is plotted as 
point A. Similarly, for ex = 0 and any given value of ey, there is a certain load Pnx0 
(corresponding to moment Mnx0) that would cause failure, the reciprocal of which is 
point B. The values of Pnx0 and Pny0 are easily established, for known eccentricities of 
loading applied to a given column, using the methods already established for uniaxial 
bending, or using design charts for uniaxial bending.

An oblique plane ​​S​2​ ′​​ is defined by the three points: A, B, and C. This plane is 
used as an approximation of the actual failure surface S2. Note that, for any point on 
the surface S2 (that is, for any given combination of ex and ey), there is a correspond-
ing plane ​S​2​ ′​. Thus, the approximation of the true failure surface S2 involves an 
infinite number of planes ​S​2​ ′​ determined by particular pairs of values of ex and ey, 
that is, by particular points A, B, and C.

The vertical ordinate 1∕Pn,exact to the true failure surface will always be con-
servatively estimated by the distance 1∕Pn,approx to the oblique plane ABC (extended), 
because of the concave upward eggshell shape of the true failure surface. In other 
words, 1∕Pn,approx is always greater than 1∕Pn,exact, which means that Pn,approx is always 
less than Pn,exact.

Bresler’s reciprocal load equation derives from the geometry of the approxi-
mating plane. It can be shown that

	​  1 ___ 
Pn

 ​ = ​  1 ____ 
Pnx 0

 ​ + ​  1 ____ 
Pny 0

 ​ − ​ 1 ___ 
P0

 ​	 (9.20)

where Pn = �approximate value of nominal load in biaxial bending with eccentricities 
ex and ey

	 	Pny0 = nominal load when only eccentricity ex is present (ey = 0)
	 	Pnx0 = nominal load when only eccentricity ey is present (ex = 0)
	 	 P0 = nominal load for concentrically loaded column

Equation (9.20) has been found to be acceptably accurate for design purposes provided 
Pn ≥ 0.10P0. It is not reliable where biaxial bending is prevalent and accompanied by 
an axial force smaller than P0∕10. In the case of such strongly prevalent bending, fail-
ure is initiated by yielding of the steel in tension, and the situation corresponds to the 
lowest tenth of the interaction diagram of Fig. 9.17d. In this range, it is conservative 
and accurate enough to neglect the axial force entirely and to calculate the section for 
biaxial bending only.

Over most of the range for which the Bresler method is applicable, above 
0.10P0, ϕ is constant, although for very small eccentricities the ACI Code imposes 
an upper limit on the maximum design strength that has the effect of flattening the 
upper part of the column strength interaction curve (see Section 9.9 and Graphs A.5 
through A.16 of Appendix A). When using the Bresler method for biaxial bending, 
it is necessary to use the uniaxial strength curve without the horizontal cutoff (as 
shown by the lighter lines in the graphs of Appendix A) in obtaining values for use 
in Eq. (9.20). The value of ϕPn obtained in this way should then be subject to the 
restriction, as for uniaxial bending, that it must not exceed 0.80ϕP0 for tied columns 
and 0.85ϕP0 for spirally reinforced columns.

In a typical design situation, given the size and reinforcement of the trial col-
umn and the load eccentricities ey and ex, one finds by computation or from design 
charts the nominal loads Pnx0 and Pny0 for uniaxial bending around the X and Y axes, 
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respectively, and the nominal load P0 for concentric loading. Then 1∕Pn is computed 
from Eq. (9.20), and from that Pn is calculated. The design requirement is that the 
factored load Pu not exceed ϕPn, as modified by the horizontal cutoff mentioned 
above, if applicable.

	 EXAMPLE 9.5	 Design of column for biaxial bending.  The 12 × 20 in. column shown in Fig. 9.20 is rein-
forced with eight No. 9 (No. 29) bars arranged around the column perimeter, providing an area 
Ast = 8.00 in2. A factored load Pu of 255 kips is to be applied with eccentricities ey = 3 in. and 
ex = 6 in., as shown. Material strengths are ​f​c​ ′​ = 4 ksi and fy = 60 ksi. Check the adequacy of 
the trial design (a) using the reciprocal load method and (b) using the load contour method.

Solution.
	(a)	 By the reciprocal load method, first considering bending about the Y axis, γ = 15∕20 = 0.75 

and e∕h = 6∕20 = 0.30. With the reinforcement ratio of Ast∕bh = 8.00∕240 = 0.033, using 
the average of Graphs A.6 (γ = 0.70) and A.7 (γ = 0.80),

​ 
Pny0

 ____ 
​f​c​ ′​Ag

 ​ (avg) = ​ 0.62 + 0.66  __________ 
2
 ​  = 0.64    Pny0 = 0.64 × 4 × 240 = 614 kips

    ​   
P0 ____ 

​f​c​ ′​Ag

 ​ = 1.31                   P0 = 1.31 × 4 × 240 = 1258 kips

	 Then for bending about the X axis, γ = ​ 7 __ 12 ​ = 0.58 (say 0.60) and e∕h = ​ 3 __ 12 ​ = 0.25. Graph 
A.5 of Appendix A gives

​ 
Pnx0 ____ 
​f​c​ ′​Ag

 ​ = 0.65    Pnx0 = 0.65 × 4 × 240 = 624 kips

​ 
P0 ____ 

​f​c​ ′​Ag

 ​ = 1.31      P0 = 1.31 × 4 × 240 = 1258 kips

	 Substituting these values in Eq. (9.20) results in

​ 1 ___ 
Pn

 ​ = ​  1 ____ 
624

 ​ + ​  1 ____ 
614

 ​ − ​  1 _____ 
1258

 ​ = 0.00244

	 from which Pn  =  410 kips. Thus, according to the Bresler method, the design load of 
Pu = 0.65 × 410 = 267 kips can be applied safely.

FIGURE 9.20
Column cross section for 
Example 9.5.
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In actual practice, the values of α used in Eq. (9.19) should be checked, for 
the specific column, because predictions of that equation are quite sensitive to 
changes in α. In Ref. 9.10, it is shown that α  =  log  0.5∕log  β, where values of β 
can be tabulated for specific column geometries, material strengths, and load ranges 
(see Ref. 9.7). For the present example, it can be confirmed from Ref. 9.7 that 
β = 0.56 and hence α = 1.19, approximately as chosen.

One observes that, in Example 9.5a, an eccentricity in the Y direction equal to 
50  percent of that in the X direction causes a reduction in nominal capacity of 
33  percent, that is, from 614 to 410 kips. For cases in which the ratio of eccentric-
ities is smaller, there is some justification for the frequent practice in framed struc-
tures of neglecting the bending moments in the direction of the smaller eccentricity. 
In general, biaxial bending should be taken into account when the estimated eccen-
tricity ratio approaches or exceeds 0.2.

	 9.14	 COMPUTER ANALYSIS FOR BIAXIAL BENDING  
OF COLUMNS

Although the load contour method and the reciprocal load method are widely used in 
practice, each has serious shortcomings. With the load contour method, selection of 
the appropriate value of the exponent α is made difficult by a number of factors relat-
ing to column shape and bar distribution. For many cases, the usual assumption that 
α1 = α2 is a poor approximation. Design aids are available, but they introduce further 
approximations, for example, the use of a bilinear representation of the load contour. 

	(b)	 By the load contour method, for Y axis bending with Pu∕(ϕ ​f​c​ ′​Ag) = 255∕(0.65 × 4 × 240) =  
0.41. The average from Graphs A.6 and A.7 of Appendix A is

​ 
Mny0

 _____ 
​f​c​ ′​Agh

 ​ (avg) = ​ 0.212 + 0.235  ____________ 
2
 ​  = 0.224

	 Hence, Mny0  =  0.224  ×  4  ×  240  ×  20  =  4300 in-kips. Then for X axis bending, with  
Pu∕(ϕ​f​c​ ′​ Ag) = 0.41, as before, from Graph A.5,

​ 
Mnx0 _____ 
​f​c​ ′​Agh

 ​ = 0.186

	 So Mnx0 = 0.186 × 4 × 240 × 12 = 2140 in-kips. The factored load moments about the 
Y and X axes, respectively, are

Muy = 255 × 6 = 1530 in-kips

Mux = 255 × 3 = 765 in-kips

	 Adequacy of the trial design will now be checked using Eq. (9.19) with an exponent α 
conservatively taken equal to 1.15. Then with Mnx  =  Mux∕ϕ and Mny  =  Muy∕ϕ, that 
equation indicates

​( ​ 765∕0.65
 ________ 

2140
 ​  )​1.15

 + ​( ​ 1530∕0.65
 _________ 

4300
 ​  )​1.15

 = 0.502 + 0.500 = 1.002

	 This is close enough to 1.0 that the design would be considered safe by the load contour 
method also.
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The reciprocal load method is very simple to use, but the representation of the curved 
failure surface by an approximating plane is not reliable in the range of large eccen-
tricities, where failure is initiated by steel yielding.

With the general availability and wide use of computers, it is better to use sim-
pler methods to obtain faster, and more exact, solutions to the biaxial column problem. 
Such a method is that developed by Ehsani (Ref. 9.12). A column strength interaction 
curve is established for a trial column, exactly analogous to the curve for axial load 
plus uniaxial bending, as described in Sections 9.3 to 9.7. However, the curve is 
generated for the particular value of the eccentricity angle that applies, as determined 
by the ratio of Muy∕Mux from the structural frame analysis [see case (c) of Fig. 9.17d]. 
This is done by taking successive choices of neutral axis distance, measured in this 
case along one face of the column from the most heavily compressed corner, from 
very small (large eccentricity) to very large (small eccentricity), then calculating the 
axial force Pn and moments Mnx and Mny. For each neutral axis distance, iteration is 
performed with successive values of the orientation angle θ, Fig.  9.17c, until 
λ  =  arctan  (Mny∕Mnx) is in agreement with the value of λ  =  arctan  (Muy∕Mux) from 
the structural frame analysis. Thus, one point on curve (c) of Fig. 9.17d is established. 
The sequence of calculations is repeated: another choice of neutral axis distance is 
made, a value of θ is selected, the axial force and moments are calculated, λ is found, 
and the value of θ is iterated until λ is correct. Thus, the next point is established, 
and so on, until the complete strength interaction curve for that particular value of λ 
is complete. ACI Code safety provisions may then be imposed in the usual way, and 
the adequacy of the proposed design tested, for the known load and moments, against 
the design strength curve for the trial column.

The method is obviously impractical for manual calculation, but the iterative 
steps are easily and quickly performed by computer, which can also provide a graph-
ical presentation of results. Full details will be found in Ref. 9.12.

A number of computer programs for biaxial bending are available commer-
cially, such as spCOLUMN (Structure Point, Skokie, Illinois).

	 9.15	 BAR SPLICING IN COLUMNS AND TIES NEAR  
BEAM-COLUMN JOINTS

The main vertical reinforcement in columns is usually spliced just above each floor, 
or sometimes at alternate floors. This permits the column steel area to be reduced pro-
gressively at the higher levels in a building, where loads are smaller, and in addition 
avoids handling and supporting very long column bars. Column steel may be spliced 
by lapping, butt welding, various types of mechanical connections, or direct end bear-
ing, using special devices to ensure proper alignment of bars.

Special attention must be given to the problem of bar congestion at splices. Lap-
ping the bars, for example, effectively doubles the steel area in the column cross section 
at the level of the splice and can result in problems placing concrete and meeting the 
ACI Code requirement for minimum lateral spacing of bars (1.5db or 1.5 in.). To avoid 
difficulty, column steel percentages are often limited in practice to not more than about 
4 percent, or the bars are extended two stories and staggered splices are used.

The most common method of splicing column steel is the simple lapped bar splice, 
with the bars in contact throughout the lapped length. It is standard practice to offset the 
lower bars, as shown in Fig. 9.21, to permit the proper positioning of the upper bars. To 
prevent outward buckling of the bars at the bottom bend point of such an offset, with 
spalling of the concrete cover, it is necessary to provide special transverse reinforcement 
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in the form of extra ties. According to ACI Code 10.7.4.1, the slope of the inclined part 
of an offset bar must not exceed 1 in 6. According to ACI Code 10.7.6.4, the transverse 
steel must be provided to resist 1​ 1 _ 2 ​ times the horizontal component of the computed force 
in the inclined part of the offset bar, and this special reinforcement must be placed not 
more than 6 in. from the point of bend, as shown in Fig. 9.21.

Elsewhere in the column, above and below the floor, the usual spacing require-
ments described in Section 9.2 apply, except that ties must be located not more than 
one-half the normal spacing s above the floor and must be located not farther than 
one-half s below the lowest horizontal reinforcement in the slab, drop panel, or shear 
cap, according to ACI Code 10.7.6.2. Where beams frame from four directions into a 
joint, as shown in Fig. 9.21, ties may be terminated within the beam-column joint. In 
this case, the top tie in a column must be located not more than 3 in. below the lowest 
reinforcement in the shallowest beam or bracket. As a result of these requirements, if 
beams are not present on four sides, such as for exterior columns, ties must be placed 
vertically at the usual spacing through the depth of the joint up to a level not more than 
one-half the usual spacing s below the lowest reinforcement in the slab.

Analogous requirements are found in ACI Code 10.7.6.3 and are illustrated in 
Ref. 9.1 for spirally reinforced columns.

As discussed in Section 6.13, in frames subjected to lateral loading, a viable 
alternative to splicing bars just above the floor is to splice them in the center half 
of the column height, where the moment due to lateral loading is much lower than 
at floor level. Splicing near midheight is mandatory in “special moment frames” 
designed for seismic loading (Chapter 20). The use of midheight splices removes the 
requirement for the special ties shown in Fig. 9.21 because bent bars are not used.

Column splices are mainly compression splices, although load combinations pro-
ducing moderate to large eccentricity require that splices transmit tension as well. ACI 
Code 10.7.5 permits splicing by lapping, butt welding, mechanical connectors, or end 
bearing. As discussed in Section 6.13, the length of compression lap splices may be 
reduced in cases where ties or spiral reinforcement throughout the lap length meets 

FIGURE 9.21
Splice details at typical 
interior column. Beams  
frame into joint from four 
directions.

s
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6″ max.
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bottom of
beam bars
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specific requirements. If the column bars are in tension, Class A tension lap splices are 
permitted if the tensile stress does not exceed 0.5fy and less than one-half of the bars 
are spliced at any section. Class B tension splices are required if the tensile stresses are 
higher than 0.5fy under factored loads or where more than one-half of the reinforcement 
is spliced at one location. When end bearing splices are used, they must be staggered 
or additional reinforcement must be added so that the continuing bars on each column 
face possess a tensile strength not less than 0.25fy times the area of the vertical rein-
forcement on that face, according to ACI Code 10.7.5.3.

Full requirements for both compression and tension lap splices are discussed 
in Section 6.13, and the design of a compression splice in a typical column is illus-
trated in Example 6.5.

	 9.16	 TRANSMISSION OF COLUMN LOADS THROUGH 
FLOOR SYSTEMS

Quite often, the specified compressive strength of the concrete in columns will exceed 
that of the floor system. This is especially true for the lower stories in high-rise build-
ings, where high-strength concrete is used to minimize the cross-sectional area of the 
columns and thus maximize the usable floor space. High-strength concrete, however, 
is not needed for the beams and slabs that make up the floor system.

Floor systems and columns must be cast in separate placements. This is not 
only good construction practice to allow the concrete in the columns to settle prior 
to placement of the floor system but also required by ACI Code 26.5.7.2 to prevent 
cracking at the interface between the floor and the column that would occur if the 
floor and supporting members were cast at the same time. This standard practice, 
however, opens the possibility for placement of lower-strength concrete within the 
portion of a floor system that directly supports the columns above, which would, in 
turn, significantly reduce their capacity. The high lateral confinement provided by 
the floor system to the concrete in the vicinity of the column does have a mitigating 
effect because it places that region in triaxial compression and thus increases its 
usable compressive strength, as explained in Section 2.10.

To address the effects on performance of using concretes with significantly 
different compressive strengths in the columns and floor system, ACI Code 15.5 
specifies that if ​f​c​ ′​ of the floor system is less than 0.7​​f​c​ ′​​, of the column, one of three 
requirements must be met:

	 1.	 At the time of concrete placement in the floor system, concrete with the strength 
specified for the column must be placed in the floor at the column location. The 
concrete must extend at least 2 ft into the floor system from the face of the column 
for the full depth of the floor system and be integrated with the floor concrete.

	 2.	 The strength of the column through the floor system must be based on the lower 
compressive strength of the floor concrete. Additional reinforcement may be 
required.

	 3.	 For beam-column joints that are laterally supported on four sides by beams of 
approximately the same depth and at least three-quarters of the width of the 
column or slab-column joints that are supported by slabs on four sides, the strength 
of the column may be based on a compressive strength equal to 75 percent of the 
column concrete strength plus 35 percent of the floor concrete strength. The ratio 
of the column concrete strength to the slab concrete strength may not be taken 
greater than 2.5 for use in design.
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	 9.17	 SHEAR IN COLUMNS

Columns are subjected to shear due to lateral load—for example, from wind or 
earthquakes—as well as from bending moments transferred by beams and slabs at 
joints. The design of columns subjected to shear in a single direction is handled as 
described in Section 5.6 for members under axial load, with the column ties serving as 
shear reinforcement. As such, the ties must meet all requirements for shear reinforce-
ment described in Section 5.5.

When structures are subjected to lateral load due to wind or earthquake, or 
columns are subjected to bending moments from orthogonal flexural members, how-
ever, columns will be subjected to biaxial shear loading. According to ACI Code 
22.5.1.10, the effects of biaxial shear may be neglected if either Eq. (9.21a) or  
Eq. (9.21b) is satisfied:

	​​ 
Vu,x

 _____ 
ϕVn,x

 ​​ ≤ 0.5� (9.21a)

	​​ 
Vu,y

 _____ 
ϕVn,y

 ​​ ≤ 0.5� (9.21b)

where Vu,x and Vu,y are, respectively, the factored shear forces in the x and y directions, 
and Vn,x and Vn,y are, respectively, the shear strengths in the x and y directions.

If Vu,x∕(ϕVn,x) > 0.5 and Vu,y∕(ϕVn,y) > 0.5, ACI Code 22.5.1.11 requires that

	​​ 
Vu,x

 _____ 
ϕVn,x

 ​​ + ​​ 
Vu,y

 _____ 
ϕVn,y

 ​​ ≤ 1.5� (9.22)

If needed, shear reinforcement may be added to satisfy Eq. (9.22). 
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Problems
	9.1.	 A 16 in. square column is reinforced with four No. 11 (No. 36) bars, one in 

each corner, with cover distances 3 in. to the steel center in each direction. 
Material strengths are ​f​c​ ′​ = 5000 psi and fy = 60,000 psi. Construct the inter-
action diagram relating axial strength Pn and flexural strength Mn. Bending 
will be about an axis parallel to one face. Calculate the coordinates for Po, Pb, 
and at least three other representative points on the curve.

	9.2.	 Starting with the column in Problem 9.1, perform enough additional calcula-
tions to determine the effects of increasing ​f​c​ ′​ from 5000 to 8000 psi on 
column capacity at both high and low axial loads. Assuming that a compres-
sive strength of 8000 psi is appropriate for the lower stories of a high-rise 
structure, would you recommend using concrete with ​f​c​ ′​ = 8000 psi for the 
columns supporting all stories within the building? Use your analysis to sup-
port your answer.

	9.3.	 Plot the design strength curve relating ϕPn and ϕMn for the column of  
Problem 9.1. Design and detail the tie steel required by the ACI Code. Is the 
column a good choice to resist a load Pu  =  540 kips applied with an 
eccentricity e = 4.44 in.?

	9.4.	 The short column shown in Fig. P9.4 will be subjected to an eccentric load 
causing uniaxial bending about the Y axis. Material strengths are fy = 60 ksi 
and ​f​c​ ′​ = 4 ksi.

FIGURE P9.4

Ast = 6 No. 10 (No. 32)

15″

20″

Y

X 

3″3″

(a)	 Construct the nominal strength interaction curve for this column, calcu-
lating no fewer than five points, including those corresponding to pure 
bending, pure axial thrust, and balanced failure.

(b)	 Compare the calculated values with those obtained using Graph A.10 in 
Appendix A.

(c)	 Show on the same drawing the design strength curve obtained through 
introduction of the ACI ϕ factors.

(d)	 Design the transverse reinforcement for the column, giving key dimen-
sions for ties.

	9.5.	 The column shown in Fig. P9.5 is subjected to axial load and bending moment, 
causing bending about an axis parallel to that of the rows of bars. What moment 
Mn would cause the column to fail if the axial load Pn applied simultaneously 
was 1250 kips? Material strengths are ​f​c​ ′​ = 4000 psi and fy = 60 ksi.
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	9.6.	 What is the strength Mn of the column of Problem 9.5 if it was loaded in 
pure bending (axial force = 0) about one principal axis?

	9.7.	 Construct the interaction diagram relating Pn to Mn for the building column 
shown in Fig.  P9.7. Bending will be about the axis a-a. Calculate specific 
coordinates for concentric loading (e  =  0), for Pb, and at least three other 
points, well chosen, on the curve. Material strengths are ​f​c​ ′​ = 8000 psi and 
fy = 60,000 psi.

FIGURE P9.5
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	9.8.	 A short rectangular reinforced concrete column shown in Fig. P9.8 is to be 
a part of a long-span rigid frame and will be subjected to high bending 
moments combined with relatively low axial loads, causing bending about 
the strong axis. Because of the high eccentricity, steel is placed unsymmet-
rically as shown, with three No. 14 (No. 43) bars near the tension face and 
two No. 11 (No. 36) bars near the compression face. Material strengths are ​
f​c​ ′​ = 6 ksi and fy = 75 ksi. Construct the complete strength interaction dia-
gram, plotting Pn vs. Mn, relating eccentricities to the plastic centroid of the 
column (not the geometric center).
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	9.9.	 The square column shown in Fig. P9.9 must be designed for a factored axial 
load of 130 kips. Material strengths are ​f​c​ ′​ = 4000 psi and fy = 60,000 psi.
(a)	 Select the longitudinal and transverse reinforcement for an eccentricity 

ey = 2.7  in.
(b)	 Select the longitudinal and transverse reinforcement for the same axial 

load with ex = ey = 2.7  in.
(c)	 Construct the strength interaction diagram and design strength curves for 

the column designed in part (b), given that the column will be subjected 
to biaxial bending with equal eccentricities about both principal axes.

	9.10.	 The square column shown in Fig. P9.10 is a corner column subject to axial load 
and biaxial bending. Material strengths are fy = 60,000 psi and ​f​c​ ′​ = 4000 psi.
(a)	 Find the unique combination of Pn, Mnx, and Mny that will produce incip-

ient failure with the neutral axis located as in the figure. The compressive 
zone is shown shaded. Note that the actual neutral axis is shown, not the 
equivalent rectangular stress block limit; however, the rectangular stress 
block may be used as the basis of calculations.

(b)	 Find the angle between the neutral axis and the eccentricity axis, the 
latter defined as the line from the column center to the point of load.

FIGURE P9.8
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FIGURE P9.10 Ast = 4 No. 14 (No. 43)
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	9.11.	 For the axial load Pn found in Problem 9.10, and for the same column, with 
the same eccentricity ratio ey∕ex, find the values of Mnx and Mny that would 
produce incipient failure, using the load contour method. Compare with the 
results of Problem 9.10. Take α = 1.30, and use the graphs in Appendix A, 
as appropriate.

	9.12.	 For the eccentricities ex and ey found in Problem 9.10, find the value of axial 
load Pn that would produce incipient failure, using the reciprocal load 
(Bresler) method. Use the graphs in Appendix A, as appropriate. Compare 
with the results of Problems 9.10 and 9.11.

	9.13.	 A 20 in. square lower-story interior building column must be designed for 
maximum and minimum factored axial loads Pu of 880 and 551 kips, respec-
tively. For both values of Pu, the column will be subjected to simultaneous 
factored bending moments Mu of 295 and 24 ft-kips about the Y and X axes, 
respectively (Fig.  P9.13). Material strengths are fy  =  60,000  psi and  
​f​c​ ′​ = 4000 psi. Using equal reinforcement on all sides, design the longitudinal 
and transverse reinforcement for this column.

FIGURE P9.13

20″

20″

Y
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	9.14.	 A 16 in. square lower-story corner column in the building described in 
Problem 9.13 will be subjected to maximum and minimum factored axial 
loads Pu of 209 and 130 kips, respectively. For both values of Pu, the columns 
must be designed for simultaneous factored bending moments Mu of 110 and 
104  ft-kips about the Y and X axes, respectively. Using equal reinforcement 
on all sides, design the longitudinal and transverse reinforcement for this 
column.

	9.15.	 Using the column interaction diagrams in Appendix A ( ​​f​c​ ′​​ = 4000 psi and 
fy = 60,000 psi) with ρt approximately equal to 0.02, design square columns 
with equal reinforcement on all sides to carry each of the following loads 
and select the longitudinal and transverse reinforcement:
(a)	 Pu = 2500 kips and Mu = 220 ft-kips
(b)	 Pu = 1500 kips and Mu = 330 ft-kips
(c)	 Pu = 600 kips and Mu = 180 ft-kips
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Slender Columns

	 10.1	 INTRODUCTION

The material presented in Chapter 9 pertained to concentrically or eccentrically loaded 
short columns, for which the strength is governed entirely by the strength of the mate-
rials and the geometry of the cross section. Most columns in present-day practice fall 
in that category. However, with the increasing use of high-strength materials and 
improved methods of dimensioning members, it is now possible, for a given value 
of axial load, with or without simultaneous bending, to design a much smaller cross 
section than in the past. This clearly makes for more slender members. It is because 
of this, together with the use of more innovative structural concepts, that rational and 
reliable design procedures for slender columns have become increasingly important.

A column is said to be slender if its cross-sectional dimensions are small 
compared with its length. The degree of slenderness is generally expressed in terms 
of the slenderness ratio ℓ∕r, where ℓ is the unsupported length of the member and 
r is the radius of gyration of its cross section, equal to ​​√

___
 I∕A​​. For square or circular 

members, the value of r is the same about either axis; for other shapes, r is smallest 
about the minor principal axis, and it is generally this value that must be used in 
determining the slenderness ratio of a freestanding column.

It has long been known that a member of great slenderness will collapse under 
a smaller compression load than a stocky member with the same cross-sectional 
dimensions. When a stocky member, say with ℓ∕r  =  10 (such as a square column 
of length equal to about 3 times its cross-sectional dimension h), is loaded in axial 
compression, it will fail at the load given by Eq. (9.3), because at that load both 
concrete and steel are stressed to their maximum carrying capacity and give way, 
respectively, by crushing and by yielding. If a member with the same cross section 
has a slenderness ratio ℓ∕r = 100 (such as a square column hinged at both ends and 
of length equal to about 30  times its section dimension), it may fail under an axial 
load equal to one-half or less of that given by Eq. (9.3). In this case, collapse is 
caused by buckling, that is, by sudden lateral displacement of the member between 
its ends, with consequent overstressing of steel and concrete by the bending stresses 
that are superimposed on the axial compressive stresses.

Most columns in practice are subjected to bending moments as well as axial 
loads, as discussed in Chapter 9. These moments produce lateral deflection of a mem-
ber between its ends and may also result in relative lateral displacement of joints. Asso-
ciated with these lateral displacements are secondary moments that add to the primary 
moments and that may become very large for slender columns, leading to failure. A 
practical definition of a slender column is one for which there is a significant reduction 
in axial load capacity because of these secondary moments. In the development of 
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ACI Code column provisions, for example, any reduction greater than about 5 percent 
is considered significant, requiring consideration of slenderness effects.

The ACI Code and Commentary contain detailed provisions governing the 
design of slender columns. ACI Code 6.6.4 presents approximate methods for 
accounting for slenderness through the use of moment magnification factors. The 
provisions are quite similar to those used for many years for steel columns designed 
under the American Institute of Steel Construction (AISC) Specification. Alterna-
tively, in ACI Code 6.7 and 6.8, a more fundamental approach is endorsed, in which 
the effect of lateral displacements is accounted for directly in the frame analysis. 
The latter approach, known as second-order analysis, is often incorporated as a 
feature in commercially available structural analysis software.

As noted, most columns in practice continue to be short columns. Simple 
expressions are included in the ACI Code to determine whether slenderness effects 
must be considered. These will be presented in Section 10.4 following the develop-
ment of background information in Sections 10.2 and 10.3 relating to column buck-
ling and slenderness effects.

	 10.2	 CONCENTRICALLY LOADED COLUMNS

The basic information on the behavior of straight, concentrically loaded slender col-
umns was developed by Euler more than 250 years ago. In generalized form, it states 
that such a member will fail by buckling at the critical load

	 Pc = ​ 
π 2Et  I _____ 
(kℓ)2

 ​	 (10.1)

where kℓ is the effective length of the column.

It is seen that the buckling load for a given column cross section decreases 
rapidly as the effective length increases (Ref. 10.1).

For the simplest case of a column hinged at both ends and made of elastic 
material, Et simply becomes Young’s modulus and the effective length kℓ is equal 
to the actual length ℓ of the column. At the load given by Eq. (10.1), the originally 
straight member buckles into a half sine wave, as shown in Fig. 10.1a. In this bent 
configuration, bending moments Py act at any section such as a; y is the deflection 
at that section. These deflections continue to increase until the bending stress caused 
by the increasing moment, together with the original compression stress, overstresses 
and fails the member.

If the stress-strain curve of a short piece of the given member has the shape 
shown in Fig. 10.2a, as it would be for reinforced concrete columns, Et is equal to 
Young’s modulus, provided that the buckling stress Pc∕A is below the proportional 
limit fp. If the strain is larger than fp, buckling occurs in the inelastic range. In this 
case, in Eq. (10.1), Et is the tangent modulus, that is, the slope of the tangent to the 
stress-strain curve. As the stress increases, Et decreases. A plot of the buckling load 
vs. the slenderness ratio, the so-called column curve, therefore has the shape given 
in Fig. 10.2b, which shows the reduction in buckling strength with increasing slen-
derness. For very stocky columns, the value of the buckling load, calculated from 
Eq.  (10.1), exceeds the direct crushing strength of the stocky column Pn, given by 
Eq.  (9.3). This is also shown in Fig.  10.2b. Correspondingly, there is a limiting 
slenderness ratio (kℓ∕r)lim. For values smaller than this, failure occurs by simple 
crushing, regardless of kℓ∕r ; for values larger than (kℓ∕r)lim, failure occurs by buck-
ling, the buckling load or stress decreasing for greater slenderness.

www.konkur.in

Telegram: @uni_k



SLENDER COLUMNS      317

If a member is fixed against rotation at both ends, it buckles in the shape of 
Fig. 10.1b, with inflection points (IPs) as shown. The portion between the inflection 
points is in precisely the same situation as the hinge-ended column of Fig.  10.1a, 
and thus, the effective length kℓ of the fixed-fixed column, that is, the distance 
between inflection points, is seen to be kℓ  =  ℓ∕2. Equation (10.1) shows that an 
elastic column fixed at both ends will carry 4 times as much load as when hinged.

Columns in real structures are rarely either hinged or fixed but have ends par-
tially restrained against rotation by abutting members. This is shown schematically in 
Fig. 10.1c, from which it is seen that for such members the effective length kℓ, that 

FIGURE 10.1
Buckling and effective length 
of axially loaded columns.
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is, the distance between inflection points, has a value between ℓ and ℓ∕2. The precise 
value depends on the degree of end restraint, that is, on the ratio of the stiffness EI∕ℓ 
of the column to the sum of stiffnesses EI∕ℓ of the restraining members at both ends.

In the columns of Fig. 10.1a to c, it was assumed that one end was prevented 
from moving laterally relative to the other end, by horizontal bracing or otherwise. 
In this case, it is seen that the effective length kℓ is always smaller than (or at most 
it is equal to) the real length ℓ.

If a column is fixed at one end and entirely free at the other (cantilever column 
or flagpole), it buckles as shown in Fig. 10.1d. That is, the upper end moves laterally 
with respect to the lower, a kind of deformation known as sidesway. It buckles into 
a quarter of a sine wave and is therefore analogous to the upper half of the hinged 
column in Fig. 10.1a. The inflection points, one at the end of the actual column and 
the other at the imaginary extension of the sine wave, are a distance 2ℓ apart, so 
that the effective length is kℓ = 2ℓ.

If the column is rotationally fixed at both ends but one end can move laterally 
with respect to the other, it buckles as shown in Fig. 10.1e, with an effective length 
kℓ = ℓ. If one compares this column, fixed at both ends but free to sidesway, with 
a fixed-fixed column that is braced against sidesway (Fig. 10.1b), one sees that the 
effective length of the former is twice that of the latter. By Eq. (10.1), this means 
that the buckling strength of an elastic fixed-fixed column that is free to sidesway 
is only one-quarter that of the same column when braced against sidesway. This is 
an illustration of the general fact that compression members free to buckle in a side-
sway mode are always considerably weaker than when braced against sidesway.

Again, the ends of columns in actual structures are rarely hinged, fixed, or entirely 
free but are usually restrained by abutting members. If sidesway is not prevented, buck-
ling occurs as shown in Fig. 10.1f, and the effective length, as before, depends on the 
degree of restraint. If the cross beams are very rigid compared with the column, the 
case of Fig. 10.1e is approached and kℓ is only slightly larger than ℓ. On the other hand, 
if the restraining members are extremely flexible, a hinged condition is approached at 
both ends. Evidently, a column hinged at both ends and free to sidesway is unstable. It 
will simply topple, being unable to carry any load whatever.

In reinforced concrete structures, one is rarely concerned with single members 
but rather with rigid frames of various configurations. The manner in which the 
relationships just described affect the buckling behavior of frames is illustrated by 
the simple portal frame shown in Fig.  10.3, with loads applied concentrically to  
the columns. If sidesway is prevented, as indicated schematically by the brace in 

FIGURE 10.2
Effect of slenderness on 
strength of axially loaded 
columns.
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Fig.  10.3a, the buckling configuration will be as shown. The buckled shape of the 
column corresponds to that in Fig. 10.1c, except that the lower end is hinged. It is 
seen that the effective length kℓ is smaller than ℓ. On the other hand, if no sidesway 
bracing is provided to an otherwise identical frame, buckling occurs as shown in 
Fig. 10.3b. The column is in a situation similar to that shown in Fig. 10.1d, upside 
down, except that the upper end is not fixed but only partially restrained by the 
girder. It is seen that the effective length kℓ exceeds 2ℓ by an amount depending on 
the degree of restraint. The buckling strength depends on kℓ∕r in the manner shown 
in Fig. 10.2b. As a consequence, even though they are dimensionally identical, the 
unbraced frame will buckle at a radically smaller load than the braced frame.

In summary, the following can be noted:

	 1.	 The strength of concentrically loaded columns decreases with increasing slender-
ness ratio kℓ∕r.

	 2.	 In columns that are braced against sidesway or that are parts of frames braced 
against sidesway, the effective length kℓ, that is, the distance between inflection 
points, falls between ℓ∕2 and ℓ, depending on the degree of end restraint.

	 3.	 The effective lengths of columns that are not braced against sidesway or that are 
parts of frames not so braced are always larger than ℓ, the more so the smaller 
the end restraint. In consequence, the buckling load of a frame not braced against 
sidesway is always substantially smaller than that of the same frame when braced.

	 10.3	 COMPRESSION PLUS BENDING

Most reinforced concrete compression members are also subject to simultaneous flex-
ure, caused by transverse loads or by end moments owing to continuity. The behavior of 
members subject to such combined loading also depends greatly on their slenderness.

Figure 10.4a shows such a member, axially loaded by P and bent by equal end 
moments Me. If no axial load were present, the moment M0 in the member would 
be constant throughout and equal to the end moments Me. This is shown in Fig. 10.4b. 
In this situation, that is, in simple bending without axial compression, the member 
deflects as shown by the dashed curve of Fig. 10.4a, where y0 represents the deflec-
tion at any point caused by bending only. When P is applied, the moment at any 
point increases by an amount equal to P times its lever arm. The increased moments 
cause additional deflections, so that the deflection curve under the simultaneous 
action of P and M0 is the solid curve of Fig.  10.4a. At any point, then, the total 
moment is now

	 M = M0 + Py	 (10.2)

FIGURE 10.3
Rigid-frame buckling:  
(a) laterally braced and 
(b) unbraced.
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that is, the total moment consists of the moment M0 that acts in the presence of P and 
the additional moment caused by P, equal to P times the deflection. This is one illus-
tration of the so-called P-Δ effect.

A similar situation is shown in Fig.  10.4c, where bending is caused by the 
transverse load H. When P is absent, the moment at any point x is M0 = Hx∕2, with 
a maximum value at midspan equal to Hℓ∕4. The corresponding M0 diagram is 
shown in Fig.  10.4d. When P is applied, additional moments Py are caused again, 
distributed as shown, and the total moment at any point in the member consists of 
the same two parts as in Eq. (10.2).

The deflections y of elastic columns of the type shown in Fig.  10.4 can be 
calculated from the deflections y0, that is, from the deflections of the corresponding 
beam without axial load, using the following expression (see, for example, Ref. 10.1).

	 y = y0 ​ 
1 ________ 

1 − P∕Pc

 ​	 (10.3)

If Δ is the deflection at the point of maximum moment Mmax, as shown in 
Fig. 10.4, Mmax can be calculated using Eqs. (10.2) and (10.3).

	 Mmax = M0 + PΔ = M0 + PΔ0 ​ 
1 ________ 

1 − P∕Pc

 ​	 (10.4)

It can be shown (Ref. 10.2) that Eq. (10.4) can be written as

	 Mmax = M0 ​ 
1 + ψP∕Pc __________ 
1 − P∕Pc

 ​	 (10.5)

where ψ is a coefficient that depends on the type of loading and varies between about 
±0.20 for most practical cases. Because P∕Pc is always significantly smaller than 1, 

FIGURE 10.4
Moments in slender members 
with compression plus 
bending, bent in single 
curvature.
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the second term in the numerator of Eq. (10.5) is small enough to be neglected. Doing 
so, one obtains the simplified design equation

	 Mmax = M0 ​ 
1 ________ 

1 − P∕Pc

 ​	 (10.6)

where 1∕(1 − P∕Pc) is known as the moment magnification factor, which reflects the 
amount by which the moment M0 is magnified by the presence of a simultaneous axial 
force P.

Since Pc decreases with increasing slenderness ratio, it is seen from Eq. (10.6) 
that the moment M in the member increases with the slenderness ratio kℓ∕r. The 
situation is shown schematically in Fig. 10.5. It indicates that, for a given transverse 
loading (that is, a given value of M0), an axial force P causes a larger additional 
moment in a slender member than in a stocky member.

In the two members in Fig. 10.4, the largest moment caused by P, namely PΔ, 
adds directly to the maximum value of M0; for example,

M0 = ​ Hℓ ___ 
4
 ​

in Fig. 10.4d. As P increases, the maximum moment at midspan increases at a rate 
faster than that of P in the manner given by Eqs. (10.2) and (10.6) and shown in 
Fig. 10.6. The member will fail when the simultaneous values of P and M become 
equal to Pn and Mn, the nominal strength of the cross section at the location of maxi-
mum moment.

This direct addition of the maximum moment caused by P to the maximum 
moment caused by the transverse load, clearly the most unfavorable situation, does 

FIGURE 10.5
Effect of slenderness on 
column moments.
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not result for all types of deformations. For instance, the member in Fig. 10.7a, with 
equal and opposite end moments, has the M0 diagram shown in Fig.  10.7b. The 
deflections caused by M0 alone are again magnified when an axial load P is applied. 
In this case, these deflections under simultaneous bending and compression can be 
approximated by (Ref. 10.1)

	 y = y0 ​ 
1 _________ 

1 − P∕4Pc

 ​	 (10.7)

By comparison with Eq. (10.3), it is seen that the deflection magnification here is 
much smaller.

The additional moments Py caused by the axial load are distributed as shown 
in Fig. 10.7c. Although the M0 moments are largest at the ends, the Py moments are 
seen to be largest at some distance from the ends. Depending on their relative mag-
nitudes, the total moments M = M0 + Py are distributed as shown in either Fig. 10.7d 
or e. In the former case, the maximum moment continues to act at the end and to 
be equal to Me; the presence of the axial force, then, does not result in any increase 
in the maximum moment. Alternatively, in the case of Fig.  10.7e, the maximum 
moment is located at some distance from the end; at that location, M0 is significantly 
smaller than its maximum value Me, and for this reason, the added moment Py 
increases the maximum moment to a value only moderately greater than Me.

Comparing Figs. 10.4 and 10.7, one can generalize as follows. The moment 
M0 will be magnified most strongly when the location where M0 is largest coincides 
with that where the deflection y0 is largest. This occurs in members bent into single 
curvature by symmetrical loads or equal end moments. If the two end moments of 
Fig. 10.4a are unequal but of the same sign, that is, producing single curvature, M0 
will still be strongly magnified, though not quite so much as for equal end moments. 
On the other hand, as evident from Fig.  10.7, there will be little or possibly no 
magnification if the end moments are of opposite sign and produce an inflection 
point along the member.

FIGURE 10.7
Moments in slender members 
with compression plus 
bending, bent in double 
curvature.
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It can be shown (Ref. 10.2) that the way in which moment magnification 
depends on the relative magnitude of the two end moments (as in Figs. 10.4a  
and 10.7a) can be expressed by a modification of Eq. (10.6):

	 Mmax = M0 ​ 
Cm ________ 

1 − P∕Pc

 ​	 (10.8)

where

	 Cm = 0.6 − 0.4 ​ 
M1 ___ 
M2

 ​ ≥ 0.4	 (10.9)

Here M1 is the numerically smaller and M2 the numerically larger of the two end 
moments; hence, by definition, M0 = M2. The fraction M1∕M2 is defined as negative if 
the end moments produce single curvature and positive if they produce double curva-
ture. It is seen that when M1 = M2, as in Fig. 10.4a, Cm = 1, so that Eq. (10.8) becomes 
Eq. (10.6), as it should. Note that Eq. (10.9) applies only to members braced against side-
sway. As will become apparent from the discussion that follows, for members not braced 
against sidesway, maximum moment magnification usually occurs, that is, Cm = 1.

Members that are braced against sidesway include columns that are parts of 
structures in which sidesway is prevented in one of various ways: by walls suffi-
ciently strong and rigid in their own planes to effectively prevent horizontal displace-
ment, by special bracing in vertical planes, in buildings by designing the utility core 
to resist horizontal loads and furnish bracing to the frames, or by bracing the frame 
against some other essentially immovable support.

If no such bracing is provided, sidesway can occur only for the entire frame 
simultaneously, not for individual columns in the frame. If this is the case, the com-
bined effect of bending and axial load is somewhat different from that in braced col-
umns. As an illustration, consider the simple portal frame of Fig.  10.8a subject to a 
horizontal load H, such as a wind load, and compression forces P, such as from grav-
ity loads. The moments M0 caused by H alone, in the absence of P, are shown in 
Fig. 10.8b; the corresponding deformation of the frame is given in dashed curves. When 
P is added, horizontal moments are caused that result in the magnified deformations 
shown in solid curves and in the moment diagram of Fig.  10.8d. It is seen that  
the maximum values of M0, both positive and negative, and the maximum values of the  
additional moments MP of the same sign occur at the same locations, namely, at the 
ends of the columns. They are therefore fully additive, leading to a large moment 
magnification. In contrast, if the frame in Fig. 10.8 is laterally braced and vertically 

FIGURE 10.8
Fixed portal frame, laterally 
unbraced.
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324      DESIGN OF CONCRETE STRUCTURES  Chapter 10

loaded, Fig. 10.9 shows that the maximum values of the two different moments occur 
in different locations; the moment magnification, if any, is therefore much smaller, 
as correctly expressed by Cm.

The moments that cause a frame to sidesway need not be caused by horizontal 
loads as in Fig. 10.8. Asymmetries, of frame configuration, vertical loading, or both, 
also result in sidesway displacements. In this case, the presence of axial column 
loads again results in the increased deflection and moment magnification.

In summary, it can be stated as follows:

	 1.	 In flexural members, the presence of axial compression causes additional 
deflections and additional moments Py. Other things being equal, the additional 
moments increase with increasing slenderness ratio kℓ∕r.

	 2.	 In members braced against sidesway and bent in single curvature, the maxima of 
both types of moments, M0 and Py, occur at the same or at nearby locations and 
are fully additive; this leads to large moment magnifications. If the M0 moments 
result in double curvature (that is, in the occurrence of an inflection point), the 
opposite is true and less or no moment magnification occurs.

	 3.	 In members in frames not braced against sidesway, the maximum moments of 
both kinds, M0 and Py, almost always occur at the same locations, the ends of 
the columns; they are fully additive, regardless of the presence or absence of an 
inflection point. Here, too, other things being equal, the additional deflections 
and the corresponding moments increase with increasing kℓ∕r.

This discussion is a simplified presentation of a fairly complex subject. The 
provisions of the ACI Code regarding slender columns are based on the behavior 
and the corresponding equations that have just been presented. They take account, 
in an approximate manner, of the additional complexities that arise from the fact that 
concrete is not an elastic material, tension cracking changes the moment of inertia 
of a member, and under sustained load, creep increases the short-term deflections 
and, thereby, the moments caused by these deflections.

	 10.4	 ACI CRITERIA FOR SLENDERNESS EFFECTS IN COLUMNS

The procedure of designing slender columns is inevitably lengthy, particularly 
because it involves a trial-and-error process. At the same time, studies have shown 
that most columns in existing buildings are sufficiently stocky that slenderness effects 
reduce their capacity by only a few percent. As stated in Chapter 9, an ACI-ASCE 

FIGURE 10.9
Fixed portal frame, laterally 
braced.
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survey indicated that 90 percent of columns braced against sway, and 40 percent of 
unbraced columns, could be designed as short columns; that is, they could develop 
essentially the full cross-sectional strength with little or no reduction from slenderness  
(Ref. 10.3). Furthermore, lateral bracing is usually provided by shear walls, elevator 
shafts, stairwells, or other elements for which resistance to lateral deflection is much 
greater than for the columns of the building frame. It can be concluded that in most 
cases in reinforced concrete buildings, slenderness effects may be neglected.

To permit the designer to dispense with the complicated analysis required for 
slender column design for these ordinary cases, ACI Code 6.2.5 provides limits below 
which the effects of slenderness are insignificant and may be neglected. These limits 
are adjusted to result in a maximum unaccounted reduction in column capacity of no 
more than 5 percent. Separate limits are applied to braced and unbraced structures, 
alternately described in the ACI Code as nonsway and sway frames, respectively. For 
the purpose of determining if slenderness effects may be neglected, ACI Code 6.2.5 
permits compression members to be considered as braced against sidesway if the total 
stiffness of the bracing elements resisting lateral movement of a story is at least 12 times 
the stiffness of all columns in that story. The Code provisions are as follows:

	 1.	 For compression members braced against sidesway (that is, in nonsway structures), 
the effects of slenderness may be neglected when kℓu∕r ≤ 34 + 12M1∕M2 and  
kℓu∕r ≤ 40.

	 2.	 For compression members not braced against sidesway (that is, in sway struc-
tures), the effects of slenderness may be neglected when kℓu∕r is less than 22.

In these provisions, k is the effective length factor (see Section 10.2); ℓu is the unsup-
ported length, taken as the clear distance between floor slabs, beams, or other members 
providing lateral support; M1 is the smaller factored end moment on the compression 
member; M2 is the larger factored end moment on the compression member (if trans-
verse loading occurs between supports, M2 is the largest moment in member); and 
M1∕M2 is negative if the member is bent in single curvature and positive if bent in 
double curvature.

The radius of gyration r for rectangular columns may be taken as 0.30h, where 
h is the overall cross-sectional dimension in the direction in which stability is being 
considered. For circular members, it may be taken as 0.25 times the diameter. For 
other shapes, r may be computed for the gross concrete section.

The effective length factor k may be conservatively taken as 1.0 for compres-
sion members that are braced against sidesway if a more accurate value is not deter-
mined by analysis. By necessity, k must be determined by analysis for compression 
members that are not braced against sidesway. The ACI criteria for determining k 
for both braced and unbraced columns are discussed in Section 10.6.

If slenderness effects must be considered, ACI Code 6.2.6 requires that the design 
of columns, beams restraining those columns, and other supporting members in the struc-
ture be based on a second-order analysis. The analysis may be elastic (ACI Code 6.7) or 
inelastic (ACI Code 6.8), or may be in accordance with the ACI moment magnifier 
procedure (ACI Code 6.6.4). Finite element analysis (ACI Code 6.9) is also permitted. 
To limit the potential for excessive moment magnification, the total factored moment 
including second-order effects in compression members may not exceed 1.4  times the 
factored moment due to first-order effects. In addition, second-order effects must be 
considered along the length of a member to cover cases in which the maximum moment 
may occur away from the ends. If a second-order analysis program is used, checking 
along the length of a member will require subdividing the member when it is modeled. 
In lieu of doing so, the ACI moment magnification method may be used. ACI Code 
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6.6.4, 6.7, and 6.8 require that the dimensions of all members used in the analysis be 
within 10 percent of the final dimensions. If not, the structure must be reanalyzed.

Elastic and inelastic second-order analyses, which are covered in ACI Code 6.7 
and 6.8, are discussed in Section 10.8. The ACI moment magnification method of 
second-order analysis is discussed next.

	 10.5	 ACI CRITERIA FOR NONSWAY VS. SWAY STRUCTURES

The discussion of Section 10.3 clearly shows important differences in the behavior 
of slender columns in nonsway (braced) structures and corresponding columns in 
sway (unbraced) structures. ACI Code provisions and Commentary guidelines for the 
approximate design of slender columns reflect this, and there are separate provisions 
in each relating to the important parameters in nonsway vs. sway structures, including 
moment magnification factors and effective length factors.

In practice, a structure is seldom either completely braced or completely 
unbraced. It is necessary, therefore, to determine in advance if bracing provided by 
shear walls, elevator and utility shafts, stairwells, or other elements is adequate to 
restrain the structure against significant sway effects. Both the ACI Code and Com-
mentary provide guidance.

As suggested in ACI Commentary 6.6.4.1, a compression member can be 
assumed braced if it is located in a story in which the bracing elements (shear walls, 
etc.) have a stiffness substantial enough to limit lateral deflection to the extent that 
the column strength is not substantially affected. Such a determination can often be 
made by inspection. If not, ACI Code 6.6.4.3 provides two alternate criteria for 
determining if columns and stories are treated as nonsway or sway.

To be considered as a nonsway or braced column, the first criterion requires that 
the increase in column end moments due to second-order effects not exceed 5 percent 
of the first-order end moments. The designer is free to select the method for such a 
determination.

As an alternative, ACI Code 6.6.4.3 allows a story to be considered nonsway 
when the stability index

	 Q =   ​​ 
ΣPu Δo

 _______ 
Vusℓc

 ​​ 	 (10.10)

for a story is not greater than 0.05, where ΣPu and Vus are the total factored vertical 
load and story shear, respectively, for the story; Δo is the first-order relative deflec-
tion between the top and the bottom of the story due to Vus; and ℓc is the length of the 
compressive member measured center to center of the joints in the frame. ACI Com-
mentary 6.6.4.3 provides the guidance that ΣPu should be based on the lateral loading 
that maximizes the value of ΣPu; the case of Vus = 0 is not included. In most cases, 
this calculation involves the combinations of load factors in Table 1.2 for wind, earth-
quake, or soil pressure (for example, 1.2D + 1.0W + 1.0L + 0.5Lr).

As shown in Refs. 10.3 and 10.4, for Q not greater than 0.6, the stability index 
closely approximates the ratio P∕Pc used in the calculation of the moment magnifi-
cation factor, so that 1∕(1  −  P∕Pc) can be replaced by 1∕(1  −  Q). Thus, for 
Q = 0.05, Mmax ≈ 1.05M0.†

† �The near equivalence of Q to P∕Pc for reinforced concrete columns can be demonstrated using a single sway column with ends fixed against 
rotation, as shown in Fig. 10.1e. For this column, Q = PuΔo∕Vusℓc. Since Vus∕Δo =  the lateral stiffness of the column = 12EI∕​ℓ​ c​ 

3​, the stability 
index can be expressed as Q = Pu∕(12EI∕​ℓ​ c​ 

2​). For an unsupported length of the column (the length used to calculate Pc) ℓu = 0.9ℓc and  
P = Pu, Q = Pu∕(9.72EI∕​ℓ​ u​ 

2​) compared to P∕Pc = Pu∕(π2EI∕​ℓ​ u​ 
2​) = Pu∕(9.87EI∕​ℓ​ u​ 

2​).
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The section properties of the frame members used to calculate Q need to account 
for the effects of axial loads, cracked regions along the length of the member, and the 
duration of the loads. ACI Code 6.6.3 provides useful guidance that is appropriate for 
first-order as well as second-order analysis. According to ACI Code 6.6.3.1, section 
properties may be represented using the modulus of elasticity Ec given in Eq. (2.3) 
and the following section properties:

Moments of inertia
Beams 0.35Ig

Columns 0.70Ig

Walls—uncracked 0.70Ig

     —cracked 0.35Ig

Flat plates and flat slabs 0.25Ig

Area 1.0Ag

where Ig and Ag are based on the gross concrete cross section, neglecting reinforcement. 
As discussed in Section 11.5, Ig for T beams can be closely approximated as 2 times 
Ig for the web. The reduced values of I given above take into account the effect of 
nonlinear material behavior on the effective stiffness of the members. Reference  10.3 
shows that these values for moments of inertia underestimate the true moments of 
inertia and conservatively overestimate second-order effects by 20 to 25 percent for 
reinforced concrete frames.

Based on work described in Refs. 10.5 and 10.6, ACI Code 6.6.3.1 indicates 
that the moments of inertia I of compression members and flexural members may 
also be computed using alternative expressions. For compression members,

	 I = ​( 0.80 + 25 ​ 
Ast ___ 
Ag

 ​ )​ ​( 1 − ​ 
Mu ____ 
Puh

 ​ − 0.5 ​ 
Pu ___ 
Po

 ​ )​ Ig ≤ 0.875Ig	 (10.11)

where Pu and Mu are based on the load combination under consideration, or the combi-
nation of Pu and Mu resulting in the smallest value of I. The value of I calculated using 
Eq. (10.11) need not be taken less than 0.35Ig.

For flexural members,

	 I = (0.10 + 25ρ) ​( 1.2 − 0.2 ​ 
bw ___ 
d
 ​ )​ Ig ≤ 0.5Ig	 (10.12)

The value of I calculated using Eq. (10.12) need not be taken less than 0.25Ig. For con-
tinuous flexural members, I may be taken as the average value of I calculated at crit-
ical positive and negative moment locations along the length of the beam. The Code 
requires that the member dimensions and reinforcement ratios used in Eqs. (10.11) 
and (10.12) be within 10 percent of the final values.

To account for the effects of creep on Δo in Eq. (10.10) when sustained lateral 
loads act, the moments of inertia for compression members must be divided by (1 + βds), 
where βds is the ratio of the maximum factored sustained shear within a story to the 
maximum factored shear in that story associated with the same load combination.

	 10.6	 ACI MOMENT MAGNIFIER METHOD FOR NONSWAY 
FRAMES

A slender reinforced concrete column reaches the limit of its strength when the com-
bination of P and M at the most highly stressed section causes that section to fail. In 
general, P is essentially constant along the length of the member. This means that the 
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column approaches failure when, at the most highly stressed section, the axial force P 
combines with a moment M = Mmax, as given by Eq. (10.8), so that this combination 
becomes equal to Pn and Mn, which will cause the section to fail. This is easily visual-
ized by means of Fig. 10.10.

For a column of given cross section, Fig.  10.10 presents a typical interaction 
diagram. For simplicity, suppose that the column is bent in single curvature with 
equal eccentricities at both ends. For this eccentricity, the strength of the cross section 
is given by point A on the interaction curve. If the column is stocky enough for the 
moment magnification to be negligibly small, then Pn,stocky at point A represents the  
member strength of the column under the simultaneous moment Mn,stocky = e0Pn,stocky.

On the other hand, if the same column is sufficiently slender, significant 
moment magnification will occur with increasing P. Then the moment at the most 
highly stressed section is Mmax, as given by Eq. (10.8), with Cm = 1 because of equal 
end eccentricities. The solid curve in Fig. 10.10 shows the nonlinear increase of Mmax 
as P increases. The point where this curve intersects the interaction curve, that is, 
point B, defines the member strength Pn,slender of the slender column, combined  
with the simultaneously applied end moments M0 = e0Pn,slender. If end moments are 
unequal, the factor Cm will be less than 1, as discussed in Section 10.3.

For slender column design, the axial load and end moments in a column are 
first determined using conventional frame analysis (see Chapter 11), typically using 
the section properties given in Section 10.5. The member is then designed for that 
axial load and a simultaneous magnified column moment.

For a nonsway frame, the ACI Code equation for magnified moment, acting 
with the factored axial load Pu, is written as

	 Mc = δ M2	 (10.13)

where the moment magnification factor is

	 δ = ​ 
Cm ____________  

1 − Pu∕0.75Pc

 ​ ≥ 1	 (10.14)

FIGURE 10.10
Effect of slenderness on 
carrying capacity.
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The 0.75 term in Eq. (10.14) is a stiffness reduction factor, designed to provide a 
conservative estimate of Pc. The critical load Pc, in accordance with Eq. (10.1), is 
given as

	 Pc = ​ 
π2(EI)eff

 _______ 
(kℓu)2

 ​	  (10.15)

where (EI)eff is defined later in this section and ℓu is defined as the unsupported length 
of the compression member. The value of k in Eq. (10.15) should be set equal to 1.0, 
unless calculated using the values of Ec and I given in Section 10.5 and procedures 
described later in this section.

In Eq. (10.14), the value of Cm is as previously given in Eq. (10.9):

	 Cm = 0.6 − 0.4 ​ 
M1 ___ 
M2

 ​ ≥ 0.4	 (10.9)

for columns braced against sidesway and without transverse loads between supports. 
Here M2 is the larger of the two end moments, and M1∕M2 is negative when the end 
moments produce single curvature and positive when they produce double curvature. 
The variation of Cm with M1∕M2 is shown in Fig. 10.11. Cm = 1.0 for columns with 
transverse loads applied between the supports. In Eq. (10.14), when the calculated 
value of δ is smaller than 1, it indicates that the larger of the two end moments, M2, is 
the largest moment in the column, a situation depicted in Fig. 10.7d.

In this way, the ACI Code provides for the capacity-reducing effects of slen-
derness in nonsway frames by means of the moment magnification factor δ. However, 
it is well known that for columns with no or very small applied moments, that is, 
axially or nearly axially loaded columns, increasing slenderness also reduces the 
column strength. For this situation, ACI Code 6.6.4.5 provides that the factored 
moment M2 in Eq. (10.13) not be taken less than

	 M2,min = Pu(0.6 + 0.03h)	 (10.16)

about each axis separately, where 0.6 and h are in inches. For members in which M2,min 
exceeds M2, the value of Cm in Eq. (10.9) is taken equal to 1.0 or is based on the ratio 
of the computed end moments M1 and M2.

The value of (EI)eff used in Eq. (10.15) to calculate Pc for an individual mem-
ber must be both accurate and reasonably conservative to account for the greater 
variability inherent in the properties of individual columns, as compared to the 

FIGURE 10.11
Values of Cm for slender 
columns in sway and 
nonsway frames.
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properties of the reinforced concrete frame, as a whole. The values of EI provided 
in Section  10.5 are adequate for general frame analysis but not for establishing Pc 
for individual columns.

In homogeneous elastic members, such as steel columns, EI is easily obtained 
from Young’s modulus and the usual moment of inertia. Reinforced concrete col-
umns, however, are nonhomogeneous, since they consist of both steel and concrete. 
Whereas steel is substantially elastic, concrete is not and is, in addition, subject to 
creep and to cracking if tension occurs on the convex side of the column. All these 
factors affect the effective value of EI for a reinforced concrete member. It is possi-
ble by computer methods to calculate fairly realistic effective section properties, 
taking account of these factors. Even these calculations are no more accurate than 
the assumptions on which they are based. On the basis of elaborate studies, both 
analytical and experimental (Ref. 10.7), the ACI Code requires that (EI)eff be deter-
mined using Eq. (10.11) or by either

	 (EI)eff = ​ 
0.2Ec Ig + Es Ise

  _____________  
1 + βdns

 ​	  (10.17)

or the simpler expression

	 (EI)eff = ​ 
0.4EcIg

 _______ 
1 + βdns

 ​	 (10.18)

where  Ec = modulus of elasticity of concrete, psi
	 	 Ig = moment of inertia of gross section of column, in4

	 	 Es = modulus of elasticity of steel = 29,000,000 psi
	 	 Ise = �moment of inertia of reinforcement about centroidal axis of member cross 

section, in4

	 	 βdns = �ratio of maximum factored sustained axial load to maximum factored 
axial load associated with same load combination (this definition differs 
from that used in Section 10.5 to calculate Δo)

The factor βdns approximately accounts for the effects of creep. That is, the larger 
the sustained loads, the larger are the creep deformations and corresponding curvatures. 
Consequently, the larger the sustained loads relative to the temporary loads, the smaller 
the effective rigidity, as correctly reflected in Eqs. (10.17) and (10.18). Because, of 
the two materials, only concrete is subject to creep, and reinforcing steel as ordinarily 
used is not, the argument can be made that the creep parameter 1  +  βdns should be 
applied only to the term 0.2EcIg in Eq. (10.17). However, as explained in ACI Com-
mentary 6.6.4.4, the creep parameter is applied to both terms because of the potential 
for premature yielding of steel in columns under sustained loading.

Both Eqs. (10.17) and (10.18) are conservative lower limits for large numbers 
of actual members (Ref. 10.3). The simpler but more conservative Eq. (10.18) is not 
unreasonable for lightly reinforced members, but it greatly underestimates the effect 
of reinforcement for more heavily reinforced members, that is, for the range of higher 
ρg values. Equation (10.17) is more reliable for the entire range of ρg and definitely 
preferable for medium and high ρg values (Ref. 10.8).

An accurate determination of the effective length factor k is essential in connection 
with Eqs. (10.13) and (10.15). In Section 10.2, it was shown that, for frames braced 
against sidesway (nonsway frames), k varies from ​ 1 _ 2 ​ to 1, whereas for laterally unbraced 
frames (sway frames), it varies from 1 to ∞, depending on the degree of rotational 
restraint at both ends. This was illustrated in Fig. 10.1. For frames, it is seen that this 
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degree of rotational restraint depends on whether the stiffnesses of the beams framing 
into the column at top and bottom are large or small compared with the stiffness of the 
column itself. An approximate but generally satisfactory way of determining k is by 
means of alignment charts based on isolating the given column plus all members fram-
ing into it at top and bottom, as shown in Fig. 10.12. The degree of end restraint at each 
end is ψ = Σ(EI∕ℓc of columns) ÷ Σ(EI∕ℓ of floor members). Only floor members that 
are in a plane at either end of the column are to be included. The value of k can be read 
directly from the chart of Fig. 10.13, as illustrated by the dashed lines.†

It is seen that k must be known before a column in a frame can be dimensioned. 
Yet k depends on the stiffness EI∕ℓ of the members to be dimensioned, as well as 
on that of the abutting members. Thus, the dimensioning process necessarily involves 
iteration; that is, one assumes member sizes, calculates member stiffnesses and cor-
responding k values, and then calculates the critical buckling load and more accurate 
member sizes on the basis of these k values until assumed and final member sizes 
coincide or are satisfactorily close. The stiffness EI∕ℓ should be calculated based on 
the values of Ec and I given in Section 10.5, and the span lengths of the members 
ℓc and ℓ should be measured center to center of the joints.

An outline of the separate steps in the analysis∕design procedure for nonsway 
stories or frames follows along these lines:

	 1.	 Select a trial column section to carry the factored axial load Pu and moment 
Mu  =  M2 from the elastic first-order frame analysis, assuming short column 
behavior and following the procedures of Chapter 9.

	 2.	 Determine if the frame should be considered as nonsway or sway, using the crite-
ria of Section 10.5.

	 3.	 Find the unsupported length ℓu.
	 4.	 For the trial column, check for consideration of slenderness effects, using the 

criteria of Section 10.4 with k = 1.0.
	 5.	 If slenderness is tentatively found to be important, refine the calculation of k based 

on the alignment chart in Fig. 10.13a, with member stiffnesses EI∕ℓ (Section 10.5)  

† �Equations for the determination of effective length factors k, more convenient than charts for developing computer solutions, are presented in 
Refs. 10.9 through 10.12. The expressions in Ref. 10.12 are the most accurate.

FIGURE 10.12
Section of rigid frame 
including column to be 
designed.

A

Column being
designed

B
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and rotational restraint factors ψ based on trial member sizes. Recheck against the 
slenderness criteria.

	 6.	 If moments from the frame analysis are small, check to determine if the minimum 
moment from Eq. (10.16) controls.

	 7.	 Calculate the equivalent uniform moment factor Cm from Eq. (10.9).
	 8.	 Calculate βdns, EI from Eq. (10.17) or (10.18), and Pc from Eq. (10.15) for the trial 

column.
	 9.	 Calculate the moment magnification factor δ from Eq. (10.14) and magnified 

moment Mc from Eq. (10.13).
	10.	 Check the adequacy of the column to resist axial load and magnified moment, 

using the column design charts of Appendix A in the usual way. Revise the col-
umn section and reinforcement if necessary.

	11.	 If column dimensions are altered, repeat the calculations for k, ψ, and Pc based 
on the new cross section. Determine the revised moment magnification factor and 
check the adequacy of the new design.

FIGURE 10.13
Alignment charts for effective length factors k.
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EXAMPLE 10.1  Design of a slender column in a nonsway frame.  Figure 10.14 shows an elevation view 
of a multistory concrete frame building, with 48 in. wide × 12 in. deep beams on all column 
lines, carrying two-way slab floors and roof. The clear height of the columns is 13 ft. Interior 
columns are tentatively dimensioned at 18 × 18 in., and exterior columns at 16 × 16 in. The 
frame is effectively braced against sway by stair and elevator shafts having concrete walls 
that are monolithic with the floors, located in the building corners (not shown in the figure). 
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FIGURE 10.14
Concrete building frame for 
Example 10.1.
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The  structure will be subjected to vertical dead and live loads. Trial calculations by first- 
order analysis indicate that the pattern of live loading shown in Fig.  10.14, with full load 
distribution on roof and upper floors and a checkerboard pattern adjacent to column C3, 
produces maximum moments with single curvature in that column, at nearly maximum axial 
load. Dead loads act on all spans. Service load values of dead and live load axial force and 
moments for the typical interior column C3 are as follows:

Dead load Live load
P = 230 kips P = 173 kips
M2 = 2 ft-kips M2 = 108 ft-kips
M1 = −2 ft-kips M1 = 100 ft-kips

The column is subjected to double curvature under dead load alone and single curvature under 
live load.

Design column C3, using the ACI moment magnifier method. Use ​​f​c​ ′​​ = 4000 psi and 
fy = 60,000 psi.

Solution.  The column will first be designed as a short column, assuming no slenderness 
effect. With the application of the usual load factors,

 Pu = 1.2 × 230 + 1.6 × 173 = 553 kips

Mu = 1.2 × 2 + 1.6 × 108 = 175 ft-kips

For an 18 × 18 in. column, with the 1.5 in. clear to the outside steel, No. 3 (No. 10) stirrups, and 
(assumed) No. 10 (No. 32) longitudinal steel:

γ = (18.00 − 2 × 1.50 − 2 × 0.38 − 1.27)∕18 = 0.72

Graph A.6 for γ = 0.70, with bars arranged around the column perimeter, will be used. Then

​ 
Pu
 ______ 

ϕ​f​c​ ′​ Ag

 ​ = ​  553 _____________  
0.65 × 4 × 324

 ​ = 0.656

​ 
Mu
 _______ 

ϕ​f​c​ ′​ Agh
 ​ = ​  175 × 12  __________________  

0.65 × 4 × 324 × 18
 ​ = 0.138

and from the graph ρg = 0.02. This is low enough that an increase in steel area could be made, 
if necessary, to allow for slenderness, and the 18 × 18 in. concrete dimensions will be retained.
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For an initial check on slenderness, an effective length factor k = 1.0 will be used. Then

​ 
kℓu ___ r ​  = ​ 1.0 × 13 × 12  ____________  

0.3 × 18
 ​  = 28.9

For a braced frame, the upper limit for short column behavior is

34 + 12 ​ 
M1 ___ 
M2

 ​ = 34 + 12​( − ​ 
1.2 × (−2) + 1.6 × 100

   ____________________   
1.2 × 2 + 1.6 × 108

 ​  )​ = 23.2

The calculated value of 28.9 exceeds this, so slenderness must be considered in the design. A 
more refined calculation of the effective length factor k is thus called for.

Because Ec is the same for column and beams, it will be canceled in the stiffness calcula-
tions. For this step, the column moment of inertia will be taken as 0.7Ig = 0.7 × 18 × 183∕12 =  
6124 in4, giving I∕ℓc = 6124∕(14 × 12) = 36.5 in3. For the beams, the moment of inertia will 
be taken as 0.35Ig, where Ig is taken as 2 times the gross moment of inertia of the web. Thus,  
0.35Ig = 0.35 × 2 × 48 × 123∕12 = 4838 in4 and I∕ℓ = 4838∕(24 × 12) = 16.8 in3. Rotational 
restraint factors at the top and bottom of column C3 are the same and are

ψa = ψb = ​ 36.5 + 36.5  __________  
16.8 + 16.8

 ​ = 2.17

From Fig. 10.13a for the braced frame, the value of k is 0.87, rather than 1.0 as used 
previously. Consequently,

​ 
kℓu ___ r ​  = ​ 0.87 × 13 × 12  _____________  

0.3 × 18
 ​  = 25.1

This is still above the limit value of 23.3, confirming that slenderness must be considered.
A check will now be made of minimum moment. According to Eq. (10.16), M2,min  =   

Pu (0.6 + 0.03h) = 553 × (0.6 + 0.03 × 18)∕12 = 53 ft-kips. It is seen that this does not control.
The coefficient Cm can now be found from Eq. (10.9) with M1 = 1.2 × (−2) + 1.6 × 100 =  

158 ft-kips and M2 = 1.2 × 2 + 1.6 × 108 = 175 ft-kips:

Cm = 0.6 − 0.4 ​ 
M1 ___ 
M2

 ​ = 0.6 − 0.4 ​( − ​ 158 ____ 
175

 ​ )​ = 0.96

Next the factor βdns will be found based on the ratio of the maximum factored axial sustained 
load (the factored dead load in this case) to the maximum factored axial load:

βdns = ​  1.2 × 230  ___________________   
1.2 × 230 + 1.6 × 173

 ​ = 0.50

For a relatively low reinforcement ratio, one estimated to be in the range of 0.02 to 
0.03, the more approximate Eq. (10.18) for EI will be used, and

(EI)eff = ​ 
0.4Ec Ig

 _______ 
1 + βdns

 ​ = ​ 
0.4 × 3.60 × 106 × 18 × 183∕12

   ___________________________  
1 + 0.50

 ​  = 8.40 × 109 in2-lb

The critical buckling load is found from Eq. (10.15) to be

Pc = ​ 
π2 (EI)eff

 ________ 
(kℓu)2

 ​  = ​  π2 × 8.40 × 109
  _______________  

(0.87 × 13 × 12)2
 ​ = 4.50 × 106 lb

The moment magnification factor can now be found from Eq. (10.14).

δ = ​ 
Cm ____________  

1 − Pu∕0.75Pc

 ​ = ​  0.96  ____________________   
1 − 553∕(0.75 × 4500)

 ​ = 1.15

Thus, the required axial strength of the column is Pu  =  553 kips (as before), while the 
magnified design moment is Mc = δM2 = 1.15 × 175 = 201 ft-kips. As described in Section 10.4, 
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	 10.7	 ACI MOMENT MAGNIFIER METHOD FOR SWAY FRAMES

The important differences in behavior between columns braced against sidesway and 
columns for which sidesway is possible were discussed in Sections 10.2 and 10.3. 
The critical load for a column Pc depends on the effective length kℓu, and although the 
effective length factor k falls between 0.5 and 1.0 for braced columns, it is between 
1.0 and ∞ for columns that are unbraced (see Figs. 10.1 and 10.13). Consequently, an 
unbraced column will buckle at a much smaller load than will a braced column that is 
otherwise identical.

Columns subject to sidesway do not normally stand alone but are part of a 
structural system including floors and roof. A floor or roof is normally very stiff in 
its own plane. Consequently, all columns at a given story level in a structure are 
subject to essentially identical sway displacements; that is, sidesway of a particular 
story can occur only by simultaneous lateral motion of all columns of that story. 
Clearly, all columns at a given level must be considered together in evaluating slen-
derness effects relating to sidesway.

ACI Code 6.2.6 limits the magnified moment to 1.4 times the moment due to first-order effects. 
This limitation is clearly satisfied. With reference again to the column design chart A.6 with

 ​​ 
Pu
 ______ 

ϕ ​f​c​ ′​Ag

 ​​ = ​  553 _____________  
0.65 × 4 × 324

 ​ = 0.656

​​ 
Mu
 ______ 

ϕ ​f​c​ ′​Agh
 ​​ = ​  201 × 12  __________________  

0.65 × 4 × 324 × 18
 ​ = 0.159

it is seen that the required reinforcement ratio is increased from 0.020 to 0.026 because of slen-
derness. The steel area now required is

Ast = 0.026 × 324 = 8.42 in2

which can be provided using four No. 10 (No. 32) and four No. 9 (No. 29) bars (Ast = 9.08 in2), 
arranged as shown in Fig. 10.15. No. 3 (No. 10) ties will be used at a spacing not to exceed the 
least dimension of the column (18 in.), 48 tie diameters (18 in.), or 16 bar diameters (18 in.). 
Single ties at 18 in. spacing, as shown in the figure, will meet requirements of the ACI Code.

Further refinements in the design could, of course, be made by recalculating the criti-
cal buckling load using Eq. (10.17). This extra step is not justified here because the column 
slenderness is barely above the upper limit for short column behavior and the moment mag-
nification is not great.

FIGURE 10.15
Cross section of column C3, 
Example 10.1.
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On the other hand, it is also possible for a single column in a sway frame to 
buckle individually under gravity loads, the ends of the column being held against 
relative lateral movement by other, stiffer columns at the same floor level. This pos-
sibility, resulting in magnification of nonsway moments due to gravity loads, must 
also be considered in the analysis and design of slender columns in unbraced frames.

The ACI moment magnifier approach can still be used for frames subject to 
sidesway, but it is necessary, according to ACI Code 6.6.4.6, to separate the loads 
acting on a structure into two categories: loads that result in no appreciable sidesway 
and loads that result in appreciable sidesway. Clearly two separate frame analyses 
are required, one for loads of each type. In general, gravity loads acting on reason-
ably symmetrical frames produce little sway, and the effects of gravity load may 
therefore be placed in the first category. This is confirmed by tests and analyses in 
Ref. 10.13 that show that the sway magnification of gravity moments by the sway 
multiplier is unwarranted.

The maximum magnified moments caused by sway loading occur at the ends 
of the column, but those due to gravity loads may occur somewhere in the midheight 
of the column, the exact location of the latter varying depending on the end moments. 
Because magnified gravity moments and magnified sway moments do not occur at 
the same location, the argument can be made that, in most cases, no magnification 
should be applied to the nonsway moments when sway moments are considered; that 
is, it is unlikely that the actual maximum moment will exceed the sum of the non-
magnified gravity moment and the magnified sway moment. Consequently, for cases 
involving sidesway, Eq. (10.13) is replaced by

	 M1 = M1ns + δs M1s	 (10.19)

	 M2 = M2ns + δs M2s	 (10.20)

where  M1 = smaller factored end moment on compression member
M2 = larger factored end moment on compression member

M1ns = �factored end moment on compression member at end at which M1 acts, 
due to loads that cause no appreciable sidesway, calculated using a 
first-order elastic frame analysis

M2ns = �factored end moment on compression member at end at which M2 acts, 
due to loads that cause no appreciable sidesway, calculated using a first- 
order elastic frame analysis

M1s = �factored end moment on compression member at end at which M1 acts, 
due to loads that cause appreciable sidesway, calculated using a first-
order elastic frame analysis

M2s = �factored end moment on compression member at end at which M2 acts, 
due to loads that cause appreciable sidesway, calculated using a first-
order elastic frame analysis

δs = �moment magnification factor for frames not braced against sidesway, to 
reflect lateral drift resulting from lateral (and sometimes gravity) loads

ACI Code 6.6.4.6 provides two alternate methods for calculating the moment 
magnification factor for frames not braced against sidesway δs.

With the first alternative, the moment magnification factor is calculated as

	 δs = ​  1 ______ 
1 − Q

 ​ ≥ 1	 (10.21)

where Q is the stability index calculated using Eq. (10.10). The ACI Code limits 
application of Eq. (10.21) to values of δs = 1∕(1 − Q) ≤ 1.5. An elastic second-order 
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analysis, as described in ACI Code 6.7, or the second alternative described in ACI 
Code 6.6.4.6 must be used for higher values of δs.

For the second alternative, the moment magnification factor is calculated as

	 δs = ​  1 ________________  
1 − ΣPu∕0.75 ΣPc

 ​ ≥ 1	 (10.22)

in which ΣPu is the total axial load on all columns and ΣPc is the total critical buck-
ling load for all columns in the story under consideration. As with Eq. (10.14), the 
0.75 factor in Eq. (10.22) is a stiffness reduction factor to provide a conservative esti-
mate of the critical buckling loads Pc. The individual values of Pc are calculated using 
Eq. (10.15) with effective length factors k for unbraced frames (Fig. 10.13b) and val-
ues of EI from Eq. (10.17) or (10.18).

When calculating δs, the factor βds is defined differently than βdns is for nonsway 
frames. As described earlier, in Section 10.5, βds is the ratio of the maximum factored 
sustained shear within a story to the maximum factored shear in that story. Thus, 
for most applications, βds = 0 for the purpose of calculating δs. In unusual situations, 
βds ≠ 0 will occur, such as a building located on a sloping site that is subjected to 
soil pressure on a single side (Refs. 10.14 and 10.15).

The sequence of design steps for slender columns in sway frames is similar to 
that outlined in Section 10.6 for nonsway frames, except for the requirement that loads 
be separated into gravity loads, which are assumed to produce no sway, and horizon-
tal loads producing sway. Separate frame analyses are required, and different equiv-
alent length factors k and creep coefficients βdns and βds must be applied. Note that 
according to ACI Code 5.3.1 (see also Table 1.2), if wind effects W are included in 
the design, four possible factored load combinations are to be applied:

U = 1.2D + 1.6L

U = 1.2D + 1.6 (Lr or S or R) + 0.5W

U = 1.2D + 1.0W + 1.0L + 0.5 (Lr or S or R)

U = 0.9D + 1.0W

Similar provisions are included for cases where earthquake loads are to be considered. 
This represents a significant complication in the sway frame analysis; however, the 
factored loads can be separated into gravity effects and sway effects, as required, and 
a separate analysis can be performed for each.

It is important to realize that, for sway frames, the beams must be designed for 
the total magnified end moments of the compression members at the joint. Even 
though the columns may be very rigid, if plastic hinges were to form in the restrain-
ing beams adjacent to the joints, the effective column length would be greatly 
increased and the critical column load much reduced.

The choice of which of the methods to use for calculating δs depends upon the 
desired level of accuracy and the available analytical tools.

Second-order analysis (discussed in greater detail in Section 10.8) provides the 
most accurate estimate of the magnified sway moments but requires more sophisti-
cated techniques. The extra effort required for second-order analysis, however, usually 
produces a superior design. The first alternative, Eq. (10.21), will in most cases be 
the easiest to apply, since matrix analysis is used for virtually all frames to determine 
member forces under gravity and lateral loading. Such an analysis automatically gen-
erates the value of Δo, the first-order relative deflection within a story, allowing Q to 
be calculated for each story within a structure. The second alternative, Eq. (10.22), 
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is retained with minor modifications from previous versions of the ACI Code. As will 
be demonstrated in the following example, calculations using Eq. (10.22) are more 
tedious than those needed for Eq. (10.21) but do not require knowledge of Δo. Appli-
cation of Eq. (10.21) is limited by the Code to values of δs  ≤  1.5. For δs  >  1.5, 
application of Eq. (10.22) is mandatory if a second-order analysis is not used.

EXAMPLE 10.2  Design of a slender column in a sway frame.  Consider now that the concrete building frame 
of Example 10.1 acts as a sway frame, without the stairwells or elevator shafts described earlier. 
An initial evaluation is carried out using the member dimensions and reinforcement given in 
Example 10.1. The reinforcement for the interior 18  ×  18 in. columns, shown in Fig.  10.15, 
consists of four No. 10 (No. 32) bars at the corners and four No. 9 (No. 29) bars at the center 
of each side. Reinforcement for the exterior 16 × 16 in. columns consists of eight No. 8 (No. 25) 
bars distributed in a manner similar to that shown for the longitudinal reinforcement in 
Fig. 10.15. The building will be subjected to gravity dead and live loads and horizontal wind 
loads. Elastic first-order analysis of the frame at service loads (all load factors = 1.0) using the 
values of E and I defined in Section 10.5 gives the following results at the third story:

Cols. A3 and F3 Cols. B3 and E3 Cols. C3 and D3
Pdead 115 kips 230 kips 230 kips
Plive 90 kips 173 kips 173 kips
Pwind ± 48 kips ± 29 kips ± 10 kips
Vwind 9 kips 18 kips 18 kips
M2,dead 2 ft-kips
M2,live 108 ft-kips
M2,wind ± 126 ft-kips
M1,dead −2 ft-kips
M1,live 100 ft-kips
M1,wind ± 112 ft-kips

To simplify the analysis in this example, roof loads will not be considered. The relative lateral 
deflection for the third story under total wind shear Vwind = 90 kips is 1.25 in.

Column C3 is to be designed for the critical loading condition, using ​​f​c​ ′​​ = 4000 psi 
and fy = 60,000 psi as before.

Solution.  The column size and reinforcement must satisfy requirements for each of the 
four load conditions noted above.

Initially, a check is made to see if a sway frame analysis is required. The factored shear 
Vus  =  Vwind  =  90 kips. The corresponding deflection Δo  =  1.25 in. The total factored axial 
force on the story is obtained using the load table.

Columns A3 and F3:            Pu = 1.2 × 115 + 1.0 × 90 = 228 kips

Columns B3, C3, D3, and E3:     Pu = 1.2 × 230 + 1.0 × 173 = 449 kips

Note that in this case the values of Pwind in the columns are not considered since they cancel out 
for the floor as a whole, that is, ΣPwind = 0. Thus, ΣPu = 2 × 228 + 4 × 449 = 2252 kips, and 
the stability index is

Q = ​​ 
ΣPuΔo

 ______ 
Vusℓc

 ​​  = ​​ 2252 × 1.25  ____________  
90 × 14 × 12

 ​​ = 0.19

Since Q > 0.05, sway frame analysis is required for this story.
	(a)	 Gravity loads only. All columns in sway frames must first be considered as braced col-

umns under gravity loads acting alone, that is, for U = 1.2D + 1.6L. This check has already 
been made for column C3 in Example 10.1.
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	(b)	 Gravity plus wind loads. Three additional load combinations must be considered when 
wind effects are included: U = 1.2D + 1.6(Lr or S or R) + 0.5W, U = 1.2D + 1.0W +   
1.0L + 0.5(Lr or S or R), and U = 0.9D + 1.0W. By inspection, the second combination 
will control for this case, and the others will not be considered further. From Example 10.1, 
ψa = ψb = 2.17. With reference to the alignment chart in Fig. 10.13b, the effective length 
factor for an unbraced frame k = 1.64 and

​​ 
kℓu

 ___ r ​​  = ​​ 1.64 × 13 × 12  _____________  
0.3 × 18

 ​​  = 47.4

This is much above the limit value of 22 for short column behavior in an unbraced frame. 
(This should be no surprise since kℓu∕r = 25.1 for column C3 in the braced condition.) For 
sway frame analysis, the loads must be separated into gravity loads and sway loads, and the 
appropriate magnification factor must be computed and applied to the sway moments. The 
factored end moments resulting from the nonsway loads on column C3 are

M1ns = 1.2 × (−2) + 1.0 × 100 = 98 ft-kips

M2ns = 1.2 × 2 + 1.0 × 108 = 110 ft-kips

The sway effects will amplify the moments:

M1s = −112 ft-kips

M2s = 126 ft-kips

For the purposes of comparison, the magnified sway moments will be calculated based on 
both Q [Eq. (10.21)] and ΣPu∕ΣPc [Eq. (10.22)].

Using Eq. (10.21),

δs = ​​  1 ______ 
1 − Q

 ​​ = ​​  1 ________ 
1 − 0.19

 ​​ = 1.23

giving

δsM1s = 1.23 × (−112) = −138 ft-kips

δsM2s = 1.23 × 126 = 155 ft-kips

To use Eq. (10.22), the critical loads must be calculated for each of the columns 
as follows. For columns A3 and F3,

Columns:  I = 0.7Ig = 0.7 × 16 × 163∕12 = 3823 in4

     and    I∕ℓc = 3823∕(14 × 12) = 22.8 in3

Beams:    I = 4838 in4     and     I∕ℓc = 16.8 in3

Rotational restraint factors for this case, with two columns and one beam framing 
into the joint, are

ψa = ψb = ​​ 22.8 + 22.8  __________ 
16.8

 ​​  = 2.71

which, with reference to the alignment chart for unbraced frames, gives k = 1.77. For wind 
load, βds = 0. Since reinforcement has been initially selected for one column, EI will be 
calculated using Eq. (10.17).

(EI )eff = 0.2EcIg + EsIse = 0.2 × 3.6 × 106 × 16 × 163∕12 + 29 × 106 × 6 × 0.79 × 5.62

= 8.24 × 109 in2-lb

Then the critical load is

Pc = ​​ 
π2 (EI )eff

 _______ 
(kℓu)2

 ​​  = ​​  π2 × 8.24 × 109
  _______________  

(1.77 × 13 × 12)2
 ​​ = 1.07 × 106 lb
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For columns B3, C3, D3, and E3, from earlier calculations for column C3, k = 1.64 for the 
sway loading case. For these columns,

(EI )eff = 0.2 × 3.6 × 106 × 18 × 183∕12 + 29 × 106 (4 × 1.27 × 6.42 + 2 × 1.0 × 6.52)

= 14.8 × 109 in2-lb

Pc = ​​  π2 × 14.8 × 109
  _______________  

(1.64 × 13 × 12)2
 ​​ = 2.23 × 106 lb

Thus, for all the columns at this level of the structure,

ΣPc = 2 × 1070 + 4 × 2230 = 11,060 kips

The sway moment magnification factor is

δs = ​​  1 _______________  
1 − ΣPu∕0.75ΣPc

 ​​ = ​​  1  ______________________   
1 − 2252∕(0.75 × 11,060)

 ​​ = 1.37

and the magnified sway moments for the top and bottom of column C3 are

δsM1s = 1.37 × (−112) = −153 ft-kips

δsM2s = 1.37 × 126 = 173 ft-kips

The values of δsMs are higher based on ΣPu∕ΣPc than they are based on Q (173 ft-kips 
vs. 155 ft-kips for δsM2s), emphasizing the conservative nature of the moment magnifier 
approach based on Eq. (10.22). The design will proceed using the less conservative value 
of δsMs.

The total magnified moments are

M1 = 98 − 138 = −40 ft-kips

  M2 = 110 + 155 = 265 ft-kips

The values do not exceed the upper limit of 1.4 times the moments due to first-order effects 
and will now be combined with factored axial load Pu = 459 kips (now including Pwind).  
In reference to Graph A.6 with column parameters

​​ 
Pu
 ______ 

ϕ ​f​c​ ′ ​Ag

 ​​ = ​​  459 _____________  
0.65 × 4 × 324

 ​​ = 0.545

​​ 
Mu
 _______ 

ϕ ​f​c​ ′​ Agh
 ​​ = ​​  265 × 12  __________________  

0.65 × 4 × 324 × 18
 ​​ = 0.211

it is seen that ρg = 0.038. This is considerably higher than the value of 0.026 required  
for column C3 in a braced frame. The required steel area of

Ast = 0.038 × 324 = 12.31 in2

will be provided using eight No. 11 (No. 36) bars (Ast = 12.48  in2), arranged as shown 
in Fig. 10.16. Spacing of No. 4 (No. 13) ties must not exceed the least dimension of the 
column, 48 tie diameters, or 16 main bar diameters. The first criterion controls, and No. 4 
(No. 13) ties at 18 in. spacing will be used in the pattern shown in Fig. 10.16.
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	 10.8	 SECOND-ORDER ANALYSIS FOR SLENDERNESS EFFECTS

It may be evident from the preceding examples that although the ACI moment mag-
nifier method works well enough for nonsway frames, its application to sway frames 
is complicated, with many opportunities for error, especially when Eq. (10.22) is used 
to calculate δs.

With the universal availability of computers in design offices, and because of 
the complexity of the moment magnifier method, it is advantageous to apply rational 
second-order frame analysis, or P-Δ analysis, in which the effects of lateral deflec-
tion on moments, axial forces, and, in turn, lateral deflections are computed directly. 
The resulting moments and deflections include the effects of slenderness, and so the 
problem is strictly nonlinear, whether the model used for the analysis is elastic (ACI 
Code 6.7) or inelastic (ACI Code 6.8).

Elastic second-order analysis in accordance with ACI Code 6.7 must consider the 
effects of axial loads, cracked regions within the members, and load duration, and 
although elastic models are simpler to implement than nonlinear models, as pointed out 
in Ref. 10.16, the key requirement for EI values for second-order frame analysis, whether 
elastic or inelastic, is that they be representative of member stiffness just prior to failure. 
The values of E and I in Section 10.5, which are taken from ACI Code 6.6.3.1, meet 
that requirement and include a stiffness reduction factor of 0.875 (Ref. 10.16).  
The value of the stiffness reduction factor and the moments of inertia in Section 10.5 
are higher than the factor 0.75 in Eqs. (10.14) and (10.21) and the effective values of 
I in Eqs. (10.17) and (10.18), respectively, because of the inherently lower variability 
in the total stiffness of a frame compared to that of an individual member.

Inelastic second-order analysis in accordance with ACI Code 6.8 must account 
for the effects of material nonlinearity, load duration, shrinkage, and creep, as well as 
“satisfy equilibrium in the deformed configuration.” ACI Code 6.8 requires that the 
second-order analysis procedure provide strength and deformation predictions that are 
in “substantial agreement” with physical tests of reinforced concrete components or 
structural systems that exhibit responses that are consistent with those expected in  
the structure under design. ACI Commentary 6.8 suggests that a prediction within 
15 percent of the test results is satisfactory. 

As pointed out in Section 10.5, the member dimensions used in any second- 
order analysis must be within 10 percent of the final dimensions. Otherwise, the 
frame must be reanalyzed.

A rational second-order analysis gives a better approximation of actual moments 
and forces than the moment magnifier method. Differences are particularly signifi-
cant for irregular frames, frames subject to significant sway forces, and for lightly 
braced frames. There may be important economies in the resulting design.

FIGURE 10.16
Cross section of column C3, 
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Practical methods for performing a full second-order analysis are described in 
the literature (Refs. 10.3 and 10.17 through 10.20, to name a few), and general-purpose 
programs that perform a full nonlinear analysis including sway effects are commer-
cially available. Linear first-order analysis programs are also available, but must 
include an iterative approach to produce acceptable results. This iterative approach 
can be summarized as follows.

Figure 10.17a shows a simple frame subject to lateral loads H and vertical 
loads P. The lateral deflection Δ is calculated by ordinary first-order analysis. As 
the frame is displaced laterally, the column end moments must equilibrate the lateral 
loads and a moment equal to (ΣP)Δ:

	 Σ (Mtop + Mbot) = Hℓc + ΣPΔ	 (10.23)

where Δ is the lateral deflection of the top of the frame with respect to the bottom, 
and ΣP is the sum of the vertical forces acting. The moment ΣPΔ in a given story can 
be represented by equivalent shear forces (ΣP)Δ∕ℓc, where ℓc is the story height, as 
shown in Fig. 10.17b. These shears give an overturning moment equal to that of the 
loads P acting at a displacement Δ.

Figure 10.17c shows the story shears acting in a three-story frame. The alge-
braic sum of the story shears from the columns above and below a given floor 

FIGURE 10.17
Basis for iterative P-Δ analysis: (a) vertical and lateral loads on rectangular frame; (b) real lateral forces H and fictitious sway forces dH; 
and (c) three-story frame subject to sway forces. (Adapted from Ref. 10.17.)
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corresponds in effect to a sway force dH acting on that floor. For example, at the 
second floor the sway force is

	 dH2 = ​​ 
ΣP1 Δ1 ______ 

ℓ1
 ​​  − ​​ 

ΣP2 Δ2 ______ 
ℓ2

 ​​ 	 (10.24)

The sway forces must be added to the applied lateral force H at any story level, and 
the structure is then reanalyzed, giving new deflections and increased moments. If the  
lateral deflections increase significantly (say more than 5 percent), new dH sway  
forces are computed, and the structure is reanalyzed for the sum of the applied lateral 
forces and the new sway forces. Iteration is continued until changes are insignificant. 
Generally one or two cycles of iteration are adequate for structures of reasonable lat-
eral stiffness (Ref. 10.3).

It is noted in Ref. 10.17 that a correction must be made in the analysis to 
account for the differences in shape between the PΔ moment diagram that has the 
same shape as the deflected column and the moment diagram associated with  
the PΔ∕ℓ forces, which is linear between the joints at the column ends. The area of 
the actual PΔ moment diagram is larger than the linear equivalent representation, 
and consequently lateral deflections will be larger. The difference will vary depend-
ing on the relative stiffnesses of the column and the beams framing into the joints. 
In Ref. 10.17, it is suggested that the increased deflection can be accounted for by 
taking the sway forces dH as 15 percent greater than the calculated value for each 
iteration. Iteration and the 15  percent increase in deflection are not required if the 
program performs a full nonlinear geometric analysis, since the PΔ moments are 
calculated in full.

The accuracy of the results of a P-Δ analysis will be strongly influenced by 
the values of member stiffness used, by foundation rotations, if any, and by the 
effects of concrete creep. In connection with creep effects, lateral loads causing 
significant sway are usually wind or earthquake loads of short duration, so creep 
effects are minimal. In general, the use of sway frames to resist sustained lateral 
loads, for example, from earth or liquid pressures, is not recommended, and it would 
be preferable to include shear walls or other elements to resist these loads.
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Problems
	10.1.	 The 15 × 15 in. column shown in Fig. P10.1 must extend from footing level 

to the second floor of a braced frame structure with an unsupported length of 
20.5  ft. Exterior exposure requires 2 in. clear cover for the outermost steel. 
Analysis indicates that the critical loading corresponds with the following 
service loads: (a) from dead loads, P  =  180 kips, Mtop  =  30 ft-kips, 
Mbot  =  15  ft-kips; (b) from live loads, P  =  110 kips, Mtop  =  60 ft-kips, 
Mbot  =  30 ft-kips, with the column bent in double curvature as shown. The 
effective length factor k determined using Fig. 10.13a is 0.90. Material strengths 
are ​​f​c​ ′​​ = 4000 psi and fy  =  60,000 psi. Using the ACI moment magnifier 
method, determine whether the column is adequate to resist these loads.

FIGURE P10.1
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	10.2.	 The structure shown in Fig. P10.2a requires tall slender columns at the left 
side. It is fully braced by shear walls on the right. All columns are 16 × 16 in., 
as shown in Fig. P10.2b, and all beams are 24 × 18 in. with 6 in. monolithic 
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floor slab, as in Fig. P10.2c. Trial calculations call for column reinforcement 
as shown. Alternate load analysis indicates the critical condition with column 
AB bent in single curvature, and service loads and moments as follows: from 
dead loads, P = 139 kips, Mtop = 61 ft-kips, Mbot = 41 ft-kips; from live load, 
P  =  93  kips, Mtop  =  41 ft-kips, Mbot  =  27 ft-kips. Material strengths are ​​
f​c​ ′​​  =  4000 psi and fy  =  60,000 psi. Is the proposed column, reinforced as 
shown, satisfactory for this load condition? Use Eq.  (10.18) to calculate EI 
for the column.

FIGURE 10.2
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	10.3.	 Refine the calculations of Problem 10.2, using Eq. (10.17) to calculate EI for 
the column. The reinforcement will be as given in Problem 10.2. Comment 
on your results.

	10.4.	 An interior column in a braced frame has an unsupported length of 20 ft and 
carries the following service load forces and moments: (a) from dead loads, 
P  =  180 kips, Mtop  =  28 ft-kips, Mbot  =  –28 ft-kips; (b) from live loads, 
P = 220 kips, Mtop = 112 ft-kips, Mbot = 112 ft-kips, with the signs of the 
moments representing double curvature under dead load and single curvature 
under live load. Rotational restraint factors at the top and bottom may be 
taken equal to 1.0. Design a square tied column to resist these loads, with a 
reinforcement ratio of about 0.02. Use ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

	10.5.	 The first three floors of a multistory building are shown in Fig. P10.5. The 
lateral load resisting frame consists of 20 × 20 in. exterior columns, 24 × 24 in. 
interior columns, and 36 in. wide × 24 in. deep girders. The center-to-center 
column height is 16 ft. For the second-story columns, the service gravity dead 
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and live loads and the horizontal wind loads based on an elastic first-order 
analysis of the frame are

Cols. A2 and E2 Cols. B2 and D2 Col. C2
Pdead 348	 kips   757	 kips 688	 kips
Plive 137	 kips   307	 kips 295	 kips
Pwind  ±30	 kips  ±14	 kips   0	 kips
Vwind    10.5	 kips      21.5	 kips   21.5	kips
M2,dead      31	 ft-kips
M2,live    161	 ft-kips
M2,wind    168	 ft-kips
M1,dead    −34	 ft-kips
M1,live   108	 ft-kips
M1,wind −157	 ft-kips

	  A matrix analysis for the total factored wind shear of 85.5 kips, using values 
of E and I specified in Section 10.5, indicates that the relative lateral deflec-
tion of the second story is 0.38 in. Design columns B2 and D2 using Eq. (10.21) 
to calculate δs. Material strengths are ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

FIGURE P10.5
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	10.6.	 Repeat Problem 10.5, using Eq. (10.22) to calculate δs. Comment on your 
results.

	10.7.	 Redesign column C3 from Example 10.2 for a story height of 16 ft, a column 
unsupported length of 15 ft, and a relative lateral displacement of the third 
story of 1.80 in. Loads and other dimensions remain unchanged.

	10.8.	 The first four floors of a multistory building are shown in Fig. P10.8. The 
lateral load-resisting frame consists of 22 × 22 in. exterior columns, 26 × 26 in. 
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interior columns, and 33 in. wide × 18 in. deep girders. The foundation is at 
ground level, supported on drilled piers, and may be considered as fully fixed 
against rotation. The first-story columns have a clear height to the girder 
soffit of 21 ft 6 in., giving a floor-to-floor height of 23 ft. The upper floors 
have a center-to-center spacing of 13 ft. For the first-story columns, the service 
gravity dead and live loads plus the horizontal and vertical wind loads based 
on an elastic first-order analysis of the frame are

Cols. A1 and F1 Cols. B1 and E1 Cols. C1 and D1
Pdead 495 kips 1090 kips 989 kips
Plive 99 kips 206 kips 188 kips
Pwind ±51 kips ±30 kips ±10 kips
Vwind 18 kips 35 kips 35 kips
M2,dead 4 ft-kips
M2,live 70 ft-kips
M2,wind 384 ft-kips
M1,dead −2 ft-kips
M1,live −35 ft-kips
M1,wind −384 ft-kips

	  A matrix analysis for the total factored wind shear of 176 kips, using values 
of E and I specified in Section 10.5, indicates that the relative lateral deflection 
of the second story is 0.64 in. Design columns B1 and E1, using Eq. (10.21) 
to calculate δs. Material strengths are ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

	10.9.	 Repeat Problem 10.8, using Eq. (10.22) to calculate δs. Comment on your 
results.
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	 11.1	 CONTINUITY

The individual members that compose a steel or timber structure are fabricated or cut 
separately and joined together by rivets, bolts, welds, or nails. Unless the joints are 
specially designed for rigidity, they are too flexible to transfer moments of significant 
magnitude from one member to another. In contrast, in reinforced concrete structures, 
as much of the concrete as is practical is placed in one single operation. Reinforcing 
steel is not terminated at the ends of a member but is extended through the joints into 
adjacent members. At construction joints, special care is taken to bond the new con-
crete to the old by carefully cleaning the latter, by extending the reinforcement through 
the joint, and by other means. As a result, reinforced concrete structures usually 
represent monolithic, or continuous, units. A load applied at one location causes 
deformation and stress at all other locations. Even in precast concrete construction, 
which resembles steel construction in that individual members are brought to the job 
site and joined in the field, connections are often designed to provide for the transfer 
of moment as well as shear and axial load, producing at least partial continuity.

The effect of continuity is most simply illustrated by a continuous beam, as 
shown in Fig. 11.1a. With simple spans, such as provided in many types of steel 
construction, only the loaded member CD would deform, and all other members of 
the structure would remain straight. But with continuity from one member to the 
next through the support regions, as in a reinforced concrete structure, the distortion 
caused by a load on one single span is seen to spread to all other spans, although 
the magnitude of deformation decreases with increasing distance from the loaded 
member. All members of the six-span structure are subject to curvature, and thus 
also to bending moment, as a result of loading span CD.

Similarly, for the rigid-jointed frame of Fig. 11.1b, the distortion caused by a 
load on the single member GH spreads to all beams and all columns, although, as 
before, the effect decreases with increasing distance from the load. All members are 
subject to bending moment, even though they may carry no transverse load.

If horizontal forces, such as forces caused by wind or seismic action, act on a 
frame, it deforms as illustrated by Fig. 11.1c. Here, too, all members of the frame 
distort, even though the forces act only on the left side; the amount of distortion is 
seen to be the same for all corresponding members, regardless of their distance from 
the points of loading, in contrast to the case of vertical loading. A member such as 
EH, even without a directly applied transverse load, will experience deformations 
and associated bending moment.

In statically determinate structures, such as simple-span beams, the deflected 
shape and the moments and shears depend only on the type and magnitude of the 
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loads and the dimensions of the member. In contrast, inspection of the statically 
indeterminate structures in Fig. 11.1 shows that the deflection curve of any member 
depends not only on the loads but also on the joint rotations, whose magnitudes in 
turn depend on the distortion of adjacent, rigidly connected members. For a rigid 
joint such as joint H in the frame shown in Fig. 11.1b or c, all the rotations at the 
near ends of all members framing into that joint must be the same. For a correct 
design of continuous beams and frames, it is evidently necessary to determine 
moments, shears, and thrusts considering the effect of continuity at the joints.

The determination of these internal forces in continuously reinforced concrete 
structures is usually based on elastic analysis of the structure at factored loads with 
methods that will be described in Sections 11.2 through 11.5. Such analysis requires 
knowledge of the cross-sectional dimensions of the members. Member dimensions 
are initially estimated during preliminary design, which is described in Section 11.6 
along with guidelines for establishing member proportions. For checking the results 
of more exact analysis, the approximate methods of Section 11.7 are useful. For 
many structures, a full elastic analysis is not justified, and the ACI coefficient method 
of analysis described in Section 11.8 provides an adequate basis for design moments 
and shears.

Before failure, reinforced concrete sections are usually capable of considerable 
inelastic rotation at nearly constant moment, as was described in Section 7.9.  

FIGURE 11.1
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This permits a redistribution of elastic moments and provides the basis for plastic 
analysis of beams, frames, and slabs. Plastic analysis will be developed in  
Section 11.9 for beams and frames and in Chapters 23 and 24 for slabs.

	 11.2	 LOADING

The individual members of a structural frame must be designed for the worst com-
bination of loads that can reasonably be expected to occur during its useful life. 
Internal moments, shears, and thrusts are brought about by the combined effect of 
dead and live loads, plus other loads, such as wind and earthquake, as discussed in 
Section 1.7. While dead loads are constant, live loads such as floor loads from human 
occupancy can be placed in various ways, some of which will result in larger effects 
than others. In addition, the various combinations of factored loads specified in 
Table 1.2 must be used to determine the load cases that govern member design. The 
subject of load placement will be addressed first.

	 a.	 Placement of Loads

In Fig. 11.2a only span CD is loaded by live load. The distortions of the various 
frame members are seen to be largest in, and immediately adjacent to, the loaded 
span and to decrease rapidly with increasing distance from the load. Since bending 
moments are proportional to curvatures, the moments in more remote members are 
correspondingly smaller than those in, or close to, the loaded span. However, the 
loading shown in Fig. 11.2a does not produce the maximum possible positive moment 
in CD. In fact, if additional live load were placed on span AB, this span would bend 

FIGURE 11.2
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down, BC would bend up, and CD itself would bend down in the same manner, 
although to a lesser degree, as it is bent by its own load. Hence, the positive moment 
in CD is increased if AB and, by the same reasoning, EF are loaded simultaneously. 
By expanding the same reasoning to the other members of the frame, it is easy to 
see that the checkerboard pattern of live load shown in Fig. 11.2b produces the 
largest possible positive moments, not only in CD but also in all loaded spans. Hence, 
two such checkerboard patterns are required to obtain the maximum positive moments 
in all spans.

In addition to maximum span moments, it is often necessary to investigate 
minimum span moments. Dead load, acting as it does on all spans, usually produces 
only positive span moments. However, live load, placed as in Fig. 11.2a, and even 
more so in Fig. 11.2b, is seen to bend the unloaded spans upward, that is, to produce 
negative moments in the span. If these negative live load moments are larger than 
the generally positive dead load moments, a given girder, depending on load position, 
may be subject at one time to positive span moments and at another to negative span 
moments. It must be designed to withstand both types of moments; that is, it must 
be furnished with tensile steel at both top and bottom. Thus, the loading of Fig. 11.2b, 
in addition to giving maximum span moments in the loaded spans, gives minimum 
span moments in the unloaded spans.

Maximum negative moments at the supports of the girders are obtained, on the 
other hand, if loads are placed on the two spans adjacent to the particular support, 
as will be illustrated in Section 11.3, and in a corresponding pattern on the more 
remote girders. A separate loading scheme of this type is then required for each 
support for which maximum negative moments are to be computed.

In each column, the largest moments occur at the top or bottom. While the 
loading shown in Fig. 11.2c results in large moments at the ends of columns CC′ 
and DD′, the reader can easily be convinced that these moments are further aug-
mented if additional loads are placed as shown in Fig. 11.2d.

It is seen from this brief discussion that to calculate the maximum possible 
moments at all critical points of a frame, live load must be placed in a great 
variety of different schemes. In most practical cases, however, consideration of 
the relative magnitude of effects will permit limitation of analysis to a small 
number of significant cases.

	 b.	 Load Combinations

The ACI Code requires that structures be designed for a number of load combi-
nations, as discussed in Section 1.7. Thus, for example, factored load combina-
tions might include (1) dead plus live load; (2) three possible combinations that 
include dead, live, and wind load; and (3) two combinations that include dead 
load, live load, and earthquake load, with some of the combinations including 
snow, rain, and roof live load. While each of the combinations may be considered 
as an individual loading condition, experience has shown that the most efficient 
technique involves separate analyses for each of the basic loads without load 
factors, that is, a full analysis for unfactored dead load only, separate analyses for 
the various live load distributions described in Section 11.2a, and separate analyses 
for each of the other loads (wind, snow, etc.). Once the separate analyses are 
completed, it is a simple matter to combine the results using the appropriate load 
factor for each type of load. This procedure is most advantageous because, for 
example, live load may require a load factor of 1.6 for one combination, a value 
of 1.0 for another, and a value of 0.5 for yet another. Once the forces have been 
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calculated for each combination, the combination of loads that governs for each 
member can usually be identified by inspection.

	 11.3	 SIMPLIFICATIONS IN FRAME ANALYSIS

Considering the complexity of many practical building frames and the need to account 
for the possibility of alternative loadings, there is evidently a need to simplify. This can 
be done by means of certain approximations that allow the determination of moments 
with reasonable accuracy while substantially reducing the amount of computation.

Numerous trial computations have shown that, for building frames with a rea-
sonably regular outline, not involving unusual asymmetry of loading or shape, the 
influence of sidesway caused by vertical loads can be neglected. In that case, moments 
due to vertical loads are determined with sufficient accuracy by dividing the entire 
frame into simpler subframes. Each of these consists of one continuous beam, plus 
the top and bottom columns framing into that particular beam. Placing the live loads 
on the beam in the most unfavorable manner permits sufficiently accurate determina-
tion of all beam moments, as well as the moments at the top ends of the bottom 
columns and the bottom ends of the top columns. For this partial structure, the far 
ends of the columns are considered fixed, except for such first-floor or basement 
columns where soil and foundation conditions dictate the assumption of hinged ends. 
Such an approach is explicitly permitted by ACI Code 6.3.1.2 and 6.4, which allow 
the following assumptions for floor and roof members under gravity load:

	 1.	 To calculate moments and shears in columns, beams, and slabs, the structural 
model may be limited to the members in the level being considered and the 
columns above and below that level; the far ends of columns built integrally 
with the structure may be considered fixed.

	 2.	 The maximum positive moment near midspan occurs with the factored live load 
on the span and on alternate spans, and the maximum negative moment at a 
support occurs with the factored live load on adjacent spans only.

When investigating the maximum negative moment at any joint, negligible 
error will result if the joints second removed in each direction are considered to be 
completely fixed. Similarly, in determining maximum or minimum span moments, 
the joints at the far ends of the adjacent spans may be considered fixed. Thus, indi-
vidual portions of a frame of many members may be investigated separately.

Figure 11.3 demonstrates the application of the ACI Code requirements for live 
load on a three-span subframe. The loading in Fig. 11.3a results in maximum positive 
moments in the exterior spans, the minimum positive moment in the center span, and 
the maximum negative moments at the interior faces of the exterior columns. The 
loading shown in Fig. 11.3b results in the maximum positive moment in the center span 
and minimum positive moments in the exterior spans. The loading in Fig. 11.3c results 
in maximum negative moment at both faces of the interior columns. Since the structure 
is symmetrical, values of moment and shear obtained for the loading shown in Fig. 11.3c 
apply to the right side of the structure as well as the left. Due to the simplicity of this 
structure, joints away from the spans of interest are not treated as fixed.

Moments and shears used for design are determined by combining the moment 
and shear diagrams for the individual load cases to obtain the maximum values along 
each span length. The resulting envelope moment and shear diagrams are shown in 
Fig. 11.3d and e, respectively. The moment and shear envelopes (note the range of 
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positions for points of inflection and points of zero shear) are used not only to design 
the critical sections but also to determine cutoff points for flexural reinforcement 
and requirements for shear reinforcement.

In regard to columns, the ACI Code indicates

	 1.	 The factored axial load and factored moment occurring simultaneously for each 
applicable factored load combination shall be considered (ACI Code 10.4.2.1).

	 2.	 For frames or continuous construction, consideration shall be given to the effect 
of floor and roof load patterns on the transfer of moment to exterior and interior 
columns and of eccentric loading due to other causes (ACI Code 6.6.2.2).

FIGURE 11.3
Subframe loading as required 
by ACI Code 6.4: Loading  
for (a) maximum positive 
moments in the exterior 
spans, the minimum positive 
moment in the center span, 
and the maximum negative 
moments at the interior faces 
of the exterior columns;  
(b) maximum positive 
moment in the center span 
and minimum positive 
moments in the exterior 
spans; (c) maximum  
negative moment at both 
faces of the interior columns;  
(d) envelope moment 
diagram; and (e) envelope 
shear diagram. (DL and LL 
represent factored dead and 
live loads, respectively.)
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	 3.	 In computing moments in columns due to gravity loading, the far ends of columns 
built integrally with the structure may be considered fixed (ACI Code 6.3.1.2).

	 4.	 Floor or roof level moments shall be resisted by distributing the moment between 
columns immediately above and below the given floor in proportion to the 
relative column stiffnesses considering conditions of restraint (ACI Code 6.5.5 
and 6.6.2.1).

In reference to item 1 above, load cases that should be specifically considered 
include (1) those with factored loads on all floors or roof and the maximum moment 
from factored loads on a single adjacent span of the floor or roof under consideration 
and (2) the loading condition giving the maximum ratio of moment to axial load.

Although it is not addressed in the ACI Code, axial loads on columns are 
usually determined based on the column tributary areas, which are defined based 
on the midspan of flexural members framing into each column. The axial load from 
the tributary area is used in design, with the exception of first interior columns, 
which are typically designed for an extra 10 percent axial load to account for the 
higher shear expected in the flexural members framing into the exterior face of first 
interior columns. The use of this procedure to determine axial loads due to gravity 
is conservative (note that the total vertical load exceeds the factored loads on the 
structure) and is adequately close to the values that would be obtained from a more 
detailed frame analysis.

	 11.4	 METHODS FOR ELASTIC ANALYSIS

Many methods have been developed over the years for the elastic analysis of con-
tinuous beams and frames. The so-called classical methods (Ref. 11.1), such as 
application of the theorem of three moments, the method of least work (Castigliano’s 
second theorem), and the general method of consistent deformation, will prove use-
ful only in the analysis of continuous beams having few spans or of very simple 
frames and are, in fact, rarely used. For the cases generally encountered in practice, 
such methods prove exceedingly tedious, and alternative approaches are preferred.

For many years, moment distribution (Ref. 11.1) provided the basic analytical 
tool for the analysis of indeterminate concrete beams and frames, originally with the 
aid of the slide rule and later with handheld programmable calculators. For relatively 
small problems, moment distribution may still provide the most rapid results, and it 
is often used in current practice, for example, in the Equivalent Frame Method of 
design for slabs described in Section 13.6. However, with computers, manual meth-
ods have been replaced largely by computational techniques that provide rapid solu-
tions with a high degree of accuracy.

Approximate methods of analysis, based either on careful sketches of the shape 
of the deformed structure under load or on moment coefficients, still provide a means 
for rapid estimation of internal forces and moments (Ref. 11.2). Such estimates are 
useful in preliminary design and in checking more exact solutions for gross errors 
that might result from input errors. In structures of minor importance, approxima-
tions may even provide the basis for final design.

In view of the number of excellent texts now available that treat methods of 
analysis, the present discussion will be confined to an evaluation of the usefulness 
of several of the more important of these, with particular reference to the analysis 
of reinforced concrete structures. Certain idealizations and approximations that facil-
itate the solution in practical cases will be described in more detail.
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	 a.	 Moment Distribution

In 1932, Hardy Cross developed the method of moment distribution to solve prob-
lems in frame analysis that involve many unknown joint displacements and rotations. 
For the next three decades, moment distribution provided the standard means in 
engineering offices for the analysis of indeterminate frames. Even now, it serves as 
the basic analytical tool if computer facilities are not available.

In the moment distribution method (Ref. 11.1), the fixed-end moments for each 
member are modified in a series of cycles, each converging on the precise final result, 
to account for rotation and translation of the joints. The resulting series can be termi-
nated whenever one reaches the degree of accuracy required. After member end moments 
are obtained, all member stress resultants can be obtained from the laws of statics.

It has been found by comparative analyses that, except in unusual cases, 
building-frame moments found by modifying fixed-end moments by only two cycles 
of moment distribution will be sufficiently accurate for design purposes (Ref. 11.3).

	 b.	 Computer Software

Computer software programs provide highly sophisticated tools for analysis of con-
crete structures. The simplest programs can be used to conduct linear elastic analy-
ses of indeterminate structures based on either service or factored loads. The factored 
axial forces, moments, shear, and torsional moments from these analyses are used to 
design the structural members. This software requires input of member sizes and 
material properties. The approximate and simplified analyses presented in this chap-
ter allow rapid determination of initial member sizes. To obtain reasonable service 
level information, particularly deflections, an appropriate idealization of the struc-
ture, as discussed in this chapter, is essential.

Advanced software can conduct three-dimensional structural analyses that 
include first- and second-order stability effects and material degradation. These pro-
grams automatically conduct multiple iterations, with each iteration incorporating 
changes in deflection and material behavior from the previous cycle. Software, such 
as found in the library at the Pacific Earthquake Engineering Research (PEER) Center, 
developed under the auspices of the National Science Foundation, provides powerful 
tools for analyzing the earthquake response of buildings. Some tall building designs 
are subjected to a suite of simulated earthquakes as the basis for performance-based 
building design (Ref. 11.4).

Building information modeling (BIM) software incorporates three-dimensional 
architectural visualization, structural analysis, and other digital representations into 
interchangeable files that can be shared by professionals working on the project  
(Ref. 11.5). These three-dimensional models capture important design information 
and can identify interferences between structural, mechanical, and electrical systems. 
Autodesk’s Revit and Bentley Systems’ Open Site Designer are just two examples of 
integrated BIM software. 

	 11.5	 IDEALIZATION OF THE STRUCTURE

It is seldom possible for the engineer to analyze an actual complex redundant struc-
ture. Almost without exception, certain idealizations must be made in devising an 
analytical model, so that the analysis will be practically possible. Thus, three-
dimensional members are represented by straight lines, generally coincident with  
the actual centroidal axis. Supports are idealized as rollers, hinges, or rigid joints. 
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Loads actually distributed over a finite area are assumed to be point loads. In 
three-dimensional framed structures, analysis is often limited to plane frames, each 
of which is assumed to act independently.

In the idealization of reinforced concrete frames, certain questions require spe-
cial comment. The most important of these pertain to effective span lengths, effective 
moments of inertia, and conditions of support.

	 a.	 Effective Span Length

In elastic frame analysis, a structure is usually represented by a simple line diagram, 
based dimensionally on the centerline distances between columns and between floor 
beams. Actually, the depths of beams and the widths of columns (in the plane of the 
frame) amount to sizable fractions of the respective lengths of these members; their clear 
lengths are therefore considerably smaller than their centerline distances between joints.

It is evident that the usual assumption in frame analysis that the members are 
prismatic, with constant moment of inertia between centerlines, is not strictly correct. 
A beam intersecting a column may be prismatic up to the column face, but from 
that point to the column centerline it has a greatly increased depth, with a moment 
of inertia that could be considered infinite compared with that of the remainder of 
the span. A similar variation in width and moment of inertia is obtained for the 
columns. Thus, to be strictly correct, the actual variation in member depth should 
be considered in the analysis. Qualitatively, this would increase beam support 
moments somewhat and decrease span moments. In addition, it is apparent that the 
critical section for design for negative bending would be at the face of the support, 
and not at the centerline, since for all practical purposes an unlimited effective depth 
is obtained in the beam across the width of the support.

It will be observed that, in the case of the columns, the moment gradient is not 
very steep, so that the difference between centerline moment and the moment at the 
top or bottom face of the beam is small and in most cases can be disregarded. However, 
the slope of the moment diagram for the beam is usually quite steep in the region of 
the support, and there will be a substantial difference between the support centerline 
moment and face moment. If the former were used in proportioning the member, an 
unnecessarily large section would result. It is desirable, then, to reduce support moments 
found by elastic analysis to account for the finite width of the supports.

In Fig. 11.4, the change in moment between the support centerline and the sup-
port face will be equal to the area under the shear diagram between those two points. 
For knife edge supports, this shear area is seen to be very nearly equal to Vaℓ∕2. 
Actually, however, the reaction is distributed in some unknown way across the width 
of the support. This will have the effect of modifying the shear diagram as shown by 
the dashed line; it has been proposed that the reduced area be taken as equal to Vaℓ∕3. 
The fact that the reaction is distributed will modify the moment diagram as well as 
the shear diagram, causing a slight rounding of the negative moment peak, as shown 
in the figure, and the reduction of Vaℓ∕3 is properly applied to the moment diagram 
after the peak has been rounded. This will give nearly the same face moment as would 
be obtained by deducting the amount Vaℓ∕2 from the peak moment.

Another effect is present, however: the modification of the moment diagram 
due to the increased moment of inertia of the beam at the column. This effect is 
similar to that of a haunch, and it will mean slightly increased negative moment and 
slightly decreased positive moment. For ordinary values of the ratio a, this shift in 
the moment curve will be on the order of Vaℓ∕6. Thus, it is convenient simply to 
deduct the amount Vaℓ∕3 from the unrounded peak moment obtained from elastic 
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analysis. This allows for (1) the actual rounding of the shear diagram and the neg-
ative moment peak due to the distributed reaction and (2) the downward shift of the 
moment curve due to the haunch effect at the supports. The consistent reduction in 
positive moment of Vaℓ∕6 is illustrated in Fig. 11.4.

With this said, there are two other approaches that are often used by structural 
designers. The first is to analyze the structure based on the simple line diagram and 
to reduce the moment from the column centerline to the face of the support by Vaℓ∕2 
without adjusting for the higher effective stiffness within the thickness width of the 
column. The moment diagram, although somewhat less realistic than represented by 
the lower curve in Fig. 11.4, still satisfies statics and requires less flexural reinforce-
ment at the face of the support. As a consequence, there is less congestion in the 
beam-column joint, a location where it is often difficult to place concrete because 
of the high quantity of reinforcing steel from the flexural members framing into  
the column (usually from two different directions) and from the column itself. The 
somewhat higher percentage of reinforcement required at midspan usually causes 
little difficulty in concrete placement. The second approach involves representing 

FIGURE 11.4
Reduction of negative and 
positive moments in a frame.
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the portion of the “beam” within the width of the column as a rigid link that connects 
the column centerline with the clear span of the flexural member. The portion  
of the column within the depth of the beam can also be represented using a rigid 
link. Such a model will produce moment diagrams similar to the lower curve in 
Fig. 11.4, without additional analysis. The second approach is both realistic and easy 
to implement when using computer analysis programs.

It should be noted that there are certain conditions of support for which no 
reduction in negative moment is justified. For example, when a continuous beam is 
carried by a girder of approximately the same depth, the negative moment in the beam 
at the centerline of the girder should be used to design the negative reinforcing steel.

	 b.	 Moments of Inertia

Selection of reasonable values for moments of inertia of beams and columns for use 
in the frame analysis is far from a simple matter. The design of beams and columns 
is based on cracked section theory, that is, on the supposition that tension concrete 
is ineffective. It might seem, therefore, that moments of inertia to be used should be 
determined in the same manner, that is, based on the cracked transformed section, 
in this way accounting for the effects of cracking and presence of reinforcement. 
Things are not this simple, unfortunately.

Consider first the influence of cracking. For typical members, the moment of 
inertia of a cracked beam section is about one-half that of the uncracked gross concrete 
section. However, the extent of cracking depends on the magnitude of the moments 
relative to the cracking moment. In beams, no flexural cracks would be found near the 
inflection points. Columns, typically, are mostly uncracked, except for those having 
relatively large eccentricity of loading. A fundamental question, too, is the load level 
to consider for the analysis. Elements that are subject to cracking will have more 
extensive cracks near ultimate load than at service load. Compression members will 
be unaffected in this respect. Thus, the relative stiffness depends on load level.

A further complication results from the fact that the effective cross section of 
beams varies along a span. In the positive bending region, a beam usually has a  
T section. For typical T beams, with flange width typically 4 to 6 times web width and 
flange thickness from 0.2 to 0.4 times the total depth, the gross moment of inertia will 
be about 2 times that of the rectangular web with width bw and depth h. However, in 
the negative bending region near the supports, the bottom of the section is in compres-
sion. The T flange is cracked, and the effective cross section is therefore rectangular.

The amount and arrangement of reinforcement are also influential. In beams, 
if bottom bars are continued through the supports, as is often done, this steel acts 
as compression reinforcement and stiffens the section. In columns, reinforcement 
ratios are generally much higher than in beams, adding to the stiffness.

Given these complications, it is clear that some simplifications are necessary. 
It is helpful to note that, in most cases, it is only the ratio of member stiffnesses 
that influences the final result, not the absolute value of the stiffnesses. The stiffness 
ratios may be but little affected by different assumptions in computing moment of 
inertia if there is consistency for all members.

In practice, it is generally sufficiently accurate to base stiffness calculations for 
frame analysis on the gross concrete cross section of the columns. In continuous T 
beams, cracking will reduce the moment of inertia to about one-half that of the 
uncracked section. Thus, the effect of the flanges and the effect of cracking may 
nearly cancel in the positive bending region. In the negative moment regions, there 
are no flanges; however, if bottom bars continue through the supports to serve as 
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compression steel, the added stiffness tends to compensate for lack of compression 
flange. Thus, for beams, generally a constant moment of inertia can be used, based 
on the rectangular cross-sectional area bwh.

ACI Code 6.3.1.1 states only that the relative stiffness be selected based on 
reasonable assumptions and that the assumptions be consistent for each analysis. 
ACI Commentary 6.3.1.1 explains that separate analyses may be used, for example, 
to check different conditions, such as serviceability and strength. ACI Commentary 
6.3.1.1 notes that relative values of stiffness are important and that a common 
assumption is to use one-half of the gross EI for beams and the gross EI for the 
columns. Additional guidance is given in Section 10.5 and ACI Code 6.6.3.1, which 
specifies the section properties to be used for frames subject to sidesway: 35 percent 
of the gross moment of inertia for beams and 70 percent for columns. This differs 
from the guidance provided in ACI Commentary 6.3.1.1 but, except for a factor of 
0.70, matches the guidance provided in the earlier discussion.

	 c.	 Conditions of Support

For purposes of analysis, many structures can be divided into a number of two-
dimensional frames. Even for such cases, however, there are situations in which it 
is impossible to predict with accuracy what the conditions of restraint might be at 
the ends of a span; yet moments are frequently affected to a considerable degree by 
the choice made. In many other cases, it is necessary to recognize that structures 
may be three-dimensional. The rotational restraint at a joint may be influenced or 
even governed by the characteristics of members framing into that joint at right 
angles. Adjacent members or frames parallel to the one under primary consideration 
may likewise influence its performance.

If floor beams are cast monolithically with reinforced concrete walls (frequently 
the case when first-floor beams are carried on foundation walls), the moment of 
inertia of the wall about an axis parallel to its face may be so large that the beam 
end can be considered completely fixed for all practical purposes. If the wall is 
relatively thin or the beam particularly massive, the moment of inertia of each should 
be calculated, that of the wall being equal to bt3∕12, where t is the wall thickness 
and b the wall width tributary to one beam.

If the outer ends of concrete beams rest on masonry walls, as is sometimes the 
case, an assumption of zero rotational restraint (that is, a hinged support) is probably 
closest to the actual case.

For columns supported on relatively small footings, which in turn rest on com-
pressible soil, a hinged end is generally assumed, since such soils offer but little 
resistance to rotation of the footing. If, on the other hand, the footings rest on solid 
rock, or if a cluster of piles is used with their upper portion encased by a concrete 
cap, the effect is to provide almost complete fixity for the supported column, and 
this should be assumed in the analysis. Columns supported by a continuous founda-
tion mat should likewise be assumed fixed at their lower ends.

If members framing into a joint in a direction perpendicular to the plane of the 
frame under analysis have sufficient torsional stiffness, and if their far ends are fixed 
or nearly so, their effect on joint rigidity should be included in the computations. 
The torsional stiffness of a member of length ℓ is given by the expression GJ∕ℓ, 
where G is the shear modulus of elasticity of concrete (approximately Ec∕2.2) and 
J is the torsional stiffness factor of the member. For beams with rectangular cross 
sections or with sections made up of rectangular elements, J can be taken equal to 
Σ(hb3∕3  −  b4∕5), in which h and b are the cross-sectional dimensions of each 
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rectangular element, b being the lesser dimension in each case. In moment distribu-
tion, when the effect of torsional rigidity is included, it is important that the absolute 
flexural stiffness 4EI∕ℓ be used rather than relative I∕ℓ values.

A common situation in beam-and-girder floors and concrete joist floors is 
illustrated in Fig. 11.5. The sketch shows a beam-and-girder floor system in which 
longitudinal beams are placed at the third points of each bay, supported by transverse 
girders, in addition to the longitudinal beams supported directly by the columns. If 
the transverse girders are quite stiff, it is apparent that the flexural stiffness of all 
beams in the width w should be balanced against the stiffness of one set of columns 
in the longitudinal bent. If, on the other hand, the girders have little torsional stiff-
ness, there would be ample justification for making two separate longitudinal anal-
yses, one for the beams supported directly by the columns, in which the rotational 
resistance of the columns would be considered, and a second for the beams framing 
into the girders, in which case hinged supports would be assumed. In most cases, it 
would be sufficiently accurate to consider the girders stiff torsionally and to add 
directly the stiffness of all beams tributary to a single column. This has the added 
advantage that all longitudinal beams will have the same cross-sectional dimensions 
and the same reinforcing steel, which will greatly facilitate construction. Plastic 
redistribution of loads upon overloading would generally ensure nearly equal restraint 
moments on all beams before collapse as assumed in design. Torsional moments 
should not be neglected in designing the girders.

	 11.6	 �PRELIMINARY DESIGN AND GUIDELINES  
FOR PROPORTIONING MEMBERS

In making an elastic analysis of a structural framework, it is necessary to know at the 
outset the cross-sectional dimensions of the members, so that moments of inertia and 
stiffnesses can be calculated. Yet the determination of these same cross-sectional dimen-
sions is the precise purpose of the elastic analysis. In terms of load, the dead load on 

FIGURE 11.5
Slab, beam, and girder floor 
system.
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a structure is often dominated by the weight of the slab. Obviously, a preliminary 
estimate of member sizes must be one of the first steps in the analysis. Subsequently, 
with the results of the analysis at hand, members are proportioned, and the resulting 
dimensions compared with those previously assumed. If necessary, the assumed section 
properties are modified, and the analysis is repeated. Since the procedure may become 
quite laborious, it is obviously advantageous to make the best possible original estimate 
of member sizes, in the hope of avoiding repetition of the analysis.

In this connection, it is worth repeating that in ordinary frame analysis, one is 
concerned with relative stiffnesses only, not the absolute stiffnesses. If, in the orig-
inal estimate of member sizes, the stiffnesses of all beams and columns are overes-
timated or underestimated by about the same amount, correction of these estimated 
sizes after the first analysis will have little or no effect. Consequently, no revision 
of the analysis would be required. If, on the other hand, a nonuniform error in esti-
mation is made, and relative stiffnesses differ from assumed values by more than 
about 30 percent, a new analysis should be made.

The experienced designer can estimate member sizes with surprising accuracy. 
Those with little or no experience must rely on trial calculations or arbitrary rules, 
modified to suit particular situations. In building frames, the depth of one-way slabs 
(discussed at greater length in Chapter 12) is often controlled by either deflection 
requirements or the negative moments at the faces of the supporting beams. Mini-
mum depth criteria are reflected in Tables 7.1 and 12.1, and negative moments at 
the face of the support can be estimated using coefficients described in Section 11.8. 
A practical minimum thickness of 4 in. is often used, except for joist construction 
meeting the requirements of ACI Code 9.8 (see Section 19.2d).

Beam sizes are usually governed by the negative moments and the shears at the 
supports, where their effective section is rectangular. Moments can be approximated 
by the fixed-end moments for the particular span or by using the ACI moment coef-
ficients (see Section 11.8). In most cases, shears will not differ greatly from simple 
beam shears. Alternatively, many designers prefer to estimate the depth of beams at 
about ​​ 3 _ 4 ​​ in. per foot of span, with the width equal to about one-half the depth.

For most construction, wide, relatively shallow beams and girders are preferred 
to obtain minimum floor depths, and using the same depth for all flexural members 
allows the use of simple, low-cost forming systems. Such designs can significantly 
reduce forming costs, while incurring only small additional costs for concrete and 
reinforcing steel. It is often wise to check the reinforcement ratio ρ based on the 
assumed moments to help maintain overall economy. A value of ρ ≈ 0.012 in pre-
liminary design will give ρ ≈ 0.01 in a final design, if a more exact analysis is used. 
Obviously, member dimensions are subject to modification, depending on the type 
and magnitude of the loads, methods of design, and material strength.

Column sizes are governed primarily by axial loads, which can be estimated 
quickly based on the column tributary areas, which are defined based on the midspan 
of flexural members framing into each column. As pointed out in Section 11.3, first 
interior columns are typically designed for an extra 10 percent axial load to account 
for the higher shear expected in the flexural members framing into the exterior face 
of first interior columns. The presence of moments in the columns is also cause for 
some increase of the area as determined by axial loads. For interior columns, in which 
unbalanced moments will not be large, a 10 percent increase may be sufficient, while 
for exterior columns, particularly for upper stories, an increase of 50 percent in area 
may be appropriate. In deciding on these estimated increases, the following factors 
should be considered. Moments are larger in exterior than in interior columns, since 
in the latter, dead load moments from adjacent spans will largely balance, in contrast 
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to the case in exterior columns. In addition, the influence of moments, compared 
with that of axial loads, is larger in upper-floor than in lower-floor columns, because 
the moments are usually of about the same magnitude, while the axial loads are 
larger in the latter than in the former.

For minimum forming costs, it is highly desirable to use the same column dimen-
sions throughout the height of a building. This can be accomplished by using higher- 
strength concrete on the lower stories (for high-rise buildings, this should be the  
highest-strength concrete available) and reducing concrete strength in upper stories, as 
appropriate. For columns in braced frames, the preliminary design of the lower-story 
columns may be based on zero eccentricity using 0.80ϕPo = Pu. A total reinforcement 
ratio ρg  ≈  0.02 should be used for the column with the highest axial load. With a 
value of ρg  ≈  0.01 for the column with the lowest axial load on higher stories, the 
column size is maintained, reducing ​​f​c​ ′​​ when ρg drops below 1 percent. Although ACI 
Code 10.6.1.1 limits ρg to a range of 1 to 8 percent, the effective minimum value of 
ρg is 0.005 based on ACI Code 10.3.1.2, which allows the minimum reinforcement to 
be calculated based on a reduced effective area Ag not less than one-half the total area 
(this provision cannot be used in regions of high seismic risk). For columns in lateral 
load–resisting frames, a subframe may be used to estimate the factored bending 
moments due to lateral load on the lower-story columns. The subframe illustrated in 
Fig. 11.6 consists of the lower two stories in the structure, with the appropriate level 
of fixity at the base. The upper flexural members in the subframe are treated as rigid. 
Factored lateral loads are applied to the structure. The subframe can be analyzed using 
matrix analysis or the portal frame method described in Section 11.7. Judicious con-
sideration of factors such as those just discussed, along with simple models, as appro-
priate, will enable a designer to produce a reasonably accurate preliminary design, 
which in most cases will permit a satisfactory analysis to be made on the first trial.

	 11.7	 APPROXIMATE ANALYSIS

In spite of the development of refined methods for the analysis of beams and frames, 
increasing attention is being paid to various approximate methods of analysis (Ref. 11.2). 
There are several reasons for this. Prior to performing a complete analysis of an 
indeterminate structure, it is necessary to estimate the proportions of its members to 
determine their relative stiffness, upon which the analysis depends. These dimensions 
can be obtained on the basis of approximate analysis. Also, even with the availabil-
ity of computers, most engineers find it desirable to make a rough check of results, 
using approximate means, to detect gross errors. Further, for structures of minor 
importance, it is often satisfactory to design on the basis of results obtained by rough 
calculation. For these reasons, many engineers at some stage in the design process 

FIGURE 11.6
Subframe for estimating 
moments in lower-story 
columns of lateral  
load–resisting frames.
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estimate the values of moments, shears, and thrusts at critical locations, using 
approximate sketches of the structure deflected by its loads.

Provided that points of inflection (locations in members at which the bending 
moment is zero and there is a reversal of curvature of the elastic curve) can be located 
accurately, the stress resultants for a framed structure can usually be found on the 
basis of static equilibrium alone. Each portion of the structure must be in equilibrium 
under the application of its external loads and the internal stress resultants.

For the fixed-end beam in Fig. 11.7a, for example, the points of inflection under 
uniformly distributed load are known to be located 0.211ℓ from the ends of the span. 
Since the moment at these points is zero, imaginary hinges can be placed there without 
modifying the member behavior. The individual segments between hinges can be ana-
lyzed by statics, as shown in Fig. 11.7b. Starting with the center segment, shears equal 
to 0.289wℓ must act at the hinges. These, together with the transverse load, produce a 
midspan moment of 0.0417wℓ2. Proceeding next to the outer segments, a downward 
load is applied at the hinge representing the shear from the center segment. This, 

FIGURE 11.7
Analysis of fixed-end beam 
by locating inflection points.
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together with the applied load, produces support moments of 0.0833wℓ2. Note that, for 
this example, since the correct position of the inflection points was known at the start, 
the resulting moment diagram of Fig. 11.7c agrees exactly with the true moment dia-
gram for a fixed-end beam shown in Fig.  11.7d. In more practical cases, inflection 
points must be estimated, and the results obtained will only approximate the true values.

The use of approximate analysis in determining stress resultants in frames is 
illustrated by Fig. 11.8. Figure 11.8a shows the geometry and loading of a two-member 
rigid frame. In Fig. 11.8b an exaggerated sketch of the probable deflected shape is 
given, together with the estimated location of points of inflection. On this basis, the 
central portion of the girder is analyzed by statics, as shown in Fig. 11.8d, to obtain 
girder shears at the inflection points of 7 kips, acting with an axial load P (still not 
determined). Similarly, the requirements of statics applied to the outer segments of the 
girder in Fig. 11.8c and e give vertical shears of 11 and 13 kips at B and C, respec-
tively, and end moments of 18 and 30 ft-kips at the same locations. Proceeding then 
to the upper segment of the column, shown in Fig.  11.8f, with known axial load of 
11  kips and top moment of 18 ft-kips acting, a horizontal shear of 4.5 kips at the 
inflection point is required for equilibrium. Finally, static analysis of the lower part of 

FIGURE 11.8
Approximate analysis of  
rigid frame.
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the column indicates a requirement of 9 ft-kips moment at A, as shown in Fig. 11.8g. 
The value of P equal to 4.5 kips is obtained by summing horizontal forces at joint B.

The moment diagram resulting from approximate analysis is shown in 
Fig.  11.8h. For comparison, an exact analysis of the frame indicates member end 
moments of 8 ft-kips at A, 16 ft-kips at B, and 28 ft-kips at C. The results of the 
approximate analysis would be satisfactory for design in many cases; if a more exact 
analysis is to be made, a valuable check is available on the magnitude of results.

A specialization of the approximate method described, known as the portal method, 
is commonly used to estimate the effects of sidesway due to lateral forces acting on 
multistory building frames. For such frames, it is usual to assume that horizontal loads 
are applied at the joints only. If this is true, moments in all members vary linearly and, 
except in hinged members, have opposite signs close to the midpoint of each member.

For a simple rectangular portal frame having three members, the shear forces 
are the same in both legs and are each equal to one-half the external horizontal load. 
If one of the legs is more rigid than the other, it will require a larger horizontal force 
to displace it horizontally the same amount as the more flexible leg. Consequently, 
the portion of the total shear resisted by the stiffer column is larger than that of the 
more flexible column.

In multistory building frames, moments and forces in the girders and columns 
of each individual story are distributed in substantially the same manner as just 
discussed for single-story frames. The portal method of computing approximate 
moments, shears, and axial forces from horizontal loads is, therefore, based on the 
following three simple propositions:

	 1.	 The total horizontal shear in all columns of a given story is equal and opposite 
to the sum of all horizontal loads acting above that story.

	 2.	 The horizontal shear is the same in both exterior columns; the horizontal shear 
in each interior column is twice that in an exterior column.

	 3.	 The inflection points of all members, columns and girders, are located midway 
between joints.

Although the last of these propositions is commonly applied to all columns, 
including those of the bottom floor, the authors prefer to deal with the latter sepa-
rately, depending on conditions of foundation. If the actual conditions are such as 
practically to prevent rotation (foundation on rock, massive pile foundations, etc.), 
the inflection points of the bottom columns are above midpoint and may be assumed 
to be at a distance 2h∕3 from the bottom. If little resistance is offered to rotation, 
for example, for relatively small footings on compressible soil, the inflection point 
is located closer to the bottom and may be assumed to be at a distance h∕3 from the 
bottom, or even lower. (With ideal hinges, the inflection point is at the hinge, that 
is, at the very bottom.) Since shears and corresponding moments are largest in the 
bottom story, a judicious evaluation of foundation conditions as they affect the loca-
tion of inflection points is of considerable importance.

The first of the three cited propositions follows from the requirement that 
horizontal forces be in equilibrium at any level. The second takes account of the fact 
that in building frames interior columns are generally more rigid than exterior ones 
because (1) the larger axial loads require a larger cross section and (2) exterior col-
umns are restrained from joint rotation only by one abutting girder, while interior 
columns are so restrained by two such members. The third proposition is very nearly 
true because, except for the top and bottom columns and, to a minor degree, for the 
exterior girders, each member in a building frame is restrained about equally at both 
ends. For this reason, members deflect under horizontal loads in an antisymmetrical 
manner, with the inflection point at midlength.
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The actual computations in this method are extremely simple. Once column 
shears are determined from propositions 1 and 2 and inflection points located from 
proposition 3, all moments, shears, and forces are simply computed by statics. The 
process is illustrated in Fig. 11.9a.

FIGURE 11.9
Portal method for determining moments from wind load in a building frame: (a) moments, shears, and thrusts and (b) variations of moments.
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Consider joints C and D. The total shear in the second story is 3 + 6 = 9 kips. 
According to proposition 2, the shear in each exterior column is 9∕6 = 1.5 kips, and 
in each interior column 2 × 1.5 = 3.0 kips. The shears in the other floors, obtained 
in the same manner, act at the hinges as shown. Consider the equilibrium of the rigid 
structure between hinges a, b, and c; the column moments, 3.0 and 9.0 ft-kips, respec-
tively, are obtained directly by multiplying the shears by their lever arms, 6  ft. The 
girder moment at C, to produce equilibrium, is equal and opposite to the sum of the 
column moments. The shear in the girder is obtained by recognizing that its moment 
(that is, shear times one-half the girder span) must be equal to the girder moment at C. 
Hence, this shear is 12.0∕10 = 1.2 kips. The moment at end D is equal to that at C, 
since the inflection point is at midspan. At D, column moments are computed in the 
same manner from the known column shears and lever arms. The sum of the two 
girder moments, to produce equilibrium, must be equal and opposite to the sum of the 
two column moments, from which the girder moment to the right of D is 
18.0 + 6.0 − 12.0 = 12.0 ft-kips. Axial forces in the columns also follow from statics. 
Thus, for the rigid body aEd, a vertical shear of 0.3 kip is seen to act upward at d. To 
equilibrate it, a tensile force of −0.3 kip is required in the column CE. In the rigid 
body abc, an upward shear of 1.2 kips at b is added to the previous upward tension 
of 0.3 kip at a. To equilibrate these two forces, a tension force of −1.5 kips is required 
in column AC. If the equilibrium of all other partial structures between hinges is con-
sidered in a similar manner, all moments, forces, and shears are rapidly determined.

In the present case, relatively flexible foundations were assumed, and the loca-
tion of the lowermost inflection points was estimated to be at h∕3 from the bottom. 
The general character of the resulting moment distribution is shown in Fig. 11.9b.

	 11.8	 ACI MOMENT COEFFICIENTS

ACI Code 6.5 includes expressions that may be used for the approximate calculation 
of maximum moments and shears in continuous beams and one-way slabs. The 
expressions for moment take the form of a coefficient multiplied by wu​​ℓ​n​ 2​​, where wu 
is the total factored load per unit length on the span and ℓn is the clear span from 
face to face of supports for positive moment, or the average of the two adjacent clear 
spans for negative moment. Shear is taken equal to a coefficient multiplied by wuℓn∕2. 
The coefficients, found in ACI Code 6.5.2 and 6.5.4, are shown in Table 11.1 and 
summarized in Fig. 11.10.

The ACI moment coefficients were derived by elastic analysis, considering 
alternative placement of live load to yield maximum negative or positive moments 
at the critical sections, as was described in Section 11.2. They are applicable within 
the following limitations:

	 1.	 Members are prismatic.
	 2.	 Loads are uniformly distributed.
	 3.	 The unfactored live load does not exceed 3 times the unfactored dead load.
	 4.	 There are two or more spans.
	 5.	 The longer of two adjacent spans does not exceed the shorter by more than  

20 percent.

As discussed in Section 11.3 for more general loading conditions, the alternative 
loading patterns considered in applying the Code moment coefficients result in an 
envelope of maximum moments, as illustrated in Fig. 11.11 for one span of a contin-
uous frame. For maximum positive moment, that span would carry dead and live loads, 

www.konkur.in

Telegram: @uni_k



368      DESIGN OF CONCRETE STRUCTURES  Chapter 11 

while adjacent spans would carry dead load only, producing the diagram of Fig. 11.11a. 
For maximum negative moment at the left support, dead and live loads would be placed 
on the given span and that to the left, while the adjacent span on the right would carry 
only dead load, with the result shown in Fig. 11.11b. Figure 11.11c shows the corre-
sponding results for maximum moment at the right support.

The composite moment diagram formed from the controlling portions of those 
just developed (Fig. 11.11d) provides the basis for design of the span. As observed 
in Section 11.3, there are a range of positions for the points of inflection resulting 
from alternate loadings. The extreme locations, required to determine bar cutoff 
points, can be found with the aid of Graph A.3 of Appendix A. In the region of the 
inflection point, it is evident from Fig. 11.11d that there may be a reversal of 
moments for alternative load patterns. However, within the stated limits for use of 
the coefficients, there should be no reversal of moments at the critical design sections 
near midspan or at the support faces.

Comparison of the moments found using the ACI coefficients with those cal-
culated by more exact analysis will usually indicate that the coefficient moments are 
quite conservative. Actual elastic moments may be considerably smaller. Conse-
quently, in many reinforced concrete structures, significant economy can be achieved 
by making a more precise analysis. This is mandatory for beams and slabs with spans 
differing by more than 20 percent, sustaining loads that are not uniformly distributed, 
or carrying live loads greater than 3 times the dead load.

TABLE 11.1
Moment and shear values using ACI coefficient†

Positive moment
  End spans
    If discontinuous end is integral with the support ​​ 1 __ 14 ​​ wu​ℓ​n​ 2​​
    If discontinuous end is unrestrained ​ 1 __ 11 ​ wu​ℓ​n​ 2​​
  Interior spans ​ 1 __ 16 ​ wu​ℓ​n​ 2​​
Negative moment at interior faces of exterior supports for members built  
  integrally with their supports
    Where the support is a spandrel beam or girder ​ 1 __ 24 ​ wu​ℓ ​n​ 2​
    Where the support is a column ​ 1 __ 16 ​ wu​ℓ ​n​ 2​
Negative moment at exterior face of first interior support
  Two spans ​ 1 _ 9 ​ wu​ℓ​ n​ 2​
  More than two spans ​ 1 __ 10 ​ wu​ℓ​ n​ 2​
Negative moment at other faces of interior supports ​ 1 __ 11 ​ wu​ℓ​ n​ 2​
Negative moment at face of all supports for (1) slabs with spans not exceeding 
  10 ft and (2) beams and girders where ratio of sum of column stiffness to  
  beam stiffness exceeds 8 at each end of the span ​ 1 __ 12 ​ wu​ℓ​ n​ 2​

Shear in end members at first interior support 1.15 ​ 
wuℓn

 ____ 
2
 ​

Shear at all other supports ​ 
wuℓn

 ____ 
2
 ​

†wu =  total factored load per unit length of beam or per unit area of slab.
   ℓn =  �clear span for positive moment and shear and the average of the two adjacent clear spans for negative 

moment.
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FIGURE 11.11
Maximum moment diagrams and moment envelope for a continuous beam: (a) maximum positive moment; (b) maximum negative 
moment at left end; (c) maximum negative moment at right end; and (d) composite moment envelope.
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coefficients: (a) beams  
with more than two spans;  
(b) beams with two spans 
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span.
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Because the load patterns in a continuous frame that produce critical moments in 
the columns are different from those for maximum negative moments in the beams, 
column moments must be found separately. According to ACI Code 10.4.2, columns 
must be designed to resist the factored axial load and factored moment for each appli-
cable factored load combination. For gravity load, this usually involves axial load from 
factored dead and live loads on all floors above and on the roof plus the maximum 
moment from factored loads on a single adjacent span of the floor or roof under con-
sideration. In addition, because of the characteristic shape of the column strength inter-
action diagram (see Chapter 9), it is usually necessary to consider the case that gives 
the maximum ratio of moment to axial load. In multistory structures, this results from 
a checkerboard loading pattern (see Fig. 11.2d), which gives maximum column moments 
but at a less-than-maximum axial force. As a simplification, in computing moments 
resulting from gravity loads, the far ends of the columns may be considered fixed, 
according to ACI Code 6.3.1.2. The moment found at a column-beam joint for a given 
loading is assigned to the column above and the column below in proportion to the 
relative column stiffness and conditions of restraint, according to ACI Code 6.5.5.

The shears at the ends of the spans in a continuous frame are modified from 
the value of wuℓn∕2 for a simply supported beam because of the usually unbalanced 
end moments. For interior spans, within the limits of the ACI coefficient method, 
this effect will seldom exceed about 8 percent, and it may be neglected, as suggested 
in Table  11.1. However, for end spans, at the face of the first interior support, the 
additional shear is significant, and a 15 percent increase above the simple beam shear 
is indicated in Table  11.1. The corresponding reduction in shear at the face of the 
exterior support is conservatively neglected.

	 11.9	 LIMIT ANALYSIS

	 a.	 Introduction

Most reinforced concrete structures are designed for moments, shears, and axial 
forces found by elastic theory with methods such as those described in Sections 11.1 
through 11.8. On the other hand, the actual proportioning of members is done by 
strength methods, with the recognition that inelastic section and member response 
would result upon overloading. Factored loads are used in the elastic analysis to find 
moments in a continuous beam, for example, after which the critical beam sections 
are designed with the knowledge that the steel would be well into the yield range 
and the concrete stress distribution very nonlinear before final collapse. Clearly this 
is an inconsistent approach to the total analysis-design process, although it can be 
shown to be both safe and conservative. A beam or frame so analyzed and designed 
will not fail at a load lower than the value calculated in this way.†

On the other hand, it is known that a continuous beam or frame normally will 
not fail when the nominal moment capacity of just one critical section is reached. 
A plastic hinge will form at that section, permitting large rotation to occur at essen-
tially constant resisting moment and thus transferring load to other locations along 
the span where the limiting resistance has not yet been reached. Normally in a 
continuous beam or frame, excess capacity will exist at those other locations because 
they would have been reinforced for moments resulting from different load distribu-
tions selected to produce maximum moments at those other locations.

†See the discussion of upper and lower bound theorems of the theory of plasticity in Section 23.2 for an elaboration on this point.
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As loading is further increased, additional plastic hinges may form at other 
locations along the span and eventually result in collapse of the structure, but only 
after a significant redistribution of moments has occurred. The ratio of negative to 
positive moments found from elastic analysis is no longer correct, for example, and 
the true ratio after redistribution depends upon the flexural strengths actually pro-
vided at the hinging sections.

Recognition of redistribution of moments can be important because it permits 
a more realistic appraisal of the actual load-carrying capacity of a structure, thus 
leading to improved economy. In addition, it permits the designer to modify, within 
limits, the moment diagrams for which members are to be designed. Certain sections 
can be deliberately underreinforced if moment resistance at adjacent critical sections 
is increased correspondingly. Adjustment of design moments in this way enables the 
designer to reduce the congestion of reinforcement that often occurs in high-moment 
areas, such as at the beam-column joints.

The formation of plastic hinges is well established by tests such as that pictured 
in Fig. 11.12. The three-span continuous beam illustrates the inelastic response typical 
of heavily overloaded members. It was reinforced in such a way that plastic hinges would 
form at the interior support sections before the limit capacity of sections elsewhere was 
reached. The beam continued to carry increasing load well beyond the load that pro-
duced first yielding at the supports. The extreme deflections and sharp changes in slope 
of the member axis that are seen here were obtained only slightly before final collapse.

The inconsistency of the present approach to the total analysis-design process, 
the possibility of using the reserve strength of concrete structures resulting from 
moment redistribution, and the opportunity to reduce steel congestion in critical 
regions have motivated considerable interest in limit analysis for reinforced concrete 
based on the concepts just described. For beams and frames, ACI Code 6.6.5 permits 
limited redistribution of moments, depending upon the strain in the tensile steel εt. 
For slabs, which generally use very low reinforcement ratios and consequently have 
great ductility, plastic design methods are especially suitable.

	 b.	 Plastic Hinges and Collapse Mechanisms

If a short segment of a reinforced concrete beam is subjected to a bending moment, 
curvature of the beam axis will result, and there will be a corresponding rotation of 
one face of the segment with respect to the other. It is convenient to express this in 

FIGURE 11.12
Three-span continuous beam 
after the formation of plastic 
hinges at the interior 
supports. (Photograph by 
Arthur H. Nilson)
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terms of an angular change per unit length of the member. The relation between 
moment and angle change per unit length of beam, or curvature, at a reinforced 
concrete beam section subject to tensile cracking was developed in Section 7.9. 
Methods were presented there by which the theoretical moment-curvature graph 
might be drawn for a given beam cross section, as in Fig. 7.18.

The actual moment-curvature relationship measured in beam tests differs some-
what from that shown in Fig. 7.18, mainly because, from tests, curvatures are cal-
culated from average strains measured over a finite gage length, usually about equal 
to the effective depth of the beam. In particular, the sharp increase in curvature upon 
concrete cracking shown in Fig. 7.18 is not often seen because the crack occurs at 
only one discrete location along the gage length. Elsewhere, the uncracked concrete 
shares in resisting flexural tension, resulting in what is known as tension stiffening. 
This tends to reduce curvature. Furthermore, the exact shape of the moment-curvature 
relation depends strongly upon the reinforcement ratio as well as upon the exact 
stress-strain curves for the concrete and steel.

Figure  11.13 shows a somewhat simplified moment-curvature diagram for an 
actual concrete beam section having a tensile reinforcement ratio equal to about one-
half the balanced value. The diagram is linear up to the cracking moment Mcr, after 
which a nearly straight line of somewhat flatter slope is obtained. At the moment 

FIGURE 11.13
Plastic hinge characteristics 
in a reinforced concrete 
member: (a) typical moment-
curvature diagram;  
(b) strains and stresses 
at start of yielding; and 
(c) strains and stresses at 
incipient failure.
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that initiates yielding My, the curvature starts to increase disproportionately. Further 
increase in applied moment causes extensive inelastic rotation until, eventually, the 
compressive strain limit of the concrete is reached at the ultimate rotation ϕu. The 
maximum moment is often somewhat above the calculated flexural strength Mn, due 
largely to strain hardening of the reinforcement.

The effect of inelastic concrete response prior to steel yielding is small for 
typically underreinforced sections, as is indicated in Fig. 7.18, and the yield moment 
can be calculated based on the elastic concrete stress distribution shown in Fig. 11.13b:

	​ My = As fy​(d − ​ kd
 ___ 

3
 ​)​​	 (11.1)

where kd is the distance from the compression face to the cracked elastic neutral 
axis (see Section 4.2b). The nominal moment capacity Mn, based on Fig. 11.13c, is 
calculated by the usual expression

	​ Mn = As fy​(d − ​ a __ 
2
 ​)​ = As fy​(d − ​ 

β1c
 ___ 

2
 ​ )​​	 (11.2)

For purposes of limit analysis, the M–ϕ curve is usually idealized, as shown 
by the dashed line in Fig.  11.13a. The slope of the elastic portion of the curve is 
obtained with satisfactory accuracy using the moment of inertia of the cracked trans-
formed section. After the nominal moment Mn is reached, continued plastic rotation 
is assumed to occur with no change in applied moment. The elastic curve of the 
beam will show an abrupt change in slope at such a section. The beam behaves as 
if there were a hinge at that point. However, the hinge will not be “friction-free,” 
but will have a constant resistance to rotation.

If such a plastic hinge forms in a determinate structure, as shown in Fig. 11.14, 
uncontrolled deflection takes place, and the structure will collapse. The resulting 
system is referred to as a mechanism, an analogy to linkage systems in mechanics. 
Generalizing, one can say that a statically determinate system requires the formation 
of only one plastic hinge to become a mechanism.

This is not so for indeterminate structures. In this case, stability may be main-
tained even though hinges have formed at several cross sections. The formation of 
such hinges in indeterminate structures permits a redistribution of moments within 
the beam or frame. It will be assumed for simplicity that the indeterminate beam of  
Fig. 11.15a is symmetrically reinforced, so that the negative bending capacity is the 
same as the positive. Let the load P be increased gradually until the elastic moment 
at the fixed support, ​ 3 __ 16 ​Pℓ, is just equal to the plastic moment capacity of the section 
Mn. This load is

	​ P = Pel = ​ 16 ___ 
3
 ​  ​ 

Mn ___ 
ℓ
 ​  = 5.33 ​ 

Mn ___ 
ℓ
 ​ ​	 (a)

FIGURE 11.14
Statically indeterminate 
member after the formation 
of plastic hinge.
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At this load, the positive moment under the load is ​ 5 __ 32 ​Pℓ, as shown in Fig. 11.15b.  
The beam still responds elastically everywhere but at the left support. At that point 
the actual fixed support can be replaced for purposes of analysis with a plastic 
hinge offering a known resisting moment Mn. Because a redundant reaction has 
been replaced by a known moment, the beam is now determinate.

The load can be increased further until the moment under the load also becomes 
equal to Mn, at which load the second hinge forms. The structure is converted into 
a mechanism, as shown in Fig.  11.15c, and collapse occurs. The moment diagram 
at collapse load is shown in Fig. 11.15d.

The magnitude of load causing collapse is easily calculated from the geometry 
of Fig. 11.15d:

​Mn + ​ 
Mn ___ 
2
 ​  = ​ Pℓ ___ 

4
 ​​

from which

	​ P = Pn = ​ 
6Mn ____ 

ℓ
 ​​	  (b)

FIGURE 11.15
Indeterminate beam with 
plastic hinges at support and 
midspan.

Mn

Mn

Mn

Mn

(a )

(b )

(c )

(d )

�

P

2

3
P�16

5
P�32

2

P�
4

�
2

P

Plastic hinge

Plastic
hinge

Real
hinge

www.konkur.in

Telegram: @uni_k



ANALYSIS, IDEALIZATION, AND PRELIMINARILY DESIGN OF REINFORCED CONCRETE BEAMS      375

By comparison of Eqs. (b) and (a), it is evident that an increase in P of 12.5 percent 
is possible, beyond the load that caused the formation of the first plastic hinge, 
before the beam will actually collapse. Due to the formation of plastic hinges, a 
redistribution of moments has occurred such that, at failure, the ratio between the 
positive moment and negative moment is equal to that assumed in reinforcing  
the structure.

	 c.	 Rotation Requirement

It may be evident that there is a direct relation between the amount of redistribution 
desired and the amount of inelastic rotation at the critical sections of a beam required 
to produce the desired redistribution. In general, the greater the modification of the 
elastic moment ratio, the greater the required rotation capacity to accomplish that 
change. To illustrate, if the beam of Fig. 11.15a had been reinforced according to 
the elastic moment diagram of Fig. 11.15b, no inelastic-rotation capacity at all would 
be required. The beam would, at least in theory, yield simultaneously at the left 
support and at midspan. On the other hand, if the reinforcement at the left support 
had been deliberately reduced (and the midspan reinforcement correspondingly 
increased), inelastic rotation at the support would be required before the strength at 
midspan could be realized.

The amount of rotation required at plastic hinges for any assumed moment 
diagram can be found by considering the requirements of compatibility. The member 
must be bent, under the combined effects of elastic moment and plastic hinges, so 
that the correct boundary conditions are satisfied at the supports. Usually, zero sup-
port deflection is to be maintained. Moment-area and conjugate-beam principles are 
useful in quantitative determination of rotation requirements (Ref. 11.6). In deflec-
tion calculations, it is convenient to assume that plastic hinging occurs at a point, 
rather than being distributed over a finite hinging length, as is actually the case. 
Consequently, in loading the conjugate beam with unit rotations, plastic hinges are 
represented as concentrated loads.

Calculation of rotation requirements will be illustrated by the two-span contin-
uous beam shown in Fig.  11.16a. The elastic moment diagram resulting from a 
single concentrated load is shown in Fig.  11.16b. The moment at support B is 
0.096Pℓ, while that under the load is 0.182Pℓ. If the deflection of the beam at sup-
port C were calculated using the unit rotations equal to M∕EI, based on this elastic 
moment diagram, a zero result would be obtained.

Figure 11.16c shows an alternative, statically admissible moment diagram that 
was obtained by arbitrarily increasing the support moment from 0.096Pℓ to 0.150Pℓ. 
If the beam deflection at C were calculated using this moment diagram as a basis, 
a nonzero value would be obtained. This indicates the necessity for inelastic rotation 
at one or more points to maintain geometric compatibility at the right support.

If the beam were reinforced according to Fig. 11.16c, increasing loads would 
produce the first plastic hinge at D, where the beam has been deliberately made 
under strength. Continued loading would eventually result in formation of the second 
plastic hinge at B, creating a mechanism and leading to collapse of the structure.

Limit analysis requires calculation of rotation at all plastic hinges up to, but 
not including, the last hinge that triggers actual collapse. Figure 11.16d shows the 
M∕EI load to be imposed on the conjugate beam of Fig.  11.16e. Also shown is 
the concentrated angle change θd, which is to be evaluated. Starting with the left 
span, taking moments of the M∕EI loads about the internal hinge of the conjugate 
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beam at B, one obtains the left reaction of the conjugate beam (equal to the slope 
of the real beam):

​θa = 0.025 ​ Pℓ2
 ____ 

EI
 ​​

With that reaction known, moments are taken about the support C of the conjugate 
beam and set equal to zero to obtain

​θd = 0.060 ​ Pℓ2
 ___ 

EI
 ​​

FIGURE 11.16
Moment redistribution in a 
two-span beam: (a) loaded 
beam; (b) elastic moments; 
(c) modified moments;  
(d) M∕EI loads; (e) conjugate 
beam; and (  f ) deflection 
curve.
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This represents the necessary discontinuity in the slope of the elastic curve shown 
in Fig. 11.16f to restore the beam to zero deflection at the right support. The beam 
must be capable of developing at least that amount of plastic rotation if the modified 
moment diagram assumed in Fig. 11.16c is to be valid.

	 d.	 Rotation Capacity

The capacity of concrete structures to absorb inelastic rotations at plastic-hinge loca-
tions is not unlimited. The designer adopting full limit analysis in concrete must 
calculate not only the amount of rotation required at critical sections to achieve the 
assumed degree of moment redistribution but also the rotation capacity of the mem-
bers at those sections to ensure that it is adequate.

Curvature at initiation of yielding is easily calculated from the elastic strain 
distribution shown in Fig. 11.13b.

	​ ϕy = ​ 
εy
 _______ 

d(1 − k)
 ​​	 (11.3)

in which the ratio k establishing the depth of the elastic neutral axis is found from  
Eq. (4.8). The curvature corresponding to the nominal moment can be obtained from 
the geometry of Fig. 11.13c:

	​ ϕu = ​ 
εcu ___ c ​​	  (11.4)

Although it is customary in flexural strength analysis to adopt εcu = 0.003, for pur-
poses of limit analysis a more refined value is needed. Extensive experimental stud-
ies (Refs. 11.7 and 11.8) indicate that the ultimate strain capacity of concrete is 
strongly influenced by the beam width b, the moment gradient, and the presence of 
additional reinforcement in the form of compression steel and confining steel (that 
is, web reinforcement). The last parameter is conveniently introduced by means of 
a reinforcement ratio ρ″, defined as the ratio of the volume of one stirrup plus the 
compressive steel volume within the concrete volume along the length of the mem-
ber corresponding to one stirrup. On the basis of empirical studies, the ultimate 
flexural strain at a plastic hinge is

	​ εcu = 0.003 + 0.02  ​ b __ z ​ + ​( ​ 
ρ″fy

 ____ 
14.5

 ​ )​
2​
	 (11.5)

where z is the distance between points of maximum and zero moment. Based on Eqs. 
(11.3) to (11.5), the inelastic curvature for the idealized relation shown in Fig. 11.13a is

	​ ϕp = ϕu − ϕy ​ 
Mn ___ 
My

 ​​	 (11.6)

This plastic rotation is not confined to one cross section but is distributed over a 
finite length referred to as the hinging length. The experimental studies upon which 
Eq. (11.5) is based measured strains and rotations in a length equal to the effective 
depth d of the test members. Consequently, εcu is an average value of ultimate strain 
over a finite length, and ϕp, given by Eq. (11.6), is an average value of curvature. 
The total inelastic rotation θp can be found by multiplying the average curvature by 
the hinging length:

	​ θp = ​
(

 ϕu − ϕy ​ 
Mn ___ 
My

 ​ 
)

​ ℓp​	 (11.7)
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On the basis of current evidence, it appears that the hinging length ℓp in support 
regions, on either side of the support, can be approximated by the expression

	​ ℓp = 0.5d + 0.05z​	 (11.8)

in which z is the distance from the point of maximum moment to the nearest point 
of zero moment.

	 e.	 Moment Redistribution under the ACI Code

Full use of the plastic capacity of reinforced concrete beams and frames requires an 
extensive analysis of all possible mechanisms and an investigation of rotation require-
ments and capacities at all proposed hinge locations. The increase in design time 
may not be justified by the gains obtained. On the other hand, a restricted amount 
of redistribution of elastic moments can safely be made without complete analysis, 
yet may be sufficient to obtain most of the advantages of limit analysis.

A limited amount of redistribution is permitted by ACI Code 6.6.5, depending 
upon a rough measure of available ductility, without explicit calculation of rotation 
requirements and capacities. The net tensile strain in the extreme tension steel at 
nominal strength εt, given in Eq. (4.25), is used as an indicator of rotation capacity. 
Accordingly, ACI Code 6.6.5 provides as follows:

Except where approximate values for moments are used in accordance with ACI  
Code 6.5 [moment coefficients described in Section 11.8], where moments have been 
calculated in accordance with ACI Code 6.8 [inelastic analysis], or where moments in 
two-way slabs are determined using pattern loading specified in ACI Code 6.4.3.3 
[using 75 percent of the factored live load, as described in Section 13.6d], reduction 
of moments at sections of maximum negative or maximum positive moment calculated 
by elastic theory shall be permitted for any assumed loading arrangement if (a) and (b) 
are satisfied: (a) Flexural members are continuous; (b) εt  ≥  0.0075 at the section at 
which moment is reduced. Redistribution shall not exceed the lesser of 1000εt percent 
and 20 percent. The reduced moment shall be used to calculate redistributed moments 
at all other sections within the spans such that static equilibrium is maintained after 
redistribution of moments for each loading arrangement. Shears and support reactions 
shall be calculated in accordance with static equilibrium considering the redistributed 
moments for each loading arrangement.

Redistribution for values of εt < 0.0075 is conservatively prohibited. The ACI Code 
provisions are shown graphically in Fig.  11.17. The value of ρ corresponding to a 
given value of εt, and thus a given percentage change in moment, can be calculated 
using Eq. (4.26a) from Section 4.3d.

To demonstrate the advantage of moment redistribution when alternative loadings 
are involved, consider the concrete beam of Fig. 11.18. A three-span continuous beam 
is shown, with dead load of 1 kip∕ft and live load of 2 kips∕ft. To obtain maximum 
moments at all critical design sections, it is necessary to consider three alternative 
loadings. Case a, with live and dead load over exterior spans and dead load only over 
the interior span, will produce the maximum positive moment in the exterior spans. 
Case b, with dead load on exterior spans and dead and live load on the interior span, 
will produce the maximum positive moment in the interior span. The maximum nega-
tive moment over the interior support is obtained by placing dead and live load on the 
two adjacent spans and dead load only on the far exterior span, as shown in case c.

It will be assumed for simplicity that a 10 percent adjustment of maximum nega-
tive and positive moments is permitted throughout, provided that other span moments 
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are modified accordingly. An overall reduction in design moments through the entire 
three-span beam may be possible. Case a, for example, produces an elastic maximum 
span moment in the exterior spans of 109 ft-kips. Corresponding to this is an elastic 
negative moment of 80 ft-kips at the interior support. Adjusting the maximum pos-
itive moment downward by 10 percent, one obtains a positive moment of 98 ft-kips, 
which results in an upward adjustment of the support moment to 102 ft-kips.

Now consider case b. By a similar redistribution of moments, the middle-span 
moment is reduced from 70 to 63 ft-kips, accompanied by an increase in the support 
moment from 80 to 87 ft-kips.

The moment obtained at the first interior support for loading case c, 134 ft-kips, 
can be decreased by 10 percent to 121 ft-kips. To limit the increase in the controlling 
span moment of the interior span, the right interior support moment is not decreased. 
The positive moments in the left exterior span and in the interior span corresponding 
to the modified moment at the left interior support are 90 and 57 ft-kips, respectively.

It will be observed that the reduction obtained for the span moments in cases 
a and b was achieved at the expense of increasing the moment at the first interior 
support. However, the increased support moment in each case was less than the 
moment for which that support would have to be designed based on the loading c,  
which produced the maximum support moment. Similarly, the reduction in support 
moment in case c was taken at the expense of an increase in span moments in the 
two adjacent spans. However, in each case, the increased span moments were less 
than the maximum span moments obtained for other loading conditions. The final 
design moments at all critical sections are underlined in Fig. 11.18. It can be seen, 
then, that the net result is a reduction in design moments over the entire beam. This 
modification of moments does not mean a reduction in safety factor below that 
implied in code safety provisions; rather, it means a reduction of the excess strength 
that would otherwise be present in the structure because of the actual redistribution 
of moments that would occur before failure. It reflects the fact that the maximum 
design moments are obtained from alternative load patterns, which could not exist 
concurrently. The end result is a more realistic appraisal of the actual collapse load 
of the indeterminate structure.

FIGURE 11.17
Allowable moment 
redistribution under the  
ACI Code.

0.000 0.005 0.010

A
llo

w
ab

le
 a

dj
us

tm
en

t i
n

m
ax

im
um

 m
om

en
ts

, p
er

ce
nt

0.015
Net tensile strain εt

0.020 0.025
0

5

10

15

20

25

www.konkur.in

Telegram: @uni_k



380      DESIGN OF CONCRETE STRUCTURES  Chapter 11 

FIGURE 11.18
Redistribution of moments  
in a three-span continuous 
beam. The final design 
moments are underlined.
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	 11.10	 CONCLUSION

The problems associated with analysis of reinforced concrete structures are many. 
The engineer not only must accept the uncertainties of load placement, magni-
tude, and duration typical of any structural analysis but also must cope with other 
complications that are unique to reinforced concrete. These are mainly associated 
with estimation of moment of inertia of the reinforced concrete sections and with 
the influence of concrete creep. They may be summarized briefly as follows: 
(1)  effective moments of inertia change depending on the sign of the bending 
moment; (2) moments of inertia depend not only on the effective concrete section 
but also on the steel, a part of which may be discontinuous; (3) moments of inertia 
depend on cracking, which is both location-dependent and load-dependent; and 
(4)  the concrete is subject to creep under sustained loads, reducing its effective 
modulus. In addition, joint restraints and conditions of support for complex struc-
tures are seldom completely in accordance with the idealization. The student may 
well despair of accurate calculation of the internal forces for which the members of 
a reinforced concrete frame must be designed.

It may be reassuring to know that reinforced concrete has a remarkable capac-
ity to adapt to the assumptions of the designer. This has been pointed out by a 
number of outstanding engineers. Luigi Nervi, the renowned Italian architect- 
engineer, has stated it eloquently as follows:

Mainly because of plastic flow, a concrete structure tries with admirable docility to 
adapt itself to our calculations—which do not always represent the most logical and 
spontaneous answer to the request of the forces at play—and even tries to correct our 
deficiencies and errors. Sections and regions too highly stressed yield and channel some 
of their loads to other sections or regions, which accept this additional task with com-
mendable spirit of collaboration, within the limits of their own strength.†

Hardy Cross, best known for his development of the moment distribution method of 
analysis (see Section 11.4), noted the beneficial effects of concrete creep, by which a 
structure can adapt to support settlements, which, on the basis of elastic analysis, cause 
forces and movements sufficient to fail the structure. Halvard Birkeland, one of the 
pioneers in the development of prestressed concrete in the United States, referred to 
the “wisdom of the structure,” noting that “.  .  . the structure, in many instances, will 
accept our rash assumptions and our imperfect mathematical models . . . the structure 
will exhaust all means of standing before it decides to fall.”‡

Thus, it may be of some comfort to know that a reinforced concrete structure 
will tend to act as the engineer has assumed it will act. Reasonable assumptions in 
the analysis may safely be made. But a corollary to this important principle is the 
acceptance of its limits: the general pattern of forces and moments must be recog-
nized, and at least one reasonable load path provided. Too great a deviation from 
the actual distribution of internal forces can result in serviceability problems asso-
ciated with cracking and deflection and can even result in premature failure. It is for 
this reason that methods of limit analysis for reinforced concrete include restrictions 
on the amount of redistribution of elastic moments (see Section 11.9). But it is 
reassuring to know that if good judgment is used in assigning internal forces to 
critical sections, the wisdom of the structure will prevail.

†P. L. Nervi, Structures, F. W. Dodge Corp., New York, 1956.
‡H. L. Birkeland, “The Wisdom of the Structure,” J. ACI, April 1978, pp. 105–111.

www.konkur.in

Telegram: @uni_k



382      DESIGN OF CONCRETE STRUCTURES  Chapter 11 

References
	11.1.	 J. C. McCormac, Structural Analysis Using Classical and Matrix Methods, 4th ed., Wiley, Hoboken,  

New Jersey, 2007.
	11.2.	 K. M. Leet, C.-M. Uang, J. Lanning, and A. Gilbert, Fundamentals of Structural Analysis, 5th ed., 

McGraw-Hill, New York, 2018.
	11.3.	 Continuity in Concrete Building Frames, 4th ed., Portland Cement Association, Skokie, IL, 1959.
	11.4.	 J. A. Fry, J. D. Hooper, and R. Klemencic, “Core Wall Case Study Design for Pacific Earthquake 

Engineering Research/California Seismic Safety Commission,” Structural Design of Tall and Special 
Buildings, vol. 19, no. 1–2, 2010, pp. 61–75.

	11.5.	 K. Kensek and D. Noble, Building Information Modeling: BIM in Current and Future Practice, John 
Wiley & Sons, Hoboken, New Jersey, 2014.

	11.6.	 G. C. Ernst, “A Brief for Limit Design,” Trans. ASCE, vol. 121, 1956, pp. 605–632.
	11.7.	 A. H. Mattock, “Rotation Capacity of Hinging Regions in Reinforced Concrete Frames,” Proc. Int. 

Symp. Flexural Mech. Reinforced Concrete, ACI Publication SP-12, 1964.
	11.8.	 J. S. Ford, D. C. Chang, and J. E. Breen, “Design indications from Tests of Unbraced Multi-panel 

Concrete Frames,” Concr. Intl., vol. 3, no. 3, 1981, pp. 37–47.

Problems
	11.1.	 Complete the preliminary design of the four-story heavy storage facility shown 

in Fig. P11.1. The floor live load is 250 psf, the roof live load is 12 psf, and 
the dead load on all floors and the roof consists of the structure self-weight 
plus 10 psf for utilities. The building is enclosed in a self-supporting curtain 
wall that also carries the lateral load on the structure. Beams are spaced at 
12 ft; girders are spaced at 27 ft. The minimum clear space between floors is 
11 ft, and the floor depth should not exceed 30 in. The column cross sections 
should be maintained from floor to floor. Use fy = 60,000 psi and ​​f​c​ ′​​ = 4000 psi 
for the floors. Concrete with ​​f​c​ ′​​ up to 8000 psi is available for the columns. 
The preliminary design should include the initial dimensions of the structural 
slab, beams, girders, and columns for a typical floor.

3 
@
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7′

 =
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1′

4 @ 36′ = 144′
3 @ 12′ = 36′

FIGURE P11.1

	11.2.	 A concrete beam with b = 12 in., h = 26.5 in., and d = 24 in., having a span 
of 24 ft, can be considered fully fixed at the left support and supported ver-
tically but with no rotational restraint (for example, roller) at the right end. 
It is reinforced for positive bending with a combination of bars giving 
As = 2.45 in2, and for negative bending at the left support with As = 2.88 in2. 
Positive bars are carried 6 in. into the face of the left support, according to 
the ACI Code requirements, but lack the embedded length to be considered 
effective as compression steel. No. 3 (No. 10) closed hoop stirrups are 
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provided at 9 in. spacing over the full span. The factored load consists of a 
single concentrated force of 63.3 kips at midspan. Self-weight of the beam 
may be neglected in the calculations. Calculate the rotation requirement at the 
first plastic hinge to form (a) if the beam is reinforced according to the 
description above; (b) if, to reduce bar congestion at the left support, that steel 
area is reduced by 12.5 percent, with an appropriate increase in the positive 
steel area; and (c) if the steel area at the left support is reduced by 25 percent, 
compared with the original description, with an appropriate increase in the 
positive steel area. Also calculate the rotation capacity of the critical section, 
for comparison with the requirements of (a), (b), and (c). Comment on your 
results and compare with the approach to moment redistribution presented in 
the ACI Code. Material strengths are fy = 60 ksi and ​​f​c​ ′​​ = 4 ksi.

	11.3.	 A 12-span continuous reinforced concrete T beam is to carry a calculated 
dead load of 900 lb∕ft including self-weight, plus a service live load of  
1400 lb∕ft on uniform spans measuring 26.5 ft between centers of supporting 
columns (25 ft clear spans). The slab thickness is 6 in., and the effective 
flange width is 75 in. Web proportions are bw  =  0.6d, and the maximum 
reinforcement ratio will be set at 0.011. All columns will be 18 in. square. 
Material strengths are ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.
(a)	 Find the factored moments for the exterior and first interior span based 

on the ACI Code moment coefficients of Table 11.1.
(b)	 Find the factored moments in the exterior and first interior span by 

elastic frame analysis, assuming the floor-to-floor height to be 10 ft. 
Note that alternative live loadings should be considered (see Section 
11.2a) and that moments can be reduced to account for the support width 
(see Section 11.5a). Compare your results with those obtained using the 
ACI moment coefficients.

(c)	 Adjust the factored negative and positive moments, taking advantage of 
the redistribution provisions of the ACI Code. Assume that a 10 percent 
minimum redistribution is possible.

(d)	 Design the exterior and first interior spans for flexure and shear, finding 
concrete dimensions and bar requirements, basing your design on the 
assumptions and modified moments in part (c).

	11.4.	 A continuous reinforced concrete frame consists of a two-span rectangular 
beam ABC, with center-to-center spans AB and BC of 24 ft. Columns meas-
uring 14 in. square are provided at A, B, and C. The columns may be con-
sidered fully fixed at the floors above and below for purposes of analysis. 
The beam will carry a service live load of 1200 lb∕ft and a calculated dead load 
of 1000 lb∕ft, including self-weight. Floor-to-floor height is 12 ft. Material 
strengths are fy = 60,000 psi and ​​f​c​ ′​​ = 4000 psi.
(a)	 Perform an elastic analysis of the two-span frame, considering alternate 

live loadings to maximize the bending moment at all critical sections. 
Design the beams, using a maximum reinforcement ratio of 0.012 and 
d  =  2b. Find the required concrete section and required steel areas at 
positive and negative bending sections. Select the reinforcement. Cutoff 
points can be determined according to Fig. 6.25. Note that negative 
design moments are at the face of supports, not support centerlines.

(b)	 Take maximum advantage of the redistribution provisions of ACI Code 
8.4 (see Section 11.9e) to reduce design moments at all critical sections 
and redesign the steel for the beams. Keep the concrete section unchanged. 
Select reinforcement and determine cutoff points.
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(c)	 Comment on your two designs with regard to the amount of steel required 
and the possible congestion of steel at the critical bending sections. You 
may assume that the shear reinforcement is unchanged in the redesigned 
beam.

	11.5.	 Complete the preliminary design of a three-story library building shown in 
Fig. P11.5. The first floor (slab on grade) will be used as the reading room 
(live load = 60 lb∕ft2). The second and third floors will be stack areas (live 
load  =  150  lb∕ft2). The dead load on each floor consists of the structure 
weight plus 20  lb∕ft2 for floor finish, lighting, and partitions. The roof  
live load and the snow load are both 20  lb∕ft2. Assume a load of 70  lb∕ft2 
on the roof for the mechanical penthouse. The building is enclosed in a 
self-supporting curtain wall that also carries the lateral load on the structure. 
The column cross sections should be maintained from floor to floor. Beams 
are spaced at 8 ft; girders are spaced at 20 ft. The minimum clear height 
between floors is 12 ft, and the floor depth may not exceed 24 in. Use 
fy  =  60,000 psi and ​​f​c​ ′​​ = 4000 psi. The preliminary design should include  
the structural slab, beams, girders, and columns for a typical floor.

3 
@
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0

′ =
 6

0
′

3 @ 24′ = 72′
3 @ 8′ = 24′

FIGURE P11.5
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Analysis and Design  
of One-Way Slabs

	 12.1	 TYPES OF SLABS

In reinforced concrete construction, slabs are used to provide flat, useful surfaces. 
A reinforced concrete slab is a broad, flat plate, usually horizontal, with top and bot-
tom surfaces parallel or nearly so. It may be supported by reinforced concrete beams 
(and is usually cast monolithically with such beams), by masonry or reinforced con-
crete walls, by structural steel members, directly by columns, or continuously by the 
ground.

Slabs may be supported on two opposite sides only, as shown in Fig. 12.1a, in 
which case the structural action of the slab is essentially one-way, the loads being 
carried by the slab in the direction perpendicular to the supporting beams. There 
may be beams on all four sides, as shown in Fig. 12.1b, so that two-way slab action 
is obtained. Intermediate beams, as shown in Fig. 12.1c, may be provided. If the 
ratio of length to width of one slab panel is larger than about 2, most of the load is 
carried in the short direction to the supporting beams and one-way action is obtained 
in effect, even though supports are provided on all sides.

Concrete slabs in some cases may be carried directly by columns, as shown in 
Figs. 1.3 and 12.1d, without the use of beams or girders. Such slabs are described 
as flat plates and are commonly used where spans are not large and loads not par-
ticularly heavy. Flat slab construction, shown in Figs. 1.4 and 12.1e, is also beamless 
but incorporates a thickened slab region in the vicinity of the column and often 
employs flared column tops. They are referred to as drop panels and column capitals, 
respectively. Both devices increase the shear capacity around columns. Drop panels 
increase bending capacity, as well. Shear caps, a smaller version of drop panels, can 
be used to increase shear but not bending capacity. Closely related to the flat plate 
slab is the two-way joist, also known as a grid or waffle slab, shown in Fig. 12.1f. 
To reduce the dead load of solid-slab construction, voids are formed in a rectilinear 
pattern through use of metal or fiberglass form inserts. A two-way ribbed construc-
tion results. Usually, form inserts are omitted near the columns, so a solid slab is 
available to resist the higher moments and shears in these areas.

In addition to the column-supported types of construction shown in Fig. 12.1, 
many slabs are supported continuously on the ground, as for highways, airport run-
ways, and warehouse floors. In such cases, a well-compacted layer of crushed stone 
or gravel is usually provided to ensure uniform support and to allow for proper 
subgrade drainage.†

† �Design guidance for slabs-on-ground, including the effects of deformation of both the slab and the subgrade, can be found in Design of Slabs-
on-Ground reported by ACI Committee 360 (Ref. 12.1) and PTI DC 10.5-1 (Ref 12.2).
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FIGURE 12.1
Types of structural slabs.
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Reinforcing steel for slabs is primarily parallel to the slab surfaces. Straight bar 
reinforcement is generally used, although in continuous slabs bottom bars are sometimes 
bent up to serve as negative reinforcement over the supports. Welded wire reinforcement 
is commonly employed for slabs on the ground. Bar mats are available for the heavier 
reinforcement sometimes needed in highway slabs and airport runways. Slabs may also 
be prestressed using bonded or unbonded post-tensioning tendons.

Reinforced concrete slabs of the types shown in Fig. 12.1 are usually designed 
for loads assumed to be uniformly distributed over one entire slab panel, bounded 
by supporting beams or column centerlines. Minor concentrated loads can be accom-
modated through two-way action of the reinforcement (two-way flexural steel for 
two-way slab systems or one-way flexural steel plus lateral distribution steel for 
one-way systems). Heavy concentrated loads generally require supporting beams.

One-way edge-supported slabs, such as shown in Fig. 12.1a, are discussed in 
Sections 12.2 and 12.3. Two-way beamless systems, such as shown in Fig. 12.1d, e, 
and f, as well as two-way edge-supported slabs (Fig.  12.1b and c), are covered in 
Chapter 13. Special methods based on limit analysis at the overload state, applicable 
to all types of slabs, are presented in Chapters 23 and 24.

	 12.2	 DESIGN OF ONE-WAY SLABS

The structural action of a one-way slab may be visualized in terms of the deformed 
shape of the loaded surface. Figure 12.2 shows a rectangular slab, simply supported 
along its two opposite long edges and free of any support along the two opposite short 
edges. If a uniformly distributed load is applied to the surface, the deflected shape 
is shown by the solid lines. Curvatures, and consequently bending moments, are the 
same in all strips s spanning in the short direction between supported edges, whereas 
there is no curvature, hence no bending moment, in the long strips l parallel to the 
supported edges. The surface is approximately cylindrical.

For purposes of analysis and design, a unit strip of such a slab cut out at right 
angles to the supporting beams, as shown in Fig. 12.3, may be considered as a rectan-
gular beam of unit width, with a depth h equal to the thickness of the slab and a span 
ℓa equal to the distance between supported edges. This strip can then be analyzed by 
the methods that were used for rectangular beams, the bending moment being com-
puted for the strip of unit width. The load per unit area on the slab becomes the load 

FIGURE 12.2
Deflected shape of uniformly 
loaded one-way slab.
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per unit length on the slab strip. Since all of the load on the slab must be transmit-
ted to the two supporting beams, it follows that all of the reinforcement should be 
placed at right angles to these beams, with the exception of any bars that may be 
placed in the orthogonal direction to control shrinkage and temperature cracking. A 
one-way slab, thus, consists of a set of rectangular beams side by side.

This simplified analysis, which assumes Poisson’s ratio to be zero, is slightly 
conservative. Actually, flexural compression in the concrete in the direction of ℓa 
results in lateral expansion in the direction of ℓb unless the compressed concrete is 
restrained. In a one-way slab, this lateral expansion is resisted by adjacent slab strips, 
which tend to expand also. The result is a slight strengthening and stiffening in the 
span direction, but this effect is small and can be disregarded.

The reinforcement ratio for a slab can be determined by dividing the area of one 
bar by the area of concrete between two successive bars, the latter area being the 
product of the depth to the center of the bars and the distance between them, center 
to center. The reinforcement ratio can also be determined by dividing the average area 
of steel per foot of width by the effective area of concrete in a 1 ft strip. The average 
area of steel per foot of width is equal to the area of one bar times the average num-
ber of bars in a 1 ft strip (12 divided by the spacing in inches), and the effective area 
of concrete in a 1 ft (or 12 in.) strip is equal to 12 times the effective depth d.

To illustrate the latter method of obtaining the reinforcement ratio ρ, assume  
a 5  in. thick slab with an effective depth of 4 in., with No. 4 (No. 13) bars spaced  
4 ​ 1 _ 2 ​  in. center to center. The average number of bars in a 12 in. strip of slab is  
12∕4.5 = 2 ​ 2 _ 3 ​ bars, and the average steel area in a 12 in. strip is 2 ​ 2 _ 3 ​ × 0.20 = 0.533 ​in​2​.  
Hence ρ = 0.533∕(12 × 4) = 0.0111. By the other method,

ρ = ​  0.20 _______ 
4.5 × 4

 ​ = 0.0111

The spacing of bars that is necessary to furnish a given area of steel per foot 
of width is obtained by dividing the number of bars required to furnish this area into 
12  in. For example, to furnish an average area of 0.46  in2∕ft, with No. 4 (No. 13) 
bars, requires 0.46 ÷ 0.20 = 2.3 bars per foot; the bars must be spaced not more than 
12∕2.3  =  5.2 in. center to center. The determination of slab steel areas for various 
combinations of bars and spacings is facilitated by Table A.3 of Appendix A.

Factored moments and shears in one-way slabs can be found by computer or 
elastic analysis or through the use of the same coefficients as used for beams (see 
Chapter 11). In general, center-to-center distances should be used in continuous slab 
analysis, but a reduction is allowed in negative moments to account for support width 
as discussed in Chapter 11. For slabs with clear spans not more than 10 ft that are 

FIGURE 12.3
Unit strip basis for flexural 
design.
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built integrally with their supports, ACI Code 6.6.2.3 permits analysis as a continu-
ous slab on knife edge supports with spans equal to the clear spans and the width 
of the beams otherwise neglected. If moment and shear coefficients are used, com-
putations should be based on clear spans.

One-way slabs are normally designed with tensile reinforcement ratios well 
below the maximum practical value of ρmax. Typical reinforcement ratios range from 
about 0.004 to 0.008. This is partially for reasons of economy, because the saving 
in reinforcement associated with increasing the effective depth more than compen-
sates for the cost of the additional concrete, and partially because very thin slabs 
with high reinforcement ratios would likely result in large deflections. Thus, flexural 
design may start with selecting a relatively low reinforcement ratio, say about 0.3ρmax, 
setting Mu = ϕMn in Eq. (4.34), and solving for the required effective depth d, given 
that b = 12 in. for the unit strip. Alternatively, Table A.5 or Graph A.1 of Appendix A 
may be used. Table A.9 is also useful. The required steel area per 12 in. strip 
As = ρbd is then easily found.

ACI Code 7.3.1 specifies the minimum thickness in Table  12.1† for nonpre-
stressed slabs of normalweight concrete (wc  =  145 pcf ) using Grade 60 reinforce-
ment and typical building loads, provided that the slab is not supporting or attached 
to construction that is likely to be damaged by large deflections. Lesser thicknesses 
may be used if calculation of deflections indicates no adverse effects. For concretes 
having unit weight wc in the range from 90 to 115 pcf, the tabulated values should 
be multiplied by 1.65  −  0.005wc, but not less than 1.09. For reinforcement having 
a yield stress fy other than 60,000 psi, the tabulated values should be multiplied by 
0.4 + fy∕100,000. Slab deflections may be calculated, if required, by the same meth-
ods as for beams (see Section 7.7).

Shear seldom controls the design of one-way slabs, particularly if low tensile 
reinforcement ratios are used. The shear capacity of the concrete ϕVc is usually above 
the required shear strength Vu at factored loads.

The total slab thickness h is usually rounded to the next higher ​ 1 _ 2 ​ in. Best 
economy is often achieved when the slab thickness is selected to match standardized 
form or nominal lumber dimensions. The concrete protection below the reinforce-
ment should follow the requirements of ACI Code 20.5.1, calling for ​ 3 _ 4 ​ in. below the 
bottom of the steel (see Fig. 4.13b). In a typical slab, 1 in. below the center of the 
steel may be assumed. The  lateral spacing of the bars, except those used only to 
control shrinkage and temperature cracks (see Section 12.3), should not exceed 3 
times the thickness h or 18  in., whichever is less, according to ACI Code 7.7.2.3. 
Generally, bar size should be selected so that the actual spacing is not less than 
about 1.5 times the slab thickness, to avoid excessive cost for bar fabrication and 
handling. Also, to reduce cost, straight bars are usually used for slab reinforcement, 
cut off where permitted as described for beams in Section 6.10.

Simply supported ℓ∕20
One end continuous ℓ∕24
Both ends continuous ℓ∕28
Cantilever ℓ∕10

TABLE 12.1
Minimum thickness h of nonprestressed one-way slabs

† �This table first appeared in the 1963 ACI Code and may not fully reflect current loads, materials, and design practice. The authors recommend 
a check of all member deflections.
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	 12.3	 CONSIDERATIONS FOR ONE-WAY SLAB DESIGN

	 a.	 Temperature and Shrinkage Reinforcement

Concrete shrinks as it cures and dries, as was pointed out in Section 2.11. It is 
advisable to minimize such shrinkage by using concretes with the smallest possible 
amounts of water and cement compatible with other requirements, such as strength 
and workability, and by thorough moist-curing of sufficient duration. However, no 
matter what precautions are taken, a certain amount of shrinkage is unavoidable. 
If a slab of moderate dimensions rests freely on its supports, it can contract to 
accommodate the shortening of its length produced by shrinkage. Usually, how-
ever, slabs and other members are joined rigidly to other parts of the structure and 
cannot contract freely. This results in tension stresses known as shrinkage stresses. 
A decrease in temperature relative to that at which the slab was cast, particularly in 
outdoor structures such as parking garages and bridges, may have an effect similar 
to shrinkage. That is, the slab tends to contract and, if restrained from doing so, 
becomes subject to tensile stresses.

Since concrete is weak in tension, these temperature and shrinkage stresses 
are likely to result in cracking. Cracks of this nature are not detrimental, provided 
their size is limited to what are known as hairline cracks. This can be achieved by 
placing reinforcement in the slab to counteract contraction and distribute the cracks 
uniformly. As the concrete tends to shrink, such reinforcement resists the contrac-
tion and consequently becomes subject to compression. The total shrinkage in a 
slab so reinforced is less than that in one without reinforcement; in addition, what-
ever cracks do occur will be of smaller width and more evenly distributed by virtue 
of the reinforcement.

In one-way slabs, the reinforcement provided for resisting the bending moments 
has the desired effect of reducing shrinkage and distributing cracks. However, as 
contraction takes place equally in all directions, it is necessary to provide special 
reinforcement for shrinkage and temperature contraction in the direction perpendic-
ular to the main reinforcement. This added steel is known as shrinkage and tem-
perature reinforcement, or distribution steel.

Reinforcement for shrinkage and temperature stresses normal to the principal 
reinforcement should be provided in a structural slab in which the principal rein-
forcement extends in one direction only. ACI Code 24.4.3.2 specifies a minimum 
ratio of reinforcement area to gross concrete area, that is, based on the total depth 
of the slab, of 0.0018, and in no case may such reinforcing bars be placed farther 
apart than 5 times the slab thickness or more than 18 in.

The steel required by the ACI Code for shrinkage and temperature crack con-
trol also represents the minimum permissible reinforcement in the span direction of 
one-way slabs; the usual minimums for flexural steel do not apply.

	 b.	 Concrete Shear Capacity

The concrete shear capacity of a one-way slab is specified in ACI Code 22.5.5.1 for 
slabs with and without shear reinforcement. Most one-way slabs are governed by 
flexural requirements, and consequently, no shear reinforcement is required. The 
concrete shear capacity for slabs without shear reinforcement is given in Eq. (5.12a), 
which is repeated here:

	 Vc = 8λsλ(ρw)1∕3​​√
__

 ​f​c​ ′​​​ bwd	 (12.1)
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For slabs with minimum flexural reinforcement, this results in a maximum 
concrete shear strength contribution of about Vc = 1.0λ​​√

__
 ​f​c​ ′​​​ bwd. The concrete shear 

capacity is additionally reduced by the size effect described in Chapter 5 and given 
in Eq. (5.12b). The size effect only applies to slabs with an effective depth greater 
than 10 in. These two effects result in a lower concrete shear contribution than used 
prior to 2019. Short, thick, or highly loaded one-way slabs should be checked for 
the shear capacity before proceeding with the flexural design. These effects are 
especially noted in podium slabs that transfer loads from upper portions of a struc-
ture over short spans to supporting members and footings when shear controls the 
overall thickness. 

In cases where the concrete shear capacity is insufficient, the options for 
increasing the shear capacity include increasing the slab thickness, increasing the 
longitudinal reinforcement, adding shear reinforcement, or using higher strength 
concrete. Each option has cost implications and must be evaluated based on local 
conditions. 

	 c.	 Lateral Distribution of Shear Reinforcement

Wide one-way slabs are sometimes used as girders or podium slabs to transfer loads 
from upper portions of a structure to lower portions to minimize disruption to the 
floor height. These wide slabs are deeper and more heavily loaded than ordinary 
floor slabs. An example is an apartment building where upper-story wood framing 
is transferred to the concrete structure below. In these instances, ACI Code 9.7.6.2 
requires that any shear reinforcement be distributed along the length at a spacing of 
not more than d∕2 and across the width at a spacing of not more than d if the required 
shear in the stirrups is less than or equal to 4​​√

__
 ​f​c​ ′​​​ bwd and d∕4 along the length and 

d∕2 across the width if the shear demand exceeds this amount. This transverse 
distribution provides a more uniform transfer of shear stress across the slab.

	 d.	 Structural Integrity

ACI Code Section 7.7.7 requires that one quarter of the positive reinforcement extend 
to the support and be fully developed at the face of the support. Satisfying this 
provision may require hooked bars at simple supports. If the slab is continuous and 
splices are needed, splices of structural integrity reinforcement should be placed near 
the supports. This placement would be away from any maximum positive moment 
region.

	 e.	 Vibrations

Vibrations are rarely of concern for cast-in-place one-way slabs, provided that the 
minimum thicknesses in Table 12.1 is maintained. If thinner slabs are used, ACI 
Code Commentary R24.1 recommends investigation of vibration performance. No 
specific direction is provided, but several references are cited for guidance, including 
Refs. 12.3 and 12.4.

	EXAMPLE 12.1	 One-way slab design.  A reinforced concrete slab is built integrally with its supports and 
consists of two equal spans, each with a clear span of 15 ft. The service live load is 100 psf, 
and 4000 psi concrete is specified for use with steel with a yield stress equal to 60,000 psi. 
Design the slab, following the provisions of the ACI Code.
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Solution.  The thickness of the slab is first estimated, based on the minimum thickness from 
Table 12.1,  ℓ∕28  =  15  ×  12∕28  =  6.43 in. A trial thickness of 6.50 in. is used, for which 
the weight is 150 × 6.50∕12 = 81 psf. The specified live load and computed dead load are 
multiplied by the ACI load factors:
	 Dead load =   81 × 1.2 =   97 psf
	  Live load = 100 × 1.6 = 160 psf 
	                 Total = 257 psf
For this case, factored moments at critical sections may be found using the ACI moment 
coefficients (see Table 11.1):
At interior support:  − M = ​ 1 _ 9 ​  × 0.257 × 152 = 6.43 ft-kips
At midspan:              + M = ​ 1 __ 14 ​ × 0.257 × 152 = 4.13 ft-kips
At exterior support:    − M = ​ 1 __ 24 ​ × 0.257 × 152 = 2.41 ft-kips
The maximum practical reinforcement ratio is, according to Eq. (4.26d),

ρmax = 0.85β1 ​​ 
​f​c​ ′​ __ 
fy

 ​​ ​​ 
εu
 ________ 

εu + εmin
 ​​ = (0.852) ​​ 4 ___ 

60
 ​​ ​​  0.003 ____________  
0.003 + 0.005

 ​​ = 0.0181

If this value of ρ were actually used, the minimum required effective depth, controlled by 
negative moment at the interior support, would be found from Eq. (4.34) to be

d  2 = ​ 
Mu
  ___________________   

ϕρfy b(1 − 0.59ρfy∕​f​c​ ′​ )
 ​

      = ​  6.43 × 12   ______________________________________________      
0.90 × 0.0181 × 60 × 12[1 − 0.59 × 0.0181 × (60∕4)]

 ​ = 7.83 in2

    d = 2.80 in.†

This is less than the effective depth of 6.50 − 1.00 = 5.50 in. resulting from application of  
Code restrictions, and h = 6.5 in. is adopted. At the interior support, if the stress-block depth 
a = 1.00 in., the area of steel required per foot of width in the top of the slab is [Eq. (4.33)]

As = ​ 
Mu ___________  

ϕfy(d − a∕2)
 ​ = ​  6.43 × 12  ________________________   

0.90 × 60 × (5.50 − 1.00∕2)
 ​ = 0.29 in2

Checking the assumed depth a by Eq. (4.28), one gets

a = ​​ 
As fy
 _______ 

0.85​f​c​ ′​b
 ​​ = ​​  0.29 × 60  ____________  

0.85 × 4 × 12
 ​​ = 0.43 in.

A second trial is made with a = 0.43 in. Then

As = ​  6.43 × 12  ________________________   
0.90 × 60 × (5.50 − 0.43∕2)

 ​ = 0.27 in2

for which a = 0.43 × 0.27∕0.29 = 0.40 in. No further revision is necessary. At other critical- 
moment sections, it will be satisfactory to use the same lever arm to determine steel areas, and

At midspan:          As = ​  4.13 × 12  ________________________   
0.90 × 60 × (5.50 − 0.40∕2)

 ​ = 0.17 in2

At exterior support:    As = ​  2.41 × 12  ________________________   
0.90 × 60 × (5.50 − 0.40∕2)

 ​ = 0.10 in2

The minimum reinforcement is that required for control of shrinkage and temperature cracking. 
This is

As = 0.0018 × 12 × 6.50 = 0.14 in2

per 12 in. strip. This requires a small increase in the amount of steel used at the exterior 
support.

† The depth is more easily found using Graph A.1 of Appendix A. For ρ = ρmax, Mu∕ϕbd2 = 913, from which d = 2.80 in. Table A.5a may also be used.
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Using Table 11.1 for the factored shear, the factored shear force at a distance d from 
the face of the interior support is

Vu = 1.15 × ​ 257 × 15 ________ 
2
 ​  − 257 × ​ 5.50 ____ 

12
 ​  = 2100 lb

The slab is less than 10 in. thick, so λs = 1.0. The reinforcement ratio is ρ = 0.14∕12 × 5.5 = 
0.0021. By Eq. (12.1), the nominal shear strength of the concrete slab is

Vc = 8λsλ(ρw)1∕3​​√
__

 ​f​c​ ′​​​ bwd = 8 × 1.0 × 1.0 × (0.0021)1∕3​​√
____

 4000​​ × 12 × 5.5 = 4290 lb

Thus, the design strength of the concrete slab, ϕVc = 0.75 × 4290 = 3220 lb, is above the 
required factored shear of Vu = 2100 lb.

The required tensile steel areas may be provided in a variety of ways, but whatever 
the selection, due consideration must be given to the actual placing of the steel during con-
struction. The arrangement should be such that the steel can be placed rapidly with the 
minimum of labor costs even though some excess steel is necessary to achieve this end.

Two possible arrangements are shown in Fig. 12.4. In Fig. 12.4a, bent bars are used, 
while in Fig. 12.4b all bars are straight, consistent with current practice.

For the arrangement shown in Fig. 12.4a, No. 4 (No. 13) bars at 10 in. furnish 0.24 in2 
of steel at midspan, slightly more than required. If two-thirds of these bars are bent upward 
for negative reinforcement over the interior support, the average spacing of such bent bars at 
the interior support will be (10  +  20)∕2  =  15 in. Since an identical pattern of bars is bent 
upward from the other side of the support, the effective spacing of the No. 4 (No. 13) bars 
over the interior support is 7​ 1 _ 2 ​ in. This pattern satisfies the required steel area of 0.27 in2 per 
foot width of slab over the support. The bars bent at the interior support will also be bent 

FIGURE 12.4
One-way slab design 
example.
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Structural integrity reinforcement must be fully developed at the face
of the support and continuous at the interior support.  
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upward for negative reinforcement at the exterior support, providing reinforcement equivalent 
to No. 4 (No. 13) bars at 15 in., or 0.16  in2 of steel.

Note that it is not necessary to achieve uniform spacing of reinforcement in slabs, and 
that the steel provided can be calculated safely on the basis of average spacing, as in the 
example. Care should be taken to satisfy requirements for both minimum and maximum 
spacing of principal reinforcement, however.

The locations of bend and cutoff points shown in Fig. 12.4a were obtained using Graph 
A.3 of Appendix A, as explained in Section 6.10, and Table A.10 (see also Fig. 6.20).

The arrangement shown in Fig. 12.4b uses only straight bars. Although it is satisfactory 
according to the ACI Code (since the shear stress does not exceed two-thirds of that permitted), 
cutting off the shorter positive and negative bars as shown leads to an undesirable condition at 
the ends of those bars, where there are concentrations of stress in the concrete. The design would 
be improved if the negative bars were cut off 3 ft from the face of the interior support rather 
than 2 ft 6 in. as shown, and if the positive steel were cut off at 2 ft 2 in. rather than at 2 ft 11 in. 
This would result in an overlap of approximately 2d of the cut positive and negative bars. 
Figure 6.26a suggests a somewhat simpler arrangement that would also prove satisfactory.

The required area of steel to be placed normal to the main reinforcement for purposes 
of temperature and shrinkage crack control is 0.14  in2. This is provided by No. 4 (No. 13) 
bars at 16 in. spacing, placed directly on top of the main reinforcement in the positive-moment 
region and below the main steel in the negative-moment zone.

	 12.4	 INTERNAL DUCTWORK 

To maintain floor-to-floor heights, ductwork is sometimes embedded in one-way and 
two-way slabs, as shown in Fig. 12.5. The ducts are used for air circulation and as 
wireways. The ACI Code does not directly address the installation of such systems; 
however, the designer should be aware of the effect of such ductwork on the moment 
and shear capacity of the slab.

FIGURE 12.5
Internal slab ductwork 
installed in a two-way post-
tensioned slab. (Courtesy of 

ECCO Manufacturing.)
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Problems
	12.1.	 A footbridge is to be built, consisting of a one-way solid slab spanning 16 ft 

between masonry abutments, as shown in Fig. P12.1. A service live load of 
100  psf must be carried. In addition, a 2000 lb concentrated service load, 
assumed to be uniformly distributed across the bridge width, may act at any 
location on the span. A 2 in. asphalt wearing surface is used, weighing  
20 psf, including the curb weight. Precast curbs are attached so as to be 
nonstructural. Prepare a design for the slab, using material strengths 
fy  =  60,000 psi and ​f​c​ ′​ = 4000 psi, and summarize your results in the form 
of a sketch showing all concrete dimensions and reinforcement.

(a )

16′

(b )

6′

4″

6″ curb

2″ asphalt

FIGURE P12.1

	12.2.	 A reinforced concrete building floor system consists of a continuous one-way 
slab built monolithically with its supporting beams, as shown in cross section 
in Fig. P12.2. Service live load is 125 psf. Dead loads include a 10 psf 
allowance for nonstructural lightweight concrete floor fill and surface, and a 
10 psf allowance for suspended loads, plus the self-weight of the floor. Using 
ACI coefficients from Chapter 11, calculate the design moments and shears 
and design the slab, using a maximum tensile reinforcement ratio of 0.006. 
Use all straight bar reinforcement. One-half of the positive-moment bars will 
be discontinued where no longer required; the other half will be continued 
into the supporting beams as specified by the ACI Code. All negative steel 
will be discontinued at the same distance from the support face in each case. 
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Summarize your design with a sketch showing concrete dimensions, and size, 
spacing, and cutoff points for all reinforcement. Material strengths are 
fy = 60,000 psi and ​f​c​ ′​ = 3000 psi.

FIGURE P12.2

26″

18″

16′–0″
End span

16′–0″
Typical interior span

18″18″
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Analysis and Design  
of Two-Way Slabs

	 13.1	 TWO-WAY EDGE-SUPPORTED SLABS

The slabs discussed in Sections 12.2 and 12.3 deform under load into an approxi-
mately cylindrical surface. The main structural action is one-way in such cases,  
in the direction normal to supports on two opposite edges of a rectangular panel. In 
many cases, however, rectangular slabs are of such proportions and are supported in 
such a way that two-way action results. When loaded, such slabs bend into a dished 
surface rather than a cylindrical one. This means that at any point the slab is curved 
in both principal directions, and since bending moments are proportional to curva-
tures, moments also exist in both directions. To resist these moments, the slab must 
be reinforced in both directions, by at least two layers of bars perpendicular, respec-
tively, to two pairs of edges. The slab must be designed to take a proportionate share 
of the load in each direction.

Types of reinforced concrete construction that are characterized by two-way 
action include slabs supported by walls or beams on all sides (Fig. 12.1b), flat plates 
(Fig. 12.1d), flat slabs (Fig. 12.1e), and waffle slabs (Fig. 12.1f    ).

The simplest type of two-way slab action is that represented by Fig. 12.1b, 
where the slab, or slab panel, is supported along its four edges by relatively deep, 
stiff, monolithic concrete beams or by walls or steel girders. If the concrete edge 
beams are shallow or are omitted altogether, as they are for flat plates and flat 
slabs, deformation of the floor system along the column lines significantly alters 
the distribution of moments in the slab panel itself (Ref. 13.1). Two-way systems 
of this type are considered separately, beginning in Section 13.2. The present dis-
cussion pertains to two-way slabs in which edge supports are stiff enough to be 
considered unyielding.

Such a slab is shown in Fig. 13.1a. To visualize its flexural performance, it is 
convenient to think of it as consisting of two sets of parallel strips, in each of the 
two directions, intersecting each other. Evidently, part of the load is carried by one 
set and transmitted to one pair of edge supports, and the remainder by the other.

Figure 13.1a shows the two center strips of a rectangular plate with short span 
ℓa and long span ℓb. If the uniform load is q per square foot of slab, each of the two 
strips acts approximately as a simple beam, uniformly loaded by its share of q. 
Because these imaginary strips actually are part of the same monolithic slab, their 
deflections at the intersection point must be the same. Equating the center deflections 
of the short and long strips gives

	​​ 
5qa​ℓ​ a​ 4

 ​
 ______ 

384EI
 ​​ = ​​ 

5qb​ℓ​ b​ 
4​
 ______ 

384EI
 ​​	 (a)
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where qa is the share of the load q carried in the short direction and qb is the share 
of the load q carried in the long direction. Consequently,

	​ 
qa __ qb

 ​ = ​ 
​ℓ​ b​ 

4​
 __ 

​ℓ​ a​ 4 ​
 ​	 (b)

One sees that the larger share of the load is carried in the short direction, the ratio 
of the two portions of the total load being inversely proportional to the fourth power 
of the ratio of the spans.

This result is approximate because the actual behavior of a slab is more com-
plex than that of the two intersecting strips. An understanding of the behavior of the 
slab itself can be gained from Fig. 13.1b, which shows a slab model consisting of 
two sets of three strips each. It is seen that the two central strips s1 and l1 bend in 
a manner similar to that shown in Fig. 13.1a. The outer strips s2 and l2, however, 
are not only bent but also twisted. Consider, for instance, one of the intersections of 
s2 with l2. It is seen that at the intersection the exterior edge of strip l2 is at a higher 
elevation than the interior edge, while at the nearby end of strip l2 both edges are at 
the same elevation; the strip is twisted. This twisting results in torsional stresses and 
torsional moments that are seen to be most pronounced near the corners. Conse-
quently, the total load on  the slab is carried not only by the bending moments in 
two directions but also by the twisting moments. For this reason, bending moments 
in elastic slabs are smaller than would be computed for sets of unconnected strips 
loaded by qa and qb. For instance, for a simply supported square slab, qa = qb = q∕2. 
If only bending were present, the maximum moment in each strip would be

	​ 
(q∕2)ℓ2

 ______ 
8
 ​  = 0.0625qℓ 2	 (c)

The exact theory of bending of elastic plates shows that actually the maximum 
moment in such a square slab is only 0.048qℓ  2, so that in this case the twisting 
moments relieve the bending moments by about 25 percent.

The largest moment occurs where the curvature is sharpest. Figure 13.1b shows 
this to be the case at midspan of the short strip s1. Suppose the load is increased until 
this location is overstressed, so that the steel at the middle of strip s1 is yielding. If 

FIGURE 13.1
Two-way slab on simple edge supports: (a) bending of center strips of slab and (b) grid model of slab.

(a)

Simple supports
on all four edges

�b

l 1

s1

�a

h

(b)

l 1

s1

l2

l2

s2

s2
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the strip were an isolated beam, it would now fail. Considering the slab as a whole, 
however, one sees that no immediate failure will occur. The neighboring strips (those 
parallel as well as those perpendicular to s1), being actually monolithic with it, will 
take over any additional load that strip s1 can no longer carry until they, in turn, start 
yielding. This inelastic redistribution will continue until in a rather large area in the 
central portion of the slab all the steel in both directions is yielding. Only then will 
the entire slab fail. From this reasoning, which is confirmed by tests, it follows that 
slabs need not be designed for the absolute maximum moment in each of the two 
directions (such as 0.048qℓ  2 in the example given in the previous paragraph), but only 
for a smaller average moment in each of the two directions in the central portion of 
the slab. For instance, one of the several analytical methods in general use permits a 
square slab to be designed for a moment of 0.036qℓ  2. By comparison with the actual 
elastic maximum moment 0.048qℓ  2, it is seen that, owing to inelastic redistribution, a 
moment reduction of 25 percent is provided.

The largest moment in the slab occurs at midspan of the short strip s1 of 
Fig. 13.1b. It is evident that the curvature, and hence the moment, in the short strip 
s2 is less than at the corresponding location of strip s1. Consequently, a variation of 
short-span moment occurs in the long direction of the span. This variation is shown 
qualitatively in Fig. 13.2. The short-span moment diagram in Fig. 13.2a is valid only 
along the center strip at 1-1. Elsewhere, the maximum-moment value is less, as 
shown. Other moment ordinates are reduced proportionately. Similarly, the long-span 
moment diagram in Fig. 13.2 applies only at the longitudinal centerline of the slab; 
elsewhere, ordinates are reduced according to the variation shown. These variations 
in maximum moment across the width and length of a rectangular slab are accounted 
for in an approximate way in most practical design methods by designing for a 
reduced moment in the outer quarters of the slab span in each direction.

It should be noted that only slabs with side ratios less than about 2 need be 
treated as two-way slabs. From Eq. (b) above, it is seen that for a slab of this pro-
portion, the share of the load carried in the long direction is only on the order of 
one-sixteenth of that in the short direction. Such a slab acts almost as if it were 
spanning in the short direction only. Consequently, rectangular slab panels with an 
aspect ratio of 2 or more may be reinforced for one-way action, with the main steel 
perpendicular to the long edges.

FIGURE 13.2
Moments and moment variations in a uniformly loaded slab with simple supports on four sides.

(a )

2

2
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1
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2

2
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Consistent with the assumptions of the analysis of two-way edge-supported slabs, 
the main flexural reinforcement is placed in an orthogonal pattern, with reinforcing 
bars parallel and perpendicular to the supported edges. As the positive steel is placed 
in two layers, the effective depth d for the upper layer is smaller than that for the lower 
layer by one bar diameter. Because the moments in the long direction are the smaller 
ones, it is economical to place the steel in that direction on top of the bars in the short 
direction. The stacking problem does not exist for negative reinforcement perpendicu-
lar to the supporting edge beams except at the corners, where moments are small.

Either straight bars, cut off where they are no longer required, or bent bars may 
be used for two-way slabs, but economy of bar fabrication and placement generally 
favors all straight bars. The precise locations of inflection points (or lines of inflection) 
are not easily determined, because they depend upon the side ratio, the ratio of live to 
dead load, and continuity conditions at the edges. The standard cutoff and bend points 
for beams, summarized in Fig. 6.26, may be used for edge-supported slabs as well.

According to ACI Code 8.6.1, the minimum reinforcement near the tension 
face in each direction for two-way slabs is 0.0018 times the gross section area Ag 
and is the value required for shrinkage and temperature crack control. For two-way 
systems, the spacing of flexural reinforcement at critical sections must not exceed 
2  times the slab thickness h.

The twisting moments discussed earlier are usually of consequence only at exte-
rior corners of a two-way slab system, where they tend to crack the slab at the bottom 
along the panel diagonal, and at the top perpendicular to the panel diagonal. Special 
reinforcement should be provided at exterior corners in both the bottom and the top 
of the slab, for a distance in each direction from the corner equal to one-fifth the longer 
span of the corner panel, as shown in Fig. 13.3. The reinforcement at the top of the 
slab should be parallel to the diagonal from the corner, while that at the bottom should 
be perpendicular to the diagonal. Alternatively, either layer of steel may be placed in 
two bands parallel to the sides of the slab. The positive and negative reinforcement, 
in any case, should be of a size and spacing equivalent to that required for the maxi-
mum positive moment (per foot of width) in the panel, according to ACI Code 8.7.3.

	 13.2	 TWO-WAY COLUMN-SUPPORTED SLABS

When two-way slabs are supported by relatively shallow, flexible beams (Fig. 12.1b), 
or if column-line beams are omitted altogether, as for flat plates (Fig. 12.1d), flat slabs 
(Fig. 12.1e), or two-way joist systems (Fig. 12.1f    ), then a number of new considerations 

FIGURE 13.3
Special reinforcement at 
exterior corners of a beam-
supported two-way slab.

� is the longer clear span

�/5

�/5

Option 1

Top bars
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�/5
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As both ways, top
and bottom
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are introduced. Figure 13.4a shows a portion of a floor system in which a rectangu-
lar slab panel is supported by relatively shallow beams on four sides. The beams, in 
turn, are carried by columns at the intersection of their centerlines. If a surface load 
q is applied, that load is shared between imaginary slab strips ℓa in the short direction 
and ℓb in the long direction, as described in Section 13.1. The portion of the load 
that is carried by the long strips ℓb is delivered to the beams B1 spanning in the short 
direction of the panel. The portion carried by the beams B1 plus that carried directly 
in the short direction by the slab strips ℓa sums up to 100 percent of the load applied 
to the panel. Similarly, the short-direction slab strips ℓa deliver a part of the load to 
long-direction beams B2. That load, plus the load carried directly in the long direction 
by the slab, includes 100 percent of the applied load. It is clearly a requirement of 
statics that, for column-supported construction, 100 percent of the applied load must 
be carried in each direction, jointly by the slab and its supporting beams (Ref. 13.2).

A similar situation is obtained in the flat plate floor shown in Fig. 13.4b. In 
this case, beams are omitted. However, broad strips of the slab centered on the col-
umn lines in each direction serve the same function as the beams of Fig. 13.4a; for 

FIGURE 13.4
Column-supported two-way 
slabs: (a) two-way slab with 
beams and (b) two-way slab 
without beams.
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this case, also, the full load must be carried in each direction. The presence of drop 
panels or column capitals (Fig. 12.1e) or shear caps in the double-hatched zone near 
the columns does not modify this requirement of statics.

Figure 13.5a shows a flat plate floor supported by columns at A, B, C, and D. 
Figure 13.5b shows the moment diagram for the direction of span ℓ1. In this direction, 
the slab may be considered as a broad, flat beam of width ℓ2. Accordingly, the load 

FIGURE 13.5
Moment variation in column-
supported two-way slabs:  
(a) critical-moment sections; 
(b) moment variation along  
a span; and (c) moment 
variation across the width of 
critical sections.
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per foot of span is qℓ2. In any span of a continuous beam, the sum of the midspan 
positive moment and the average of the negative moments at adjacent supports is 
equal to the midspan positive moment of a corresponding simply supported beam. 
In terms of the slab, this requirement of statics may be written as

	​  1 _ 2 ​ (Mab + Mcd) + Mef = ​ 1 _ 8 ​ qℓ2​ℓ​ 1​ 
2​	 (a)

A similar requirement exists in the perpendicular direction, leading to the relation

	​  1 _ 2 ​ (Mac + Mbd) + Mgh = ​ 1 _ 8 ​ qℓ1​ℓ​ 2​ 
2​	 (b)

These results disclose nothing about the relative magnitudes of the support 
moments and span moments. The proportion of the total static moment that exists at 
each critical section can be found from an elastic analysis that considers the relative 
span lengths in adjacent panels, the loading pattern, and the relative stiffness of the 
supporting beams, if any, and that of the columns. Alternatively, empirical methods 
that have been found to be reliable under restricted conditions may be adopted.

The moments across the width of critical sections such as AB or EF are not 
constant but vary as shown qualitatively in Fig. 13.5c. The exact variation depends 
on the presence or absence of beams on the column lines, the existence of drop 
panels, column capitals, and shear caps, as well as on the intensity of the load. For 
design purposes, it is convenient to divide each panel as shown in Fig. 13.5c into 
column strips, having a width of one-fourth the panel width, on each side of 
the column centerlines, and middle strips in the one-half panel width between two 
column strips. Moments may be considered constant within the bounds of a middle 
strip or column strip, as shown, unless beams are present on the column lines. In 
the latter case, while the beam must have the same curvature as the adjacent slab 
strip, the beam moment will be larger in proportion to its greater stiffness, produc-
ing a discontinuity in the moment-variation curve at the lateral face of the beam. 
Since the total moment must be the same as before, according to statics, the slab 
moments must be correspondingly less.

Chapter 8 of the ACI Code deals in a unified way with all such two-way sys-
tems. Its provisions apply to slabs supported by beams and to flat plates and flat 
slabs, as well as to two-way joist slabs. As described in Section 12.1, a distinction 
is made between flat plate (see Figs. 1.3 and 12.1d) and flat slab construction 
(Figs. 1.4 and 12.1e), where the former incorporates a slab of constant thickness and 
the latter incorporates column capitals or a thickened slab, using either drop panels 
or shear caps. Column capitals, shown along with drop panels in Figs. 1.4 and 12.1e, 
increase the shear capacity around columns. Drop panels are used to increase shear 
capacity, reduce the minimum required thickness of the remaining slab, and reduce 
the quantity of reinforcement needed for the negative moment near the column. 
According to ACI Code 8.2.4, a drop panel must project below the soffit of the slab 
at least one-quarter of the adjacent panel thickness and extend outward at least one-
sixth of the center to center of supports. Shear caps are used to increase the critical 
section for shear at a slab-column joint. According to ACI Code 8.2.5, a shear cap 
must project below the slab soffit and extend horizontally from the face of the col-
umn a distance at least equal to the thickness of the projection below the slab soffit.

While ACI Code 6.2 permits analysis using most computer and finite element 
programs, and ACI Code 8.2.1 permits design “by any procedure satisfying the 
conditions of equilibrium and geometrical compatibility,” specific reference is made 
in ACI Code 8.2.1 to two alternative approaches: a semiempirical direct design 
method and an approximate elastic analysis known as the equivalent frame method. 
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The details of both alternatives have been eliminated from the 2019 ACI Code but 
may be found in earlier editions of the ACI Code.

A typical panel is divided, for purposes of design, into column strips and 
middle strips. A column strip is defined in the ACI Code as a strip of slab having 
a width on each side of the column centerline equal to one-fourth the smaller of the 
panel dimensions ℓ1 and ℓ2. Such a strip includes column-line beams, if present. A 
middle strip is a design strip bounded by two column strips. In all cases, ℓ1 is defined 
as the span in the direction of the moment analysis and ℓ2 as the span in the lateral 
direction measured center to center of the support. In the case of monolithic con-
struction, beams are defined to include that part of the slab on each side of the beam 
extending a distance equal to the projection of the beam above or below the slab hw 
(whichever is greater) but not greater than 4 times the slab thickness (see Fig. 13.6). 
In practice when commercial analysis programs are used, the effective locations of 
column and middle strips may deviate somewhat from those defined by the ACI 
Code, providing the engineer with some flexibility to revise the definition of column 
and middle strips to match the structural response.

	 a.	 Lateral Distribution of Moments

For design purposes, it is convenient to consider the moments constant within the 
bounds of a middle strip or column strip unless there is a beam present on the column 
line. In the latter case, because of its greater stiffness, a beam within a column strip 
tends to take a larger share of the column-strip moment than the adjacent slab. The 
distribution of total negative or positive moment between slab middle strips, slab 
column strips, and beams depends upon the ratio ℓ2∕ℓ1, the relative stiffness of the 
beam and the slab, and the degree of torsional restraint provided by the edge beam.

A convenient parameter defining the relative stiffness of the beam and slab 
spanning in either direction is

	 αf = ​ 
Ecb Ib _____ 
Ecs Is

 ​	 (13.1)

in which Ecb and Ecs are the moduli of elasticity of the beam and slab concrete 
(usually the same) and Ib and Is are the moments of inertia of the effective beam 
and the slab. Subscripted parameters αf  1 and αf  2 are used to identify α computed for 
the directions of ℓ1 and ℓ2, respectively. By definition, both Ib and, thus, αf equal 
zero when no beam is present.

The flexural stiffnesses of the beam and slab may be based on the gross concrete 
section, neglecting reinforcement and possible cracking, and variations due to column 
capitals and drop panels may be neglected. For the beam, if present, Ib is based on the 

FIGURE 13.6
Portion of slab to be included 
with beam.
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effective cross section defined as in Fig. 13.6. For the slab, Is is taken equal to bh3∕12, 
where b in this case is the width between panel centerlines on each side of the beam.

The relative restraint provided by the torsional resistance of the effective trans-
verse edge beam is reflected by the parameter βt, defined as

	​ βt = ​ 
EcbC

 _____ 
2Ecs Is

 ​​	 (13.2)

where Is, as before, is calculated for the slab spanning in direction ℓ1 and having 
width bounded by panel centerlines in the ℓ2 direction. The constant C pertains to 
the torsional rigidity of the effective transverse beam, which is defined as the largest 
of the following:

	 1.	 A portion of the slab having a width equal to that of the column, bracket, or 
capital in the direction in which moments are taken.

	 2.	 The portion of the slab specified in 1 plus that part of any transverse beam above 
and below the slab.

	 3.	 The transverse beam defined as in Fig. 13.6.

The constant C is calculated by dividing the section into its component rectangles, 
each having smaller dimension x and larger dimension y, and summing the contri-
butions of all the parts by means of the equation

	 C = ​​∑  ​ 
 
  ​​​ ​​( 1 − 0.63 ​ x __ y ​ )​​ ​ x

3y
 ___ 

3
 ​	  (13.3)

The subdivision can be done in such a way as to maximize C.
With these parameters defined, the negative and positive moments are distrib-

uted between column strips and middle strips, assigning to the column strips the 
portions of positive and negative moments shown in Table 13.1. Linear interpolations 
are to be made between the values shown.

Implementation of these provisions is facilitated by the interpolation charts of 
Graph A.4 of Appendix A. The portion of the total interior negative and positive 
moments assigned to the column strip can be read directly from the charts for known 

ℓ2∕ℓ1

0.5 1.0 2.0

Interior negative moment
  αf 1ℓ2∕ℓ1 = 0 0.75 0.75 0.75
  αf 1ℓ2∕ℓ1 ≥ 1.0 0.90 0.75 0.45

Exterior negative moment

  αf 1ℓ2∕ℓ1 = 0 βt = 0 1.00 1.00 1.00
βt ≥ 2.5 0.75 0.75 0.75

  αf 1ℓ2∕ℓ1 ≥ 1.0 βt = 0 1.00 1.00 1.00
βt ≥ 2.5 0.90 0.75 0.45

Positive moment
  αf 1ℓ2∕ℓ1 = 0 0.60 0.60 0.60
  αf 1ℓ2∕ℓ1 ≥ 1.0 0.90 0.75 0.45

TABLE 13.1
Column-strip moment, portion of total moment at 
critical section
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values of ℓ2∕ℓ1 and αf 1ℓ2∕ℓ1. For exterior negative moment, the parameter βt requires 
an additional interpolation, facilitated by the auxiliary diagram on the right side of 
the charts in Graph A.4. To illustrate its use for ℓ2∕ℓ1 = 1.55 and αf 1ℓ2∕ℓ1 = 0.6, the 
dotted line indicates values of 1.00 for βt  =  0 and 0.65 for βt  =  2.5. Projecting to 
the right as indicated by the arrow to find the appropriate vertical scale of 2.5 divi-
sions for an intermediate value of βt, say 1.0, then upward and finally to the left, 
one reads the corresponding value of 0.86 on the main chart.

The column-line beam spanning in the direction ℓ1 is to be proportioned to 
resist 85 percent of the column-strip moment if αf 1ℓ2∕ℓ1 is equal to or greater than 
1.0. For values between 1 and 0, the proportion to be resisted by the beam may be 
obtained by linear interpolation. Concentrated or linear loads applied directly to such 
a beam should be accounted for separately.

The portion of the moment not resisted by the column strip is proportionately 
assigned to the adjacent half-middle strips. Each middle strip is designed to resist 
the sum of the moments assigned to its two half-middle strips. A middle strip 
adjacent and parallel to a wall is designed for twice the moment assigned to the 
half-middle strip corresponding to the first row of interior supports.

	 b.	 Shear in Slab Systems with Beams

Special attention must be given to providing the proper resistance to shear, as well 
as to moment, when designing slabs with beams. Beams with αf1ℓ2∕ℓ1  ≥  1.0 must 
be proportioned to resist the shear caused by loads on a tributary area defined as 
shown in Fig. 13.7. For values of αf 1ℓ2∕ℓ1 between 1 and 0, the proportion of load 
carried by beam shear is found by linear interpolation. The remaining fraction of the 
load on the shaded area is assumed to be transmitted directly by the slab to the 
columns at the four corners of the panel, and the shear stress in the slab computed 
accordingly (see Section 13.7).

FIGURE 13.7
Tributary areas for shear 
calculation.
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	 13.3	 FLEXURAL REINFORCEMENT FOR  
COLUMN-SUPPORTED SLABS

Consistent with the assumptions made in analysis, flexural reinforcement in two-way 
slab systems is placed in an orthogonal grid, with bars parallel to the sides of the 
panels. Bar diameters and spacings are described in Section 12.2. Straight bars are 
generally used throughout. To provide for local concentrated loads, as well as to 
ensure that tensile cracks are narrow and well distributed, a maximum bar spacing 
at critical sections of 2 times the total slab thickness or 18 in. is specified by ACI 
Code 8.7.2.2 for two-way slabs. At least the minimum steel required for temperature 
and shrinkage crack control (see Section 12.3) must be provided. For protection  
of the steel against damage from fire or corrosion, at least ​ 3 _ 4 ​ in. concrete cover must be 
maintained.

Because of the stacking that results when bars are placed in perpendicular 
layers, the inner steel has an effective depth 1 bar diameter less than the outer steel. 
For flat plates and flat slabs, the issue of stacking relates to middle-strip positive 
steel and column-strip negative bars. In two-way slabs with beams on the column 
lines, stacking occurs for the middle-strip positive steel, and in the column strips is 
important mainly for the column-line beams, because slab moments are usually very 
small in the region where column strips intersect.

In the discussion of reinforcement stacking for two-way slabs supported by 
walls or stiff edge beams, in Section 13.1 it was pointed out that, because curvatures 
and moments in the short direction are greater than in the long direction of a rec-
tangular panel, short-direction bars are normally placed closer to the top or bottom 
surface of the slab, with the larger effective depth d, and long-direction bars are 
placed inside these, with the smaller d. For two-way beamless flat plates, or slabs 
with relatively flexible edge beams, things are not so simple.

Consider a rectangular interior panel of a flat plate floor. If the slab column strips 
provided unyielding supports for the middle strips spanning in the perpendicular direc-
tion, the short-direction middle-strip curvatures and moments would be the larger. In 
fact, the column strips deflect downward under load, and this softening of the effective 
support greatly reduces curvatures and moments in the supported middle strip.

For the entire panel, including both middle strips and column strips in each 
direction, the moments in the long direction will be larger than those in the short 
direction, as is easily confirmed by calculating the static moment Mo = qℓ2​ℓ​ n​ 2​∕8 
in each direction for a rectangular panel. Noting that the apportioning of Mo first 
to negative- and positive-moment sections, and then laterally to column and mid-
dle strips, is done by applying exactly the same ratios in each direction to the 
corresponding section, it is clear that the middle-strip positive moments (for 
example) are larger in the long direction than the short direction, exactly the 
opposite of the situation for the slab with stiff edge beams. In the column strips, 
positive and negative moments are larger in the long than in the short direction. 
On this basis, the designer is led to place the long-direction negative and positive 
bars, in both middle and column strips, closer to the top or bottom surface of the 
slab, respectively, providing a larger effective depth.

If column-line beams are added, and if their stiffness is progressively 
increased for comparative purposes, it will be found that the short-direction slab 
moments gradually become dominant, although the long-direction beams carry 
larger moments than the short-direction beams. This will be clear from a careful 
study of Table 13.1.
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The situation is further complicated by the influence of the ratio of short to 
long side dimensions of a panel, and by the influence of varying conditions of edge 
restraint (such as, corner vs. typical exterior vs. interior panel). While no firm rules 
can be given, the best guide in specifying steel placement order in areas where 
stacking occurs is the relative magnitudes of design moments obtained from anal-
ysis for a particular case, with maximum d provided for the bars resisting the 
largest moment. For square slab panels, many designers calculate the required steel 
area based on the average effective depth, thus obtaining the same bar size and 
spacing in each direction. This is slightly conservative for the outer layer and 
slightly unconservative for the inner steel. Redistribution of loads and moments 
before failure would provide for the resulting differences in capacities in the two 
directions.

Reinforcement cutoff points could be calculated from moment envelopes if 
available; however, when either the equivalent frame or the direct design method is 
used, moment envelopes and lines of inflection are not found explicitly. In such a 
case, standard bar cutoff points from Fig. 13.8 are used, as recommended in the ACI 

FIGURE 13.8
Minimum length of slab reinforcement in a slab without beams.
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Code. The requirement that at least 50 percent of the negative reinforcement extend 
at least 5d from the face of the exterior support in slabs without drop panels is to 
ensure that a shear crack in a deep slab does not pass beyond the end of the termi-
nated reinforcement.

The structural integrity provisions of ACI Code 8.7.4 require that all bottom 
bars within the column strip in each direction be continuous or spliced with Class B 
splices (see Section 6.13a) or mechanical or welded splices located as shown in 
Fig.  13.8. At least two of the column strip bars in each direction must pass within 
the column core and must be anchored at exterior supports. The continuous column 
strip bottom steel is intended to provide some residual ability to carry load to adjacent 
supports by catenary action if a single support should be damaged or destroyed.  
The two continuous bars through the column can be considered to be “integrity steel” 
and are provided to give the slab some residual capacity following a single punching 
shear failure.

The need for special reinforcement at the exterior corners of two-way 
beam-supported slabs was described in Section 13.1, and typical corner reinforce-
ment is shown in Fig. 13.3. According to ACI Code 8.7.3, such reinforcement is 
required for slabs with beams between supporting columns if the value of αf given 
by Eq.  (13.1) is greater than 1.0.

	 13.4	 DEPTH LIMITATIONS OF THE ACI CODE

To ensure that slab deflections in service will not be troublesome, the recommended 
approach is to calculate deflections for the total load or load component of interest 
and to compare the calculated deflections with limiting values. Methods have been 
developed that are both simple and acceptably accurate for predicting deflections of 
two-way slabs. A method for calculating the deflection of two-way column-supported 
slabs is presented in Section 13.10.

Alternatively, in accordance with ACI Code 8.3.1, deflection control can be 
achieved indirectly by adhering to more or less arbitrary limitations on minimum slab 
thickness, limitations developed from review of test data and study of the observed 
deflections of actual structures.† As a result of efforts to improve the accuracy and 
generality of the limiting equations, they have become increasingly complex.

ACI Code 8.3.1 establishes minimum thicknesses for two-way construction. 
Simplified criteria are included pertaining to slabs without interior beams (flat plates 
and flat slabs with or without edge beams), while more complicated limit equations 
are applied to slabs with beams spanning between the supports on all sides. In both 
cases, minimum thicknesses less than the specified value may be used if calculated 
deflections are within Code-specified limits, as quoted in Table 7.2.

	 a.	 Slabs without Interior Beams

The minimum thickness of two-way slabs without interior beams, according to ACI 
Code 8.3.1, must not be less than provided by Table 13.2. Edge beams, often pro-
vided even for two-way slabs otherwise without beams to improve moment and shear 
transfer at the exterior supports, permit a reduction in minimum thickness of about 

† �These limitations have been in the Code for many years and may not fully reflect current loads, material properties, and design practice. The authors 
recommend a check of member deflections in all cases.
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10  percent in exterior panels. In all cases, the minimum thickness of slabs without 
interior beams must not be less than the following:

For slabs without drop panels      5 in.
For slabs with drop panels       4 in.

	 b.	 Slabs with Beams on All Sides

The parameter used to define the relative stiffness of the beam and slab spanning in 
either direction is αf, calculated from Eq. (13.1) of Section 13.2a. Then αfm is defined 
as the average value of αf for all beams on the edges of a given panel. According to 
ACI Code 8.3.1.2, for αfm equal to or less than 0.2, the minimum thicknesses of 
Table 13.2 shall apply.

For αfm greater than 0.2 but not greater than 2.0, the slab thickness must not 
be less than

	 h = ​​ 
ℓn  (0.8 +  fy∕200,000)

  __________________  
36 + 5β(αfm − 0.2)

 ​​	  (13.4a)

and not less than 5.0 in.
For αfm greater than 2.0, the thickness must not be less than

	 h = ​​ 
ℓn  (0.8 +  fy∕200,000)

  __________________  
36 + 9β

  ​​	 (13.4b)

and not less than 3.5 in.,

where ℓn = clear span in long direction, in.
αfm = average value of αf for all beams on edges of a panel [see Eq. (13.1)]

β = ratio of clear span in long direction to clear span in short direction

At discontinuous edges, an edge beam must be provided with a stiffness ratio αf not 
less than 0.8; otherwise, the minimum thickness provided by Eq. (13.4a) or (13.4b) 
must be increased by at least 10 percent in the panel with the discontinuous edge.

In all cases, slab thickness less than the stated minimum may be used if it can 
be shown by calculation that deflections do not exceed the limit values of Table 7.2.

Without Drop Panels With Drop Panels

Yield 
Stress  

fy,  
psi

Exterior Panels Interior Panels Exterior Panels Interior Panels

Without  
Edge  

Beams

With  
Edge  

Beamsa

Without  
Edge  

Beams

With  
Edge  

Beamsa

40,000 ℓn∕33 ℓn∕36 ℓn∕36 ℓn∕36 ℓn∕40 ℓn∕40
60,000 ℓn∕30 ℓn∕33 ℓn∕33 ℓn∕33 ℓn∕36 ℓn∕36
80,000 ℓn∕27 ℓn∕30 ℓn∕30 ℓn∕30 ℓn∕33 ℓn∕33

a Slabs with beams along exterior edges. The value of αf for the edge beam shall not be less than 0.8.

TABLE 13.2
Minimum thickness of slabs without interior beams
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Equations (13.4a) and (13.4b) can be restated in the general form

	 h = ​​ 
ℓn  (0.8 +  fy∕200,000)

  __________________  
F

 ​​ 	 (13.4c)

where F is the value of the denominator in each case. Figure 13.9 shows the value 
of F as a function of αfm, for comparative purposes, for three panel aspect ratios β:

	 1.	 Square panel, with β = 1.0
	 2.	 Rectangular panel, with β = 1.5
	 3.	 Rectangular panel, with β = 2.0, the upper limit of applicability of Eqs. (13.4a) 

and (13.4b)

Note that, for αfm less than 0.2, column-line beams have little effect, and minimum 
thickness is given by Table 13.2. For stiff, relatively deep edge beams, with αfm of 
2 or greater, Eq. (13.4b) governs. Equation (13.4a) provides a transition for slabs 
with shallow column-line beams having αfm in the range from 0.2 to 2.0.

	 13.5	 DIRECT DESIGN METHOD

The direct design method is a semiempirical approach to finding moments and shears 
in two-way slab structures. The method is highly restrictive, requiring at least three 
continuous, nearly equal spans in each direction; minor variations in column place-
ment; and only gravity loadings. The method is not allowed for the design of footings 
or for prestressed concrete slabs. Because the direct design method is seldom used 
in practice, it is not included in this volume; however, the details of this method 
are found in the 15th and earlier editions of this book and in the ACI Code prior 
to 2019.

FIGURE 13.9
Parameter F governing 
minimum thickness  
of two-way slabs;  
minimum thickness 
h = ℓn (0.8 + fy∕200,000)∕F.
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	 13.6	 EQUIVALENT FRAME METHOD

	 a.	 Basis of Analysis

The equivalent frame method, proposed by Peabody in 1948 and later updated based 
on laboratory testing (Refs. 13.3 to 13.11), was incorporated in subsequent editions 
of the ACI Code as design by elastic analysis. The method was greatly expanded 
and refined based on research in the 1960s (Refs. 13.12 and 13.13) as the equivalent 
frame method.

The equivalent frame method was derived with the assumption that the analy-
sis would be done using the moment distribution method (see Chapter 11). If anal-
ysis is done by computer using a standard frame analysis program, special modeling 
devices are necessary. This point is discussed further in Section 13.6e.

By the equivalent frame method, the structure is divided, for analysis, into 
continuous frames centered on the column lines and extending both longitudinally 
and transversely, as shown by the shaded strips in Fig. 13.10. Each frame is com-
posed of a row of columns and a broad continuous beam. The beam, or slab beam, 
includes the portion of the slab bounded by panel centerlines on either side of the 
columns, together with column-line beams or drop panels, if used. For vertical load-
ing, each floor with its columns may be analyzed separately, with the columns 
assumed to be fixed at the floors above and below. In calculating bending moment 
at a support, it is convenient and sufficiently accurate to assume that the continuous 
frame is completely fixed at the support with two panels removed from the given 
support, provided the frame continues past that point.

FIGURE 13.10
Building idealization for 
equivalent frame analysis.
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	 b.	 Moment of Inertia of Slab Beam

Moments of inertia used for analysis may be based on the concrete cross section, 
neglecting reinforcement, but variations in cross section along the member axis 
should be accounted for.

For the slab-beam strips, the first change from the midspan moment of inertia 
normally occurs at the edge of drop panels, if they are used. The next occurs at the 
edge of the column or column capital. While the stiffness of the slab-beam strip 
could be considered infinite within the bounds of the column or capital, at locations 
close to the panel centerlines (at each edge of the slab-beam strip), the stiffness is 
much less. From the center of the column to the face of the column or capital, the 
moment of inertia of the slab beam is taken equal to the value at the face of  
the column or capital, divided by the quantity (1 − c2∕ℓ2)2, where c2 and ℓ2 are the 
size of the column or capital and the panel width, respectively, both measured trans-
verse to the direction in which moments are being determined.

Accounting for these changes in moments of inertia results in a member, for anal-
ysis, in which the moment of inertia varies in a stepwise manner. The stiffness factors, 
carryover factors, and uniform-load fixed-end moment factors needed for moment dis-
tribution analysis (see Chapter 11) are given in Table A.13a of Appendix A for a slab 
without drop panels and in Table A.13b for a slab with drop panels with a depth equal 
to 1.25 times the slab depth and a total length equal to one-third the span length.

	 c.	 The Equivalent Column

In the equivalent frame method of analysis, the columns are considered to be attached 
to the continuous slab beam by torsional members that are transverse to the direction of 
the span for which moments are being found; the torsional member extends to the panel 
centerlines bounding each side of the slab beam under study. Torsional deformation of 
these transverse supporting members reduces the effective flexural stiffness provided by 
the actual column at the support. This effect is accounted for in the analysis by use of 
what is termed an equivalent column having stiffness less than that of the actual column.

The action of a column and the transverse torsional member is easily explained 
with reference to Fig. 13.11, which shows, for illustration, the column and transverse 
beam at the exterior support of a continuous slab-beam strip. From Fig. 13.11, it is 

FIGURE 13.11
Torsion at a transverse 
supporting member 
illustrating the basis of the 
equivalent column.
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clear that the rotational restraint provided at the end of the slab spanning in the 
direction ℓ1 is influenced not only by the flexural stiffness of the column but also 
by the torsional stiffness of the edge beam AC. With distributed torque mt applied 
by the slab and resisting torque Mt provided by the column, the edge-beam sections 
at A and C will rotate to a greater degree than the section at B, owing to torsional 
deformation of the edge beam. To allow for this effect, the actual column and beam 
are replaced by an equivalent column, so defined that the total flexibility (inverse of 
stiffness) of the equivalent column is the sum of the flexibilities of the actual column 
and beam. Thus,

	​   1 ___ 
Kec

 ​ = ​​  1 ____ 
ΣKc

 ​​ + ​ 1 __ 
Kt

 ​	 (13.5)

where Kec = flexural stiffness of equivalent column
Kc = flexural stiffness of actual column
Kt =  torsional stiffness of edge beam

all expressed in terms of moment per unit rotation. In computing Kc, the moment of 
inertia of the actual column is assumed to be infinite from the top of the slab to the 
bottom of the slab beam, and Ig is based on the gross concrete section elsewhere 
along the length. Stiffness factors for such a case are given in Table A.13c.

The effective cross section of the transverse torsional member, which may or 
may not include a beam web projecting below the slab, as shown in Fig. 13.11, is 
the same as defined earlier in Section 13.3a. The torsional constant C is calculated 
by Eq.  (13.3) based on the effective cross section so determined. The torsional 
stiffness Kt can then be calculated by the expression

	 Kt = ∑ ​​ 
9EcsC
 _____________  

ℓ2  (1 − c2∕ℓ2)3
 ​​	 (13.6)

where Ecs = modulus of elasticity of slab concrete
c2 = size of rectangular column, capital, or bracket in direction ℓ2
C = cross-sectional constant [see Eq. (13.3)]

The summation applies to the typical case in which there are slab beams (with or 
without edge beams) on both sides of the column. The length ℓ2 is measured center 
to center of the supports and thus may have different values in each of the summa-
tion terms in Eq. (13.6), if the transverse spans are unequal.

If a panel contains a beam parallel to the direction in which moments are being 
determined, the value of Kt obtained from Eq. (13.6) leads to values of Kec that are 
too low. Accordingly, in such cases, the value of Kt found by Eq. (13.6) should be 
multiplied by the ratio of the moment of inertia of the slab with such a beam to the 
moment of inertia of the slab without it.

The concept of the equivalent column, illustrated with respect to an exterior 
column, is employed at all supporting columns for each continuous slab beam, 
according to the equivalent frame method.

	 d.	 Moment Analysis

With the effective stiffness of the slab-beam strip and the supports found as 
described, the analysis of the equivalent frame can proceed by moment distribution 
(see Chapter 11).
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In keeping with the requirements of statics (see Section 13.2), equivalent beam 
strips in each direction must each carry 100 percent of the load. If the unfactored 
live load does not exceed three-quarters of the unfactored dead load, maximum 
moment may be assumed to occur at all critical sections when the full factored live 
load (plus factored dead load) is on the entire slab, according to ACI Code 6.4.3. 
Otherwise, pattern loadings must be used to maximize positive and negative 
moments. Maximum positive moment is calculated with three-quarters factored live 
load on the panel and on alternate panels, while maximum negative moment at a 
support is calculated with three-quarters factored live load on the adjacent panels 
only. Use of three-quarters live load rather than the full value recognizes that max-
imum positive and negative moments cannot occur simultaneously (since they are 
found from different loadings) and that redistribution of moments to less highly 
stressed sections will take place before failure of the structure occurs. It also rec-
ognizes, as explained in Section 13.1, that two-way systems have an inherently 
greater load capacity than represented by the simple approach used in the equivalent 
frame method in which the slab is treated as carrying load in only one direction. 
Factored moments must not be taken less than those corresponding to full factored 
live load on all panels, however.

Negative moments obtained from that analysis apply at the centerlines of sup-
ports. Since the support is not a knife edge but a rather broad band of slab spanning 
in the transverse direction, some reduction in the negative design moment is proper 
(see also Section 11.5a). At interior supports, the critical section for negative bend-
ing, in both column and middle strips, may be taken at the face of the supporting 
column or capital, but in no case at a distance greater than 0.175ℓ1 from the center 
of the column. To avoid excessive reduction of negative moment at the exterior 
supports (where the distance to the point of inflection is small) for the case where 
columns are provided with capitals, the critical section for negative bending in the 
direction perpendicular to an edge should be taken at a distance from the face of 
support not greater than one-half the projection of the capital beyond the face of 
the support.

With positive and negative design moments obtained as just described, it still 
remains to distribute these moments across the widths of the critical sections. For 
design purposes, the total strip width is divided into column strip and adjacent 
half-middle strips, defined previously in Section 13.2, and moments are assumed 
constant within the bounds of each. The distribution of moments to column and 
middle strips is done using the percentages given in Table 13.1 and by the interpo-
lation charts of Graph A.4 of Appendix A.

The distribution of moments and shears to column-line beams, if present, is in 
accordance with the procedures in Section 13.2a. If beams are used on the column 
lines, the relative stiffness of the beams in the two perpendicular directions, given 
by the ratio αf1​ℓ​ 2​ 

2​∕αf 2​ℓ​ 1​ 
2​, must be between 0.2 and 5.0. 

	EXAMPLE 13.1	 Design of flat plate floor by equivalent frame method.  An office building is planned 
using a flat plate floor system with the column layout as shown in Fig. 13.12. No beams, 
drop panels, or column capitals are permitted. Specified live load is 100 psf, and the dead 
load includes the weight of the slab plus an allowance of 20 psf for finish floor plus suspended 
loads. The columns are 18  in. square, and the floor-to-floor height of the structure is 12 ft. 
Design the interior panel C, using material strengths fy  =  60,000 psi and ​f​c​ ′​ = 4000 psi. 
Straight-bar reinforcement is selected.
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Solution.  Minimum thickness h for a flat plate, according to the ACI Code, may be found 
from Table 13.2.† For the present example, the minimum h for the exterior panel is

h = ​ 
ℓn ___ 
30

 ​ = ​ 20.5 × 12 _________ 
30

 ​  = 8.20  in.

This is rounded up for practical reasons, with calculations based on a trial thickness of 8.5 in. 
for all panels. Thus, the dead load of the slab is 150  ×  8.5∕12  =  106  psf, to which the 
superimposed dead load of 20 psf must be added. The factored design loads are

1.2qd = 1.2(106 + 20) = 151 psf
 1.6ql = 1.6 × 100 = 160 psf

The structure is identical in each direction, permitting the design for one direction to 
be used for both (an average effective depth to the tensile steel will be used in the calculations). 
Moments will be found by the method of moment distribution.

For flat plate structures, it is usually acceptable to calculate stiffnesses as if all members 
were prismatic, neglecting the increase in stiffness within the joint region, as it generally has 
negligible effect on design moments and shears. Then, for the slab spans,

Ks = ​​ 
4EcIc

 _____ 
ℓ
  ​​

= ​ 
4Ec  (264 × 8.53)

  ______________  
12 × 264

 ​  = 205Ec

and the column stiffnesses are

Kc = ​ 
4Ec (18 × 183)

  ____________  
12 × 144

 ​  = 243Ec

† �In many flat plate floors, the minimum slab thickness is controlled by requirements for shear transfer at the supporting columns, and h is 
determined either to avoid supplementary shear reinforcement or to limit the excess shear to a reasonable margin above that which can be 
carried by the concrete. Design for shear in flat plates and flat slabs is treated in Section 13.7.

FIGURE 13.12
Two-way flat plate floor.
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ANALYSIS AND DESIGN OF TWO-WAY SLABS      417

Calculation of the equivalent column stiffness requires consideration of the torsional deforma-
tion of the transverse strip of slab that functions as the supporting beam. Applying the criteria 
of the ACI Code establishes that the effective torsional member has width 18  in. and depth 
8.5 in. For this section, the torsional constant C from Eq. (13.3) is

C = Σ ​( 1 − 0.63 ​ x __ y ​ )​ ​ x
3y
 ___ 

3
 ​  = ​( 1 − 0.63 × ​  8.5 ___ 

18
 ​  )​8.53 × ​ 18 ___ 

3
 ​ = 2590 in4

and the torsional stiffness, from Eq. (13.6), is

Kt = Σ ​ 
9EcsC ____________  

ℓ2(1 − c2∕ℓ2)3
 ​ = ​ 

9Ec × 2590
  _______________  

264 (1 − 1.5∕22)3
 ​ = 109Ec

From Eq. (13.5), accounting for two columns and two torsional members at each joint,

​  1 ___ 
Kec

 ​ = ​  1 ____ 
ΣKc

 ​ + ​ 1 __ 
Kt

 ​ = ​  1 _________ 
2 × 243Ec

 ​ + ​  1 _________ 
2 × 109Ec

 ​

from which Kec = 151Ec. Distribution factors at each joint are then calculated in the usual way.
For the present example, the ratio of service live load to dead load is 100∕126 = 0.79, 

and because this exceeds 0.75, according to ACI Code 6.4.3 maximum positive and negative 
moments must be found based on pattern loadings, with full factored dead load in place and 
three-quarters factored live load positioned to cause the maximum effect. In addition, the 
design moments must not be less than those produced by full factored live and dead loads on 
all panels. Thus, three load cases must be considered: (a) full factored dead and live load, 
311 psf, on all panels; (b) factored dead load of 151 psf on all spans plus three-quarters 
factored live load, 120  psf, on panel C; and (c) full factored dead load on all spans and 
three-quarters live load on first and second spans. Fixed-end moments and final moments 
obtained from moment distribution are summarized in Table 13.3. The results indicate that 
load case a controls the slab design in the support region, while load case b controls at the 
midspan of panel C. Moment diagrams for the two controlling cases are shown in Fig. 13.13a. 
As described in Section 13d, the critical section at interior supports may be taken at the face 
of supports, but not greater than 0.175ℓ1 from the column centerline. The former criterion 
controls here, and the negative design moment is calculated by subtracting the area under the 
shear diagram between the centerline and face of support, for load case a, from the negative 
moment at the support centerline. The shear diagram for load case a is given in Fig. 13.13b, 
with the adjusted design moments shown in Fig. 13.13a.

Panel B C B

Joint 1 2 2 3 3 4

(a) 311 psf all panels
    Fixed-end moments +276 −276 +276 −276 +276 −276
    Final moments +125 −323 +295 −295 +323 −125
    Span moment in C 119

(b) 151 psf panels B and 271 psf panel C
    Fixed-end moments +134 −134 +240 −240 +134 −134
    Final moments +50 −200 +224 −224 +200 −50
    Span moment in C 137

(c) 271 psf panels B (left) and C and 151 psf panel B (right)
    Fixed-end moments +240 −240 +240 −240 +134 −134
    Final moments +107 −290 +274 −207 +191 −52
    Span moment in C 120

TABLE 13.3
Moments in flat plate floor, ft-kips
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418      DESIGN OF CONCRETE STRUCTURES  Chapter 13

Because the effective depth for all panels is the same, and because the negative steel 
for panel C continues through the support region to become the negative steel for panels B, 
the larger negative moment found for the panels B controls. Accordingly, the design negative 
moment is 262 ft-kips and the design positive moment is 137 ft-kips.

Moments are distributed laterally across the slab width according to Table 13.1, which 
indicates that 75 percent of the negative moment is assigned to the column strip and 60 percent 
of the positive moment is assigned to the column strip. The design of the slab reinforcement 
is summarized in Table 13.4.

FIGURE 13.13
Design moments and shears 
for flat plate floor interior 
panel C: (a) moments and  
(b) shears.

2

(a )

(b )

1.5′

84.3

84.3

Load case a

Load case a

Load case b

M, ft-kips

V, kips

70.1

70.1

295 295
240 240

224

137
119

224

262 262
323 323

75.3

75.3

79.1

79.1

1.5′

3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

 
 

Location

 
Mu,  

ft-kips

 
b,  
in.

 
d,  
in.

 
Mu ×  12∕b, 

ft-kips∕ft

 
 
ρ

 
As,   
in2

Number  
and Size  
of Bars

Column  
strip

Negative 196 132 7 17.82 0.0075 6.93 16 No. 6 (No. 19)
Positive 82 132 7 7.45 0.0029 2.68   9 No. 5 (No. 16)

Two half- 
middle strips

Negative 66 132 7 6.00 0.0023 2.13   8 No. 5 (No. 16)a

Positive 55 132 7 5.00 0.0020 1.85   8 No. 5 (No. 16)a

a Number of bars controlled by maximum spacing requirement.

TABLE 13.4
Design of flat plate reinforcement
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	 e.	 Equivalent Frame Analysis by Computer

It is clear that the equivalent frame method, as just described, is oriented toward 
analysis using the method of moment distribution. Most design offices make use of 
computers, and frame analysis is done using general-purpose programs. Plane frame 
analysis programs can be used for slab analysis based on the concepts of the equivalent 
frame method, but the frame must be specially modeled. Variable moments of inertia 
along the axis of slab-beams and columns require nodal points (continuous joints) 
between sections where I is to be considered constant (that is, in the slab at the junc-
tion of slab and drop panel, drop panel and capital, and in the columns at the bottom 
of the capitals). In addition, it is necessary to compute Kec for each column and then 
to compute the equivalent value of the moment of inertia for the column.

Alternately, a three-dimensional frame or finite element analysis may be used, 
in which the torsional properties of the transverse supporting beams may be included 
directly. A third option is to make use of specially written computer programs, one 
such being spSlab by StructurePoint (Skokie, Illinois).

	 13.7	 SHEAR DESIGN IN FLAT PLATES AND FLAT SLABS

When two-way slabs are supported directly by columns, as in flat slabs and flat 
plates, or when slabs carry concentrated loads, as in footings, shear near the columns 
is of critical importance. Tests of flat plate structures indicate that, in most practical 
cases, the capacity is governed by shear (Ref. 13.14).

	 a.	 Slabs without Special Shear Reinforcement

Two kinds of shear may be critical in the design of flat slabs, flat plates, or footings. 
The first is the familiar beam-type shear leading to diagonal tension failure. Appli-
cable particularly to long narrow slabs or footings, this analysis considers the slab 
to act as a wide beam, spanning between supports provided by the perpendicular 
column strips. A potential diagonal crack extends in a plane across the entire width 
ℓ2 of the slab. The critical section is taken a distance d from the face of the column 
or capital. As for beams, the design shear strength ϕVc must be at least equal to the 
required strength Vu at factored loads. The nominal shear strength Vc should be cal-
culated using Eq. (5.12a), with bw equal to the panel width ℓ2 in this case.

Alternatively, failure may occur by punching shear, with the potential diagonal 
crack following the surface of a truncated cone or pyramid around the column, cap-
ital, or drop panel, as shown in Fig. 13.14a. The failure surface extends from the 
bottom of the slab, at the support, diagonally upward to the top surface. The angle 
of inclination with the horizontal θ (see Fig. 13.14b) depends upon the nature and 
amount of reinforcement in the slab. It may range between 20 and 45°. The critical 
section for shear is taken perpendicular to the plane of the slab and a distance d∕2 

Other important aspects of the design of flat plates include design for punching shear 
at the columns, which may require supplementary shear reinforcement, and transfer of unbal-
anced moments to the columns, which may require additional flexural reinforcement in the 
negative bending region of the column strips or adjustment of spacing of negative steel. These 
considerations are of special importance at exterior columns and corner columns, such as 
shown in Fig. 13.12. Shear and moment transfer at the columns is discussed in Sections 13.7 
and 13.8, respectively.
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420      DESIGN OF CONCRETE STRUCTURES  Chapter 13

from the periphery of the support, as shown. The shear force Vu to be resisted can 
be calculated as the total factored load on the area bounded by panel centerlines 
around the column less the load applied within the area defined by the critical shear 
perimeter, unless significant moments must be transferred from the slab to the col-
umn (see Section 13.8).

At such a section, in addition to the shear stresses and horizontal compressive 
stresses due to negative bending moment, vertical or somewhat inclined compressive 
stress is present, owing to the reaction of the column. The simultaneous presence of 
vertical and horizontal compression increases the shear strength of the concrete.  
For slabs supported by columns having a ratio of long to short sides not greater than 2, 
tests indicate that due to two-way action, the shear stress on the critical section at the 
nominal shear strength may be taken equal to

	 vc = 4λsλ​​√
__

 ​f​c​ ′​​​	 (13.7a)

according to ACI Code 22.6.5, where λ is the lightweight concrete factor (see Section 
5.5a) and λs is the size factor given in Eq. (5.12b). The nominal shear strength of 
the concrete Vc = vcbod, where bo = the perimeter of the critical section.

However, for slabs supported by very rectangular columns, the shear strength 
predicted by Eq. (13.7a) has been found to be unconservative. According to tests 
reported in Ref. 13.15, the value of vc approaches 2λ​​√

__
 ​f​c​ ′​​​ as β, the ratio of long to 

short sides of the column, becomes very large. Reflecting these test data, ACI Code 
22.6.5 states further that the punching shear stress vc shall not be taken greater than

	 vc = ​( 2 + ​  4 __ 
β

 ​ )​ λsλ​​√
__

 ​f​c​ ′​​​	 (13.7b)

The variation of the shear strength coefficient, as governed by Eqs. (13.7a) and 
(13.7b), is shown in Fig. 13.15 as a function of β.

Further tests, reported in Ref. 13.16, have shown that the shear stress vc 
decreases as the ratio of critical perimeter to slab depth bo∕d increases. Accordingly, 
ACI Code 22.6.5 states that vc in punching shear must not be taken greater than

	 vc = ​( ​ αsd ___ 
bo

 ​ + 2 )​ λsλ​​√
__

 ​f​c​ ′​​​	 (13.7c)

where αs is 40 for interior columns, 30 for edge columns, and 20 for corner columns, 
that is, columns having critical sections with 4, 3, or 2 sides, respectively.

Thus, according to the ACI Code, the stress corresponding to the nominal 
punching shear strength provided by concrete for slabs and footings is to be taken 

FIGURE 13.14
Failure surface defined by 
punching shear.
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as the smallest of the values of vc given by Eqs. (13.7a), (13.7b), and (13.7c). The 
design strength is taken as ϕvc as usual, where ϕ = 0.75 for shear. The basic require-
ment is then vu ≤ ϕvc.

For columns with nonrectangular cross sections, the ACI Code indicates that 
the perimeter bo must be of minimum length, but need not approach closer than d∕2 
to the perimeter of the reaction area. The manner of defining the critical perimeter 
bo and the ratio β for such irregular support configurations is illustrated in Fig. 13.16.

The ACI Code allows the concrete shear strength given in Eqs. (13.7a), (13.7b), 
and (13.7c) for shear stress at a distance d∕2 from the column face. As the critical 
section moves away from the column face, the confinement that allows this higher 
shear stress is reduced. Equations (13.7b) and (13.7c) imply that the lower limit of the 
concrete contribution to shear for the conditions corresponding to these equations is

	 vc = 2λsλ​​√
__

 ​f​c​ ′​​​	 (13.8)
Equation (13.8) exceeds the shear stress corresponding to the shear strength of beams 
given in Eq. (5.12a) because the proximity to the column contributing to two-way 
action still provides some confinement. Equation (13.8) is used in the examples and 
homework in this text. The nominal concrete shear strength of a supporting beam 

FIGURE 13.15
Shear strength coefficient for 
flat plates as a function of 
ratio β of long side to short 
side of support.
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FIGURE 13.16
Punching shear for columns 
of irregular shape.
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(Fig. 13.7) is not defined in the ACI Code. The engineer may use Eq. (13.8) or shear 
strength may be based on one-way behavior, as given in Eq. (5.12a).

This leads to several options for the shear design of two-way slabs:

	 a.	 If vu is less than that calculated by Eqs. (13.7a), (13.7b), and (13.7c), no further 
action is needed and the shear is carried by the concrete.

If vu is greater than that calculated by Eq. (13.7a), (13.7b), or (13.7c),

	 b.	 Add a shear cap or drop panel,
	 c.	 Use shear reinforcement, or
	 d.	 Increase the concrete strength.

Options b and c are shown in Fig. 13.17. The size of the projected shear cap, 
drop panel, or shear reinforcement area results in a shear at the outer perimeter such 
that the factored concrete shear stress on the perimeter is less than or equal to ϕvc. 
An approximate size for a shear cap or drop panel is found by solving for the perim-
eter needed to support the factored load, giving

	 bo = ​​ 
Vu
 ____ 

ϕvcd
 ​​	 (13.9)

The solution in Eq. (13.9) will be slightly conservative if the load on the slab inside 
the perimeter is not subtracted from the load to be resisted. The length of one side 
of a square shear cap is ℓsc = bo∕4.

FIGURE 13.17
Critical outer shear 
perimeters. (Flexural 
reinforcement not shown.)

b

Drop panel or shear cap
outer perimeter 

qu

b

qu

Shear outer perimeter

(a) Drop panel or shear cap (b) Shear reinforcement

Shear
reinforcement 

�sc

�sr

	EXAMPLE 13.2	 Design of a shear cap for punching shear.  A flat plate floor has a thickness of h = 7​ 1 _ 2 ​ in. 
and is supported by 18 in. square columns spaced 20 ft on centers each way. The floor carries 
a total factored load of 300 psf. Check the shear capacity and design a shear cap if needed. 
An average effective depth of 6 in. may be used. Material strengths are ​​f​c​ ′​​ = 4000 psi and 
fy = 60,000 psi.
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	 b.	 Shear Reinforcement

Shear reinforcement consists of either integral beams or headed shear stud reinforce-
ment, the latter sometimes referred to as stud rails, as shown in Fig. 13.18. Integral 
beams, illustrated in Fig. 13.18a, consist of vertical stirrups used in conjunction with 
supplementary horizontal bars radiating outward in two perpendicular directions 
from the column and are contained entirely within the slab thickness. These beams 
act in the same general way as shear caps. Adequate anchorage of the stirrups is 
difficult in slabs thinner than about 10 in. ACI Code 22.6.7 requires the slab effec-
tive depth d to be at least 6 in. but not less than 16 times the diameter of the shear 
reinforcement. In all cases, closed hoop stirrups should be used, with a larger 
diameter horizontal bar at each bend point, and the stirrups must be terminated with 
a standard hook (Ref. 13.17).

Headed shear stud reinforcement, shown in Fig. 13.18b, is governed by ACI 
Code 8.7.7 and 22.6.8. This reinforcement consists of large-headed studs welded to 
steel strips. The strips are supported on chairs during construction to maintain the 
required concrete cover to the bottom of the slab below the strip, and the usual 
cover is maintained over the top of the head. According to tests, the positive anchor-
age provided by the stud head and the steel strip makes these devices more effective 
than integral beam reinforcement (Refs. 13.18 and 13.19). In addition, headed stud 

Solution:  The first critical section for punching shear is d∕2 = 3 in. from the column face, 
providing a shear perimeter of bo = 24 × 4 = 96 in. The factored shear is

Vu = 0.300 (202 − 22) = 118.8 kips

For normalweight concrete and a slab depth less than 10 in., λ = 1.0 and λs = 1.0. If no
shear reinforcement is used, the design strength of the slab, controlled by Eq. (13.7a), is

ϕVc = ϕλsλ4​​√
__

 ​f​c​ ′​​​bod = 0.75 × 1 × 1 × 4​​√
____

 4000​​ × 96 × 6∕1000 = 109.3 kips

confirming that a shear cap is needed. The necessary depth of the shear cap with no rein-
forcement is determined by

dcap = ​​  Vu __________  
ϕλsλ4​√

__
 ​f​c​ ′​​bo

 ​​ = ​​  118,800  __________________________   
0.75 × 1 × 1 × 4​√

____
 4000​ × 96

 ​​ = 6.5 in.

which is rounded up to dcap = 7.0 in., giving h = 8.5 in. It is noted that bo was not corrected 
for the increased shear cap depth in recognition that the depth would be rounded to a nominal 
dimension.

To check the design, the depth of the slab at the edge of the shear cap is used and, 
away from the column face, the allowable concrete shear stress is taken as

ϕvc = ϕλsλ2​​√
__

 ​f​c​ ′​​​ = 0.75 × 1 × 1 × 2​​√
____

 4000​​ = 94.9 psi

The required perimeter from Eq. (13.9) is

bo = ​​ 
Vu
 ____ 

ϕvcd
 ​​ = ​​ 

118,800
  ______________  

0.75 × 94.9 × 6
 ​​ = 278 in.

This is rounded up to 70 in. per side for a square cap and clearly meets the requirement that 
the cap extends out more than the depth of the slab. Checking the design capacity at a 
perimeter of 4 × 53 in. is

ϕVn = ϕvcbod = 0.75 × 94.9 × 4 × 70 × 6∕1000 = 119.6 kips

which exceeds the factored load, indicating that the design is acceptable.
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reinforcement can be placed more easily, with less interference with other reinforce-
ment, than an integral beam.

Differences in test performance between integral beams and headed shear studs 
result in different values of concrete shear stress vc. Table 13.5 summarizes the 
nominal two-way shear strength provided by concrete, vc, for these applications. 
From Table 13.5, it is seen that when reinforcement is added, vc is reduced below 
the value 4λsλ​​√

__
 ​f​c​ ′​​​, resulting in the reinforcement having to provide additional capac-

ity to account for drop in shear strength provided by concrete. As with shear caps 
and drop panels, vc on the outer perimeter decreases to the value of Eq. (13.8) and 
further decreases to that of a one-way slab perpendicular to a supporting beam.

ACI Code 22.6.4 requires that the area enclosed by the outer perimeter of a 
reinforced slab bo be minimized. For a square column, this usually results in an 

FIGURE 13.18
Integral beam and headed 
shear stud shear reinforcement.

(a) Integral beam (b) Headed shear studs

Outer perimeter

TABLE 13.5
Stress corresponding to nominal two-way shear strength provided by  
concrete vc for two-way members with shear reinforcement

Type of Shear  
Reinforcement Critical Sections vc

Stirrups All 2λsλ​​√
__

 ​f​c​ ′​​​

Headed shear stud 
reinforcement

At d∕2 from the face of  
column or concentrated load

Least of (a), (b), 
and (c)

3λsλ​​√
__

 ​f​c​ ′​​​� (a)

​​( 2 + ​ 4 __ 
β

 ​ )​​ λsλ​​√
__

 ​f​c​ ′​​​� (b)

​​( 2 + ​ αsd ___ 
bo

 ​ )​​ λsλ2​​√
__

 ​f​c​ ′​​​� (c)

Critical section at d∕2 beyond 
the outer-most reinforcement

2λsλ​​√
__

 ​f​c​ ′​​​

Notes: (1)	β is the ratio of the long to short side of the column, concentrated load, or reaction area.
(2)	λs is the size effect factor given in Eq. (5.12b).
(3)	αs is 40 for interior columns, 30 for edge columns, and 20 for corner columns.
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octagonal shape, as indicated in Fig. 13.18b, rather than a rectangle similar to a shear 
cap. Determination of the length of the extended arm of the shear reinforcement 
from the center of the column may be estimated by using the square perimeter in 
Fig. 13.17a, rotating it 45 degrees and, ignoring the small triangles at the corners, 
dividing the side of the square ℓsc by ​​√

_
 2​​. Thus, the approximate length of the shear 

arm ℓsr from the center of the column is approximately

	 ℓsr = ​​ ℓsc ____ 
​√

_
 2​
 ​​	 (13.10)

	 c.	 Design of Integral Beams with Vertical Stirrups

Shear reinforcement using vertical stirrups in integral beams is shown in Fig. 13.18a. 
The first critical section for shear design in the slab is taken at d∕2 from the column 
face, as usual, and the stirrups, if needed, are extended outward from the column  
in four directions for the typical interior case (three or two directions for exterior  
or corner columns, respectively) until the concrete alone can carry the shear, with 
vc = 2λsλ​​√

__
 ​f​c​ ′​​​ at the second critical section. Within the region adjacent to the 

column, where shear resistance is provided by a combination of concrete and steel, 
the nominal shear strength vn must not exceed 6​​√

__
 ​f​c​ ′​​​ according to ACI Code 26.6.6. 

In this region, the concrete contribution is reduced to vc = 2λsλ​​√
__

 ​f​c​ ′​​​. The second 
critical section crosses each integral beam at a distance d∕2 measured outward 
from the last stirrup and is located so that its perimeter bo is a minimum (that 
is, for the typical case, defined by 45° lines between the integral beams). The 
required spacing of the vertical stirrups s is found using Eq. (5.14a), but accord-
ing to ACI Core 8.7.6 must not exceed d∕2, with the first line of stirrups not 
more than d∕2 from the column face. The spacing of the stirrup legs (measured 
parallel to the face of the column) in the first line of shear reinforcement must 
not exceed 2d.

The problem of anchorage of the shear reinforcement in shallow flat plates is 
critical, and closed hoop stirrups, terminating in standard hooks, always should be 
provided with interior corner bars to improve pullout resistance.

	EXAMPLE 13.3	 Design of an integral beam with vertical stirrups.  The flat plate slab with 7.5 in. total 
thickness and 6 in. effective depth shown in Fig. 13.19 is carried by 12 in. square columns 25 ft 
on centers in each direction. A factored load of qu = 190 psf must be transmitted from the slab 
to a typical interior column. Concrete and steel strengths used are, respectively, ​f​c​ ′​ = 4000 psi 
and fy  =  60,000 psi. Determine if shear reinforcement is required for the slab; and if so, 
design integral beams with stirrups to carry the excess shear.

Solution.  The factored load to be transferred is Vu = qu(ℓ2 − b2) = 120 kips. The design 
shear strength of the concrete alone at the critical section d∕2 from the face of the column, 
by the controlling Eq. (13.7a), is

ϕVc = 0.75 × 4 × 1 × 1​​√
____

 4000​​ × 72 × 6∕1000 = 82.0 kips

This is less than Vu = 120 kips, indicating that shear reinforcement is required. The effective 
depth d = 6 in. just satisfies the minimum allowed to use stirrup reinforcement, as described in 
Section 13.7b. In this case, the maximum design strength allowed by the ACI Code is

ϕVn = 0.75 × 6​​√
____

 4000​​ × 72 × 6∕1000 = 122.9 kips
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FIGURE 13.19
Vertical stirrup shear 
reinforcement for slab in 
Example 13.3.

bo = 228 in.

bo = 72 in.

12 in. × 12 in.
column 

7.5 in.

2.5 ft.

6 in.

3 in.

4 No. 5 (No. 16)
anchor bars 

10 No. 3 (No. 10) stirrups @ 3 in.

d
2 = 3 in.

satisfactorily above the actual Vu. When shear is resisted by combined action of concrete and 
bar reinforcement, the concrete contribution is reduced to

ϕVc = 0.75 × 1 × 1 × 2​​√
____

 4000​​ × 72 × 6∕1000 = 41.0 kips

No. 3 (No. 10) vertical closed hoop stirrups are used since d must be ≥16 times the stirrup 
diameter ​( d∕16 = ​ 3 _ 8 ​ in. )​ and arranged along four integral beams as shown in Fig. 13.19. Thus, 
the Av provided is 4 × 2 × 0.11 = 0.88 in2 at the first critical section, a distance d∕2 from the 
column face, and the required spacing can be found from Eq. (5.14a):

s = ​​ 
ϕAv fy d

 ________ 
Vu − ϕVc

 ​​ = ​​ 0.75 × 0.88 × 60 × 6  ___________________  
120 − 41.0

 ​​  = 3.01 in.

However, the maximum spacing of d∕2 = 3 in. controls here, and No. 3 (No. 10) stirrups at a 
constant spacing of 3 in. are used. In other cases, stirrup spacing might be increased with dis-
tance from the column, as excess shear is less, although this would complicate placement of the 
reinforcement and generally save little steel.

At the outer perimeter, the stress corresponding nominal shear strength provided by 
concrete is

ϕvc = ϕ2λsλ​​√
__

 ​f​c​ ′​​​ = 0.75 × 2 × 1 × 1 × ​​√
____

 4000​​ = 94.8 psi

The required perimeter is

bo = ​​ 
Vu
 ____ 

ϕvcd
 ​​ = ​​  120 __________  

0.0948 × 6
 ​​ = 211 in.

or an extended arm of ℓsr = 211∕4​​√
_
 2​​ = 37.3 in. = 3.11 ft.
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	 d.	 Design of Headed Shear Stud Reinforcement

Slab shear reinforcement consisting of integral beams with stirrups, as described in 
Section 13.7c, is widely used. However, the cage that is formed by the stirrups and 
longitudinal anchor bars may be difficult to install. Also, the slab-column joint region 
is somewhat congested, with top and bottom slab steel running in two perpendicular 
directions, with vertical bars in the column, and with the stirrups. Congestion can 
become critical when the slab has openings, which are frequently required, at or near 
the column faces.

Shear stud reinforcing strips, as shown in Figs. 13.18b and 13.20a and b, are 
widely used in Germany, Switzerland, and Canada (Refs. 13.17 and 13.18). Their 
use in the United States is based on extensive testing (Refs. 13.19 and 13.20), and 
is incorporated in ACI Code 22.6.6 and 22.6.8. The studs have a minimum yield 
strength fyt of 51,000 psi and are available in diameters of 0.375, 0.500, 0.625,  
and 0.750 in., in accordance with ASTM specification A1044.

These devices are composed of vertical bars with anchor heads at their top, 
welded to a steel strip at the bottom. Multiple strips are arranged in two perpendic-
ular directions for square and rectangular columns or usually in radial directions for 
circular columns. They are secured in position in the forms before the top and bot-
tom flexural steel is in place. The steel strip rests on bar chairs to maintain the 
needed concrete cover below the steel and is held in position by nails through holes 
in the strip.

Headed shear studs are placed perpendicular to the plane of the slab. The overall 
height of the shear stud assembly may not be less than the thickness of the member 
less the sum of (1) the concrete cover over the top reinforcement, (2) the concrete cover 
on the base rail, and (3) one-half the diameter of the tension flexural reinforcement. 
Two critical shear sections exist. The first is located a distance d∕2 from the face of 
the column and the second is located a distance d∕2 from the outermost peripheral line 
of studs, as shown in Fig. 13.21 for a typical interior column. As with the integral 
beams with vertical stirrups described in Section 13.7c, the studs are extended outward 
from the column until the concrete alone can carry the shear; but in the case of slabs 
reinforced with headed shear studs, the shear stress due to the factored shear force and 
any unbalanced moment (see Section 13.8) may not exceed ϕ2λsλ​​√

__
 ​f​c​ ′​​​ on the second 

critical section.
The nominal shear capacity of the headed shear stud assembly Vn is the sum 

of  the concrete contribution Vc and the shear stud contribution Vs. In the region 
adjacent  to the column, the concrete contribution Vc is reduced to 3λsλ​​√

__
 ​f​c​ ′​​​bod, as 

Select 3.25 ft, giving a length over which the shear reinforcement must be placed of 
3.25 ft less b∕2 and d∕2 = 2.5 ft. The perimeter is bo = 4 × (6 in. + (ℓsr − 3 in.)​​√

_
 2​​) = 228 in., 

resulting in a nominal shear capacity of

Vn = ϕvcbod = 0.0948 × 228 × 6 = 130 kips

which exceeds the factored load and is therefore acceptable. Placing stirrups at d∕2 = 3 in. 
on center, with the first stirrup placed 1.5 in. from the column, results in 10 stirrups on each 
side of the column, as shown in Fig. 13.19. A more precise solution obtained by removing 
the load on the portion of the slab inside the perimeter results in an arm of 3.01 ft, hardly 
enough different to warrant the additional calculations.

Four longitudinal No. 5 (No. 16) bars are provided inside the corners of each closed 
hoop stirrup, as shown, to provide for proper anchorage of the shear reinforcement.
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shown in Table 13.5, and the total nominal  capacity Vn may not exceed 8​​√
__

 ​f​c​ ′​​​bod. 
The shear stud contribution is Av fytd∕s, where Av is the area of the studs on a periph-
eral line and s is the spacing between the peripheral lines, as shown in Fig. 13.20. 
The value of the shear stud contribution, expressed as a stress on the critical section 
as Av fyt∕bos, must be at least 2​​√

__
 ​f​c​ ′​​​ in accordance with ACI Code 22.6.6. The ACI 

Code requires the use of a minimum perimeter for the shear critical section outside 

FIGURE 13.20a
Shear stud reinforcement for 
concrete slabs: shear stud 
assembly. (Courtesy of Amin 

Ghali and Walter H. Dilger.)

FIGURE 13.20b
Shear stud reinforcement  
for concrete slabs: shear 
reinforcement installed  
in forms for prestressed 
concrete slab. (Courtesy of 

Amin Ghali and Walter  

H. Dilger.)
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the last stirrups or studs, as shown in Fig. 13.20. A perimeter formed by enlarging 
the rectangular shear critical section around the column to a distance d∕2 past the 
last stirrups or studs does not meet the Code intent.

The spacing of the studs between the column face and the first peripheral line 
of studs should not exceed d∕2, and the spacing of the concentric peripheral lines of 
studs s should be based on the combined effects of shear and any unbalanced moment 
on the critical section adjacent to the column face and should not exceed 0.75d when 
the shear stress due to factored loads is less than or equal to 6ϕ​​√

__
 ​f​c​ ′​​​ or 0.5d when 

the shear stress exceeds 6ϕ​​√
__

 ​f​c​ ′​​​. Lastly, the spacing between the shear stud rails should 
not exceed 2d.

FIGURE 13.21
Arrangement of headed shear 
studs and critical sections for 
a typical interior column.

≤d/2
(typ.)

≤2d
(typ.)

d/2

d/2

Shear critical
sections

A A

Outermost peripheral
line of studs

Av = cross-sectional area
of studs on a peripheral
line

Interior column

Studs with base rail

s

Section A-A

	EXAMPLE 13.4	 Design of headed stud reinforcement.  Repeat Example 13.3, using headed stud reinforce-
ment. No. 5 (No. 16) bars are used as negative flexural reinforcement. The yield strength is 
fyt = 51,000 psi for studs.

Solution.  The minimum height of the shear stud assembly equals the thickness of the slab 
less the cover over the rail, the cover over the reinforcement, and one-half the reinforcement 
bar diameter. Thus, from Fig 13.22a the minimum height is

7.5 − 0.75 − 0.75 − 0.5 × 0.625 = 5.68 in.

A stud height of 6 in. is selected, which is consistent with the effective depth and exceeds  
the minimum requirement. As in Example 13.3, the design shear strength of the concrete alone 
at the critical section from the face of the column based on an effective depth of 6 in., by the 
controlling Eq. (13.7a), is

ϕVc = 0.75 × 4 × 1 × 1​​√
____

 4000​​ × 72 × 6∕1000 = 82.0 kips

which is less than Vu = 120 kips, indicating that shear reinforcement is required. The maximum 
design strength allowed by the ACI Code when headed stud reinforcement is used is

ϕVn = 0.75 × 8​​√
____

 4000​​ × 72 × 6∕1000 = 163.9 kips
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	 13.8	 TRANSFER OF MOMENTS AT COLUMNS

The analysis for punching shear in flat plates and flat slabs presented in Section 13.7 
assumed that the shear force Vu was resisted by shearing stresses uniformly distrib-
uted around the perimeter bo of the critical section, a distance d∕2 from the face of 
the supporting column. The stress corresponding to the nominal shear strength vc 
was given by Eqs. (13.7a), (13.7b), and (13.7c).

If significant moments are to be transferred from the slab to the columns, as 
would result from unbalanced gravity loads on either side of a column or from 
horizontal loading due to wind or seismic effects, the shear stress on the critical 
section is no longer uniformly distributed.

FIGURE 13.22
Headed shear stud arrangement and detail of structural depth requirements for Example 13.4.

″ cover, typ.

(a) (b)

No. 5 (No. 16) reinforcement

1@2″ &
6@4.5″

Av = cross-sectional area
of 8 studs on a peripheral
line

bo = 228″ bo = 72″

3″

7.5″ 6.0″

3″

11″

which is satisfactorily above the actual Vu. The maximum concrete strength allowed by ACI in 
conjunction with headed shear studs is

ϕVc = 0.75 × 3 × 1 × 1​​√
____

 4000​​ × 72 × 6∕1000 = 61.5 kips

The maximum spacing between the stud rails must be less than 2d, so two lines of studs 
are needed for a 12 in. square column; a center-to-center spacing of 11 in. is selected. The 
shear stress in the slab at the first critical section is approximately 4.4​​√

__
 ​f​c​ ′​​​, which is below  

ϕ 6​​√
__

 ​f​c​ ′​​​ = 4.5​​√
__

 ​f​c​ ′​​​, giving a maximum stud spacing of 0.75d. A spacing of 4.5 in., equal to the 
maximum, is selected. The area of the studs is found from Eq. (5.14a):

​Av = ​ 
(Vu − ϕVc)s

  __________ 
ϕf y td

 ​  = ​ 
(120 − 61.5) × 4.5

  ________________  
0.75 × 51 × 6

 ​  = 1.15 in2

A peripheral line of studs contains eight studs, requiring a cross-sectional area of 0.14 in2 per 
stud, so 0.500 in. diameter studs with a cross-sectional area of 0.20 in2 per stud are selected.

The required perimeter of the second critical section, at which the concrete alone can 
carry the shear, is based on a maximum shear stress of ϕ2λsλ​​√

__
 ​f​c​ ′​​​. Thus,

ϕVc = 0.75 × 2 × 1 × 1​​√
____

 4000​​ × bo × 6 = 120,000 lb

from which the minimum perimeter bo = 211 in., as in Example 13.3. The first stud is placed 
at 2 in. (≤ d∕2) from the column face. Six studs at a spacing of 4.5 in. provide a minimum 
perimeter of 228 in. (Fig. 13.22b).
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The situation can be modeled as shown in Fig. 13.23a. Here, Vu represents the 
total vertical reaction to be transferred to the column and Msc represents the unbal-
anced moment to be transferred, both at factored loads. The vertical force Vu causes 
shear stress distributed more or less uniformly around the perimeter of the critical 
section as assumed earlier, represented by the inner pair of vertical arrows, acting 
downward. The unbalanced moment Msc causes additional loading on the joint, 
represented by the outer pair of vertical arrows, which add to the shear stresses 
otherwise present on the right side, in the sketch, and subtract on the left side.

FIGURE 13.23
Transfer of moment from 
slab to column: (a) forces 
resulting from vertical load 
and unbalanced moment;  
(b) critical section for an 
interior column; (c) shear 
stress distribution for an 
interior column; (d) critical 
section for an edge column; 
and (e) shear stress 
distribution for an edge 
column.
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Tests indicate that for square columns about 60 percent of the unbalanced 
moment is transferred by flexure (forces T and C in Fig. 13.23a) and about  
40 percent by shear stresses on the faces of the critical section (Ref. 13.21). For 
rectangular columns, it is reasonable to suppose that the portion transferred by flex-
ure increases as the width of the critical section that resists the moment increases, 
that is, as c2 + d becomes larger relative to c1 + d in Fig. 13.23b. According to ACI 
Code 8.4.2.2, the slab moment Msc considered to be transferred by flexure is

	 Mub = γf Msc	 (13.11a)

where

	 γf = ​​  1 ___________  
1 +  ​ 2 _ 3 ​​√

_____
 b1∕b2​
 ​​	 (13.11b)

and b1 =  �width of critical section for shear measured in direction of span for which 
moments are determined

b2 = width of critical section for shear measured in direction perpendicular to b1

The value of γf may be modified if certain conditions are met in accordance with 
ACI Code Table 8.4.2.2.4: For unbalanced moments about an axis parallel to the edge 
of exterior supports, γf may be increased to 1.0, provided that the factored shear Vu 
at the edge support does not exceed 0.75ϕVc or at a corner support does not exceed 
0.5ϕVc. For unbalanced moments at interior supports and about an axis perpendicular 
to the edge at exterior supports, γf may be increased up to 1.25 times the value  
in Eq. (13.11b), provided that Vu ≤ 0.4ϕVc. In all of these cases, the net tensile strain 
εt calculated for the section within 1.5h on either side of the column or column 
capital must be at least εty + 0.003 for corner columns and for edge columns for 
spans perpendicular to the edge, and εty + 0.008 for other cases, where εty = fy∕Es, 
as defined following Eq. (4.26c).

The moment assumed to be transferred by shear, by ACI Code 8.4.4, is

	 Muv = (1 − γf)Msc = γv Msc	 (13.11c)

For a square column, Eqs. (13.11a), (13.11b), and (13.11c) indicate that 60 percent 
of the unbalanced moment is transferred by flexure and 40 percent by shear, in 
accordance with the available data. If b2 is very large relative to b1, nearly all of the 
moment is transferred by flexure.

The moment Mub can be accommodated by concentrating a suitable fraction of 
the slab column-strip reinforcement near the column. According to ACI Code 8.4.2.2, 
this steel must be placed within the effective slab width bslab, defined by the distance 
on either side of a column or capital equal to the lesser of (1) 1.5h of the slab and 
(2) the distance to the edge for slabs without a drop panel or shear cap or the lesser 
of (1) 1.5h of the drop or cap and (2) the distance to the edge of the drop or cap 
plus 1.5h of the slab for slabs with a drop panel or shear cap.

The moment Muv, together with the vertical reaction delivered to the column, 
causes shear stresses assumed to vary linearly with distance from the centroid of the 
critical section, as indicated for an interior column by Fig. 13.23c. The stresses can 
be calculated from

	 vl = ​ 
Vu ___ 
Ac

 ​ − ​​ 
Muv  cl

 _____ 
Jc

 ​​ 	 (13.12a)

	 vr = ​ 
Vu ___ 
Ac

 ​ + ​​ 
Muv  cr

 _____ 
Jc

 ​​ 	 (13.12b)
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where Ac = area of critical section = 2d [(c1 + d  ) + (c2 + d  )]
cl, cr =  �distances from centroid of critical section to left and right faces of section, 

respectively
Jc = property of critical section analogous to polar moment of inertia

For an interior column, the quantity Jc is

	 Jc = ​ 
2d(c1 + d)3

  __________ 
12

 ​  + ​ 
2(c1 + d)d3

  __________ 
12

 ​  + 2d(c2 + d ) ​​( ​ c1 + d
 ______ 

2
 ​  )​​2​	 (13.13)

Note the implication, in the use of the parameter Jc in the form of a polar moment 
of inertia, that shear stresses indicated on the near and far faces of the critical section 
in Fig. 13.23c have horizontal as well as vertical components.

According to ACI Code 8.5.1.1, the maximum shear stress calculated by  
Eq.  (13.12) must not exceed ϕvn. For slabs without shear reinforcement, ϕvn  =   
ϕVc∕bod = ϕvc, where vc is the smallest value given by Eqs. (13.7a), (13.7b), or 
(13.7c). For slabs with shear reinforcement, ϕvn  =  ϕ (Vc  +  Vs)∕bod, where Vc and  
Vs are as established in Section 13.7c or d. Even though the critical sections for 
direct shear transfer and shear due to moment transfer differ, they coincide or are in 
close proximity at the column corners where failures initiate, and it is conservative 
to take the maximum shear as the sum of the two components.

Equations similar to those above can be derived for the edge columns shown in 
Fig. 13.23d and e or for a corner column. Although the centroidal distances cl and cr 
are equal for the interior column, this is not true for the edge column of Fig. 13.23d 
or for a corner column.

The application of moment to a column from a slab or beam introduces shear 
to the column also, as is clear from Fig. 13.23a. This shear must be considered in 
the design of lateral column reinforcement.

As pointed out in Section 13.7, most flat plate structures, if they are over-
loaded, fail in the region close to the column, where large shear and bending forces 
must be transferred. There has been much research aimed at developing improved 
design details for this region. The design engineer should consult Refs. 13.21 through 
13.23 for additional specific information.

	 13.9	 TRANSFER COLUMN LOADS THROUGH SLABS

As discussed in Section 9.16, it is common in building construction to cast the column 
up to the soffit of the beam or slab of the next floor. The floor is then cast, and the next 
column is formed and cast. Figure 1.16 shows the floor formwork for this sequence. Using 
this construction sequence means that the concrete strength in the slab can differ from the 
concrete strength in the column. As described in Chapter 2, high-strength concrete is 
sometimes used in building columns to reduce their size and increase the usable floor 
area. If high-strength columns are used in conjunction with normal-strength concrete in a 
two-way slab, the slab may not be able to transfer the load to the column below.

The slab concrete surrounding the column provides confinement to allow loads 
to be safely transferred through concrete that is slightly lower in strength than the 
column concrete. Should there be a large difference in concrete strength, additional 
measures are required to assure the integrity of the load transfer. The requirements 
in these circumstances are covered in Section 9.16. When lower-strength concrete is 
the basis for design, vertical dowels and transverse reinforcement are required to 
achieve the design strength. Joints with slabs and beams framing into the column 
are addressed in Chapter 18.
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	 13.10	 OPENINGS IN SLABS

Almost invariably, slab systems must include openings. These may be of substantial 
size, as required by stairways and elevator shafts, or they may be of smaller dimen-
sions, such as those needed to accommodate heating, plumbing, and ventilating risers; 
floor and roof drains; and access hatches.

Relatively small openings usually are not detrimental in beam-supported slabs. 
As a general rule, the equivalent of the interrupted reinforcement should be added 
at the sides of the opening. Additional diagonal bars should be included at the cor-
ners to control the cracking that will almost inevitably occur there. The importance 
of small openings in slabs supported directly by columns (flat slabs and flat plates) 
depends upon the location of the opening with respect to the columns. From a struc-
tural point of view, they are best located away from the columns, preferably in the 
area common to the slab middle strips. Unfortunately, architectural and functional 
considerations usually cause them to be located close to the columns. In this case, 
the reduction in effective shear perimeter is the major concern, because such floors 
are usually shear-critical.

According to ACI Code 22.6.4.3, if the opening is closer than 4h to a column, 
concentrated load, or reaction area, then that part of bo included within the radial 
lines projecting from the opening to the centroid of the column, concentrated load, 
or reaction area should be considered ineffective. Research described in Ref. 13.24 
has shown that openings located further away than 4h have no effect on the punch-
ing shear strength of a slab. The effect of openings is shown in Fig. 13.24, along 
with the effect of free edges on the perimeter of the critical section.

FIGURE 13.24
Effect of openings and free 
edges on the determination of 
the perimeter of the critical 
section for shear bo.

(a )

Ine�ective free edge

E�ective bo

d/2

Ine�ective free edge

(b )

(c ) (d )
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With regard to flexural requirements, the total amount of steel required by 
calculation must be provided regardless of openings. Any steel interrupted by holes 
should be matched with an equivalent amount of supplementary reinforcement on 
either side, properly lapped to transfer stress by bond. Concrete compression area to 
provide the required strength must be maintained; usually, this would be restrictive 
only near the columns. According to ACI Code 8.5.4, openings of any size may be 
located in the area common to intersecting middle strips. In the area common to 
intersecting column strips, not more than one-eighth of the width of the column strip 
in either span can be interrupted by openings. In the area common to one middle 
strip and one column strip, not more than one-quarter of the reinforcement in either 
strip may be interrupted by the opening.

ACI Code 8.5.4 permits openings of any size if it can be shown by analysis 
that the strength of the slab is at least equal to that required and that all service
ability conditions, that is, cracking and deflection limits, are met. The strip method 
of analysis and design for openings in slabs, by which specially reinforced integral 
beams, or strong bands, of depth equal to the slab depth are used to frame the 
openings, are described in detail in Chapter 24. Very large openings should prefer-
ably be framed by beams or slab bands of increased depth to restore, as nearly as 
possible, the continuity of the slab. The beams must be designed to carry a portion 
of the floor load, in addition to loads applied directly by partition walls, elevator 
support beams, or stair  slabs. Section 12.4 discusses ductwork constructed within 
the slab thickness.

	 13.11	 DEFLECTION CALCULATIONS

The deflection of a uniformly loaded flat plate, flat slab, or two-way slab sup-
ported by beams on column lines can be calculated by an equivalent frame method 
that corresponds with the method for moment analysis described in Section 13.6 
(Ref. 13.25) or are the output of the computer analysis program. The definition 
of column and middle strips, the longitudinal and transverse moment distribution 
coefficients, and many other details are the same as for the moment analysis. 
Following the calculation of deflections by this means, they can be compared 
directly with limiting values like those of Table 7.2, which are applicable to slabs 
as well as to beams, according to the ACI Code.

A slab region bounded by column centerlines is shown in Fig. 13.25. While 
no column-line beams, drop panels, or column capitals are shown, the presence of 
any of these introduces no fundamental complication.

The deflection calculation considers the deformation of such a typical region 
in one direction at a time, after which the contributions from each direction are added 
to obtain the total deflection at any point of interest.

In reference to Fig. 13.25a, the slab is considered to act as a broad, shallow 
beam of width equal to the panel dimension ℓy and having the span ℓx. Initially, the 
slab is considered to rest on unyielding support lines at x = 0 and x = ℓx. Because 
of variation of moment as well as flexural stiffness across the width of the slab, not 
all unit strips in the X direction will deform identically. Typically, the slab curvature 
in  the  middle-strip region will be less than that in the region of the column strips 
because the middle-strip moments are less. The result is as indicated in Fig. 13.25a.

Next the slab is analyzed for bending in the Y direction (Fig. 13.25b). Once again 
the effect of transverse variation of bending moment and flexural rigidity is seen.
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The actual deformed shape of the panel is represented in Fig. 13.25c. The 
midpanel deflection is the sum of the midspan deflection of the column strip in one 
direction and that of the middle strip in the other direction; that is,

	 Δmax = Δcx + Δmy	 (13.14a)

or

	 Δmax = Δcy + Δmx	 (13.14b)

In calculations of the deformation of the slab panel in either direction, it is 
convenient first to assume that it deforms into a cylindrical surface, as it would if 
the bending moment at all sections were uniformly distributed across the panel width 

FIGURE 13.25 
Basis of equivalent frame 
method for deflection 
analysis: (a) X direction 
bending; (b) Y direction 
bending; and (c) combined 
bending.

Δ

(a )

Assumed
support line

Assumed
support line

Y

X

mx

�y�x

Δcx

Δcx

(c )

Y

X

Δcx Δmy Δcy ++ = Δmx

Δcx

Δcx

(b )

Assumed
support line

Assumed
support line

Y

X

Δmy

�y�x

Δcy

Δcy

Δcy

Δcy

www.konkur.in

Telegram: @uni_k



ANALYSIS AND DESIGN OF TWO-WAY SLABS      437

and if lateral bending of the panel were suppressed. The supports are considered to 
be fully fixed against both rotation and vertical displacement at this stage. Thus, a 
reference deflection is computed:

	 Δf,ref = ​  wℓ4
 _________ 

384Ec Iframe
 ​	 (13.15)

where w is the load per foot along the span of length ℓ and Iframe is the moment of 
inertia of the full-width panel (Fig. 13.26a) including the contribution of the 
column-line beam or drop panels and column capitals if present.

The effect of the actual moment variation across the width of the panel and 
the variation of stiffness due to beams, variable slab depth, etc., are accounted for 
by multiplying the reference deflection by the ratio of M∕EI for the respective strips 
to that of the full-width frame:

	​ Δf,col = Δf,ref ​ 
Mcol _____ 

Mframe
 ​ ​ 
EcIframe ______ 
EcIcol

 ​​	  (13.16a)

	 Δf,mid = Δf,ref ​ 
Mmid _____ 

Mframe
 ​ ​​ 
EcIframe ______ 
EcImid

 ​​	 (13.16b)

The subscripts relate the deflection Δ, the bending moment M, or the moment of 
inertia I to the full-width frame, column strip, or middle strip, as shown in  
Fig. 13.26a, b, and c, respectively.

FIGURE 13.26
Effective cross sections for 
deflection calculations:  
(a) full-width frame;  
(b) column strip; and  
(c) middle strips.
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The moment ratios Mcol∕Mframe and Mmid∕Mframe are identical to the lateral 
moment distribution factors already found for the flexural analysis (see Table 13.1). 
A minor complication results from the fact that the lateral distribution of bending 
moments, according to the ACI Code, is not the same at the negative and positive- 
moment sections. However, it appears consistent with the degree of accuracy usually 
required, as well as consistent with deflection methods endorsed elsewhere in the 
ACI Code, to use a simple average of lateral distribution coefficients for the negative 
and positive portions of each strip.

The presence of drop panels or column capitals in the column strip of a flat 
slab floor requires consideration of the variation of the moment of inertia in the span 
direction (see Fig. 13.27). It is suggested in Ref. 13.26 that a weighted average 
moment of inertia be used in such cases:

	 Iav = 2 ​​ 
ℓc

 __ 
ℓ
 ​​ Ic + 2 ​​ 

ℓd
 __ 

ℓ
 ​​ Id + ​​ 

ℓs
 __ 

ℓ
 ​​ Is	 (13.17)

where Ic = moment of inertia of slab including both drop panel and capital
Id = moment of inertia of slab with drop panel only
Is = moment of inertia of slab alone

Span distances are defined in Fig. 13.27.
Next it is necessary to correct for the rotations of the equivalent frame at the 

supports, which until now were considered fully fixed. If the ends of the columns 
are considered fixed at the floor above and floor below, as usual for frame analysis, 
the rotation of the column at the floor divided by the stiffness of the equivalent 
column is

	 θ = ​ 
Mnet ____ 
Kec

 ​	 (13.18)

where θ = angle change, radians
Mnet = difference in floor moments to left and right of column
Kec = stiffness of equivalent column (see Section 13.6c)

In some cases, the connection between the floor slab and column transmits 
negligible moment, as for lift slabs; thus Kec = 0. The flexural analysis indicates that 
the net moment is zero. The support rotation can be found in such cases by applying 
the moment-area theorems, taking moments of the M∕EI area about the far end of the 
span and dividing by the span length.

Once the rotation at each end is known, the associated midspan deflection of 
the equivalent frame can be calculated. It is easily confirmed that the midspan deflec-
tion of a member experiencing an end rotation of θ rad, the far end being fixed, is

	 Δθ = ​​ θℓ __ 
8
 ​​	 (13.19)

FIGURE 13.27
Flat slab span with variable 
moment of inertia.
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Thus, the total deflection at midspan of the column strip or middle strip is the sum 
of the three parts

	 Δcol = Δf,col + Δθl + Δθr	 (13.20a)

	 Δmid = Δf,mid + Δθl + Δθr	 (13.20b)

where the subscripts l and r refer to the left and right ends of the span, respectively.
The calculations described are repeated for the equivalent frame in the second 

direction of the structure, and the total deflection at midpanel is obtained by sum-
ming the column-strip deflection in one direction and the middle-strip deflection in 
the other, as indicated by Eqs. (13.14a) and (13.14b).

The midpanel deflection should be the same whether calculated by Eq. (13.14a) 
or Eq. (13.14b). Actually, a difference is usually obtained because of the approximate 
nature of the calculations. For very rectangular panels, the main contribution to 
midpanel deflection is that of the long-direction column strip. Consequently, the 
midpanel deflection is best found by summing the deflections of the long-direction 
column strip and the short-direction middle strip. However, for exterior panels, the 
important contribution is from the column strips perpendicular to the discontinuous 
edge, even though the long side of the panel may be parallel to that edge.

In slabs, as in beams, the effect of concrete cracking is to reduce the flexural 
stiffness. According to ACI Code 8.3.2, the effective moment of inertia given by 
Eq. (7.9) is applicable to slabs as well as beams, although other values may be used 
if results are in reasonable agreement with tests. In most cases, two-way slabs are 
essentially uncracked at service loads, and it is satisfactory to base deflection calcu-
lations on the uncracked moment of inertia Ig (see Ref. 13.25 for comparison with 
tests). ACI Code 8.3.1.1, however, requires that for fy greater than 80 ksi, a reduced 
modulus of rupture fr = ​​√

__
 ​f​c​ ′​​​ be used to calculate deflections. In Ref. 13.27, Branson 

suggests the following refinements: (1) for slabs without beams, use Ig for all dead 
load deflections; for dead plus live load deflections, use Ig for middle strips and  
Ie for column strips; (2) for slabs with beams, use Ig for all dead load deflections; 
for dead plus live load deflections, use Ig for column strips and Ie for middle strips. 
For continuous spans, Ie can be based on the midspan positive moment without 
serious error.

The deflections calculated using the procedure described are short-term deflec-
tions. Long-term slab deflections can be calculated by multiplying the short-term 
deflections by the factor λΔ of Eq. (7.12), as for beams. Because compression steel 
is seldom used in slabs, a multiplier of 2.0 results. Test evidence and experience 
with actual structures indicate that this may seriously underestimate long-term slab 
deflections, and multipliers for long-term deflection from 2.5 to 4.0 have been rec-
ommended (Refs. 13.27 to 13.29). A multiplier of 3.0 gives acceptable results in 
most cases.

It should be recognized that the prediction of slab deflections, both initial 
elastic and long-term, is complicated by the many uncertainties associated with 
actual building construction. Loading history, particularly during construction, has a 
profound effect on final deflections (Ref. 13.30). Construction loads can equal or 
exceed the service live load. Such loads may include the weight of stacked building 
material and usually include the weight of slabs above the one cast earlier, applied 
through shoring and reshoring to the lower slab. Because construction loads are 
applied to immature concrete in the slabs, the immediate elastic deflections are large, 
and, upon removal of the construction loads, elastic recovery is less than the initial 
elastic deflection because Ec increases with age. Cracking resulting from construction 
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loading does not disappear with removal of the temporary load and may result in 
live load deflections greater than expected. Creep during construction loading may 
be greater than expected because of the early age of the concrete when loaded. 
Shrinkage deflections of thin slabs are often of the same order of magnitude as the 
elastic deflections, and some cases must be calculated separately.

It is important to recognize that both initial and time-dependent slab deflections 
are subject to a high degree of variability. Calculated deflections are an estimate, at 
best, and considerable deviation from calculated values is to be expected in actual 
structures.

	EXAMPLE 13.5	 Calculation of deflections.  Find the deflections at the center of the typical exterior panel 
of the two-way floor designed in Example 13.1 due to dead and live loads. The live load 
may be considered a short-term load and is distributed uniformly over all panels. The floor 
supports nonstructural elements that are likely to be damaged by large deflections. Take 
Ec = 3.6 × 106 psi.

Solution.  The elastic deflection due to the self-weight of 88 psf is found, after which the 
additional long-term dead load deflection can be found by applying the factor λ = 3.0, and 
the short-term live load deflection due to 144 psf by direct proportion.

The effective concrete cross sections, upon which moment of inertia calculations are 
based, are shown in Fig. 13.28 for the full-width frame, the column strip, and the middle 
strips, for the short-span and long-span directions. Note that the width of the column strip in 
both directions is based on the shorter panel span, according to the ACI Code. The values of 
moment of inertia are as follows:

Short Direction Long Direction

Iframe 27,900  in4 25,800  in4

Icol 21,000  in4 21,000  in4

Imid 5,150  in4 3,430  in4

FIGURE 13.28
Cross-sectional dimensions 
for deflection example:  
(a) short-span direction 
frame, column strip, and 
middle strip and (b) long-
span direction frame, column 
strip, and middle strip.
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First calculating the deflections of the floor in the short-span direction of the panel, 
from Eq. (13.15) the reference deflection is

Δf,ref = ​  wℓ4
 __________ 

384Ec Iframe
 ​ = ​ 

88 × 25(20 × 12)4

   ___________________________   
12 × 384 × 3.6 × 106 × 27,900

 ​ = 0.016 in.

(Note that the centerline span distance is used here, although clear span was used in the 
moment analysis to approximate the moment reduction due to support width, according to ACI 
Code procedures.) From the moment analysis in the short-span direction, it was concluded  
that 68 percent of the moment at both negative and positive sections was taken by the column 
strip and 32 percent by the middle strips. Accordingly, from Eqs. (13.16a) and (13.16b),

 Δf,col = Δf,ref ​ 
Mcol _____ 

Mframe
 ​ ​ 
Ec Iframe _______ 
Ec Icol

 ​  = 0.016 × 0.68 × ​ 
27,900

 ______ 
21,000

 ​ = 0.014 in.

Δf,mid = Δf,ref ​ 
Mmid _____ 

Mframe
 ​ ​ 
Ec  Iframe _______ 
Ec Imid

 ​  = 0.016 × 0.32 × ​ 
27,900

 ______ 
5150

 ​  = 0.028 in.

For the panel under investigation, which is fully continuous over both supports in the short 
direction, it may be assumed that support rotations are negligible; consequently, Δθt and Δθr = 0, 
and from Eqs. (13.20a) and (13.20b),

 Δcol = 0.014 in.

Δmid = 0.028 in.

Now calculating the deformations in the long direction of the panel gives the reference 
deflection

Δf,ref = ​ 
88 × 20(25 × 12)4

   ___________________________   
12 × 384 × 3.6 × 106 × 25,800

 ​ = 0.033 in.

From the moment analysis, it was found that the column strip would take 93 percent of the 
exterior negative moment, 81 percent of the positive moment, and 81 percent of the interior 
negative moment. Thus, the average lateral distribution factor for the column strip is

​( ​ 0.93 + 0.81  __________ 
2
 ​  + 0.81 )​ ​ 1 __ 

2
 ​ = 0.84

or 84 percent, while the middle strips are assigned 16 percent. Then from Eqs. (13.16a) and 
(13.16b),

Δf,col = 0.033 × 0.84 × ​ 
25,800

 ______ 
21,000

 ​ = 0.034 in.

Δf,mid = 0.033 × 0.16 × ​ 
25,800

 ______ 
3430

 ​  = 0.040 in.

While rotation at the interior column may be considered negligible, rotation at the exterior 
column cannot. For the dead load of the slab, the full static moment is

Mo = ​ 1 _ 8 ​ × 0.088 × 20 × 252 = 137.5 ft-kips

It was found that 16 percent of the static moment, or 22.0 ft-kips, should be assigned to the 
exterior support section. The resulting rotation is found from Eq. (13.18). It is easily confirmed 
that the stiffness of the equivalent column (see Section 13.6c) is 169 × 3.6 × 106 in-lb∕rad; 
hence,

θ = ​ 
22,000 × 12

  ______________  
169 × 3.6 × 106

 ​ = 0.00043 rad

From Eq. (13.19), the corresponding midpanel deflection component is

Δθ = ​ 0.00043 × 25 × 12  ________________ 
8
 ​  = 0.016 in.
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	 13.12	 ANALYSIS FOR HORIZONTAL LOADS

The methods described in the preceding sections of this chapter may be used for the 
analysis of two-way slab systems for gravity loads, according to ACI Code 8.2.1. 
These procedures, however, are not meant to apply to the analysis of buildings sub-
ject to lateral loads, such as loads caused by wind or earthquake. For lateral load 
analysis, the designer may select any method that is shown to satisfy equilibrium 
and geometric compatibility and give results that are in reasonable agreement with 
available test data. The results of the lateral load analysis may then be combined 
with those from the vertical load analysis, according to ACI Code 8.4.1.9.

Plane frame analysis, with the building assumed to consist of parallel frames 
each bounded laterally by the panel centerlines on either side of the column lines, 
has often been used in analyzing unbraced buildings for horizontal loads, as well 
as vertical. For vertical load analysis by the equivalent frame method, a single 
floor is usually studied as a substructure with attached columns assumed fully 
fixed at the floors above and below, but for horizontal frame analysis the equiv-
alent frame includes all floors and columns, extending from the bottom to the top 
of the structure.

The main difficulty in equivalent frame analysis for horizontal loads lies in mod-
eling the stiffness of the region at the beam-column (or slab-beam-column) connec-
tions. Transfer of forces in this region involves bending, torsion, shear, and axial load 
and is further complicated by the effects of concrete cracking in reducing stiffness and 
reinforcement in increasing it. Frame moments are greatly influenced by horizontal 
displacements at the floors, and a conservatively low value of stiffness should be used 
to ensure that a reasonable estimate of drift is included in the analysis.

While a completely satisfactory basis for modeling the beam-column joint stiff-
ness has not been developed, at least two methods have been used in practice  
(Ref. 13.31). The first is based on an equivalent beam width αℓ2, less than the actual 
width, to reduce the stiffness of the slab for purposes of analysis. Figure 13.29a shows 
a plate fixed at the far edge and supported by a column of width c2 at the near side. 

Thus, from Eqs. (13.20a) and (13.20b), the deflections of the column and middle strips in 
the long direction are

 Δcol = 0.034 + 0.016 = 0.050 in.

Δmid = 0.040 + 0.016 = 0.056 in.

and from Eq. (13.14a) the short-term midpanel deflection due to self-weight is

Δmax = 0.050 + 0.028 = 0.078 in.

The long-term deflection due to dead load is 3.0 × 0.078 = 0.234 in., and the short-term live 
load deflection is 0.078 × 144∕88 = 0.128.

The ACI limiting value for the present case is found to be 1∕480 times the span, or 
20 × 12∕480 = 0.500 in., based on the sum of the long-time deflection due to sustained load 
and the immediate deflection due to live load. The sum of these deflection components in 
the present case is

Δmax = 0.234 + 0.128 = 0.362 in.

well below the permissible value.
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If a rotation θ is imposed at the column, the plate rotation along the axis A will vary 
as shown by Fig. 13.29a, from θ at the column to smaller values away from the col-
umn. An equivalent width factor α is obtained from the requirement that the stiffness 
of a prismatic beam of width αℓ2 must equal the stiffness of the plate of width ℓ2. 
This equality is obtained if the areas under the two rotation diagrams of Fig. 13.29b 
are equal. Thus, the frame analysis is based on a reduced slab (or slab-beam) stiffness 
found using αℓ2 rather than ℓ2. Comparative studies indicate that, for flat plate floors, 
a value for α between 0.25 and 0.50 may be used (Ref. 13.31).

Alternatively, the beam-column stiffness can be modeled based on a transverse 
torsional member corresponding to that used in deriving the stiffness of the equiv-
alent column for the vertical load analysis of two-way slabs by the equivalent frame 
method (see Section 13.6c). Rotational stiffness of the joint is a function of the 
flexural stiffness of the columns framing into the joint from above and below and 
the torsional stiffness of the transverse strip of slab or slab beam at the column. The 
equivalent column stiffness is found from Eq. (13.5) and the torsional stiffness from 
Eq. (13.6), as before.

Finally, for frames in which two-way systems act as primary members resisting 
lateral loads, ACI Code 8.7.4.1 requires that the lengths of reinforcement be deter-
mined by analysis because the lengths shown in Fig. 13.8 may not be adequate. The 
values in Fig. 13.8, however, are retained as minimum values.

FIGURE 13.29
Equivalent beam width for 
horizontal load analysis.
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Problems
	13.1.	 For the one-way slab floor in Problem 12.2, calculate the immediate and 

long-term deflection due to dead loads. Assume that all dead loads are 
applied when the construction shoring is removed. Also determine the deflec-
tion due to application of the full-service live load. Assuming that sensitive 
equipment will be installed 6 months after the shoring is removed, calculate 
the relevant deflection components and compare the total with maximum 
values recommended in the ACI Code.

	13.2.	 A monolithic reinforced concrete floor consists of rectangular bays measuring 
21 × 26 ft, as shown in Fig. P13.2. The floor is designed to carry a service 
live load of 125 psf uniformly distributed over its surface in addition to its 
own weight, using a concrete strength of 5000 psi and reinforcement having 
fy = 60,000 psi. Design the typical exterior panel of the floor of Example 12.2 
as a part of a flat plate structure, with no beams between interior columns 
but with beams provided along the outside edge to stiffen the slab. No drop 
panels or column capitals are permitted, but shear reinforcement may be 
incorporated if necessary. Column size is 20 × 20 in., and the floor-to-floor 
height is 12 ft. Use the equivalent frame method. Summarize your design by 
means of a sketch showing plan and typical cross sections.

FIGURE P13.2 21′–0″

26
′–

0
″

12′–0″ 16″
6″

	13.3.	 For the four-story structure shown in Figure P13.3, (a) select the slab 
thickness, (b) design the highlighted floor slab panel using the equivalent 
frame method, (c) prepare sketches of the steel layout, and (d  ) comment 
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on your selection of the original thickness and what effect using shear 
studs might have on the design. Material strengths are fy = 60,000 psi and ​
f​c​ ′​ = 4000 psi. Building loads are the superimposed dead load of 30 psf 
and live load of 50 psf.

	13.4.	 A multistory commercial building is to be designed as a flat plate system 
with floors of uniform thickness having no beams or drop panels. Columns 
are laid out on a uniform 20 ft spacing in each direction and have a 16 in. 
square section and a vertical dimension 10 ft from floor to floor. Specified 
service live load is 100 psf including partition allowance. Using the direct 
design method, design a typical interior panel, determining the required 
floor thickness, size and spacing of reinforcing bars, and bar details includ-
ing cutoff points. To simplify construction, the reinforcement in each 
direction is the same; use an average effective depth in the calculations. 
Use all straight bars. For moderate spans such as this, it has been deter-
mined that supplementary shear reinforcement would not be economical, 
although column capitals may be used if needed. Thus, slab thickness may 
be based on Eqs. (13.7a), (13.7b), and (13.7c); or column capital dimen-
sions can be selected using those equations if slab thickness is based on 
the equations in Section 13.5. Material strengths are fy  =  60,000 psi and ​
f​c​ ′​ = 4000 psi.

	13.5.	 Prepare alternative designs for shear reinforcement at the supports of the slab 
described in Example 13.4 (a) using integral beams with vertical stirrups similar 
to Fig. 13.17a, and (b) using headed shear stud reinforcement similar to  
Fig. 13.17b.

FIGURE P13.3 24′22′24′

24′

22′

24

11′ 16″

www.konkur.in

Telegram: @uni_k



ANALYSIS AND DESIGN OF TWO-WAY SLABS      447

	13.7.	 For the flat plate floor in Example 13.1, find the following deflection 
components at the center of panel C: (a) immediate deflection due to total 
dead load; (b) additional dead load deflection after a long period of time, 
due to total dead load; (c) immediate deflection due to three-quarters full 
live load. The moment of inertia of the cross concrete sections Ig may be 
used for all calculations. It may be assumed that maximum deflection is 
obtained for the same loading pattern that would produce maximum pos-
itive moment in the panel. Check predicted deflection against ACI limita-
tions, assuming that nonstructural attached elements would be damaged by 
excessive deflections.

	13.8.	 A parking garage is to be designed using a two-way flat slab on the column 
lines, as shown in Fig. P13.8. A live load of 100 psf is specified. Find the 
required slab thickness, using a reinforcement ratio of approximately 0.005, 
and design the reinforcement for a typical corner panel A, edge panel B, and 
interior panel C. Check shear capacity. Detail the reinforcement, showing 
size, spacing, and length. All straight bars are used. Material strengths are 
fy = 60,000 psi and ​f​c​ ′​ = 5000 psi. Specify the design method selected and 
comment on your results.

FIGURE P13.6

A

B

5′ 20′ typical

20′ typical
All columns

18″ × 18″

5′

	13.6.	 Figure P13.6 shows a flat plate floor designed to carry a factored load of 
325 psf. The total slab thickness h = 7​ 1 _ 2 ​ in. and the average effective depth 
d = 6 in. Material strengths are fy = 60,000 psi and ​f​c​ ′​ = 4000 psi. The design 
for punching shear at a typical interior column B2 provided the basis for 
Example 13.3. To provide a full perimeter bo at the exterior column B1, the 
slab is cantilevered past the columns as shown. A total shear force Vu = 105 
kips must be transmitted to the column, along with a bending moment 
Mu  =  120  ft-kips about an axis parallel to the edge of the slab. Check for 
punching shear at column B1 and, if ACI Code restrictions are not met, 
suggest appropriate modifications in the proposed design. Edge beams are 
not permitted.
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448      DESIGN OF CONCRETE STRUCTURES  Chapter 13

	13.9.	 For the typical interior panel C of the parking garage in Problem 13.8,  
(a) compute the immediate and long-term deflections due to dead load and  
(b) compute the deflection due to the full-service live load. Compare with 
ACI Code maximum permissible values, given that there are no elements 
attached that would be damaged by large deflections.

FIGURE P13.8

12′–0″

A B

C

22′–0″

22′–0″ 22′–0″

22′–0″

Columns 16″ × 16″
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Walls

	 14.1	 INTRODUCTION

Walls serve a number of functions, ranging from separation of space in a building to 
restraining earth adjacent to a building or building site. As a general rule, the exterior 
walls of a reinforced concrete building are supported at each floor by the skeleton 
framework, their only function being to enclose the building. Such walls are called 
panel walls. They may be made of concrete (often precast), concrete block, brick, tile 
blocks, or insulated metal panels. The latter may be faced with aluminum, stainless 
steel, or a porcelain-enamel finish over steel, backed by insulating material and an 
inner surface sheathing. The thickness of each of these types of panel walls will vary 
according to the material, type of construction, climatological conditions, and the 
building requirements governing the particular locality in which the construction 
takes place.

Wind pressure is usually the principal load that is considered in determining 
the structural thickness of a wall panel, although in some cases exterior walls are 
used as diaphragms to transmit forces caused by horizontal loads down to the build-
ing foundations.

Curtain walls are similar to panel walls, except they are not supported at each 
story by the frame of the building, but are self-supporting. They are, however, often 
anchored to the building frame at each floor to provide lateral support.

In general, bearing walls, such as those shown in Fig. 14.1, may be defined as 
walls that carry any vertical load in addition to their own weight. Such walls may 
be constructed of stone masonry, brick, concrete block, or reinforced concrete. Occa-
sional projections or pilasters add to the strength of the wall and are often used at 
points of load concentration. In small commercial buildings, bearing walls may be 
used with economy and expediency. In larger commercial and manufacturing build-
ings, when the element of time is an important factor, the delay necessary for the 
erection of the bearing wall and the attendant increased cost of construction often 
dictate the use of some other arrangement. In addition to vertical loads, bearing walls 
must often be designed to carry out-of-plane loads and bending due to eccentricity 
of the load, as are columns.

Shear walls resist in-plane forces and are used to provide lateral stability in systems 
subjected to wind and earthquake loads. Shear walls may be bearing or nonbearing.

Bearing and shear walls are considered structural walls by ASCE∕SEI 7 (Ref. 14.1), 
and in either case both must be designed for a combination of all applied loads. 

Figure 14.2 illustrates the in-plane and out-of-plane forces on walls and iden-
tifies general wall dimensions. Retaining walls resist out-of-plane soil pressure, are 
designed as flexural members, and are addressed in Chapter 16.
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Walls may be cast-in-place, precast in a plant off-site, or precast on-site and 
tilted up into their final position. Walls are anchored to intersecting elements, such 
as adjacent walls, floors, columns, pilasters, or buttresses—and to footings unless the 
analysis indicates such restraint is not necessary. Walls are assumed to be laterally 
supported at each floor. The degree of lateral support is dependent on the overall 
structural framing system. Shear walls, when placed orthogonally in a building, pro-
vide the lateral restraint both to the other walls and to the columns.

	 14.2	 GENERAL DESIGN CONSIDERATIONS

The design of structural walls has evolved through years of practice. The ACI Code 
allows a variety of design approaches, including computer analysis and empirical 
methods. For out-of-plane loading, walls may be designed as wide columns using 
the procedures discussed in Chapters 9 and 10, or they may be designed using meth-
ods presented in ACI Code 11.5.3 and 11.8 and discussed in Sections 14.3 and 14.4. 
Design for in-plane loading is addressed in ACI Code 11.5.4 and Section 14.5.

FIGURE 14.2
Wall forces and dimensions.
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FIGURE 14.1
Bearing walls under 
construction. (Photograph by 

Charles W. Dolan.)
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The effective length of a wall ℓw is determined by the loading. A uniformly 
loaded wall has an effective length equal to the overall length of the wall. Walls 
supporting concentrated loads have effective lengths equal to the lesser of the center-
to-center spacing of the loads or the bearing length plus four times the wall thickness. 
The effective length is not considered to extend beyond the boundary of the wall. 
For cast-in-place walls with axial factored load Pu > 0.2 ​​f​c​ ′​​Ag, where Ag is the gross 
area of the wall, ACI Code 14.2.4 requires that the portion of the wall within the 
thickness of the floor system have a specified compressive strength not less than  
80 percent of the specified compressive strength of the wall.

	 a.	 Wall Thickness

In all cases involving vertical loads, wall design must consider slenderness effects. 
The ACI Code does not limit the minimum thickness h of bearing, exterior basement, 
or foundation walls, except for walls designed by a method described in ACI Code 
11.5.3 as the simplified design method (see Section 14.3). For the simplified method, 
ACI Code 11.3.1 limits the minimum thickness of interior walls to the smallest of 
h = 4 in., ℓc∕25, or ℓw∕25 for bearing walls and 7.5  in. for exterior or foundation 
walls, where ℓc is the unsupported height of the wall and ℓw is the unsupported length 
of the wall, both measured center-to-center of the supports. The minimum thickness 
of nonbearing walls is limited to the smallest of h = 4 in., ℓc∕30, and ℓw∕30. In all 
cases, the minimum thickness h may be reduced if analysis indicates that a wall with 
lower thickness has adequate strength and stability. 

	 b.	 Modeling Considerations

Modeling walls for analysis for out-of-plane loading typically assumes that the 
unbraced wall height ℓc is the center-to-center distance between supports, the wall 
is simply supported between floors, and the maximum out-of-plane moment occurs 
at midheight. Stability considerations assume that the wall is cracked when lateral 
loads are applied. The maximum moment on walls subjected to out-of-plane loading 
is increased by the effects of vertical loads. Iterative calculations may be required to 
determine the design load, thus:

	 Mu = Mua + PuΔu	 (14.1)

where Mua is the maximum factored load not including the P-Δ effects. The out-of-
plane deflection is calculated using cracked section properties. The strength reduction 
factor ϕ = 0.65 for walls, as it is for other compression members subjected to axial 
loads and moment with tied reinforcement. In regions of walls reinforced by spiral 
reinforcement, ϕ = 0.75.

	 c.	 Reinforcement

ACI Code 11.6.1 requires minimum reinforcement in the longitudinal (vertical) and trans-
verse (horizontal) directions in walls, independent of loading, unless “adequate strength 
and stability can be demonstrated by structural analysis.” The value of the required rein-
forcement depends upon whether the in-plane factored shear is less than or greater than 

	 0.5ϕαcλ​​√
__

 ​f​c​ ′​​​Acv	 (14.2)

where αc is the coefficient defining contribution of concrete strength to nominal wall 
shear strength; αc = 3 for hw∕ℓw ≤ 1.5, = 2 for hw∕ℓw ≥ 2.0, and varies linearly between 
3 and 2 for 1.5 < hw∕ℓw < 2.0; hw and ℓw are, respectively, the height from base to 
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top and length of entire wall, or the clear height and length of wall segment or wall 
pier considered, in.; and Acv is the gross area of wall bounded by web thickness h and 
length of wall in the direction of shear force ℓw, minus area of any openings, in2.

For walls with in-plane shear, Vu ≤ 0.5ϕαcλ​​√
__

 ​f​c​ ′​​​Acv, the reinforcement ratio in 
the longitudinal direction ρℓ must be at least 0.0012 for No. 5 (No. 16) and smaller 
bars with fy ≥ 60 ksi, increasing to 0.0015 for other deformed bars. The reinforce-
ment ratio in the transverse direction ρt must be at least 0.0020 for No. 5 (No. 16) 
and smaller bars with fy ≥ 60 ksi, increasing to 0.0025 for other deformed bars. For 
welded wire reinforcement not larger than W31 or D31, the minimum vales of ρℓ 
and ρt are, respectively, 0.0012 and 0.0020. 

For walls with in-plane shear Vu > 0.5ϕαcλ​​√
__

 ​f​c​ ′​​​Acv, ACI Code 11.6.2 requires 
ρt  ≥  0.0025, independent of reinforcement type. Test results indicate that for low 
shear walls, vertical as well as horizontal reinforcement is needed, and the ACI Code 
requires vertical bars or wires with area Aℓ and spacing s1 (discussed in Section 14.5) 
such that the ratio of the vertical steel to gross concrete area for a horizontal section 
ρℓ is not less than given in Eq. (14.3)

	 ρℓ ≥ 0.0025 + 0.5(2.5 − hw∕ℓw)(  ρt − 0.0025)	 (14.3)

and not less than 0.0025, but need not be greater than the minimum horizontal rein-
forcement ρt required for in-plane shear (see Section 14.5). ACI Code 11.6.2 is some-
what problematic because, as will be apparent in Section 14.5, if the factored in-plane 
shear Vu is greater than 0.5ϕαcλ​​√

__
 ​f​c​ ′​​​Acv but less than ϕαcλ​​√

__
 ​f​c​ ′​​​Acv, no transverse rein-

forcement is required; as a result, ρℓ would equal 0. The minimum value of ρt, how-
ever, would remain 0.0025. It is unlikely that ρℓ = 0 is the outcome desired by ACI 
Committee 318. As a result, these provisions will be interpreted as requiring a mini-
mum value of 0.0025 for both ρt and ρℓ when Vu > 0.5ϕαcλ​​√

__
 ​f​c​ ′​​​Acv.

Although not stated in the Code, ACI Commentary 11.6.2 indicates that when 
applying Eq. (14.3), hw∕ℓw should be limited to values between 0.5 and 2.5, using 0.5 for 
hw∕ℓw < 0.5, in which case ρℓ = ρt, and 2.5 for hw∕ℓw > 2.5, in which case ρℓ = 0.0025. 
When ρt = 0.0025, the longitudinal reinforcement requirement is ρℓ = 0.0025.

Reinforcement spacing must not exceed 3h or 18 in., in accordance with ACI 
Code 11.7. If shear reinforcement is required to carry the factored load, the maximum 
spacing may not exceed ℓw∕3 for longitudinal reinforcement and ℓw∕5 for transverse 
reinforcement. For walls with thicknesses greater than 10 in., except basement and 
cantilever retaining walls, the reinforcement must be distributed in two layers parallel 
to the wall faces. 

ACI Code 11.7.5 requires additional reinforcement to limit cracks that can 
occur near the corners of openings in walls, such as used for windows and doors. 
That reinforcement must consist of at least two No. 5 (No. 16) bars in walls with 
two layers of reinforcement in both directions or one No. 5 (No. 16) bar in walls 
with a single layer of reinforcement in both directions. The additional reinforcement 
must be anchored to develop fy in tension at the corners of the openings and may 
be placed on the diagonal near each corner or oriented in both the horizontal and 
the vertical directions near each corner.

	 14.3	 SIMPLIFIED DESIGN METHOD FOR AXIAL LOAD  
AND OUT-OF-PLANE MOMENT

ACI Code 11.5.3 permits the use of a simplified design method for solid walls with 
uniform thickness if the resultant of all factored vertical loads lies within the middle 
third of the wall thickness. The method has been shown to be conservative when 
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compared to detailed calculations for walls with the same dimensions (Ref. 14.2). 
For walls meeting the restrictions, the nominal axial load capacity may be calcu-
lated as

	 Pn = 0.55 ​​f​c​ ′​​ Ag ​​[ 1 − ​​( ​ k​ℓ​ c​
 ____ 

32h
 ​ )​​2​ ]​​ 	 (14.4)

where Ag is the gross area of the wall, k is the effective length factor to account for 
stability due to end fixity, ℓc is the unsupported height of the wall measured center 
to center of the joints as it is for columns, and h is the wall thickness. The value of k 
equals 0.8 for walls braced against lateral translation and restrained against rotation at 
one or both ends, 1.0 for walls restrained against translation and unrestrained against 
rotation at both ends, and 2.0 for walls not braced against translation. There is no 
requirement to design for bending using the simplified design method.

	EXAMPLE 14.1	 Bearing wall design.  A 12 ft long interior bearing wall carries a factored load of 15,000 plf, 
as shown in Fig. 14.3. The load is centered on the wall thickness. For a center-to-center 
floor height hw = ℓc = 12 ft-6 in., ​​f​c​ ′​​ = 4000 psi, and fy = 60,000 psi, design the wall using 
the simplified design method.

Solution.  When designing a wall using the simplified method, the wall thickness h cannot 
be less than the largest of 4 in., ℓc∕25, or ℓw∕25. For ℓc = 12.5 ft and ℓw = 12 ft, h must be 
at least 6 in. A wall thickness of h = 6 in. gives a wall dead load of wd = h∕12 × 150 pcf × hw =  
6∕12 × 150 × 12.5 = 938 plf. The factored load on the wall is

Pu = (1.2 × wd + wu) ℓw = (1.2 × 938 + 15,000) × 12∕1000 = 195 kips

The load is applied within the middle third of the wall thickness, so the simplified design 
method may be used. Using Eq. (14.3) with k = 1.0, the wall capacity is

    ϕPn = ϕ  0.55 ​​f​c​ ′​​ Ag​​[ 1 − ​​( ​ k​ℓ​ c​
 ____ 

32h
 ​ )​​2​ ]​​

= 0.65 × 0.55 × 4000 × 6 × 12 × 12  ​​[ 1 − ​​( ​ 1.0 × 12.5 × 12  ______________  
32 × 6

 ​  )​​2​ ]​​ = 270 kips

This exceeds the factored axial load.
There is no factored shear load on the wall; thus, minimum reinforcement as described 

in Section 14.2b is required. For h  =  6 in. and assuming that No. 5 or smaller bars will be 
used as reinforcement, the minimum longitudinal reinforcement requirement in in2∕ft is  
0.0012 × h × 12 = 0.086 in2∕ft, and the minimum transverse reinforcement is 0.0020 × h × 12 =  
0.144  in2∕ft. Since the wall is less than 10 in. thick, the reinforcement may be placed in a 
single layer near the center of the wall. The maximum spacing of both the longitudinal and 
transverse reinforcement is 18 in. or 3h = 18 in. Reinforcement consisting of No. 4 (No. 13) 
bars placed at 18 in. longitudinally gives 0.13 in2∕ft and No. 4 (No. 13) bars placed at 16 in. 
horizontally gives 0.15  in2∕ft, thereby meeting the reinforcement requirements.

FIGURE 14.3
Factored loads on wall.

wu = 15,000 plf
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454      DESIGN OF CONCRETE STRUCTURES  Chapter 14

	 14.4	 ALTERNATIVE METHOD FOR OUT-OF-PLANE  
SLENDER WALL ANALYSIS

ACI Code 11.8 provides an alternative, empirical procedure for the design of slender 
walls subjected to axial load, out-of-plane bending, and shear. The procedure applies 
to all cases where the limitations of the simplified design method are not satisfied. 
This method addresses walls where out-of-plane deformations are calculated and the 
effects of secondary moments due to axial loads and out-of-plane deformations based 
on cracked sections are included. Results from computer analysis, including second- 
order effects and adjustment for cracked sections, may be used to design the wall for 
combined axial load and moments. The nominal strength of these walls for in-plane 
shear is addressed in ACI Code 11.5.4 and Section 14.5.

	 14.5	 SHEAR WALLS

Horizontal forces acting on buildings, such as those due to wind or seismic action, can 
be resisted by different means. Rigid-frame resistance of the structure, augmented by 
the contribution of ordinary masonry walls and partitions, can provide for wind loads 
in many cases. However, when heavy horizontal loading is likely, such as would result 
from an earthquake or high winds, reinforced concrete shear walls are used. These 
may be added solely to resist horizontal forces, or concrete walls enclosing stairways 
or elevator shafts may also serve as shear walls.

Figure 14.4 shows a building with wind or seismic forces represented by arrows 
acting on the edge of each floor or roof. The horizontal surfaces act as deep beams 
to transmit loads to vertical resisting elements A and B. These shear walls, in turn, 
act as cantilever beams fixed at their base to carry loads down to the foundation. 
They are subjected to (1) variable shear, which reaches a maximum at the base; 
(2) bending moment, which tends to cause vertical tension near the loaded edge and 

FIGURE 14.4
Building with shear walls 
subject to horizontal loads: 
(a) typical floor; (b) front 
elevation; and (c) end 
elevation.

A

D

C

B

(b)

(a)

(c )

www.konkur.in

Telegram: @uni_k



WALLS      455

compression at the far edge; and (3) vertical compression due to ordinary gravity 
loading from the structure. For the building shown, additional shear walls C and D 
are provided to resist loads acting in the long direction of the structure.

Shear is apt to be critical for walls with a relatively low ratio of height to 
length. High shear walls are controlled mainly by flexural requirements.

Figure 14.5 shows a typical shear wall with total height hw, length ℓw, and 
thickness h. It is assumed to be fixed at its base and loaded horizontally along its 
left edge. Vertical flexural reinforcement of area As is provided at the left edge, with 
its centroid a distance d from the extreme compression face. To allow for reversal 
of load, identical reinforcement is provided along the right edge. Horizontal shear 
reinforcement with area At at spacing s is provided, as well as vertical shear 
reinforcement with area Aℓ at spacing s1.

When designing shear walls, ACI Code 11.5.1 requires that

	 ϕVn ≥ Vu	 (14.5)

Vn, given in ACI Code 11.5.4, is

	 Vn = (αcλ​​√
__

 ​f​c​ ′​​​ + ρt fyt)Acv	 (14.6)

where αc and Acv are defined following Eq. (14.2), λ is the lightweight concrete 
modification factor (see Section 5.5a), ρt is the reinforcement ratio in the transverse 
direction, and fyt is the yield strength of the transverse reinforcement.

For walls subject to vertical tension force Nu,

	 αc = 2 ​​( 1 +  ​ 
Nu
 ______ 

500 Ag

 ​ )​​ ≥ 0.0	 (14.7)

where Nu is negative for tension.

FIGURE 14.5
Geometry and reinforcement 
of a typical shear wall:  
(a) cross section and  
(b) elevation.

At

As s 1

s

A

hw

h

(a )

(b )

d

�w

�

www.konkur.in

Telegram: @uni_k



456      DESIGN OF CONCRETE STRUCTURES  Chapter 14

To guard against diagonal compression failure (Refs. 14.3 and 14.4), an upper 
limit is placed on the nominal shear strength of walls.

	 Vn ≤ 8​​√
__

 ​f​c​ ′​​​Acv	 (14.8)

Inherent in Eq. (14.8) is the assumption that the effective depth of a shear wall in 
the plane of the wall d can be approximated as 0.8ℓw. This assumption is also often 
a useful for preliminary flexural design.

Walls may be subject to flexural tension due to overturning moment, even when 
the vertical compression from gravity loads is superimposed. In many but not all 
cases, vertical steel is provided, concentrated near the wall edges, as shown in 
Fig. 14.5. The required steel area can be found by the usual methods for beams.

The dual function of the floors and roofs in buildings with shear walls should be 
noted. In addition to resisting gravity loads, they must act as deep beams spanning 
between shear-resisting elements. Because of their proportions, both shearing and flex-
ural stresses are usually quite low. According to ACI Code 5.3, the load factor for live 
load drops to 1.0 when wind or earthquake effects are combined with the effects of 
gravity loads. Consequently, floor and roof reinforcement designed for gravity loads 
can usually serve as reinforcement for horizontal beam action also, with no increase in 
bar areas.

ACI Code 11.5.4 permits walls with height-to-length ratios below 2.0 to be 
designed using strut-and-tie models (Chapter 17). The minimum shear reinforcement 
criteria and the maximum spacing limits for s and s1 given in Section 14.2c must be 
satisfied.

There are special considerations and requirements for reinforced concrete walls 
in structures designed to resist forces associated with seismic motion. These are 
based on design for energy dissipation in the nonlinear range of response. This 
subject will be treated separately, in Chapter 20.

	EXAMPLE 14.2	 Shear wall design.  Redesign the wall from Example 14.1 for the factored vertical and 
lateral loads shown in Fig. 14.6. The horizontal load Vu can be applied to the left or to the 
right. The center-to-center floor and total wall height hw  =  ℓc  =  12 ft-6 in., ​​f​c​ ′​​ = 4000 psi, 
and fy = 60,000 psi.

Solution:  Assume a wall thickness h  =  12 in. giving a wall dead load of wd  =  h∕12  ×   
150 pcf × hw = 12∕12 × 150 × 12.5 = 1875 plf. The critical loads occur at the bottom corner 
of the wall. Thus, the loads on the wall are

Pu = (1.2 × wd + wu) ℓw = (1.2 × 1875 + 15,000) × 12∕1000 = 207 kips

           Mu = 200 kips × 12.5 ft = 2500 kip-ft

            Vu = 200 kips

Based on the very similar axial load and the use of a wall thickness twice that used in 
Example 14.1, the out-of-plane effects are not of concern.

For the in-plane effects, the axial load 207 kips is less than 0.10 ​​f​c​ ′​​ Ag = 0.10 × 4000 ×  
12 × 12 × 12∕1000 = 691 kips, allowing the wall to be treated as a cantilever beam for  
the purposes of calculating flexural reinforcement, in accordance with ACI Code 9.5.2. The 
effective depth d will be taken as 0.8ℓw = 9.6 ft = 115 in. 
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FIGURE 14.6
Wall dimensions and loading 
for Example 14.2.

wu = 15,000 plf

Vu = 200 kips
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Using the design aids in Appendix A,

​R = ​ 
Mu
 _____ 

ϕbd 2
 ​ = ​ 

2500 × 12,000
  _______________  

0.90 × 12 × 1152
 ​ = 210

giving ρ = 0.0036 from Table A.5b and a required area of reinforcement As = 0.0036bd =   
0.0036 × 12 × 115 = 4.97 in2. This can be satisfied using five No. 9 (No. 29) bars placed at 
each end of the wall.

The longitudinal bars require ties with a minimum spacing equal to the lesser of 48 tie 
diameters, 12 longitudinal bar diameters, or the wall thickness. In this instance, 12 in. is the 
maximum tie spacing using No. 3 (No. 10) ties.

The factored shear on the wall Vu = 200 kips. hw∕ℓw = 12.5∕12 = 1.04. Because hw∕ℓw ≤  
1.5, αc = 3 and 0.5ϕαcλ​​√

__
 ​f​c​ ′​​​ Acv = 0.5 × 0.75 × 3 × 1.0​​√

____
 4000​​ × 12 × 115∕1000 = 98 kips.

Thus, Vu is greater than 0.5ϕαcλ​​√
__

 ​f​c​ ′​​​ Acv and also slightly greater than ϕαcλ​​√
__

 ​f​c​ ′​​​ Acv = 196 kips, 
meaning that, as shown in Eq. (14.6), where Vn = (αcλ​​√

__
 ​f​c​ ′​​​ + ρt fyt) Acv, there is a very low 

requirement for transverse reinforcement. The minimum quantity of transverse reinforcement 
for Vu ≥ 0.5ϕαcλ​​√

__
 ​f​c​ ′​​​ Acv, ρt = 0.0025, will easily provide the needed shear strength. As 

pointed out in Section 14.2c, when using Eq. (14.3) with ρt  =  0.0025,  ρℓ  =  0.0025. Thus,  
the minimum required wall reinforcement in both the horizontal and the vertical directions is 
0.0025  ×  h  ×  12  in.∕ft  =  0.0025  ×  12  ×  12  in.∕ft  =  0.36  in2∕ft. The wall is greater than 
10  in. thick; consequently, reinforcement must be placed in two layers. The maximum  
reinforcement spacing is 18 in. or 3h, with 18 in. being the controlling value. Using No. 5 
(No. 16) bars placed at 18 in. in both directions near each face gives 0.41  in2∕ft, exceeding 
the minimum requirements. Final detailing of the wall is shown in Fig. 14.7.

Lastly, the footing must be designed to develop the shear wall reinforcement and prevent 
the wall from sliding or overturning.

FIGURE 14.7
Wall reinforcement details for Example 14.2.

9 No. 9 (No. 29) 
each end

No. 3 (No. 10) ties at 12 in.

12′-0″

No. 5 (No. 16) @ 18 in. each way, each face

9″9″

12″
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Problems
	14.1.	 A bearing wall carries a factored load of 24,000 plf centered on the wall. Design 

the wall using ℓw = 8 ft, ℓc = 15 ft, and material strengths  ​​f​c​ ′​​ = 5000 psi and 
fy = 80,000 psi.

	14.2.	 A shear wall has the factored lateral loads shown in Fig. P14.2. Design the 
first story of the wall for these factored lateral loads and a cumulative axial 
factored of 284 kips, excluding the wall weight. hw  =  15 ft and ℓw  = 8 ft. 
The material strengths are  ​​f​c​ ′​​ = 5000 psi and fy = 80,000 psi. 

FIGURE P14.2 8′
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Footings and Foundations

	 15.1	 TYPES AND FUNCTIONS

The substructure, or foundation, is the part of a structure that is usually placed below 
the surface of the ground and that transmits the load to the underlying soil or rock. All 
soils compress noticeably when loaded and cause the supported structure to settle. The 
two essential requirements in the design of foundations are that the total settlement of 
the structure be limited to a tolerably small amount and that differential settlement of 
the various parts of the structure be eliminated as nearly as possible. With respect to 
possible structural damage, the elimination of differential settlement, that is, different 
amounts of settlement within the same structure, is more important than limitations on 
uniform overall settlement. Foundations are proportioned for bearing effects, stability, 
overturning, and sliding at the soil-foundation interface.

To limit settlements as indicated, it is necessary (1) to transmit the load of the 
structure to a soil stratum of sufficient strength and (2) to spread the load over a 
sufficiently large area of that stratum to minimize bearing pressure. If adequate soil 
is not found immediately below the structure, it becomes necessary to use deep 
foundations such as piles, drilled piers, or caissons to transmit the load to deeper, 
firmer layers. If satisfactory soil directly underlies the structure, it is merely necessary 
to spread the load, by footings or other means. Such substructures are known as 
spread foundations. When deep foundations are used, columns loads are transferred 
to the piles, drilled piers, or caissons through pile caps. Loads on deep foundations 
may be axial or axial plus shear and moment. The details of loading are found in 
texts on geotechnical engineering, Refs. 15.1 to 15.4.

	 15.2	 SPREAD FOOTINGS

Spread footings can be classified as wall and column footings. The horizontal out-
lines of the most common types are given in Fig.  15.1. A wall footing is simply 
a strip of reinforced concrete, wider than the wall, that distributes its pressure. 
Single-column footings are usually square, sometimes rectangular, and represent 
the simplest and most economical foundation. Their use under exterior columns 
meets with difficulties if property rights prevent the use of footings projecting 
beyond the exterior walls. In this case, combined footings or strap footings are used 
that enable one to design a footing that does not project beyond the wall column. 
Combined footings under two or more columns are also used under closely spaced, 
heavily loaded interior columns where single footings, if they were provided, would 
completely or nearly merge.
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Such individual or combined column footings are the most frequently used types 
of spread foundations on soils of reasonable bearing capacity. If the soil is weak and∕or 
column loads are great, the required footing areas become so large as to be uneconom-
ical. In this case, unless a deep foundation is called for by soil conditions, a mat or 
raft foundation must be used. This consists of a solid reinforced concrete slab that 
extends under the entire building and, consequently, distributes the load of the structure 
over the maximum available area. Such a foundation, in view of its own rigidity, also 
minimizes differential settlement. It consists, in its simplest form, of a concrete slab 
reinforced in both directions. A form that provides more rigidity consists of an inverted 
girder floor. Girders are located in the column lines in each direction, and the slab is 
provided with two-way reinforcement, spanning between girders. Inverted flat slabs, 
with capitals at the bottoms of the columns, are also used for mat foundations.

	 15.3	 DESIGN FACTORS

In ordinary construction, the load on a wall or column is transmitted vertically to the 
footing, which in turn is supported by the upward pressure of the soil on which it 
rests. If the load is symmetrical with respect to the bearing area, the bearing pres-
sure is assumed to be uniformly distributed (Fig. 15.2a). It is known that this is only 
approximately true. Under footings resting on coarse-grained soils, the pressure is 
larger at the center of the footing and decreases toward the perimeter (Fig. 15.2b). This 
is so because the individual grains in such soils are somewhat mobile, so that the soil 
located close to the perimeter can shift very slightly outward in the direction of lower 
soil stresses. In contrast, in clay soils pressures are higher near the edge than at the 

FIGURE 15.1
Types of spread footing.

Wall

Property line

FIGURE 15.2
Bearing pressure distribution: 
(a) as assumed; (b) actual, for 
granular soils; and (c) actual, 
for cohesive soils.
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center of the footing, since in such soils the load produces a shear resistance around 
the perimeter that adds to the upward pressure (Fig. 15.2c). It is customary to disre-
gard these nonuniformities (1) because their numerical amount is uncertain and highly 
variable, depending on types of soil, and (2) because their influence on the magnitudes 
of bending moments and shearing forces in the footing is relatively small.

On compressible soils, footings should be loaded concentrically to avoid tilting, 
which will result if bearing pressures are significantly larger under one side of the 
footing than under the opposite side. This means that single footings should be placed 
concentrically under the columns and wall footings concentrically under the walls and 
that, for combined footings, the centroid of the footing area should coincide with the 
resultant of the column loads. Eccentrically loaded footings can be used on highly 
compacted soils and on rock. It follows that one should count on rotational restraint 
of the column by a single footing only when such favorable soil conditions are present 
and when the footing is designed for both the column load and the restraining moment. 
Even then, less than full fixity should be assumed, except for footings on rock.

The accurate determination of stresses in foundation elements of all kinds is 
difficult, partly because of the uncertainties in determining the actual distribution 
of upward pressures but also because the structural elements themselves represent 
relatively massive blocks or thick slabs subject to heavy concentrated loads from 
the structure above. Design procedures for single-column footings are based largely 
on the results of experimental investigations by Talbot (Ref. 15.5) and Richart  
(Ref. 15.6). These tests and the recommendations resulting from them have been 
reevaluated in the light of more recent research, particularly that focusing on shear 
and diagonal tension (Refs. 15.7 to 15.9). Combined footings and mat foundations 
also can be designed by simplified methods, although increasing use is made of 
more sophisticated tools, such as finite element analysis and the strut-and-tie method 
(Ref. 15.10).

	 15.4	 LOADS, BEARING PRESSURES, AND FOOTING SIZE

Footing sizes are determined for unfactored service loads and allowable soil pressures, 
in contrast to the strength design of reinforced concrete members, which uses factored 
loads and factored nominal strengths. This is because, for footing design, safety is 
provided by overall safety factors, in contrast to the separate load and strength reduc-
tion factors used to dimension concrete members. Soil capacities are usually provided 
as allowable stresses, while the structure is designed on a strength basis. Pressures 
resulting from strength design calculations may be incompatible with the soils data, 
requiring the structural engineer to work closely with the soils engineer to ensure a 
competent design. 

Allowable bearing pressures are established from principles of soil mechanics, 
on the basis of load tests and other experimental determinations (see, for example,  
Refs. 15.1 to 15.4). Allowable bearing pressures qa under service loads are usually 
based on a safety factor of 2.5 to 3.0 against exceeding the bearing capacity of the 
particular soil and to keep settlements within tolerable limits. Many local building codes 
contain allowable bearing pressures for the types of soils and soil conditions found in 
the particular locality.

For concentrically loaded footings, the required area is determined from

	 Areq = ​ D + L ______ qa
 ​	  (15.1)
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In addition, most building codes, including the International Building Code (IBC) 
(Ref. 15.11), which is used throughout the United States, permit a 33 percent increase 
in the allowable pressure when the effects of wind W or earthquake E are included, if 
specific loading combinations are used for foundation design. For example, using the 
loading requirements in ASCE∕SEI 7 (Ref 15.12),

	 Areq = ​ 
D + 0.75L + 0.45W + 0.75 (Lr or S or R)

    __________________________________   
1.33qa

 ​	

or� (15.2)

	 Areq = ​ D + 0.75L + 0.525E + 0.75S   _________________________  
1.33qa

 ​	

where Lr = roof live load, S = snow load, and R = rain load. The factors applied to W 
and E in Eq. (15.2) recognize that wind and earthquake loads are strength level forces, 
as prescribed by Refs. 15.11 and 15.12.

The required footing area Areq is the larger of those determined by Eqs. (15.1) 
and (15.2). The loads in the numerators of Eqs. (15.1) and (15.2) must be calculated 
at the level of the base of the footing, that is, at the contact plane between soil and 
footing. This means that the weight of the footing and surcharge (that is, fill  
and possible liquid pressure on top of the footing) must be included. Wind loads and 
other lateral loads cause a tendency to overturn. In checking for overturning of a 
foundation, only those live loads that contribute to overturning should be included, 
and dead loads that stabilize against overturning should be multiplied by 0.9. A safety 
factor of at least 1.5 should be maintained against overturning, unless otherwise 
specified by the local building code (Ref. 15.8).

A footing is eccentrically loaded if the supported column is not concentric with 
the footing area or if the column transmits at its juncture with the footing not only 
a vertical load but also a bending moment. In either case, the load effects at the 
footing base can be represented by the vertical load P and a bending moment M. 
The resulting bearing pressures are again assumed to be linearly distributed. As long 
as the resulting eccentricity e  =  M∕P does not exceed the kern distance k of the 
footing area (k = ℓ∕6 for a square or rectangular footing), the usual flexure formula

	​ q​ max
min

​ = ​ P __ 
A

 ​ ± ​ Mc ___ 
I
 ​	  (15.3)

permits the determination of the bearing pressures at the two extreme edges, as shown 
in Fig. 15.3a. The footing area is found by trial and error from the condition qmax ≤ qa. 
If the eccentricity falls outside the kern, Eq. (15.3) gives a negative value (tension) for 
q along one edge of the footing. Because no tension can be transmitted at the contact 
area between soil and footing, Eq. (15.3) is no longer valid and bearing pressures 
are distributed as shown in Fig.  15.3b. For rectangular footings of size ℓ  ×  b, the 
maximum pressure can be found from

	 qmax = ​ 2P ____ 
3bm

 ​	 (15.4)

which, again, must be no larger than the allowable pressure qa. For nonrectangular 
footing areas of various configurations, kern distances and other aids for calculating 
bearing pressures can be found in Refs. 15.1 and 15.8 and elsewhere.

Once the required footing area has been determined, the footing must then be 
designed to develop the necessary strength to resist all moments, shears, and other 
internal actions caused by the applied loads. For this purpose, the load factors of 
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ACI Code 5.3 apply to footings as to all other structural components. Correspond-
ingly, for strength design, the footing is dimensioned for the effects of the load 
combinations in Table 1.2. The most common is

U = 1.2D + 1.6L

or if wind effects are to be included,

U = 1.2D + 1.0W + 1.0L + 0.5 (Lr, or S or R)

In seismic zones, earthquake forces E must be considered according to Table 1.2. The 
requirement that

U = 0.9D + 1.0W

hardly ever governs the strength design of a footing, but affects overturning and stability. 
Lateral earth pressure H and fluid pressure F must be included if present.

These factored loads must be counteracted and equilibrated by corresponding 
bearing pressures in the soil. Consequently, once the footing area is determined, the 
bearing pressures are recalculated for the factored loads for purposes of strength 
calculations. These are fictitious pressures that are needed only to determine the 
factored loads for use in design. To distinguish them from the actual pressures q 
under service loads, the soil pressures that equilibrate the factored loads U is desig-
nated qu.

	 15.5	 WALL FOOTINGS

The simple principles of beam action apply to wall footings with only minor mod-
ifications. Figure 15.4 shows a wall footing with the forces acting on it. If bending 
moments were calculated from these forces, the maximum moment would be found to 
occur at the middle of the width. Actually, the very large rigidity of the wall modifies 
this situation, and the tests cited in Section 15.3 show that, for footings under concrete 
walls, it is satisfactory to compute the moment at the face of the wall (section 1-1). 
Tension cracks in these tests formed at the locations shown in Fig. 15.4, that is, under 
the face of the wall rather than in the middle. For footings supporting masonry walls, 

FIGURE 15.3
Assumed bearing pressures 
under eccentrically loaded 
footing.
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the maximum moment is computed midway between the middle and the face of the 
wall, because masonry is generally less rigid than concrete. The maximum bending 
moment in footings under concrete walls is therefore given by

	 Mu = ​ 1 __ 
8
 ​ qu (b − a)2	 (15.5)

For determining shear stresses, the vertical shear force is computed on section 2-2, 
located, as in beams, at a distance d from the face of the wall. Thus,

	 Vu = qu ​( ​ b − a _____ 
2
 ​  − d )​	 (15.6)

The calculation of development length is based on the section of maximum moment, 
that is, section 1-1.

Because repairs to foundations can be extremely difficult and expensive, it is 
desirable that the elements of the foundation remain essentially elastic during strong 
ground motions. Wall footings in Seismic Design Categories D, E, or F require 
additional attention to assure this behavior. ACI Code provisions 18.13 and 21.2.4 
address these requirements.

FIGURE 15.4
Wall footing.
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	EXAMPLE 15.1	 Design of wall footing.  A 16 in. concrete wall supports a dead load D = 14 kips∕ft and a 
live load L = 10 kips∕ft. The allowable bearing pressure is qa = 4.5 kips∕ft2 at the level of 
the bottom of the footing, which is 4 ft below grade. Design a footing for this wall using 
4000 psi concrete and Grade 60 steel.

Solution.  With a 12 in. thick footing, the footing weight per square foot is 150 psf, and the 
weight of the 3 ft fill on top of the footing is 3 × 100 = 300 psf. Consequently, the portion 
of the allowable bearing pressure that is available or effective for carrying the wall load is

qe = 4500 − (150 + 300) = 4050 psf

The required width of the footing is therefore b = 24,000∕4050 = 5.93 ft. A 6 ft wide footing 
is assumed.

The bearing pressure for strength design of the footing, caused by the factored loads, is

qu = ​ 1.2 × 14 + 1.6 × 10  ________________ 
6
  ​ × 103 = 5470 psf
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From this, the factored moment at the face of the wall, section 1-1, for strength design is

Mu = ​ 1 __ 
8
 ​ × 5470 (6 − 1.33)2 × 12 = 178,900 in-lb∕ft

and assuming d = 10 in., the shear at section 2-2 is

Vu = 5470 ​[ ​ 1 __ 
2
 ​  (6 − 1.33) − ​ 10 __ 

12
 ​ ]​ = 8214 lb∕ft

Shear often governs the depth of footings, particularly when the use of shear reinforcements in 
footings is uneconomical. The design shear strength per foot of width [see Eq. (5.12a), noting that 
the size effect is not required for one-way footings], assuming minimum flexural reinforcement ratio 
of 0.0018 Ag or about a reinforcement ratio of 0.0023, is

Vc = ​[ 8λ(ρ)1∕3​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​ ]​​ bd = 8 × 1.0 × (0.0023)1∕3​√
____

 4000​​ × 12d = 772d

from which

d = 8214∕772 = 10.6 in.

ACI Code 20.5.1.3 calls for a 3 in. clear cover on bars; therefore a 14 in. thick footing is 
selected, giving d = 10.5 in. This is sufficiently close to the assumed value, and the calculations 
need not be revised. To determine the required steel area, R = Mu∕ϕbd2 = 178,900/(0.90 × 12 × 
10.52) = 150, is used to enter Table A.5a of Appendix A. For this value, the table gives the 
reinforcement ratio ρ = 0.0025. The required steel area is then As = 0.0025 × 10.5 × 12 =  
0.32 in2∕ft. The minimum reinforcement for a one-way slab is 0.0018 Ag, giving As = 0.0018 × 
12 × 14 = 0.30 in2∕ft, and does not control in this case. No. 5 (No. 16) bars, 10 in. on centers, 
furnish As = 0.37 in2/ft. The required development length according to Table A.10 of Appendix A 
is 24 in. This length is to be furnished from section 1-1 outward. The length of each bar, if end 
cover is 3 in., is 72 − 6 = 66 in., and the available development length from section 1-1 to the 
nearby end is 1∕2 (66 − 16) = 25 in., which is more than the required development length. The 
reinforcement ratio of 0.0025 is close to that assumed for shear in calculation of the depth, so no 
further revision is needed.

Longitudinal shrinkage and temperature reinforcement, according to ACI Code 24.4, 
must be at least 0.0018 × 12 × 14 = 0.32 in2∕ft. No. 5 (No. 16) bars on 10 in. centers furnish 
0.37 in.2∕ft and are selected for placement in the longitudinal direction.

	 15.6	 COLUMN FOOTINGS

In plan, single-column footings are usually square. Rectangular footings are used 
if space restrictions dictate this choice or if the supported columns have a strongly 
elongated rectangular cross section. In the simplest form, they consist of a single 
slab (Fig.  15.5a). Another type is that shown in Fig.  15.5b, where a pedestal or 
cap is interposed between the column and the footing slab; the pedestal provides 
for a more favorable transfer of load and in many cases is required to provide the 

FIGURE 15.5
Types of single-column 
footings.

(a ) (b ) (c )
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necessary development length for dowels. This form is also known as a stepped 
footing. All parts of a stepped footing must be cast at one time to provide monolithic 
action. Sometimes sloped footings like those shown in Fig.  15.5c are used. They 
require less concrete than stepped footings, but the additional labor necessary to 
produce the sloping surfaces (formwork, etc.) usually makes stepped footings more 
economical. In general, single-slab footings (Fig. 15.5a) are most economical for 
thicknesses up to 3 ft.

Single-column footings can be represented as cantilevers projecting out from 
the column in both directions and loaded upward by the soil pressure. Corresponding 
tension stresses are caused in both of these directions at the bottom surface. Such 
footings are, therefore, reinforced by two layers of steel, perpendicular to each other 
and parallel to the edges.

The required bearing area is obtained by dividing the total load, including the 
weight of the footing, by the selected bearing pressure. Weights of footings, at this 
stage, must be estimated and usually amount to 4 to 8 percent of the column load, 
the former value applying to the stronger types of soils.

In calculating bending moments and shears, only the upward pressure qu that 
is caused by the factored column loads is considered. The weight of the footing 
proper does not cause moments or shears, just as no moments or shears are present 
in a book lying flat on a table. Circular or regular polygon-shaped columns may be 
considered as square columns of equivalent area for locating critical shear and 
moment sections.

	 a.	 Shear

Once the required footing area Areq has been established from the allowable bearing 
pressure qa and the most unfavorable combination of service loads, including weight 
of footing and overlying fill (and such surcharge as may be present), the thickness 
h of the footing must be determined. In single footings, the effective depth d is 
mostly governed by shear. Since such footings are subject to two-way action, that is, 
bending in both major directions, their performance in shear is much like that of flat 
slabs in the vicinity of columns (see Section 13.7). However, in contrast to two-way 
floor and roof slabs, it is generally not economical in footings to use shear reinforce-
ment. For this reason, only the design of footings in which all shear is carried by 
the concrete is discussed here. For the rare cases where the thickness is restricted so 
that shear reinforcement must be used, the information in Section 13.7 about slabs 
applies also to footings.

Two different types of shear strength are distinguished in footings: two-way, or 
punching shear, and one-way, or beam, shear. ACI Code 13.2.6 states that the size 
effect factors may be neglected for one-way shallow foundations, two-way combined 
footings, and mat foundations.

A column supported by the slab shown in Fig. 15.6 tends to punch through that 
slab because of the shear stresses that act in the footing around the perimeter of the 
column. At the same time, the concentrated compressive stresses from the column 
spread out into the footing so that the concrete adjacent to the column is in vertical 
or slightly inclined compression, in addition to shear. As a consequence, if failure 
occurs, the fracture takes the form of the truncated pyramid shown in Fig. 15.6 (or 
of a truncated cone for a round column), with sides sloping outward at an angle 
approaching 45°. The average shear stress in the concrete that fails in this manner 
can be taken as that acting on vertical planes laid through the footing around the 
column on a perimeter a distance d∕2 from the faces of the column (vertical section 
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through abcd in Fig.  15.7). The concrete subject to this shear stress vu1 is also in 
vertical compression from the stresses spreading out from the column, and in hori-
zontal compression in both major directions because of the biaxial bending moments 
in the footing. This triaxiality of stress increases the shear strength of the concrete. 
Tests of footings and of flat slabs have shown, correspondingly, that for punching- 
type failures the shear stress computed on the critical perimeter area is larger than in 
one-way action (such as in beams).

As discussed in Section 13.7, expanding the ACI Code equations (13.7a, b, 
and c) give the nominal punching-shear strength on this perimeter:

	 Vc = 4λ​​√
__

 ​f​c​ ′​​​ bod	 (15.7a)

except for columns of elongated cross section, for which

	 Vc = ​( 2 + ​ 4 __ 
β

 ​ )​ λ​​√
__

 ​f​c​ ′​​​ bod	 (15.7b)

For cases in which the ratio of critical perimeter to slab depth bo∕d is very large,

	 Vc = ​( ​ αsd ___ 
bo

 ​ + 2 )​ λ​​√
__

 ​f​c​ ′​​​ bod	 (15.7c)

where bo is the perimeter abcd in Fig. 15.7; β = a∕b is the ratio of the long to short 
sides of the column cross section; and αs is 40 for interior loading, 30 for edge loading, 
and 20 for corner loading of a footing. The punching-shear strength of the footing is to 
be taken as the smallest of the values given by Eqs. (15.7a), (15.7b), and (15.7c); and 
the design strength is ϕVc, as usual, where ϕ = 0.75 for shear.

The application of Eqs. (15.7) to punching shear in footings under columns 
with other than a rectangular cross section is shown in Fig. 13.19. For such situa-
tions, ACI Code 22.6.5 indicates that the perimeter bo must be of minimum length 
but need not approach closer than d∕2 to the perimeter of the actual loaded area. 
The manner of defining a and b for such irregular loaded areas is also shown in  
Fig. 13.19. If a moment is transferred from the column to the footing, the criteria 
discussed in Section 13.8 for the transfer of moment by bending and shear at slab-
column connections must be satisfied.

FIGURE 15.6
Punching-shear failure in single footing.
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FIGURE 15.7
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Shear failures can also occur, as in beams or one-way slabs, at a section a dis-
tance d from the face of the column, such as section ef of Fig. 15.7. Just as in beams 
and one-way slabs, the nominal shear strength is given by Eq. (5.12a), that is,

	 Vc = ​​[ 8λ(ρ)1∕3​√
__

 ​f​c​ ′​​ + ​ 
Nu

 ____ 
6Ag

 ​ ]​​ bd ≤ 5λ​​√
__

 ​f​c​ ′​​​ bd	 (15.8a)

where b = width of footing at distance d from face of column
= ef in Fig. 15.7

Spread footings often have minimum flexural reinforcement equal to 0.0018Ag, 
resulting in an approximate value of vc = 1.0λ​​√

__
 ​f​c​ ′​​​. The reinforcement ratio for one-

way slabs ρ typically varies between 0.002 and 0.008. For the determination of a 
trial depth for shear limited footings, a concrete shear strength based on a reinforce-
ment ratio of 0.003 and no axial load is

	 vc = 1.15λ​​√
__

 ​f​c​ ′​​​	 (15.8b)

This concrete shear strength is less than that permitted in ACI Codes prior to 2019 
and, consequently, it is advantageous to check one-way shear prior to designing for 
punching shear.

The required depth of footing d is then calculated from the usual equation

	 ϕVc ≥ Vu	 (15.9)

applied separately in connection with Eqs. (15.7) and (15.8). For Eq. (15.7), Vu = Vu1 
is the total upward pressure caused by qu on the area outside the perimeter abcd in 
Fig. 15.7. For Eq. (15.8), Vu = Vu 2 is the total upward pressure on the area efgh outside 
the section ef in Fig. 15.7. The required depth is then the larger of those calculated 
from either Eq. (15.7) or Eq. (15.8). For shear, ϕ = 0.75.

Although the lightweight concrete factor λ appears in Eqs. (15.7) and (15.8), 
normalweight concrete (λ = 1) is almost universally used in foundations.

	 b.	 Bearing: Transfer of Forces at Base of Column

When a column rests on a footing or pedestal, it transfers its load to only a part of the 
total area of the supporting member. The adjacent footing concrete provides lateral 
support to the directly loaded part of the concrete. This causes triaxial compressive 
stresses that increase the strength of the concrete that is loaded directly under the col-
umn. Based on tests, ACI Code 22.8.3 provides that when the supporting area is wider 
than the loaded area on all sides, the design bearing strength is

	 ϕBn = ϕ(0.85​f​c​ ′​ A1) ​​√
___

 ​ A2 ___ 
A1

 ​​​ ≤ ϕ2 × (0.85​f​c​ ′​ A1)	 (15.10)

For bearing on concrete, ϕ = 0.65, ​f​c​ ′​ is the specified compressive strength of the 
footing concrete, which frequently is less than that of the column, and A1 is the loaded 
area. A2 is the area of the lower base of the largest frustum of a pyramid, cone, or 
tapered wedge contained wholly within the support and having for its upper base the 
loaded area and having side slopes of 1 vertical to 2 horizontal. The meaning of this 
definition of A2 is clarified by Fig. 15.8. For the somewhat unusual case shown, where 
the top of the support is stepped, a step that is deeper or closer to the loaded area than 
that shown may result in reduction in the value of A2. A footing for which the top sur-
face is sloped away from the loaded area more steeply than 1 to 2 results in a value of 
A2 equal to A1. In most usual cases, for which the top of the footing is flat and the sides 

www.konkur.in

Telegram: @uni_k



FOOTINGS AND FOUNDATIONS      469

are vertical, A2 is simply the maximum area of the portion of the supporting surface 
that is geometrically similar to, and concentric with, the loaded area.

All axial forces and bending moments that act at the bottom section of a column 
must be transferred to the footing at the bearing surface by compression in the con-
crete and by reinforcement. With respect to the reinforcement, this may be done either 
by extending the column bars into the footing or by providing dowels that are embed-
ded in the footing and project above it. In the latter case, the column bars merely 
rest on the footing and in most cases are tied to dowels. This results in a simpler 
construction procedure than extending the column bars into the footing. To ensure 
the integrity of the junction between column and footing, ACI Code 16.3.4 requires 
that the minimum area of reinforcement that crosses the bearing surface (dowels or 
column bars) be 0.005 times the gross area of the supported column. The length of the 
dowels or bars of diameter db must be sufficient on both sides of the bearing surface 
to provide the required development length for compression bars (see Section 6.8), 
that is, ℓdc ≥ (0.02fyψr∕λ​​√

__
 ​f​c​ ′​​​  )db and ≥ (0.0003fyψr)db, where the confinement factor 

ψr is taken as 1.0. In addition, if dowels are used, the lapped length must be at least 
that required for a lap splice in compression (see Section 6.8); that is, the length of 
lap must not be less than the usual development length in compression and must not 
be less than 0.0005fydb or 12 in. For bars with fy greater than 60,000 psi and less than 
or equal to 80,000 psi, the development length must not be less than (0.0009fy – 24) 
or 12 in. Where bars of different sizes are lap-spliced, the splice length should be 
the larger of the development length of the larger bar or the splice length of the 
smaller bar, according to the ACI Code.

The two largest bar sizes, Nos. 14 (No. 43) and 18 (No. 57), are frequently 
used in columns with large axial forces. Under normal circumstances, the ACI Code 
specifically prohibits the lap splicing of these bars because tests have shown that 
welded splices or other positive connections are necessary to develop these heavy 
bars fully. A specific exception, however, is made for dowels for Nos. 14 (No. 43) 
and 18 (No. 57) column bars. Relying on long-standing successful use, ACI Code 
25.5.5 permits these heavy bars to be spliced to dowels of lesser diameter [that is, 

FIGURE 15.8
Definition of areas A1 and A2.
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No. 11 (No. 36) or smaller], provided that the dowels have a development length 
into the column corresponding to that of the column bar [that is, Nos. 14 or 18 (Nos. 
43 or 57), as the case may be] and into the footing as prescribed for the particular 
dowel size [that is, No. 11 (No. 36) or smaller, as the case may be].

	 c.	 Bending Moments, Reinforcement, and Bond

If a vertical section is passed through a footing, the bending moment that is caused 
in the section by the net upward soil pressure (that is, factored column load divided 
by bearing area) is obtained from simple statics. Figure 15.9 shows such a section cd 
located along the face of the column. The bending moment about cd is that caused by 
the upward pressure qu on the area to one side of the section, that is, the area abcd. The 
reinforcement perpendicular to that section, that is, the bars running in the long direc-
tion, is calculated from this bending moment. Likewise, the moment about section ef 
is caused by the pressure qu on the area befg, and the reinforcement in the short direc-
tion, that is, perpendicular to ef, is calculated for this bending moment. In footings that 
support reinforced concrete columns, the critical section cd or ef for bending is located 
at the face of the column, as shown in Fig. 15.10a, according to ACI Code 13.2.7.

In footings supporting masonry columns, the critical section cd or ef is located 
halfway between the centerline and the face of the column, as shown in Fig. 15.10b; 
and in footings supporting steel columns, the critical section cd or ef is located 
halfway between the face of the steel column and the edge of the steel base plate, 
as shown in Fig. 15.10c.

In footings with pedestals, the width resisting compression in sections cd and 
ef is that of the pedestal; the corresponding depth is the sum of the thickness of 

FIGURE 15.9
Critical sections for bending 
and bond.
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pedestal and footing. Further sections parallel to cd and ef are passed at the edge of 
the pedestal, and the moments are determined in the same manner, to check the 
strength at locations in which the depth is that of the footing only.

For footings with relatively small pedestals, the latter are often discounted in 
moment and shear computation, and bending is checked at the face of the column, 
with width and depth equal to that of the footing proper.

In square footings, the reinforcement is uniformly distributed over the width 
of the footing in each of the two layers; that is, the spacing of the bars is constant. 
The moments for which the two layers are designed are the same. However, the 
effective depth d for the upper layer is less by 1 bar diameter than that of the lower 
layer. Consequently, the required As is larger for the upper layer. Instead of using 
different spacings or different bar diameters in each of the two layers, it is custom-
ary to determine As based on average depth and to use the same arrangement of 
reinforcement for both  layers.

In rectangular footings, the reinforcement in the long direction is again uni-
formly distributed over the pertinent (shorter) width. In locating the bars in the short 
direction, one has to consider that the support provided to the footing by the column 
is concentrated near the middle. Consequently, the curvature of the footing is sharp-
est, that is, the moment per foot largest, immediately under the column, and it 
decreases in the long direction with increasing distance from the column. For this 
reason, a larger steel area per longitudinal foot is needed in the central portion than 
near the far ends of the footing. ACI Code 13.3.3.3, therefore, provides the following:

For reinforcement in the short direction, a portion of the total reinforcement γs As shall 
be distributed uniformly over a band width equal to the length of short side of footing, 
centered on centerline of column or pedestal. The remainder of the reinforcement 
required in the short direction (1  −  γs)As shall be distributed uniformly outside the 
center band width of the footing

	 γs = ​  reinforcement  in band width   ______________________________    
total  reinforcement  in short direction

 ​ = ​  2 _____ 
β + 1

 ​	 (15.11)

where β is the ratio of the long side to the short side of the footing.
According to the ACI Code 8.6.1, the usual minimum flexural reinforcement 

ratios of Section 4.3e need not be applied to either slabs or footings. Instead, the 
minimum steel requirements for shrinkage and temperature crack control for struc-
tural slabs are to be imposed, as given in Table 12.2. The maximum spacing of bars 
in the direction of the span is reduced to the lesser of 3 times the footing thickness 
h and 18 in., rather than 5h as is normal for shrinkage and temperature steel. These 
requirements for minimum steel and maximum spacing are to be applied to mat 
foundations as well as individual footings.

The critical sections for development length of footing bars are the same as 
those for bending. Development length may also have to be checked at all vertical 
planes in which changes of section or of reinforcement occur, as at the edges of 
pedestals or where part of the reinforcement may be terminated.

	EXAMPLE 15.2	 Design of a square footing.  A column 18 in. square, with ​f​c​ ′​ = 4 ksi, reinforced with eight 
No. 8 (No. 25) bars of fy = 60 ksi, supports an unfactored dead load of 225 kips and a live 
load of 175 kips. The soil (fill) has a unit weight of 100 pcf. The allowable soil pressure qa 
is 5  kips∕ft2. Design a square footing with base 5 ft below grade, using ​​f​c​ ′​​ = 4 ksi and 
fy = 60 ksi.
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Solution.  Since the space between the bottom of the footing and the surface is occupied 
partly by concrete and partly by soil (fill), an average unit weight of 125 pcf is assumed. The 
pressure of this material at the 5 ft depth is 5 × 125 = 625 psf, leaving a bearing pressure 
of qe = 5000 − 625 = 4375 psf available to carry the column service load. Hence, the required 
footing area Areq  =  (225  +  175)∕4.375  =  91.5  ft2. A base 9 ft 6 in. square is selected, 
furnishing a footing area of 90.3 ft2, which differs from the required area by about 1 percent.

For strength design, the upward pressure caused by the factored column loads is qu =   
(1.2 × 225 + 1.6 × 175)∕9.52 = 6.10 kips∕ft2.

The footing depth is determined by one-way shear or by punching shear. The lower 
one-way concrete shear contribution usually is the governing condition. The design checks 
one-way shear strength first then checks the punching shear. A trial depth of 19 in. is selected. 
The factored one-way shear along line e-f is

Vu1 = 6.10 × 2.42 × 9.5 = 140 kips
And the nominal shear strength, assuming minimum flexural reinforcement using Eq. (15.8b) is

Vc = ϕλ1.15​​√
__

 ​f​c​ ′​​​ bd = 0.75 × 1.0 × 1.15 × ​​√
____

 4000​​ × 9.5 × 12 × d∕1000 = 6.22d

resulting in a required depth of d = 140∕6.22 = 22.5 in. For concrete cast against the ground,  
3 in. cover is required and allowing 1 in. for the diameter of the reinforcement to the center of the 
mat and rounding up gives a footing thickness of 27 in. and an effective depth d = 27 − 4 = 23 in.

The footing is then checked for two-way or punching shear on the critical perimeter 
abcd in Fig. 15.11. The length of the critical perimeter for a depth of 26.5 in. is

bo = 4(18 + 23) = 164 in.
The shear force acting on this perimeter, being equal to the total upward pressure minus 

that acting within the perimeter abcd, is

Vu2 = qu(l2 − b2) = 6.10 ​​[ 9.52 − ​( ​ 23 + 18 _______ 
12

 ​  )​2 ]​​ = 479 kips

The corresponding nominal shear strength from Eq. (15.7) is

Vc = 4λ​​√
__

 ​f​c​ ′​​​ bod = 4 × 1 × ​​√
____

 4000​​ × 178 × ​​ 26.5 _____ 
1000

 ​​ = 1193 kips

and
ϕVc = 0.75 × 1193 = 895 kips

which exceeds the applied load, so punching shear capacity is adequate.

FIGURE 15.11
Critical sections for  
Example 15.2.
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The bending moment on section gh of Fig. 15.11 is

Mu = 6.10 × 9.5 ​( ​ ​4.0​2​ ___ 
2
  ​ )​ 12 = 5560 in-kips

Because the depth required for shear is greatly in excess of that required for bending, the rein-
forcement ratio will be low and the corresponding depth of the rectangular stress block small. 
If a = 2 in., the required steel area is

As = ​​  M __________  
ϕfy ​( d −  ​ a __ 

2
 ​ )​ ​​ = ​​  5560  __________________  

0.90 × 60(23 − 2∕2)
 ​​ = 4.68 in2

Checking the minimum reinforcement 0.0018Ag according to ACI Code 7.6.1.1 results in

As = 0.0018 × 27 × 114 = 5.54 in2

The controlling value of 5.54  in2 is larger than the 4.68  in2 calculated for bending. Ten  
No. 7 (No. 22) bars furnishing 6.00 in2 are placed in each direction. The required development 
length beyond section gh is found from Table A.10 to be 41 in., which is more than adequately 
met by the actual length of bars beyond section gh, namely, 48 − 3 = 45 in.

Checking for transfer of forces at the base of the column shows that the footing con-
crete, which has the same ​f​c​ ′​ as the column concrete and for which the strength is enhanced 
according to Eq. (15.10), is clearly capable of carrying that part of the column load transmit-
ted by the column concrete. The force in the column carried by the steel is transmitted to the 
footing using dowels to match the column bars. These must extend into the footing the full 
development length in compression, which is found from Table A.11 of Appendix A to be 
19 in. for No. 8 (No. 25) bars. This is accommodated in a footing with d  =  19 in. Above 
the top surface of the footing, the No. 8 (No. 25) dowels must extend into the column that 
same development length, but not less than the requirement for a lapped splice in compression 
(see Section 6.13b). The minimum lap splice length for the No. 8 (No. 25) bars is 
0.0005  ×  1.0  ×  60,000  =  30  in., which is seen to control here. Thus the bars are carried 
30  in. into the column, requiring a total dowel length of 49 in. This is rounded upward for 
practical reasons to 4.25 ft, as shown in Fig. 15.12. It is easily confirmed that the minimum 
dowel steel requirement of 0.005 × 18 × 18 = 1.62  in2 does not control here.

FIGURE 15.12
Footing in Example 15.2.
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	 15.7	 COMBINED FOOTINGS

Spread footings that support more than one column or wall are known as combined 
footings. They can be divided into two categories: those that support two columns and 
those that support more than two (generally large numbers of) columns.

Examples of the first type, that is, two-column footings, are shown in Fig. 15.1. 
In buildings where the allowable soil pressure is large enough for single footings to 
be adequate for most columns, two-column footings are seen to become necessary 
in two situations: (1) if columns are so close to the property line that single-column 
footings cannot be made without projecting beyond that line and (2) if some adjacent 
columns are so close to each other that their footings would merge. Both situations 
are shown in Fig. 15.1.

When the bearing capacity of the subsoil is low so that large bearing areas 
become necessary, individual footings are replaced by continuous strip footings that 
support more than two columns and usually all columns in a row. Sometimes such 
strips are arranged in both directions, in which case a grid foundation is obtained, 
as shown in Fig. 15.13. Strip footings can be made to develop a much larger bearing 
area much more economically than can be done by single footings because the indi-
vidual strips represent continuous beams whose moments are much smaller than the 
cantilever moments in large single footings that project far out from the column in 
all four directions.

In many cases, the strips are made to merge, resulting in a mat foundation, 
as shown in Fig.  15.14. That is, the foundation consists of a solid reinforced 
concrete slab under the entire building. In structural action, such a mat is very 
similar to a flat slab or a flat plate, upside down, that is, loaded upward by the 
bearing pressure and downward by the concentrated column reactions. The mat 
foundation evidently develops the maximum available bearing area under the 
building. If the soil’s capacity is so low that even this large bearing area is insuf-
ficient, some form of deep foundation, such as piles or caissons, must be used. 

FIGURE 15.13
Grid foundation.

a a

a–a

www.konkur.in

Telegram: @uni_k



FOOTINGS AND FOUNDATIONS      475

These are discussed in Section 15.10 and texts on foundation design and fall 
outside the scope of the present volume.

Mat foundations may be designed with the column pedestals, as shown in 
Figs.  15.13 and 15.14, or without them, depending on whether they are necessary 
for shear strength and the development length of dowels.

Apart from developing large bearing areas, another advantage of strip and mat 
foundations is that their continuity and rigidity help in reducing differential settle-
ments of individual columns relative to each other, which may otherwise be caused 
by local variations in the quality of subsoil, or other causes. For this purpose, con-
tinuous foundations are frequently used in situations where the superstructure or the 
type of occupancy provides unusual sensitivity to differential settlement.

Much useful and important design information pertaining to combined footings 
and mats is found in Refs. 15.10 and 15.13.

	 15.8	 TWO-COLUMN FOOTINGS

It is desirable to design combined footings so that the centroid of the footing area 
coincides with the resultant of the two column loads. This produces uniform bearing 
pressure over the entire area and forestalls a tendency for the footings to tilt. In plan, 
such footings are rectangular, trapezoidal, or T-shaped, the details of the shape being 
arranged to produce coincidence of centroid and resultant. The simple relationships 
shown in Fig. 15.15 facilitate the determination of the shape of the bearing area (from 
Ref. 15.8). In general, the distances m and n are given, the former being the distance 
from the center of the exterior column to the property line and the latter the distance 
from that column to the resultant of both column loads.

Another expedient that is used if a single footing cannot be centered under an 
exterior column is to place the exterior column footing eccentrically and to connect 
it with the nearest interior column footing by a beam or strap. This strap, being 
counterweighted by the interior column load, resists the tilting tendency of the eccentric 

FIGURE 15.14
Mat foundation.
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exterior footing and equalizes the pressure under it. Such foundations are known as 
strap, cantilever, or connected footings.

The two examples that follow demonstrate some of the peculiarities of the 
design of two-column footings.

FIGURE 15.15
Two-column footing.  
(Adapted from Ref. 15.8.)
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	EXAMPLE 15.3	 Design of a combined footing supporting one exterior and one interior column.  An 
exterior 24  ×  18 in. column with service loads D  =  170 kips and L  =  130 kips, and an 
interior 24 × 24 in. column with D = 250 kips, L = 200 kips are to be supported on a com-
bined rectangular footing whose outer end cannot protrude beyond the outer face of the 
exterior column (see Fig. 15.1). The distance center to center of columns is 18 ft 0 in., and 
the allowable bearing pressure of the soil is 6000 psf. The bottom of the footing is 7 ft below 
grade, and a surcharge of 100 psf is specified on the surface. Design the footing for ​f​c​ ′​ = 
4000 psi and fy = 60,000 psi.
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Solution. The space between the bottom of the footing and the surface is occupied partly 
by concrete (footing, concrete floor) and partly by backfill. An average unit weight of 125 pcf 
can be assumed. Hence, the effective portion of the allowable bearing pressure that is available 
for carrying the column loads is qe  =  qa  −  (weight of fill and concrete  +  surcharge)  =   
6000  −  (7  ×  125  +  100)  =  5025 psf. Then the required area Areq  =  sum of column 
loads∕qe = 750∕5.03 = 149.3 ft2. The resultant of the column loads is located from the center 
of the exterior column a distance 450 × 18∕750 = 10.8 ft. Hence, the length of the footing 
must be 2(10.8 + 0.75) = 23.1 ft. A length of 23 ft 3 in. is selected. The required width is 
then 149.3∕23.25 = 6.42 ft. A width of 6 ft 6 in. is selected (see Fig. 15.16).

Longitudinally, the footing represents a one-way slab, loaded from below, spanning 
between columns and cantilevering beyond the interior column. Since this slab is considera-
bly wider than the columns, the column loads are distributed crosswise by transverse slabs, 
one under each column. In the present relatively narrow and long footing, it is found that the 
required minimum depth for the transverse beams is smaller than is required for the footing 
in the longitudinal direction. These “slabs,” therefore, are not really distinct members but 
merely represent transverse strips in the main body of the footing, reinforced so that they are 
capable of resisting the transverse bending moments and the corresponding shears. It then 
becomes necessary to decide how large the effective width of this transverse beam can be 
assumed to be. The strip directly under the column does not deflect independently and is 
strengthened by the adjacent parts of the footing. The effective width of the transverse beams 
is therefore evidently larger than that of the column. In the absence of definite rules for this 
case, or of research results on which to base such rules, the authors recommend conservatively 
that the load be assumed to spread outward from the column into the footing at a slope of 2 
vertical to 1 horizontal. This means that the effective width of the transverse beam is assumed 
to be equal to the width of the column plus d∕2 on either side of the column, d being the 
effective depth of the footing.

FIGURE 15.16
Combined footing in 
Example 15.3.

17 No. 7 (No. 22)
× 6′-3″ bottom

11 No. 9 (No. 29)
× 19′-6″ top

18″ × 24″
column

24″ sq. col.

7 No. 7 (No. 22)
× 6′-0″

6′-6″

3′-1″3′-7″

23′-3″

3′-1″

8′-0″

9″
18′-0″

3″ clear

3″ clear

Dowels same
as col. bars

4′-6″

Grade

11 No. 7 (No. 22)
× 6′-0″

4′-5 1
2

″

www.konkur.in

Telegram: @uni_k



478      DESIGN OF CONCRETE STRUCTURES  Chapter 15

Strength design in longitudinal direction
The net upward pressure caused by the factored column loads is

qu = ​ 
1.2(170 + 250) + 1.6(130 + 200)

    _________________________  
23.25 × 6.5

  ​ = 6.83 kips∕ft2

Then the net upward pressure per linear foot in the longitudinal direction is 6.83 × 6.5  =   
44.4 kips∕ft. The maximum negative moment between the columns occurs at the section of zero 
shear. Let x be the distance from the outer edge of the exterior column to this section. Then  
(see Fig. 15.17)

Vu = 44,400x − 412,000 = 0

results in x = 9.28 ft. The moment at this section is

Mu = ​​[ 44,400 ​ ​9.28​​ 2​ ____ 
2
  ​ − 412,000(9.28 − 0.75) ]​​ 12 = −19,230,000 in-lb

The moment at the right edge of the interior column is

Mu = 44,400 ​( ​ 3.52
 ___ 

2
  ​ )​ 12 = 3,260,000 in-lb

and the details of the moment diagram are as shown in Fig. 15.17. Try d = 50.0 in.

FIGURE 15.17
Moment and shear diagrams 
for footing in Example 15.3.
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From the shear diagram in Fig.  15.17, it is seen that the critical section for flexural 
shear occurs at a distance d to the left of the left face of the interior column. At that point, 
the factored shear is

Vu = 376,000 − ​​ 50 ___ 
12

 ​​ 44,400 = 191,000 lb

and the design shear strength assuming minimum reinforcement is

ϕVc = ϕ​​(1.0​√
__

 ​f​c​ ′​​ )​​bd = 0.75​​( 1.0 × ​√
____

 4000​ )​​ 78 × d = 3700d

giving the required depth d = 191,000∕3700 = 56.1 in., which is close to the trial value. Use  
d = 50 in. and confirm the concrete shear strength after longitudinal reinforcement is selected.

Additionally, as in single footings, punching shear should be checked on a perimeter 
section a distance d∕2 around the column. In this case, the 50 in. depth places the critical 
perimeter outside the footing; therefore, only the one-way shear need be checked.

With d = 50 in., and with 3.5 in. cover from the center of the bars to the top surface 
of the footing, the total thickness is 53.5 in.

To determine the required steel area, Mu∕ϕbd2 = 19,230,000∕(0.9 × 78 × 502) = 109 
is used to enter Graph A.1b of Appendix A. For this value, the curve 60∕3 gives the rein-
forcement ratio ρ  =  0.0028. The required steel area is As  =  0.0028  ×  50  ×  78  =  10.9  in2. 
Eleven No. 9 (No. 29) bars furnish 11.00  in2. The required development length is found to 
be 6.7 ft. From Fig.  15.17, the distance from the point of maximum moment to the nearer 
left end of the bars is seen to be 9.30 − ​ 3 __ 12 ​ = 9.05 ft, much larger than the required minimum 
development length. The selected reinforcement is therefore adequate for both bending  
and bond.

For the portion of the longitudinal beam that cantilevers beyond the interior column, 
the required steel area exceeds the minimum required steel area controls.

As,min = 0.0018Ag = 0.0018 × 78 × 53.5 = 7.51 in2

Seventeen No. 7 (No. 22) bars with As = 10.2  in2 are selected; their development length is 
calculated and for bottom bars is found satisfactory. The final reinforcement ratio is 0.0028 
resulting in a concrete shear strength of

ϕVc = ϕ​[ 8λ(ρ)1∕3​√
__

 ​f​c​ ′​​ ]​​ bd = 0.75 × 8 × 1.0 × 0.00281∕3 × ​​√
____

 4000​​ × 78 × 50 = 208,600 lb

which exceeds the factored shear of 191,000 lb. Thus, the 50 in. depth is adequate. Because 
the footing depth is established by the shear capacity and the final shear capacity exceeds the 
demand, it is possible to iterate the solution to reduce the thickness slightly. Alternatively, addi-
tional reinforcement could be added to increase the shear capacity and decrease the thickness.

Design of transverse beam under interior column
The width of the transverse beam under the interior column can now be established as previously 
suggested and is 24 + 2(d∕2) = 24 + 2 × 50∕2 = 74 in. The net upward load per linear foot of the 
transverse beam is 620,000∕6.5 = 95,400 lb∕ft. The moment at the edge of the interior column is

Mu = 95,400 ​( ​ 2.252
 ____ 

2
  ​ )​ 12 = 2,900,000 in-lb∕ft

Since the transverse bars are placed on top of the longitudinal bars (see Fig. 15.16), the actual 
value of d furnished is 50 – 1.0 = 49 in. The required steel area is 7.53 in2 and exceeds the min-
imum required area of controls; that is,

As,min = 0.0018 × 74 × 50 = 6.66 in2

Eleven No. 7 (No. 22) bars are selected and placed within the 74 in. effective width of the 
transverse beam.

Punching shear at the perimeter a distance d∕2 from the column has been checked 
before. The critical section for regular flexural shear, at a distance d from the face of the 
column, lies beyond the edge of the footing, and therefore no further check on shear is needed.
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The design of the transverse beam under the exterior column is the same as the 
design of that under the interior column, except that the effective width is 43 in. The details 
of the calculations are not shown. It can be easily checked that seven No. 7 (No. 22) bars, 
placed within the 43 in. effective width, satisfy all requirements. Design details are shown 
in Fig. 15.16.

	EXAMPLE 15.4	 Design of a strap footing.  In a strap or connected footing, the exterior footing is placed 
eccentrically under its column so that it does not project beyond the property line. Such an 
eccentric position would result in a strongly uneven distribution of bearing pressure, which 
could lead to tilting of the footing. To counteract this eccentricity, the footing is connected 
by a beam or strap to the nearest interior footing.

Both footings are so proportioned that under service load the pressure under each of 
them is uniform and the same under both footings. To achieve this, it is necessary, as in other 
combined footings, that the centroid of the combined area for the two footings coincide with 
the resultant of the column loads. The resulting forces are shown schematically in Fig. 15.18. 
They consist of the loads Pe and Pi of the exterior and interior columns, respectively, and of 
the net upward pressure q, which is uniform and equal under both footings. The resultants 
Re and Ri of these upward pressures are also shown. Since the interior footing is concentric 
with the interior column, Ri and Pi are collinear. This is not the case for the exterior forces 
Re and Pe where the resulting couple just balances the effect of the eccentricity of the column 
relative to the center of the footing. The strap proper is generally constructed so that it does 
not bear on the soil. This can be achieved by providing formwork not only for the sides but 
also for the bottom face and by withdrawing it before backfilling.

To illustrate this design, the columns in Example 15.3 will now be supported on a strap 
footing. Its general shape, plus dimensions as determined only subsequently by calculations, 
is seen in Fig. 15.19. With an allowable bearing pressure of qa = 6.0 kips∕ft2 and a depth of 
6 ft to the bottom of the footing as before, the bearing pressure available for carrying the 
external loads applied to the footing is qe = 5.15 kips∕ft2. These external loads, for the strap 
footing, consist of the column loads and of the weight plus fill and surcharge of that part of 
the strap that is located between the footings. (The portion of the strap located directly on 
top of the footing displaces a corresponding amount of fill and therefore is already accounted 
for in the determination of the available bearing pressure q.) If the bottom of the strap is  
6 in. above the bottom of the footings to prevent bearing on soil, the total depth to grade is 
5.5 ft. If the strap width is estimated to be 2.5 ft, its estimated weight plus fill and surcharge 
is 2.5 × 5.5 × 0.125 + 0.100 × 2.5 = 2 kips∕ft. If the gap between footings is estimated to 
be 8 ft, the total weight of the strap is 16 kips. Hence, for purposes of determining the 
required footing area, 8 kips is be added to the dead load of each column. The required total 
area of both footings is then (750 + 16)∕5.15 = 149 ft2. The distance of the resultant of the 

FIGURE 15.18
Forces and reactions on the 
strap footing in Example 15.4.
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two column loads plus the strap load from the axis of the exterior column, with sufficient 
accuracy, is 458  ×  18∕766  =  10.75 ft, or 11.50 ft from the outer edge, almost identical 
to that calculated for Example 15.3. Trial calculations show that a rectangular footing  
6 ft 0 in.  ×  11 ft 3 in. under the exterior column and a square footing 9  ×  9 ft under the 
interior column have a combined area of 149  ft2 and a distance from the outer edge to the 
centroid of the combined areas of (6 × 11.25 × 3 + 9 × 9 × 18.75) ÷ 149 = 11.55 ft, which 
is almost equal to the previously calculated distance to the resultant of the external forces.

For strength calculations, the bearing pressure caused by the factored external loads, 
including that of the strap with its fill and surcharge, is

qu = ​​ 
1.2(170 + 250 + 16) + 1.6(130 + 200)

    _________________________________  
149

  ​​ = 7.06 kips∕ft2

Design of footings
The exterior footing performs exactly like a wall footing with a length of 6 ft. Even though 
the column is located at its edge, the balancing action of the strap results in uniform bearing 
pressure, the downward load being transmitted to the footing uniformly by the strap. Hence, the 
design is carried out exactly as it is for a wall footing (see Section 15.5).

The interior footing, even though it merges in part with the strap, can safely be designed 
as an independent, square single-column footing (see Section 15.6). The main difference is 
that, because of the presence of the strap, punching shear cannot occur along the truncated 
pyramid surface shown in Fig. 15.6. For this reason, two-way or punching shear, according 
to Eq. (15.7), should be checked along a perimeter section located at a distance d∕2 outward 
from the longitudinal edges of the strap and from the free face of the column, d being the 
effective depth of the footing. Flexural or one-way shear, as usual, is checked at a section a 
distance d from the face of the column.

FIGURE 15.19
Strap footing in Example 15.4.
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	 15.9	 STRIP, GRID, AND MAT FOUNDATIONS

As mentioned in Section 15.7, continuous foundations are often used to support 
heavily loaded columns, especially when a structure is located on relatively weak 
or uneven soil. The foundation may consist of a continuous strip footing support-
ing all columns in a given row, or of two sets of such strip footings intersecting 
at right angles so that they form one continuous grid foundation (Fig. 15.13). For 
even larger loads or weaker soils, the strips are made to merge, resulting in a mat 
foundation (Fig. 15.14).

For the design of such continuous foundations, it is essential that reasonably 
realistic assumptions be made regarding the distribution of bearing pressures that 
act as upward loads on the foundation. For compressible soils, it can be assumed, 
as a first approximation, that the deformation or settlement of the soil at a given 
location and the bearing pressure at that location are proportional to each other. 
If columns are spaced at moderate distances and if the strip, grid, or mat foun-
dation is quite rigid, the settlements in all portions of the foundation are substan-
tially the same. This means that the bearing pressure, also known as subgrade 
reaction, is the same, provided that the centroid of the foundation coincides with 
the resultant of the loads. If they do not coincide, then for such rigid foundations 
the subgrade reaction can be assumed to vary linearly. Bearing pressures can be 
calculated based on statics, as discussed for single footings (see Fig. 15.3). In this 
case, all loads, the downward column loads as well as the upward-bearing 

FIGURE 15.20
Forces acting on strap in 
Example 15.4.

6.0′

18.0′
0.75′

w = 11.25qu

Design of strap
Even though the strap is in fact monolithic with the interior footing, the effect on the strap of the 
soil pressure under this footing can safely be neglected because the footing has been designed 
to withstand the entire upward pressure as if the strap were absent. In contrast, because the exte-
rior footing has been designed as a wall footing that receives its load from the strap, the upward 
pressure from the wall footing becomes a load that must be resisted by the strap. With this sim-
plification of the actually somewhat more complex situation, the strap represents a single-span 
beam loaded upward by the bearing pressure under the exterior footing and supported by down-
ward reactions at the centerlines of the two columns (Fig. 15.20). A width of 30 in. is selected.  
For a column width of 24 in., this permits beam and column bars to be placed without inter-
ference where the two members meet and allows the column forms to be supported on the top 
surface of the strap. The maximum moment, as determined by equating the shear force to zero, 
occurs close to the inner edge of the exterior footing. Shear forces are large in the vicinity of 
the exterior column. Stirrup design is completed using a strut-and-tie model. The footing is 
drawn approximately to scale in Fig. 15.19, which also shows the general arrangement of the 
reinforcement in the footings and the strap. Minimum shear reinforcement in the strap would be 
continued to improve the concrete shear strength. See Problem 15.6.
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pressures, are known. Hence, moments and shear forces in the foundation can be 
found by statics alone. Once these are determined, the design of strip and grid 
foundations is similar to that of inverted continuous beams and that of mat foun-
dations to that of inverted flat slabs or plates.

On the other hand, if the foundation is relatively flexible and the column spac-
ing large, settlements will no longer be uniform or linear. For one thing, the more 
heavily loaded columns cause larger settlements, and thereby larger subgrade reac-
tions, than the lighter ones. Also, since the continuous strip or slab midway between 
columns deflects upward relative to the nearby columns, the soil settlement, and 
thereby the subgrade reaction, is smaller midway between columns than directly at 
the columns. This is shown schematically for a strip footing in Fig. 15.21; the sub-
grade reaction can no longer be assumed to be uniform. Mat foundations likewise 
require different approaches, depending on whether they can be assumed to be rigid 
when calculating the soil reaction.

Criteria have been established as a measure of the relative stiffness of the 
structure versus the stiffness of the soil (Refs. 15.10 and 15.13). If the relative stiff-
ness is low, the foundation should be designed as a flexible member with a nonlin-
ear upward reaction from the soil. For strip footings, a reasonably accurate but fairly 
complex analysis can be done using the theory of beams on elastic foundations  
(Ref. 15.14). Kramrisch (Ref. 15.8) has suggested simplified procedures, based on 
the assumption that contact pressures vary linearly between load points, as shown in 
Fig. 15.21.

For nonrigid mat foundations, great advances in analysis have been made using 
finite element methods, which can account specifically for the stiffnesses of both the 
structure and the soil. There are a large number of commercially available programs 
(such as spMats, StructurePoint, Skokie, Illinois) based on the finite element method, 
permitting quick modeling and analysis of combined footings, strip footings, and mat 
foundations.

FIGURE 15.21
Strip footing. (Adapted  

from Ref. 15.8.)
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	 15.10	 DEEP FOUNDATIONS

If the bearing capacity of the upper soil layers is insufficient for a spread or shallow 
foundation, but firmer strata are available at greater depth, piles or drilled piers, 
sometimes referred to as caissons or drilled shafts, are used to transfer the loads to 
these deeper strata. Piles are long reinforced or precast-prestressed concrete mem-
bers, driven into the soil using a pile driving hammer, Fig. 15.22. Drilled piers are 
constructed using an auger to create a void in the soil. Casings and reinforcement, 
if required, are placed and the remaining void filled with concrete.

Loadings on deep foundations are determined through principles of soil or rock 
mechanics in accordance with the general building code, or other requirements, in 
conjunction with the loads and load combinations in ASCE∕SEI 7 (Ref. 15.12), 
which are summarized in Table 1.2. Deep foundation elements are considered in two 
categories: those that carry axial load alone and those that carry axial load plus 
bending and shear. ACI Code 13.4.2 addresses piles or drilled shafts that are sup-
ported laterally for their entire length. When bending moments are less than a 
moment caused by an eccentricity of 5 percent of the diameter or width of the 
member, they are considered to carry only axial load.

FIGURE 15.22
Prestressed pile driving 
operation. A prestressed pile 
is being loaded into the driver 
on the left and driven piles 
are seen on the right.  
(Charles Dolan)
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	 a.	 Service Level Design and Detailing

Cast-in-place concrete piles or drilled piers may be either uncased or confined in a 
metal casing. To be considered a confined metal cased pile, ACI Code 13.4.2 requires 
the pile meet the following six conditions:

	 ∙	 The design cannot use the casing to resist any portion of the axial load.
	 ∙	 The casing has a sealed tip.
	 ∙	 The casing thickness must be at least standard gage No. 14 (0.068 in.) steel.
	 ∙	 The casing must be seamless or seams must provide the strength of the basic 

material and be configured to provide confinement.
	 ∙	 The ratio of the yield strength of the steel casing to ​​f​c​ ′​​ must be at least 6, and 

the yield strength must not be less than 30,000 psi.
	 ∙	 The nominal diameter must not exceed 16 in.

For these conditions, the maximum allowable axial compressive strength for 
the members is given in Table 15.1. All other piles or drilled piers, including portions 
that are in air, water, or soil not providing lateral support, are designed as columns 
using the strength design principles in Section 15.10b. Higher values than those 
given in Table 15.1 are allowed based on load tests or if accepted by the building 
official.

ACI Code 13.4.5 requires precast concrete pile reinforcement to be placed in a 
symmetrical pattern and contain a minimum of four bars and a minimum area of 
reinforcement of at least 0.008Ag. Prestressed concrete piles require a minimum com-
pressive stress based on the length of the pile. Piles are installed using impact ham-
mers or vibratory hammers. Stresses in the piles are sometimes monitored using a 
pile driving analyzer to limit the tensile stresses in the concrete. The minimum com-
pressive stresses are intended to keep the pile from cracking due to the rebound tensile 
stresses during driving and are given in Table 15.2 (Refs. 15.15 and 15.16). The PCI 
Design Handbook recommends an effective prestress of 700 psi for all precast pre-
stressed piles regardless of length (Ref. 15.17). The effective prestress is calculated 
based on an assumed loss of 30,000 psi. Chapter 22 contains more detail on the design 
of prestressed concrete. Minimum transverse reinforcement is required for all precast 
concrete piles. Table 15.3 contains both the minimum reinforcement size and spacing.

TABLE 15.1
Maximum allowable compressive strength of deep foundation 
members

Deep Foundation Member Type Maximum Compressive Strengtha

Uncased cast-in-place concrete drilled shaft Pa = 0.3​​f​c​ ′​​ Ag + 0.4fyAs

Confined metal cased concrete pile meeting  
the ACI Code confinement criteria

Pa = 0.4​​f​c​ ′​​ Ag

Cast-in-place concrete pile in a pipe, tube,  
other permanent casing, or rock that does not  
satisfy ACI Code confinement criteria aboveb

Pa = 0.33​​f​c​ ′​​ Ag + 0.4fyAs

Precast non-prestressed piles Pa = 0.33​​f​c​ ′​​ Ag + 0.4fyAs

Precast prestressed concrete piles Pa = (0.33​​f​c​ ′​​ − 0.27fpe)Ag

a�Ag is the gross cross-sectional area. If a temporary or permanent casing is used, the inside face of the 
casing may be used to determine the gross area.

b�The steel casing, pipe, or tube is not counted as part of As. If the steel casing is to be considered composite 
with the concrete, design guidance is given in AISC 360.
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Cover for drilled piers is 3 in. in accordance with the criteria for concrete cast 
against the ground in the ACI Code. Industry practice historically uses a cover of 
2.5 in. for drilled piers when spacers are used to center the reinforcement cage. The 
ACI Code implies that reinforcement runs the full length of a drilled pier; however, 
engineers often terminate the reinforcement cage where the bending moment drops 
to less than that corresponding to a 5 percent eccentricity.

	 b.	 Strength Design

ACI Code 13.4.3 allows strength design for all deep foundation members and requires 
strength design for free-standing elements and elements in water. Strength design of 
deep foundations follows the principles of column design presented in Chapters 9 and 
10. For axial loads without moments, compression strength reduction factors from 
Table 15.4 are used. The 0.55 compression strength reduction factor represents an 
upper bound for well-understood soil conditions with quality workmanship. A lower 
value may be appropriate for less-well-understood soil conditions and construction 
quality control. Members with moments exceeding the equivalent of an eccentricity 
of 5 percent are designed using the strength reduction factors in Table 1.3.

	 c.	 Pile Caps

Piles and drilled shafts are generally arranged in groups or clusters, one group under 
each column. The group is capped by a spread footing or cap that distributes the 

TABLE 15.2
Minimum compressive stress in precast prestressed piles  
per ACI 318-19

Pile Length (ft) Minimum Compressive Stress (psi)

Pile length ≤ 30 400
30 < Pile length ≤ 50 550
Pile length > 50 700

TABLE 15.3
Minimum transverse reinforcement

MINIMUM TRANSVERSE 
REINFORCEMENT SIZE

MAXIMUM TRANSVERSE 
REINFORCEMENT SPACING

Least Horizontal  
Pile Dimension 

(in.)

Minimum Wire  
Size of Transverse 

Reinforcementa

Reinforcement  
Location  
in Pile

Maximum  
Center-to-Center 

Spacing (in.)

h ≤ 16 W4, D4 First five ties or 
spirals at each  
end of pile

1

16 < h < 20 W4.5, D5 24 in. from end  
of pile

4

h ≥ 20 W5.5, D5 Remainder of pile 6
aIf bars are used, minimum No. 3 (No. 10) applies to all values of h.
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column load to all piles in the group. These pile caps are in most ways very similar to 
footings on soil, except for two features. For one, reactions on caps act as concentrated 
loads at the individual piles, rather than as distributed pressures. For another, if the 
total of all pile reactions in a cluster is divided by the area of the footing to obtain an 
equivalent uniform pressure (for purposes of comparison only), it is found that this 
equivalent pressure is considerably higher in pile caps than for spread footings. This 
means that moments, and particularly shears, are also correspondingly larger, which 
requires greater footing depths than used for a spread footing of similar horizontal 
dimensions. To spread the load evenly to all piles, it is in any event advisable to pro-
vide ample rigidity, that is, depth, for pile caps.

Allowable bearing capacities of piles Ra are obtained from soil exploration, 
pile-driving energy, and test loadings, and their determination is not within the scope 
of the present book (see Refs. 15.1 to 15.4). As in spread footings, the effective 
portion of Ra available to resist the unfactored column loads is the allowable pile 
reaction less the weight of footing, backfill, and surcharge per pile. That is,

	 Re = Ra − Wf	 (15.12)

where Wf is the total weight of footing, fill, and surcharge divided by the number of piles.
Once the available or effective pile reaction Re is determined, the number of 

piles in a concentrically loaded cluster is the integer next larger than

	 n = ​​ D + L
 ______ 

Re

 ​​ 	

As far as the effects of wind, earthquake moments at the foot of the columns, and safety 
against overturning are concerned, design considerations are the same as described 
in Section 15.4 for spread footings. These effects generally produce an eccentrically 
loaded pile cluster in which different piles carry different loads. The number and loca-
tion of piles in such a cluster are determined by successive approximations based on 
the requirement that the load on the most heavily loaded pile should not exceed the 
allowable pile reaction Ra. With a linear distribution of pile loads due to bending, the 
maximum pile reaction is

	 Rmax = ​ 
P

 __ n ​ + ​  M ____ 
Ipg∕c

 ​	 (15.13)

TABLE 15.4
Compressive strength reduction factors for deep foundations

Deep Foundation Type
Compressive Strength  

Reduction Factor ϕ

Uncased cast-in-place concrete drilled pier 0.55
Cast-in-place concrete pile in rock, a pipe, tube, or other permanent 
casing less than 0.25 in. thick, not meeting the confinement 
requirements discussed in Section 15.10a

0.60

Cast-in-place concrete filled steel pipe at least 0.25 in. thick 0.70
Metal cased concrete pile meeting the confinement requirements in 
Section 15.10a

0.65

Precast non-prestressed concrete pile 0.65
Prestressed precast concrete pile 0.65
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where P is the maximum load (including weight of cap, backfill, etc.) and M the 
moment to be resisted by the pile group, both referred to the bottom of the cap; Ipg is the 
moment of inertia of the entire pile group about the centroidal axis about which bend-
ing occurs; and c is the distance from that axis to the extreme pile. Ipg = ​​Σ​ 1​ 

n​​(1 × ​​y​ i​ 
2​​);  

that is, it is the moment of inertia of n piles, each counting as one unit and located a 
distance yi from the described centroidal axis.

Piles are generally arranged in tight patterns, which minimizes the cost of the 
caps, but they cannot be placed closer than conditions of driving and of undisturbed 
carrying capacity permit. A spacing of about 3 times the butt (top) diameter of the 
pile but no less than 2 ft 6 in. is customary. Commonly, piles with allowable reactions 
of 30 to 70 tons are spaced at 3 ft 0 in. (Ref. 15.8).

The design of footings on piles is similar to that of single-column footings. 
One approach is to design the cap for the pile reactions calculated for the factored 
column loads. For a concentrically loaded cluster, this would give Ru = (1.2D + 1.6L)∕n. 
However, since the number of piles was taken as the next-larger integral according 
to Eq. (15.13), determining Ru in this manner can lead to a design where the strength 
of the cap is less than the capacity of the pile group. It is therefore recommended 
that the pile reaction for strength design be taken as

	 Ru = Re × average load factor	 (15.14)

where the average load factor = (1.2D + 1.6L)∕(D + L). In this manner, the cap is 
designed to be capable of developing the full allowable capacity of the pile group. 
Details of a typical pile cap are shown in Fig. 15.23.

FIGURE 15.23
Typical single-column 
footing on piles (pile cap).
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As in single-column spread footings, the depth of the pile cap is usually gov-
erned by shear. Shear design must follow the procedures for flat slabs and footings, 
as described in Section 15.6a. For closer spacings between piles and columns, the 
Code specifies either the use of the procedures described in Section 15.6a or the use 
of a three-dimensional strut-and-tie model (ACI Code Chapter 23) based on  
the principles described in Chapter 17. In the latter case, the interior struts must be 
designed without transverse reinforcement (Table 17.1) because of the difficulty of 
providing such reinforcement in a pile cap. The use of strut-and-tie methods to design 
pile caps is discussed in Ref. 15.18, but the work predates the 2019 Code require-
ments. See Problems 17.5 and 17.6.

When the procedures for flat slabs and footings are used, both punching or 
two-way shear and flexural or one-way shear need to be considered. The critical 
sections are the same as given in Section 15.6a. The difference is that shear in caps 
is caused by concentrated pile reactions rather than by distributed bearing pressures. 
This poses the question of how to calculate shear if the critical section intersects 
the circumference of one or more piles. For this case ACI Code 13.4.6 accounts for 
the fact that a pile reaction is not really a point load, but is distributed over the 
pile-bearing area. Correspondingly, for piles with diameters dpile, the ACI Code 
stipulates as follows:

Calculation of shear on any section through a footing on piles shall be in accordance 
with the following:
(a) The entire reaction from any pile whose center is located dpile∕2 or more outside 
this section shall be considered as producing shear on that section.
(b) The reaction from any pile whose center is located dpile∕2 or more inside the section 
shall be considered as producing no shear on that section.
(c) For intermediate positions of the pile center, the portion of the pile reaction to be 
considered as producing shear on the section shall be based on straight-line interpola-
tion between the full value at dpile∕2 outside the section and zero at dpile∕2 inside the 
section.

In addition to checking two-way and one-way shear, as just discussed, punch-
ing shear must also be investigated for the individual pile. Particularly in caps on a 
small number of heavily loaded piles, it is this possibility of a pile punching upward 
through the cap that may govern the required depth. The critical perimeter for this 
action, again, is located at a distance d∕2 outside the upper edge of the pile. However, 
for relatively deep caps and closely spaced piles, critical perimeters around adjacent 
piles may overlap. In this case, fracture, if any, would undoubtedly occur along an 
outward-slanting surface around both adjacent piles. For such situations the critical 
perimeter is so located that its length is a minimum, as shown for two adjacent piles 
in Fig. 15.24.

FIGURE 15.24
Critical section for punching 
shear with closely spaced 
piles.
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Problems
	15.1.	 A continuous strip footing is to be located concentrically under a 12 in. wall 

that delivers service loads D = 25,000 lb∕ft and L = 15,000 lb∕ft to the top of 
the footing. The bottom of the footing is 4 ft below the final ground surface. 
The soil has a density of 120 pcf and allowable bearing capacity of 8000 psf. 
Material strengths are ​​f​c​ ′​​ = 3000 psi and fy = 60,000 psi. Find (a) the required 
width of the footing, (b) the required effective and total depths, based on 
shear, and (c) the required flexural steel area.

	15.2.	 An interior column for a tall concrete structure carries total service loads 
D = 500 kips and L = 514 kips. The column is 22 × 22 in. in cross section and 
is reinforced with 12 No. 11 (No. 36) bars centered 3 in. from the column 
faces (equal number of bars each face). For the column, ​​f​c​ ′​​ = 4000 psi and 
fy = 60,000 psi. The column is supported on a square footing, with the bottom 
of the footing 6 ft below grade. Design the footing, determining all concrete 
dimensions and amount and placement of all reinforcement, including length 
and placement of dowel steel. No shear reinforcement is permitted. The 
allowable soil bearing pressure is 8000 psf. Material strengths for the footing 
are ​​f​c​ ′​​ = 3000 psi and fy = 60,000 psi.

	15.3.	 Design a single-column footing (including dowels) to support an 11 in. square 
column reinforced with eight No. 9 (No. 29) bars centered 2.5 in. from the 
column faces (equal number of bars on each face). The unfactored axial dead 
load = 135 kips, and the unfactored axial live load = 125 kips. For the column,  
​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi. The base of the footing is 3 ft below grade. 
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The allowable soil bearing pressure is 3000 lb∕ft2. Material strengths for the 
footing are ​​f​c​ ′​​ = 3000 psi and fy = 60,000 psi.

	15.4.	 Two interior columns for a high-rise concrete structure are spaced 15 ft apart, 
and each carries service loads D = 500 kips and L = 514 kips. The columns 
are to be 22 in. square in cross section, and each is reinforced with 12 No. 11 
(No. 36) bars centered 3 in. from the column faces, with an equal number  
of bars at each face. For the columns, ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.  
The columns are supported on a rectangular combined footing with a long-
side dimension twice that of the short side. The allowable soil bearing  
pressure is 8000 psf. The bottom of the footing is 6 ft below grade. Design 
the footing for these columns, using ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi. Specify 
all reinforcement, including length and placement of footing bars and  
dowel steel.

	15.5.	 A pile cap is to be designed to distribute a concentric force from a single 
column to a nine-pile group, with geometry as shown in Fig. 15.23. The cap 
carries calculated dead and service live loads of 280 and 570 kips, respec-
tively, from a 19 in. square concrete column reinforced with six No. 14 
(No. 43) bars. The permissible load per pile at service load is 100 kips, and 
the pile diameter is 16 in. Find the required effective and total depths of the 
pile cap and the required reinforcement. Check all relevant aspects of the 
design, including the development length for the reinforcement and transfer 
of forces at the base of the column. Material strengths for the column are ​​
f​c​ ′​​ = 4000 psi and fy = 60,000  psi and for the pile cap are ​​f​c​ ′​​ = 4000 psi and 
fy = 60,000 psi.

	15.6.	 Complete the design of the strap footing in Example 15.4 and determine all 
dimensions and reinforcement. 
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	 16.1	 FUNCTION AND TYPES OF RETAINING WALLS

Retaining walls are used to hold back masses of earth or other loose material where 
conditions make it impossible to let those masses assume their natural slopes. Such 
conditions occur when the width of an excavation, cut, or embankment is restricted 
by conditions of ownership, use of the structure, or economy. For example, in rail-
way or highway construction the width of the right of way is fixed, and the cut or 
embankment must be contained within that width. Similarly, the basement walls of 
buildings must be located within the property and must retain the soil surrounding the 
basement.

Freestanding retaining walls, as distinct from those that form parts of struc-
tures, such as basement walls, are of various types, the most common of which are 
shown in Fig.  16.1. The gravity wall (Fig.  16.1a) retains the earth entirely by its 
own weight and generally contains no reinforcement. The reinforced concrete canti-
lever wall (Fig. 16.1b) consists of the vertical arm that retains the earth and is held 
in position by a footing or base slab. In this case, the weight of the fill on top  
of the heel, in addition to the weight of the wall, contributes to the stability of  
the structure. Since the arm represents a vertical cantilever, its required thickness 
increases rapidly with increasing height. To reduce the bending moments in vertical 
walls of great height, counterforts are used spaced at distances from each other equal 
to or slightly larger than one-half of the height (Fig. 16.1c). Property rights or other 
restrictions sometimes make it necessary to place the wall at the forward edge of the 
base slab, that is, to omit the toe. Whenever it is possible, toe extensions of one-third 
to one-fourth of the width of the base provide a more economical solution.

Which of the three types of walls is appropriate in a given case depends on a 
variety of conditions, such as local availability and price of construction materials 
and property rights. In general, gravity walls are economical only for relatively low 
walls, possibly up to about 10 ft. Cantilever walls are economical for heights from 
10 to 20 ft, while counterforts are used for greater heights.

	 16.2	 EARTH PRESSURE

In terms of physical behavior, soils and other granular masses occupy a position inter-
mediate between liquids and solids. If sand is poured from a dump truck, it flows, 
but, unlike a frictionless liquid, it does not assume a horizontal surface. It maintains 
itself in a stable heap with sides reaching an angle of repose, the tangent of which is  
roughly equal to the coefficient of intergranular friction. If a pit is dug in clay soil, its 

Retaining Walls
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sides can usually be made vertical over considerable depths without support; that is, 
the clay behaves as a solid and retains the shape it is given. If, however, the pit is 
flooded, the sides will give way, and in many cases the saturated clay will be con-
verted nearly into a true liquid. The clay is capable of maintaining its shape by means 
of its internal cohesion, but flooding reduces that cohesion greatly, often to zero.

If a wall is built in contact with a solid, such as a rock face, no pressure is 
exerted on it. If, on the other hand, a wall retains a liquid, as in a reservoir, it is 
subject at any level to the hydrostatic pressure wwh, where ww is the unit weight of 
the liquid and h is the distance from the surface. If a vertical wall retains soil, the 
earth pressure similarly increases proportionally to the depth, but its magnitude is

	 ph = K0wh	 (16.1)

where w is the unit weight of the soil and K0 is a constant known as the coefficient of 
earth pressure at rest. The value of K0 depends not only on the nature of the backfill 
but also on the method of depositing and compacting it. It has been determined experi-
mentally that, for uncompacted noncohesive soils such as sands and gravels, K0 ranges 
between 0.4 and 0.5, while it may be as high as 0.8 for the same soils in a highly com-
pacted state (Refs. 16.1 through 16.3). For cohesive soils, K0 may be on the order of 
0.7 to 1.0. Clean sands and gravels are considered superior to all other soils because 

FIGURE 16.1
Types of retaining walls and 
back drains: (a) gravity wall; 
(b) cantilever wall; and 
(c) counterfort wall.

δ

A

A–A

A

(a ) (b )

Continuous back drain,
crushed stone

Tile drain
Tile drain

Crushed stone

Arm

Base slab
HeelToe

(c )

Key

Weep holes

Counterfort

www.konkur.in

Telegram: @uni_k



494      DESIGN OF CONCRETE STRUCTURES  Chapter 16

they are free-draining and are not susceptible to frost action and because they do not 
become less stable with the passage of time. For this reason, noncohesive backfills are 
usually specified.

Usually, walls move slightly under the action of the earth pressure. Since walls 
are constructed of elastic material, they deflect under the action of the pressure, and 
because they generally rest on compressible soils, they tilt and shift away from the 
fill. (For this reason, the wall is often constructed with a slight batter toward the fill 
on the exposed face so that, if and when such tilting takes place, the tilt does not 
appear evident to the observer.) Even if this movement at the top of the wall is only 
a fraction of a percent of the wall height (​ 1 _ 2 ​ to ​ 1 __ 10 ​ percent according to Ref. 16.2), 
the rest pressure is materially decreased by it.

If the wall moves away from the fill, a sliding plane ab (Fig. 16.2) forms in 
the soil mass, and the wedge abc, sliding along that plane, exerts pressure against 
the wall. Here the angle ϕ is known as the angle of internal friction; that is, its 
tangent is equal to the coefficient of intergranular friction, which can be deter-
mined by appropriate laboratory tests. The corresponding pressure is known as the 
active earth pressure. If, on the other hand, the wall is pushed against the fill, a 
sliding plane ad is formed, and the wedge acd is pushed upward by the wall along 
that plane. The pressure that this larger wedge exerts against the wall is known as 
the passive earth pressure. (This latter case also occurs at the left face of the grav-
ity wall in Fig. 16.1a when this wall yields slightly to the left under the pressure 
of the fill.)

The magnitude of these pressures has been analyzed by Rankine, Coulomb, 
and others. If the soil surface makes an angle δ with the horizontal (Fig.  16.1a), 
then, according to Rankine, the coefficient for active earth pressure is

	 Ka = cos δ ​​ cos δ − ​√
_____________

  cos2 δ − cos2 ϕ​   ___________________   
cos δ + ​√

_____________
  cos2 δ − cos2 ϕ​
 ​​	 (16.2)

and the coefficient for passive pressure is

	 Kp = cos δ ​​ cos δ + ​√
_____________

  cos2 δ − cos2 ϕ​   ___________________   
cos δ − ​√

_____________
  cos2 δ − cos2 ϕ​
 ​​	 (16.3)

Ka and Kp replace K0 in Eq. (16.1) to determine soil pressure ph under active and 
passive conditions, respectively.

For the frequent case of a horizontal surface, that is, δ  =  0 (Fig.  16.2), for 
active pressure,

	 Kah = ​ 
1 − sin ϕ

 ________ 
1 + sin ϕ

 ​	 (16.4)

FIGURE 16.2
Basis of active and passive 
earth pressure determination.
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and for passive pressure,

	 Kph = ​ 
1 + sin ϕ

 ________ 
1 − sin ϕ

 ​	 (16.5)

Rankine’s theory is valid only for noncohesive soils such as sand and gravel but, with 
corresponding adjustments, can also be used successfully for cohesive clay soils.

From Eqs. (16.1) through (16.5), it is seen that the earth pressure at a given 
depth h depends on the inclination of the surface δ, the unit weight w, and the angle 
of friction ϕ. The first two of these are easily determined, while little agreement has 
yet been reached as to the proper values of ϕ. For the ideal case of a dry, noncohesive 
fill, ϕ could be determined by laboratory tests and then used in the formulas. This is 
impossible for clays, only part of whose resistance is furnished by intergranular fric-
tion, while the rest is due to internal cohesion. For this reason, their actual ϕ values 
are often increased by an arbitrary amount to account implicitly for the added cohe-
sion. However, this is often unsafe since, as was shown by the example of the flooded 
pit, cohesion may vanish almost completely due to saturation and inundation.

In addition, fills behind retaining walls are rarely uniform, and, what is more 
important, they are rarely dry. Proper drainage of the fill is vitally important to 
reduce pressures (see Section 16.6), but even in a well-drained fill, the pressure 
temporarily increases during heavy storms or sudden thaws. This is so because even 
though the drainage may successfully remove the water as fast as it appears, its 
movement through the fill toward the drains causes additional pressure (seepage 
pressure). In addition, frost action and other influences may temporarily increase its 
value over that of the theoretical active pressure. Many walls that were designed 
without regard to these factors have failed, been displaced, or cracked.

It is good practice, therefore, to select conservative values for ϕ, considerably 
smaller than the actual test values, in all cases except where extraordinary and usu-
ally expensive precautions are taken to keep the fill dry under all conditions. An 
example of recommended earth pressure values, which are quite conservative, though 
based on extensive research and practical experience, can be found in Ref. 16.2. Less 
conservative values are often used in practical designs, but these should be employed 
(1) with caution in view of the fact that occasional trouble has been encountered 
with walls so designed and (2) preferably with the advice of a geotechnical engineer.

Table  16.1 gives representative values for w and ϕ often used in engineering 
practice. (Note that the ϕ values do not account for probable additional pressures due 
to porewater, seepage, frost, etc.) The table also contains values for the coefficient of 

 
Soil

Unit Weight w,  
pcf

ϕ,  
deg

 
f

1. �Sand or gravel without fine particles,  
highly permeable 110–120 33–40 0.5–0.6

2. �Sand or gravel with silt mixture, low permeability 120–130 25–35 0.4–0.5
3. �Silty sand, sand and gravel with high clay content 110–120 23–30 0.3–0.4
4. Medium or stiff clay 100–120 25–35a 0.2–0.4
5. Soft clay, silt 90–110 20–25a 0.2–0.3

a For saturated conditions, ϕ for clays and silts may be close to zero.

TABLE 16.1
Unit weights w, effective angles of internal friction ϕ, and  
coefficients of friction with concrete f
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friction f between concrete and various soils. The values of ϕ for soils 3 through 5 
may be quite unconservative; under saturated conditions, clays and silts may become 
entirely liquid (that is, ϕ  =  0). Soils of type 1 or 2 should be used as backfill for 
retaining walls wherever possible.

	 16.3	 EARTH PRESSURE FOR COMMON CONDITIONS  
OF LOADING

In calculating earth pressures on walls, three common conditions of loading are most 
often met: (1) horizontal surface of fill at the top of the wall, (2) inclined surface of fill 
sloping up and back from the top of the wall, and (3) horizontal surface of fill carrying 
a uniformly distributed additional load (surcharge), such as from goods in a storage 
yard or traffic on a road.

The increase in pressure caused by uniform surcharge s (case 3) is calculated 
by converting its load into an equivalent, imaginary height of earth h′ above the top 
of the wall such that

	 h′ = ​ s __ w ​	 (16.6)

and measuring the depth to a given point on the wall from this imaginary surface. This 
amounts to replacing h with h + h′ in Eq. (16.1).

The distributions of pressure for cases 1 to 3 are shown in Fig. 16.3. The total 
earth thrust P per linear foot of wall is equal to the area under the pressure distri-
bution figure, and its line of action passes through the centroid of the pressure. 
Figure  16.3 gives information, calculated in this manner, on magnitude, point of 
action, and direction of P for these three cases.

FIGURE 16.3
Earth pressures for (a) horizontal surface; (b) sloping surface; and (c) horizontal surface with surcharge s.
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Occasionally retaining walls must be built for conditions in which the ground-
water level is above the base of the wall, either permanently or seasonally. In that 
case, the pressure of the soil above groundwater is determined as usual. The part of 
the wall below groundwater is subject to the sum of the water pressure and the earth 
pressure. The former is equal to the full hydrostatic pressure pw = wwhw, where ww 
and hw are, respectively, the unit weight of water and the distance from the ground-
water level to the point on the wall. The additional pressure of the soil below the 
groundwater level is calculated from Eq. (16.1), where, however, for the portion of 
the soil below water, w is replaced with w − ww, while h, as usual, is measured from 
the soil surface. That is, for submerged soil, buoyancy reduces the effective weight 
in the indicated manner. Pressures of this magnitude, which are considerably larger 
than those of drained soil, also occur temporarily after heavy rainstorms or thaws in 
walls without provision for drainage, or if drains have become clogged.

The seeming simplicity of the determination of earth pressure, as indicated 
here, should not lull the designer into a false sense of security and certainty. No 
theory is more accurate than the assumptions on which it is based. Actual soil pres-
sures are affected by irregularities of soil properties, porewater and drainage condi-
tions, and climatic and other factors that cannot be expressed in formulas. This 
situation, on the one hand, indicates that involved refinements of theoretical earth 
pressure determinations, as sometimes attempted, are of little practical value. On the 
other hand, the design of a retaining wall is seldom a routine procedure, since the 
local conditions that affect pressures and safety vary from one locality to another.

	 16.4	 EXTERNAL STABILITY

A wall may fail in two different ways: (1) its individual parts may not be strong 
enough to resist the acting forces, such as when a vertical cantilever wall is cracked 
by the earth pressure acting on it, and (2) the wall as a whole may be bodily displaced 
by the earth pressure, without breaking up internally. To design against the first pos-
sibility requires the determination of the necessary dimensions, thicknesses, and rein-
forcement to resist the moments and shears; this procedure, then, is in no way different 
from that of determining required dimensions and reinforcement of other types of con-
crete structures. The usual load factors and strength reduction factors of the ACI Code 
may be applied (see Section 16.5).

To safeguard the wall against solid body displacements, that is, to ensure its 
external stability, requires special consideration. Consistent with current practice in 
geotechnical engineering, the stability investigation is based on actual earth pressures 
(as nearly as they may be determined) and on calculated or estimated service dead 
and live loads, all without load factors. Calculated bearing pressures are compared 
with allowable values, and overall factors of safety evaluated by comparing resisting 
forces to maximum loads acting under service conditions.

A wall, such as that in Fig. 16.4, together with the soil mass ijkl that rests on 
the base slab, may be bodily displaced by the earth thrust P that acts on the plane 
ak by sliding along the plane ab. Such sliding is resisted by the friction between the 
soil and the footing along the same plane. To forestall motion, the forces that resist 
sliding must exceed those that tend to produce sliding; a factor of safety of 1.5 is 
generally assumed satisfactory in this connection.

In Fig. 16.4, the force that tends to produce sliding is the horizontal component 
Ph of the total earth thrust P. The resisting friction force is fRv, where f is the coef-
ficient of friction between concrete and soil (see Table 16.1) and Rv is the vertical 
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component of the total resultant R; that is, Rv = W + Pv (W = weight of wall plus 
soil resting on the footing, Pv = vertical component of P). Hence, to provide suf-
ficient safety,

	 f (W + Pv) ≥ 1.5Ph	 (16.7)

Actually, for the wall to slide to the left, it must push with it the earth nmb, which gives 
rise to the passive earth pressure indicated by the triangle rmb. This passive pressure 
represents a further resisting force that could be added to the left side of Eq. (16.7). 
However, this should be done only if the proper functioning of this added resistance 
is ensured. For that purpose, the fill ghvm must be placed before the backfill ijkl is put 
in place and must be secure against later removal by scour or other means throughout 
the lifetime of the wall. If these conditions are not met, it is better not to count on the 
additional resistance of the passive pressure.

If the required sliding resistance cannot be developed by these means, a key wall 
cdfe can be used to increase horizontal resistance. In this case, sliding, if it occurs, 
takes place along the planes ad and tf. While along ad and ef, the friction coefficient 
f applies, sliding along te occurs within the soil mass. The coefficient of friction that 
applies in this portion is consequently tan  ϕ, where the value of ϕ may be taken 
from the next to last column in Table 16.1. In this situation sliding of the front soil 
occurs upward along tn′ so that if the front fill is secure, the corresponding resistance 
from passive soil pressure is represented by the pressure triangle stm. If doubt exists 
as to the reliability of the fill above the toe, the free surface should more conserv-
atively be assumed at the top level of the footing, in which case the passive pressure 
is represented by the triangle s′tg.

FIGURE 16.4
External stability of a 
cantilever wall.
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Next, it is necessary to ensure that the pressure under the footing not exceed 
the permissible bearing pressure for the particular soil. Let a (Fig.  16.4) be the 
distance from the front edge b to the intersection of the resultant with the base plane, 
and let Rv be the vertical component of R. (This intersection need not be located 
beneath the vertical arm, as shown, even though an economical wall generally results 
if it is so located.) Then the base plane ab, 1 ft wide longitudinally, is subject to a 
normal force Rv and to a moment about the centroid (ℓ∕2 − a)Rv. When these values 
are substituted in the usual formula for bending plus axial force

	 qmax 
min

 = ​ N __ 
A

 ​ ± ​ Mc ___ 
I
 ​	  (16.8)

it is found that if the resultant is located within the middle third (a > ℓ∕3), compres-
sion acts throughout the section, and the maximum and minimum pressures can be 
calculated from the equations in Fig. 16.5a. If the resultant is located just at the edge 
of the middle third (a = ℓ∕3), the pressure distribution is as shown in Fig. 16.5b, and 
Eq. (16.8) results in the formula given there.

FIGURE 16.5
Bearing pressures for 
different locations of 
resultant.
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If the resultant were located outside the middle third (a  <  ℓ∕3), Eq. (16.8) 
would indicate tension at and near point a. Obviously, tension cannot be developed 
between soil and a concrete footing that merely rests on it. Hence, in this case the 
pressure distribution of Fig.  16.5c develops, which implies a slight lifting off  
the soil of the rear part of the footing. Equilibrium requires that Rv pass through the 
centroid of the pressure distribution triangle, from which the formula for q1 for this 
case can easily be derived.

It is good practice, in general, to have the resultant located within the middle 
third. This not only reduces the magnitude of the maximum bearing pressure but 
also prevents too large a nonuniformity of pressure. If the wall is founded on a highly 
compressible soil, such as certain clays, a pressure distribution as in Fig.  16.5b 
results in a much larger settlement of the toe than of the heel, with a corresponding 
tilting of the wall. In a foundation on such a soil, the resultant, therefore, should 
strike at or very near the center of the footing. If the foundation is on very incom-
pressible soil, such as well-compacted gravel or rock, the resultant can be allowed 
to fall outside the middle third (Fig. 16.5c).

A third mode of failure is the possibility of the wall overturning bodily around 
the front edge b (Fig.  16.4). For this to occur, the overturning moment yPh about 
point b would have to be larger than the restoring moment Wg + Pyℓ in Fig. 16.4, 
which is the same as saying that the resultant would have to strike outside the edge 
b. If, as is mostly the case, the resultant strikes within the middle third, adequate 
safety against overturning exists, and no special check need be made. If the result-
ant is located outside the middle third, a factor of safety of at least 1.5 should be 
maintained against overturning; that is, the restoring moment should be at least 1.5 
times the overturning moment.

	 16.5	 BASIS OF STRUCTURAL DESIGN

In the investigation of a retaining wall for external stability, described in Section 16.4, 
it is the current practice to base the calculations on actual earth pressures, and on 
calculated or estimated service dead and live loads, all with load factors of 1.0 (that is, 
without load increase to account for a hypothetical overload condition). Calculated 
soil bearing pressures, for service load conditions, are compared with allowable values 
set suitably lower than ultimate bearing values. Factors of safety against overturning 
and sliding are established, based on service load conditions.

On the other hand, the structural design of a retaining wall should be consistent 
with methods used for all other types of members, and thus should be based on factored 
loads in recognition of the possibility of an increase above service loading. ACI Code 
load factors relating to structural design of retaining walls are summarized as follows:

	 1.	 If resistance to earth pressure H is included in the design, together with dead 
loads D and live loads L, the required strength U shall be at least equal to

U = 1.2D + 1.6L + 1.6H

	 2.	 Where D or L reduce the effect of H, the required strength U shall be at least 
equal to

U = 0.9D + 1.6H

	 3.	 For any combination of D, L, and H, the required strength shall not be less than

U = 1.2D + 1.6L
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While the ACI Code approach to load factor design is logical and relatively 
easy to apply to members in buildings, its application to structures that are to resist 
earth pressures is not so easy. Many alternative combinations of factored dead and 
live loads and lateral pressures are possible. Dead loads such as the weight of the 
concrete should be multiplied by 0.9 where they reduce design moments, such as 
for the toe slab of a cantilevered retaining wall, but should be multiplied by 1.2 
where they increase moments, such as for the heel slab. The vertical load of the 
earth over the heel should be multiplied by 1.6. Obviously, no two factored load 
states could be obtained concurrently. For each combination of factored loads, dif-
ferent reactive soil pressures are produced under the structure, requiring a new 
determination of those pressures for each alternative combination. Furthermore, 
there is no reason to believe that soil pressure would continue to be linearly dis-
tributed at the overload stage, or would increase in direct proportion to the load 
increase; knowledge of soil pressure distributions at incipient failure is incomplete. 
Necessarily, a somewhat simplified view of load factor design must be adopted in 
designing retaining walls.

Following the ACI Code, lateral earth pressures are multiplied by a load 
factor of 1.6. In general, the reactive pressure of the soil under the structure at 
the factored load stage is taken equal to 1.6 times the soil pressure found for 
service load conditions in the stability analysis.† For cantilever retaining walls, 
the calculated dead load of the toe slab, which causes moments acting in the 
opposite sense to those produced by the upward soil reaction, is multiplied by a 
factor of 0.9. For the heel slab, the required moment capacity is based on the 
dead load of the heel slab itself and is multiplied by 1.2, while the downward 
load of the earth is multiplied by 1.6. Surcharge, if present, is treated as live 
load with a load factor of 1.6. The upward pressure of the soil under the heel 
slab is taken equal to zero, recognizing that for the severe overload stage a non-
linear pressure distribution is probably obtained, with most of the reaction con-
centrated near the toe. Similar assumptions appear to be reasonable in designing 
counterfort walls.

In accordance with ACI Code Chapter 13, cantilever retaining walls are 
designed following the flexural design provisions covered in Chapter 12, with min-
imum horizontal (transverse) reinforcement provided in accordance with ACI Code 
7.6.1, which stipulates minimum reinforcement equal to 0.0018Ag for deformed bars 
and welded wire reinforcement, where Ag is the gross area of the wall.

	 16.6	 DRAINAGE AND OTHER DETAILS

Such failures or damage to retaining walls as have occasionally occurred were due, 
in most cases, to one of two causes: overloading of the soil under the wall with 
consequent forward tipping or insufficient drainage of the backfill. In the latter case, 
hydrostatic pressure from porewater accumulated during or after rainstorms greatly 
increases the thrust on the wall; in addition, in subfreezing weather, ice pressure of 
considerable magnitude can develop in such poorly drained soils. The two causes are 
often interconnected, since large thrusts correspondingly increase the bearing pressure 
under the footing.

† �These reactions are caused by the assumed factored load condition and have no direct relationship to ultimate soil bearing values or pressure 
distributions.
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Allowable bearing pressures should be selected with great care. It is necessary, for 
this purpose, to investigate not only the type of soil immediately underlying the footing 
but also the deeper layers. Unless reliable information is available at the site, subsurface 
borings should be made to a depth at least equal to the height of the wall. The foundation 
must be laid below frost depth, which amounts to 4 to 5 ft and more in the northern 
states, to ensure against heaving by the freezing of soils containing moisture.

Drainage can be provided in various ways. Weep holes consisting of 6 or 8 in. 
pipe embedded in the wall, as shown in Fig. 16.1c, are usually spaced horizontally at  
5 to 10 ft. In addition to the bottom row, additional rows should be provided in walls 
of substantial height. To facilitate drainage and prevent clogging, 1 ft3 or more of crushed 
stone is placed at the rear end of each weeper. Care must be taken that the outflow from 
the weep holes is carried off safely so as not to seep into and soften the soil underneath 
the wall. To prevent this, instead of weepers, longitudinal drains embedded in crushed 
stone or gravel can be provided along the rear face of the wall (Fig.  16.1b) at one or 
more levels; the drains discharge at the ends of the wall or at a few intermediate points. 
The most efficient drainage is provided by a continuous backdrain consisting of a layer 
of gravel or crushed stone covering the entire rear face of the wall (Fig.  16.1a), with 
discharge at the ends. Such drainage is expensive, however, unless appropriate material 
is cheaply available at the site. Wherever possible, the surface of the fill should be cov-
ered with a layer of low permeability and, in the case of a horizontal surface, should be 
laid with a slight slope away from the wall toward a gutter or other drainage.

In long walls, provision must be made against damage caused by expansion or con-
traction from temperature changes and shrinkage. The AASHTO LRFD Bridge Design 
Specifications (Ref. 16.4) require that for gravity walls, as well as reinforced concrete 
walls, expansion joints be placed at intervals of 90 ft or less, and contraction joints at not 
more than 30 ft (Ref. 16.4). The same specifications provide that, in reinforced con-
crete walls, temperature reinforcement equal to 0.0018bh in both the vertical and 
horizontal directions be distributed uniformly on the exposed (including end) surfaces. 
This AASHTO requirement is expressed as an area of reinforcement per foot on each 
face equal to

	 As ≥ ​  1.30bh _________ 
2(b + h)fy

 ​	 (16.9a)

	 0.11 ≤ As ≤ 0.60 in2∕ft	 (16.9b)

where b  =  least width of the component, h  =  least thickness of the component, 
and fy = yield strength of the bars, expressed in ksi, ≤ 75 ksi. Similar provisions for 
railroad structures are found in Ref. 16.5.

	 16.7	 EXAMPLE: DESIGN OF A GRAVITY RETAINING WALL

A gravity wall is to retain a bank 11 ft 6 in. high whose horizontal surface is subject 
to a live load surcharge of 400 psf. The soil is a sand and gravel mixture with a rather 
moderate amount of fine, silty particles. It can, therefore, be assumed to be in class 2 
of Table 16.1 with the following characteristics: unit weight w = 120 pcf, ϕ = 30° 
(with adequate drainage to be provided), and base friction coefficient f = 0.5. With 
sin 30° = 0.5, from Eqs. (16.4) and (16.5), the soil pressure coefficients are Kah = 0.333 
and Kph = 3.0. The allowable bearing pressure is assumed to be 8000 psf. This coarse-
grained soil has little compressibility, so that the resultant can be allowed to strike near 
the outer-third point (see Section 16.4). The weight of the concrete is wc = 150 pcf.
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The optimum design of any retaining wall is a matter of successive approxi-
mation. Reasonable dimensions are assumed based on experience, and the various 
conditions of stability are checked for these dimensions. On the basis of a first trial, 
dimensions are readjusted, and one or two additional trials usually result in a favora-
ble design. In the following, only the final design is analyzed in detail. The final 
dimensions are shown in Fig. 16.6.

The equivalent height of surcharge is h′ = 400∕120 = 3.33 ft. From Fig. 16.3c 
the total earth thrust is

P = ​ 1 _ 2 ​ × 0.333 × 120 × 15 × 21.67 = 6500 lb

and its distance from the base is y = (225 + 150)∕(3 × 21.67) = 5.77 ft. Hence, the 
overturning moment Mo = 6500 × 5.77 = 37,500 ft-lb. To calculate the weight W and  
its restoring moment Mr about the edge of the toe, individual weights are taken, as 
shown in Fig. 16.6. With x representing the distance of the line of action of each sub-
weight from the front edge, the following calculation results:

FIGURE 16.6
Gravity retaining wall.

W1

W3

ab

W5W2

W4

3′-6″
2′-0″

10′-0″

15′-0″

3′-4″1′-6″

9″ 9″

 
Component Weights

W,  
lb

x,  
ft

Mr = xW,  
ft-lb

W1: 10 × 2 × 150 3,000 5.0 15,000
W2: 1.5 × 13 × 150 2,930 1.5 4,400
W3: 7∕2 × 13 × 150 6,830 4.58 31,300
W4: 7∕2 × 13 × 120 5,460 6.92 37,800
W5: 0.75 × 13 × 120   1,170 9.63  11,270
    Total 19,390 99,770

The distance of the resultant from the front edge is

a = ​ 
99,770 − 37,500

  ______________  
19,390

 ​  = 3.21 ft

which is just outside the middle third. The safety factor against overturning, 
99,770∕37,500  =  2.66, is ample. From Fig.  16.5c the maximum soil pressure is  
q = (2 × 19,390)∕(3 × 3.21) = 4030 psf.
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These calculations are made for the case in which the surcharge extends only 
to the rear edge of the wall, point a of Fig.  16.6. If the surcharge extends forward 
to point b, the following modifications are obtained:

W = 19,390 + 400 × 7.75 = 22,490 lb

Mr = 99,770 + 400 × 7.75 × 6.13 = 118,770 ft-lb

a = ​ 
118,770 − 37,500

  _______________  
22,490

 ​  = 3.61 ft

This is inside the middle third, and from Fig. 16.5a, the maximum bearing pressure is

q1 = ​ 
(40.0 − 21.7)22,490

  _________________  
100

 ​  = 4120 psf

The situation most conducive to sliding occurs when the surcharge extends only 
to point a, since additional surcharge between a and b would increase the total weight 
and the corresponding resisting friction. The friction force is

F = 0.5 × 19,390 = 9695 lb
Additionally, sliding is resisted by the passive earth pressure on the front of the wall. 
Although the base plane is 3.5 ft below grade, the top layer of soil cannot be relied 
upon to furnish passive pressure, since it is frequently loosened by roots and the like, 
or it could be scoured out by cloudbursts. For this reason, the top 1.5 ft is discounted 
in calculating the passive pressure, which then becomes

Pp = ​ 1 _ 2 ​wh2Kph = ​ 1 _ 2 ​ × 120 × 22 × 3.0 = 720 lb

The safety factor against sliding, (9695 + 720)∕6500 = 1.6, is but slightly larger than 
the required value 1.5, indicating a favorable design. Ignoring the passive pressure 
gives a safety factor of 1.49, which is very close to the acceptable value.

	 16.8	 EXAMPLE: DESIGN OF A CANTILEVER RETAINING WALL

A cantilever wall is to be designed for the situation of the gravity wall in Section 16.7. 
Concrete with ​f​c​ ′​ = 4500 psi and steel with fy = 60,000 psi is used.

	 a.	 Preliminary Design

To facilitate calculation of weights for checking the stability of the wall, it is advanta-
geous first to ascertain the thickness of the arm and the footing.† For this purpose the 
thickness of the footing is roughly estimated, and then the required thickness of the 
arm is determined at its bottom section. With the bottom of the footing at 3.5 ft below 
grade and an estimated footing thickness of 1.5 ft, the free height of the arm is 13.5 ft. 
Hence, with respect to the bottom of the arm (see Fig. 16.3c),

P = ​ 1 _ 2 ​ × 0.333 × 120 × 13.5 × 20.16 = 5440 lb

y = ​ 183 + 135 _________ 
3 × 20.16

 ​ = 5.25 ft

Mu = 1.6 × 5440 × 5.25 = 45,700 ft-lb

† Valuable guidance is provided for the designer in tabulated designs such as those found in Ref. 16.6 and by the sample calculations in Ref. 16.7.
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For the given grades of concrete and steel, the maximum practical reinforcement ratio 
ρmax = 0.0197. For economy and ease of bar placement, a ratio of about 40 percent of 
the maximum, or 0.008, is selected. Then from Graph A.1b of Appendix A,

​ 
Mu _____ 

ϕbd2
 ​ = 430

For a unit length of the wall (b = 12 in.), with ϕ = 0.90, the required effective depth is

d = ​​√
______________

  ​ 
45,700 × 12

  ______________  
0.90 × 12 × 430

 ​​​ = 10.9 in.

A protective cover of 2 in. is required for concrete exposed to earth. Thus, estimating 
the bar diameter to be 1 in., the minimum required thickness of the arm at the base is 
13.4 in. This is increased to 16 in., giving d = 13.5 in., because the cost of the extra 
concrete in such structures is usually more than balanced by the simultaneous saving 
in steel and ease of concrete placement. The arm is then checked for shear at the base 
of the wall at the intersection with the supporting slab per ACI Code 13.3.6.3, or 
13.5 ft below the top of the wall:

P = ​ 1 _ 2 ​ × 0.333 × 120 × 13.5 × 19.16 = 5170 lb

Vu = 1.6 × 5170 = 8270 lb

The factored shear force is approximately ϕ1.0​​√
__

 ​f​c​ ′​​​bwd. This is low enough to proceed 
with the design. Because the shear strength is dependent on the flexural reinforce-
ment ratio and the size effect factor, the final check of shear strength is conducted 
after the flexural design.

The thickness of the base is usually the same as or slightly larger than that at 
the bottom of the arm. Hence, the estimated 1.5 ft need not be revised. Since the 
moment in the arm decreases with increasing distance from the base and is zero at 
the top, the arm thickness at the top is made 8 in. It is now necessary to assume 
lengths of heel and toe slabs and to check the stability for these assumed dimensions. 
Intermediate trials are omitted here, and the final dimensions are shown in Fig. 16.7a. 
Trial calculations have shown that safety against sliding can be achieved only by an 
excessively long heel or by a key. The latter, requiring the smaller concrete volume, 
has been adopted.

	 b.	 Stability Investigation

Weights and moments about the front edge are as follows:

 
Component Weights

W,  
lb

x,  
ft

Mr,  
ft-lb

W1: 0.67 × 13.5 × 150 1,360 4.08 5,550
W2: 0.67 × 0.5 × 13.5 × 150 680 4.67 3,180
W3: 9.75 × 1.5 × 150 2,190 4.88 10,700
W4: 1.33 × 1.25 × 150 250 4.42 1,100
W5: 3.75 × 2 × 120 900 1.88 1,690
W6: 0.67 × 0.5 × 13.5 × 120 540 4.86 2,620
W7: 4.67 × 13.5 × 120   7,570 7.42 56,200
    Total 13,490 81,040
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FIGURE 16.7
Cantilever retaining wall:  
(a) cross section; (b) bearing 
pressure with surcharge  
to a; (c) bearing pressure 
with surcharge to b;  
(d) reinforcement; and  
(e) moment variation  
with height.
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The total soil pressure on the plane ac is the same as for the gravity wall 
designed in Section 16.7; that is, P = 6500 lb, and the overturning moment is

Mo = 37,500 ft-lb

The distance of the resultant from the front edge is

a = ​ 
81,040 − 37,500

  ______________  
13,490

 ​  = 3.23 ft

which locates the resultant barely outside of the middle third. The corresponding max-
imum soil pressure at the toe, from Fig. 16.5c, is

q1 = ​ 
2 × 13,470

  __________ 
3 × 3.23

 ​  = 2780 psf

The factor of safety against overturning, 81,040∕37,500 = 2.16, is ample.
To check the safety against sliding, remember (Section 16.4) that if sliding 

occurs, it proceeds between concrete and soil along the heel and key (that is, length ae 
in Fig.  16.4), but takes place within the soil in front of the key (that is, along 
length  te in Fig. 16.4). Consequently, the coefficient of friction that applies for the 
former length is f = 0.5, while for the latter it is equal to the internal soil friction, 
that is, tan 30° = 0.577.

The bearing pressure distribution is shown in Fig.  16.7b. Since the resultant  
is at a distance a  =  3.23 ft from the front, that is, nearly at the middle third, it is 
assumed that the bearing pressure becomes zero exactly at the edge of the heel, as 
shown in Fig. 16.7b.

The resisting force is then calculated as the sum of the friction forces of the 
rear and front portion, plus the passive soil pressure in front of the wall. For the 
latter, as in Section 16.7, the top 1.5 ft layer of soil is discounted as unreliable. Hence,

Friction, toe: (2780 + 1710) × 0.5 × 3.75 × 0.577 = 4860  lb
Friction, heel and key: 1710 × 0.5 × 6 × 0.5 = 2570  lb
Passive earth pressure: 0.5 × 120 × 3.252 × 3.0 = 1900 lb
  Total resistance to sliding: = 9330  lb

The factor of safety against sliding, 9330∕6500 = 1.44, is only 4 percent below 
the recommended value of 1.5 and can be regarded as adequate.

The calculations hold for the case in which the surcharge extends from the right 
to point a above the edge of the heel. The other case of load distribution, in which 
the surcharge is placed over the entire surface of the fill up to point b, evidently 
does not change the earth pressure on the plane ac. It does, however, add to the sum 
of the vertical forces and increases both the restoring moment Mr and the friction 
along the base. Consequently, the danger of sliding or overturning is greater when 
the surcharge extends only to a, for which situation these two cases have been 
checked and found adequate. In view of the added vertical load, however, the bear-
ing pressure is largest when the surface is loaded to b. For this case,

W = 13,490 + 400 × 5.33 = 15,600 lb

Mr = 81,040 + 400 × 5.33 × 7.09 = 96,200 ft-lb

a = ​ 
96,200 − 37,500

  ______________  
15,600

 ​  = 3.76 ft
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which places the resultant inside the middle third. Hence, from Fig. 16.5a,

q1 = (39.0 − 22.5) ​ 
15,600

 ______ 
9.752

 ​  = 2710 psf

q2 = (22.5 − 19.5) ​ 
15,600

 ______ 
9.752

 ​  = 492 psf

which are far below the allowable pressure of 8000 psf. The corresponding bearing 
pressure distribution is shown in Fig. 16.7c.

The external stability of the wall has now been ascertained, and it remains to 
determine the required reinforcement and to check internal resistances.

	 c.	 Arm and Key

The moment at the bottom section of the arm has previously been determined as 
Mu = 45,700 ft-lb, and a wall thickness of 16 in. at the bottom and 8 in. at the top has 
been selected. With a concrete cover of 2 in. clear, d = 16.0 − 2.0 − 0.5 = 13.5 in. Then

​ 
Mu _____ 

ϕbd2
 ​ = ​ 

45,700 × 12
  _______________  

0.90 × 12 × 13.52
 ​ = 279

Interpolating from Graph A.1b of Appendix A, with fy = 60,000 psi and ​f​c​ ′​ = 4500 psi, 
the required reinforcement ratio ρ is 0.0049 and As = 0.0049 × 12 × 13.5 = 0.79 in2∕ft. 
The required area of steel is provided by No. 7 (No. 22) bars at 9 in. on centers.

The bending moment in the arm decreases rapidly with increasing distance from 
the bottom. For this reason, only part of the main reinforcement is needed at higher 
elevations, and alternate bars are discontinued where no longer needed. To determine 
the cutoff point, the moment diagram for the arm has been drawn by calculating bend-
ing moments at two intermediate levels, 10 and 5 ft from the top. These two moments, 
determined in the same manner as that at the base of the arm, were found to be 21,300 
and 4000 ft-lb, respectively. The resisting moment provided by alternate bars, that is, 
by No. 7 (No. 22) bars at 18 in. center to center, at the bottom of the arm is

ϕMn = ​ 
0.90 × 0.40 × 60,000

  __________________  
12

 ​  (13.50 − 0.26) = 23,800 ft-lb

At the top, d = 8.0 − 2.5 = 5.5 in., and the resisting moment of the same bars is only 
ϕMn  =  23,800(5.5∕13.5)  =  9700 ft-lb. Hence, the straight line drawn in Fig.  16.7e 
indicates the resisting moment provided at any elevation by one-half the number of main 
bars. The intersection of this line with the moment diagram at a distance of  
3 ft 6 in. from the bottom represents the point above which alternate bars are no 
longer needed. ACI Code 7.7.3.3 specifies that any bar shall be extended beyond the 
point at which it is no longer needed to carry flexural stress for a distance equal to 
d or 12 bar diameters, whichever is greater. In the arm, at a distance of 3 ft 6 in. 
from the bottom, d  =  11.4 in., while 12 bar diameters for No. 7 (No. 22) bars are 
equal to 10.5 in. Hence, one-half the bars can be discontinued 12 in. above the point 
where no longer needed, or a distance of 4 ft 6 in. above the base. This exceeds the 
required development length of 39 in. above the base.

To facilitate construction, the footing is placed first, and a construction joint 
is provided at the base of the arm, as shown in Fig.  16.7d. The main bars of the 
arm, therefore, end at the top of the base slab, and dowels are placed in the latter 
to be spliced with them; the integrity of the arm depends entirely on the strength of 
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the splices used for these tension bars. Splicing all tension bars in one section by 
simple contact splices can easily lead to splitting of the concrete owing to the stress 
concentrations at the ends of the spliced bars. One way to avoid this difficulty is to 
weld all splices; this entails considerable extra cost.

In this particular wall, another way of placing the reinforcing offers a more 
economical solution. Because alternate bars in the arm can be discontinued at a 
distance of 4 ft 6 in. above the base, the dowels are carried up 4 ft 6 in. from the 
top of the base. These need not be spliced at all, because above that level only 
alternate No. 7 (No. 22) bars, 18 in. on centers, are needed. These latter bars are 
placed full length over the entire height of the arm and are spliced at the bottom 
with alternate shorter dowels. By this means, only 50 percent of the bars needed at 
the bottom of the arm are spliced; this is not objectionable.

For splices of deformed bars in tension, at sections where the ratio of steel  
provided to steel required is less than 2 and where no more than 50 percent of the 
steel is spliced, the ACI Code requires a Class B splice with a length equal to  
1.3 times the development length of the bar (see Section 6.13a). The development 
length of the No. 7 (No. 22) bars for the given material strengths is 39 in., and so the 
required splice length is 1.3 × 39 = 50.7 in., which is less than the 4 ft 6 in. available.

According to the ACI Code, main flexural reinforcement is not to be terminated 
in a tension zone unless one of three conditions is satisfied: (1) shear at the cutoff 
point does not exceed two-thirds that permitted, (2) certain excess shear reinforce-
ment is provided, or (3) the continuing reinforcement provides double the area 
required for flexure at the cutoff point and the factored shear does not exceed three-
fourths of the design shear (see Section 6.10b). It is easily confirmed that the shear 
4 ft 6 in. above the base is well below two-thirds the value that can be carried by 
the concrete; thus, main bars can be terminated as planned.

Prior to completing the design of the arm, the minimum tensile reinforcement 
ratio specified by the ACI Code must be checked. The actual ratio provided by the 
No. 7 (No. 22) bars at 18 in. spacing, with d = 10.8 in. just above the cutoff point, 
is 0.0031, about 10 percent below the minimum value of 3​​√

____
 4500​​∕60,000 = 0.0034. 

To handle this, the spacing of the No. 7 (No. 22) bars is reduced to 8 in., giving a 
spacing of 16 in. above the cutoff. This increases the amount of steel, but by less 
than would be needed if the bars were extended to a height where the decreasing 
value of d allowed the minimum reinforcement ratio to be satisfied. A final ACI 
Code requirement is that the maximum spacing of the primary flexural reinforce-
ment exceed neither 3 times the wall thickness nor 18 in.; these restrictions are 
satisfied as well.

The final check of the shear capacity at the base of the wall is now made.  
No. 7 (No. 22) bars at 8 in. spacing have a reinforcing ratio of 

ρ = ​​ 
As

 ___ 
bd

 ​​ = ​​ 
0.60 ×  ​ 12 ___ 

8
 ​
 _________ 

12 × 13.5
 ​​ = 0.0056

The corresponding concrete shear strength is 

vc = 8ρ1∕3 ​​√
__

 ​f​c​ ′​​​ = 8 × (0.0056)1∕3 ​​√
____

 4500​​ = 95.0 psi

The depth of the arm exceeds 10 in. and requires an adjustment for size effects.

λs = ​​√
_______

 ​  2 _______ 
1 +  ​ d ___ 

10
 ​
 ​​​ = ​​√

___________
  ​  2 ___________  

1 + 13.5∕10
 ​​​ = 0.85
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510      DESIGN OF CONCRETE STRUCTURES  Chapter 16

The shear strength at the base of the wall is 

ϕVc = ϕλλsvcbd = 0.75 × 1.0 × 0.85 × 95.0 × 12 × 13.5 = 9810 lb

which is sufficient, exceeding the factored load of Vu = 8270 lb. In this case, the 
reduction of the bar spacing led to a higher reinforcement ratio and adequate shear 
strength. Had the originally calculated spacing been used, the member thickness 
would have to be increased.

Since the dowels had to be extended at least partly into the key to produce 
the necessary length of embedment, they were bent as shown to provide both 
reinforcement for the key and anchorage for the arm reinforcement. The exact force 
that the key must resist is difficult to determine, since probably the major part of 
the force acting on the portion of the soil in front of the key is transmitted to it 
through friction along the base of the footing. The relatively strong reinforcement 
of the key by means of the extended dowels is considered sufficient to prevent 
separation from the footing.

The sloping sides of the key were provided to facilitate excavation without 
loosening the adjacent soil. This is necessary to ensure proper functioning of the 
key. The hook extends toward the toe as recommended in ACI Commentary R13.6.3.3.

In addition to the main steel in the stem, reinforcement must be provided in the 
horizontal direction to control shrinkage and temperature cracking, in accordance with 
ACI Code 11.6.1. Calculations are based on the average wall thickness of 12 in. The 
required steel area is 0.0018 times the gross concrete area. No. 4 (No. 13) bars 16 in. 
on centers, each face, are selected as shown in Fig. 16.7d. Although not required by 
the Code for cantilever retaining walls, vertical steel equal to 0.0012 times the gross 
concrete area is also provided (to limit horizontal surface cracking), with at least one-
half of this value provided on the exposed face, as specified for other walls under ACI 
Code 7.6.1. No. 4 (No. 13) bars 30 in. on centers satisfies this requirement.

	 d.	 Toe Slab

The toe slab acts as a cantilever projecting outward from the face of the stem. It 
must resist the upward pressures shown in Fig.  16.7b or c and the downward load 
of the toe slab itself, each multiplied by appropriate load factors. The downward 
load of the earth fill over the toe is neglected because it is subject to possible ero-
sion or removal. A load factor of 1.6 is applied to the service load bearing pressures. 
Comparison of the pressures of Fig. 16.7b and c indicates that for the toe slab, the 
more severe loading case results from surcharge to b. Because the self-weight of 
the toe slab tends to reduce design moments and shears, it is multiplied by a load  
factor of 0.9. Thus, the factored load moment at the outer face of the stem is

Mu = 1.6​( ​ 2710 _____ 
2
 ​  × 3.752 × ​ 2 __ 

3
 ​ + ​ 1850 _____ 

2
 ​  × 3.752 × ​ 1 __ 

3
 ​ )​ − 0.9​( 225 × 3.752 × ​ 1 __ 

2
 ​ )​

= 25,800 ft-lb

Because the concrete shear strength is low, the trial depth is increased to 26 in. For 
concrete cast against and permanently exposed to earth, a minimum protective cover 
for steel of 3 in. is required; if the bar diameter is about 1 in., the effective depth will 
be 26.0 − 3.0 − 0.5 = 22.5 in. Thus, for a 12 in. strip of heel slab,

​ 
Mu _____ 

ϕbd2
 ​ = ​ 

25,800 × 12
  _______________  

0.90 × 12 × 22.52
 ​ = 57
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Graph A.1b of Appendix A shows that, for this value, the required reinforcement ratio 
is below the minimum of 0.0018Ag. A somewhat thinner base slab appears possible. How-
ever, moments in the heel slab are yet to be investigated, as well as shears in both the 
toe and heel, and the trial effective depth of 22.5 in. and overall thickness of 26 in. are 
retained tentatively. The required flexural steel

As = 0.0018 × 12 × 26 = 0.56 in2∕ft

is provided by No. 7 (No. 22) bars 12 in. on centers. The required length of embed-
ment for these bars past the exterior face of the stem is the full development length of 
39 in. Thus, they are continued 39 in. past the face of the wall, as shown in Fig. 16.7d.

Shear is checked at a distance d  =  1.5 ft from the face of the stem (2.25  ft 
from the end of the toe), according to the usual ACI Code procedures. The service 
load bearing pressure at that location (with reference to Fig. 16.7c) is 2130 psf, and 
the factored load shear is

Vu = 1.6(2710 × ​ 1 _ 2 ​ × 2.54 + 2130 × ​ 1 _ 2 ​ × 2.54) − 0.9(225 × 2.54)

= 9320 lb

The reinforcement ratio is 0.60/22.5 × 12 = 0.0022, resulting in a design shear strength 
of the concrete of

ϕVc = ϕλ8ρ1∕3​​√
__

 ​f​c​ ′​​​ bd = 0.75 × 1.0 × 8 × 0.00221∕3​​√
____

 4500​​ × 12 × 22.5 = 14,200 lb

which exceeds the factored load and is, therefore, satisfactory.

	 e.	 Heel Slab

Together, the heel and toe slabs act as a one-way shallow footing, and consequently, 
the size effect factor may be neglected in the calculations, as stated in ACI 13.2.6.2. 
The heel slab, too, acts as a cantilever, projecting in this case from the back face of the 
stem and loaded by surcharge, earth fill, and its own weight. The upward reaction of 
the soil is neglected here, for reasons given earlier. Applying appropriate load factors, 
the moment to be resisted is

Mu = 1.2 × 225 × 4.672 × ​ 1 _ 2 ​ + 1.6(400 × 4.672 × ​ 1 _ 2 ​ + 1620 × 4.672 × ​ 1 _ 2 ​)

= 38,200 ft-lb

Thus,

​ 
Mu _____ 

ϕbd2
 ​ = ​ 

38,200 × 12
  _______________  

0.90 × 12 × 22.52
 ​ = 84

Interpolating from Graph A.1b, the required reinforcement ratio is less than the min-
imum value based on 0.0018Ag. The required flexural steel is, thus, As = 0.0018 ×  
12 × 26 = 0.56 in2/ft. The required steel area is provided using No. 7 (No. 22) bars 
12 in. on centers, as shown in Fig. 16.7d. These bars are classified as top bars, as they 
have more than 12 in. of concrete below; thus, the required length of embedment to 
the left of the inside face of the stem is 39 × 1.3 = 51 in.

According to normal ACI Code procedures, the first critical section for shear 
would be a distance d from the face of support. However, the justification for this 
provision of the ACI Code is the presence, in the usual case, of vertical compres-
sive  stress  near a support which tends to decrease the likelihood of shear failure 
in  that  region.  However, the cantilevered heel slab is essentially hung from the 
bottom  of  the  stem by the flexural tensile steel in the stem, and the concrete 
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compression normally found near a support is absent here. Consequently, the criti-
cal section  for shear in the heel slab is taken at the back face of the stem. At that 
location,

Vu = 1.2(225 × 4.67) + 1.6(2020 × 4.67)

= 16,350 lb

The design shear strength provided by the concrete is the same as for the toe slab:

ϕVc = 14,200 lb

which is insufficient. Increasing the footing depth to 30 in. requires No. 7 (No. 22) 
bars at 10 in. An effective depth of 26.5 in. gives a reinforcement ratio of 0.60/10 × 
28.5 = 0.00226 and a shear capacity of

ϕVc = ϕλ8ρ1∕3​​√
__

 ​f​c​ ′​​​ bd = 0.75 × 1.0 × 8 × 0.002261∕3​​√
____

 4500​​ × 12 × 26.5 
= 16,800 lb

Thus, additional slab thickness is required. The final thickness is 30 in. Because the 
depth and weights have increased, it is not necessary to recalculate the stability aspects 
of the wall. The spacing of the toe reinforcement is reduced to 10 in. to satisfy the 
minimum reinforcement requirements.

The base slab is well below grade and will not be subjected to the extremes 
of temperature that are imposed on the stem concrete. Consequently, crack control 
steel in the direction perpendicular to the main reinforcement is not a major consid-
eration. No. 4 (No. 13) bars 12 in. on centers are provided, at one face only, placed 
as shown in Fig.  16.7d. These bars serve chiefly as spacers for the main flexural 
reinforcement.

	 16.9	 COUNTERFORT RETAINING WALLS

The external stability of a counterfort retaining wall is determined in the same manner 
as in the examples of Sections 16.7 and 16.8. The toe slab represents a cantilever built 
in along the front face of the wall, loaded upward by the bearing pressure, exactly as in 
the cantilever wall described in Section 16.8. Reinforcement is provided by bars a in 
Fig. 16.8.

A panel of the vertical wall between two counterforts is a slab acted upon by 
horizontal earth pressure and supported along three sides, that is, at the two coun-
terforts and the base slab, while the fourth side, the top edge, is not supported. The 
earth pressure increases with distance from the free surface. The determination of 
moments and shears in such a slab supported on three sides and nonuniformly 
loaded is rather involved. It is customary in the design of such walls to disregard 
the support of the vertical wall by the base slab and to design it as if it were a 
continuous slab spanning horizontally between counterforts. This procedure is 
conservative because the moments obtained by this approximation are larger than 
those corresponding to the actual conditions of support, particularly in the lower 
part of the wall. Hence, for very large installations, significant savings may be 
achieved by a more accurate analysis. The best computational tool for this is the 
Hillerborg strip method, a plasticity-based theory for design of slabs described in 
detail in Chapter 24. Alternatively, results of elastic analysis are tabulated for a 
range of variables in Ref. 16.8.
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Slab moments are determined for strips 1 ft wide spanning horizontally, usually 
for the strip at the bottom of the wall and for three or four equally spaced additional 
strips at higher elevations. The earth pressure on the different strips decreases with 
increasing elevation and is determined using Eq. (16.1). Moment values for the bot-
tom strips may be reduced to account for the fact that additional support is provided 
by the base slab. Horizontal bars b (Fig.  16.8) are provided, as required, with 
increased spacing or decreased diameter corresponding to the smaller moments. 
Alternate bars are bent to provide for the negative moments in the wall at the coun-
terforts, or additional straight bars are used as negative reinforcement, as shown in 
Section A–A of Fig. 16.8.

The heel slab is supported, as is the wall slab, that is, by the counterforts and 
at the wall. It is loaded downward by the weight of the fill resting on it, its own 
weight, and such surcharge as there may be. This load is partially counteracted by 
the upward bearing pressure on the underside of the heel. As in the vertical wall, a 
simplified analysis consists in neglecting the influence of the support along the third 
side and in determining moments and shears for strips parallel to the wall, each strip 
representing a continuous beam supported at the counterforts. For a horizontal soil 
surface, the downward load is constant for the entire heel, whereas the upward load 
from the bearing pressure is usually smallest at the rear edge and increases frontward. 

FIGURE 16.8
Details of counterfort 
retaining wall.
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For this reason, the span moments are positive (compression on top) and the support 
moments negative in the rear portion of the heel. Near the wall, the bearing pressure 
often exceeds the vertical weights, resulting in a net upward load. The signs of the 
moments are correspondingly reversed, and steel must be placed accordingly. Bars 
c are provided for these moments.

The counterforts are wedge-shaped cantilevers built in at the bottom in the base 
slab. They support the wall slab and, therefore, are loaded by the total soil pressure 
over a length equal to the distance center to center between counterforts. They act as 
a T beam of which the wall slab is the flange and the counterfort the stem. The max-
imum bending moment is that of the total earth pressure, taken about the bottom of 
the wall slab. This moment is held in equilibrium by the force in the bars d, and hence, 
the effective depth for bending is the perpendicular distance pq from the center of bars 
d to the center of the bottom section of the wall slab. Since the moment decreases 
rapidly in the upper parts of the counterfort, part of the bars d can be discontinued.

In regard to shear, the authors suggest the horizontal section oq as a conserv-
ative location for checking adequacy. Modification of the customary shear calculation 
is required for wedge-shaped members (see Section 5.7). Usually concrete alone is 
sufficient to carry the shear, although bars e act as stirrups and can be used for 
resisting excess shear.

The main purpose of bars e is to counteract the pull of the wall slab, and they 
are thus designed for the full reaction of this slab.

The remaining bars of Fig. 16.8 serve as shrinkage reinforcement, except that 
bars f have an important additional function. It will be recalled that the wall and heel 
slabs are supported on three sides. Even though they were designed as if supported 
only by the counterforts, they develop moments where they join. The resulting ten-
sion in and near the reentrant corner should be provided for by bars f.

The question of reinforcing bar details, always important, is particularly so for 
corners subject to substantial bending moments, such as are present for both canti-
lever and counterfort retaining walls. Valuable suggestions are found in Ref. 16.9.

	 16.10	 PRECAST RETAINING WALLS

Largely because of the high cost of forming cast-in-place retaining walls, there has 
been increasing use of various forms of precast concrete walls. Sections can be mass 
produced under controlled factory conditions using standardized forms, with excellent 
quality control. On-site construction time is greatly reduced, and generally only a 
small crew using light equipment is required. Weather becomes much less of a factor 
in completion of the work than for cast-in-place walls.

One type of precast wall is shown in Fig. 16.9. Reinforced, precast T-WALL® 
Retaining Wall System units are used, each standard unit is 2.5 to 5 ft high and  
5 to 7.5  ft wide, with stems varying according to requirements from 6 to 30 ft. 
Individual units are stacked, using shear keys in the space created where teeth of a 
top and bottom unit come together. Calculations for stability against sliding and 
overturning and for bearing pressures are in accordance with ACI, AASHTO, and 
AREMA design guidelines with stability provided by the combined weight of the 
concrete wall and compacted select backfill. Such walls can be constructed with a 
vertical or battered face, with heights up to 50 ft. 

Walls of the type shown have been used for highways, parking lots, commercial 
and industrial sites, bank stabilization, wing walls, and similar purposes.
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Problems
	16.1.	 A cantilever retaining wall is to be designed with geometry as indicated in 

Fig. P16.1. Backfill material is well-drained gravel having unit weight  
w = 120 pcf, internal friction angle ϕ = 25°, and friction factor against the 
concrete base = 0.60. Backfill placed in front of the toe will have the same 
properties and will be well compacted. The final grade behind the wall is 
level with the top of the wall, with no surcharge.
(a)	 Check the stability of the wall.
(b)	 Design the reinforcement, specifying size and placement. Materials 

strengths are ​​f​c​ ′​​ = 5000 psi and fy = 60,000 psi. Allowable soil bearing 
pressure is 4000 psf.

FIGURE 16.9
Precast T-WALL® Retaining 
Wall System, North Milliken 
Avenue Grade Separation, 
Ontario, CA. (Courtesy of The 

Neel Company, Springfield, VA.)

www.konkur.in

Telegram: @uni_k
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	16.2.	 A cantilever retaining wall is to be designed with the geometry shown in  
Fig. P16.2 with no counterfort. Backfill material is well-drained gravel hav-
ing unit weight w = 120 pcf, internal friction angle ϕ = 33°, and friction 
factor against the concrete base = 0.55. Backfill placed in front of the toe 
will have the same properties and will be well compacted. The final grade 
behind the wall is level with the top of the wall, with no surcharge. At the 
lower level, the grade is 3 ft above the top of the base slab. To improve 
sliding resistance, a key is used, tentatively projecting to a depth 4 ft below 
the top of the base slab. (This dimension may be modified if necessary.)
(a)	 Based on a stability investigation, select wall geometry suitable for the 

specified conditions. For a first trial, place the outer face of the wall ​ 1 _ 3 ​ 
the width of the base slab back from the toe.

(b)	 Prepare the complete structural design, specifying size, placement, and 
cutoff points for all reinforcement. Materials strengths are ​​f​c​ ′​​ = 4000 psi 
and fy = 60,000 psi. Allowable soil bearing pressure is 5000 psf.

FIGURE P16.1
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Strut-and-Tie Method

	 17.1	 INTRODUCTION

Reinforced concrete beam theory is based on equilibrium, compatibility, and the 
constitutive behavior of the materials, steel and concrete. Of particular importance 
is the assumption that strain varies linearly through the depth of a member and that, 
as a result, plane sections remain plane. This assumption is validated by St. Venant’s 
principle, which stipulates that strains induced by discontinuities in load or in member 
cross section vary in an approximately linear fashion at distances greater than or 
equal to the greatest cross-sectional dimension h from the point of load application. 
St.  Venant’s principle underlies the development of beam theory as presented in 
Chapters 1, 3, and 4.

St. Venant’s principle, however, does not apply at points closer than the distance h 
to discontinuities in applied load or geometry. This leads to the identification of 
discontinuity regions within reinforced concrete members near concentrated loads, 
openings, or changes in cross section. For example, because of their geometry, the 
full volume of deep beams and column brackets qualify as discontinuity regions. Thus, 
reinforced concrete structures may be divided into regions where beam theory is valid, 
often referred to as B-regions, and regions where discontinuities affect member behav-
ior, known as D-regions. A number of D-regions are illustrated in Fig. 17.1.

At low stresses, when the concrete is elastic and uncracked, the stresses within 
D-regions may be calculated using finite element analysis or elasticity theory. When 
concrete cracks, the strain field is disrupted, causing a redistribution of the internal 
forces. Once this happens, it is possible to represent the internal forces within dis-
continuity regions using a statically determinate truss, referred to as a strut-and-tie 
model. This allows a complex design problem to be greatly simplified, producing a 
safe solution that satisfies statics. As shown in Fig. 17.2, strut-and-tie models consist 
of concrete compression struts, steel tension ties, and joints that are referred to as 
nodal zones. (For consistency of presentation, struts are represented by dashed lines 
and ties are represented by solid lines.)

	 17.2	 DEVELOPMENT OF THE STRUT-AND-TIE METHOD

The strut-and-tie method evolved in the early 1980s in Europe (Refs. 17.1 to 17.4). Its use 
is permitted by ACI Code 6.2.4.4 and defined in Chapter 23 of the Code (Ref. 17.5). As 
defined, two- or three-dimensional strut-and-tie models divide members into D-regions 
and B-regions. A D-region is that portion of a member that is within a distance equal 
to the member height h from a force or geometric discontinuity, as shown in Fig. 17.1. 
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FIGURE 17.1
Geometric and load 
discontinuities for D-regions.

(a ) Geometric discontinuities

(b ) Loading discontinuities
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FIGURE 17.2
Strut-and-tie model.

w

Idealized strut, width
w, thickness b

Tie

P P

R R

Nodal zones

Boundary
strut

Interior strut

Reinforcement 
to control 

interior strut 
cracking

www.konkur.in

Telegram: @uni_k



STRUT-AND-TIE METHOD      519

B-regions are, in general, any portions of a member outside of D-regions. The assump-
tion is that within B-regions strain varies linearly through the member cross section 
and plane sections remain plane.

Strut-and-tie models are applied within D-regions. Models consist of struts and 
ties connected at nodal zones that are capable of transferring loads to the supports 
or adjacent B-regions. The cross-sectional dimensions of the struts and ties are des-
ignated as thickness and width. Thickness b is perpendicular to the plane of the truss 
model, and width w is measured in the plane of the model, as shown in Fig. 17.2.

	 a.	 Struts

A strut is an internal compression member. It may consist of a single element, par-
allel elements, or a fan-shaped compression field. Struts are classified as boundary 
struts, located at the edge of the member, or as interior struts, as shown in Fig. 17.2. 
For design purposes, a strut is typically idealized as a prismatic member between two 
nodes. While not preferred, a strut can also be idealized as a uniformly tapered com-
pression member if the design criteria require different widths at the ends of the strut. 
The dimensions of the cross section of the strut are established by the contact area 
between the strut and the nodal zone. Interior struts are subjected to tensile stresses 
perpendicular to the axis of the strut, which may result in longitudinal splitting; 
boundary struts are not. The capacity of a strut is a function of the effective concrete 
compressive strength, which is affected by transverse stresses. Because of longitudinal 
splitting, interior struts are weaker than boundary struts. Transverse reinforcement, as 
shown in Fig. 17.2, is incorporated to control longitudinal splitting. Without lateral 
confinement provided by transverse or other reinforcement, the capacity of an interior 
strut is further reduced.

	 b.	 Ties

A tie is a tension member within a strut-and-tie model. Ties consist of reinforce-
ment (prestressed or nonprestressed) plus a portion of the concrete that is concentric 
with and surrounds the axis of the tie. The surrounding concrete defines the tie area 
and the region available to anchor the tie. For design purposes, it is assumed that 
the concrete within the tie does not carry any tensile force. Even though the tensile 
capacity of the concrete is not used in design, it assists in reducing tie deformation 
at service load.

	 c.	 Nodal Zones

Nodes are locations within strut-and-tie models where the axes of struts, ties, and reac-
tions or concentrated loads intersect. A nodal zone is the volume of concrete around 
a node where force transfer occurs. A nodal zone may be treated as a single region 
or may be subdivided into two smaller zones to equilibrate forces. For example, the 
nodal zone shown in Fig. 17.3a is subdivided, as shown in Fig. 17.3b, where two reac-
tions R1 and R2 equilibrate the vertical components of strut forces C1 and C2.

For equilibrium, at least three forces must act on a node. Nodes are classified 
by the sign of these forces (Fig. 17.4). Thus, a C-C-C node resists three compressive 
forces, and a C-C-T node resists two compressive forces and one tensile force. Both 
tensile and compressive forces place nodes in compression because tensile forces are 
treated as if they pass through the node and apply a compressive force on the far 
side, or anchorage face. Thus, within the plane of a strut-and-tie model truss, nodal 
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FIGURE 17.3
Subdivision of nodal zones.
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zones are considered to be in compression, as shown in Fig. 17.5a. If the nodal zone 
dimensions wn1,  wn2, and wn3 are proportional to the applied compressive forces, 
the state of stress becomes one of hydrostatic compression. The dimension of one 
side of a nodal zone is often determined based on the contact area of the load, such 
as a bearing plate, column base, or beam support. If a hydrostatic state of stress is 
desired, the dimensions of the remaining sides of the node are selected to maintain 
a constant level of stress p within the node. By selecting nodal zone dimensions that 
are proportional to the applied loads, the stresses on the faces of the nodal zone are 
equal.† If, instead, the dimensions are determined based on preselected strut dimen-
sions, such as minimum width, the state of stress may no longer be hydrostatic. The 
decision to use a hydrostatic or a nonhydrostatic state of stress is made by the 
designer, with the former being more typical because the latter results in a more 
complex design.

The length of a nodal zone is often not adequate to allow for anchorage of tie 
reinforcement. For this reason, an extended nodal zone, defined by the intersection 
of the nodal zone and the associated strut (shown in light shading in Fig.  17.5b 

† The state of stress within a nodal zone is not truly hydrostatic since out-of-plane stresses are not considered; however, solutions remain valid.

FIGURE 17.5
Nodal zones and extended 
nodal zones.
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and  c), is used. An extended nodal zone may be regarded as that portion of the 
overlap region between struts and ties that is not already counted as part of a primary 
node. It increases the length within which the tensile force from the tie can be trans-
ferred to the concrete and, thus, defines the available anchorage length for ties. Ties 
may be developed outside of the nodal and extended nodal zones if needed, as shown 
to the left of the node in Fig. 17.5c.

In some C-T-T nodes, where the tension tie is continuous around the corner, 
the accumulated tensile forces can result in crushing of the concrete under the bend 
radius. These curved bar nodes require additional detailing attention. 

	 17.3	 STRUT-AND-TIE DESIGN METHODOLOGY

Strut-and-tie models are used in several ways during the design process. At the con-
ceptual design level, sketching a strut-and-tie model provides insight into structural 
behavior and detailing requirements. Examples of conceptual design can be seen in the 
development of connection details in Chapter 18. Strut-and-tie models may be used to 
validate design details, such as for special reinforcement configurations. Finally, the 
strut-and-tie method may form the basis for detailed design of a member.

Application of the strut-and-tie method involves completion of the following steps.

	 a.	 Define and isolate the D-regions.
	 b.	 Calculate the force resultants on each D-region boundary.
	 c.	 Select a truss model to transfer the forces across a D-region.
	 d.	 Select dimensions for strut-and-tie nodal zones.
	 e.	 Design the struts and nodes to have sufficient strength.
	 f.	 Design the ties and the tie anchorage.
	 g.	 Prepare design details and check minimum reinforcement requirements.

As will be described shortly, the design process requires interaction between these steps.
According to ACI Code 23.3.1, design using a strut-and-tie model requires that

	 for struts:  ϕ Fns ≥ Fus	 (17.1a)
	 for ties:   ϕ Fnt ≥ Fut	 (17.1b)
	 for nodes: ϕ Fun ≥ Fun	 (17.1c)

where � Fns, Fnt, and Fnn = nominal capacity of strut, tie, and nodal zone, respectively
      Fus, Fut, and Fun = factored force acting in strut, tie, and nodal zone, respectively
      ϕ = strength reduction factor

In addition to strength criteria, service level performance must be considered 
in design because strut-and-tie models, which are based on strength, do not nec-
essarily satisfy serviceability requirements. To this end, the spacing of reinforce-
ment within ties should be checked using Eq. (7.3). ACI Code 9.9.2 limits the nominal 
shear strength of deep beams to 10​​√

__
 ​f​c​ ′​​​ bw d. This limit applies to strut-and-tie 

models and should be checked prior to beginning a detailed design, as described 
in Section 17.4d.

	 a.	 D-Region

A D-region extends on both sides of a discontinuity by a distance equal to the member 
height h. At geometric discontinuities, a D-region may have different dimensions on 
either side of the discontinuity, as shown in Fig. 17.1.
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	 b.	 Force Resultants on D-Region Boundaries

Once the D-region is defined, the next step involves determining the magnitude, loca-
tion, and direction of the resultant forces acting on the D-region boundaries. These 
forces serve as input for the strut-and-tie method and assist in establishing the geom-
etry of the truss model. When one face of a D-region is loaded with a uniform or lin-
early varying stress field, or when a face is loaded by bending of a concrete section, it 
may be necessary to subdivide the boundary into segments corresponding to struts or 
ties and then to calculate the resultant force on each segment, as shown in Fig. 17.6. 
For example, in Fig. 17.6a, the distributed load along the top of the deep beam is rep-
resented by four concentrated loads, and the stresses at the beam-column interface are 
represented by concentrated reactions. In Fig. 17.6b, the moments at the faces of the 
beam-column joint are represented by couples consisting of tensile and compressive 
forces acting at the interfaces between the members and the joint.

	 c.	 The Truss Model

The truss representing the strut-and-tie model must fit within the envelope defined by 
the D-region. The selection of struts and ties is made at the discretion of the designer, 
and, therefore, multiple acceptable solutions are possible. The axes of the truss 
members are chosen to coincide with the centroids of the tension and compression 
fields, and the geometry so established is used to calculate the forces in the members. 
The layout of a truss model is constrained by the geometric requirement that struts 
must intersect only at nodal zones. Ties may cross struts. An effective model rep-
resents a minimum energy distribution through the D-region (Refs. 17.1 and 17.4); 
that is, within the model, forces should follow the stiffest load path. Because struts 
are typically much stiffer than ties, a model with a minimum number of tension ties 
is generally preferred. Alternative truss models for a deep beam are compared in 

FIGURE 17.6
Resolution of forces in a 
D-region.

(a ) Distributed load applied to a deep beam

Applied load Force resultants

(b ) Moment resisting corner

Applied load Force resultants
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Fig. 17.7. Figure 17.7a shows a deep beam subjected to a concentrated load at mid-
span. Figure 17.7b shows the preferred strut-and-tie model for this beam and loading 
condition. In this case, struts carry the load directly to nodal regions at the supports, 
which are, in turn, connected by a single tension tie. The model in Fig. 17.7c shows 
an ineffective load path, with a single strut carrying the load to a node at the bottom of 
the beam that is supported by two diagonal tension ties that are, in turn, supported by 
vertical struts over the supports. In this instance, the number of transfer points and ten-
sion ties is greater, as is the flexibility of the truss, indicating a solution that is much 
less effective than that shown in Fig. 17.7b. Lastly, Fig. 17.7d illustrates a model with 
multiple struts and ties. This particular layout not only is unduly complex but also 
includes an upper tension tie that will be effective only after extensive yielding and 
possible failure of the lower tension tie.

Theoretically, there is a unique minimum energy solution for a strut-and-tie 
model. Practically, any model that satisfies equilibrium and pays attention to struc-
tural stiffness proves satisfactory. Using the rationale just discussed allows the engi-
neer to select a logical model that effectively mobilizes ties and minimizes the 
potential for excessive cracking. Finite element analyses and solutions based on the 
theory of elasticity for the full structure can provide an indication of where maximum 
stresses occur. A truss model that provides struts in regions of high compression and 
ties in regions of high tension based on these analyses will, in general, provide an 
efficient load path.

	 d.	 Selecting Dimensions for Struts and Nodal Zones

The struts, ties, and nodal zones within the truss that represents a strut-and-tie model 
have finite widths that must be considered when selecting the dimensions of the truss. 
The width of each truss member depends on the magnitude of the forces and the 

FIGURE 17.7
Alternatives for a deep beam 
truss model.

(a ) Loading (b ) Preferred model

(c ) Ine�cient load path (d ) Incompatible load path
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dimensions of the adjoining elements. An external element, such as a bearing plate 
or column, can serve to define a nodal zone. If the bearing area is too small, a high 
hydrostatic pressure results, and the corresponding width of the node or struts will not 
be sufficient to carry the applied load. The solution in this case is to increase the size 
of the bearing surface and, thus, reduce the contact pressures. Some engineers inten-
tionally select struts and nodes that are large enough to keep the compressive stresses 
low; in this case, only the tension ties require detailed design. To minimize cracking 
and to reduce complications that may result from incompatibility in the deformations 
due to struts shortening and ties elongating in nearly the same plane, the angle between 
struts and ties at a node should be at least 25°. Engineers, however, often prefer to use 
an angle of at least 40° because forces in the struts and ties are often unacceptably high 
at lower angles.

The design of nodal zones is based on the assumption that the principal stresses 
within the intersecting struts and ties are parallel to the axes of these truss members. 
The widths of the struts and ties are, in general, proportional to the magnitude of 
the force in the elements. If two or more struts converge on the same face, such as 
shown in Fig.  17.8a and b, it is generally necessary to resolve the forces into a 
single force and to orient the face of the nodal zone so that it is perpendicular to 
the combined force, as shown in Fig.  17.8c and d. Some geometric arrangements 
preclude establishing a purely hydrostatic node. In these cases, the width of the strut 
is determined by the geometry of the bearing plate or tension tie, as shown in 
Fig. 17.9a.

FIGURE 17.8
Resolution of forces in nodal 
zones.
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FIGURE 17.9
Extended nodal zone definition.
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The thickness of the strut, tie, and nodal zone is typically equal to the 
thickness of the member. If the thickness of the bearing area is less than the 
thickness of the member, it may be necessary to add reinforcement perpendicular 
to the principal plane of the member to add confinement and prevent splitting 
parallel to the plane of the truss. In this instance, a strut-and-tie model perpen-
dicular to the plane of the truss may be used to determine the requirements for 
transverse reinforcement in a manner that is similar to that used to reinforce 
interior struts.

	 e.	 Capacity of Struts

Strut capacity is based on both the strength of the strut itself and the strength of the 
nodal zone. If a strut does not have sufficient capacity, the design must be revised by 
providing compression reinforcement or by increasing the size of the nodal zone. This 
may, in turn, affect the size of the bearing plate or column.

	 f.	 Design of Ties and Anchorage

To control cracking in a D-region, ties are designed so that the stress in the reinforce-
ment is below yield at service loads. The geometry of the tie must be selected so that 
the reinforcement fits within the tie dimensions and is fully anchored.

Anchorage for ties is provided within the nodal and extended nodal zones 
plus regions on the far side of the node that may be available based on the 
geometry of the member. Figure  17.9a illustrates an extended nodal zone and 
the length available for anchorage of ties ℓanc. In this case, the tie is extended to 
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the left of the nodal zone to allow for full development of the reinforcement. 
The shape of the extended nodal zone is a function of the strut angle θ and the 
width of the tie wt. Figure  17.9a illustrates the geometry and dimensions of a 
C-C-T node with a tension tie that contains multiple layers of reinforcement. 
Figure  17.9b shows a C-T-T nodal zone. If insufficient length is available to 
anchor the reinforcement within the nodal and extended nodal zones, the rein-
forcement must extend beyond the node or a hook or headed bar must be used 
to fully develop the reinforcement.

	 g.	 Design Details and Minimum Reinforcement Requirements

A complete design includes verification that (1) tie reinforcement can be placed in 
the section, (2) nodal zones are confined by compressive forces or tension ties, (3) tie 
anchorage is fully developed, and (4) minimum reinforcement requirements are satis-
fied. Reinforcement within ties must meet the ACI Code requirements for bar spacing 
(see Section 4.5c) and fit within the overall width and thickness of the tie. Tie details 
should be reviewed to ensure that ties are adequately developed on the far side of nodes 
by tension development length, hooks, headed bars, or other mechanical anchorage. 
Shear reinforcement requirements are satisfied by ensuring that the factored shear is 
less than the ACI Code maximum, as described in Chapter 5, longitudinal cracking of 
interior struts is controlled, or the minimum reinforcement requirements described in 
Section 17.4d are met.

	 17.4	 ACI PROVISIONS FOR THE STRUT-AND-TIE METHOD

ACI Code Chapter 23 provides guidance for sizing struts, nodes, and ties. It 
addresses the performance of highly stressed compression zones that may be adja-
cent to or crossed by cracks in a member, the effect of stresses in nodal zones, and 
the requirements for anchorage of ties. The effective compressive strength of con-
crete 0.85​​f​c​ ′​​ is modified by factors that account for the effects of transverse cracks, 
confining reinforcement in struts, and the anchorage of ties in nodal zones, as shown 
in Tables 17.1 and 17.2.

The balance of this section describes the steps needed to calculate the capacity 
of struts, verify nodal zones, and design ties and tie anchorage. A strength reduction 
factor ϕ = 0.75 is used for struts, ties, nodal zones, and bearing areas.

Location βc

End of a strut connected to a node 
that includes a bearing surface, or

Node that includes a bearing  
surface

Lesser of

​​√
___

 ​ A2 ___ 
A1

 ​​​ where A1 is defined by the 

bearing surface

2.0

Other cases 1.0

TABLE 17.1
Strut and node confinement modification factor βc
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	 a.	 Strength of Struts

The strength of a strut is limited based on the strength of the concrete in the strut 
and the strength of the nodal zones at the ends of the strut. The nominal compressive 
strength of a strut Fns is given as

	 Fns = fce Acs	 (17.2)

where fce is the effective compressive strength of the concrete in a strut and Acs is the 
cross-sectional area at one end of the strut, which is equal to the product of the strut 
thickness b and the strut width w. The effective strength of concrete in a strut is

	 fce = 0.85βcβs ​f​c​ ′​	 (17.3)

where βc is a confinement factor from Table 17.1 and βs is a factor adjusting the 
strength of the strut for location and transverse reinforcement (Table 17.2). The values 
of βs range from 1.0 for a boundary strut to 0.4 for struts in tension members, the ten-
sion flanges of members, and members without transverse reinforcement (Table 17.1). 

Compression reinforcement may be added to increase the strength of a strut, 
so that

	 Fns = fce Acs + ​A​s​ ′​ ​f​s​ ′​	 (17.4)

where ​f​s​ ′​ is based on the strain in the concrete at peak stress. For Grades 40 and 60 
reinforcement, ​f​s​ ′​ = fy. In accordance with ACI Code 23.6, compression reinforcement 
must be properly anchored, oriented parallel to the axis of the strut, located within 
the strut, and enclosed by ties or spirals. Transverse reinforcement spacing must be 
the least of the smallest dimension of the strut, 48 times the transverse reinforcement 
diameter, and 16 times the longitudinal bar diameter. Transverse reinforcement size is 
the same as required for columns in Section 9.2.

The strut-and-tie method is derived from a lower bound theorem of plasticity. (See 
Section 23.2 for discussion of upper and lower bound theorems.) A member designed 
using this method requires sufficient reinforcement to allow redistribution of internal 
forces in a cracked state (Ref. 17.3). Table 17.2 allows the use of a βs value of 0.75 for 
struts with minimum distributed transverse reinforcement and for struts in regions of 
low sectional shear. This value reflects the beneficial effects of distributed reinforcement 
and the lower likelihood of diagonal splitting under lower shear load. 

Strut Location Strut Type Criteria βs

Tension member or tension 
zone of members

Any All cases 0.40

All other cases

Boundary strut All cases 1.0

Interior struts

Satisfying minimum distributed 
reinforcement criteria in Table 17.3

0.75

Located in regions satisfying  
shear limitation of Eq. (17.5)

0.75

Beam-column joints 0.75
All other cases 0.4

TABLE 17.2
Strut coefficient βs 
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The shear strength limitation in Table 17.2 based on Eq. (17.5) is to control 
diagonal tension splitting of the strut when minimum reinforcement is not provided. 
That limitation is satisfied if the member dimensions are selected such that the shear 
in the member

	 Vu ≤ ϕ 5 tan θ λλs ​​√
__

 ​f​c​ ′​​​ bwd	 (17.5)

where λ is the factor for lightweight concrete and λs is the size effect modification 
factor. The value for λs may be taken as 1.0 if distributed reinforcement is provided. 
Otherwise, λs is calculated from Eq. (17.6). 

	 λs = ​​√
________

 ​  2 ________ 
​( 1 +  ​ d ___ 

10
 ​ )​
 ​​​	 (17.6)

	 Shear limitations in the strut-and-tie chapter of the ACI Code are sometimes 
overridden by other member-specific Code chapters. For example, the ACI Code has 
limitations on shear in walls and in diaphragms that must be adhered to.

Minimum reinforcement requirements are given in Table 17.3, and the geom-
etry of the minimum reinforcement placement is indicated in Fig. 17.10. The dis-
tributed reinforcement in Table 17.3 must have lateral spacing not exceeding 12 in., 
and the angle α1 must be at least 40°. The reinforcement must be developed beyond 
the boundaries of the strut. 

Lateral Restraint of Strut Reinforcement Configuration
Minimum Distributed 
Reinforcement Ratio

Not restrained Orthogonal grid 0.0025 in each direction
Reinforcement in one direction 
crossing the strut at an angle α1

​​ 0.0025 ______ 
sin2 α1

 ​​

Restrained Reinforcement not required and βs = 0.4

TABLE 17.3
Minimum distributed shear reinforcement

FIGURE 17.10
Details of reinforcement 
crossing a strut. Strut axis

Strut
boundary

Strut
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An evaluation of a database of strut-and-tie method tests indicates that if struts 
are proportioned for a βs value of 0.4, diagonal tension failures were precluded (Ref. 
17.6). The same database examined the effect of depth of the members and deter-
mined that there was no significant reduction in capacity for members up to 38 in. 
deep when transverse reinforcement is present. 

Struts are considered laterally confined if the discontinuity region is continuous 
perpendicular to the plane of the strut-and-tie model or the concrete restraining the 
strut extends beyond each face of the strut by a distance equal to at least half the 
width of the strut. Laterally confined struts have a βs of 0.4 and no reinforcement 
requirement. For example, the strut-and-tie model seen in Fig. 18.16 occurs in the 
tensile zone of the beam and would therefore require a βs of 0.4 even though the 
strut is laterally confined. Using βs = 1.0 for boundary elements reflects a condition 
where the compression zone cannot spread laterally, thereby allowing the strut to 
behave as a rectangular stress block.

The confinement requirement reflects the difficulty of placing transverse rein-
forcement in some structures such as pile caps. Nonetheless, transverse reinforcement 
is desirable. The strut is also considered restrained if it is in a corner joint or a joint 
where the shear depth exceeds twice the column depth. Joint design, including strut-
and-tie considerations, is described in Chapter 18. 

	 b.	 Strength of Nodal Zones

The nominal compressive strength of a nodal zone is

	 Fnn = fce Anz	 (17.7)

where fce is the effective strength of the concrete in the nodal zone and Anz is (1) the 
area of the face of the nodal zone taken perpendicular to the line of action of the force 
from the strut or tie or (2) the area of a section through the nodal zone taken perpen-
dicular to the line of action of the resultant force on the section. The latter condition 
occurs when multiple struts intersect a node, as shown in Fig. 17.8.

The effective concrete strength in a nodal zone is

	 fce = 0.85βcβn ​​f​c​ ′​​	 (17.8)

where ​f​c​ ′​ is the compressive strength of the concrete in the nodal zone, βc is the con-
finement modification factor given in Table 17.1, and βn is a factor that reflects the 
degree of disruption in nodal zones due to the incompatibility of tensile strains in ties 
with compressive strains in struts. βn = 1.0 for C-C-C nodes, 0.80 for C-C-T nodes, 
and 0.60 for C-T-T or T-T-T nodes. The values of βn are summarized in Table 17.4. 
ACI Code 23.9.3 permits the strength of a node to be increased above the value given 
in Eq. (17.8) if the node contains confining reinforcement and the effect of that rein-
forcement is demonstrated by tests and analysis.

Nodal Zone Condition Classification βn

Bounded by struts or bearing area, or both C-C-C 1.0
Anchoring one tie C-C-T 0.80
Anchoring two or more ties C-T-T or T-T-T 0.60

TABLE 17.4
βn values for node strength
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Unless compression reinforcement is used in the struts, the lower value of fce 
from Eqs. (17.3) and (17.8) governs and should be used to design both the node and 
the adjoining struts.

	 c.	 Curved Bar Nodes

Curved bar nodes occur where the tie reinforcement is continuous through a 90 or 
180° bend. Unlike a standard hook, the tensile force is applied to both ends of the bar, 
and the resulting compression stresses under the bend can split the concrete where 
there is insufficient side cover. Curved bar node performance is affected by the cover 
normal to the bars, the bar radius, and the total force on the bars (Ref. 17.6).

Curved bar nodes are addressed in ACI Code 23.10. If the specified cover 
normal to the plane of the bend is 2db or greater, then the bend radius for bars rb 
for bends less than 180° is

	 rb ≥ ​​ 
2Ats fy

 _____ 
bs ​f​c​ ′​

 ​​ 	 (17.9)

and for 180° bends is

	 rb ≥ ​​ 
1.5Ats fy

 _______ 
wt ​f​c​ ′​

 ​​ 	 (17.10)

where Ats is the total area of tie reinforcement, bs is the dimension of the strut transverse 
to the plane, and wt is the effective tie width, as shown in Fig. 17.11a, where the ties with 
180° bends are in a plane perpendicular to the plane of the truss. In no case is the radius 
to be less that the radius for standard hooks. If the cover normal to the bend is less than 
2db, the bend radius is multiplied by the ratio 2db∕cc, where cc is the specified clear cover 
to the side face. Where curved bar nodes are formed by more than one layer of reinforce-
ment, Ats is the total area of tie reinforcement and rb is the radius of the innermost layer  
(Fig 17.11a). The center of the radius of the curved-bar node in a frame lies within the 
area of the node (Fig. 17.11b). Lastly, the length of the curved portion of the bent bar 
ℓcb in Fig. 17.12 should be enough to develop any difference in tie tension between the 
two straight ends extending from the bent region. Curved bar radii in curved bar nodes 

rb

Ats

wt

b

T C

C

T

a

T C

Curved bar C-T-T

Center of curvature
must be located
within shaded joint

C

T

(a) Curved bar node with two layers of 
reinforcement (node zone shaded)

(b) Permissible zone for center of curved 
bar node at a frame

FIGURE 17.11
Curved bar node details. 
(Adapted from Ref. 17.11.)
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with a single layer of Grade 60 reinforcement spaced at least 8 bar diameters apart 
for bar sizes No. 4 to 8 (No. 13 to 25) and 6 bar diameters for bars sizes No. 9 to 11  
(No. 29 to 36) or 6 bar diameters for 180° bends are all less than the standard bend 
radius for the bars. Bar spacing less than 8 or 6 bar diameters or multiple layers of 
reinforcement require adjustment of the bend radius.

	 d.	 Strength of Ties

The nominal strength of ties Fnt is the sum of the strengths of the reinforcing steel and 
prestressing steel within the tie.

	 Fnt = Ats  fy + AtpΔfp	 (17.11)

where Ats = area of reinforcing steel
fy = yield strength of reinforcing steel

Atp = area of prestressing steel, if any
fpe = effective stress in prestressing steel

Δfp =  increase in prestressing steel stress due to factored load

Atp is zero for nonprestressed members. The value of Δ fp may be found by analysis; 
or, in lieu of formal analysis, ACI Code 23.7.3 allows a value 60,000 psi to be used for 
bonded tendons and 10,000 psi to be used for unbonded tendons. The calculated value 
of Δ fp cannot be greater than the yield stress of the prestressing reinforcement fpy less 
the effective prestress fpe.

The effective width of a tie wt (see Fig. 17.9a) depends on the distribution of 
the tie reinforcement. If the reinforcement in a tie is placed in a single layer, the 
effective width of a tie may be taken as the diameter of the largest bars in the tie 
plus twice the cover to the surface of the bars. Alternatively, the width of a tie may 
be taken as  the width of the anchor plates. The practical upper limit for tie width 
wt,max is equal to  the width corresponding to the width of a nodal zone, given as

	 wt,max = ​ 
Fnt ____ 

bs fce

 ​	 (17.12)

where fce is the effective nodal zone compressive stress given in Eq. (17.8) and bs is 
the thickness of the strut.

FIGURE 17.12
Forces acting on a curved bar 
node with a difference in tie 
force. (Adapted from  

Ref. 17.11.)
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Ties must be anchored before they leave the extended nodal zone, a point 
defined by the centroid of the bars in the tie and the extension of the outlines of 
either the strut or the bearing area, as shown in Fig. 17.9. If the combined lengths 
of the nodal zone and extended nodal zone are inadequate to provide for development 
of the reinforcement, additional anchorage may be obtained by extending the rein-
forcement beyond the nodal zone, using 90° hooks, heads, or mechanical anchors. 
If the tie is anchored with a 90° hook, the hooks should be confined by reinforcement 
extending into the beam from supporting members to avoid splitting of the concrete 
within the anchorage region.

	 e.	 ACI Shear Requirements for Deep Beams

Beams with clear spans less than or equal to 4 times the total member depth or with 
concentrated loads placed within twice the member depth of a support are classified 
as deep beams, according to ACI Code 9.9.† Examples of deep beams are shown in 
Fig. 17.13. ACI Code 9.9.1 allows such members to be designed either by using a 
nonlinear analysis or by applying the strut-and-tie method of ACI Code Chapter 23. 
While solutions based on nonlinear strain distributions are available (Ref. 17.7), the 
strut-and-tie approach allows a rational design solution.

ACI Code 9.9.2 specifies that the nominal shear in a deep beam may not exceed 
10 ​​√

__
 ​f​c​ ′​​​ bwd, where bw is the width of the web and d is the effective depth. ACI Code 

9.9.3 provides minimum steel requirements for horizontal and vertical reinforcement 
within a deep beam. The minimum reinforcement perpendicular to a span is

	 Av ≥ 0.0025bws1	 (17.13)

† �The ACI Code does not specify the magnitude of the concentrated load at a beam end needed to invoke the deep beam provisions of Code 
Section 9.9.1. A level of professional judgment is required if a low-magnitude concentrated load is placed at the end of a beam. Deep beam 
design may not be required in this situation.

FIGURE 17.13
Deep beam D-regions.

(a ) Deep beam with � ≤ 4h

�
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(b ) Deep beam with a ≤ 2h
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534      DESIGN OF CONCRETE STRUCTURES  Chapter 17

where s1 is the spacing of the reinforcement. The minimum reinforcement parallel to 
a span is

	 Avh ≥ 0.0025bw s2	 (17.14)

where s2 is the spacing of the reinforcement perpendicular to the longitudinal rein-
forcement. Spacings s and s2 may not exceed d∕5 or 12 in. ACI Code 9.9.3 allows 
Eq. (17.5) to be used in lieu of Eqs. (17.13) and (17.14). For strut-and-tie models, bw 
equals the thickness of the element b.

	 f.	 Strut-and-Tie Method in Earthquake Applications

The strut-and-tie method applied to earthquake loading has additional detailing 
requirements. Strut-and-tie models in Seismic Design Categories D, E, and F must 
be designed in accordance with ACI Code Chapter 18. In lieu of meeting ACI Code 
Chapter 18 requirements, ACI Code 23.11 allows seismic effects to be multiplied by 
an overstrength factor not less than 2.5. Complementing this requirement, the ACI 
Code requires the effective compressive strength of the strut be multiplied by 0.8. 
The intent of the overstrength factor and reduced strut strength is to ensure that the 
strut remains essentially elastic during the earthquake.

ACI Code 23.11.3 contains two options for detailing struts in earthquake situ-
ations. Option one requires a minimum of four longitudinal bars, one in each corner 
of the strut, as required for columns of special moment frames. The longitudinal bars 
are required to have transverse reinforcement consisting of single or overlapping 
spirals, circular hoops, or rectilinear hoops engaging the peripheral longitudinal bars. 
Crossties of the same or smaller size and the hoops are permitted providing they are 
alternated end for end along the longitudinal reinforcement and are arranged such 
that the lateral spacing of longitudinal bars supported by the corner of a crosstie or 
hoop leg is not more than 14 in. The maximum spacing for the transverse reinforce-
ment is given in Table 17.5.

Option two requires transverse reinforcement in orthogonal directions and 
through the thickness of the entire member cross section containing the struts instead 
of individual struts. The transverse reinforcement consists of single or overlapping 
spirals, circular hoops, or rectilinear hoops meeting the requirements of Table 17.6. 
Crossties of the same or smaller size and the hoops are permitted providing they are 
alternated end for end along the longitudinal reinforcement and are arranged such 
that no longitudinal bar has more than 8 in. lateral spacing. The maximum reinforce-
ment spacing is given in Table 17.5. 

Reinforcement Maximum Transverse Bar Spacing

Grade 60 Lesser of
6db

6 in.

Grade 80 Lesser of
5db

6 in.

Grade 100 Lesser of
4db

6 in.

TABLE 17.5
Transverse reinforcement spacing limitation
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Node design in models for earthquake applications is identical to design for 
other strut-and-tie nodes, except that the nominal concrete strength is multiplied by 
a factor of 0.8 to account for the deterioration of concrete strength due to cyclic 
loadings (Refs. 17.8 and 17.9). Earthquake tie design is the same as ordinary strut-
and-tie design, except that the development length for ties in earthquake designs must 
be 1.25 times the standard development length to account for the strain hardening 
of the steel beyond the yield strength.

Transverse Reinforcement Applicable Expression

Ash∕sbc for rectilinear hoops Greater of
0.3​​(  ​ Acs

 ___ 
Ach

 ​ − 1 )​​ ​​ ​f​c​ ′​ __ 
fyt

 ​​

0.09 ​​ 
​f​c​ ′​ __ 
fyt

 ​​

a Ach is measured to the outside edges of the transverse reinforcement for the strut.
b It is permitted to configure hoops using two pieces of reinforcement.

TABLE 17.6
Transverse reinforcement for strutsa,b

	 17.5	 APPLICATIONS

While there are a number of possible applications for a strut-and-tie model, ACI 
Code  9.9 and 13.2 specifically allow deep beam and foundation design to be 
completed with this method. The following examples examine the details of deep 
beams and dapped beam end design by the strut-and-tie method. Additional examples 
of strut-and-tie modeling may be found in Chapter 18.

	 a.	 Deep Beams

Deep beams represent one of the principal applications of strut-and-tie models, since 
the alternative under ACI Code 9.9 is a nonlinear analysis. Two examples of deep 
beam design are presented, one that includes the application of concentrated loads at 
the upper surface of a transfer girder and one that addresses design for distributed and 
concentrated loads.

	EXAMPLE 17.1	 Deep beam.  A transfer girder is to carry two 12 in. square columns, each with factored 
loads of 300 kips located at the third points of its 27 ft span, as shown in Fig. 17.14a. The 
beam has a thickness of 14 in. and a total height of 9 ft. Design the beam for the given loads, 
ignoring the self-weight, using ​f​c​ ′​ = 5000 psi and fy = 60,000 psi.

Solution.  The span-to-depth ratio for the beam is 3, thereby qualifying it as a deep beam. 
A strut-and-tie solution is selected.

Definition of D-region
All of the supports and loads are within h of each other or the supports, so the entire struc-
ture may be characterized as a D-region. The thickness of the struts and ties is equal to the 
thickness of the beam b = 14 in. Assuming an effective depth d = 0.8h = 0.8 × 9 = 7.2  ft 
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536      DESIGN OF CONCRETE STRUCTURES  Chapter 17

in the middle third of the beam, the maximum design shear capacity of the beam is ϕVn =  
ϕ10 ​​√

__
 ​f​c​ ′​​​ bwd = 0.75 × 10 ​​√

____
 5000​​ × 12 × 7.2 × 12∕1000 = 513 kips. This is greater than  

Vu = 300 kips. Thus, the design may continue.

Force resultants on D-region boundaries
The 300 kip column loads on the upper face of the beam are equilibrated by 300 kip reactions at 
the supports, as shown in Fig. 17.14b. Based on an assumed center-to-center distance between 
the horizontal strut and the tie of 0.8h, the trial diagonal struts form at an angle θ = 38.7° and 
carry a load of 380 kips. A horizontal 240 kip compression strut runs between the two column 
loads, and a 240 kip tension tie runs between the bottom nodes.

The truss model
Based on the beam geometry and loading, a single truss is sufficient to carry the column loads, 
as shown in Fig. 17.14c. The truss has a trapezoidal shape. This is an acceptable solution since 
the nodes are not true pins and instability within the plane of the truss is not a concern in a strut-
and-tie model. The truss geometry is established by the assumed intersection of the struts and 
ties and used to determine θ.

Selecting dimensions for strut and nodal zones
Select a node dimension of 14 in. square under the column. The width of strut ab is then  
14 in./sin θ = 22.4 in. and strut ac is 22.4 in. × cos θ = 17.5 in. The beam design will use 

FIGURE 17.14
Deep beam design for Example 17.1.

(c ) Schematic showing widths of struts, ties,
and nodes in final truss model
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normalweight concrete and transverse reinforcement allowing λ and λs to be 1.0. Checking the 
shear capacity using Eq. (17.5.),

ϕVc = ϕ5 tan θλλs ​​√
__

 ​f​c​ ′​​​ bd = 0.75 × 5 × tan(38.7) × 1 × 1 × ​​√
____

 5000​​ × 14 × 12 × 7.2 
= 257 kips

which is greater than the sectional shear allowing a value of βs = 0.75 for the interior strut, as 
shown in Table 17.2

Check capacity of struts and nodes
Checking the interior strut using Eq. (17.3), the capacity for βs = 0.75 is 

fce = ϕβcβs0.85 ​​f​c​ ′​​ = 0.75 × 1.0 × 0.75 × 0.85 × 5000 = 2390 psi

the width of strut ac is 22.41 in. so the strut capacity is

Fac = fcebwab = 2390 × 14 × 22.41 = 750 kips

which exceeds the factored load of 380 kips. The width of the tie and the boundary strut  
wac = wab cos θ = 17.5 in. Checking the boundary strut, the strut capacity for βs = 1.0 is 

fce = ϕβcβn0.85 ​​f​c​ ′​​ = 0.75 × 1.0 × 1.0 × 0.85 × 5000 = 3190 psi

and

Fac = fcebwab = 3190 × 14 × 17.5 = 781 kips

which exceeds the factored load of 200 kips. Thus, both struts are satisfactory.

Design ties and anchorage
The tie design consists of three steps: selection of the area of steel, design of the anchorage, 
and validation that the tie fits within the available tie width. The steel area is computed as  
Ats = Ftu∕ϕfy = 200∕(0.75 × 60) = 4.44 in2. This is satisfied by using four No. 10 (No. 32) 
bars, having a total area of 5.08 in2. The bars are placed in two layers of two bars. Headed bars 
are selected, and it is desired to have a center-to-center spacing of at least 6db = 7.6 in. so that  
ψp = 1.0. For a No. 10 (No. 32) headed bar with a bearing area of 4Ab (gross area of 5Ab), the 
diameter of the head is 2.24db = 2.24 × 1.27 in. = 2.84 in. With 1.5 in. cover to the heads, the 
center-to-center spacing of the bars is 14 in. – 3 – 2.84 in. = 8.16 in., which is greater than 
6db. Vertically, a center-to-center spacing of 6db = 7.6 in. fits easily within the width of the tie 
wac. The overall structural depth of the final truss is 9 ft − 17.5 in./12 = 7.5 ft, more than the  
7.2 feet assumed, which is conservative, and no revision is necessary. Using ψe = 1.0, ψp = 1.0, 
ψo = 1.25, and ψc = 5,000∕15,000 + 0.6 = 0.93, the development length for a headed No. 10 
(No. 32) bar is given by Eq. (6.10)

ℓdt = ​​ 
fyψe ψpψo ψc

 _________ 
75 ​√

__
 ​f​c​ ′​​
 ​​ ​​ d​ b​ 

1.5​​ = ​​ 
60,000 × 1.0 × 1.0 × 1.25 × 0.93

    ___________________________   
75 ​√

____
 5000​
 ​​  1.271.5 = 18.8 in.

The length of the node and extended nodal zone measured to the midheight of the tie is 14 + 
17.5 × (cot 38.7°)∕2 = 24.9 in., which easily accommodates ℓdt. The bar is placed with 1½ in. 
cover from the beam end.

Design details and minimum reinforcement requirements
ACI Code 9.9.3.1 requires that transverse reinforcement in deep beams satisfy Eqs. (17.13) 
and (17.14). In addition, satisfying Eq. (17.5) ensures that sufficient reinforcement is present 
to control longitudinal splitting in the interior struts. Using s1 = s2 = 12 in. in Eqs. (17.13) and 
(17.14) will give the area of reinforcement per ft of member, which can be used, in turn, to 
select the bar size and spacing. Using this approach,

Av = Ah = 0.0025bws1 = 0.0025bws2 = 0.0025 × 14 × 12 = 0.42 in2∕ft

This is satisfied by No. 5 (No. 16) bars at 12 in., the maximum spacing allowed by the ACI 
Code, placed on each face, giving a total area of reinforcement equal to 0.62 in2∕ft. Final details 
are given in Fig. 17.14d.
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	EXAMPLE 17.2	 Deep beam with distributed loads.  In addition to concentrated loads, the transfer girder 
shown in Fig. 17.15a carries a distributed factored load of 3.96 kips∕ft applied along its top edge. 
Design for the given loads, plus the self-weight, using ​f​c​ ′​ = 5000 psi and fy = 60,000 psi.

FIGURE 17.15
Deep beam with distributed loads for Example 17.2.
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Solution.  The factored self-weight of the beam is 1.2(12 ft × 2 ft × 0.15 kips∕ft3) = 4.32 kips∕ft. 
Thus, the total factored distributed load is 4.32  +  3.96  =  8.28 kips∕ft, resulting in a total 
factored load of 8.28  kips∕ft  ×  38  ft  =  314  kips, approximately 20 percent of the column 
loads. The solution follows Example 17.1 and accounts for the distributed loads. For this 
example, the self-weight of the beam is combined with the superimposed dead load. A more 
conservative solution could place the self-weight at the bottom of the beam and 
correspondingly increase the vertical tension tie requirements to transfer the load to the top 
flange. The top placement is used in this case because the self-weight is a small percentage 
of the total load and the concentrated forces are moved slightly toward the center of the 
beam for a conservative placement.

Definition of D-region
The entire beam is a D-region, as shown in Fig. 17.15a. The maximum factored shear in the 
beam is Vu = 650 + 314∕2 = 807 kips < ϕ10 ​​√

__
 ​f​c​ ′​​​ bwd = 1650 kips, the maximum design shear 

using d = 9.6 ft. Thus, the design can continue. A further check of the shear capacity using  
Eq. (17.3) with λ and λs equal to 1.0 for the section shows

	 Vu = ϕ 5 tan θ λλs ​​√
__

 ​f​c​ ′​​​ bwd = 0.75 × 5 × tan 38.7 × 1.0 × 1.0 × ​​√
____

 5000​​ × 24 × 12 × 9.5
= 581 kips

which is less than the reaction, therefore βs = 0.4 from Table 17.2.

Force resultants on D-region boundaries
The lower column reactions are equal to 807 kips. Based on the column size, stress at the 
beam-column interface is p = 807∕(24 × 24) = 1.40 ksi.

The stress on the column node cannot exceed the effective concrete strength. For a  
C-C-T node,

p ≤ ϕ  fce = ϕ  0.85βcβn ​f​c​ ′​ = 0.75 × 1.0 × 0.85 × 0.80 × 5000∕1000 = 2.55 ksi

Therefore, the bottom column of 24 × 24 in., having p = 1.40 ksi < 2.55 ksi, is adequate. The 
center-to-center distance between the horizontal strut and the horizontal tie at midspan is 
taken as 9.5 ft to compute the slope of the strut dg as θ = 38.7°. The vertical dimension for 
struts ag, bg, and cg is assumed to be 10.5 ft because they are anchored closer to the top edge 
of the beam.

The total distributed load of 314 kips is represented by nine 35 kip concentrated loads 
placed at 3 ft centers, as shown in Fig. 17.15b. Distributed loads can be grouped at the dis-
cretion of the designer. It would be equally satisfactory to group them into 12 loads, placed 
one per foot, or combine some load with the column loads. The loads are combined with the 
column loads in this example to illustrate design for distributed loads. Using the geometric 
layout of the loads, strut-and-tie forces are computed and summarized in Fig.  17.15b and 
Table 17.7.

Strut
Vertical 

Load, kips Slope, deg
Strut Axial 
Load, kips w, in. βs βn

Node  
Capacity, kips

Horizontal  
Force, kips

dg     684.5 38.4     1102.8   22.4 0.4 0.8     1369.0     864.6
ag       35 74.1        36.4     1.1 0.4 0.8        70.0       10.0
bg       35 64.5        38.8     1.1 0.4 0.8        70.0       16.7
cg       35 46.4        48.3     1.1 0.4 0.8        70.0       33.3
bh       35 49.4        46.1     1.1 0.4 0.6        52.5       30.0
fi       17.5 49.4        23.0     0.6 0.4 0.6        26.3       15.0

Total tie force     969.6

TABLE 17.7
Diagonal strut properties and capacities for Example 17.2

www.konkur.in

Telegram: @uni_k



540      DESIGN OF CONCRETE STRUCTURES  Chapter 17

The truss model
In addition to the struts and ties needed to carry the column loads, struts and ties to carry the 
distributed loads are now included in the truss. The distributed loads between the columns 
are carried by struts to the bottom chord; tension ties then transfer the vertical component of 
the load to the top chord, while the horizontal component is transferred to the bottom tie. The 
geometry of the struts is selected to allow tension ties to be placed vertically. The loads at nodes 
a, b, and c between the column and the support create a fan of compression struts to node g, as 
shown in Fig. 17.15b and c.

Selecting dimensions for strut and nodal zones
The forces in the “fan” struts are based on the geometry of the struts. The widths of struts 
ag, bg, and cg are calculated based on the strut capacity. The maximum stress in a strut with  
βc = 1.0 when transverse reinforcement is used and βs = 0.4 from above is

fce = ϕβcβs0.85 ​​f​c​ ′​​ = 0.75 × 1.0 × 0.4 × 0.85 × 5000 = 1275 psi

To maintain uniform stresses in the struts, the strut width is the tensile force divided by fce × b. 
The resulting geometries and loads are summarized in Table 17.7. 

Capacity of struts and nodes
By inspection, the stresses in the fan struts ag, bg, and cg are satisfied by using the maximum 
allowable stress. Table 17.7 tabulates the node capacities, and in all cases, the node capacity 
exceeds the strut load. The total width of the struts, when using the maximum allowable stress 
for the struts, is less than the assumed node face. The design could be modified to match the 
node dimension; however, that refinement is not necessary because the struts have adequate 
capacity.

Design ties and anchorage
Tie design includes the horizontal thrust from the distributed loads, giving a total force of  
970 kips. The required area of steel for the tie is Ats = Fut∕ϕfy = 970∕(0.75 × 60) = 21.6 in2 or 
sixteen No. 11 (No. 36) bars, which provide an area of 24.96 in2. Headed bars are selected. The 
steel is placed in four layers of four bars. The minimum center-to-center spacing for headed 
bars is 3 bar diameters. For a No. 11 (No. 36) headed bar with a bearing area of 4Ab (gross area 
of 5Ab), the diameter of the head is 2.24db = 2.24 × 1.41 in. = 3.16 in. With 1.5 in. cover to 
the heads, the center-to-center spacing of the bars is (24 − 3.0 − 3.16)∕3 = 6.28 in., which is 
greater than 3db. At this spacing, however, ψp = 1.6. For a 3db center-to-center spacing of the 
bars and 1.5 in. to the heads, the depth of bottom boundary tie is 3 + 3.16 + 9 × 1.41 = 18.9 in.  
The length of the node and extended nodal zone measured to the midheight of the tie is  
24 + 18.9 × (cot 38.7°)∕2 = 47.6 in. Using ψe = 1.0, ψp = 1.6, ψo = 1.25, and ψc = 5,000/ 
15,000 + 0.6 = 0.93, the development length of No. 11 (No. 36) headed bars is

ℓdt = ​​ 
fyψe ψpψo ψc

 _________ 
75 ​√

__
 ​f​c​ ′​​
 ​​ ​​ d​ b​ 

1.5​​ = ​​ 
60,000 × 1.25 × 1.6 × 1.25 × 0.93

    ____________________________   
75 ​√

____
 5000​
 ​​  1.411.5 = 44.0 in.

which fits within the extended nodal zone.
The vertical tie bh carries 46.1 kips. The required area of steel for this tie distributed 

over a 3 ft width is Ats = Fut∕(3 × ϕfy) = 46.1∕(3 × 0.75 × 60) = 0.34 in2∕ft, which is added 
to the transverse reinforcement.

The transverse reinforcement is 0.0025 times the gross area = 0.0025 × 24 × 12 ×  
12 in.∕ft = 0.72 in2∕ft. The transverse reinforcement is satisfied by No. 5 (No. 16) bars at 
10 in. in each direction and No. 5 (No. 16) bars at 7 in. vertically between the center and 
end columns. The final details are given in Fig. 17.15d.

Design details and minimum reinforcement requirements
The minimum reinforcement requirements from Example 17.1 remain unchanged. The final 
details are shown in Fig. 17.15d.
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Examples 17.1 and 17.2 illustrate that the limiting size of the struts and nodes 
is determined by the element with the lowest strength, that is, the lowest value of 
fce. Examination of the βs and βn values in Tables 17.2 and 17.4 shows the variation 
in strength. Recognizing that using the lowest value of β (and fce) establishes the 
minimum usable strut and node dimensions allows the engineer to minimize the 
number of iterations needed to construct the truss model.

	 b.	 Dapped Beam Ends

Precast and prestressed concrete beams often have dapped or notched ends, as 
shown in Fig.  17.16, to reduce the floor-to-floor height of buildings. The recess 
allows structural overlap between the main beams and the floor beams. While the 
dapped end is advantageous in controlling building floor-to-floor height, it creates 
two structural problems. First, the shear at the end of the beam must be carried 
by a much smaller section, and second, the mechanism of load transfer through 
the notched zone is difficult to represent using conventional design techniques. 
As a  result, dapped-end beams lend themselves to strut-and-tie design methods 
(Refs. 17.10 and 17.11).

FIGURE 17.16
Dapped beam ends and  
strut-and-tie alternatives

(a) Inclined Z bar

(c) Model for inclined Z bar

(b) Inclined L bar

(d) Model for inclined L bar

EXAMPLE 17.3	 Design of a dapped beam end.  The 24 in. deep precast concrete T beam shown in  
Fig. 17.17 has an 8 in. thick web that carries factored end reactions of 53.2 kips in the 
vertical direction and a tensile force of 11 kips in the horizontal direction. The beam end 
is notched 10 in. vertically and 8 in. along the beam axis. The load is transferred to the 
support through a 4 × 8 in. bearing plate. Design the end reinforcement, using ​f​c​′​​ = 5000 psi 
and fy = 60,000 psi.

Solution.  The combination of the concentrated load and the geometric discontinuity 
suggests the use of a strut-and-tie solution. The 14 in. nib depth is close to the 60 percent 
desired for successful implementation.

Definition of D-region
The D-region for this beam is approximately one structural depth in from the end of the notch. 
The bearing plate has longitudinal reinforcement welded to it to allow for horizontal load trans-
fer and a vertical bar for shear-friction design of the end. The effective depth at the notch  
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is taken as 13.0 in. The maximum allowable shear strength is Vu ≤ ϕVn = ϕ10 ​​√
__

 ​f​c​ ′​​​ wd =  
0.75 × 10 × ​​√

____
 5000​​ × 8 × 13 = 55.2 kips. This exceeds the 53.2 kip applied load, so the section 

is adequate to proceed with the design. The load is high enough that transverse reinforcement is 
required. 

Force resultants on D-region boundaries and the truss model
The truss model follows the inclined L configuration, as shown in Fig. 17.17. The assumed 
depth of the truss is 18 in. The tensile and compressive forces at the D-region interface are  
Tu = Cu = Vu × 24∕18 = 70.9 kips.

Selecting dimensions for strut and nodal zones
The nodal zone stress is established at the bearing plate. The stress at the node and the strut is 
Vu∕bwd = 53.2∕4 × 8 = 1.66 ksi.

Strength of struts
The strut strength for a boundary strut with βc = 1.00 and βs = 1.00 is ϕ × 1.0 × 1.0 ×  
0.85 ​​f​c​ ′​​​​√

____
 5000​​ = 2.39 ksi. This exceeds the applied load of 1.66 ksi, so the strut is adequate. 

The horizontal strut matching the D-region boundary is assumed to be 4 in. deep and 8 in. 
wide. The stress at the boundary is Tu∕w × b = 70.9∕(4 × 8) = 2.12 ksi, which is less than the  
2.39 ksi allowed.

Design ties and anchorage
The tension tie force is 30∕24 times the vertical reaction or Tu = 53.2 × 30∕24 = 66.5 kips. The 
area of reinforcement required is 

As = ​​ 
Tu

 ___ 
ϕfy

 ​​ = ​​  66.5 ________ 
0.75 × 60

 ​​ = 1.48 in2

Two No. 6 (No. 19) hairpin bars provide As = 4 × 0.44 = 1.76 in2.
The No. 6 (No. 19) bars extend into the web and have a full tension lap splice with 

the prestressing reinforcement. Checking for a curved bar node for the No. 6 (No. 19) bar 
from Eq. (17.8)

rb = ​​ 
1.5Ats fy

 _______ 
wt ​f​c​ ′​

 ​​  = ​​ 
1.5 × 2 × 0.44 × 60,000

   _____________________  
4 × 5000

 ​​  = 3.96 in.

which is greater than the standard bend diameter, so a special bend of 8 in. diameter is required. 
The hairpin is to be placed with the bend vertical to fit within the web.

Design details and minimum reinforcement requirements
The horizontal force of 11 kips is taken by a bar welded to the bearing plate. The area of steel 
is As = 11∕(0.75 × 60) = 0.24 in.2, indicating one No. 5 bar is sufficient. To prevent a shear 
friction failure at the bearing plate, the area of reinforcement for a friction factor of μ = 1.4 is

Asv = ​​ 
Vu
 ____ 

ϕfyμ
 ​​ = ​​  53.2 ______________  

0.75 × 60 × 1.4
 ​​ = 0.84 in2

Use two No. 6 (No. 19) bars or two ¾ in. diameter headed studs.

FIGURE 17-17
Detail of dapped beam end
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The design is completed by detailing the inclined L bar to have a development length 
along the length of the strand to assure that the tensile force is transmitted into the longitu-
dinal reinforcement.

These examples illustrate the methodology of strut-and-tie design and the 
importance of understanding the detailing requirements needed to transfer forces at 
nodes and to the corresponding reinforcement. Failure to appreciate the need to 
provide anchorage for the tie or to supply thrust resistance for the struts can lead to 
failure. In the examples, the contact area was used to establish the hydrostatic nodal 
pressure. As discussed, an equally acceptable solution would have been to select the 
maximum stress for one of the struts because βs is typically lower than βn is for 
nodes. The diagonal hairpin loop ensures anchorage at the top node, and the lower 
portion provides transfer to the prestress. 
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Problems
	17.1.	 Redesign Example 17.1 with a single 300 kip column load 9 ft in from the 

left end of the beam. In your solution, include (a) a sketch of the load path 
and truss layout, (b) the sizes and geometry of the struts, ties, and nodal 
zones, and (c) a complete sketch of the final design.

	17.2.	 Redesign the column bracket shown in Example 18.5 using the strut-and-tie 
method. Your strut-and-tie model may be based on Fig. 18.23. Material prop-
erties remain the same as in Example 18.5.

	17.3.	 A transfer girder has an overall depth of 11 ft and spans 22 ft between column 
supports. In addition to its own weight, it will pick up a uniformly distributed 
factored load of 4.0 kips∕ft from the floor above and will carry a 14 × 14 in. 
column delivering a concentrated factored load of 270 kips from floors above 
at midspan. The girder width must be equal to or less than 16 in. Design the 
beam for the given loads. Find the girder width and the area and geometry of 
tie steel, and specify the placement details. Material strengths are ​f​c​ ′​ = 5000 psi 
and fy = 60,000 psi.
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544      DESIGN OF CONCRETE STRUCTURES  Chapter 17

	17.4.	 A column transfers a factored load of 700 kips to the 9 ft square spread 
footing shown in Fig. P17.4, resulting in a factored uniform soil pressure of 
8640 psf. Design the footing reinforcement using strut-and-tie methods. 
Material strengths are ​f​c​ ′​ = 4000 psi and fy  =  60,000 psi. Because footings 
typically contain no shear reinforcement, your design should be based on 
unreinforced interior struts.

FIGURE P17.4 700 kips

9′-0″
36″

30″

	17.5.	 Redesign the footing in Problem 17.4 using traditional flexure and shear 
methods, as described in Chapter 15. Compare your solution to the solution 
for Problem 17.4, and comment on your results.

	17.6.	 Design the pile cap in Problem 15.5 for pile load transfer to column using a 
strut-and-tie method.
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Design of Reinforcement  
at Joints

	 18.1	 INTRODUCTION

Most reinforced concrete failures occur not because of any inadequacies in analysis 
of the structure or in design of the members but because of inadequate attention to 
the detailing of reinforcement. Frequently, the problem is at the connections of main 
structural elements (Ref. 18.1).

There is a tendency in modern structural practice for the engineer to rely upon 
a detailer, employed by the reinforcing bar fabricator, to provide the joint design. 
Certainly, in many cases, standard details such as those found in the ACI Detailing 
Manual (Ref. 18.2) can be followed, but only the design engineer, with the complete 
results of analysis of the structure at hand, can make this judgment. In many other 
cases, special requirements for force transfer require that joint details be fully spec-
ified on the engineering drawings, including bend configurations and cutoff points 
for main bars and provision of supplementary reinforcement.

The basic requirement at joints is that all of the forces existing at the ends of 
the members must be transmitted through the joint to the supporting members. Com-
plex stress states exist at the junction of beams and columns, for example, that must 
be recognized in designing the reinforcement. Sharp discontinuities occur in the 
direction of internal forces, and it is essential to place reinforcing bars, properly 
anchored, to resist the resulting tension. Some frequently used connection details, 
when tested, have been found to provide as little as 30 percent of the strength 
required (Refs. 18.1 and 18.3).

Over the years, research has been directed toward establishing an improved 
basis for joint design (Refs. 18.4 and 18.5). Full-scale tests of beam-column joints 
have led to improved design methods such as those described in Recommendations 
for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures, 
reported by ACI-ASCE Committee 352 (Ref. 18.6). The recommendations are 
largely incorporated in Chapter 15 of the ACI Code, which covers beam-column 
and beam-slab joints. Such recommendations provide a basis for the safe design 
of beam-column joints both for ordinary construction and for buildings subject to 
seismic forces. Other tests have given valuable insight into the behavior of beam-
girder joints, wall junctions, and other joint configurations, thus providing a sound 
basis for design.

The practicality of the joint design should not be overlooked. Beam reinforce-
ment entering a beam-column joint must clear the vertical column bars, and timely 
consideration of this fact in selecting member widths and bar size and spacing can 
avoid costly delays in the field. Similarly, beam reinforcement and girder reinforce-
ment, intersecting at right angles at a typical beam-girder-column joint, cannot be in 
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the same horizontal plane as they enter the joint. Figure 18.1 illustrates the conges-
tion of reinforcing bars at such an intersection. Concrete placement in such a region 
is difficult at best, but is assisted with the use of plasticizer admixtures.

Most of this chapter treats the design of joint regions for typical continuous- 
frame monolithic structures that are designed according to the strength requirements 
of the ACI Code for gravity loads or normal wind loads. Joints connecting members 
that must sustain strength under reversals of deformation into the inelastic range,  
as in earthquakes, represent a separate category and are covered in Chapter 20. 
Brackets and corbels, although they are most often a part of precast buildings rather 
than monolithic construction, have features in common with monolithic joints, and 
these will be covered here.

	 18.2	 BEAM-COLUMN JOINTS

A beam-column joint is defined as the portion of a column within the depth of the 
beams that frame into it. Formerly, the design of monolithic joints was limited to 
providing adequate anchorage for the reinforcement. However, the increasing use of 
high-strength concrete, resulting in smaller member cross sections, and the use of larger- 
diameter and higher-strength reinforcing bars now require that greater attention be 
given to joint design and detailing. Although guidance is provided by Chapter 15 of 
the ACI Code, the ACI-ASCE Committee 352 report Recommendations for Design of 
Beam-Column Joints in Monolithic Reinforced Concrete Structures (Ref. 18.6) pro-
vides a basis for the design of joints in both ordinary structures and structures required 
to resist heavy cyclic loading into the inelastic range.

FIGURE 18.1
Reinforcement congestion at 
beam-girder-column joint.  
(Photograph by Arthur  

H. Nilson.)
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	 a.	 Classification of Joints

Reference 18.6 classifies structural joints into two categories. A Type 1 joint connects 
members in an ordinary structure designed on the basis of strength, according to the 
main body of the ACI Code, to resist gravity and normal wind load. A Type 2 joint con-
nects members designed to have sustained strength under deformation reversals into 
the inelastic range, such as members in a structure designed for earthquake motions, 
high winds, or blast effects. Type 1 joints are considered in ACI Code Chapter 15 and 
this chapter. Joints for earthquake design are addressed in ACI Code Chapter 18 and 
in Chapter 20.

Figure  18.2a shows typical interior joints in a monolithic reinforced concrete 
frame, with beams 1 and 2 framing into opposite faces of the column and beams 3 
and 4 framing into the column faces in the perpendicular direction. An exterior joint 
would include beams 1, 2, and 3, or in some cases only beams 1 and 2. A corner joint 
would include only beams 1 and 3, or occasionally only a single beam 1. A joint may 
have beams framing into it from two perpendicular directions as shown, but for pur-
poses of analysis and design each direction can be considered separately. Joint con-
finement is further affected if the column is discontinuous, as illustrated in Fig. 18.2b.

	 b.	 Joint Loads and Resulting Forces

The joint region must be designed to resist forces that the beams and column transfer to 
the joint, including axial loads, bending, torsion, and shear. Figure 18.3a shows joint loads 
acting on the free body of a typical joint of a frame subject to gravity loads, with moments 
M1 and M2 acting on opposite faces, in the opposing sense. In general, these moments will 
be unequal, with their difference equilibrated by the sum of the column moments M3 and 
M4. Figure 18.3b shows the resulting forces to be transmitted through the joint. Similarly, 
Fig. 18.4a shows the loads on a joint in a structure subjected to sidesway loading. The 
corresponding joint forces are shown in Fig. 18.4b. Only for heavy lateral loading, such 
as from seismic forces, would the moments acting on opposite faces of the joint act in the 
same sense, as shown here, producing very high horizontal shears within the joint.

FIGURE 18.2
Typical monolithic interior beam-column joint.
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Beam 4 Beam 2

Beam 3

(a ) Continuous column

Column

Beam 1

Beam 4 Beam 2
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(b ) Discontinuous column
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According to the recommendations by Committee 352, the forces to be con-
sidered in designing joint regions are not those determined from the conventional 
frame analysis; rather, they are calculated based on the nominal strengths of the 
members. The column joint shear force acts on a horizontal plane midheight in the 
joint. The shear is based on the maximum moment transferred to the joint based on 
a factored load analysis. Alternatively, the shear in the direction under consideration 
is based on the beam nominal moment strength Mn.

Where a typical underreinforced beam meets the column face, the tension force 
from the negative moment reinforcement at the top of the beam is to be taken as 
T = As  fy, and the compression force at the face is from equilibrium C = T, not the 
nominal compressive capacity of the concrete. The design moment applied at the 
joint face is that corresponding to these maximum forces, Mu = Mn = As  fy(d − a∕2), 
rather than that from the overall analysis of the frame. Note that the inclusion of the 
usual strength reduction factor ϕ would be unconservative in the present case because 
it would reduce the forces for which the joint is to be designed; it is therefore not 
included in this calculation.

FIGURE 18.3
Joint loads and forces resulting from gravity 
loads: (a) forces and moments on the free 
body of a joint region and (b) resulting 
internal forces.
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FIGURE 18.4
Joint loads and forces resulting from 
lateral loads: (a) forces and moments on 
the free body of a joint and (b) resulting 
internal forces.
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With the moment applied to each joint face found in this way, the correspond-
ing column forces for joint design are those forces required to keep the connection 
in equilibrium. To illustrate, the column shears V3 and V4 of Figs. 18.3a and 18.4a 
are calculated based on the free body of the column between inflection points, as 
shown in Fig. 18.5. The inflection points generally can be assumed at column mid-
height, as shown.

	 c.	 Confinement and Transverse Joint Reinforcement

The successful performance of a beam-column joint depends strongly on the lateral 
confinement of the joint. Confinement has two benefits: (1) The core concrete is 
strengthened and its strain capacity improved, and (2) the vertical column bars are pre-
vented from buckling outward. Confinement can be provided either by the beams that 
frame into the joint or by special column ties provided within the joint region.

Confinement by beams is illustrated in Fig.  18.6. ACI Code 15.2.8 considers 
a beam-column joint confined for the direction of the joint shear under consideration 
if two transverse beams are provided that satisfy three requirements: (1) The width 

FIGURE 18.5
Free-body diagram of an 
interior column and joint 
region.
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FIGURE 18.6
Confinement of joint 
concrete by beams:  
(a) confinement in X and Y  
directions and (b) confinement 
in X direction only.

(a )

(b )

by ≥ 3
4 hy 

≤ 4″

≤ 4″≤ 4″

≤ 4″

bx ≥ 3
4 hx 

bx

Y

X
by hy

hx

by ≥ 3
4 hy 

≤ 4″

≤ 4″

Y

X
by hy

www.konkur.in

Telegram: @uni_k



550      DESIGN OF CONCRETE STRUCTURES  Chapter 18

of each transverse beam is at least 3/4 of the column width into which it frames,  
(2) the transverse beam reinforcement extends at least one beam depth h beyond the 
column face, and (3) there are at least two top and bottom reinforcing bars that meet 
the minimum area of reinforcement in Section 4.3e and the transverse reinforcement 
consists of No. 3 (No. 10) or larger bars.

There must be at least two layers of ties between the top and bottom flexural 
reinforcement in the beams at the joint, and the vertical center-to-center spacing of 
these ties must not exceed 8 in. within the depth of the deepest beam framing into 
the joint. Tests indicate joints confined on four sides, but without shear reinforce-
ment, perform well unless they are subjected to earthquake effects (Ref. 18.7). Thus, 
ACI Code 15.3.1 does not require joint reinforcement within interior joints confined 
by beams on all four faces unless the structure is subject to earthquake loading. 
Circular columns are treated as square columns with the same area. 

	 d.	 Shear Strength of a Joint

A joint subject to the forces shown in Fig. 18.3b or 18.4b will develop a pattern of 
diagonal cracking owing to the diagonal tensile stresses that result from the normal 
forces and shears, as indicated by those figures. The approach used by Committee 352 
is to limit the shear force on a horizontal plane through the joint to a value established 
by tests. The design basis is
	 ϕVn ≥ Vu	 (18.1)

where Vu is the applied shear force, Vn is the nominal shear strength of the joint, and ϕ 
is taken equal to 0.75.

The shear force Vu is to be calculated on a horizontal plane at midheight of 
the joint, such as plane a-a of Fig.  18.3b or plane b-b of Fig.  18.4b, by summing 
horizontal forces acting on the joint above that plane. For example, in Fig. 18.3b the 
joint shear on plane a-a is

Vu = T1 − T2 − V3

and in Fig. 18.4b, the joint shear on plane b-b is

Vu = T1 + C2 − V3

   = T1 + T2 − V3

Based on the free-body diagram in Fig. 18.5,

V3 = V4 = ​ 
M1 − M2 ________ 

ℓc

 ​

The nominal shear strength Vn is given by the equation

	 Vn = γ​√
__

 ​f​c​ ′​​ bjhc	 (18.2)

where bj is the effective joint width in inches, hc is the thickness in inches of the col-
umn in the direction of the load being considered, and ​√

__
 ​f​c​ ′​​ is expressed in psi units. 

The coefficient γ in Eq. (18.2) depends on the confinement of the joint provided by the 
beams framing into it and whether the column is continuous or terminates at the level 
under consideration, as indicated in the expression for nominal joint shear strength 
given in Table 18.1.

According to Committee 352, Eq. (18.2) is conservative for concretes with 
strengths up to 15,000 psi. As discussed in Chapter 20, ACI Code 18.8 follows 
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similar procedures for the design of joints in moment resistant frames, the only 
difference being that lower values for the coefficient γ are recommended.

For joints with beams framing in from two perpendicular directions, as for a 
typical interior joint, the horizontal shear should be checked independently in each 
direction. Although such a joint is designed to resist shear in two directions, only 
one classification is made for the joint in this case (that is, only one value of γ is 
selected based on the joint classification, and that value is used to compute Vn when 
checking the design shear capacity in each direction).

According to Committee 352 recommendations, the effective joint width bj 
to be used in Eq. (18.2) depends on the transverse width of the beams that frame 
into the column as well as the transverse width of the column. With regard to the 
beam width bb, if there is a single beam framing into the column in the load 
direction, then bb is the width of that beam. If there are two beams in the direction 
of shear, one framing into each column face, then bb is the average of the two 
beam widths. In reference to Fig.  18.7a, when the beam width is less than the 
column width, the effective joint width is equal to the smaller of the average of 
the beam width and column width,

	 bj = ​ 
bb + bc ______ 

2
 ​	  (18.3)

and

	 bj = bb +∑ ​ 
mhc ____ 

2
 ​	  (18.4)

where m is a slope that depends on the eccentricity e of the beam centerline with 
respect to the column centroid (Fig. 18.7b). If e is greater than bc∕8, m = 0.3; other-
wise, m = 0.5. As shown in Fig, 18.7a, the slope m defines a width at the centroid of 
the column. According to Committee 352, mhc∕2 should not be taken as greater than 
the extension of the column edge beyond the edge of the beam.

Column
Beam in Direction 
of Vu 

Confinement by 
Transverse 
Beams 15.2.8 Vn (lb)a

Continuous or 
contains an extension 
for reinforcement

Continuous or 
contains an extension 
for reinforcement

Confined 24λ​​√
__

 ​f​c​ ′​​​ Aj

Not confined 20λ​​√
__

 ​f​c​ ′​​​ Aj

Other
Confined 20λ​​√

__
 ​f​c​ ′​​​ Aj

Not confined 15λ​​√
__

 ​f​c​ ′​​​ Aj

Other

Continuous or 
contains an extension 
for reinforcement

Confined 20λ​​√
__

 ​f​c​ ′​​​ Aj

Not confined 15λ​​√
__

 ​f​c​ ′​​​ Aj

Other
Confined 15λ​​√

__
 ​f​c​ ′​​​ Aj

Not confined 12λ​​√
__

 ​f​c​ ′​​​ Aj

a λ is 0.75 for concrete containing lightweight aggregate and 1.0 for concrete with normalweight aggregate.

TABLE 18.1
Nominal joint shear strength Vn
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ACI Code 15.4.2 simplifies the ACI 352 requirements by specifying that bj be 
the lesser of the column width or bj + 2x, as shown in Fig. 18.7a. If the beam width 
bb exceeds the column width, the effective joint width bj is equal to the column width 
bc, as shown in Fig. 18.7c.

	 e.	 Anchorage and Development of Beam Reinforcement

For interior joints, normally the flexural reinforcement in a beam entering one face 
of the joint is continued through the joint to become the flexural reinforcement for 
the beam entering the opposite face. Therefore, for loadings associated with Type 1 
joints, pullout is unlikely, and no special recommendations are made. However, for 
exterior or corner joints, where one or more of the beams do not continue beyond 
the joint, a problem of bar anchorage exists. The critical section for development of 
the yield strength of the beam reinforcement is at the face of the column. Column 
dimensions seldom permit development of the reinforcement entering the joint by 
straight embedment alone, and hooks are usually needed for the negative beam rein-
forcement. Headed bars or 90° hooks are used, with the hook extending toward 
and beyond the middepth of the joint. If the bottom bars entering the joint need to 
develop their strength As   fy at the face of the joint, as they do if the beam is a part 
of a primary lateral-force-resisting system, they should also be anchored with 90° 
hooks, in this case turned upward to extend toward the middepth of the joint, or 
headed bars. Requirements for development of hooked bars given in Chapter 6 are 
applicable in both cases, including modification factors for concrete cover and for 
enclosure with ties or stirrups.

FIGURE 18.7
Determination of effective 
joint width bj: (a) beams 
narrower than column;  
(b) eccentricity between 
beam centerline and column 
centroid; and (c) beam wider 
than column.
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	EXAMPLE 18.1	 Design of exterior Type 1 joint.  Design the exterior joint shown in Fig. 18.8 as a part of 
a continuous, monolithic, reinforced concrete frame designed to resist gravity loads only. 
Member section dimensions b × h and reinforcements are as shown. The frame story height 
is 12 ft. Material strengths are ​f​c​ ′​ = 4000 psi and fy = 60,000 psi. 

Solution.  First the joint geometry must be carefully laid out, to be sure that beam bars and 
column bars do not interfere with one another and that placement and vibration of the concrete 
are practical. In this case, bar layout is simplified by making the column 4 in. wider than the 
beams. Column reinforcement is placed with the usual 1.5 in. of concrete outside of the No. 
4 (No. 13) ties. Beam top and bottom bars are placed just inside the outer column bars. The 
slight offset of the center top beam bars to avoid the center column bars is of no concern. 
Top bars of the spandrel beams are placed just under the top normal beam bars, except for 
the outer spandrel bar, which is above the hook shown in Fig. 18.8b. Bottom bars enter the 
joint at different levels without interference.

Confinement is provided in the direction of the spandrel beams by the beams them-
selves because the spandrel width of 18 in. exceeds ​ 3 _ 4 ​ of the column width in the direction 
of the normal beam. However, because the joint is not confined on all four sides, column ties 
that satisfy Eq. (5.13) must be provided within the joint. The ties must be distributed over a 
column height not less than the deepest beam framing into the column with a spacing that 
does not exceed one-half of the depth of the shallowest beam. Solving Eq. (5.13) for the 
spacing s gives Eq. (5.15a). Using No. 4 (No. 13) bars as ties

smax = ​ 
Avt fyt
 _________ 

0.75​√
__

 ​f​c​ ′​​b
 ​ = ​ 

0.40 × 60,000
  ______________  

0.75​√
____

 4000​ × 18
 ​ = 28.1 in.

≤ ​ 
Avt fyt

 _____ 
50b

 ​ = ​ 
0.40 × 60,000

  ____________ 
50 × 18

 ​  = 26.7 in.

FIGURE 18.8
Exterior beam-column  
joint for Example 18.1:  
(a) plan view; (b) cross 
section through spandrel 
beam; and (c) cross section 
through normal beam. Note 
that beam stirrups and 
column ties outside of the 
joint are not shown.

(a )

(b)

8

8

No. 4 (No. 13)
ties

3 sets
No. 4 (No. 13)
ties

(c )

Spandrel beams
18″ × 28″
3 No. 11 (No. 36) top
2 No. 8 (No. 25) bottom

Normal beam
18″ × 24″
3 No. 9 (No. 29) top
2 No. 7 (No. 22) bottom

Column
22″ × 22″
8 No. 11 (No. 36)
story height = 12′
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Clearly, the 8 in. maximum spacing criterion of ACI Code 15.3.1.4 controls. Three sets 
of No. 4 (No. 13) ties spaced at 8 in. are provided, as shown in Fig. 18.8. The clear distance 
between column bars is 5.89 in. here, less than 6 in., so strictly speaking the single-leg 
crosstie is not required. However, it will improve the joint confinement, guard against outward 
buckling of the central No. 11 (No. 36) column bar, and add little to the cost of construction, 
so crossties will be specified, as shown in Fig. 18.8a. Note that a 90° hook at one end, rather 
than the 135° bend shown, meets ACI Code tie anchorage requirements and facilitates rein-
forcement fabrication. 

No anchorage problems exist for the spandrel beam top reinforcement, which is con-
tinuous through the joint. However, the normal beam top reinforcement must be provided 
with hooks to develop its yield strength at the face of the column. Being inside the column 
bars, the beam top bars have side cover of 1.5  +  0.5  +  1.4  =  3.4 in. The center-to-center 
spacing of the No. 9 (No. 29) hooked bars = (22 – 2 × 3.4 – 1.128)∕2 = 7.04 in., which 
exceeds 6db, giving ψr = 1.0. The side cover to the hooked bars exceeds 2.5 in., so the mod-
ification factor ψo  =  1.0, while ψe  =  1.0. For 4000 psi concrete, ψc = ​​f​c​ ′​​∕15,000 + 0.6 = 
4000∕15,000 + 0.6 = 0.87 Referring to Eq. (6.8), the required hook development length is

ℓdh = ​​( ​ fyψeψrψoψc
 _________ 

55λ​√
__

 ​f​c​ ′​​
 ​  )​​ ​​d​ b​ 

1.5​​ = ​​( ​ 60,000 × 1.0 × 1.0 × 1.0 × 0.87
   ____________________________   

55 × 1.0 × ​√
____

 4000​
 ​  )​​1.1281.5 = 18.0 in.

If the hooked bars are carried down just inside the column ties, the actual embedded length is 
22.0 − 1.5 − 0.5 = 20.0 in., exceeding 18.0 in., so development is ensured. None of the beams 
are a part of the primary, lateral-force-resisting system of the frame, so the bottom bars simply 
can be carried 6 in. into the face of the joint and stopped.

Next the shear strength of the joint must be checked. In the direction of the span-
drel beams, moments applied to the joint will be about the same and acting in the oppo-
site sense, so very little joint shear is expected in that direction. However, the normal 
beam will subject the joint to horizontal shears. In reference to Fig. 18.9a, which shows 
a free-body sketch of the top half of the joint, the maximum force from the beam top 
reinforcement is

As fy = 3.00 × 60 = 180 kips

The joint moment is calculated based on this tensile force. The normal beam effective depth is 
d = 24.0 − 1.5 − 0.5 − 1.128∕2 = 21.4 in. and with stress block depth a = As fy∕0.85​f​c​ ′​bw = 
180∕(0.85 × 4 × 18) = 2.94 in., the design moment is

Mu = Mn = As fy ​( d − ​ a __ 
2
 ​ )​ = ​ 180 ____ 

12
 ​ ​( 21.4 − ​ 2.94 ____ 

2
 ​  )​ = 299 ft-kips

Column shears corresponding to this joint moment are found based on the free body of the 
column between assumed midheight inflection points, as shown in Fig. 18.9b: Vcol = 299∕12 =  
24.9 kips. Then summing horizontal forces on the joint above the middepth plane a-a, the joint 
shear in the direction of the normal beam is

Vu = 180 − 24.9 = 155 kips

FIGURE 18.9
Basis of column shear for 
Example 18.1: (a) horizontal 
forces on joint free-body 
sketch and (b) free-body 
sketch of column between 
inflection points.

(a )

(b )

30.7 kips

Vu

Vcol

Vcol

Asfy = 229 kips

368 ft-kipsa a
12′
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The joint width bj = b + 2x = 18 + 4 = 22 in. = h. The joint does not meet the bar exten-
sion requirements but does meet the confinement criteria. From Table 18.1, the nominal shear 
strength is 15λ​​√

__
 ​f​c​ ′​​​ Aj.

Using bj = 22 in., the nominal and design shear strengths of the joint are, respectively,

     Vn = γ​√
__

 ​f​c​ ′​​ bjh = 15 × 1.0   ​√
____

 4000​ × 22 × ​  22 _____ 
1000

 ​ = 459 kips

ϕVn = 0.75 × 455 = 341 kips

The applied shear Vu = 155 kips does not exceed the design strength, so shear is satisfactory.

	EXAMPLE 18.2	 Design of interior Type 1 joint.  Figure  18.10 shows a proposed interior joint of a rein-
forced concrete building, with beam and column dimensions and reinforcement as indicated. 
The building frame is to carry gravity loads and normal wind loads. Design and detail the 
joint reinforcement.

Solution.  Because the joint is to be a part of the primary, lateral-force-resisting system, 
beam bottom bars as well as top bars are carried straight through the joint for anchorage. In 
such cases, it is usually convenient to lap splice the bottom reinforcement near the point of 
inflection of the beams.

In Fig. 18.10a and b, top and bottom beam bars entering the joint in one direction must 
pass, respectively, under and over the corresponding bars in the perpendicular direction. It 
will be assumed that this has been recognized by adjusting the effective depths in designing 

FIGURE 18.10
Interior beam-column joint 
for Example 18.2: (a) plan 
view and (b) section through 
beam.

(a )

(b )

Beams 14″ × 28″
4 No. 10 (No. 32) top
2 No. 9 (No. 29) bottom

4 sets
No. 4 (No. 13)
ties @ 6″

Column 24″ × 24″
8 No. 14 (No. 43)
No. 4 (No. 13) ties
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	 f.	 Wide-Beam Joints

In multistory buildings, to reduce the construction depth of each floor and to reduce 
the overall building height, wide shallow beams are sometimes used. Joint design in 
cases where the beams are wider than the column introduces some important concepts 
not addressed in the Committee 352 report. It is important to equilibrate all of the 
forces applied to the joint. The tension from the top bars in the usual case, with beam 
width no greater than the column, are equilibrated by the horizontal component of a 
diagonal compression strut within the joint. The diagonal compression at the ends 
of the strut, in turn, is equilibrated by the beam compression and the thrust from the 
column. (See Section 18.3 for a more complete description of the strut-and-tie model.) 
If the outer bars of the normal beam pass outside of the column, as they often do in 
wide-beam designs, the diagonal strut will also be outside of the column, with no 
equilibrating vertical compression at its upper and lower ends. The outer parts of the 
beam would tend to shear off, resulting in premature failure. The problem is of special 
concern for Type 2 connections.

To minimize the problem, Committee 352 suggests that satisfactory perfor-
mance of Type 2 connections with wide beams will result if, to provide satisfactory 
bond, the reinforcement passing outside the joint core is selected so that the ratio of 
the column depth hc to the bar diameter db is greater than or equal to 24 and that at 
least one-third of the reinforcement passes through or is anchored in the column 
between the vertical bars. In the event that these restrictions cannot be met, two 
possibilities exist to improve performance. The first solution requires that all of the 
beam top reinforcement be placed within the width of the column, and preferably 
inside the outer column bars. This, however, violates the crack control provisions of 
ACI Code 24.3.4 for flanges in tension, which requires the distribution of some of 
the reinforcement over an effective flange width, as discussed in Section 7.3. If the 
normal beam bars are carried outside the joint, the second solution is to provide 
vertical stirrups through the joint region to carry the vertical component of thrust 
from the compression strut. In addition, Type 2 exterior beams must be designed for 
equilibrium torsion per ACI Code 22.7, which may require additional transverse 
reinforcement.

In extreme but not unusual cases, very wide beams are used, several times 
wider than the column, with beam depth only about 2 times the slab depth. In such 
cases, a safe basis for joint design is to treat the wide beam as a slab and follow the 
recommendations for slab-column connections contained in Chapter 13.

the beams. Because the column is 10 in. wider than the beams, the outer beam bars can be 
passed inside the corner column bars without interference. Four bars are used for the beam 
top reinforcement in order to avoid interference with the center column bar.

Even the combination of normal wind loading with gravity loads should not produce 
large unbalanced moment on opposite faces of this interior column, and it can be safely 
assumed that joint shear will not be critical. However, confinement of the joint region by the 
beams is considered inadequate because the beam width of 14 in. is less than ​ 3 _ 4 ​ the column 
width of 24 in. Consequently, transverse column ties must be added within the joint for con-
finement. For the 24 in. square column, the spacing between the vertical bars exceeds 6 in., 
so it is necessary, according to the ACI Code, to provide ties to support the intermediate bars 
as well as the corner bars. Three ties are used per set, as shown in Fig.  18.10a. Since the 
joint is a part of the lateral-force-resisting system, the vertical spacing of these tie sets, 6 in., 
meets the maximum spacing requirement of 8 in. Four sets within the joint, as indicated in 
Fig. 18.10b, are adequate to satisfy this requirement.
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	EXAMPLE 18.3	 Design of exterior Type 1 joint with wide beams.  Figure 18.11 shows a typical exterior 
joint in the floor of a wide-beam structure, designed to resist gravity loads. Here the beams 
in each direction are 8 in. wider than the corresponding column dimension. Check the pro-
posed joint geometry and shear strength, and design the transverse joint reinforcement. 
Material strengths are ​f​c​ ′​ = 4000 psi and fy = 60,000 psi. Story height is 12 ft.

Solution.  For the present case, all normal beam top reinforcement is passed inside the core 
of the joint, terminating in 90° hooks at the outside of the column. Top reinforcement in the 
spandrel beams is continuous through the joint and is also carried inside the joint core. Bottom 
beam bars, in each case, can be spread across the width of the beam, and they are carried 
only 6 in. into the joint for the normal beam because the joint is not a part of the primary, 
lateral-force-resisting system. The bottom spandrel beam bars are continued to provide 
structural integrity (ACI Code 9.7). Beam stirrups outside of the joint, not shown in Fig. 18.11, 
would be carried outside of the outer bottom bars and bent up. They would require small-
diameter horizontal bars inside the hooks for proper anchorage at the upper ends of their 
vertical legs.

Transverse confinement reinforcement must be provided in the direction of the normal 
beam, between the top and bottom bars of the normal beam, with spacing not to exceed one-
half of the 20-in. beam depth., or 10 in. or the code limit of 8 in. As described in conjunction 
with calculation of the hook development length, five sets of No. 4 (No. 13) column ties will 
be used, as shown in Fig. 18.11. In addition to the hoop around the outside bars, a single-leg 
crosstie is required for the middle column bars because the clear distance between column 
bars exceeds 6 in. The ties satisfy Eq. (5.13a). 

FIGURE 18.11
Exterior beam-column joint 
for Example 18.3: (a) plan 
view; (b) section through 
spandrel beam; and (c) section 
through normal beam.

(a )

(b )

Column 20″ × 24″
8 No. 11 (No. 36)
story height 12′

2 sets
No. 4 (No. 13)
ties @ 10″

Spandrel beams
28″ × 20″
4 No. 10 (No. 32) top
3 No. 7 (No. 22) bottom

Normal beam
32″ × 20″
4 No. 9 (No. 29) top
3 No. 7 (No. 22) bottom

(c )
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	 18.3	 STRUT-AND-TIE METHOD FOR JOINT BEHAVIOR

Although the Committee 352 report (Ref. 18.6) is an important contribution to the safe 
design of joints of certain standard configurations, the recommendations are based 
mainly on test results. Consequently, they must be restricted to joints whose geometry 
closely matches that of the tested joints. This leads to many seemingly arbitrary geometric 
limitations, and little guidance is provided for the design of joints that may not meet 
these limitations. An illustration of this is the wide-beam joint discussed in Section 18.2f.

Good physical models are available for many aspects of reinforced concrete 
behavior—for example, for predicting the flexural strength of a beam or the strength 
of an eccentrically loaded column. For this reason, among others, increasing attention 
is being given to the strut-and-tie method, described in Chapter  17, as a basis for 
the design of D-regions in joints.

The essential features of a strut-and-tie model of joint behavior may be under-
stood with reference to Fig. 18.12, which shows a joint of a frame subject to lateral 
loading, with clockwise moments from the beams equilibrated by counterclockwise 

Checking the required hook development length of the No. 9 (No. 29) top bars of the 
normal beam, shows that the spacing between the hooked bars is less than 6db. The only way 
to anchor the hooked bars within the available length is to increase the confining reinforce-
ment to 0.4 × Ahs = 0.4 × 4 in2 = 1.6 in2 that must be located within 15db or 16.9 in. of the 
centerline of the straight portion of the hooked bars. Doing so gives ψr = 1.0. The required 
confining reinforcement is provided by four ties spaced at 4 in. Five ties in all will be used 
through the depth of the joint.

ℓdh = ​​( ​ fyψeψrψoψc
 _________ 

55λ​√
__

 ​f​c​ ′​​
 ​  )​​ ​​d​ b​ 

1.5​​ = ​​( ​ 60,000 × 1.0 × 1.0 × 1.0 × 0.87
   ____________________________   

55 × 1.0 × ​√
____

 4000​
 ​  )​​ 1.1281.5 = 18.0 in.

If the hooks are carried down in the plane of the outer column bars, the available embedment is 
20.0 − 1.5 − 0.5 = 18.0 in., equaling the minimum required embedment.

Moments from the spandrels on either side of the joint will be about equal, so no joint 
shear problem exists in that direction. In the direction of the normal beam, shear must be 
checked. The tensile force applied by the top bars is As  fy = 4.00 × 60 = 240 kips. The depth 
of the beam compressive stress block is a = As fy∕0.85​f​c​ ′​ bw = 240∕(0.85 × 4 × 32) = 2.51 in., 
and the corresponding moment is

Mu = Mn = As fy ​( d − ​ a __ 
2
 ​ )​ = ​ 240 ____ 

12
 ​ ​( 17.4 − ​ 2.51 ____ 

2
 ​  )​ = 322 ft-kips

Column shears are based on a free body corresponding to that of Fig. 18.9b and are equal to 
Vcol = 322∕12 = 26.9 kips. Thus, the joint shear at middepth is Vu = 240 − 26.9 = 213 kips.

The spandrel beams provide full-width joint confinement in their direction, and the joint 
can be classed as exterior, so Vn = 20λ​​√

__
 ​f​c​ ′​​​ Aj. In the perpendicular direction, when the beam 

width exceeds the column width, the joint width bj is to be taken equal to the column width 
(24 in. in the present case). The nominal and design shear strengths are, respectively,

   Vn = 20λ​√
__

 ​f​c​ ′​​ bjh = 20 × 1.0​√
____

 4000​ × 24 × 20∕1000 = 607 kips

ϕVn = 0.75 × 607 = 455 kips

Because the design strength is well above the applied shear of 213 kips, the shear requirement 
is met.
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moments from the columns. The line of action of the horizontal forces C1 and T2 
intersects that of the vertical forces C3 and T4 at a nodal zone, where the resultant 
force is equilibrated by a diagonal compression strut within the joint. At the lower 
end of the strut, the diagonal compression equilibrates the resultant of the horizon-
tal forces T1 and C2 and the vertical forces T3 and C4. The tension bars must be 
well anchored by extension into and through the joint, or in the case of discontin-
uous bars (such as the top beam reinforcement in an exterior joint) by headed bars 
or hooks. The concrete within the nodal zone is subjected to a biaxial or, in many 
cases, a triaxial  state of stress.

With this simple model, the flow of forces in a joint is easily visualized, sat-
isfaction of the requirements of equilibrium is confirmed, and the need for proper 
anchorage of bars is emphasized. In a complete strut-and-tie model analysis, through 
proper attention to deformations within the joint, serviceability is ensured through 
control of cracking.

According to the strut-and-tie method, the main function of the column ties required 
within the joint region by conventional design procedures, in addition to preventing 
outward buckling of the vertical column bars, is to confine the concrete in the compres-
sion strut, thereby improving both its strength and ductility, and to control the cracking 
that may occur owing to diagonal tension perpendicular to the axis of the compression 
strut. The main load is carried by the uniaxially loaded struts and ties.

The strut-and-tie method not only provides valuable insights into the behavior 
of ordinary beam-column joints but also represents an important tool for the design 
of joints that fall outside of the limited range of those considered in Ref. 18.6. In 
the sections of this chapter that follow, a number of types of joints are considered 
that occur commonly in reinforced concrete structures, for which the strut-and-tie 
models provide essential aid in developing proper bar details.

	 18.4	 BEAM-TO-GIRDER JOINTS

Commonly in concrete construction, secondary floor beams are supported by primary 
girders, as shown in Fig. 18.13a and b. It is often assumed that the reaction from the 
floor beam is more or less uniformly distributed through the depth of the interface 

FIGURE 18.12
Strut-and-tie model for 
behavior of a beam-column 
joint.

C3

C2

C1

C4

T3

T2

T1

T4

Compression strut

Compression strut

Nodal
zoneNodal

zone

Tension ties
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between beam and girder. This incorrect assumption is perhaps encouraged by the 
ACI Code “Vc + Vs” approach to shear design, which makes use of a nominal average 
shear stress in the concrete, vc = Vc∕bw d, suggesting a uniform distribution of shear 
stress through the beam web.

The actual behavior of a diagonally cracked beam, as indicated by tests, is 
quite different, and the flow of forces can be represented, in somewhat simplified 
form, by the truss model of the beam shown in Fig. 18.13c (Ref. 18.7). The main 
reaction is delivered from beam to girder by a diagonal compression strut mn, 
which applies its thrust near the bottom of the carrying girder. Failure to provide 
for this thrust may result in splitting off the concrete at the bottom of the girder 
followed by collapse of the beam. A graphic example of lack of support for diag-
onal compression at the junction of a beam and its supporting girder is shown in 
Fig. 18.14. Tests indicate that no action is required if the shear stress to be trans-
ferred is less than 3​​√

__
 ​f​c​ ′​​​ or if the beam is in the top half of the girder depth  

(Ref. 18.8). ACI Commentary R9.7.6.2 recognizes this behavior and leaves the 
design to the engineer.

Proper detailing of reinforcement in the region of such a joint requires the use 
of well-anchored hanger stirrups in the girder, as shown in Fig.  18.13a and b, to 
provide for the downward thrust of the compression strut at the end of the beam 
(Refs. 18.9 and 18.10). These stirrups serve as tension ties to transmit the reaction 
of the beam to the compression zone of the girder, where it can be equilibrated by 
diagonal compression struts in the girder. The hanger stirrups, which are required in 
addition to the normal girder stirrups required for shear, can be designed based on 
equilibrating part or all of the reaction from the beam, with the hanger stirrups 
assumed to be stressed to their yield stress fy at the factored load stage.

The strut-and-tie model allows visualization of the transfer of the beam load 
along the girder as seen in Fig. 18.13d. The compression struts op and qr complete 

FIGURE 18.13
Main girder supporting 
secondary beam: (a) cross 
section through girder 
showing hanger stirrups;  
(b) cross section through 
beam; (c) truss model 
showing transfer of beam 
load to girder at load near 
ultimate; and (d) truss model 
showing transfer of load into 
the girder.

m

n

(a )

Hanger stirrups

Girder
Beam

Hanger
stirrups

hbhg

(b )

Shear stirrups

(c )

Hanger stirrup reaction

(d )

Hanger
stirrups

o q

p r
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the shear transfer into the girder. The orientation of these compression struts depends 
on the location of the beam relative to the girder end.

If the beam and girder are the same depth, the hangers should take the full 
reaction. However, if the beam depth is much less than that of the girder, hangers 
may prove unnecessary. It is suggested in Ref. 18.8 that hanger stirrups be placed 
to resist a downward force of ​V​ s​ *​, where

	​ V​ s​ *​ = ​ 
hb __ 
hg

 ​ V	 (18.5)

Here hb is the depth of the beam, hg is the depth of the carrying girder, as indicated by 
Fig. 18.13, and V is the end reaction received from the beam.

Hangers will also be unnecessary if the factored beam shear is less than ϕVc 
(as is usually the case for one-way joists, for example), because in such a case diag-
onal cracks would not form in the supported member. The predictions of the truss 
model would thus not be valid, and the reaction would be more nearly uniform 
through the depth.

The hanger stirrups should pass around the main flexural reinforcement of the 
girder, as shown in Fig. 18.13. If the beam and girder have the same depth, the main 
flexural bars in the girder should pass below those entering the connection from the 
beam to provide the best possible reaction platform for the diagonal compression strut.

	 18.5	 LEDGE GIRDERS

Frequently in precast concrete construction, an L or inverted T girder is used to provide 
a seat, or ledge, to support precast beams framing into the carrying girder from the per-
pendicular direction. Typical ledge girder cross sections are shown in Fig. 18.15. The 
end reaction of the beams introduces a heavy concentrated load near the bottom of such 
girders, requiring special reinforcement in the projecting ledge and in the girder web.

FIGURE 18.14
Failure due to lack of support 
for diagonal compression in 
beam-girder joint. (Courtesy of 

M. P. Collins, University of 

Toronto.)
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The design of such reinforcement is facilitated through use of a strut-and-tie 
model, as illustrated in Fig.  18.16. The downward reaction of the supported beam 
creates a compression fan in the ledge that distributes the reaction along a length greater 
than that of the bearing plate, as shown in Fig. 18.16b. The horizontal components of 
the fan are equilibrated by a compression strut along the lower flange of the girder.

In the cross section view of Fig. 18.16a, the downward thrust under the bear-
ing plate is equilibrated by a diagonal compression strut, with the outward thrust at 
the top of the strut causing tension in the upper horizontal leg of closed hoop stirrups 
in the lower part of the girder. In many cases, a short structural steel angle is used 
just under the bearing plate, and the main tie at the top of the ledge is welded to 
the angle to ensure positive anchorage. At the bottom of the diagonal strut, the 
horizontal component of thrust is equilibrated by the opposing thrust from the other 
side, and the vertical component causes tension in stirrups that extend to the top of 
the girder. These stirrups are used in addition to those required for girder shear. 
Proper anchorage at the nodes is ensured by passing longitudinal bars inside the 
bends of both sets of stirrups.

FIGURE 18.15
Ledge girders carrying 
precast T beams: (a) L girder  
providing exterior support  
for T beam and (b) inverted  
T girder carrying two T beam 
reactions.

(b )

Beam Beam

Bearing
pad

(a )

Beam

Bearing
pad
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girder

Spandrel
girder

FIGURE 18.16
Strut-and-tie model for 
behavior of inverted T ledge 
girder: (a) girder cross section 
and (b) side elevation.
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	EXAMPLE 18.4	 Inverted T beam connection design.  The inverted T beam shown in Fig. 18.17a supports 
40 ft long, 12 ft wide double T beams. The width of the double T stem is 4.75 in., which 
is supported by an elastomeric pad (not shown) on a 6 in. long steel bearing plate. The 
dead load of the double T is 71 psf, including self-weight, and the beam carries a live 
load of 40 psf. In accordance with ACI Code 16.2.2.3(b) for connections on bearing pads, 
a factored horizontal force must be taken equal to 20 percent of the sustained unfactored 
vertical reaction multiplied by a load factor of 1.6. Design the reinforcement in the 
inverted T at the double T bearing point. Material properties are ​f​c​ ′​ = 6000 psi and 
fy = 60,000 psi.

Solution.  The factored loads on the beam stem for a 6-ft tributary width are

	    qu = 1.2 Rd + 1.6 Rl = 1.2 × 71 + 1.6 × 40 = 149 psf

	 Ru = qu × b × L∕2 = 0.149 psf × 6 ft × 40 ft∕2 = 17.9 kips

and treating the dead load of the double T beams as the sustained load,

	  Nuc = (1.6 × 0.2 × 71 × 6 ft × 40 ft∕2)∕1000 = 2.7 kips

The bearing area under the double T leg is 6 in. by 4.75 in. = 28.5 in2, giving a nodal bear-
ing stress of

fn = ​ 17.9 ____ 
28.5

 ​ = 0.63 ksi

which is well below the nominal capacity of the nodes and interior or boundary struts even with 
βs = 0.4, as required for a strut in a tension zone. The low stress is used to demonstrate an alter-
native solution methodology. By using the low stress, the node and strut capacities are adequate 
by inspection; however, the size of strut cd must be confirmed. Solving for the geometry and 
forces in Fig. 18.17b, Tab = 12.3 kips, Tdf = 17.9 kips, and strut cd carries Fcd = 12.3 kips. The 
thickness of the strut is assumed as 4.75 in., the same as the bearing pad. Therefore, the width 
of strut cd is

wcd = ​  12.3 __________  
0.63 × 4.75

 ​ = 4.11 in.

FIGURE 18.17
Strut-and-tie model for Example 18.4.
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	 18.6	 CORNERS AND T JOINTS

In many common types of reinforced concrete structures, moments and other forces 
must be transmitted around corners. Some examples, shown in Fig.  18.18, include 
gable frames, retaining walls, liquid storage tanks, and large box culverts. Reinforce-
ment detailing at the corners is rarely obvious. A comprehensive experimental study 
of such joints by Nilsson and Losberg (Ref. 18.3) showed that many commonly used 
joint details will transmit only a small fraction of their assumed strength. Ideally, the 
joint should resist a moment at least as large as the calculated failure moment of the 
members framing into it (that is, the joint efficiency should be at least 100 percent). 
Tests have shown that, for common reinforcing details, joint efficiency may be as low 
as 30 percent.

Corner joints may be subjected to opening moments, causing flexural tension 
on the inside of the joint, or closing moments, causing tension on the outside. Gen-
erally, the first case is the more difficult to detail properly.

Consider, for example, a corner joint subjected to opening moments, such as 
an exterior corner of the liquid storage tank shown in the plan view in Fig. 18.18d. 

This is slightly more than the 4 in. assumed. A minor modification to the bearing stress would 
make this acceptable; therefore, the design continues with the selected geometry. The required 
area of reinforcement for tie ab is

Ats = ​​ 
Tab + Nuc

 ________ 
ϕfy

 ​​  = ​​  15.0 _________ 
0.75 × 60

 ​​ = 0.33 in2

which is satisfied by using two No. 4 (No. 13) bars welded to each bearing plate. For tie df,

Ats = ​ 
Tdf

 ___ 
ϕfy

 ​ = ​  17.9 _________ 
0.75 × 60

 ​ = 0.40 in2

which is also met using two No. 4 (No. 13) closed stirrups at 4 in. on center at each load point.

FIGURE 18.18
Structures with corners 
subject to opening or closing 
moments: (a) gable frame; 
(b) earth-retaining wall;  
(c) liquid storage tank;  
(d) plan view of multicell 
liquid storage tank; and  
(e) large box culvert. (a )

Gravity loads

(b )

Earth
pressure

(e )

Earth

(c )

Liquid

(d )

Liquid Liquid
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Figure 18.19a shows the system of forces acting on such a corner. The reinforcing 
bar pattern shown is not recommended. Formation of crack 1, radiating inward from 
the corner, is perhaps obvious. Crack 2, which may lead to splitting off the outside 
corner, may not be so obvious. However, the resultant of the two compressive forces 
C, having a magnitude C ​√

_
 2​, is equilibrated by the resultant tension T ​√

_
 2​. These 

two forces, one applied near the outer corner and one near the inner corner, require 
high tensile stress between the two, leading to formation of crack 2 as shown. The 
same conclusion is reached considering a small concrete element A in the corner. It 
is subjected to the shearing forces shown as a result of the forces C and T from the 
entering members. The resultant of these shearing stresses is 45° principal tension 
across the corner, confirming formation of crack 2.

One may, at first, be tempted to add an L-shaped bar around the outside of the 
corner in an attempt to confine the outer concrete. Such a bar would serve little 
purpose, however, because the bar would be in compression and may actually assist 
in pushing the corner off. The strut-and-tie model of Fig. 18.19b provides valuable 
insight into the needed reinforcement, indicating that, in addition to well-anchored 
tensile bars to transmit the forces T into the joint, some form of radial reinforcement 
is required to permit the compressive forces C to “turn the corner.”

Test results for a large number of joints with alternative bar details are reported 
in Ref. 18.3. Comparative efficiencies for some specific details, relating the maxi-
mum moment transmitted by the corner joint to the flexural capacity of the entering 
members, are summarized in Fig. 18.20. In all cases, the reinforcement ratio of the 

FIGURE 18.19
Corner joint subject to 
opening moments:  
(a) cracking in an improperly 
designed joint and (b) strut- 
and-tie model of joint 
behavior.

C

C T

T

T 2

C 2

(a )

Element A

Crack 1

Crack 2

C

C T

T

(b )

FIGURE 18.20
Efficiencies of corner joints subject to opening moments for various reinforcing details: (a) 32 percent; (b) 68 percent; (c) 77 percent; 
(d) 87 percent; and (e) 115 percent. (Adapted from Ref. 18.3.)

(a ) (b ) (c ) (d ) (e )
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entering members is 0.75 percent. Figure 18.20a is a simple detail, probably often used, 
but it provides joint efficiency of only 32 percent. The details in Fig. 18.20b, reinforced 
with bent bars in the form of hairpins with the plane of the hooks parallel to the inside 
face of the joint, provide efficiency of 68 percent. In Fig. 18.20c, the main reinforcement 
is simply looped and continued out the other leg of the joint, resulting in an efficiency 
of 77 percent. The somewhat similar detail shown in Fig.  18.20d, in which the bars 
entering the joint are terminated with separate loops, gives an efficiency of 87 percent. 
The best performance results from the detail shown in Fig.  18.20e—the same as in 
Fig. 18.20d except for the addition of a diagonal bar. This improves joint efficiency to 
115 percent, so that the joint is actually stronger than the design strength of the mem-
bers framing into it. It was determined experimentally that the area of the diagonal bar 
should be about one-half that of the main reinforcement.

The joints between the vertical wall and horizontal base slab of retaining walls 
(see Fig. 18.18b) are also subjected to opening moments. Tests of such joints confirm 
the benefit of placing a diagonal bar similar to Fig. 18.20e. Retaining wall bar details 
are discussed further in Chapter 16.

T joints also may be subjected to bending moments, such as if only one cell 
of the multiple-cell liquid storage tank of Fig. 18.18d were filled. Tests of such joints, 
reported in Ref. 18.3, again indicate the importance of proper detailing. The rein-
forcing bar arrangement shown in Fig. 18.21a, which is sometimes seen, permits a 
joint efficiency of only 24 to 40 percent, but the simple rearrangement shown in 
Fig.  18.21b improves the efficiency to between 82 and 110 percent. In both cases, 
efficiency depends upon the main reinforcement ratio in the entering members, with 
highest efficiency corresponding to the lowest tensile reinforcement ratio.

A strut-and-tie model for the T joint confirms the research results presented 
above. Figure 18.22a shows that a clockwise moment applied to the stem of the T 
is resisted by shear forces at the inflection points of the T top. The strut-and-tie 
model in Fig.  18.22b clearly shows that the stem reinforcement must hook to the 
left for the joint to be effective, as shown in Fig. 18.21b.

FIGURE 18.22
T joint behavior subjected to 
moment: (a) bending moment 
and resulting shear forces and 
(b) strut-and-tie model. 

M

VV

(a ) (b )

FIGURE 18.21
Comparative efficiencies of  
T joints subject to bending 
moment: (a) 24 to 40 percent 
depending on reinforcement 
ratio and (b) 82 to 110 percent 
depending on reinforcement 
ratio. (Adapted from Ref. 18.3.)

(a ) (b )
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Joints subjected to closing moments, with main reinforcement passing around 
the corner close to the outside face, cause few detailing problems because the main 
tension reinforcement from the entering members can be carried around the outside 
of the corner. There is, however, a risk of splitting the concrete in the plane of the 
bend, or concrete crushing inside the bend. Therefore, the bend radius, as deter-
mined by a curved bar node assessment from Section 17.4c, is needed to properly 
detail the joint.

	 18.7	 BRACKETS AND CORBELS

Brackets such as shown in Fig. 18.23a are widely used in precast construction for 
supporting precast beams at the columns. When they project from a wall, rather 
than from a column, they are properly called corbels, although the two terms are 
often used interchangeably. Brackets are designed mainly to provide for the verti-
cal reaction Vu at the end of the supported beam, but unless special precautions are 
taken to avoid horizontal forces caused by restrained shrinkage, creep (in the case 
of prestressed beams), or temperature change, they must also resist a horizontal 
force Nuc.

Steel bearing plates or angles are generally used on the top surface of the brackets, 
as shown, to provide a uniform contact surface and to distribute the reaction. A cor-
responding steel bearing plate or angle may be provided at the lower corner of the 
supported member, or a bearing pad installed. If the two plates are welded together, 
horizontal forces clearly must be allowed for in the design. Even with Teflon or 
elastomeric bearing pads, frictional forces will develop due to volumetric change.

The structural performance of a bracket can be visualized using the strut-and-
tie model shown in Fig. 18.23b. The downward thrust of the load Vu is equilibrated 
by the vertical component of the reaction from the diagonal compression strut that 
carries the load down into the column. The outward thrust at the top of the strut is 
balanced by the tension in the horizontal tie bars across the top of the bracket; these 
also take the tension, if any, imparted by the horizontal force Nuc. At the left end 
of the horizontal tie, the tension is equilibrated by the horizontal component of 
thrust from the second compression strut shown. The vertical component of this 

FIGURE 18.23
Typical reinforced concrete 
bracket: (a) loads and 
reinforcement and  
(b) strut-and-tie model  
for internal forces.
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thrust requires the tensile force shown acting downward at the left side of the 
supporting column.

The reinforcement required, according to the strut-and-tie model, is shown in 
Fig. 18.23a. The main bars Asc must be carefully anchored because they need to develop 
their full yield strength fy directly under the load Vu, and for this reason they are usually 
welded to the underside of the bearing angle and a 90° hook is provided for anchorage 
at the left side. Closed hoop bars with area Ah confine the concrete in the two com-
pression struts and resist a tendency for splitting in a direction parallel to the thrust. 
The framing bars shown are usually of about the same diameter as the stirrups and 
serve mainly to improve the stirrup anchorage at the outer face of the bracket.

The bracket may also be considered as a very short cantilevered beam, with 
flexural tension at the column face resisted by the top bars Asc. Either concept will 
result in about the same area of main reinforcement.

A second possible mode of failure is by direct shear along a plane more or less 
flush with the vertical face of the main part of the column. Shear-friction reinforce-
ment crossing such a crack (see Section 5.9) would include the area Asc previously 
placed in the top tie and the area Ah from the hoops below it. Other failure modes 
include flexural tension failure, with yielding of the top bars followed by crushing 
of the concrete at the bottom of the bracket; crushing of the concrete under the 
bearing angle (particularly if end rotation of the supported beam causes the force Vu 
to be applied too close to the outer corner of the bracket); and direct tension failure, 
if the horizontal force Nuc is larger than anticipated.

The provisions of ACI Code 16.5 for the design of brackets and corbels have 
been developed mainly based on tests (Refs. 18.10, 18.11, and 18.12) and relate to 
the flexural model of bracket behavior. They apply to brackets and corbels with a 
shear span ratio av∕d of 1.0 or less (see Fig. 18.23a). Brackets and corbels with av∕d 
less than 2 may be designed using strut-and-tie models, as described in Chapter 17. 
The distance d is measured at the column face, and the depth at the outside edge of 
the bearing area must not be less than 0.5d. The usual design basis is employed, that 
is, ϕMn ≥ Mu and ϕVn ≥ Vu, and for brackets and corbels (for which shear dominates 
the design), ϕ is to be taken equal to 0.75 for all strength calculations, including 
flexure and direct tension as well as shear.

The section at the face of the supporting column must simultaneously resist 
the shear Vu, the moment Mu = Vuav  +  Nuc(h − d), and the horizontal tension Nuc. 
Unless special precautions are taken, a horizontal tension not less than 20 percent 
of the factored vertical reaction multiplied by a load factor of 1.6 must be assumed 
to act. This tensile force is to be regarded as live load, and a load factor of 1.6 should 
be applied.

An amount of reinforcement Af to resist the moment Mu can be found by the 
usual methods for flexural design. Thus,

	 Af = ​ 
Mu ___________  

ϕfy(d − a∕2)
 ​	 (18.6)

where a = Af fy∕0.85​f​c​ ′​b. An additional area of reinforcement An must be provided to 
resist the tensile component of force:

	 An = ​ 
Nuc ___ 
ϕfy

 ​	 (18.7)

The total area required for flexure and direct tension at the top of the bracket is thus

	 Asc ≥ Af + An	 (18.8)
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Design for shear is based on the shear-friction method of Section 5.9, and the 
total shear-friction reinforcement Avf is found by

	 Avf = ​ 
Vu _____ 

ϕ μfy

 ​	 (18.9)

where the friction factor µ for monolithic construction is 1.4λ, where λ  =  1.0 for 
normalweight concrete, 0.75 for all lightweight concrete, and is otherwise calcu-
lated based on volumetric proportions of lightweight and normalweight aggregate 
not to exceed 0.85 in accordance with ACI Code 22.9.4.2. The value of Vn = Vu∕ϕ 
must not exceed the smallest of 0.2​f​c​ ′​ bwd, (480 + 0.08​f​c​ ′​  )bwd, and 1600bwd at the 
support face for normalweight concrete or the smaller of (0.2 − 0.07a v∕d)​f​c​ ′​ bw d and 
(800 − 280av∕d)bwd for lightweight concrete. Then, according to ACI Code 16.5, the 
total area required for shear plus direct tension at the top of the bracket is

	 Asc ≥ ​ 2 __ 
3
 ​ Avf + An	 (18.10)

with the remaining part of Avf placed in form of closed hoops having area Ah in the 
lower part of the bracket, as shown in Fig. 18.23a.

Thus, the total reinforcement area Asc required at the top of the bracket is 
equal to the larger of the values given by Af + An or by Eq. (18.10). An additional 
restriction, that Asc not be less than 0.04(​f​c​ ′​∕fy)bd, is intended to avoid the possi-
bility of sudden failure upon formation of a flexural tensile crack at the top of 
the bracket.

According to the ACI Code, closed hoop stirrups having area Ah (see 
Fig. 18.23a) not less than 0.5(Asc − An) must be provided and be uniformly distributed 
within two-thirds of the effective depth adjacent to and parallel to Asc.

	EXAMPLE 18.5	 Design of column bracket.  A column bracket on a 16 in. square column having the general 
features shown in Fig.  18.24 is to be designed to carry the end reaction from a long-span 
precast girder. Vertical reactions from service dead and live loads are 17 and 33 kips, respec-
tively, applied at av = 5.5 in. from the column face. An elastomeric bearing pad is provided 
for the girder, which will rest directly on a 5 × 3 × ​ 3 _ 8 ​ in. steel angle anchored at the outer 
corner of the bracket. Bracket reinforcement includes main reinforcement Asc welded to the 
underside of the steel angle, closed hoop stirrups having total area Ah distributed appropriately 
through the bracket depth, and framing bars in a vertical plane near the outer face. Select 
appropriate concrete dimensions, and design and detail all reinforcement. Material strengths 
are ​f​c​ ′​ = 5000 psi and fy = 60,000 psi. The column width and depth is 16 in.

Solution.  The vertical factored load to be carried is

Vu = 1.2 Rd + 1.6 × Rl = 1.2 × 17 + 1.6 × 33 = 73.2 kips

In the absence of a roller or low-friction support pad, a horizontal tensile force of

Nuc = 1.6 × 0.2 × Rd = 1.6 × 0.20 × 17 = 5.4 kips

is required based on the unfactored sustained load. According to the shear friction provisions 
of the ACI Code, the nominal shear strength Vn must not exceed 0.2​f​c​ ′​ bd, (480 + 0.08​f​c​ ′​)bd, 
or 1600bd. With ​f​c​ ′​ = 5000 psi, the second limit controls. Then, with Vu = ϕVn and with the 
column width b = 12 in.,

73.2 = 0.75 × 0.880 × 12d
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from which d = 9.24 in. A total depth of 16 in. is selected, and estimating 1 in. from the center 
of the main reinforcement to the top surface of the bracket, d is approximately equal to 15 in., 
the exact value depending on the bar diameter chosen for Asc. If a 45° slope is used, as indicated 
in Fig. 18.24, the bracket depth at the outside of the bearing area is 8 in. This is not less than 
0.5d = 7.5 in., as required. For the bracket geometry selected, av∕d = 5.5∕15 = 0.36. This does 
not exceed the 1.0 limit imposed by the ACI Code.

The total shear friction reinforcement is found from Eq. (18.9) and for monolithic 
concrete with μ = 1.4:

Avf = ​​ 
Vu
 ____ 

ϕμfy

 ​​ = ​  73.2 ______________  
0.75 × 1.4 × 60

 ​ = 1.16 in2

The bending moment to be resisted is

Mu = Vuav + Nuc (h − d)

	  = 73.2 × 5.5 + 5.4 × 1 = 408 in.-kips

The depth of the flexural compression stress block will be estimated to be 2 in., so, from Eq. (18.6),

Af = ​ 
Mu ___________  

ϕfy(d − a∕2)
 ​ = ​  408  ___________________   

0.75 × 60(15 − 2.0∕2)
 ​ = 0.65 in2

Checking the stress block depth gives

a = ​ 
Af  fy
 _______ 

0.85​f​c​ ′​ b
 ​ = ​  0.65 × 60  ____________  

0.85 × 5 × 12
 ​ = 0.76 in.

so the revised reinforcement area is

Af = ​  408  ____________________   
0.75 × 60(15 − 0.76∕2)

 ​ = 0.62 in2

The tensile force of 5.4 kips requires an additional reinforcement area, from Eq. (18.7), of

An = ​ 
Nuc ___ 
ϕfy

 ​ = ​  5.4 _________ 
0.75 × 60

 ​ = 0.12 in2

Thus, from Eqs. (18.8) and (18.10), respectively, the total reinforcement area at the top of the 
bracket must not be less than

Asc ≥ Af + An = 0.62 + 0.12 = 0.74 in2

FIGURE 18.24
Column bracket design 
example.
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or less than

Asc ≥ ​ 2 _ 3 ​ Avf + An = ​ 2 _ 3 ​ × 1.16 + 0.12 = 0.89 in2

The second requirement controls here. The minimum reinforcement requirement of

Asc,min = 0.04 ​ 
​f​c​ ′​ __ 
fy

 ​ bd = 0.04 × ​ 5 ___ 
60

 ​ × 12 × 15 = 0.60 in2

is seen not to control. A total of three No. 6 (No. 19) bars, providing Asc = 1.32 in2, are selected.
Closed hoop reinforcement having a total area Ah not less than 0.5(Asc − An) must be 

provided. Thus,

Ah ≥ 0.5Af = 0.5 × 0.62 = 0.31 in2

and

Ah ≥ 0.5 × ​ 2 _ 3 ​ Avf = ​ 1 _ 3 ​ × 1.16 = 0.39 in2

The second requirement controls. Three No. 3 (No. 10) closed hoops are provided, to cover 
the entire bracket giving total area Ah = 0.66 in2. These must be placed within ​ 2 _ 3 ​ of the effec-
tive depth of the main reinforcement. A spacing of 2.5 in. will be satisfactory, as indicated in 
Fig. 18.24. A pair of No. 3 (No. 10) framing bars are added at the inside corner of the hoops to 
improve anchorage, as shown.

The final step is to check the required hook development length of the No. 6 (No. 19) 
top bars of the normal beam. The spacing between the bars is less than 6db. Thus, ψe and  
ψr = 1.0, and ψo = 1.25. The concrete compressive strength is less than 6000 psi, so  
ψc = 5000∕15,000 + 0.6 = 0.93. The development length of the three No. 6 (No. 19) hooked 
bars is 

ℓdh = ​​
(

​ 
fyψeψrψoψc

 _________ 
55​√

__
 ​f​c​ ′​​
 ​

)
​​​​d​ b​ 

1.5​​ = ​​(​ 
60,000 × 1.0 × 1.0 × 1.25 × 0.93

    _____________________________  
55​√

____
 5000​
 ​ )​​0.751.5 = 11.7 in.

which fits in the 16 in. overall dimension of the column. For the hoop bars, a standard 135° 
hook, as shown in Fig. 6.9, is specified.
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Problems
	18.1.	 An interior Type 1 joint, which is to be considered a part of the primary 

lateral-force-resisting system, is to be designed. The 16 in. square column, 
with main reinforcement consisting of four No. 11 (No. 36) bars, is inter-
sected by two 12  ×  18 in. beams in the X direction, reinforced with three 
No. 10 (No. 32) top bars and three No. 8 (No. 25) bottom bars. In the Y 
direction, there are two 12 × 22 in. girders, reinforced with three No. 11 (No. 
36) top bars and three No. 9 (No. 29) bottom bars. Concrete cover is 2.5 in. 
to the center of the bars, except for the top reinforcement in the girders, which 
is carried just under the top reinforcement of the beams. Design and detail 
the joint, using ​f​c​ ′​ = 4000 psi and fy = 60,000 psi. Specify placement of all 
bars and cutoff points.

	18.2.	 Figure P18.2 shows a typical exterior joint for a building with 24 in. square 
columns. A 16 × 18 in. normal beam terminates at the column; an 18 × 22 in. 
spandrel girder also frames into the column. Reinforcement is as shown in 
Fig. P18.2, and the column height is 12 ft. Design and detail the joint, spec-
ifying bar placement, cutoff points, and details, such as bar hook dimension.

	18.3.	 The precast columns of a proposed parking garage will incorporate symmet-
rical brackets to carry the end reactions of short girders that, in turn, carry 
long-span precast, prestressed double T floor units. The girder reactions will 
be applied 6 in. from the column face, as shown in Fig. P18.3, and a total 
width of bracket of 9 in. must be provided for proper bearing. Column width 
in the perpendicular direction is 20 in. Service load reactions applied at the 
top face of the brackets are 45 kips dead load and 36 kips live load. Select 
all unspecified concrete dimensions and design and detail the reinforcement. 
A corner angle is suggested at the outer top edge of the bracket. Column 
material strengths are ​f​c​ ′​ = 6000 psi and fy = 60,000 psi.

Column 24″ × 24″
4-No. 11 (No. 36)

18″ × 22″ girder
3-No. 11 (No. 36) top
3-No. 9 (No. 29) bottom

16″ × 18″ beam
3-No. 10 (No. 32) top
3-No. 8 (No. 25) bottom

2″

FIGURE P18.2

V V

9″ 20″

45° 45°

6″ 6″

9″FIGURE P18.3
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	18.4.	 The stem of a 60 ft long, 8 ft wide simply supported single T beam rests on 
the ledge of the inverted T beam shown in Fig. P18.4. The T beam has a 
bearing area 6 in. thick and 4 in. parallel to the axis of the T. The applied 
service load is 85 psf dead load, including self-weight, and 50 psf live load. 
Design the connection detail under the stem using ​f​c​ ′​ = 5000 psi and 
fy = 60,000 psi.

8″1′-0″

1′-0″

1′-8″

8″FIGURE P18.4
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	 19.1	 INTRODUCTION

Most of the material in the preceding chapters has pertained to the design of rein-
forced concrete structural elements, such as slabs, columns, beams, footings, and 
walls. These elements are combined in various ways to create structural systems for 
buildings and other construction. An important part of the total responsibility of the 
structural engineer is to select, from many alternatives, the best structural system for 
the given conditions. The wise choice of structural system is far more important, in 
its effect on overall economy and serviceability, than refinements in proportioning 
the individual members. Close cooperation with the architect in the early stages of a 
project is essential in developing a structure that not only meets functional and esthetic 
requirements but exploits to the fullest the special advantages of reinforced concrete, 
which include the following:

Versatility of form.  Usually placed in the structure in the fluid state, the mate-
rial is readily adaptable to a wide variety of architectural and functional requirements.

Durability.  With proper concrete protection of the steel reinforcement, the 
structure will have long life, even under highly adverse climatic or environmental 
conditions.

Fire resistance.  With proper protection for the reinforcement, a reinforced 
concrete structure provides the maximum in fire protection.†

Speed of construction.  In terms of the entire period, from the date of approval 
of the contract drawings to the date of completion, a concrete building can often be 
completed in less time than a steel structure. Although the field erection of a steel 
building is more rapid, this phase must necessarily be preceded by prefabrication of 
all parts in the shop.

Cost.  In many cases, the first cost of a concrete structure is less than that of 
a comparable steel structure. In almost every case, maintenance costs are less.

Availability of labor and material.  It is always possible to make use of local 
sources of labor, and in many inaccessible areas, a nearby source of good aggregate 
can be found, so that only the cement and reinforcement need to be brought in from 
a remote source.

Two record-setting examples of good building design in concrete are shown in 
Figs. 19.1 and 19.2.

† Code requirements for fire protection are presented in Ref. 19.1.

Concrete Building Systems
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	 19.2	 FLOOR AND ROOF SYSTEMS

The types of concrete floor and roof systems are so numerous as to defy concise classi-
fication. In steel construction, the designer usually is limited to using structural shapes 
that have been standardized in form and size by the relatively few producers in the field. 
In reinforced concrete, the engineer has almost complete control over the form of the 
structural parts of a building. In addition, many small producers of reinforced concrete 
structural elements and accessories can compete profitably in this field, since plant and 
equipment requirements are not excessive. This has resulted in the development of a wide 
variety of concrete systems. Only the more common types are mentioned in this text.

In general, reinforced concrete floor and roof systems can be classified as 
one-way systems, in which the main reinforcement in each structural element runs 
in one direction only, and two-way systems, in which the main reinforcement in at 
least one of the structural elements runs in perpendicular directions. Systems of each 
type can be identified in the following list:

	(a)	 One-way slab supported by monolithic concrete beams
	(b)	 One-way slab supported by steel beams (shear connectors are used for composite 

action in the direction of the beam span)
	(c)	 One-way slab with cold-formed steel decking as form and reinforcement

FIGURE 19.1
View of 311 South Wacker 
Drive under construction. 
When completed, it was the 
world’s tallest concrete 
building, with total height of 
946 ft. (Courtesy of Portland 

Cement Association.)

www.konkur.in

Telegram: @uni_k
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	(d)	 One-way joist floor (also known as ribbed slab)
	(e)	 Two-way slab supported by edge beams for each panel
	(f)	 Flat slabs, with column capitals, drop panels, or both, but without beams
	(g)	 Flat plates, without beams and with no drop panels or column capitals
	(h)	 Two-way joist floors, with or without beams on the column lines

Each of these types is described briefly in the following sections. Additional infor-
mation is found in Refs. 19.2 to 19.4. In addition to the cast-in-place floor and roof 
systems described in this section, a great variety of precast concrete systems have been 
devised. Some of these are described in Section 19.3.

	 a.	 Monolithic Beam-and-Girder Floors

A beam-and-girder floor consists of a series of parallel beams supported at their extrem-
ities by girders, which in turn frame into concrete columns placed at more or less regular 
intervals over the entire floor area, as shown in Fig. 19.3. This framework is covered by 
a one-way reinforced concrete slab, the load from which is transmitted first to the beams 
and then to the girders and columns. The beams are usually spaced so that they come at 
the midpoints, at the third points, or at the quarter points of the girders. The arrangement 
of beams and spacing of columns should be determined by economical and practical 
considerations. These are affected by the planned use of the building, the size and shape 
of the ground area, and the load that must be carried. A comparison of a number of trial 
designs and estimates should be made if the size of the building warrants, and the most 
satisfactory arrangement selected. If the spans in one direction are not long, say 20 ft 

FIGURE 19.2
The Burj Khalifa is the 
current record holder not  
only as the tallest reinforced 
concrete building but also as 
the tallest structure of any 
type in the world, with a total 
height of 2717 ft. (Laborant/

Shutterstock)
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or less, the beams may be omitted altogether, and the slab, spanning in one direction, 
can be carried directly by girders spanning in the perpendicular direction on the column 
lines. Since the slabs, beams, and girders are built monolithically, the beams and girders 
are designed as T beams and advantage is taken of continuity.

Beam-and-girder floors are adaptable to any loads and to any spans that might 
be encountered in ordinary building construction. The normal maximum spread in 
live load values is from 40 to 400 psf, and the normal range in column spacings is 
from 16  to 32 ft.

The design and detailing of the joints where beams or girders frame into building 
columns should be given careful consideration, particularly for designs in which substantial 
horizontal loads are to be resisted by frame action of the building. In this case, the column 
region, within the depth of the beams framing into it, is subjected to significant horizontal 
shears as well as to axial and flexural loads. Special horizontal column ties must be included 
to avoid uncontrolled diagonal cracking and disintegration of the concrete, particularly if 
the joint is subjected to load reversals. Specific recommendations for the design of beam- 
column joints are found in Chapter 18 and Ref. 19.5. Joint design for buildings that resist 
seismic forces is subject to special ACI Code provisions (see Chapter 20).

In normal beam-and-girder construction, the depth of the beams may be as 
much as 3 times the web width. Improved economy, however, is achieved by using 
beams with webs that are generally wider and shallower, coupled with girders that 
have the same depth as the beams. The resulting girders, more often than not, have 
webs that are wider than their effective depths. Although the flexural steel in the 
members is increased because of the reduced effective depth compared with deeper 
members, the increases in material costs are more than paid for by savings in form-
ing costs (one depth for all members) and easier construction (wider beams are 

FIGURE 19.3
Framing of beam-and-girder  
floor: (a) plan view;  
(b) section through beams; 
and (c) section through 
girders.

B

B

A A

(a )

Section A–A

(b )

Section B–B

(c )
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easier to cast than narrow beams). Another key advantage is the reduced construction 
depth, which permits a reduction in the overall height of the building.

For light loads, a floor system has been developed in which the beams are omit-
ted in one direction, the one-way slab being carried directly by column-line beams that 
are very broad and shallow, as shown in Fig.  19.4. These beams, supported directly 

FIGURE 19.4 
Banded slab floor system.  
(Photographs by Arthur  

H. Nilson.)

(a) Interior slab band

(b) Edge band at exterior column
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by the columns, become little more than a thickened portion of the slab. This type of 
construction, in fact, is known as banded slab construction, and there are a number of 
advantages associated with its use, over and above those associated with shallow beam-
and-girder construction. In the direction of the slab span, a haunched member is pres-
ent, in effect, with the maximum effective depth at the location of greatest negative 
moment, across the support lines. Negative moments are small at the edge of the 
haunch, where the depth becomes less, and positive slab moments are reduced as well. 
The increased flexural steel in the beam (slab-band) resulting from the reduced effec-
tive depth is often outweighed by savings in the slab steel. Along with reduced con-
struction depth, banded slab construction allows greater flexibility in locating columns, 
which may be displaced some distance from the centerline of the slab-band without 
significantly changing the structural action of the floor. Formwork is simplified because 
of the reduction in the number of framing members. For such systems, special attention 
should be given to design details at the beam-column joint. Transverse top steel may 
be required to distribute the column reaction over the width of the slab-band. In 
addition, punching shear failure is possible; this may be investigated using the same 
methods presented earlier for flat plates (see Section 13.7).

	 b.	 Composite Construction with Steel Beams

One-way reinforced concrete slabs are also frequently used in buildings for which the 
columns, beams, and girders consist of structural steel. The slab is normally designed 
for full continuity over the supporting beams, and the usual methods are followed. The 
spacing of the beams is usually 6 to 8 ft.

To provide composite action, shear connectors are welded to the top of the steel 
beam and are embedded in the concrete slab, as shown in Fig. 19.5a. By preventing lon-
gitudinal slip between the slab and steel beam in the direction of the beam axis, the 

FIGURE 19.5
Composite beam-and-slab 
floor.

(a)

Slab

Structural
steel

Steel deck

Structural
steel

Shear
connectors

SlabSlab

(b)

(c)

Slab

Concrete
encasement

Steel beam

Shear
connectors
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combined member is both stronger and stiffer than if composite action were not developed. 
Thus, for given loads and deflection limits, smaller and lighter steel beams can be used.

Composite floors may also use encased beams, as shown in Fig. 19.5b, offer-
ing the advantage of full fireproofing of the steel, but at the cost of more complicated 
formwork and possible difficulty in placing the concrete around and under the steel 
member. Such fully encased beams do not require shear connectors as a rule.

	 c.	 Steel Deck Reinforced Composite Slabs

It is nearly standard practice to use stay-in-place light-gage cold-formed steel deck pan-
els in composite floor construction. As shown in Fig. 19.5c, the steel deck serves as a 
stay-in-place form and, with suitable detailing, the slab becomes composite with the 
steel deck, serving as the main tensile flexural steel. Suitable for relatively light floor 
loading and short spans, composite steel deck reinforced slabs are found in office build-
ings and apartment buildings, with column-line girders and beams in the perpendicular 
direction subdividing panels into spans up to about 12 ft. Temporary shoring may be 
used at the midspan or third point of the panels to avoid excessive stresses and deflec-
tions while the concrete is placed, when the steel deck panel alone must carry the load.

	 d.	 One-Way Joist Floors

A one-way joist floor consists of a series of small, closely spaced reinforced concrete 
T beams, framing into monolithically cast concrete girders, which are in turn car-
ried by the building columns. The T beams, called joists, are formed by creating void 
spaces in what otherwise would be a solid slab. Usually these voids are formed using 
special steel pans, as shown in Fig. 19.6. Concrete is cast between the forms to create 
ribs and placed to a depth over the top of the forms so as to create a thin monolithic 
slab that becomes the T beam flange.

Since the strength of concrete in tension is small and is commonly neglected 
in design, elimination of much of the tension concrete in a slab by the use of pan 

FIGURE 19.6
Steel forms for one-way joist 
floor. (Photograph by Arthur  

H. Nilson.)
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forms results in a saving of weight with little change in the structural characteristics 
of the slab. Ribbed floors are economical for buildings, such as apartment houses, 
hotels, and hospitals, where the live loads are fairly small and the spans compara-
tively long.  They are not suitable for heavy construction such as in warehouses, 
printing plants, and heavy manufacturing buildings.

Standard forms for the void spaces between ribs are either 20 or 30 in. wide and 
8, 10, 12, 14, 16, or 20 in. deep. They are tapered in cross section, as shown in Fig. 19.7, 
generally at a slope of 1 to 12, to facilitate removal. Any joist width can be obtained by 
varying the spacing between pans. Tapered end pans are used where it is desired to obtain 
a wider joist near the end supports, such as may be required for high shear or negative 
bending moment. After the concrete has hardened, the steel pans are removed for reuse.

According to ACI Code 9.8.1, ribs must not be less than 4 in. wide and may 
not have a depth greater than 3.5 times the minimum web width. (For easier bar 
placement and placement of concrete, a minimum web width of 5 in. is desirable.) 
The clear spacing between ribs (determined by the pan width) must not exceed 30 in. 
The slab thickness over the top of the pans must not be less than one-twelfth of the 
clear distance between ribs, nor less than 2 in., according to ACI Code 9.8.3. Table 19.1 
gives unit weights, in terms of psf of floor surface, for common combinations of joist 
width and depth, slab thickness, and form width.

Reinforcement for the joists usually consists of two bars in the positive bending 
region, with one bar discontinued where no longer needed or bent up to provide a 
part of the negative steel requirement over the supporting girders. Straight top bars 
are added over the support to provide for the negative bending moment. According 
to ACI Code 9.8.1, at least one bottom bar must be continuous over the support, or 
at noncontinuous supports, terminated with a standard hook or headed bar, as a 
measure to improve structural integrity in the event of major structural damage.

ACI Code 20.5.1.3 permits a reduced concrete cover of ​ 3 _ 4 ​ in. to be used for 
joist construction, just as for slabs. The thin slab (top flange) is reinforced mainly 
for temperature and shrinkage stresses, using welded wire reinforcement or small 
bars placed at right angles to the joists. The area of this reinforcement is usually 
0.18 percent of the gross cross section of the concrete slab.

One-way joists are generally proportioned with the concrete providing all of the 
shear strength, with no stirrups used. A 10 percent increase in Vc above the values 
given by Eqs. (5.12a), (5.12c), and (5.12d ) is permitted for joist construction, accord-
ing to ACI Code  9.8.1, based on the possibility of redistribution of local overloads  
to adjacent joists. Tests have shown that while local redistribution does occur, the  
shear strength of the full system (all joists acting together) is enhanced by less than 
10 percent (Ref. 19.6).

FIGURE 19.7
One-way joist floor cross sections: (a) cross section through supporting girder showing ends of joists and (b) cross section through 
typical joists.

(a ) Longitudinal section through joists (b ) Transverse section through joists

Floor girder
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The joists and the supporting girders are placed monolithically. Like the joists, 
the girders are designed as T beams. The shape of the girder cross section depends 
on the shape of the end pans that form the joists, as shown in Fig.  19.7a. If the 
girders are deeper than the joists, the thin concrete slab directly over the top of the 
pans is often neglected in the girder design. The girder width can be adjusted, as 
needed, by varying the placement of the end pans. The width of the web below the 
bottom of the joists must be at least 3 in. narrower than the flange (on either side) 
to allow for pan removal.

A type of one-way joist floor system has evolved known as a joist-band system 
in which the joists are supported by broad girders having the same total depth as the 
joists, as illustrated in Fig. 19.7. Separate beam forms are eliminated, and the same 
deck forms the soffit of both the joists and the girders. The simplified formwork, 
faster construction, level ceiling with no obstructing beams, and reduced overall 
height of walls, columns, and vertical utilities combine to achieve an overall reduc-
tion in cost in most cases.

In one-way joist floors, the thickness of the slab is often controlled by fire 
resistance requirements. For a rating of 2 hours, for example, the slab must be about 
4​ 1 _ 2 ​ in. thick (Ref. 19.1). If 20 or 30 in. pan forms are used, slab span is small and 
slab strength is underutilized. This has led to what is known as the wide module joist 
system, or skip joist system (Ref. 19.7), as shown in Fig. 19.8. Such floors generally 
have 6 to 8 in. wide ribs that are 5 to 6 ft on centers, with a 4​ 1 _ 2 ​ in. top slab. These 
floors not only provide more efficient use of concrete in the slab but also require less 
formwork labor. By ACI Code 9.8.1.8, wide module joist ribs must be designed as 
ordinary T beams, because the clear spacing between ribs exceeds the 30 in. maxi-
mum for joist construction, and the special ACI Code provisions for joists do not 
apply. Concrete cover for reinforcement is as required for beams, not joists, and the 

TABLE 19.1
Weight of one-way joist floor systems

3 in. Top Slab 4  ​ 1 _ 2 ​ in. Top Slab

Depth of 
Pan Form,  

in.

 Width of  
Joist +   

Pan Form,  
in.

Weight,  
psf

Depth of  
Pan Form,  

in.

 Width of   
Joist +   

Pan Form,  
in.

Weight,  
psf

  8 5 + 20 60   8 5 + 20 79
  8 5 + 30 54   8 5 + 30 72
10 5 + 20 67 10 5 + 20 85
10 5 + 30 58 10 5 + 30 77
12 5 + 20 74 12 5 + 20 92
12 5 + 30 63 12 5 + 30 82
14 5 + 30 68 14 5 + 30 87
14 6 + 30 72 14 6 + 30 91
16 6 + 30 78 16 6 + 30 97
16 7 + 30 83 16 7 + 30 101
20 6 + 30 91 20 6 + 30 109
20 7 + 30 96 20 7 + 30 115

Data Source: Adapted from Ref. 19.3.
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10 percent increase in Vc does not apply. Often the joists in wide module systems are 
carried by wide beams on the column lines, the depth of which is the same as that 
of the joists, to form a joist-band system equivalent to that described earlier.

Useful design information pertaining to one-way joist floors, including exten-
sive load tables, are found in the CRSI Design Guides (Ref. 19.3). Suggested bar 
details and typical design drawings are found in the ACI Detailing Manual (Ref. 19.4).

	 e.	 Two-Way Edge-Supported Slabs

Two-way solid slabs supported by beams on the column lines on all sides of each slab 
panel have been discussed in detail in Chapter 13. The perimeter beams are usually 
concrete cast monolithically with the slab, although they may also be structural steel, 
often encased in concrete for composite action and for improved fire resistance. For 
monolithic concrete, both the beams and the slabs are designed using the equivalent 
frame method described in Chapter 13.

Two-way solid slab systems are suitable for intermediate to heavy loads on 
spans up to about 30 ft. This range corresponds closely to that for beamless slabs 
with drop panels and column capitals, described in the following section. The latter 
are often preferred because of the complete elimination of obstructing beams below 
the slab.

For lighter loads and shorter spans, a two-way solid slab system has evolved 
in which the column-line beams are wide and shallow, such that a cross section 
through the floor in either direction resembles the slab-band shown earlier in 
Fig.  19.4. The result is a two-way slab-band floor that, from below, appears as a 
paneled ceiling. Advantages are similar to those given earlier for one-way slab-band 
floors and for joist-band systems.

FIGURE 19.8
Skip joist system showing 
wide spacing between ribs.  
(Photograph by David Darwin.)
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	 f.	 Beamless Flat Slabs with Drop Panels or Column Capitals

By suitably proportioning and reinforcing the slab, it is possible to eliminate support-
ing beams altogether. The slab is supported directly on the columns. In a rectangular 
or square region centered on the columns, the slab may be thickened and the column 
tops flared, as shown in Fig. 19.9. The thickened slab is termed a drop panel, and the 
column flare is referred to as a column capital. Both of these serve a double purpose: 
They increase the shear strength of the floor system in the critical region around the 
column, and they provide increased effective depth for the flexural steel in the region 
of high negative bending moment over the support. Beamless systems with drop pan-
els or column capitals or both are termed flat slab systems (although almost all slabs 
in structural engineering practice are “flat” in the usual sense of the word), and are 
differentiated from flat plate systems, with absolutely no projections below the slab, 
which are described in the following section.

In general, flat slab construction is economical for live loads of 100 psf or 
more and for spans up to about 30 ft. It is widely used for storage warehouses, 
parking garages, and below-grade structures carrying heavy earth-fill loads, for 
example. For lighter loads such as in apartment houses, hotels, and office buildings, 
flat plates (Section 19.2g) or some form of joist construction (Sections 19.2d and h) 
will usually prove less expensive. For spans longer than about 30 ft, beams and 
girders are used because of the greater stiffness of that form of construction.

Flat slabs may be designed by the equivalent frame method described in detail 
in Chapter 13 or the strip method described in Chapter 24.

FIGURE 19.9
Flat slab garage floor with 
both drop panels and column 
capitals. (Courtesy of Portland 

Cement Association.)
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	 g.	 Flat Plate Slabs

A flat plate floor is essentially a flat slab floor with the drop panels and column capitals 
omitted, so that a floor of uniform thickness is carried directly by prismatic columns. 
Flat plate floors have been found to be economical and otherwise advantageous for such 
uses as apartment buildings, as shown in Fig. 19.10, where the spans are moderate (up 
to about 30 ft) and loads relatively light. Prestressed concrete (Chapter 22) flat plate 
construction for residential and light commercial buildings has spans up to 40 ft. The 
construction depth for each floor is held to the absolute minimum, with resultant savings 
in the overall height of the building. The smooth underside of the slab can be painted 
directly and left exposed for ceiling, or plaster can be applied to the concrete. Minimum 
construction time and low labor costs result from the very simple formwork.

Certain problems associated with flat plate construction require special atten-
tion. Shear stresses near the columns may be very high, requiring the use of special 
types of slab reinforcement there. The transfer of moments from slab to columns 
may further increase these shear stresses and requires concentration of negative flex-
ural steel in the region close to the columns. Both of these problems are treated in 
detail in Chapter 13. At the exterior columns, where such shear and moment trans-
fer may cause particular difficulty, the design is much improved by extending the 
slab past the column in a short cantilever.

Some flat plate buildings are constructed by the lift slab method, shown in 
Fig.  19.11. A casting bed (often doubling as the ground-floor slab) is placed, steel 
columns are erected and braced, and at ground level successive slabs, which will later 
become the upper floors, are cast. A membrane or sprayed parting agent is laid down 
between successive pours so that each slab can be lifted in its turn, starting with the top. 

FIGURE 19.10
Flat plate floor construction.  
(Courtesy of Portland Cement 

Association.)
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FIGURE 19.11
Lift slab construction used 
with flat plate floors; student 
dormitory at Clemson 
University, South Carolina. 
(Photograph by Arthur H. 

Nilson.)

FIGURE 19.12 
Lifting collar embedded in 
concrete slab.
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Jacks placed atop the columns are connected to threaded rods extending down the faces 
of the columns and connecting, in turn, to lifting collars embedded in the slabs, as 
shown in Fig. 19.12. When a slab is in its final position, shear plates are welded to the 
column below the lifting collar, or other devices are used to transfer the vertical slab 
reaction. Lifting collars such as those shown in Fig. 19.12, in addition to providing 
anchorage for the lifting rods, serve to increase the effective size of the support for the 
slab and consequently improve the shear strength of the slab. The successful erection 
of structures using the lift slab method requires precise control of the lifting operation 
at all times, because even slight differences in level of the support collars may drastically 
change moments and shears in the slab, possibly leading to reversal of loading. Cata-
strophic accidents have resulted from failure to observe proper care in lifting or to 
provide adequate lateral bracing for the columns (Ref. 19.8). As a result of these acci-
dents, this method of construction is used only by specialized contractors.

	 h.	 Two-Way Joist Floors

As in one-way floor systems, the dead weight of two-way slabs can be reduced con-
siderably by creating void spaces in what would otherwise be a solid slab. For the 
most part, the concrete removed is in tension and ineffective, so the lighter floor has 
virtually the same structural characteristics as the corresponding solid floor. Voids are 
usually formed using dome-shaped steel pans that are removed for reuse after the slab 
has hardened. Forms are placed on a plywood platform as shown in Fig. 19.13. Note 
in the figure that domes have been omitted near the columns to obtain a solid slab in 
the region of negative bending moment and high shear. The lower flange of each dome 
contacts that of the adjacent dome, so that the concrete is cast entirely against a metal 
surface, resulting in an excellent finished appearance of the slab. A wafflelike appear-
ance (these slabs are sometimes called waffle slabs) is imparted to the underside of the 
slab, which can be featured to architectural advantage, as shown in Fig. 19.14.

FIGURE 19.13
Two-way joist floor under 
construction with steel dome 
forms. (Courtesy of Ceco 

Construction Group.)
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TABLE 19.2
Equivalent slab thickness and weight of two-way joist floor systems

3 in. Top Slab 4​ 1 _ 2 ​ in. Top Slab

Depth of  
Pan Form,  

in.

Equivalent  
Uniform  

Thickness,  
in.

Weight,  
psf

Equivalent  
Uniform  

Thickness,  
in.

Weight,  
psf

36 in. Module (30 in. pans plus 6 in. ribs)

  8   5.7   71   7.2   90
10   6.4   80   7.9   99
12   7.2   90   8.7 109
14   8.0 100   9.5 119
16   8.9 111 10.3 129
20 10.6 132 12.1 151

24 in. Module (19 in. pans plus 5 in. ribs)

  8   6.3   79   7.8   98
10   7.3   91   8.8 110
12   8.2 103   9.8 122
14   9.3 116 10.7 134
16 10.3 129 11.8 148

Adapted from: CRSI Design Guides. Schaumburg, IL: Concrete Reinforcing Steel Institute, 2019.

FIGURE 19.14
Regency House Apartments, 
San Antonio, with 
cantilevered two-way joist 
slab plus integral beams on 
column lines. (Photograph by 

Arthur H. Nilson.)
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Two-way joist floors are designed following the usual procedures for two-way 
solid slab systems, as presented in Chapter 13, with the solid regions at the columns 
considered as drop panels. Joists in each direction are divided into column strip joists 
and middle strip joists, the former including all joists that frame into the solid head. 
Each joist rib usually includes two bars for positive-moment resistance, and one may 
be discontinued where no longer required. Negative steel is provided by separate 
straight bars running in each direction over the columns.

In design calculations, the self-weight of two-way joist floors is considered to 
be uniformly distributed, based on an equivalent slab of uniform thickness having 
the same volume of concrete as the actual ribbed slab. Equivalent thicknesses and 
weights are given in Table 19.2 for standard 30 and 19 in. pans of various depths 
and for either a 3 in. top slab or 4​ 1 _ 2 ​ in. top slab, based on normalweight concrete 
(150  lb/ft3).

	 19.3	 PRECAST CONCRETE FOR BUILDINGS

Section 19.2 emphasized cast-in-place reinforced concrete structures. Construction of 
these structures requires a significant amount of skilled on-site labor. There is, how-
ever, another class of concrete construction for which the members are manufactured 
off site in precasting yards, under factory conditions, and subsequently assembled on 
site, a process that provides significant advantages in terms of economy and speed of 
construction.

Precast concrete construction involves the mass production of repetitive and 
often standardized units: columns, beams, floor and roof elements, and wall panels. 
On large jobs, precasting yards are sometimes constructed on or adjacent to the site. 
More frequently, these yards are stationary regional enterprises that supply precast 
members to sizable areas within reasonable shipping distances, on the order of 
200  mi. Advantages of precast construction include less labor per unit because of 
mechanized series production; use of unskilled local labor, in contrast to skilled 
mobile construction labor; shorter construction time because site labor primarily 
involves only foundation construction and connecting the precast units; better quality 
control and higher concrete strength that are achievable under factory conditions; 
and greater independence of construction from weather and season. Disadvantages 
are the greater cost of transporting precast units, as compared with transporting 
materials, and the additional technical problems and costs of site connections of 
precast elements.

Precast construction is used in all major types of structures: industrial buildings, 
residential and office buildings, halls of sizable span, bridges, stadiums, and prisons. 
Precast members frequently are prestressed in the casting yard. In the context of the 
present chapter, it is irrelevant whether a precast member is also prestressed. Discus-
sion is focused on types of precast members and precast structures and on methods 
of connection; these are essentially independent of whether the desired strength of 
the member was achieved with ordinary reinforcement or by prestressing. A broader 
discussion of precast construction, which includes planning, design, materials, man-
ufacturing, handling, construction, and inspection, are found in Refs. 19.9 and 19.10.

	 a.	 Types of Precast Members

A number of types of precast units are in common use. Though most are not for-
mally standardized, they are widely available, with minor local variations. At the same 
time, the precasting process is sufficiently adaptable for special shapes developed for 
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particular projects to be produced economically, provided that the number of repeti-
tive units is sufficiently large. This is particularly important for exterior wall panels, 
which permit a wide variety of architectural treatments.

Wall panels are made in a considerable variety of shapes, depending on 
architectural requirements. The most frequent four shapes are shown in Fig. 19.15. 
These units are produced in one to four-story-high sections and up to 8 ft in width. 
They are used either as curtain walls attached to columns and beams or as bear-
ing walls. To improve thermal insulation, sandwich panels are used that consist 
of an insulation core (such as foam glass, glass fiber, or expanded plastic) between 
two layers of normalweight or lightweight concrete. The two layers must be ade-
quately interconnected through the core to act as one unit. A variety of surface 
finishes can be produced through the use of special exposed aggregates or of 
colored cement, sometimes employed in combination. The special design prob-
lems that arise in load-bearing wall panels, such as tilt-up construction, are dis-
cussed in Ref. 19.11.

Stresses in wall panels are frequently more severe in handling and during erec-
tion than in the finished structure, and the design must provide for these temporary 
conditions. Also, control of cracking is of greater importance in wall panels than in 
other precast units, for appearance more than for safety. To control cracking, the 
maximum tensile stress in the concrete, calculated by straight-line theory, should not 
exceed the modulus of rupture of the particular concrete with an adequate margin of 
safety. ACI Committee 533 (Ref. 19.12) recommends that tensile stresses for normal-
weight concrete be limited to 5​​√

__
 ​f​c​ ′​​​ under the effects of form removal, handling, 

transportation, impact, and live load. Maximum tensile stresses equal to 75 and 
85  percent of this value are recommended for all-lightweight and sand-lightweight 
concrete, respectively. A wealth of information on precast wall panels is found in 
Refs. 19.10 and 19.12.

Roof and floor elements are made in a wide variety of shapes adapted to spe-
cific conditions, such as span lengths, magnitude of loads, desired fire ratings, and 

FIGURE 19.15
Precast concrete wall panels.
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appearance. Figure  19.16 shows typical examples of the most common shapes, 
arranged in approximate order of increasing span length, even though the spans 
covered by the various configurations overlap widely.

Flat slabs (Fig.  19.16a) are usually 4 in. thick, although they are used as 
thin as 2​ 1 _ 2 ​ in. when continuous over several spans, and are produced in widths of 
4 to 8 ft and in lengths up to 36 ft. Depending on the magnitude of loads and on 
deflection limitations, they are used over roof and floor spans ranging from 8 to 
about 22  ft. For lower weight and better insulation and to cover longer spans, 
hollow-core planks (Fig. 19.16b) with a variety of shapes are used. Some of these 
are made by extrusion in special machines. Depths range from 6 to 15 in., with 
widths of 3 or 4 ft. Again depending on load and deflection requirements, they 
are used on roof spans from about 16 to 34 ft and on floor spans from 12 to 26 ft, 
which can be augmented to about 30 ft if a 2 in. topping is applied to act 
monolithically with the hollow plank.

For longer spans, double T members (Fig.  19.16c) are the most widely used 
shapes. Usual depths are from 14 to 36 in. They are used on roof spans up to 120 ft. 
When used as floor members, a concrete topping of at least 2 in. is usually applied 
to act monolithically with the precast members for spans up to about 50 ft, depend-
ing on load and deflection requirements. Finally, single T members are available in 
dimensions shown in Fig. 19.16d, mostly used for roof spans up to 100 ft and more.

For all of these units, the member itself or its flange constitutes the roof or 
floor slab. If the floor or roof proper is made of other material (for example, ply-
wood, gypsum, and plank), it can be supported on precast joists in a variety of shapes 
for spans from about 15 to 60 ft. Reference 19.10 addresses the design of both 
reinforced and prestressed concrete floor and roof units.

The shape of precast beams depends chiefly on the manner of framing. If 
floor and roof members are supported on top of the beams, these are mostly rec-
tangular in shape (Fig. 19.17a). To reduce total depth of floor and roof construc-
tion, the tops of beams are often made flush with the top surface of the floor 
elements. To provide bearing, the beams are then constructed as ledger beams 
(Fig. 19.17b) or L beams (Fig. 19.17c). Although these shapes pertain to building 
construction, precast beams or girders are also frequently used in highway bridges. 

FIGURE 19.16
Precast floor and roof 
elements.

(a ) Flat slab

(c ) Double T

(b ) Hollow plank

(d ) Single T

4′–8′

8′–12′ 6′–8′

14″–36″

8″

24″–36″

6″–15″

4′–0″ typical

4″

2″ topping
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As an example, Fig. 19.17d shows one of the various AASHTO bridge girders, so 
named because they were developed by the American Association of State High-
way and Transportation Officials.

If precast columns of single-story height are used so that the beams rest on 
top of the columns, simple prismatic columns are employed, which are available 
in sizes from about 12 × 12 to 24 × 24 in. (Fig. 19.18a). In this case, the beams 
are usually made continuous over the columns. Alternatively, in multistory con-
struction, the columns can be made continuous for up to about six stories. In this 
case, integral brackets are frequently used to provide a bearing for the beams, as 
shown in Fig. 19.18b (see also Section 19.3b). Occasionally, T columns are used 
for direct support of double T  floor members without the use of intermediate 
beams (Fig. 19.18c).

Figures  19.19 to 19.27 illustrate some of the many ways in which precast 
members have been used. Figure 19.19 shows a floor slab element being placed on 
precast columns with integral column capitals. The entire building, including elevator 

FIGURE 19.17
Precast beams and girders.

(a ) Rectangular beam (b ) Ledger beams

2′-3′
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and stair shafts, is precast concrete. The photograph in Fig.  19.20 was taken in a 
precasting yard producing a variety of L, T, and rectangular shapes. Figure  19.21 
shows symmetrical precast I beams, such as are used both for buildings and bridges. 
The projecting stirrup bars along the top flange provide secure interlock between the 
precast beams and a cast-in-place slab added later, ensuring composite action. 

FIGURE 19.18
Precast concrete columns.

(a ) (b ) (c )

FIGURE 19.19
Precast slab element with 
precast columns, beams,  
and lateral framing. (Photograph  

by Charles W. Dolan.)
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Figure 19.22 shows a multistory parking garage in which three-story precast columns 
support L-section and inverted T-section girders. The girders, in turn, carry 60 ft 
span prestressed single T beams, which provide the deck surface.

Figure 19.23 demonstrates that unusual architectural designs can be realized in 
precast concrete, as in this all-precast administration building. Wall panels are used 
to produce a curved facade. Wedge-shaped repetitive floor units span freely from the 
exterior facade to the interior curved beam and column framework. In the insurance 

FIGURE 19.20
Sand-blasted architectural 
finish applied to a precast  
L beam. (Photograph by 

Charles W. Dolan.)

FIGURE 19.21
Precast I beams designed for  
composite action with a deck  
slab to be cast in place. (Photo­

graph by Charles W. Dolan.)
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FIGURE 19.22
Precast parking garage at 
Cornell University. (Photo­

graph by Arthur H. Nilson.)

FIGURE 19.23
All precast administration 
building. (Courtesy of Portland 

Cement Association.)
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building shown in Fig. 19.24, 44 in. deep precast girders span 99 ft between exterior 
walls supported on four points each and provide six floors of office space entirely 
free of interior supports. The convention headquarters of Fig.  19.25 combines  
cast-in-place frames and floor slabs with precast double T roof beams and precast 

FIGURE 19.24
Precast girders with 99 ft 
span and 44 in. depth for  
a column-free interior.  
(Courtesy of Portland Cement 

Association.)

FIGURE 19.25
Precast roof and wall panels  
combined with cast-in-place  
frames and floor slabs.  
(Courtesy of Portland Cement 

Association.)
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wall panels of special design. Figure 19.26 shows a 21-story hotel under construc-
tion, which, except for the service units, consists entirely of box-shaped, room-sized 
modules completely prefabricated and stacked on top of each other. Abroad, such 
precast modules, with plumbing, wiring, and heating preinstalled, are widely used 
for multistory apartment buildings as an alternative to making similar apartment 
structures in precast wall, roof, and floor panels, which are more easily shipped but 
less easily erected than box-shaped modules.

Finally, Fig. 19.27 shows an example of the frequent combined use of structural 
steel with precast concrete. In this case, the framing of an eight-story hotel was done 
using bolted structural steel, while precast concrete floor and roof planks and precast 
wall panels were used for all other main structural components. This type of con-
struction is economical for 6 to 12-story buildings, where it provides savings in both 
cost and construction time. It is one example of the increasingly important combined 
use of various structural materials and methods.

	 b.	 Connections

Cast-in-place reinforced concrete structures, by their very nature, tend to be mon-
olithic and continuous. Connections, in the sense of joining two hitherto separate 
pieces, rarely occur in that type of construction. Precast structures, on the other 

FIGURE 19.26
Precast room-sized modules 
for a 21-story hotel. (Courtesy 

of Portland Cement Association.)
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FIGURE 19.27
Steel framing combined with 
precast concrete floor planks 
for an eight-story hotel. 
(Courtesy of Arcelor Mittal.)

hand, resemble steel construction in that the final structure consists of large numbers 
of prefabricated elements that are connected on site to form the finished structure. 
In both types of construction, such connections can be detailed to transmit gravity 
forces only, gravity and horizontal forces, or moments in addition to these forces. In 
the last case, a continuous structure is obtained much as in cast-in-place construction, 
and connections that achieve such continuity by appropriate use of special hardware, 
reinforcing steel, and concrete to transmit all tension, compression, and shear stresses 
are sometimes called hard connections. In contrast, connections that transmit reac-
tions in one direction only, analogous to rockers or rollers in steel structures, but 
permit a limited amount of motion to relieve other forces, such as horizontal reac-
tion components, are sometimes known as soft connections (Ref. 19.13). In almost 
all precast connections, bearing plates or pads are used to ensure distribution and 
reasonable uniformity of bearing pressures. Bearing plates are made of steel, while 
bearing pads are made of materials such as chloroprene, fiber-reinforced polymers, 
and Teflon. If bearing plates are used, and the plates on two members are suitably 
joined by welding or other means, a hard connection is obtained in the sense that 
horizontal, as well as vertical, forces are transmitted. On the other hand, bearing 
pads transmit gravity loads but can permit sizable horizontal deformations and, thus, 
relieve horizontal forces.
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Precast concrete structures are subject to dimensional changes from creep, 
shrinkage, and relaxation of prestress in addition to temperature, while in steel 
structures only temperature changes produce dimensional variations. In the early 
development of precast construction, there was a tendency to use soft connections 
extensively to permit these dimensional changes to occur without causing restraint 
forces in the members, and particularly in the connections. Subsequent experience, 
however, has shown that the resulting structures possess insufficient stability against 
lateral forces, such as high wind and, particularly, earthquake effects. Therefore, 
current practice emphasizes the use of hard connections that provide a high degree 
of continuity (Refs. 19.10 and 19.14). When designing hard connections, provisions 
must be made to resist the restraint forces that are caused by the previously described 
volume changes (Ref. 19.10). Considerable information concerning this and other 
matters relating to connections is found in Refs. 19.10 and 19.14.

Bearing stresses on plain concrete are limited by ACI Code 22.8.3.2 to 
0.85ϕ​​  f​c​ ′​​, except when the supporting area is wider on all sides than the loaded 
area A1. In such a case this value of the permissible bearing stress may be multi-
plied by ​​√

_____
 A2∕A1​​ but not more than 2.0, where A2 is the maximum portion of the 

supporting surface that is geometrically similar to and concentric with the loading 
area (see Section 15.6b).

In the design of connections, it is prudent to use load factors that exceed those 
required for the connected members. This is so because connections are generally sub-
ject to high stress concentrations that preclude the development of much ductility. In 
contrast, the members connected are likely to possess considerable ductility if designed 
by usual ACI Code procedures and will give warning of impending collapse if over-
loading should take place. In addition, imperfections in connection geometry may cause 
large changes in the magnitude of stresses compared with those assumed in the design.

In designing members according to the ACI Code, load factors of 1.2 and 1.6 
are applied to dead and live loads, D and L respectively, to determine the required 
strength. When volume change effects T are considered, they are often treated as dead 
load, and the factored load U is calculated from the equation U = 1.2(D + T   ) + 1.6L.

A wide variety of connection details for precast concrete building components 
have evolved, only a few of which are shown here as more or less representative con-
nections. Many additional possibilities are described fully in Refs. 19.10 and 19.14.

Column base connections are generally accomplished using steel base plates 
that are anchored into the precast column. Figure 19.28a shows a column base detail 
with projecting base plate. Four anchor bolts are used, with double nuts facilitating 
erection and leveling of the column. Typically a minimum of 2 in. of nonshrink grout 
is used between the top of the pier, footing, or wall and the bottom of the steel base 
plate. Column reinforcement is welded to the top face of the base plate. Tests have 
confirmed that such column connections can transmit the full moment for which the 
column is designed, if properly detailed.

An alternative base detail is shown in Fig. 19.28b, with the dimensions of the 
base plate the same as, or slightly smaller than, the outside column dimensions. 
Anchor bolt pockets are provided, either centered on the column faces as shown or 
located at the corners. Bolt pockets are grouted after the nuts are tightened. Column 
bars, not shown here, would be welded to the top face of the base plate as before. 
Figure  19.29  shows the base plate detail, similar to Fig.  19.28b, that was used for 
the precast three-story columns in the parking garage shown in Fig. 19.22.

In Fig.  19.28c, the main column bars project from the ends of the precast 
member a sufficient distance to develop their strength by bond. The projecting bars 
are inserted into grout-filled holes cast in the foundation when it is placed.
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FIGURE 19.28
Column base connections. 
See Chapter 21 for bolt 
anchorage details.
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FIGURE 19.29
Detail at base of precast 
column of Cornell University 
parking garage shown in  
Fig. 19.22. (Photograph by 

Arthur H. Nilson.)
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In all of the cases shown, confining steel should be provided around the anchor 
bolts in the form of closed ties. A minimum of four No. 3 (No. 10) ties is recommended, 
placed on 3 in. centers near the top surface of the pier or wall. Tie reinforcement in 
the columns should be provided as usual.

Figure 19.30 shows several beam-to-column connections. In all cases, rectan-
gular beams are shown, but similar details apply to I or T beams. The figure shows 
only the basic geometry, and auxiliary reinforcement, anchors, and ties are omitted 
for the sake of clarity.

Figure  19.30a shows a joint detail with a concealed haunch. Well-anchored 
bearing angles are provided at the column seat and beam end. This type of connec-
tion may be used to provide vertical and horizontal reaction components, and with 
the addition of post-tensioned prestressing, provides moment resistance as well.

Figure  19.30b shows a typical bracket, common for industrial construction 
where the projecting bracket is not objectionable. The seat angle is welded to rein-
forcing bars anchored in the column. A steel bearing plate is used at the bottom of 
the beam and anchored into the concrete.

FIGURE 19.30
Beam-to-column 
connections.
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The embedded steel shape in Fig.  19.30c is used when it is necessary to 
avoid projections beyond the face of the column or below the bottom of the beam. 
A socket is formed in casting the beam, with steel angle or plate at its top, to 
receive the beam stub. A steel connection can also be used in place of the bracket 
shown in Fig. 19.30b.

Finally, Fig. 19.30d shows a doweled connection with bars projecting from the 
column into holes formed in the beam ends. These are grouted after the beams are in 
position. This connection is popular in precast concrete construction but has little 
flexural capacity (Ref. 19.15).

Figure 19.31 shows several typical column-to-column connections. Figure 19.31a 
shows a detail using anchor bolt pockets and a double-nut system for leveling the 
upper column. Bolts can also be located at the center of the column faces, as shown 
in Fig.  19.28b. The detail shown in Fig.  19.31b permits the main steel to be lap-
spliced with that in the column below. One of the many possibilities for splicing a 
column through a continuous beam is shown in Fig. 19.31c. Main reinforcing bars 
in both upper and lower columns should be welded to steel cap and base plates to 
transfer their load, and anchor bolts should be designed with the same consideration. 
Closely spaced ties must be provided in the columns and in this case in the beam 
as well, to transfer the load between columns.

FIGURE 19.31
Column-to-column 
connections.
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Slab-to-beam connections generally use some variation of the detail shown in 
Fig.  19.32. Support is provided by an L beam (Fig.  19.32a) or an inverted T  beam 
(Fig. 19.32b) that is flush with the top of the precast floor planks. The detail shown is 
sufficient if no mechanical tie is required between the precast parts. Where a positive 
connection is required, steel plates are set into the top of the members, suitably anchored, 
and short connecting plates are welded so as to attach the built-in plates.

Basic tools for the design of precast concrete connections are the shear friction 
design method described in detail in Chapter 5 and the strut-and-tie model described 
in Chapter 17. Example 5.6 (Section 5.9) demonstrated the use of the shear-friction 
approach to determining the reinforcement for the end-bearing region of a precast 
concrete girder. The use of both the shear-friction method and a strut-and-tie model 
for joint behavior was shown in Section 18.7, and Example 18.5 presented the 
detailed design of a bracket for a precast concrete column. Additional design infor-
mation pertaining to precast concrete connection design is found in Refs. 19.10, 
19.13, and 19.14.

	 c.	 Structural Integrity

Precast concrete structures normally lack the joint continuity and high degree of redun-
dancy characteristic of monolithic, cast-in-place reinforced concrete construction. Pro-
gressive collapse in the event of abnormal loading, in which the failure of one element 
leads to the collapse of another, and then another, can produce catastrophic results. 
For this reason, the structural integrity of precast concrete structures is specifically 
addressed in ACI Code 16.2.4 and 16.2.5. ACI Code 16.2.4 does not permit the use of 
“soft” connections that rely solely on friction caused by gravity forces. Full moment-
resisting connections are unusual, but some positive means of connecting members to 
their supports, with due regard to the need to accommodate dimensional changes asso-
ciated with creep, shrinkage, and temperature effects, is strongly recommended.

In addition, experience with precast structures has shown that the introduc-
tion of special reinforcement in the form of tension ties, though adding little to 
the cost of construction, can contribute greatly to maintaining structural integrity 
in the event of extraordinary loading, such as loads caused by extreme winds, 
earthquake, or explosion. This tension reinforcement is best arranged in a three-
dimensional grid, usually on the column lines, tying the floors together vertically 
and in both horizontal directions. For precast concrete construction, ACI Code 
16.2.1.8, 16.2.4, and 16.2.5 require that tension ties be provided in the transverse, 
longitudinal, and vertical directions of the structure and around its perimeter. 
Specific details vary widely. Although no specific guidance is offered in either the 

FIGURE 19.32
Slab-to-beam connections.
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ACI Code or Commentary regarding steel placement or design forces, valuable 
suggestions are found in Refs. 19.9, 19.10, and 19.14.

	 19.4	 DIAPHRAGMS

Diaphragms are primarily horizontal elements, such as floors and roofs, that in addi-
tion to carrying out-of-plane loads also transfer lateral loads, such as from wind and 
earthquake, to vertical elements of the lateral-force-resisting system, typically con-
sisting of walls and columns. Walls can also serve as diaphragms. Diaphragms are an 
integral part of most building systems and may consist of cast-in-place and precast 
concrete elements.

For many years, the role of roofs and floors in transferring loads to and from 
the vertical elements of the lateral-force-resisting system was taken for granted, but 
poor performance, primarily under seismic loading, has demonstrated the need to 
develop and codify effective design procedures (Ref. 19.16).

	 a.	 Load Transfer by Diaphragms

Figure 19.33 illustrates a number of the roles played by diaphragms in buildings. These 
roles include carrying out-of-plane gravity load, transferring loads to and distributing 
loads between the vertical elements of the lateral-force-resisting system, tying the verti-
cal elements of the lateral-force-resisting system together, carrying thrust from inclined 
columns, and resisting soil pressure. The forces within diaphragms include those due to 
the application of lateral loads, those due to the distribution of loads from the diaphragms 
to the vertical elements of the lateral-force-resisting system, and those transferred from 
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FIGURE 19.33
Diaphragm actions.  
(Adapted from Ref. 19.17.)
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the vertical elements of the lateral-force-resisting system to the diaphragms. Due to 
the latter two roles, regions of diaphragms must be designed as distributor or collector 
elements, the latter term being the one used by the ACI Code (Ref. 19.18).

The components of a diaphragm are illustrated in Figs. 19.34–19.36. The dia-
phragm shown in Fig. 19.34a is a floor slab that must carry a lateral load, supported 
by walls on each end. As shown in Fig.  19.34b, the diaphragm may be considered 
to perform as a beam with the bending moment carried primarily by tension and 
compression chords. Shear is considered to be distributed uniformly through the 
depth of the diagram (Fig. 19.34c).

The lateral forces in a diaphragm must be transferred to the vertical elements of 
the lateral-force-resisting system. This transfer is done through regions in the diaphragm 
referred to as collectors. As shown in Fig. 19.35a, collectors may have the same width 
as the vertical elements of the lateral-force-resisting system, in this case walls, or may 
have a width that is greater than the width of the wall. Figure  19.35b illustrates the 
nature of the forces in the collector, which range from compression on one side of  
the wall to tension on the other. The forces increase from zero at the extremes of the 
collector to a maximum where they are transferred to the vertical element.

In the case shown in Fig. 19.36, forces from the wall are transferred to a floor 
slab that, in turn, transfers the forces to a basement wall. In this case, the collector 
serves as a “distributor,” transferring compression forces on one side and tension 
forces on the other side, which are ultimately carried by the surrounding diaphragm 
away from the plane of the wall.

FIGURE 19.34
Idealization of diaphragm.  
(Adapted from Ref. 19.17.)
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FIGURE 19.35
Collectors. (Adapted from Ref. 19.17.)
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	 b.	 ACI Provisions for Diaphragms

Chapter 12 of the ACI Code deals with the design of diaphragms, including both cast-
in-place and precast elements. Diaphragms in structures in seismic design categories 
D, E, and F are covered in ACI Code 18.12 and Chapter 20.

The ACI Code requires that the design process for diaphragms consider 
(1)  in-plane forces due to lateral loads, (2) forces caused by differences in lateral 
deformation properties between the vertical elements connected by the diaphragm, 
(3)  forces at connections between the diaphragm and vertical framing or nonstruc-
tural elements, (4) bracing forces, such as provided by sloped columns, and (5) out-
of-plane forces due to gravity or other loads applied to the surface of the diaphragm, 
as illustrated in Fig. 19.33. The factored load combinations listed in Table 1.2 apply 
to diaphragms, as they do to other structural members.

A number of different modeling and analysis procedures are allowed by the 
ACI Code, which permits the use of “any set of reasonable and consistent assump-
tions” for diaphragm stiffness to calculate in-plane factored moments, shears, and 
axial loads. ACI 12.4.2.4 permits a range of options, including modeling the dia-
phragm as rigid or flexible, using an analysis that establishes upper and lower bounds 
for in-plane stiffness, using finite element models, and using strut-and-tie models, 
as discussed in Chapter 17. ASCE/SEI 7 (Ref. 19.19) includes modeling criteria  
for structures subjected to wind and earthquake loading. Strength reduction factors 
ϕ are shown in Table 1.3.

When designed for moment and axial load, diaphragms can be treated as beams 
or columns, as appropriate. Reinforcement resisting tension due to bending in the 
plane of the diaphragm must be located within h/4 of the tension edge of the dia-
phragm, where h is the diaphragm depth at that location. If the depth changes along 
the span, the reinforcement can be developed in adjacent segments of the diaphragm 
that are not within the h/4 limit.

For diaphragms that are cast-in-place, the nominal shear strength is given by

	 Vn = Acv ​​( 2λ​√
__

 ​f​c​ ′​​ + ρt fy )​​	 (19.1)

where Acv is the gross area of the concrete bounded by the diaphragm thickness and 
depth, reduced to account for any void areas. The value of ​​√

__
 ​f​c​ ′​​​ used in the calculation 

may not exceed 100 psi, and the reinforcement ratio ρt is for the distributed reinforce-
ment parallel to the in-plane shear. For shear design, ϕ = 0.75 or a lower value appro-
priate for seismic design, as discussed in Section 20.7.

The dimensions of cast-in-place diaphragms must be selected so that

	 Vu ≤ ϕ  8Acv​​√
__

 ​f​c​ ′​​​	 (19.2)

where ​​√
__

 ​f​c​ ′​​​ used in the calculation may not exceed 100 psi.
The ACI Code also includes shear provisions for diaphragms with cast-in-place 

concrete toppings on precast elements and interconnected precast elements.
Where shear is transferred from a diaphragm to a collector or from a diaphragm 

or collector to a vertical element of the lateral-force-resisting system, the force trans-
fer must be designed either in accordance with the shear-friction provisions described 
in Section 5.9 or, where mechanical connectors or dowels are used, consideration 
must be given to the effects uplift and rotation of the vertical elements of the lateral- 
force-resisting system.

ACI Code 12.5.4 requires that collectors extend from vertical elements, as 
needed, to transfer the shear force from the diaphragm to the vertical element 
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(Fig.  19.35). A collector may be discontinued along lengths of vertical elements 
where the transfer of forces is not required. Collectors are designed as tension mem-
bers, compression members, or both. The length of a collector must be the greater 
of the length required to develop the reinforcement in tension and the length required 
to transfer the design forces to the vertical element through shear-friction, mechan-
ical connectors, or other force transfer mechanisms.

The reinforcement used in diaphragms must be at least that required for 
temperature and shrinkage stresses for slabs, as described in Section 12.3a, and 
floors and roofs that serve as diaphragms must meet the reinforcement limits for 
one-way or two-way slabs, as appropriate. Reinforcement required to resist in-plane 
forces is in addition to that designed to resist other load effects, with the exception 
that shrinkage and temperature reinforcement may be used to resist diaphragm 
in-plane forces.

	 19.5	 ENGINEERING DRAWINGS FOR BUILDINGS

Design information is conveyed to the builder mainly by engineering drawings. Their 
preparation is therefore a matter of utmost importance, and they should be carefully 
checked by the design engineer to ensure that concrete dimensions and reinforcement 
agree with the calculations.

Engineering drawings for buildings usually consist of a plan view of each floor 
showing overall dimensions and locating the main structural elements, cross-sectional 
views through typical members, and beam and slab schedules that give detailed 
information on the concrete dimensions and reinforcement in tabular form. Sectional 
views are usually drawn to a larger scale than the plan and serve to locate the steel 
and establish cutoff and bend points as well as to define the shape of the member. 
Usually a separate drawing is included that gives, in the form of schedules and cross 
sections, the details of columns and footings.

The construction documents, including the plans, specifications, and cost esti-
mates, provide detailed descriptions of the material strengths. Additionally, many 
building officials, particularly in active seismic regions, require a description of the 
structural framing system, lateral-force-resisting system, and design live loads to be 
included on the structural drawings. Typical concrete design drawings and details 
are in Ref. 19.4. ACI Code Chapter 26 identifies the information needed in construc-
tion documents and the conformance requirements for acceptance of work.
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	 20.1	 INTRODUCTION

Earthquakes result from the sudden movement of tectonic plates in the earth’s crust. 
The movement takes place at fault lines, and the energy released is transmitted 
through the earth in the form of waves that cause ground motion many miles from the 
epicenter. Regions adjacent to active fault lines are the most prone to experience earth-
quakes. The map in Fig. 20.1 shows the maximum considered ground motion for the 
contiguous 48 states. The mapped values, expressed as a percent of gravity, represent 
the expected peak acceleration of a single-degree-of-freedom system with a 0.2 sec 
period and 5 percent of critical damping. Known as the 0.2 sec spectral response 
acceleration SS (subscript S for short period), it is used, along with the 1.0 sec spectral 
response acceleration S1 (mapped in a similar manner), to establish the loading criteria 
for seismic design. Accelerations SS and S1 are based on historical records and local 
geology. For most of the country, they represent earthquake ground motion with a 
“likelihood of exceedance of 2 percent in 50 years,” a value that is equivalent to a 
return period of about 2500 years (Ref. 20.1).

As experienced by structures, earthquakes consist of random horizontal and 
vertical movements of the earth’s surface. As the ground moves, inertia tends to keep 
structures in place (Fig. 20.2), resulting in the imposition of displacements and forces 
that can have catastrophic results. The purpose of seismic design is to proportion 
structures so that they can withstand the displacements and the forces induced by 
the ground motion.

Historically in North America, seismic design has emphasized the effects of 
horizontal ground motion because the horizontal components of an earthquake usually 
exceed the vertical component and because structures are usually much stiffer and 
stronger in response to vertical loads than they are in response to horizontal loads. 
Experience has shown that the horizontal components are the most destructive. For 
structural design, the intensity of an earthquake is usually described in terms of the 
peak ground acceleration as a fraction of the acceleration of gravity, that is, 0.1g, 0.2g, 
or 0.3g. Although peak acceleration is an important design parameter, the frequency 
characteristics and duration of an earthquake are also important; the closer the 
frequency of the earthquake motion is to the natural frequency of a structure and the 
longer the duration of the earthquake, the greater the potential for damage.

Based on elastic behavior, structures subjected to a major earthquake would be 
required to undergo large displacements. However, North American practice (Ref. 20.2) 
requires that structures be designed for only a fraction of the forces associated with 
those displacements. The relatively low design forces are justified by the observations 
that buildings designed for low forces have behaved satisfactorily and that structures 
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FIGURE 20.1
Map showing  
maximum considered 
earthquake ground  
motion, 0.2 sec 
spectral response 
acceleration  
(5 percent of critical 
damping), for the 
contiguous United 
States. (United States 

Geological Survey)
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dissipate significant energy as the materials yield and behave inelastically. This non-
linear behavior, however, usually translates into increased displacements, which may 
require significant ductility and result in major nonstructural damage. Displacements 
may also be of such a magnitude that the strength of the structure is affected by 
stability considerations, such as discussed for slender columns in Chapter 10.

Designers of structures that may be subjected to earthquakes, therefore, are 
faced with a choice: (1) providing adequate stiffness and strength to limit the response 
of structures to the elastic range or (2) providing lower-strength structures, with 
presumably lower initial costs, that have the ability to withstand large inelastic defor-
mations while maintaining their load-carrying capability.

	 20.2	 STRUCTURAL RESPONSE

The safety of a structure subjected to seismic loading rests on the designer’s under-
standing of the response of the structure to ground motion. For many years, the goal 
of earthquake design in North America has been to construct buildings that will with-
stand moderate earthquakes without damage and severe earthquakes without collapse, 
although with the passage of time, the advantages of minimizing damage due to severe 
earthquakes have become apparent. Building codes have undergone regular modifica-
tion as major earthquakes have exposed weaknesses in existing design criteria.

Design for earthquakes differs from design for gravity and wind loads in the 
relatively greater sensitivity of earthquake-induced forces to the geometry of the 
structure. Without careful design, forces and displacements can be concentrated in 
portions of a structure that are not capable of providing adequate strength or ductil-
ity. Steps to strengthen a member for one type of loading may actually increase the 
forces in the member and change the mode of failure from ductile to brittle.

	 a.	 Structural Considerations

The closer the frequency of the ground motion is to one of the natural frequencies of 
a structure, the greater the likelihood of the structure experiencing resonance, result-
ing in an increase in both displacement and damage. Therefore, earthquake response 
depends strongly on the geometric properties of a structure, especially height. Tall 
buildings respond more strongly to long-period (low-frequency) ground motion, while 
short buildings respond more strongly to short-period (high-frequency) ground motion. 
Figure  20.3 shows the shapes for the principal modes of vibration of a three-story 
frame structure. The relative contribution of each mode to the lateral displacement of 
the structure depends on the frequency characteristics of the ground motion. The first 
mode (Fig. 20.3a) usually provides the greatest contribution to lateral displacement. 

FIGURE 20.2
Structure subjected to ground 
motion.
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subjected to
earthquake-induced
forces
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The taller a structure, the more susceptible it is to the effects of higher modes of vibra-
tion, which are generally additive to the effects of the lower modes and tend to have 
the greatest influence on the upper stories. Under any circumstances, the longer the 
duration of an earthquake, the greater the potential for damage.

The configuration of a structure also has a major effect on its response to an 
earthquake. Structures with a discontinuity in stiffness or geometry can be subjected 
to undesirably high displacements or forces. For example, the discontinuance of shear 
walls, infill walls, or even cladding at a particular story level, such as shown in 
Fig. 20.4, will have the result of concentrating the displacement in the open, or “soft,” 
story. The high displacement will, in turn, require a large amount of ductility if the 
structure is not to fail. Such a design is not recommended, and the stiffening members 
should be continued to the foundation. The problems associated with a soft story are 
illustrated in Fig. 20.5, which shows the Olive View Hospital following the 1971 San 
Fernando earthquake. The high ductility “demand” could not be satisfied by the col-
umn at the right, with low amounts of transverse reinforcement. Even the columns at 
center, with significant transverse reinforcement, performed poorly because the trans-
verse reinforcement was not continued into the joint, resulting in the formation of 
hinges at the column ends. Figure 20.6 illustrates structures with vertical geometric 
and plan irregularities, which result in torsion induced by ground motion.

Within a structure, stiffer members tend to pick up a greater portion of the 
load. When a frame is combined with a shear wall, this can have the positive effect 
of reducing the displacements of the structure and decreasing both structural and 
nonstructural damage. However, when the effects of higher stiffness members, such 
as masonry infill walls, are not considered in the design, unexpected and often 
undesirable results can occur.

FIGURE 20.3
Modal shapes for a three-
story building: (a) first mode; 
(b) second mode; (c) third 
mode. (Adapted from Ref. 20.3.)
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Finally, any discussion of structural considerations would be incomplete without 
emphasizing the need to provide adequate separation between structures. Lateral 
displacements can result in structures coming in contact during an earthquake, result-
ing in major damage due to hammering, as shown in Fig. 20.7. Spacing requirements 
to ensure that adjacent structures do not come into contact as the result of 
earthquake-induced motion are specified in Ref. 20.2.

	 b.	 Member Considerations

Members designed for seismic loading must perform in a ductile fashion and dissipate 
energy in a manner that does not compromise the strength of the structure. Both the 
overall design and the structural details must be considered to meet this goal.

FIGURE 20.5
Damage to soft story columns 
in the Olive View Hospital  
as a result of the 1971 San 
Fernando earthquake. 
(Photograph by James L. Stratta. 

Courtesy of the Federal 

Emergency Management Agency.)

FIGURE 20.6
Structures with (a) vertical 
geometric and (b) plan 
irregularities. (Adapted  

from Ref. 20.3.)
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The principal method of ensuring ductility in members subject to shear and 
bending is to provide confinement for the concrete. This is accomplished through 
the use of closed hoops or spiral reinforcement, which enclose the core of beams 
and columns. Specific criteria are discussed in Sections 20.4, 20.5, and 20.6. When 
confinement is provided, beams and columns can undergo nonlinear cyclic bending 
while maintaining their flexural strength and without deteriorating due to diagonal 
tension cracking. The formation of ductile hinges allows reinforced concrete frames 
to dissipate energy.

Successful seismic design of frames requires that the structures be propor-
tioned so that hinges occur at locations that least compromise strength. For a frame 
undergoing  lateral displacement, such as shown in Fig. 20.8a, the flexural capacity 
of  the  members at a joint (Fig.  20.8b) should be such that the columns are 
stronger  than  the beams. In this way, hinges will form in the beams rather than the 
columns,  minimizing the portion of the structure affected by nonlinear behavior 
and  maintaining the overall vertical load capacity. For these reasons, the “weak 
beam–strong column” approach is used to design reinforced concrete frames subject 
to seismic  loading.

When hinges form in a beam, or in extreme cases within a column, the moments 
at the end of the member, which are governed by flexural strength, determine the 

FIGURE 20.7
Damage caused by 
hammering for buildings  
with inadequate separation  
in the 1985 Mexico City 
earthquake. (Photograph 

courtesy of Jack Moehle)
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shear that must be carried, as illustrated in Fig.  20.8c. The shear V corresponding 
to a flexural failure at both ends of a beam or column is

	 V = ​ ​M​
+​ + ​ M​−​ _________ 

ℓn

 ​ 	 (20.1)

where M+ and M− = flexural capacities at the ends of the member
                   ℓn = clear span between supports

The member must be checked for adequacy under the shear V in addition to 
shear resulting from dead and live gravity loads. Transverse reinforcement is added, 
as required. For members with inadequate shear capacity, the response will be dom-
inated by the formation of diagonal cracks, rather than ductile hinges, resulting in a 
substantial reduction in the energy dissipation capacity of the member.

If short members are used in a frame, the members may be strong in flexure 
compared to their shear capacity. An example would be columns in a structure with 
deep spandrel beams or with “nonstructural” walls with openings that expose a 
portion of the columns to the full lateral load. As a result, the exposed region, called 
a captive column, responds by undergoing a shear failure, as shown in Fig. 20.9.

The lateral displacement of a frame places beam-column joints under high shear 
stresses because of the change from positive to negative bending in the flexural mem-
bers from one side of the joint to the other, as shown in Fig. 20.8d. The joint must be 

FIGURE 20.8
Frame subjected to lateral 
loading: (a) deflected shape; 
(b) moments acting on beam-
column joint; (c) deflected 
shape and forces acting on a 
beam; and (d) forces acting 
on faces of a joint due to  
lateral load.
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able to withstand the high shear stresses and allow for a change in bar stress from 
tension to compression between the faces of the joint. Such a transfer of shear and 
bond is often made difficult by congestion of reinforcement through the joint. Thus, 
designers must ensure that joints not only have adequate strength but are also con-
structable. Two-way systems without beams are especially vulnerable because of low 
ductility at the slab-column intersection.

Additional discussion of seismic design can be found in Refs. 20.3 to 20.8.

	 20.3	 SEISMIC LOADING CRITERIA

In the United States, the design criteria for earthquake loading are based on design 
procedures developed by the Building Seismic Safety Council (Ref. 20.1) and incor-
porated in Minimum Design Loads for Buildings and Other Structures (ASCE∕SEI 7) 
(Ref. 20.2). The values of the spectral response accelerations SS and S1 are obtained 
from detailed maps produced by the United States Geological Survey† (such as, 
Fig. 20.1) and included in ASCE∕SEI 7. The values of SS and S1 are used to determine 
the spectral response accelerations SDS and SD1 that are used in design.

	 SDS = ​ 2 __ 
3
 ​ FaSS	 (20.2)

	 SD1 = ​ 2 __ 
3
 ​ Fv  S1	 (20.3)

where Fa and Fv are site coefficients that range from 0.8 to 2.4 and from 0.8 to 4.2, 
respectively, as a function of the geotechnical properties of the building site and the 

† A full set of maps is available at the United States Geological Survey website.

FIGURE 20.9
Shear failure in a captive 
column without adequate 
transverse reinforcement. 
(Photograph courtesy of Jack 

Moehle.)
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values of SS and S1, respectively. Higher values of Fa and Fv are possible for some sites. 
The coefficients Fa and Fv increase in magnitude as site conditions change from hard 
rock to thick, soft clays and (for softer foundations) as the values of SS and S1 decrease.

Both SDS and SD1 are used to construct the design response spectrum shown  in 
Fig.  20.10, which relates the spectral response acceleration Sa, used to calculate  the 
earthquake force, to the fundamental period of the structure T. In the spectrum, 
T0 = 0.2SD1∕SDS, TS = SD1∕SDS, and TL is the site-specific long-period transition period, 
which, like SS and S1, is obtained from maps provided by the U.S. Geological Survey.

Structures are assigned to one of six Seismic Design Categories (SDC) 
A through F as a function of (1) structure occupancy and use and (2) the values of 
SDS and SD1. Requirements for seismic design and detailing are minimal for SDCs A 
and B but become progressively more rigorous for SDCs C through F.

As presented in Table 1.2, earthquake loading is included in two combinations 
of factored load.

	 U = 1.2D + 1.0E + 1.0L + 0.2S	 (20.4)

	 U = 0.9D + 1.0E	 (20.5)

where D = dead load
         E = earthquake load
          L = live load
           S = snow load

The load factor for live load L may be reduced to 0.5, except for garages, areas occu-
pied as places of public assembly, and areas where L is greater than 100 psf. 

For SDC A, the earthquake load E is a horizontal load equal to 1 percent of 
the dead load D assigned to each floor. For SDC B through F, the values of the 
earthquake load E used in Eqs. (20.4) and (20.5) are, respectively,

	 E = Eh + Ev = ρQE + 0.2SDSD	 (20.6a)

	 E = Eh − Ev = ρQE − 0.2SDSD	 (20.6b)

FIGURE 20.10
Design response spectrum.  
(Adapted from Ref. 20.3.)
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where Eh = horizontal seismic load effect 
       Ev = vertical seismic load effect
      QE = earthquake-induced horizontal seismic forces
        ρ = redundancy factor

The factor ρ is taken as 1.0 for structures assigned to SDC B and C and as 1.3 for 
structures assigned to SDC D, E, and F, except for structures meeting specific criteria 
described in Ref. 20.2, in which case ρ may be taken as 1.0.

Combining Eq. (20.4) with Eq. (20.6a) and Eq. (20.5) with Eq. (20.6b) gives

	 U = (1.2 + 0.2SDS)D + ρQE + 1.0L + 0.2S	 (20.7)

	 U = (0.9 − 0.2SDS)D + ρQE	 (20.8)

Equations (20.4) and (20.6a) are used when dead load adds to the effects of 
horizontal ground motion, while Eqs. (20.5) and (20.6b) are used when dead load 
counteracts the effects of horizontal ground motion. Thus, the total load factor for 
dead load is greater than 1.2 in Eq. (20.7) and less than 0.9 in Eq. (20.8).

ASCE∕SEI 7 specifies four procedures (if SDC A is included) for determining 
the earthquake load Eh. These procedures include three progressively more detailed 
methods that represent earthquake loading through the use of equivalent static lateral 
loads, modal response spectrum analysis, and nonlinear seismic response-history 
analysis. The method selected depends on the seismic design category. These proce-
dures are discussed next.

	 a.	 Equivalent Lateral Force Procedure

According to ASCE∕SEI 7 (Ref. 20.2), equivalent lateral force analysis may be applied 
to all structures with SDS less than 0.33g and SD1 less than 0.133g (SDC B and C), 
as well as structures subjected to much higher design spectral response accelerations 
(SDC D, E, and F), if the structures meet certain requirements. More sophisticated 
dynamic analysis procedures must be used otherwise.

The equivalent lateral force procedure provides for the calculation of the total 
lateral force, defined as the design base shear V, which is then distributed over the 
height of the building. The design base shear V is calculated for a given direction 
of loading according to the equation

	 V = CsW	 (20.9)

where W is the total dead load plus applicable portions of other loads and

	 Cs = ​ 
SDS ____ 
R∕Ie

 ​	 (20.10)

which need not be greater than

	 Cs = ​ 
SD1 ______ 

T(R∕Ie)
 ​            for T ≤ TL	 (20.11)

or

	 Cs = ​ 
SD1TL ________ 

T 2 (R∕Ie)
 ​      for T > TL	 (20.12)

but may not be less than

	 Cs = 0.44ISDS ≥ 0.01	 (20.13)

or where S1 ≥ 0.6g,
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620      DESIGN OF CONCRETE STRUCTURES  Chapter 20

	 Cs = ​ 
0.5S1 _____ 
R∕Ie

 ​	 (20.14)

where R = �response modification factor (depends on structural system); values of 
R for most reinforced concrete structures range from 4 to 8, based on ability 
of structural system to sustain earthquake loading and to dissipate energy

        Ie = �occupancy important factor  =  1.00, 1.25, or 1.50, depending upon the 
occupancy and use of structure

         T = fundamental period of structure

According to ASCE∕SEI 7, the period T can be calculated based on an anal-
ysis that accounts for the structural properties and deformational characteristics of 
the elements within the structure. Approximate methods may also be used in which 
the fundamental period of the structure may be approximated as

	 Ta = Ct ​h​ n​ x ​	 (20.15)

where hn = height above the base to the highest level of structure, ft
        Ct = �0.016 for reinforced concrete moment-resisting frames in which frames 

resist 100 percent of required seismic force and are not enclosed or adjoined 
by more rigid components that will prevent frame from deflecting when sub-
jected to seismic forces, and 0.020 for all other reinforced concrete buildings

            x = 0.90 for Ct = 0.016 and 0.75 for Ct = 0.020

Alternately, for structures not exceeding 12 stories in height, in which the 
lateral-force-resisting system consists of a moment-resisting frame and the story 
height is at least 10 ft,

	 Ta = 0.1N	 (20.16)

where N = number of stories.

For shear wall structures, ASCE∕SEI 7 permits T to be approximated as

	 Ta = ​​ 0.0019 ______ 
​√

___
 Cw​
 ​​  hn	 (20.17)

where	 Cw = ​ 100 ____ 
AB

 ​ ​​​​ ∑ 
i = 1

​ 
x

 ​  ​​( ​ hn
 __ 

hi

 ​ )​​2 ​  Ai ______________  
1 + 0.83​  (hi∕Di)​

2​
 ​	 (20.18)

where AB = base area of structure, ft2

          Ai = area of shear wall, ft2

         Di = length of shear wall i, ft
               x = �number of shear walls in building that are effective in resisting lateral 

forces in direction under consideration

The lateral seismic force Fx at each level over the height of a structure is determined 
using Eqs. (20.19a) and (20.19b).

	 Fx = CvxV	 (20.19a)

	  Cvx = ​​  wx ​h​ x​ k​
 _______ 

​ ∑ 
i = 1

​ 
n

 ​  ​wi​h​ i​ 
k​
 ​​	 (20.19b)

where Cvx = vertical distribution factor
          V = �total design lateral force or shear at the base of the structure from 

Eq. (20.9)
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      Fx = lateral seismic force induced at level x
wx, wi = portion of W at level x and level i, respectively
    hx, hi = height to level x and level i, respectively
            k = �exponent related to structural period = 1 for T ≤ 0.5 sec and = 2 for T ≥ 2.5 sec. 

For 0.5 < T < 2.5, k is determined by linear interpolation or set to a value of 2

The design shear at any story Vx equals the sum of the forces Fx at and above 
that story. For a 10-story building with a uniform mass distribution over the height 
and T  =  1.0 sec, the lateral forces and story shears are distributed as shown in 
Fig. 20.11.

At each level, Vx is distributed in proportion to the stiffness of the elements in 
the vertical lateral-force-resisting system. To account for unintentional building irreg-
ularities that may cause a horizontal torsional moment, a minimum 5 percent eccen-
tricity must be applied if the vertical lateral-force-resisting systems are connected by 
a floor system that is rigid in its own plane.

In addition to the criteria just described, ASCE∕SEI 7 includes criteria to account 
for overturning effects and provides limits on story drift. P−Δ effects must be consid-
ered (as discussed in Chapter 10), and the effects of upward loads must be accounted 
for in the design of horizontal cantilever components and prestressed members.

	 b.	 Dynamic Lateral Force Procedures

ASCE∕SEI 7 includes dynamic lateral force procedures that involve the use of (1) modal 
response spectra, which provide the earthquake-induced forces as a function of the nat-
ural periods of the structure, or (2) a nonlinear time-history analysis of the structural 
response based on a series of ground motion acceleration histories that are represent-
ative of ground motion expected at the site. Both procedures require the development 
of a mathematical model of the structure to represent the spatial distribution of mass 
and stiffness. Response spectra, such as shown in Fig. 20.10, are used to calculate peak 
forces for a “sufficient number of modes to obtain a combined modal mass participation 
of 100 percent of the structure’s mass” (Ref. 20.2). All modes with periods less than 
0.05 sec are permitted to be represented by a single rigid-body mode that has a period 
of 0.05 sec. Alternatively, an analysis may be used that includes a “sufficient number 
of modes to obtain the combined modal mass participation of at least 90 percent of the 

FIGURE 20.11
Forces based on ASCE∕SEI 7 
(Ref. 20.2) equivalent lateral 
force procedure: (a) structure; 
(b) distribution of lateral 
forces over height; and  
(c) story shears.
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actual mass in each of two orthogonal directions.” A site-specific analysis is required 
by Ref. 20.2 in certain cases. Since these forces do not always act in the same direction, 
as shown in Fig. 20.3, the peak forces are averaged statistically, in most cases using the 
square root of the sum of the squares to obtain equivalent static lateral forces for use in 
design. In cases where the periods in the translational and torsional modes are closely 
spaced and result in significant cross correlation of the modes, the complete quadratic 
combination method is used (Ref. 20.9). When a nonlinear time-history analysis is used, 
design forces are obtained directly from the analyses. Both modal response spectrum 
and nonlinear time-history procedures provide more realistic representations of the 
seismically induced forces in a structure than do equivalent lateral force analyses. The 
details of these methods are presented in Refs. 20.1, 20.2, and 20.8.

	 20.4	 ACI PROVISIONS FOR EARTHQUAKE-RESISTANT  
STRUCTURES

Criteria for seismic design are contained in Earthquake-Resistant Structures, Chapter 18 
of the ACI Code (Ref. 20.10). The principal goal of the provisions is to ensure adequate 
toughness under inelastic displacement reversals brought on by earthquake loading. The 
provisions accomplish this goal by requiring the designer to provide for concrete con-
finement and inelastic rotation capacity. The provisions apply to frames, walls, coupling 
beams, diaphragms, trusses, and foundations in structures assigned to Seismic Design 
Categories D, E, and F and to frames, including two-way slab systems, and precast walls 
in structures assigned to Seismic Design Category C. Structural systems in SDC D, E, 
and F are referred to as special, while systems in SDC C are referred to as intermediate.

The requirements in ACI Code 18.3.1 for frame structures assigned to SDC B, 
described as ordinary moment frames, are limited. Beams must have at least two lon-
gitudinal bars that are continuous along both the top and bottom faces of the beam, 
the continuous bottom bars must have an area equal to at least one-fourth the maximum 
area of the bottom bars along the span, and the bars must be developed at the face of 
the supports; and columns with a clear height ℓu less than or equal to 5 times the 
column dimension c1 in the direction of bending must be designed for shear, as required 
for intermediate frames (described in Section 20.8) in accordance with ACI Code 
18.3.3. Beam-column joints must meet the requirements in ACI Code Chapter 15 for 
joint shear Vu at midheight of the joint based on tensile and compressive beam forces 
and column shear consistent with beam nominal moment strengths Mn, as will be 
demonstrated in Example 20.2. There are no special requirements in ACI Code Chap-
ter 18 for structures assigned to SDC A.

The ACI provisions are based on many of the observations made earlier in this 
chapter. The effect of nonstructural elements on overall structural response must be 
considered, as must the response of the nonstructural elements themselves. Structural 
elements that are not specifically proportioned to carry earthquake loads must also 
be considered.

The load factors used for earthquake loads are given in Eqs. (20.4) and (20.5). 
The strength reduction factors used for seismic design are the same as those used 
for nonseismic design (Table 1.3), with the additional requirements that ϕ  =  0.60 
for shear, if the nominal shear capacity of a member is less than the shear based on 
the nominal flexural strength [see Eq. (20.1)], and ϕ = 0.85 for shear in joints and 
diagonally reinforced coupling beams.

To ensure adequate ductility and toughness under inelastic rotation, ACI Code 
19.2.1.1 sets a minimum concrete strength of 3000 psi for special moment frames, 
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as well as for special structural walls with Grade 60 or 80 reinforcement. The min-
imum concrete strength increases to 5000 psi for special structural walls with Grade 
100 reinforcement. For lightweight aggregate concrete, an upper limit of 5000 psi is 
placed on concrete strength; this limit is based on a lack of experimental evidence 
for higher-strength lightweight concretes.

Under ACI Code 20.2.2.5, reinforcing steel must meet the requirements of Grades 
60, 80, and 100 ASTM A706 bars (see Table 2.4) (although Grade 100 was not avail-
able at the time of publication of ACI 318-19) for special structural walls and Grades 
60 and 80 ASTM A706 bars for special structural frames. ASTM A706 specifies  
maximum yield strengths 18 ksi above the specified minimum yield strength and min-
imum tensile strengths 20 ksi above the specified minimum yield strengths. The actual 
tensile strength must be at least 1.25 times the actual yield strength. In addition to 
reinforcement manufactured in accordance with ASTM A706, the Code allows the use 
of Grade 60 reinforcement meeting the requirements of ASTM A615, provided that the 
actual yield strength does not exceed the specified yield by more than 18 ksi, the actual 
tensile strength exceeds the actual yield strength by at least 25 percent, and the bars 
satisfy the specific elongation requirements specified in ACI Code 20.2.2.5. The upper 
limits on yield strength are used to limit the maximum moment capacity of the section 
because of the dependency of the earthquake-induced shear on the moment capacity 
[Eq. (20.1)]. The minimum ratio of tensile strength to yield strength helps provide 
adequate inelastic rotation capacity. Evidence reported in Ref. 20.11 indicates that an 
increase in the ratio of the ultimate moment to the yield moment results in an increase 
in the nonlinear deformation capacity of flexural members.

Confinement for concrete is provided by transverse reinforcement consisting of 
stirrups, hoops, and crossties. To ensure adequate anchorage, a seismic hook [with a bend 
not less than 135° and a 6 bar diameter (but not less than 3 in.) extension that engages 
the longitudinal reinforcement and projects into the interior of the stirrup or hoop]† is 
used on stirrups, hoops, and crossties. Hoops, shown in Figs. 8.12a, c–e and 20.12, are 
closed ties that can be made up of several reinforcing elements, each having seismic 
hooks at both ends, or continuously wound ties with seismic hooks at both ends. A 
crosstie (see Fig. 20.12) is a continuous reinforcing bar with a seismic hook at one end 
and a hook with not less than a 90° bend and at least a 6 bar diameter extension at the 
other end. The hooks on crossties must engage peripheral longitudinal reinforcing bars.

† �The term seismic hook is used in the ACI Code and this text. Seismic hooks also include 90° hooks on circular hoops. There are, however, no 
differences between the requirements for standard hooks for stirrups, ties, and hoops with 90° and 135° bends and those for seismic hooks.

FIGURE 20.12
Example of transverse 
reinforcement in columns; 
consecutive crossties 
engaging the same 
longitudinal bars must have 
90° hooks on opposite sides 
of columns. (Adapted from  

Ref. 20.10.)
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In the following sections, ACI requirements for frames, walls, diaphragms, and 
trusses subject to seismic loading are discussed. Sections 20.5 and 20.6 describe the 
general design and detailing criteria for members in structures assigned to SDC D, 
E, and F. Specific shear strength requirements are presented in Section 20.7. Section 
20.8 describes requirements for frame structures assigned to SDC C.

	 20.5	 ACI PROVISIONS FOR SPECIAL MOMENT FRAMES

ACI Code Chapter 18 addresses five member types in frame structures, termed 
special moment frames, subject to high seismic risk: beams, columns, joints, precast 
members, and members not proportioned to resist earthquake forces. Two-way slabs 
without beams are prohibited as lateral-force-resisting systems in structures assigned 
to SDC D, E, and F.

	 a.	 Beams

The requirements for beams in special moment frames are covered in ACI Code 18.6. 
The members must have a clear span ℓn equal to at least 4d and a width bw not less than 
0.3h or 10 in. The projection of the width bw beyond the width of the supporting col-
umn c2 on each side may not exceed the smaller of the width of the supporting mem-
ber c2 or 0.75 times the dimension of the supporting member in the direction of the 
span c1, as shown in Fig. 20.13. The minimum clear span-to-depth ratio helps ensure 
that flexural rather than shear strength dominates member behavior under inelastic 
load reversals. Minimum web dimensions help provide adequate confinement for the 
concrete, whereas the width relative to the support (typically a column) is limited to 
provide adequate moment transfer between beams and columns.

In accordance with ACI Code 18.6.3, both top and bottom minimum flexural 
steel is required. As,min should not be less than that given by Eq. (4.37a) but need 
not be greater than four-thirds of that required by analysis, with a minimum of two 
reinforcing bars, top and bottom, throughout the member. In addition, the positive 
moment capacity at the face of columns must be at least one-half of the negative 
moment strength at the same location, and neither positive nor negative moment 
strength at any section in a member may be less than one-fourth of the maximum 
moment strength at either end of the member. These criteria are designed to provide 
for ductile behavior throughout the member, although the minimum of two reinforc-
ing bars on the top and bottom is based principally on construction requirements. 
Maximum reinforcement ratios of 0.025 for Grade 60 reinforcement and 0.020 for 
Grade 80 reinforcement are set to limit problems with steel congestion and to ensure 
adequate member size for carrying shear that is governed by the flexural capacity 
of the member [Eq. (20.1)].

To obtain ductile performance, the location of lap splices is limited. They may 
not be used within joints, within twice the member depth from the face of a joint, 
or within a distance 2h of critical sections where flexural yielding is likely to occur 
as a result of lateral displacements of the frame beyond the elastic range. Lap splices 
must be enclosed by hoops or spirals with a maximum spacing of one-fourth of the 
effective depth or 4 in. Welded and mechanical connections may be used, provided 
that they are not used within a distance equal to twice the member depth from the 
face of a column or beam or sections where yielding of the reinforcement is likely 
to occur due to inelastic displacements under lateral load, in accordance with ACI 
Code 18.2.7 and 18.2.8.
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Transverse reinforcement is required throughout beams in frames resisting 
earthquake-induced forces. According to ACI Code 18.6.4, transverse reinforcement 
in the form of hoops must be used over a length equal to twice the beam depth 
measured from the face of the supporting column toward midspan, at both ends of 

FIGURE 20.13
Maximum effective width of 
wide beam and required 
transverse reinforcement.  
(Adapted from Ref. 20.10.)

Transverse reinforcement through
the column to confine beam
longitudinal reinforcement passing
outside the column core

Direction of
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Plan
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Not greater than the smaller
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Note:
Transverse reinforcement in column above and
below the joint not shown for clarity
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the beam, and over lengths equal to twice the beam depth on both sides of a section 
where flexural yielding is likely to occur as the result of lateral displacements of the 
frame beyond the elastic range. The first hoop must be located not more than 2 in. 
from the face of the supporting member, and the maximum spacing of the hoops 
must not exceed one-fourth of the effective depth, 6 times the diameter of the smallest 
longitudinal bar for Grade 60 reinforcement or 5 times the diameter of the smallest 
longitudinal bar for Grade 80 reinforcement, in both cases excluding skin reinforce-
ment, or 6 in.

To provide adequate support for longitudinal bars on the perimeter of a beam 
when the bars are placed in compression due to inelastic rotation, ACI Code 18.6.4.2 
requires that hoops be arranged so that every corner and alternate longitudinal bar is 
provided lateral support by ties, in accordance with ACI Code 25.7.2.3. Arrangements 
meeting these criteria (although without seismic hooks) are illustrated in Fig. 9.3. 
Where hoops are not required, stirrups with seismic hooks at both ends must be 
provided throughout the member, with a maximum spacing of one-half of the effec-
tive depth. Hoops can be made up of a single reinforcing bar or two reinforcing bars 
consisting of a stirrup with seismic hooks at both ends and a crosstie. Examples of 
hoop reinforcement are presented in Figs. 8.12a, c–e and 20.12.

In beams with factored axial loads greater than Ag ​f​c​ ′​​​​ ​∕10, the hoops must be as 
required for columns by ACI Code 18.7.5.2 through 18.7.5.4 (see following Section 20.5b). 
Along the remaining length, stirrups must be replaced by hoops satisfying ACI Code 
18.7.5.2 with a spacing s not exceeding 6 times the diameter of the smallest longitudinal 
beam bars for Grade 60 reinforcement or 5 times the diameter of the smallest longitu-
dinal beam bars for Grade 80 reinforcement, or 6 in. If the concrete cover over the 
transverse reinforcement exceeds 4 in., additional transverse reinforcement with a cover 
not exceeding 4 in. and spacing not exceeding 12 in. must be added.

	 b.	 Columns

To help ensure constructability and adequate confinement of the concrete, ACI Code 
18.7.2 requires that columns in special moment frames have (1) a minimum cross-
sectional dimension of at least 12 in. when measured on a straight line passing through 
the geometric centroid and (2) a ratio of the shortest cross-sectional dimension to the 
perpendicular dimension of at least 0.4.

To obtain a weak beam–strong column design, ACI Code 18.7.3 requires that 
the nominal flexural strengths of the columns framing into a joint exceed the nom-
inal flexural strengths of the girders framing into the joint by at least 20 percent. 
This requirement is expressed as

	 ΣMnc ≥ ​ 6 __ 
5
 ​ ΣMnb	 (20.20)

where ΣMnc = �sum of nominal flexural strengths of columns framing into joint, eval-
uated at the faces of the joint; values of Mnc are based on the factored 
axial load, consistent with the direction of the lateral forces, resulting in 
the lowest flexural strength

        ΣMnb = �sum of nominal flexural strengths of beams framing into joint, eval-
uated at the faces of the joint; in T beam construction, where the slab 
is in tension under moment at the face of the joint, slab reinforcement 
within the effective flange width (see Section 4.7) is assumed to con-
tribute to flexural strength if the slab reinforcement is developed at the 
critical section for flexure
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As shown in Fig. 20.8b, the flexural strengths are summed so that the column moments 
oppose the beam moments. Equation (20.20) must be satisfied for beam moments 
acting both clockwise and counterclockwise on the joint. According to ACI Code 
18.7.3.1, it need not be satisfied where the column is discontinuous above the joint 
and the column factored axial compressive force under load combinations, including 
earthquake effect E, is less than Ag ​​f​c​ ′​​∕10.

If Eq. (20.20) is not satisfied for beam moments acting in both directions, the 
lateral strength and stiffness of the columns framing into the joint must be ignored 
when determining the strength and stiffness of the structures, and the columns must 
be designed under the provisions of ACI Code 18.14 for members that are not desig-
nated as part of the seismic-force-resisting system, as described in Section 20.5d. If 
the stiffness of the columns increases the design base shear or the effects of torsion, 
they must be included in the analysis, but still may not be considered as contributing 
to structural capacity.

In accordance with ACI Code 18.7.4, the column reinforcement ratio based on 
the gross section ρg must meet the requirement: 0.01  ≤  ρg  ≤  0.06. Columns with 
circular hoops must have at least six longitudinal bars. To limit the potential for a 
bond failure of the longitudinal column bars (Refs. 20.12 and 20.13), the bars must 
be selected such that 1.25 times the development length is less than one-half of the 
column clear height. Welded splices and mechanical connections in columns must 
satisfy the same requirements specified for flexural members. Lap splices must be 
designed for tension, are permitted only in the center half of columns, and must be 
enclosed by transverse reinforcement satisfying ACI Code 18.7.5.2 and 18.7.5.3.

ACI Code 18.7.5 specifies the use of minimum transverse reinforcement over 
length ℓo from each joint face and on both sides of any section where flexural yield-
ing is likely because of inelastic lateral displacement of the frame. This section is 
referenced by other sections of the code. The length ℓo may not be less than (1) the 
depth of the column at the joint face or at the section where flexural yielding is 
likely to occur, (2) one-sixth of the clear span of the member, or (3) 18 in.

Following ACI Code 18.7.5.2, the transverse reinforcement may consist of single 
or overlapping spirals satisfying Eq. (9.5) and the provisions of ACI Code 25.7.3 (see 
Section 9.2), circular hoops, or rectilinear hoops (Fig. 20.12) with or without crossties. 
The crossties may be the same size or smaller than the bars used for the hoops but must 
be at least No. 3 (No. 10) bars for No. 10 (No. 32) and smaller longitudinal reinforce-
ment and No. 4 (No. 13) bars for No. 11 (No. 36) and larger longitudinal reinforcement 
or bundled longitudinal reinforcement. The bars so supported may not be spaced more 
than 14 in., as shown in Fig. 20.12. Where Pu > 0.3​f​c​ ′​ Ag or ​f​c​ ′​ > 10,000 psi in columns 
with rectilinear hoops, every longitudinal bar or bundle of bars around the perimeter 
of the column core must have lateral support provided by the corner of a hoop or by 
a seismic hook, and the value of hx may not exceed 8 in. Pu is taken as the highest 
axial compression consistent with factored load combinations including E.

In accordance with ACI Code 18.7.5.3, the spacing of transverse reinforcement 
within ℓo may not exceed one-quarter of the minimum member dimension, 6 times 
the diameter of the longitudinal bar for Grade 60 reinforcement, or 5 times the 
diameter of the longitudinal bar for Grade 80 reinforcement, or

	 so = 4 + ​ 
14 − hx _______ 

3
 ​	  (20.21a)

	 4 in. ≤ so ≤ 6 in.	 (20.21b)
where hx is the maximum horizontal spacing of hoop or crosstie legs on all faces of the 
column (largest value of xi in Fig. 20.12).
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In accordance with ACI Code 18.7.5.4, minimum transverse reinforcement is 
specified in terms of the ratio of the volume of the transverse reinforcement to the 
volume of the core confined by the reinforcement (measured out-to-out of the con-
fining steel) ρs for spirals or circular hoop reinforcement as

	 ρs = 0.12 ​ 
​f​c​ ′​ __ 
fyt

 ​	 (20.22)

but not less than specified in Eq. (9.5), where fyt is the specified yield strength of 
transverse reinforcement. In addition, for Pu > 0.3​ f​c​ ′​  Ag or ​f​c​ ′​ > 10,000 psi, the mini-
mum transverse reinforcement must be at least

	 ρs = 0.35kf ​ 
Pu _____ 

fyt Ach

 ​	 (20.23)

where the concrete strength factor kf = (​f​c​ ′​∕25,000) + 0.6 ≥ 1.0 and Ach  =  cross-
sectional area of column core, measured out-to-out of transverse reinforcement.

To provide similar confinement using rectangular hoop reinforcement, ACI 
Code 18.7.5.4 requires a minimum total cross-sectional area of transverse reinforce-
ment Ash along the length of the longitudinal reinforcement that may not be less than 
given in Eqs. (20.24) and (20.25).

	​ 
Ash ___ 
sbc

 ​ = 0.3 ​( ​ Ag
 ___ 

Ach

 ​ − 1 )​ ​ ​f​c​ ′​ __ 
fyt

 ​	 (20.24)

	​ 
Ash ___ 
sbc

 ​ = 0.09 ​​ 
​f​c​ ′​ __ 
fyt

 ​​	 (20.25)

where Ach is defined following Eq. (20.23), s = spacing of transverse reinforcement, 
and bc  =  cross-sectional dimension of column core, measured to outside edges of 
transverse reinforcement composing Ash. For Pu > 0.3 ​f​c​ ′​  Ag or ​f​c​ ′​ > 10,000 psi, the min-
imum transverse reinforcement may not be less than

	​ 
Ash ___ 
sbc

 ​ = 0.2kf kn ​ 
Pu _____ 

fyt Ach

 ​	 (20.26)

where the concrete strength factor kf is defined after Eq. (20.23) and confinement 
effectiveness factor kn = nl∕(nl − 2), with nl = number of longitudinal bars or bar bun-
dles around the perimeter of a column core that are laterally supported by the corner 
of hoops or by seismic hooks.

Equations (20.24) through (20.26) must be evaluated for Ash in both the 1 and 
2 directions, as indicated in Fig. 20.12.

For regions outside of ℓo, when the minimum transverse reinforcement defined 
above is not provided, the spacing of spiral or hoop reinforcement may not exceed 
6 or 5 times the diameter of the longitudinal column bars, respectively, for Grades 
60 and 80 reinforcement, or 6 in.

To account for the major ductility demands that are placed on columns that 
support rigid members (see Figs. 20.4 and 20.5), ACI Code 18.7.5.6 specifies that, for 
such columns, the minimum transverse reinforcement requirements must be satisfied 
throughout the full column height if the factored axial compressive force related to 
earthquake effect exceeds ​f​c​ ′​ Ag∕10, and that the transverse reinforcement must extend 
into the discontinued stiff member for at least the development length of the largest 
longitudinal reinforcement for walls and at least 12 in. into foundations. ACI Code 
18.7.5.6 requires an increase in the limit of ​f​c​ ′​ Ag∕10 to ​f​c​ ′​ Ag∕4 when design forces 
have been magnified to account for the overstrength of the vertical elements of the 
seismic-force-resisting system.
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If the concrete cover outside the confining transverse reinforcement is greater 
than 4 in., the Code requires the addition of transverse reinforcement with a cover 
of 4 in. or less to limit the potential hazard caused by spalling of the concrete shell 
away from the column.

	EXAMPLE 20.1	 Relative flexural strengths of members at a joint and minimum transverse column rein-
forcement.  The exterior joint shown in Fig.  20.14 is part of a reinforced concrete frame 
designed to resist earthquake loads. A 6 in. slab, not shown, is reinforced with No. 5 (No. 16) 
bars spaced 10 in. center to center at the same level as the flexural steel in the beams. The 
member section dimensions and reinforcement are as shown. The frame story height is 12 ft. 
Concrete is normalweight. Material strengths are ​f​c​ ′​ = 4000 psi and fy = 60,000 psi. The max-
imum factored  axial load on the upper column framing into the joint is 2210 kips, and 
the maximum factored axial load on the lower column is 2306 kips. Determine if the nominal 
flexural strengths of the columns exceed those of the beams by at least 20 percent, as required 
by Eq. (20.20), and determine the minimum transverse reinforcement required over the length 
ℓo in the columns.

FIGURE 20.14
Exterior beam-column joint 
for Examples 20.1 and 20.2: 
(a) plan view; (b) cross 
section through spandrel 
beam; and (c) cross section 
through normal beam. Note 
that confining reinforcement 
is not shown, except for 
column hoops and crossties 
in (a).

Column 36″ × 36″
20 No. 9 (No. 29)
story height = 12′

Spandrel beams
27″ × 36″ (top flange
e�ective width = 54″)
5 No. 10 (No. 32) top
5 No. 9 (No. 29) bottomMinimum

transverse
reinforcement
= No. 4 (No. 13)
hoops and crossties
@ 4   ″spacing

Hoops and
crossties
not shown
for clarity

Normal beam
27″ × 36″
5 No. 9 (No. 29) top
5 No. 8 (No. 25) bottom

(b ) (c )

(a )

¹²−
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630      DESIGN OF CONCRETE STRUCTURES  Chapter 20

Solution.  Checking the relative flexural strengths in the frame of the spandrel beams will 
be sufficient, since this is clearly the controlling case for the joint. In addition, because the 
beam reinforcement is the same on both sides of the joint, a single comparison will suffice 
for both clockwise and counterclockwise beam moments.

The negative nominal flexural strength of the beam at the joint is governed by the top 
steel, which consists of five No. 10 (No. 32) bars in the beams plus four No. 5 (No. 16) bars 
in the slab within the effective width of the top flange, As  =  6.35  +  1.24  =  7.59  in2. The 
yield force in the steel is

As fy = 7.59 × 60 = 455 kips

The effective depth is d = 36.0 − 1.5 − 0.5 − 1.27∕2 = 33.4 in., and with stress block depth 
a = 455∕(0.85 × 4 × 27) = 4.96 in., the nominal moment is

Mnb =  ​ 455 ____ 
12

 ​  ​​( 33.4 − ​ 4.96 ____ 
2
 ​  )​​ = 1172 ft-kips

The positive nominal flexural strength of the beam at the joint is determined by the bottom 
steel, five No. 9 (No. 29) bars, As = 5.00 in2. The yield force in the steel is

As fy = 5.00 × 60 = 300 kips

The effective depth is d = 36.0 − 1.5 − 0.5 − 1.128∕2 = 33.4 in., and with stress block depth 
a = 300∕(0.85 × 4 × 54) = 1.63 in., the nominal moment is

Mnb =  ​ 300 ____ 
12

 ​  ​​( 33.4 − ​ 1.63 ____ 
2
 ​  )​​ = 815 ft-kips

The minimum nominal flexural strengths of the columns in this example depend on 
the maximum factored axial loads, which are 2210 and 2306 kips for the upper and lower 
columns, respectively. For the 36 × 36 in. columns, this gives

​​ 
Pu
 ____ 

​f​c​ ′​ Ag

 ​​ = ​​  2210 ________ 
4 × 1296

 ​​ = 0.426      upper column

​​ 
Pu
 ____ 

​f​c​ ′​ Ag

 ​​ = ​​  2306 ________ 
4 × 1296

 ​​ = 0.445      lower column

With total reinforcement of 20 No. 9 (No. 29) bars, Ast = 20.00 in2 and the reinforcement ratio 
ρg = 20.00∕1296 = 0.00154. Using cover to the center of the bars of 3 in., γ = (36 − 6)∕36 = 0.83, 
Graphs A.7 and A.8 in Appendix A are appropriate for determining the flexural capacity.

For the upper column,

	 Rn = ​​ 
Mnc
 _____ 

​f​c​ ′​ Agh
 ​​ = 0.169

Mnc = 0.169 × 4 × 1296 × ​ 36 ___ 
12

 ​ = 2628 ft-kips

For the lower column,

	 Rn = ​​ 
Mnc
 _____ 

​f​c​ ′​ Agh
 ​​ = 0.165

Mnc = 0.165 × 4 × 1296 × ​ 36 ___ 
12

 ​ = 2566 ft-kips

Checking the relative flexural capacities,

             ΣMnc = 2628 + 2566 = 5194 ft-kips

ΣMnb = 1172 + 815 = 1987 ft-kips

By inspection, ΣMnc ≥ ​ 6 _ 5 ​ ΣMnb.
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	 c.	 Joints and Development of Reinforcement

The design of beam-column joints is discussed in Section 18.2. The forces acting on 
a joint subjected to lateral loads are illustrated in Figs. 18.4 and 20.8d. The factored 
shear acting on a joint is

	 Vu = T1 + C2 − Vcol	
(20.27)

    = T1 + T2 − Vcol

where T1 = tensile force in negative moment beam steel on one side of a joint
	 T2 = tensile force in positive moment beam steel on one side of a joint
	 C2 = compressive force counteracting T2
	 Vcol = �shear in the column at top and bottom faces of the joint corresponding to 

the net moment in the joint and points of inflection at midheight of col-
umns (see Fig. 18.5). Vcol = V3 = V4 in Figs. 18.4 and 20.8. Calculation of 
Vcol is demonstrated in Example 20.2.

Minimum transverse reinforcement is required over a length ℓo on either side of the 
joint. According to ACI Code 18.7.5, ℓo is the greater of (1) the depth h = 36 in., (2) one-
sixth of the clear span = (12 × 12 − 36)∕6 = 18 in., or (3) 18 in. Every corner and alternate 
longitudinal bar must have lateral support, and because the spacing of crossties and legs of 
hoops is limited to a maximum of 8 in. within the plane of the transverse reinforcement 
because Pu > 0.3 ​​f​c​ ′​​ Ag, the scheme shown in Fig.  20.14a will be used, giving a maximum 
spacing just over 7.5 in. The maximum spacing of transverse reinforcement s is limited to 
the smallest of one-quarter of the minimum member dimension = 36∕4 = 9 in., 6 times the 
diameter of the longitudinal bar 6 × 1.128 = 6.77 in., and using hx = 8 in. in Eq. (20.21a),

so = 4 + ​ 
14 − hx _______ 

3
 ​  = 4 + ​ 14 − 8 ______ 

3
 ​  = 6 in.

with 4 in. ≤ so ≤ 6 in. Although, so may be 6 in., a value less than 6 in. may be selected to limit 
the size of the ties and crossties.

Because the column is square and has equal reinforcement on all sides, Ash will be the 
same in both directions. Using No. 4 (No. 13) bars, the cross-sectional dimension of  
the column core, measured to the outside edges of the confining steel, is bc = 33 in., and the 
cross-sectional area of column core, also measured to the outside edges of the confining steel, 
is Ach = 33 × 33 = 1089  in2. For fyt = 60 ksi, the total area of transverse reinforcement Ash 
is based on the greatest value calculated using Eqs. (20.24) through (20.26), with Eq. (20.26) 
required because Pu > 0.3​​f​c​ ′​​Ag.

​ 
Ash ___ 
sbc

 ​ = 0.3 ​​( ​ Ag
 ___ 

Ach

 ​ − 1 )​​ ​​ ​f​c​ ′​ __ 
fyt

 ​​ = 0.3 ​​( ​ 1296 _____ 
1089

 ​ − 1 )​​ ​ 4 ___ 
60

 ​ = 0.0038

	​ 
Ash ___ 
sbc

 ​ = 0.09 ​​ 
​f​c​ ′​ __ 
fyt

 ​​ = 0.09 ​ 4 ___ 
60

 ​ = 0.0060

For use in Eq. (20.26), kf = (​​f​c​ ′​​  ∕25,000) + 0.6 ≥ 1.0 equals 1.0 and kn  =  nl∕(nl  −  2)  = 
20∕(20 − 2) = 1.11, where nl = number of longitudinal bars or bar bundles around the peri
meter of a column core that are laterally supported by the corner of hoops or by seismic hooks.

​ 
Ash ___ 
sbc

 ​ = 0.2kf kn ​ 
Pu _____ 

fyt Ach

 ​ = 0.2 × 1.0 × 1.11 ​  2306 _________ 
60 × 1089

 ​ = 0.0078

Eq. (20.26) controls. Using six No. 4 bars in each direction, as shown in Fig. 20.14a gives 
Ash = 1.20 in. and spacing s = Ash∕(0.0093 × bc) = 1.20∕(0.0078 × 33) = 4.66 in. A tie spacing 
s of 4.5 in. will be used.
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632      DESIGN OF CONCRETE STRUCTURES  Chapter 20

For seismic design, the forces T1 and T2  (= C2) must be based on a stress in 
the flexural tension reinforcement of 1.25fy. In accordance with ACI Code 18.8.4, 
the nominal shear capacity of a joint depends on the degree of confinement provided 
by members framing into the joint, as shown in Table 20.1.

When using Table 20.1, λ = 0.75 for lightweight concrete and 1.0 for normal-
weight concrete and Aj  is the effective cross-sectional area of the joint in a plane 
parallel to the plane of reinforcement generating shear in the joint, illustrated in 
Fig.  20.15. The joint depth is the overall depth of the column. For beams framing 
into a support of larger width, the effective width of the joint is the smaller of (1) 
beam width plus joint depth or (2) twice the smaller perpendicular distance from the 
longitudinal axis of the beam to the column side. 

Column
Beam in  
Direction of Vn

Confinement by Transverse 
Beams According to ACI 
Code 15.2.8 Vn

Continuous or meets 
ACI Code 15.2.6

Continuous or meets 
ACI Code 15.2.7

Confined 20λ​​√
__

 ​f​c​ ′​​​ Aj

Not confined 15λ​​√
__

 ​f​c​ ′​​​ Aj

Other
Confined 15λ​​√

__
 ​f​c​ ′​​​ Aj

Not confined 12λ​​√
__

 ​f​c​ ′​​​ Aj

Other

Continuous or meets 
15.2.7

Confined 15λ​​√
__

 ​f​c​ ′​​​ Aj

Not confined 12λ​​√
__

 ​f​c​ ′​​​ Aj

Other
Confined 12λ​​√

__
 ​f​c​ ′​​​ Aj

Not confined   8λ​​√
__

 ​f​c​ ′​​​ Aj

TABLE 20.1
Nominal joint shear strength Vn (from Ref. 20.10)

FIGURE 20.15
Effective area of joint Aj, 
which must be considered 
separately for forces in each 
direction of framing. Note 
that the joint illustrated does 
not meet conditions necessary 
to be considered as confined 
because the forming members 
do not cover at least ​ 3 _ 4 ​ of each 
joint face. (Adapted from  

Ref. 20.10.)

Joint depth = h
in plane of
reinforcement
generating shear

Reinforcement
generating shear

E�ective area

E�ective
joint width
≤ b + h
≤ b + 2x

Direction of forces
generating shear

h

b

x
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Table 20.1 cites three sections of the ACI Code: ACI Code 15.2.6 requires that 
(1) the column extend above joint at least one column depth h measured in the 
direction of joint shear, and (2) longitudinal and transverse reinforcement from the 
column below joint be continued through the extension. ACI Code 15.2.7 requires 
that (1) the beam extend at least one beam depth h beyond joint face, and (2) lon-
gitudinal and transverse reinforcement from beam on opposite side of the joint be 
continued through the extension. ACI Code 15.2.8 requires that two transverse beams 
satisfying the following criteria be provided: (1) The width of each transverse beam 
must be at least three-quarters of the width of the column face into which the beam 
frames; (2) the transverse beams must extend at least one beam depth h beyond the 
joint faces; and (3) the transverse beams must contain at least two continuous top 
and bottom bars providing the minimum flexural reinforcement given in Eq. (4.37a) 
and No. 3 (No. 10) or larger stirrups providing the minimum shear reinforcement 
given in Eq. (5.13a) with maximum spacing not exceeding that shown in Fig. 5.15 
for Vc ≤ 4​​√

__
 ​f​c​ ′​​​ bwd and half the values shown in Fig. 5.15 for Vc > 4​​√

__
 ​f​c​ ′​​​ bwd.

To provide adequate confinement within a joint, ACI Code 18.8.3 requires that 
the transverse reinforcement used in columns must be continued through the joint, 
in accordance with ACI Code 18.7.5, as described in Section 20.5b. This reinforce-
ment may be reduced by one-half within the depth h of the shallowest framing 
member, and the spacing of spirals or hoops may be increased to 6 in., if beams or 
girders frame into all four sides of the joint and the flexural members cover at least 
three-fourths of the column width.

For joints where the beam is wider than the column, transverse reinforcement, 
as required for columns (ACI Code 18.6.4), must be provided to confine the flexural 
steel in the beam, as shown in Fig.  20.13, unless confinement is provided by a 
transverse flexural member. When beam negative moment reinforcement is provided 
by headed deformed bars that terminate in the joint, the column must extend above 
the top of the joint a distance at least equal to the depth of the joint h in the direc-
tion of the span or the headed bars must be enclosed by additional vertical joint 
reinforcement providing equivalent confinement to the top face of the joint.

To provide adequate development of beam reinforcement passing through a 
joint, ACI Code 18.8.2 requires that the column dimension parallel to the beam rein-
forcement be at least (20∕λ) times the diameter of the largest longitudinal bar for 
Grade 60 reinforcement and 26 times the bar diameter for Grade 80 reinforcement. 
In addition, the depth h of the joint may not be less than one-half of depth h of any 
beam framing into the joint that causes joint shear as part of the seismic-force-resisting 
system. Beam longitudinal reinforcement that is terminated within a column must be 
extended to the far face of the column core. The reinforcement must be anchored in 
compression as described in Section 6.8 (ACI Code 25.4.9). The reinforcement may 
be anchored in tension by a hook, a straight bar, or a head. Bars anchored by hooks 
must, in addition to satisfying the requirements described in Section 6.4 (ACI Code 
25.4.3), also satisfy ACI Code 18.8.5, which requires that the development length of 
bars with standard hooks ℓdh not be less than 8db, 6 in., or

	 ℓdh = ​​ 
fy  db
 _______ 

65λ​√
__

 ​f​c​ ′​​
 ​​	 (20.28)

where λ = 0.75 for lightweight concrete and 1.0 for normalweight concrete. The devel-
opment length ℓdh for lightweight concrete may not be less than 10db or 7.5 in. The 
hook must be located within the confined core of the column or the boundary element 
of a wall or diaphragm (discussed in Section 20.6a) and bent into the joint.
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For straight bars anchored within a column core, the development length ℓd of 
bottom bars must be at least 2.5 times the value required for hooks; ℓd for top bars 
must be at least 3.25 times the length required for hooks.

According to ACI Code 18.8.5, straight bars that are terminated at a joint must 
pass through the confined core of a column or a boundary element. Because of the 
lower degree of confinement provided outside of the confined region, the Code 
requires that any portion of the straight embedment length that is not within the core 
be increased by a factor of 1.6. Thus, the required development length ℓdm of a bar 
that is not entirely embedded in confined concrete is

	 ℓdm = 1.6 (ℓd − ℓdc) + ℓdc	 (20.29a)

	 ℓdm = 1.6ℓd − 0.6ℓdc	 (20.29b)

where ℓd = �required development length for a straight bar embedded in confined 
concrete

        ℓdc = length embedded in confined concrete

Bars anchored by heads must satisfy ACI Code 25.4.4, as described in Section 6.5.

	EXAMPLE 20.2	 Design of exterior joint.  Design the joint shown in Fig. 20.14.

Solution.  As discussed in Chapter 18, a joint must be detailed so that the beam and column 
bars do not interfere with each other and so that placement and consolidation of the concrete 
are practical. Bar placement is shown in Fig. 20.14.

Development of the spandrel beam flexural steel within the joint is checked based on 
the requirement that the column dimension be at least (20∕λ) = 20 times the bar diameter of 
the largest bars. This requirement is met for the No. 10 (No. 32) bars used as top reinforcement.

20 × 1.27 = 25.4 in. < 36 in.

The flexural steel in the normal beam must be anchored within the core of the column 
based on Eqs. (6.8) and (20.28), but not less than 8db or 6 in. For the No. 9 top bars, the 
transverse reinforcement in the column (Fig. 20.14a) continued through the joint gives  
ψr = 1.0. Solving Eq. (6.8) gives

ℓdh = ​​( ​ fyψeψrψoψc
 _________ 

55λ​√
__

 ​f​c​ ′​​
 ​  )​​ ​​d​b​ 1.5​​ = ​​( ​ 60,000 × 1.0 × 1.0 × 1.0 × 0.867

    _____________________________   
55 × 1.0​√

____
 4000​
 ​  )​​ 1.1281.5 = 17.9 in.

Checking Eq. (20.28) gives

ℓdh = ​​ 
60,000 × 1.128

  _____________  
65 × 1.0​√

____
 4000​
 ​​ = 16.5 in.

Finally, checking development in compression using Table 6.5 from Section 6.8 with 
ψr = 0.75,† 

ℓdc ≥ ​​( ​  fyψr
 _______ 

50λ ​√
__

 ​f​c​ ′​​
 ​ )​​ db = ​​( ​  60,000 × 0.75

  ______________  
50 × 1.0​√

____
 4000​
 ​ )​​ 1.128 = 16.1 in.

ℓdc ≥ 0.0003 fyψrdb = 0.0003 × 60,000 × 1.0 × 1.128 = 20.3 in.

† �Although spirals, ties, or hoops in a plane perpendicular to the bars being developed in compression are not provided, as required by ACI 
Code 25.4.9 to use ψr = 0.75, by the ties within the joint, a value of ψr = 0.75 is typically used by designers because the confinement 
provided by the longitudinal column reinforcement passing through the joint is considered to provide equivalent confinement in the plane 
perpendicular to the bars.
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The second equation controls. In accordance with guidance in ACI Commentary 18.8.2.2,  
ℓdc is “measured from the critical section to the onset of the bend for hooked bars,” giving a 
total required length of 20.3 + 4 × 1.128 + 1.128 = 25.9 in., which controls but can be accom-
modated within the column.

The same requirements hold true for the No. 8 (No. 25) bottom bars, which must also 
be anchored in both tension and compression (ACI Code 18.8.2) because lateral loading will 
subject the beam to both positive and negative bending moments at the exterior joint. By 
inspection, development will be adequate for the No. 8 bars. All flexural steel from the nor-
mal beam must be anchored using hooks extended to the far face of the column core, as 
shown in Fig. 20.14b.

To check the shear strength of the joint, the shear forces acting on the joint must be 
calculated based on a stress of 1.25fy in the flexural reinforcement. By inspection, shear in 
the plane of the spandrel beam will control.

The tensile force in the negative reinforcement, including the bars within the effective 
width of the flange, is

T1 = 1.25 × 7.59 × 60 = 569 kips

For an effective depth of 33.4 in. (Example 20.1) and a depth of stress block a = 569∕(0.85 ×  
4 × 27) = 6.20 in., the moment due to negative bending is

​M​−​ = ​ 569 ____ 
12

 ​ ​​( 33.4 − ​ 6.20 ____ 
2
 ​  )​​ = 1437 ft-kips

For positive bending on the other side of the column,

	 T2 = 1.25 × 5.00 × 60 = 375 kips

	 a = ​​  375 ____________  
0.85 × 4 × 54

 ​​ = 2.04 in.

	​ M​+​ = ​ 375 ____ 
12

 ​ ​​( 33.4 − ​ 2.04 ____ 
2
 ​  )​​ = 1012 ft-kips

The column shear corresponding to the sum of the moments M+ and M− and based on 
the free body of the column between assumed midheight inflection points, as shown in 
Fig. 20.16a, is Vcol = (1437 + 1012)∕12 = 204 kips. The shear forces acting on the joint are 
shown in Fig. 20.16b, and the factored joint shear is

Vu = T1 + T2 − Vcol = 569 + 375 − 204 = 740 kips

FIGURE 20.16
Free-body diagrams in plane 
of spandrel beam for 
Example 20.2: (a) column 
and joint region and  
(b) forces acting on joint due 
to lateral load.

M + =
1012 ft-kips

M – =
1437 ft-kips

(a )

Vcol

Vcol

�c = 6′

= 204 kips

2

�c = 6′2

T1 = 569 kipsC2 = T2 =
375 kips

= 740 kips
Vu = T1 + T2 – Vcol

Vcol = 204 kips

(b )
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	 d.	 Members Not Designated as Part of Seismic-Force-Resisting System

Frame members in structures assigned to SDC D, E, and F that are assumed not to con-
tribute to the structure’s ability to carry earthquake forces must still be able to support 
the factored gravity loads [see Eqs. (20.4) and (20.5)] for which they are designed 
as the structures undergo lateral displacement. To provide adequate strength and duc-
tility, ACI Code 18.14.2 requires that these members be designed based on moments 
corresponding to the design displacement, which ACI Commentary 18.14 suggests 
should be based on models that will provide a conservatively large estimate of displace-
ment. In this case, ACI Code 5.3 permits the load factor for live load L to be reduced to 
0.5, except for garages, places of public assembly, and areas where L > 100 psf.

When the induced moments and shears, combined with the factored gravity 
moments and shears (see Table 1.2), do not exceed the design capacity of a frame 
member, ACI Code 18.14.3 requires that beams contain minimum longitudinal top 
and bottom reinforcement as provided in Eq. (4.37a), a reinforcement ratio not 
greater than 0.025, and at least two continuous bars top and bottom. In addition, 
stirrups are required with a maximum spacing of d∕2 throughout.

For members with factored axial forces exceeding Ag ​​f​c​ ′​​∕10, the longitudinal 
reinforcement must meet the requirements for columns proportioned for earthquake 
loads, and the transverse reinforcement must consist of hoops and crossties, as used 
in columns designed for seismic loading (as required by ACI Code 18.7.5.2) with 
a maximum spacing of 6 times the diameter of the smallest longitudinal bar or 6 in. 
For columns, the maximum longitudinal spacing of the ties also may not exceed 
6  times the diameter of the smallest longitudinal bar or 6 in. throughout the full 
column height. Hoops and crossties are required over the length ℓo from each joint 
face (Section 20.5b). In addition, the transverse reinforcement must carry shear 
induced by inelastic rotation at the ends of the member, as required by ACI Code 
18.6.5 (discussed in Section 20.7). Members with factored gravity axial forces 
exceeding 35  percent of the axial capacity without eccentricity 0.35Po must be 
designed with transverse reinforcement equal to at least one-half of that required 
by ACI Code 18.7.5.4 [see Eqs.  (20.21) through (20.26)] over the length ℓo from 
each joint face.

If the induced moments or shears under the design lateral displacements exceed 
the design moment or shear strengths, or if such a calculation is not made, ACI Code 
18.14.3.3 requires that the members meet the material criteria for concrete and steel 
in ACI Code 18.2.5 and 18.2.6 (see Section 20.4), along with criteria for mechanical 
and welded splices (ACI Code 18.2.7 and 18.2.8, respectively). Beams must meet 
the same criteria as beams in which the induced moments and shears do not exceed 

The effective cross-sectional area of the joint Aj = 36 × 36 = 1296 in2. Using Table 20.1, both 
the column and the beam are continuous, but the joint is not confined according to ACI Code 
15.2.8 because there is only one transverse beam, giving nominal and design capacities of the 
joint of

Vn = 15λ​​√
__

 ​f​c​ ′​​​ Aj = ​​ 15 × 1.0 ​√
____

 4000​ × 1296   _____________________  
1000

 ​​  = 1229 kips

	 ϕVn = 0.85 × 1229 = 1045 kips

Since ϕVn > Vu, the joint is satisfactory for shear.
Because flexural members do not frame into all four sides of the joint, the transverse 

reinforcement in the column must be continued, unchanged, through the joint.
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the design strengths, including the requirement that stirrups may not be spaced at 
greater than d∕2 throughout the length of the member, along with the requirement 
that the shear capacity of the member must be adequate to carry forces induced by 
flexural yielding in accordance with ACI Code 18.6.5 [see Fig. 20.19 and Eq. (20.32) 
in Section 20.7]. Columns must meet the requirements for the longitudinal reinforce-
ment, transverse reinforcement, and shear capacity specified for columns designed 
for earthquake-induced lateral loading (ACI Code 18.7.4, 18.7.5, and 18.7.6). Joints 
must be detailed in accordance with the requirements for intermediate moment 
frames, as discussed in Section 20.8.

To reduce the potential for a punching shear failure for slab-column connections 
in two-way slabs without beams, ACI Code 18.14.5 requires that stirrups or headed 
studs satisfying the requirements of ACI Code 8.7.6 or 8.7.7, respectively (see Sec-
tion 13.7), and providing vs of at least 3.5​​√

__
 ​f​c​ ′​​​ extend at least 4 times the slab thick-

ness away from the face of the support, unless the design story drift ratio Δx∕hsx 
(relative lateral displacement under design load from the top to the bottom of a story 
Δx divided by the height of the story hsx) does not exceed the larger of 0.005 and 
[0.035 − 0.05(vuv∕ϕvc)]. The design story drift ratio is equal to the larger of the design 
story drift ratios of the stories above and below the slab-column connection. The 
shear strength of the concrete vc is defined by Eqs. (13.7a) through (13.7c), and vuv 
is the factored shear force on the slab critical section for two-way action without 
moment transfer.

Wall piers not designated as part of the seismic-force-resisting system must 
satisfy the requirements for wall piers that are designated as part of the seismic- 
force-resisting system, in accordance with ACI Code 18.10.8 (see Section 20.6c).  
If the general building code includes provisions to account for overstrength of  
the seismic-force-resisting system, the design shear force can be calculated as the 
overstrength factor Ωo, which accounts for components that cannot provide reliable 
inelastic response or energy dissipation (Ref. 20.1), times the shear induced under 
design displacements δu.

	 20.6	 ACI PROVISIONS FOR SPECIAL STRUCTURAL WALLS, 
COUPLING BEAMS, DIAPHRAGMS, AND TRUSSES

ACI Code Chapter 18 includes requirements for stiff structural systems and mem-
bers that carry earthquake forces or distribute earthquake forces between portions of 
structures that carry earthquake forces. Structural walls, coupling beams, wall piers, 
diaphragms, trusses, struts, ties, chords, and collector elements are in this category. 
The general requirements for these members are presented in this section. The require-
ments for shear design are presented in Section 20.7c.

	 a.	 Structural Walls

To ensure adequate ductility, ACI Code 18.10.2 requires that structural walls have 
minimum shear reinforcement ratios in both the longitudinal and transverse directions 
ρℓ and ρt of 0.0025 and a maximum reinforcement spacing of 18 in. If the factored 
shear force assigned to a wall exceeds 2λ​​√

__
 ​f​c​ ′​​​ Acv, where Acv is the net area of the con-

crete section bounded by the web thickness and the length of the section in the direc-
tion of the factored shear force, at least two curtains of reinforcement must be used. If, 
however, the factored shear is not greater than λ​​√

__
 ​f​c​ ′​​​ Acv, the minimum reinforcement 

criteria of ACI Code 11.6 govern (see Section 14.5).
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To ensure that it will reach its yield strength, ACI Code 18.10.2.3 requires that 
longitudinal reinforcement extend 12 ft above the point where it is no longer needed 
to resist flexure, but not more than ℓd above the next floor level. Where yielding is 
likely to occur due to lateral displacements, ℓd should be based on 1.25fy. Lap splices 
of longitudinal reinforcement within boundary regions (described in the following par-
agraph) are not permitted over a height equal to the height of story x, hsx above (but 
not more than 20 ft) and ℓd below critical sections where yielding of the longitudinal 
reinforcement is likely to occur due to lateral displacements, as shown in Fig. 20.17. 

Floor slab

Critical section for
flexure and axial loads

Longitudinal bar
at boundary region

Note: For clarity, only part of the required reinforcement is shown.
(a) Elevation

(b) Section A-A

≥ �d

�be

�be

≥ min.
hsx

20 ft.

Critical section

N
o 

sp
lic

e 
re

gi
on

Boundary region

Wall intersection
boundary region

A A

�be

y
y

x x x

FIGURE 20.17
Heights within wall boundary regions where lap splices are not permitted (ℓbe = length of boundary element from compression face 
of member; x and y = thicknesses of walls). (Adapted from Ref. 20.10.)
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Boundary elements are added along the edges of structural walls and dia-
phragms to increase strength and ductility. The elements include added longitudinal 
and transverse reinforcement and may lie entirely within the thickness of the wall or 
may require a larger cross section, as shown in Fig. 20.18. Under certain conditions, 
openings must be bordered by boundary elements. Under the provisions of ACI Code 
18.10.6.2 for walls with hwcs∕ℓw ≥ 2.0, where hwcs is the height of the entire structural 
wall above the critical section for flexural and axial loads and ℓw is the length of the 
wall, that are continuous from the base of the structure to the top of a wall, com-
pression zones must be reinforced with special boundary elements when the depth 
to the neutral axis c exceeds the value shown in Eq. (20.30).

	 c ≥ ​​ 
ℓw
 ____________  

600(1.5 δu∕hw)
 ​​	 (20.30)

where c is the largest neutral axis depth calculated for the factored axial force and 
nominal moment strength consistent with the direction of the design displacement δu. 
In Eq. (20.30), δu∕hw is not taken less than 0.005. The requirement in Eq. (20.30) is 
expressed as (1.5δu∕hwcs) ≥ (ℓw∕600c) in the ACI Code. When special boundary ele-
ments are required based on Eq. (20.30), the reinforcement in the boundary element 
must be extended vertically above and below the critical section a distance equal to 
the greater of ℓw or Mu∕4Vu. In addition, one of two criteria must be satified: Either  
b ≥ ​​√

________
 0.025ℓwc​​ or δc∕hwcs ≥ 1.5δuhwcs, where b is the width of the compression face, δc 

is that wall deformation capacity, and

	​​ 
δc
 ____ 

hwcs

 ​​ = ​​  1 ____ 
100

 ​​ ​​( 4 − ​ 1 ___ 
50

 ​ ​( ​ ℓw
 __ 

b
 ​ )​ ​( ​ c __ 

b
 ​ )​ − ​ 

Ve
 ________ 

8​√
__

 ​f​c​ ′​​ Acv

 ​ )​​ ≥ 0.015	 (20.31)

As an alternative to applying Eq. (20.30), ACI Code 18.10.6.3 may be used to 
establish the location of boundary elements at boundaries and around openings in 
walls where the maximum extreme fiber compressive stress under factored loads 
exceeds 0.2 ​​f​c​ ′​​. Stresses are calculated based on a linear elastic model using the gross 
cross section [σ  =  (P∕A)  ±  (My∕I)]. The boundary elements may be discontinued 
once the calculated compressive stress drops below 0.15​​f​c​ ′​​. The confinement provided 
by the boundary element increases both the ductility of the wall and its ability to 
carry repeated cycles of loading. 

Where required, the boundary element must extend horizontally from the 
extreme compressive fiber a distance not less than c  −  0.1ℓw or c∕2, whichever is 
greater, where c is defined following Eq. (20.30). When flanged sections are used, 
the boundary element is defined based on the effective flange width and extends at 
least 12 in. into the web. Transverse reinforcement within the boundary element must 
meet many of the detailing and spacing requirements for columns discussed in 
Section 20.5b, including the type of reinforcement, and the need for bends to engage 
peripheral longitudinal steel, crossties alternating end for end, and hoops and crossties 

FIGURE 20.18
Cross sections of structural 
walls with boundary 
elements. Boundary

elements
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providing lateral support for longituduinal reinforcement in accordance with ACI 
Code 18.7.5.2(a) through (d) and ACI Code 18.7.5.3. The spacing of laterally sup-
ported longitudinal bars hx may not exceed the lesser of 14 in. and two-thirds of the 
boundary element thickness, and the spacing limit for transverse reinforcement of 
one-quarter of the minimum member dimension in columns [described prior to 
Eq.  (20.21) and specified in ACI Code 18.7.5.3(a)] is changed to one-third of the 
least dimension of the boundary element. 

Concrete within the thickness of the floor system must have a compressive 
strength of at least 0.70 ​​f​c​ ′​​ of the wall; and for a distance above and below the crit-
ical section equal to at least the greater of ℓw and Mu/4Vu, web vertical reinforcement 
must be laterally supported by the corner of a hoop or by a crosstie with seismic 
hooks at each end. The transverse reinforcement must be spaced vertically not more 
than 12 in. and meet the size requirements of column ties. The transverse reinforce-
ment within a boundary element must extend into the support a distance equal to at 
least the development length of the largest longitudinal reinforcement, except where 
the boundary element terminates at a footing or mat, in which case the transverse 
reinforcement must extend at least 12 in. into the foundation.

Horizontal reinforcement in the wall web must extend to within 6 in. of the 
end of the wall and be anchored to develop fy within the confined core of the bound-
ary element using standard hooks or heads. In cases where the confined boundary 
element is wide enough to develop the horizontal web reinforcement and As  fy∕s of 
the horizontal web reinforcement does not exceed As  fy∕s of the boundary element 
transverse reinforcement parallel to the horizontal web reinforcement, the horizontal 
web reinforcement may be terminated without a standard hook or head.

When boundary elements are not required and when the longitudinal reinforce-
ment ratio in the wall boundary is greater than 400∕fy, the transverse reinforcement at 
the boundary must consist of hoops or spirals at the wall boundary with crossties or 
legs, in accordance with ACI Code 18.7.5.2, that are not spaced more than 14 in. on 
center extending into the wall a distance of c  −  0.1ℓw or c∕2, whichever is greater. 
The transverse reinforcement may not be spaced at more than the values given in 
Table 20.2. The transverse reinforcement in such cases must be anchored with a stand-
ard hook around the edge reinforcement, or the edge reinforcement must be enclosed 
in U stirrups of the same size and spacing as the transverse reinforcement. This 
requirement need not be met if the factored shear force Vu is less than λ ​​√

__
 ​f​c​ ′​​​ Acv.

	 b.	 Coupling Beams

Coupling beams connect structural walls, as shown in Fig.  20.19a. Under lateral 
loading, they can increase the stiffness of the structure and dissipate energy. Deeper 
coupling beams can be subjected to significant shear, which is carried effectively by 
diagonal reinforcement. According to ACI Code 18.10.7, coupling beams with clear 
span-to-total-depth ratios ℓn∕h of 4 or greater may be designed using the criteria for 
flexural members described in Section 20.5a. In this case, however, the limitations 
on width-to-depth ratio and total width for flexural members need not be applied if it 
can be shown by analysis that the beam has adequate lateral stability. Coupling beams 
with ℓn∕h less than 2 and a factored shear Vu > 4λ​​√

__
 ​f​c​ ′​​​ Acw, where Acw is the concrete 

area resisting shear = bwh, must be reinforced with two intersecting groups of diagonal 
reinforcement, as shown in Fig. 20.19b and c, unless it can be shown that the loss of 
stiffness and strength in the beams will not impair the vertical load-carrying capacity 
of the structure, egress from the structure, or the integrity of nonstructural compo-
nents and their connections to the structure. Coupling beams with 2 ≤ ℓn∕h < 4 may 
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be designed using the criteria for flexural members or may be reinforced using two 
intersecting groups of diagonally placed bars that are symmetrical about the midspan. 
Such reinforcement is not effective unless it is placed at a steep angle (Refs. 20.14 and 
20.15) and thus is not permitted for coupling beams with ℓn∕h ≥ 4. The criteria for 
shear reinforcement in coupling beams are discussed in Section 20.7c. In accordance 
with ACI Code 18.10.2.5, the development length of both longitudinal and diagonal 
reinforcement extending from a coupling beam into a wall or wall pier is 1.25 times 
the value calculated for fy in tension. As shown in Fig. 20.19, there is no requirement 
that the horizontal reinforcement in a coupling beam be developed at the wall.

	 c.	 Wall Piers

Wall piers are narrow vertical wall segments, usually around windows and doors, with 
dimensions and reinforcement that are intended to result in the lateral shear demand 
being limited by flexural yielding of the vertical reinforcement in the pier. The desira-
bility of the shear force being governed by the flexural strength is demonstrated by the 
brittle shear failure of the captive column shown in Fig. 20.9. Pier width ℓw and height 
hw are defined in Fig. 20.20.

According to ACI Commentary 18.10.8, wall piers with a ratio of width to 
wall thickness ℓw∕bw ≤ 2.5 behave as columns, and according to ACI Code 18.10.8.1, 
must meet the requirements for columns in special moment frames in ACI Code 
18.7.4 through 18.7.6 (see Section 20.5b).

Grade of Primary 
Flexural Reinforcing Bar Transverse Reinforcement Required

Maximum Vertical Spacing of 
Transverse Reinforcementa

60

Within the greater of ℓw and Mu∕4Vu 
above and below critical sectionsb Lesser of

6db

6 in.

Other locations Lesser of
8db

8 in.

80

Within the greater of ℓw and Mu∕4Vu 
above and below critical sectionsb Lesser of

5db

6 in.

Other locations Lesser of
6db

6 in.

100

Within the greater of ℓw and Mu∕4Vu 
above and below critical sectionsb Lesser of

4db

6 in.

Other locations Lesser of
6db

6 in.
a db is the diameter of the smallest primary flexural reinforcing bar.
b Critical sections defined as locations where yielding of longitudinal reinforcement is likely to occur as a result of lateral displacements.
(Source: ACI 318-19. Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, 2019.)

TABLE 20.2
Maximum vertical spacing of transverse reinforcement at wall boundary in members 
not requiring boundary elements
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(a ) Coupled shear walls

(b) Coupling beam with confinement of individual diagonals

(c) Coupling beam with full confinement of diagonally reinforced concrete beam section

a

h

Horizontal beam
reinforcement at
wall does not
develop fy

Note: For clarity, only part of the required reinforcement
is shown on each side of the line of symmetry. 

Avd = total area
of reinforcement
in each group of
diagonal bars

Transverse reinforcement
spacing measured perpendicular
to the axis of the diagonal bars
not to exceed 14 in.
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m

m
et

ry

Section a–a

Elevation

a

�n
Wall boundary
reinforcement

⩾ bw/2

bw

b

h

Horizontal beam
reinforcement at
wall does not
develop fy

Spacing not
exceeding smaller
of 6 in. and 6db

Avd = total area
of reinforcement
in each group of
diagonal bars

Transverse
reinforcement
spacing not to
exceed 8 in.
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m
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ry

Section b–bElevation

b

�n
Wall boundary
reinforcement

db

Transverse
reinforcement
spacing not to
exceed 8 in.

Note: For clarity, only part of the required
reinforcement is shown on each
side of the line of symmetry. 

Note: Consecutive crossties engaging the same
longitudinal bar have their 90° hooks on
opposite sides of beam.

α

α

FIGURE 20.19
Coupled shear walls and 
coupling beam. (Adapted from: 

ACI 318-19. Building Code 

Requirements for Structural 

Concrete and Commentary. 

American Concrete Institute, 

2019.)
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For wall piers with ℓw∕bw  >  2.5, ACI Code 18.10.8.1 requires that the shear 
force be determined as it is for columns, with joint faces taken as the top and bottom 
of the clear height of the wall pier (see Section 20.7b). When the general building 
code includes overstrength provisions, the design shear force does not need to exceed 
the  overstrength factor Ωo times the factored shear calculated by analysis of the 
structure for the earthquake load effects. The shear force and shear reinforcement 
must meet the requirements for special structural walls, the transverse reinforcement 
must consist of hoops with a spacing not greater than 6 in., except single-leg hori-
zontal reinforcement parallel to ℓw may be used where the shear reinforcement is 
placed in a single layer. The single-leg horizontal reinforcement must have 180° bends 
at each end that engage wall pier boundary longitudinal reinforcement. The transverse 
reinforcement must extend at least 12 in. above and below the clear height of the 
wall pier. Special boundary elements must be provided if required by 18.10.6.3, as 
discussed in Section 20.6a.

In accordance with ACI Code 18.10.8.2, for wall piers at the edge of a wall, 
horizontal reinforcement must be provided in adjacent wall segments above and 
below the wall pier and designed to transfer the design shear force from the wall 
pier into the adjacent wall segments, as shown in Fig. 20.20.

	 d.	 Structural Diaphragms

As discussed in Section 19.4, floors and roofs serve as structural diaphragms in build-
ings. In addition to supporting vertical dead, live, and snow loads, they connect and 
transfer lateral forces between the members in the vertical lateral-force-resisting sys-
tem and support other building elements, such as partitions, that may resist horizontal 
forces but do not act as part of the vertical lateral-force-resisting system. Floor and 
roof slabs that act as diaphragms may be monolithic with the other horizontal elements 
in the structures or may include a topping slab. ACI Code 18.12.6 requires that con-
crete slabs and composite topping slabs designed as structural diaphragms to transmit 
earthquake forces be at least 2 in. thick. Topping slabs placed over precast floor or 
roof elements that do not rely on composite action must be at least 2​ 1 _ 2 ​ in. thick.

Design procedures for diaphragms are discussed in Section 19.4 and covered 
by ACI Code Chapter 12 and 18.12. As described in Section 19.4, reinforcement 
must meet the requirements for shrinkage and temperature steel in slabs in accordance 

FIGURE 20.20
Required horizontal 
reinforcement in wall 
segments above and below 
wall piers at the edge of a 
wall. (Adapted from Ref. 20.10.)

Direction of
earthquake forces

Direction of
earthquake forces
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horizontal

reinforcement

�w for wall pier
Edge
of wall

hw for
wall pier

wall pier
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with ACI Code 24.4 (see Section 12.3). ACI Code 18.12.7 includes additional 
requirements for reinforcement in slabs with toppings. Collectors, an integral com-
ponent of diaphragms, are discussed next.

	 e.	 Collector and Structural Truss Elements

To provide adequate confinement and ductility, collector elements, which act in tension  
or compression to transmit seismic forces between structural diaphragms and vertical 
load-carrying elements, with compressive stresses greater than 0.2 ​​f​c​ ′​​ must meet most  
of the requirements for transverse reinforcement for columns in seismic-load-resisting 
frames, covered in Section 20.5b. The provisions apply to the full length of the col-
lectors. The requirements for members with Pu > 0.3 ​​f​c​ ′​​ Ag or ​​f​c​ ′​​ > 10,000 psi and  
those of Eqs. (20.23), (20.24), and (20.26) are not applied, and the spacing limit of 
one-quarter of the column dimension becomes one-third of the least dimension of the 
collector. The special transverse reinforcement may be discontinued at a section where 
the calculated compressive stress is less than 0.15 ​​f​c​ ′​​, in accordance with ACI Code 
18.12.7.6. If the design forces are amplified to account for the overstrength of the verti-
cal elements of the seismic-force-resisting system, the limit of 0.2 ​​f​c​ ′​​ is increased to 0.5 ​​
f​c​ ′​​ and the limit of 0.15 ​​f​c​ ′​​ is increased to 0.4 ​​f​c​ ′​​. To limit the buckling of reinforcement 
and provide adequate bar development near for splices and anchorage zones, ACI Code 
18.12.7.7 requires that longitudinal reinforcement have a center-to-center spacing of at 
least 3 longitudinal bar diameters and not less than 1​ 1 _ 2 ​ in., and a concrete clear cover 
of at least 2​ 1 _ 2 ​ longitudinal bar diameters, not less than 2 in. In addition to meeting the 
requirements for transverse reinforcement in ACI Code 18.12.7.6, the area of trans-
verse shear reinforcement Av must equal the greater of 0.75​​√

__
 ​f​c​ ′​​​ bw s∕fyt and 50bw  s∕fyt  .

Transverse reinforcement is also required for truss elements with compressive 
stresses greater than 0.2 ​​f​c​ ′​​, but in contrast with collector elements, must be continued 
over the full length of the element. As required by ACI Code 18.12.12 for trusses, 
the requirements for columns in ACI Code 18.7.5.2, 18.7.5.3, and 18.7.5.7 are used, 
as described in Section 20.5b

Compressive stresses in collector and truss elements are calculated for the 
factored forces using a linear elastic model and the gross section properties of the 
elements. Continuous reinforcement in stiff structural systems must be anchored and 
spliced to develop fy in tension.

	 20.7	 ACI PROVISIONS FOR SHEAR STRENGTH

	 a.	 Beams

A prime concern in the design of seismically loaded structures is the shear induced 
in members due to nonlinear behavior in flexure [Eq. (20.1)]. As discussed in 
Section 20.2, increasing the flexural strength of beams and columns may increase the 
shear in these members if the structure is subjected to severe lateral loading. As a 
result, the ACI Code requires that beams and columns in frames that are part of the 
seismic-force-resisting system (including some members that are not designed to carry 
lateral loads) be designed for the combined effects of factored gravity load and shear 
induced by the formation of plastic hinges at the ends of the members.

For beams, ACI Code 18.6.5 requires that the design shear force Ve be based on 
the shear induced by moments of opposite sign corresponding to the probable flexural 
strength Mpr plus the factored tributary gravity load and vertical earthquake loads along 
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the span. Loading corresponding to this case is shown in Fig.  20.21. The probable 
flexural strength Mpr is based on the reinforcing steel achieving a stress of 1.25fy.

	 Mpr = 1.25As fy ​​( d − ​ a __ 
2
 ​ )​​	 (20.32a)

where

	 a = ​​ 
1.25fy As

 _______ 
0.85​f​c​ ′​ b

 ​​	 (20.32b)

The shear Ve is given by

	 Ve = ​​ 
Mpr1 + Mpr2

  __________ 
ℓn

 ​​  ± ​​ 
wuℓn

 ____ 
2
 ​​	  (20.33)

where Mpr1 and Mpr2 = �probable moment strengths at two ends of member when 
moments are acting in the same sense

	 ℓn = length of member between faces of supports
wu = �factored uniform load based on (1.2 + 0.2SDS)D + 1.0L + 0.2S 

[see Eq. (20.7)]

Equation (20.33) should be evaluated separately for moments at both ends acting in 
the clockwise and then counterclockwise directions.

To provide adequate ductility and concrete confinement, ACI Code 18.6.5.1 
requires that the transverse reinforcement within a length equal to twice the member 
depth from the face of the support (length defined in ACI Code 18.6.4.1), at both 
ends of the flexural member, must be designed based on a concrete shear capacity 
Vc = 0, when the earthquake-induced shear force in Eq. (20.33) (Mpr1 + Mpr2)∕ℓn + 
0.2SDSwuℓn is one-half or more of the maximum required shear strength within that 
length and the factored axial compressive force in the member, including earthquake 
effects, is below Ag ​​f​c​ ′​​∕20.

	EXAMPLE 20.3	 Beam shear design.  An 18 in. wide by 24 in. deep reinforced concrete beam spans between 
two interior columns in a building frame designed for a region of high seismic risk. The clear span 
is 24 ft, and the reinforcement at the face of the support consists of four No. 10 (No. 32) top bars 
and four No. 8 (No. 25) bottom bars. The effective depth is 21.4 in. for both top and bottom steel. 
SDS = 0.20. The maximum factored shear wu ℓn∕2 = [(1.2 + 0.2SDS)wd + 1.0wl]ℓn∕2 = 32 kips at 
each end of the beam. Materials strengths are ​​f​c​′​​ = 5000 psi and fy  =  60,000  psi. Design the 
shear reinforcement for the regions adjacent to the column faces.

Solution.  The probable moment strengths Mpr are based on a steel stress of 1.25fy. For 
negative bending, the area of steel is As = 5.08 in2 at both ends of the beam, the stress block 
depth is a = 1.25 × 5.08 × 60∕(0.85 × 5 × 18) = 4.98  in., and the probable strength is

Mpr1 = 1.25As fy ​​( d − ​ a __ 
2
 ​ )​​ = ​​ 1.25 × 5.08 × 60  _______________ 

12
 ​​  ​​( 21.4 − ​ 4.98 ____ 

2
 ​  )​​ = 600 ft-kips

Ve
Ve

(1.2 + 0.2SDS)wd + 1.0wl + 0.2ws

Ve =

Mpr 1 Mpr 2

�n

Mpr 1 + Mpr 2 wu �n

2
±

�n

FIGURE 20.21
Forces considered in the 
shear design of flexural 
members subjected to  
seismic loading. 
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For positive bending, the area of steel is As = 3.16 in2, the effective width is 90 in., the stress 
block depth a = 1.25 × 3.16 × 60∕(0.85 × 5 × 90) = 0.62 in., and the probable strength is

Mpr2 = ​​ 1.25 × 3.16 × 60  _______________ 
12

 ​​  ​​( 21.4 − ​ 0.62 ____ 
2
 ​  )​​ = 417 ft-kips

As given in the problem statement, the effect of factored uniform loads wuℓn∕2  =  [(1.2 +  
0.2SDS)wd + 1.0wl]ℓn∕2 = 32 kips giving a design shear force at each end of the beam, accord-
ing to Eq. (20.32), of

Ve = ​​ 
Mpr1 + Mpr2

  __________ 
ℓn

 ​​  ± ​​ 
wuℓn

 ____ 
2
 ​​  = ​​ 600 + 417 _________ 

24
 ​​  + 32 = 42 + 32 = 74 kips

Since the earthquake-induced force not counting the addition effect of 0.2SDSwuℓn, 42 kips, is 
greater than one-half of the maximum required shear strength, the transverse hoop reinforce-
ment must be designed to resist the full value of Ve (that is, ϕVs ≥ Ve) over a length 2h = 48 in. 
from the face of the column, in accordance with ACI Code 18.6.5.1. The maximum spac-
ing of the hoops s is based on the smaller of d∕4 = 5.4 in., 6db for the smallest longitudinal 
bars = 6 in., or 6 in. for the hoop bars [assumed to be No. 3 (No. 10) bars] = 9 in., or 12 in.  
A spacing s = 5 in. will be used.

The area of shear reinforcement within a distance s is

Av = ​​ 
(Ve∕ϕ)s

 _______ 
fytd

 ​​  = ​​ 
(74∕0.75)5

 _________ 
60 × 21.4

 ​​ = 0.38 in2

Providing support for corner and alternate longitudinal bars, in accordance with ACI Code 
18.6.4 (and ACI Code 25.7.2.3), leads to the use of overlapping hoop reinforcement, shown  
in Fig. 20.22, and a total area of transverse steel Av = 0.44 in2.

The first hoop is placed 2 in. from the face of the column. The other hoops are spaced 
at 5 in. within 48 in. from each column face. Transverse reinforcement for the balance of  
the beam is calculated based on the value of Ve at that location and a nonzero concrete 
contribution Ve. The stirrups must have seismic hooks and a maximum spacing of d∕2.

FIGURE 20.22
Configuration of hoop 
reinforcement for beam in 
Example 20.3. No. 3 (No. 10)

hoops @ 5″

	 b.	 Columns

In accordance with ACI Code 18.7.6.1, shear provisions similar to those used for 
beams to account for the formation of inelastic hinges must also be applied to mem-
bers with axial loads greater than Ag ​​f​c​ ′​​∕10. In this case, the loading is illustrated in 
Fig. 20.23a, and the factored shear is

	 Ve = ​ 
Mpr1 + Mpr2

  __________ 
ℓu

 ​ 	 (20.34)

where ℓu is the clear distance between beams and Mpr1 and Mpr2 are based on a steel 
tensile strength of 1.25fy.
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In Eq. (20.34), Mpr1 and Mpr2 are the maximum probable moment strengths for 
the range of factored axial loads to which the column will be subjected, as shown 
in Fig.  20.23b; Ve, however, need not be greater than a value based on Mpr for the 
transverse members framing into the joint. For most frames, the latter will control. 
Of course, Ve may not be less than that obtained from the analysis of the structure 
under factored loads.

The ACI Code requires that the transverse reinforcement in a column over a 
length ℓo (the greater of the depth of the member at the joint face, one-sixth of the 
clear span, or 18 in.) from each joint face be proportioned to resist shear based on a 
concrete shear capacity Vc = 0 when (1) the earthquake-induced shear force is one-half 
or more of the maximum required shear strength within those lengths and (2) the 
factored axial compressive force, including earthquake effects, is less than Ag ​​f​c​ ′​​∕20.

	 c.	 Walls, Coupling Beams, Wall Piers, Diaphragms, and Trusses

The factored shear force Vu for walls, coupling beams, diaphragms, and trusses is 
obtained from analysis based on the factored (including earthquake) loads.

In accordance with ACI Code 18.10.4.1, the nominal shear strength Vn of 
structural walls and wall segments is taken as

	 Vn = ​​( αc λ​√
__

 ​f​c​ ′​​ + ρt fy )​ Acv​	 (20.35)

where Acv = �gross area of concrete section bounded by the web thickness and length of 
the section in the direction of shear force

FIGURE 20.23
(a) Forces considered in the 
shear design of columns 
subjected to seismic loading. 
(b) Column interaction 
diagram used to determine 
maximum probable moment 
strengths. Note that Mpr for 
columns is usually governed 
by Mpr of the girders framing 
into a joint, rather than Mmax.

(a )

(b )

Range of Pu

Ve

Ve

Ve

Mpr 1 + Mpr 2

Mpr = Mmax

Mpr 1

Mpr 2

MnMmax

Pu

Pu

Pn

=
�u

�u
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	 ρt = �ratio of distributed shear reinforcement on a plane perpendicular to the  
plane of Acv

	 αc = �3.0 for hw∕ℓw ≤ 1.5, = 2.0 for hw∕ℓw ≥ 2.0, and varies linearly for interme-
diate values of hw∕ℓw

The values of hw and ℓw used to calculate αc are the height and length, respectively, 
of the entire wall or diaphragm or segments of the wall or diaphragm. ℓw is meas-
ured in the direction of the shear force. In applying Eq. (20.35), the ratio hw∕ℓw is the 
larger of the ratios for the entire member or the segment of the member being consid-
ered. The use of αc greater than 2.0 is based on the higher shear strength observed for 
walls with low aspect ratios.

As described in Section 20.6, ACI Code 18.10.2 requires that walls contain 
distributed shear reinforcement in two orthogonal directions in the plane of the mem-
ber. For walls with hw∕ℓw ≤ 2.0, the reinforcement ratio for steel crossing the plane 
of Acv,  ρℓ, must at least equal ρt. The nominal shear strength of all wall segments, 
including wall piers, that together carry the lateral force is limited to a maximum 
value of 8​​√

__
 ​f​c​ ′​​​ Acv, with no individual pier assumed to carry greater than 10 ​​√

__
 ​f​c​ ′​​​ Acw, 

where Acv is the total cross-sectional area and Acw is the cross-sectional area of an 
individual pier. The nominal shear strength of horizontal wall segments (regions of 
a wall bounded by openings above and below) is limited to 10​​√

__
 ​f​c​ ′​​​ Acw.

For coupling beams reinforced with two intersecting groups of diagonally 
placed bars symmetrical about the midspan (Fig. 20.19b), each group of the diago-
nally placed bars must consist of at least four bars provided in two or more layers 
and embedded into the wall not less than 1.25 times the development length required 
for fy in tension. The nominal strength provided by the diagonal bars is given by

	 Vn = 2Avd fy sin α ≤ 10​​√
__

 ​f​c​ ′​​​ Acw	 (20.36)

where Avd = total area of longitudinal reinforcement in an individual diagonal
	 Acw = area of concrete section resisting shear
	 α = �angle between diagonal reinforcement and longitudinal axis of coupling 

beam

The upper limit in Eq. (20.36) is a safe upper bound based on the experimental 
observation that coupling beams remain ductile at shear forces exceeding this value 
(Ref. 20.15).

ACI Code 18.10.7 allows two options for providing confinement for coupling 
beams. In the first, shown in Fig.  20.19b, each group of diagonal bars must be 
enclosed by transverse reinforcement having out-to-out dimensions not smaller 
than bw∕2 in the direction parallel to bw and bw∕5 along the other sides (that is, 
perpendicular to bw). The transverse reinforcement must consist of hoops satisfying 
Eqs. (20.24) and (20.25), with a spacing measured parallel to the diagonal bars 
satisfying Eq. (20.21), but not exceeding 6 times the diameter of the diagonal bars, 
and have spacing of crossties or legs of hoops measured perpendicular to the 
diagonal bars not exceeding 14 in. When computing Ag for use in Eqs. (9.5) and 
(20.24), the concrete cover required by ACI Code 20.5.1 (see Section 4.5a) is 
assumed on all four sides of each group of diagonal bars. The transverse reinforce-
ment must be continued through the intersection of the diagonal bars. Additional 
longitudinal and transverse reinforcement must be distributed around the beam 
perimeter with a total area in each direction not less than 0.002bws and spacing 
not greater than 12 in.

For the second option, shown in Fig. 20.19c, ACI Code 18.10.7 allows hoops 
to be provided for the entire beam cross section satisfying Eqs. (20.24) and (20.25), 
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with longitudinal spacing not exceeding the smaller of 6 in. and 6 times the diame-
ter of the diagonal bars, and with spacing of crossties or legs of hoops both vertically 
and horizontally in the plane of the beam cross section not exceeding 8 in. Each 
crosstie and each hoop leg must engage a longitudinal bar of equal or larger diam-
eter. Because construction is easier, the second option is used far more often in 
practice than the first.

According to ACI Code 12.5.3, the maximum nominal shear strength of 
diaphragms is

	 Vn = ​​( 2λ​√
__

 ​f​c​ ′​​ + ρt fy )​​ Acv ≤ 8​​√
__

 ​f​c​ ′​​​Acv	 (20.37)

where Acv is the gross area of the concrete bounded by the diaphragm thickness and 
length of the diaphragm in the direction of the shear force, and ​​√

__
 ​f​c​ ′​​​ used to calculate 

Vn may not exceed 100 psi. Web reinforcement in the diaphragm is distributed uni-
formly in both directions.

	EXAMPLE 20.4	 Coupling beam design.  A coupling beam with a clear span ℓn = 72 in., a depth h = 72 in., 
a thickness bw = 18 in. will be subjected to a factored shear force Vu = 340 kips. Design the 
coupling beam using ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

Solution.  The design approach depends on the span-to-depth ratio ℓn∕h and the factored 
shear Vu relative to 4λ ​​√

__
 ​f​c​ ′​​​ Acw. ℓn∕h = 72∕72 = 1.0 and 4λ ​​√

__
 ​f​c​ ′​​​ Acw = 4 × 1.0 ​​√

_____
 4000​​ × 18 × 

72∕1000 = 328 kips. As described in Section 20.6b, because ℓn∕h is less than 2, and Vu is 
greater than 4λ ​​√

__
 ​f​c​ ′​​​ Acw, the coupling beam must be reinforced with two intersecting groups of 

diagonal reinforcement.
To calculate the angle α between the diagonal and the longitudinal axis of the coupling 

beam (Fig. 20.19), assume an out-to-out spacing of the outer bars in the diagonal reinforcement 
of 8 in. and a clear spacing between the outer bars and the top of the beam as the bars in the 
diagonal exit the coupling beam of 3 in., giving α = tan–1[(72 – 8 – 2 × 3)∕72] = 38.8 deg. 

Solving Eq. (20.36) for Avd and substituting Vu∕ϕ for Vn gives

Avd = Vu∕(2ϕfy sin α) = 340∕(2 × 0.75 × 60 × sin 38.8 deg) = 6.02 in2

Four No. 11 (No. 36) bars, with a total area of 6.24 in2, are selected. By inspection, 
Vn < 10​​√

__
 ​f​c​ ′​​​ Acw, satisfying the upper limit shown in Eq. (20.36). The No. 11 (No. 36) bars 

must extend 1.25 times ℓd for Grade 60 reinforcement into the wall.
As shown in Fig 20.19 and explained in Section 20.7c, there are two options for pro-

viding confinement for coupling beams, (1) ties around each set of diagonal bars, as shown 
in Fig. 20.19b, and (2) transverse reinforcement around the full coupling beam, as shown in 
Fig. 20.19c.
Option 1: The tentative dimensions of the diagonal bars are shown in Fig. 20.24. Outside 
dimensions of the transverse reinforcement of 9 in. both parallel and perpendicular to the side 
face of the beam will satisfy the requirements that out-to-out dimensions must be at least bw∕2 
in the direction parallel to bw and bw∕5 along the other sides. For the four No. 11 (No. 36) bars, 
hx is approximately 6.6 in. Under Option 1, the maximum spacing of ties measured parallel to 
the diagonal bars s is given by so in Eq. (20.21a) but must have values between 4 and 6 in., as 
given in Eq. (20.21b) and not greater than 6db = 6 × 1.41 = 8.46 in.

s = so = 4 + ​​( ​ 14 − hx
 _______ 

3
 ​  )​​ = 4 + ​​( ​ 14 − 6.6 _______ 

3
 ​  )​​ = 6.47 in.

The maximum spacing controls, giving the spacing between transverse reinforcement  
s = 6  in. The area of the ties must also satisfy Eqs. (20.24) and (20.25) in both directions 
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FIGURE 20.24
Designs of coupling beams in Example 20.4.

72″

72″ 18″Wall boundary
reinforcement 

Wall boundary
reinforcement 

72″

72″

No. 4 (No. 13)

No. 4 (No. 13)

4 No. 11 (No. 36)
bars in each

diagonal

4 No. 11 (No. 36)
bars in each

diagonal

(a) Coupling beam with confinement of individual diagonals

(b) Coupling beam with full confinement of diagonally reinforced beam section

72″

18″

72″

(parallel and perpendicular to bw). Solving Eqs. (20.24) and (20.25) for the area of the ties 
Ash gives, respectively,

Ash = 0.3 ​​( sbc ​f​c​ ′​∕fyt )​​​​[​( ​A​ g​∕​A​ ch​ )​ − 1]​​

Ash = 0.09 sbc ​f​c​ ′​​∕fyt

Ag is calculated based on the concrete cover required by ACI Code 20.5.1, which is ​​ 3 _ 4 ​​ in. for 
walls. Thus, Ag = (9.0 + 2 × 0.75) × (9.0 + 2 × 0.75) = 110 in2, and Ach = 9.0 × 9.0 = 
81 in2. Because bc = 9.0 in. both parallel and perpendicular to bw, the required area of the ties 
is the same in the two directions. The values of Ash based on Eqs. (20.24) and (20.25) are 

Ash = 0.3(6 × 9 × 4∕60)[(110∕81) − 1] = 0.39 in2

Ash = 0.09 × 6 × 9 × 4∕60 = 0.32 in2
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The required area can be provided by a single No. 4 (No. 13) bar tie, which has two legs in 
each direction, giving Ash = 0.40 in2. The spacing between crossties or legs of hoops perpen-
dicular to the diagonal bars cannot exceed 14 in., a requirement that is satisfied by the center-
to-center spacing of the No. 11 (No. 36) bars, which is 6.6 in. The transverse reinforcement 
must be continued through the intersection of the diagonals.

As a final step, additional longitudinal and transverse reinforcement is required around the 
perimeter of the beam with a total area of 0.002bws and a spacing not greater than 12 in. With 
two layers of No. 4 (No. 13) bars and bw = 18 in., s = 0.40∕(0.002 × 18) = 11.1 in. Starting 
3 in. in from each boundary, seven No. 4 (No. 13) bars, spaced at 11 in., will be used on each 
face of the beam for a total of fourteen No. 4 (No. 13) bars each way. As described in Section 
20.6b, the horizontal bars need not be developed within the wall and, based on experience, will 
project just 6 in. into the wall. The final design for Option 1 is shown in Fig. 20.24a.
Option 2: Option 2 requires transverse reinforcement around the full coupling beam that satisfies 
Eqs. (20.24) and (20.25) in both directions. The spacing of the vertical reinforcement may not 
exceed 6 in. or 6 times the diameter of the diagonal bars. For No. 11 (No. 36) diagonal bars, the max-
imum spacing is the smaller of 6 in. and 6db = 6 × 1.41 = 8.5 in, with 6 in. controlling. In addition, 
the spacing of the crossties or legs of hoops may not exceed 8 in. in either the horizontal or vertical 
direction. To provide adequate reinforcement in the steps that follow, spacings s of 5 and 6 in. will 
be used, respectively, providing 14 vertical and 12 horizontal bars on each face of the beam.

To solve for the area of confining reinforcement, Ag = 18.0 × 72.0 = 1296 in2, and 
Ach = 16 × 70 = 1120 in2.

The area of reinforcement Ash in the vertical direction based on the larger value obtained 
from Eqs. (20.24) and (20.25) is calculated using s = 5 in. and bc = 16 in.

Ash = 0.3(5 × 16 × 4∕60)[(1296∕1120) − 1] = 0.27 in2

Ash = 0.09 × 5 × 16 × 4∕60 = 0.48 in2

The area of reinforcement Ash in the vertical direction based on the larger value 
obtained from Eqs. (20.24) and (20.25) is calculated using s = 6 in. and bc = 70 in.

Ash = 0.3(6 × 70 × 4∕60)[(1296∕1120) − 1] = 1.32 in2

Ash = 0.09 × 6 × 70 × 4∕60 = 2.52 in2

In the vertical direction, a single No. 4 (No. 13) tie with two legs plus the additional required 
crosstie, also No. 4 (No. 13), to limit the spacing of the crossties or legs of hoops to a max-
imum of 8 in. provides an area of 0.60 in2, above the requirement of 0.48 in2 based on 
Eq. (20.25). In the horizontal direction, two No. 4 (No. 13) tie legs plus 12 crossties spaced 
at 5 in. provides an area of 14 × 0.20 = 2.80 in2, above the requirement of 2.52 in2 based 
on Eq.  (20.25). As with Option 1, the horizontal bars will project 6 in. into the wall. The 
final design for Option 2 is shown in Fig. 20.24b.

	 20.8	 ACI PROVISIONS FOR INTERMEDIATE MOMENT FRAMES

ACI Code 18.4 governs the design of frames in structures assigned to SDC C. The 
requirements include specified loading and detailing requirements. Unlike structures 
assigned to SDC D, E, and F, two-way slab systems without beams are allowed to 
serve as lateral-force-resisting systems. Walls, diaphragms, and trusses in regions of 
moderate seismic risk are designed using the main part of the Code.

ACI Code 18.4.2.3 and 18.4.3.1, addressing the shear design of beams and 
columns, respectively, offer two options for the shear design of frame members. The 
first option is similar to that illustrated in Figs. 20.21 and 20.23 and Eqs. (20.33) 
and (20.34), with the exception that the probable strengths Mpr are replaced by the 

www.konkur.in

Telegram: @uni_k



652      DESIGN OF CONCRETE STRUCTURES  Chapter 20

nominal strengths Mn. For beams, fy is substituted for 1.25fy in Eq.  (20.30). For 
columns, the moments used at the top and bottom of the column [Fig.  20.23 and 
Eq. (20.34)] are based on the capacity of the column alone (not considering the 
moment capacity of the beams framing into the joints) under the factored axial load 
Pu that results in the maximum nominal moment capacity.

As an alternative to designing for shear induced by the formation of hinges at 
the ends of beams, ACI Code 18.4.2.3 allows shear design to be based on load 
combinations that include an earthquake effect that is twice that required by the 
governing building code. Thus, Eq. (20.4) becomes

	 U = 1.2D + 2.0E + 1.0L + 0.2S	 (20.38)

where E is given in Eq. (20.6a).
For columns, the second option in ACI Code 18.4.3.1 allows the maximum 

shear to be obtained from factored load combinations that include E, with E multi-
plied by the overstrength factor Ωo, giving

	 U = 1.2D + ΩoE + 1.0L + 0.2S	 (20.39)

where Ωo = 3.0 for intermediate moment frames (Ref. 20.10). 
For beams and columns, the Code prescribes detailing requirements that are 

not as stringent as those used in regions of high seismic risk, but that provide greater 
confinement and increased ductility compared to those used in structures not designed 
for earthquake loading. For beams, the positive-moment strength at the face of a 
joint must be at least one-third of the negative-moment strength at the joint, in 
accordance with ACI Code 18.4.2.2. Both the positive and negative-moment strength 
along the full length of a beam must be at least one-fifth of the maximum moment 
strength at the face of either joint. Hoops are required at both ends of beams over a 
length equal to twice the member depth; the first hoop must be placed within 2 in. 
of the face of the support, and the maximum spacing in this region may not exceed 
one-fourth of the effective depth, 8 times the diameter of the smallest longitudinal 
bar, 24 times the stirrup diameter, or 12 in. The maximum stirrup spacing elsewhere 
in beams is one-half of the effective depth.

For columns, within length ℓo from the joint face, the hoop spacing so may not 
exceed 8 times the diameter of the smallest longitudinal bar or 8 in. for Grade 60 
reinforcement, 6 times the diameter of the smallest longitudinal bar or 6 in. for 
Grade 80 reinforcement, or one-half of the smallest cross-sectional dimension of the 
column. The length ℓo must be greater than one-sixth of the column clear span, the 
maximum cross-sectional dimension of the member, or 18 in. The first hoop must 
be located not more than so∕2 from the joint face. Outside of ℓo, the spacing of the 
transverse reinforcement must satisfy the requirements for shear reinforcement 
described in Section 5.5d in accordance with ACI Code 10.7.6.5.2.

Like columns in special moment frames, columns in intermediate moment 
frames must be designed to provide for ductile behavior when supporting discontin-
uous stiff members, such as walls. Columns in intermediate moment frames must 
contain transverse reinforcement with spacing so over the full height beneath the 
level at which the discontinuity occurs if the portion of factored axial compressive 
force in the columns related to earthquake effects exceeds Ag ​​ f​c​ ′​​∕10. If design forces 
have been magnified to account for the overstrength of the vertical elements of the 
seismic-force-resisting system, the limit of Ag ​​f​c​ ′​​∕10 be increased to Ag ​​f​c​ ′​​∕4. Trans-
verse reinforcement shall extend above and below the column in accordance with 
ACI Code 18.7.5.6(b). This transverse reinforcement must extend above and below 
the columns into the discontinued stiff member for at least the development length 
of the largest longitudinal reinforcement for walls and at least 12 in. into foundations.
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As required by ACI Code 18.4.4, joints in intermediate moment frames must 
be confined with ties, spirals, or hoops but must have not less than two layers of 
horizontal transverse reinforcement within the depth of the shallowest beam framing 
into the joint. Spacing requirements for transverse reinforcement through the deepest 
beam framing into the joint are the same as for columns in intermediate moment 
frames. The strut-and-tie method must be used to design the joint if the depth of a 
beam framing into the joint exceeds twice the depth of the column. Longitudinal 
reinforcement terminated in a joint must extend to the far face of the joint core and 
be developed in tension as required for special moment frames in accordance with 
ACI Code 18.8.5, as described in Section 20.5c, and in compression in accordance 
with ACI Code 25.4.9, as described in Section 6.8. If transverse reinforcement is 
required, slab-column joints must contain at least one layer of reinforcement between 
the top and bottom slab reinforcement. In accordance with ACI Code 18.4.4.7, the 
factored shear force with a joint Vu is calculated based on the nominal moment 
capacity of the beams framing into the joint, as described in Section 18.2d. The 
nominal shear capacity Vn is calculated in accordance with the provisions for special 
moment frames described in ACI Code 18.8.4.3 and shown in Table 20.1.

For two-way slabs without beams, ACI Code 18.4 requires design for earthquake 
effects using Eqs. (20.4) and (20.5). Under these loading conditions, the reinforcement 
provided to resist the unbalanced moment transferred between the slab and the column 
Msc (see Section 13.8) must be placed within the column strip. Reinforcement to resist 
the fraction of the unbalanced moment Msc defined by Eq. (13.12a), Mub = γf Msc, but 
not less than one-half of the reinforcement in the column strip at the support must 
be concentrated near the column. This reinforcement is placed within an effective slab 
width located between lines 1.5h on either side of the column or column capital, 
where h is the total thickness of the slab or drop panel.

To ensure ductile behavior throughout two-way slabs without beams, at least 
one-quarter of the top reinforcement at the support in column strips must be contin-
uous throughout the span, as must bottom reinforcement equal to at least one-third 
of the top reinforcement at the support in column strips. A minimum of one-half of 
all bottom middle strip reinforcement and all bottom column strip reinforcement at 
midspan in both column and middle strips must be continuous and develop its yield 
strength at the face of columns, capitals, brackets, and walls. For discontinuous  
edges of the slab, both the top and bottom reinforcement must be developed at the 
face of columns, capitals, brackets, and walls. Finally, at critical sections for two-way 
shear at columns (Section 13.7a), Vu may not exceed 0.4ϕVc. The latter provision 
may be waived if the requirements of ACI Code 18.14.5 for slab-column connections 
in members not designated as part of the seismic-force-resisting system are  
met (see  Section 20.5b). If transverse reinforcement is required in slab-column  
joints, at least one layer of reinforcement is required between the top and bottom 
slab reinforcement.

References
	  20.1.	 2015 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Struc-

tures, (FEMA P-1050), Part 1—Provisions, Part 2—Commentary, Building Seismic Safety Council, 
Washington, DC, 2015.

	  20.2.	 Minimum Design Loads for Buildings and Other Structures, ASCE∕SEI 7-16, American Society of 
Civil Engineers, Reston, VA, 2016.

	  20.3.	 S. K. Ghosh, A. W. Domel Jr., and D. A. Fanella, Design of Concrete Buildings for Earthquake and 
Wind Forces, 2nd ed., Portland Cement Association, Skokie, IL, and International Conference of 
Building Officials, Whittier, CA, 1995.

www.konkur.in

Telegram: @uni_k



654      DESIGN OF CONCRETE STRUCTURES  Chapter 20

	  20.4.	 W.-F. Chen and C. Scrawthorn, eds., Earthquake Engineering Handbook, CRC Press, Boca Raton, FL, 
2003.

	  20.5.	 T. Paulay and M. J. N. Priestly, Seismic Design of Reinforced Concrete and Masonry Buildings, John 
Wiley & Sons, Inc., New York, 1992.

	  20.6.	 G. G. Penelis and A. J. Kappos, Earthquake-Resistant Concrete Structures, CRC Press, New York, 1997.
	  20.7.	 Concrete Structures in Earthquake Regions: Design & Analysis, E. Booth, ed., Longman Scientific & 

Technical, Harlow, England, 1994.
	  20.8.	 J. P. Moehle, Seismic Design of Reinforced Concrete Buildings, McGraw-Hill Education, New York,  

NY, 2014.
	  20.9.	 Seismic Analyisis of Safety-Related Nuclear Structures, ASCE∕SEI 4-98, American Society of Civil 

Engineers, Reston, VA, 2000.
	20.10.	 Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American 

Concrete Institute, Farmington Hills, MI, 2019.
	20.11.	 ACI Committee 352, Recommendations for Design of Beam-Column Joints in Monolithic Reinforced 

Concrete Structures, ACI 352R-02, American Concrete Institute, Farmington Hills, MI, 2008.
	20.12.	 T. Ichinose, “Splitting Bond Failure of Columns under Seismic Action,” ACI Struct. J., vol. 92, no. 5, 

1995, pp. 535–541.
	20.13.	 D. Sokoli and W. M. Ghannoum, “High-Strength Reinforcement in Columns under High Shear Stresses,” 

ACI Struct. J, vol. 113, no. 3, 2016, pp. 605–614.
	20.14.	 T. Paulay and J. R. Binney, “Diagonally Reinforced Coupling Beams of Shear Walls,” in Shear in 

Reinforced Concrete, SP-42, American Concrete Institute, Detroit, MI, 1974, pp. 579–798.
	20.15.	 G. B. Barney, K. N. Shiu, B. G. Rabbat, A. E. Fiorato, H. G. Russell, and W. G. Corley, Behavior of 

Coupling Beams under Load Reversals (RD068.01), Portland Cement Association, Skokie, IL, 1980.

Problems
	20.1.	 An interior column joint in a reinforced concrete frame structure assigned to 

SDC D consists of 28 in. wide by 20 in. deep beams and 36 in. wide by 
20 in. deep girders framing into a 28 × 28 in. column. The slab thickness is 
5 in., and the effective overhanging flange width on either side of the web 
of the flexural members is 40 in. Girder reinforcement at the joint consists 
of five No. 10 (No. 32) top bars and five No. 8 (No. 25) bottom bars. Beam 
reinforcement consists of four No.  10 (No.  32) top bars and four No.  8 
(No.  25) bottom bars. As the flexural steel crosses the joint, the top and 
bottom girder bars rest on the respective top and bottom beam bars. Column 
reinforcement consists of 20 No.  7 (No.  22) bars evenly spaced around the 
perimeter of the column, similar to the placement shown in Fig. 20.14. Clear 
cover on the outermost main flexural and column longitudinal reinforcement 
is 2 in. Assume No. 4 (No. 13) stirrups and ties. For earthquake loading, the 
maximum factored axial load on the upper column framing into the joint is 
1098 kips, and the maximum factored axial load on the lower column is 
1160 kips. For a frame story height of 13 ft, determine if the nominal flexural 
strengths of the columns exceed those of the beams and girders by at least 
20 percent and determine the minimum transverse reinforcement required in 
the columns adjacent to the beams. Use ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.

	20.2.	 Design the joint and the transverse column reinforcement for the members 
described in Problem 20.1. The factored shears due to earthquake load are  
29 kips in the upper column and 31 kips in the lower column. Minimum 
factored axial loads are 21 and 25 kips below the forces specified in Problem 
20.1 for the upper and lower columns, respectively.

	20.3.	 In Example 20.1, the columns are spaced 28 ft on center in the direction of 
the spandrel beams. The total dead load on the spandrel beam (including self-
weight) is 2 kips∕ft and the total live load is 0.93 kips∕ft. Design the spandrel 
beam transverse reinforcement for a building subject to high seismic risk.

	20.4.	 Repeat Problem 20.3 for an intermediate frame.

www.konkur.in

Telegram: @uni_k



SEISMIC DESIGN      655

	20.5.	 An interior column joint in a reinforced concrete frame structure assigned to 
SDC E consists of 20 in. wide by 28 in. deep beams and girders framing 
into 26 × 26 in. columns. The slab thickness is 4 in., and the effective over-
hanging flange width on either side of the web of the flexural members is 
32 in. Girder and beam reinforcement at the joint consists of four No.  10 
(No. 32) top bars and four No. 9 (No. 29) bottom bars. As the flexural steel 
crosses the joint, the top and bottom girder bars are outside the respective 
top and bottom beam bars. Column reinforcement consists of eight No.  10 
(No.  32) bars at the corners and midsides of the column and eight No.  9 
(No. 29) bars at the alternate sites around the perimeter of the column. Clear 
cover on the outermost main flexural and column longitudinal reinforcement 
is 2 in. Assume No. 4 (No. 13) stirrups and ties. For earthquake loading, the 
maximum factored axial load on the upper column framing into the joint is 
1100 kips, and the maximum factored axial load on the lower column is 
1230  kips. The story height is 12 ft, and the columns are spaced 24 ft on 
center in the direction of the girders. Use ​​f​c​ ′​​ = 4000 psi and fy = 60,000 psi.
(a)	 Determine if the nominal flexural strengths of the columns exceed those of 

the beams and girders by at least 20 percent, and determine the minimum 
transverse reinforcement required in the columns adjacent to the beams.

(b)	 The total dead load on the girder (including self-weight) is 2.8 kips∕ft, 
and the total live load is 1.3 kips∕ft. Design the girder transverse 
reinforcement.
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	 21.1	 INTRODUCTION

The majority of connections in concrete structures are monolithic, as described in 
Chapter 18. Nonetheless, most buildings require some members to be connected and 
some loads to be transferred through mechanical attachments. These attachments con-
sist of steel plates, steel weldments, or precast components that are fastened to the 
supporting concrete using anchors. An attachment is either cast into the concrete or 
post-installed using mechanical or adhesive anchors. Examples of attachments include 
column base plates, column brackets, wall corbels, stair supports, and mechanical 
equipment supports. Figure  21.1 shows a precast column bracket with the anchor 

Anchoring to Concrete21
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FIGURE 21.1
(a) Precast column bracket and (b) final placement in column.  
(Photographs courtesy of Rocky Mountain Prestress, LLC.)

(a)

(b)
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reinforcement extended and the bracket cast into a column. Figure 21.2 shows post- 
installed and cast-in steel corbels, and Fig. 21.3 shows mechanical equipment fastened 
to the soffit of a concrete slab. Figure 21.4 illustrates a tension breakout failure of a  
Cazaly hanger attached using anchors at the end of a precast concrete floor panel.

FIGURE 21.4
Tension anchor failure of a Cazaly hanger.  
(Photograph by Charles W. Dolan.)

FIGURE 21.3
Mechanical equipment post-installed in a concrete slab.  
(Photograph by Charles W. Dolan.)

FIGURE 21.2
(a) Steel corbel post-installed to a cast-in-place wall (Photograph 

courtesy of Hilti Inc.) and (b) cast-in steel bracket. (Photograph 

courtesy of Rocky Mountain Prestress, LLC.)

(a)

(b)
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	 21.2	 BEHAVIOR OF ANCHORS

Anchors are steel elements that are cast into the concrete, or adhesively bonded or 
mechanically post-installed in hardened concrete. The effective embedded depth hef is 
shown in Fig. 21.5.

The variety of possible anchors and their varied failure modes require the 
engineer to determine the strength associated with each possible failure mode and 
base the design on the lowest strength to assure overall structural safety (Refs. 21.1 
and 21.2). Anchor failures include those based on:

	 	 Steel strength in shear or tension
	 	 Concrete breakout in shear or tension
	 	 Concrete pullout in tension
	 	 Side face blowout
	 	 Pryout in shear
	 	 Combined tension and shear
	 	 Bond failure of adhesive

The failure modes result from tension, shear, or combined loading. 
Figure  21.6 summarizes the failure modes. Except for the adhesive anchor  
(Fig. 21.6f ), headed studs are illustrated. Screw anchors are discussed in Section 
21.16. The failure modes, however, are common to all anchor types. In  addition 
to failure mode, the design must also consider any eccentric or unequal loading 
of individual anchors.

This chapter deals with the anchors shown in Fig. 21.5. Anchorage of rein-
forcement is addressed in Chapter 6. Groups of closely spaced straight reinforcing 
bars or bars anchored by hooks or heads should also be checked for the possibility 
of concrete breakout.

FIGURE 21.5
Anchor types. (a) Cast-in 
anchors: headed studs and 
bolts. Post-installed anchors:  
(b) adhesive anchor; (c) drop-in 
type displacement-controlled 
expansion anchor or undercut 
anchor; and (d) torque-
controlled expansion anchors.

eh
eh

(a) (b) (c) (d)

hef

FIGURE 21.6
Anchor failure modes:  
(a) concrete breakout in 
shear; (b) concrete breakout 
in tension; (c) steel failure in 
shear; (d) steel failure in 
tension; (e) concrete pullout 
in tension; ( f ) bond failure  
of adhesive; (g) combined 
tension and shear; and  
(h) side-face blowout.

3hef

hef

(a) (b) (c) (d) (e) (f) (g) (h)

2cNa

www.konkur.in

Telegram: @uni_k



ANCHORING TO CONCRETE      659

	 a.	 Steel Strength in Shear or Tension

When used in design, the shear or tensile strength of the anchor itself (Fig. 21.6c and d) is 
based on the specified tensile strength of the steel. Strength should be based on the net area 
of the anchor when threads are present. Tensile strength rather than yield strength is used 
to calculate anchor capacity to allow for direct comparison with the concrete breakout 
capacity and to allow individual anchors to yield and distribute load to adjacent anchors.

	 b.	 Concrete Breakout in Shear or Tension

Concrete breakout occurs when an anchor in tension generates tensile stresses on the 
surface of a prism of concrete radiating out from the head of the anchor (Fig. 21.6b). 
Shear prisms form between the anchor and the edge of the concrete (Fig. 21.6a). When 
the stresses are high enough for the concrete to fracture, the prism of concrete sur-
rounding the anchor separates from the surrounding concrete. Attachments with more 
than one anchor, as shown in Fig. 21.6g, may generate overlapping breakout regions. 
In design, concrete breakout capacity must be modified to account for this overlap.

	 c.	 Concrete Pullout in Tension

As the head size on cast-in anchors diminishes, the anchor can pull out by creating a 
cylinder of concrete directly above the anchor head (Fig. 21.6e). The pullout strength 
is a function of the area of the head less the area of the shaft. Normally proportioned 
headed studs and bolts have sufficient head area that concrete breakout usually occurs 
before concrete pullout can develop.

	 d.	 Side-Face Blowout

Anchors with deep embedment and thin side cover may fail by concrete spalling on 
the side face around the embedded head with no major breakout occurring at the top 
concrete surface, as shown in Fig. 21.6h.

	 e.	 Pryout in Shear

If an attachment similar to that shown in Fig. 21.6g has short anchors, is located away 
from an edge, and is subjected to high shear load, the plate may bend and the anchors 
on the back side of the attachment may rotate upward, leading to a pryout failure. 
Longer anchors are less prone to pryout failures.

	 f.	 Combined Tension and Shear

Anchors on some attachments, such as shown in Fig.  21.6g, are subjected to both 
shear and tensile loading. Determination of the strength of these attachments requires 
examining the interaction between the effects of the shear and the tensile loads.

	 g.	 Bond Failure of Adhesive

Adhesive anchors develop a bond between the anchor, the epoxy, and the concrete. A 
typical bond failure results in the anchor pulling out due to a concrete breakout around 
the upper portion combined with an adhesive failure along the lower portion of the 
anchor, as shown in Fig. 21.6f.
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	 21.3	 CONCRETE BREAKOUT CAPACITY

For many years, the design of concrete anchors in tension was based on the assump-
tion that a 45° concrete cone formed at failure (Refs. 21.3 to 21.5). The strength 
associated with a 45° failure cone correlates with the square of the embedment 
depth of the anchor ​h​ ef​ 

2 ​. Individual anchors were assumed to develop their full  
tensile capacity if embedded at least 8 times their diameter (Ref. 21.6). The 45° 
cone failure model, however, was found to both over and underpredict test results, 
especially for shallow anchors. The variation between predicted behavior and test 
results led to the development of the concrete capacity design (CCD) method 
for determination of concrete breakout capacity (Refs. 21.2 and 21.7). The CCD 
method evolved after extensive testing and statistical analysis that allowed correla-
tion between strength and key material and geometric parameters. Fracture mechan-
ics models and the experimental research resulted in the observation that a prism 
with a failure angle of approximately 35°, such as shown in Fig. 21.7, provides a 
statistically more reliable strength prediction than does the 45° model. The strength 
of an anchor with a 35° failure cone correlates to the embedment depth of the 
anchor raised to the 1.5 power ​h​ ef​ 

1.5​. Underlying research indicates that the predicted 
strength becomes unconservative for higher-strength concrete. Consequently, the 
concrete strength used for calculations is limited to 10,000 psi for cast-in anchors 
and 8,000 psi for post-installed anchors due to the lack of test data.

The initial research examined anchor behavior in uncracked concrete and con-
cluded with a caution that anchor behavior in cracked concrete may differ consider-
ably from that in uncracked concrete. Cracking can result from early form removal, 
handling, temperature, and shrinkage. Consequently, all concrete should be assumed 
cracked unless it is shown by analysis that the concrete is uncracked.

Behavior in cracked concrete is critical to anchors placed in negative moment 
regions and in structures subjected to earthquake loading (Refs. 21.8 and 21.9). 
Cracked concrete specimens exhibit a loss of capacity ranging up to 30 percent for 
cast-in-place bolts and headed studs and 40 to 60 percent for post-installed anchors 
compared to uncracked concrete specimens. The greater loss in post-installed anchors 
is attributed to a variation in the ability of the mechanical expansion devices on the 

FIGURE 21.7
Single stud breakout prism 
indicating a failure angle  
of approximately 35°.  
(Photograph by Charles W. Dolan.)
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anchor to fully engage the concrete. Tests of anchors expanded to only 50 percent 
of their specified limits confirmed this loss in evaluation tests. The observed anchor 
strength reduction in cracked concrete led to the conclusion that cracked concrete 
should be the basis for design unless analysis indicates that the concrete will remain 
uncracked throughout its service life.

Precast members are often assumed to remain uncracked during removal from 
the forms, lifting and handling, and throughout their design life. An industry study 
on headed stud anchors in uncracked concrete confirmed the applicability of the 
concrete capacity design approach and provided an alternative set of equations for 
the PCI Design Handbook (Refs. 21.10 to 21.12). The equations in the PCI Design 
Handbook must be modified when used for anchors in cracked concrete. Research 
sponsored by PCI concluded that the strength prediction equations were valid for 
concrete strengths as low as ​f​c​ ′​ = 1000 psi (Ref. 21.13).

ACI 355.2 Qualification of Post-Installed Mechanical Anchors in Concrete and 
Commentary (Ref. 21.14) provides test acceptance criteria for the certification of 
post-installed anchors in cracked concrete and ACI 355.4 Qualification of Post-
Installed Adhesive Anchors in Concrete (Ref. 21.15) provides acceptance criteria for 
adhesive anchors. Manufacturers use these criteria to establish the anchor capacity 
and installation conditions associated with their anchors.

Analyses of test results led to the conclusion that the statistically significant 
variables for predicting anchor capacity in tension are the tensile strength of the 
concrete and the anchor embedment depth. The basic equations resulting from the 
analyses are used to establish the mean tensile and shear strengths for individual 
anchors. The nominal breakout strength of a single anchor is established at the  
5 percent fractile.† Using the 5 percent fractile, rather than the mean strength, 
provides an appropriate level of structural reliability (see Section 1.4).

	 21.4	 ANCHOR DESIGN

Attachments usually include multiple anchors arranged in groups. The design of attach-
ment anchors involves the calculation of the strength for each anchor in the group based 
on the possible failure modes and uses the lowest individual strength as the basis for the 
nominal strength of the anchor group. The strength reduction factor corresponding to 
the failure mode associated with the lowest strength anchor is then used to calculate the 
design strength for comparison with the factored loads. Tensile and shear failure modes 
must be checked and, in the event that both tension and shear are present, verification of 
the capacity due to the interaction of the two loads is required.

Attachment capacity is based on the strength on an individual anchor and 
then adjusted for anchor groups. The overlap of the concrete breakout prisms for 
anchors in tension that are placed less than 3hef apart on an attachment or anchors 
with an edge distance less than 1.5hef results in a concrete breakout capacity that 
is less than the sum of the individual anchor breakout capacities. The calculated 
strength of anchor groups placed near an edge requires further modification 
because concrete may split near individual anchors and the total failure breakout 
prism may not be mobilized. Adhesive anchors are addressed separately in 
Section  21.13. Post-installed screw anchors are addressed in Section 21.14 and 
shear lug attachments in Section 21.17.

†  Nominal strength for which there is 90 percent confidence that there is a 95 percent probability that the predicted anchor strength will be 
exceeded by the actual strength.
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	 21.5	 ACI CODE PROVISIONS FOR CONCRETE  
BREAKOUT CAPACITY

Chapter 17 of the ACI Code (Ref. 21.16) presents equations for each possible failure 
mode. Temporary lifting attachments, specialty attachments, and anchors subject to 
high cycle fatigue or impact loading are outside the scope of the Code. The Code 
addresses cast-in headed studs, bolts and hooked rods, post-installed bolts, screw 
anchors, adhesively bonded anchors, and shear lugs. The Code places particular atten-
tion to the concrete breakout capacity of the cast-in and adhesive anchors. The capacity 
of post-installed mechanical, undercut, and expansion anchors require manufactur-
ers’ certification and are only addressed in the Code through the selection of strength 
reduction factors. The ACI Code requires that anchor and anchor group design be 
based on design models in substantial agreement with test data. The equations that 
follow are from the ACI Code and are deemed to satisfy this requirement.

Reinforcement placed within the anchor breakout prism affects anchor perfor-
mance. Supplementary reinforcement is added to reduce spalling and control crack 
width. Supplementary reinforcement restrains the potential concrete breakout but is 

Type of Anchor Anchor Category Anchor Categorya

Strength Reduction Factor, ϕ

Tension Shear

Strength of steel Ductile 0.75 0.65
Brittleb 0.65 0.60

Cast-in anchor governed by concrete 
breakout, bond or side-face blowout

Supplemental steel 
present 0.75 0.75

Supplemental steel 
not present 0.70 0.70

Post-installed or screw anchor governed 
by concrete breakout, bond, or side-face 
blowout

Supplemental steel 
present

Category 1c 0.75
0.75Category 2d 0.65

Category 3e 0.55

Supplemental steel 
not present

Category 1c 0.65
0.70Category 2d 0.55

Category 3e 0.45
Cast-in or screw anchor governed by 
concrete pullout or pryout strength 0.70 0.70

Post-installed or screw anchor governed 
by concrete pullout or pryout strength

Category 1c 0.65
0.70Category 2d 0.55

Category 3e 0.45
a �Strength and sensitivity categories for post-installed anchors are established by the ACI 355.2. The effects of variability in anchor torque 

during installation, tolerance on drilled hole size, and energy level used in setting anchors are considered; for expansion and undercut anchors 
approved for use in cracked concrete, increased crack widths are considered. ACI 355.4 tests for sensitivity to installation procedures 
determine the category for a particular adhesive anchor system considering the influence of adhesive mixing and the influence of hole cleaning 
in dry, saturated, and water-filled/underwater bore holes.

b Brittle steel elements have an elongation less than 14 percent when tested by their appropriate ASTM method.
c Category 1, low sensitivity to installation and high reliability.
d Category 2, medium sensitivity to installation and medium reliability.
e Category 3, high sensitivity to installation and low reliability.

TABLE 21.1
Summary of strength reduction factors for anchors 
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Anchor Type
Minimum Edge  

Distanceb
Critical Edge  
Distance,c cac Minimum Anchor Spacing

Cast-in Minimum coverd 4da

Adhesive 6da 2hef 6da

Undercut or expansione 6da 2.5hef 6da

Torque controlled 8da 4hef 6da

Displacement controlled 10da 4hef 6da

Screw anchor 6da 4hef Greater of 6da or 0.6hef

a Minimum and critical edge distances can be reduced if validated by tests following ACI 355.2 or ACI 355.4 protocols.
b Minimum edge distance is the greater of the required reinforcement cover for a bar of equivalent size or the value in the table.
c �The critical edge distance, cac, is required to develop the basic strength as controlled by concrete breakout or bond of a post-installed anchor in 

tension in uncracked concrete without supplementary reinforcement.
d Cast-in anchors to be torqued require 6da edge distance and not less that the required cover for a comparable reinforcing bar.
e hef is the lesser of (a) the actual hef, (b) 2∕3 of the slab thickness, ha, and (c) the slab thickness less 4 in.

TABLE 21.2
Minimum and critical edge distance and anchor spacinga

not designed to transfer the full design load from the anchors into the structural 
member. Anchor reinforcement is added to transfer the full anchor load into the 
structural member and is discussed in Section 21.12. When anchor reinforcement is 
provided, the calculation of concrete breakout capacity is not required.

As for other members in reinforced concrete structures, anchor assemblies are 
designed so that the design strength, the product of the nominal strength Sn and the 
strength reduction factor ϕ, exceeds the factored load U or ϕSn ≥ U (see Section 1.4). 
The strength reduction factor for anchors is a function of the type of anchor, type of 
loading, the presence of supplementary reinforcement, and the installation conditions. 
The strength reduction factors listed in Table 21.1 are derived from an analysis of test 
results. In general, cast-in-place anchors have higher strength reduction factors than 
post-installed or adhesive anchors. The strength reduction factors for post-installed 
anchors reflect both the difficulty of installation and the ability of the post-installed 
anchor to expand properly. Post-installed anchor details are often proprietary and vary 
between anchor suppliers.

To reduce local cracking and splitting, anchor placement must satisfy the 
minimum and critical edge distances given in Table 21.2. These distances are based 
on both the embedment depth hef and the anchor diameter da. Use of an edge distance 
below that given in Table 21.2 is allowed if the lower distance is validated by tests 
according to ACI 355.2 or ACI 355.4 and supplementary reinforcement is present. 
Embedment is slabs requires hef to be less than or equal to ​​ 2 _ 3 ​​ the thickness of the 
slab for post-installed expansion, screw, or undercut anchors. In  all cases, attach-
ments with anchors loaded in shear require a reinforcing bar parallel to the edge 
between the attachment and the edge.

	 21.6	 STEEL STRENGTH

Nominal steel tensile and shear strengths, Nsa and Vsa, respectively, are based on the 
assumption that the anchors will yield and thus distribute the load to all anchors in the 
group. The calculated nominal strength of each anchor is then based on the specified ten-
sile strength of the steel futa and the net cross-sectional area of the anchor Ase. A subscript 
extension on the area denotes whether the area is for tension Ase,N or shear Ase,V.
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The specified tensile strength is used because the steel used in many anchors 
does not have a well-defined yield point. Because tensile strength is higher than yield 
strength, the value most often used in reinforced concrete design, the strength reduc-
tion factors for anchors in tension given in Table 21.1 are lower than those associated 
with steel yielding to be compatible with the higher steel strength and with the load 
factors given in ASCE 7 (Ref. 21.17). According to ACI Code 17.6.1.2, the specified 
tensile strength futa may not exceed the lesser of 1.9 times the specified yield strength 
of an anchor fya and 125,000 psi. The later two conditions are to limit displacement 
of inserts with large post-yield behavior and should not exceed the specified tensile 
strength. The nominal capacities for steel tension and shear strengths are summarized 
in Table 21.3 for n anchors in an anchor group.

Anchor Type Tension Capacity Shear Capacity

Headed studs Nsa = nAse,N  futa Vsa = nAse,V  futa

Headed bolts or hooked bolt anchors Nsa = nAse,N  futa Vsa = n0.6Ase,V  futa

Post-installed Per manufacturer’s specifications Per manufacturer’s specifications

ANSI∕ASME B1.1 (Ref. 21.18) defines Ase,N and Ase,V for threaded bolts and hooked bolts as ​ π __ 
4
 ​ ​​( da − ​ 0.9743 ______ nt

 ​  )​​2​ where da is the diameter of the 
anchor and nt is the number of threads per inch.

TABLE 21.3
Nominal steel anchor capacity

	EXAMPLE 21.1	 Steel tensile strength.  Determine the nominal steel tensile capacity of the anchor group for 
the attachment shown in Fig. 21.8. The attachment is anchored with six ​ 1 _ 2 ​ in. diameter headed 
studs with futa = 65 ksi.

FIGURE 21.8
Attachment details for 
Examples 21.1 through 21.9.

s1 = 5″

Shear load

hef = 4″

ca1

s 2
 =

 2
@

4½
″

Tension load
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	 21.7	 CONCRETE BREAKOUT CAPACITY OF SINGLE CAST-IN AND 
POST-INSTALLED, UNDERCUT, AND SCREW ANCHORS

The concrete breakout capacity of an anchor group is based on the breakout 
capacity of a single anchor in cracked concrete and then adjusted for the effect of 
anchors in a group. The individual anchor capacity is further modified to account 
for concrete cracking, the distance to the edge of the member from the closest 
anchors, eccentricity of the load on the attachment, anchor pullout, and anchor  
pryout effects.

	 a.	 Tensile Breakout Strength of a Single Anchor

The basic tensile breakout strength of a single anchor Nb in cracked concrete is

	 Nb = kcλa ​​√
__

 ​f​c​ ′​​​ ​h​ ef​ 
1.5​	 (21.1)

where kc is 24 for cast-in anchors, 17 for post-installed anchors, and λa is the modifi-
cation factor for lightweight concrete in the anchor zone. The value of λa is 1.0λ for 
cast-in and undercut anchors and 0.8λ for expansion, undercut, and screw anchors. 
Equation (21.1) is limited to anchors with diameters of 4 in. or less due to the lack of 
test data on larger bolts. ACI Code 17.6.2.2 allows the value of kc to increase above 17 
for post-installed anchors if supported by tests based on an ACI 355.2 or ACI 355.4 
evaluation for post-installed anchors that justifies the higher value. In no case is kc 
allowed to exceed 24.

Solution.  The area of a ​ 1 _ 2 ​ in. diameter headed stud is 0.20  in2. Based on the equations in 
Table 21.3, the six studs shown in Fig. 21.8 then have a nominal tensile strength of

Nsa = nAse,N futa = 6 × 0.20 × 65 = 78.0 kips

This example uses the ASTM specification for headed studs that specifies the tensile strength 
as futa = 65 ksi.

	EXAMPLE 21.2	 Steel shear strength.  Determine the nominal steel shear capacity of the anchor group for 
the attachment shown in Fig.  21.8 if the attachment is anchored with six ​ 3 _ 4 ​ in. diameter 
A307 threaded bolts, each with 10 threads per inch and specified tensile strength futa = 60 ksi. 
There is no grout pad under the plate.

Solution.  From Table 21.3, the effective area of a ​ 3 _ 4 ​ in. diameter headed bolt is

Ase,V = ​ π __ 
4
 ​ ​​( da − ​ 0.9743 ______ nt

 ​  )​​2​ = ​ π __ 
4
 ​ ​​( ​ 3 __ 

4
 ​ − ​ 0.9743 ______ 

10
 ​  )​​2​ = 0.334 in2†

An A307 bolt has an elongation of 18 percent, thus qualifying as a ductile member. 
For the six bolts shown in Fig. 21.8, n = 6 bolts, giving the nominal shear steel strength as

Vsa = n0.6Ase,V futa = 6 × 0.6 × 0.334 × 60 = 72.1 kips

†  The area of a bolt is usually determined from tables such as the AISC Design Guides. The calculation given is for illustration purposes.
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Test data for bolts with deep effective embedment lengths indicate a greater 
strength than predicted by Eq. (21.1). Thus, the basic breakout strength of headed 
studs or threaded bolts with hef between 11 and 25 in. may be calculated as

	 Nb = 16λa ​​√
__

 ​f​c​ ′​​​ ​​h​ef
​ 5∕3​​	 (21.2)

	 b.	 Shear Breakout Strength of a Single Anchor

The calculated concrete breakout strength in shear of a single anchor in concrete is the 
lesser of Eqs. (21.3) and (21.4).

	 Vb = ​​( 7​( ​ ℓe
 __ 

da

 ​ )​0.2

​√
__

 da​ )​​ λa ​​√
__

 ​f​c​ ′​​​ (ca1)1.5	 (21.3)

where da is the diameter of the anchor, ca1 is the distance from the edge of the 
concrete to the center of the shaft of the first anchor (see Fig. 21.9a), and λa is  
defined in Section 21.7a. The value for ℓe, the load-bearing length of the anchor 
for shear, is equal to hef for anchors with constant stiffness over their full length 
of embedment or 2da for torque-controlled expansion bolts separated from the 
expansion sleeve. In all cases, ℓe must be ≤ 8da. For headed studs, headed bolts, or 
hooked bolts continuously welded to steel plates with a thickness of at least ​ 3 _ 8 ​ in., 
the value of 7 in Eq. (21.3) may be increased to 8, provided the capacity does not 
exceed Vb calculated as

	 Vb = 9λa ​​√
__

 ​f​c​ ′​​​ (ca1)1.5	 (21.4)

FIGURE 21.9
Single anchor breakout prism 
projections shear and tension.
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	 c.	 Concrete Breakout Strength of Anchor Groups

The tension breakout strength of a single anchor is based on a 35° breakout prism. 
This results in a prism of concrete extending 1.5hef from the center of the anchor, as 
shown in Fig. 21.9b. The tension breakout prism for a single anchor has a single anchor 
projected area ANco = (3hef)2 = ​9h​ ef​ 

2 ​. The shear breakout prism extends from the anchor 
downward toward the free edge, giving a shear breakout area for a single anchor AVco 
on the front face of the concrete. For example, AVco = 2(1.5ca1 wide) × (1.5ca1 deep) =  
4.5 ​c​ a1​ 

2 ​  for the case shown in Fig. 21.9a. ACI Code 17.6.2.1 allows the projected area to be 
increased if a plate or washer is added to the head of the anchor. The extension of the base 
of the prism cannot exceed the thickness of the plate or washer.

Anchors spaced less than 3hef apart have overlapping breakout prisms, as 
shown in Fig. 21.10. Experimental evaluation of these groups indicates that the 
strength of groups in tension can be accounted for by multiplying the breakout 
strength of a single anchor Nb by the ratio of the projected breakout area of  
the anchor group ANc to the projected breakout area of a single anchor ANco  
(Ref. 21.19). Calculation of the anchor group breakout prism projected area is 
affected by both the spacing of the anchors and the distance to the edge of the 
concrete. Calculation of tensile strength is a function of the anchor embedment 
depth hef, the distances to the edges ca1 and ca2, where ca2 is the distance from 
center of an anchor shaft to the edge of the concrete in the direction perpendicu-
lar to ca1, and the anchor spacing s1. Typical conditions for anchors in tension are 
illustrated in Fig. 21.10a through c.

Similar to the approach taken for tension breakout, the shear capacity of 
individual anchors in a group is obtained by multiplying the shear capacity of a 
single anchor by the ratio of the projected area of the shear anchor group AVc to 
the projected area for a single anchor AVco. Anchors placed perpendicular to the 
edge of the concrete offer two possible failure modes. The first mode is based on 
the anchor nearest the edge carrying half the load and failing first (Fig.  21.10f ). 
The second mode is based on the anchor closest to the edge “riding with the fail-
ure breakout” with the entire load carried by the anchor farthest from the edge 
(Fig.  21.10g). Where the load is placed symmetrically on two or more anchors, 
the projected area is a function of the slab thickness ha, the anchor spacing s1, and 
the distance from the edge ca1 (Fig.  21.10h). For slabs with a thickness greater 
than ca1, ha is replaced with ca1, as shown in Fig. 21.10g.

Anchor strength is further modified for the condition of the concrete immedi-
ately around the individual anchor. Modification factors for anchor concrete break-
out strength (presented next in Sections 21.7d and e) are designated as ψ, followed 
by subscripts defining the particular condition and direction of loading. The sub-
script c indicates modification for cracked or uncracked concrete, the subscript ed 
for edge distance, the subscript ec for load eccentricity, the subscript cp for anchor 
pullout, and the subscript h for the slab thickness. Combining these effects, the 
concrete breakout capacity for a single anchor in tension is

	 Ncb = ​ 
ANc ____ 
ANco

 ​ ψed,N ψc,N ψcp,N Nb	 (21.5)

and for an anchor group in tension,

	 Ncbg = ​ 
ANc ____ 
ANco

 ​ ψec,N ψed,N ψc,N ψcp,N Nb	 (21.6)
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FIGURE 21.10 
Calculation of anchor group breakout projected areas for tension and shear near edges.
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The concrete breakout capacity in shear for a single anchor loaded perpendicular to 
the edge is

	 Vcb = ​ 
AVc ____ 
AVco

 ​ ψed,V ψc,V ψh,V Vb	 (21.7)

and for a group of anchors loaded perpendicular to the edge,

	 Vcbg = ​ 
AVc ____ 
AVco

 ​ ψec,V ψed,V ψc,V ψh,V Vb	 (21.8)

ACI Code 17.7.2.1 permits shear forces parallel to an edge to be computed as twice 
the value determined in Eqs. (21.7) and (21.8).

In some instances, such as anchors subjected to tension near the edges of walls 
or other locations where there is less than 1.5hef from three surfaces or anchors 
subjected to shear in narrow sections of limited thickness with both edge distances 
ca2 and the member thickness less than 1.5ca1, using the ratios of projected areas 
results in an overestimation of strength. In these situations, an adjusted effective 
embedment depth or edge distance is used in addition to the ratio of breakout areas 
to bring the calculated nominal strengths in line with test results. ACI Code 17.6.2.1.2 
and 17.7.2.1.2 provide guidance for these conditions.

	 d.	� Modification Factors for Concrete Cracking, Edge Distance,  
and Slab Thickness

Research cited in Refs. 21.2 and 21.19 indicates that anchor capacity will be reduced 
if the concrete is cracked at service load. For this reason, Eqs. (21.1) through (21.4) 
were developed assuming cracked concrete. If analysis indicates that the concrete 
is uncracked under service load, then both the tensile and shear capacity may be 
increased. Modification factors for anchors placed in uncracked concrete are summa-
rized in Table 21.4.

Tension ψc,N Sheara ψc,V

Concrete Condition Factor Factor

Cracked 1.0 1.0
Cracked 1.2b

Cracked 1.4c

Uncracked cast-in 1.25 1.4
Uncracked post-installed and kc is 17 1.4
Uncracked and capacity determined by ACI 355.2 1.0

a ACI Code does not differentiate between cast-in and post-installed anchors for shear.
b ACI Code requires a No. 4 (No. 13) or larger bar between the anchors and the edge of concrete.
c �ACI Code requires a No. 4 (No. 13) or larger bar between the anchors and the edge and enclosed in 

stirrups not more than 4 in. on centers.

TABLE 21.4
Breakout modification factors for concrete cracking  
near an anchor
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The strength of an individual anchor near one or more edges must be further 
adjusted due to localized cracking. Modification factors for anchors near free edges 
are summarized in Table 21.5 using the notation illustrated in Fig. 21.10. In situations 
where the slab thickness ha is less than 1.5ca1, a further shear edge distance modifica-
tion of ψh,V  = ​​√

________
 1.5ca1∕ha​​ ≤ 1.0 is required.

Tension Shear

Condition ψed,N
a ψed,Na

b ψed,V

ca,min
c ≥ 1.5 hef

ca,min ≥ 1.5 cNa

1.0 1.0

ca,min < 1.5 hef

ca,min < 1.5 cNa

0.7 + 0.3 ​​ 
ca,min _____ 
1.5hef

 ​​ 0.7 + 0.3 ​​ 
ca,min _____ cNa

 ​​

ca2 ≥ 1.5 ca1 1.0

ca2 ≤ 1.5 ca1 0.7 + 0.3 ​ 
ca2 _____ 

1.5ca1
 ​

a For cast-in or post-installed anchors.
b For adhesive anchors.
c Minimum distance from center of anchor shaft to edge of concrete.

TABLE 21.5
Breakout modification factors for edge distance

	EXAMPLE 21.3	 Concrete breakout strength.  Determine the concrete tensile breakout capacity of the 
anchor group in Fig. 21.8, given that the load is concentrically applied and the attachment is 
in concrete that analysis indicates is cracked during service load. The anchors are cast in 
5000 psi normalweight concrete with six ​ 1 _ 2 ​ in. diameter headed studs and ca1 = 8 in.

Solution.  From Fig. 21.8, s1 = 5 in., s2 = 4.5 in., and hef = 4 in. For normalweight concrete 
λ = λa  =  1.0. From Table  21.4 for cracked concrete, ψc,N  =  1.0, the pullout modification 
factor is ψcp,N  =  1.0, and because the value of ca1 is greater than 1.5hef, from Table  21.4 
ψed,N = 1.0. The load is concentric, so ψec,N = 1.0. The attachment has cast-in headed anchors 
resulting in a value of kc = 24.

The projected area of a single anchor is

ANco = 9 ​h​ ef​ 
2 ​ = 9 × 42 = 144 in2

The projected area of the anchor group is

ANc = (3hef + s1) × (3hef + 2s2) = (3 × 4 + 5) × (3 × 4 + 2 × 4.5) = 357 in2

From Eq. (21.1), the tensile concrete breakout strength of a single anchor is

Nb = kcλa ​​√
__

 ​f​c​ ′​​​ ​h​ ef​ 
1.5​ = 24 × 1.0 ​​√

____
 5000​​ × 41.5 = 13,580 lb

Lastly, from Eq. (21.5)

Ncbg = ​ 
ANc ____ 
ANco

 ​ ψec,N ψed,N ψc,N ψcp,N Nb = ​ 357 ____ 
144

 ​ × 1.0 × 1.0 × 1.0 × 1.0 × 13.58 = 33.7 kips
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	EXAMPLE 21.5	 Shear breakout strength.  Determine the shear breakout capacity of the anchor group 
shown in Fig. 21.8. The load is concentrically applied, the attachment has six ​ 3 _ 4 ​ in. diameter 
headed bolts cast in 5000 psi normalweight concrete that analysis indicates is uncracked 
during service load, hef = 4.5 in., and ca1 = 8 in.

Solution.  From Fig.  21.8, s1  =  5.0  in., s2  =  4.5 in., and hef = 4 in. For normalweight 
concrete, λ and λa  =  1.0. From Table  21.4 for uncracked concrete and cast-in anchors, 
ψc,V  =  1.2, and because the value of ca2 is greater than ca1 by inspection, from Table  21.5 
ψed,V = 1.0. The load is concentric, so ψec,V = 1.0, and the concrete thickness is greater than 
1.5 ca1 so ψh,V = 1.0.

Assume that one-half of the load is carried by the front row of anchors. The projected 
area of a single anchor is

AVco = 4.5​c​ a1​ 
2 ​  = 4.5 × 82 = 288 in2

The projected area of the anchor group is

ANc = 1.5ca1(3ca1 + 2s2) = 1.5 × 8 × (3 × 8 + 2 × 4.5) = 396 in2

For a single anchor, da = 0.75 in. and ℓe = hef. Then from Eq. (21.3), the shear strength 
of a single anchor is

Vb = ​​( 7 ​( ​ ℓe
 __ 

da

 ​ )​0.2

 ​√
__

 da​ )​​ λa ​​√
__

 ​f​c​ ′​​​ (ca1)1.5 = ​​( 7 ​( ​  4 ____ 
0.75

 ​ )​0.2
 ​√

____
 0.75​ )​​ 1.0 ​​√

____
 5000​​(8)1.5 = 13,560 lb

The anchor group capacity is

​ 
Vcbg

 ____ 
2
 ​  = ​ 

AVc ____ 
AVco

 ​ ψec,V ψed,V ψc,V ψh,V Vb = ​ 396 ____ 
288

 ​ 1.0 × 1.0 × 1.2 × 1.0 × 13.56 = 22.4 kips

Thus,

Vcbg = 44.8 kips

	EXAMPLE 21.4	 Concrete breakout strength.  Determine the required length of six ​ 1 _ 2 ​ in. diameter headed 
studs shown in Fig.  21.8 for a factored tensile load of 35 kips and the conditions given in 
Example 21.3 are present.

Solution.  From Table 21.1, the ϕ-factor for a cast-in headed ductile anchor is 0.75. Thus, the 
required nominal strength of the anchor group is Nu∕ϕ  =  35∕0.75  =  46.7  kips. Using the 
information from Example 21.3, ANco  =  9​h​ ef​ 2 ​ , and after combining terms, ANc  =  ​9h​ ef​ 2 ​  + 
(6s1 + 3s2)hef + 2s1s2. The tensile capacity of a single anchor is Nb = kcλa ​​√

__
 ​f​c​ ′​​​ ​h​ ef​ 1.5​ = 24 × 

1.0 ​​√
_____

 5000​​ × ​h​ ef​ 
1.5​ = 1697 ​h​ ef​ 

1.5​. Combining the terms and inserting the values for s1 = 5 in. and 
s2 = 4.5  in. in Eq. (21.6) gives

Ncbg = Nu∕ϕ = (ANc∕ANco) ψec,N ψed,N ψc,N ψcp,N Nb

46,700 = [(9​h​ ef​ 
2 ​ + (6 × 5 + 3 × 4.5)hef + 2 × 5 × 4.5)∕9​h​ ef​ 

2 ​] × 1.0 × 1.0 × 1.0 × 1.0 × 1697​h​ ef​ 
1.5​

Using an equation solver or by trial, hef must be at least 5.85 in. Use hef = 6 in. Headed studs 
are available in ​ 1 _ 2 ​ in. and 1 in. increments. Thus, an iterative solution is often easier than finding 
a closed-form solution; otherwise an Excel or Mathcad calculation sheet with hef as a variable 
provides an effective solution tool.
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The solution to Example 21.5 is consistent with the code requirements. At the 
same time, the holes in the plate are designed to fit over the cast-in bolts and there 
are tolerances on the hole size. Consequently, some designers recommend only using 
the bolts closest to the edge to establish the anchor group capacity under the assump-
tion that the hole tolerance may not allow the back holes to completely engage the 
bolts. Under this restriction, the capacity of the attachment in Example 21.5 would 
be 22.4 kips.

	 e.	 Modification for Eccentrically Applied Loads

The strength of an anchor group is limited by the strength of the most severely loaded 
anchor. Eccentrically loaded attachments result in loads being redistributed such that 
some anchors are more severely loaded, as shown in Fig. 21.11. Depending on the 
eccentricity of the normal load or the magnitude of the moment, anchors may remain 

The strength of the anchor must also be checked for the case in which the back row 
of anchors carries the entire load. For this condition the edge distance ca1 increases to 
8 + 5  in. = 13  in. With this change,

   AVco = 4.5 ​c​ a1​ 
2 ​  = 4.5 × 132 = 760.5 in2	

      AVc = 1.5 ca1 (3ca1 + 2s2) = 1.5 × 13 × (3 × 13 + 2 × 4.5) = 936 in2	

      Vb = ​​( 7 ​( ​ ℓe
 __ 

da

 ​ )​0.2

 ​√
__

 da​ )​​ λa ​​√
__

 ​f​c​ ′​​​ (ca1)1.5 = ​​( 7 ​( ​  4 ____ 
0.75

 ​ )​0.2
 ​√

____
 0.75​ )​​ 1.0 ​​√

____
 5000​​(13)1.5 = 28,080 lb	

    Vcbg = ​ 
AVc ____ 
AVco

 ​ ψec,V ψed,V ψc,V ψh,V Vb = ​  936 _____ 
760.5

 ​ × 1.0 × 1.0 × 1.2 × 1.0 × 28.08 = 41.5 kips

Thus, the second condition limits the nominal strength of the anchor group to Vcbg = 41.5 kips. 
The anchor group must be detailed with a No. 4 (No. 13) bar or larger between the edge and the 
anchor to be consistent with the assumed value of ψc,v.

FIGURE 21.11
Definition of loading eccentricity: (a) ​e​N ​ ′ ​ when all anchors are in tension and (b) ​e​N ​ ′ ​ for when one or more anchors are in 
compression and (c) ​e​V ​ ′ ​ for shear loadings.
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in tension (Fig. 21.11a) or be placed in compression (Fig. 21.11b). In either case, the 
anchor to the right in the figure carries a higher load than the remaining anchors and 
will fail first. The capacity of the anchor or the anchor group in concrete breakout in 
tension or in shear must be modified to correct for this load redistribution. Table 21.6 
summarizes the eccentricity modification factors. When adjusting for eccentricity, the 
values of ​e​N​ ′ ​ and ​e​V​ ′ ​, respectively, are calculated only for those anchors in tension or 
those anchors loaded toward the edge in shear. In cases where the eccentricity occurs 
in two orthogonal directions, the modification factor is calculated for each direction 
and the product of the two factors used in Eqs. (21.6) and (21.8).

	 21.8	 PULLOUT STRENGTH OF ANCHORS

The pullout strength of a single cast-in, post-installed, undercut, or screw anchor in 
tension is based on the head of the anchor pulling or slipping through the concrete, 
creating a cylindrical failure (Fig.  21.6e). For cast-in, post-installed, undercut, and 
screw anchors, the nominal pullout strength in tension Npn is

	 Npn = ψc,p Np	 (21.9)

where Np is the strength of an individual anchor given in Eq. (21.10) or (21.11) 
(Refs. 21.20 and 21.21) and in concrete when analysis indicates no cracking  
ψc,p = 1.4, otherwise ψc,p = 1.0. The individual anchor strength is based on the net 
area of the anchor head directly bearing in the concrete Abrg or on the geometry of  
the anchor. Abrg is typically calculated as the area of the head of the bolt or stud less the 
area of the shaft. The anchor capacity for a single headed stud or bolt adjusted to the  
5 percent fractile is

	 Np = 8Abrg ​f​c​ ′​	 (21.10)

and for a hooked bolt is

	 Np = 0.9​f​c​ ′​ehda	 (21.11)

where eh is the distance from the inner surface of the shaft of a J- or L-bolt to the outer 
tip of the J- or L-bolt and da is the diameter of the hooked bolt. The ACI Code requires 

Tension Shear

Condition ψec,N
a ​ψec,Na​b​ ψec,V

Anchor group loaded  
eccentrically in 
tension

​  1 _________ 

​( 1 + ​ 
2​e​N​ ′ ​

 ____ 
3hef

 ​ )​
 ​ ≤ 1.0 ​  1 _________ 

​( 1 + ​ 
​e​N​ ′ ​

 ___ eNa
 ​ )​
 ​ ≤ 1.0

Anchor group loaded  
eccentrically in shear

​  1 _________ 

​( 1 + ​ 
2​e​V​ ′ ​

 ____ 
3hef

 ​ )​
 ​ ≤ 1.0

a For cast-in, post-installed, undercut, and screw anchors
b For adhesive anchors

TABLE 21.6
Breakout modification factors for eccentricity
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that eh, illustrated in Fig. 21.5a, meet the requirement 3da ≤ eh < 4.5da. The pullout 
strength of a post-installed anchor is supplied by the manufacturer based on an eval-
uation performed in accordance with ACI 355.2 and reduced to the 5 percent fractile.

The pullout strength is further modified depending on whether the anchor is 
in cracked or uncracked concrete. For anchors located in areas where the analysis 
indicates the concrete is cracked, ψc,p = 1.0, and where the analysis indicates the 
concrete is uncracked, ψc,p = 1.4.

	EXAMPLE 21.6	 Pullout strength.  Calculate the pullout strength of an anchor in Example 21.3, where Abrg 
is 0.589 in2.

Solution.  ψcp = 1.0 for cracked concrete, so the pullout strength of one anchor is

Npn = Np = 8Abrg ​​​ ​​f​c​ ′​ = 8 × 0.589 × 5000 = 23.6 kips

	EXAMPLE 21.7	 Side-face blowout strength.  Calculate the side blowout strength of the anchor in Example 
21.4 where hef = 6 in., s = 4.5 in., ca1 = 8 in., and Abrg = 0.589 in2.

Solution.  The spacing modification factor for the anchors in bearing from Eq. (21.13) is

​( 1 + ​ 
s1 ____ 

6ca1
 ​ )​ = ​( 1 + ​  4.5 _____ 

6 × 8
 ​ )​ = 1.09

The value for Nsb from Eq. (21.12) is

Nsb = 160ca1 ​​√
____

 Abrg​​ λa ​​√
__

 ​f​c​ ′​​​ = 160 × 8 ​​√
_____

 0.589​​ × 1.0 × ​​√
____

 5000​​ = 69.5 kips

The side blowout strength of a single anchor exceeds the steel tensile strength of a single 
anchor calculated in Example 21.1, so side blowout is not a limiting condition for this anchor 
group. The spacing modification factor is greater than 1.0, so no further calculations are necessary.

	 21.9	 SIDE-FACE BLOWOUT

Anchors with deeper embedment but thinner side cover may fail by concrete spalling 
on the side face around the embedded head while no major breakout occurs at the top 
concrete surface, as illustrated in Fig. 21.6h. For a single headed anchor with deep 
embedment close to an edge (hef > 2.5ca1), the nominal side-face blowout strength Nsb 
is given in ACI Code 17.4.4 as

	 Nsb = 160 ca1​​√
____

 Abrg​​ λa ​​√
__

 ​f​c​ ′​​​	 (21.12)

If ca2 for the single headed anchor is less than 3ca1, the value of Nsb is modified by the 
factor (1 + ca2∕ca1)∕4 where the ratio ca2∕ca1 must be greater than 1 and is limited to 
be less than or equal to 3. For headed anchor groups with deep embedment close to 
an edge (hef > 2.5ca1) and with anchor spacing less than 6ca1, the nominal strength of 
those anchors susceptible to a side-face blowout failure Nsbg is

	 Nsbg = 1 + ​( ​  s ____ 
6ca1

 ​ )​ Nsb	 (21.13)

where s is the distance between the anchors nearest the edge and Nsb is given in  
Eq. (21.12) without modification for a perpendicular edge distance.
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	 21.10	 PRYOUT OF ANCHORS

Pryout is a phenomenon that occurs with short anchors for attachments loaded in shear 
(Ref. 21.13). As an anchor group moves laterally, the individual anchors can fail due 
to a shear failure of the steel, concrete breakout, or rotation of short anchors, in which 
the end of the anchor displaces in the direction opposite to the applied shear force, a 
phenomenon known as pryout. The nominal pryout strength for a single anchor Vcp is 
given in ACI Code 17.7.3 as

	 Vcp = kcpNcp	 (21.14)

The pryout strength for a group of anchors Vcpg is

	 Vcpg = kcpNcpg	 (21.15)

For cast-in, expansion, and undercut anchors, Ncp and Ncpg may be taken as Ncb or Ncbg 
from Eqs. (21.5) and (21.6), respectively. For both single anchors and anchor groups, 
kcp = 1.0 for hef less than 2.5 in. and kcp = 2.0 for hef greater than or equal to 2.5 in.

	EXAMPLE 21.8	 Pryout strength.  Calculate the pryout strength of the anchor group in Example 21.5.

Solution.  hef is greater than 2.5 in., so kcp = 2.0. The results from Example 21.3 provide 
an anchor group capacity of Ncbg = 33.7 kips. The pryout capacity from Eq. (21.15) is then

Vcpg = kcpNcbg = 2 × 33.7 = 67.4 kips

	EXAMPLE 21.9	 Summary of anchor group capacity.  Determine the nominal and design capacity for the 
anchor group in Fig. 21.8.

Solution.  The nominal failure loads for each possible condition are summarized in 
Table  21.7 using the results from Examples 21.1, 21.3, 21.5, 21.6, 21.7, and 21.8. From 
Table  21.7, the lowest nominal capacity in tension is 33.7 kips and results from tension 
concrete breakout, as indicated in the shaded cells. The corresponding design capacity is 
21.5  kips when the associated strength reduction factor is applied. The nominal and design 
capacities in shear are 41.5 kips and 29.1 kips, respectively.

TABLE 21.7
Summary of failure modes

Failure Mode Example

Nominal 
Tension 

(kips)

Strength 
Reduction 
Factor, ϕ

Design 
Tension 

(kips) Example

Nominal 
Shear 
(kips)

Strength 
Reduction 
Factor, ϕ

Design 
Shear 
(kips)

Steel 21.1 78.0 0.75 58.5 — 46.8 0.65 30.4
Concrete breakout 21.3 33.7 0.70 21.5 21.5 41.5 0.70 29.1
Pullout 21.5 141 0.70 98.0
Side-face blowout 21.7 69.5 0.70 48.6
Pryout 21.8 67.4 0.70 47.2
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	 21.11	 COMBINED SHEAR AND NORMAL FORCE

Attachments such as the corbels shown in Figs. 21.1 and 21.2 generate both tensile 
and shear forces in the anchors. Experimental studies indicate that the interaction 
can be represented using a curvilinear relationship, such as shown in Fig.  21.12  
(Ref. 21.22). ACI Code 17.8 simplifies this curvilinear relationship by using a trilinear 
approximation of the interaction behavior. The trilinear relationship allows the full 
tensile strength of the anchor to be used if Vua∕ϕVn is less than 0.2 and the full shear 
strength to be used if Nua∕ϕNn is less than 0.2. Between these two limits the load com-
bination must satisfy Eq. (21.16).

	​ 
Nua ____ 
ϕNu

 ​ + ​ 
Vua ____ 
ϕVu

 ​ ≤ 1.2	 (21.16)

The possibility exists, due to variation in strength reduction factors, that the governing 
load could be based on nominal strength in one failure mode and design strength in another 
failure mode. The ACI Code requires the design strength be less than or equal to the factored 
load; therefore, the lowest design load, regardless of lowest nominal strength failure mode, 
governs the design.

FIGURE 21.12
Shear and tensile load 
interaction.

0.2ϕVn

0.2ϕNn

ϕNn

ϕVn

Trilinear 
interpolation 

approach

5/3
Nua
ϕNn

5/3
Vua
ϕVn

= 1+( () )

	EXAMPLE 21.10	 Anchor design example.  Design the anchor group for the attachment shown in Fig. 21.13 
using ​​ 5 _ 8 ​​ in. diameter headed studs with Abrg = 0.59 in.2 and futa = 65 ksi. The normalweight 
concrete has a compressive strength of 3500 psi and analysis indicates that concrete will 
remain uncracked during the service live. The corbel carries a factored load of 35 kips. The 
attachment is fabricated from ​ 3 _ 4 ​ in. thick plate, is located at far enough from any edge to 
preclude edge effects, and no supplementary reinforcement is present.

Solution.  The load is resisted by four studs in shear, and the tension generated by the load 
eccentricity is resisted by the top two studs. With no supplementary reinforcement, ϕ = 0.70 
from Table 21.1. With no edge distance issues, eccentricity, or pullout restrictions, ψed,N and 
ψcp,N equal 1.0. The concrete is uncracked, so ψc,N is 1.25 from Table 21.4.
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The shear capacity is controlled by the steel strength of the anchors. Thus, the design 
shear capacity for four anchors is

Vn = Ase,V futa = 4 × 0.31 × 65 = 80.6 kips

which is greater than the 35 kip applied load. Since ca1 is at least 10 in., pryout need not be 
checked.

The tensile load on the top two anchors is assumed to be resolved from a couple 
between the studs. Thus, for a vertical stud spacing of s = 8  in.,

Nu = Pu × eccentricity∕s = (35 × 3)∕8 = 13.1 kips

for which, NN = Nu∕ϕ = 13.1∕0.70 = 18.75 kips.
If the tensile strength capacity is controlled by tensile concrete breakout of the two top 

anchors, then for a spacing between the studs of s = 6 in.,

ANco = 9​h​ ef​ 
2 ​ = 9 × 82 = 576 in2.

and

ANc = (3hef + s) 3hef = 9​h​ ef​ 
2 ​ + 18hef

Combining Eqs. (21.1) and (21.5) gives

               Ncbg = ​ 
ANc ____ 
ANco

 ​ ψed,N ψc,N ψcp,N kcλa ​​√
__

 ​f​c​ ′​​​ ​h​ ef​ 
1.5​	

18.75 = ​ 
9​h​ ef​ 

2 ​ + 18​h​ ef​ 
2 ​
  __________ 

9​h​ ef​ 
2 ​
 ​  1.0 × 1.25 × 1.0 × 24 × 1.0 ​​√

____
 3500​​ × ​h​ ef​ 

1.5​

Solving by trial for the required embedment depth gives hef = 4 in. and Ncbg = NN = 21.3 kips. 
Because both shear and tensile forces are present, the anchors must be checked for combined 
effects. Then from Eq. (21.16),

​ 
Nu ____ 

ϕNN

 ​ + ​ 
Vu ____ 

ϕVN

 ​ = ​  13.1 __________  
0.70 × 21.3

 ​ + ​  35 _________  
0.70 × 80.6

 ​ = 1.50

This exceeds the code requirement of 1.2, so the embedment length must be increased. Using 
a 5 in. embedment length and the plate thickness of ​ 3 _ 4 ​ in. gives hef = 5.75 in., NN = 33.0 kips, 
and a combined ratio from Eq. (21.16) of 1.19, less than the maximum values of 1.2. A ​​ 5 _ 8 ​​ in. 

FIGURE 21.13
Steel attachment for  
Example 21.10.

8″

Pu = 35 kips

6″ 3″
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	 21.12	 ANCHOR REINFORCEMENT

The ACI Code identifies two types of reinforcement for use with anchors. Supple-
mentary reinforcement assists in controlling crack width and preventing spalling. 
Anchor reinforcement transfers the total factored load to the supporting structure. 
To be effective, the anchor reinforcement must be aligned with the direction of 
the applied load and be developed in both the concrete breakout zone associated 
with the anchor and the underlying concrete, as shown in Fig. 21.14. The detail-
ing shown in Fig. 21.14 requires that the anchor reinforcement be placed close to 
the surface for shear loads, commensurate with the cover requirements. Hairpin 

diameter headed stud has a head bearing area of Abrg = 0.785 in2. A check of pullout capacity of 
the two studs in tension is made using Eq. (21.10). ψc,p = 1.4 for uncracked concrete.

Np = n8Abrg​ f​c​ ′​ = 2 × 8 × 0.59 × 3500 = 33.0 kips

Using the result in Eq. (21.9),

Npn = ψc,p Np = 1.4 × 33.0 = 46.2 kips

The pullout strength is greater than the concrete breakout strength and, therefore, does not con-
trol. The check of pryout indicates it is not a controlling condition.

For this solution, the tensile force on the top anchors was calculated based on the 
distance between the top and bottom anchors. An equally valid approach would be to assume 
a compression centroid below the lower anchors. In either case, the anchor group capacity is 
established by the most highly loaded anchor.

FIGURE 21.14
Anchor reinforcement for  
(a) tension and (b) shear.
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bars are often used for this purpose. Attachments in plastic hinge regions, or areas 
where analysis indicates substantial cracking may be present, must be detailed to 
include anchor reinforcement.

ACI Code 17.5.2.1 states that when anchor reinforcement is used, a calculation of 
the concrete breakout capacity is not required. In many instances, however, the addi-
tion of anchorage reinforcement is not practical. For example, examining Fig. 21.14, 
an anchor group in a thin slab loaded normal to the surface may not have sufficient 
length available below the breakout prism for the development of the anchor rein-
forcement. Similarly, the development length of a hook for a No. 5 (No. 16) or larger 
bar may exceed the embedment length of the anchor. Anchor reinforcement is useful 
in shear where the studs may be captured by a hairpin, as shown in Fig. 21.14b, in 
lieu of having to develop a hook. A strength reduction factor of ϕ  =  0.75 is used 
when determining the area of the anchor reinforcement.

	 21.13	 ADHESIVE ANCHORS

Following the collapse of the ceiling panels in the “Big Dig” in Boston, the National 
Transportation Safety Board requested ACI to develop criteria for adhesive anchors 
(Ref. 21.23). Adhesive anchors are sensitive to a number of factors, including installation 
temperature, moisture, and sustained loading. To provide uniformity of installation 
and use, anchor systems must be qualified in accordance with procedures described in 
ACI 355.4 Acceptance Criteria for Qualification of Post-Installed Adhesive Anchors 
in Concrete (Ref. 21.15) and must be installed by qualified technicians. The ACI Code 
requires anchors installed horizontally or in an upward sloping orientation to be sub-
ject to continuous inspection during construction.

Adhesive anchors have failure modes similar to cast-in or post-installed 
anchors in addition to the possibility of a bond failure (Refs. 21.24 and 21.25). 
Bond failures arise when the adhesive undergoes a shear failure between the hard-
ened adhesive and the concrete. This results in a bond pullout failure accompanied 
by a concrete breakout near the surface, as shown in Fig.  21.6f. ACI Code 17.5.2 
places a number of restrictions on the installation of the anchor so that the perfor-
mance of adhesive anchors correlates with the qualification tests of ACI 355.4. 
These restrictions include:

The minimum concrete age is 21 days. This provision allows moisture to be used in 
the hydraulic cement reaction and not be available to disrupt the adhesive cure.

A concrete strength that is equal to or greater than 2500 psi. Qualification tests are 
conducted using concrete with compressive strengths of at least 2500 psi and data on 
lower strength is very limited.

Rotary impact or rock drills must be used to drill the holes for adhesive anchors. These 
tools create a rough irregular surface to improve mechanical interlock between the 
adhesive and the concrete. Holes made with coring bits are much smoother and have 
less interlock.

Installation temperature is at least 50°F. This minimum temperature is required for the 
adhesive to cure properly.

Adhesive anchors require bond to prevent pullout and to mobilize a concrete 
breakout failure mode. The characteristic bond stresses in uncracked concrete τuncr 
and in cracked concrete τcr are provided by the manufacturer based on the 5 percent 
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fractile results derived from the tests specified in ACI 355.4. Table  21.8 provides 
conservative values for the characteristic bond stresses given in the ACI Code. The 
characteristic bond stress is multiplied by 0.55 for sustained tension load and 0.40 
if the anchor is subjected to sustained shear load. These values or higher values used 
for design must be included in the construction documents to transmit the perfor-
mance requirements to the contractor. The values in the table are selected to be 
compatible with both the installation and service environments. For example, if adhe-
sive anchors are installed before a building is enclosed, as shown in Fig. 1.16, the 
environment would be “outdoor.”

	 a.	 Basic Bond Strength

The bond stress is not uniform over the entire embedded length, and consequently, the 
projected area of concrete breakout strength is limited to a width of 2cNa, where cNa is 
defined by Eq. (21.21). The formulation of the bond capacity of adhesive anchors is a 
function of both cNa and hef. The basic bond strength of an adhesive anchor is

	 Nba = λaτcrπda hef	 (21.17)

where τcr is the characteristic bond stress for cracked concrete, da is the anchor diam-
eter, and hef is the effective embedment depth. For the calculation of adhesive anchor 
bond strength, the value of λa is 0.6λ. The tensile breakout capacity of a single adhe-
sive anchor is

	 Na = ​ 
ANa ____ 
ANao

 ​ ψed,Na ψcp,Na Nba	 (21.18)

and for an anchor group in tension

	 Nag = ​ 
ANa ____ 
ANao

 ​ ψec,Na ψed,Na ψcp,Na Nba	 (21.19)

Modification factors ψed,Na and ψec,Na are given in Tables 21.5 and 21.6, respectively. 
The modification factor ψcp,Na equals 1.0 for ca,min  ≥  cac and equals ca,min∕cac for 
ca,min ≤ cac. Critical edge distances are given in Table 21.2. The projected area of a 
single anchor ANao is
	 ANao = ​( 2cNa )​2	 (21.20)

where

	 cNa = 10da ​​√
_____

 ​ 
τuncr

 _____ 
1100

 ​​​	 (21.21)

and the constant 1100 carries the units of lb∕in2.

Installation and Service  
Environmenta,b

Moisture Content of Concrete at 
Time of Installation

Peak In-Service Temperature 
of Concrete, °F

τcr 
psi

τuncr 
psi

Outdoor Dry to fully saturated 175 200 650
Indoor Dry 110 300 1000

a Where anchor design includes sustained loads, the values of τcr and τuncr should be multiplied by 0.4.
b �Where the anchor design includes earthquake loads for structures assigned to Seismic Design Category C, D, E, or F, the value of τcr should 

be multiplied by 0.8 and the value of τuncr should be multiplied by 0.4.

TABLE 21.8
Minimum characteristic bond stress
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	EXAMPLE 21.11	 Adhesive anchor design.  Determine if the anchor group for the attachment shown in 
Fig. 21.15 is adequate to carry the 5 kip factored sustained load using the characteristic bond 
stresses from Table  21.8. The A36 steel anchors are ​ 3 _ 4 ​ in. in diameter, have a net area of  
0.334 in2, futa = 60 ksi, and are embedded 8 in. into an exterior concrete wall with ​f​c​ ′​ = 4000 psi. 
The anchor group is well away from any edges, supplementary reinforcement is present, and 
the anchors are considered Category 2—medium sensitivity and reliability.

Solution.  From Table  21.1, the strength reduction factor for a Category 2 anchor with 
supplementary reinforcement is 0.65. All ψ values equal 1.0, as there is no eccentricity or 
edge distance constraint. From Table 21.1, ϕ = 0.65.

The shear on the anchor group is equal to the applied load and is 5 kips. The design 
shear capacity of a single anchor based on the steel strength is

ϕVsa = ϕ n Ase,V 0.6 futa = 0.65 × 4 × 0.334 × 0.6 × 60.0 = 31.3 kips

The tensile breakout capacity of the anchor is as follows, noting that the ACI Code requires 
that τuncr to be multiplied by 0.55 for the sustained tensile loads. From Table 21.8, τuncr = 650 
and τcr = 200.

cNa = 10da ​​√
_______

 ​ 
0.55τuncr

 _______ 
1100

 ​​​  = 10 × 0.75 ​​√
__________

  ​ 0.55 × 650  __________ 
1100

 ​​​  = 4.28 in.

The basic projected area is ANao = (2cNa)2 = (2 × 4.28)2 = 73.3 in2, and the projected area 
of the two top anchors is ANa = 2cNa(2cNa + s) = 2 × 4.28 × (2 × 4.28 + 6) = 124.6 in2.

The basic bond strength of one adhesive anchor with a factor of 0.55 applied to τcr for 
sustained loads is

Nba = 0.55τcrπda hef = 0.55 × 200 × π × 0.75 × 8 = 2.07 kips

The two top anchors then provide a capacity of

Na = ​ 
ANa ____ 
ANao

 ​ ψec,Na ψed,Na ψpc,Na Nba = ​ 73.3 ____ 
124.6

 ​ × 1 × 1 × 1 × 2.07 = 3.52 kips

The design load on the anchors is the applied load Pu times the eccentricity divided by 
the distance between the anchors, and thus, Nu = 5 × 3∕8 = 1.875 kips, which is more than 
20 percent of the nominal capacity, so the combined loading must be checked, giving

​ 
Nu ____ 

ϕNa

 ​ + ​ 
Vu ____ 

ϕVsa

 ​ = ​  1.875 __________  
0.65 × 3.52

 ​ + ​  5 __________  
0.65 × 31.3

 ​ = 1.07 < 1.2

FIGURE 21.15
Adhesive anchor attachment 
for Example 21.11.

8″

Pu = 5 kips
6″ 3″8″
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	 21.14	 SCREW ANCHORS

Screw anchors consist of a steel shank and an upset thread that engages into the con-
crete as the anchor is installed (Fig. 21.16). Screw anchors installed between 5 da and 
10 da develop concrete breakout capacity using the same procedures as cast-in anchors 
(Ref. 21.26). The hole for the screw anchor is drilled with the same diameter drill as 
the nominal diameter of the anchor, not the upset dimension of the threads. The effec-
tive embedment length is adjusted based on the qualifying test data and depends on the 
geometric configuration of the screw threads. This adjustment is provided by the man-
ufacturer. The edge distance and minimum spacing for screw anchors considers the 
lateral pressure and disruption to the concrete from the installation process. This edge 
distance is important in corner installations where premature failures of the anchors 
have been observed.

The interaction meets the code requirements, and thus, the attachment can carry the 
applied load. Comparing the anchor group in Example 21.10, the capacity of the attachment 
with adhesive anchors is approximately one-seventh the capacity of the attachment with 
cast-in anchors. This comparison clearly shows that cast-in anchors are structurally more 
efficient than adhesive anchors when the latter are designed based on the minimum charac-
teristic bond stresses. In addition, a comparison of the characteristic bond stress values in the 
ACI Code with those obtained for commercial adhesive anchors derived through the ACI 
355.4 qualification process (see, for example, values shown in Problem 21.8 at the end of 
this chapter) demonstrates that the Code values are conservative.

FIGURE 21.16
Screw anchor installation. 
(Courtesy of Simpson Strong-Tie 

Co., Inc.)

hef = 4.125

	EXAMPLE 21.12	 Screw anchor strength.  Calculate the concrete breakout capacity for a ​ 5 _ 8 ​ in. diameter screw 
anchor with a cross-sectional area of 0.31 in2 and an effective embedment length  
hef = 4.125 in. (Fig. 21.16). The concrete ​​f​c​ ′​​ = 5000 psi and futa = 60,000 psi and is considered 
ductile. The installation is sufficiently away from edges that edge effects need not be 

aa	  ​ 3 _ 4 ​       ​ 5 _ 8 ​ 

aa	  ​ 3 _ 4 ​       ​ 5 _ 8 ​ 
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	 21.15	 EARTHQUAKE DESIGN

The ACI Code requires that earthquake provisions be applied to all attachments when 
earthquake loading E is a load case, regardless of whether E controls the design. For 
seismic installations, all post-installed anchors must be certified under the seismic 
protocols in ACI 355.2 or ACI 355.4. Ideally, the anchors should be designed so that 
steel yielding is the controlling condition. Provisions requiring ductility assist in lead-
ing to yielding as the preferred failure mode (Refs. 21.27 to 21.29). The ACI Code 
offers four approaches to the design of anchors subjected to earthquake loads, one of 
which must be met to satisfy the code intent.

	 a.	 Concrete Breakout Strength Must Exceed the Steel Strength

This requirement provides ductility by having the anchor steel yield before any pos-
sible concrete failure due to concrete breakout, side blowout, or pullout strength of 
the anchor. The provision requires consideration of strain hardening of the steel to 
preclude concrete failure as the steel stress increases due to strain hardening. The 
provision also requires that anchor loads be transmitted through a ductile steel ele-
ment. Ductility is attained by incorporation of a stretch length. The stretch length is an 
unbonded portion of the anchor at least 8da long over which the anchor is allowed to 
yield. The stretch length ensures there is a region where deformation can occur.

	 b.	 Load Transfer through a Ductile Yield Mechanism

This option allows the selection of materials to provide a ductile load path to the 
attachment. With this option, the anchor need not be the ductile element. The selection 
of the ductile mechanism should avoid concrete failure as the load increases due to 
strain hardening.

considered, the concrete is considered to crack during its lifetime, and no supplemental 
reinforcement is present.

Solution.  The strength reduction factor for steel in a screw anchor is ϕ = 0.70. Based on 
Table 21.3, the tensile steel strength is 

ϕNsa = ϕAse,N futa = 0.70 × 0.31 × 60 = 13.0 kips

The effective depth of the anchor is 4.125 in. based on the length of the original screw less the 
washer and the plate. From Fig. 21.10,

ANc = 9​​h​ ef​ 
2
 ​​ = 9 × 4.1252 = 153 in2

which for this case is both the individual and group area. For post-installed anchors in nor-
malweight concrete, kc = 17, λa = 1.0. Assuming the concrete is likely to crack and no edge 
effects, all ψ factors are equal to 1.0. Then, from Eq. (21.1) and the group capacity identical to 
the individual capacity and for ϕ = 0.70 for a post-installed anchor with no supplemental rein-
forcement, the design strength is

ϕNb = ϕkcλa ​​√
__

 ​f​c​ ′​​​ ​​h​ ef​ 
1.5​​ = 0.70 × 17 × 1.0 × ​​√

____
 5000​​ × 4.1251.5 = 7050 lb

For this installation, the breakout strength is less than the steel strength and is the controlling 
condition. The design strength of the anchor is 7.05 kips.
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	 c.	 Transfer the Load Elastically without Yielding

The ACI Code allows the attachment to be designed to carry the entire load without 
yielding. When following this option, the load on the anchor must remain below 
the yield strength of the steel and the nominal strengths for all concrete breakout 
failure modes.

	 d.	 Design for the Maximum Earthquake Load

The attachment and anchors may be designed for the maximum design load combina-
tion that include E, with E increased by the overstrength factor Ωo (see Chapter 20).

Additional cracking due to earthquake motions reduces the anchor capacity. 
To address this concern, the design capacity of anchors is reduced to 0.75ϕ times 
the nominal strength in breakout, pullout, or side-face blowout. The ACI Code 
does not allow anchors in plastic hinge regions due to the extensive cracking and 
a lack of test data. Anchors that must be placed in these regions should include 
anchor reinforcement detailed to mobilize both the attachment and the supporting 
structure. Minimum edge distances for anchors in seismic applications are the same 
as those given in Table 21.2.

If the earthquake contribution to Vu does not exceed 20 percent of the total 
factored shear load, shear capacity may be calculated using the procedures described 
in Section 21.7c; otherwise, the requirements 21.15a through 21.15d must be met. 
Anchors should be protected against buckling when load reversals are present. Detailed 
information on these options can be found in ACI Code 17.10 and Ref. 21.30.

	 21.16	 SHEAR LUG ATTACHMENTS

A shear lug attachment consists of a base plate, a single lug plate, multiple lug 
plates, or orthogonal lug plates, plus anchors. Shear lugs provide additional shear 
resistance for attachments. They are constructed from rectangular steel plates or 
steel shapes composed of plate-like elements welded to a base plate and recessed 
into the concrete (Fig. 21.17). The shear lugs react against the concrete in bearing. 
The shear lug location below the base plate creates an eccentricity of the shear 
forces resulting in uplift on the base plate. This moment requires the shear lug 
attachment be secured with at least four anchors to restrain any uplift. Attachments 
fail by fracture of the concrete in front of the shear lug, indicated in light shading 
in Fig. 21.18, or by shear breakout failure at an edge, indicated by the lower dotted 
line in Fig. 21.18. 

Shear lug attachments may be cast-in or post-installed. All elements of the 
attachment are assumed to move as an integral member, and failure occurs at small 
displacements. The strength of the attachment drops off markedly once concrete 
fracture occurs, which is often followed by a secondary fracture of the anchors. The 
ACI Code addresses shear lugs consisting of welded plates or plate-like elements. 
Shear lugs based on other formats, such as welded pipe sections, are allowed if the 
strength can be demonstrated by test or analysis.

The design approach in ACI Code 17.11 addresses the failure of the concrete 
and does not address the strength of the weldment or welding used to fabricate the 
attachment. The experimentally derived strength equations assume a uniform bear-
ing stress of 1.7 ​​f​c​ ′​​ on the effective area of the plate. Underlying experimental work 
indicates that only a portion of the plate area, that acting over a depth from the 
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concrete surface equal to twice the plate thickness, is available to provide resistance 
(Ref. 21.31). The strength calculation only considers the shear lugs and is somewhat 
more conservative than if the embedded plate and anchor effects are included. Base 
plates are typically thick enough to provide moment resistance so that pryout of the 
anchor does not occur. If shear lug stiffeners are used, the length of the plate per-
pendicular to the applied shear must be at least half the length of the primary 
bearing plate.

The loading of the shear lug base plate can affect performance. If the attach-
ment is in tension, the anchors must be far enough from the shear lug to reduce 
interaction between the two elements. Two conditions must be met to accomplish 
this separation. First, hef∕hsl must be greater than or equal to 2.5. Second, hef∕csl must 
also be greater than or equal to 2.5. The dimensions associated with these variables 
are illustrated in Fig. 21.17. Inspection holes seen in Fig. 21.17 provide for visual 
confirmation that concrete is consolidated beneath the shear lug.

FIGURE 21.17
Cast-in-place and post-
installed shear lug 
attachments.

Plan Plan

Elevation Elevation

(a) Cast-in-place (b) Post-installed

Inspection holes

Grout

hsl

hef

csl

tsl
csl

FIGURE 21.18 
Shear lug attachment  
failure planes.

Fracture
progression

preceding failure 

Shear
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Multiple shear lugs must have sufficient separation that the fracture planes are 
additive. The limitations in the ACI Code are based on results of two tests and 
consideration of the shear-friction contributions to the strength (Ref. 21.32).

	 a.	 Bearing Strength of Shear Lug Anchorages

The bearing strength of a shear lug attachment due to concrete failure is given by

	 Vbrg,sl = 1.7 ​​f​c​ ′​​ Aef,sl ψbrg,sl	 (21.22)

where Aef,sl is the effective area of the shear lug and ψbrg,sl is the bearing factor. The 
effective shear area is based on the portion of the shear lug below the concrete 
surface and perpendicular to the applied load. The strength reduction factor for shear 
lugs is 0.65. For base plates flush with the concrete surface, the effective bearing 
area is the width of the lug times twice the thickness of the lug plate 2tsl (Fig. 21.19). 
The 2tsl depth applies to the shear lug and is in addition to the thickness of base 
plate cast into the concrete. Where the base plate is post-installed above the concrete 
surface on a grout pad, the 2tsl is measured below the original concrete surface and 
does not include the base plate or the grout. For shear lugs with orthogonal stiffen-
ing plates, the effective area is increased by the stiffening effects of the transverse 
plate. Thus, Aef,sl is equal to bsl × 2tsl for a single shear lug and must be calculated 
based on the geometry of the shear lug and orthogonal plates for stiffened shear lugs 
(Fig. 21.19). 

A bearing factor modifies the strength of the shear lug anchorage for the effects 
of axial load on the anchorage. Where the axial load is present,

	 ψbrg,sl = 1 + ​​ 
Pu
 ____ 

nNsa

 ​​ ≤ 1.0	 (21.23a)

where Pu is the axial load and is negative for tension and n is the number of anchors 
in tension. When no axial load is present,

	 ψbrg,sl = 1.0	 (21.23b)

and where the applied load is compression, Pu is positive

	 ψbrg,sl = 1 + 4 ​​ 
Pu
 _____ 

Abp ​f​c​ ′​
 ​​ ≤ 2.0	 (21.23c)

and Abp is the area of the base plate.

	 b.	 Concrete Shear Breakout Strength Near Edges

The shear strength of a shear lug attachment near an edge of the concrete follows 
the procedures laid out in Section 21.7b for shear breakout strength. A breakout 

FIGURE 21.19 
Effective area of shear lugs.

2tsl

Aef,sl
Aef,sl 2tsl

2tsl ≥ 0.5hsl
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prism extends out and down from the shear lug as seen in Fig. 21.20. The concrete 
shear breakout strength is given by Eq. (21.4). The nominal strength of the shear lug 
attachment is given by Eq. (21.7) with the width of the breakout prism increased by 
the width of the shear lug bsl.

FIGURE 21.20
Concrete breakout of shear 
lug attachment.

Plan

Elevation
AVc

1.5ca1 1.5ca1bsl

ca1

V

1.5ca1

hef,sl

Aef,sl

	EXAMPLE 21.13	 Shear lug design.  Design a shear lug attachment to carry a factored column compressive 
axial load of 25 kips and a factored shear of 30 kips on the 12 in. × 12 in. base plate shown 
in Fig. 21.21. Use screw anchors with a futa = 50 ksi, ​​f​c​ ′​​ = 5000 psi, and a 1 in. thick shear 
lug. The attachment is sufficiently far from an edge that edge effects may be ignored and the 
eccentricity between the shear force and shear resistance is 2.5 in.

Solution.  The depth of the shear lug effective bearing area is 2tsl = 2 in. From Eq. (21.23c) 
the bearing factor is 

ψbrg,sl = 1 + 4 ​​ 
Pu
 _____ 

Abp ​f​c​ ′​
 ​​ = 1 + 4 ​​ 

25,000
  ______________  

12 × 12 × 5000
 ​​ = 1.14

Then, rearranging Eq. (21.22), noting that Aef,sl = bsl × 2tsl, and for a shear lug ϕ = 0.65

bsl = ​​ 
Vbrg,sl
 _____________  

ϕ1.7 ​f​c​ ′​ 2tslψbrg,sl

 ​​ = ​​  30  ______________________________    
0.65 × 1.7 × 5000 × 2 × 1 × 1.14

 ​​ = 2.38 in.

In anticipation of interaction with the tensile strength requirements of the anchors, use 
a 4 in. long shear lug, giving an effective bearing area of Abrg,sl = 2 × 4 = 8 in.2 The shear 
strength of the attachment based on Eq. (21.22) is

ϕVbrg,sl = ϕ1.7 ​​f​c​ ′​​ Aef,slψbrg,sl = 0.65 × 1.7 × 5000 × 8 × 1.14 = 50,390 lb

FIGURE 21.21 
Shear lug design example 
configuration.

2″
8″
1″

Pu = 25 kips

Vu = 30 kips

2.5″
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The eccentricity between the center of the shear resistance and the top of the plate 
consists of the base plate thickness and the grout pad thickness. For this example, the eccen-
tricity is given as 2.5 in. The resulting moment on the plate is Vu × e = 30 kips × 2.5 in. = 
75 in-kips. Assume the base plate rotates about its leading edge; then the tensile force on the 
anchors is Tu = Mu∕10 in. = 7.5 kips. Try a ​ 5 _ 8 ​ in. diameter screw anchor with hef = 6 in.  
For a post-installed anchor, kc = 17, and for normalweight concrete, λa = 1.0. The basic 
breakout strength from Eq. (21.1) is

Nb = kcλa​​√
__

 ​f​c​ ′​​​ ​​h​ ef​ 
1.5​​ = 17 × 1.0 × ​​√

____
 5000​​ × 61.5 = 17.7 kips

The spacing between anchors is 8 in., less than the 3hef distance, so the breakout area of the 
anchor group is ANc = 9​​h​ ef​ 

1.5​​ = 9 × 61.5 = 324 in2 and the group area is

ANco = 3hef × (3hef + s) = 3 × 5 × (3 × 5 + 8) = 468 in2

The design concrete breakout strength in tension is then

ϕNcbg = ϕ ​​ 
ANco

 ____ 
ANc

 ​​ ψed,Nψc,Nψec,NNb = 0.65 × ​​ 468 ____ 
324

 ​​ × 1.0 × 1.0 × 1.0 × 17.7 = 16.6 kips

The steel tensile strength of the steel screw anchor is Asa futa = 0.31 × 50 = 15.5 kips, and for the 
two anchors 2ϕAsa futa = 2 × 0.65 × 0.31 × 50 = 20.2 kips, indicating that the concrete breakout 
strength controls. The factored load is greater than 20 percent of the nominal capacity; there-
fore, the interaction must be checked using Eq. (21.16)

​​ 
Vu
 ____ 

ϕVn

 ​​ + ​​ 
Tu
 ____ 

ϕTn

 ​​ = ​​  30 ____ 
50.3

 ​​ + ​​ 7.5 ____ 
16.6

 ​​ = 1.05 < 1.2

which is adequate. Therefore, the design requires a 1 in. thick by 4 in. long shear lug and four 
​​ 5 _ 8 ​​ in. diameter screw anchors with an effective embedment of 6 in. If the moment for the  
tensile force were taken about the anchor centers, the tensile force would be 9.4 kips and the 
interaction ratio would increase to 1.16, which is again satisfactory.

	EXAMPLE 21.14	 Shear lug strength.  Using the shear lug attachment from Example 21.13, determine if the 
attachment is adequate when the face of the shear lug is 20 in. from an edge of the concrete. 
The slab is considered cracked, has no supplemental reinforcement, and is thick enough that 
ψh,V = 1.

Solution.  The solution is identical to Example 21.13, except that the concrete breakout due 
to proximity to the edge must be checked. The edge distance is ca1 = 20 in. From Eq. (21.4), 
the basic shear breakout is 

Vb = 9λa ​​√
__

 ​f​c​ ′​​​ ​​c​ a1​ 
1.5​​ = 9 × 1.0 × ​​√

____
 5000​​ × 201.5 = 56,920 lb

With only one shear lug, AVco = Avo and the distance to the edge is greater than hef; thus ψed,V = 1.0. 
The nominal shear strength from Eq. (21.8) is 

ϕVcbg = ϕ ​​ 
AVco

 ____ 
AVc

 ​​ ψed,Vψc,Vψec,Vψh,VVb = 0.65 × ​​ 1 __ 
1
 ​​ × 1.0 × 1.0 × 1.0 × 1.0 × 56.9 = 37.0 kips

Maintaining hef = 6 in. from Example 21.13, the concrete breakout strength is 16.6 kips.  
Checking the force interaction for the anchors using Eq. (21.16) 

​​ 
Vu
 ____ 

ϕVn

 ​​ + ​​ 
Tu
 ____ 

ϕTn

 ​​ = ​​  30 ____ 
37.0

 ​​ + ​​ 7.5 ____ 
16.6

 ​​ = 1.26 > 1.2
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tension breakout force increasing to 20.0 kips and ϕVcbg remains 37.0 kips. The interaction 
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Vu
 ____ 

ϕVn

 ​​ + ​​ 
Tu
 ____ 

ϕTn

 ​​ = ​​  30 ____ 
37.0

 ​​ + ​​ 7.5 ____ 
20.0

 ​​ = 1.18 < 1.2

concluding that the placement near the edge requires that the effective embedment depth of the 
anchor be increased to 7 in.
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Problems
	21.1.	 Determine the required embedment hef for the ​ 5 _ 8 ​ in. diameter hex head bolt 

shown in Fig. P21.1. The bolt is located away from edges in 4000 psi cracked 
concrete with no supplementary reinforcement and carrying a factored sus-
tained dead load of 8400 lb. Given: fy = 36 ksi,  futa = 58 ksi, Ase,N = 0.226,  
and Abrg = 0.454  in2  (hef = 4  in.).

FIGURE P21.1
8″

8400 lb

hef

	21.2.	 An insert with four ​ 1 _ 2 ​ in. diameter headed studs shown in Fig. P21.2 is  
embedded 4 in. into an uncracked concrete panel well away from any edges. ​
f​c​ ′​ = 5000 psi and stud yield strength futa = 65,000 psi. Determine the con-
centric tensile design load for the insert (Nu = 21.7 kips).

FIGURE P21.2

4″

4″

Nu

hef
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	21.3.	 The insert with four ​ 1 _ 2 ​ in. diameter headed studs shown in Fig. P21.3 is 
embedded 4 in. into an uncracked concrete panel with the center of the insert 
6 in. from any edges. ​f​c​ ′​ = 5000 psi and stud tensile strength futa = 65 ksi. 
Determine the shear design load for the insert.

FIGURE P21.3

4″

4″
6″

	21.4.	 The insert with four ​ 1 _ 2 ​ in. diameter headed studs shown in Fig. P21.4 is 
embedded 4 in. into an uncracked concrete panel near a corner. ​f​c​ ′​ = 5000 psi 
and stud tensile strength futa = 65 ksi. Determine the tensile design load for 
the insert.

FIGURE P21.4
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	21.5.	 The attachment shown in Fig. P21.5 carries a concentrically placed factored 
load of 18 kips. Given that the four headed studs are ​ 1 _ 2 ​ in. in diameter, have a 
specified tensile strength of 65 ksi, and are welded to a ​​ 3 _ 4 ​​ in. plate, determine hef for 
the anchor group. The concrete may be considered cracked, ​f​c​ ′​ = 4000 psi, and 
the attachment is located away from any edge.

FIGURE P21.5

4″

4″

Nu = 18 kips

hef

	21.6.	 The attachment shown in Fig. P21.6 carries a factored load of 21.5 kips. The 
load is placed ​ 1 _ 2 ​ in. from the centerline of the attachment. Given that the four 
headed studs are ​ 5 _ 8 ​ in. in diameter, have a specified tensile strength of 65 ksi, 
and are welded to a ​ 3 _ 4 ​ in. plate, determine hef for the attachment. The concrete 
may be considered uncracked, ​f​c​ ′​ = 4000 psi, and the attachment located is 
away from any edge.

FIGURE P21.6
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	21.7.	 The insert with four ​ 1 _ 2 ​ in. diameter headed studs shown in Fig. P21.7 is 
embedded 4 in. into an uncracked concrete panel near a corner. ​​f​c​ ′​​ = 5000 psi, 
stud tensile strength futa = 65 ksi, and supplemental reinforcement is present. 
Determine the design shear load for the insert.

FIGURE P21.7
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	21.8.	 Determine the capacity of the attachment shown in Fig.  21.15 so that it is 
adequate to carry the sustained applied load using characteristic bond stresses 
of τcr  =  1800 psi and τuncr  =  2600 psi. The anchors are ​ 3 _ 4 ​ in. in diameter, 
have a cross-sectional area of 0.334 in2, and are embedded 8 in. into an 
exterior concrete wall with a compressive strength of 4000 psi. futa = 65 ksi. 
The attachment is well away from any edges, supplementary reinforcement 
is present, and the anchors are considered Category 2—medium sensitivity 
and reliability. Comment on your solution.

	21.9.	 Design a shear lug attachment for the column loads indicated in Fig. P21.9. 
Use screw anchors to secure the 12 × 16 × 1 in. plate on a ​ 3 _ 4 ​ in. thick grout 
pad and a shear lug to provide shear resistance. The factored loads are 45 kips 
axial compression and 25 kips shear. The face of the 1 in. thick shear lug  
is located 20 in. from the edge of the concrete. Material properties are  
​​f​c​ ′​​ = 4000 psi and futa = 50 ksi.

FIGURE P21.9
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	 22.1	 INTRODUCTION

Structural engineering tends to progress toward more economical structures through 
gradually improved methods of design and the use of higher-strength materials. This 
results in a reduction of cross-sectional dimensions and consequent weight savings. 
Such developments are particularly important in the field of reinforced concrete, 
where the dead load represents a substantial part of the total load. Also, in multistory 
buildings, any saving in depth of members, multiplied by the number of stories, can 
represent a substantial saving in total height, load on foundations, length of heating 
and electrical ducts, plumbing risers, and wall and partition surfaces.

Significant savings can be achieved by using high-strength concrete and steel in 
conjunction with present-day design methods, which permit an accurate appraisal of 
member strength. However, there are limitations to this development, due mainly to 
the interrelated problems of cracking and deflection at service loads. The efficient 
use of high-strength steel is limited by the fact that the amount of cracking (width 
and number of cracks) is proportional to the strain, and therefore the stress, in the 
steel. Although a moderate amount of cracking is normally not objectionable in struc-
tural concrete, excessive cracking is undesirable in that it exposes the reinforcement 
to corrosion, it may be visually offensive, and it may trigger a premature failure by 
diagonal tension. The use of high-strength materials is further limited by deflection 
considerations, particularly when refined analysis is used. The slender members that 
result may permit deflections that are functionally or visually unacceptable. This is 
further aggravated by cracking, which reduces the flexural stiffness of members.

These limiting features of ordinary reinforced concrete have been largely over-
come by the development of prestressed concrete. A prestressed concrete member can 
be defined as one in which there have been introduced internal stresses of such mag-
nitude and distribution that the stresses resulting from the given external loading are 
counteracted to a desired degree. Concrete is basically a compressive material, with 
its strength in tension being relatively low. Prestressing applies a precompression to 
the member that reduces or eliminates undesirable tensile stresses that would otherwise 
be present. Cracking under service loads can be minimized or even avoided entirely. 
Deflections may be limited to an acceptable value, and in some cases, members can 
be designed to have zero deflection under the combined effects of service load and 
prestress force. Deflection and crack control, achieved through prestressing, permit the 
engineer to make use of efficient and economical high-strength steels in the form of 
strands, wires, or bars, in conjunction with high-strength concretes. Thus, prestressing 
results in the overall improvement in performance of structural concrete used for ordi-
nary loads and spans and extends the range of application far beyond the limits for 
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ordinary reinforced concrete, not only leading to much longer spans, but also permitting 
innovative new structural forms to be employed.

	 22.2	 EFFECTS OF PRESTRESSING

There are at least three ways to look at the prestressing of concrete: (a) as a method 
of achieving concrete stress control, by which the concrete is precompressed so that 
tension normally resulting from the applied loads is reduced or eliminated, (b) as a 
means for introducing equivalent loads on the concrete member so that the effects of 
the applied loads are counteracted to the desired degree, and (c) as a special variation 
of reinforced concrete in which prestrained high-strength steel is used, usually in con-
junction with high-strength concrete. Each of these viewpoints is useful in the analysis 
and design of prestressed concrete structures, and they are illustrated in the following 
paragraphs.

	 a.	 Concrete Stress Control by Prestressing

Many important features of prestressed concrete can be demonstrated by simple exam-
ples. Consider first the plain, unreinforced concrete beam with a rectangular cross sec-
tion shown in Fig. 22.1a. It carries a single concentrated load at the center of its span. 
(The self-weight of the member is neglected here.) As the load W is gradually applied, 
longitudinal flexural stresses are induced. If the concrete is stressed only within its 
elastic range, the flexural stress distribution at midspan is linear.

At a relatively low load, the tensile stress in the concrete at the bottom of the 
beam reaches the tensile strength of the concrete fr, and a crack forms. Because no 
restraint is provided against upward extension of the crack, the beam will collapse 
without further increase of load.

Now consider an otherwise identical beam, shown in Fig.  22.1b, in which a 
longitudinal axial force P is introduced prior to the vertical loading. The longitudinal 
prestressing force produces a uniform axial compression fc = P∕Ac, where Ac is the 
cross-sectional area of the concrete. The force can be adjusted in magnitude so that 
when the transverse load Q is applied, the superposition of stresses due to P and Q 
results in zero tensile stress at the bottom of the beam as shown. Tensile stress in 
the concrete may be eliminated in this way or reduced to a specified amount.

It would be more logical to apply the prestressing force near the bottom of 
the beam, to compensate more effectively for the load-induced tension. A possible 
design specification, for example, might be to introduce the maximum compression 
at the bottom of the beam without causing tension at the top, when only the 
prestressing force acts. It is easily shown that, for a beam with a rectangular cross 
section, the point of application of the prestressing force should be at the lower 
third point of the section depth to achieve this. The force P, with the same value 
as before, but applied with eccentricity e  =  h∕6 relative to the concrete centroid, 
produces a longitudinal compressive stress distribution varying linearly from zero 
at the top surface to a maximum of 2fc = P∕Ac + Pec2∕Ic at the bottom, where fc 
is the concrete stress at the concrete centroid, c2 is the distance from the concrete 
centroid to the bottom of the beam, and Ic is the moment of inertia of the cross 
section. This is shown in Fig. 22.1c. The stress at the bottom is exactly twice the 
value produced before by axial prestressing.

Consequently, the transverse load can now be twice as great as before, or 2Q, 
and still cause no tensile stress. In fact, the final stress distribution resulting from 
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the superposition of load and prestressing force in Fig. 22.1c is identical to that of 
Fig. 22.1b, with the same prestressing force, although the load is twice as great. The 
advantage of eccentric prestressing is obvious.

The methods by which concrete members are prestressed is discussed in 
Section 22.3. For present purposes, it is sufficient to know that one practical method 
of prestressing uses high-strength steel tendons passing through a conduit embedded 
in the concrete beam. The tendon is anchored, under high tension, at both ends of 
the beam, thereby causing a longitudinal compressive stress in the concrete. The 
prestress force of Fig. 22.1b and c could easily have been applied in this way.

A significant improvement can be made, however, by using a prestressing ten-
don with variable eccentricity with respect to the concrete centroid, as shown in 
Fig. 22.1d. The load 2Q produces a bending moment that varies linearly along the 
span, from zero at the supports to maximum at midspan. Intuitively, one suspects 

FIGURE 22.1
Alternative schemes for 
prestressing a rectangular 
concrete beam: (a) plain 
concrete beam; (b) axially 
prestressed beam;  
(c) eccentrically prestressed 
beam; (d) beam with variable 
eccentricity; and (e) balanced 
load stage for beam with 
variable eccentricity.
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that the best arrangement of prestressing would produce a countermoment that acts 
in the opposite sense to the load-induced moment and that would vary in the same 
way. This would be achieved by giving the tendon an eccentricity that varies linearly, 
from zero at the supports to maximum at midspan. This is shown in Fig. 22.1d. The 
stresses at midspan are the same as those in Fig. 22.1c, both when the load 2Q acts 
and when it does not. At the supports, where only the prestress force with zero 
eccentricity acts, a uniform compression stress fc is obtained as shown.

For each characteristic load distribution, there is a best tendon profile that 
produces a prestress moment diagram that corresponds to that of the applied load. 
If the prestress countermoment is made exactly equal and opposite to the load- 
induced moment, the result is a beam that is subject only to uniform axial compres-
sive stress in the concrete all along the span. Such a beam would be free of flexural 
cracking, and theoretically it would not be deflected up or down when that particu-
lar load is in place, compared to its position as originally cast. Such a result would 
be obtained for a load of ​ 1 _ 2 ​ × 2Q = Q, as shown in Fig. 22.1e, for example.

Some important conclusions can be drawn from these simple examples as follows:

	 1.	 Prestressing can control or even eliminate concrete tensile stress for specified loads.
	 2.	 Eccentric prestress is usually much more efficient than concentric prestress.
	 3.	 Variable eccentricity is usually preferable to constant eccentricity, from the view-

points of both stress control and deflection control.

	 b.	 Equivalent Loads

The effect of a change in the vertical alignment of a prestressing tendon is to produce 
a vertical force on the concrete beam. That force, together with the prestressing force 
acting at the ends of the beam through the tendon anchorages, can be looked upon as 
a system of external loads.

In Fig.  22.2a, for example, a tendon that applies force P at the centroid of the 
concrete section at the ends of a beam and that has a uniform slope at angle θ between 
the ends and midspan introduces a transverse force 2P sin θ at the point of change of 
slope at midspan. At the anchorages, the vertical component of the prestressing force 
is P sin θ and the horizontal component is P cos θ. The horizontal component is very 
nearly equal to P for the usual flat slope angles. The moment diagram for the beam 
of Fig. 22.2a is seen to have the same form as that for any center-loaded simple span.

The beam of Fig. 22.2b, with a curved tendon, is subject to a vertical upward 
load from the tendon as well as the forces P at each end. The exact distribution of 
the load depends on the profile of the tendon. A tendon with a parabolic profile, for 
example, produces a uniformly distributed load. In this case, the moment diagram 
is parabolic, as it is for a uniformly loaded simple span.

If a straight tendon is used with constant eccentricity, as shown in Fig. 22.2c, 
there are no vertical forces on the concrete, but the beam is subject to a moment Pe 
at each end, as well as the axial force P, and a diagram of constant moment results.

The end moment must also be accounted for in the beam shown in Fig. 22.2d, 
in which a parabolic tendon is used that does not pass through the concrete centroid 
at the ends of the span. In this case, a uniformly distributed upward load plus end 
anchorage forces are produced, as shown in Fig.  22.2b, but in addition, the end 
moments M = Pe cos θ must be accounted for.

It may be evident that for any arrangement of applied loads, a tendon profile can 
be selected so that the equivalent loads acting on the beam from the tendon are just 
equal and opposite to the applied loads. The result would be a state of pure compres-
sive stress in the concrete, as discussed in somewhat different terms in reference to 
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stress control and Fig. 22.1e. An advantage of the equivalent load concept is that it 
leads the designer to select what is probably the best tendon profile for a particular 
loading.

	 c.	 Prestressed Concrete as a Variation of Reinforced Concrete

In the descriptions of the effects of prestressing in Sections 22.2a and b, it was implied 
that the prestress force remained constant as the vertical load was introduced, that 
the concrete responded elastically, and that no concrete cracking occurred. These 
conditions may prevail up to about the service load level, but if the loads should be 
increased much beyond that, flexural tensile stresses eventually exceed the modulus of 
rupture and cracks will form. Loads, however, can usually be increased much beyond 
the cracking load in well-designed prestressed beams, and depending on the level of 
prestress, the beam response at service load may vary from uncracked, to minor crack-
ing, to fully cracked, as occurs for an ordinary reinforced concrete beam.

Eventually both the steel and concrete at the cracked section are stressed into 
the inelastic range. The condition at incipient failure is shown in Fig.  22.3, which 
shows a beam carrying a factored load equal to some multiple of the expected ser-
vice load. The beam undoubtedly would be in a partially cracked state; a possible 
pattern of flexural cracking is shown in Fig. 22.3a.

At the maximum moment section, only the concrete in compression is effective, 
and all of the tension is taken by the steel. The external moment from the applied loads 
is resisted by the internal force couple Cz = Tz. The behavior at this stage is almost 

FIGURE 22.2
Equivalent loads and moments produced by prestressing tendons.
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identical to that of an ordinary reinforced concrete beam at overload. The main 
difference is that the very high-strength steel used must be prestrained before loads 
are applied to the beam; otherwise, the high steel stresses would produce excessive 
concrete cracking and large beam deflections.

Each of the three viewpoints described—concrete stress control, equivalent 
loads, and reinforced concrete using prestrained steel—is useful in the analysis and 
design of prestressed concrete beams, and none of the three is sufficient in itself. 
Neither an elastic stress analysis nor an equivalent load analysis provides information 
about strength or safety margin. However, the stress analysis is helpful in predicting 
the extent of cracking, and the equivalent load analysis is often the best way to cal-
culate deflections. Strength analysis is essential to evaluate safety against collapse, 
but it tells nothing about cracking or deflections of the beam under service conditions.

	 22.3	 SOURCES OF PRESTRESS FORCE

Prestress can be applied to a concrete member in many ways. Perhaps the most obvi-
ous method of precompressing is to use jacks reacting against abutments, as shown in 
Fig. 22.4a. Such a scheme has been employed for large projects. Many variations are 
possible, including replacing the jacks with compression struts after the desired stress 
in the concrete is obtained or using inexpensive jacks that remain in place in the struc-
ture, in some cases with a cement grout used as the hydraulic fluid. The principal dif-
ficulty associated with such a system is that even a slight movement of the abutments 
drastically reduces the prestress force.

In most cases, the same result is more conveniently obtained by tying the jack 
bases together with wires or strands, as shown in Fig. 22.4b. These wires or strands 
may be external, located on each side of the beam; more commonly, they are passed 
through a hollow conduit embedded in the concrete beam. Usually, one end of the 
prestressing tendon is anchored, and all of the force is applied at the other end. After 

FIGURE 22.3
Prestressed concrete beam  
at load near flexural failure: 
(a) beam with factored load 
applied and (b) equilibrium 
of forces on left half of beam.
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reaching the desired prestress force, the tendon is wedged against the concrete and 
the jacking equipment is removed for reuse. In this type of prestressing, the entire 
system is self-contained and is independent of relative displacement of the supports.

Another method of prestressing that is widely used is illustrated by Fig. 22.4c. 
The prestressing strands are tensioned between massive abutments in a casting yard 
prior to placing the concrete in the beam forms. The concrete is placed around the 
tensioned strands, and after the concrete has attained sufficient strength, the jacking 
pressure is released. This transfers the prestressing force to the concrete by bond and 
friction along the strands, chiefly at the outer ends.

It is essential, in all three cases shown in Fig. 22.4, that the beam be supported 
in such a way as to permit the member to shorten axially without restraint so that 
the prestressing force can be transferred to the concrete.

Other means for introducing the desired prestressing force have been attempted 
on an experimental basis. Thermal prestressing can be achieved by preheating the 
steel by electrical or other means. Anchored against the ends of the concrete beam 
while in the extended state, the steel cools and tends to contract. The prestress force 
is developed through the restrained contraction. The use of expanding cement in 
concrete members has been tried with varying success. The volumetric expansion, 
restrained by steel strands or by fixed abutments, produces the prestress force.

Most of the patented systems for applying prestress in current use are varia-
tions of those shown in Fig. 22.4b and c. Such systems can generally be classified 
as pretensioning or post-tensioning systems. In the case of pretensioning, the ten-
dons are stressed before the concrete is placed, as in Fig.  22.4c. This system is 
well suited for mass production, since casting beds can be made several hundred 
feet long, the entire length cast at once, and individual beams fabricated to the 
desired length in a single casting. Figure 22.5 shows workers using a hydraulic jack 
to tension strands at the anchorage of a long pretensioning bed. Although each 
tendon is individually stressed in this case, large capacity jacks are often used to 
tension all strands simultaneously.

FIGURE 22.4
Prestressing methods:  
(a) post-tensioning by  
jacking against abutments; 
(b) post-tensioning with  
jacks reacting against beam; 
and (c) pretensioning with 
tendon stressed between 
fixed external anchorages.
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In post-tensioned construction, shown in Fig. 22.4b, the tendons are tensioned 
after the concrete is placed and has gained its strength. Usually, a hollow conduit or 
sleeve is provided in the beam, through which the tendon is passed. In some cases, 
tendons are placed in the interior of hollow box-section beams. The jacking force is 
usually applied against the ends of the hardened concrete, eliminating the need for 
massive abutments. In Fig.  22.6, a tendon consisting of many individual strands is 
being post-tensioned using a portable hydraulic jack.

A large number of particular systems, steel elements, jacks, and anchorage 
fittings have been developed in this country and abroad, many of which differ from 
each other only in minor details (Refs. 22.1 to 22.8). As far as the designer of pre-
stressed concrete structures is concerned, it is unnecessary and perhaps even unde-
sirable to specify in detail the technique that is to be followed and the equipment to 
be used. It is common practice to specify only the magnitude and line of action of 
the prestress force. The contractor is then free, in bidding the work, to receive quo-
tations from several different prestressing subcontractors, with resultant cost savings. 
It is evident, however, that the designer must have some knowledge of the details of 
the various systems contemplated for use, so that in selecting cross-sectional dimen-
sions, any one of several systems can be accommodated. Once a system is selected, 
it is reviewed by the designer for conformance with the structural requirements.

FIGURE 22.5
Massive strand jacking 
abutment at the end of a  
long pretensioning bed. 
(Photograph by Charles 

W. Dolan.)
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	 22.4	 PRESTRESSING STEELS

Early attempts at prestressing concrete were unsuccessful because steel with ordinary 
structural strength was used. The low prestress obtainable in such rods was quickly 
lost due to shrinkage and creep in the concrete.

Such changes in length of concrete have much less effect on prestress force if 
that force is obtained using highly stressed steel wires or strands. In Fig.  22.7a, a 
concrete member of length ℓ is prestressed using steel bars with ordinary strength 
stressed to 24,000 psi. With Es = 29 × 106 psi, the unit strain εs required to produce 
the desired stress in the steel of 24,000 psi is

εs = ​ Δℓ ___ 
ℓ
 ​  = ​ 

fs __ 
Es

 ​ = ​ 
24,000

 ________ 
29 × 106

 ​ = 8.0 × ​10​−4​

However, the long-term strain in the concrete due to shrinkage and creep alone, if 
the prestress force were maintained over a long period, would be on the order of 
8.0 × 10−4 and would be sufficient to completely relieve the steel of all stress.

Alternatively, suppose that the beam is prestressed using high-strength steel 
stressed to 150,000 psi. The elastic modulus of steel does not vary greatly, and the 
same value of 29 × 106 psi is assumed here. Then in this case, the unit strain required 
to produce the desired stress in the steel is

εs = ​ 
150,000

 ________ 
29 × 106

 ​ = 51.7 × ​10​−4​

If shrinkage and creep strain are the same as before, the net strain in the steel after 
these losses is

εs,net = (51.7 − 8.0) × ​10​−4​ = 43.7 × ​10​−4​

FIGURE 22.6
Post-tensioning a 12-strand 
tendon using a multistrand 
jack. (Photograph by  

Charles W. Dolan.)
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and the corresponding stress after losses is

fs = εs,net Es = (43.7 × ​10​−4​) (29 × 106) = 127,000 psi

This represents a stress loss of about 15 percent, compared with 100 percent loss in the 
beam using ordinary steel. It is apparent that the amount of stress lost because of shrink-
age and creep is independent of the original stress in the steel. Therefore, the higher the 
original stress, the lower the percentage loss. This is illustrated graphically by the stress-
strain curves of Fig. 22.7b. Curve A is representative of ordinary reinforcing bars, with 
a yield stress of 60,000 psi, while curve B represents high tensile steel, with a tensile 
strength of 270,000 psi. The stress change Δf resulting from a certain change in strain Δε 
is seen to have much less effect when high steel stress levels are attained. Prestressing of 
concrete is therefore practical only when steels of very high strength are used.

Prestressing steel is most commonly used in the form of individual wires, strands 
made up of seven wires, and alloy-steel bars. The physical properties of these have 
been discussed in Section 2.16, and typical stress-strain curves appear in Fig. 2.19. 
Virtually all strands in use are low-relaxation (Section 2.16c).

The tensile stress permitted by ACI Code 20.3.2.5 in prestressing wires, strands, 
or bars is dependent upon the type of loading. When the jacking force is first applied, 
a maximum stress of 0.80fpu,  0.94fpy, or the manufacturer’s maximum recommended 
value is allowed, whichever is smaller, where fpu is the tensile strength of the steel and 
fpy is the yield strength. Immediately after transfer of prestress force at post-tensioning 
anchorages, the stress is limited to 0.70fpu. The ACI Code does not specify a stress at 
transfer for pretensioned members. Industry practice, based on earlier ACI Code 
requirements, is for the stress after transfer to be 0.74fpu. The justification for a higher 
allowable stress during the stretching operation is that the steel stress is known quite 
precisely at this stage. Hydraulic jacking pressure and total steel elongation are quan-
tities that are easily measured, and quality control specifications require correlation of 

FIGURE 22.7
Loss of prestress due to 
concrete shrinkage and creep.
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load and deflection at jacking (Ref. 22.9). In addition, if an accidentally deficient 
tendon should break, it can be replaced; in effect, the tensioning operation is a perfor-
mance test of the material. The steel stress is further reduced during the life of the 
member due to shrinkage and creep in the concrete and relaxation in the steel.

The strength and other characteristics of prestressing wire, strands, and bars vary 
somewhat between manufacturers, as do methods of grouping tendons and anchoring 
them. Typical information is given for illustration in Table A.15 of Appendix A and 
in Refs. 22.1 to 22.8.

	 22.5	 CONCRETE FOR PRESTRESSED CONSTRUCTION

Ordinarily, concrete of substantially higher compressive strength is used for pre-
stressed structures than for those constructed of ordinary reinforced concrete. Most 
prestressed construction in the United States at present is designed for a compressive 
strength above 5000 psi. There are several reasons for this:

	 1.	 High-strength concrete normally has a higher modulus of elasticity (see Fig. 2.3). 
This means a reduction in initial elastic strain under application of prestress force 
and a reduction in creep strain, which is approximately proportional to elastic 
strain. This results in a reduction in loss of prestress.

	 2.	 In post-tensioned construction, high bearing stresses result at the ends of beams 
where the prestressing force is transferred from the tendons to anchorage fittings, 
which bear directly against the concrete. This problem can be met by increasing the 
size of the anchorage fitting or by increasing the bearing capacity of the concrete 
by increasing its compressive strength. The latter is usually more economical.

	 3.	 In pretensioned construction, where transfer by bond is customary, the use of 
high-strength concrete permits shorter transfer and development lengths.

	 4.	 A substantial part of the prestressed construction in the United States is precast, 
with the concrete mixed, placed, and cured under carefully controlled conditions 
that facilitate obtaining higher strengths.

The strain characteristics of concrete under short-term and sustained loads assume 
an even greater importance in prestressed structures than in reinforced concrete struc-
tures because of the influence of strain on loss of prestress force. Strains due to stress, 
together with volume changes due to shrinkage and temperature changes, may have 
considerable influence on prestressed structures. In this connection, it is suggested that 
the reader review Sections 2.8 to 2.11, which discuss in some detail the compressive 
and tensile strengths of concrete under short-term and sustained loads and the changes 
in concrete volume that occur due to shrinkage and temperature change.

The allowable stresses in the concrete, according to ACI Code 24.5.3, depend 
upon the stage of loading and the behavior expected of the member. ACI Code 24.5.2 
defines three classifications of behavior, depending on the extreme fiber stress ft at 
service load in the precompressed tensile zone. The three classifications are U, T, 
and C. Class U flexural members are assumed to behave as uncracked members. 
Class T members represent a transition between uncracked and cracked flexural 
members, while Class C members are assumed to behave as cracked flexural mem-
bers. Permissible stresses for these three classifications are given in Table 22.1.

In Table  22.1, ​f​ci​ ′ ​ is the compressive strength of the concrete at the time of 
initial prestress and ​f​c​ ′​ the specified compressive strength of the concrete. In parts e 
and f of Table 22.1, sustained load is any part of the service load that is sustained 
for a sufficient period of time to cause significant time-dependent deflections, 
whereas total load refers to the total service load, a part of which may be transient 
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or temporary live load. Thus, sustained load would include dead load and may or 
may not include service live load, depending on its duration. If the live load duration 
is short or intermittent, the higher limit of part f is permitted.

Two-way slabs are designated as Class U flexural members with ft limited to values 
≤ 6​​√

__
 ​f​c​ ′​​​. Class C flexural members have no service level stress requirements but 

must satisfy strength and serviceability requirements. Service load stress calculations 
are based on uncracked section properties for Class U and T flexural members and 
on the cracked section properties for Class C members.

	 22.6	 ELASTIC FLEXURAL ANALYSIS

It has been noted earlier in this text that the design of concrete structures may be based 
either on providing sufficient strength, which would be used fully only if the expected 
loads were increased by an overload factor, or on keeping material stresses within 
permissible limits when actual service loads act. In the case of ordinary reinforced 
concrete members, strength design is used. Members are proportioned on the basis of 
strength requirements and then checked for satisfactory service load behavior, notably 
with respect to deflection and cracking. The design is then modified if necessary.

Class C members are principally designed based on strength. Class U and T 
members, however, are proportioned so that stresses in the concrete and steel at 
actual service loads are within permissible limits. These limits are a fractional part 
of the actual capacities of the materials. There is some logic to this approach, since 
an important objective of prestressing is to improve the performance of members at 
service loads. Consequently, service load requirements often control the amount of 
prestress force used in Class U and T members. Design based on service loads may 
usually be carried out assuming elastic behavior of both the concrete and the steel, 
since stresses are relatively low in each.

Regardless of the starting point chosen for the design, a structural member must 
be satisfactory at all stages of its loading history. Accordingly, prestressed members 

Class

Condition U T C*

a. Extreme fiber stress in compression immediately after transfer (except as in b) 0.60​f​ci​ ′ ​ 0.60​f​ci​ ′ ​ 0.60​f​ci​ ′ ​
b. Extreme fiber stress in compression at ends of simply supported members 0.70​f​ci​ ′ ​ 0.70​f​ci​ ′ ​ 0.70​f​ci​ ′ ​
c. Extreme fiber stress in tension immediately after transfer (except as in d) 3​​√

__
 ​f​ci​ ′ ​​​ 3​​√

__
 ​f​ci​ ′ ​​​ 3​​√

__
 ​f​ci​ ′ ​​​

d. �Extreme fiber stress in tension immediately after transfer at the end of 
simply supported members† 6​​√

__
 ​f​ci​ ′ ​​​ 6​​√

__
 ​f​ci​ ′ ​​​ 6​​√

__
 ​f​ci​ ′ ​​​

e. Extreme fiber stress in compression due to prestress plus sustained load 0.45​f​c​ ′​ 0.45​f​c​ ′​ —
f. Extreme fiber stress in compression due to prestress plus total load 0.60​f​c​ ′​ 0.60​f​c​ ′​ —
g. �Extreme fiber stress in tension ft in precompressed tensile zone 

under service  load ≤7.5​​√
__

 ​f​c​ ′​​​ >7.5​​√
__

 ​f​c​ ′​​​ and ≤ 12​​√
__

 ​f​c​ ′​​​ >12​​√
__

 ​f​c​ ′​​​

h. Prestressed two-way slabs ≤6​​√
__

 ​f​c​ ′​​​

* There are no service stress requirements for Class C.
† �When calculated tensile stresses exceed these values, bonded auxiliary prestressed or nonprestressed reinforcement must be provided in the 

tensile zone to resist the total tensile force in the concrete calculated with the assumption of an uncracked section.

TABLE 22.1
Permissible calculated stresses in concrete in prestressed flexural members
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706      DESIGN OF CONCRETE STRUCTURES  Chapter 22

proportioned on the basis of permissible stresses must be checked to ensure that 
sufficient strength is provided should overloads occur, and deflection and cracking 
under service loads should be investigated. Consistent with most U.S. practice, the 
design of prestressed concrete beams starts with a consideration of stress limits, after 
which strength and other properties are checked.

It is convenient to think of prestressing forces as a system of external forces 
acting on a concrete member, which must be in equilibrium under the action of those 
forces. Figure  22.8a shows a simple-span prestressed beam with curved tendons, 
typical of many post-tensioned members. The portion of the beam to the left of a 
vertical cutting plane x-x is taken as a free body, with forces acting as shown in 
Fig. 22.8b. The force P at the left end is exerted on the concrete through the tendon 
anchorage, while the force P at the cutting plane x-x results from combined shear 
and normal stresses acting at the concrete surface at that location. The direction of 
P is tangent to the curve of the tendon at each location. Note the presence of the 
force N, acting on the concrete from the tendon, due to tendon curvature. This force 
is distributed in some manner along the length of the tendon, the exact distribution 
depending upon the tendon profile. Its resultant and the direction in which the result-
ant acts can be found from the force diagram of Fig. 22.8c.

It is convenient when working with the prestressing force P to divide it into 
its components in the horizontal and vertical directions. The horizontal component 
(Fig. 22.8d) is H = P cos θ, and the vertical component is V = H  tan θ = P  sin θ, 
where θ is the angle of inclination of the tendon centroid at the particular section. 
Since the slope angle is normally quite small, the cosine of θ is very close to unity 
and it is sufficient for most calculations to take H = P.

The magnitude of the prestress force is not constant. The jacking force Pj is 
immediately reduced to what is termed the initial prestress force Pi because of elas-
tic shortening of the concrete upon transfer, slip of the tendon as the force is trans-
ferred from the jacks to the beam ends, and loss due to friction between the tendon 
and the concrete (post-tensioning) or between the tendon and the strand alignment 
devices (pretensioning). There is a further reduction of force from Pi to the effective 
prestress Pe, occurring over a long period of time at a gradually decreasing rate, 
because of concrete creep under the sustained prestress force, concrete shrinkage, 
and relaxation of stress in the steel. Methods for predicting losses are discussed in 

FIGURE 22.8
Prestressing forces acting on 
concrete.
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Section 22.13. Of primary interest to the designer are the initial prestress Pi imme-
diately after transfer and the final or effective prestress Pe after all losses.

In developing elastic equations for flexural stress, the effects of prestress force, 
self-weight moment, and dead and live load moments are calculated separately, and 
the separate stresses are superimposed. When the initial prestress force Pi is applied 
with an eccentricity e below the centroid of the cross section with area Ac and top 
and bottom fiber distances c1 and c2, respectively, it causes the compressive stress 
−Pi∕Ac and the bending stresses +Piec1∕Ic and −Piec2∕Ic in the top and bottom fibers, 
respectively (compressive stresses are designated as negative, tensile stresses as 
positive†), as shown in Fig. 22.9a. Then, at the top fiber, the stress is

	 f1 = − ​ 
Pi __ 
Ac

 ​ + ​ 
Piec1 _____ 

Ic

 ​  = − ​ 
Pi __ 
Ac

 ​ ​( 1 − ​ 
ec1 ___ 
r2

 ​ )​	 (22.1a)

and at the bottom fiber

	 f2 = − ​ 
Pi __ 
Ac

 ​ − ​ 
Piec2 _____ 

Ic

 ​  = − ​ 
Pi __ 
Ac

 ​ ​( 1 + ​ 
ec2 ___ 
r2

 ​ )​	 (22.1b)

† �Designating tension positive is consistent throughout this text. Many practicing engineers prefer to use tension as negative in recognition that 
compression is the preferred stress state in concrete.

FIGURE 22.9
Concrete stress distributions 
in beams: (a) effect of 
prestress; (b) effect of 
prestress plus self-weight of 
beam; and (c) effect of 
prestress, self-weight, and 
external dead and live service 
loads.
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where r is the radius of gyration of the concrete section. Normally, as the eccentric 
prestress force is applied, the beam deflects upward. The beam self-weight wo then 
causes additional moment Mo to act, and the net top and bottom fiber stresses become

	 f1 = − ​ 
Pi __ 
Ac

 ​ ​( 1 − ​ 
ec1 ___ 
r2

 ​ )​ − ​ 
Moc1 _____ 

Ic

 ​ 	 (22.2a)

	 f2 = − ​ 
Pi __ 
Ac

 ​ ​( 1 + ​ 
ec2 ___ 
r2

 ​ )​ + ​ 
Moc2 _____ 

Ic

 ​ 	 (22.2b)

as shown in Fig. 22.9b. At this stage, time-dependent losses due to shrinkage, creep, 
and relaxation commence, and the prestressing force gradually decreases from Pi to Pe.  
It is usually acceptable to assume that all such losses occur prior to the application of 
service loads, since the concrete stresses at service loads are critical after losses, not 
before. Accordingly, the stresses in the top and bottom fiber, with Pe and beam load 
acting, become

	 f1 = − ​ 
Pe __ 
Ac

 ​ ​( 1 − ​ 
ec1 ___ 
r2

 ​ )​ − ​ 
Moc1 _____ 

Ic

 ​	  (22.3a)

	 f2 = − ​ 
Pe __ 
Ac

 ​ ​( 1 + ​ 
ec2 ___ 
r2

 ​ )​ + ​ 
Moc2 _____ 

Ic

 ​ 	 (22.3b)

When full service loads (dead load in addition to self-weight of the beam, plus service 
live load) are applied, the stresses are

	 f1 = − ​ 
Pe __ 
Ac

 ​ ​( 1 − ​ 
ec1 ___ 
r2

 ​ )​ − ​ 
(Mo + Md + Ml)c1  _______________ 

Ic

 ​ 	 (22.4a)

	 f2 = − ​ 
Pe __ 
Ac

 ​ ​( 1 + ​ 
ec2 ___ 
r2

 ​ )​ + ​ 
(Mo + Md + Ml)c2  _______________ 

Ic

 ​	  (22.4b)

as shown in Fig. 22.9c.
It is necessary, in reviewing the adequacy of a beam (or in designing a beam on 

the basis of permissible stresses), that the stresses in the extreme fibers remain within 
specified limits under any combination of loadings that can occur. Normally, the 
stresses at the section of maximum moment, in a properly designed beam, must stay 
within the limit states defined by the distributions shown in Fig.  22.10 as the beam 
passes from the unloaded stage (Pi plus self-weight) to the loaded stage (Pe plus full 
service loads). In the figure, fci and fti are the permissible compressive and tensile 
stresses, respectively, in the concrete immediately after transfer, and fcs and fts are the 
permissible compressive and tensile stresses at service loads given in Table 22.1.

FIGURE 22.10
Stress limits: (a) unloaded 
beam, with initial prestress 
plus self-weight, and  
(b) loaded beam, with 
effective prestress, self-
weight, and full service load.
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In calculating the section properties Ac, Ic, etc., to be used in the above equations, 
it is relevant that, in post-tensioned construction, the tendons are usually grouted in the 
conduits after tensioning. Before grouting, stresses should be based on the net section 
with holes deducted. After grouting, the transformed section should be used with holes 
considered filled with concrete and with the steel replaced with an equivalent area of 
concrete. However, it is satisfactory, unless the holes are quite large, to compute section 
properties on the basis of the gross concrete section. Similarly, while in pretensioned 
beams the properties of the transformed section should be used, it makes little difference 
if calculations are based on properties of the gross concrete section.†

It is useful to establish the location of the upper and lower kern points of a 
cross section. These are defined as the limiting points inside which the prestress 
force resultant may be applied without causing tension anywhere in the cross section. 
Their locations are obtained by writing the expression for the tensile fiber stress due 
to application of an eccentric prestress force acting alone and setting this expression 
equal to zero to solve for the required eccentricity. In Fig. 22.11, to locate the upper 
kern-point distance k1 from the neutral axis, let the prestress force resultant P act at 
that point. Then the bottom fiber stress is

f2 = − ​ P __ 
Ac

 ​ ​( 1 + ​ 
ec2 ___ 
r2

 ​ )​ = 0

Thus, with

1 + ​ 
ec2 ___ 
r2

 ​ = 0

one obtains the corresponding eccentricity

	 e = k1 = − ​ r
2
 __ c2
 ​	 (22.5a)

Similarly, the lower kern-point distance k2 is

	 k2 = ​ r
2
 __ c1
 ​	 (22.5b)

The region between these two limiting points is known as the kern, or in some cases 
the core, of the section.

† �ACI Code 4.12.2.4 contains the following provision: “Effect of loss of area due to open ducts shall be considered in calculating section 
properties before grout in post-tensioning ducts has attained design strength.” Earlier versions of the ACI Code Commentary stated: “If the 
effect of the open duct area on design is deemed negligible, section properties may be based on total area. In post-tensioned members after 
grouting and in pretensioned members, section properties may be based on effective sections using transformed areas of bonded prestressing 
steel and nonprestressed gross sections, or net sections.”

FIGURE 22.11
Location of kern points.
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710      DESIGN OF CONCRETE STRUCTURES  Chapter 22

	EXAMPLE 22.1	 Pretensioned I beam with constant eccentricity.  A simply supported symmetrical I beam 
shown in cross section in Fig.  22.12a is used on a 40 ft simple span. It has the following 
section properties:

Moment of inertia:   Ic = 12,000 in4

Concrete area:     Ac = 176 in2

Radius of gyration:  r2 = 68.2 in2

Section modulus:      S = 1000 in3

Self-weight:       wo = 0.183 kips/ft

and is to carry a superimposed dead plus live load (considered “sustained,” not short-term) 
of 0.750 kips∕ft in addition to its own weight. The beam will be pretensioned with multiple 
seven-wire strands with the centroid at a constant eccentricity of 7.91 in. The prestress force Pi 
immediately after transfer will be 158 kips; after time-dependent losses, the force reduces to 
Pe = 134 kips. The specified compressive strength of the concrete ​f​c​ ′​ = 5000 psi, and at the time 
of prestressing the strength will be ​f​ci​ ′ ​ = 3750 psi. Calculate the concrete flexural stresses at the 
midspan section of the beam at the time of transfer, and after all losses with full service load in 
place. Compare with ACI allowable stresses for a Class U member.

Solution.  Stresses in the concrete along the length of the beam resulting from the initial 
prestress force of 158 kips may be found by Eqs. (22.1a) and (22.1b):

f1 = − ​ 
158,000

 _______ 
176

 ​  ​( 1 − ​ 7.91 × 12 _________ 
68.2

 ​  )​ = +352 psi

f2 = − ​ 
158,000

 _______ 
176

 ​  ​( 1 + ​ 7.91 × 12 _________ 
68.2

 ​  )​ = −2147 psi

The self-weight of the beam causes the immediate superposition of a moment at midspan of

Mo = 0.183 × ​ 402
 ___ 

8
 ​  = 36.6 ft-kips

and corresponding stresses of Mo∕S = 36,600 × 12∕1000 = 439 psi, so that the net stresses at 
the top and bottom of the concrete section at midspan due to initial prestress and self-weight, 
from Eqs. (22.2a) and (22.2b), are

f1 = +352 − 439 = −87 psi

f2 = −2147 + 439 = −1708 psi

After losses, the prestress force is reduced to 134 kips, and the concrete stresses at midspan due 
to that force plus self-weight are

f1 = +352 × ​ 134 ____ 
158

 ​ − 439 = −140 psi

f2 = −2147 × ​ 134 ____ 
158

 ​ + 439 = −1382 psi

and stresses at the end of the beam are

f1 = +352 ​( ​ 134 ____ 
158

 ​ )​ = 299

f2 = −2147 ​( ​ 134 ____ 
158

 ​ )​ = −1821
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	 22.7	 FLEXURAL STRENGTH

In an ordinary reinforced concrete beam, the stress in the tensile steel and the com-
pressive force in the concrete increase in proportion to the applied moment up to and 
somewhat beyond service load, with the distance between the two internal stress result-
ants remaining essentially constant. In contrast to this behavior, in a prestressed beam, 
increased moment is resisted by a proportionate increase in the distance between the 

FIGURE 22.12
Pretensioned I beam. Design example: (a) cross section; (b) stresses at midspan (psi); and (c) stresses at ends (psi).
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The superimposed load of 0.750 kip∕ft produces a midspan moment of Md  +  Ml  =   
0.750 × 402∕8 = 150 ft-kips and the corresponding stresses of 150,000 × 12∕1000 = 1800 psi 
in compression and tension at the top and bottom of the beam, respectively. Thus, the service 
load stresses at the top and bottom faces at midspan are

f1 = −140 − 1800 = −1940 psi

f2 = −1382 + 1800 = +418 psi

Concrete stresses at midspan are shown in Fig. 22.12b and at the beam end in Fig. 22.12c. 
According to the ACI Code (see Table 22.1), the stresses permitted in the concrete are

Tension at transfer:  fti = 3​​√
____

 3750​​ = +184 psi
Compression at transfer:  fci = 0.70 × 3750 = −2625 psi
Tension at service load:  fts = 7.5​​√

____
 5000​​ = +530 psi

Compression at service load:  fcs = 0.45 × 5000 = −2250 psi

At the initial stage, with prestress plus self-weight in place, the actual compressive stress 
of 1708 psi is well below the limit of 2250 psi, and no tension acts at the top, although 184 psi 
is allowed. While more prestress force or more eccentricity might be suggested to more fully 
utilize the section, to attempt to do so in this beam, with constant eccentricity, would violate 
limits at the support, where self-weight moment is zero. It is apparent that at the supports, the 
initial prestress force acting alone produces tension of 352 psi at the top of the beam (Fig. 22.12c), 
barely below the value of 6​​√

____
 3750​​ = 367 permitted at the beam end, so very little improvement 

can be made. The compressive stress at the supports is −2147 psi, well below the magnitude of 
the permitted value of 0.70​f​ci​ ′ ​ = −2625 psi. Finally, at full service load, the tension of 418 psi is 
under the allowed 530 psi, and compression of 1940 psi is well below the permitted 2250 psi.
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compressive and tensile resultant forces, the compressive resultant moving upward as 
the load is increased. The magnitude of the internal forces remains nearly constant up 
to, and usually somewhat beyond, service loads.

This situation changes drastically upon flexural tensile cracking of the prestressed 
beam. When the concrete cracks, there is a sudden increase in the stress in the steel 
as the tension that was formerly carried by the concrete is transferred to it. After 
cracking, the prestressed beam behaves essentially as an ordinary reinforced concrete 
beam. The compressive resultant cannot continue to move upward indefinitely, and 
increasing moment must be accompanied by a nearly proportionate increase in steel 
stress and compressive force. The strength of a prestressed beam can, therefore, be 
predicted by the same methods developed for ordinary reinforced concrete beams, with 
modifications to account for (a) the different shape of the stress-strain curve for pre-
stressing steel, as compared with that for ordinary reinforcement, and (b) the tensile 
strain already present in the prestressing steel before the beam is loaded.

Highly accurate predictions of the flexural strength of prestressed beams can 
be made based on a strain compatibility analysis that accounts for these factors in 
a rational and explicit way (Ref. 22.1). For ordinary design purposes, certain approx-
imate relationships have been derived. ACI Code 20.3.2.3 and the accompanying 
ACI Commentary 20.3.2.3 include approximate equations for flexural strength that 
are summarized in the following paragraphs.

	 a.	 Stress in the Prestressed Steel at Flexural Failure

When a prestressed concrete beam fails in flexure, the prestressing steel is at a stress 
fps that is higher than the effective prestress fpe but below the tensile strength fpu. If 
the effective prestress fpe = Pe∕Aps is not less than 0.50fpu, ACI Code 20.3.2.3 permits 
use of certain approximate equations for fps. These equations appear quite complex as 
they are presented in the ACI Code, mainly because they are written in general form 
to account for differences in type of prestressing steel and to apply to beams in which 
nonprestressed bar reinforcement may be included in the flexural tension zone, the 
compression region, or both. Separate equations are given for members with bonded 
tendons and unbonded tendons because, in the latter case, the increase in steel stress at 
the maximum moment section as the beam is overloaded is much less than if the steel 
were bonded throughout its length.

For the basic case, in which the prestressed steel provides all of the flexural 
reinforcement, the ACI Code equations can be stated in simplified form as follows:

	 1.	 For members with bonded tendons:

	 fps = fpu ​( 1 − ​ 
γp

 ___ 
β1

 ​ ​ 
ρp  fpu

 _____ 
​f​c​ ′​

 ​  )​	 (22.6)

	 	 where ρp  =  Aps∕bdp,  dp  =  effective depth to the prestressing steel centroid, 
b = width of compression face, β1 = the familiar relations between stress block 
depth and depth to the neutral axis [Eq. (4.22)], and γp is a factor that depends on 
the type of prestressing steel used, as follows:

          0.55    for fpy∕fpu ≥ 0.80 (typical high-strength bars)
	   γp =   0.40    for fpy∕fpu ≥ 0.85 (typical ordinary strand)
	             0.28    for fpy∕fpu ≥ 0.90 (typical low-relaxation strand) 

	 	 Virtually all strand in current use satisfies the criteria for low relaxation.

{
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	 2.	 For members with unbonded tendons and with a span-depth ratio of 35 or less 
(this includes most beams),

	 fps = fpe + 10,000 + ​ 
​f​c​ ′​ _____ 

100ρp

 ​	 (22.7)

	 	 but not greater than fpy and not greater than fpe + 60,000 psi.
	 3.	 For members with unbonded tendons and with span-depth ratio greater than 35 

(applying to many slabs),

	 fps = fpe + 10,000 + ​ 
​f​c​ ′​ _____ 

300ρp

 ​	 (22.8)

	 	 but not greater than fpy and not greater than fpe + 30,000 psi.

	 b.	 Nominal Flexural Strength and Design Strength

With the stress in the prestressed tensile steel when the member fails in flexure estab-
lished by Eq. (22.6), (22.7), or (22.8), the nominal flexural strength can be calculated 
by methods and equations that correspond directly with those used for ordinary rein-
forced concrete beams. For rectangular cross sections, or flanged sections such as I or 
T beams in which the stress block depth is equal to or less than the average flange 
thickness, the nominal flexural strength is

	 Mn = Aps fps ​( dp − ​ a __ 
2
 ​ )​	 (22.9)

where

	 a = ​ 
Aps fps

 _______ 
0.85​f​c​ ′​ b

 ​	 (22.10)

Equations (22.9) and (22.10) can be combined as follows:

	 Mn = ρp fps​bd​ p​ 2 ​ ​( 1 − 0.588 ​ 
ρp fps

 ____ 
​f​c​ ′​

 ​  )​	 (22.11)

where ρp = Aps/bf dp, which assumes the compression block is in the flange. Values of 
ρp are typically much lower than reinforcement ratios for reinforced concrete. In all 
cases, the flexural design strength is taken equal to ϕMn, where ϕ is the strength reduc-
tion factor for flexure (see Section 22.7c).

If the stress block depth exceeds the average flange thickness, the method for 
calculating flexural strength is exactly analogous to that used for ordinary reinforced 
concrete I and T beams. The total prestressed tensile steel area is divided into two 
parts for computational purposes. The first part Apf, acting at the stress fps, provides a 
tensile force to balance the compression in the overhanging parts of the flange. Thus,

	 Apf = 0.85 ​ 
​f​c​ ′​ __ 
fps

 ​ (b − bw)hf	 (22.12)

The remaining prestressed steel area
	 Apw = Aps − Apf	 (22.13)
provides tension to balance the compression in the web. The total resisting moment is 
the sum of the contributions of the two force couples:

	 Mn = Apw fps ​( dp − ​ a __ 
2
 ​ )​ + Apf fps ​( dp − ​ 

hf
 __ 

2
 ​ )​	 (22.14a)
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or

	 Mn = Apw fps ​( dp − ​ a __ 
2
 ​ )​ + 0.85​f​c​ ′​ (b − bw)hf ​( dp − ​ 

hf
 __ 

2
 ​ )​	 (22.14b)

where

	​ a = ​ 
Apw fps

 _______ 
0.85​f​c​ ′​bw

 ​​	 (22.15)

As before, the design strength is taken as ϕMn, where ϕ is typically 0.90, as discussed 
in Section 22.7c.

If, after a prestressed beam is designed by elastic methods at service loads, 
it has inadequate strength to provide the required safety margin under factored 
load, nonprestressed reinforcement can be added on the tension side and works 
in combination with the prestressing steel to provide the needed strength. Such 
nonprestressed steel, with area As, can be assumed to act at its yield stress fy, to 
contribute a tension force at the nominal moment of As fy. The reader should 
consult ACI Code and Commentary 20.3.2.3 for equations for prestressed steel 
stress at failure and for flexural strength, which are direct extensions of those 
given above.

	 c.	 Limits for Reinforcement

The ACI Code classifies prestressed concrete flexural members as tension-controlled 
or compression-controlled based on the net tensile strain εt in the same manner as done 
for ordinary reinforced concrete beams. Section 4.3d describes the strain distributions 
and the variation of strength reduction factors associated with limitations on the net 
tensile strain. Recall that the net tensile strain excludes strains due to creep, shrinkage, 
temperature, and effective prestress. To maintain a strength reduction factor ϕ of 0.90 
and ensure that if flexural failure were to occur, it would be a ductile failure, a net ten-
sile strain of at least 0.005 is required. Due to the complexity of computing net tensile 
strain in prestressed members, it is easier to perform the check using the c∕dt ratio. 
From Fig. 4.9a, this simplifies to

	​  c __ 
dt

 ​ ≤ 0.375	 (22.16)

where dt is the distance from the extreme compressive fiber to the extreme tensile 
steel. In many cases, dt is the same as dp, the distance from the extreme compressive 
fiber to the centroid of the prestressed reinforcement. However, when supplemental 
nonprestressed steel is used or the prestressing strands are distributed through the 
depth of the section, dt is greater than dp. Prestressed members with Pu ≤ 0.1 ​​f​c​ ′​​ Ag must 
meet the c∕dt limit. For prestressed members with Pu ≥ 0.1 ​​f​c​ ′​​ Ag, the strength reduction 
factor ϕ must be determined as shown in Fig. 4.8. (see Ref. 22.1).

A minimum tensile reinforcement ratio is required for ordinary reinforced con-
crete beams, so that the beams are safe from sudden failure upon the formation of 
flexural cracks. Because of the same concern, ACI Code 7.6.2, 8.6.2, and 9.6.2 
require that the total tensile reinforcement in members with bonded prestressed rein-
forcement be adequate to support a factored load of at least 1.2 times the cracking 
load of the beam, calculated on the basis of a modulus of rupture of 7.5​​√

__
 ​f​c​ ′​​​. A 

similar requirement is not placed on members with unbonded prestressed reinforce-
ment. Unlike members with bonded reinforcement, which are subject to tendon fail-
ure when the concrete cracks and the tensile force in the concrete is suddenly 
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transferred to the bonded steel, abrupt failure does not occur in beams with unbonded 
tendons because the reinforcement can undergo slip, which distributes the increased 
strain along the length of the tendon, lowering the magnitude of the increased stress 
in the tendon.

	 d.	 Minimum Bonded Reinforcement

To control cracking in beams and one-way prestressed slabs with unbonded tendons, 
some bonded reinforcement must be added in the form of nonprestressed reinforcing 
bars, uniformly distributed over the tension zone as close as permissible to the extreme 
tension fiber. According to ACI Code 7.6.2 and 9.6.2, the minimum amount of such 
reinforcement is

	 As = 0.004Act	 (22.17)

where Act is the area of that part of the cross section between the flexural tension face 
and the centroid of the gross concrete cross section. ACI Code 8.6.2 provides require-
ments for two-way slabs.

	EXAMPLE 22.2	 Flexural strength of pretensioned I beam.  The prestressed I beam shown in cross section 
in Fig. 22.13 is pretensioned using five low relaxation stress-relieved Grade 270 ​ 1 _ 2 ​ in. diam-
eter strands, carrying effective prestress fpe  =  160  ksi. Concrete strength is ​f​c​ ′​ = 4000 psi. 
Calculate the design strength of the beam.

Solution.  The effective prestress in the strands of 160 ksi is well above 0.50 × 270 = 135 ksi, 
confirming that the approximate ACI equations are applicable. Aps = 5 × 0.153 = 0.765 in2. 
The tensile reinforcement ratio  is

ρp = ​  0.765 __________  
12 × 17.19

 ​ = 0.0037

and the steel stress fps when the beam fails in flexure is found from Eq. (22.6) to be

fps = fpu ​( 1 − ​ 
γp

 ___ 
β1

 ​ ​ 
ρp fpu

 _____ 
​f​c​ ′​

 ​  )​ = 270 ​( 1 − ​ 0.28 ____ 
0.85

 ​ ​ 0.0037 × 270  ____________ 
4
 ​  )​ = 248 ksi

Next, it is necessary to check whether the stress block depth is greater or less than the 
average flange thickness of 4.5 in. On the assumption that it is not greater than the flange 
thickness, Eq. (22.10) is used:

​a = ​ 
Ap fps

 _______ 
0.85​f​c​ ′​b

 ​ = ​  0.765 × 248  ____________  
0.85 × 4 × 12

 ​ = 4.65 in.

FIGURE 22.13
Post-tensioned beam of 
Example 22.2.

5.19″

12″

12″

12″

av. hf = 4.5″

av. hf = 4.5″

17.19″ 19.64″
24″

4″

Ap = 0.765 in2
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	 22.8	 PARTIAL PRESTRESSING

Early in the development of prestressed concrete, the goal of prestressing was the 
complete elimination of concrete tensile stress at service load. This kind of design, in 
which the service load tensile stress limit fts = 0, is often referred to as full prestressing.

While full prestressing offers many advantages over nonprestressed construc-
tion, some problems can arise. Heavily prestressed beams, particularly those for 
which full live load is seldom in place, may have excessively large upward deflection, 
or camber, which increases with time because of concrete creep under the eccentric 
prestress force. Fully prestressed beams may also have a tendency for severe longi-
tudinal shortening, causing large restraint forces unless special provision is made to 
permit free movement at one end of each span. If shortening is permitted to occur 
freely, prestress losses due to elastic and creep deformation may be large. Further-
more, if heavily prestressed beams are overloaded to failure, they may fail in a 
sudden and brittle mode, with little warning before collapse.

Today there is general recognition of the advantages of partial prestressing, in 
which flexural tensile stress and some limited cracking are permitted under full 
service load. That full load may be infrequently applied. Typically, many beams carry 
only dead load much of the time, or dead load plus only part of the service live load. 
Under these conditions, a partially prestressed beam would normally not be subject 
to flexural tension, and cracks that form occasionally, when the full live load is in 

It is concluded from this trial calculation that a actually exceeds hf, so the trial calcu-
lation is not valid and equations for flanged members must be used. The steel that acts with 
the overhanging flanges is found from Eq. (22.12) to be

Apf = ​ 
0.85 × 4(12 − 4)4.5

  _________________  
248

 ​  = 0.494 in2

and from Eq. (22.13), the steel acting with the web is

Apw = 0.765 − 0.494 = 0.271 in2

The actual stress block depth is now found from Eq. (22.15):

a = ​ 0.271 × 248  ___________  
0.85 × 4 × 4

 ​ = 4.94 in.

c = ​ a ___ 
β1

 ​ = ​ 4.94 ____ 
0.85

 ​ = 5.81

A check should now be made to determine if the beam can be considered tension-
controlled. As shown in Fig. 22.13, dt = 19.64  in. From Eq. (22.16),

​ c __ 
dt

 ​ = ​ 5.81 _____ 
19.64

 ​ = 0.296

This is less than 0.375 for εt ≥ 0.005, confirming that this can be considered to be a 
tension-controlled prestressed beam, and ϕ  =  0.90. The nominal flexural strength, from 
Eq.  (22.14b), is

Mn = 0.271 × 248(17.19 − 2.47) + 0.85 × 4(12 − 4)4.5(17.19 − 2.25)

    = 2818 in-kips = 235 ft-kips

and, finally, the design strength is ϕMn = 211 ft-kips.
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place, would close completely when that live load is removed. Controlled cracks 
prove no more objectionable in prestressed concrete structures than in reinforced 
concrete structures. With partial prestressing, excessive camber and troublesome 
axial shortening are avoided. Should overloading occur, there will be ample warning 
of distress, with extensive cracking and large deflections (Refs. 22.10 to 22.13).

Although the amount of prestressing steel may be reduced in partially pre-
stressed beams compared with fully prestressed beams, a proper safety margin must 
still be maintained, and to achieve the necessary flexural strength, partially pre-
stressed beams may require additional tensile reinforcement. In fact, partially pre-
stressed beams are often defined as beams in which (1) flexural cracking is 
permitted at full service load and (2) the main flexural tension reinforcement includes 
both prestressed and nonprestressed steel. Analysis indicates, and tests confirm, that 
such nonprestressed steel is fully stressed to fy at flexural failure.

The ACI Code does not specifically mention partial prestressing but does 
include the concept explicitly in the classification of flexural members. Class U 
members generally fit the historical category of fully prestressed members. Class T 
flexural members require service level stress checks and have maximum allowable 
tensile stresses above the modulus of rupture. Class C flexural members do not 
require stress checks at service load but do require crack control checks (Section 
22.18). The designations of Class T and C flexural members bring the ACI Code 
into closer agreement with European practice (Refs. 22.13 to 22.15).

The three classes of prestressed flexural members, U, T, and C (see Table 22.1), 
provide the designer with considerable flexibility in achieving economical designs. 
To attain the required strength, supplemental reinforcement in the form of nonpre-
stressed ordinary steel or unstressed prestressing strand may be required. Reinforcing 
bars are less expensive than high-strength prestressing steel. Strand, however, at 
twice the cost of ordinary reinforcement, provides 3 times the strength. Labor costs 
for bar placement are generally similar to those for placing unstressed strand. Sim-
ilarly, the addition of a small number of strands in a plant prestressing bed is often 
more economical than adding reinforcing bars; however, a strain compatibility anal-
ysis is required for flexural strength. The designer may select the service level per-
formance strategy best suited for the project. A criterion that includes no tensile 
stress under dead load and a tensile stress less than the modulus of rupture at the 
service live load is possible with Class U and T flexural members, while Class C 
members use prestressing primarily for deflection control.

The choice of a suitable degree of prestress is governed by a number of factors. 
These include the nature of the loading (for example, highway or railroad bridges, 
and storage warehouses), the ratio of live to dead load, the frequency of occurrence 
of the full service load, and the presence of a corrosive environment.

	 22.9	 FLEXURAL DESIGN BASED ON CONCRETE STRESS LIMITS

As in reinforced concrete, problems in prestressed concrete can be separated generally 
as analysis problems or design problems. For the former, with the applied loads, the 
concrete cross section, steel area, and the amount and point of application of the pre-
stress force known, Eqs. (22.1) to (22.4) permit the direct calculation of the resulting 
concrete stresses. The equations in Section 22.7 predict the flexural strength. However, 
if the dimensions of a concrete section, the steel area and centroid location, and the 
amount of prestress are to be found—given the loads, limiting stresses, and required 
strength–the problem is complicated by the many interrelated variables.
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There are at least three practical approaches to the flexural design of a pre-
stressed concrete member. Some engineers prefer to assume a concrete section, cal-
culate the required prestress force and eccentricities for what is probably the 
controlling load stage, then check the stresses at all stages using the preceding equa-
tions, and finally check the flexural strength. The trial section is then revised if 
necessary. If a beam is to be chosen from a limited number of standard shapes, as 
is often the case for shorter spans and ordinary loads, this procedure is probably 
best. For longer spans or when customized shapes are used, a more efficient member 
may result by designing the cross section so that the specified concrete stress limits 
of Table 22.1 are closely matched. This cross section, close to “ideal” from the limit 
stress viewpoint, may then be modified to meet functional requirements (for example, 
providing a broad top flange for a bridge deck) or to meet strength requirements, if 
necessary. Equations facilitating this approach are developed in this section. A third 
method of design is based on load balancing, using the concept of equivalent loads 
(see Section 22.2b). A trial section is chosen, after which the prestress force and 
tendon profile are selected to provide uplift forces as to just balance a specified load. 
Modifications may then be made, if needed, to satisfy stress limits or strength 
requirements. This third approach is developed in Section 22.12.

Notation is established pertaining to the allowable concrete stresses at limiting 
stages as follows:

fci = allowable compressive stress immediately after transfer
fti = allowable tensile stress immediately after transfer
fcs = allowable compressive stress at service load, after all losses
fts = allowable tensile stress at service load, after all losses

The values of these limit stresses are normally set by specification (see Table 22.1).

	 a.	 Beams with Variable Eccentricity

For a typical Class U or T beam in which the tendon eccentricity is permitted to vary 
along the span, flexural stress distributions in the concrete at the maximum moment 
section are shown in Fig. 22.14a. The eccentric prestress force, having an initial value 
of Pi, produces the linear stress distribution (1). Because of the upward camber of the 
beam as that force is applied, the self-weight of the member is immediately intro-
duced, the flexural stresses resulting from the moment Mo are superimposed, and the 
distribution (2) is the first that is actually attained. At this stage, the tension at the top 
surface is not to exceed fti, and the compression at the bottom surface is not to exceed 
fci, as shown in Fig. 22.14a.

It is assumed that all the losses occur at this stage, and that the stress distribution 
changes to distribution (3). The losses produce a reduction of tension in the amount Δf1 
at the top surface and a reduction of compression in the amount Δf2 at the bottom surface.

As the superimposed dead load moment Md and the service live load moment 
Ml are introduced, the associated flexural stresses, when superimposed on stresses 
already present, produce distribution (4). At this stage, the tension at the bottom 
surface must not be greater than fts, and the compression at the top of the section 
must not exceed fcs.

The requirements for the sections moduli S1 and S2 with respect to the top and 
bottom surfaces, respectively, are

	 S1 ≥ ​ 
Md + Ml ________ 

f1r

 ​	  (a)
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	 S2 ≥ ​ 
Md + Ml ________ 

f2r

 ​	  (b)

where the available stress ranges f1r and f2r at the top and bottom face can be calculated 
from the specified stress limits fti, fcs, fts, and fci, once the stress changes Δf1 and Δf2, 
associated with prestress loss are known.

The effectiveness ratio R accounts for the loss of prestress and is defined as

	 R = ​ 
Pe __ 
Pi

 ​	 (22.18)

Thus, the loss in prestress force is

	 Pi − Pe = (1 − R)Pi	 (22.19)

The changes in stress at the top and bottom faces, Δf1 and Δf2, as losses occur, 
are equal to (1 − R) times the corresponding stresses due to the initial prestress force 
Pi acting alone:

	 Δf1 = (1 − R) ​( fti + ​ 
Mo ___ 
S1

 ​ )​	 (c)

FIGURE 22.14
Flexural stress distributions 
for beams with variable 
eccentricity: (a) maximum 
moment section and  
(b) support section.
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	 Δf2 = (1 − R) ​( − fci + ​ 
Mo ___ 
S2

 ​ )​	 (d)

where Δf1 is a reduction of tension at the top surface and Δf2 is a reduction of com-
pression at the bottom surface.† Thus, the stress ranges available as the superimposed 
load moments Md + Ml are applied are

f1r = fti − Δf1 − fcs

	 = Rfti − (1 − R)​ 
Mo ___ 
S1

 ​ − fcs	 (e)

and

f2r = fts − fci − Δf2

	 = fts − Rfci − (1 − R)​ 
Mo ___ 
S2

 ​	 (f)

The minimum acceptable value of S1 is thus established:

S1 ≥ ​ 
Md + Ml  _____________________   

Rfti − (1 − R)Mo∕S1 −  fcs

 ​

or

	 S1 ≥ ​ 
(1 − R)Mo + Md + Ml   ___________________  

Rfti −  fcs

 ​ 	 (22.20)

Similarly, the minimum value of S2 is

	 S2 ≥ ​ 
(1 − R)Mo + Md + Ml   ___________________  

fts − Rfci

 ​ 	 (22.21)

The cross section must be selected to provide at least these values of S1 and 
S2. Furthermore, since Ic = S1c1 = S2c2, the centroidal axis must be located such that

	​ 
c1 __ c2

 ​ = ​ 
S2 __ 
S1

 ​	 (g)

or in terms of the total section depth h = c1 + c2

	​ 
c1 __ 
h
 ​ = ​ 

S2 _______ 
S1 + S2

 ​	 (22.22)

From Fig. 22.14a, the concrete centroidal stress under initial conditions fcci is 
given by

	 fcci = fti − ​ 
c1 __ 
h
 ​ (fti − fci)	 (22.23)

The initial prestress force is easily obtained by multiplying the value of the concrete 
centroidal stress by the concrete cross-sectional area Ac.

	 Pi = Ac fcci	 (22.24)

† �Note that the stress limits such as fti and other specific points along the stress axis are considered signed quantities, whereas stress changes 
such as Mo∕S1 and Δf2 are taken as absolute values.
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The eccentricity of the prestress force may be found by considering the flexural 
stresses that must be imparted by the bending moment Pie. With reference to 
Fig.  22.14, the flexural stress at the top surface of the beam resulting from the 
eccentric prestress force alone is

	​ 
Pie ___ 
S1

 ​ = ( fti − fcci) + ​ 
Mo ___ 
S1

 ​	 (h)

from which the required eccentricity is

	 e = ( fti − fcci) ​ 
S1 __ 
Pi

 ​ + ​ 
Mo ___ 
Pi

 ​	 (22.25)

Summarizing the design process to determine the best cross section and the 
required prestress force and eccentricity based on stress limitations: the required 
section moduli with respect to the top and bottom surfaces of the member are found 
from Eqs. (22.20) and (22.21) with the centroidal axis located using Eq. (22.22). 
Concrete dimensions are chosen to satisfy these requirements as nearly as possible. 
The concrete centroidal stress for this ideal section is given by Eq. (22.23), the 
desired initial prestress force by Eq. (22.24), and its eccentricity by Eq. (22.25).

In practical situations, very seldom will the concrete section chosen have exactly 
the required values of S1 and S2 as found by this method, nor will the concrete centroid 
be exactly at the theoretically ideal level. Rounding concrete dimensions upward, pro-
viding broad flanges for functional reasons, or using standardized cross-sectional 
shapes results in a member whose section properties exceed the minimum require-
ments. In such a case, the stresses in the concrete as the member passes from the 
unloaded stage to the full service load stage stays within the allowable limits, but the 
limit stresses are not obtained exactly. An infinite number of combinations of prestress 
force and eccentricity satisfy the requirements. Usually, the design requiring the lowest 
value of prestress force, and the largest practical eccentricity, is the most economical.

The total eccentricity in Eq. (22.25) includes the term Mo∕Pi. As long as the 
beam is deep enough to allow this full eccentricity, the girder dead load moment is 
carried with no additional penalty in terms of prestress force, section, or stress range. 
This ability to carry the beam dead load “free” is a major contribution of variable 
eccentricity.

The stress distributions shown in Fig.  22.14a, on which the design equations 
are based, apply at the maximum moment section of the member. Elsewhere, Mo is 
less, and, consequently, the prestress eccentricity or the force must be reduced if the 
stress limits fti and fci are not to be exceeded. In many cases, tendon eccentricity is 
reduced to zero at the support sections, where all moments due to transverse load 
are zero. In this case, the stress distributions of Fig. 22.14b are obtained. The stress 
in the concrete is uniformly equal to the centroidal value fcci under conditions of 
initial prestress and fcce after losses.

	EXAMPLE 22.3	 Design of beam with variable eccentricity tendons.  A post-tensioned prestressed concrete 
beam is to carry an intermittent live load of 1000 lb∕ft and superimposed dead load of 500 lb∕ft, 
in addition to its own weight, on a 40 ft simple span. Normalweight concrete is used with 
compressive strength ​​f​c​ ′​​ = 6000 psi. It is estimated that, at the time of transfer, the concrete  
will have attained 70 percent of ​​f​c​ ′​​, or 4200 psi. Time-dependent losses may be assumed to be 
15 percent of the initial prestress, giving an effectiveness ratio of 0.85. Determine the required 
concrete dimensions, magnitude of prestress force, and eccentricity of the steel centroid based 
on ACI stress limitations for a Class U beam, as given in Sections 22.4 and 22.5.
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Solution.  Referring to Table 22.1, the stress limits are

fci = −0.60 × 4200 = −2520 psi

fti = 3​​√
____

 4200​​ = +194 psi

fcs = −0.60 × 6000 = −3600 psi

fts = 7.5​​√
____

 6000​​ = +581 psi

The self-weight of the girder is estimated at 250 lb∕ft. The service moments due to 
transverse loading are

   Mo = ​ 1 __ 
8
 ​ × 0.250 × 402 = 50 ft-kips

Md + Ml = ​ 1 __ 
8
 ​ × 1.500 × 402 = 300 ft-kips

The required section moduli with respect to the top and bottom surfaces of the concrete 
beam are found from Eqs. (22.20) and (22.21).

S1 ≥ ​ 
(1 − R)Mo + Md + Ml   ___________________  

Rfti −  fcs

 ​  = ​ 
(0.15 × 50 + 300)12,000

   _____________________   
0.85 × 194 + 3600

 ​  = 980 in3

S2 ≥ ​ 
(1 − R)Mo + Md + Ml   ___________________  

fts − Rfci

 ​  = ​ 
(0.15 × 50 + 300)12,000

   _____________________   
581 + 0.85 × 2520

 ​  = 1355 in3

The values obtained for S1 and S2 suggest that an asymmetrical section is most appropriate. 
However, a symmetrical section is selected for simplicity and to ensure sufficient compression 
area for flexural strength. The 28 in. deep I section shown in Fig. 22.15a meets the require-
ments and has the following properties:

 Ic = 19,904 in4

S = 1422 in3

Ac = 240 in2

r2 = 82.9 in2

wo = 250 lb/ft (as assumed)

Next, the concrete centroidal stress is found from Eq. (22.23):

fcci = fti − ​ 
c1 __ 
h
 ​ (  fti − fci) = 194 − ​ 1 __ 

2
 ​ (195 + 2520) = −1163 psi

and from Eq. (22.24) the initial prestress force is

Pi = Ac fcci = 240 × 1.163 = 279 kips

From Eq. (22.25), the required tendon eccentricity at the maximum moment section of the 
beam is

e = (  fti − fcci) ​ 
S1 __ 
Pi

 ​ + ​ 
Mo ___ 
Pi

 ​ = (195 + 1163) ​  1422 _______ 
279,000

 ​ + ​ 
50 × 12,000

  ___________ 
279,000

 ​

= 9.07 in.

Elsewhere along the span, the eccentricity is reduced so that the concrete stress limits are  
not violated.

The required initial prestress force of 279 kips is provided using tendons consisting 
of ​ 1 _ 2 ​ in. diameter Grade 270 low-relaxation strands (see Section 2.16). The minimum tensile 
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strength is fpu = 270 ksi, and the yield strength may be taken as fpy = 0.90 × 270 = 243 ksi. 
According to industry practice (see Section 22.4), the stress in the strand immediately after 
transfer should not exceed 0.74  fpu = 200 ksi. The required area of prestressing steel is

Aps = ​ 279 ____ 
200

 ​ = 1.40 in2

The cross-sectional area of one ​ 1 _ 2 ​ in. diameter strand is 0.153 in2; hence, the number of strands 
required is

Number of strands = ​ 1.40 _____ 
0.153

 ​ = 9.2

Two five-strand tendons are selected, as shown in Fig.  22.15a; each five-strand tendon is 
stressed to 139.5 kips immediately following transfer, somewhat less than the maximum of 
0.74 fpu.

It is good practice to check the calculations by confirming that stress limits are not 
exceeded at critical load stages. The top and bottom surface concrete stresses produced, in 
this case, by the separate loadings are

     Pi:    f1 = − ​ 
279,000

 _______ 
240

 ​  ​​( 1 − ​ 9.07 × 14 _________ 
82.9

 ​  )​​ = +618 psi

             f2 = − ​ 
279,000

 _______ 
240

 ​  ​​( 1 + ​ 9.07 × 14 _________ 
82.9

 ​  )​​ = −2943 psi

Pe:    f1 = 0.85 × 618 = +525 psi

f2 = 0.85(−2943) = −2502 psi

Mo:    f1 = − ​ 
50 × 12,000

  ___________ 
1422

 ​  = −422 psi

f2 = +422 psi

Md + Ml:    f1 = − ​ 
300 × 12,000

  ____________ 
1422

 ​  = −2532 psi

f2 = +2532 psi

FIGURE 22.15
Design example of beam with 
variable eccentricity of 
tendons: (a) cross section 
dimensions and (b) concrete 
stresses at midspan (psi).
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	 b.	 Beams with Constant Eccentricity

The design method presented in the previous section was based on stress conditions 
at the maximum moment section of a beam, with the maximum value of moment Mo 
resulting from the self-weight immediately being superimposed. If Pi and e were to 
be held constant along the span, as is often convenient in pretensioned prestressed 
construction, then the stress limits fti and fci would be exceeded elsewhere along the 
span, where Mo is less than its maximum value. To avoid this condition, the constant 
eccentricity must be less than that given by Eq. (22.25). Its maximum value is given 
by conditions at the support of a simple span, where Mo is zero.

Figure 22.16 shows the flexural stress distributions at the support and midspan 
sections for a beam with constant eccentricity. In this case, the stress limits fti and 
fci are not to be violated when the eccentric prestress moment acts alone, as at the 
supports. The stress changes Δf1 and Δf2 as losses occurring are equal to (1  −  R) 
times the top and bottom surface stresses, respectively, due to initial prestress alone:

	 Δf1 = (1 − R) (  fti)	 (a)

	 Δf2 = (1 − R) (−fci)	 (b)

In this case, the available stress ranges between limit stresses must provide for the 
effect of Mo as well as Md and Ml, as seen from Fig. 22.16a, and are

f1r = fti − Δf1 − fcs

	    = Rfti − fcs	 (c)

f2r = fts − fci − Δf2

	    = fts − Rfci	 (d)

and the requirements on the section moduli are that

	 S1 ≥ ​ 
Mo + Md + Ml  _____________  

Rfti −  fcs

 ​ 	 (22.26)

	 S2 ≥ ​ 
Mo + Md + Ml  _____________  

fts − Rfci

 ​ 	 (22.27)

Thus, when the initial prestress force of 279 kips is applied and the beam self-weight acts, the 
top and bottom stresses in the concrete at midspan are, respectively,

f1 = +618 − 422 = +196 psi

f2 = −2943 + 422 = −2521 psi

When the prestress force has decreased to its effective value of 237 kips and the full service 
load is applied, the concrete stresses are

f1 = +525 − 422 − 2532 = −2429 psi

f2 = −2502 + 422 + 2532 = +452 psi

These stress distributions are shown in Fig. 22.15b. Comparison with the specified limit stresses 
confirms that the design is satisfactory.
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The concrete centroidal stress may be found by Eq. (22.23) and the initial prestress 
force by Eq. (22.24) as before. However, the expression for required eccentricity 
differs. In this case, referring to Fig. 22.16b,

	​ 
Pie ___ 
S1

 ​ = fti − fcci	 (e)

from which the required eccentricity is

	 e = (  fti − fcci) ​ 
S1 __ 
Pi

 ​	 (22.28)

A significant difference between beams with variable eccentricity and those with con-
stant eccentricity is noted by comparing Eqs. (22.20) and (22.21) with the corresponding 
Eqs. (22.26) and (22.27). In the first case, the section modulus requirement is governed 
mainly by the superimposed load moments Md and Ml. Almost all of the self-weight is 
carried “free,” that is, without increasing section modulus or prestress force, by the sim-
ple expedient of increasing the eccentricity along the span by the amount Mo∕Pi. In the 
second case, the eccentricity is controlled by conditions at the supports, where Mo is zero, 
and the full moment Mo due to self-weight must be included in determining section mod-
uli. Nevertheless, beams with constant eccentricity are often used for practical reasons.

FIGURE 22.16
Flexural stress distributions 
for beam with constant 
eccentricity of tendons:  
(a) maximum moment 
section and (b) support 
section.
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726      DESIGN OF CONCRETE STRUCTURES  Chapter 22

	EXAMPLE 22.4	 Design of beam with constant eccentricity tendons.  The beam in the preceding example 
is to be redesigned using straight tendons with constant eccentricity. All other design criteria 
are the same as before. At the supports, a temporary concrete tensile stress fti = 6​​√

__
 ​f​ci​ ′ ​​​ = 389 psi 

and a compressive stress fci = 0.7​​f​ci​ ′ ​​ = 2940 psi are permitted.

Solution.  Because the permissible stresses at the support govern in this case, the section 
used in Example 22.3 is used for the trial design.

Using Eqs. (22.26) and (22.27), the requirements for section moduli based on the 
midspan allowable stresses are

S1 ≥ ​ 
Mo + Md + Ml  _____________  

Rfti −  fcs

 ​  = ​ 
(50 + 300)12,000

  ________________  
0.85 × 389 + 3600

 ​ = 1069 in3

S2 ≥ ​ 
Mo + Md + Ml  _____________  

fts − Rfci

 ​  = ​ 
(50 + 300)12,000

  ________________  
581 + 0.85 × 2940

 ​ = 1363 in3

The section moduli indicate that the section used in Example 22.3 works in this case, as well. 
The dimensions of the cross section are again shown in Fig. 22.17a. The following properties 
are obtained:

lc = 19,904 in4

S = 1422 in3

Ac = 240 in2

r2 = 82.9 in2

wo = 250 lb/ft

The concrete centroidal stress, from Eq. (22.23), is

fcci = fti − ​ 
c1 __ 
h
 ​(fti − fci) = 389 − ​ 1 __ 

2
 ​(389 + 2940) = −1276 psi

FIGURE 22.17
Design example of beam with constant eccentricity of tendons: (a) cross section dimensions; (b) stresses at midspan (psi); and  
(c) stresses at supports (psi).
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(b ) (c )
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and from Eq. (22.24), the initial prestress force is

Pi = Ac fcci = 240 × 1.276 = 306 kips

From Eq. (22.28), the required constant eccentricity is

e = (  fti − fcci) ​ 
S1 __ 
Pi

 ​ = (389 + 1276) ​  1422 _______ 
306,000

 ​ = 7.74 in.

An eccentricity e = 7.70 in. is selected.
Again, two tendons are used to provide the required prestress force, each composed of 

multiple Grade 270 low-relaxation strands. With the maximum permissible stress in the 
tendon just after transfer of 199 ksi, the total required steel area is

Aps = ​ 306 ____ 
200

 ​ = 1.53 in2

This is just over the area provided by the ten ​​ 1 _ 2 ​​ in. strands used in Example 22.3. In their 
place, ten 0.60 in. diameter strands are selected (Table A.15) providing a total area of 1.74 in. 
Two identical five-strand tendons are used as before, in this case being stressed to a total of 
306 kips.

The calculations are checked by verifying the concrete stresses at the top and bottom 
of the beam for the critical load stages. The component stress contributions are

      Pi:     f1 = − ​ 
306,000

 _______ 
240

 ​  ​​( 1 − ​ 7.70 × 14.0  __________ 
82.9

 ​  )​​ = +383 psi

              f2 = − ​ 
306,000

 _______ 
240

 ​  ​​( 1 + ​ 7.70 × 14.0  __________ 
82.9

 ​  )​​ = −2933 psi

Pe:     f1 = 0.85 × 383 = +326 psi

f2 = 0.85(−2933) = −2493 psi

Mo:     f1 = − ​ 
50 × 12,000

  ___________ 
1422

 ​  = −422 psi

 f2 = +422 psi

Md + Ml:     f1 = − ​ 
300 × 12,000

  ____________ 
1422

 ​  = −2532 psi

f2 = +2532 psi

Superimposing the appropriate stress contributions, the stress distributions in the concrete at 
midspan and at the supports are obtained, as shown in Fig. 22.17b and c, respectively. When 
the initial prestress force of 306 kips acts alone, as at the supports, the stresses at the top and 
bottom surfaces are

f1 = +383 psi

f2 = −2933 psi

After losses, the prestress force is reduced to 260 kips and the support stresses are reduced 
accordingly. At midspan, the beam weight is immediately superimposed, and stresses resulting 
from Pi plus Mo are

f1 = +383 − 422 = −39 psi

f2 = −2933 + 422 = −2411 psi
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	 22.10	 SHAPE SELECTION

One of the special features of prestressed concrete design is the freedom to select 
cross-section proportions and dimensions to suit the special requirements of the job at 
hand. The member depth can be changed, the web thickness modified, and the flange 
widths and thicknesses varied independently to produce a beam with nearly ideal pro-
portions for a given case.

Several common precast shapes are shown in Fig.  22.18. Some of these are 
standardized and mass-produced, employing reusable steel or fiberglass forms. Oth-
ers are individually proportioned for large and important works. The double T 
(Fig.  22.18a) is probably the most widely used cross section in U.S. prestressed 
construction. A flat surface is provided, 4 to 15 ft wide. Slab thicknesses and web 
depths vary, depending upon requirements. Spans to 60 ft are not unusual. The sin-
gle T (Fig. 22.18b) is more appropriate for longer spans, to 120 ft, and heavier loads. 
The I and bulb T sections (Fig. 22.18c and d ) are widely used for bridge spans and 
roof girders up to about 140  ft, while the channel slab (Fig. 22.18e) is suitable for 
floors in the intermediate span range. The box girder (Fig.  22.18f ) and custom 
shapes are advantageous for bridges of intermediate and major span. The inverted T 
section (Fig.  22.18g) provides a bearing ledge to carry the ends of precast deck 
members spanning in the perpendicular direction. Local precasting plants can pro-
vide catalogs of available shapes. This information is also available in the PCI 
Design Handbook (Ref. 22.8).

When the full service load acts, together with Pe, the midspan stresses are

f1 = +326 − 422 − 2532 = −2628 psi

f2 = −2493 + 422 + 2532 = +461 psi

If we check against the specified limiting stresses, it is evident that the design is satisfactory in 
this respect at the critical load stages and locations, including the allowable stress at the end of 
the simply supported beam of 0.70​​f​ci​ ′ ​​ and, with the addition of the beam self-weight, the crite-
rion of 0.60​​f​ci​ ′ ​​ at midspan.

FIGURE 22.18
Typical beam cross sections.

(a ) Double T (b ) Single T (c ) I Girder (d ) Bulb T

(e ) Channel slab (f ) Box girder (g ) Inverted T
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As indicated, the cross section may be symmetrical or unsymmetrical. An  
unsymmetrical section is a good choice (1) if the available stress ranges f1r and f2r at 
the top and bottom surfaces are not the same; (2) if the beam must provide a flat, 
useful surface as well as offering load-carrying capacity; (3) if the beam is to become 
a part of composite construction, with a cast-in-place slab acting together with a precast 
web; or (4) if the beam must provide support surfaces, as shown in Fig.  22.18g. In 
addition, T sections provide increased flexural strength, since the internal arm of the 
resisting couple at maximum design load is greater than that for rectangular sections.

Generally speaking, I, T, and box sections with relatively thin webs and flanges 
are more efficient than members with thicker parts. However, several factors limit 
the gain in efficiency that may be obtained in this way. These include the instability 
of very thin overhanging compression parts, the vulnerability of thin parts to break-
age in handling (in the case of precast construction), and the practical difficulty of 
placing concrete in very thin elements. The designer must also recognize the need 
to provide adequate spacing and concrete protection for tendons and anchorages, the 
importance of construction depth limitations, and the need for lateral stability if the 
beam is not braced by other members against buckling (Ref. 22.16).

	 22.11	 TENDON PROFILES

The equations developed in Section 22.9a for members with variable tendon eccen-
tricity establish the requirements for section modulus, prestress force, and eccentricity 
at the maximum moment section of the member. Elsewhere along the span, the eccen-
tricity of the steel must be reduced if the concrete stress limits for the unloaded stage 
are not to be exceeded. (Alternatively, the section must be increased, as demonstrated 
in Section 22.9b.) Conversely, there is a minimum eccentricity, or upper limit for the 
steel centroid, such that the limiting concrete stresses are not exceeded when the beam 
is in the full service load stage.

Limiting locations for the prestressing steel centroid at any point along the span 
can be established using Eqs. (22.2) and (22.4), which give the values of concrete 
stress at the top and bottom of the beam in the unloaded and service load stages, 
respectively. The stresses produced for those load stages should be compared with 
the limiting stresses applicable in a particular case, such as the ACI stress limits of 
Table 22.1. This permits a solution for tendon eccentricity e as a function of distance 
x along the span.

To indicate that both eccentricity e and moments Mo or Mt are functions of 
distance x from the support, they are written as e(x) and Mo(x) or Mt(x), respectively. 
In writing statements of inequality, it is convenient to designate tensile stress as 
larger than zero and compressive stress as smaller than zero. Thus, +450 > −1350, 
and −600 > −1140, for example.

Considering first the unloaded stage, the tensile stress at the top of the beam 
must not exceed fti. From Eq. (22.2b),

	 fti ≥ − ​​ 
Pi __ 
Ac

 ​​​[1 − ​ 
e(x)c1 _____ 

r2
 ​ ]​​− ​ 

Mo(x)
 _____ 

S1
 ​	  (a)

Solving for the maximum eccentricity gives

	 e(x) ≤ ​ 
fti S1 ____ 

Pi

 ​  + ​ 
S1 __ 
Ac

 ​ + ​ 
Mo(x)

 _____ 
Pi

 ​	  (22.29)
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At the bottom of the unloaded beam, the stress must not exceed the limiting initial 
compression. From Eq. (22.2b),

	 fci ≤ − ​​ 
Pi __ 
Ac

 ​​​[1 + ​ 
e(x)c2 _____ 

r2
 ​ ]​​+ ​ 

Mo(x)
 _____ 

S2
 ​	  (b)

Hence, the second lower limit for the steel centroid is

	 e(x) ≤ − ​ 
fci S2 ____ 

Pi

 ​  − ​ 
S2 __ 
Ac

 ​ + ​ 
Mo(x)

 _____ 
Pi

 ​	  (22.30)

Now considering the member in the fully loaded stage, the upper limit values 
for the eccentricity may be found. From Eq. (22.4a),

	 fcs ≤ − ​​ 
Pe __ 
Ac

 ​​​[1 − ​ 
e(x)c1 _____ 

r2
 ​ ]​​− ​ 

Mt(x)
 _____ 

S1
 ​	  (c)

from which

	 e(x) ≥ ​ 
fcs S1 ____ 

Pe

 ​  + ​ 
S1 __ 
Ac

 ​ + ​ 
Mt(x)

 _____ 
Pe

 ​	  (22.31)

and using Eq. (22.4b)

	 fts ≥ − ​​ 
Pe __ 
Ac

 ​​​[1 + ​ 
e(x)c2 _____ 

r2
 ​ ]​​+ ​ 

Mt(x)
 _____ 

S2
 ​	  (d)

from which

	 e(x) ≥ − ​ 
fts S2 ____ 

Pe

 ​  − ​ 
S2 __ 
Ac

 ​ + ​ 
Mt(x)

 _____ 
Pe

 ​	  (22.32)

Using Eqs. (22.29) and (22.30), the lower limit of tendon eccentricity is estab-
lished at successive points along the span. Then, using Eqs. (22.31) and (22.32), the 
corresponding upper limit is established. This upper limit may well be negative, indi-
cating that the tendon centroid may be above the concrete centroid at that location.

It is often convenient to plot the envelope of acceptable tendon profiles, as 
done in Fig. 22.19, for a typical case in which both dead and live loads are uniformly 
distributed. Any tendon centroid falling completely within the shaded zone would 
be satisfactory from the point of view of concrete stress limits. It should be empha-
sized that it is only the tendon centroid that must be within the shaded zone; indi-
vidual strands are often outside of it.

The tendon profile actually used is often a parabolic curve or a catenary in the 
case of post-tensioned beams. The duct containing the prestressing steel is draped 
to the desired shape and held in that position by wiring it to the transverse web 
reinforcement, after which the concrete may be placed. In pretensioned beams, 
deflected or harped tendons are often used. The strands are held down at midspan, 
at the third points, or at the quarter points of the span and held up at the ends, so 
that a smooth curve is approximated to a greater or lesser degree.

In practical cases, it is often not necessary to make a centroid zone diagram, 
as is shown in Fig. 22.19. By placing the centroid at its known location at midspan, 
at or close to the concrete centroid at the supports, and with a near-parabolic shape 
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between those control points, satisfaction of the limiting stress requirements is 
ensured. With nonprismatic beams, beams in which a curved concrete centroidal axis 
is employed, or with continuous beams, diagrams such as Fig. 22.19 are a great aid.

	 22.12	 FLEXURAL DESIGN BASED ON LOAD BALANCING

It was pointed out in Section 22.2b that the effect of a change in the alignment of a 
prestressing tendon in a beam is to produce a vertical force on the beam at that loca-
tion. Prestressing a member with curved or deflected tendons thus has the effect of 
introducing a set of equivalent loads, and these may be treated just as any other loads 
in finding moments or deflections. Each particular tendon profile produces its own 
unique set of equivalent forces. Typical tendon profiles, with corresponding equiv-
alent loads and moment diagrams, were illustrated in Fig. 22.2. Both Fig. 22.2 and 
Section 22.2b should be reviewed carefully.

The equivalent load concept offers an alternative approach to the determination 
of required prestress force and eccentricity. The prestress force and tendon profile 
can be established so that external loads that act are exactly counteracted by the 
vertical forces resulting from prestressing. The net result, for that particular set of 
external loads, is that the beam is subjected only to axial compression and no bend-
ing moment. The selection of the load to be balanced is left to the judgment of the 
designer. Often the balanced load chosen is the sum of the self-weight and super-
imposed dead load.

The design approach described in this section was introduced in the 
United  States by T. Y. Lin in 1963 and is known as the load-balancing method. 
The fundamentals are illustrated in the context of the simply supported, uniformly 
loaded beam shown in Fig. 22.20a. The beam is to be designed for a balanced load 
consisting of its own weight wo, the superimposed dead load wd, and some fractional 
part of the live load, denoted by kbwl. Since the external load is uniformly distrib-
uted, it is reasonable to adopt a tendon having a parabolic shape. It is easily shown 
that a parabolic tendon produces a uniformly distributed upward load equal to

	 wp = ​ 
8Py

 ____ 
ℓ2

 ​	  (22.33)

where P = magnitude of prestress force
y = �maximum sag of tendon measured with respect to the chord between its 

endpoints
ℓ = span length

If the downward load exactly equals the upward load from the tendon, these 
two loads cancel and no bending stress is produced, as shown in Fig.  22.20b. The 
bending stresses due to prestress eccentricity are equal and opposite to the bending 

FIGURE 22.19
Typical limiting zone for 
centroid of prestressing steel.

Lower limit

Upper limit
Limiting zone for
steel centroid

+e (x )

Concrete
centroid
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stresses resulting from the external load. The net resulting stress is uniform com-
pression fa equal to that produced by the axial force P cos θ. Excluding consideration 
of time-dependent effects, the beam would show no vertical deflection.

If the live load is removed or increased, then bending stresses and deflections 
results because of the unbalanced portion of the load. Stresses resulting from this 
differential loading must be calculated and superimposed on the axial compression to 
obtain the net stresses for the unbalanced state. Referring to Fig. 22.20c, the bending 
stresses ​​f​

b
​ ′​​ resulting from removal of the partial live loading are superimposed on the 

uniform compressive stress fa, resulting from the combination of eccentric prestress 
force and full balanced load to produce the final stress distribution shown.

Loads other than uniformly distributed would lead naturally to the selection of 
other tendon configurations. For example, if the external load consisted of a single 
concentration at midspan, a deflected tendon such as that of Fig.  22.2a would be 
chosen, with maximum eccentricity at midspan, varying linearly to zero eccentricity 
at the supports. A third-point loading would lead the designer to select a tendon 
deflected at the third points. A uniformly loaded cantilever beam would best be 
stressed using a tendon in which the eccentricity varied parabolically, from zero at 
the free end to y at the fixed support, in which case the upward reaction of the 
tendon would be

	 wp = ​ 
2Py

 ____ 
ℓ2 ​	  (22.34)

It should be clear that, for simple spans designed by the load-balancing con-
cept, it is necessary for the tendon to have zero eccentricity at the supports because 
the moment due to superimposed loads is zero there. Any tendon eccentricity would 

FIGURE 22.20
Load balancing for uniformly 
loaded beam: (a) external and 
equivalent loads; (b) concrete 
stresses resulting from axial 
and bending effects of 
prestress plus bending 
resulting from balanced 
external load; and (c) concrete 
stresses resulting when load 
kbwl is removed.
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produce an unbalanced moment (in itself an equivalent load) equal to the horizontal 
component of the prestress force times its eccentricity. At the simply supported ends, 
the requirement of zero eccentricity must be retained.

In practice, the load-balancing method of design starts with selection of a trial 
beam cross section, based on experience and judgment. An appropriate span-depth 
ratio is often applied. The tendon profile is selected using the maximum available 
eccentricity, and the prestress force is calculated. The trial design is then checked to 
ensure that concrete stresses are within the allowable limits should the live load be 
totally absent or fully in place, when bending stresses are superimposed on the axial 
compressive stresses. There is no assurance that the section will be adequate for 
these load stages or that adequate strength will be provided should the member be 
overloaded. Revision to correct any deficiency may be necessary.

It should further be observed that obtaining a uniform compressive concrete 
stress at the balanced load stage does not ensure that the member has zero deflection 
at this stage. The reason is that the uniform stress distribution is made up of two 
parts: that from the eccentric prestress force and that from the external loads. The 
prestress force varies with time because of shrinkage, creep, and relaxation, changing 
the vertical deflection associated with the prestress force. Concurrently, the beam 
experiences creep deflection under the combined effects of the diminishing prestress 
force and the external loads, a part of which may be sustained and a part of which 
may be short-term. However, if load balancing is carried out based on the effective 
prestress force Pe plus self-weight and external dead load only, the result may be 
near-zero deflection for that combination.

The load-balancing method provides the engineer with a useful tool. For sim-
ple spans, it leads the designer to choose a sensible tendon profile and focuses 
attention very early on the matter of deflection. But the most important advantages 
become evident in the design of indeterminate prestressed members, including both 
continuous beams and two-way slabs. For such cases, only the unbalanced load need 
be considered in conjunction with the axial compression, greatly simplifying the 
analysis effort.

	EXAMPLE 22.5	 Beam design initiating with load balancing.  A post-tensioned beam is to be designed to 
carry a uniformly distributed load over a 30 ft span, as shown in Fig.  22.21. In addition to 
its own weight, it must carry a dead load of 150 lb∕ft and a service live load of 600 lb∕ft. 
Concrete strength of 4000 psi is attained at 28 days; at the time of transfer of the prestress 
force, the strength is 3000 psi. Prestress loss may be assumed at 20 percent of Pi. On the 
basis that about one-quarter of the live load will be sustained over a substantial time period, 
kb of 0.25 is used in determining the balanced load.

Solution.  On the basis of an arbitrarily chosen span-depth ratio of 18, a 20 in. deep, 10 in. 
wide trial section is selected. The calculated self-weight of the beam is 208 lb∕ft, and the 
selected load to be balanced is

wbal = wo + wd + kbwl = 208 + 150 + 0.25 × 600 = 508 lb/ft

Based on a minimum concrete cover from the steel centroid to the bottom face of the beam of 
4 in., the maximum eccentricity that can be used for the 20 in. trial section is 6 in. A parabolic 
tendon is selected to produce a uniformly distributed upward tendon load. To equilibrate the 
sustained downward loading, the prestress force Pe after losses, from Eq. (22.33), should be

Pe = ​ 
wbalℓ

2

 _____ 
8y

 ​  = ​ 508 × 900 _________ 
8 × 0.5

 ​  = 114,000 lb
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and the corresponding initial prestress force is

Pi = ​ 
Pe __ 
R

 ​ = ​ 
114,000

 _______ 
0.8

 ​  = 143,000 lb

For the balanced load stage, the concrete is subjected to a uniform compressive stress of

fbal = ​ 
114,000

 _______ 
200

 ​  = −570 psi

as shown in Fig. 22.21b. Should the partial live load of 150 lb∕ft be removed, the stresses to be 
superimposed on fbal result from a net upward load of 150 lb∕ft. The section modulus for the 
trial beam is 667 in3 and

Munbal = 150 × ​ 900 ____ 
8
 ​  = 16,900 ft-lb

Hence, the unbalanced bending stresses at the top and bottom faces are

funbal = 16,900 × ​ 12 ____ 
667

 ​ = 304 psi

Thus, the net stresses are

f1 = −570 + 304 = −266 psi

f2 = −570 − 304 = −874 psi
Similarly, if the full live load should act, the stresses to be superimposed are those resulting from 
a net downward load of 450 lb∕ft. The resulting stresses in the concrete at full service load are

f1 = −570 − 910 = −1480 psi

f2 = −570 + 910 = +340 psi

FIGURE 22.21
Example of design by load 
balancing: (a) beam profile and 
cross section and (b) flexural 
stresses at maximum moment 
section (psi).
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www.konkur.in

Telegram: @uni_k



PRESTRESSED CONCRETE      735

Stresses in the concrete with live load absent and live load fully in place are shown in Fig. 22.21b.
It is also necessary to investigate the stresses in the initial unloaded stage, when the 

member is subjected to Pi plus moment due to its own weight.

Mo = 208 × ​ 900 ____ 
8
 ​  = 23,400 ft-lb

Hence, in the initial stage:

f1 = − ​ 
143,000

 _______ 
200

 ​   ​​( 1 − ​ 6 × 10 ______ 
33.35

 ​ )​​ − ​ 
23,400 × 12

  ___________ 
667

 ​  = +150 psi

f2 = − ​ 
143,000

 _______ 
200

 ​   ​​( 1 + ​ 6 × 10 ______ 
33.35

 ​ )​​ + ​ 
23,400 × 12

  ___________ 
667

 ​  = −1580 psi

The stresses in the unloaded and full service load stages must be checked against these 
permitted by the ACI Code. With ​​f​c​ ′​​ = 4000 psi and ​​f​ci​ ′ ​​ = 3000 psi, the stresses permitted for  
a Class U member are

fti = +165 psi      fts = +474 psi

fci = −1800 psi    fcs = −2400 psi

The actual stresses, shown in Fig. 22.21b, are within these limits and acceptably close to the 
allowable limits, and no revision is needed in the trial 10 × 20 in. cross section on the basis of 
stress limits.

The flexural strength of the members must now be checked, to ensure that an adequate 
margin of safety against collapse has been provided. The required Pi of 143,000 lb is provided 
using Grade 270 strand, with fpu = 270,000 psi and fpy = 243,000 psi. Referring to Section 
22.4, the initial stress immediately after transfer must not exceed 0.74 × 270,000 = 200,000 psi. 
Accordingly, the required area of tendon steel is

Aps = 143,000/200,000 = 0.72 in2

This is provided using five ​ 1 _ 2 ​ in. strands, giving an actual area of 0.765 in2 (Table A.15). The 
resulting stresses at the initial and final stages are

fpi = ​ 
143,000

 _______ 
0.765

 ​  = 187,000 psi

fpe = ​ 
114,000

 _______ 
0.765

 ​  = 149,000 psi

Using the ACI approximate equation for steel stress at failure [see Eq. (22.6)], with 
ρp = 0.765∕160 = 0.0048 and γp = 0.40 for the ordinary Grade 270 tendons, the stress fps is 
given by

fps = fpu ​​( 1 − ​ 
γp

 ___ 
β1

 ​ ​ 
ρpfpu

 _____ 
​f​c​ ′​

 ​  )​​
= 270 ​​( 1 − ​ 0.40 ____ 

0.85
 ​ ​ 0.0048 × 270  ____________ 

4
 ​  )​​

= 229 ksi

Then

a = ​​ 
Aps fps

 _______ 
0.85​f​c​ ′​b

 ​​

= ​  0.765 × 229  ____________  
0.85 × 4 × 10

 ​ = 5.15 in.

www.konkur.in

Telegram: @uni_k



736      DESIGN OF CONCRETE STRUCTURES  Chapter 22

Placing the two five-strand tendons in two layers results in dt = 16.6 in. Then

 c = ​ 5.15 ____ 
0.85

 ​ = 6.06

​ c __ 
dt

 ​ = ​ 6.06 ____ 
16.6

 ​ = 0.365

This is less than the limit c∕dt = 0.375, thus ϕ = 0.90. The nominal flexural strength is

Mn = Aps fps ​( d − ​ a __ 
2
 ​ )​ = 0.765 × 229,000 ​​( 16 −  ​ 5.15 ____ 

2
 ​  )​​ ​ 1 ___ 

12
 ​

                  = 196,000 ft-lb	

and the design strength with ϕ = 0.90 is

ϕMn = 0.90 × 196,000 = 176,000 ft-lb

The ACI load factors with respect to dead and live loads are, respectively, 1.2 and 1.6. 
Calculating the factored load,

wu = 1.2(208 + 150) + 1.6(600) = 1390 lb/ft

Mu = ​ 
1390(900)

 _________ 
8
 ​  = 156,000 ft-lb

Thus, ϕMn > Mu, and the design is judged satisfactory.

	 22.13	 LOSS OF PRESTRESS

As discussed in Section 22.6, the initial prestress force Pi immediately after transfer is 
less than the jacking force Pj because of elastic shortening of the concrete, slip at the 
anchorages, and frictional losses along the tendons. The force is reduced further, after 
a period of many months or even years, due to length changes resulting from shrink-
age and creep of the concrete and relaxation of the highly stressed steel; eventually 
it attains its effective value Pe. In the preceding sections of this chapter, losses were 
accounted for, making use of an assumed effectiveness ratio R = Pe∕Pi. Losses have 
no effect on the nominal strength of a member with bonded tendons, but overestima-
tion or underestimation of losses may have a pronounced effect on service conditions 
including camber, deflection, and cracking.

ACI Committee 423 prepared a comprehensive guide to estimating prestress 
losses (Ref. 22.17). The report indicates that the average prestress loss, based on data 
reported in the literature for all beam types, is 41 ksi with a coefficient of variation 
of 38 percent.

ACI Code 20.3.2.6.1 requires that prestress loss be considered in the calculation 
of final stresses and provides a list of categories to be considered. The estimation 
of losses can be made on several different levels. Lump-sum losses are used initially 
for some designs. For cases where greater accuracy is required or for confirmation 
of lump sum losses, it is necessary to estimate the separate losses, taking account 
of the conditions of member geometry, material properties, and construction methods 
that apply. Accuracy of loss estimation can be improved still further by accounting 
for the interdependence of time-dependent losses, using the summation of losses 
in  a  sequence of discrete time steps. These methods are discussed briefly in the 
following paragraphs.
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	 a.	 Lump-Sum Estimates of Losses

It was recognized very early in the development of prestressed concrete that there was 
a need for approximate expressions to be used to estimate prestress losses in design. 
Many thousands of successful prestressed structures have been built based on such 
estimates, and where member sizes, spans, materials, construction procedures, pre-
stress forces, and environmental conditions are not out of the ordinary, this approach 
is satisfactory. For such conditions, the American Association of State Highway 
and Transportation Officials (AASHTO, Ref. 22.18) has recommended the values 
in Table 22.2 for preliminary design or for certain controlled precasting conditions. 
Losses due to friction must be added to these values for post-tensioned members. These 
may be calculated separately by the equations of Section 22.13b.

The AASHTO recommended losses of Table 22.2 include losses due to elastic 
shortening, creep, shrinkage, and relaxation (see Section 22.13b). Thus, for compar-
ison with R values for estimating losses, such as were employed for the preceding 
examples, which included only the time-dependent losses due to shrinkage, creep, 
and relaxation, elastic shortening losses should be estimated by the methods dis-
cussed in Section 22.13b and deducted from the total.

	 b.	 Estimate of Separate Losses

A separate estimate of individual losses is made for most designs and specifically 
required when using the ACI Code. Such an analysis is complicated by the interde-
pendence of time-dependent losses. For example, the relaxation of stress in the ten-
dons is affected by length changes due to creep of concrete. Rate of creep, in turn, is 
altered by change in tendon stress. In the following six sections, losses are treated as 
if they occurred independently, although certain arbitrary adjustments are included 
to account for the interdependence of time-dependent losses. If greater refinement is 
necessary, a step-by-step approach like that mentioned in Section 22.13c may be used 
(see also Refs. 22.8 and 22.17).

TABLE 22.2
Estimate of prestress losses

Type of Beam Section Level
Wires or Strands with  

fpu = 235, 250, or 270 ksia

Rectangular beams, solid slabs Upper bound 33.0 ksi
Average 30.0 ksi

Box girder Upper bound 25.0 ksi
Average 23.0 ksi

I girder Average 33.0[1 − 0.15( ​​f​c​ ′​​ − 6.0)/6.0] + 6.0
Single T, double T, hollow  
  core and voided slab

Upper bound
Average

39.0[1 − 0.15( ​​f​c​ ′​​ − 6.0)/6.0] + 6.0
33.0[1 − 0.15( ​​f​c​ ′​​ − 6.0)/6.0] + 6.0

a �Values are for fully prestressed beams; reductions are allowed for partial prestress. Losses due to friction 
are excluded. Friction losses should be calculated according to Section 22.13b. For low-relaxation strands, 
the values specified may be reduced by 4.0 ksi for box girders; 6.0 ksi for rectangular beams, solid slabs, 
and I  girders; and 8.0 ksi for single T’s, double T’s, and hollow core and voided slabs.

Table adapted from Ref. 22.18.
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(1) Slip at the Anchorages  As the load is transferred to the anchorage device 
in post-tensioned construction, a slight inward movement of the tendon occurs as the 
wedges seat themselves and as the anchorage itself deforms under stress. The amount 
of movement varies greatly, depending on the type of anchorage and on construction 
techniques. The amount of movement due to seating and stress deformation associ-
ated with any particular type of anchorage is best established by test. Once this 
amount Δℓ is determined, the stress loss is easily calculated from

	 Δfs,slip = ​​ Δℓ ___ 
ℓ
  ​​ Es	 (22.35)

It is significant to note that the amount of slip is nearly independent of the ten-
don length. For this reason, the stress loss is large for short tendons and rela-
tively small for long tendons. The practical consequence of this is that it is most 
difficult to post-tension short tendons with any degree of accuracy. Prestressing 
plants with long-line stressing beds stress the tendons to compensate for anchor 
seating losses.

(2) Elastic Shortening of the Concrete  In pretensioned members, as the 
tendon force is transferred from the fixed abutments to the concrete beam, elastic 
instantaneous compressive strain takes place in the concrete, tending to reduce the 
stress in the bonded prestressing steel. The steel stress loss is

	 Δfs,elastic = Es ​ 
 fc __ 
Ec

 ​ = nfc	 (22.36)

where fc is the concrete stress at the level of the steel centroid immediately after 
prestress is applied:

	 fc = − ​ 
Pi __ 
Ac

 ​ ​​( 1 +  ​ ​e​
2​ __ 

​r​
2​
 ​ )​​ + ​ 

Moe ____ 
Ic

 ​	  (22.37)

If the tendons are placed with significantly different effective depths, the stress loss in 
each can be calculated separately.

In computing fc by Eq. (22.37), the prestress force used should be that after 
the losses being calculated have occurred. It is usually adequate to estimate this as 
about 10 percent less than Pj.

In post-tensioned members, if all of the strands are tensioned at one time, there 
is no loss due to elastic shortening, because this shortening occurs as the jacking 
force is applied and before the prestressing force is measured. On the other hand, if 
various strands are tensioned sequentially, the stress loss in each strand varies, being 
a maximum in the first strand tensioned and zero in the last strand. In most cases, 
it is sufficiently accurate to calculate the loss in the first strand and to apply one-half 
that value to all strands.

(3) Frictional Losses  Losses due to friction, as the tendon is stressed in 
post-tensioned members, are usually separated for convenience into two parts: cur-
vature friction and wobble friction. The first is due to intentional bends in the spec-
ified tendon profile and the second to the unintentional variation of the tendon from 
its intended profile. It is apparent that even a “straight” tendon duct will have some 
unintentional misalignment so that wobble friction must always be considered in 
post-tensioned work. Usually, curvature friction must be considered as well. The 
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force at the jacking end of the tendon Po, required to produce the force Px at any 
point x along the tendon, can be found from the expression

	 Po = Px​e​Kℓx+μα​	 (22.38a)

where e = base of natural logarithms
	  ℓx = tendon length from jacking end to point x
	   α = angular change of tendon from jacking end to point x, rad
	   K = wobble friction coefficient, lb∕lb per ft
	   μ = curvature friction coefficient

There has been much research on frictional losses in prestressed construction, par-
ticularly with regard to the values of K and μ. These vary appreciably, depending on 
construction methods and materials used. The values in Table 22.3 may be used as a 
guide. A report by ACI Committee 423 (Ref. 22.17) provides detailed information on 
the selection of wobble and friction coefficients.

If one accepts the approximation that the normal pressure on the duct causing 
the frictional force results from the undiminished initial tension all the way around 
the curve, the following simplified expression for loss in tension is obtained:
	 Po = Px(1 + Kℓx + μ α)	 (22.38b)
where α is the angle between the tangents at the ends. The simplified Eq. (22.38b) is 
valid for values of Kℓx + μ α not greater than 0.30.

The loss of prestress for the entire tendon length can be calculated by segments, 
with each segment assumed to consist of either a circular arc or a length of tangent.

(4) Creep of Concrete  Shortening of concrete under sustained load has been 
discussed in Section 2.8. It can be expressed in terms of the creep coefficient Cc. 
Creep shortening may be several times the initial elastic shortening, and it is evident 
that it results in loss of prestress force. The stress loss can be calculated from
	 Δfs,creep = Cc nfc	 (22.39)
Ultimate values of Cc for different concrete strengths for average conditions of humidity 
Ccu are given in Table 2.2.

Type of Tendon

Wobble  
Coefficient  

K, per ft

Curvature  
Coefficient  

μ

Grouted tendons in metal sheathing
  Wire tendons 0.0010–0.0015 0.15–0.25
  High-strength bars 0.0001–0.0007 0.08–0.30
  Seven-wire strand 0.0002–0.0010 0.15–0.25
Unbonded tendons
  Extruded wire tendons 0.0002–0.0010 0.01–0.05
  Extruded seven-wire strand 0.0002–0.0010 0.01–0.05
  Lubricated seven-wire strand 0.0002–0.0010 0.12–0.18

TABLE 22.3
Friction coefficients for post-tensioned tendons

Table adapted from Ref. 22.17.
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In Eq. (22.39), the concrete stress fc to be used is that at the level of the steel 
centroid, when the eccentric prestress force plus all sustained loads are acting. Equa-
tion (22.37) can be used, except that the moment Mo should be replaced by the 
moment due to all dead loads plus that due to any portion of the live load that may 
be considered sustained.

It should be noted that the prestress force causing creep is not constant but 
diminishes with the passage of time due to relaxation of the steel, shrinkage of the 
concrete, and length changes associated with creep itself. To account for this, it is 
recommended that the prestress force causing creep be assumed at 10 percent less 
than the initial value Pi.

(5) Shrinkage of Concrete  It is apparent that a decrease in the length of a 
member due to shrinkage of the concrete is just as detrimental as length changes 
due to stress, creep, or other causes. As discussed in Section 2.11, the shrinkage 
strain εsh may vary between about 0.0004 and 0.0008. A typical value of 0.0006 may 
be used in lieu of specific data. The steel stress loss resulting from shrinkage is

	 Δfs,shrink = εsh Es	 (22.40)

Only that part of the shrinkage that occurs after transfer of prestress force to the concrete 
need be considered. For pretensioned members, transfer commonly takes place just  
18 hours after placing the concrete, and nearly all the shrinkage takes place after that 
time. However, post-tensioned members are seldom stressed at an age earlier than  
7 days. About 15 percent of ultimate shrinkage may occur within 7 days, under typical 
conditions, and about 40 percent by the age of 28 days.

(6) Relaxation of Steel  The phenomenon of relaxation, similar to creep, was 
discussed in Section 2.16c. Loss of stress due to relaxation varies depending upon 
the stress in the steel, and may be estimated using Eqs. (2.11) and (2.12). To allow 
for the gradual reduction of steel stress resulting from the combined effects of creep, 
shrinkage, and relaxation, the relaxation calculation can be based on a prestress force 
10 percent less than Pi.

It is interesting to observe that the largest part of the relaxation loss occurs 
shortly after the steel is stretched. For stresses of 0.80fpu and higher, even a very 
short period of loading produces substantial relaxation, and this in turn reduces the 
relaxation that occurs later at a lower stress level. The relaxation rate can thus be 
artificially accelerated by temporary overtensioning. This technique is the basis for 
producing low-relaxation steel.

	 c.	 Loss Estimation by the Time-Step Method

The loss calculations of the preceding paragraphs recognized the interdependence of 
creep, shrinkage, and relaxation losses in an approximate way, by an arbitrary reduction 
of 10 percent of the initial prestress force Pi to obtain the force for which creep and relax-
ation losses were calculated. For cases requiring greater accuracy, losses can be calcu-
lated for discrete time steps over the period of interest. The prestress force causing losses 
during any time step is taken equal to the value at the end of the preceding time step, 
accounting for losses due to all causes up to that time. Accuracy can be improved to any 
desired degree by reducing the length and increasing the number of time steps.

A step-by-step method developed by the Committee on Prestress Losses of the 
Prestressed Concrete Institute uses only a small number of time steps and is adequate 
for ordinary cases (Ref. 22.17).
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	 22.14	 SHEAR, DIAGONAL TENSION, AND WEB REINFORCEMENT

In prestressed concrete beams at service load, there are two factors that greatly 
reduce the intensity of diagonal tensile stresses, compared with stresses that would 
exist if no prestress force were present. The first of these results from the combi-
nation of longitudinal compressive stress and shearing stress. An ordinary tensile 
reinforced concrete beam under load is shown in Fig. 22.22a. The stresses acting 
on a small element of the beam taken near the neutral axis and near the support are 
shown in (b). It is found by means of Mohr’s circle of stress (c) that the principal 
stresses act at 45° to the axis of the beam (d) and are numerically equal to the shear 
stress intensity; thus,

	 t1 = t2 = v	 (a)

Now suppose that the same beam, with the same loads, is subjected to a precom-
pression stress in the amount c, as shown in Fig. 22.23a and b. From Mohr’s circle 
(Fig. 22.23c), the principal tensile stress is

	 t1 = − ​ c __ 
2
 ​ + ​​√

________
 v2 + ​​( ​ c __ 

2
 ​ )​​2​ ​​	 (b)

and the direction of the principal tension with respect to the beam axis is

	 tan 2α = ​​ 2v
 ___ c ​​	 (c)

as shown in Fig. 22.23d.
Comparison of Eq. (a) with Eq. (b) and Fig.  22.22c with Fig.  22.23c shows 

that, with the same shear stress intensity, the principal tension in the prestressed 
beam is much reduced.

The second factor working to reduce the intensity of the diagonal tension at 
service loads results from the slope of the tendons. Normally, this slope is such as 
to produce a shear due to the prestress force that is opposite in direction to the 

FIGURE 22.22
Principal stress analysis for 
an ordinary reinforced 
concrete beam.
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load-imposed shear. The magnitude of this countershear is Vp  =  Pe  sin  θ, where θ 
is the slope of the tendon at the section considered (see Fig. 22.8).

It is important to note, however, that in spite of these characteristics of pre-
stressed beams at service loads, an investigation of diagonal tensile stresses at service 
loads does not ensure an adequate margin of safety against failure. In Fig.  22.23c, 
it is evident that a relatively small decrease in compressive stress and increase in 
shear stress, which may occur when the beam is overloaded, produces a dispropor-
tionately large increase in the resulting principal tension. In addition to this effect, 
if the countershear of inclined tendons is used to reduce design shear, its contribution 
does not increase directly with load, but much more slowly (see Section 22.7). Con-
sequently, a small increase in total shear may produce a large increase in the net 
shear for which the beam must be designed. For these two reasons, it is necessary 
to base design for diagonal tension in prestressed beams on conditions at factored 
load rather than at service load. The study of principal stresses in the uncracked 
prestressed beam is significant only in predicting the load at which the first diagonal 
crack forms.

At loads near failure, a prestressed beam is usually extensively cracked and 
behaves much like an ordinary reinforced concrete beam. The cracks in prestressed 
members are smaller than those in reinforced concrete members. The procedures 
developed in Section 5.5 tend to underestimate the concrete contribution to shear 
resistance in prestressed concrete members. As it is for reinforced concrete members, 
shear design for prestressed concrete members is based on the relation

	 Vu ≤ ϕVn	 (22.41)

where Vu is the total shear force applied to the section at factored loads and Vn is the 
nominal shear strength, equal to the sum of the contributions of the concrete Vc and 
web reinforcement Vs:

	 Vn = Vc + Vs	 (22.42)

The strength reduction factor ϕ is equal to 0.75 for shear.

FIGURE 22.23
Principal stress analysis for a 
prestressed concrete beam.
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In calculating the factored load shear Vu, the first critical section is assumed 
to be at a distance h∕2 from the face of a support, and sections located a distance 
less than h∕2 are designed for the shear calculated at h∕2.

The shear force Vc resisted by the concrete after cracking has occurred is taken 
equal to the shear that causes the first diagonal crack. Two types of diagonal cracks 
have been observed in tests of prestressed concrete beams:

	 1.	 Flexure-shear cracks, occurring at nominal shear Vci, start as nearly vertical 
flexural cracks at the tension face of the beam, then spread diagonally upward 
(under the influence of diagonal tension) toward the compression face. These are 
common in beams with a low value of prestress force.

	 2.	 Web-shear cracks, occurring at nominal shear Vcw, start in the web due to high 
diagonal tension, then spread diagonally both upward and downward. These are 
often found in beams with thin webs with high prestress force.

On the basis of extensive tests, it was established that the shear causing flexure 
shear cracking can be found using the expression

	 Vci = 0.6​​√
__

 ​f​c​ ′​​​bwdp + Vcr,o+d+l	 (a)

where Vcr,o+d+l is the shear force, due to total load, at which the flexural crack forms at 
the section considered, and 0.6​​√

__
 ​f​c​ ′​​​ bwdp represents an additional shear force required 

to transform the flexural crack into an inclined crack.
While self-weight is generally uniformly distributed, the superimposed dead 

and live loads may have any distribution. Consequently, it is convenient to separate 
the total shear into Vo caused by the beam self-weight (without load factor) and Vcr, 
the additional shear force, due to superimposed dead and live loads, corresponding 
to flexural cracking. Thus,

	 Vci = 0.6​​√
__

 ​f​c​ ′​​​bw  dp + Vo + Vcr	 (b)

The shear Vcr due to superimposed loads can then be found conveniently from

	 Vcr = ​ 
Vd+l ____ 
Md+l

 ​ Mcre	 (c)

where Vd+l∕Md+l, the ratio of superimposed dead and live load shear to moment, 
remains constant as the load increases to the cracking load, and the cracking moment 
is

	 Mcre = ​ 
Ic __ yt

 ​ (6λ​​√
__

 ​f​c​ ′​​​ + fpe − fo)	 (22.43)

where yt = distance from concrete centroid to tension face
	 	  λ = lightweight concrete modification factor (see Section 5.5)
	 	 fpe = �compressive stress at tension face resulting from effective prestress force 

alone
	 	 fo = �stress due to beam self-weight (unfactored) at extreme fiber of section 

where tensile stress is caused by externally applied dead and live loads†

The first term inside the parentheses is a conservative estimate of the modulus 
of rupture. The bottom-fiber stress due to self-weight is subtracted here because 
self-weight is considered separately in Eq. (b). Thus, Eq. (b) becomes

	 Vci = 0.6λ​​√
__

 ​f​c​ ′​​​bwdp + Vo + ​ 
Vd+l ____ 
Md+l

 ​ Mcre	 (22.44)

† All stresses are used with absolute value here, consistent with ACI convention.
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Tests indicate that Vci need not be taken less than 1.7λ​​√
__

 ​f​c​ ′​​​bwd. The values of d and dp  
need not be taken less than 0.80h for this and all other equations relating to shear, accord-
ing to the ACI Code, unless specifically noted otherwise. Additionally, the values Vd+l 
and Md+l should be calculated for the load combination causing the maximum moment 
in the section. Because Vd+l is the incremental load above the beam self-weight, the ACI 
Code uses the notation Vi Mcre∕Mmax, noting that Mcre comes from Eq. (22.43).

The shear force causing web-shear cracking can be found from an exact prin-
cipal stress calculation, in which the principal tensile stress is set equal to the direct 
tensile capacity of the concrete (conservatively taken equal to 4λ​​√

__
 ​f​c​ ′​​​ according to 

the ACI Code). Alternatively, the ACI Code permits use of the approximate expression

	 Vcw = (3.5λ​√
__

 ​f​c​ ′​​ + 0.3fpc)bw  dp + Vp	 (22.45)

in which fpc is the compressive stress in the concrete, after losses, at the centroid of 
the concrete section (or at the junction of the web and the flange when the centroid 
lies in the flange) and Vp is the vertical component of the effective prestress force. In 
a pretensioned beam, the 0.3fpc contribution to Vcw should be adjusted from zero at the 
beam end to its full value one transfer length (see Section 22.15b) in from the end of 
the beam.

After Vci and Vcw have been calculated, then Vc, the shear resistance provided 
by the concrete, is taken equal to the smaller of the two values.

Calculating Mcre, Vci, and Vcw for a prestressed beam is a tedious matter because 
many of the parameters vary along the member axis. For hand calculations, the 
required quantities may be found at discrete intervals along the span, such as at ℓ∕2, 
ℓ∕3, and ℓ∕6, and at h∕2 from the support face, and stirrups spaced accordingly, or 
computer spreadsheets may be used.

To shorten the calculation required, the ACI Code includes, as a conservative 
alternative to the above procedure, an equation for finding the concrete shear resist-
ance Vc directly:

	 Vc = ​( 0.6λ​√
__

 ​f​c​ ′​​ + 700 ​ 
Vu  dp

 ____ 
Mu

 ​  )​ bw  d	 (22.46)

in which Mu is the bending moment occurring simultaneously with shear force Vu, 
but Vu dp∕Mu is not to be taken greater than 1.0, and d is the effective depth including 
prestressed and nonprestressed reinforcement. When this equation is used, Vc need not 
be taken less than 2λ​√

__
 ​f​c​ ′​​bw  dp and must not be taken greater than 5λ​√

__
 ​f​c​ ′​​bw  dp. While 

Eq. (22.46) is temptingly easy to use and may be adequate for uniformly loaded mem-
bers of minor importance, its use is apt to result in highly uneconomical designs for 
I beams with medium and long spans and for composite construction (Ref. 22.19).

When shear reinforcement perpendicular to the axis of the beam is used, its 
contribution to shear strength of a prestressed beam is

	 Vs = ​ 
Av  fyt  d

 ______ s ​ 	 (22.47)

the same as for a nonprestressed member. According to the ACI Code, the value of Vs 
must not be taken greater than 8​√

__
 ​f​c​ ′​​bwd.

The total nominal shear strength Vn is found by summing the contributions of 
the concrete and steel, as indicated by Eq. (22.42):

	 Vn = Vc + ​ 
Av fyt  d

 ______ s ​	  (22.48)
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Then, from Eq. (22.41),

Vu = ϕVn = ϕ (Vc + Vs)

from which

	 Vu = ϕ ​( Vc + ​ 
Av fyt  d

 ______ s ​  )​	 (22.49)

The required cross-sectional area of one stirrup Av can be calculated by suitable trans-
position of Eq. (22.49).

	 Av = ​ 
(Vu − ϕVc)s  __________ 

ϕfyt  d
 ​	  (22.50)

Normally, in practical design, the engineer selects a trial stirrup size, for which the 
required spacing is found. Thus, a more convenient form of the last equation is

	 s = ​ 
ϕAv  fyt  d

 ________ 
Vu − ϕVc

 ​	 (22.51)

A minimum area of shear reinforcement is required in all prestressed concrete 
members where the total factored shear force is greater than one-half the design shear 
strength provided by the concrete ϕVc. Exceptions are made for slabs and footings, 
concrete-joist floor construction, and certain very shallow beams, according to the 
ACI Code. The ACI Code exempts members from minimum shear reinforcement if 
tests demonstrate the member has sufficient strength. Many precast T and double-T 
beam producers invoke this exemption. The minimum area of shear reinforcement 
to be provided in all other cases is equal to the smaller of

	 Av,min = 0.75​√
__

 ​f​c​ ′​​ ​ 
bw s

 ___ 
fyt

 ​  ≤ 50 ​ 
bw s

 ___ 
fyt

 ​	  (22.52)

and

	 Av,min = ​ 
Aps

 ___ 
80

 ​ ​ 
fpu

 ___ 
fyt

 ​ ​ s __ 
d
 ​ ​√

___
 ​ d ___ 

bw

 ​​	 (22.53)

in which Aps is the cross-sectional area of the prestressing steel, fpu is the tensile 
strength of the prestressing steel, and all other terms are as defined above.

The ACI Code contains certain restrictions on the maximum spacing of web 
reinforcement to ensure that any potential diagonal crack is crossed by at least a 
minimum amount of web steel. For prestressed members, this maximum spacing is 
not to exceed the smaller of 0.75h or 24 in. If the value Vs exceeds 4​√

__
 ​f​c​ ′​​bwdp, these 

limits are reduced by one-half.

	EXAMPLE 22.6	 Design of shear reinforcement.  The unsymmetrical I beam shown in Fig. 22.24 carries an 
effective prestress force of 288 kips and supports a superimposed dead load of 345 lb∕ft and 
service live load of 900 lb∕ft, in addition to its own weight of 255 lb∕ft, on a 50 ft simple 
span. At the maximum moment section, the effective depth to the main steel is 24.5 in. 
(eccentricity 11.4 in.). The strands are deflected upward starting 15 ft from the support, and 
eccentricity is reduced linearly to zero at the support. If concrete with ​f​c​ ′​ = 5000 psi and 
stirrups with fyt = 60,000 psi are used, and if the prestressed strands have strength fpu = 270 ksi, 
what is the required stirrup spacing at a point 10 ft from the support?
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Solution.  For a cross section with the given dimensions, it is easily confirmed that 
Ic = 24,200  in4, Ac = 245  in2, and r2 = Ic∕Ac = 99  in2. At a distance 10 ft from the support 
centerline, the tendon eccentricity is

e = 11.4 × ​ 10 ___ 
15

 ​ = 7.6 in.

corresponding to an effective depth d from the compression face of 20.7 in. According to the 
ACI Code, the larger value of d = 0.80 × 29 = 23.2 in. is used. Calculation of Vci is based on 
Eqs. (22.43) and (22.44). The bottom-fiber stress due to effective prestress acting alone is

fpe = f2pe = − ​ 
Pe __ 
Ac

 ​ ​( 1 + ​ 
ec2 ___ 
r2

 ​ )​ = − ​ 
288,000

 _______ 
245

 ​  ​( 1 + ​ 7.6 × 15.9 _________ 
99

 ​  )​ = −2600 psi

The moment and shear at the section due to beam load alone are, respectively,

Mo,10 = ​ 
wo x ____ 

2
 ​  (ℓ − x) = 0.255 × 5 × 40 = 51 ft-kips

 Vo,10 = wo ​( ​ ℓ __ 
2
 ​ − x )​ = 0.255 × 15 = 3.8 kips

and the bottom-fiber stress due to this load is

f2o = ​ 
51 × 12,000 × 15.9

  _________________  
24,200

 ​  = 402 psi

Then, from Eq. (22.43),

Mcre = ​ 
24,200(425 + 2600 − 402)

   _______________________  
15.9 × 12

 ​  = 333,000 ft-lb

The ratio of superimposed load shear to moment at the section is

​ 
Vd+l ____ 
Md+l

 ​ = ​ ℓ − 2x _______ 
x(ℓ − x)

 ​ = ​ 30 ____ 
400

 ​ = 0.075 ​ft​−1​

Equation (22.44) is then used to determine the shear force at which flexure-shear cracks can be 
expected to form.

Vci = ​[ 0.6 × 1​√
____

 5000​(5 × 23.2) + 3800 + 0.075 × 330,000 ]​ × ​  1 _____ 
1000

 ​ = 33.5 kips

The lower limit of 1.7 × 1​√
____

 5000​(5 × 23.2)/1000 = 13.9 kips does not control.
Calculation of Vcw is based on Eq. (22.45). The slope θ of the tendons at the section 

under consideration is such that sin θ ≈ tan θ = 11.4∕(15 × 12) = 0.063. Consequently, the 
vertical component of the effective prestress force is Vp  =  0.063  ×  288  =  18.1  kips. The 
concrete compressive stress at the section centroid is

fpc = ​ 
Pe __ 
Ac

 ​ = ​ 
288,000

 _______ 
245

 ​  = 1180 psi

FIGURE 22.24
Post-tensioned beam in 
Example 22.6.
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	 22.15	� TRANSFER LENGTH AND DEVELOPMENT LENGTH

There are two separate sources of bond stress in prestressed concrete beams: (1) flexural 
bond, which exists in pretensioned construction between the tendons and the concrete 
and in grouted post-tensioned construction between the tendons and the grout, and 
between the conduit (if any) and concrete, and (2) prestress transfer bond, generally 
applicable to pretensioned members only.

	 a.	 Flexural Bond

Flexural bond stresses arise due to the change in tension along the tendon resulting 
from differences in bending moment at adjacent sections. They are proportional to the 
rate of change of bending moment, hence to the shear force, at a given location along 
the span. Provided the concrete member is uncracked, flexural bond stress is very 

Equation (22.45) can now be used to find the shear at which web-shear cracks should occur.

Vcw = ​[ ​( 3.5 × 1​√
____

 5000​ + 0.3 × 1180 )​5 × 23.2 + 18,100 ]​ × ​  1 _____ 
1000

 ​ = 87.9 kips

Thus, in the present case,

Vc = Vci = 33.5 kips

At the section considered, the total shear force at factored loads is

Vu = 1.2 × 0.600 × 15 + 1.6 × 0.900 × 15 = 32.4 kips

When No. 3 (No. 10) U stirrups are used, for which Av = 2 × 0.11 = 0.22  in2, the required 
spacing is found from Eq. (22.51) to be

s = ​ 
ϕAv  fyt  d

 ________ 
Vu − ϕVc

 ​ = ​ 
0.75 × 0.22 × 60,000 × 23.2

   ________________________   
32,400 − 0.75 × 33,500

 ​  = 32 in.

Equation (22.53) is then applied to establish a maximum spacing criterion.

0.22 = ​ 1.75 ____ 
80

 ​  × ​ 270 ____ 
60

 ​ × ​  s ____ 
23.2

 ​ ​√
____

 ​ 23.2 ____ 
5
 ​​  = 0.0091s

s = 24.1 in.

The other criteria for maximum spacing, ​ 3 _ 4 ​ × 29 = 22 in. and 24 in., however, control here. 
Open U stirrups are used, at a spacing of 22 in.

For comparison, the concrete shear is calculated on the basis of Eq. (22.46). The ratio 
Vu∕Mu is 0.075, and

Vc = ​( 0.6 × 1​√
____

 5000​ + 700 × ​ 0.075 _____ 
12

 ​  × 23.2 )​ (5 × 23.2) × ​  1 _____ 
1000

 ​ = 16.7 kips

The lower and upper limits, 2 × 1​√
____

 5000​ (5 × 23.2)/1000 = 16.4 kips and 5 × 1​√
____

 5000​ (5 × 
23.2)/1000 = 41.0 kips, do not control. Thus, on the basis of Vc obtained from Eq. (22.46),  
the required spacing of No. 3 (No. 10) U stirrups is

s = ​ 
0.75 × 0.22 × 60,000 × 23.2

   ________________________   
32,400 − 0.75 × 16,700

 ​  = 11.6 in.

For the present case, an I-section beam of intermediate span, nearly 2 times the web steel is 
required at the location investigated if the alternative expression giving Vc directly is used.
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low. After cracking, it is higher by an order of magnitude. However, flexural bond 
stress need not be considered in designing prestressed concrete beams, provided that 
adequate end anchorage is furnished for the tendon, in the form of either mechanical 
anchorage (post-tensioning) or strand embedment (pretensioning).

	 b.	 Transfer Length and Development Length

For pretensioned beams, when the external jacking force is released, the prestressing 
force is transferred from the steel to the concrete near the ends of the member by bond, 
over a distance which is known as the transfer length. The transfer length depends 
upon a number of factors, including the steel stress, the configuration of the steel 
cross section (such as strands vs. wires), the condition of the surface of the steel, and 
the suddenness with which the jacking force is released. Based on tests of seven-wire 
prestressing strand (Ref. 22.20), the effective prestress fpe in the steel may be assumed 
to act at a transfer length from the end of the member equal to

	 ℓt = ​ 
fpe
 _____ 

3000
 ​ db	 (a)

where ℓt = transfer length, in.
	 	 db = nominal strand diameter, in.
	 	 fpe = effective prestress, psi

The same tests indicate that the additional distance past the original transfer 
length necessary to develop the failure strength of the steel is closely represented by 
the expression

	​​ ℓ​t​ ′​​ = ​( ​ fps −  fpe
 _______ 

1000
 ​  )​ db	 (b)

where the quantity in parentheses is the stress increment above the effective prestress 
level, in psi units, to reach the calculated steel stress at failure fps. Thus, the total devel-
opment length at failure is
	 ℓd = ℓt + ​ℓ​t​ ′​	 (c)
or

	 ℓd = ​( ​ fps − ​  2 _ 3 ​ fpe
 ________ 

1000
 ​  )​ db	 (22.54)

The ACI Code does not require that flexural bond stress be checked in either pre-
tensioned or post-tensioned members, but for pretensioned strand it is required that 
the full development length, given by Eq. (22.54), be provided beyond the critical 
bending section. Investigation may be limited to those cross sections nearest each end 
of the member that are required to develop their full flexural strength under the speci-
fied factored load. Strands not extending to the end of the member require double the 
development length.

The development length of prestressing strand affects both shear and flexural 
strength at the end of pretensioned beams. The prestress component of the concrete 
shear contribution in Eq. (22.45) is usually considered to vary linearly from zero 
at the beam end to its full value of 0.3fpc at the end of the transfer length ℓt, accord-
ing to ACI Commentary 21.2.3; and the flexural strength reduction factor ϕ = 0.75 
from the end of the member to the end of the transfer length and then varies linearly 
from 0.75 to 0.9 from the end of the transfer length to the end of the development 
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length ℓd, according to ACI Code 21.2.3. These reductions are especially relevant 
if concentrated loads are applied between the beam end and the end of the 
development length.

	 22.16	 ANCHORAGE ZONE DESIGN

In prestressed concrete beams, the prestressing force is introduced as a load concen-
tration acting over a relatively small fraction of the total member depth. For post-
tensioned beams with mechanical anchorage, the load is applied at the end face, while 
for pretensioned beams it is introduced somewhat more gradually over the transfer 
length. In either case, the compressive stress distribution in the concrete becomes 
linear, conforming to that dictated by the overall eccentricity of the applied forces, 
only after a distance from the end roughly equal to the depth of the beam.

This transition of longitudinal compressive stress, from concentrated to linearly 
distributed, produces transverse (vertical) tensile stresses that may lead to longitudi-
nal cracking of the member. The pattern and magnitude of the concrete stresses 
depend on the location and distribution of the concentrated forces applied by the 
tendons. Numerous studies have been made using the methods of classical elasticity, 
photoelasticity, and finite element analysis, and typical results are given in Fig. 22.25. 
Here the beam is loaded uniformly over a height equal to h∕8 at an eccentricity of 
3h∕8. Contour lines are drawn through points of equal vertical tension, with coeffi-
cients expressing the ratio of vertical stress to average longitudinal compression. 
Typically, there are high bursting stresses along the axis of the load a short distance 
inside the end zone and high spalling stresses at the loaded face.

FIGURE 22.25
Contours of equal vertical 
stress. (Adapted from  

Ref. 22.16.)
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In many post-tensioned prestressed I beams, solid end blocks are provided, as 
shown in Fig. 22.26. While these are often necessary to accommodate end-anchorage 
hardware and supplemental reinforcement, they are of little use in reducing transverse 
tension or avoiding cracking.

Steel reinforcement for end-zone stresses may be in the form of vertical bars 
of relatively small diameter and close spacing and should be well anchored at the 
top and bottom of the member. Closed stirrups are commonly used, with auxiliary 
horizontal bars inside the 90° bends.

Rational design of the reinforcement for end zones must recognize that hori-
zontal cracking is likely. If adequate reinforcement is provided, so that the cracks 
are restricted to a few inches in length and to 0.01 in. or less in width, these cracks 
are not detrimental to the performance of the beam either at service load or at the 
factored load stage. Information on control of cracking of thin webs in pretensioned 
girders is found in Ref. 22.21. It should be noted that end-zone stresses in preten-
sioned and bonded post-tensioned beams do not increase in proportion to loads. The 
failure stress fps in the tendon at beam failure is attained only at the maximum 
moment section.

For pretensioned members, based on tests reported in Ref. 22.21, a simple 
equation has been proposed for the design of end-zone reinforcement:

	 At = 0.021 ​ 
Pi  h ___ 
fs  ℓt

 ​	 (22.55)

where   At = total cross-sectional area of stirrups necessary, in2

	 	 Pi = initial prestress force, lb
	 	 h = total member depth, in.
	 	 fs = allowable stress in stirrups, psi
	 	 ℓt = transfer length, in.

An allowable stress fs  =  20,000 psi has been found in tests to produce acceptably 
small crack widths. The required reinforcement having total area At should be dis-
tributed over a length equal to h∕5 measured from the end face of the beam, and for 
most efficient crack control the first stirrup should be placed as close to the end face 
as practical. It is recommended in Ref. 22.21 that vertical reinforcement according 
to Eq. (22.55) be provided for all pretensioned members, unless tests or experience 
indicates that cracking does not occur at service or overload stages.

For post-tensioned members, the end region is divided into two zones, local 
and general, as shown in Fig. 22.27a. The local zone is a rectangular prism imme-
diately surrounding the anchorage device and any confining reinforcement around 
the device. The general zone consists of a region that is approximately one structural 
depth h from the end of the beam and includes the local zone. For internal anchors, 

FIGURE 22.26
Post-tensioned I beam with 
rectangular end block.

End anchorages

Rectangular
end block

Tendons
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such as used in slabs, the general zone extends a distance h ahead of and behind the 
anchorage hardware. Stresses in the local zone are determined based on tests. The 
post-tensioning supplier specifies the reinforcement details for the local zone.

Stress variations in the general zone are nonlinear and are characterized by a 
transition from the local zone to an assumed uniform stress gradient a distance h 
from the anchor. Reinforcement in the general zone may be designed by one of three 
methods. These methods include equilibrium-based plasticity models, such as the 
strut-and-tie model, linear stress analysis such as finite element analysis, and sim-
plified elasticity solutions similar to the photoelastic model shown graphically in 
Fig.  22.25 or elasticity analyses described in Ref. 22.22. Simplified equations are 
not permitted for nonrectangular cross sections, where multiple anchorages are used 
(unless closely spaced), or where discontinuities disrupt the force flow path.

Strut-and-tie design approaches for highway girder anchorages are detailed in 
the AASHTO LRFD Bridge Design Specifications (Refs. 22.18 and 22.22). An abbre-
viated version of the AASHTO Specifications is incorporated in ACI Commentary 
25.9.4. ACI Code 25.9.3 requires that complex, multistrand anchorage systems con-
form to the full AASHTO Specifications.

For the common case of a rectangular end block and simple anchorage 
(Fig. 22.27b), ACI Commentary 25.9.4 offers simplified equations based on test results 
and strut-and-tie modeling. The magnitude of the bursting force Tburst and the location 
of its centroid distance from the front of the anchor dburst may be calculated as

	 Tburst = 0.25ΣPpu ​( 1 − ​ 
hanc ___ 
h
 ​  )​	 (22.56)

and

	 dburst = 0.5(h − 2eanc)	 (22.57)

where ΣPpu = sum of total factored post-tensioning force
	 	 eanc = �absolute value of eccentricity of anchorage device to centroid of con-

crete section
	 	 h = depth of cross section
	 	 hanc = depth of anchorage device

The use of the factored post-tensioning force Ppu recognizes that the tendon force is 
acting as a load. Hence, the maximum jacking stress 0.80fpu is multiplied by a load 
factor of 1.2 to calculate Ppu.

	 Ppu = 1.2(0.80fpu)Aps = 0.96fpuAps	 (22.58)

FIGURE 22.27
Post-tensioned end  
block: (a) local and  
general zone and  
(b) strut-and-tie model. Tburst

dburst
h

(a ) (b )
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Transverse reinforcement with total area As  =  Tburst∕ϕfy is added in a region 
that is centered on the location dburst to carry the bursting force.

In cases where the simplified equations do not apply, a strut-and-tie model 
(Chapter 17) or finite element analysis may be required to design the bursting zone.

	EXAMPLE 22.7	 Design of end-zone reinforcement for post-tensioned beam.  End-zone reinforcement is 
to be designed for the rectangular post-tensioned beam shown in Fig. 22.28. The initial pre-
stress force Pi of 250 kips is applied by two closely spaced tendons having a combined 
eccentricity of 8.0 in. Material properties are ​f​ci​ ′ ​ = 4250 psi and fy = 60,000 psi.

Solution.  The rectangular section and the closely spaced anchorage devices allow the use 
of the simplified ACI equations.

dburst = 0.5(h − 2eanc) = 0.5(30 − 2 × 8) = 7 in.

The initial prestressing force is 250 kips, which corresponds to a tendon stress level of 0.82fpy. 
The maximum jacking stress level in the tendons is 0.94fpy, or 0.80fpu. In this example, only the 
initial prestress is provided. Hence, the factored tendon force is calculated as

Ppu = 1.2 ​( ​ 0.94 ____ 
0.82

 ​ )​ 250 = 344 kips

for which

Tburst = 0.25ΣPpu ​( 1 − ​ 
hanc ___ 
h
 ​  )​ = 0.25 × 344 ​( 1 − ​ 6 ___ 

30
 ​ )​ = 68.8 kips

The area of steel needed to resist Tburst is

As = ​ 
Tburst ____ 
ϕ  fy

 ​ = ​  68.8 _________ 
0.85 × 60

 ​ = 1.35 in2

Using No. 4 (No. 13) closed stirrups with an area of 2 × 0.20 in2 gives

n = ​  1.35 ________ 
2 × 0.20

 ​ = 3.4 stirrups

Four No. 4 (No. 13) closed stirrups are selected. The first stirrup is placed 2​ 1 _ 2 ​ in. from the anchor 
plate, and the other three stirrups are placed 3 in. on center, as shown in Fig. 22.28b, centering 
the stirrups a distance dburst from the anchor plate. The closed stirrups ensure that anchorage 
requirements are satisfied. Details of the reinforcement in the local zone are not shown.

FIGURE 22.28
Design of post-tensioned 
anchor zone: (a) section at 
end anchors and (b) end zone 
reinforcement.
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Anchors for monostrand tendons are designed to transfer the jacking force 
directly to the concrete. Stresses under the anchor plates are acceptable providing 
the ACI Code stressing limits are observed. Cracking is controlled by the placement 
of reinforcement backer bars within 4 in. of the anchors. Hairpin bars are placed 
between anchors when the anchor spacing is 12 in. or less and a longitudinal bar is 
used to secure the hairpin bars. The ACI Code differentiates details between mem-
bers 8 in. or less deep and those greater than 8 in deep (Fig. 22.29).

	 22.17	 DEFLECTION

Deflection of the slender, relatively flexible beams that are made possible by prestress-
ing must be predicted with care. Many members, satisfactory in all other respects, 
have proved to be unserviceable because of excessive deformation. In some cases, 
the absolute amount of deflection is excessive. Often, it is the differential deforma-
tion between adjacent members (for example, precast roof-deck units) that causes 
problems. More often than not, any difficulties that occur are associated with upward 
deflection due to the sustained prestress load. Such difficulties are easily avoided by 
proper consideration in design.

When the prestress force is first applied, a beam will normally camber 
upward. With the passage of time, concrete shrinkage and creep will cause a 
gradual reduction of prestress force. In spite of this, the upward deflection usually 
increases, due to the differential creep, affecting the highly stressed bottom fibers 
more than the top. With the application of superimposed dead and live loads, this 
upward deflection is partially or completely overcome, and zero or downward 
deflection obtained. Clearly, in computing deformation, careful attention must be 
paid to both the age of the concrete at the time of load application and the dura-
tion of the loading.

FIGURE 22.29 
Monostrand anchor 
reinforcement.
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The prediction of deflection can be approached at any of several levels of 
accuracy, depending upon the nature and importance of the work. In some cases, it 
is sufficient to place limitations on the span-depth ratio, based on past experience. 
Generally, deflections must be calculated. (Calculation is required for all prestressed 
members, according to ACI Code 24.2.3.) The approximate method described here 
is sufficiently accurate for most purposes. In special circumstances, where it is 
important to obtain the best possible information on deflection at all important load 
stages, such as for long-span bridges, the only satisfactory approach is to use a 
summation procedure based on incremental deflection at discrete time steps, as 
described in Refs. 22.1, 22.8, 22.23, and 22.24. In this way, the time-dependent 
changes in prestress force, material properties, and loading can be accounted for to 
the desired degree of accuracy.

Normally, the deflections of primary interest are those at the initial stage, when 
the beam is acted upon by the initial prestress force Pi and its own weight, and one 
or more combinations of load in service, when the prestress force is reduced by 
losses to the effective value Pe. Deflections are modified by creep under the sustained 
prestress force and due to all other sustained loads.

The short-term deflection Δpi due to the initial prestress force Pi can be found 
based on the variation of prestress moment along the span, making use of moment-
area principles and superposition. For statically determinate beams, the ordinates of 
the moment diagram resulting from the eccentric prestress force are directly propor-
tional to the eccentricity of the steel centroid line with respect to the concrete cen-
troid. For indeterminate beams, eccentricity should be measured to the thrust line 
rather than to the steel centroid (see Ref. 22.1). In either case, the effect of prestress 
can also be regarded in terms of equivalent loads and deflections found using famil-
iar deflection equations.

The downward deflection Δo due to girder self-weight, which is usually uni-
formly distributed, is easily found by conventional means. Thus, the net deflection 
obtained immediately upon prestressing is

	 Δ = −Δpi + Δo	 (22.59)

where the negative sign indicates upward displacement.
Long-term deflections due to prestress occur as that force is gradually reducing 

from Pi to Pe. This can be accounted for in an approximate way by assuming that 
creep occurs under a constant prestress force equal to the average of the initial and 
final values. Corresponding to this assumption, the total deflection resulting from 
prestress alone is

	 Δ = −Δpe − ​​ 
Δpi + Δpe

 _________ 
2
 ​​  Cc	 (22.60)

where

Δpe = Δpi ​ 
Pe __ 
Pi

 ​

and Cc is set equal to the ultimate creep coefficient Cu for the concrete (see Table 2.2).
The long-term deflection due to self-weight is also increased by creep and can 

be obtained by applying the creep coefficient directly to the instantaneous value. 
Thus, the total member deflection, after losses and creep deflections, when effective 
prestress and self-weight act, is

	 Δ = −Δpe − ​​ 
Δpi + Δpe

 _________ 
2
 ​​  Cc + Δo (1 + Cc)	 (22.61)
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The deflection due to superimposed loads can now be added, with the creep 
coefficient introduced to account for the long-term effect of the sustained loads, to 
obtain the net deflection at full service loading:

	 Δ = −Δpe − ​​ 
Δpi + Δpe

 _________ 
2
 ​​  Cc + (Δo + Δd) (1 + Cc) + Δl	 (22.62)

where Δd and Δl are the immediate deflections due to superimposed dead and live 
loads, respectively.

The selection of section properties for the calculation of deflections is depend-
ent upon the cracking in the section. Table  22.4 defines the appropriate section 
properties and deflection calculation methodology for Class U, T, and C members 
(Refs. 22.1, 22.22, and 22.23). Bilinear behavior in Table 22.4 implies that deflec-
tions based on loads up to the cracking moment are based on the gross section, and 
deflections on loads greater than the cracking load are based on the effective cracked 
section properties rather than the modified properties used for reinforced concrete 
(Ref. 22.8).

Class

Condition U T C

Assumed behavior Uncracked Transition between  
cracked and uncracked

Cracked

Deflection calculation basis Gross section Cracked section— 
bilinear behavior

Cracked section— 
bilinear behavior

TABLE 22.4
Deflection and crack width requirements for prestressed  
concrete members

	EXAMPLE 22.8	 Long-term deflections.  The 40-ft simply supported T beam shown in Fig.  22.30 is pre-
stressed with a force of 314 kips, using a parabolic tendon with an eccentricity of 3 in. above 
the concrete centroid at the supports and 7.9 in. below the centroid at midspan. After 
time-dependent losses have occurred, this prestress is reduced to 267 kips. In addition to its 
own weight of 330 lb∕ft, the girder must carry a short-term superimposed live load of 
900  lb∕ft. Estimate the deflection at all critical stages of loading. The creep coefficient 
Cc = 2.0, Ec = 4 × 106 psi, and modulus of rupture = 530 psi.

Solution.  It is easily confirmed that the stress in the bottom fiber when the beam carries 
the maximum load to be considered is 80 psi compression, meeting the requirements for a 
Class U member. All deflection calculations can, therefore, be based on the moment of inertia 
of the gross concrete section Ic = 15,800 in4. It is convenient to calculate the deflection due 
to prestress and that due to girder load separately, superimposing the results later. For the 
eccentricities of the tendon profile shown in Fig.  22.30b, the application of Pi  =  314 kips 
causes the moments shown in Fig.  22.30c. Applying the second moment-area theorem by 
taking moments of the M∕EI diagram between midspan and the support, about the support, 
produces the vertical displacement between those two points as follows:

Δpi = ​ 
−​( 3.42 × 106 × 240 × ​  2 _ 3 ​ × 240 × ​  5 _ 8 ​ )​ + (0.942 × 106 × 240 × 120)

       _______________________________________________________    
4 × 106 × 15,800

 ​  = −0.87 in.
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FIGURE 22.30
T beam of Example 22.8: (a) cross section; (b) tendon profile; and (c) moment from initial prestressing force (in-lb).

(b )

(c )

(a )

Centroid

Parabola

40′

Parabolic
tendon Centroid

7.9″

3″ 3″

10″

8″

16″
24″

20″

10″

14″

3.42 × 106

2.48 × 106

0.942 × 106 0.942 × 106

the minus sign indicating upward deflection, or camber, due to initial prestress alone. The 
downward deflection due to the self-weight of the girder is calculated by the well-known 
equation

Δo = ​ 5wℓ4
 ______ 

384EI
 ​ = ​  5 × 330 × 404 × 124

   _________________________   
384 × 12 × 4 × 106 × 15,800

 ​ = +0.30 in.

When these two results are superimposed, the net upward deflection when initial prestress 
and girder load act together is

−Δpi + Δo = −0.87 + 0.30 = −0.57 in.

Shrinkage and creep of the concrete cause a gradual reduction of prestress force from 
Pi = 314 kips to Pe = 267 kips and reduce the bending moment due to prestress proportion-
ately. Concrete creep, however, acts to increase both the upward deflection component  
due to the prestress force and the downward deflection component due to the girder load. 
The net deflection after these changes take place is found using Eq. (22.60), with 
Δpe = −0.87 × 267∕314 = −0.74 in.:

Δ = −0.74 − ​ 0.87 + 0.74  __________ 
2
 ​  × 2.0 + 0.30(1 + 2.0)

= −0.74 − 1.61 + 0.90 = −1.45 in.

In spite of prestress loss, the upward deflection is considerably larger than before. Finally, 
as the 900 lb∕ft short-term superimposed load is applied, the net deflection is

Δ = −1.45 + 0.30 ​( ​ 900 ____ 
330

 ​ )​ = −0.63 in.

Thus, a net upward deflection of about 1∕750 times the span is obtained when the member 
carries its full superimposed load.
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	 22.18	 CRACK CONTROL FOR CLASS C FLEXURAL MEMBERS

The service level stress limitations for Class U and T flexural members are sufficient 
to control cracking at service loads. Class C flexural members must satisfy the crack 
control provisions for ordinary reinforced concrete members, modified by ACI Code 
24.3. These requirements take the form of limitations on tendon spacing and on the 
change in stress in the prestressing tendon under service load.

For Class C prestressed flexural members not subjected to fatigue or aggressive 
exposure, the spacing of bonded reinforcement nearest the extreme tension face may 
not exceed that given for nonprestressed concrete in Section 7.3. Aggressive condi-
tions occur where the tendons may be exposed to chemical attack and include sea-
water and corrosive industrial environments. In these situations, the designer should 
increase the concrete cover or reduce the tensile stresses, based on professional 
judgment, commensurate with the exposure risk.

The spacing requirements for reinforcement in Class C members may be sat-
isfied by using nonprestressed bonded tendons. The spacing between bonded ten-
dons, however, may not exceed two-thirds of the maximum spacing for nonprestressed 
reinforcement given in Eq. (7.3). When both conventional reinforcement and bonded 
tendons are used to meet the spacing requirements, the spacing between a tendon 
and a bar may not exceed five-sixths of that permitted in Eq. (7.3). When applying  
Eq. (7.3), Δfps is substituted for fs, where Δfps is the difference between the tendon 
stress at service loads based on a cracked section and the decompression stress fdc, 
which is equal to the stress in the tendon when concrete stress at the level of the 
tendon is zero. ACI Code 24.3.2.2 permits fdc to be taken as the effective prestress 
fpe. The magnitude of Δfps is limited to a maximum of 36 ksi. When Δfps is less than 
20 ksi, the reduced spacing requirements need not be applied. If the effective depth 
of the member exceeds 36 in., additional skin reinforcement along the sides of the 
member web, as described in Section 7.3, is required to prevent excessive surface 
crack widths above the main flexural reinforcement.
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Problems
	22.1.	 A rectangular concrete beam with width b = 11 in. and total depth h = 28 in. 

is post-tensioned using a single parabolic tendon with an eccentricity of 
7.8 in. at midspan and 0 in. at the simple supports. The initial prestress force 
Pi = 336 kips, and the effectiveness ratio R = 0.84. The member is to carry 
superimposed dead and live loads of 300 and 1000 lb∕ft, respectively,  
uniformly distributed over the 40 ft span. Specified concrete strength  
​f​c​ ′​ = 5000 psi, and at the time of transfer ​f​ci​ ′ ​ = 4000 psi. Determine the flex-
ural stress distributions in the concrete at midspan (a) for initial conditions 
before application of superimposed load and (b) at full service load. Compare 
with the ACI limit stresses for Class U members.

	22.2.	 A pretensioned prestressed beam has a rectangular cross section of 6 in. width 
and 20 in. total depth. It is built using normal-density concrete with a spec-
ified strength ​f​c​ ′​ = 4000 psi and a strength at transfer of ​f​ci​ ′ ​ = 3000 psi. Stress 
limits are as follows: fti  =  164 psi, fci  =  −1800 psi, fts  =  474 psi, and 
fcs = −1800 psi. The effectiveness ratio R may be assumed equal to 0.80. For 
these conditions, find the initial prestress force Pi and eccentricity e to max-
imize the superimposed load moment Md  +  Ml that can be carried without 
exceeding the stress limits. What uniformly distributed load can be carried 
on a 30 ft simple span? What tendon profile would you recommend?

	22.3.	 A 24 in. deep, 8 ft wide, 70 ft long double T beam carries a girder weight 
of 420 plf, a sustained dead load of 10 psf, and superimposed live load of 
30  psf. It is prestressed with twelve ​ 1 _ 2 ​ in. diameter 270 ksi low-relaxation 
strands with a midspan eccentricity of 12.3 in. and an end eccentricity of 
5.0  in. Section properties are Ac = 401 in2, Ig = 20,985 in4, yb = 17.15 in., 
yt = 6.85 in., and hf = 2 in. Concrete strength is 5000 psi, ​​f​ci​ ′ ​ = 3500 psi, 
and R = 0.80. Determine the class of the beam.

	22.4.	 Determine if the strength of the double T beam in Problem 22.3 is adequate.
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	22.5.	 The hollow core section shown in Fig. P22.5 is prestressed with four ​ 1 _ 2 ​ in. 
diameter, 270 ksi low-relaxation strands and is simply supported on masonry 
walls with a span length of 20 ft, center to center of the supports. In addi-
tion to its self-weight, the section carries a superimposed live load of 
225 psf. Material properties are ​f​c​ ′​ = 5000 psi and ​f​ci​ ′ ​ = 3500 psi. Determine  
(a) if service load stresses in the section are suitable for a Class U flexural 
member using R = 0.82 and (b) if the section has sufficient capacity for the 
specified loads.

FIGURE P22.5

A
I

bw
c2
S1
S2

Self-weight

=
=
=
=
=
=
=

154 in2

1224.5 in4

10.5 in.
3.89 in.
297.9 in3

314.8 in3

53.5 psf

Section Properties

11/2″
11/2″

11/4″
36″

8″1″

11/2″
41/4″

51/4″

	22.6.	 For the beam in Problem 22.5, make a detailed computation of the losses in 
the prestressing force. Compare your results to the assumed value of R = 0.82.

	22.7.	 Establish the required spacing of No. 3 (No. 10) stirrups at a beam cross 
section subject to factored load shear Vu of 35.55 kips and moment Mu of 
474 ft-kips. Web width bw = 5 in., effective depth d = 24 in., and total depth 
h = 30 in. The concrete shear contribution may be based on the approximate 
relationship of Eq. (22.46). Use fy  =  60,000 psi for stirrup steel, and take  
​f​c​ ′​ = 5000 psi.

	22.8.	 The concrete T beam shown in Fig. P22.8 is post-tensioned at an initial force 
Pi = 229 kips, which reduces after 1 year to an effective value Pe = 183 kips. 
In addition to its own weight, the beam carries a superimposed short-term 
live load of 21.5 kips at midspan. Using the approximate method described 
in Section 22.17, find (a) the initial deflection of the unloaded girder and  
(b) the deflection at the age of 1 year of the loaded girder. The following 
data are given: Ac = 450 in2, c1 = 8 in., Ic = 24,600 in4, Ec = 3,500,000 psi, 
Cc = 2.5.

FIGURE P22.8
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	 23.1	 INTRODUCTION

Most concrete slabs are designed for moments found by the methods described in 
Chapters 12 and 13. These methods are based essentially upon elastic theory. On the 
other hand, reinforcement for slabs is calculated by strength methods that account for 
the actual inelastic behavior of members at the factored load stage. A correspond-
ing contradiction exists in the process by which beams and frames are analyzed and 
designed, as was discussed in Chapter 11, and the concept of limit, or plastic, analysis 
of reinforced concrete was introduced. Limit analysis not only eliminates the incon-
sistency of combining elastic analysis with inelastic design but also accounts for the 
reserve strength characteristic of most reinforced concrete structures and permits, 
within limits, an arbitrary readjustment of moments found by elastic analysis to arrive 
at design moments that permit more practical reinforcing arrangements.

For slabs, there is still another good reason for interest in limit analysis. The 
direct design and equivalent frame methods are restricted in important ways. Slab 
panels must be square or rectangular. They must be supported along two opposite 
sides (one-way slabs), two pairs of opposite sides (two-way edge-supported slabs), 
or by a fairly regular array of columns (flat plates and related forms). Loads must 
be uniformly distributed, at least within the bounds of any single panel. There 
can be no large openings. But in practice, many slabs do not meet these restric-
tions. Solutions are needed, for example, for round or triangular slabs, slabs with 
large openings, slabs supported on two or three edges only, and slabs carrying 
concentrated loads. Limit analysis provides a powerful and versatile tool for treating 
such problems.

Full plastic analysis of a continuous reinforced concrete beam or frame is 
computationally intensive because of the need to calculate the rotation requirement 
at all plastic hinges and to check rotation capacity at each hinge to ensure that it is 
adequate. Consequently, for beams and frames, the very simplified approach to 
plastic moment redistribution of ACI Code 6.6.5 is used. However, for slabs, which 
typically have tensile reinforcement ratios much below the balanced value and con-
sequently have large rotation capacity, it can be safely assumed that the necessary 
ductility is present. Practical methods for the plastic analysis of slabs are thus 
possible and have been developed. Yield line theory, presented in this chapter, is 
one of these. Although the ACI Code contains no specific provisions for limit or 
plastic analysis of slabs, ACI Code 1.10 permits use of “any system of design or 
construction,” the adequacy of which has been shown by successful use, analysis, 
or tests, and ACI Commentary 8.2.1 refers specifically to yield line analysis as an 
acceptable approach.

Yield Line Analysis for Slabs23
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Yield line analysis for slabs was first proposed by Ingerslev (Ref. 23.1) and was 
greatly extended by Johansen (Refs. 23.2 and 23.3). Early publications were mainly 
in Danish, and it was not until Hognestad’s English language summary (Ref. 23.4) 
of Johansen’s work that the method received wide attention. Since that time, a num-
ber of important publications on the method have appeared (Refs. 23.5 through 23.15). 
A particularly useful and comprehensive treatment is found in Ref. 23.15.

The plastic hinge was introduced in Section 11.9 as a location along a member 
in a continuous beam or frame at which, upon overloading, there would be large 
inelastic rotation at essentially a constant resisting moment. For slabs, the corre-
sponding mechanism is the yield line. For the overloaded slab, the resisting moment 
per unit length measured along a yield line is constant as inelastic rotation occurs; 
the yield line serves as an axis of rotation for the slab segment.

Figure 23.1a shows a simply supported, uniformly loaded reinforced concrete 
slab. It is assumed to be underreinforced (as are almost all slabs), with ρ  <  ρmax. 
The elastic moment diagram is shown in Fig. 23.1b. As the load is increased, when 
the applied moment becomes equal to the flexural capacity of the slab cross section, 
the tensile steel starts to yield along the transverse line of maximum moment.

Upon yielding, the curvature of the slab at the yielding section increases sharply, 
and deflection increases disproportionately. The elastic curvatures along the slab span 
are small compared with the curvature resulting from plastic deformation at the yield 
line, and it is acceptable to consider that the slab segments between the yield line 
and supports remain rigid, with all the curvature occurring at the yield line, as shown 
in Fig. 23.1c. The “hinge” that forms at the yield line rotates with essentially constant 
resistance, according to the relation shown earlier in Fig. 11.13a. The resistance per 
unit width of slab is the nominal flexural strength of the slab; that is, mp = mn, where 
mn is calculated by the usual equations. For design purposes, mp would be taken equal 
to ϕmn, with ϕ typically equal to 0.90, since ρ is well below ρmax for most slabs.

FIGURE 23.1
Simply supported, uniformly 
loaded one-way slab.
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(b)
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For a statically determinate slab like that in Fig.  23.1, the formation of one 
yield line results in collapse. A “mechanism” forms; that is, the segments of the slab 
between the hinge and the supports are able to move without an increase in load. 
Indeterminate structures, however, can usually sustain their loads without collapse 
even after the formation of one or more yield lines. When it is loaded uniformly, the 
fixed-fixed slab in Fig. 23.2a, assumed here to be equally reinforced for positive and 
negative moments, has an elastic distribution of moments, as shown in Fig.  23.2b. 
As the load is gradually increased, the more highly stressed sections at the support 
start yielding. Rotations occur at the support line hinges, but restraining moments of 
constant value mp continue to act. The load can be increased further, until the moment 
at midspan becomes equal to the moment capacity there, and a third yield line forms, 
as shown in Fig. 23.2c. The slab is now a mechanism, large deflections occur, and 
collapse takes place.

The moment diagram just before failure is shown in Fig. 23.2d. Note that the 
ratio of elastic positive to negative moments of 1:2 no longer holds. Due to inelastic 
deformation, the ratio of these moments just before collapse is 1:1 for this particular 
structure. Redistribution of moments was discussed earlier in Section 11.9, and it 
was pointed out that the moment ratios at the collapse stage depend upon the rein-
forcement provided, not upon the results of elastic analysis.

FIGURE 23.2
Fixed-end, uniformly loaded 
one-way slab.

–M

+M = (–M)1
2

(a)

(b)

Negative yield line

Positive yield line

(c)

Mp

Mp

(d)

www.konkur.in

Telegram: @uni_k



YIELD LINE ANALYSIS FOR SLABS      763

	 23.2	 UPPER AND LOWER BOUND THEOREMS

Plastic analysis methods such as the yield line theory derive from the general theory of 
structural plasticity, which states that the collapse load of a structure lies between two 
limits, an upper bound and a lower bound of the true collapse load. These limits can be 
found by well-established methods. A full solution by the theory of plasticity would 
attempt to make the lower and upper bounds converge to a single correct solution.

The lower bound theorem and the upper bound theorem, when applied to slabs, 
can be stated as follows:

Lower bound theorem: If, for a given external load, it is possible to find a distribution 
of moments that satisfies equilibrium requirements, with the moment not exceeding the 
yield moment at any location, and if the boundary conditions are satisfied, then the 
given load is a lower bound of the true carrying capacity.

Upper bound theorem: If, for a small increment of displacement, the internal work 
done by the slab, assuming that the moment at every plastic hinge is equal to the yield 
moment and that boundary conditions are satisfied, is equal to the external work done 
by the given load for that same small increment of displacement, then that load is an 
upper bound of the true carrying capacity.

If the lower bound conditions are satisfied, the slab can certainly carry the given 
load, although a higher load may be carried if internal redistributions of moment 
occur. If the upper bound conditions are satisfied, a load greater than the given load 
will certainly cause failure, although a lower load may produce collapse if the selected 
failure mechanism is incorrect in any sense. When the upper and lower bound solu-
tions contain the same hinges, forces, and displacements and converge on a single 
solution, that solution is unique and represents the true strength of the structure.

In practice, in the plastic analysis of structures, one works with either the lower 
bound theorem or the upper bound theorem, not both, and precautions are taken to 
ensure that the predicted failure load at least closely approaches the correct value.

The yield line method of analysis for slabs is an upper bound method, and 
consequently, the failure load calculated for a slab with known flexural resistances 
may be higher than the true value. This is certainly a concern, as the designer would 
naturally prefer to be correct, or at least on the safe side. However, procedures can 
be incorporated in yield line analysis to help ensure that the calculated capacity is 
correct. Such procedures are illustrated by the examples in Sections 23.4 and 23.5.

	 23.3	 RULES FOR YIELD LINES

The location and orientation of the yield line were evident for the simple slab in 
Fig. 23.1. Similarly, the yield lines were easily established for the one-way indetermi-
nate slab in Fig. 23.2. For other cases, it is helpful to have a set of guidelines for draw-
ing yield lines and locating axes of rotation. When a slab is on the verge of collapse 
because of the existence of a sufficient number of real or plastic hinges to form a 
mechanism, axes of rotation are located along the lines of support or over point sup-
ports such as columns. The slab segments can be considered to rotate as rigid bodies 
in space about these axes of rotation. The yield line between any two adjacent slab 
segments is a straight line, being the intersection of two essentially plane surfaces. 
Because the yield line (as a line of intersection of two planes) contains all points com-
mon to these two planes, it must contain the point of intersection (if any) of the two 
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axes of rotation, which is also common to the two planes. That is, the yield line (or 
yield line extended) must pass through the point of intersection of the axes of rotation 
of the two adjacent slab segments.

The terms positive yield line and negative yield line are used to distinguish 
between those associated with tension at the bottom and tension at the top of the 
slab, respectively.

Guidelines for establishing axes of rotation and yield lines are summarized as 
follows:

	 1.	 Yield lines are straight lines because they represent the intersection of two planes.
	 2.	 Yield lines represent axes of rotation.
	 3.	 The supported edges of the slab also establish axes of rotation. If the edge is 

fixed, a negative yield line may form, providing constant resistance to rotation. If 
the edge is simply supported, the axis of rotation provides zero restraint.

	 4.	 An axis of rotation passes over any column support. Its orientation depends on 
other considerations.

	 5.	 Yield lines form under concentrated loads, radiating outward from the point of 
application.

	 6.	 A yield line between two slab segments must pass through the point of intersec-
tion of the axes of rotation of the adjacent slab segments.

In Fig. 23.3, which shows a slab simply supported along its four sides, rotation 
of slab segments A and B is about ab and cd, respectively. The yield line ef between 
these two segments is a straight line passing through f, the point of intersection of 
the axes of rotation.

Illustrations are given in Fig.  23.4 of the application of the guidelines to the 
establishment of yield line locations and failure mechanisms for a number of slabs 
with various support conditions. Figure  23.4a shows a slab continuous over parallel 
supports. Axes of rotation are situated along the supports (negative yield lines indicated 
as dashed wavy lines) and near midspan, parallel to the supports (positive yield line 
indicated as solid wavy lines). The particular location of the positive yield line in this 
case and the other cases in Fig. 23.4 depends upon the distribution of loading and the 
reinforcement of the slab. Methods for determining its location are discussed later.

For the continuous slab on nonparallel supports, shown in Fig. 23.4b, the mid-
span yield line (extended) must pass through the intersection of the axes of rotation 
over the supports. In Fig. 23.4c there are axes of rotation over all four simple sup-
ports. Positive yield lines form along the lines of intersection of the rotating segments 
of the slab. A rectangular two-way slab on simple supports is shown in Fig. 23.4d. 
The diagonal yield lines must pass through the corners, while the central yield line 

FIGURE 23.3
Two-way slab with simply 
supported edges.
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FIGURE 23.4
Typical yield line patterns.
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is parallel to the two long sides (axes of rotation along opposite supports intersect 
at infinity in this case).

With this background, the reader should have no difficulty in applying the 
guidelines to the slabs in Fig. 23.4e to g to confirm the general pattern of yield lines 
shown. Additional examples are found in Refs. 23.1 to 23.15.

Once the general pattern of yielding and rotation has been established by apply-
ing the guidelines just stated, the specific location and orientation of the axes of 
rotation and the failure load for the slab can be established by either of two methods. 
The first is referred to as the method of segment equilibrium and is presented in 
Section 23.4. It requires consideration of the equilibrium of the individual slab seg-
ments forming the collapse mechanism and leads to a set of simultaneous equations 
permitting solution for the unknown geometric parameters and for the relation 
between load capacity and resisting moments. The second, the method of virtual 
work, is described in Section 23.5. This method is based on equating the internal 
work done at the plastic hinges with the external work done by the loads as the 
predefined failure mechanism is given a small virtual displacement.

It should be emphasized that either method of yield line analysis is an upper 
bound approach in the sense that the true collapse load will never be higher, but 
may be lower, than the load predicted. For either method, the solution has two 
essential parts: (1) establishing the correct failure pattern and (2) finding the 
geometric parameters that define the exact location and orientation of the yield 
lines and solving for the relation between applied load and resisting moments. 
Either method can be developed in such a way as to lead to the correct solution 
for the mechanism chosen for study, but the true failure load will be found only 
if the correct mechanism has been selected.

For example, the rectangular slab in Fig. 23.5, simply supported along only 
three sides  and free along the fourth, may fail by either of the two mechanisms 
shown. An analysis based on yield pattern a may indicate a slab capacity higher 
than one based on pattern b, or vice versa. It is necessary to investigate all pos-
sible mechanisms for any slab to confirm that the correct solution, giving the 
lowest failure load, has been found.†

† �The importance of this point was underscored by Professor Arne Hillerborg, of Lund Institute of Technology, Sweden, in a letter to the editor 
of the ACI publication Concr. Intl, vol. 13, no. 5, 1991. Professor Hillerborg noted that, in reality, there are two additional yield line patterns 
for a slab such as shown in Fig. 23.5. For a particular set of dimensions and reinforcement, both of these gave a lower failure load than did 
the mechanism shown in Fig. 23.5a.

FIGURE 23.5
Alternative mechanisms for a 
slab supported on three sides.

(a)

Free edge

Fixed supports on
three sides

Yield lines

(b)

Yield lines
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The method of segment equilibrium should not be confused with a true equi-
librium method such as the strip method described in Chapter 24. A true equilibrium 
method is a lower bound method of analysis; that is, it will always give a lower bound 
of the true capacity of the slab.

	 23.4	 ANALYSIS BY SEGMENT EQUILIBRIUM

Once the general pattern of yielding and rotation has been established by applying 
the guidelines of Section 23.3, the location and orientation of axes of rotation and the 
failure load for the slab can be established based on the equilibrium of the various seg-
ments of the slab. Each segment, studied as a free body, must be in equilibrium under 
the action of the applied loads, the moments along the yield lines, and the reactions 
or shear along the support lines. Because the yield moments are principal moments, 
twisting moments are zero along the yield lines, and in most cases the shearing forces 
are also zero. Only the unit moment m generally is considered in writing equilibrium 
equations.

	EXAMPLE 23.1	 Segment equilibrium analysis of one-way slab.  The method is demonstrated first with 
respect to the one-way, uniformly loaded, continuous slab of Fig. 23.6a. The slab has a 10 ft 
span and is reinforced to provide a resistance to positive bending ϕmn = 5.0 ft-kips∕ft through 
the span. In addition, negative steel over the supports provides moment capacities of  
5.0 ft-kips∕ft at A and 7.5 ft-kips∕ft at C. Determine the load capacity of the slab.

Solution.  The number of equilibrium equations required depends upon the number of 
unknowns. One unknown is always the relation between the resisting moments of the slab 
and the load. Other unknowns are needed to define the locations of yield lines. In the present 
instance, one additional equation suffices to define the distance of the yield line from the 

FIGURE 23.6
Analysis of a one-way slab 
by segment equilibrium 
equations.
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If a slab is reinforced in orthogonal directions so that the resisting moment is 
the same in these two directions, the moment capacity of the slab is the same along 
any other line, regardless of direction. Such a slab is said to be isotropically rein-
forced. If, however, the strengths are different in two perpendicular directions, the 
slab is called orthogonally anisotropic, or simply orthotropic. Only isotropic slabs 
are discussed in this section. Orthotropic reinforcement, which is very common in 
practice, is discussed in Section 23.6.

It is convenient in yield line analysis to represent moments with vectors. The 
standard convention, in which the moment acts in a clockwise direction when viewed 
along the vector arrow, is followed. Treatment of moments as vector quantities is 
illustrated by the following example.

supports. Taking the left segment of the slab as a free body and writing the equation for 
moment equilibrium about the left support line (see Fig. 23.6b) lead to

	​ 
qx2

 ___ 
2
 ​  − 10.0 = 0	 (a)

Similarly, for the right slab segment,

	​ 
q
 __ 

2
 ​ (10 − x)2 − 12.5 = 0	 (b)

Solving Eqs. (a) and (b) simultaneously for q and x results in

q = 0.89 kip∕ft2    x = 4.75 ft

	EXAMPLE 23.2	 Segment equilibrium analysis of square slab.  A square slab is simply supported along all 
sides and is to be isotropically reinforced. Determine the resisting moment m  =  ϕmn per 
linear foot required just to sustain a uniformly distributed factored load of q psf.

Solution.  Conditions of symmetry indicate the yield line pattern shown in Fig.  23.7a. 
Considering the moment equilibrium of any one of the identical slab segments about its 
support (see Fig. 23.7b), one obtains

​ 
qℓ2

 ___ 
4
 ​  ​ ℓ __ 

6
 ​ − 2 ​ mℓ ___ 

​√
_
 2​
 ​ ​  1 ___ 
​√

_
 2​
 ​ = 0

                   m = ​ 
qℓ2

 ___ 
24

 ​

FIGURE 23.7
Analysis of a square two-way 
slab by segment equilibrium 
equations.
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In both examples just given, the resisting moment was constant along any par-
ticular yield line; that is, the reinforcing bars were of constant diameter and equally 
spaced along a given yield line. On the other hand, it is recalled that, by the elastic 
methods of slab analysis presented in Chapter 13, reinforcing bars generally have a 
different spacing and may be of different diameter in middle strips compared with 
column or edge strips. A slab designed by elastic methods, leading to such variations, 
can easily be analyzed for strength by the yield line method. It is merely necessary 
to subdivide a yield line into its component parts, within any one of which the resist-
ing moment per unit length of hinge is constant. Either the equilibrium equations of 
this section or the work equations of Section 23.5 can be modified in this way.

	 23.5	 ANALYSIS BY VIRTUAL WORK

Alternative to the method of Section 23.4 is a method of analysis using the princi-
ple of virtual work. Since the moments and loads are in equilibrium when the yield 
line pattern has formed, an infinitesimal increase in load will cause the structure to 
deflect further. The external work done by the loads to cause a small arbitrary virtual 
deflection must equal the internal work done as the slab rotates at the yield lines to 
accommodate this deflection. The slab is therefore given a virtual displacement, and 
the corresponding rotations at the various yield lines can be calculated. By equating 
internal and external work, the relation between the applied loads and the resisting 
moments of the slab is obtained. Elastic rotations and deflections within the slab 
element are not considered when writing the work equations, as they are very small 
compared with the plastic deformations.

	 a.	 External Work Done by Loads

An external load acting on a slab segment, as a small virtual displacement is 
imposed, does work equal to the product of its constant magnitude and the distance 
through which the point of application of the load moves. If the load is distributed 
over a length or an area, rather than concentrated, the work can be calculated as 
the product of the total load and the displacement of the point of application of its 
resultant.

Figure 23.8 illustrates the basis for external work calculation for several types 
of loads. If a square slab carrying a single concentrated load at its center (Fig. 23.8a) 
is given a virtual displacement defined by a unit value under the load, the external 
work is

	 We = P × 1	 (a)

If the slab shown in Fig. 23.8b, supported along three sides and free along the fourth, 
is loaded with a line load w per unit length along the free edge, and if that edge is given 
a virtual displacement having unit value along the central part, the external work is

	 We = (2wa) × ​ 1 __ 
2
 ​ + wb = w (a + b)	 (b)

When a distributed load q per unit area acts on a triangular segment defined by a hinge 
and yield lines, such as Fig. 23.8c,

	 We = ​ 
qab

 ____ 
2
 ​  × ​ 1 __ 

3
 ​ = ​ 

qab
 ____ 

6
 ​	  (c)
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while for the rectangular slab segment shown in Fig. 23.8d, carrying a distributed load 
q per unit area, the external work is

	 We = ​ 
qab

 ____ 
2
 ​	  (d)

More complicated trapezoidal shapes may always be subdivided into component tri-
angles and rectangles. The total external work is then calculated by summing the work 
done by loads on the individual parts of the failure mechanism, with all displacements 
keyed to a unit value assigned somewhere in the system. There is no difficulty in com-
bining the work done by concentrated loads, line loads, and distributed loads, if these 
act in combination.

	 b.	 Internal Work Done by Resisting Moments

The internal work done during the assigned virtual displacement is found by summing 
the products of yield moment m per unit length of hinge times the plastic rotation θ 
at the respective yield lines, consistent with the virtual displacement. If the resisting 

FIGURE 23.8
External work basis for 
various types of loads.
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moment m is constant along a yield line of length ℓ, and if a rotation θ is experienced, 
the internal work is

	 Wi = mℓθ	 (e)

If the resisting moment varies, as would be the case if bar size or spacing were not 
constant along the yield line, the yield line is divided into n segments, within each one 
of which the moment is constant. The internal work is then

	 Wi = (m1ℓ1 + m2ℓ2 + … + mnℓn)θ	 (     f )

For the entire system, the total internal work done is the sum of the contributions from 
all yield lines. In all cases, the internal work contributed is positive, regardless of the 
sign of m, because the rotation is in the same direction as the moment. External work, 
on the other hand, may be either positive or negative, depending on the direction of the 
displacement of the point of application of the force resultant.

	EXAMPLE 23.3	 Virtual work analysis of one-way slab.  Determine the load capacity of the one-way uni-
formly loaded continuous slab shown in Fig.  23.9, using the method of virtual work. The 
resisting moments of the slab are 5.0, 5.0, and 7.5 ft-kips∕ft at A, B, and C, respectively.

Solution.  A unit deflection is given to the slab at B. Then the external work done by the 
load is the sum of the loads times their displacements and is equal to

​ 
qx

 ___ 
2
 ​ + ​ 

q
 __ 

2
 ​ (10 − x)

The rotations at the hinges are calculated in terms of the unit deflection (Fig. 23.9) and are

θA = θB1 = ​ 1 __ x ​    θB2 = θC = ​  1 ______ 
10 − x

 ​

The internal work is the sum of the moments times their corresponding rotation angles:

5 × ​ 1 __ x ​ × 2 + 5 × ​  1 ______ 
10 − x

 ​ + 7.5 × ​  1 ______ 
10 − x

 ​

FIGURE 23.9
Virtual work analysis of  
one-way slab.

10–x

1

10′
x

B
A

B1

A C

B2

C

q

θ θ

θθ

www.konkur.in

Telegram: @uni_k



772      DESIGN OF CONCRETE STRUCTURES  Chapter 23

In many cases, particularly those with yield lines established by several unknown 
dimensions (such as Fig. 23.4f    ), direct solution by virtual work would become quite 
tedious. The ordinary derivatives in Example 23.3 would be replaced by several partial 
derivatives, producing a set of equations to be solved simultaneously. In such cases it 
is often more convenient to select an arbitrary succession of possible yield line loca-
tions, solve the resulting mechanisms for the unknown load (or unknown moment), 
and determine the correct minimum load (or maximum moment) by trial.

Equating the external and internal work gives

​ 
qx

 ___ 
2
 ​ + 5q − ​ 

qx
 ___ 

2
 ​ = ​ 10 ___ x ​ + ​  5 ______ 

10 − x
 ​ + ​  7.5 ______ 

10 − x
 ​

	 5q = ​ 10 ___ x ​ + ​  25 ________ 
2(10 − x)

 ​

	 q = ​ 2 __ x ​ + ​  5 ________ 
2(10 − x)

 ​

To determine the minimum value of q, this expression is differentiated with respect to x and set 
equal to zero:

​ 
dq

 ___ 
dx

 ​ = − ​ 2 __ 
x2 ​ + ​  5 _________ 

2(10 − x)2 ​ = 0

from which

x = 4.75 ft

Substituting this value in the preceding expression for q, one obtains

q = 0.89 kips∕ft2

as before.

	EXAMPLE 23.4	 Virtual work analysis of rectangular slab.  The two-way slab shown in Fig.  23.10 is 
simply supported on all four sides and carries a uniformly distributed load of q psf. Determine 
the required moment resistance for the slab, which is to be isotropically reinforced.

Solution.  Positive yield lines form in the pattern shown in Fig.  23.10a, with the 
dimension a unknown. The correct dimension a will be such as to maximize the moment 
resistance required to support the load q. The values of a and m are found by trial.

In Fig. 23.10a the length of the diagonal yield line is ​​√
_______

 25 + a2 ​​. From similar triangles,

b = 5 ​​ ​
√

_______
 25 + a2 ​ _________ a ​​     c = a ​​ ​

√
_______

 25 + a2 ​ _________ 
5
 ​​

Then the rotation of the plastic hinge at the diagonal yield line corresponding to a unit deflec-
tion at the center of the slab (see Fig. 23.10b) is

θ1 = ​ 1 __ 
b
 ​ + ​ 1 __ c ​ = ​​  a __________  

5​√
_______

 25 + a2 ​
 ​​ + ​​  5 __________  

a​√
_______

 25 + a2 ​
 ​​ = ​​  1 _________ 

​√
_______

 25 + a2 ​
 ​​ ​( ​ a __ 

5
 ​ + ​ 5 __ a ​ )​

The rotation of the yield line parallel to the long edges of the slab (see Fig. 23.10c) is

θ2 = ​ 1 __ 
5
 ​ + ​ 1 __ 

5
 ​ = 0.40
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FIGURE 23.10
Virtual work analysis for 
rectangular two-way slab.
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For a first trial, let a = 6 ft. Then the length of the diagonal yield line is

​​√
_______

 25 + 36​​ = 7.81 ft

The rotation at the diagonal yield line is

θ1 = ​  1 ____ 
7.81

 ​ ​( ​ 6 __ 
5
 ​ + ​ 5 __ 

6
 ​ )​ = 0.261

At the central yield line, it is θ2 = 0.40. The internal work done as the incremental deflection 
is applied is

Wi = (m × 7.81 × 0.261 × 4) + (m × 8 × 0.40) = 11.36m

The external work done during the same deflection is

We = ​( 10 × 6 × ​ 1 _ 2 ​ q × ​ 1 _ 3 ​ × 2 )​ + ​( 8 × 5q × ​ 1 _ 2 ​ × 2 )​ + ​( 12 × 5 × ​ 1 _ 2 ​ q × ​ 1 _ 3 ​ × 2 )​ = 80q

Equating Wi and We, one obtains

m = ​ 
80q

 _____ 
11.36

 ​ = 7.05q

Successive trials for different values of a result in the following data:

a  Wi  We m

6.0 11.36m 80.0q 7.05q

6.5 11.08m 78.4q 7.08q

7.0 10.87m 76.6q 7.04q

7.5 10.69m 75.0q 7.02q

It is evident that the yield line pattern defined by a = 6.5 ft is critical. The required resisting 
moment for the given slab is 7.08q.
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	 23.6	 ORTHOTROPIC REINFORCEMENT AND SKEWED  
YIELD LINES

Generally slab reinforcement is placed orthogonally, that is, in two perpendicular 
directions. The same reinforcement is often provided in each direction, but the effec-
tive depths are different. In many practical cases, economical designs are obtained 
using reinforcement having different bar areas or different spacings in each direction. 
In such cases, the slab has different moment capacities in the two orthogonal direc-
tions and is said to be orthogonally anisotropic, or simply orthotropic.

Often yield lines form at an angle with the directions established by the rein-
forcement; this was so in many of the examples considered earlier. For yield line 
analysis, it is necessary to calculate the resisting moment, per unit length, along such 
skewed yield lines. This requires calculation of the contribution to resistance from 
each of the two sets of bars.

Figure 23.11a shows an orthogonal grid of reinforcement, with angle α between 
the yield line and the X direction bars. Bars in the X direction are at spacing v and 
have moment resistance my per unit length about the Y axis, while bars in the Y 
direction are at spacing u and have moment resistance mx per unit length about the 
X axis. The resisting moment per unit length for the bars in the Y and X directions 
are determined separately, with reference to Fig. 23.11b and c, respectively.

For the Y direction bars, the resisting moment per bar about the X axis is mxu, 
and the component of that resistance about the α axis is mxu cos α. The resisting moment 
per unit length along the α axis provided by the Y direction bars is therefore

	 mαy = ​ 
mxu cos α

 _________ 
u∕cos α

 ​  = mx cos2 α	 (a)

FIGURE 23.11
Yield line skewed with 
orthotropic reinforcement:  
(a) orthogonal grid and yield 
line; (b) Y direction bars; and 
(c) X direction bars.
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For the bars in the X direction, the resisting moment per bar about the Y axis is my v, 
and the component of that resistance about the α axis is my v sin α. Thus, the resisting 
moment per unit length along the α axis provided by the X direction bars is

	 mαy = ​​ 
myv  sin α

 ________ 
v∕sin α

 ​​  = my  sin2 α	 (b)

Thus, for the combined sets of bars, the resisting moment per unit length measured 
along the α axis is given by the sum of the resistances from Eqs. (a) and (b):

	 mα = mxcos2 α + mysin2 α	 (23.1)

For the special case where mx = my = m, with the same reinforcement provided in each 
direction,
	 mα = m​( cos2 α + sin2 α )​ = m	 (23.2)

The slab is said to be isotropically reinforced, with the same resistance per unit length 
regardless of the orientation of the yield line.

The analysis just presented neglects any consideration of strain compatibility 
along the yield line and assumes that the displacements at the level of the steel 
during yielding, which are essentially perpendicular to the yield line, are sufficient 
to produce yielding in both sets of bars. This is reasonably in accordance with test 
data, except for values of α close to 0 to 90°. For such cases, it would be conserv-
ative to neglect the contribution of the bars nearly parallel to the yield line.

It has been shown that the analysis of an orthotropic slab can be simplified to 
that of a related isotropic slab, referred to as the affine slab, provided that the ratio 
of negative to positive reinforcement areas is the same in both directions. The hori-
zontal dimensions and slab loads must be modified to permit this transformation. 
Details are found in Refs. 23.1 to 23.5.

	EXAMPLE 23.5	 Resisting moment along a skewed yield line.  The balcony slab in Fig.  23.12 has fixed 
supports along two adjacent sides and is unsupported along the third side. It is reinforced for 
positive bending with No. 5 (No. 16) Grade 60 bars at 10 in. spacing and 5.5 in. effective 

FIGURE 23.12
Skewed yield line example. Y
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	 23.7	 SPECIAL CONDITIONS AT EDGES AND CORNERS

Certain simplifications were made in defining yield line patterns in some of the preced-
ing examples in the vicinity of edges and corners. In some cases, such as Fig. 23.4b 
and f, positive yield lines were shown intersecting an edge at an angle. Actually, at 
a free or simply supported edge, both bending and twisting moments should theo-
retically be zero. The principal stress directions are parallel and perpendicular to the 
edge, and consequently the yield lines should enter an edge perpendicular to it. Tests 
confirm that this is the case, but the yield lines generally turn only quite close to the 
edge, the distance t in Fig. 23.13 being small compared to the dimensions of the slab 
(Ref. 23.4).

Referring to Fig. 23.13, the actual yield line of a can be simplified by extend-
ing the yield line in a straight line to the edge, as in b, if a pair of concentrated 
shearing forces mt is introduced at the corners of the slab segments. The force mt 
acting downward at the acute corner (circled cross) and the force mt acting upward 
at the obtuse corner (circled dot) together are the static equivalent of twisting 
moments and shearing forces near the edge. It is shown in Ref. 23.4 that the magnitude 
of the fictitious shearing forces mt is given by the expression

	 mt = m cot α	 (23.3)

where m is the resisting moment per unit length along the yield line and α is the acute 
angle between the simplified yield line and the edge of the slab.

While the fictitious forces enter the solution by the equilibrium method, the 
virtual work solution is not affected because the net work done by the pair of equal 
and opposite forces moving through the identical virtual displacement is zero.

depth, parallel to the free edge, and No. 4 (No. 13) bars at 10 in. spacing and 5.0 in. effective 
depth perpendicular to that edge. Concrete strength and steel yield stress are 4000 and 60,000 psi, 
respectively. One possible failure mechanism includes a positive yield line at 30° with the long 
edge, as shown. Find the total resisting moment along the positive yield line provided by the 
two sets of bars.

Solution.  It is easily confirmed that the resisting moment about the X axis provided by the 
Y direction bars is mx = 5.21 ft-kips∕ft, and the resisting moment about the Y axis provided 
by the X direction bars is my = 8.70 ft-kips∕ft (both with ϕ = 0.90 included). The yield line 
makes an angle of 60° with the X axis bars. With cos α  =  0.500 and sin α  =  0.866, from 
Eq. (23.1) the resisting moment along the α axis is

mα = 5.21 × 0.5002 + 8.70 × 0.8662 = 7.83 ft-kips∕ft

FIGURE 23.13
Conditions at edge of slab: 
(a) actual yield line and  
(b) simplified yield line. t
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Also, in the preceding examples, it was assumed that yield lines enter the 
corners between the two intersecting sides. An alternative possibility is that the yield 
line forks before it reaches the corner, forming what is known as a corner lever, 
shown in Fig. 23.14a.

If the corner is not held down, the triangular element abc will pivot about the 
axis ab and lift off the supports. The development of such a corner lever is clearly 
shown in Fig.  23.15. The photograph shows a model reinforced concrete slab that 
was tested under uniformly distributed load. The edges were simply supported and 
were not restrained against upward movement. If the corner is held down, a similar 
situation occurs, except that the line ab becomes a yield line. If cracking at the 
corners of such a slab is to be controlled, top steel more or less perpendicular to the 
line ab must be provided. The direction taken by the positive yield lines near  
the corner indicates the desirability of supplementary bottom-slab reinforcement at 
the corners, placed approximately parallel to the line ab (see Section 13.1).

FIGURE 23.14
Corner conditions.
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FIGURE 23.15
Development of corner  
levers in a simply supported, 
uniformly loaded slab.  
(Photograph by Arthur  

H. Nilson.)
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Although yield line patterns with corner levers are generally more critical than 
those without, they are often neglected in yield line analysis. The analysis becomes 
considerably more complicated if the possibility of corner levers is introduced, and 
the error made by neglecting them is usually small.

To illustrate, the uniformly loaded square slab of Example 23.2, when analyzed 
for the assumed yield pattern shown in Fig.  23.7, required a moment capacity of 
qℓ2∕24. The actual yield line pattern at failure is probably as shown in Fig. 23.14b. 
Since two additional parameters m and n have necessarily been introduced to define 
the yield line pattern, a total of three equations of equilibrium is now necessary. 
These equations are obtained by summing moments and vertical forces on the seg-
ments of the slab. Such an analysis results in a required resisting moment of qℓ2∕22, 
an increase of about 9 percent compared with the results of an analysis neglecting 
corner levers. The influence of such corner effects may be considerably larger when 
the corner angle is less than 90°.

	 23.8	 FAN PATTERNS AT CONCENTRATED LOADS

If a concentrated load acts on a reinforced concrete slab at an interior location, away 
from any edge or corner, a negative yield line will form in a more or less circular pat-
tern, as in Fig. 23.16a, with positive yield lines radiating outward from the load point. 
If the positive resisting moment per unit length is m and the negative resisting moment 
m′, the moments per unit length acting along the edges of a single element of the fan, 
having a central angle β and radius r, are as shown in Fig. 23.16b. For small values of 
the angle β, the arc along the negative yield line can be represented as a straight line 
of length rβ.

Figure 23.16c shows the moment resultant obtained by vector addition of the 
positive moments mr acting along the radial edges of the fan segment. The vector 

FIGURE 23.16
Yield fan geometry at 
concentrated load: (a) yield 
fan; (b) moment vectors 
acting on fan segment;  
(c) resultant of positive-
moment vectors; and (d) edge 
view of fan segment.
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sum is equal to mrβ, acting along the length rβ, and the resultant positive moment, 
per unit length, is therefore m. This acts in the same direction as the negative moment 
m′, as shown in Fig. 23.16d. Figure 23.16d also shows the fractional part of the total 
load P  that acts on the fan segment.

Taking moments about the axis a − a gives

(m + m′ )rβ − ​ 
βPr

 ____ 
2π

 ​ = 0

from which
	 P = 2π(m + m′)	 (23.4)

The collapse load P is seen to be independent of the fan radius r. Thus, with only a 
concentrated load acting, a complete fan of any radius could form with no change in 
collapse load.

It follows that Eq. (23.4) also gives the collapse load for a fixed-edge slab of 
any shape, carrying only a concentrated load P. The only necessary condition is that 
the boundary must be capable of a restraining moment equal to m′ at all points. 
Finally, Eq. (23.4) is useful in establishing whether flexural failure will occur before 
a punching shear failure under a concentrated load.

Other load cases of practical interest, including a concentrated load near or at 
a free edge, and a concentrated corner load, are treated in Ref. 23.5. Loads distrib-
uted over small areas and load combinations are discussed in Ref. 23.12.

	 23.9	 LIMITATIONS OF YIELD LINE THEORY

The usefulness of yield line theory should be apparent from the preceding sec-
tions. In general, elastic solutions are available only for restricted conditions, usu-
ally uniformly loaded rectangular slabs and slab systems. They do not account for 
the effects of inelastic action, except empirically. By yield line analysis, a rational 
determination of flexural strength may be had for slabs of any shape, supported in 
a variety of ways, with concentrated loads as well as distributed and partially dis-
tributed loads. The effects of holes of any size can be included. It is thus seen to be 
a powerful analytical tool for the structural engineer and has been suggested as an 
approach for the assessment of structures against progressive collapse (Ref. 23.16). 
By removing a column, yield line analyses provide an indication of the residual 
structural capacity.

On the other hand, as an upper bound method, it will predict a collapse load 
that may be greater than the true collapse load. The actual capacity will be less than 
predicted if the selected mechanism is not the controlling one or if the specific 
locations of yield lines are not exactly correct. Most engineers would prefer an 
approach that would be in error, if at all, on the safe side. In this respect, the strip 
method of Chapter 24 is distinctly superior.

Beyond this, it should be evident that yield line theory provides, in essence, a 
method for determining the capacity of trial designs, arrived at by some other means, 
rather than for determining the amount and spacing of reinforcement. It is not, strictly 
speaking, a design method. To illustrate, yield line theory provides no inducement 
for the designer to place steel at anything other than a uniform lateral spacing along 
a yield line. It is necessary to consider the results of elastic analysis of a flat plate, 
for example, to recognize that reinforcement in that case should be placed in strong 
bands across the columns.
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In applying yield line analysis to slabs, it must be remembered that the analy-
sis is predicated upon available rotation capacity at the yield lines. If the slab rein-
forcement happens to correspond closely to the elastic distribution of moments in 
the slab, little rotation is required. If, on the other hand, there is a marked difference, 
it is possible that the required rotation will exceed the available rotation capacity, in 
which case the slab will fail prematurely. However, in general, because slabs are 
typically rather lightly reinforced, they will have adequate rotation capacity to attain 
the collapse loads predicted by yield line analysis.

It should also be borne in mind that the yield line analysis focuses entirely on 
the flexural capacity of the slab. It is presumed that earlier failure will not occur due 
to shear or torsion and that cracking and deflections at service load will not be 
excessive. ACI Code 8.2.1 calls attention specifically to the need to meet “all ser-
viceability conditions, including limits on deflections,” and ACI Commentary 8.2.1 
calls attention to the need for “evaluation of the stress conditions around the supports 
in relation to shear and torsion as well as flexure.”
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Problems
	23.1.	 A square slab measuring 10 ft on each side is simply supported on three sides 

and unsupported along the fourth. It is reinforced for positive bending with 
an isotropic mat of steel providing resistance ϕmn of 7000 ft-lb∕ft in each of 
the two principal directions. Determine the uniformly distributed load that 
would cause flexural failure, using the method of virtual work.
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	23.2.	 The triangular slab shown in Fig. P23.2 has fixed supports along the two 
perpendicular edges and is free of any support along the diagonal edge. 
Negative reinforcement perpendicular to the supported edges provides design 
strength ϕmn  =  4  ft-kips∕ft. The slab is reinforced for positive bending by 
an orthogonal grid providing resistance ϕmn  =  2.67  ft-kips∕ft in all direc-
tions. Find the total factored load wu that produces flexural failure. A virtual 
work solution is suggested.

FIGURE P23.2

20′

Fixed

Fixed
Free

10′

	23.3.	 The one-way reinforced concrete slab shown in Fig. P23.3 spans 20 ft. It is 
simply supported at its left edge, fully fixed at its right edge, and free of sup-
port along the two long sides. Reinforcement provides design strength 
ϕmn  =  5  ft-kips∕ft in positive bending and ϕmn  =  7.5  ft-kips∕ft in negative 
bending at the right edge. Using the equilibrium method, find the factored load 
qu uniformly distributed over the surface that would cause flexural failure.

FIGURE P23.3
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	23.4.	 Solve Problem 23.3 using the method of virtual work.
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FIGURE P23.5
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	23.5.	 The triangular slab shown in Fig. P23.5 is to serve as weather protection over 
a loading dock. Support conditions are essentially fixed along AB and BC, 
and AC is a free edge. In addition to self weight, a superimposed dead load 
of 15  psf and service live load of 40 psf must be provided for. Material 
strengths are ​f​c​ ′​ = 4000 psi and fy  =  60,000  psi. Using yield line analysis, 
find the required slab thickness h and find the reinforcement required at 
critical sections. Neglect corner pivots. Use a maximum reinforcement ratio 
of 0.005. Select bar sizes and spacings, and provide a sketch summarizing 
important aspects of the design. Make an approximate, conservative check of 
safety against shear failure for the design. Also include a conservative estimate 
of the deflection near the center of edge AC due to a full live load.
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	23.7.	 The square slab shown in Fig. P23.7 is supported by, and is monolithic with, 
a reinforced concrete wall along the edge CD that provides full fixity, and 
also is supported by a masonry wall along AB that provides a simply sup-
ported line. It is to carry a factored load qu  =  300  psf including its self 
weight. Assuming a uniform 6 in. slab thickness, find the required reinforce-
ment. Include a sketch summarizing details of your design, indicating place-
ment and length of all reinforcing bars. Also check the shear capacity of the 
structure, making whatever assumptions appear reasonable and necessary. 
Use ​f​c​ ′​ = 4000 psi and fy = 60,000 psi.

	23.6.	 The square concrete slab shown in Fig. P23.6 is supported by monolithic 
concrete walls providing full vertical and rotational restraint along two adja-
cent edges, and by a 6 in. diameter steel pipe column, near the outer corner, 
that offers negligible rotational restraint. It is reinforced for positive bending 
by an orthogonal grid of bars parallel to the walls, providing design moment 
capacity ϕmn  =  6.5  ft-kips∕ft in all directions. Negative reinforcement per-
pendicular to the walls and negative bars at the outer corner parallel to the 
slab diagonal provide ϕmn = 8.9 ft-kips∕ft. Neglecting corner pivots, find the 
total factored uniformly distributed load qu that initiates flexural failure. Solu-
tion by the method of virtual work is recommended, with collapse geometry 
established by successive trials. Yield line lengths and perpendicular dis-
tances are most easily found graphically. Include a check of the shear capac-
ity of the slab, using approximate methods. The steel column is capped with 
a 12 × 12 in. plate providing bearing.

FIGURE P23.6
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	 23.9.	 Using virtual work and yield line theory, compute the flexural collapse load 
of the one-way slab in Example 12.1. Assume that all straight bars are used, 
according to Fig. 12.4b. Compare the calculated collapse load with the original 
factored design load, and comment on differences.

	23.10.	 Using virtual work and yield line theory, compute the flexural collapse load 
of the two-way column-supported flat plate of Example 13.2. To simplify the 
calculations, assume that all positive moment bars are carried to the edges 
of the panels, not cut off in the span. Consider all possible failure mecha-
nisms, including a circular fan around the column. Neglect corner effects. 
Compare the calculated collapse load with the original factored design load 
and comment on differences.

	 23.8.	 The slab of Fig. P23.8 is supported by three fixed edges but has no support 
along one long side. It has a uniform thickness of 7 in., resulting in effective 
depths in the long direction of 6.0 in. and in the short direction of 5.5  in. 
Bottom reinforcement consists of No. 4 (No. 13) bars at 14 in. centers in 
each direction, continued to the supports and the free edge. Top negative steel 
along the supported edges consists of No. 4 (No. 13) bars at 12 in. on centers, 
except that in a 2 ft wide “strong band” parallel and adjacent to the free edge, 
four No. 5 (No. 16) bars are used. All negative bars extend past the points 
of inflection, as required by ACI Code. Material strengths are ​f​c​ ′​ = 4000 psi 
and fy = 60,000 psi. Using the yield line method, determine the factored load 
qu that can be carried.

FIGURE P23.8
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Strip Method for Slabs

	 24.1	 INTRODUCTION

In Section 23.2, the upper and lower bound theorems of the theory of plasticity were 
presented, and it was pointed out that the yield line method of slab analysis was an 
upper bound approach to determining the flexural strength of slabs. An upper bound 
analysis, if in error, will be so on the unsafe side. The actual carrying capacity will 
be less than, or at best equal to, the capacity predicted, which is certainly a cause 
for concern in design. Also, when applying the yield line method, it is necessary to 
assume that the distribution of reinforcement is known over the whole slab. It follows 
that the yield line approach is a tool to analyze the capacity of a given slab and can 
be used for design only in an iterative sense, for calculating the capacities of trial 
designs with varying reinforcement until a satisfactory arrangement is found.

These circumstances motivated Hillerborg to develop what is known as the strip 
method for slab design, his first results being published in Swedish in 1956 (Ref. 24.1). 
In contrast to yield line analysis, the strip method is a lower bound approach, based 
on satisfaction of equilibrium requirements everywhere in the slab. By the strip 
method (sometimes referred to as the equilibrium theory), a moment field is first 
determined that fulfills equilibrium requirements, after which the reinforcement in the 
slab at each point is designed for this moment field. If a distribution of moments can 
be found that satisfies both equilibrium and boundary conditions for a given external 
loading, and if the yield moment capacity of the slab is nowhere exceeded, then the 
given external loading will represent a lower bound of the true carrying capacity.

The strip method gives results on the safe side, which is certainly preferable 
in practice, and differences from the true carrying capacity never impair safety. The 
strip method is a design method, by which the needed reinforcement can be calcu-
lated. It encourages the designer to vary the reinforcement in a logical way, leading 
to an economical arrangement of steel, as well as a safe design. It is generally sim-
ple to use, even for slabs with holes or irregular boundaries.

In his original work in 1956, Hillerborg set forth the basic principles for edge-
supported slabs and introduced the expression strip method (Ref. 24.1). He later 
expanded the method to include the practical design of slabs on columns and 
L-shaped slabs (Refs. 24.2 and 24.3). The first treatment of the subject in English 
was by Crawford (Ref. 24.4). In 1964, Blakey translated the earlier Hillerborg work 
into English (Ref. 24.5). Important contributions, particularly regarding continuity 
conditions, have been made by Kemp (Refs. 24.6 and 24.7) and Wood and Armer 
(Refs. 24.8, 24.9, and 24.10). Load tests of slabs designed by the strip method were 
carried out by Armer (Ref. 24.11) and confirmed that the method produces safe and 
satisfactory designs. In 1975, Hillerborg produced Ref. 24.12 “for the practical 
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designer, helping him in the simplest possible way to produce safe designs for most 
of the slabs that he will meet in practice, including slabs that are irregular in plan 
or that carry unevenly distributed loads.” Subsequently, he published a paper in 
which he summarized what has become known as the advanced strip method, per-
taining to the design of slabs supported on columns, reentrant corners, or interior 
walls (Ref. 24.13). Useful summaries of both the simple and advanced strip methods 
can be found in Refs. 24.14 and 24.15.

The strip method is appealing not only because it is safe, economical, and ver-
satile over a broad range of applications but also because it formalizes procedures 
followed instinctively by competent designers in placing reinforcement in the best 
possible position. In contrast with the yield line method, which provides no inducement 
to vary bar spacing, the strip method encourages the use of strong bands of steel where 
needed, such as around openings or over columns, improving economy and reducing 
the likelihood of excessive cracking or large deflections under service loading.

	 24.2	 BASIC PRINCIPLES

The governing equilibrium equation for a small slab element having sides dx and dy is

	​ 
∂2mx _____ 
∂x2

 ​ + ​ 
∂2my

 _____ 
∂y2

 ​ − 2 ​ 
∂2mxy

 _____ 
∂x∂y

 ​  = −q	 (24.1)

where q = external load per unit area
      mx, my = bending moments per unit width in X and Y directions, respectively
        mxy =  twisting moment (Ref. 24.16)

According to the lower bound theorem, any combination of mx, my, and mxy that satis-
fies the equilibrium equation at all points in the slab and that meets boundary conditions 
is a valid solution, provided that the reinforcement is placed to carry these moments.

The basis for the simple strip method is that the torsional moment is chosen equal 
to zero; that is, no load is assumed to be resisted by the twisting strength of the slab. 
Therefore, if the reinforcement is parallel to the axes in a rectilinear coordinate system,

mxy = 0

The equilibrium equation then reduces to

	​ 
∂2mx _____ 
∂x2

 ​ + ​ 
∂2my

 _____ 
∂y2

 ​  = −q	 (24.2)

This equation can be split conveniently into two parts, representing twistless beam 
strip action

	​ 
∂2mx _____ 
∂x2

 ​  = −kq	 (24.3a)

and

	​ 
∂2my

 _____ 
∂y2

 ​  = −(1 − k)q	 (24.3b)

where the proportion of load taken by the strips is k in the X direction and 1 − k in 
the Y direction. In many regions in slabs, the value of k will be either 0 or 1. With 
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k = 0, all of the load is dispersed by strips in the Y direction; with k = 1, all of the 
load is carried in the X direction. In other regions, it may be reasonable to assume 
that the load is divided equally in the two directions (that is, k = 0.5).

	 24.3	 CHOICE OF LOAD DISTRIBUTION

Theoretically, the load q can be divided arbitrarily between the X and Y directions. 
Different divisions, of course, lead to different patterns of reinforcement, and not all 
are equally appropriate. The desired goal is to arrive at an arrangement of steel that 
is safe and economical and that avoids problems at the service load level associated 
with excessive cracking or deflections. In general, the designer may be guided by 
knowledge of the general distribution of elastic moments.

To see an example of the strip method and to illustrate the choices open to the 
designer, consider the square, simply supported slab shown in Fig.  24.1, with side 
length a and a uniformly distributed factored load q per unit area.

The simplest load distribution is obtained by setting k  =  0.5 over the entire 
slab, as shown in Fig. 24.1. The load on all strips in each direction is then q∕2, as 
illustrated by the load dispersion arrows of Fig. 24.1a. This gives maximum moments

	 mx = my = ​ 
qa2

 ___ 
16

 ​	 (24.4)

over the whole slab, as shown in Fig. 24.1c, with a uniform lateral distribution across 
the width of the critical section, as in Fig. 24.1d.

FIGURE 24.1
Square slab with load shared 
equally in two directions.
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This would not represent an economical or serviceable solution because it is 
recognized that curvatures, hence moments, must be greater in the strips near the 
middle of the slab than near the edges in the direction parallel to the edge (see 
Fig. 13.1). If the slab were reinforced according to this solution, extensive redistri-
bution of moments would be required, certainly accompanied by much cracking in 
the highly stressed regions near the middle of the slab.

An alternative, more reasonable distribution is shown in Fig.  24.2. Here the 
regions of different load dispersion, separated by the dash-dotted “discontinuity 
lines,” follow the diagonals, and all of the load on any region is carried in the direc-
tion giving the shortest distance to the nearest support. The solution proceeds, giving 
k values of either 0 or 1, depending on the region, with load transmitted in the 
directions indicated by the arrows of Fig. 24.2a. For a strip A–A at a distance y ≤ a∕2 
from the X axis, the moment is

	 mx =  ​ 
qy2

 ___ 
2
 ​	  (24.5)

The load acting on a strip A–A is shown in Fig. 24.2b, and the resulting diagram of 
moment mx is given in Fig.  24.2c. The lateral variation of mx across the width of 
the slab is as shown in Fig. 24.2d.

The lateral distribution of moments shown in Fig.  24.2d would theoretically 
require a continuously variable bar spacing, obviously an impracticality. One way of 
using the distribution in Fig. 24.2, which is considerably more economical than that 

FIGURE 24.2
Square slab with load 
dispersion lines following 
diagonals.
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in  Fig.  24.1, would be to reinforce for the average moment over a certain width, 
approximating the actual lateral variation shown in Fig. 24.2d in a stepwise manner. 
Hillerborg notes that this is not strictly in accordance with the equilibrium theory 
and that the design is no longer certainly on the safe side, but other conservative 
assumptions, for example, neglect of membrane strength in the slab and neglect of 
strain hardening of the reinforcement, would surely compensate for the slight reduc-
tion in safety margin.

A third alternative distribution is shown in Fig. 24.3. Here the division is made 
so that the load is carried to the nearest support, as before, but load near the diag-
onals has been divided, with one-half taken in each direction. Thus, k is given values 

FIGURE 24.3
Square slab with load near 
diagonals shared equally in 
two directions.
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of 0 or 1 along the middle edges and a value of 0.5 in the corners and center of the 
slab, with load dispersion in the directions indicated by the arrows shown in 
Fig. 24.3a. Two different strip loadings are now identified. For an X direction strip 
along section A–A, the maximum moment is

	 mx =  ​ 
q
 __ 

2
 ​ × ​ a __ 

4
 ​ × ​ a __ 

8
 ​ = ​ 

qa2

 ___ 
64

 ​	 (24.6a)

and for a strip along section B–B, the maximum moment is

	 mx =  q × ​ a __ 
4
 ​ × ​ a __ 

8
 ​ + ​ 

q
 __ 

2
 ​ × ​ a __ 

4
 ​ × ​ 3a ___ 

8
 ​ = ​ 

5qa2

 ____ 
64

 ​	  (24.6b)

The variation of mx along the line x = a∕2 is shown in Fig. 24.3d. This design leads 
to a practical arrangement of reinforcement, one with constant spacing through the 
center strip of width a∕2 and a wider spacing through the outer strips, where the 
elastic curvatures and moments are known to be less. The averaging of moments 
necessitated in the second solution is avoided here, and the third solution is fully 
consistent with the equilibrium theory.

Comparing the three solutions just presented shows that the first would be unsat-
isfactory, as noted earlier, because it would require great redistribution of moments 
to achieve, possibly accompanied by excessive cracking and large deflections. The 
second, with discontinuity lines following the slab diagonals, has the advantage that 
the reinforcement more nearly matches the elastic distribution of moments, but it 
either leads to an impractical reinforcing pattern or requires an averaging of moments 
in bands that involves a deviation from strict equilibrium theory. The third solution, 
with discontinuity lines parallel to the edges, does not require moment averaging and 
leads to a practical reinforcing arrangement, so it is often preferred.

The three examples also illustrate the simple way in which moments in the slab 
can be found by the strip method, based on familiar beam analysis. It is important 
to note, too, that the load on the supporting beams is easily found because it can be 
computed from the end reactions of the slab beam strips in all cases. This informa-
tion is not available from solutions such as those obtained by the yield line theory.

	 24.4	 RECTANGULAR SLABS

With rectangular slabs, it is reasonable to assume that, throughout most of the area, 
the load is carried in the short direction, consistent with elastic theory (see 
Section 13.1). In addition, it is important to take into account the fact that because 
of their length, longitudinal reinforcing bars will be more expensive than transverse 
bars of the same size and spacing. For a uniformly loaded rectangular slab on sim-
ple supports, Hillerborg presents one possible division, as shown in Fig. 24.4, with 
discontinuity lines originating from the slab corners at an angle depending on the 
ratio of short to long sides of the slab. All of the load in each region is assumed to 
be carried in the directions indicated by the arrows.

Instead of the solution of Fig. 24.4, which requires continuously varying rein-
forcement to be strictly correct, Hillerborg suggests that the load can be distributed 
as shown in Fig. 24.5, with discontinuity lines parallel to the sides of the slab. For 
such cases, it is reasonable to take edge bands of width equal to one-fourth the short 
span dimension. Here the load in the corners is divided equally in the X and Y 
directions as shown, while elsewhere all of the load is carried in the direction indi-
cated by the arrows.
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STRIP METHOD FOR SLABS      791

The second, preferred arrangement, shown in Fig. 24.5, gives slab moments as 
follows:

In the X direction:

	 Side strips b/4 wide:	 mx = ​ 
q
 __ 

2
 ​ × ​ b __ 

4
 ​ × ​ b __ 

8
 ​ = ​ 

qb2

 ___ 
64

 ​	 (24.7a)

	 Middle strips b/2 wide:	 mx = q × ​ b __ 
4
 ​ × ​ b __ 

8
 ​ = ​ 

qb2

 ___ 
32

 ​	 (24.7b)

In the Y direction:

	 Side strips b/4 wide:	 my = ​ 
qb2

 ___ 
64

 ​	 (24.8a)

	 Middle strips a-b/2 wide:	 my = ​ 
qb2

 ___ 
8
 ​	  (24.8b)

This distribution, requiring no averaging of moments across band widths, is always 
on the safe side and is both simple and economical.

FIGURE 24.4
Rectangular slab with 
discontinuity lines  
originating at the corners.
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792      DESIGN OF CONCRETE STRUCTURES  Chapter 24

	 24.5	 FIXED EDGES AND CONTINUITY

Designing by the strip method has been shown to provide a large amount of flexi-
bility in assigning load to various regions of slabs. This same flexibility extends to 
the assignment of moments between negative and positive bending sections of slabs 
that are fixed or continuous over their supported edges. Some attention should be 
paid to elastic moment ratios to avoid problems with cracking and deflection at 
service loads. However, the redistribution that can be achieved in slabs, which are 
typically rather lightly reinforced and, thus, have large plastic rotation capacities 
when overloaded, permits considerable arbitrary readjustment of the ratio of negative 
to positive moments in a strip.

This is illustrated by Fig.  24.6, which shows a slab strip carrying loads only 
near the supports and unloaded in the central region, such as often occurs in design-
ing by the strip method. It is convenient if the unloaded region is subject to a con-
stant moment (and zero shear), because this simplifies the selection of positive 
reinforcement. The sum of the absolute values of positive span moment and negative 
end moment at the left or right end, shown as ml and mr in Fig. 24.6, depends only 
on the conditions at the respective end and is numerically equal to the negative 
moment if the strip carries the load as a cantilever. Thus, in determining moments 
for design, one calculates the “cantilever” moments, selects the span moment, and 
determines the corresponding support moments. Hillerborg notes that, as a general 
rule for fixed edges, the support moment should be about 1.5 to 2.5 times the span 
moment in the same strip. Higher values should be chosen for longitudinal strips 
that are largely unloaded, and in such cases a ratio of support to span moment of 
3  to 4 may be used. However, little will be gained by using such a high ratio if the 
positive moment steel is controlled by minimum requirements of the ACI Code.

For slab strips with one end fixed and one end simply supported, the dual goals 
of constant moment in the unloaded central region and a suitable ratio of negative 
to positive moments govern the location to be chosen for the discontinuity lines. 
Figure 24.7a shows a uniformly loaded rectangular slab having two adjacent edges 
fixed and the other two edges simply supported. Note that although the middle strips 
have the same width as those of Fig.  24.5, the discontinuity lines are shifted to 
account for the greater stiffness of the strips with fixed ends. Their location is 
defined by a coefficient α, with a value clearly less than 0.5 for the slab shown, its 
exact value yet to be determined. It will be seen that the selection of α relates directly 
to the ratio of negative to positive moments in the strips.

The moment curve of Fig. 24.7b is chosen so that moment is constant over the 
unloaded part, that is, shearing force is zero. With constant moment, the positive 
steel can be fully stressed over most of the strip. The maximum positive moment in 
the X direction middle strip is then

	 mxf  = ​ 
αqb

 ____ 
2
 ​  × ​ αb ___ 

4
 ​ = α2 ​ 

qb2

 ___ 
8
 ​	  (24.9)

FIGURE 24.6
Slab strip with central region 
unloaded.
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The cantilever moment at the left support is

	 mx = (1 − α) ​ 
qb

 ___ 
2
 ​ (1 − α) ​ b __ 

4
 ​ = (1 − α)2 ​ 

qb2

 ___ 
8
 ​	  (24.10)

and so the negative moment at the left support is

	 mxs = (1 − α)2 ​ 
qb2

 ___ 
8
 ​  − α2 ​ 

qb2

 ___ 
8
 ​  = (1 − 2α) ​ 

qb2

 ___ 
8
 ​	  (24.11)

For reference, the ratio of negative to positive moments in the X direction middle strip is

	​ 
mxs ___ mxf

 ​ = ​ 1 − 2α ______ 
α2

 ​	  (24.12)

The moments in the X direction edge strips are one-half of those in the middle strips 
because the load is one-half as great.

It is reasonable to choose the same ratio between support and span moments 
in the Y direction as in the X direction. Accordingly, the distance from the right 

FIGURE 24.7
Rectangular slab with two edges fixed and two edges simply supported.
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794      DESIGN OF CONCRETE STRUCTURES  Chapter 24

support, Fig.  24.7c, to the maximum positive moment section is chosen as αb. It 
follows that the maximum positive moment is

	 myf  = αqb × ​ αb ___ 
2
 ​ = α2 ​ 

qb2

 ___ 
2
 ​	  (24.13)

Applying the same methods as used for the X direction shows that the negative 
support moment in the Y direction middle strips is

	 mys = (1 − 2α) ​ 
qb2

 ___ 
2
 ​	  (24.14)

It is easily confirmed that the moments in the Y direction edge strips are just one-
eighth of those in the Y direction middle strip.

With the above expressions, all of the moments in the slab can be found once a 
suitable value for α is chosen. From Eq. (24.12), it can be confirmed that values of α 
from 0.35 to 0.39 give corresponding ratios of negative to positive moments from 2.45 
to 1.45, the range recommended by Hillerborg. For example, if it is decided that support 
moments are to be twice the span moments, the value of α should be 0.366, and the 
negative and positive moments in the central strip in the Y direction are, respectively, 
0.134qb2 and 0.067qb2. In the middle strip in the X direction, moments are one-fourth 
those values; and in the edge strips in both directions, they are one-eighth of those values.

	EXAMPLE 24.1	 Rectangular slab with fixed edges.  Figure  24.8 shows a typical interior panel of a slab 
floor in which support is provided by beams on all column lines. Normally proportioned 
beams are stiff enough, both flexurally and torsionally, that the slab can be assumed fully 
restrained on all sides. Clear spans for the slab, face to face of beams, are 25 and 20 ft, as 
shown. The floor must carry a service live load of 150 psf, using concrete with ​​f​c​ ′​​ = 3000 psi 
and steel with fy  =  60,000 psi. Find the moments at all critical sections, and determine the 
required slab thickness and reinforcement. The slab thickness is less than the 10 in. limit that 
would require inclusion of size effects.

Solution.  The minimum slab thickness required by the ACI Code can be found from 
Eq.  (13.4b), with ℓn = 25 ft and β = 1.25:

h = ​ 
25 × 12(0.8 + 60∕200)

   ____________________  
36 + 9 × 1.25

 ​  = 6.98 in.

A total thickness of 7 in. is selected, for which qd = 150 × 7∕12 = 87.5 psf. Applying the 
load factors of 1.2 and 1.6 to dead load and live load, respectively, determines that the total 
factored load for design is 340 psf. For strip analysis, discontinuity lines are selected as shown 
in Fig. 24.8, with edge strips of width b∕4 = 20∕4 = 5 ft. In the corners, the load is divided 
equally in the two directions; elsewhere, 100 percent of the load is assigned to the direction 
indicated by the arrows. A ratio of support moment to span moment of 2.0 is used. Calculation 
of moments then proceeds as follows:

X direction middle strip:

Cantilever:  mx = ​ 
qb2

 ___ 
32

 ​ = 340 × ​ 400 ____ 
32

 ​ = 4250 ft-lb∕ft

	 Negative:     mxs = 4250 × ​ 2 __ 
3
 ​ = 2833

	 Positive:      mxf = 4250 × ​ 1 __ 
3
 ​ = 1417
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X direction edge strips:

	 Cantilever:  mx = ​ 
qb2

 ___ 
64

 ​ = 340 × ​ 400 ____ 
64

 ​ = 2125 ft-lb∕ft

	 Negative:     mxs = 2125 × ​ 2 __ 
3
 ​ = 1417

	 Positive:      mxf = 2125 × ​ 1 __ 
3
 ​ = 708

FIGURE 24.8
Design example: two-way 
slab with fixed edges.
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Y direction middle strip:

	 Cantilever:  my = ​ 
qb2

 ___ 
8
 ​  = 340 × ​ 400 ____ 

8
 ​  = 17,000 ft-lb∕ft

	 Negative:     mys = 17,000 × ​ 2 __ 
3
 ​ = 11,333

	 Positive:      myf = 17,000 × ​ 1 __ 
3
 ​ = 5666

Y direction edge strips:

	 Cantilever:  my = ​ 
qb2

 ___ 
64

 ​ = 340 × ​ 400 ____ 
64

 ​ = 2125 ft-lb∕ft

	 Negative:     mys = 2125 × ​ 2 __ 
3
 ​ = 1417

	 Positive:      myf = 2125 × ​ 1 __ 
3
 ​ = 708

Strip loads and moment diagrams are as shown in Fig. 24.8. According to ACI Code 
8.6, the minimum steel required for shrinkage and temperature crack control is 
0.0018 × 7 × 12 = 0.151  in2∕ft strip. With a total depth of 7 in., with ​ 3 _ 4 ​ in. concrete cover, 
and with estimated bar diameters of ​ 1 _ 2 ​ in., the effective depth of the slab in the short direction 
is 6 in., and in the long direction, 5.5 in. Accordingly, the flexural reinforcement ratio 
provided by the minimum steel acting at the smaller effective depth is

ρmin = ​  0.151 ________ 
5.5 × 12

 ​ = 0.0023

From Table A.5a of Appendix A, R = 134, and the flexural design strength is

ϕmn = ϕRbd 2 = ​ 0.90 × 134 × 12 × 5.52
   ____________________  

12
 ​  = 3648 ft-lb∕ft

Comparing this with the required moment resistance shows that the minimum steel is 
adequate in the X direction in both middle and edge strips and in the Y direction edge strips. 
No. 4 (No. 13) bars at 14 in. spacing provides the needed area. In the Y direction middle 
strip, for negative bending,

R = ​ 
mu _____ 
ϕbd 2

 ​ = ​ 
11,333 × 12

  _____________  
0.90 × 12 × 62

 ​ = 350

and from Table A.5a, the required reinforcement ratio is 0.0063. The required steel is then

As = 0.0063 × 12 × 6 = 0.45 in2∕ft

This is provided using No. 5 (No. 16) bars at 8 in. on centers. For positive bending,

R = ​  5666 × 12  _____________  
0.90 × 12 × 62

 ​ = 175

for which ρ = 0.0030, and the required positive steel area per strip is

As = 0.0030 × 12 × 6 = 0.22 in2∕ft

to be provided by No. 4 (No. 13) bars on 10 in. centers. Note that all bar spacings are less 
than 2h = 2 × 7 = 14 in., as required by the Code, and that the reinforcement ratios are well 
below the value for a tension-controlled section of 0.0135.

Negative bar cutoff points can easily be calculated from the moment diagrams. For 
the X direction middle strip, the point of inflection a distance x from the left edge is found 
as follows:

1700x − 2833 − 340  ​​( ​ ​x​
2​ __ 

2
 ​ )​​ = 0

                           x = 2.11 ft
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	 24.6	 UNSUPPORTED EDGES

The slabs considered in the preceding sections, together with the supporting beams, 
could also have been designed by the methods of Chapter 13. The real power of 
the strip method becomes evident when dealing with nonstandard problems, such 
as slabs with an unsupported edge, slabs with holes, or slabs with reentrant corners 
(L-shaped slabs).

For a slab with one edge unsupported, for example, a reasonable basis for 
analysis by the simple strip method is that a strip along the unsupported edge takes 
a greater load per unit area than the actual unit load acting, that is, the strip along 
the unsupported edge acts as a support for the strips at right angles. Such strips have 
been referred to by Wood and Armer as strong bands (Ref. 24.8). A strong band is, 
in effect, an integral beam, usually having the same total depth as the remainder of 
the slab but containing a concentration of reinforcement. The strip may be made 
deeper than the rest of the slab to increase its carrying capacity, but this is not 
usually necessary.

Figure 24.9a shows a rectangular slab carrying a uniformly distributed factored 
load q per unit area, with fixed edges along three sides and no support along one 
short side. Discontinuity lines are chosen as shown. The load on a unit middle strip 
in the X direction, shown in Fig. 24.9b, includes the downward load q in the region 
adjacent to the fixed left edge and the upward reaction kq in the region adjacent to 
the free edge. Summing moments about the left end, with moments positive clock-
wise and with the unknown support moment denoted mxs, gives

mxs + ​ 
qb2

 ___ 
32

 ​ − ​ 
kqb

 ____ 
4
 ​  ​​( a −  ​ b __ 

8
 ​ )​​ = 0

from which

	 k = ​ 
1 + 32mxs∕qb2

  ____________  
8(a∕b) − 1

 ​	  (24.15)

Thus, k can be calculated after the support moment is selected.
The appropriate value of mxs to be used in Eq. (24.15) depends on the shape 

of the slab. If a is large relative to b, the strong band in the Y direction at the edge 
will be relatively stiff, and the moment at the left support in the X direction strips 
will approach the elastic value for a propped cantilever. If the slab is nearly square, 
the deflection of the strong band will tend to increase the support moment; a value 
about one-half the free cantilever moment might be selected (Ref. 24.14).

Once mxs is selected and k is known, it is easily shown that the maximum span 
moment occurs when

x = (1 − k) ​ b __ 
4
 ​

According to the Code, the negative bars must be continued at least d or 12db beyond that 
point, requiring a 6 in. extension in this case. Thus, the negative bars are cut off 
2.11 + 0.50 = 2.61 ft, say 2 ft 8 in., from the face of support. The same result is obtained for 
the X direction edge strips and the Y direction edge strips. For the Y direction middle strip, 
the distance y = 4.23 ft from face of support to inflection point is found in a similar manner. 
In this case, with No. 5 (No. 10) bars used, the required extension is 7.5 in., giving a total 
length past the face of supports of 4.23 + 0.63 = 4.86 ft or 4 ft 11 in. All positive bars are 
carried 6 in. into the face of the supporting beams. If the slab was part of a moment resisting 
frame, the cutoff locations would have to be in accordance with Fig. 13.10.
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FIGURE 24.9
Slab with free edge along 
short side.
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It has a value

	 mxf = ​ 
kqb2

 ____ 
32

 ​  ​​( ​ 8a ___ 
b
 ​ − 3 + k )​​	 (24.16)

The moments in the X direction edge strips are one-half of those in the middle strip. 
In the Y direction middle strip, Fig. 24.9d, the cantilever moment is qb2∕8. Adopting 
a ratio of support to span moment of 2 results in support and span moments, respec-
tively, of

	 mys = ​ 
qb2

 ___ 
12

 ​	 (24.17a)

	 myf = ​ 
qb2

 ___ 
24

 ​	 (24.17b)

Moments in the Y direction strip adjacent to the fixed edge, Fig. 24.9c, are one-eighth 
of those values. In the Y direction strip along the free edge, Fig.  24.9e, moments 
can, with slight conservatism, be made equal to (1 + k) times those in the Y direc-
tion middle strip.

www.konkur.in

Telegram: @uni_k



STRIP METHOD FOR SLABS      799

If the unsupported edge is in the long-span direction, then a significant fraction 
of the load in the slab central region is carried in the direction perpendicular to the 
long edges, and the simple distribution shown in Fig.  24.10a is more suitable. 
A  strong band along the free edge serves as an integral edge beam, with width βb 
normally chosen as low as possible considering limitations on tensile reinforcement 
ratio in the strong band.

For a Y direction strip, with moments positive clockwise,

mys + ​ 1 __ 
2
 ​ k1q(1 − β)2b2 − k2qβb2 (1 − β∕2) = 0

from which

	 k2 = ​ 
k1(1 − β)2 + 2mys∕qb2

   ___________________  
β(2 − β)

 ​	  (24.18)

The value of k1 may be selected to make use of the minimum steel in the X direction 
required by ACI Code 8.6. In choosing mys to be used in Eq. (24.18) for calculating k2, 
one should again recognize that the deflection of the strong band along the free edge 
will tend to increase the Y direction moment at the supported edge above the propped 
cantilever value based on zero deflection. A value for mys of about one-half the free 
cantilever moment may be appropriate in typical cases. A high ratio of a∕b permits 
greater deflection of the free edge through the central region, tending to increase the 
support moment, and a low ratio restricts deflection, reducing the support moment.

FIGURE 24.10
Slab with free edge in  
long-span direction.
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	EXAMPLE 24.2	 Rectangular slab with long edge unsupported.  The 12 × 19 ft slab shown in Fig. 24.11a, 
with three fixed edges and one long edge unsupported, must carry a uniformly distributed 
service live load of 125 psf; ​​f​c​ ′​​ = 4000 psi and fy  =  60,000 psi. Select an appropriate slab 
thickness, determine all factored moments in the slab, and select reinforcing bars and spacings 
for the slab.

Solution.  The minimum thickness requirements of the ACI Code do not really apply to the 
type of slab considered here. However, Table 13.2, which controls for beamless flat plates, 
can be applied conservatively because although the present slab is beamless along the free 
edge, it has infinitely stiff supports on the other three edges. From that table, with ℓn = 19 ft,

h = ​ 19 × 12 _______ 
33

 ​  = 6.91 in.

A total thickness of 7 in. will be selected. The slab dead load is 150 × ​ 7 __ 12 ​ = 88 psf, and the 
total factored design load is 1.2 × 88 + 1.6 × 125 = 306 psf.

A strong band 2 ft wide will be provided for support along the free edge. In the main 
slab, a value k1  =  0.45 is selected, resulting in a slab load in the Y direction of 
0.45 × 306 = 138 psf and in the X direction of 0.55 × 306 = 168 psf.

First, with regard to the Y direction slab strips, the negative moment at the supported 
edge is chosen as one-half the free cantilever value, which in turn is approximated based on 
138 psf over an 11 ft distance from the support face to the center of the strong band. The 
restraining moment is thus

mys = ​ 1 __ 
2
 ​ × ​ 138 × 112

 _________ 
2
 ​   = 4175 ft-lb∕ft

Then, from Eq. (24.18)

k2 = ​ 
0.45(5∕6)2 − 2 × 4175∕(306 × 144)

    _______________________________   
(1∕6)(2 − 1∕6)

 ​   = 0.403

Thus, an uplift of 0.403 × 306 = 123 psf is provided for the Y direction strips by the strong 
band, as shown in Fig. 24.11d. For this loading, the negative moment at the left support is

mys = 138 × ​ 102
 ___ 

2
 ​  − 123 × 2 × 11 = 4194 ft-lb∕ft

The difference from the original value of 4175 ft-lb∕ft is caused by numerical rounding of 
the load terms. The statically consistent value of 4194 ft-lb∕ft is used for design. The max-
imum positive moment in the Y direction strips is located at the point of zero shear. With y1 
as the distance of that point from the free edge to the zero shear location, and with reference 
to Fig. 24.11d,

123 × 2 − 138( y1 − 2) = 0

from which y1 = 3.78 ft. The maximum positive moment, found at that location, is

myf = 123 × 2(3.78 − 1) − 138 × ​ 1.782
 _____ 

2
 ​  = 465 ft-lb∕ft

For later reference in cutting off bars, the point of inflection is located a distance y2 from the 
free edge:

123 × 2( y2 − 1) − ​ 138 ____ 
2
 ​  ( y2 − 2)2 = 0

resulting in y2 = 6.38 ft.
For the X direction slab strips, the cantilever moment is

Cantilever:	 mx = ​ 168 × 192
 _________ 

8
 ​  = 7581 ft-lb∕ft	
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A ratio of negative to positive moments of 2.0 is chosen here, resulting in negative and 
positive moments, respectively, of

Negative:	 mxs = 7581 × ​ 2 __ 
3
 ​ = 5054 ft-lb∕ft	

Positive:	 mxf  = 7581 × ​ 1 __ 
3
 ​ = 2527 ft-lb∕ft	

as shown in Fig. 24.11b.
The unit load on the strong band in the X direction is

(1 + k2)q = (1 + 0.403) × 306 = 429 psf

FIGURE 24.11
Design example: slab with 
long edge unsupported.
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802      DESIGN OF CONCRETE STRUCTURES  Chapter 24

so for the 2 ft wide band the load per foot is 2 × 429 = 858 psf, as indicated in Fig. 24.11c. 
The cantilever, negative, and positive strong band moments are, respectively,

Cantilever:	 Mx = 858 × 192∕8 = 38,700 ft-lb	

Negative:	 Mxs = 38,700 × ​ 2 __ 
3
 ​ = 25,800 ft-lb	

Positive:	 Mxf = 38,700 × ​ 1 __ 
3
 ​ = 12,900 ft-lb	

With a negative moment of −25,800 ft-lb and a support reaction of 858 × ​ 19 __ 2 ​ = 8151 lb, the 
point of inflection in the strong band is found as follows:

−25,800 + 8151x − ​ 858x2
 _____ 

2
 ​  = 0

giving x = 4.01 ft. The inflection point in the X direction slab strips is at the same location.
In designing the slab steel in the X direction, one notes that the minimum steel required 

by the ACI Code is 0.0018 × 7 × 12 = 0.15 in2∕ft. The effective slab depth in the X direc-
tion, assuming ​ 1 _ 2 ​ in. diameter bars with ​ 3 _ 4 ​ in. cover, is 7.0 − 1.0 = 6.0 in. The corresponding 
flexural reinforcement ratio in the X direction is ρ = 0.15∕(12 × 6) = 0.0021. From Table A.5a, 
R = 124, and the design strength is

ϕmn = ϕRbd2 = ​ 0.90 × 124 × 12 × 62
   ___________________  

12
 ​  = 4018 ft-lb∕ft

It is seen that the minimum slab steel required by the Code provides for the positive bending 
moment of 2527 ft-lb∕ft. The requirement of 0.15 in2∕ft is met by No. 4 (No. 13) bars at the 
maximum permitted spacing of 2h = 14 in., providing 0.17  in2∕ft. The X direction negative 
moment of 5054 ft-lb∕ft requires

R = ​ 
mu _____ 

ϕbd2
 ​ = ​  5054 × 12  _____________  

0.90 × 12 × 62
 ​ = 156

FIGURE 24.11
(Continued)

(f ) Bottom bars

(e ) Top bars
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and Table A.5a indicates that the required ρ = 0.0027. Thus, the negative bar requirement is  
As = 0.0027 × 12 × 6 = 0.19 in2∕ft. This is provided by No. 4 (No. 13) bars at 12 in. spacing, 
continued 4.01 × 12 + 6 = 54 in., or 4 ft 6 in., from the support face.

In the Y direction, the effective depth is one bar diameter less than in the X direction, 
or 5.5 in. Thus, the flexural reinforcement ratio provided by the shrinkage and temperature 
steel is ρ = 0.15∕(12 × 5.5) = 0.0023. This results in R = 135, so the design strength is

ϕmn = ​ 0.90 × 135 × 12 × 5.52
   ____________________  

12
 ​  = 3675 ft-lb∕ft

well above the requirement for positive bending of 465 ft-lb∕ft. No. 4 (No. 13) bars at 14 in. 
are satisfactory for positive steel in this direction also. For the negative moment of 
4194 ft-lb∕ft,

R = ​  4194 × 12  ______________  
0.90 × 12 × 5.52

 ​ = 154

and from Table A.5a, the required ρ = 0.0027. The corresponding steel requirement is 0.0027 ×  
12  ×  5.5  =  0.18  in2∕ft. No. 4 (No. 13) bars at 12 in. are used, and they are extended 
5.62 × 12 + 6 = 74 in., or 6 ft 2 in., past the support face.

In the strong band, the positive moment of 12,900 ft-lb requires

R = ​ 
12,900 × 12

  _____________  
0.90 × 24 × 62

 ​ = 199

The corresponding reinforcement ratio is 0.0034, and the required bar area is 0.0034 × 24 ×  
6 = 0.49 in2. This can be provided by two No. 5 (No. 16) bars. For the negative moment of 
25,800 ft-lb,

R = ​ 
25,800 × 12

  _____________  
0.90 × 24 × 62

 ​ = 398

resulting in ρ = 0.0070, and required steel equal to 0.0070 × 24 × 6 = 1.01 in2. Four No. 5 
(No. 16) bars, providing an area of 1.23 in2, are used, and they are cut off 4.01 × 12 + 7.5 = 
56  in., or 4 ft 8 in., from the support face.

The final arrangement of bar reinforcement is shown in Fig. 24.11e and f. Negative bar 
cutoff locations are as indicated, and development by embedded lengths into the supports is 
provided. All positive bars in the slab and strong band are carried 6 in. into the support faces.

A design problem commonly met in practice is that of a slab supported along 
three edges and unsupported along the fourth, with a distributed load that increases 
linearly from zero along the free edge to a maximum at the opposite supported edge. 
Examples include the wall of a rectangular tank subjected to liquid pressure and 
earth-retaining walls with buttresses or counterforts (see Section 16.1).

Figure 24.12 shows such a slab, with load of intensity q0 at the long, supported 
edge, reducing to zero at the free edge. In the main part of the slab, a constant load 
k2q0 is carried in the X direction, as shown in Fig. 24.12c; thus, a constant load k2q0 
is deducted from the linear varying load in the Y direction, as shown in Fig. 24.12d. 
Along the free edge, a strong band of width βb is provided, carrying a load k1q0, as 
in Fig.  24.12a, and so providing an uplift load equal to that amount at the end of 
the Y direction strip in Fig. 24.12d. The choice of k1 and k2 depends on the ratio of 
a∕b. If this ratio is high, k2 should be chosen with regard to the minimum slab 
reinforcement required by the ACI Code. The value of k1 is then calculated by stat-
ics, based on a selected value of the restraining moment at the fixed edge, say one-
half of the free cantilever value. In many cases it is convenient to let k1 equal k2. 
Then it is the support moment that follows from statics. The value of β is selected 
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804      DESIGN OF CONCRETE STRUCTURES  Chapter 24

as low as possible considering the upper limit on tensile reinforcement ratio in the 
strong band imposed by the Code for beams. The strong band is designed for a load 
of intensity k1q0 distributed uniformly over its width βb.

	 24.7	 SLABS WITH HOLES

Slabs with small openings can usually be designed as if there were no openings, 
replacing the interrupted steel with bands of reinforcing bars of equivalent area on 
either side of the opening in each direction (see Section 13.10). Slabs with larger 
openings must be treated more rigorously. The strip method offers a rational and 
safe basis for design in such cases. Integral load-carrying beams are provided along 
the edges of the opening, usually having the same depth as the remainder of the slab 
but with extra reinforcement, to pick up the load from the affected regions and 
transmit it to the supports. In general, these integral beams should be chosen so as 
to carry the loads most directly to the supported edges of the slab. The width of the 
strong bands should be selected so that the reinforcement ratios ρ are at or below 
the value required to produce a tension-controlled member (that is, ϵt ≥ 0.005 and 
ϕ = 0.90). Doing so ensures ductile behavior of the slab.

Use of the strip method for analysis and design of a slab with a large central 
hole is illustrated by the following example.

FIGURE 24.12
Slab with one free edge and 
linearly varying load.
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	EXAMPLE 24.3	 Rectangular slab with central opening.  Figure 24.13a shows a 16 × 28 ft slab with fixed 
supports along all four sides. A central opening 4 × 8 ft must be accommodated. Estimated 
slab thickness, from Eq. (13.4b), is 7 in. The slab is to carry a uniformly distributed factored 
load of 300 psf, including self weight. Devise an appropriate system of strong bands to rein-
force the opening, and determine moments to be resisted at all critical sections of the slab.

Solution.  The basic pattern of discontinuity lines and load dispersion are selected according 
to Fig. 24.5. Edge strips are defined having width ​ 16 __ 4 ​ = 4 ft. In the corners, the load is equally 
divided in the two directions. In the central region, 100 percent of the load is assigned to the 
Y direction, while along the central part of the short edges, 100 percent of the load is carried 
in the X direction. Moments for this “basic case” without the hole are calculated and later 
used as a guide in selecting moments for the actual slab with hole. A ratio of support to span 
moments of 2.0 is used generally, as for the previous examples. Moments for the slab, 
neglecting the hole, would then be as follows:

X direction middle strips:

  Cantilever:	 mx = ​ 
qb2

 ___ 
32

 ​ = 300 × ​ 162
 ___ 

32
 ​ = 2400 ft-lb∕ft	

  Negative:	  mxs = 2400 × ​ 2 __ 
3
 ​ = 1600	

  Positive:	  mxf = 2400 × ​ 1 __ 
3
 ​ = 800	

X direction edge-strip moments are one-half of the middle-strip moments.

Y direction middle strips:

  Cantilever:	 my = ​ 
qb2

 ___ 
8
 ​  = 300 × ​ 162

 ___ 
8
 ​  = 9600 ft-lb∕ft	

  Negative:	 mys = 9600 × ​ 2 __ 
3
 ​ = 6400	

  Positive:	 myf = 9600 × ​ 1 __ 
3
 ​ = 3200	

Y direction edge-strip moments are one-half of the middle-strip moments.
Because of the hole, certain strips lack support at one end. To support them, 1 ft wide 

strong bands are provided in the X direction at the long edges of the hole and 2 ft wide strong 
bands in the Y direction on each side of the hole. The Y direction bands provide for the 
reactions of the X direction bands. With the distribution of loads shown in Fig. 24.13a, strip 
reactions and moments are found as follows:

Strip A–A
It may at first be assumed that propped cantilever action is obtained, with the restraint moment 
along the slab edge taken as 6400 ft-lb∕ft, the same as for the basic case. Summing moments 
about the left end of the loaded strip then results in

q1 = ​​ 300 × 6 × 3 − 6400  __________________  
1 × 5.5

 ​​  = −182 psf

The negative value indicates that the cantilever strips are serving as supports for strip D–D, 
and in turn for the strong bands in the Y direction, which is hardly a reasonable assumption. 
Instead, a discontinuity line is assumed 5 ft from the support, as shown in Fig. 24.13b, termi-
nating the cantilever and leaving the 1 ft strip D–D along the edge of the opening in the X 
direction to carry its own load. It follows that the support moment in the cantilever strip is

Negative:	 mys = 300 × 5 × 2.5 = 3750 ft-lb∕ft	
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Strip B–B
The restraint moment at the supported edge is taken to be the same as the basic case, that is, 
1600 ft-lb∕ft. Summing moments about the left end of the strip of Fig.  24.13c then results 
in an uplift reaction at the right end, to be provided by strip E–E, of

q2 = ​ 300 × 4 × 2 − 1600  _________________  
2 × 9

 ​  = 44 psf

FIGURE 24.13
Design example: slab with 
central hole.
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FIGURE 24.13
(Continued)
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The left reaction is easily found to be 1112 lb, and the point of zero shear is 3.70 ft from 
the left support. The maximum positive moment, at that point, is

Positive:	 mxf = 1112 × 3.70 − 1600 − 300 ​ 3.702
 _____ 

2
 ​  = 461 ft-lb∕ft	

Strip C–C
Negative and positive moments and the reaction to be provided by strip E–E, as shown in 
Fig. 24.13d, are all one-half the corresponding values for strip B–B.

Strip D–D
The 1 ft wide strip carries 300 psf in the X direction with reactions provided by the strong 
bands E–E, as shown in Fig. 24.13e. The maximum positive moment is

mxf  = 600 × 2 × 5 − 300 × 4 × 2 = 3600 ft-lb∕ft

Strip E–E
In reference to Fig. 24.13f, the strong bands in the Y direction carry the directly applied load of 
300 psf plus the 44 psf load from strip B–B, the 22 psf load from strip C–C, and the 600 psf 
end reaction from strip D–D. For strip E–E the cantilever, negative, and positive moments are

Cantilever:	 my = 300 × 8 × 4 + 22 × 4 × 2 + 44 × 4 × 6 + 600 × 1 × 5.5

 	 = 14,132 ft-lb∕ft

Negative:	 mys = 14,132 × ​ 2 __ 
3
 ​ = 9421	

Positive:	 myf = 14,132 × ​ 1 __ 
3
 ​ = 4711	

It should be emphasized that the loads shown are psf and would be multiplied by 2 to obtain 
loads per foot acting on the strong bands. Correspondingly, the moments just obtained are 
per foot width and must be multiplied by 2 to give the support and span moments for the 
2 ft wide strong band.

Strip F–F
The moments for the Y direction middle strip of the basic case may be used without change; 
thus, in Fig. 24.13g,

Negative:	 mys = 6400 ft-lb∕ft	

Positive:	 myf   = 3200	

Strip G–G
Moments for the Y direction edge strips of the basic case are used without change, resulting in

Negative:	 mys  = 800 ft-lb∕ft	

Positive:	 myf  = 400	

as shown in Fig. 24.13h.
The final distribution of moments across the negative and positive critical sections of 

the slab is shown in Fig. 24.13i. The selection of reinforcing bars and determination of cut-
off points would follow the same methods as presented in Examples 24.1 and 24.2 and will 
not be given here. Reinforcing bar ratios needed in the strong bands are well below the 
maximum permitted for the 7 in. slab depth.

It should be noted that strips B–B, C–C, and D–D have been designed as if they were 
simply supported at the strong band E–E. To avoid undesirably wide cracks where these strips 
pass over the strong band, nominal negative reinforcement should be added in this region. 
Positive bars should be extended fully into the strong bands.
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	 24.8	 ADVANCED STRIP METHOD

The simple strip method described in the earlier sections of this chapter is not directly 
suitable for the design of slabs supported by columns (for example, flat plates) or 
slabs supported at reentrant corners.† For such cases, Hillerborg introduced the 
advanced strip method (Refs. 24.2, 24.5, 24.12, and 24.13).

Fundamental to the advanced strip method is the corner-supported element, 
such as that shown shaded in Fig. 24.14a. The corner-supported element is a rectan-
gular region of the slab with the following properties:

	 1.	 The edges are parallel to the reinforcement directions.
	 2.	 It carries a uniform load q per unit area.

† �However, Wood and Armer, in Ref. 24.8, suggest that beamless slabs with column supports can be solved by the simple strip method through 
the use of strong bands between columns or between columns and exterior walls.

FIGURE 24.14
Slab with central supporting 
column.
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810      DESIGN OF CONCRETE STRUCTURES  Chapter 24

	 3.	 It is supported at only one corner.
	 4.	 No shear forces act along the edges.
	 5.	 No twisting moments act along the edges.
	 6.	 All bending moments acting along an edge have the same sign or are zero.
	 7.	 The bending moments along the edges are the factored moments used to design 

the reinforcing bars.

A uniformly loaded strip in the X direction, shown in Fig.  24.14b, thus has 
shear and moment diagrams as shown in Fig. 24.14c and d, respectively. Maximum 
moments are located at the lines of zero shear. The outer edges of the corner-supported 
element are defined at the lines of zero shear in both the X and Y directions.

A typical corner-supported element, with an assumed distribution of moments 
along the edges, is shown in Fig.  24.15. It is assumed that the bending moment is 
constant along each half of each edge. The vertical reaction is found by summing 
vertical forces:
	 R = qab	 (24.19)
and moment equilibrium about the Y axis gives

	 mxfm − mxsm = ​ 
qa2

 ___ 
2
 ​	  (24.20)

where mxfm and mxsm are the mean span and support moments per unit width, and 
the beam sign convention is followed. Similarly,

	 myfm − mysm = ​ 
qb2

 ___ 
2
 ​	  (24.21)

FIGURE 24.15
Corner-supported element.
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The last two equations are identical with the condition for a corresponding part 
of a simple strip—Eq. (24.20) spanning in the X direction and Eq. (24.21) in the Y 
direction—supported at the axis and carrying the load qb or qa per foot. So if the 
corner-supported element forms a part of a strip, that part should carry 100 percent 
of the load q in each direction. (This requirement was discussed earlier in Chapter 13 
and is simply a requirement of static equilibrium.)

The distribution of moments within the boundaries of a corner-supported ele-
ment is complex. With the load on the element carried by a single vertical reaction 
at one corner, strong twisting moments must be present within the element; this 
contrasts with the assumptions of the simple strip method used previously.

The moment field within a corner-supported element and its edge moments 
have been explored in great detail in Ref. 24.12. It is essential that the edge moments, 
given in Fig. 24.15, are used to design the reinforcing bars (that is, nowhere within 
the element is a bar subjected to a greater moment than at the edges). To meet this 
requirement, a limitation must be put on the moment distribution along the edges. 
Based on his studies (Ref. 24.12), Hillerborg has recommended the following restric-
tion on edge moments:

	 mxf 2 − mxs2 = α ​ 
qa2

 ___ 
2
 ​	  (24.22a)

with
	 0.25 ≤ α ≤ 0.7	 (24.22b)
where mxf 2 and mxs2 are the positive and negative X direction moments, respectively, 
in the outer half of the element, as shown in Fig. 24.15. The corresponding restric-
tion applies in the Y direction. He notes further that for most practical applications, 
the edge moment distribution shown in Fig. 24.16 is appropriate, with
	 mxf 1 = mxf  2 = mxfm	 (24.23)
	 mxs2 = 0	 (24.24a)
	 mxs1 = 2mxsm	 (24.24b)
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FIGURE 24.16
Recommended distribution of 
moments for typical corner-
supported element.
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(Alternatively, it is suggested in Ref. 24.14 that negative support moments across 
the column line be taken at 1.5mxsm in the half-element width by the column and at 
0.5mxsm in the remaining outside half-element width.) Positive reinforcement in the 
span should be carried through the whole corner-supported element. The negative 
reinforcement corresponding to mxs1 − mxs2 in Fig. 24.15 must be extended at least 
0.6a from the support. The remaining negative steel, if any, should be carried through 
the whole corner-supported element. The corresponding restrictions apply in the  
Y direction.

In practical applications, corner-supported elements are combined with each 
other and with parts of one-way strips, as shown in Fig. 24.14, to form a system of 
strips. In this system, each strip carries the total load q, as discussed earlier. In lay-
ing out the elements and strips, the concentrated corner support for the element may 
be assumed to be at the center of the supporting column, as shown in Fig.  24.14, 
unless supports are of significant size. In that case, the corner support may be taken 
at the corner of the column, and an ordinary simple strip may be included that spans 
between the column faces, along the edge of the corner-supported elements. Note in 
the figure that the corner regions of the slab are not included in the main strips that 
include the corner-supported elements. These may safely be designed for one-third 
of the corresponding moments in the main strips (Ref. 24.13).

	EXAMPLE 24.4	 Edge-supported flat plate with central column.  Figure 24.17a illustrates a flat plate with 
overall dimensions 34  ×  34  ft, with fixed supports along the left and lower edges in the 
sketch, hinged supports at the right and upper edges, and a single central column 16 in. square. 
It must carry a service live load of 40 psf over its entire surface plus its own weight and an 
additional superimposed dead load of 7 psf. Find the moments at all critical sections, and 
determine the required slab thickness and reinforcement. Material strengths are specified at 
fy = 60,000 psi and ​​f​c​ ′​​ = 4000 psi.

FIGURE 24.17
Design example: edge-
supported flat plate with 
central column.
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FIGURE 24.17
(Continued)

Solution.  A trial slab depth is chosen based on Table 13.2, which governs for flat plates. 
It is conservative for the present case, where continuous support is provided along the outer 
edges.

h = ​ 17 × 12 _______ 
33

 ​  = 6.18 in.

A thickness of 6.5 in. is tentatively selected, for which the self weight is 150  ×  6.5∕12  =   
81 psf. The total factored load to be carried is thus

qu = 1.2 (81 + 7) + 1.6 × 40 = 170 psf

The average strip moments in the X direction in the central region caused by the load 
of 170 psf are found by elastic theory and are shown in Fig. 15.17c. The analysis in the Y 
direction is identical. The points of zero shear (and maximum moments) are located 9.11 ft 
to the left of the column and 10.32 ft to the right, as indicated. These dimensions determine 
the size of the four corner-supported elements.

Moments in the slab are then determined according to the preceding recommendations. 
At the fixed edge along the left side of the main strips, the moment mxs is simply the moment 
per foot strip from the elastic analysis, 3509 ft-lb∕ft. At the left edge of the corner-supported 
element in the left span,

mxf  1 = mxf 2 = mxfm = 1788 ft-lb∕ft

Along the centerline of the slab, over the column, following the recommendations shown in 
Fig. 24.16,

mxs2 = 0

mxs1 = 2mxsm = 10,528 ft-lb∕ft
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FIGURE 24.17
(Continued)
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At the right edge of the corner-supported element in the right span,

mxf 1 = mxf 2 = mxfm = 3789 ft-lb∕ft

At the outer, hinge-supported edge, all moments are zero. Make a check of the α values, using 
Eq. (24.22b), and note from Eq. (24.20) that qa2∕2 = mxfm − mxsm. Thus, in the left span,

α = ​ 
mxf 2 − mxs2

  __________ 
qa2∕2

 ​  = ​  1788 − 0  ___________  
1788 + 5264

 ​ = 0.25
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and in the right span,

α = ​  3789 − 0  ___________  
3789 + 5264

 ​ = 0.42

Because both values are within the range of 0.25 to 0.75, the proposed distribution of moments 
is satisfactory. If the first value had been below the lower limit of 0.25, the negative moment 
in the column half-strip might have been reduced from 10,528 ft-lb∕ft, and the negative 
moment in the adjacent half-strip might have been increased above the 0 value used. Alter-
natively, the total negative moment over the column might have been somewhat decreased, 
with a corresponding increase in span moments.

Moments in the Y direction correspond throughout, and all results are summarized in 
Fig. 24.17d. Moments in the strips adjacent to the supported edges are set equal to one-third 
of those in the adjacent main strips.

With moments per ft strip known at all critical sections, the required reinforcement is 
easily found. With a ​ 3 _ 4 ​ in. concrete cover and ​ 1 _ 2 ​ in. bar diameter, in general the effective depth 
of the slab is 5.5 in. Where bar stacking occurs—that is, over the central column and near 
the intersection of the two fixed edges—an average effective depth equal to 5.25 in. is used. 
This results in reinforcement identical in the two directions and simplifies construction.

For the 6.5 in. thick slab, minimum steel for shrinkage and temperature crack control 
is 0.0018 × 6.5 × 12 = 0.140 in2∕ft strip, which is provided by No. 3 (No. 10) bars at 9 in. 
spacing. The corresponding flexural reinforcement ratio is

ρmin = ​  0.140 ________ 
5.5 × 12

 ​ = 0.0021

Interpolating from Table A.5a of Appendix A makes R = 124, and the design strength is

ϕmn = ϕRbd 2 = 0.90 × 124 × 12 × 5.52∕12 = 3376 ft-lb∕ft

In comparison with the required strengths summarized in Fig. 24.17d, this is adequate every-
where except for particular regions as follows:

Negative steel over column:

R = ​ 
mu _____ 

ϕbd 2
 ​ = ​ 

10,528 × 12
  _______________  

0.90 × 12 × 5.252
 ​ = 424

for which ρ = 0.0076 (from Table A.5a), and As = 0.0076 × 12 × 5.25 = 0.48  in2∕ft. This 
is provided using No. 5 (No. 16) bars at 7.5 in. spacing. They are continued a distance 
0.6 × 9.11 = 5.47 ft, say 5 ft 6 in., to the left of the column centerline, and 0.6 × 10.32 = 6.19 ft, 
say 6 ft 3 in., to the right.

Negative steel along fixed edges:

R = ​  3509 × 12  _______________  
0.90 × 12 × 5.502

 ​ = 129

for which ρ = 0.0022 and As = 0.0022 × 12 × 5.5 = 0.15 in2∕ft. No. 3 (No. 10) bars at 9 in. 
spacing is adequate. The point of inflection for the slab in this region is easily found to be 
3.30 ft from the fixed edge. The negative bars are extended 5.5 in. beyond that point, result-
ing in a cutoff 45 in., or 3 ft 9 in., from the support face.

Positive steel in outer spans:

R = ​  3789 × 12  _______________  
0.90 × 12 × 5.502

 ​ = 139

resulting in ρ  =  0.0024 and As  =  0.0024  ×  12  ×  5.5  =  0.16  in2∕ft. No. 3 (No. 10) bars at 
8  in. spacing are used. In all cases, the maximum spacing of 2h = 13  in. is satisfied. Alter-
natively, No. 4 (No. 13) bars at 13 in. in lieu of the No. 3 (No. 10) bars provide R = 163 
and will simplify placement costs.

Bar size and spacing and cutoff points for the top and bottom steel are summarized in 
Fig. 24.17e and f, respectively.
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816      DESIGN OF CONCRETE STRUCTURES  Chapter 24

Finally, the load carried by the central column is

P = 170 × 19.43 × 19.43 = 64,200 lb

Investigating punching shear at a critical section taken d∕2 from the face of the 16 in. column, 
with reference to Eq. (13.7a) and with bo = 4 × (16.00 + 5.25) = 85  in., gives

ϕVc = 4ϕ​​√
__

 ​f​c​ ′​​​ bod = 4 × 0.75​​√
____

 4000​​ × 85 × 5.25 = 84,700 lb

This is well above the applied shear of 64,200 lb, confirming that the slab thickness is adequate 
and that no shear reinforcement is required.

	 24.9	 COMPARISONS OF YIELD LINE AND STRIP METHODS FOR 
SLAB ANALYSIS AND DESIGN

The conventional methods of slab analysis and design, as described in Chapter 13, 
are limited to applications in which slab panels are supported on opposite sides or 
on all four sides by beams or walls or to the case of flat plates and related forms 
supported by a relatively regular array of columns. In all cases, slab panels must be 
square or rectangular, loads must be uniformly distributed within each panel, and 
slabs must be free of significant holes.

Both the yield line theory and the strip method offer the designer rational meth-
ods for slab analysis and design over a much broader range, including the following:

	 1.	 Boundaries of any shape, including rectangular, triangular, circular, and L-shaped 
boundaries with reentrant corners

	 2.	 Supported or unsupported edges, skewed supports, column supports, or various 
combinations of these conditions

	 3.	 Uniformly distributed loads, loads distributed over partial panel areas, linear 
varying distributed loads, line loads, and concentrated loads

	 4.	 Slabs with significant holes

The most important difference between the strip method and the yield line 
method is the fact that the strip method produces results that are always on the safe 
side, but yield line analysis may result in unsafe designs. A slab designed by the 
strip method may possibly carry a higher load than estimated, through internal force 
redistributions, before collapse; a slab analyzed by yield line procedures may fail at 
a lower load than anticipated if an incorrect mechanism has been selected as the 
basis or if the defining dimensions are incorrect.

Beyond this, it should be realized that the strip method is a tool for design, by which 
the slab thickness and reinforcing bar size and distribution may be selected to resist the 
specified loads. In contrast, the yield line theory offers only a means for analyzing the 
capacity of a given slab, with known reinforcement. According to the yield line approach, 
the design process is actually a matter of reviewing the capacities of a number of trial 
designs and alternative reinforcing patterns. All possible yield line patterns must be inves-
tigated and specific dimensions varied to be sure that the correct solution has been found. 
Except for simple cases, this is likely to be a time-consuming process.

Neither the strip method nor the yield line approach provides any information 
regarding cracking or deflections at service load. Both focus attention strictly on flexural 
strength. However, by the strip method, if care is taken at least to approximate the elastic 
distribution of moments, little difficulty should be experienced with excessive cracking. 
The methods for deflection prediction presented in Section 13.11 can, without difficulty, 
be adapted for use with the strip method, because the concepts are fully compatible.
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With regard to economy of reinforcement, it might be supposed that use of the 
strip method, which always leads to designs on the safe side, might result in more 
expensive structures than the yield line theory. Comparisons, however, indicate that 
in most cases this is not so (Refs. 24.8 and 24.12). Through proper use of the strip 
method, reinforcing bars are placed in a nonuniform way in the slab (for example, 
in strong bands around openings) where they are used to best effect; yield line 
methods, on the other hand, often lead to uniform bar spacings, which may mean 
that individual bars are used inefficiently.

Many tests have been conducted on slabs designed by the strip method (Ref. 24.11; 
also, see the summary in Ref. 24.12). These tests included square slabs, rectangular slabs, 
slabs with both fixed and simply supported edges, slabs supported directly by columns, 
and slabs with large openings. The conclusions drawn determine that the strip method 
provides for safe design with respect to nominal strength and that at service load, behav-
ior with respect to cracking and deflections is generally satisfactory. The method has 
been widely and successfully used in the Scandinavian countries since the 1960s.
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Problems
Note: For all the following problems, use material strengths fy  =  60,000  psi and  
​​f​c​ ′​​ = 4000 psi. All ACI Code requirements for minimum steel, maximum spacings, 
bar cutoff, and special corner reinforcement are applicable.

	24.1.	 The square slab of Fig. P24.1 is simply supported by masonry walls along all 
four sides. It is to carry a service live load of 100 psf in addition to its 
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818      DESIGN OF CONCRETE STRUCTURES  Chapter 24

self  weight. Specify a suitable load distribution; determine moments at all 
controlling sections; and select the slab thickness, reinforcing bars, and spacing.

FIGURE P24.1 24′

24′

	24.2	 The rectangular slab shown in Fig. P24.2 is a typical interior panel of a large 
floor system having beams on all column lines. Columns and beams are 
sufficiently stiff that the slab can be considered fully restrained along all 
sides. A  live load of 100 psf and a superimposed dead load of 30 psf must 
be carried in addition to the slab self weight. Determine the required slab 
thickness, and  specify all reinforcing bars and spacings. Cutoff points for 
negative bars should be specified; all positive steel may be carried into the 
supporting beams. Take support moments to be 2 times the span moments 
in the strips.

24′

14′

FIGURE P24.2

	24.3.	 The slab of Fig. P24.3 may be considered fully fixed along three edges, but 
it is without support along the fourth, long side. It must carry a uniformly 
distributed live load of 80 psf plus an external dead load of 40 psf. Specify 
a suitable slab depth, and determine reinforcement and cutoff points.

24′

Free edge

3 edges fixed

12′

FIGURE P24.3
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	24.4.	 Figure P24.4 shows a counterfort retaining wall (see Section 16.9) consisting of 
a base slab and a main vertical wall of constant thickness retaining the earth. 
Counterfort walls spaced at 19 ft on centers along the wall provide additional 
support for the main slab. Each section of the main wall, which is 16 ft high and 
18 ft long, may be considered fully fixed at its base and also along its two ver-
tical sides (because of full continuity and identical loadings on all such panels). 
The top of the main wall is without support. The horizontal earth pressure var-
ies from 0 at the top of the wall to 587 psf at the top of the base slab. Determine 
a suitable thickness for the main wall, and select reinforcing bars and spacing.

19′

18′

Base slab

Counterfort

Free
edge

Counterfort

Earth fill

Retaining
wall

16′

FIGURE P24.4

	24.5.	 The triangular slab shown in Fig. P24.5, providing cover over a loading dock, is 
fully fixed along two adjacent sides and free of support along the diagonal edge. 
A uniform snow load of 60 psf is anticipated. Dead load of 10 psf acts, in addi-
tion to self weight. Determine the required slab depth and specify all reinforce-
ment. (Hint: The main bottom reinforcement should be parallel to the free edge, 
and the negative reinforcement should be perpendicular to the supported edges.)

24′2 edges
fixed

Free edge12′

FIGURE P24.5

	24.6.	 Figure P24.6 shows a rectangular slab with a large opening near one corner. 
It is simply supported along one long side and the adjacent short side, and 

26′

13′

6.5′

Fixed edge

Fixed edge

2 simply-supported
edges

18′

FIGURE P24.6
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the two edges adjacent to the opening are fully fixed. A factored load of 250 
psf must be carried. Find the required slab thickness, and specify all rein-
forcement.

	24.7.	 The roof deck slab of Fig. P24.7 is intended to carry a total factored load, 
including self-weight, of 165 psf. It has fixed supports along the two long 
sides and one short side, but the fourth edge must be free of any support. 
Two 16 in. square columns are located as shown.
(a)	 Determine an acceptable slab thickness.
(b)	 Select appropriate load dispersion lines.
(c)	 Determine moments at all critical sections.
(d)	 Specify bar sizes, spacings, and cutoff points.
(e)	 Check controlling sections in the slab for shear strength.

16′

16′

3 edges fixed

Free edge

Columns
16″ × 16″

16′ 7′

16′

FIGURE P24.7

www.konkur.in

Telegram: @uni_k



821

Design Aids

APPENDIX

TABLE A.1
Designations, diameters, areas, and weights of standard bars

Bar No.

SIb Diameter, in.
Cross-Sectional  

Area, in2
Nominal Weight,  

lb∕ftInch-Pounda

3 10 ​ 3 _ 8 ​ = 0.375 0.11 0.376
4 13 ​ 1 _ 2 ​ = 0.500 0.20 0.668
5 16 ​ 5 _ 8 ​ = 0.625 0.31 1.043
6 19 ​ 3 _ 4 ​ = 0.750 0.44 1.502
7 22 ​ 7 _ 8 ​ = 0.875 0.60 2.044
8 25 1 = 1.000 0.79 2.670
9 29 1​ 1 _ 8 ​ = 1.128c 1.00 3.400

10 32 1​ 1 _ 4 ​ = 1.270c 1.27 4.303
11 36 1​ 3 _ 8 ​ = 1.410c 1.56 5.313
14 43 1​ 3 _ 4 ​ = 1.693c 2.25 7.650
18 57 2​ 1 _ 4 ​ = 2.257c 4.00 13.600

aBased on the number of eighths of an inch included in the nominal diameter of the bars. The nominal 
diameter of a deformed bar is equivalent to the diameter of a plain bar having the same weight per foot as 
the deformed bar.
bBar number approximates the number of millimeters included in the nominal diameter of the bar. Bars are 
marked with this designation.
cApproximate to nearest ​ 1 _ 8 ​ in.
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TABLE A.2
Areas of groups of standard bars, in2

Bar No. Number of Bars
Inch-  
Pound SI 1 2 3 4 5 6 7 8 9 10 11 12

  4 13 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40
  5 16 0.31 0.62 0.93 1.24 1.55 1.86 2.17 2.48 2.79 3.10 3.41 3.72
  6 19 0.44 0.88 1.32 1.76 2.20 2.64 3.08 3.52 3.96 4.40 4.84 5.28
  7 22 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 6.60 7.20
  8 25 0.79 1.58 2.37 3.16 3.95 4.74 5.53 6.32 7.11 7.90 8.69 9.48
  9 29 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00
10 32 1.27 2.54 3.81 5.08 6.35 7.62 8.89 10.16 11.43 12.70 13.97 15.24
11 36 1.56 3.12 4.68 6.24 7.80 9.36 10.92 12.48 14.04 15.60 17.16 18.72
14 43 2.25 4.50 6.75 9.00 11.25 13.50 15.75 18.00 20.25 22.50 24.75 27.00
18 57 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 44.00 48.00

TABLE A.3
Areas of bars in slabs and walls, in2∕ft

Spacing,  
in.

Inch-  
Pound:  

SI:

Bar No.

3 4 5 6 7 8 9 10 11
10 13 16 19 22 25 29 32 36

    3 0.44 0.78 1.23 1.77 2.40 3.14 4.00 5.06 6.25
    3​ 1 _ 2 ​ 0.38 0.67 1.05 1.51 2.06 2.69 3.43 4.34 5.36
    4 0.33 0.59 0.92 1.32 1.80 2.36 3.00 3.80 4.68
    4​ 1 _ 2 ​ 0.29 0.52 0.82 1.18 1.60 2.09 2.67 3.37 4.17
    5 0.26 0.47 0.74 1.06 1.44 1.88 2.40 3.04 3.75
    5​ 1 _ 2 ​ 0.24 0.43 0.67 0.96 1.31 1.71 2.18 2.76 3.41
    6 0.22 0.39 0.61 0.88 1.20 1.57 2.00 2.53 3.12
    6​ 1 _ 2 ​ 0.20 0.36 0.57 0.82 1.11 1.45 1.85 2.34 2.89
    7 0.19 0.34 0.53 0.76 1.03 1.35 1.71 2.17 2.68
    7​ 1 _ 2 ​ 0.18 0.31 0.49 0.71 0.96 1.26 1.60 2.02 2.50
    8 0.17 0.29 0.46 0.66 0.90 1.18 1.50 1.89 2.34
    9 0.15 0.26 0.41 0.59 0.80 1.05 1.33 1.69 2.08
  10 0.13 0.24 0.37 0.53 0.72 0.94 1.20 1.52 1.87
  12 0.11 0.20 0.31 0.44 0.60 0.78 1.00 1.27 1.56
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TABLE A.4
Limiting steel reinforcement ratios for tension-controlled members

fy, psi ​​f​c​ ′​​, psi β1 ρmax
a ρmin = ​​ 

200
 ____ 

fy
  ​​ ρmin = ​​ 

3​√
__

 ​f​c​ ′​​
 _____ 

fy
  ​​

40,000 3000 0.85 0.0220 0.0050 0.0041
4000 0.85 0.0294 0.0050 0.0047
5000 0.80 0.0346 0.0050 0.0053
6000 0.75 0.0389 0.0050 0.0058
7000 0.70 0.0423 0.0050 0.0063
8000 0.65 0.0449 0.0050 0.0067
9000 0.65 0.0505 0.0050 0.0071

10000 0.65 0.0562 0.0050 0.0075

60,000b 3000 0.85 0.0135 0.0033 0.0027
4000 0.85 0.0181 0.0033 0.0032
5000 0.80 0.0213 0.0033 0.0035
6000 0.75 0.0239 0.0033 0.0039
7000 0.70 0.0260 0.0033 0.0042
8000 0.65 0.0276 0.0033 0.0045
9000 0.65 0.0311 0.0033 0.0047

10000 0.65 0.0345 0.0033 0.0050

80,000 3000 0.85 0.0093 0.0025 0.0021
4000 0.85 0.0124 0.0025 0.0024
5000 0.80 0.0146 0.0025 0.0027
6000 0.75 0.0164 0.0025 0.0029
7000 0.70 0.0178 0.0025 0.0031
8000 0.65 0.0189 0.0025 0.0034
9000 0.65 0.0213 0.0025 0.0036

10000 0.65 0.0237 0.0025 0.0038

100,000 3000 0.85 0.0069 0.0020 0.0016
4000 0.85 0.0092 0.0020 0.0019
5000 0.80 0.0108 0.0020 0.0021
6000 0.75 0.0121 0.0020 0.0023
7000 0.70 0.0132 0.0020 0.0025
8000 0.65 0.0140 0.0020 0.0027
9000 0.65 0.0158 0.0020 0.0028

10000 0.65 0.0175 0.0020 0.0030

aρ = 0.85 β1​​ 
 ​f​c​ ′​ ___ 
fy

 ​​ ​​ 
εu
 _____________  

εu + εy + 0.003
 ​​

b Calculated using εy = 0.002
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TABLE A.5a
Flexural resistance factor: R = ρfy ​​( 1 − 0.588 ​ 

ρfy
 ___ 

​f​c​ ′​
 ​  )​​ = ​​ 

Mn
 ___ 

bd2 ​​ = ​​ 
Mu
 _____ 

ϕbd2 ​​, psi

fy = 40,000 psi fy = 60,000 psi fy = 80,000 psi

​​f ​c ​ ′ ​​, psi ​​f ​c ​ ′ ​​, psi ​​f ​c ​ ′ ​​, psi

ρ 3000 4000 5000 6000 3000 4000 5000 6000 3000 4000 5000 6000

0.0005 20 20 20 20 30 30 30 30 40 40 40 40
0.0010 40 40 40 40 59 59 60 60 79 79 79 79
0.0015 59 59 60 60 88 89 89 89 117 118 118 119
0.0020 79 79 79 79 117 118 118 119 155 156 157 157
0.0025 98 99 99 99 146 147 147 148 192 194 195 196
0.0030 117 118 118 119 174 175 176 177 229 232 233 234
0.0035 136 137 138 138 201 204 205 206 265 268 271 272
0.0040 155 156 157 157 229 232 233 234 300 305 308 310
0.0045 174 175 176 177 256 259 261 263 335 341 345 347
0.0050 192 194 195 196 282 287 289 291 369 376 381 384
0.0055 211 213 214 215 309 314 317 319 402 412 417 421
0.0060 229 232 233 234 335 341 345 347 435 446 453 457
0.0065 247 250 252 253 360 368 372 375 467 480 488 494
0.0070 265 268 271 272 385 394 399 403 499 514 523 529
0.0075 282 287 289 291 410 420 426 430 529 547 558 565
0.0080 300 305 308 310 435 446 453 457 560 580 592 600
0.0085 317 323 326 329 459 472 479 485 589 612 626 635
0.0090 335 341 345 347 483 497 506 511 618 644 659 669
0.0095 352 359 363 366 506 522 532 538 647 675 692 703
0.0100 369 376 381 384 529 547 558 565 675 706 725 737
0.0105 385 394 399 403 552 572 583 591 702 736 757 771
0.0110 402 412 417 421 575 596 609 617 728 766 789 804
0.0115 419 429 435 439 597 620 634 643 754 796 820 837
0.0120 435 446 453 457 618 644 659 669 825 852 870
0.0125 451 463 471 476 640 667 684 695 853 882 902
0.0130 467 480 488 494 661 691 708 720 881 913 934
0.0135 483 497 506 511 681 714 733 746 909 943 966
0.0140 499 514 523 529 702 736 757 771 936 972 997
0.0145 514 531 540 547 722 759 781 796 962 1002 1028
0.0150 529 547 558 565 741 781 805 821 988 1031 1059
0.0155 545 563 575 582 760 803 828 845 1014 1059 1089
0.0160 560 580 592 600 825 852 870 1087 1119
0.0165 575 596 609 617 846 875 894 1115 1149
0.0170 589 612 626 635 867 898 918 1142 1179
0.0175 604 628 642 652 888 920 942 1170 1208
0.0180 618 644 659 669 909 943 966 1196 1237
0.0185 633 660 676 686 929 965 989 1265
0.0190 647 675 692 703 949 987 1013 1294
0.0195 661 691 708 720 969 1009 1036 1322
0.0200 675 706 725 737 988 1031 1059 1349
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TABLE A.5b
Flexural resistance factor: R = ρfy ​​( 1 − 0.588 ​ 

ρfy
 ___ 

​f​c​ ′​
 ​  )​​ = ​​ 

Mn
 ___ 

bd2 ​​ = ​​ 
Mu
 _____ 

ϕbd2 ​​, psi

fy = 40,000 psi fy = 60,000 psi fy = 80,000 psi

​​f ​c ​ ′ ​​, psi ​​f ​c ​ ′ ​​, psi ​​f ​c ​ ′ ​​, psi

ρ 3000 4000 5000 6000 3000 4000 5000 6000 3000 4000 5000 6000

0.003 117 118 118 119 174 175 176 177 229 232 233 234
0.004 155 156 157 157 229 232 233 234 300 305 308 310
0.005 192 194 195 196 282 287 289 291 369 376 381 384
0.006 229 232 233 234 335 341 345 347 435 446 453 457
0.007 265 268 271 272 385 394 399 403 499 514 523 529
0.008 300 305 308 310 435 446 453 457 560 580 592 600
0.009 335 341 345 347 483 497 506 511 618 644 659 669
0.010 369 376 381 384 529 547 558 565 675 706 725 737
0.011 402 412 417 421 575 596 609 617 728 766 789 804
0.012 435 446 453 457 618 644 659 669 825 852 870
0.013 467 480 488 494 661 691 708 720 881 913 934
0.014 499 514 523 529 702 736 757 771 936 972 997
0.015 529 547 558 565 741 781 805 821 988 1031 1059
0.016 560 580 592 600 825 852 870 1087 1119
0.017 589 612 626 635 867 898 918 1142 1179
0.018 618 644 659 669 909 943 966 1196 1237
0.019 647 675 692 703 949 987 1013 1294
0.020 675 706 725 737 988 1031 1059 1349
0.021 702 736 757 771 1073 1104
0.022 728 766 789 804 1115 1149
0.023 754 796 820 837 1156 1193
0.024 825 852 870 1196 1237
0.025 853 882 902 1280
0.026 881 913 934 1322
0.027 909 943 966 1363
0.028 936 972 997
0.029 962 1002 1028
0.030 988 1031 1059
0.031 1014 1059 1089
0.032 1087 1119
0.033 1115 1149
0.034 1142 1179
0.035 1170 1208
0.036 1196 1237
0.037 1265
0.038 1294
0.039 1322
0.040 1349
0.041 1376
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TABLE A.6
Parameters k and j for elastic, cracked section beam analysis, where  
k = ​​√

________________
  2ρn +  (ρn)2​​ − ρn; j  = 1 − ​ 1 _ 3 ​k

n = 7 n = 8 n = 9 n = 10

ρ k j k j k j k j

0.0010 0.112 0.963 0.119 0.960 0.125 0.958 0.132 0.956
0.0020 0.154 0.949 0.164 0.945 0.173 0.942 0.180 0.940
0.0030 0.185 0.938 0.196 0.935 0.207 0.931 0.217 0.928
0.0040 0.210 0.930 0.223 0.926 0.235 0.922 0.246 0.918
0.0050 0.232 0.923 0.246 0.918 0.258 0.914 0.270 0.910

0.0054 0.240 0.920 0.254 0.915 0.267 0.911 0.279 0.907
0.0058 0.247 0.918 0.262 0.913 0.275 0.908 0.287 0.904
0.0062 0.254 0.915 0.269 0.910 0.283 0.906 0.296 0.901
0.0066 0.261 0.913 0.276 0.908 0.290 0.903 0.303 0.899
0.0070 0.268 0.911 0.283 0.906 0.298 0.901 0.311 0.896

0.0072 0.271 0.910 0.287 0.904 0.301 0.900 0.314 0.895
0.0074 0.274 0.909 0.290 0.903 0.304 0.899 0.318 0.894
0.0076 0.277 0.908 0.293 0.902 0.308 0.897 0.321 0.893
0.0078 0.280 0.907 0.296 0.901 0.311 0.896 0.325 0.892
0.0080 0.283 0.906 0.299 0.900 0.314 0.895 0.328 0.891

0.0082 0.286 0.905 0.303 0.899 0.317 0.894 0.331 0.890
0.0084 0.289 0.904 0.306 0.898 0.321 0.893 0.334 0.889
0.0086 0.292 0.903 0.308 0.897 0.324 0.892 0.338 0.887
0.0088 0.295 0.902 0.311 0.896 0.327 0.891 0.341 0.886
0.0090 0.298 0.901 0.314 0.895 0.330 0.890 0.344 0.885

0.0092 0.300 0.900 0.317 0.894 0.332 0.889 0.347 0.884
0.0094 0.303 0.899 0.320 0.893 0.335 0.888 0.350 0.883
0.0096 0.306 0.898 0.323 0.892 0.338 0.887 0.353 0.882
0.0098 0.308 0.897 0.325 0.892 0.341 0.886 0.355 0.882
0.0100 0.311 0.896 0.328 0.891 0.344 0.885 0.358 0.881

0.0104 0.316 0.895 0.333 0.889 0.349 0.884 0.364 0.879
0.0108 0.321 0.893 0.338 0.887 0.354 0.882 0.369 0.877
0.0112 0.325 0.892 0.343 0.886 0.359 0.880 0.374 0.875
0.0116 0.330 0.890 0.348 0.884 0.364 0.879 0.379 0.874
0.0120 0.334 0.889 0.353 0.882 0.369 0.877 0.384 0.872

0.0124 0.339 0.887 0.357 0.881 0.374 0.875 0.389 0.870
0.0128 0.343 0.886 0.362 0.879 0.378 0.874 0.394 0.867
0.0132 0.347 0.884 0.366 0.878 0.383 0.872 0.398 0.867
0.0136 0.351 0.883 0.370 0.877 0.387 0.871 0.403 0.866
0.0140 0.355 0.882 0.374 0.875 0.392 0.869 0.407 0.864

0.0144 0.359 0.880 0.378 0.874 0.396 0.868 0.412 0.863
0.0148 0.363 0.879 0.382 0.873 0.400 0.867 0.416 0.861
0.0152 0.367 0.878 0.386 0.871 0.404 0.865 0.420 0.860
0.0156 0.371 0.876 0.390 0.870 0.408 0.864 0.424 0.859
0.0160 0.374 0.875 0.394 0.869 0.412 0.863 0.428 0.857

0.0170 0.383 0.872 0.403 0.867 0.421 0.860 0.437 0.854
0.0180 0.392 0.869 0.412 0.863 0.430 0.857 0.446 0.851
0.0190 0.400 0.867 0.420 0.860 0.438 0.854 0.455 0.848
0.0200 0.407 0.864 0.428 0.857 0.446 0.851 0.463 0.846
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TABLE A.7
Maximum number of bars as a single layer in beam stems

​ 3 _ 4 ​ in. Maximum Size Aggregate, No. 4 (No. 13) Stirrupsa

Bar No. Beam Width bw, in.

Inch- 
Pound SI 8 10 12 14 16 18 20 22 24 26 28 30

  5 16 2 4 5 6 7 8 10 11 12 13 15 16
  6 19 2 3 4 6 7 8 9 10 11 12 14 15
  7 22 2 3 4 5 6 7 8 9 10 11 12 13
  8 25 2 3 4 5 6 7 8 9 10 11 12 13
  9 29 1 2 3 4 5 6 7 8 9 9 10 11
10 32 1 2 3 4 5 6 6 7 8 9 10 10
11 36 1 2 3 3 4 5 5 6 7 8 8 9
14 43 1 2 2 3 3 4 5 5 6 6 7 8
18 57 1 1 2 2 3 3 4 4 4 5 5 6

1 in. Maximum Size Aggregate, No. 4 (No. 13) Stirrupsa

Bar No. Beam Width bw, in.

Inch- 
Pound SI 8 10 12 14 16 18 20 22 24 26 28 30

  5 16 2 3 4 5 6 7 8 9 10 11 12 13
  6 19 2 3 4 5 6 7 8 9 9 10 11 12
  7 22 1 2 3 4 5 6 7 8 9 10 10 11
  8 25 1 2 3 4 5 6 7 7 8 9 10 11
  9 29 1 2 3 4 5 6 7 7 8 9 9 10
10 32 1 2 3 4 5 6 6 7 7 8 9 10

aMinimum concrete cover assumed to be 1​ 1 _ 2 ​ in. to the No. 4 (No. 13) stirrup.
Source: Adapted from Ref. 4.8.
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TABLE A.8
Minimum number of Grade 60 bars as a single layer in beam stems governed by crack 
control requirements of the ACI Code

(a) 2 in. clear cover, sides and bottom 
Minimum Number of Bars as a Single Layer of a Beam Stem

Bar No. Beam Stem Width bw, in.

Inch-  
Pound SI 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

3–14 10–43 1 1 2 2 3 3 3 3 3 4 4 4 4 4 5
18 57 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4

(b) 1​ 1 _ 2 ​ in. clear cover, sides and bottom 
Minimum Number of Bars as a Single Layer of a Beam Stem

Bar No. Beam Stem Width bw, in.

Inch-  
Pound SI 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

3–4 10–13 1 1 2 2 3 3 3 3 3 4 4 4 4 4 4
5–14 16–43 1 1 2 2 3 3 3 3 3 3 4 4 4 4 4
18 57 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4
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TABLE A.9
Design strength ϕMn for slab sections 12 in. wide, ft-kips; fy = 60 ksi;  
ϕMn = ϕρfybd 2(1 − 0.59ρfy∕​​f​c​ ′​​)

Effective Depth d, in.

​​f ​c ​ ′ ​​, psi ρ 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0 12.0

3000 0.002 0.9 1.3 1.7 2.1 2.6 3.2 3.8 4.5 5.2 6.7 8.5 10.5 15.2
0.003 1.4 1.9 2.5 3.2 3.9 4.7 5.6 6.6 7.7 10.0 12.7 15.6 22.5
0.004 1.9 2.5 3.3 4.2 5.1 6.2 7.4 8.7 10.1 13.2 16.7 20.6 29.6
0.005 2.3 3.1 4.1 5.1 6.4 7.7 9.1 10.7 12.4 16.3 20.6 25.4 36.6
0.006 2.7 3.7 4.8 6.1 7.5 9.1 10.8 12.7 14.8 19.3 24.4 30.1 43.4
0.007 3.1 4.2 5.5 7.0 8.7 10.5 12.5 14.7 17.0 22.2 28.1 34.7 49.9
0.008 3.5 4.8 6.3 7.9 9.8 11.8 14.1 16.5 19.2 25.0 31.7 39.1 56.3
0.009 3.9 5.3 7.0 8.8 10.9 13.1 15.6 18.4 21.3 27.8 35.2 43.4 62.6
0.010 4.3 5.8 7.6 9.6 11.9 14.4 17.1 20.1 23.3 30.5 38.6 47.6 68.6
0.011 4.7 6.3 8.3 10.5 12.9 15.6 18.6 21.8 25.3 33.1 41.9 51.7 74.4

4000 0.002 1.0 1.3 1.7 2.1 2.7 3.2 3.8 4.5 5.2 6.8 8.6 10.6 15.3
0.003 1.4 1.9 2.5 3.2 3.9 4.8 5.7 6.7 7.7 10.1 12.8 15.8 22.7
0.004 1.9 2.6 3.3 4.2 5.2 6.3 7.5 8.8 10.2 13.3 16.9 20.8 30.0
0.005 2.3 3.2 4.1 5.2 6.5 7.8 9.3 10.9 12.6 16.5 20.9 25.8 37.2
0.006 2.8 3.8 4.9 6.2 7.7 9.3 11.0 13.0 15.0 19.6 24.9 30.7 44.2
0.007 3.2 4.3 5.7 7.2 8.9 10.7 12.8 15.0 17.4 22.7 28.7 35.5 51.1
0.008 3.6 4.9 6.4 8.1 10.0 12.1 14.5 17.0 19.7 25.7 32.5 40.1 57.8
0.009 4.0 5.5 7.2 9.1 11.2 13.5 16.1 18.9 21.9 28.6 36.2 44.7 64.4
0.010 4.4 6.0 7.9 10.0 12.3 14.9 17.7 20.8 24.1 31.5 39.9 49.2 70.9
0.011 4.8 6.6 8.6 10.9 13.4 16.2 19.3 22.7 26.3 34.3 43.4 53.6 77.2
0.012 5.2 7.1 9.3 11.7 14.5 17.5 20.9 24.5 28.4 37.1 46.9 57.9 83.4
0.013 5.6 7.6 9.9 12.6 15.5 18.8 22.4 26.2 30.4 39.8 50.3 62.1 89.5
0.014 6.0 8.1 10.6 13.4 16.6 20.0 23.8 28.0 32.5 42.4 53.6 66.2 95.4
0.015 6.3 8.6 11.2 14.2 17.6 21.2 25.3 29.7 34.4 45.0 56.9 70.2 101.2

5000 0.002 1.0 1.3 1.7 2.2 2.7 3.2 3.8 4.5 5.2 6.8 8.6 10.6 15.3
0.003 1.4 1.9 2.5 3.2 4.0 4.8 5.7 6.7 7.8 10.1 12.8 15.9 22.8
0.004 1.9 2.6 3.4 4.3 5.2 6.3 7.6 8.9 10.3 13.4 17.0 21.0 30.2
0.005 2.3 3.2 4.2 5.3 6.5 7.9 9.4 11.0 12.8 16.7 21.1 26.0 37.5
0.006 2.8 3.8 5.0 6.3 7.8 9.4 11.2 13.1 15.2 19.9 25.1 31.0 44.7
0.007 3.2 4.4 5.7 7.3 9.0 10.9 12.9 15.2 17.6 23.0 29.1 35.9 51.7
0.008 3.7 5.0 6.5 8.3 10.2 12.3 14.7 17.2 20.0 26.1 33.0 40.8 58.7
0.009 4.1 5.6 7.3 9.2 11.4 13.8 16.4 19.2 22.3 29.1 36.9 45.5 65.5
0.010 4.5 6.1 8.0 10.2 12.5 15.2 18.1 21.2 24.6 32.1 40.6 50.2 72.3
0.011 4.9 6.7 8.8 11.1 13.7 16.6 19.7 23.1 26.8 35.1 44.4 54.8 78.9
0.012 5.3 7.3 9.5 12.0 14.8 17.9 21.3 25.1 29.1 37.9 48.0 59.3 85.4
0.013 5.7 7.8 10.2 12.9 15.9 19.3 22.9 26.9 31.2 40.8 51.6 63.7 91.8
0.014 6.1 8.3 10.9 13.8 17.0 20.6 24.5 28.8 33.4 43.6 55.2 68.1 98.1
0.015 6.5 8.9 11.6 14.7 18.1 21.9 26.1 30.6 35.5 46.3 58.6 72.4 104.3
0.016 6.9 9.4 12.3 15.5 19.2 23.2 27.6 32.4 37.5 49.0 62.1 76.6 110.3
0.017 7.3 9.9 12.9 16.4 20.2 24.4 29.1 34.1 39.6 51.7 65.4 80.8 116.3
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TABLE A.10
Simplified tension development length in bar diameters ℓd∕db for uncoated  
bars and normalweight concrete

No. 6 (No. 19) and Smallera No. 7 and Larger

​​f ​c ​ ′ ​​, psi ​​f ​c ​ ′ ​​, psi

f y, ksi 4000 5000 6000 4000 5000 6000

(1) Bottom Bars

Spacing, cover and ties 
as per Case a or b

40 26 23 21 32 29 26
60 38 34 31 48 43 39
80 59 53 48 73 66 60

100 83 74 68 103 92 84

Other cases 40 38 34 31 48 43 39
60 57 51 47 72 64 59
80 88 79 72 110 98 90

100 124 111 101 155 138 126

(2) Top Bars

Spacing, cover and ties 
as per Case a or b

40 33 30 27 42 37 34
60 50 45 41 62 56 51
80 76 68 62 95 85 78

100 107 96 88 134 120 110

Other cases 40 50 45 41 62 56 51
60 74 67 61 93 83 76
80 114 102 93 142 127 116

100 161 144 131 201 180 164

Case a: Clear spacing of bars being developed or spliced ≥ db, clear cover ≥ db, and stirrups or ties throughout ℓd not less than the Code minimum.
Case b: Clear spacing of bars being developed or spliced ≥ 2db, and clear cover not less than db.
aACI Committee 408 recommends that the values indicated for bar sizes No. 7 (No. 22) and larger be used for all bar sizes.
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TABLE A.11
Development length in compression, in., for normalweight concrete  
ℓdc = greater of (fy∕50​​√

__
 ​f​c​ ′​​​)db or 0.0003db (Minimum length 8 in. in all cases.)

​​f ​c ​ ′ ​​, psi

Bar No. 3000 4000 5000 6000

Inch- 
Pound SI

f y 
ksi

Basic  
ℓdc Confined

Basic  
ℓdc Confined

Basic  
ℓdc Confined

Basic  
ℓdc Confined

3 10 40 8 8 8 8 8 8 8 8
60 9 8 8 8 8 8 8 8
80 11 9 10 8 9 8 9 8

4 13 40 8 8 8 8 8 8 8 8
60 11 9 10 8 9 8 9 8
80 15 11 13 10 12 9 12 9

5 16 40 10 8 8 8 8 8 8 8
60 14 11 12 9 12 9 12 9
80 19 14 16 12 15 12 15 12

6 19 40 11 9 10 8 9 8 9 8
60 17 13 15 11 14 11 14 11
80 22 17 19 15 18 14 18 14

7 22 40 13 10 12 9 11 8 11 8
60 20 15 17 13 16 12 16 12
80 26 20 23 17 21 16 21 16

8 25 40 15 11 13 10 12 9 12 9
60 22 17 19 15 18 14 18 14
80 30 22 26 19 24 18 24 18

9 29 40 17 13 15 11 14 11 14 11
60 25 19 22 17 21 16 21 16
80 33 25 29 22 28 21 28 21

10 32 40 19 14 17 13 16 12 16 12
60 28 21 25 19 23 18 23 18
80 38 28 33 25 31 23 31 23

11 36 40 21 16 18 14 17 13 17 13
60 31 24 27 21 26 20 26 20
80 42 31 36 27 34 26 34 26

14 43 40 25 19 22 17 21 16 21 16
60 38 28 33 25 31 23 31 23
80 50 38 43 33 41 31 41 31

18 57 40 33 25 29 22 28 21 28 21
60 50 38 43 33 41 31 41 31
80 66 50 58 43 55 41 55 41
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TABLE A.12
Common stock styles of welded wire reinforcement (WWR)

Steel Area, in2∕ft Weight  
(Approximate), 
lb per 100 ft2Steel Designationa Longitudinal Transverse

Rolls

6 × 6-W1.4 × W1.4 0.028 0.028 21
6 × 6-W2.0 × W2.0 0.040 0.040 30
6 × 6-W2.9 × W2.9 0.058 0.058 43
6 × 6-W4.0 × W4.0 0.080 0.080 60
4 × 4-W1.4 × W1.4 0.042 0.042 30
4 × 4-W2.0 × W2.0 0.060 0.060 44
4 × 4-W2.9 × W2.9 0.087 0.087 63
4 × 4-W4.0 × W4.0 0.120 0.120 87

Sheets

6 × 6-W2.9 × W2.9 0.058 0.058 43
6 × 6-W4.0 × W4.0 0.080 0.080 60
6 × 6-W5.5 × W5.5 0.110 0.110 82
4 × 4-W4.0 × W4.0 0.120 0.120 87

aThe designation W indicates plain wire; WWR is also available as deformed wire, designated with a D.
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TABLE A.13a
Coefficients for slabs with variable moment of inertiaa

�1

�2 in perpendicular direction

Load q psf

c1A

A B
CLCL

c1B

h1

Column  
Dimension

Uniform Load  
FEM = Coeff. (qℓ2​​ℓ​ 1​ 

2​​)
Stiffness   
Factorb

Carryover  
Factor

c1A∕ℓ1 c1B∕ℓ1 MAB MBA kAB kBA COFAB COFBA

0.00 0.00 0.083 0.083 4.00 4.00 0.500 0.500
0.05 0.083 0.084 4.01 4.04 0.504 0.500
0.10 0.082 0.086 4.03 4.15 0.513 0.499
0.15 0.081 0.089 4.07 4.32 0.528 0.498
0.20 0.079 0.093 4.12 4.56 0.548 0.495
0.25 0.077 0.097 4.18 4.88 0.573 0.491

0.05 0.05 0.084 0.084 4.05 4.05 0.503 0.503
0.10 0.083 0.086 4.07 4.15 0.513 0.503
0.15 0.081 0.089 4.11 4.33 0.528 0.501
0.20 0.080 0.092 4.16 4.58 0.548 0.499
0.25 0.078 0.096 4.22 4.89 0.573 0.494

0.10 0.10 0.085 0.085 4.18 4.18 0.513 0.513
0.15 0.083 0.088 4.22 4.36 0.528 0.511
0.20 0.082 0.091 4.27 4.61 0.548 0.508
0.25 0.080 0.095 4.34 4.93 0.573 0.504

0.15 0.15 0.086 0.086 4.40 4.40 0.526 0.526
0.20 0.084 0.090 4.46 4.65 0.546 0.523
0.25 0.083 0.094 4.53 4.98 0.571 0.519

0.20 0.20 0.088 0.088 4.72 4.72 0.543 0.543
0.25 0.086 0.092 4.79 5.05 0.568 0.539

0.25 0.25 0.090 0.090 5.14 5.14 0.563 0.563

aApplicable when c1∕ℓ1 = c2∕ℓ2. For other relationships between these ratios, the constants will be slightly in error.
bStiffness is KAB = kABE(ℓ2​ h​ 1​ 

3​∕12ℓ1) and KBA = kBAE(ℓ2 ​h​ 1​ 
3​∕12ℓ1).
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TABLE A.13b
Coefficients for slabs with variable moment of inertiaa

�2 in perpendicular direction

Load q psf

�1

c1A

A

�1
6

�1
6

2�1
3

B
CLCL

c1B

h1

1.25 h1

Column  
Dimension

Uniform Load  
FEM = Coeff. (qℓ2​​ℓ​ 1 ​ 

2​​)
Stiffness   
Factorb

Carryover  
Factor

c1A∕ℓ1 c1B∕ℓ1 MAB MBA kAB kBA COFAB COFBA

0.00 0.00 0.088 0.088 4.78 4.78 0.541 0.541
0.05 0.087 0.089 4.80 4.82 0.545 0.541
0.10 0.087 0.090 4.83 4.94 0.553 0.541
0.15 0.085 0.093 4.87 5.12 0.567 0.540
0.20 0.084 0.096 4.93 5.36 0.585 0.537
0.25 0.082 0.100 5.00 5.68 0.606 0.534

0.05 0.05 0.088 0.088 4.84 4.84 0.545 0.545
0.10 0.087 0.090 4.87 4.95 0.553 0.544
0.15 0.085 0.093 4.91 5.13 0.567 0.543
0.20 0.084 0.096 4.97 5.38 0.584 0.541
0.25 0.082 0.100 5.05 5.70 0.606 0.537

0.10 0.10 0.089 0.089 4.98 4.98 0.553 0.553
0.15 0.088 0.092 5.03 5.16 0.566 0.551
0.20 0.086 0.094 5.09 5.42 0.584 0.549
0.25 0.084 0.099 5.17 5.74 0.606 0.546

0.15 0.15 0.090 0.090 5.22 5.22 0.565 0.565
0.20 0.089 0.094 5.28 5.47 0.583 0.563
0.25 0.087 0.097 5.37 5.80 0.604 0.559

0.20 0.20 0.092 0.092 5.55 5.55 0.580 0.580
0.25 0.090 0.096 5.64 5.88 0.602 0.577

0.25 0.25 0.094 0.094 5.98 5.98 0.598 0.598

a Applicable when c1∕ℓ1 = c2∕ℓ2. For other relationships between these ratios, the constants will be slightly in error.
b Stiffness is KAB = kABE(ℓ2​ h​ 1​ 

3​∕12ℓ1) and KBA = kBAE(ℓ2 ​h​ 1​ 
3​∕12ℓ1).
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TABLE A.13c
Stiffness factors for columns with variable moment of inertiaa

�1

�1

c1A

2c1A

c1A

Slab Half-depth  
c1A∕ℓ1

Stiffness Factor  
kAB

Slab Half-depth  
c1A∕ℓ1

Stiffness Factor  
kAB

0.00 4.00 0.14 9.43
0.02 4.43 0.16 11.01
0.04 4.94 0.18 13.01
0.06 5.54 0.20 15.56
0.08 6.25 0.22 18.87
0.10 7.11 0.24 23.26
0.12 8.15

aSimmonds, Sidney H., and Janko Misic. “Design Factors for the Equivalent Frame Method.” Journal 
Proceedings 68, no. 11 (November 1, 1971): 825–31.

TABLE A.14
Size and pitch of spirals, ACI Code

Diameter of 
Column, in.

Out to Out  
of Spiral, in.

​​f ​c ​ ′ ​​, psi

3000 4000 5000

 fyt = 40,000 psi

  14, 15 11, 12 ​ 3 _ 8 ​ −1​ 3 _ 4 ​ ​ 1 _ 2 ​ −2​ 1 _ 2 ​ ​ 1 _ 2 ​ −1​ 3 _ 4 ​
  16 13 ​ 3 _ 8 ​ −1​ 3 _ 4 ​ ​ 1 _ 2 ​ −2​ 1 _ 2 ​ ​ 1 _ 2 ​ −2
  17–19 14–16 ​ 3 _ 8 ​ −1​ 3 _ 4 ​ ​ 1 _ 2 ​ −2​ 1 _ 2 ​ ​ 1 _ 2 ​ −2
  20–23 17–20 ​ 3 _ 8 ​ −1​ 3 _ 4 ​ ​ 1 _ 2 ​ −2​ 1 _ 2 ​ ​ 1 _ 2 ​ −2
  24–30 21–27 ​ 3 _ 8 ​ −2 ​ 1 _ 2 ​ −2​ 1 _ 2 ​ ​ 1 _ 2 ​ −2

 fyt = 60,000 psi

  14, 15 11, 12 ​ 3 _ 8 ​ −2​ 3 _ 4 ​ ​ 3 _ 8 ​ −2 ​ 1 _ 2 ​ −2​ 3 _ 4 ​
  16–23 13–20 ​ 3 _ 8 ​ −2​ 3 _ 4 ​ ​ 3 _ 8 ​ −2 ​ 1 _ 2 ​ −3
  24–29 21–26 ​ 3 _ 8 ​ −3 ​ 3 _ 8 ​ −2​ 1 _ 4 ​ ​ 1 _ 2 ​ −3
  30 27 ​ 3 _ 8 ​ −3 ​ 3 _ 8 ​ −2​ 1 _ 4 ​ ​ 1 _ 2 ​ −3​ 1 _ 4 ​
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TABLE A.15
Properties of prestressing steels

Seven-Wire Strand, fpu = 270 ksi

Nominal  
Diameter  
(in.)

Area  
in2

Weight  
plf

0.7fpu Aps  
kips

0.75fpu Aps  
kips

0.8fpu Aps  
kips

fpu Aps   
kips

0.375 0.085 0.29 16.1 17.3 18.4 23.0
0.438 0.115 0.39 21.7 23.3 24.8 31.0
0.500 0.153 0.52 28.9 31.0 33.0 41.3
0.520 0.167 0.57 31.5 33.8 36.0 45.0
0.563 0.192 0.65 36.2 38.8 41.4 51.7
0.600 0.217 0.74 41.0 44.0 46.9 58.6
0.700 0.294 1.00 55.6 59.6 63.5 79.4

Prestressing Wire

Diameter
Area  
in2

Weight  
plf

fpu 
ksi

0.7fpu Aps  
kips

0.8fpu Aps  
kips

fpuAps  
kips

0.192 0.0290 0.098 250 5.07 5.80 7.25
0.196 0.0302 0.100 250 5.28 6.04 7.55
0.250 0.0491 0.170 240 8.25 9.43 11.78
0.276 0.0598 0.200 235 9.84 11.24 14.05

Deformed Prestressing Bars, fpu = 150 ksi

Nominal  
Diameter  
(in.)

Area  
in2

Weight 
plf

0.7fpu Aps  
kips

0.8fpu Aps  
kips

fpu Aps  
kips

​ 5 _ 8 ​ 0.28 0.98 29.4 33.6 42.0
​ 3 _ 4 ​ 0.42 1.49 44.1 50.4 63.0

1  0.85 3.01 89.3 102.0 127.5
1​ 1 _ 4 ​ 1.25 4.39 131.3 150.0 187.5
1​ 3 _ 8 ​ 1.58 5.56 165.9 159.6 237.0
1​ 3 _ 4 ​ 2.58 9.10 270.9 309.6 387.0
2​ 1 _ 2 ​ 5.16 18.20 541.8 619.2 774.0
3 6.85 24.09 719.3 822.0 1027.5
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GRAPH A.1a
Moment capacity of 
rectangular sections.  
(Graph for educational 
purposes only.)
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GRAPH A.1b
Moment capacity  
of rectangular sections. 
(Graph for educational 
purposes only.)
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GRAPH A.2
Location of points where  
bars can be bent up or cut off 
for simply supported beams 
uniformly loaded. (Graph for 
educational purposes only.)
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GRAPH A.3
Approximate locations of 
points where bars can be bent 
up or down or cut off for 
continuous beams uniformly 
loaded and built integrally 
with their supports according 
to the coefficients in the  
ACI Code. (Graph for 
educational purposes only.)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

100

90

80

70

60

50

40

30

20

10

0

Decimals of clear span length

Pe
rc

en
t o

f r
ei

nf
or

ce
m

en
t t

ha
t m

ay
 b

e 
be

nt
:

D
ow

n 
or

 c
ut

 o
�

U
p 

or
 c

ut
 o

�

M
u
 =

 −
1/

24
 w

u
� n2

M
u
 =

 −
1/1

6 
w u

� n2
M u

 =
 −

1/1
2 

w u
� n2

M u 
= −1/1

0 wu
� n
2

M u =
 −1/9

 wu
� n
2

M u
 =

 −
1/1

1 w
u

� n
2

M u
 =

 +
1/1

1 w
u

� n
2

M u
 =

 +
1/1

4 
w u

� n2
M u

 =
 +

1/1
6 

w u
� n2

www.konkur.in

Telegram: @uni_k



DESIGN AIDS      841

GRAPH A.4
Interpolation charts for  
lateral distribution of slab 
moments. (Graph for 
educational purposes only.)
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GRAPH A.5
Column strength interaction diagram for rectangular section with bars on four faces and γ = 0.60. (Graph for educational  
purposes only.)
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GRAPH A.6
Column strength interaction diagram for rectangular section with bars on four faces and γ = 0.70. (Graph for educational  
purposes only.)
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GRAPH A.7
Column strength interaction diagram for rectangular section with bars on four faces and γ = 0.80. (Graph for educational  
purposes only.)
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GRAPH A.8
Column strength interaction diagram for rectangular section with bars on four faces and γ = 0.90. (Graph for educational  
purposes only.)
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GRAPH A.9
Column strength interaction diagram for rectangular section with bars on end faces and γ = 0.60. (Graph for educational  
purposes only.)
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GRAPH A.10
Column strength interaction diagram for rectangular section with bars on end faces and γ = 0.70. (Graph for educational  
purposes only.)
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GRAPH A.11
Column strength interaction diagram for rectangular section with bars on end faces and γ = 0.80. (Graph for educational  
purposes only.)

0.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 .1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0.0
0.05 0.150.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Interaction diagram

h
h

e

b

Pn

0.
20

0.
30

0.40

0.50

0.02

0.03

0.04

0.05

0.06

0.07

0.08

γ

f y
f s=

1
2

e/h = 1.00

fs = fy

εt = 0.002

t = 0.005ε

g = 0.01ρ

P u f c
A

g
′

=
K

n 
=

P n f c
A

g
′

fc′ = 4 ksi
fy = 60 ksi

= 0.80

ϕ

γ

Pue
=Rn =

Pne
fc Agh′ fc Agh′ϕ

f s 
= 0

e
/h

 =
 0

.10

www.konkur.in

Telegram: @uni_k



DESIGN AIDS      849

GRAPH A.12
Column strength interaction diagram for rectangular section with bars on end faces and γ = 0.90. (Graph for educational  
purposes only.)
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GRAPH A.13
Column strength interaction diagram for circular section with γ = 0.60. (Graph for educational purposes only.) 
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GRAPH A.14
Column strength interaction diagram for circular section with γ = 0.70. (Graph for educational purposes only.)
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GRAPH A.15
Column strength interaction diagram for circular section with γ = 0.80. (Graph for educational purposes only.)
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GRAPH A.16
Column strength interaction diagram for circular section with γ = 0.90. (Graph for educational purposes only.)
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854

SI Conversion Factors:  
Inch-Pound Units to SI Units

APPENDIX 

Overall Geometry

Spans 1 ft = 0.3048 m
Displacements 1 in. = 25.4 mm
Surface area 1 ft2 = 0.0929 m2

Volume 1 ft3 = 0.0283 m3

1 yd3 = 0.765 m3

Structural Properties

Cross-sectional dimensions 1 in. = 25.4 mm
Area 1 in2 = 645.2 mm2

Section modulus 1 in3 = 16.39 × 103 mm3

Moment of inertia 1 in4 = 0.4162 × 106 mm4

Material Properties

Density 1 lb/ft3 = 16.03 kg/m3

Modulus and stress 1 lb/in2 = 0.006895 MPa
1 kip/in2 = 6.895 MPa

Loadings

Concentrated loads 1 lb = 4.448 N
1 kip = 4.448 kN

Density 1 lb/ft3 = 0.1571 kN/m3

Linear loads 1 kip/ft = 14.59 kN/m
Surface loads 1 lb/ft2 = 0.0479 kN/m2

1 kip/ft2 = 47.9 kN/m2

Stress and Moments

Stress 1 lb/in2 = 0.006895 MPa
1 kip/in2 = 6.895 MPa

Moment or torque 1 ft-lb = 1.356 N-m
1 ft-kip = 1.356 kN-m
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A
AASHTO specifications, 10, 17, 165–169, 

514, 751
Accelerating admixtures, 36
ACI

Code, 15
depth limitation, 409–411
load factors, 18
moment coefficients, 367–370
safety provisions, 17–19
strength reduction factors, 18, 19

Admixtures, concrete, 36–38
Aggregates, 27–28

coarse, 28
fine, 28
heavyweight, 28
lightweight, 28

Air entrainment, 36
Alignment charts for columns, 330–331
Allowable stress design, 16
Analysis by virtual work, 769–773
Analysis of continuous beams and 

frames, 348
approximate, 362–367
elastic, 354–355
idealization, 355–360
limit, 370–380
load placement, 350–351
moment redistribution, 378–380
portal method, 365
preliminary, 360–362
simplifications, 352–354
subframe, 352–354

Anchorage
headed bars, 196–201
hooked, 190
in joints, 552
mechanical, 200–201
in nodal zones, 521–522, 526–527
web reinforcement, 202–203
welded wire reinforcement, 203–204

Anchorage zone, prestress, 749–753

Anchoring, 658–659
ACI provisions, 662–663
adhesive, 679–682
breakout capacity, 659, 660–661,  

665–669
combined loading, 676–678
design, 661
earthquake, 683–684
pryout, 659, 675–676
pullout strength, 659, 673–674
reinforcement, 678–679
screw, 682–683
shear lug attachments, 684–689
side face blowout, 659, 674
steel strength, 659, 663–665

Approximate analysis, 362–367
Arches, concrete, 8
Areas, of standard bars, 821, 822
AREMA manual, 10, 17, 514
ASCE load specification, 664
ASTM specification, 22–23, 26, 28, 35–37, 

51, 55–57, 58–60, 228, 623
Axial compression, 73–78, 277–280
Axial forces, effect on shear, 157–158
Axial tension, 78–79

B
Backdrain, continuous, 502
Balanced steel ratio, tension-reinforced 

beams, 96
Balanced strain condition

beams, 96
columns, 288–291

Bands, strong, 797
Bar designations, 55
Bar spacing, 184
Bars

grade 60, 828
maximum number of, 827
standard, 821–822

Bars, reinforcing
cutoff and bend points, 205–212,  

839–840
detailing, 545–546
selection of, 111–112
spacing of, 111–112
splices, 218–221

Beam-and-girder floors, 576–579
Beam-column joints, 546–558
Beams

compression-reinforced, 113
cracked elastic section analysis,  

87–89, 826
deep, 533–534, 535
doubly reinforced, 113
overreinforced, 107
proportions of, 111, 124–125, 360–362
T section, 120–121
tension-reinforced, 83, 93–107
uncracked elastic section analysis,  

85–87
underreinforced, 96–97

Bearing, 468–470
Bearing walls, 449
Bending. See Flexure
Bending moments, 470–471
Biaxial column bending, 300–302

computer analysis, 306–307
load contour method, 302–303
reciprocal load method, 303–306

Biaxial strength of concrete, 47, 48
Blast furnace slag, 38
Bond, 177. See also Development length

compression, 204–205
cracked section analysis, 178–179
development length, 182–183
flexural, 179–181
modification factors, 185
prestressed beams, 747–748
strength, 181–182

Brackets, 567–571, 656
B-regions, 517
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Bridges, 6, 7
Building codes, 71
Building Seismic Safety Council, 617
Building systems, 574

beam-and-girder, 576–579
composite, 579–580
flat plates, 585–587
flat slabs, 584
one-way joists, 580–583
precast, 589–604
steel-deck reinforced slabs, 580
two-way joists, 587–589
two-way slabs, 397–400, 583

Bundled reinforcement, 205
Burj Khalfia, 52, 576

C
Canadian National Standard, 162
Cantilever retaining walls, 504–512
Capitals, column, 385, 584
Captive column, 616–617
c/d ratio, 98
Cement, 26

composition, 26
high early strength, 1, 27
hydration of, 26, 27
hydraulic, 26
portland, 26–27
types, 26–27

Column capitals, 385
Column footings, 465–473
Columns, 277

ACI Code provisions, 296–297
axially loaded, 73, 277
balanced failure, 288–291
with bending, 284–285
biaxial bending of, 300–302

computer analysis for, 306–307
load contour method, 302–303
reciprocal load method, 303–306

captive, 616–617
circular, 294–296
design aids, 297–300
distributed reinforcement, 291–293
equivalent, 413–414
inertia and, 835
interaction diagrams, 48, 285–288, 289
rectangular, with bending, 284–285
safety provisions, 296–297
shear in, 310
slender (see Slender columns)
spirally reinforced, 73–74, 280–284
splices in, 219–221, 307–309

strength, 842–853
tied, 73, 280–284
transformed section, 75, 279
transverse reinforcement, 281
unbraced frame analysis, 335–341
unsymmetrically reinforced, 293–294

Column-supported slabs, 400–406,  
407–409, 583

Combined footings, 474–475
Compatibility torsion, 255, 266–267
Compression, axial, 73–78, 277–280
Compression field theory, 162–165

design provisions, 165–169
modified, 162–163
shear, 162–163

Compression members, 277
Compression struts, 517
Compression-reinforced beams, 113
Concentrated loads, fan patterns at,  

778–779
Concrete

admixtures, 1, 36–38
biaxial strength, 47
components, 1
compressive strength, 39–40
consistency, 30
conveying of, 31
creep, 41
curing, 1, 31–32
definition of, 1
density, 28
fatigue, 43
heavyweight, 28
high-strength, 52–53
lightweight, 28
long-term loading, 41–43
mixing, 29–31
modulus of elasticity, 39
placing, 31
Poisson’s ratio, 40–41
prestressed, 2, 694–697
proportioning, 1, 29–31
protection for steel, 110–111
quality control, 32–34
reinforced, 2
short-term loading, 38–41
shrinkage, 49–51
strength

under combined stress, 47–49
in compression, 39–40
gain with age, 40
specified, 32
in tension, 44–46

stress-strain curves, 39, 41
sustained load behavior, 43

Continuity, 348–350, 792–797
Contract documents, 19
Conversion factors, 854
Conveying of concrete, 31
Corbels, 567–571, 656
Corner joints, 565–567
Corners, special conditions at, 776–778
Counterfort retaining walls, 512–514
Coupling beams, 622, 637, 640–642, 

647–650
Cover distance, 183–184
Cover requirements for bars, 112
Cracked section elastic analysis,  

87–89, 826
Cracking, 227–228

ACI Code provisions, 230–233, 828
flexural, 227–228
variables affecting, 228–229
width of cracks, 229

Cracking torque, 258
Creep of concrete, 41

coefficient, 42
specific, 42
time-variation of, 43

Curing of concrete, 1, 31–32
Curtain walls, 449, 590
Curvature vs. moment, 248–252
Curved bar nodes, 531–532
Cutoff points for bars in beam, 205–212
Cylindrical shells, 3, 5

D
Dapped beams, 541
Deep beams, 524, 535

ACI Code provision, 533–534
reinforcement of, 533–534
shear in, 533–534

Deflections, 233
ACI Code provisions, 240–246
continuous beams, 241–242
control of, 233–234
creep, 237–238, 242
effective moment of inertia for, 234–235
elastic, 234
flat plates and flat slabs, 435–442
immediate, 234–237, 241
load-history effect, 239
long-term multipliers, 238, 242–243
permissible, 243–244
prestressed concrete, 753–756
shrinkage, 242
sustained load, 238–239
thermal, 246–248
two-way edge-supported slabs, 397–400
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Depth, minimum
beams and one-way slabs, 389
two-way slabs, 409–411

Depth limitations, ACI Code, 409–411
Design, 68–69
Design aids, 107–110, 297–300,  

821–853
Design methods

allowable stress, 16
service load, 16
strength, 15, 829

Design response spectrum, 619
Designations, of standard bars, 821
Detailing, joint, 545–546
Development length, 182–183

ACI Code provisions, 184
bundled bars, 205
compression, 204–205, 831
headed bars, 196–201
hooked bars, 190
modification factors, 185, 193–196, 

199–200, 205–212
stirrups, 202–203
tension, 185, 830
welded wire, 203–204

Diagonal cracking, 136–140, 140–143
Diagonal tension, 132

homogeneous beams, 133–135
prestressed concrete  

beams, 741–747
reinforced concrete beams, 132, 135

Diameters, of standard bars, 821
Diaphragms, 604, 643–644

ACI provisions, 607–608
collector elements, 605
distributor elements, 605
load transfer, 604–606
seismic, 637
structural, 637–640

Direct design method for slabs, 411
lateral distribution of moments,  

404–406
minimum thickness, 409–411
moments at critical sections, 392
shear on supporting beams, 406

Discontinuity regions, 517
Distribution steel in slabs, 387–388, 390
Drain, longitudinal, 502
Drawings, typical engineering, 608
D-regions, 517, 522–523
Drop panel, 385, 584
Ductile hinges, 615
Ductwork, 394
Dynamic lateral force procedures,  

621–622

E
Earth pressure on walls, 492–497
Earthquake design. See Seismic design
Eccentrically loaded columns, 284
Edges

fixed, 792–797
special conditions at, 776–778
unsupported, 797–804

Edge-supported slabs, 397–400
Effective flange width, 121–122
Effective length of columns, 316–319
Effective moment of inertia, 234–235, 

241–242
Effective span length, 356–358
Elastic analysis, 354–355, 826
Engineer of record, 19
Engineering drawings, typical, 608
Epoxy-coated bars, 60, 185
Equilibrium theory, 785
Equilibrium torsion, 255, 266–267
Equivalent column, 413–414
Equivalent frame method for slabs, 

412–419
basis, 412
by computer, 419
deflection analysis, 435–442
equivalent column, 413–414
for horizontal loads, 442–443
moment analysis, 414–419
shear design, 419–430

Equivalent lateral force procedure,  
619–621

Equivalent loads from prestress, 697–698
Expansive cement, 51
Extended nodal zones, 521–522, 526

F
Factored gravity loads, 19–22
Factored loads, 18, 19–22
Fan patterns at concentrated loads, 

778–779
Fatigue strength

concrete, 43
reinforcing bars, 59–60

Fire resistance, 54
Flange width of T beams, 121–122
Flat plates, 2, 4, 385, 584
Flat slabs, 2, 4, 385, 584
Flexural bond, 177
Flexural resistance factor, 100, 824–825
Flexure. See also beams

assumptions, 79–81
elastic cracked section analysis, 87–89

elastic uncracked section analysis, 85–87
flexural strength analysis, 89–93
homogeneous beams, 79–81

Floor systems
beam and girder, 2, 576–579
edge-supported slab, 397–400, 583
flat plates, 2, 4, 385, 585–587
flat slabs, 2, 4, 385, 584
grid slabs, 385
lift slabs, 585–587
one-way joists, 2, 3, 580–583
precast, 589–604
steel deck reinforced, 580
two-way joists, 587–589
two-way slabs, 397–400, 583
vibrations, 391
waffle slabs, 385, 587–588

Fly ash, 37
Folded plates, 3, 5
Footings, 459

column, 465–473
combined, 474–475
deep, 484
grid, 474, 482–483
loads on, 461–463
mat, 475, 482–483
pile cap, 486–489
piles, 484
rectangular, 471
spread, 459–460
square, 471
strip, 474, 482–483
two-column, 475–476
wall, 463–465

Foundations. See Footings
Fracture energy, 183
Fracture mechanics, 46–47
Frame analysis, 348, 352–354
Frost depth, 502

G
Galvanized bars, 60
Geometry, 854
Gergely-Lutz equation, 229
Gravity retaining walls, 502–504
Grid slabs, 385

H
Hammering, 614, 615
Headed deformed bars, 196–201

development length, 196–201
modification factors, 199–200
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Headed shear studs, 427–429
Heel slab, 511–512
High-strength concrete, 52–53
Holes, slabs with, 804–808
Hooks, 190

development length, 193–196
modification factors, 193–196
standard dimensions, 190–191
for stirrups, 190

Hydraulic cement, 26

I
Idealization of structure, 355–360, 412
Indeterminate beams and frames, 348
Inflection points for approximate 

analysis, 363
Integral beams in slabs, 423–425
Integrity, structural, 60–604, 71, 212–213
Interaction diagrams

for axial load plus bending, 285–288
for biaxial column bending, 301
for biaxial strength of concrete, 48

Intermediate moment frames, 651–653
International Building Code, 16

J
Joints, 545–546

bar anchorage in, 552
beam-column, 546–558
beam-girder, 559–561
classification of, 547
corners, 565–567
ledge girders, 561–564
loads and forces, 547–549
reinforcement in, 549–550
shear strength, 550–552
strut-and-tie models, 558–559
T joints, 565–567
wide-beam, 556–558

Joist floors, 580–583, 587–589

L
Lateral ties in columns, 74
Licensed design professional, 19
Lift slabs, 585–587
Light-gage steel deck slabs, 580
Lightweight concrete, 28
Limit analysis, 370–380
Limit states design method, 94

Live loads
buildings, 9, 10
placement, 350–351

Load balancing in prestressed beams, 
731–736

Load combinations, 18, 351–352
Load contour method for columns,  

302–303
Load factors, ACI, 18
Loads, 854

combinations, 18, 351–352
dead, 9
distribution, 787–790
earth pressure, 492–497
environmental, 10–12
external work done by, 769–770
factored, 18, 19–22
fan patterns at concentrated,  

778–779
live, 9–10
placement of live loads, 9, 350–351
seismic, 617
snow, 11–12
variability of, 13
wind, 12

Long-term loading, concrete, 41–43
Loss of prestress force, 704, 736–740

lump sum estimate, 737
separate losses, 737–740
time-step method, 740

Lower bound theorem, 763, 785

M
Materials, 26, 854
Matrix analysis, 362
Member, 70
Method of segment equilibrium, 766, 

767–769
Method of virtual work, 766
Microsilica. See Silica fume
Minimum depth of slabs, 240–241, 389, 

409–411
Minimum web steel area, 150–152
Mixing of concrete, 29–31
Modified compression field, 162–163
Modular ratio, 75
Modulus of elasticity

of concrete, 39
of prestressing steels, 62
of reinforcing bars, 58

Modulus of rupture, 44
Moment capacity, 837–838
Moment coefficients, ACI, 367–370

Moment distribution method, 355
Moment magnification in columns, 316, 

327–335, 335–341
Moment of inertia, 81, 234–235, 324, 

358–359
Moment redistribution, 371

ACI Code provisions, 378–380
in beams and frames, 373

Moment transfer at columns, 430–433
Moment vs. curvature in beams,  

248–252

N
Net tensile strain, 97, 378
Nodal zones, 517, 519–522

dimensions, 524–526
extended, 521–522, 526
resolution of forces, 525
strength, 530–531

Nodes, 519

O
Olive View Hospital, 613
One-way joists, 580–583
One-way slabs, 385

distribution steel, 387–388, 390
minimum thickness, 389
shrinkage reinforcement, 390
temperature steel, 390
typical steel ratios, 389

Openings in slabs, 434–435
Orthotropic reinforcement, 774–776
Overreinforced beams, 107

P
Panel walls, 449
Partial prestressing, 716–717
P-delta method, 341–343
Pile caps, 486–489
Piles, 484–489
Plastic analysis, 350
Plastic centroid of columns, 294
Plastic hinges, in beams and frames, 248, 

371–375, 761
Plasticizers, 37
Poisson’s ratio, concrete, 40–41
Portal method, 365
Portland cement, 26–27
Post-tensioning, 700–702

www.konkur.in

Telegram: @uni_k



862      DESIGN OF CONCRETE STRUCTURES  Subject Index

Precast concrete, 514–515, 589–604
beams, 591–592
brackets, 567–571
building examples, 593–598
columns, 592–593
connections, 597–603
corbels, 567–571
double Ts, 591
roof and floor units, 590–591
single Ts, 591
slabs, 591
wall panels, 590

Preliminary design, 360–362, 504–505
Prestressed concrete, 694–697

allowable stresses in concrete, 705
allowable stresses in steel, 705
anchorage zones, 749–753
bond stresses, 747–748
crack control, 757
deflection, 753–756
elastic analysis, 705–711
equivalent loads, 697–698
flexural design, 717–728, 731–736
flexural strength, 711–716
load balancing, 731–736
loss of prestress force, 736–740
partial prestressing, 716–717
post-tensioning, 700–702
pretensioning, 700–702
shape selection, 728–729
shear design, 741–747
tendon profiles, 729–731
transfer length, 747–749

Prestressing steels, 702–704
allowable stresses, 705
grades and strengths, 61
properties of, 836
relaxation of stress, 63
stress-strain curves, 62

Pretensioning, 700–702
Primary torsion, 255, 266–267

Q
Quality control, 32–34

R
Rebars. See Reinforcement
Reciprocal load analysis of columns, 

303–306
Rectangular footings, 471
Rectangular slabs, 790–791

Rectangular stress block, 9–96
Redistribution of moments, 350, 371

ACI Code method, 378–380
in beams and frames, 373

Reinforcement, 54
bars, 55–60
compression, 113
cover requirements, 112
deformations, 54
epoxy-coated, 60
fatigue strength, 59–60
fiber, 63–65, 151
galvanized, 60
grades and strength, 56, 57
maximum c/d ratio, 99
maximum number of bars in beams, 112
maximum reinforcement ratio, 99
minimum number of bars in beams, 112
minimum reinforcement ratio, 101–102
modulus of elasticity, 58
prestressed, 61, 705
shear, 60, 63–65, 144
slab, 423–425
splices in, 218–221
standard sizes, 55
stress-strain curves, 58–59
torsional, 268–270
welded wire reinforcement, 60–61, 832
welding of, 56
zinc-coated, 60

Relaxation of prestressing steels, 63
Resisting moments, internal work done 

by, 770–773
Response spectrum, design, 618
Retaining walls, 492

cantilever, 504–512
counterfort, 512–514
design basis, 500–501
drainage for, 501–502
gravity, 502–504
precast, 514–515
stability analysis, 497–500
structural design, 500–501

Retarders, set, 36–37
Rotation capacity at hinges, 377–378
Rotation requirement at hinges, 375–377

S
Safety

ACI Code provisions, 17, 71
considerations, 13
index, 15
margin of, 13

reduction factor, 15
structural, 14–15, 32–34

Screw anchors, 682–683
Second order column analysis, 316,  

341–343
Secondary moments in columns, 315–316
Secondary torsion, 255, 266–267
Section, 70
Segment equilibrium, method of, 766, 

767–769
Seismic design

ACI Code provisions, 622–624
beams, 624–626, 644–646
columns, 626–631
coupling beams, 637, 640–641
diaphragms, 604, 637, 643–644
intermediate moment frames,  

651–653
member considerations, 614–617
shear strength, 644–651
special moment frames, 624
structural considerations, 612–614
wall piers, 637, 641–643
walls, diaphragms, trusses, 637, 

644, 647–649
hammering, 614, 615
joints, 631–636

Seismic loading, 617
base shears, 619
criteria, 617–622
design response spectrum, 619
displacements, 610–611
dynamic lateral forces, 621–622
equivalent lateral forces, 619–621
structural response, 612–617

Self-consolidating concrete, 31, 37
Serviceability, 12, 227
Set retarders, 36–37
Shear, 132

AASHTO provisions, 165–169
ACI Code provisions, 148–157
alternate models, 160–169
and axial loads, 157–158
in columns, 310
compression field theory, 162–165
deep beams, 533–534
flat plate slabs, 419–430
flat slabs, 419–430
footings, 466–468
headed shear studs in slabs, 427–429
homogeneous beams, 79–81, 133–135
joints, 550–552
plus torsion, 263–264
prestressed concrete beams, 741–747
reinforced concrete beams, 132
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reinforcement: beams, 144
seismic loading, 624, 644–651
truss models for, 160–161
varying-depth beams, 159–160
walls, 449, 454–457

Shear caps, 385
Shear lug attachments, 684–689
Shear studs in slabs, 427–429
Shear-friction method, 169–173
Shells

cylindrical, 3, 5
folded plate, 5
spherical, 6

Short-term loading, concrete, 38–41
Shrinkage deflections, 246–248
Shrinkage of concrete, 49–51
Shrinkage reinforcement in slabs, 390
Shrinkage-compensating concrete, 51
Silica fume, 37
Size effect, 140
Skewed yield lines, 774–776
Skin reinforcement, 231–232
Slab-band floors, 578
Slabs

areas of bars in, 822
column-supported, 385–386, 400–406
deflection of, 435–442
design strength, 829
direct design method, 411
distribution steel, 387–388, 390
edge-supported, 397–400, 583
equivalent column, 413–414
equivalent frame method, 412–419
holes, 804–808
inertia and, 833–834
integral beam for shear, 423–425
lateral distribution of moments, 404–406
minimum thickness, 389, 409–411
moments at critical sections, 392, 841
one-way, 385
openings in, 434–435
rectangular, 790–791
reinforcement for flexure, 388
shear in column-supported, 419–430
static moment in, 403
strip method, 785–817
two-way edge supported, 397–400, 583
types of, 385–387
yield line theory, 760–762

Slag cement, 37–38
Slender columns, 315–316

ACI Code provisions, 327–335
alignment charts, 330–331
in braced (nonsway) frames, 326–327, 

327–335

defined, 315
effective length factor, 316–319
moment magnification factor, 316, 

327–335, 335–341
P-delta method, 341–343
radius of gyration, 315
second-order analysis, 316, 341–343
slenderness ratio, 315
stability index, 326
in unbraced (sway) frames, 326–327, 

335–341
Slenderness ratio, 315
Slump test, 30
South Wacker Drive Building, 52, 53, 575
Space truss analogy, 258
Span length, 356–358
Special moment frames, 624
Specific creep, 42
Spectral response acceleration, 619
Spirally reinforced columns, 73–74,  

280–284
Spirals, 835
Splices of reinforcing bars, 218–221

in columns, 219–221, 307–309
compression, 219
lap splices, 218–219

Splitting tensile strength, 44–45
Spread footings, 459–460
Square footings, 471
St. Venant, 517
Stability index, 326
Stability of retaining walls, 497–500
Static moment in slabs, 403
Steels

prestressing, 61–63, 702–704
reinforcing, 54, 823
welded wire reinforcement, 60–61

Stirrups, 143–144, 202–203
Strength

column, 842–853
design, 17, 829
nominal, 17
reduction factors, 15, 19, 93–94
required, 17
variability of, 13, 100

Stress, moments and, 854
Stress-strain curves

concrete, 39, 41
prestressing steels, 62
reinforcing bars, 58–59, 74

Strip method
advanced, 809–816
continuity, 792–797
fixed edges, 792–797
load distribution, 787–790

rectangular slabs, 790–791
for slab analysis and design, 816–817
for slabs, 785–817
unsupported edges, 797–804
yield line comparisons, 816–817

Strong bands, 797
Structural integrity provisions, 60–604, 

71, 212–213
Structural properties, 854
Structural systems, 2, 574
Structural theory, 70–71
Strut-and-tie method, 517

ACI provisions for, 527–535
B-regions, 517
curved bar nodes, 531
dapped beam ends, 541
deep beams, 533–534
D-regions, 517, 518, 522–523
earthquake applications, 534
nodal zones, 519–522, 524–526,  

530–531
Struts, 161–162, 519

bottle-shaped, 526
capacity of, 526
prismatic, 519

Subframe, 352–354
Superplasticizers, 37, 52
Support conditions, 136, 240, 359–360
Sustainable development, 38
Systems, building, 574

T
T beams, 120–121, 265

effective flange width, 121–122
proportions, 124–125
strength analysis, 122–124

T joints, 565–567
Temperature reinforcement in slabs, 390
Tendon profiles, 729–731
Tensile strength, 183
Tension

axial, 78–79
strength of concrete, 44–46
ties, 161–162, 517, 519

Tension stiffening, 252, 372
Tension-controlled sections, 98, 796, 823
Thermal coefficient, of steel, 54
Thermal deflections, 246–248
Threshold torsion, 265–266
Ties

column, 280–284
strength of, 532–533
with struts, 519, 532–533

Toe slab, 510–511
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Torsion, 255
ACI Code provisions,  

264–274
compatibility, 255, 266–267
cracking torque, 258
equilibrium, 255, 266–267
in plain concrete, 256–259
plus shear, 263–264
primary, 255, 266–267
in reinforced concrete,  

259–263
reinforcement, 268–270
secondary, 255, 266–267
space truss analogy, 258, 261
thin-walled tube analogy, 258
threshold, 265–266

Transfer length in prestressed beams, 
747–749

Transformed section
for beams, 86
for columns, 279

Transmission of column loads, through 
floors, 309

Transverse reinforcement, 184
Transverse ties in columns, 280–284
Truss models, 132, 160–161,  

523–524
brackets, 567–571
joint design, 560

Two-way edge-supported slabs
behavior, 397–400
corners, 400–406
reinforcement for flexure,  

400–406

U
Uncracked elastic section analysis, 85–87
Underreinforced beams, 96–97
Upper bound theorem, 763, 785

V
Variable angle truss model, 161–162, 

261
Variable depth beam shear, 159–160
Virtual work, analysis by, 769–773
Volumetric ratio, 283

W
Wall footings, 463–465
Walls

alternate design method, 454
areas of bars in, 822
bearing, 449
building, 449
curtain, 449
panel, 449
precast, 450
retaining, 492
seismic, 454–457, 637
shear, 449, 454–457, 637

Water-cement ratio, 27, 29
Water-cementitious material ratio, 38, 52
Web reinforcement, 23, 143

anchorage, 203–204
design of, 154–157

inclined, 147–148
minimum, 150–152
types, 143–144
vertical, 145–147

Weep holes, 502
Weights, of standard bars, 821
Welded wire reinforcement, 60–61,  

203–204, 832
Wide-beam joints, 556–558

Y
Yield line theory, 760–762

analysis by segment equilibrium,  
767–769

analysis by virtual work, 769–773
fan patterns at concentrated loads, 

778–779
limitations, 779–780
lower bound theorem, 763
orthotropic reinforcement,  

774–776
skewed yield lines, 774–776
special conditions at edges and 

corners, 776–778
upper bound theorem, 763
yield line comparisons, 816–817
yield line rules, 763–767

Yield lines, 763–767

Z
Zinc-coated bars, 60

www.konkur.in

Telegram: @uni_k


	Cover
	Title Page
	Copyright Page
	About the Authors
	Contents
	Preface
	Chapter 1 Introduction
	1.1 Concrete, Reinforced Concrete, and Prestressed Concrete
	1.2 Structural Forms
	1.3 Loads
	1.4 Serviceability, Strength, and Structural Safety
	1.5 Design Basis
	1.6 Design Codes and Specifications
	1.7 Safety Provisions of the ACI Code
	1.8 Developing Factored Gravity Loads
	1.9 Contract Documents and Inspection
	References
	Problems

	Chapter 2 Materials
	2.1 Introduction
	2.2 Cement
	2.3 Aggregates
	2.4 Proportioning and Mixing Concrete
	2.5 Conveying, Placing, Consolidating, and Curing
	2.6 Quality Control
	2.7 Admixtures
	2.8 Properties in Compression
	2.9 Properties in Tension
	2.10 Strength under Combined Stress
	2.11 Shrinkage and Temperature Effects
	2.12 High-Strength Concrete
	2.13 Reinforcing Steels for Concrete
	2.14 Reinforcing Bars
	2.15 Welded Wire Reinforcement
	2.16 Prestressing Steels
	2.17 Fiber Reinforcement
	References
	Problems

	Chapter 3 Design of Concrete Structures and Fundamental Assumptions
	3.1 Introduction
	3.2 Members and Sections
	3.3 Theory, Codes, and Practice
	3.4 Fundamental Assumptions for Reinforced Concrete Behavior
	3.5 Behavior of Members Subject to Axial Loads
	3.6 Bending of Homogeneous Beams
	References
	Problems

	Chapter 4 Flexural Analysis and Design of Beams
	4.1 Introduction
	4.2 Reinforced Concrete Beam Behavior
	4.3 Design of Tension-Reinforced Rectangular Beams
	4.4 Design Aids
	4.5 Practical Considerations in the Design of Beams
	4.6 Rectangular Beams with Tension and Compression Reinforcement
	4.7 T Beams
	References
	Problems

	Chapter 5 Shear and Diagonal Tension in Beams
	5.1 Introduction
	5.2 Diagonal Tension in Homogeneous Elastic Beams
	5.3 Reinforced Concrete Beams without Shear Reinforcement
	5.4 Reinforced Concrete Beams with Web Reinforcement
	5.5 ACI Code Provisions for Shear Design
	5.6 Effect of Axial Forces
	5.7 Beams with Varying Depth
	5.8 Alternative Models for Shear Analysis and Design
	5.9 Shear-Friction Design Method
	References
	Problems

	Chapter 6 Bond, Anchorage, and Development Length
	6.1 Fundamentals of Flexural Bond
	6.2 Bond Strength and Development Length
	6.3 ACI Code Provisions for Development of Tension Reinforcement
	6.4 Anchorage of Tension Bars by Hooks
	6.5 Anchorage in Tension Using Headed Bars
	6.6 Anchorage Requirements for Web Reinforcement
	6.7 Welded Wire Reinforcement
	6.8 Development of Bars in Compression
	6.9 Bundled Bars
	6.10 Bar Cutoff and Bend Points in Beams
	6.11 Structural Integrity Provisions
	6.12 Integrated Beam Design Example
	6.13 Bar Splices
	References
	Problems

	Chapter 7 Serviceability
	7.1 Introduction
	7.2 Cracking in Flexural Members
	7.3 ACI Code Provisions for Crack Control
	7.4 Control of Deflections
	7.5 Immediate Deflections
	7.6 Deflections Due to Long-Term Loads
	7.7 ACI Code Provisions for Control of Deflections
	7.8 Deflections Due to Shrinkage and Temperature Changes
	7.9 Moment vs. Curvature for Reinforced Concrete Sections
	References
	Problems

	Chapter 8 Analysis and Design for Torsion
	8.1 Introduction
	8.2 Torsion in Plain Concrete Members
	8.3 Torsion in Reinforced Concrete Members
	8.4 Torsion Plus Shear
	8.5 ACI Code Provisions for Torsion Design
	References
	Problems

	Chapter 9 Short Columns
	9.1 Introduction: Axial Compression
	9.2 Transverse Ties and Spirals
	9.3 Compression Plus Bending of Rectangular Columns
	9.4 Strain Compatibility Analysis and Interaction Diagrams
	9.5 Balanced Failure
	9.6 Distributed Reinforcement
	9.7 Unsymmetrical Reinforcement
	9.8 Circular Columns
	9.9 ACI Code Provisions for Column Design
	9.10 Design Aids
	9.11 Biaxial Bending
	9.12 Load Contour Method
	9.13 Reciprocal Load Method
	9.14 Computer Analysis for Biaxial Bending of Columns
	9.15 Bar Splicing in Columns and Ties Near Beam-Column Joints
	9.16 Transmission of Column Loads through Floor Systems
	9.17 Shear in Columns
	References
	Problems

	Chapter 10 Slender Columns
	10.1 Introduction
	10.2 Concentrically Loaded Columns
	10.3 Compression Plus Bending
	10.4 ACI Criteria for Slenderness Effects in Columns
	10.5 ACI Criteria for Nonsway vs. Sway Structures
	10.6 ACI Moment Magnifier Method for Nonsway Frames
	10.7 ACI Moment Magnifier Method for Sway Frames
	10.8 Second-Order Analysis for Slenderness Effects
	References
	Problems

	Chapter 11 Analysis, Idealization, and Preliminarily Design of Reinforced Concrete Beams and Frames
	11.1 Continuity
	11.2 Loading
	11.3 Simplifications in Frame Analysis
	11.4 Methods for Elastic Analysis
	11.5 Idealization of the Structure
	11.6 Preliminary Design and Guidelines for Proportioning Members
	11.7 Approximate Analysis
	11.8 ACI Moment Coefficients
	11.9 Limit Analysis
	11.10 Conclusion
	References
	Problems

	Chapter 12 Analysis and Design of One-Way Slabs
	12.1 Types of Slabs
	12.2 Design of One-Way Slabs
	12.3 Considerations for One-Way Slab Design
	12.4 Internal Ductwork
	Reference
	Problems

	Chapter 13 Analysis and Design of Two-Way Slabs
	13.1 Two-Way Edge-Supported Slabs
	13.2 Two-Way Column-Supported Slabs
	13.3 Flexural Reinforcement for Column-Supported Slabs
	13.4 Depth Limitations of the ACI Code
	13.5 Direct Design Method
	13.6 Equivalent Frame Method
	13.7 Shear Design in Flat Plates and Flat Slabs
	13.8 Transfer of Moments at Columns
	13.9 Transfer Column Loads through Slabs
	13.10 Openings in Slabs
	13.11 Deflection Calculations
	13.12 Analysis for Horizontal Loads
	References
	Problems

	Chapter 14 Walls
	14.1 Introduction
	14.2 General Design Considerations
	14.3 Simplified Design Method for Axial Load and Out-of-Plane Moment
	14.4 Alternative Method for Out-of-Plane Slender Wall Analysis
	14.5 Shear Walls
	References
	Problems

	Chapter 15 Footings and Foundations
	15.1 Types and Functions
	15.2 Spread Footings
	15.3 Design Factors
	15.4 Loads, Bearing Pressures, and Footing Size
	15.5 Wall Footings
	15.6 Column Footings
	15.7 Combined Footings
	15.8 Two-Column Footings
	15.9 Strip, Grid, and Mat Foundations
	15.10 Deep Foundations
	References
	Problems

	Chapter 16 Retaining Walls
	16.1 Function and Types of Retaining Walls
	16.2 Earth Pressure
	16.3 Earth Pressure for Common Conditions of Loading
	16.4 External Stability
	16.5 Basis of Structural Design
	16.6 Drainage and Other Details
	16.7 Example: Design of a Gravity Retaining Wall
	16.8 Example: Design of a Cantilever Retaining Wall
	16.9 Counterfort Retaining Walls
	16.10 Precast Retaining Walls
	References
	Problems

	Chapter 17 Strut-and-Tie Method
	17.1 Introduction
	17.2 Development of the Strut-and-Tie Method
	17.3 Strut-and-Tie Design Methodology
	17.4 ACI Provisions for the Strut-and-Tie Method
	17.5 Applications
	References
	Problems

	Chapter 18 Design of Reinforcement at Joints
	18.1 Introduction
	18.2 Beam-Column Joints
	18.3 Strut-and-Tie Method for Joint Behavior
	18.4 Beam-to-Girder Joints
	18.5 Ledge Girders
	18.6 Corners and T Joints
	18.7 Brackets and Corbels
	References
	Problems

	Chapter 19 Concrete Building Systems
	19.1 Introduction
	19.2 Floor and Roof Systems
	19.3 Precast Concrete for Buildings
	19.4 Diaphragms
	19.5 Engineering Drawings for Buildings
	References

	Chapter 20 Seismic Design
	20.1 Introduction
	20.2 Structural Response
	20.3 Seismic Loading Criteria
	20.4 ACI Provisions for Earthquake-Resistant Structures
	20.5 ACI Provisions for Special Moment Frames
	20.6 ACI Provisions for Special Structural Walls, Coupling Beams, Diaphragms, and Trusses
	20.7 ACI Provisions for Shear Strength
	20.8 ACI Provisions for Intermediate Moment Frames
	References
	Problems

	Chapter 21 Anchoring to Concrete
	21.1 Introduction
	21.2 Behavior of Anchors
	21.3 Concrete Breakout Capacity
	21.4 Anchor Design
	21.5 ACI Code Provisions for Concrete Breakout Capacity
	21.6 Steel Strength
	21.7 Concrete Breakout Capacity of Single Cast-In and Post-Installed, Undercut, and Screw Anchors
	21.8 Pullout Strength of Anchors
	21.9 Side-Face Blowout
	21.10 Pryout of Anchors
	21.11 Combined Shear and Normal Force
	21.12 Anchor Reinforcement
	21.13 Adhesive Anchors
	21.14 Screw Anchors
	21.15 Earthquake Design
	21.16 Shear Lug Attachments
	References
	Problems

	Chapter 22 Prestressed Concrete
	22.1 Introduction
	22.2 Effects of Prestressing
	22.3 Sources of Prestress Force
	22.4 Prestressing Steels
	22.5 Concrete for Prestressed Construction
	22.6 Elastic Flexural Analysis
	22.7 Flexural Strength
	22.8 Partial Prestressing
	22.9 Flexural Design Based on Concrete Stress Limits
	22.10 Shape Selection
	22.11 Tendon Profiles
	22.12 Flexural Design Based on Load Balancing
	22.13 Loss of Prestress
	22.14 Shear, Diagonal Tension, and Web Reinforcement
	22.15 Transfer Length and Development Length
	22.16 Anchorage Zone Design
	22.17 Deflection
	22.18 Crack Control for Class C Flexural Members
	References
	Problems

	Chapter 23 Yield Line Analysis for Slabs
	23.1 Introduction
	23.2 Upper and Lower Bound Theorems
	23.3 Rules for Yield Lines
	23.4 Analysis by Segment Equilibrium
	23.5 Analysis by Virtual Work
	23.6 Orthotropic Reinforcement and Skewed Yield Lines
	23.7 Special Conditions at Edges and Corners
	23.8 Fan Patterns at Concentrated Loads
	23.9 Limitations of Yield Line Theory
	References
	Problems

	Chapter 24 Strip Method for Slabs
	24.1 Introduction
	24.2 Basic Principles
	24.3 Choice of Load Distribution
	24.4 Rectangular Slabs
	24.5 Fixed Edges and Continuity
	24.6 Unsupported Edges
	24.7 Slabs with Holes
	24.8 Advanced Strip Method
	24.9 Comparisons of Yield Line and Strip Methods for Slab Analysis and Design
	References
	Problems

	Appendix A Design Aids
	Appendix B SI Conversion Factors: Inch-Pound Units to SI Units
	Author Index
	Subject Index

