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The sixteenth edition of Design of Concrete Structures continues the dual objectives
of establishing a firm understanding of the behavior of structural concrete and of
developing proficiency in the methods of design practice. It is generally recognized
that mere training in special design skills and codified procedures is inadequate for
a successful career in professional practice. As new research becomes available and
new design methods are introduced, these procedures are subject to frequent changes.
To understand and keep abreast of these rapid developments and to engage safely in
innovative design, the engineer needs a thorough grounding in the fundamental per-
formance of concrete and steel as structural materials and in the behavior of reinforced
concrete members and structures. At the same time, the main business of the structural
engineer is to design structures safely, economically, and efficiently. Consequently,
with this basic understanding as a firm foundation, familiarity with current design
procedures is essential. This edition, like the preceding ones, addresses both needs.

The text presents the basic mechanics of structural concrete and methods for
the design of individual members subjected to bending, shear, torsion, and axial
forces. It additionally addresses in detail applications of the various types of struc-
tural members and systems, including an extensive presentation of slabs, beams,
columns, walls, footings, retaining walls, and the integration of building systems.

The 2019 ACI Building Code, which governs design practice in most of the
United States and serves as a model code in many other countries, underwent a
number of significant changes, many due to increases in the specified strengths of
reinforcing steels that can used for building construction.

Changes of note include the addition of Grade 100 steel for use as principal
reinforcement for gravity and lateral loads and the recognition that changes were
needed in the Code, even for Grade 80 reinforcement. The use of steels with grades
above 60, long the standard in U.S. practice, has led to changes in the approaches to
both strength and serviceability, including the limits on both maximum and minimum
reinforcement; development lengths of straight, hooked, and headed reinforcement;
and requirements for the effective moment of inertia when calculating deflections.
Shear design has changed through the addition of a size effect term that recognizes
that shear stress at failure decreases as member depth increases. Inclusion of the size
effect affects foundation walls, as well as beams and slabs—a point that is highlighted
in this edition. The techniques used for two-way slab design were deleted from the
2019 ACI Building Code with the understanding that those techniques would be
covered by textbooks. That information has been retained in Chapters 13, 22, and 23.
Finally, the requirements for the strut-and-tie method have been updated.

xiii
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In addition to changes in the ACI Code, the text also includes the modified
compression field theory method of shear design presented in the 2017 edition of
the American Association of State Highway and Transportation Officials (AASHTO)
LRFD Bridge Design Specifications. Chapters on yield line and strip methods, on
the McGraw-Hill Education website in the previous edition, have been returned to
the printed version of the text.

A strength of the text is the analysis chapter, which includes load combinations
for use in design, a description of envelope curves for moment and shear, guidelines
for proportioning members under both gravity and lateral loads, and procedures for
developing preliminary designs of reinforced concrete structures. The chapter also
includes the ACI moment and shear coefficients.

Present-day design is performed using computer programs, either general-purpose
commercially available software or individual programs written for special needs. Pro-
cedures given throughout the book guide the student and engineer through the increas-
ingly complex methodology of design, with the emphasis on understanding the design
process. Once mastered, these procedures are easily converted into flow charts to aid
in preparing design aids or to validate commercial computer program output.

The text is suitable for either a one- or two-semester course in the design of
concrete structures. If the curriculum permits only a single course, probably taught
in the fourth undergraduate year, the following will provide a good basis: the intro-
duction and treatment of materials found in Chapters 1 through 3; the material on
flexure, shear, and anchorage in Chapters 4, 5, and 6; Chapter 7 on serviceability;
Chapter 9 on short columns; the introduction to one-way slabs found in Chapter 12;
and footings, Chapter 15. Time may or may not permit classroom coverage of frame
analysis or building systems, Chapters 11 and 19, but these could well be assigned
as independent reading, concurrent with the earlier work of the course. In the authors’
experience, such complementary outside reading tends to enhance student motivation.

The text is more than adequate for a second course, most likely taught in the
senior year or first year of graduate study. The authors have found that this is an
excellent opportunity to provide students with a more general understanding of
reinforced concrete structural design, often beginning with analysis and building
systems, Chapters 11 and 19, followed by the increasingly important behavioral
topics of torsion, Chapter 8; slender columns, Chapter 10; the strut-and-tie method
of Chapter 17; and the design and detailing of joints, Chapter 18. It should also
offer an opportunity for a much-expanded study of slabs, including Chapter 13, plus
the methods for slab analysis and design based on plasticity theory found in
Chapters 23 and 24, yield line analysis, and the strip method of design. Other top-
ics appropriate to a second course include retaining walls, Chapter 16, and the
introduction to earthquake-resistant design in the expanded Chapter 20. Prestressed
concrete in Chapter 22 is sufficiently important to justify a separate course in con-
junction with anchoring to concrete, Chapter 21, and strut-and-tie methods, Chapter 17.
If time constraints do not permit this, Chapter 22 provides an introduction and can
be used as the text for a one-credit-hour course.

At the end of each chapter, the user will find extensive reference lists, which
provide an entry into the literature for those wishing to increase their knowledge
through individual study. For professors, the Instructor’s Solution Manual is availa-
ble online at the McGraw-Hill Education website.

A word must be said about units. In the United States, customary inch-pound
units remain prominent. Accordingly, inch-pound units are used throughout the text,
although some graphs and basic data in Chapter 2 are given in dual units. Appendix B
gives the SI equivalents of inch-pound units.
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Preface XV

A brief historical note may be of interest. This book is the sixteenth edition of
a textbook originated in 1923 by Leonard C. Urquhart and Charles E. O’Rourke,
both professors of structural engineering at Cornell University. Over its remarkable
97-year history, new editions have kept pace with research, improved materials, and
new methods of analysis and design. The second, third, and fourth editions firmly
established the work as a leading text for elementary courses in the subject area.
Professor George Winter, also of Cornell, collaborated with Urquhart in preparing
the fifth and sixth editions. Winter and Professor Arthur Nilson were responsible for
the seventh, eighth, and ninth editions, which substantially expanded both the scope
and the depth of the presentation. The tenth, eleventh, and twelfth editions were
prepared by Professor Nilson subsequent to Professor Winter’s passing in 1982.

Professor Nilson was joined by Professor David Darwin of the University of
Kansas and by Professor Charles Dolan of the University of Wyoming for the thir-
teenth, fourteenth, and fifteenth editions, although Professor Nilson passed away
prior to completion of the fifteenth. Like Professors Winter and Nilson, the current
authors have been deeply involved in research and teaching in the fields of reinforced
and prestressed concrete, as well as professional Code-writing committees, and have
spent significant time in professional practice, invaluable in developing the perspec-
tive and structural judgment that sets this book apart.

Special thanks are due to the McGraw-Hill Education project team, notably,
Sarah Paratore, Sue Nodine, Carey Lange, and Jane Mohr.

We gladly acknowledge our indebtedness to the original authors. Although it
is safe to say that neither Urquhart or O’Rourke would recognize much of the detail
and that Winter would be impressed by the many changes, the approach to the sub-
ject and the educational philosophy that did so much to account for the success of
the early editions would be familiar. The imprint of Arthur Nilson—our longstanding
mentor, colleague, and friend—remains clear in the organization and approach taken
to the material in this text.

David Darwin
Charles W. Dolan
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11

Introduction

CONCRETE, REINFORCED CONCRETE,
AND PRESTRESSED CONCRETE

Concrete is a stonelike material obtained by permitting a carefully proportioned
mixture of cement, sand and gravel or other coarse aggregate, and water to harden in
forms of the shape and dimensions of the desired structure. The bulk of the material
consists of fine and coarse aggregate. Cement and water interact chemically to bind
the aggregate particles into a solid mass. Additional water, over and above that needed
for this chemical reaction, is necessary to give the mixture the workability that enables
it to fill the forms and surround the embedded reinforcing steel prior to hardening.
Concretes with a wide range of properties can be obtained by appropriate adjustment
of the proportions of the constituent materials. Special cements (such as high early
strength cements), special aggregates (such as various lightweight or heavyweight
aggregates), admixtures (such as plasticizers, air-entraining agents, silica fume, and
fly ash), and special curing methods (such as steam-curing) permit an even wider vari-
ety of properties to be obtained.

These properties depend to a very substantial degree on the proportions of the
mixture, on the thoroughness with which the various constituents are intermixed, and
on the conditions of humidity and temperature in which the mixture is maintained from
the moment it is placed in the forms until it is fully hardened. The process of control-
ling conditions after placement is known as curing. To protect against the unintentional
production of substandard concrete, a high degree of skillful control and supervision
is necessary throughout the process, from the proportioning by weight of the individual
components, through mixing and placing, until the completion of curing.

The factors that make concrete a universal building material are so pronounced
that it has been used, in more primitive kinds and ways than at present, for thousands
of years, starting with lime mortars from 12,000 to 6000 BCE in Crete, Cyprus,
Greece, and the Middle East. The facility with which, while plastic, it can be deposited
and made to fill forms or molds of almost any practical shape is one of these factors.
Its high fire and weather resistance is an evident advantage. Most of the constituent
materials, with the exception of cement and additives, are usually available at low cost
locally or at small distances from the construction site. Its compressive strength, like
that of natural stones, is high, which makes it suitable for members primarily subject
to compression, such as columns and arches. On the other hand, again as in natural
stones, it is a relatively brittle material whose tensile strength is low compared with
its compressive strength. This prevents its economical use as the sole building material
in structural members that are subject to tension either entirely (such as in tie-rods) or
over part of their cross sections (such as in beams or other flexural members).
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To offset this limitation, it was found possible, in the second half of the
nineteenth century, to use steel with its high tensile strength to reinforce concrete,
chiefly in those places where its low tensile strength would limit the carrying capac-
ity of the member. The reinforcement, usually round steel rods with appropriate
surface deformations to provide interlocking, is placed in the forms in advance of the
concrete. When completely surrounded by the hardened concrete mass, it forms an
integral part of the member. The resulting combination of two materials, known as
reinforced concrete, combines many of the advantages of each: the relatively low cost,
good weather and fire resistance, good compressive strength, and excellent formabil-
ity of concrete and the high tensile strength and much greater ductility and toughness
of steel. It is this combination that allows the almost unlimited range of uses and
possibilities of reinforced concrete in the construction of buildings, bridges, dams,
tanks, reservoirs, and a host of other structures.

It is possible to produce steels, at relatively low cost, whose yield strength is
3 to 4 times and more that of ordinary reinforcing steels. Likewise, it is possible to
produce concrete 4 to 5 times as strong in compression as the more ordinary concretes.
These high-strength materials offer many advantages, including smaller member
cross sections, reduced dead load, and longer spans. However, there are limits to
the strengths of the constituent materials beyond which certain problems arise. To
be sure, the strength of such a member would increase roughly in proportion to those
of the materials. However, the high strains that result from the high stresses that
would otherwise be permissible would lead to large deformations and consequently
large deflections of such members under ordinary loading conditions. Equally impor-
tant, the large strains in such high-strength reinforcing steel would induce large
cracks in the surrounding low tensile strength concrete, cracks that not only would
be unsightly but also could significantly reduce the durability of the structure. This
limits the useful yield strength of high-strength reinforcing steel to 100 ksi’ accord-
ing to many codes and specifications; 60 and 80 ksi steel is most commonly used.

Construction known as prestressed concrete, however, does use steels and con-
cretes of very high strength in combination. The steel, in the form of wires, strands,
or bars, is embedded in the concrete under high tension that is held in equilibrium
by compressive stresses in the concrete after hardening. Because of this precompres-
sion, the concrete in a flexural member will crack on the tension side at a much
larger load than when not so precompressed. Prestressing greatly reduces both the
deflections and the tensile cracks at ordinary loads in such structures and thereby
enables these high-strength materials to be used effectively. Prestressed concrete has
extended, to a very significant extent, the range of spans of structural concrete and
the types of structures for which it is suited.

STRUCTURAL FORMS

The figures that follow show some of the principal structural forms of reinforced con-
crete. Pertinent design methods for many of them are discussed later in this volume.
Floor support systems for buildings include the monolithic slab-and-beam floor
shown in Fig. 1.1, the one-way joist system of Fig. 1.2, and the flat plate floor,
without beams or girders, shown in Fig. 1.3. The flat slab floor of Fig. 1.4, frequently
used for more heavily loaded buildings, is similar to the flat plate floor, but makes
use of increased slab thickness in the vicinity of the columns, as well as flared

Abbreviation for kips per square inch, or thousands of pounds per square inch.
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FIGURE 1.1

One-way reinforced concrete
floor slab with monolithic
supporting beams. (Courtesy of
Portland Cement Association)

FIGURE 1.2

One-way joist floor system,
with closely spaced ribs
supported by monolithic
concrete beams; transverse
ribs provide for lateral
distribution of localized
loads. (Courtesy of Portland
Cement Association)

column tops, to reduce stresses and increase strength in the support region. The
choice among these and other systems for floors and roofs depends upon functional
requirements, loads, spans, and permissible member depths, as well as on cost and
esthetic factors.

Where long clear spans are required for roofs, concrete shells permit use of
extremely thin surfaces, often thinner, relatively, than an eggshell. The folded plate roof
of Fig. 1.5 is simple to form because it is composed of flat surfaces; such roofs have
been employed for spans of 200 ft and more. The cylindrical shell of Fig. 1.6 is also
relatively easy to form because it has only a single curvature; it is similar to the folded
plate in its structural behavior and range of spans and loads. Shells of this type were
once quite popular in the United States and remain popular in other parts of the world.

Doubly curved shell surfaces may be generated by simple mathematical curves
such as circular arcs, parabolas, and hyperbolas, or they may be composed of com-
plex combinations of shapes. Hemispherical concrete domes are commonly used for
storage of bulk materials. The dome shown in Fig. 1.7 is for storage of dry cement,
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FIGURE 1.3

Flat plate floor slab, carried
directly by columns without
beams or girders. (Courtesy of
Portland Cement Association)

FIGURE 14

Flat slab floor, without
beams but with slab
thickness increased at the
columns and with flared
column tops to provide

for local concentration of
forces. (Courtesy of Portland
Cement Association)
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and the piping around the perimeter is for the pneumatic movement of the cement.
Domed structures are commonly constructed using shotcrete, a form of concrete that is
sprayed onto a liner and requires formwork or backing on only one side. The dome in
Fig. 1.7 was constructed by inflating a membrane, spraying insulation on the mem-
brane, placing the reinforcement on the insulation, then spraying the concrete on
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FIGURE 1.5

Folded plate roof of 125 ft
span that, in addition to
carrying ordinary roof loads,
carries the second floor as
well using a system of cable
hangers; the ground floor is
kept free of columns.
(Photograph by Arthur H. Nilson)

FIGURE 1.6

Cylindrical shell roof
providing column-free
interior space. (Photograph by
Arthur H. Nilson)

both sides of the insulation to the prescribed thickness using the insulation as a
backing form, as shown in Fig. 1.8. Piers and wharf facilities (shown in Fig. 1.7),
silos, waters tanks, reservoirs, and other industrial facilities are commonly con-
structed of reinforced or prestressed concrete.
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FIGURE 1.7
Hemispherical cement
storage dome in New
Zealand. (Photograph courtesy
of Michael Hunter, Domtec, Inc.)

FIGURE 1.8

Shotcrete being applied to the
interior of a dome structure.
(Photograph courtesy of Michael
Hunter, Domtec, Inc.)

Bridge design has provided the opportunity for some of the most challenging
and creative applications of structural engineering. The award-winning Napoleon
Bonaparte Broward Bridge, shown in Fig. 1.9, is a six-lane, cable-stayed structure
that spans St. John’s River at Dame Point, Jacksonville, Florida. It has a 1300 ft
center span. Figure 1.10 shows the Bennett Bay Centennial Bridge, a four-span con-
tinuous, segmentally cast-in-place box girder structure. Special attention was given
to esthetics in this award-winning design. The spectacular Natchez Trace Parkway
Bridge in Fig. 1.11, a two-span arch structure using hollow precast concrete elements,
carries a two-lane highway 155 ft above the valley floor.
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FIGURE 1.9

Napoleon Bonaparte Broward
Bridge, with a 1300 ft center
span at Dame Point,
Jacksonville, Florida.

(HNTB Corporation, Kansas
City, Missouri)

FIGURE 1.10

Bennett Bay Centennial
Bridge, Coeur d’Alene,
Idaho, a four-span continuous
concrete box girder structure
of length 1730 ft. (HNTB
Corporation, Kansas City,
Missouri)
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FIGURE 1.11

Natchez Trace Parkway
Bridge near Franklin,
Tennessee, an award-winning
two-span concrete arch
structure rising 155 ft above
the valley floor. (Designed by
Figg Bridge Group)

FIGURE 1.12

Premier on Pine under
construction. The cover photo
is the competed building.
(Photograph provided by Cary
Kopczynski and Company,
Structural Engineers)
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Buildings clad in glass or other fascia materials do not immediately indicate the
underlying structural framing. The Premiere on Pine building in downtown Seattle is
a case in point. The 42-story building contains condominiums, underground parking,
and a hotel-type sky lounge. The 450,000 square foot flat slab cast-in-place concrete
construction uses 15,000 psi concrete for columns to increase available floor space
and to resist gravity and earthquake loads; see Fig. 1.12.

The structural forms shown in Figs. 1.1 to 1.12 hardly constitute a complete
inventory but are illustrative of the shapes appropriate to the properties of rein-
forced or prestressed concrete. They illustrate the adaptability of the material to
a great variety of one-dimensional (beams, girders, columns), two-dimensional
(slabs, arches, rigid frames), and three-dimensional (shells, tanks) structures and
structural components. This variability allows the shape of the structure to be
adapted to its function in an economical manner, and furnishes the architect and
design engineer with a wide variety of possibilities for esthetically satisfying
structural solutions.

LOADS

Loads that act on structures can be divided into three broad categories: dead loads, live
loads, and environmental loads.

Dead loads are those that are constant in magnitude and fixed in location
throughout the lifetime of the structure. Usually the major part of the dead load is
the weight of the structure itself. This can be calculated with good accuracy from the
design configuration, dimensions of the structure, and density of the material. For
buildings, floor fill, finish floors, and plastered ceilings are usually included as dead
loads, and an allowance is made for suspended loads such as piping and lighting
fixtures. For bridges, dead loads may include wearing surfaces, sidewalks, and curbs,
and an allowance is made for piping and other suspended loads.

Live loads consist chiefly of occupancy loads in buildings and traffic loads on
bridges. They may be either fully or partially in place or not present at all, and may
also change in location. Their magnitude and distribution at any given time are
uncertain, and even their maximum intensities throughout the lifetime of the structure
are not known with precision. The minimum live loads for which the floors and roof
of a building should be designed are usually specified in the building code that
governs at the site of construction. Representative values of minimum live loads to
be used in a wide variety of buildings are found in Minimum Design Loads and
Other Associated Criteria for Buildings and Other Structures (Ref. 1.1), a portion
of which is reprinted in Table 1.1. The table gives uniformly distributed live loads
for various types of occupancies; these include impact and concentrated load provi-
sions where necessary. These loads are expected maxima and considerably exceed
average values.

In addition to these uniformly distributed loads, it is recommended that, as an
alternative to the uniform load, floors be designed to support safely certain concen-
trated loads if these produce a greater stress. For example, according to Ref. 1.1, office
floors are to be designed to carry a load of 2000 Ib distributed over an area 2.5 ft
square (6.25 ft), to allow for heavy equipment, and stair treads must safely support a
300 Ib load applied on the center of the tread. Certain reductions are often permitted
in live loads for members supporting large areas with the understanding that it is
unlikely that the entire area would be fully loaded at one time (Refs. 1.1 and 1.2).
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TABLE 1.1
Minimum uniformly distributed live loads in pounds per square foot (psf)
Live Load, Live Load,
Occupancy or Use psf Occupancy or Use psf
Apartments (see Residential) Hospitals
Access floor systems Operating rooms, laboratories 60
Office use 50 Patient rooms 40
Computer use 100 Corridors above first floor 80
Armories and drill rooms” 150 Hotels (see Residential)
Assembly areas and theaters Libraries
Fixed seats (fastened to floor)” 60 Reading rooms 60
Lobbies” 100 Stack rooms** 150
Movable seats” 100 Corridors above first floor 80
Platforms (assembly)” 100 Manufacturing
Stage floors” 150 Light” 125
Balconies and decks” Heavy“” 250
Catwalks for maintenance access 40 Office buildings
Corridors File and computer rooms shall be designed for
First floor 100 heavier loads based on anticipated occupancy
Other floors, same as occupancy served Lobbies and first floor corridors 100
except as indicated Offices 50
Dining rooms and restaurants’ 100 Corridors above first floor 80
Dwellings (see Residential) Penal institutions
Fire escapes 100 Cell blocks 40
On single-family dwellings only 40 Corridors 100
Garages (passenger vehicles only)“““ 40 Recreational uses
Trucks and buses® Bowling alleys” 75
(continued)
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Tabulated live loads cannot always be used. The type of occupancy should be
considered and the probable loads computed as accurately as possible. Warehouses
for heavy storage may be designed for loads as high as 500 psf or more; unusually
heavy operations in manufacturing buildings may require an increase in the 250 psf
value specified in Table 1.1; special provisions must be made for all definitely
located heavy concentrated loads.

Live loads for highway bridges are specified by the American Association of
State Highway and Transportation Officials (AASHTO) in its LRFD Bridge Design
Specifications (Ref. 1.3). For railway bridges, the American Railway Engineering
and Maintenance-of-Way Association (AREMA) has published the Manual of Railway
Engineering (Ref. 1.4), which specifies traffic loads.

Environmental loads consist mainly of snow loads, wind pressure and suction,
earthquake load effects (that is, inertia forces caused by earthquake motions), soil
and hydraulic pressures on subsurface portions of structures, loads from possible
ponding of rainwater on flat surfaces, and forces caused by temperature differentials.
Like live loads, environmental loads at any given time are uncertain in both mag-
nitude and distribution. Reference 1.1 contains much information on environmental
loads, which is often modified locally depending, for instance, on local climatic or
seismic conditions.
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TABLE 1.1
(Continued)
Live Load, Live Load,
Occupancy or Use psf Occupancy or Use psf
Dances halls 100 Schools
Gymnasiums® 100 Classrooms 40
Residential ] ] Corridors above first floor 80
One- .and t}ivo—famll.y th?lllngs First floor corridors 100
Uninhabitable attics without storage’ 10 . . . .
. . . . Sidewalks, vehicular driveways, and yards, subject
Uninhabitable attics with storage® 20 - aj
. ) ) to trucking 250
Habitable attics and sleeping areas 30 . .
. Stairs and exit-ways 100
All other areas except stairs 40 ) .
All other residential occupancies, hotels, One- and two-family residences only 40
and multifamily houses Storage areas above ceilings 20
Private rooms and corridors Storage warehouses (shall be designed for
serving them 40 heavier loads if required for anticipated storage)
Public rooms and corridors Light* 125
serving them 100 Heavy* 250
Roofs Stores
Ordinary flat, pitched, and curved roofs" 20 Retail
Eoois use;i Eor roof gs;dens 100 First floor 100
oofs used for assembly purpo.selg Upper floors 73
Roofs used for other occupancies B
. . Wholesale, all floors 125
Awnings and canopies
Fabric construction supported by a Walkways and elevated platforms (other than
lightweight rigid skeleton structure 5 exit-ways) 60
All other construction 20 Yards and terraces, pedestrians 100

¢ Live load reduction for this use is not permitted unless specific exceptions apply.

b 1.5 times live load for area served. Not required to exceed 100 psf.

¢ Floors of garages or portions of a building used for storage of motor vehicles shall be designed for the uniformly distributed live loads of this
table or for concentrated loads specified in Ref. 1.1.

4 Design for trucks and buses shall be in accordance with Ref. 1.3; however, provisions for fatigue and dynamic load are not required.

¢ The loading applies to stack room floors that support nonmobile, double-faced library book stacks subject to the following limitations: (1) The
nominal book stack unit height shall not exceed 90 in.; (2) the nominal shelf depth shall not exceed 12 in. for each face; and (3) parallel rows
of double-faced book stacks shall be separated by aisles not less than 36 in. wide.

/'See Ref. 1.1 for description of uninhabitable attic areas without storage. This live load need not be assumed to act concurrently with any other
live load requirement.

¢ See Ref. 1.1 for description of uninhabitable attic areas with storage and where this provision applies.

" Where uniform roof live loads are reduced to less than 20 psf in accordance with Section 4.8.2 of Ref. 1.1 and are applied to the design of
structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans,
whichever produces the greatest unfavorable load effect.

" Roofs used for other special purposes shall be designed for appropriate loads as approved by the authority having jurisdiction.

J Other uniform loads in accordance with an approved method that contains provisions for truck loadings shall also be considered where appropriate.

Data Source: Minimum Design Loads and Other Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-16). American Society of

Civil Engineers, Reston, VA, 2010.

Figure 1.13, from the 1972 edition of Ref. 1.1, gives snow loads for the continen-
tal United States and is included here for illustration only. The 2016 edition of Ref. 1.1
gives much more detailed information. In either case, specified values represent not
average values, but expected upper limits. A minimum roof load of 20 psf is often
specified to provide for construction and repair loads and to ensure reasonable stiffness.
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FIGURE 1.13

Snow load in pounds per
square foot (psf) on the
ground, 50-year mean
recurrence interval. (Minimum
Design Loads for Buildings

and Other Structures, ANSI
A58.1-1972, American

National Standards Institute,
New York, 1972.)

1.4
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Much progress has been made in developing rational methods for predicting
horizontal forces on structures due to wind and seismic action. Reference 1.1 sum-
marizes current thinking regarding wind forces and earthquake loads. Reference 1.5
presents detailed recommendations for lateral forces from earthquakes.

Reference 1.1 specifies design wind pressures per square foot of vertical wall
surface. Depending upon locality, these equivalent static forces vary from about 10
to 50 psf. Factors include basic wind speed, exposure (urban vs. open terrain, for
example), height of the structure, the importance of the structure (that is, conse-
quences of failure), and gust effect factors to account for the fluctuating nature of
the wind and its interaction with the structure.

Seismic forces may be found for a particular structure by elastic or inelastic
dynamic analysis, considering expected ground accelerations and the mass, stiffness,
and damping characteristics of the construction. In less seismically active areas, the
design is often based on equivalent static forces calculated from provisions such as
those of Refs. 1.1 and 1.5. The base shear is found by considering such factors as
location, type of structure and its occupancy, total dead load, and the particular soil
condition. The total lateral force is distributed to floors over the entire height of the
structure in such a way as to approximate the distribution of forces obtained from a
dynamic analysis.

SERVICEABILITY, STRENGTH, AND STRUCTURAL SAFETY

To serve its purpose, a structure must be safe against collapse and serviceable in use.
Serviceability requires that deflections be adequately small; that cracks, if any, be kept
to tolerable limits; and that vibrations be minimized. Safety requires that the strength of
the structure be adequate for all loads that may foreseeably act on it. If the strength of
a structure, built as designed, could be predicted accurately, and if the loads and their
internal effects (bending moments, shears, axial forces, and torsional moments) were
known accurately, safety could be ensured by providing a carrying capacity just barely
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in excess of the known loads. However, there are a number of sources of uncertainty in
the analysis, design, and construction of reinforced concrete structures. These sources
of uncertainty, which require a definite margin of safety, may be listed as follows:

1. Actual loads may differ from those assumed.

2. Actual loads may be distributed in a manner different from that assumed.

3. The assumptions and simplifications inherent in any analysis may result in calcu-
lated load effects—moments, shears, etc.—different from those that, in fact, act in
the structure.

4. The actual structural behavior may differ from that assumed, owing to imperfect
knowledge.

5. Actual member dimensions may differ from those specified.

6. Reinforcement may not be in its proper position.

7. Actual material strength may be different from that specified.

In the establishment of safety requirements, consideration must be given to the
consequences of failure. In some cases, a failure would be merely an inconvenience.
In other cases, loss of life and significant loss of property may be involved. A further
consideration should be the nature of the failure, should it occur. A gradual failure
with ample warning permitting remedial measures is preferable to a sudden, unex-
pected collapse.

It is evident that the selection of an appropriate margin of safety is not a sim-
ple matter. However, progress has been made toward rational safety provisions in
design codes (Refs. 1.6 to 1.11).

Variability of Loads

Since the maximum load that occurs during the life of a structure is uncertain, it can
be considered a random variable. In spite of this uncertainty, the engineer must pro-
vide an adequate structure. A probability model for the maximum load can be devised
by means of a probability density function for loads (Ref. 1.8), as represented by the
frequency curve of Fig. 1.14a. The exact form of this distribution curve, for a par-
ticular type of loading such as office loads, can be determined only on the basis of
statistical data obtained from large-scale load surveys. A number of such surveys have
been completed. For types of loads for which such data are scarce, fairly reliable infor-
mation can be obtained from experience, observation, and judgment.

For such a frequency curve (Fig. 1.14a), the area under the curve between two
abscissas, such as loads Q; and Q,, represents the probability of occurrence of loads
Q of magnitude Q; < Q < Q,. A specified service load Q, for design is selected
conservatively in the upper region of Q in the distribution curve, as shown. The
probability of occurrence of loads larger than Q, is then given by the shaded area
to the right of Q,. It is seen that this specified service load is considerably larger
than the mean load Q acting on the structure. This mean load is much more typical
of average load conditions than the design load Q.

Strength

The strength of a structure depends on the strength of the materials from which it
is made. For this purpose, minimum material strengths are specified in standardized
ways. Actual material strengths cannot be known precisely and therefore also consti-
tute random variables (see Section 2.6). Structural strength depends, furthermore, on
the care with which a structure is built, which in turn reflects the quality of supervision
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FIGURE 1.14
Frequency curves for

(a) loads Q, (b) strengths S,
and (c) safety margin M.
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and inspection. Member sizes may differ from specified dimensions, reinforcement
may be out of position, poorly placed concrete may show voids, etc.

The strength of the entire structure or of a population of repetitive structures,
such as highway overpasses, can also be considered a random variable with a
probability density function of the type shown in Fig. 1.14b. As in the case of loads,
the exact form of this function cannot be known but can be approximated from
known data, such as statistics of actual, measured materials and member strengths
and similar information. Considerable information of this type has been, or is being,
developed and used.

Structural Safety

A given structure has a safety margin M if
M=S-0>0 (1.1)

that is, if the strength of the structure is larger than the load acting on it. Since S and Q
are random variables, the safety margin M = § — Q is also a random variable. A plot of
the probability function of M may appear as in Fig. 1.14c¢. Failure occurs when M is less
than zero. Thus, the probability of failure is represented by the shaded area in the figure.

Even though the precise form of the probability density functions for S and Q,
and therefore for M, is not known, much can be achieved in the way of a rational
approach to structural safety. One such approach is to require that the mean safety
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margin M be a specified number f of standard deviations o¢,, above zero. It can be
demonstrated that this results in the requirement that

WS >y, O (1.2)

where y; is a partial safety coefficient smaller than 1.0 applied to the mean strength
S and y; is a partial safety coefficient larger than 1.0 applied to the mean load Q.
The magnitude of each partial safety coefficient depends on the variance of the quan-
tity to which it applies, S or Q, and on the chosen value of f$, the reliability index of
the structure. As a general guide, a value of the safety index f between 3 and 4 corre-
sponds to a probability of failure of the order of 1:100,000 (Ref. 1.9). The value of f is
often established by calibration against well-proved and established designs.

In practice, it is more convenient to introduce partial safety coefficients with
respect to code-specified loads that considerably exceed average values, rather than
with respect to mean loads as in Eq. (1.2); similarly, the partial safety coefficient
for strength is applied to nominal strength’ generally computed somewhat conserv-
atively, rather than to mean strengths as in Eq. (1.2). A restatement of the safety
requirement in these terms is

¢S, 2 yQ4 (1.3a)

in which ¢ is a strength reduction factor applied to nominal strength S, and y is a load
factor applied to calculated or code-specified design loads Q. Furthermore, recogniz-
ing the differences in variability between, say, dead loads D and live loads L, it is both
reasonable and easy to introduce different load factors for different types of loads. The
preceding equation can thus be written

¢S, 2 yaD + y,L (1.3b)

in which y, is a load factor somewhat greater than 1.0 applied to the calculated dead
load D and y; is a larger load factor applied to the code-specified live load L. When
additional loads, such as the wind load W, are to be considered, the reduced probabil-
ity that maximum dead, live, and wind or other loads will act simultaneously can be
incorporated by using modified load factors such that

¢Sy 2 vaD + il + WA+ - (1.3¢)
Present U.S. design codes follow the format of Eqs. (1.3b) and (1.3¢).

DESIGN BASIS

The single most important characteristic of any structural member is its actual strength,
which must be large enough to resist, with some margin to spare, all foreseeable loads
that may act on it during the life of the structure, without failure or other distress. It
is logical, therefore, to proportion members, that is, to select concrete dimensions and
reinforcement, so that member strengths are adequate to resist forces resulting from
certain hypothetical overload stages, significantly above loads expected actually to
occur in service. This design concept is known as strength design.

" Throughout this book quantities that refer to the strength of members, calculated by accepted analysis methods, are furnished with the
subscript n, which stands for “nominal.” This notation is in agreement with the ACI Code. It is intended to convey that the actual strength of
any member is bound to deviate to some extent from its calculated, nominal value because of inevitable variations of dimensions, materials
properties, and other parameters. Design in all cases is based on this nominal strength, which represents the best available estimate of the

actual member strength.
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1.6

For reinforced concrete structures at loads close to and at failure, one or both
of the materials, concrete and steel, are invariably in their nonlinear inelastic range.
That is, concrete in a structural member reaches its maximum strength and subse-
quent fracture at stresses and strains far beyond the initial elastic range in which
stresses and strains are fairly proportional. Similarly, steel close to and at failure of
the member is usually stressed beyond its elastic domain into and even beyond the
yield region. Consequently, the nominal strength of a member must be calculated on
the basis of this inelastic behavior of the materials.

A member designed by the strength method must also perform in a satisfactory
way under normal service loading. For example, beam deflections must be limited
to acceptable values, and the number and width of flexural cracks at service loads
must be controlled. Serviceability limit conditions are an important part of the total
design, although attention is focused initially on strength.

Historically, members were proportioned so that stresses in the steel and concrete
resulting from normal service loads were within specified limits. These limits, known
as allowable stresses, were only fractions of the failure stresses of the materials. For
members proportioned on such a service load basis, the margin of safety was provided
by stipulating allowable stresses under service loads that were appropriately small
fractions of the compressive concrete strength and the steel yield stress. We now refer
to this basis for design as service load design. Allowable stresses, in practice, were
set at about one-half the concrete compressive strength and one-half the yield stress
of the steel.

Because of the difference in realism and reliability, the strength design method
has displaced the older service load design method. However, the older method
provides the basis for some serviceability checks and is the design basis for many
older structures. Throughout this text, strength design is presented almost exclusively.

DESIGN CODES AND SPECIFICATIONS

The design of concrete structures such as those of Figs. 1.1 to 1.12 is generally done
within the framework of codes giving specific requirements for materials, structural
analysis, member proportioning, etc. The International Building Code (Ref. 1.2) is an
example of a consensus code governing structural design and is often adopted by local
municipalities. The responsibility of preparing material-specific portions of the codes
rests with various professional groups, trade associations, and technical institutes. In
contrast with many other industrialized nations, the United States does not have an
official, government-sanctioned, national code.

The American Concrete Institute (ACI) has long been a leader in such efforts.
As one part of its activity, the American Concrete Institute has published the widely
recognized Building Code Requirements for Structural Concrete and Commentary
(Ref. 1.12), which serves as a guide in the design and construction of reinforced con-
crete buildings. The ACI Code has no official status in itself. However, it is generally
regarded as an authoritative statement of current good practice in the field of reinforced
concrete. As a result, it has been incorporated by reference into the International
Building Code and similar codes that are, in turn, adopted by law into municipal and
regional building codes that do have legal status. Its provisions thereby attain, in effect,
legal standing. Most reinforced concrete buildings and related construction in the
United States are designed in accordance with the current ACI Code. It has also served
as a model document for many other countries. The commentary incorporated in
Ref. 1.12 provides background material and rationale for the Code provisions. The
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American Concrete Institute also publishes important journals and standards, as well
as recommendations for the analysis and design of special types of concrete structures
such as shown in Fig. 1.7.

Most highway bridges in the United States are designed according to the
requirements of the AASHTO bridge specifications (Ref. 1.3), which not only con-
tain the provisions relating to loads and load distributions mentioned earlier but also
include detailed provisions for the design and construction of concrete bridges. Some
of the provisions follow ACI Code provisions closely, although a number of signif-
icant differences will be found.

The design of railway bridges is done according to the specifications of the
AREMA Manual of Railway Engineering (Ref. 1.4). It, too, is patterned after the
ACI Code in most respects, but it contains much additional material pertaining to
railway structures of all types.

No code or design specification can be construed as a substitute for sound
engineering judgment in the design of concrete structures. In structural practice,
circumstances are frequently encountered where code provisions can serve only as
a guide, and the engineer must rely upon a firm understanding of the basic principles
of structural mechanics applied to reinforced or prestressed concrete, and an intimate
knowledge of the nature of the materials.

SAFETY PROVISIONS OF THE ACI CODE

The safety provisions of the ACI Code are given in the form of Eqs. (1.3) and (1.3¢)
using strength reduction factors and load factors. These factors are based on statistical
information, experience, engineering judgment, and compromise. In words, the design
strength ¢S, of a structure or member must be at least equal to the required strength U
calculated from the factored loads, that is,

Design strength > Required strength

or

$S, > U (1.4)

The nominal strength S, is computed (usually somewhat conservatively) by accepted
methods. The required strength U is calculated by applying appropriate load factors
to the respective service loads: dead load D; live load L; wind load W; earthquake
load E; snow load S; rain load R; cumulative effects T due to differential settlement
and restrained volume change due to creep, shrinkage, and temperature change; fluid
pressure F; and earth pressure H. Loads are defined in a general sense, to include
either loads or the related internal effects such as moments, shears, and thrusts. Thus,
in specific terms for a member subjected, say, to moment, shear, axial load, and
torsional moment

oM, > M, (1.5a)
¢V, 2V, (1.5b)
¢P, > P, (1.5¢)
¢T, > T, (1.5d)

where the subscripts n denote the nominal strengths in flexure, shear, and axial load,
respectively, and the subscripts u denote the factored load moment, shear, axial



www.konkur.in

18 DESIGN OF CONCRETE STRUCTURES Chapter 1

Telegram: @uni_k

TABLE 1.2
Factored load combinations for determining required strength
U in the ACI Code

Primary Load® Factored Load or Load Effect U

Basic” U=12D + 1.6L

Dead U=14D

Live U=1.2D + 1.6L + 0.5(L, or S or R)

Roof, snow, rain‘ U=12D + 1.6(L, or S or R) + 0.5(1.0L or 0.5W)

Wind* U= 12D + 1.0W + 1.OL + 0.5(L, or S or R)
U=09D + 1.0W

Earthquake®* U=12D + 1.0E + 1.0L + 0.2§

U=09D + 1.0E

¢ Where the following represent the loads or related internal moments or forces resulting from the listed
factors: D = dead load; E = earthquake; L = live load; L, = roof live load; R = rain; S = snow; and
W = wind. In addition to the loads shown in this table, the ACI Code also requires consideration of loads
due to F = fluids; H = earth pressure; and T = cumulative effects of differential settlement and restraint
of volume change (creep, shrinkage, temperature change).

b The “basic” load condition of U = 1.2D + 1.6L reflects the fact that interior members in buildings
generally are not subjected to L, or S or R and that 1.4D rarely governs design.

¢ The load factor on live load L in these load combinations may be reduced up to 0.5, except for garages,
areas occupied as places of public assembly, and areas where L is greater than 100 psf.

4 Versions of ASCE/SEI 7 before 2010 provided wind speeds based on service-level design. If service-level
winds are used, 1.6W should be used for strength design.

¢ The vertical effects of earthquake are additive to the the dead load effects.

load and torsion. In computing the factored load effects on the right, load factors may
be applied either to the service loads themselves or to the internal load effects calcu-
lated from the service loads.

The load factors specified in the ACI Code, to be applied to calculated dead
loads and those live and environmental loads specified in the appropriate codes or
standards, are summarized in Table 1.2. A maximum load factor of 1.0 is used for
wind load W and earthquake load E because these loads are expressed at strength
level in Ref. 1.1. In addition to the load combinations shown in Table 1.2, Chapter 5
of the ACI Code addresses how load effects due to differential settlement, creep,
shrinkage, temperature change, fluid pressure, and earth pressure should be handled
depending on the load combination and whether they add or counteract the effects
of the primary load. The load combinations in Table 1.2 are consistent with the
concepts introduced in Section 1.4 and with ASCE/SEI 7, Minimum Design Loads
and Other Associated Criteria for Buildings and Other Structures (Ref. 1.1). For
individual loads, lower factors are used for loads known with greater certainty, such
as dead load, compared with loads of greater variability, such as live loads. Further,
for load combinations such as dead plus live loads plus wind forces, reductions are
applied to one load or the other that reflect the improbability that an excessively
large live load coincides with an unusually high windstorm. The factors also reflect,
in a general way, uncertainties with which internal load effects are calculated from
external loads in systems as complex as highly indeterminate, inelastic reinforced
concrete structures which, in addition, consist of variable-section members (because
of tension cracking, discontinuous reinforcement, etc.). Finally, the load factors also
distinguish between two situations, particularly when horizontal forces are present
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TABLE 1.3
Strength reduction factors in the ACI Code

Strength Reduction
Strength Condition Factor ¢

Tension-controlled sections” 0.90
Compression-controlled sections”

Members with spiral reinforcement 0.75
Other reinforced members 0.65
Shear and torsion 0.75
Bearing on concrete 0.65
Post-tensioned anchorage zones 0.85
Strut-and-tie models® 0.75

“ Chapter 22 discusses reductions in ¢ for pretensioned members where strand embedment is less than the
development length.

> Chapter 4 contains a discussion of the linear variation of ¢ between tension and compression-controlled
sections. Chapter 9 discusses the conditions that allow an increase in ¢ for spirally reinforced columns.

¢ Chapter 17 describes strut-and-tie models.

in addition to gravity, that is, the situation where the effects of all simultaneous loads
are additive, as distinct from that in which various load effects counteract one
another. For example, wind load produces an overturning moment, and the gravity
forces produce a counteracting stabilizing moment.

In all cases in Table 1.2, the controlling equation is the one that gives the
largest factored load effect U.

The strength reduction factors ¢ in the ACI Code are given different values
depending on the state of knowledge, that is, the accuracy with which various
strengths can be calculated. Thus, the value for bending is higher than that for shear
or bearing. Also, ¢ values reflect the probable importance, for the survival of the
structure, of the particular member and of the probable quality control achievable.
For both these reasons, a lower value is used for columns than for beams. Table 1.3
gives some of the ¢ values specified in Chapter 21 of the ACI Code.

The joint application of strength reduction factors (Table 1.3) and load factors
(Table 1.2) is aimed at producing approximate probabilities of understrength of the
order of 1/100 and of overloads of 1/1000. This results in a probability of structural
failure on the order of 1/100,000.

DEVELOPING FACTORED GRAVITY LOADS

To be of use in design, the live loads in Table 1.1 and information on the self-weight
of the structural members and other dead loads must be converted into forces acting on
the structure. By way of several examples, this section describes the conventions by
which this is done for gravity loads.

Figure 1.15 shows a hospital building with a reinforced concrete frame. The
masonry fascia and steel entrance give little indication of the underlying structure.
Figure 1.16 shows the same building under construction. The slabs, beams, columns,
and stairwells are identified. Temporary formwork and shoring for the cast-in-place
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FIGURE 1.15
Hospital building
(Photograph by Charles
W. Dolan)

FIGURE 1.16

Details of framing system
(Photograph by Charles

W. Dolan)
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Area detailed in Figure 1.16
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(for lateral support)

Suspended ceiling
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framing system are visible in the upper stories. This structure is designed for wind
and gravity loads because wind loads exceed the earthquake effects at this location.
The stairwell walls provide lateral stability and resistance to wind load. The remain-
ing structural elements are designed for gravity loads.

Figure 1.17 shows a schematic floor plan of the building and a photograph
of the one-way joist floor system. The slab is 5 in. thick, and the joists (narrow
beams not shown in the floor plan) are 6 in. wide, 24 in. deep, spaced at 5 ft, and
run in the East—West direction between supporting girders that run North—South
between columns. The bays adjacent to building line C are selected to illustrate
the development of factored gravity loads to be used in design. Operating rooms
are located in this portion of the building. Preliminary sizing of a typical floor
indicates that the girder cross section will be 24 in. deep by 16 in. wide. In addi-
tion to the live load, the floor supports a suspended ceiling and duct work below
weighing 6.5 psf. Normalweight concrete, producing reinforced concrete with a
unit weight of 150 pcf, is used for construction.
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FIGURE 1.17
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(a) Floor plan

(b) Section X-X joist floor system

EXAMPLE 1.1 Loads on slab/joist system. Determine the service and factored loads acting on the slab/joist
system between lines C and D.

SoLutION.  Slab loads are typically defined as surface loads in pounds per square foot (psf). From
Table 1.1, the live load for hospital operating rooms is 60 psf. The slab is 5 in. thick. The joists
are 6 in. wide by 24 in. deep, extending 19 in. below the bottom of the slab and spaced 5 ft on
center. The joists can be considered as adding to the thickness of the slab for the purpose of
calculating the dead load of the system. The equivalent increase in slab thickness equals the cross-
sectional area of the joist below the bottom of the slab divided by the spacing of the joists in in. or
(6 X 19)/(5 x 12) = 1.9 in., giving an equivalent total slab thickness for calculation of dead load
of 6.9 in. The dead load of the slab/joist system is then the equivalent total slab thickness in feet
times the concrete density, 150 pcf, resulting in a slab dead weight of (6.9/12) x 150 pcf = 86.3 psf.
The service load g, on the slab is then 86.3 psf + 6.5 psf superimposed dead load + 60 psf live
load, giving g; = 152.8 psf. The factored load for this example is determined using the basic load
factor condition from Table 1.2. Thus, the factored load on the slab ¢, is 1.2 X (86.3 psf +
6.5 psf) + 1.6 x 60 psf = 207.4 psf, which is rounded to g, = 207 psf.
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EXAMPLE 1.2

Load on girder. Determine the factored load applied to the interior girder on line C between
lines 3 and 4.

SoLutioN. Beam and girder loads are typically defined in pounds per linear foot (plf) or kips
per linear foot (kIf) along the length of the beam. The loads are developed using a 1 ft wide
tributary strip perpendicular to the girder, shown in Fig. 1.17a. In this example, the length of the
tributary strip goes halfway across the slabs loading the girder and is, thus, 7.5 ft long on the B-C
side and 17.5 ft long on the C-D side of building line C for a total length of 25 feet. From
Example 1.1, the factored load on the slab, 207 psf, is applied to the 1 ft wide strip, giving a
load on the girder of 207 psf x 1 ft wide X 25 ft total tributary width = 5175 plf. To this must
be added the factored girder self-weight. Only the 19 in. deep portion below the slab need be
added, thus the load must be increased by 16 in. wide x 19 in. deep X 150 pcf/144 in®/ft* = 317 plf.
The uniform factored design load on the girder w, is then 5175 plf 4+ 1.2 X 317 plf = 5555.4 plf.
Using three significant figures, the load to be used in design is w, = 5.56 kip/ft.

EXAMPLE 1.3

Load on column. Determine the factored axial load transferred to column C4.

SoLutioN. Column axial loads are expressed in pounds or kips and are established using a
tributary area. The tributary area for column C4, shown in Fig. 1.17q, is a rectangular area
measure halfway between column lines (that is, half the distance to the adjacent columns)
equal to (15 ft/2 + 35 ft/2) x (25 ft/2 + 35 ft/2) = 25 x 30 = 750 ft*. From Example 1.1,
the factored load of the slab is g, = 207 psf to which must be added the factored weight of
the beam from Example 2, 1.2 X 317 plf, within the tributary area. Thus, the load transferred
to the column is P, = 207 psf x 750 ft* + 1.2 x 317 plf x (35 ft/2 + 25 ft/2) = 166,650 Ib
or 166.7 kips. Using three significant figures, the factored axial load would be P, = 167 kips.
The determination of axial loads for use in design is discussed further in Section 11.3.
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CONTRACT DOCUMENTS AND INSPECTION

Design information is transmitted from the licensed design professional, sometimes
called the engineer of record, to the contractor through the contract documents. These
documents typically consist of plans, specifications, and estimates. A typical set of
plans includes the graphical information describing the architectural, structural,
mechanical, and electrical components of the building. The structural plans contain
the concrete sections, reinforcement, reinforcement details and placement, and other
technical information based on the engineer’s calculations. The licensed design pro-
fessional commonly includes sketches or drawings of specific details in the calcula-
tions to allow the information to be accurately incorporated into the plans.
Specifications consist of two parts: the contract terms and conditions and the
technical specifications. Contract terms and conditions include what is to be con-
structed, the time and cost of the construction, bonding requirements, and other
specific issues between the owner and the contractor. Technical specifications con-
tain the detailed information the contractor needs to complete a project and are
provided by the licensed design professional. They include the ASTM specifications
for concrete and steel, requirements for concrete strength and placement, grade of
reinforcement to be used, considerations for hot and cold weather concreting, and
other project specific information. During design, the licensed design professional
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makes decisions about the materials and details needed to comply with the design
intent and the building code requirements. A contractor is not required to be famil-
iar with the ACI Building Code nor is the contractor responsible for assuring that
code requirements are satisfied. Therefore, the licensed design professional must
include all relevant project and code requirements in the plans and specifications.
Chapter 26 of the ACI Building Code (Ref. 1.12) contains a comprehensive descrip-
tion of information that the engineer must include in the plans and specifications.
Pointers to this chapter are included throughout the ACI Code to assist the licensed
design professional in finding and recording the correct information.

Inclusion of information in the project specifications does not, by itself, assure
that construction will be executed according to the design intent. Rather, compliance
requirements and inspection provide the licensed design professional and the owner
with confirmation that the design intent is being met. Compliance requirements asso-
ciated with project specifications are provided in Chapter 26 of the ACI Code. These
compliance requirements complement the technical specifications by providing direct
feedback to the licensed design professional. For example, if the specifications
require the concrete strength to be 6000 psi, the compliance requirement would be
that the strength test results, based on ASTM specifications for testing concrete,
demonstrate the concrete meets or exceeds the specified strength. Actual testing of
materials is done by testing agencies and technicians certified by the American
Concrete Institute or other qualification agencies.

Inspection further advances compliance with the design intent. Inspection can
range from onsite observations to detailed investigation of reinforcement placement.
Onsite observations are conducted intermittently as a general overview of the con-
struction with the intent of confirming overall design intent. Such observations may
lead to discussions with the contractor regarding the way the work is done but do
not direct the contractor’s work. In areas prone to earthquakes, special inspection
may be required. Special inspection requires the licensed design professional or a
certified designee to conduct the inspections. These inspections specifically examine
those elements of the design required to resist earthquake load effects and to certify
that the construction meets the design details. The General Building Code and the
ACI Building Code specify situations where special inspection is required.

The licensed design professional is sometimes required to provide an estimate of
the cost of construction. This estimate addresses several issues. The estimate initially
provides the owner with information to indicate that the available project funding is
adequate. It can also provide a basis for estimating the degree of completion during
construction. Cost estimates solely by the engineer are most often associated with engi-
neered projects, such as bridges, piers, and industrial facilities. Cost estimates for build-
ing construction are typically provided by the architect with input from the engineer.
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PROBLEMS

1.1.

1.2

1.3.

1.4.

1.5.

All problems refer to Table 1.1 for live loads and Fig. P1.1 for the building
layout. No live load reduction factors are considered. Figure P1.1 provides a
plan and elevation of a reinforced concrete building 7 bays long by 4 bays
wide. The building has beams along building lines A through E and one-way
slabs spanning between building lines A through E. A central stairwell /elevator
shaft between building lines 5 and 6 provides the lateral support, so only grav-
ity loads need to be calculated. The bay dimensions, beam dimensions, and
occupancy uses are given in the individual problem statements below. Con-
struction is with normalweight concrete with a density of 150 pcf for the
purposes of calculating dead load.

The building in Fig. P1.1 is used for general office space. The slab is 8 in. thick.
The beams are 12 in. wide and have a total depth of 18 in., the bay dimensions
are 18.5 ft in the X direction and 21 ft in the Y direction, and the superimposed
service dead load is 25 psf. Calculate the slab service load in psf and the inte-
rior beam service load in klIf. (Solution: g, = 175 psf, w, = 3.36 KIf.)

The building in Fig. P1.1 is used for general office space. The slab is 8 in.
thick. The beams are 12 in. wide and have a total depth of 18 in., the bay
dimensions are 18.5 ft in the X direction and 21 ft in the Y direction, and the
superimposed service dead load is 25 psf. Calculate the factored axial column
load transferred to column C3 on the third floor. (Solution: P, = 92.5 kips.)
The building in Fig. P1.1 is used for general office space. The slab is 8 in. thick.
The beams are 12 in. wide and have a total depth of 18 in., the bay dimensions
are 18.5 ft in the X direction and 21 ft in the Y direction, and the superimposed
service dead load is 25 psf. Calculate the slab factored load in psf and the beam
factored load in klf. Comment on your solution in comparison with Problem 1.1.
A slab in Fig. P1.1 is used for lobby space. The slab is 10 in. thick. The
beams are 14 in. wide and have a total depth of 24 in., the bay dimensions
are 21 ft in the X direction and 26 ft in the Y direction, and the superimposed
service dead load is 15 psf. Calculate the slab factored load in psf and the
beam factored load in KIf.

The building in Fig. P1.1 is used for light storage space. The slab is 10 in.
thick. The beams are 16 in. wide and have a total depth of 20 in., the bay
dimensions are 20 ft in the X direction and 25 ft in the Y direction, and the
superimposed sprinkler dead load is 4 psf. Calculate the slab factored load
in psf and the beam factored load in klf.
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1.6.  The roof on the building in Fig. P1.1 has a slab that is 7 in. thick. The beams

are 12 in. wide and have a total depth of 16 in., the bay dimensions are 19 ft
in the X direction and 21 ft in the Y direction, and the superimposed service
dead load is 6 psf. Calculate the slab factored load in psf and the beam
factored load in klIf given the roof snow load is 30 psf.
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2.2

INTRODUCTION

The structures and component members treated in this text are composed of concrete
reinforced with steel bars, and in some cases prestressed with steel wire, strand, or
alloy bars. An understanding of the materials characteristics and behavior under load
is fundamental to understanding the performance of structural concrete, and to safe,
economical, and serviceable design of concrete structures. Although prior exposure to
the fundamentals of material behavior is assumed, a brief review is presented in this
chapter, as well as a description of the types of bar reinforcement and prestressing
steels in common use. Numerous references are given as a guide for those seeking
more information on any of the topics discussed.

CEMENT

A cementitious material is one that has the adhesive and cohesive properties nec-
essary to bond inert aggregates into a solid mass of adequate strength and durabil-
ity. This technologically important category of materials includes not only cements
proper but also limes, asphalts, and tars as they are used in road building, and others.
For making structural concrete, hydraulic cements are used exclusively. Water is
needed for the chemical process (hydration) in which the cement powder sets and
hardens into one solid mass. Of the various hydraulic cements that have been devel-
oped, portland cement, which was first patented in England in 1824, is by far the
most common.

Portland cement is a finely powdered, grayish material that consists chiefly of
calcium and aluminum silicates.” The common raw materials from which it is made
are limestones, which provide CaO, and clays or shales, which furnish SiO, and
Al O;. These are ground, blended, fused to clinkers in a kiln, and cooled. Gypsum
and additional unreacted limestone are added and the mixture is ground to the required
fineness. The material is shipped in bulk or in bags containing 94 Ib of cement.

Over the years, five standard types of portland cement have been developed.
Type 1, normal portland cement, is used for over 90 percent of construction in the
United States. Concretes made with Type I portland cement generally need one to
two weeks to reach sufficient strength so that forms of beams and slabs can be

" See ASTM C150, “Standard Specification for Portland Cement.” This and other ASTM references are published and periodically updated by
ASTM International (formerly the American Society for Testing and Materials), West Conshohoken, PA.

26
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removed and reasonable loads applied; they reach their design strength after 28 days
and continue to gain strength thereafter at a decreasing rate. To speed construction
when needed, high early strength cements such as Type III have been developed.
They are costlier than ordinary portland cement, but within 7 to 14 days they reach
the strength achieved using Type I at 28 days. Type III portland cement contains the
same basic compounds as Type I, but the relative proportions differ and it is ground
more finely.

When cement is mixed with water to form a soft paste, it gradually stiffens
until it becomes a solid. This process is known as setting and hardening. The cement
is said to have set when it has gained sufficient rigidity to support an arbitrarily
defined pressure, after which it continues for a long time to harden, that is, to gain
further strength. The water in the paste dissolves material at the surfaces of the
cement grains and forms a gel that gradually increases in volume and stiffness. This
leads to a rapid stiffening of the paste 2 to 4 hours after water has been added to
the cement. Hydration continues to proceed deeper into the cement grains, at decreas-
ing speed, with continued stiffening and hardening of the mass. The principal prod-
ucts of hydration are calcium silicate hydrate, which is insoluble, and calcium
hydroxide, which is soluble.

In ordinary concrete, the cement is probably never completely hydrated. The
gel structure of the hardened paste seems to be the chief reason for the volume
changes that are caused in concrete by variations in moisture, such as the shrinkage
of concrete as it dries.

For complete hydration of a given amount of cement, an amount of water
equal to about 25 percent of that of cement, by weight—that is, a water-cement
ratio of 0.25—is needed chemically. An additional amount must be present, how-
ever, to provide mobility for the water in the cement paste during the hydration
process so that it can reach the cement particles and to provide the necessary
workability of the concrete mix. For normal concretes, the water-cement ratio is
generally in the range of about 0.40 to 0.60, although for high-strength concretes,
ratios as low as 0.21 have been used. In this case, the needed workability is obtained
through the use of admixtures.

Any amount of water above that consumed in the chemical reaction produces
pores in the cement paste. The strength of the hardened paste decreases in inverse
proportion to the fraction of the total volume occupied by pores. Put differently, since
only the solids, and not the voids, resist stress, strength increases directly as the fraction
of the total volume occupied by the solids. That is why the strength of the cement paste
depends primarily on, and decreases directly with, an increasing water-cement ratio.

The chemical process involved in the setting and hardening liberates heat,
known as heat of hydration. In large concrete masses, such as dams, this heat is
dissipated very slowly and results in a temperature rise and volume expansion of the
concrete during hydration, with subsequent cooling and contraction. To avoid the
serious cracking and weakening that may result from this process, special measures
must be taken for its control.

AGGREGATES

In ordinary structural concretes the aggregates occupy 65 to 75 percent of the
volume of the hardened mass. The remainder consists of hardened cement paste,
uncombined water (that is, water not involved in the hydration of the cement), and
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air voids. The latter two do not contribute to the strength of the concrete. In general,
the more densely the aggregate can be packed, the better the durability and economy
of the concrete. For this reason the gradation of the particle sizes in the aggregate, to
produce close packing, is important. It is also important that the aggregate have good
strength, durability, and weather resistance; that its surface be free from impurities
such as loam, clay, silt, and organic matter that may weaken the bond with cement
paste; and that no unfavorable chemical reaction take place between it and the cement.

Natural aggregates are generally classified as fine and coarse. Fine aggregate
(typically natural sand) is any material that will pass a No. 4 sieve, that is, a sieve
with four openings per linear inch. Material coarser than this is classified as coarse
aggregate. When favorable gradation is desired, aggregates are separated by screen-
ing into two or three size groups of sand and several size groups of coarse aggre-
gate. These can then be combined according to grading criteria to provide a densely
packed aggregate. The maximum size of coarse aggregate in reinforced concrete is
governed by the requirement that it must easily fit into the forms and between the
reinforcing bars. For this purpose it should not be larger than one-fifth of the nar-
rowest dimension of the forms or one-third of the depth of slabs, nor three-quarters
of the minimum distance between reinforcing bars. Requirements for satisfactory
aggregates are found in ASTM C33, “Standard Specification for Concrete Aggre-
gates,” and authoritative information on aggregate properties and their influence on
concrete properties, as well as guidance in selection, preparation, and handling of
aggregate, is found in Refs. 2.1 and 2.2.

The unit weight of normalweight concrete, that is, concrete with natural aggre-
gates, varies from about 140 to 152 pounds per cubic foot (pcf) and can generally
be assumed to be 145 pcf. For special purposes, lightweight concretes, on one hand,
and heavy concretes, on the other, are used.

A variety of lightweight aggregates are available. Some unprocessed aggre-
gates, such as pumice or cinders, are suitable for insulating concretes, but for struc-
tural lightweight concrete, processed aggregates are used because of better control.
These consist of expanded shales, clays, slates, slags, or pelletized fly ash. They are
light in weight because of the porous, cellular structure of the individual aggregate
particles, which is achieved by gas or steam formation in processing the aggregates
in rotary kilns at high temperatures (generally in excess of 2000°F). Requirements
for satisfactory lightweight aggregates are found in ASTM C330, “Standard Speci-
fication for Lightweight Aggregates for Structural Concrete.”

Structural lightweight concretes have unit weights between 70 and 120 pcf,
with most in the range of 105 to 120 pcf. Lower density lightweight concretes typ-
ically have compressive strengths of 1000 to 2500 psi and are chiefly used as fill,
such as over light-gage steel floor panels. Lightweight concretes with unit weights
between 90 and 120 pcf have compressive strengths comparable to those of normal-
weight concretes. Similarities and differences in structural characteristics of light-
weight and normalweight concretes are discussed in Sections 2.8 and 2.9.

Heavyweight concrete is sometimes required for shielding against gamma and
X-radiation in nuclear reactors and similar installations, for protective structures, and
for special purposes, such as counterweights of lift bridges. Heavy aggregates are
used for such concretes. These consist of heavy iron ores or barite (barium sulfate)
rock crushed to suitable sizes. Steel in the form of scrap, punchings, or shot (as
fines) is also used. Unit weights of heavyweight concretes with natural heavy rock
aggregates range from about 200 to 230 pcf; if iron punchings are added to high-
density ores, weights as high as 270 pcf are achieved. The weight may be as high
as 330 pcf if ores are used for the fines only and steel for the coarse aggregate.
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FIGURE 2.1

Effect of water-cement ratio
on 28-day compressive and
flexural tensile strength.
(Adapted from Ref. 2.3.)

Telegram: @uni_k

MATERIALS 29

PROPORTIONING AND MIXING CONCRETE

The various components of a mix are proportioned so that the resulting concrete has
adequate strength, proper workability for placing, and low cost. The third calls for
use of the minimum amount of cement (the most costly of the components) that will
achieve adequate properties. The better the gradation of aggregates, that is, the smaller
the volume of voids, the less cement paste is needed to fill these voids. In addition to the
water required for hydration, water is needed for wetting the surface of the aggregate.
As water is added, the plasticity and fluidity of the mix increase (that is, its workability
improves), but the strength decreases because of the larger volume of voids created by
the free water. To reduce the free water while retaining the workability, cement must
be added. Therefore, as for the cement paste, the water-cement ratio is the chief factor
that controls the strength of the concrete. For a given water-cement ratio, one selects
the minimum amount of cement that will secure the desired workability.

Figure 2.1 shows the decisive influence of the water-cement ratio on the compres-
sive strength of concrete. Its influence on tensile strength, as measured by the nominal
flexural strength or modulus of rupture, is also seen to be pronounced but much less
than its effect on compressive strength. This seems to be so because, in addition to the
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void ratio, the tensile strength depends on the strength of the bond between coarse
aggregate and mortar (that is, cement paste plus fine aggregate). Tests show that this
bond strength is only slightly affected by the water-cement ratio (Ref. 2.4).

It is customary to define the proportions of a concrete mix in terms of the total
weight of each component needed to make up 1 yd® of concrete, such as 517 Ib of
cement, 300 Ib of water, 1270 Ib of sand, and 1940 1b of coarse aggregate, plus the
total volume of air, in percent. Air content is typically 4 to 7 percent when air is
deliberately entrained in the mix and 1 to 2 percent when it is not. The weights of
the fine and coarse aggregates are based on material in the saturated surface dry
condition, in which, as the description implies, the aggregates are fully saturated but
have no water on the exterior of the particles.

Various methods of proportioning are used to obtain mixes of the desired prop-
erties from the cements and aggregates at hand. One is the trial-batch method. Select-
ing a water-cement ratio from information such as that in Fig. 2.1, one produces
several small trial batches with varying amounts of aggregate to obtain the required
strength, consistency, and other properties with a minimum amount of paste. Concrete
consistency is most frequently measured by the slump test. A metal mold in the shape
of a truncated cone 12 in. high is filled with fresh concrete in a carefully specified
manner. Immediately upon being filled, the mold is lifted off, and the slump of the
concrete is measured as the difference in height between the mold and the pile of
concrete. The slump is a good measure of the total water content in the mix and
should be kept as low as is compatible with workability. Slumps for concretes in
building construction generally range from 2 to 5 in., although higher slumps are used
with the aid of chemical admixtures, especially when very fluid mixtures are needed
to allow the concrete to be placed between closely spaced reinforcing bars.

The so-called ACI method of proportioning makes use of the slump test in
connection with a set of tables that, for a variety of conditions (types of structures,
dimensions of members, degree of exposure to weathering, etc.), permit one to esti-
mate proportions that will result in the desired properties (Ref. 2.5). These prelimi-
nary selected proportions are checked and adjusted by means of trial batches to result
in concrete of the desired quality. Inevitably, strength properties of a concrete of
given proportions scatter from batch to batch. It is therefore necessary to select
proportions that will furnish an average strength sufficiently greater than the speci-
fied design strength for even the accidentally weaker batches to be of adequate
quality (for details, see Section 2.6). Discussion in detail of practices for proportion-
ing concrete is beyond the scope of this volume; this topic is treated fully in Refs. 2.5
and 2.6, respectively, for normalweight and lightweight concrete.

If the results of trial batches or field experience are not available, the ACI
Code allows concrete to be proportioned based on other experience or information,
if approved by the licensed design professional overseeing the project. This alterna-
tive may not be applied for specified compressive strengths greater than 5000 psi.

On all but the smallest jobs, batching takes place in special batching plants.
Separate hoppers contain cement and the various fractions of aggregate. Proportions
are controlled, by weight, by means of manually operated or automatic scales con-
nected to the hoppers. The mixing water is batched either by measuring tanks or by
water meters.

The principal purpose of mixing is to produce an intimate mixture of cement,
water, fine and coarse aggregate, and possible admixtures of uniform consistency
throughout each batch. This is typically achieved in machine mixers of the revolving-
drum type. Minimum mixing time is 1 min for mixers of not more than 1 yd® capacity,
with an additional 15 sec for each additional 1 yd®. Mixing can be continued for a
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considerable time without adverse effect. This fact is particularly important in connec-
tion with ready mixed concrete.

On large projects, particularly in the open country where ample space is available,
movable mixing plants are installed and operated at the site. On the other hand, in
construction under congested city conditions, on smaller jobs, and frequently in highway
construction, ready mixed concrete is used. Such concrete is batched in a stationary
plant and then hauled to the site in trucks in one of three ways: (1) mixed completely
at the stationary plant and hauled in a truck agitator, (2) transit-mixed, that is, batched
at the plant but mixed in a truck mixer, or (3) partially mixed at the plant with mixing
completed in a truck mixer. Concrete should be discharged from the mixer or agitator
within a limited time after the water is added to the batch. Although specifications often
provide a single value for all conditions, the maximum mixing time should be based
on the concrete temperature because higher temperatures lead to increased rates of
slump loss and rapid setting. Conversely, lower temperatures increase the period during
which the concrete remains workable. A good guide for maximum mixing time is to
allow 1 hour at a temperature of 70°F, plus (or minus) 15 min for each 5°F drop (or
rise) in concrete temperature for concrete temperatures between 40 and 90°F. Ten min-
utes may be used at 95°F, the practical upper limit for normal mixing and placing.

Much information on proportioning and other aspects of design and control of
concrete mixtures will be found in Refs. 2.7 and 2.8.

CONVEYING, PLACING, CONSOLIDATING, AND CURING

Conveying of most building concrete from the mixer or truck to the forms is done in
bottom-dump buckets or by pumping through steel pipelines. The chief danger dur-
ing conveying is that of segregation, the separation of the individual components of
concrete because of their dissimilarity. In overly wet concrete standing in containers
or forms, the heavier coarse aggregate particles tend to settle, and the lighter materi-
als, particularly water, tend to rise. Lateral movement, such as flow within the forms,
tends to separate the coarse aggregate particles from the finer components of the mix.

Placing is the process of transferring the fresh concrete from the conveying
device to its final place in the forms. Prior to placing, loose rust must be removed
from reinforcement, forms must be cleaned, and hardened surfaces of previous concrete
lifts must be cleaned and treated appropriately. Placing and consolidating are critical
in their effect on the final quality of the concrete. Proper placement must avoid seg-
regation, displacement of forms or of reinforcement in the forms, and poor bond
between successive layers of concrete. Immediately upon placing, the concrete should
be consolidated, usually by means of vibrators. Consolidation prevents honeycombing,
ensures close contact with forms and reinforcement, and serves as a partial remedy to
possible prior segregation. Consolidation is achieved by high-frequency, power-driven
vibrators. These are of the internal type, immersed in the concrete, or of the external
type, attached to the forms. The former are preferable but must be supplemented by
the latter where narrow forms or other obstacles make immersion impossible (Ref. 2.9).
Vibration is not needed for self-consolidating concrete, a fluid concrete that consolidates
under its own weight, discussed in more detail in Section 2.7.

Fresh concrete gains strength most rapidly during the first few days and weeks.
Structural design is generally based on the 28-day strength, about 70 percent of which
is reached at the end of the first week after placing. The final concrete strength depends
greatly on the conditions of moisture and temperature during this initial period. The
maintenance of proper conditions during this time is known as curing. Thirty percent
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of the strength or more can be lost by premature drying out of the concrete; similar
amounts may be lost by permitting the concrete temperature to drop to 40°F or lower
during the first few days unless the concrete is kept continuously moist for a long time
thereafter. Freezing of fresh concrete may reduce its strength by 50 percent or more.
To prevent such damage, concrete should be protected from loss of moisture for at
least 7 days and, in more sensitive work, up to 14 days. When high early strength cements
are used, curing periods can be cut in half. Curing can be achieved by keeping exposed
surfaces continually wet through sprinkling, ponding, or covering with plastic film or by
the use of sealing compounds, which, when properly used, form evaporation-retarding
membranes. In addition to improving strength, proper moist-curing provides better shrink-
age control. To protect concrete against low temperatures during cold weather, the mixing
water, and occasionally the aggregates, is heated; thermal insulation is used where possi-
ble; and special admixtures are employed. When air temperatures are very low, external
heat may have to be supplied in addition to insulation (Refs. 2.7, 2.8, 2.10, and 2.11).

QUALITY CONTROL

The quality of mill-produced materials, such as structural or reinforcing steel, is ensured
by the producer, who must exercise systematic quality controls, usually specified by
pertinent ASTM standards. Concrete, in contrast, is produced at or close to the site,
and its final qualities are affected by a number of factors, which have been discussed
briefly. Thus, systematic quality control must be instituted at the construction site.

The main measure of the structural quality of concrete is its compressive
strength. Tests for this property are made on cylindrical specimens of height equal
to twice the diameter, usually 6 X 12 in. or 4 X 8 in. Impervious molds of this shape
are filled with concrete during construction as specified by ASTM C172, “Standard
Method of Sampling Freshly Mixed Concrete,” and ASTM C31, “Standard Practice
for Making and Curing Concrete Test Specimens in the Field.” The cylinders are
moist-cured at about 70°F, generally for 28 days, and then tested in the laboratory
at a specified rate of loading. The compressive strength obtained from such tests is
known as the cylinder strength, which is compared to the specified compressive
strength f!, the main property specified for design.

To provide structural safety, continuous control is necessary to ensure that the
strength of the concrete as furnished is in satisfactory agreement with the value
called for by the designer. The ACI Code specifies that at least two 6 X 12 in. or
three 4 x 8 in. cylinders must be tested for each 150 yd® of concrete or for each
5000 ft* of surface area actually placed, but not less than once a day. As mentioned
in Section 2.4, the results of strength tests of different batches mixed to identical
proportions show inevitable scatter. The scatter can be reduced by closer control, but
occasional tests below the cylinder strength specified in the design cannot be avoided.

To ensure adequate concrete strength in spite of such scatter, the ACI Code
stipulates that concrete quality is satisfactory if

1. Every average of any three consecutive strength tests equals or exceeds f, and

2. No strength test (the average of two or three cylinder tests depending on cylinder
size) falls below the required f, by more than 500 psi if f; is 5000 psi or less or by
more than 0.10 f; if f exceeds 5000 psi.

It is evident that if concrete were proportioned so that its mean strength were
just equal to the required strength f/, it would not pass these quality requirements,
because about one-half of the strength test results would fall below the required f;.
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Frequency curves and
average strengths for various
degrees of control of
concretes with specified
design strength f;..

(Adapted from Ref. 2.12.)
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It is therefore necessary to proportion the concrete so that its mean strength f;,, used
as the basis for selection of suitable proportions, exceeds the specified design strength
/2 by an amount sufficient to ensure that the two quoted requirements are met. The
minimum amount by which the required mean strength must exceed f. can be deter-
mined only by statistical methods because of the random nature of test scatter.
Requirements have been derived, based on statistical analysis, to be used as a guide
to proper proportioning of the concrete at the plant so that the probability of strength
deficiency at the construction site is acceptably low.

The basis for these requirements is illustrated in Fig. 2.2, which shows three
normal frequency distribution curves giving the distribution of strength test results.
The specified design strength is f.. The curves correspond to three different degrees
of quality control, curve A representing the best control, that is, the least scatter, and
curve C the worst control, with the most scatter. The degree of control is measured
statistically by the standard deviation ¢ (o, for curve A, o, for curve B, and o, for
curve C), which is relatively small for producer A and relatively large for producer C.
All three distributions have the same probability of strength less than the specified
value f; that is, each has the same fractional part of the total area under the curve
to the left of f/. For any normal distribution, that fractional part is defined by the
index f, a multiplier applied to the standard deviation o; f is the same for all three
distributions of Fig. 2.2. As demonstrated in the figure, to satisfy the requirement
that, say, 1 test in 100 will fall below f; (with the value of f3; thus determined), for
producer A with the best quality control the mean strength f,. can be much closer
to the specified f, than for producer C with the most poorly controlled operation.

On the basis of such studies, ACI Code 26.4.3.1 requires that mixture propor-
tions be established in accordance with ACI 301, “Specifications for Structural Con-
crete” (Ref. 2.13). ACI 301 requires concrete production facilities to maintain records
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from which the standard deviation achieved in the particular facility can be deter-
mined. ACI 301 also stipulates the minimum amount by which the required average
compressive strength f., aimed at when selecting concrete proportions, must exceed
the specified compressive strength f,. In accordance with ACI 301, the value of f,,
is equal to the larger of the values in Eqs. (2.1) and (2.2).

fio=f + 1.34ks, @.1)

or
P { £+ 2.33ks, — 500 for £/ < 5000 psi (2.2a)
7 1 0.9f + 2.33ks, for £/ > 5000 psi (2.2b)

where s, is the standard deviation of the test sample. The value of k is given in
Table 2.1.

Equation (2.1) provides a probability of 1 in 100 that averages of three consecu-
tive tests will be below the specified strength f. Equations (2.2a) and (2.2b) provide a
probability of 1 in 100 that an individual strength test will be more than 500 psi below
the specified f; for £ up to 5000 psi or below 0.90f, for £, over 5000 psi.

To use Egs. (2.1) and (2.2), ACI 301 (Ref. 2.13) requires that a minimum of
15 consecutive test results be available. The tests must represent concrete with (1) a
specified compressive strength within 1000 psi of f; for the project and (2) materials,
quality control, and conditions similar to those expected for the building in question. If
fewer than 15 tests have been made, f;, must exceed f, + 1000 psi for f. less than or
equal to 3000 psi, f, + 1200 psi for f; between 3000 and 5000 psi, and 0.1 f; + 700 psi
for £, over 5000 psi.

It is seen that this method of control recognizes the fact that occasional
deficient batches are inevitable. The requirements for f.. ensure (1) a small prob-
ability that such strength deficiencies, as are bound to occur, will be large enough
to represent a serious danger and (2) an equally small probability that a sizable
portion of the structure, as represented by three consecutive strength tests, will be
made of below-par concrete.

Both the requirements described earlier in this section for determining if con-
crete, as produced, is of satisfactory quality and the process just described of select-
ing f. are based on the same basic considerations but are applied independently, as
demonstrated in Examples 2.1 and 2.2.

TABLE 2.1
Modification factor k for sample standard deviation s; when less
than 30 tests are available

Modification Factor k for Sample

No. of Tests® Standard Deviation
Less than 15 See paragraph following
Egs. (2.1) and (2.2)
15 1.16
20 1.08
25 1.03
30 or more 1.00

" Interpolate for intermediate values.
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EXAMPLE 2.1 Average required strength. A building design calls for specified concrete strength f; of
4000 psi. Calculate the average required strength f7, if (a) 30 consecutive tests for concrete with
similar strength and materials produce a sample standard deviation s, of 535 psi, (b) 15 con-
secutive tests for concrete with similar strength and materials produce a sample standard
deviation s, of 510 psi, and (c) less than 15 tests are available.

SOLUTION.
(a) 30 tests available. Using s, = 535 psi and k = 1.0 (from Table 2.1), Eq. (2.1) gives

i =f/ + 1.34ks, = 4000 + 1.34 x 1.0 x 535 = 4720 psi'
Because the specified strength £, is less than 5000 psi, Eq. (2.2a) must be used.
foo=f. + 2.33ks, — 500 = 4000 + 2.33 x 1.0 x 535 — 500 = 4750 psi

The required average strength f., is equal to the larger value, 4750 psi.

(b) 15 tests available. Because only 15 tests are available, s, the factor k = 1.16 from Table 2.1.

()

1.16 X s, = 1.16 X 510 = 590 psi
Using s, =510 and k = 1.16, Egs. (2.1) and (2.2a) give, respectively,
fi=4000 + 1.34 x 1.16 x 510 = 4790 psi
fa=4000 + 2.33 x 1.16 x 510 — 500 = 4880 psi

The larger value, 4880 psi, is selected as the required average strength f.,.
Less than 15 tests available. Because f; is between 3000 and 5000 psi, the required average
strength is

fi=f + 1200 = 4000 + 1200 = 5200 psi

This example demonstrates that in cases where test data are available, good quality con-
trol, represented by a low sample standard deviation s,, can be used to reduce the required
average strength /... The example also demonstrates that a lack of certainty in the value of
the standard deviation due to the limited availability of data results in higher values for f.,,
as shown in parts (b) and (c). As additional test results become available, the higher safety
margins can be reduced.

EXAMPLE 2.2

Satisfactory test results. The first eight compressive strength test results for the building
described in Example 2.1c¢ are 4730, 4280, 3940, 4370, 5180, 4870, 4930, and 4850 psi.

(a) Are the test results satisfactory, and (b) in what fashion, if any, should the mixture pro-

portions of the concrete be altered?

SOLUTION.

(@)

(b)

For concrete to be considered satisfactory, every arithmetic mean of any three consecutive
tests must equal or exceed f;, and no individual test may fall below f; — 500 psi. The eight
tests meet these criteria. The average of all sets of three consecutive tests exceeds f; [for
example, (4730 + 4280 + 3940)/3 = 4320, (4280 + 3940 + 4370)/3 = 4200, etc.], and no
test is less than £ — 500 psi = 4000 — 500 = 3500 psi.

To determine if the mixture proportions must be altered, we note that the solution to Exam-
ple 2.1c requires that f;,. equal or exceed 5200 psi. The average of the first eight tests is

" ASTM International specifies that concrete cylinder strengths be recorded to the nearest 10 psi. Hence the values used for test results and f,

are rounded accordingly.
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4640 psi, well below the value of f... Thus, the mixture proportions should be modified by
decreasing the water-cement ratio to increase the concrete strength. Once at least 15 tests
are available, the value of f;, can be recalculated using Egs. (2.1) and (2.2) with the appro-
priate factor k from Table 2.1. The mixture proportions can then be adjusted based on
the new value of f,,, the strength of the concrete being produced, and the level of quality
control, as represented by the sample standard deviation s,.
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In spite of advances, building in general and concrete making in particular
retain some elements of an art; they depend on many skills and imponderables. It is
the task of systematic inspection to ensure close correspondence between plans and
specifications and the finished structure. Inspection during construction should be
performed by a competent engineer, preferably the one who produced the design or
one who is responsible to the design engineer. The inspector’s main functions in
regard to materials quality control are sampling, examination, and field testing of
materials; control of concrete proportioning; inspection of batching, mixing, convey-
ing, placing, compacting, and curing; and supervision of the preparation of speci-
mens for laboratory tests. In addition, the inspector must inspect foundations,
formwork, placing of reinforcing steel, and other pertinent features of the general
progress of work; keep records of all the inspected items; and prepare periodic
reports. The importance of thorough inspection to the correctness and adequate qual-
ity of the finished structure cannot be emphasized too strongly.

This brief account of concrete technology represents the merest outline of an impor-
tant subject. Anyone in practice who is actually responsible for any of the phases of
producing and placing concrete must be familiar with the details in much greater depth.

ADMIXTURES

In addition to the main components of concretes, admixtures are often used to improve
concrete performance. There are admixtures to accelerate or retard setting and hardening,
improve workability, increase strength, improve durability, decrease permeability, and
impart other properties (Ref. 2.14). The beneficial effects of particular admixtures are
well established. Chemical admixtures should meet the requirements of ASTM C494,
“Standard Specification for Chemical Admixtures for Concrete.”

Air-entraining agents are widely used. They cause the formation of small dis-
persed air bubbles in the concrete. These improve workability and durability (chiefly
resistance to freezing and thawing) and reduce segregation during placing. They
decrease concrete density because of the increased void ratio and thereby decrease
strength; however, this decrease can be largely offset by a reduction of mixing water
without loss of workability. The chief use of air-entrained concretes is in pavements
and structures exposed to the elements (Ref. 2.7).

Accelerating admixtures are used to reduce setting time and accelerate early
strength development. Calcium chloride is the most widely used accelerator because
of its cost effectiveness, but it should not be used in prestressed concrete and should
be used with caution in reinforced concrete in a moist environment, because of its
tendency to promote corrosion of steel, or in architectural concrete, because of
its tendency to discolor concrete. Nonchloride, noncorrosive accelerating admixtures
are available, the principal one being calcium nitrite (Ref. 2.14).

Set-retarding admixtures are used primarily to offset the accelerating effect of
high ambient temperature and to keep the concrete workable during the entire plac-
ing period. This helps to eliminate cracking due to form deflection and also keeps
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concrete workable long enough that succeeding lifts can be placed without the devel-
opment of “cold” joints.

Certain organic compounds are used to reduce the water requirement of a
concrete mix for a given slump. Such compounds are termed water-reducing admix-
tures or plasticizers. Reduction in water demand may result in either a reduction in
the water-cement ratio for a given slump and cement content or an increase in slump
for the same water-cement ratio and cement content. Plasticizers work by reducing
the interparticle forces that exist between cement grains in the fresh paste, thereby
increasing the paste fluidity. High-range water-reducing admixtures, often termed as
superplasticizers, are used to produce high-strength concrete (see Section 2.12) with
a very low water-cement ratio while maintaining the higher slumps needed for proper
placement and compaction of the concrete. They are also used to produce flowable
concrete at conventional water-cement ratios. Superplasticizers differ from conven-
tional water-reducing admixtures in that they do not act as retarders at high dosages;
therefore, they can be used at higher dosage rates without severely slowing hydration
(Ref. 2.14). The specific effects of water-reducing admixtures vary with different
cements, changes in water-cement ratio, mixing temperature, ambient temperature, and
other job conditions, and trial batches are generally required.

When superplasticizers are combined with viscosity-modifying admixtures, they
can be used to produce self-consolidating concrete (SCC) (Ref. 2.15). Self-consolidating
concrete is highly fluid and does not require vibration to remove entrapped air. The
viscosity-modifying agents allow the concrete to remain cohesive even with a very high
degree of fluidity. As a result, SCC can be used for members with congested reinforce-
ment, such as beam-column joints in earthquake-resistant structures, and is widely used
for precast concrete, especially precast prestressed concrete, a manufactured product
(prestressed concrete is discussed in Chapter 22). The high fluidity of the mix, however,
has been shown to have a negative impact on the bond strength between the concrete
and prestressing steel located in the upper portions of a member, a shortcoming that
should be considered in design (Ref. 2.16) but is not currently addressed in the ACI
Code, and the composition of SCC mixtures may result in moduli of elasticity, creep,
and shrinkage properties that differ from those of more traditional mixtures.

Fly ash and silica fume are pozzolans, highly active silicas, that combine with
calcium hydroxide, the soluble product of cement hydration (Section 2.2), to form
more calcium silicate hydrate, the insoluble product of cement hydration (Refs. 2.17
and 2.18). Pozzolans qualify as supplementary cementitious materials, also referred
to as mineral admixtures, which are used to replace a part of the portland cement
in concrete mixes. Fly ash, which is specified under ASTM C618, “Standard Spec-
ification for Coal Fly Ash and Raw or Calcified Natural Pozzolan for Use in Con-
crete,” is precipitated electrostatically as a by-product of the exhaust fumes of
coal-fired power stations. It is very finely divided and reacts with calcium hydroxide
in the presence of moisture to form a cementitious material. It tends to increase the
strength of concrete at ages over 28 days. Silica fume, which is specified under
ASTM C1240, “Standard Specification for Silica Fume Used in Cementitious Mix-
tures,” is a by-product resulting from the manufacture, in electric-arc furnaces, of
ferro-silicon alloys and silicon metal. It is extremely finely divided and is highly
cementitious when combined with portland cement. In contrast to fly ash, silica fume
contributes mainly to strength gain at early ages, from 3 to 28 days. Both fly ash
and silica fume, particularly the latter, have been important in the production of
high-strength concrete (see Section 2.12).

Slag cement, which is specified under ASTM C989, “Standard Specification for
Slag Cement for Use in Concrete and Mortars,” is another supplementary cementitious
material. It is produced by water quenching and grinding slag from the production
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2.8

of pig iron, the key ingredient used to make steel (Ref. 2.19). Slag cement consists
primarily of calcium silicates, making it very similar to portland cement. As a result
of the similarity, slag cement can be used in higher quantities than fly ash or silica
fume, and the resulting material generally has similar or improved properties to those
exhibited by concrete made with 100 percent portland cement.

When slag cement, silica fume, fly ash, or a combination is used, it is custom-
ary to refer to the water-cementitious material ratio rather than the water-cement
ratio. This typically may be as low as 0.25 for high-strength concrete, and ratios as
low as 0.21 have been used (Refs. 2.20 and 2.21).

Historically, the high durability and high thermal mass of concrete structures
have played a key role in sustainable development, that is, development that min-
imizes both its impact on the environment and the resources used both during and
after construction. In sustainable development, the “cost” of concrete lies primar-
ily in the manufacture of portland cement. The production of a ton of portland
cement requires roughly the energy needed to operate a typical U.S. household for
two weeks and generates approximately 0.9 ton of CO, (a greenhouse gas). The
latter translates to about 250 Ib of CO, for every cubic yard of concrete that is
placed. The energy and greenhouse gases involved in the production of concrete,
however, can be viewed as investments because properly designed reinforced con-
crete structures that take advantage of concrete’s thermal mass provide significant
reductions in the energy and CO, needed for heating and cooling, and concrete’s
inherent durability results in structures with long service lives. Because by-products,
such as the mineral admixtures fly ash and blast furnace slag, involve minimal
energy usage or greenhouse gas production, they have the potential to further
improve the sustainability of concrete construction when used as a partial replace-
ment for portland cement.

PROPERTIES IN COMPRESSION

Short-Term Loading

Performance of a structure under load depends to a large degree on the stress-strain
relationship of the material from which it is made, under the type of stress to which the
material is subjected in the structure. Since concrete is used mostly in compression,
its compressive stress-strain curve is of primary interest. Such a curve is obtained by
appropriate strain measurements in cylinder tests (Section 2.6) or on the compression
side in beams. Figure 2.3 shows a typical set of such curves for normalweight con-
crete, obtained from uniaxial compressive tests performed at normal, moderate testing
speeds on concretes that are 28 days old. Figure 2.4 shows corresponding curves for
lightweight concretes having a density of 100 pcf.

All of the curves have somewhat similar character. They consist of an initial
relatively straight elastic portion in which stress and strain are closely proportional,
then begin to curve to the horizontal, reaching the maximum stress, that is, the com-
pressive strength, at a strain that ranges from about 0.002 to 0.003 for normalweight
concretes, and from about 0.003 to 0.0035 for lightweight concretes (Refs. 2.22 and
2.23), the larger values in each case corresponding to the higher strengths. All curves
show a descending branch after the peak stress is reached; however, the characteristics
of the curves after peak stress are highly dependent upon the method of testing. If
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special procedures are followed in testing to ensure a constant strain rate while cylinder
resistance is decreasing, long stable descending branches can be obtained (Ref. 2.24).
In the absence of special devices, unloading past the point of peak stress may be rapid,
particularly for the higher-strength concretes, which are generally more brittle than
low-strength concrete.

In present practice, the specified compressive strength f, is commonly in the
range from 3000 to 6000 psi for normalweight cast-in-place concrete, and up to about
10,000 psi for precast prestressed concrete members. Lightweight concrete strengths
are typically below these values. High-strength concretes, with f. to 15,000 psi or
more, are used with increasing frequency, particularly for heavily loaded columns in
high-rise concrete buildings and for long-span bridges (mostly prestressed) where a
significant reduction in dead load may be realized by minimizing member cross
section dimensions. (See Section 2.12.)

The modulus of elasticity E.. (in psi units), that is, the slope of the initial straight
portion of the stress-strain curve, is seen to be larger as the strength of the concrete
increases. For concretes in the strength range to about 6000 psi, it can be computed
with reasonable accuracy from the empirical equation found in ACI Code 19.2.2

E. = 33wl4/f! (2.3)

where w, is the unit weight of the hardened concrete in pcf and f; is its strength in psi.
Equation (2.3) was obtained by testing structural concretes with values of w,. from 90
to 155 pcf. For normalweight concrete, with w, = 145 pcf, E. may be taken as

E, = 57,0001/f, (2.4)
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FIGURE 2.5

Effect of age on compressive
strength f. for moist-cured
concrete. (Adapted from

Ref. 2.25.)
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For compressive strengths in the range from 6000 to 12,000 psi, the ACI Code equation
may overestimate E, for both normalweight and lightweight material by as much as
20 percent. According to Refs. 2.22 and 2.23, the following equation is recommended
for normalweight concretes with f, from 3000 to 12,000 psi, and for lightweight
concretes with £ from 3000 to 9000 psi:

2.5)

.\ L5
E. = (40,0007 + 1,000,000)(£)

145

where terms and units are as defined in Eqs. (2.3) and (2.4). When coarse aggregates
with high moduli of elasticity are used, however, Eq. (2.4) may underestimate E..
In cases where E, is a key design criterion, or where it is specified based on tests, as
permitted by ACI Code 19.2.2, it should be measured, rather than estimated, using
Eq. (2.3), (2.4), or (2.5).

Information on concrete strength properties such as those discussed is usually
obtained through tests made 28 days after placing. However, cement continues to
hydrate, and consequently concrete continues to gain strength, long after this age, at
a decreasing rate. Figure 2.5 shows a typical curve of the gain of concrete strength
with age for concrete made using Type I (normal) cement and also Type III (high
early strength) cement, each curve normalized with respect to the 28-day compres-
sive strength. High early strength cements produce more rapid strength gain at early
ages, although the rate of strength gain at later ages is generally less. Concretes made
with Type III cement are often used in precasting plants, and often the strength f,
is specified at 7 days, rather than 28 days.

Note that the shape of the stress-strain curve for various concretes of the same
cylinder strength, and even for the same concrete under various conditions of loading,
varies considerably. An example of this is shown in Fig. 2.6, where different specimens
of the same concrete are loaded at different rates of strain, from one corresponding to
a relatively fast loading (0.001 per min) to one corresponding to an extremely slow
application of load (0.001 per 100 days). It is seen that the descending branch of the
curve, indicative of internal disintegration of the material, is much more pronounced at
fast than at slow rates of loading. It is also seen that the peaks of the curves, that is,
the maximum strengths reached, are somewhat lower at slower rates of strain.

When compressed in one direction, concrete, like other materials, expands in
the direction transverse to that of the applied stress. The ratio of the transverse to
the longitudinal strain is known as Poisson’s ratio and depends somewhat on strength,
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Stress-strain curves at
various strain rates,
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(Adapted from Ref. 2.26.)
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composition, and other factors. At stresses lower than about 0.7f,, Poisson’s ratio for
concrete is between 0.15 and 0.20.

Long-Term Loading

In some engineering materials, such as steel, strength and the stress-strain relationships
are independent of rate and duration of loading, at least within the usual ranges of rate of
stress, temperature, and other variables. In contrast, Fig. 2.6 illustrates the fact that the
influence of time, in this case of rate of loading, on the behavior of concrete under load
is pronounced. The main reason is that concrete creeps under load, while steel does not
exhibit creep under conditions prevailing in buildings, bridges, and similar structures.
Creep is the slow deformation of a material over considerable lengths of time
at constant stress or load. The nature of the creep process is shown schematically in
Fig. 2.7. This particular concrete was loaded after 28 days, resulting in instantaneous
strain &;,. The load was then maintained for 230 days, during which time creep
increased the total deformation to almost 3 times its instantaneous value. If the load
were maintained, the deformation would follow the solid curve. If the load is
removed, as shown by the dashed curve, most of the elastic instantaneous strain &,
is recovered, and some creep recovery is seen to occur. If the concrete is reloaded
at some later date, instantaneous and creep deformations develop again, as shown.
Creep deformations for a given concrete are practically proportional to the
magnitude of the applied stress; at any given stress, and even at the same ratio of
stress to compressive strength, high-strength concretes show less creep than low-
er-strength concretes (Ref. 2.27). As shown in Fig. 2.7, with elapsing time, creep
proceeds at a decreasing rate and ceases after 2 to 5 years at a final value which,
depending on concrete strength and other factors, is 1.2 to 3 times the magnitude of
the instantaneous strain. If, instead of being applied quickly and thereafter kept
constant, the load is increased slowly and gradually, as is the case in many structures
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during and after construction, then instantaneous and creep deformations proceed
simultaneously. The effect is shown in Fig. 2.6; that is, the previously discussed
difference in the shape of the stress-strain curve for various rates of loading is chiefly
the result of the creep deformation of concrete.

For stresses not exceeding about one-half the cylinder strength, creep strains
are approximately proportional to stress. Because initial elastic strains are also pro-
portional to stress in this range, this permits definition of the creep coefficient

gCM

Cow = -
cu 8(}1

(2.6)
where ¢, is the final asymptotic value of the additional creep strain and & is the ini-
tial, instantaneous strain when the load is first applied. Creep may also be expressed in
terms of the specific creep d.,, defined as the additional time-dependent strain per psi
stress. For a given stress, f., €; = f./E. and ¢, = 6.,f.. Thus, based on Eq. (2.6),

Ccu = Ecﬁcu (2 7)

In addition to the stress level, creep depends on the average ambient relative
humidity, being more than twice as large for 50 percent as for 100 percent humidity
(Ref. 2.8). This is so because part of the reduction in volume under sustained load is
caused by outward migration of free pore water, which evaporates into the surrounding
atmosphere. Other factors of importance include the type of cement and aggregate, age
of the concrete when first loaded, and concrete strength (Ref. 2.8). The creep coefficient
for high-strength concrete is much less than that for low-strength concrete. However,
sustained load stresses are apt to be higher so that the creep deformation may be as
great for high-strength concrete, even though the creep coefficient is less.

The values of specific creep and creep coefficient in Table 2.2, quoted from
Ref. 2.28 and extended for high-strength concrete, are for average humidity condi-
tions, for concretes loaded at the age of 7 days.
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TABLE 2.2
Typical creep parameters
Compressive
Strength Specific Creep 6.,

psi MPa 107® per psi 107° per MPa Creep Coefficient C,,

3,000 21 1.00 145 3.1

4,000 28 0.80 116 2.9

6,000 41 0.55 80 24

8,000 55 0.40 58 2.0
10,000 69 0.28 41 1.6
12,000 33 0.22 33 1.4

To illustrate, if the concrete in a column with £, = 4000 psi is subject to a long-
term load that causes sustained stress f. of 1200 psi, then after several years under load,
the final value of the creep strain will be about ¢, = J,,f. = 1200 x 0.80 X 107% =
0.00096. Thus, if the column were 20 ft long, creep would shorten it by &, X £ =
0.00096 x 20 ft x 12 in./ft = 0.23 in. or about % in.

The creep coefficient at any time C,, can be related to the ultimate creep coef-
ficient C,,. In Ref. 2.25, Branson suggests the equation

0.60
t

Cct = 4 L
10 + t().60

(2.8)

where ¢ = time in days after loading.

In many special situations, for example, slender members or frames, or in pre-
stressed construction, the designer must take account of the combined effects of creep
and shrinkage (Section 2.11). In such cases, rather than rely on the sample values of
Table 2.2, more accurate information on creep parameters should be obtained, such as
from Ref. 2.25 or 2.28.

Sustained loads affect not only the deformation but also the strength of con-
crete. The cylinder strength f; is determined at normal rates of test loading (about
35 psi/sec). For concentrically loaded unreinforced concrete prisms and cylinders,
the strength under sustained load is significantly lower than f/, on the order of
75 percent of f, for loads maintained for a year or more (Refs. 2.26, 2.29, and 2.30).
Thus, a member subjected to a sustained overload causing compressive stress of over
75 percent of f, may fail after a period of time, even though the load is not increased.

Fatigue

When concrete is subject to fluctuating rather than sustained loading, its fatigue
strength, as for all other materials, is considerably lower than its static strength. When
plain concrete in compression is stressed cyclically from zero to maximum stress, its
fatigue limit is from 50 to 60 percent of the static compressive strength, for 2,000,000
cycles. For other types of applied stress, such as flexural compressive stress in rein-
forced concrete beams or flexural tension in unreinforced beams or on the tension side
of reinforced beams, the fatigue limit likewise appears to be about 55 percent of the
corresponding static strength. These figures, however, are for general guidance only. It
is known that the fatigue strength of concrete depends not only on its static strength but
also on moisture condition, age, and rate of loading (see Ref. 2.31).
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2.9

PROPERTIES IN TENSION

While concrete is best employed in a manner that uses its favorable compressive
strength, its behavior in tension is also important. The conditions under which cracks
form and propagate on the tension side of reinforced concrete flexural members
depend strongly on both the tensile strength and the fracture properties of the concrete,
the latter dealing with the ease with which a crack progresses once it has formed. Con-
crete tensile stresses also occur as a result of shear, torsion, and other actions, and in
most cases member behavior changes upon cracking. Thus, it is important to be able
to predict, with reasonable accuracy, the tensile strength of concrete and to understand
the factors that control crack propagation.

Tensile Strength

There are considerable experimental difficulties in determining the true tensile strength
of concrete. In direct tension tests, minor misalignments and stress concentrations in
the gripping devices are apt to mar the results. For many years, tensile strength has
been measured in terms of the modulus of rupture f,, the computed flexural tensile
stress at which a test beam of plain concrete (shown in Fig. 2.8) fractures. Because this
nominal stress is computed on the assumption that concrete is an elastic material, and
because this bending stress is localized at the outermost surface, it is apt to be larger
than the strength of concrete in uniform axial tension. It is thus a measure of, but not
identical with, the real axial tensile strength.

The splitting tensile strength test also provides a measure of the tensile strength
of concrete. A concrete cylinder, the same as is used for compressive tests, is inserted
in a compression testing machine in the horizontal position, so that compression is
applied uniformly along two opposite generators, as shown in Fig. 2.9. Pads are
inserted between the compression platens of the machine and the cylinder to equal-
ize and distribute the pressure. When an elastic cylinder so loaded, a nearly uniform

: ) :
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FIGURE 2.8 Schematic of splitting tensile strength test. Cylinder diameter
Schematic of flexure test to determine the modulus of rupture. =d and length = L.
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tensile stress of magnitude 2P/(xdL) exists at right angles to the plane of load
application. Correspondingly, such cylinders, when tested, split into two halves along
that plane, at a stress f,, that can be computed from the above expression. P is the
applied compressive load at failure, and d and L are the diameter and length of
the cylinder, respectively. Because of local stress conditions at the load lines and the
presence of stresses at right angles to the aforementioned tension stresses, the results
of the split-cylinder tests likewise are not identical with (but are believed to be a
good measure of) the true axial tensile strength. The results of all types of tensile
tests show considerably more scatter than those of compression tests.

Tensile strength, however determined, does not correlate well with the com-
pressive strength f;. It appears that for normalweight concrete, the tensile strength
depends primarily on the strength of bond between hardened cement paste and aggre-
gate, whereas for lightweight concretes it depends largely on the tensile strength of
the porous aggregate. The compressive strength, on the other hand, is much less
determined by these particular characteristics.

Better correlation is found between the various measures of tensile strength and
the square root of the compressive strength. Typical ranges of values for direct tensile
strength, split-cylinder strength, and modulus of rupture are summarized in Table 2.3.
The direct tensile strength, for example, ranges from 3\/f7 to 5\/fj’ for normalweight

concrete and from 2\/]? to 3\/]72 for all-lightweight concrete, while the modulus
of rupture ranges from 8\/}3 to 12\/ﬁ for normalweight concrete and from 6\/E to

8\/)76/ for all-lightweight concrete. In these expressions, f, is expressed in psi units, and
the resulting tensile strengths are obtained in psi. The relationship between the modulus
of rupture f, and 84/f, and 124/f! is illustrated in Fig. 2.10.

These approximate expressions show that tensile and compressive strengths are
by no means proportional and that any increase in compressive strength, such as that
achieved by lowering the water-cement ratio, is accompanied by a much smaller
percentage increase in tensile strength.

According to ACI Code 19.2.4, the modulus of rupture f, is equal to 7.57»\/)76/ ,
where A can be based on either the equilibrium density of the concrete w, (density
after drying at 50 percent relative humidity of 73.4 + 3.5 °F) or the composition of
the aggregate. When based on w,, A equals 1.00 for w, > 135 Ib/ft® and 0.75 for
w, < 100 Ib/ft. A varies linearly between 1.00 and 0,75 for w, between 135 and
100 Ib/ft’. When based on aggregate composition, A equals 1.00 for normalweight
concrete, 0.85 for “sand-lightweight” concrete, and 0.75 for “all-lightweight” con-
crete, giving values of 7.5 \/E , 6.44/f!, and 5.6/f,, respectively, for the three con-
crete types. In this case, values of A between 0.75 and 1.00 are possible depending on
the particular blend of lightweight and normalweight aggregates used in the concrete.

Based on the test results shown in Fig. 2.10, f, = 7.5\/]? is a safe lower bound for
normalweight concretes with compressive strengths above 2000 psi.

TABLE 2.3
Approximate range of tensile strengths of concrete
Normalweight Lightweight
Concrete, psi Concrete, psi
Direct tensile strength f;’ 3 to 5\/]? 2 to 3\/E
Split-cylinder strength f,, 6 to 84/f) 4 to 6\/f
Modulus of rupture f, 8 to 12\/f 6 to 8\/f
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Tensile Fracture

The failure of concrete in tension involves both the formation and the propagation
of cracks. The field of fracture mechanics deals with the latter. While reinforced
concrete structures have been successfully designed and built for over 150 years
without the use of fracture mechanics, the brittle response of high-strength concretes
(Section 2.12), in tension as well as compression, increases the importance of the
fracture properties of the material as distinct from tensile strength. Research dealing
with the shear strength of high-strength concrete beams and the bond between rein-
forcing steel and high-strength concrete indicates relatively low increases in these
structural properties with increases in concrete compressive strength (Refs. 2.33 and
2.34). While shear and bond strength are associated with the \/E for normal-strength
concrete, tests of high-strength concrete indicate that increases in shear and bond
strengths are well below values predicted using \/E , indicating that concrete tensile
strength alone is not the governing factor. An explanation for this behavior is pro-
vided by research at the University of Kansas and elsewhere (Refs. 2.35 and 2.36)
that demonstrates that the fracture energy, the energy required to fully open a crack
(that is, after the crack has started to grow), is largely independent of compressive
strength, water-cement ratio, and age, but is a function of the coarse aggregate. These
points are illustrated in Fig. 2.11 for concretes with two types of coarse aggregate
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and compressive strengths between 3,000 and 15,000 psi. Design expressions reflect-
ing this research are not yet available. The behavior is, however, recognized in the
ACI Code by limitations on the maximum value of \/ﬁ that may be used to calculate
shear and bond strength, as will be discussed in Chapters 5 and 6.

STRENGTH UNDER COMBINED STRESS

In many structural situations, concrete is subjected simultaneously to various stresses
acting in various directions. For instance, in beams much of the concrete is subject
simultaneously to compression and shear stresses, and in slabs and footings to com-
pression in two perpendicular directions plus shear. By methods well known from the
study of engineering mechanics, any state of combined stress, no matter how com-
plex, can be reduced to three principal stresses acting at right angles to one another on
an appropriately oriented elementary cube in the material. Any or all of the principal
stresses can be either tension or compression. If any one of them is zero, a state of biax-
ial stress is said to exist; if two of them are zero, the state of stress is uniaxial, either
simple compression or simple tension. In most cases, only the uniaxial strength proper-
ties of a material are known from simple tests, such as the cylinder strength £, and the
tensile strength f;’. For predicting the strengths of structures in which concrete is subject
to biaxial or triaxial stress, it would be desirable to be able to calculate the strength of
concrete in such states of stress, knowing from tests only either f; or f; and f;'.

In spite of extensive and continuing research, no general theory of the strength
of concrete under combined stress has yet emerged. Modifications of various strength
theories, such as maximum stress, maximum strain, the Mohr-Coulomb, and the
octahedral shear stress theories, all of which are discussed in structural mechanics
texts, have been adapted with varying partial success to concrete. At present, none
of these theories has been generally accepted, and many have obvious internal con-
tradictions. The main difficulty in developing an adequate general strength theory
lies in the highly nonhomogeneous nature of concrete, and in the degree to which
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its behavior at high stresses and at fracture is influenced by microcracking and other
discontinuity phenomena (Refs. 2.8 and 2.37).

The strength of concrete, however, has been well established by tests, at least for
the biaxial stress state (Refs. 2.38 and 2.39). Results may be presented in the form of
an interaction diagram such as Fig. 2.12, which shows the strength in direction 1 as a
function of the stress applied in direction 2. All stresses are normalized in terms of
the uniaxial compressive strength f;. It is seen that in the quadrant representing biax-
ial compression a strength increase as great as about 20 percent over the uniaxial
compressive strength is attained, the amount of increase depending upon the ratio of
/> to fi. In the biaxial tension quadrant, the strength in direction 1 is almost independ-
ent of stress in direction 2. When tension in direction 2 is combined with compression
in direction 1, the compressive strength is reduced almost linearly, and vice versa. For
example, lateral compression of about one-half the uniaxial compressive strength will
reduce the tensile strength by almost one-half compared with its uniaxial value. This
fact is of great importance in predicting diagonal tension cracking in deep beams or
shear walls, for example.

Experimental investigations into the triaxial strength of concrete have been
few, due mainly to the practical difficulty of applying load in three directions simul-
taneously without introducing significant restraint from the loading equipment
(Ref. 2.40). From information now available, the following conclusions can be drawn
relative to the triaxial strength of concrete: (1) in a state of equal triaxial compres-
sion, concrete strength may be an order of magnitude larger than the uniaxial com-
pressive strength; (2) for equal biaxial compression combined with a smaller value
of compression in the third direction, a strength increase greater than 20 percent can
be expected; and (3) for stress states including compression combined with tension
in at least one other direction, the intermediate principal stress is of little conse-
quence, and the compressive strength can be predicted safely based on Fig. 2.12.
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In fact, the strength of concrete under combined stress cannot yet be calculated
rationally, and, equally important, in many situations in concrete structures it is
nearly impossible to calculate all of the acting stresses and their directions; these are
two of the main reasons for continued reliance on tests. Because of this, the design
of reinforced concrete structures continues to be based more on extensive experi-
mental information than on consistent analytical theory, particularly in the many
situations where combined stresses occur.

SHRINKAGE AND TEMPERATURE EFFECTS

The deformations discussed in Section 2.8 were induced by stresses caused by exter-
nal loads. Influences of a different nature cause concrete, even when free of any exter-
nal loading, to undergo deformations and volume changes. The most important of
these are shrinkage and the effects of temperature variations.

Shrinkage

As discussed in Sections 2.2 and 2.4, any workable concrete mix contains more water
than is needed for hydration. If the concrete is exposed to air, the larger part of this
free water evaporates in time, the rate and completeness of drying depending on ambi-
ent temperature and humidity conditions. As the concrete dries, it shrinks in volume,
due initially to the capillary tension that develops in the water remaining in the con-
crete (Ref. 2.7). Conversely, if dry concrete is immersed in water, it expands, regain-
ing much of the volume loss from prior shrinkage. Shrinkage, which continues at a
decreasing rate for years, depending on the configuration of the member, is a detri-
mental property of concrete in several respects. When not adequately controlled, it
will cause unsightly and often deleterious cracks, as in slabs and walls. In structures
that are statically indeterminate (and most concrete structures are), it can cause large
and harmful stresses. In prestressed concrete it leads to partial loss of initial prestress.
For these reasons it is essential that shrinkage be minimized and controlled.

As is clear from the nature of the process, a key factor in determining the
amount of final shrinkage is the unit water content of the fresh concrete. This is
illustrated in Fig. 2.13, which shows the amount of shrinkage for varying amounts
of mixing water. The same aggregates were used for all tests, but in addition to and
independently of the water content, the amount of cement was also varied from 376
to 1034 1b/yd® of concrete. This very large variation of cement content causes a 20
to 30 percent variation in shrinkage strain for water contents between 250 to 350 Ib/yd®,
the range used for most structural concretes. Increasing the cement content increases
the cement paste constituent of the concrete, where the shrinkage actually takes
place, while reducing the aggregate content. Since most aggregates do not contribute
to shrinkage, an increase in aggregate content can significantly decrease shrinkage.
This is shown in Fig. 2.14, which compares the shrinkage of concretes with various
aggregate contents with the shrinkage obtained for neat cement paste (cement and
water alone). For example, increasing the aggregate content from 71 to 74 percent
(at the same water-cement ratio) results in a 20 percent reduction in shrinkage (Ref.
2.28). Increased aggregate content may be obtained through the use of (1) a larger
maximum size coarse aggregate (which also reduces the water content required for
a given workability), (2) a concrete with lower workability, and (3) chemical admix-
tures to increase workability at lower water contents. It is evident that an effective
means of reducing shrinkage involves both a reduction in water content and an
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FIGURE 2.13 1.4
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increase in aggregate content. In addition, prolonged and careful curing is beneficial
for shrinkage control.

Values of final shrinkage for ordinary concretes are generally on the order of
400 x 107 to 800 x 107°, depending on the initial water content, ambient temper-
ature and humidity conditions, and the nature of the aggregate. Highly absorptive
aggregates with low moduli of elasticity, such as some sandstones and slates, result
in shrinkage values 2 or more times those obtained with less absorptive materials,
such as granites and some limestones. Some lightweight aggregates, in view of their
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great porosity, can result in much larger shrinkage values than ordinary concretes.
On the other hand, pre-wetted fine lightweight aggregate can be used to provide
internal curing and reduce early-age shrinkage.

For some purposes, such as predicting the time-dependent loss of force in pre-
stressed concrete beams, it is important to estimate the amount of shrinkage as a func-
tion of time. Long-term studies (Ref. 2.25) show that, for moist-cured concrete at any
time ¢ after the initial 7 days, shrinkage can be predicted satisfactorily by the equation

S o 2.9)
where g, is the unit shrinkage strain at time ¢ in days and g, , is the ultimate value
after a long period of time. Equation (2.9) pertains to “standard” conditions, defined in
Ref. 2.25 to exist for humidity not in excess of 40 percent and for an average thickness
of member of 6 in., and it applies both for normalweight and lightweight concretes.
Modification factors are applied for nonstandard conditions, and separate equations
are given for steam-cured members. Other, more detailed models for shrinkage are
available that incorporate the ratio of volume to surface are for the member and envi-
ronment factors, such as relative humidity (Ref. 2.42).

For structures in which a reduction in cracking is of particular importance, such
as bridge decks, pavement slabs, and liquid storage tanks, expansive cement concrete
or concretes containing shrinkage compensating admixtures or shrinkage reducing
admixtures may be appropriate. Expansive cement concrete is made with shrink-
age-compensating cement, which is constituted and proportioned so that the concrete
will increase in volume after setting and during hardening. When the concrete is
restrained by reinforcement or other means, the tendency to expand will result in
compression. With subsequent drying, the shrinkage so produced, instead of causing
a tension stress in the concrete that would result in cracking, merely reduces or
relieves the expansive strains caused by the initial expansion (Ref. 2.43). Expansive
cement is produced by adding a source of reactive aluminate to ordinary portland
cement; approximately 90 percent of shrinkage-compensating cement is made up of
the constituents of conventional portland cement. Of the three main types of expan-
sive cements produced, only type K is commercially available in the United States;
it is about 20 percent more expensive than ordinary portland cement (Ref. 2.44).
Requirements for expansive cement are given in ASTM C845, “Standard Specifica-
tion for Expansive Hydraulic Cement.” Shrinkage-compensating admixtures, consist-
ing of calcium oxide or magnesium oxide, also provide early expansion, and they
are converted, respectively, to calcium hydroxide or magnesium hydroxide. Concretes
containing shrinkage-compensating admixtures behave much like concrete containing
an expansive cement. Shrinkage-reducing admixtures do not cause appreciable
expansion but reduce shrinkage by reducing the surface tension of water and, thus,
capillary tension. The usual admixtures can be used in concretes containing expan-
sive or shrinkage-reducing agents, but trial mixes are necessary because some admix-
tures, particularly air-entraining agents, are not compatible with all expansive or
shrinkage-reducing agents.

exh,t =

Effect of Temperature Change

Like most other materials, concrete expands with increasing temperature and con-
tracts with decreasing temperature. The effects of such volume changes are similar
to those caused by shrinkage; that is, temperature contraction can lead to objec-
tionable cracking, particularly when superimposed on shrinkage. In indeterminate
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structures, deformations due to temperature changes can cause large and occasion-
ally harmful stresses.

The coefficient of thermal expansion and contraction varies somewhat, depend-
ing upon the type of aggregate and richness of the mix. It is generally within the
range of 4 x 107 to 7 x 107° per °F. A value of 5.5 x 107® per °F is generally
accepted as satisfactory for calculating stresses and deformations caused by temper-
ature changes (Ref. 2.7).

HIGH-STRENGTH CONCRETE

There are a number of applications in which high-strength concrete will provide
improved structural performance. Although the exact definition is arbitrary, the term
generally refers to concrete having uniaxial compressive strength in the range of about
8000 to 20,000 psi or higher. Such concretes can be made using carefully selected but
widely available cements, sands, and coarse aggregates; certain admixtures including
high-range water-reducing superplasticizers, fly ash, and silica fume; and very careful
quality control during production (Refs. 2.45 and 2.46). In addition to higher strength
in compression, most other engineering properties are improved, leading to use of the
alternative term high-performance concrete.

The most common application of high-strength concretes has been in the col-
umns of tall concrete buildings, where normal concrete would result in unacceptably
large cross sections, with loss of valuable floor space. It has been shown that the
use of the more expensive high-strength concrete mixes in columns not only saves
floor area but also is more economical than increasing the amount of steel reinforce-
ment. Concrete of up to 12,000 psi was specified for the lower-story columns of 311
South Wacker Drive in Chicago (see Fig. 2.15), a pioneering structure with a total
height of 946 ft. Once holding the height record, it has been superseded by taller
buildings; the present record is held by the tallest building and the tallest structure
of any type in the world, the Burj Khalifa in Dubai, United Arab Emirates, shown
in Fig. 19.2, which has a total height of 2717 ft.

For bridges, too, smaller cross sections bring significant advantages, and the
resulting reduction in dead load permits longer spans. The higher elastic modulus
and lower creep coefficient result in reduced initial and long-term deflections, and
in the case of prestressed concrete bridges, initial and time-dependent losses of pre-
stress force are less. Other applications of high-strength concrete include offshore
oil structures, parking garages, bridge deck overlays, dam spillways, warehouses, and
heavy industrial slabs.

An essential requirement for high-strength concrete is a low water—cementitious
material ratio. For normal concretes, this usually falls in the range from about 0.40
to 0.60 by weight, but for high-strength mixes it may be 0.25 or even lower. To
permit proper placement of what would otherwise be a zero slump mix, high-range
water-reducing admixtures, or superplasticizers, are essential and may increase
slumps to as much as 6 or 8 in. and even higher when viscosity-modifying admix-
tures are used to produce self-consolidating concrete. Other additives include fly ash
and, most notably, silica fume (see Section 2.7).

Much research has been devoted to establishing the fundamental and
engineering properties of high-strength concretes, as well as the engineering char-
acteristics of structural members made with the material (Refs. 2.29, 2.30, and
2.46 to 2.50). A large body of information is available, permitting the engineer
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FIGURE 2.15 FIGURE 2.16

311 South Wacker Drive, Chicago, which is among the High-strength concrete test cylinder after uniaxial loading to
world’s tallest buildings. High-strength concrete with f, = failure; note the typically smooth fracture surface, with little
12,000 psi was used in the lower stories. (Courtesy of Portland aggregate interlock. (Photograph by Arthur H. Nilson)

Cement Association)

Telegram: @uni_k

to use high-strength concrete with confidence when its advantages justify the
higher cost. The compressive strength curves in Figs. 2.3 and 2.4 illustrate impor-
tant differences compared with normal concrete, including a higher elastic mod-
ulus and an extended range of linear elastic response. Creep coefficients are
reduced, as indicated in Table 2.2. Disadvantages include brittle behavior in com-
pression (see Fig. 2.16), somewhat reduced ultimate strain capacity, and an
increased tendency to crack when drying shrinkage is restrained (Ref. 2.51), the
latter resulting from the lower creep exhibited by the material. Strength under
sustained load is a higher fraction of standard cylinder strength (Refs. 2.20 and
2.30), and high-strength concrete exhibits improved durability and abrasion resist-
ance (Refs. 2.52 and 2.53). As broader experience has been gained in practical
applications, and as design codes have been gradually updated to recognize the
special properties of higher-strength concrete, it is now recognized as the material
of choice where minimum member sizes are desired for compressive loading and
where maximum member stiffness is needed.
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REINFORCING STEELS FOR CONCRETE

The useful strength of ordinary reinforcing steels in tension as well as compres-
sion, that is, the yield strength, is about 15 times the compressive strength of
common structural concrete and well over 100 times its tensile strength. On the
other hand, steel is a high-cost material compared with concrete. It follows that
the two materials are best used in combination if the concrete is made to resist the
compressive stresses and the steel the tensile stresses. Thus, in reinforced con-
crete beams, the concrete resists the compressive force, longitudinal steel rein-
forcing bars are located close to the tension face to resist the tension force, and
usually additional steel bars are so placed to resist the inclined tension stresses
that are caused by the shear force in the beams. Reinforcement, however, is also
used for resisting compressive forces primarily where it is desired to reduce the
cross-sectional dimensions of compression members, as in the lower-floor col-
umns of multistory buildings. Even if no such necessity exists, a minimum amount
of reinforcement is placed in all compression members to safeguard them against
the effects of small accidental bending moments that might crack and even fail an
unreinforced member.

For most effective reinforcing action, it is essential that steel and concrete
deform together, that is, that there be a sufficiently strong bond between the two
materials to ensure that no relative movements of the steel bars and the surrounding
concrete occur. This bond is provided primarily by the natural roughness of the mill
scale on the surface of hot-rolled reinforcing bars and by the closely spaced rib-
shaped surface deformations that provide a high degree of interlock between the bars
and the surrounding concrete.

Additional features that make for the satisfactory joint performance of steel and
concrete are the following:

1. The thermal expansion coefficients of the two materials, about 6.5 x 107° per
°F for steel vs. an average of 5.5 x 107® per °F for concrete, are sufficiently
close to forestall cracking and other undesirable effects of differential thermal
deformations.

2. While the corrosion resistance of bare steel is poor, the concrete that surrounds
the steel reinforcement provides excellent corrosion protection, minimizing cor-
rosion problems and corresponding maintenance costs.

3. The fire resistance of unprotected steel is impaired by its high thermal conduc-
tivity and by the fact that its strength decreases sizably at high temperatures.
Conversely, the thermal conductivity of concrete is relatively low. Thus, damage
caused by even prolonged fire exposure, if any, is generally limited to the outer
layer of concrete, and a moderate amount of concrete cover provides sufficient
thermal insulation for the embedded reinforcement.

Steel is used in two different ways in concrete structures: as reinforcing steel
and as prestressing steel. Reinforcing steel is placed in the forms prior to casting of
the concrete. Stresses in the steel, as in the hardened concrete, are caused only by
the loads on the structure, except for possible parasitic stresses from shrinkage or
similar causes. In contrast, in prestressed concrete structures, large tension forces are
applied to the reinforcement prior to letting it act jointly with the concrete in resist-
ing external loads. The steels for these two uses are very different and will be dis-
cussed separately.
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REINFORCING BARS

The most common type of reinforcing steel (as distinct from prestressing steel) is in
the form of round bars, often called rebars, available in a large range of diameters
from about % to 1% in. for ordinary applications and in two heavy bar sizes of about
1% and 2% in. These bars are furnished with surface deformations for the purpose of
increasing resistance to slip between steel and concrete. Minimum requirements for
these deformations (spacing, projection, etc.) have been developed in experimental
research. Different bar producers use different patterns, all of which satisfy these
requirements. Figure 2.17 shows a variety of current types of deformations.

For many years, bar sizes have been designated by numbers, Nos. 3 to 11 being
commonly used and Nos. 14 and 18 representing the two special large-sized bars
previously mentioned. Designation by number, instead of by diameter, was intro-
duced because the surface deformations make it impossible to define a single easily
measured value of the diameter. The numbers are so arranged that the unit in the
number designation corresponds closely to the number of % in. of diameter size. A
No. 5 bar, for example, has a nominal diameter of % in. Bar sizes are rolled into the
surface of the bars for easy identification.

In addition to the usual numbering, bars can also be designated in accordance
with the International System of Units (SI), with the size being identified using the
nominal diameter in millimeters. Thus, Nos. 3 to 11 bars can be marked with Nos. 10
to 36, and Nos. 14 and 18 bars with Nos. 43 and 57. Both systems are used in the
ASTM standards, but the customary system is used in the ACI Code. To recognize
the dual system of identifying and marking the bars, the customary bar designation
system is retained throughout this text, followed by the SI bar designations in paren-
theses, such as No. 6 (No. 19). Table A.1 of Appendix A gives areas and weights
of standard bars. Tables A.2 and A.3 give similar information for groups of bars.
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Grades and Strengths

In reinforced concrete, a long-term trend is evident toward the use of higher-strength
materials, both steel and concrete. Reinforcing bars with 40 ksi yield strength, once
standard, have largely been replaced by bars with 60 ksi yield strength, both because
they are more economical and because their use tends to reduce steel congestion in the
forms. Bars with yield strengths of 80 and 100 ksi are often used in columns and walls
and as confining reinforcement. Bars with a yield strength of 120 ksi are also available
but not yet recognized by the ACI Code. Table 2.4 lists all presently available rein-
forcing steels, their grade designations, the ASTM specifications that define their
properties (including deformations) in detail, and their two main minimum specified
strength values. Grade 40 bars are no longer available in sizes larger than No. 6 (No.
19) and Grade 50 bars are available in sizes up to No. 8 (No. 25).F

The conversion to SI units described above also applies to the strength grades.
Thus, Grade 40 is also designated as Grade 280 (for a yield strength of 280 MPa),
Grades 60 and 80 are designated Grades 420 and 550, and Grades 100 and 120 are
designated Grades 690 and 830. The values 280, 420, 550, 690, and 830 result in
minimum yield strengths of 40.6, 60.9, 79.8, 100.1, and 120.4 ksi. Grades based on
inch-pound units are used in this text.

Most reinforced concrete in the U.S. is constructed using ASTM A615 carbon-
steel bars. ASTM A706 low-alloy steel bars are usually specified, however, for
structures designed for seismic loading because they are more ductile than A615
bars. ASTM A1035 is often used when high-strength steel is needed.

Welding of reinforcing bars in making splices, or for convenience in fabricating
reinforcing cages for placement in the forms, may result in metallurgical changes
that reduce both strength and ductility, and special restrictions must be placed both
on the type of steel used and the welding procedures. The provisions of ASTM A706
relate to welding, as well as ductility.

The ACI Code permits reinforcing steels up to f, = 100 ksi for most applica-
tions. Higher-strength steels usually yield gradually but have no yield plateau. In this
situation yield strength is based on the stress determined by the 0.2% offset method,
explained in the description of stress-strain curves that follows (see Section 2.13c).
This alternate method of defining yield strength allows current design methods,
which were developed for sharp-yielding steels with a yield plateau, to be used with
higher-strength steels. Steel in this higher-strength range is often used in cases where
high deflections are not of major concern, such as in lower-story columns of high-
rise buildings.

Bar Markings

To allow bars of various grades and sizes to be easily distinguished, which is neces-
sary to avoid accidental use of lower-strength or smaller-size bars than called for in
the design, all deformed bars are furnished with rolled-in markings. These identify the
producing mill (usually with an initial), the bar size (Nos. 3 to 18 under the inch-
pound system and Nos. 10 to 57 under the SI), the type of steel (S for carbon steel,
W for low-alloy steel, a rail sign for rail steel, A for axle steel, and CL, CM, or CS for
the various types of low-carbon chromium steel, corresponding, respectively, to
ASTM Specifications A615, A706, A996 for both rail and axle steel, and A1035), and
an additional marking to identify higher-strength steels. Grade 60 (420) bars have

" In practice, very little Grade 50 reinforcement is produced.
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TABLE 2.4

Summary of minimum ASTM strength requirements

MATERIALS

ASTM Minimum Yield Minimum Tensile
Product Specification Designation Strength, psi (MPa) Strength, psi (MPa)
Reinforcing bars A615 Grade 40 40,000 (280) 60,000 (420)
Grade 60 60,000 (420) 90,000 (620)
Grade 80 80,000 (550) 105,000 (725)
Grade 100 100,000 (690) 115,000 (790)
A706 Grade 60 60,000 (420) 80,000 (550)"
[78,000 (540)
maximum]
Grade 80 80,000 (550) 100,000 (690)“
[98,000 (540)
maximum]
A996 Grade 40 40,000 (280) 60,000 (420)
Grade 50 50,000 (350) 80,000 (550)
Grade 60 60,000 (420) 90,000 (620)
A1035 Grade 100 100,000 (690) 150,000 (1030)
Grade 120 120,000 (830) 150,000 (1030)
Deformed bar mats A184 Same as Grades 40 and 60 A615 and A706 reinforcing bars
Zinc-coated bars A767, A1094 Same as reinforcing bars
Epoxy-coated bars izgg’s A934, Same as reinforcing bars
Stainless steel bars A955 Available in Grades 60, 75, and 80
Wire A1064 Grades 70 to 80° 70,000 (485) 80,000 (550)
Plain 80,000 (550) 90,000 (620)
Deformed Grades 75 to 80° 75,000 (515) 85,000 (585)
80,000 (550) 90,000 (620)
Welded wire reinforcement A1064
Plain Grades 65 to 80° 65,000 (450) 75,000 (515)
W1.2 and larger 80,000 (550) 90,000 (620)
Smaller than W1.2 Grade 56 56,000 (385) 70,000 (485)
Deformed Grades 70 to 80° 70,000 (485) 80,000 (550)
80,000 (550) 90,000 (620)
Prestressed reinforcement A416
Low-relaxation, seven- Grade 250 225,000 (1555) 250,000 (1725)
wire strand Grade 270 243,000 (1675) 270,000 (1860)
Wire A421 BA wire 199,750 (1377) or 235,000 (1620) or
204,000 (1407)° 240,000 (1620)°
WA wire 199,750 (1377) to 235,000 (1620) to
212,500 (1465)° 250,000 (1725)°
Bars AT722 Type I (plain) 127,500 (800) 150,000 (1035)
Type II (deformed) 120,000 (825) 150,000 (1035)
Compacted strand AT779 Grades 245 to 270 214,800 (1481) to 247,000 (1700) to

(normal-relaxation)

Grades 245 to 270
(low-relaxation)

235,000 (1620)°
222,300 (1533) to
243,000 (1675)°

270,000 (1860)°
247,000 (1700) to
270,000 (1860)°

“But not less than 1.25 times the actual yield strength.
b Intermediate grades above 70 increase by 2.5 (72.5, 75, etc.).
“Minimum strengths depend on wire or strand size.
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FIGURE 2.18

Marking system for reinforcing bars meeting ASTM Specifications A615, A706, and A996. (Adapted from Ref. 2.54.)

either one longitudinal line or the number 60 (4); Grade 80 (550) bars have either three
longitudinal lines or the number 80 (6); Grade 100 (690) bars have either three or four
longitudinal lines or the number 100 (6 or 7 in SI)*; and Grade 120 (830) bars have
either four longitudinal lines or the number 120 (8). The identification marks are
shown in Fig. 2.18 for Grade 60 (420) bars.

Stress-Strain Curves

The two chief numerical characteristics that determine the character of bar reinforce-
ment are its yield point (generally identical in tension and compression) and its modu-
lus of elasticity E,. The latter is practically the same for all reinforcing steels (but not
for prestressing steels) and is taken as E; = 29,000,000 psi.

In addition, however, the shape of the stress-strain curve, and particularly of
its initial portion, has significant influence on the performance of reinforced concrete
members. Typical stress-strain curves for U.S. reinforcing steels are shown in
Fig. 2.19. The complete stress-strain curves are shown in the left part of the figure;
the right part gives the initial portions of the curves magnified 10 times.

Low-carbon steels, typified by the Grade 40 curve, show an elastic portion
followed by a yield plateau, that is, a horizontal portion of the curve where strain
continues to increase at constant stress. For such steels, the yield point is that stress
at which the yield plateau establishes itself. With further strains, the stress begins to
increase again, though at a slower rate, a process that is known as strain-hardening.
The curve flattens out when the tensile strength is reached; it then turns down until
fracture occurs. Higher-strength carbon steels, for example, those with 60 ksi yield

* Grade 100 (690) A615 bars use four longitudinal lines and, in SI, the number 7, while Grade 100 A1035 bars use three longitudinal lines and,
in SI, the number 6 to designate grade. They can, however, be distinguished by the marking indicating the type of steel.
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FIGURE 2.19

Typical stress-strain curves for reinforcing bars.
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stress or higher, either have a yield plateau of much shorter length or enter strain-
hardening immediately without any continued yielding at constant stress. In the latter
case, the yield stress f; is determined using the 0.2 percent offset method. Using this
method, a line with a strain intercept of 0.2 percent (or 0.002) is drawn parallel to
the initial elastic portion of the stress-strain curve. The yield stress f, is defined by
the point at which this line intercepts the stress-strain curve, as shown in Fig. 2.19b.
Low-alloy, high-strength steels rarely show any yield plateau and usually enter
strain-hardening immediately upon beginning to yield.

Fatigue Strength

In highway bridges and some other situations, both steel and concrete are subject to
large numbers of stress fluctuations. Under such conditions, steel, just like concrete
(Section 2.8c), is subject to fatigue. In metal fatigue, one or more microscopic cracks
form after cyclic stress has been applied a significant number of times. These fatigue
cracks occur at points of stress concentrations or other discontinuities and gradually
increase with increasing numbers of stress fluctuations. This reduces the remain-
ing uncracked cross-sectional area of the bar until it becomes too small to resist the
applied force. At this point the bar fails in a sudden, brittle manner.

For reinforcing bars it has been found (Refs. 2.31 and 2.55) that the fatigue
strength, that is, the stress at which a given stress fluctuation between f,,, and fii,
can be applied 2 million times or more without causing failure, is practically inde-
pendent of the grade of steel. It has also been found that the stress range, that is,
the algebraic difference between maximum and minimum stress, f; = finax — fmin» that
can be sustained without fatigue failure depends on f,;,. Further, in deformed bars,
the degree of stress concentration at the location where the deformation joins the
main cylindrical body of the bar tends to reduce the safe stress range. This stress
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concentration depends on the ratio r/h, where r is the base radius of the deformation
and £ its height. The radius r is the transition radius from the surface of the bar to
that of the deformation; it is a fairly uncertain quantity that changes with roll wear
as bars are being rolled.

On the basis of extensive tests (Ref. 2.55), the following expression has been
developed for design:

fo=21 — 033 + 8 i (2.10)

where  f, = safe stress range, ksi
finin = Minimum stress; positive if tension, negative if compression
r/h = ratio of base radius to height of rolled-on deformation (in the common
situation where r/h is not known, a value of 0.3 may be used)

Where bars are exposed to fatigue regimes, stress concentrations such as welds or
sharp bends should be avoided since they may impair fatigue strength.

Coated Reinforcing Bars

Galvanized or epoxy-coated reinforcing bars are often specified to minimize corrosion
of reinforcement and consequent spalling of concrete under severe environmental con-
ditions, such as in bridge decks or parking garages subject to deicing chemicals, port
and marine structures, and wastewater treatment plants.

Epoxy-coated bars, presently more widely used than galvanized bars, are gov-
erned by ASTM A775, “Standard Specification for Epoxy-Coated Reinforcing Steel
Bars,” ASTM A934, “Standard Specification for Epoxy-Coated Prefabricated Steel
Reinforcing Bars,” and ASTM A1055, “Standard Specification for Zinc-Epoxy Dual-
Coated Steel Reinforcing Bars,” which includes requirements for the coating mate-
rial, surface preparation prior to coating, method of application, and limits on
coating thickness. Under ASTM A775, the coating is applied to straight bars in a
production-line operation, and the bars are cut and bent after coating. Under ASTM
A934, bars are bent to final shape prior to coating. ASTM A1055 covers bars that
are sprayed with zinc followed by a conventional epoxy coating. Cut ends and small
spots of damaged coating are suitably repaired after fabrication. Extra care is required
in the field to ensure that the coating is not damaged during shipment and placing
and that repairs are made if necessary.

ASTM A767, “Standard Specification for Zinc-Coated (Galvanized) Steel Bars
for Concrete Reinforcement,” and ASTM A1094, “Standard Specification for Con-
tinuous Hot-Dip Galvanized Steel Bars for Concrete Reinforcement,” include require-
ments for the zinc-coating material, the galvanizing process, the class or weight of
coating, finish and adherence of the coating, and the method of fabrication. Supple-
mentary requirements pertain to coating of sheared ends and repair of damaged
coating when bars are fabricated after galvanizing.

WELDED WIRE REINFORCEMENT

Apart from single reinforcing bars, welded wire reinforcement (also described as
welded wire fabric) is often used for reinforcing slabs and other surfaces, such as
shells, and for shear reinforcement in thin beam webs, particularly in prestressed
beams. Welded wire reinforcement consists of sets of longitudinal and transverse
cold-drawn steel wires at right angles to each other and welded together at all points of



www.konkur.in

Telegram: @uni_k

2.16

MATERIALS 61

intersection. The size and spacing of wires may be the same in both directions or may
be different, depending on the requirements of the design.

The notation used to describe the type and size of welded wire fabric involves
a letter-number combination. ASTM uses the letter “W” to designate plain wire and
letter “D” to describe deformed wire. In most cases, deformed wire is produced by
indenting the wire during the cold-drawing process. The number following the letter
gives the cross-sectional area of the wire in hundredths of a square inch. For exam-
ple, a W5.0 wire is a smooth wire with a cross-sectional area of 0.05 in>. A W5.5
wire has a cross-sectional area of 0.055 in®. D6.0 indicates a deformed wire with a
cross-sectional area of 0.06 in’. Welded wire fabric having a designation
4 x4 — W5.0 x W5.0 has wire spacings 4 in. in each way with smooth wire of
cross-sectional area 0.05 in in each direction. Sizes and spacings for common types
of welded wire fabric and cross-sectional areas of steel per foot, as well as weight
per 100 ft*, are shown in Table A.12 of Appendix A.

ASTM Specification A1064 covers both smooth and deformed welded wire
reinforcement, as shown in Table 2.4. Deformed wire larger than D31 must be treated
as plain wire because these larger size wires exhibit reduced bond strength compared
to deformed bars.

PRESTRESSING STEELS

Prestressing steel is used in three forms: round wires, strands, and alloy steel bars.
Prestressing wire ranges in diameter from 0.192 to 0.276 in. It is made by cold-
drawing high-carbon steel after which the wire is stress-relieved by heat treatment to
produce the prescribed mechanical properties. Wires are normally bundled in groups
of up to about 50 individual wires to produce prestressing tendons of the required
strength. Strands, more common than wire in U.S. practice, are fabricated with six
wires wound around a seventh of slightly larger diameter. The pitch of the spiral wind-
ing is between 12 and 16 times the nominal diameter of the strand. Strand diame-
ters range from 0.250 to 0.700 in. Alloy steel bars for prestressing are available in
diameters from 0.750 to 1.375 in. as plain round bars and from 0.625 to 3.00 in. as
deformed bars, with the largest size deformed bars serving as ground anchors. Specific
requirements for prestressing steels are found in ASTM A421, “Standard Specifica-
tion for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete”; ASTM A416,
“Standard Specification for Low-Relaxation, Seven-Wire Strand for Prestressed Con-
crete”; and ASTM A722, “Standard Specification for High-Strength Steel Bars for
Prestressed Concrete.” Table A.15 of Appendix A provides design information for
U.S. prestressing steels.

Grades and Strengths

The tensile strengths of prestressing steels range from about 2.5 to 6 times the yield
strengths of commonly used reinforcing bars. The grade designations correspond to
the minimum specified tensile strength in ksi. For the widely used seven-wire strand,
three grades are available: Grade 250 (f,, = 250 ksi), Grade 270, and Grade 300,
although the last is not yet recognized in ASTM A416. Grade 270 strand is used most
often. For alloy steel bars, two grades are used: the regular Grade 150 is most com-
mon, but special Grade 160 bars may be ordered. Round wires may be obtained in
Grades 235, 240, and 250, depending on diameter.
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FIGURE 2.20
Typical stress-strain curves
for prestressing steels.
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Stress-Strain Curves

Figure 2.20 shows stress-strain curves for prestressing wires, strand, and alloy bars of
various grades. For comparison, the stress-strain curve for a Grade 60 reinforcing bar
is also shown. It is seen that, in contrast to reinforcing bars, prestressing steels do not
show a sharp yield point or yield plateau; that is, they do not yield at constant or nearly
constant stress. Yielding develops gradually, and in the inelastic range the curve contin-
ues to rise smoothly until the tensile strength is reached. Because well-defined yielding
is not observed in these steels, the yield strength is somewhat arbitrarily defined as the
stress at a total elongation of 1 percent for strand and wire and at 0.7 percent for alloy
steel bars. Figure 2.20 shows that the yield strengths so defined represent a good limit
below which stress and strain are fairly proportional and above which strain increases
much more rapidly with increasing stress. It is also seen that the spread between tensile
strength and yield strength is smaller in prestressing steels than in reinforcing steels. It
may further be noted that prestressing steels have significantly less ductility.

While the modulus of elasticity E; for deformed bars is taken as 29,000,000
psi, the effective modulus of prestressing steel varies, depending on the type of steel
(for example, strand vs. wire or bars) and type of use, and is best determined by test
or supplied by the manufacturer. The modulus of elasticity of prestressing steel E,
has been shown to have values of 26,000,000 psi for unbonded strand (that is, strand
not embedded in concrete), 27,000,000 psi for bonded strand and alloy steel bars,
and about 29,000,000 psi for smooth wires, the same as for deformed reinforcing
bars. ACI Commentary 20.3.2.1, however, indicates that values between 28,500,000
and 29,000,000 psi are often used in design but states that values based on tests may
be needed when checking elongation during stressing operations.
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Relaxation

When prestressing steel is stressed to the levels that are customary during initial ten-
sioning and at service loads, it exhibits a property known as relaxation. Relaxation
is defined as the loss of stress in stressed material held at constant length. (The same
basic phenomenon is known as creep when defined in terms of change in strain of
a material under constant stress.) To be specific, if a length of prestressing steel is
stressed to a sizable fraction of its yield strength f,, (say, 80 to 90 percent) and held
at a constant strain between fixed points such as the ends of a beam, the steel stress f,
will gradually decrease from its initial value f,,. In prestressed concrete members this
stress relaxation is important because it modifies the internal stresses in the concrete
and changes the deflections of the beam some time after initial prestress was applied.

The amount of relaxation varies, depending on the type and grade of steel, the
time under load, and the initial stress level. A satisfactory estimate for stress-relieved
compacted strand and wires can be obtained from Eq. (2.11), which was derived
from more than 400 relaxation tests of up to 9 years’ duration:

J& - 0.55

Py

Jpi 10

log ¢
o _log @2.11)

where f, is the final stress after 7 hours, f,, is the initial stress, and f,, is the nominal yield
stress (Ref. 2.56). In Eq. (2.11), log ¢ is to the base 10, and f,,/f,, not less than 0.55;
below that value essentially no relaxation occurs.

The tests on which Eq. (2.11) is based were carried out on round, stress-
relieved wires and are equally applicable to stress-relieved strand. In the absence of
other information, results may be used for alloy steel bars as well.

Low-relaxation strand, now the industry standard, is specified under ASTM
A416. Such steel must exhibit relaxation after 1000 hours of not more than 2.5 percent
when initially stressed to 70 percent of specified tensile strength and not more than
3.5 percent when loaded to 80 percent of tensile strength. For low-relaxation strand,
Eq. (2.11) is replaced by

(2.12)

FIBER REINFORCEMENT

In addition to using bars, wire, welded wire reinforcement, and prestressing steel,
the ACI Code recognizes that discrete steel fibers can, on a limited basis, be used to
improve the tensile properties of concrete. The application—to serve as a design alter-
native to minimum shear reinforcement—is discussed in Chapter 5.

Steel fibers may provide a small increase in concrete tensile strength, but their
main contribution is to increase the toughness of the concrete, that is, allowing the
concrete to continue to carry a tensile load once the peak tensile strength has been
reached, as shown for mortar in Fig 2.21.

To qualify as an alternative to minimum shear reinforcement, fiber-reinforced
concrete must exhibit minimum values of residual strength when tested in flexure
in accordance with ASTM C1609. Figure 2.22 shows an example load-deflection
curve for a fiber-reinforced concrete beam with length L loaded in flexure.
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FIGURE 2.21

Stress-displacement curves for mortars with volume fractions V of steel fibers ranging from 0 to 1.5%. (Adapted from Ref. 2.57.)

Load

PL/3OO “1
PL/150 -

Midspan deflection

FIGURE 2.22

Load-deflection curve for fiber-reinforced beam loaded in flexure. (Adapted from ASTM C1609 / CI609M - 19. Standard Test Method for
Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). ASTM International. https://www.astm.org/Standards/
C1609.htm)

Telegram: @uni_k



www.konkur.in

Telegram: @uni_k

MATERIALS 65

ACI Code 26.12.7.1 requires that (1) the residual strength P, sy, obtained at a mid-
span deflection of L/300 be at least equal to the greater of 90 percent of the meas-
ured peak strength P, obtained from the test and 90 percent of the strength
corresponding to a stress of 7. 5\/]7C and (2) the residual strength P, 5, obtained at
a midspan deflection of L/150 be at least equal to the greater of 75 percent of the
measured peak strength P, obtained from the test and 75 percent of the strength
corresponding to 7.5 \/ﬁ .
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PROBLEMS

2.1.

2.2

2.3.

The specified concrete strength £, for a new building is 5000 psi. Calculate

the required average f,, for the concrete (a) if there are no prior test results

for concrete with a compressive strength within 1000 psi of f; made with
similar materials, (b) if 20 test results for concrete with £, = 5500 psi made
with similar materials produce a sample standard deviation s, of 560 psi, and

(c) if 30 tests with £, = 4500 psi made with similar materials produce a

sample standard deviation s, of 540 psi.

Ten consecutive strength tests are available for a new concrete mixture with

f. = 4000 psi: 4830, 4980, 3840, 4370, 4410, 4890, 4450, 3970, 4780, and

4040 psi.

(a) Do the strength results represent concrete of satisfactory quality? Explain
your reasoning.

(b) If £/ has been selected based on 30 consecutive test results from an
earlier project with a sample standard deviation s, of 570 psi, must the
mixture proportions be adjusted? Explain.

The specified concrete strength £, for the columns in a high-rise building is

12,000 psi. Calculate the required average f.,. for the concrete (a) if there are

no prior test results for concrete with a compressive strength within 1000 psi

of f/ made with similar materials, (b) if 15 test results for concrete with

/7 = 11,000 psi made with similar materials produce a sample standard devi-

ation s, of 930 psi, and (¢) if 30 tests with £/ = 12,000 made with similar

materials produce a sample standard deviation s, of 950 psi.
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Design of Concrete Structures

= and Fundamental Assumpftions

INTRODUCTION

Design is the determination of the general shape and specific dimensions so that a
structure will perform the function for which it was created and will safely withstand
the influences that will act on it throughout its useful life. These influences are primar-
ily the loads and other forces to which it will be subjected, as well as other detrimental
agents, such as temperature fluctuations and foundation settlements.

The basic form of the structure is defined by its intended use. In the case of a
building, an architect may present an overall concept and with the engineer develop a
structural system. For bridges and industrial facilities, the engineer is often directly
involved in selecting both the concept and the structural system. Regardless of the
application, the design of concrete structures follows the same general sequence. First,
an initial structural system is defined, the initial member sizes are selected, and a math-
ematical model of the structure is generated. Second, gravity and lateral loads are
determined based on the selected system, member sizes, and external loads. Building
loads typically are defined in ASCE/SEI 7 (Ref 3.1), as discussed in Chapter 1. Third,
the loads are applied to the structural model and the load effects calculated for each
member. This step may be done on a preliminary basis or by using computer modeling
software. This step is more complex for buildings in Seismic Design Categories D
though F where the seismic analysis requires close coordination of the structural fram-
ing system and the earthquake loads (discussed in Chapter 20). Fourth, maximum load
effects at critical member sections are identified and each critical section is designed
for moment, axial load, shear, and torsion as needed. At this step, the process may
become iterative. For example, if the member initially selected is too small, its size must
be increased, load effects recalculated for the larger member, and the members rede-
signed. If the initial member is too large, a smaller section is selected. Loads, however,
are usually not recalculated for small changes in member size as gravity effects are often
conservative. Fifth, each member is checked for serviceability. Sixth, the reinforcement
for each member is detailed, that is, the number and size of reinforcing bars are selected
for the critical sections to provide the required strength. Seventh, connections are
designed to ensure that the building performs as intended. Finally, the design informa-
tion is incorporated in the construction documents. This process is illustrated in Fig. 3.1.
In addition to the design methodology, Fig. 3.1 indicates the chapters in this book and
in the ACI Code (Ref. 3.2) where the topics are covered. The ACI Code is written based
on the assumption that the user understands concrete structural behavior and the design
process, whereas this text builds that understanding. The text is organized so that the
fundamental theory is presented first, followed by the Code interpretation of the theory.
Thus, the text remains relevant even as Code provisions are updated.
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3a. Conduct

Text: Chapter 20

earthquake analysis

ACI Code: Chapter 18

Revise member sizes
as needed so capacity
exceeds the demand,
thatis, ¢S, > U.

Action Text Chapters ACI 318
Code
Chapters
1. Select structural system, 4,9, 11-16, 19 7-13
define preliminary member
sizes, and idealize the
structure into a mathematical
model.
2. Determine applied and self- 1 ASCE 7-10
weight loads (Ref. 3.1)
3. Analyze structure to obtain " 6
member required capacity
4. Design each member for Moment — 4 22
moment, shear, axial load, Shear - 5
stability, and torsion. Axial load — 9, 10
Torsion — 8

4a. Design sections or 17 23

members that require strut-

and-tie procedures
5. Check serviceability 7 24
requirements
6. Detail each member for 6 25
selected reinforcement
7. Design connections 18, 21 15,16, 17
8. Prepared detailed drawings 26

and specifications

FIGURE 3.1

Design development sequence.
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MEMBERS AND SECTIONS

The term member refers to an individual portion of the structure, such as a beam, col-
umn, slab, or footing. Moment, axial load, and shear are distributed along the member,
and the member is designed at discrete locations. The engineer identifies the maxi-
mum value of these loads and designs the member at these discrete locations so that
the strength at the section exceeds these values. It is not necessary to design every sec-
tion of a member. The requirement ¢S, > U [Eq. (1.4)] implies that reinforcement for
maximum loads can be carried beyond the critical section to ensure that the strength
requirements are satisfied for the entire member. In addition to strength, the reinforce-
ment is designed to provide overall structural integrity and to ensure that it is anchored
to the concrete.

THEORY, CODES, AND PRACTICE

The design of concrete structures requires an understanding of structural theory and the
role of building codes, and experience in the practice of structural design itself. These
three elements interact. For example, a structural failure may lead to a code revision.
The failure may also lead to research, which in turn provides a new theoretical model.
Changes in practice may also be made to preclude similar failures, even without a code
change. The following discussion of theory, codes, and practice provides a frame-
work for understanding the behavior and design of concrete structures. As described in
Section 3.1, this text follows a format of providing the theory of behavior of concrete
structures followed by the code interpretation of that behavior and includes practical
considerations for the design. Insight to the interplay of each of these elements is essen-
tial for the engineer to design safe, serviceable, and economical structures.

Theory

Structural theory includes mathematical, physical, or empirical models of the behavior
of structures. These models have evolved over decades of research and practice. They
are used to predict the nominal strength of members. The most robust theories derive
from statics, equilibrium, and mechanics of materials. Examples include equations for
the strength of a concrete section for bending (Chapter 4) and bending plus axial load
(Chapters 9 and 10). For these conditions, mathematical models provide representa-
tions of actual behavior that agree within a few percent of experimental results.

In other cases, an empirical understanding of structural behavior, derived from
experimental observation, is combined with theory to develop the prediction of mem-
ber strength. In this case, equations are then fitted to the experimental data to predict
the strength. If the experimental strength of a section is highly variable, then the
predictive equations are adjusted for use in design to provide a lower bound of the
section capacity. This approach is used, for example, to calculate the shear strength
of a section (Chapter 5) and anchorage capacity (Chapter 21).

Because theoretical and empirical expressions are used to predict the strength
at a specific section, the strength at many locations may need to be verified to ensure
that the overall member strength is adequate.

In addition to supporting the applied load at each section, members work
together to transfer load from the point of application, through the structure, to the
point where the force exits the structure, such as the foundation or other support
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location. For example, as described in Section 1.8, live load is applied to a slab, the
live load and slab gravity loads are carried to a girder, the girder load is carried to the
column, and the column carries the load to the foundation. Similarly, when wind applies
a force to an external wall, the wind load is transferred by the wall to the floors, which
act as diaphragms, and in turn transfer the load to the lateral load resisting system for
the building, such as a moment frame or shear wall. The load path is the sequence of
members and connections that transfers the factored loads through the structure.

The engineer’s responsibility is to provide at least one load path, and preferably
multiple paths, for any force applied to the structure. When multiple load paths are
present, the loads will follow the stiffest path, that is, the sequence of members and
connections that tend to deform the least. In “The Wisdom of the Structure” (Ref. 3.3),
Halvard Birkeland points out that a structure will exhaust every possible load path
before collapsing. Load paths are dependent on equilibrium and the ability to deform
and redistribute loads.

When applied to design, structural theory is typically presented in a deterministic
format. That is, an equation results in a single nominal strength for a given section.
Thus, the moment capacity of a beam can be calculated. The theory, however, provides
no guidance as to approach the selection of member size or reinforcement to attain the
desired capacity. Equally valid solutions for the given nominal strength range from large
cross sections containing small amounts of reinforcement to small sections with large
quantities of reinforcement. Building codes provide some guidance for these decisions.

Codes

Building codes provide minimum requirements for the life safety and serviceability for
structures. In their simplest application, codes present the theory needed to ensure that
sectional and member strengths are provided and define the limits on that theory. For
example, a structure could be constructed using a large unreinforced concrete beam
that relies solely on the tensile strength of the concrete. Such a structure would be
brittle, and an unanticipated load would lead to sudden collapse. Codes prohibit such
designs. In a similar manner, codes prescribe the maximum and minimum amount of
reinforcement allowed in a member. Codes also address serviceability considerations,
such as deflection and crack control. In addition to providing the theoretical or empir-
ical basis for design, codes may also contain restrictions resulting from failures in
practice that were not predicted by the theory upon which the code is based.

Structural integrity provisions in concrete building codes require reinforcement
to limit progressive or disproportional collapse. Disproportional collapse occurs
when the failure of a single member leads to the failure of multiple adjacent mem-
bers. The failure of a single apartment wall in the Ronan Point apartment complex
in 1968 led to the failure of several other units (Ref. 3.4). In response to this collapse,
codes added requirements for integrity reinforcement based on a rational assessment
of the failure. This integrity reinforcement is a prescriptive provision, that is, the
requirements are detailed in the code and must be incorporated in the structure
without associated detailed calculations.

Codes are written in terse language, based on the assumption that the user is
a competent engineer, and typically adopt lower-bound approaches to structural
safety. (See Section 23.2 for a description of upper- and lower-bound theorems.)
Because codes provide the minimum requirements for safety and serviceability, the
engineer is allowed to exceed these requirements—providing less than code require-
ments is imprudent. A commentary accompanies most codes and assists in under-
standing, provides references or background, and offers rationale for the provisions.
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Practice

Structural engineering practice encompasses both the art and the technical practice
of structural design. Throughout history, many extraordinary structures, such as the
gothic cathedrals, have been designed and constructed without the benefit of mod-
ern theory and codes. While theory and codes provide the mechanics for establishing
the strength and serviceability of structures, neither provides the aesthetic, economic,
or functional guidance needed for member selection. Questions such as “Should a
beam be slender or stout within the code limits?” or “How should the concrete mixture
be adjusted for corrosive environments?” need to be answered by the engineer. To
respond, the engineer relies on judgment, personal experience, and the broader expe-
rience of the profession to adapt the design to meet the overall project requirements.
Inclusion of long-standing design guidelines for the selection of member sizes is an
example of how that broader experience of the profession is used.

The following sections introduce the fundamental assumptions needed to develop
the equations for member design that are presented in this text starting in Chapter 4.

FUNDAMENTAL ASSUMPTIONS FOR REINFORCED
CONCRETE BEHAVIOR

Structural mechanics is one of the main tools in the process of design. As here under-
stood, it is the body of knowledge that permits one to predict, with a good degree of
certainty, how a structure of given shape and dimensions will behave when acted upon
by known forces or other mechanical influences. The chief items of behavior that are
of practical interest are (1) the strength of the structure, that is, the magnitude of loads
of a given distribution that will cause the structure to fail, and (2) the deformations,
such as deflections and extent of cracking, that the structure will undergo when loaded
under service conditions.

The fundamental propositions on which the mechanics of reinforced concrete
is based are as follows:

1. The internal forces, such as bending moments, shear forces, normal and shear
stresses, and torsional moments, at any section of a member are in equilibrium
with the effects of the external loads at that section. This proposition is not an
assumption but a fact, because any body or any portion thereof can be at rest only
if all forces acting on it are in equilibrium.

2. The strain in an embedded reinforcing bar (unit extension or compression) is the
same as that of the surrounding concrete. Expressed differently, it is assumed
that perfect bonding exists between concrete and steel at the interface, so that no
slip occurs between the two materials. Hence, as the one deforms, so must the
other. With modern deformed bars (see Section 2.14), a high degree of mechan-
ical interlocking is provided in addition to the natural surface adhesion, so this
assumption is very close to correct.

3. Cross sections that were plane prior to loading continue to be plane in the mem-
ber under load. Accurate measurements have shown that when a reinforced con-
crete member is loaded close to failure, this assumption is not absolutely accurate.
However, the deviations are usually minor, and the results of theory based on this
assumption check well with extensive test information.

4. In view of the fact that the tensile strength of concrete is only a small fraction
of its compressive strength (see Section 2.9), the concrete in that part of a mem-
ber which is in tension is usually cracked. While these cracks, in well-designed
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members, are generally so narrow as to be hardly visible (they are known as
hairline cracks), they effectively render the cracked concrete incapable of resist-
ing tension stress. Correspondingly, it is assumed that concrete is not capable of
resisting any tension stress whatever. This assumption is evidently a simplifica-
tion of the actual situation because, in fact, concrete prior to cracking, as well as
the concrete located between cracks, does resist tension stresses of small magni-
tude. Later in discussions of the resistance of reinforced concrete beams to shear,
it will become apparent that under certain conditions this particular assumption is
dispensed with and advantage is taken of the modest tensile strength that concrete
can develop.

5. The theory is based on the actual stress-strain relationships and strength prop-
erties of the two constituent materials (see Sections 2.8 and 2.14) or some rea-
sonable equivalent simplifications thereof. The fact that nonelastic behavior is
reflected in modern theory, that concrete is assumed to be ineffective in tension,
and that the joint action of the two materials is taken into consideration results
in analytical methods that are considerably more complex, and also more chal-
lenging, than those that are adequate for members made of a single, substantially
elastic material.

These five propositions permit one to predict by calculation the performance of
reinforced concrete members in a number of important cases. Because, however the
joint action of two materials as dissimilar and complicated as concrete and steel is
complex, it cannot be fully represented using a purely analytical treatment. For this
reason, methods of design and analysis, while using these assumptions, are very largely
based on the results of extensive and continuing experimental and analytical research.
They are modified and improved as the results of additional research become available.

BEHAVIOR OF MEMBERS SUBJECT TO AXIAL LOADS

Many of the fundamentals of the behavior of reinforced concrete, through the full range
of loading from zero to ultimate, can be illustrated clearly in the context of members
subject to simple axial compression or tension. The basic concepts illustrated here will
be recognized in later chapters in the analysis and design of beams, slabs, eccentrically
loaded columns, and other members subject to more complex loadings.

Axial Compression

In members that sustain chiefly or exclusively axial compression loads, such as build-
ing columns, it is economical to make the concrete carry most of the load. Still, some
steel reinforcement is always provided for various reasons. For one, very few mem-
bers are subjected to truly axial load; steel is essential for resisting any bending that
may exist. For another, if part of the total load is carried by steel with its much greater
strength, the cross-sectional dimensions of the member can be reduced—the more so,
the larger the amount of reinforcement.

The two chief forms of reinforced concrete columns are shown in Fig. 3.2. In
the square column, the four longitudinal bars serve as main reinforcement. They are
held in place by transverse small-diameter steel ties that prevent displacement of the
main bars during construction operations and counteract any tendency of the compression-
loaded bars to buckle out of the concrete by bursting the thin outer cover. A round
column is shown with eight main reinforcing bars. These are surrounded by a closely
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FIGURE 3.2
Reinforced concrete columns. o
Longitudinal bars Longitudinal bars
and lateral ties and spiral reinforcement
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spaced spiral that serves the same purpose as the more widely spaced ties but also
acts to confine the concrete within it, thereby increasing its resistance to axial com-
pression. The discussion that follows applies to tied columns.

When axial load is applied, the compression strain is the same over the entire
cross section and, in view of the bonding between concrete and steel, is the same in
the two materials (see propositions 2 and 3 in Section 3.4). To illustrate the action
of such a member as load is applied, Fig. 3.3 shows two representative stress-strain
curves, one for a concrete with compressive strength f, = 4000 psi and the other for
a steel with yield stress f, = 60,000 psi. The curves for the two materials are drawn
on the same graph using different vertical stress scales. Curve b has the shape that
would be obtained in a concrete cylinder test. The rate of loading in most structures
is considerably slower than that in a cylinder test, and this affects the shape of the
curve. Curve c, therefore, is drawn as being characteristic of the performance of
concrete under slow loading. Under these conditions, tests have shown that the max-
imum reliable compressive strength of reinforced concrete is about 0.85f., as shown.

ELASTIC BEHAVIOR At low stresses, up to about f./2, the concrete is seen to
behave nearly elastically, that is, stresses and strains are quite closely proportional;
the straight line d represents this range of behavior with little error for both rates of
loading. For the given concrete, the range extends to a strain of about 0.0005. The
steel, on the other hand, is seen to be elastic nearly to its yield point of 60 ksi, or
to the much greater strain of about 0.002.

Within this elastic range, the compression strain in the concrete, at any given
load, is equal to the compression strain in the steel,

€. g, =
E. K
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from which the relation between the steel stress f; and the concrete stress f. is obtained as

_E 3
ﬁ—Eﬁ—% 3.1)

where n = E,/E. is known as the modular ratio.

Let
A, = net area of concrete, that is, gross area minus area occupied by reinforcing bars
A, = gross area
A, = total area of reinforcing bars

= axial load

o3

~v

Then
P =fAc+ Ay = fAc + nf Ay
or
P =f(A. + nAy) (3.2)

The term A, + nA,, can be interpreted as the area of a fictitious concrete cross section,
the transformed area, which when subjected to the particular concrete stress f. results
in the same axial load P as the actual section composed of both steel and concrete.
This transformed concrete area is seen to consist of the actual concrete area plus n
times the area of the reinforcement. It can be visualized as shown in Fig. 3.4. That is,
in Fig. 3.4b the three bars along each of the two faces are thought of as being removed
and replaced, at the same distance from the axis of the section, with added areas of
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FIGURE 3.4
Transformed section in axial
compression.
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fictitious concrete of total amount nAg,. Alternatively, as shown in Fig. 3.4¢, one can
think of the area of the steel bars as replaced with concrete, in which case one has to
add to the gross concrete area A, so obtained only (n — 1)A;, to obtain the same total
transformed area. Therefore, alternatively,

P =flA;, + (n — DA] (3.3)

If load and cross-sectional dimensions are known, the concrete stress can be
found by solving Eq. (3.2) or (3.3) for f., and the steel stress can be calculated from
Eq. (3.1). These relations hold in the range in which the concrete behaves nearly
elastically, that is, up to about 50 to 60 percent of f.. For reasons of safety and
serviceability, concrete stresses in structures under normal conditions are kept within
this range. Therefore, these relations permit one to calculate service load stresses.

EXAMPLE 3.1

Axial load to produce given stress. A column made of the materials defined in Fig. 3.3
has a cross section of 16 X 20 in. and is reinforced by six No. 9 (No. 29) bars, placed as
shown in Fig. 3.4. (See Tables A.1 and A.2 of Appendix A for bar diameters and areas and
Section 2.14 for a description of bar size designations.) Determine the axial load that will
stress the concrete to 1200 psi. The modular ratio n may be assumed equal to 8. (In view of
the scatter inherent in E,, it is customary and satisfactory to round off the value of n to the
nearest integer and never justified to use more than two significant figures.)

SoLutioN.  One finds A, = 16 x 20 = 320 in%, and from Appendix A, Table A.2, six No. 9
(No. 29) bars provide steel area A, = 6.00 in® or 1.88 percent of the gross area. The load
on the column, from Eq. (3.3), is P = 1200[320 + (8 — 1)6.00] = 434,000 Ib. Of this total
load, the concrete is seen to carry P, = f. A, = f(A, — Ay) = 1200320 — 6) = 377,000 Ib,
and the steel P, = f{A,, = (nf.)A; = 9600 X 6 = 57,600 Ib, which is 13.3 percent of the total
axial load.
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INELASTIC RANGE Inspection of Fig. 3.3 shows that the elastic relationships that
have been used so far cannot be applied beyond a strain of about 0.0005 for the
given concrete. To obtain information on the behavior of the member at larger strains
and, correspondingly, at larger loads, it is therefore necessary to make direct use of
the information in Fig. 3.3.
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EXAMPLE 3.2 Axial load to produce given strain. Calculate the magnitude of the axial load that will

produce a strain or unit shortening ¢, = &, = 0.0010 in the column of Example 3.1.

SOLUTION. At this strain the steel is seen to be still elastic, so that the steel stress
fi = &E; = 0.001 x 29,000,000 = 29,000 psi. The concrete is in the inelastic range, so that its
stress cannot be directly calculated, but it can be read from the stress-strain curve for the
given value of strain.

1. If the member has been loaded at a fast rate, curve b holds at the instant when the entire
load is applied. The stress for ¢ = 0.001 can be read from Fig. 3.3 as f, = 3200 psi.
Consequently, the total load can be obtained from

P=fA + fAy 34)

which applies in the inelastic as well as in the elastic range. Hence, P = 3200(320 — 6)
+ 29,000 x 6 = 1,005,000 + 174,000 = 1,179,000 Ib. Of this total load, the steel is seen to
carry 174,000 Ib, or 14.7 percent.

2. For slowly applied or sustained loading, curve ¢ represents the behavior of the concrete.
Its stress at a strain of 0.001 can be read as f. = 2400 psi. Then P = 2400 x 314 +
29,000 x 6 = 754,000 + 174,000 = 928,000 1b. Of this total load, the steel is seen to
carry 18.8 percent.
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Comparison of the results for fast and slow loading shows the following. Owing
to creep of concrete, a given shortening of the column is produced by a smaller load
when slowly applied or sustained over some length of time than when quickly
applied. More importantly, the farther the stress is beyond the proportional limit of
the concrete, and the more slowly the load is applied or the longer it is sustained,
the smaller the share of the total load carried by the concrete and the larger the share
carried by the steel. In the sample column, the steel was seen to carry 13.3 percent
of the load in the elastic range, 14.7 percent for a strain of 0.001 under fast loading,
and 18.8 percent at the same strain under slow or sustained loading.

STRENGTH The quantity of chief interest to the structural designer is strength, that
is, the maximum load that the structure or member will carry. Information on stresses,
strains, and similar quantities serves chiefly as a tool for determining carrying capac-
ity. The performance of the column discussed so far emphasizes two points: (1) in
the range of large stresses and strains that precede attainment of the maximum load
and subsequent failure, elastic relationships cannot be used; (2) the member behaves
differently under fast and under slow or sustained loading and shows less resistance
to the latter than to the former. In usual construction, many types of loads, such as
the weight of the structure and any permanent equipment housed therein, are sus-
tained, and others are applied at slow rates. For this reason, to calculate a reliable
magnitude of compressive strength, curve ¢ of Fig. 3.3 must be used as far as the
concrete is concerned.

The steel reaches its tensile strength (peak of the curve) at strains on the order
of 0.08 (see Fig. 2.19). Concrete, on the other hand, fails by crushing at the much
smaller strain of about 0.003 and, as seen from Fig. 3.3 (curve c), reaches its max-
imum stress in the strain range of 0.002 to 0.003. Because the strains in steel and
concrete are equal in axial compression, the load at which the steel begins to yield
can be calculated from the information in Fig. 3.3.
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If the small knee prior to yielding of the steel is disregarded, that is, if the
steel is assumed to be sharp-yielding, the strain at which it yields is

£y = — 3.5)
or for Grade 60 reinforcement

60,000

£ = ———— = 0.00207
29,000,000

At this strain, curve ¢ of Fig. 3.3 indicates a stress of 3200 psi in the concrete; there-
fore, by Eq. (3.4), the load in the member when the steel starts yielding is P, = 3200 x
314 + 60,000 x 6 = 1,365,000 Ib. At this load the concrete has not yet reached its full
strength, which, as mentioned before, can be assumed as 0.85f, = 3400 psi for slow or sus-
tained loading, and therefore the load on the member can be further increased. During this
stage of loading, the steel keeps yielding at constant stress. Finally, the nominal capacity of
the member is reached when the concrete crushes while the steel yields, that is,

P, = 085 A. +f, Ay (3.6)

Numerous careful tests have shown the reliability of Eq. (3.6) in predicting the ulti-
mate strength of a concentrically loaded reinforced concrete column, provided its
slenderness ratio is small so that buckling will not reduce its strength.

For the particular numerical example, P, = 3400 x 314 + 60,000 x 6 =
1,068,000 + 360,000 = 1,428,000 Ib. At this stage the steel carries 25.2 percent of the load.

SUMMARY In the elastic range, the steel carries a relatively small portion of the total load
of an axially compressed member. As member strength is approached, there occurs a
redistribution of the relative shares of the load resisted by concrete and steel, the latter
taking an increasing amount. The nominal capacity, at which the member is on the point
of failure, consists of the contribution of the steel when it is stressed to the yield point plus
that of the concrete when its stress has attained a value of 0.85f,, as reflected in Eq. (3.6).

Axial Tension

The tension strength of concrete is only a small fraction of its compressive strength. It
follows that reinforced concrete is not well suited for use in tension members because
the concrete will contribute little, if anything, to their strength. Still, there are situa-
tions in which reinforced concrete is stressed in tension, chiefly in tie-rods in struc-
tures such as arches. Such members consist of one or more bars embedded in concrete
in a symmetric arrangement similar to compression members (see Figs. 3.2 and 3.4).
When the tension force in the member is small enough for the stress in the con-
crete to be considerably below its tensile strength, both steel and concrete behave
elastically. In this situation, all the expressions derived for elastic behavior in compres-
sion in Section 3.5a are identically valid for tension. In particular, Eq. (3.2) becomes

P = f(Ac. + nAy) (3.7

where f, is the tensile stress in the concrete.

When the load is further increased, however, the concrete reaches its tensile
strength at a stress and strain on the order of one-tenth of what it could sustain in
compression. At this stage, the concrete cracks across the entire cross section. When
this happens, it ceases to resist any part of the applied tension force, since, evidently,
no force can be transmitted across the air gap in the crack. At any load larger than
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that which caused the concrete to crack, the steel is called upon to resist the entire
tension force. Correspondingly, at this stage,

P =fA, (3.8)

With further increased load, the tensile stress f; in the steel reaches the yield
point f;. When this occurs, the tension members cease to exhibit small, elastic defor-
mations but instead stretch a sizable and permanent amount at substantially constant
load. This does not impair the strength of the member. Its elongation, however,
becomes so large (on the order of 1 percent or more of its length) as to render it
unserviceable. Therefore, the maximum useful strength P,, of a tension member is
the force that will just cause the steel stress to reach the yield point. That is,

P, = fyAst (3.9

To provide adequate safety, the force permitted in a tension member under normal ser-
vice loads should be limited to about %Pm. Because the concrete has cracked at loads
considerably smaller than this, concrete does not contribute to the carrying capacity
of the member in service. It does serve, however, as fire and corrosion protection and
often improves the appearance of the structure.

There are situations, though, in which reinforced concrete is used in axial ten-
sion under conditions in which the occurrence of tension cracks must be prevented.
A case in point is a circular tank. To provide watertightness, the hoop tension caused
by the fluid pressure must be prevented from causing the concrete to crack. In this
case, Eq. (3.7) can be used to determine a safe value for the axial tension force P
by using, for the concrete tension stress f,, an appropriate fraction of the tensile
strength of the concrete, that is, of the stress that would cause the concrete to crack.

BENDING OF HOMOGENEOUS BEAMS

Reinforced concrete beams are nonhomogeneous in that they are made of two entirely
different materials. The methods used in the analysis of reinforced concrete beams are
therefore different from those used in the design or investigation of beams composed
entirely of steel, wood, or any other structural material. The fundamental principles
involved are, however, essentially the same. Briefly, these principles are as follows.

At any cross section there exist internal forces that can be resolved into com-
ponents normal and tangential to the section. Those components that are normal to
the section are the bending stresses (tension on one side of the neutral axis and
compression on the other, Fig. 3.5). Their function is to resist the bending moment
at the section. The tangential components are known as the shear stresses, and they
resist the transverse or shear forces.

Fundamental assumptions relating to flexure and flexural shear are as follows:

1. A cross section that was plane before loading remains plane under load. This
means that the unit strains in a beam above and below the neutral axis are propor-
tional to the distance from that axis.

2. The bending stress f at any point depends on the strain at that point in a man-
ner given by the stress-strain diagram of the material. If the beam is made of a
homogeneous material whose stress-strain diagram in tension and compression
is that of Fig. 3.54, the following holds. If the maximum strain at the outer fibers
is smaller than the strain &, up to which stress and strain are proportional for the
given material, then the compression and tension stresses on either side of the axis
are proportional to the distance from the axis, as shown in Fig. 3.5b. However, if
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the maximum strain at the outer fibers is larger than ¢,, this is no longer true. The
situation that then occurs is shown in Fig. 3.5¢; that is, in the outer portions of
the beam, where & > ¢, stresses and strains are no longer proportional. In these
regions, the magnitude of stress at any level, such as f; in Fig. 3.5¢, depends on
the strain ¢, at that level in the manner given by the stress-strain diagram of the
material. In other words, for a given strain in the beam, the stress at a point is the
same as that given by the stress-strain diagram for the same strain.
The distribution of the shear stresses v over the depth of the section depends
on the shape of the cross section and of the stress-strain diagram. These shear
stresses are largest at the neutral axis and equal to zero at the outer fibers. The
shear stresses on horizontal and vertical planes through any point are equal.
Owing to the combined action of shear stresses (horizontal and vertical) and flex-
ure stresses, at any point in a beam there are inclined stresses of tension and com-
pression, the largest of which form an angle of 90° with each other. The intensity
of the inclined maximum or principal stress ¢ at any point is given by
for
r=sx\ (3.10)
where f = intensity of normal fiber stress
v = intensity of tangential shearing stress

The inclined stress makes an angle « with the horizontal such that tan 2a = 2v/f.
Since horizontal and vertical shear stresses are equal and the flexural stresses are
zero along the neutral axis, the inclined tensile and compressive stresses at any
point on the neutral axis form an angle of 45° with the horizontal, the intensity of
each being equal to the unit shear at the point.

When the stresses in the outer fibers are smaller than the proportional limit f,,
the beam behaves elastically, as shown in Fig. 3.5b. In this case the following
pertains:

(a) The neutral axis passes through the center of gravity of the cross section.
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(b) The intensity of the bending stress normal to the section increases directly with
the distance from the neutral axis and is a maximum at the extreme fibers. The
stress at any given point in the cross section is represented by the equation

f== (3.11)

where f = bending stress at a distance y from neutral axis
M = external bending moment at section
I = moment of inertia of cross section about neutral axis

The maximum bending stress occurs at the outer fibers and is equal to

Mc M
=—=— 3.12
Foo =7 =5 (3.12)

where ¢ = distance from neutral axis to outer fiber
S = I/c = section modulus of cross section
(¢) The shear stress (horizontal equals vertical) v at any point in the cross section
is given by
Vo
v = 7 (3.13)
where V = total shear at section
Q = statical moment about neutral axis of that portion of cross section
lying between a line through point in question parallel to neutral axis
and nearest face (upper or lower) of beam
I = moment of inertia of cross section about neutral axis
b = width of beam at a given point
(d) The intensity of shear along a vertical cross section in a rectangular beam varies
as the ordinates of a parabola, the intensity being zero at the outer fibers of the
beam and a maximum at the neutral axis. For a total depth £, the maximum shear
stress is %V/bh, since at the neutral axis Q = bh*/8 and I = bh’/12 in Eq. (3.13).

With the fundamentals now established for homogeneous beams, the next step
is to address the behavior and design of reinforced concrete beams. This is done in
Chapter 4 for bending and in Chapter 5 for shear.
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PROBLEMS

Problems 3.1 through 3.5 reinforce the understanding of elastic and inelastic behav-
ior of a member under axial load.

3.1. A 16 x 20 in. column is made of the same concrete and reinforced with the
same six No. 9 (No. 29) bars as the column in Examples 3.1 and 3.2, except
that a steel with yield strength f;, = 40 ksi is used. The stress-strain diagram
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3.2.

3.3.

34.

3.5.

of this reinforcing steel is shown in Fig. 2.19 for f, = 40 ksi. For this column
determine (a) the axial load that will stress the concrete to 1200 psi; (b) the
load at which the steel starts yielding; (c) the maximum load; and (d) the
share of the total load carried by the reinforcement at these three stages of
loading. Compare results with those calculated in the examples for f, = 60 ksi,
keeping in mind, in regard to relative economy, that the price per pound for
reinforcing steels with 40 and 60 ksi yield points is about the same.

The area of steel, expressed as a percentage of gross concrete area, for the
column of Problem 3.1 is lower than would often be used in practice. Recal-
culate the comparisons of Problem 3.1, using f, of 40 ksi and 60 ksi as before,
but for a 16 X 20 in. column reinforced with eight No. 11 (No. 36) bars.
Compare your results with those of Problem 3.1.

A square concrete column with dimensions 22 X 22 in. is reinforced with a
total of eight No. 10 (No. 32) bars arranged uniformly around the column
perimeter. Material strengths are f, = 60 ksi and f; = 4000 psi, with stress-
strain curves as given by curves a and ¢ of Fig. 3.3. Calculate the percentages
of total load carried by the concrete and by the steel as load is gradually
increased from O to failure, which is assumed to occur when the concrete strain
reaches a limit value of 0.0030. Determine the loads at strain increments of
0.0005 up to the failure strain, and graph your results, plotting load percentages
vs. strain. The modular ratio may be assumed at n = 8 for these materials.

A 20 X 24 in. column is made of the same concrete as used in Examples 3.1
and 3.2. It is reinforced with six No. 11 (No. 36) bars with f, = 60 ksi. For
this column section, determine (a) the axial load that the section will carry
at a concrete stress of 1400 psi; (b) the load on the section when the steel
begins to yield; (¢) the maximum load if the section is loaded slowly; and
(d) the maximum load if the section is loaded rapidly. The area of one No.
11 (No. 36) bar is 1.56 in”. Determine the percent of the load carried by the
steel and the concrete for each combination.

A 24 in. diameter column is made of the same concrete as used in Examples
3.1 and 3.2. The area of reinforcement equals 2.1 percent of the gross cross
section (that is, A; = 0.021A,) and f, = 60 ksi. For this column section,
determine (a) the axial load the section will carry at a concrete stress of 1200
psi; (b) the load on the section when the steel begins to yield; (¢) the max-
imum load if the section is loaded slowly; (d) the maximum load if the
section is loaded rapidly; and (e) the maximum load if the reinforcement in
the column is raised to 6.5 percent of the gross cross section and the column
is loaded slowly. Comment on your answer, especially the percent of the load
carried by the steel and the concrete for each combination.
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4.2

Flexural Analysis
and Design of Beams

INTRODUCTION

The fundamental assumptions upon which the analysis and design of reinforced concrete
members are based were introduced in Section 3.4, and the application of those assump-
tions to the simple case of axial loading was developed in Section 3.5. Bending of homo-
geneous beams was covered in Section 3.6. The student should review Sections 3.4, 3.5,
and 3.6 at this time. In developing methods for the analysis and design of beams in this
chapter, the same assumptions apply, and identical concepts will be used. This chapter
includes analysis and design for flexure, including the dimensioning of the concrete cross
section and the selection and placement of reinforcing steel. Other important aspects of
beam design, including shear reinforcement, bond, and anchorage of reinforcing bars,
and the important questions of serviceability (for example, limiting deflections and con-
trolling concrete cracking) will be treated in Chapters 5, 6, and 7.

REINFORCED CONCRETE BEAM BEHAVIOR

Plain concrete beams are inefficient as flexural members because the tensile strength
in bending (modulus of rupture, see Section 2.9) is a small fraction of the compressive
strength. As a consequence, such beams fail on the tension side at low loads long before
the strength of the concrete on the compression side has been fully utilized. For this
reason, steel reinforcing bars are placed on the tension side as close to the extreme
tension fiber as is compatible with proper fire and corrosion protection of the steel.
In such a reinforced concrete beam, the tension caused by the bending moments is
chiefly resisted by the steel reinforcement, while the concrete alone is usually capable
of resisting the corresponding compression. Such joint action of the two materials is
ensured if relative slip is prevented. This is achieved by using deformed bars with their
high bond strength at the steel-concrete interface (see Section 2.14) and, if necessary,
by special anchorage of the ends of the bars. A simple example of such a beam, with
the customary designations for the cross-sectional dimensions, is shown in Fig. 4.1. For
simplicity, the discussion that follows deals with beams of rectangular cross section,
even though members of other shapes are very common in most concrete structures.
A beam elevation is shown in Fig. 4.1a. Figure 4.1b shows the beam cross section,
followed by the strain distribution and the corresponding stresses acting on the cross
section in Fig. 4.1c. This representation of a beam cross section, followed by a strain
and stress distribution is used throughout this text.

When the load on such a beam is gradually increased from zero to the magnitude
that will cause the beam to fail, several different stages of behavior can be clearly

83
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FIGURE 4.1
Behavior of reinforced
concrete beam under
increasing load.
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distinguished. At low loads, as long as the maximum tensile stress in the concrete is
smaller than the modulus of rupture, the entire concrete section is effective in resist-
ing stress, in compression on one side and in tension on the other side of the neutral
axis. In addition, the reinforcement, deforming the same amount as the adjacent con-
crete, is also subject to tensile stresses. At this stage, all stresses in the concrete are
of small magnitude and are proportional to strains. The distribution of strains and
stresses in concrete and steel over the depth of the section is shown in Fig. 4.1c.
When the load is further increased, the tensile strength of the concrete is soon
reached, and at this stage tension cracks develop. These propagate quickly upward to
or close to the level of the neutral axis, which in turn shifts upward with progressive
cracking. The general shape and distribution of these tension cracks is shown in
Fig. 4.1d. In well-designed beams, the width of these cracks is so small (hairline cracks)
that they are not objectionable from the viewpoint of either corrosion protection or
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appearance. Their presence, however, profoundly affects the behavior of the beam under
load. At a cracked section, that is, at a cross section located at a crack such as a-a in
Fig. 4.1d, it is appropriate to treat the concrete as transmitting no tensile stresses.
Hence, just as in tension members (Section 3.5b), the steel is called upon to resist the
entire tension. At moderate loads, if the concrete stresses do not exceed approximately
/7 /2, stresses and strains continue to be closely proportional (see Fig. 3.3). The distri-
bution of strains and stresses at or near a cracked section is then that shown in Fig. 4.1e.
When the load is still further increased, stresses and strains rise correspondingly and
are no longer proportional. The ensuing nonlinear relation between stresses and strains
is that given by the concrete stress-strain curve. Therefore, just as in homogeneous
beams (see Fig. 3.5), the distribution of concrete stresses on the compression side of
the beam is of the same shape as the stress-strain curve. Figure 4.1f shows the distri-
bution of strains and stresses close to the ultimate load.

Eventually, the carrying capacity of the beam is reached. Failure can be caused
in one of two ways. When relatively moderate amounts of reinforcement are employed,
at some value of the load the steel will reach its yield point. At that stress, the rein-
forcement yields suddenly and stretches a large amount (see Fig. 2.19), and the
tension cracks in the concrete widen visibly and propagate upward, with simultane-
ous significant deflection of the beam. When this happens, the strains in the remain-
ing compression zone of the concrete increase to such a degree that crushing of the
concrete, the secondary compression failure, ensues at a load only slightly larger
than that which caused the steel to yield. Effectively, therefore, attainment of the
yield point in the steel determines the carrying capacity of moderately reinforced
beams. Such yield failure is gradual and is preceded by visible signs of distress, such
as the widening and lengthening of cracks and the marked increase in deflection.

On the other hand, if large amounts of reinforcement or normal amounts of
steel of very high strength are employed, the compressive strength of the concrete
may be exhausted before the steel starts yielding. Concrete fails by crushing when
strains become so large that they disrupt the integrity of the concrete. Exact criteria
for this occurrence have yet to be established, but it has been observed that rectan-
gular beams fail in compression when the concrete strains reach values of 0.003 to
0.004. Compression failure through crushing of the concrete is sudden, of an almost
explosive nature, and occurs without warning. For this reason it is good practice to
dimension beams in such a manner that, should they be overloaded, failure would
be initiated by yielding of the steel rather than by crushing of the concrete.

The analysis of stresses and strength in the different stages just described are
discussed in the next several sections.

Stresses Elastic and Section Uncracked

As long as the tensile stress in the concrete is smaller than the modulus of rupture, so
that no tension cracks develop, the strain and stress distribution as shown in Fig. 4.1¢
is essentially the same as in an elastic, homogeneous beam (Fig. 3.5b). The only
difference is the presence of another material, the steel reinforcement. As shown in
Section 3.5a, in the elastic range, for any given value of strain, the stress in the steel
is n times that of the concrete [Eq. (3.1)]. In the same section, it was shown that one
can take account of this fact in calculations by replacing the actual steel-and-concrete
cross section with a fictitious section thought of as consisting of concrete only. In
this “transformed section,” the actual area of the reinforcement is replaced with an
equivalent concrete area equal to nA; located at the level of the steel. The transformed,
uncracked section pertaining to the beam of Fig. 4.1 is shown in Fig. 4.2. The open
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FIGURE 4.2
Uncracked transformed beam
section.
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circles in Fig. 4.2a represent the reinforcement that has been removed and replaced by
the equivalent area of concrete. It is often convenient to use the representation shown
in Fig. 4.2b, treating the member as monolithic within its original boundaries while
adding an equivalent area of concrete equal to (n — 1)A,.

Once the transformed section has been obtained, the usual methods of analysis
of elastic homogeneous beams apply. That is, the section properties (location of
neutral axis, moment of inertia, section modulus, etc.) are calculated in the usual
manner, and, in particular, stresses are calculated with Eqgs. (3.11) to (3.13).

EXAMPLE 4.1

FIGURE 4.3
Transformed beam section of
Example 4.1.
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A rectangular beam has the dimensions (see Fig. 4.3) b = 10 in., 2 = 25 in., and d = 23 in.
and is reinforced with three No. 8 (No. 25) bars so that A; = 2.37 in>. The concrete com-
pressive strength £ is 4000 psi, and the tensile strength in bending (modulus of rupture) is
475 psi. The yield point of the steel f, is 60,000 psi, the stress-strain curves of the materials
being those of Fig. 3.3. Determine the stresses caused by a bending moment M = 45 ft-kips.

SorutioN. With a value n = E;/E. = 29,000,000/3,600,000 = 8, one has to add to the
rectangular outline an area (n — 1)A, = 7 X 2.37 = 16.59 in’, rounded slightly and distributed
as shown in Fig. 4.3, to obtain the uncracked, transformed section. Conventional calculations
show that the location of the neutral axis of this section is given by y = 13.2 in. from the top
of the section, and its moment of inertia about this axis is 14,740 in*. For M = 45 ft-kips =
540,000 in-Ib, the concrete compression stress at the top fiber is, from Eq. (3.11),

_ My 540,000 x 13.2

Je I 14,740

= 484 psi

10—

<l

8.29 in? ) ) ) 8.29 in?
— & "
S/

3 No. 8 (No. 25)
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and, similarly, the concrete tension stress at the bottom fiber, 11.8 in. from the neutral axis, is

540,000 x 11.8

- — 432 psi
ct 14.740 32 psi

Since this value is below the given tensile bending strength of the concrete, 475 psi, no tension
cracks will form, and calculation by the uncracked, transformed section is justified. The stress
in the steel, from Eqgs. (3.1) and (3.11), is

My (540,000 X 9.8

fi=n= 14,740

7 ) = 2870 psi

By comparing f, and f; with the concrete cylinder strength and the yield point, respectively, it is
seen that at this stage the actual stresses are quite small compared with the available strengths
of the two materials.

FIGURE 4.4
Cracked transformed section
and stresses on the section.
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Stresses Elastic and Section Cracked

When the tensile stress f,; exceeds the modulus of rupture, cracks form, as shown in
Fig. 4.1d. If the concrete compressive stress is less than approximately % f and the
steel stress has not reached the yield point, both materials continue to behave elas-
tically, or very nearly so. This situation generally occurs in structures under normal
service conditions and loads, since at these loads the stresses are generally of the order
of magnitude just discussed. At this stage, for simplicity and with little if any error, it
is assumed that tension cracks have progressed all the way to the neutral axis and that
sections plane before bending are plane in the deformed member. The situation with
regard to strain and stress distribution is that shown in Fig. 4.1e.

To calculate stresses, and strains if desired, the device of the transformed sec-
tion can still be used. One need only take account of the fact that all of the concrete
that is stressed in tension is assumed cracked, and therefore effectively absent. As
shown in Fig. 4.4a, the transformed section then consists of the concrete in com-
pression on one side of the axis and n times the steel area on the other. The distance
to the neutral axis, in this stage, is conventionally expressed as a fraction kd of the
effective depth d. (Once the concrete is cracked, any material located below the steel

kd
3
fe i
T -——C
kd
I ja=d-*
nAg
\ f
- IITTEP——= >T
L
b —
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is ineffective, which is why d is the effective depth of the beam.) To determine the
location of the neutral axis, the moment of the tension area about the axis is set
equal to the moment of the compression area, which gives

(kd)®
b=~ nA(d ~ kd) = 0 4.1)

Having obtained kd by solving this quadratic equation, one can determine the
moment of inertia and other properties of the transformed section as in the preced-
ing case. Alternatively, one can proceed from basic principles by accounting directly
for the forces that act on the cross section. These are shown in Fig. 4.4b. The con-
crete stress, with maximum value f. at the outer edge, is distributed linearly as shown.
The entire steel area A; is subject to the stress f,. Correspondingly, the total com-
pression force C and the total tension force 7 are

_fe

c="L
2

bkd and T =A,f, 4.2)

The requirement that these two forces be equal numerically has been taken care of by
the manner in which the location of the neutral axis has been determined.

Equilibrium requires that the couple constituted by the two forces C and T be
equal numerically to the external bending moment M. Hence, taking moments about
compression resultant C gives

M = Tjd = A,f,jd 4.3)
where jd is the internal lever arm between C and 7. From Eq. (4.3), the steel stress is
M
= 4.4
f A.jd 4.4
Conversely, taking moments about the tension force T gives
M = Cjd =% bkdjd = %kjbdz 4.5)
from which the concrete stress is
2M
Jo=—"= (4.6)
kjbd

In using Egs. (4.2) through (4.6), it is convenient to have equations by which
k and j may be found directly, to establish the neutral axis distance kd and the inter-
nal lever arm jd. First defining the reinforcement ratio as
- 4.7
"= bd ‘

then substituting A, = pbd into Eq. (4.1) and solving for &, one obtains

k = \/(pn)* + 2pn — pn (4.8)
From Fig. 4.4b it is seen that jd = d — kd /3, or
. k
=1-= 4.9
J 3 (4.9)

Values of k and j for elastic cracked section analysis, for common reinforcement ratios
and modular ratios, are found in Table A.6 of Appendix A.
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EXAMPLE 4.2

The beam of Example 4.1 is subject to a bending moment M = 90 ft-kips (rather than 45
ft-kips as previously). Calculate the relevant properties and stresses.

SoLuTioN. If the section were to remain uncracked, the tensile stress in the concrete would
now be twice its previous value, that is, 864 psi. Since this exceeds by far the modulus of
rupture of the given concrete (475 psi), cracks will have formed and the analysis must be
adapted consistent with Fig. 4.4. Equation (4.1), with the known quantities b, n, and A;
inserted, gives the distance to the neutral axis kd = 7.6 in., or k = 7.6/23 = 0.33. From
Eq. (4.9),j =1 - 0.33/3 = 0.89. With these values the steel stress is obtained from Eq. (4.4)
as f; = 22,300 psi, and the maximum concrete stress from Eq. (4.6) as f. = 1390 psi.

Comparing the results with the pertinent values for the same beam when subject to
one-half the moment, as previously calculated, one notices that (1) the neutral axis has
migrated upward so that its distance from the top fiber has changed from 13.2 to 7.6 in.; (2)
even though the bending moment has only been doubled, the steel stress has increased from
2870 to 22,300 psi, or about 7.8 times, and the concrete compression stress has increased
from 484 to 1390 psi, or 2.9 times; (3) the moment of inertia of the cracked transformed
section is easily calculated to be 5910 in®, compared with 14,740 in* for the uncracked sec-
tion. This affects the magnitude of the deflection, as discussed in Chapter 7. Thus, it is seen
how radical is the influence of the formation of tension cracks on the behavior of reinforced
concrete beams.
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Flexural Strength

It is of interest in structural practice to calculate those stresses and deformations that
occur in a structure in service under the design load. For reinforced concrete beams,
this can be done by the methods just presented, which assume elastic behavior of both
materials. It is equally, if not more, important that the structural engineer be able to
predict with satisfactory accuracy the strength of a structure or structural member.
By making this strength larger by an appropriate amount than the largest loads that
can be expected during the lifetime of the structure, an adequate margin of safety is
ensured. Historically, methods based on elastic analysis, like those just presented or
variations thereof, have been used for this purpose. It is clear, however, that at or near
the ultimate load, stresses are no longer proportional to strains. In regard to axial com-
pression, this has been discussed in detail in Section 3.5, and in regard to bending, it
has been pointed out that at high loads, close to failure, the distribution of stresses and
strains is that of Fig. 4.1frather than the elastic distribution of Fig. 4.1e. More realistic
methods of analysis, based on actual inelastic rather than assumed elastic behavior of
the materials and on results of extremely extensive experimental research, have been
developed to predict the member strength. They are now used almost exclusively in
structural design practice.

If the distribution of concrete compressive stresses at or near ultimate load
(Fig. 4.1f) had a well-defined and invariable shape—parabolic, trapezoidal, or
otherwise—it would be possible to derive a completely rational theory of bending
strength, just as the theory of elastic bending with its known triangular shape of
stress distribution (Figs. 3.50 and 4.1c and e) is straightforward and rational.
Actually, inspection of Figs. 2.3, 2.4, and 2.6, and of many more concrete stress-
strain curves that have been published, shows that the geometric shape of the
stress distribution is quite varied and depends on a number of factors, such as the
cylinder strength and the rate and duration of loading. For this and other reasons,
a wholly rational flexural theory for reinforced concrete has not yet been developed
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(Refs. 4.1 to 4.3). Present methods of analysis, therefore, are based in part on
known laws of mechanics and are supplemented, where needed, by extensive test
information.

Let Fig. 4.5 represent the distribution of internal stresses and strains when the
beam is about to fail. One desires a method to calculate that moment M, (nominal
moment) at which the beam will fail either by tension yielding of the steel or by
crushing of the concrete in the outer compression fiber. For the first mode of failure,
the criterion is that the steel stress equal the yield point, f; = f;. It has been mentioned
before that an exact criterion for concrete compression failure is not yet known, but
that for rectangular beams, strains of 0.003 to 0.004 have been measured immediately
preceding failure. If one assumes, usually slightly conservatively, that the concrete
is about to crush when the maximum strain reaches &, = 0.003, comparison with a
great many tests of beams and columns of a considerable variety of shapes and
conditions of loading shows that a satisfactorily accurate and safe strength prediction
can be made (Ref. 4.4). In addition to these two criteria (yielding of the steel at a
stress of f, and crushing of the concrete at a strain of 0.003), it is not really necessary
to know the exact shape of the concrete stress distribution in Fig. 4.5. What is nec-
essary is to know, for a given distance ¢ of the neutral axis, (1) the total resultant
compression force C in the concrete and (2) its vertical location, that is, its distance
from the outer compression fiber.

In a rectangular beam, the area that is in compression is bc, and the total
compression force on this area can be expressed as C = f,,bc, where f,, is the aver-
age compression stress on the area bc. Evidently, the average compressive stress that
can be developed before failure occurs becomes larger, the higher the cylinder
strength f. of the particular concrete. Let

a = fi/v (4.10)
Je
Then
C = af'bc 4.11)

For a given distance c to the neutral axis, the location of C can be defined as some frac-
tion f of this distance. Thus, as indicated in Fig. 4.5, for a concrete of given strength
it is necessary to know only a and f to completely define the effect of the concrete
compressive stresses.
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Extensive direct measurements, as well as indirect evaluations of numerous
beam tests, have shown that the following values for @ and f are satisfactorily accu-
rate (see Ref. 4.5, where «a is designated as kik; and f as k,):

a equals 0.72 for f| < 4000 psi and decreases by 0.04 for every 1000 psi above
4000 up to 8000 psi. For f > 8000 psi, a = 0.56.

B equals 0.425 for f/ < 4000 psi and decreases by 0.025 for every 1000 psi
above 4000 up to 8000 psi. For f/ > 8000 psi, # = 0.325.

The decrease in a and f for high-strength concretes is related to the fact that such
concretes are more brittle; that is, they show a more sharply curved stress-strain plot
with a smaller near-horizontal portion (see Figs. 2.3 and 2.4). Figure 4.6 shows these
simple relations.

If this experimental information is accepted, the maximum moment can be
calculated from the laws of equilibrium and from the assumption that plane cross
sections remain plane. Equilibrium requires that

C=T or afbc=Af (4.12)

Also, the bending moment, being the couple of the forces C and 7, can be written as
either

M =Tz = A,f,(d — pc) 4.13)
or
M = Cz = af bc(d — fc) (4.14)

For failure initiated by yielding of the tension steel, f; = f,. Substituting this
value in Eq. (4.12), one obtains the distance to the neutral axis

A,
c=—2 (4.15a)
af.b
Alternatively, using A; = pbd, the neutral axis distance is
pld
¢ =" (4.15b)
af.
MPa
10 20 30 40 50 60
08 T T T T T T
a
0.6 T~
p
= 04
S o
0.2
0
0 2000 4000 6000 8000 10,000

f¢, psSi
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giving the distance to the neutral axis when tension failure occurs. The nominal
moment M, is then obtained from Eq. (4.13) with the value for ¢ just determined, and
fs =1y that is,

M, = pf,bd’|1 —

(4.16a)

4
c

Pl )

With the specific, experimentally obtained values for @ and f given previously, this
becomes

ol

’
c

M, = pfybd2(1 - 0.59 (4.16b)

If, for larger reinforcement ratios, the steel does not reach yield at failure, then
the strain in the concrete becomes ¢, = 0.003, as previously discussed. The steel
stress f;, not having reached the yield point, is proportional to the steel strain &; that
is, according to Hooke’s law,

f;‘ = 8SE‘S

From the strain distribution shown in Fig. 4.5, the steel strain &, can be expressed in
terms of the distance ¢ by evaluating similar triangles, after which it is seen that

f=eE 4 —< 4.17)

Then, from Eq. (4.12),

d—c

aflbc = Ae,E, -

(4.18)
and this quadratic may be solved for ¢, the only unknown for the given beam. With
both ¢ and f; known, the nominal moment of the beam, so heavily reinforced that
failure occurs by crushing of the concrete, may be found from either Eq. (4.13) or
Eq. (4.14).

Whether or not the steel has yielded at failure can be determined by comparing
the actual reinforcement ratio with the balanced reinforcement ratio py, representing
that amount of reinforcement necessary for the beam to fail by crushing of the con-
crete at the same load that causes the steel to yield. This means that the neutral axis
must be so located that at the load at which the steel starts yielding, the concrete
reaches its compressive strain limit €,. Correspondingly, setting f; = f, in Eq. (4.17)
and substituting the yield strain ¢, for f, /E, gives the value of ¢ defining the unique
position of the neutral axis corresponding to simultaneous crushing of the concrete
and initiation of yielding in the steel

814
g, + &,

(4.19)

CcC =

Substituting that value of ¢ into Eq. (4.12), with A, f; = pbdf,, gives the balanced rein-
forcement ratio

_of e,

AT (4.20)

Pb
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EXAMPLE 4.3

Determine the nominal moment M, at which the beam of Examples 4.1 and 4.2 will fail.

SoLutioN.  For this beam the reinforcement ratio p = A,/(bd) = 2.37/(10 x 23) = 0.0103.
The balanced reinforcement ratio is found from Eq. (4.20) to be 0.0284. Since the amount of
steel in the beam is less than that which would cause failure by crushing of the concrete, the
beam will fail in tension by yielding of the steel. Its nominal moment, from Eq. (4.160), is

0.0103 x 60,000

f,
M, = pf,bd*(1 — 0.59 P\ _ 0.0103 x 60,000 x 10 x 23* 1 — 0.59
f 4000

c

= 2,970,000 in-Ib = 248 ft-kips

When the beam reaches M, the distance to its neutral axis, from Eq. (4.15b), is

phd  0.0103 x 60,000 x 23
c=— = = 4.94
af! 0.72 x 4000

Telegram: @uni_k

4.3

It is informative to compare this result with those of Examples 4.1 and 4.2. In the
previous calculations, it was found that at low loads, when the concrete had not yet
cracked in tension, the neutral axis was located at a distance of 13.2 in. from the com-
pression edge; at higher loads, when the tension concrete was cracked but stresses were
still sufficiently small to be elastic, this distance was 7.6 in. Immediately before the beam
fails, as has just been shown, this distance has further decreased to 4.9 in. For these same
stages of loading, the stress in the steel increased from 2870 psi in the uncracked section
to 22,300 psi in the cracked elastic section and to 60,000 psi at the nominal moment
capacity. This migration of the neutral axis toward the compression edge and the increase
in steel stress as load is increased is a graphic illustration of the differences between the
various stages of behavior through which a reinforced concrete beam passes as its load
is increased from zero to the value that causes it to fail. The examples also illustrate the
fact that nominal moments cannot be determined accurately by elastic calculations.

DESIGN OF TENSION-REINFORCED RECTANGULAR BEAMS

For reasons that were explained in Chapter 1, the present design of reinforced concrete
structures is based on the concept of providing sufficient strength to resist hypothetical
overloads. The nominal strength of a proposed member is calculated based on the best
current knowledge of member and material behavior. That nominal strength is modi-
fied by a strength reduction factor ¢, less than unity, to obtain the design strength. The
required strength, should the hypothetical overload stage actually be realized, is found by
applying load factors y, greater than unity, to the loads actually expected. These expected
service loads include the calculated dead load, the calculated or legally specified live
load, and environmental loads such as those due to wind, earthquake action, or tempera-
ture. Thus reinforced concrete members are proportioned so that, as shown in Eq. (1.5),

oM, =2 M,
$P, =2 P,
PV, 2V,
o1, 2T,
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where the subscripts n denote the nominal strengths in flexure, thrust, shear, and
torsion respectively, and the subscripts u denote the factored load moment, thrust,
shear, and torsion. The strength reduction factors ¢ differ, depending upon the type
of strength to be calculated, the importance of the member in the structure, and other
considerations discussed in detail in Chapter 1.

A member proportioned on the basis of adequate strength at a specified overload
stage must also perform in a satisfactory way under normal service load conditions.
In specific terms, the deflection must be limited to an acceptable value, and concrete
tensile cracks, which inevitably occur, must be of narrow width and well distributed
throughout the tensile zone. Therefore, after proportioning for adequate strength,
deflections are calculated and compared against limiting values (or otherwise con-
trolled), and crack widths limited by specific means. This approach to design, referred
to in Europe, and to some extent in U.S. practice, as limit states design, is the basis
of the ACI Code, and it is the approach followed in this and later chapters.

Equivalent Rectangular Stress Distribution

The method presented in Section 4.2c for calculating the flexural strength of reinforced
concrete beams, derived from basic concepts of structural mechanics and pertinent
experimental research information, also applies to situations other than the case of
rectangular beams reinforced on the tension side. It can be used and gives valid answers
for beams of other cross-sectional shapes, reinforced in other manners, and for members
subject not only to simple bending but also to the simultaneous action of bending and
axial force (compression or tension). However, the pertinent equations for these more
complex cases become increasingly cumbersome and lengthy. What is more important,
it becomes increasingly difficult for the designer to visualize the physical basis for the
design methods and formulas; this could lead to a blind reliance on formulas, with a
resulting lack of actual understanding. This is not only undesirable on general grounds
but also, practically, more likely to lead to numerical errors in design work than when
the designer at all times has a clear picture of the physical situation in the member
being dimensioned or analyzed. Fortunately, it is possible, using a conceptual model, to
formulate the strength analysis of reinforced concrete members in a different manner,
which gives the same answers as the general analysis just developed but which is much
more easily visualized and much more easily applied to cases of greater complexity
than that of the simple rectangular beam. Its consistency is shown, and its application to
more complex cases has been checked against the results of a vast number of tests on a
great variety of types of members and conditions of loading (Ref. 4.4).

It was noted in the preceding section that the actual geometric shape of the
concrete compressive stress distribution varies considerably and that, in fact, one
need not know this shape exactly, provided one does know two things: (1) the mag-
nitude C of the resultant of the concrete compressive stresses and (2) the location
of this resultant. Information on these two quantities was obtained from the results
of experimental research and expressed in the two parameters a and /.

Evidently, then, one can think of the actual complex stress distribution as
replaced by a fictitious one of some simple geometric shape, provided that this
fictitious distribution results in the same total compression force C applied at the
same location as in the actual member when it is on the point of failure. Histori-
cally, a number of simplified, fictitious equivalent stress distributions have been
proposed by investigators in various countries. The one generally accepted world-
wide, and in the ACI Code, was first proposed by C. S. Whitney (Ref. 4.4) and
was subsequently elaborated and checked experimentally by others (see, for example,
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Actual and equivalent
rectangular stress
distributions at ultimate load.
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Refs. 4.5 and 4.6). The actual stress distribution immediately before failure and
the fictitious equivalent distribution are shown in Fig. 4.7.

It is seen that the actual stress distribution is replaced by an equivalent one of
simple rectangular outline. The intensity yf. of this equivalent constant stress and
its depth a = f;c are easily calculated from the two conditions that (1) the total
compression force C and (2) its location, that is, distance from the top fiber, must
be the same in the equivalent rectangular as in the actual stress distribution. From
Fig. 4.7a and b the first condition gives

C=af chb=yf ab from which y = a%
With a = fc, this gives y = a/f;. The second condition simply requires that in the
equivalent rectangular stress block, the force C be located at the same distance fc from
the top fiber as in the actual distribution. It follows that $; = 2.

To supply the details, the upper two lines of Table 4.1 present the experimen-
tal evidence of Fig. 4.6 in tabular form. The lower two lines give the just-derived
parameters f; and y for the rectangular stress block. It is seen that the intensity
factor for compressive stress y is essentially independent of f, and can be taken as
0.85 throughout. Hence, regardless of f, the concrete compression force at failure
in a rectangular beam of width b is

C = 0.85f/ab 4.21)
TABLE 4.1
Concrete stress block parameters
fC’I psi

<4000 5000 6000 7000 >8000
a 0.72 0.68 0.64 0.60 0.56
B 0.425 0.400 0.375 0.350 0.325
B =2p 0.85 0.80 0.75 0.70 0.65
y = a/p 0.85 0.85 0.85 0.86 0.86




www.konkur.in

96 DESIGN OF CONCRETE STRUCTURES Chapter 4

Telegram: @uni_k

Also, for commonly used concretes with f; < 4000 psi, the depth of the rectangular
stress block is a = 0.85¢, with ¢ being the distance to the neutral axis. For higher-
strength concretes, this distance is a = ¢, with the f#; values shown in Table 4.1. This
is expressed as follows: For f, between 2500 and 4000 psi, 3, shall be taken as 0.85;
for f above 4000 psi, f3; shall be reduced linearly at a rate of 0.05 for each 1000 psi of
strength in excess of 4000 psi, but f#; shall not be taken as less than 0.65. In mathemat-
ical terms, the relationship between f; and f can be expressed as
f. — 4000
p1 =085 —-005———— and 0.65 <, <0.85 (4.22)
1000

The equivalent rectangular stress distribution can be used for deriving the equations
that have been developed in Section 4.2¢c. The failure criteria, of course, are the same
as before: yielding of the steel at f; = f, or crushing of the concrete at ¢, = 0.003.
Because the rectangular stress block is easily visualized and its geometric properties
are extremely simple, many calculations are carried out directly without reference to
formally derived equations, as will be seen in the following sections.

Balanced Strain Condition

A reinforcement ratio p, producing balanced strain conditions can be established based
on the condition that, at balanced failure, the steel strain is exactly equal to £, when
the strain in the concrete simultaneously reaches the crushing strain of ¢, = 0.003.
Referring to Fig. 4.5,

&y
CcC =
&y + 8),

(4.23)

which is seen to be identical to Eq. (4.19). Then from the equilibrium requirement that
cC=T
pufybd = 0.85f ab = 0.85p, fbc
from which ) ,
0y = 085 f 02 € — 085, Je &
fy d fy & T &

This is easily shown to be equivalent to Eq. (4.20).

(4.24)

Underreinforced Beams

A compression failure in flexure, should it occur, gives little if any warning of distress,
while a tension failure, initiated by yielding of the steel, typically is gradual. Distress
is obvious from observing the large deflections and widening of concrete cracks asso-
ciated with yielding of the steel reinforcement, and measures can be taken to avoid
total collapse. In addition, most beams for which failure initiates by yielding possess
substantial strength based on strain-hardening of the reinforcing steel, which is not
accounted for in the calculations of M,

Because of these differences in behavior, it is prudent to require that beams be
designed such that failure, if it occurs, will be by yielding of the steel, not by crush-
ing of the concrete. This can be done, theoretically, by requiring that the reinforce-
ment ratio p be less than the balance ratio p, given by Eq. (4.24). Such a beam is
described as being underreinforced.

In actual practice, the upper limit on p should be below p, for the following
reasons: (1) for a beam with p exactly equal to p,, the compressive strain limit of
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FIGURE 4.8

Beam with two layers of
reinforcement showing
difference between the
effective depth d and the
distance to the reinforcement
farthest from the compressive
face of the concrete d,.
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the concrete would be reached, theoretically, at precisely the same moment that the
steel reaches its yield stress, without significant yielding before failure; (2) material
properties are never known precisely; (3) strain-hardening of the reinforcing steel,
not accounted for in design, may lead to a brittle concrete compression failure even
though p may be somewhat less than p,; (4) the actual steel area provided, consid-
ering standard reinforcing bar sizes, will always be equal to or larger than required,
based on selected reinforcement ratio p, tending toward overreinforcement; and (5)
the extra ductility provided by beams with lower values of p increases the deflection
capability substantially and thus provides warning prior to failure.

ACI Code Provisions for Underreinforced Beams

While the nominal strength of a member may be calculated based on principles of
mechanics, the mechanics alone cannot establish safe limits for maximum reinforce-
ment ratios, as discussed in Chapter 3. These limits are defined by the ACI Code. The
limitations take two forms. First, the Code addresses the minimum tensile reinforce-
ment strain allowed at nominal strength in the design of beams. Second, the Code
defines strength reduction factors that may depend on the tensile strain at nominal
strength. Both limitations are based on the net tensile strain ¢, of the reinforcement
farthest from the compression face of the concrete at the depth d,. The net tensile strain
is exclusive of prestress, temperature, and shrinkage effects. For beams with a single
layer of reinforcement, the depth to the centroid of the steel d is the same as d,. For
beams with multiple layers of reinforcement, d, is greater than the depth to the cen-
troid of the reinforcement d, as shown in Fig. 4.8. Substituting d, for d and ¢, for &, in
Eq. (4.23), the net tensile strain may be represented as

d, — c
c

Then based on Eq. (4.24), the reinforcement ratio to produce a selected value of net
tensile strain is

(4.25)

E =&

fido e,
p = 0850 — — (4.26a)
Sy od &t &
or somewhat conservatively
_ 0855, L & 4.26b
/’—-/1E€u+gt (4.26b)

To ensure truly underreinforced behavior, ACI Code Table 21.2.2 establishes a
minimum net tensile strain ¢, ,;, at nominal member strength for beams subjected to
axial loads less than 0.10fA,, where A, is the gross area of the cross section.

€, min = &y + 0.003 (4.26¢)
where &, = f,/E,.
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FIGURE 4.9 Compression-controlled Transition Tension-controlled
Variation of strength p

reduction factor with net > ~

tensile strain in the steel. 0.90
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E=&y Net tensile strain &= Etmin = &, +0.003

The ACI Code defines members that meet this requirement, that is, & > & pin,
as tension-controlled. The corresponding strength reduction factor is ¢p = 0.9. The
requirement that &, > &, .,;, applies to all grades of reinforcing steel, including prestress-
ing steel. The ACI Code additionally defines compression-controlled members as those
having a net tensile strain ¢, < &,. The strength reduction factor for compression-
controlled members is 0.65; a value of ¢ = 0.75 may be used if the members are
spirally reinforced. Members with net tensile strains between &, and ¢, ;, are classified
as transition, and the ACI Code allows a linear interpolation of ¢ based on ¢,, as shown
in Fig. 4.9 for members with axial loads greater than 0.10f, A,. For the purposes of
defining compression-controlled members and calculating ¢, ACI Code 21.2.2.1
permits a value of ¢, = 0.002 to be used for Grade 60 reinforcement, in place of
the calculated value 0.00207. A value of &, = 0.200 is required for all prestressed
reinforcement.

Based on Eq. (4.26b), the maximum reinforcement ratio for a tension-controlled

beam is

_ogsp Lo B 426
pmax - Y. ﬁlf_ygu + 8t,min ( . d)

Calculation of the nominal moment capacity frequently involves determination
of the depth of the equivalent rectangular stress block a. Since ¢ = a/f, it is some-
times more convenient to calculate ¢/d, ratios than either p or the net tensile strain.
The assumption that plane sections remain plane ensures a direct correlation between
net tensile strain and the c/d, ratio. Values of c/d, corresponding to tension-controlled
sections with &, = g, for Grades 60, 80, and 100 reinforcement are shown in
Fig. 4.10. A strength reduction factor of 0.90 is permitted for sections with c¢/d,
values less than or equal to the values shown.

Comparing Eqs. (4.26a) and (4.26b), it can be seen that the maximum rein-
forcement ratio in Eq. (4.26d) is exact for beams with a single layer of reinforcement
and slightly conservative for beams with multiple layers of reinforcement, where d,
is greater than d. Because &, > &, ensures that steel is yielding in tension, f; = f,
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FIGURE 4.10

Minimum net tensile strain
€.min and maximum c/d, for
tension-controlled sections
for Grades 60, 80, and 100
reinforcement.

FIGURE 4.11
Singly reinforced rectangular
beam.
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at failure. Referring to Fig. 4.11, the nominal flexural strength M, is obtained by
summing moments about the centroid of the compression force C.

M, =Af,(d-$£ 42

= AL[d =) (4.27)
The depth of the equivalent stress block a can be found based on equilibrium, C = T.
Hence, 0.85 f. ab = A; f,, giving

Asfy

a= / (4.28)
0.85(/b

EXAMPLE 4.4
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Using the equivalent rectangular stress distribution, directly calculate the nominal strength of
the beam previously analyzed in Example 4.3. Recall that & = 10 in., d = 23 in., A, = 2.37 in%.,

£/ = 4000 psi, f, = 60,000 psi, &, = 0.002, and 8, = 0.85.

SorLutioN. The distribution of stresses, internal forces, and strains is shown in Fig. 4.11.
With g, = 0.003 and ¢, ,,;, = 0.002 4 0.003 = 0.005 for Grade 60 reinforcement, the maximum
reinforcement ratio is calculated from Eq. (4.26d) as

4000 0.003
60,000 0.003 + 0.005

Proax = 0.85 X 0.85 = 0.0181
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and comparison with the actual reinforcement ratio of 0.0103 confirms that the member is
underreinforced and will fail by yielding of the steel. Alternatively, recalling that ¢ = 4.94 in.,

c _c¢c 494

—==-=——=0.215

d d 23
which is less than 0.375 for Grade 60 reinforcement, the value of ¢/d, corresponding to &, i, = 0.005
for Grade 60 reinforcement, also confirming that the member is underreinforced. Hence,

0.85f ab = Af,, or a = 2.37 X 60,000/(0.85 x 4000 x 10) = 4.18. The nominal moment is

M, = Asfy(d - %) = 2.37 x 60,000(23 — 2.09) = 2,970,000 in-1Ib = 248 ft-kips

The results of this simple and direct numerical analysis, based on the equivalent
rectangular stress distribution, are identical with those previously determined from
the general strength analysis described in Section 4.2c.

It is convenient when developing design aids to combine Eqgs. (4.27) and (4.28)
as follows. Noting that A; = pbd, Eq. (4.28) can be rewritten as

d
a= Ay - (4.29)

0.85f;

This is then substituted into Eq. (4.27) to obtain
M, = pf,bd*|1 — 0.59 ;—ﬁ) (4.30)

which is identical to Eq. (4.16b) derived in Section 4.2c. This basic equation can be
simplified further as follows:

M, = Rbd’ (431)
in which "
p—,y) (4.32)
f

R= pfy(l - 0.59
The flexural resistance factor R depends only on the reinforcement ratio and
the strengths of the materials and is easily tabulated. Tables A.5a and A.5b and
Graphs A.la and A.1b of Appendix A give R values for ordinary combinations of
steel and concrete and the full practical range of reinforcement ratios.
In accordance with the safety provisions of the ACI Code, the nominal flexural
strength M, is reduced by imposing the strength reduction factor ¢ to obtain the

design strength ¢pM,
oM, = §A.f(d = 7] (4.33)

or, alternatively,

(4.34)

oM, = ¢pfybdz(l - 0.59 p_]g)

c
or

¢M, = pRbd* (4.35)

EXAMPLE 4.4
(continued)

Calculate the design moment capacity ¢M,, for the beam analyzed earlier in Example 4.4.

SoLutioN. Comparing p with p,., or c/d, for the beam with the value of c¢/d, corresponding
t0 & min = 0.005 demonstrates that &, > 0.005. Therefore, ¢ = 0.90 and the design capacity is

¢M, = 0.9 x 248 = 223 ft-kips
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Minimum Reinforcement Ratio

Another mode of failure may occur in very lightly reinforced beams. If the flexural
strength of the cracked section is less than the moment that produced cracking of the
previously uncracked section, the beam will fail immediately and without warning
of distress upon formation of the first flexural crack. To ensure against this type of
failure, a lower limit can be established for the reinforcement ratio by equating the
cracking moment, calculated from the concrete modulus of rupture (Section 2.9), to
the strength of the cracked section.

For a rectangular section having width b, total depth %, and effective depth d
(see Fig. 4.1b), the section modulus with respect to the tension fiber is bh*/6. For
typical cross sections, it is satisfactory to assume that #/d = 1.1 and that the
internal lever arm at flexural failure is 0.95d. If the modulus of rupture is taken
as f, = 7.5 \/JTC/ , as usual, then an analysis equating the cracking moment to the
flexural strength results in

1.61/f!

smin = bd (4.36a)
5y

This development can be generalized to apply to beams having a T cross section (see
Section 4.7 and Fig. 4.17). The corresponding equations depend on the proportions
of the cross section and on whether the beam is bent with the flange (slab) in tension
or in compression. For T beams of typical proportions that are bent with the flange in
compression, analysis confirms that the minimum steel area should be

277!
5

where b,, is the width of the web, or stem, projecting below the slab. For T beams that
are bent with the flange in tension, from a similar analysis, the minimum steel area is

6.2/f!

Agmin = b,d (4.36¢)
5y

The ACI Code requirements for minimum steel area are based on the results
just discussed, but there are some differences. According to ACI Code 9.6.1, at any
section where tensile reinforcement is required by analysis, with some exceptions as
noted below, the area A, provided must not be less than

RRVA 200b,,d
—— b,d >
5 5

This applies to both positive and negative bending sections. The inclusion of the
additional limit of 200b,d/f, is merely for historical reasons; it happens to give
the same minimum reinforcement ratio that was imposed in earlier codes for then-
common material strengths. Note that in Eq. (4.37a) the section width b,, is used; it is
understood that for rectangular sections b,, = b. Note further that the ACI coefficient
of 3 is a conservatively rounded value compared with 2.7 in Eq. (4.36b) for T beams
with the flange in compression, and is very conservative when applied to rectangular
beam sections, for which a rational analysis gives 1.6 in Eq. (4.36a). This probably
reflects the view that the minimum steel for the negative bending sections of a contin-
uous T beam (which are, in effect, rectangular sections, as discussed in Section 4.7c)
should be no less than that for the positive bending sections, where the moment is
generally smaller.

As,min =

b,d (4.36b)

(4.37a)

As,min =
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ACI Code 9.6.1 treats statically determinate T beams with the flange in fension
as a special case, for which the minimum steel area is equal to or greater than the
value given by Eq. (4.37a) with b,, replaced by either 2b,, or the width of the flange,
whichever is smaller.

ACI Code Eq. (4.37a) is conveniently expressed in terms of a minimum tensile
reinforcement ratio p.;, by dividing both sides by b, d.

3vVE 200

> — (4.37b)
Lo b

According to ACI Code 9.6.1, the requirements of Eq. (4.37a) need not be
imposed if, at every section, the area of tensile reinforcement provided is at least
one-third greater than that required by analysis. This provides sufficient reinforce-
ment for large members such as grade beams, where the usual equations would
require excessive amounts of steel.

For structural slabs and footings of uniform thickness, the minimum area of
tensile reinforcement in the direction of the span is that required for shrinkage and
temperature steel (see Section 12.3 and Table 12.2), and the above minimums need
not be imposed. The maximum spacing of such steel is the smaller of 3 times the
total slab thickness or 18 in.

Pmin =

Examples of Rectangular Beam Analysis and Design

Flexural problems can be classified broadly as analysis problems or design problems.
In analysis problems, the section dimensions, reinforcement, and material strengths
are known, and the moment capacity is required. In the case of design problems, the
required moment capacity is given, as are the material strengths, and it is required to
find the section dimensions and reinforcement. Examples 4.5 and 4.6 illustrate analysis
and design, respectively.

EXAMPLE 4.5

Telegram: @uni_k

Flexural strength of a given member. A rectangular beam has width 12 in. and effective
depth 17.5 in. It is reinforced with four No. 8 (No. 25) bars in one row. If f, = 60,000 psi

and f; = 4000 psi, what is the nominal flexural strength, and what is the maximum moment
that can be utilized in design, according to the ACI Code?

SorutioN. From Table A.2 of Appendix A, the area of four No. 8 (No. 25) bars is 3.16 in*.
Assuming that the beam is underreinforced and using Eq. (4.28),

g B 316x60
0.85f/b 0.85x4x 12

= 4.65 in.

The depth of the neutral axis is ¢ = a/f; = 4.65/0.85 = 5.47, giving

< 34 _ 313
4 175

which is less than 0.375, the value corresponding to ¢, = 0.005, as shown in Fig. 4.10. Thus, the beam
is, as assumed, underreinforced, and from Eq. (4.27)

M, = As.fy(d - %) =3.16 X 60 (17.5 - %) = 2880 in-kips



www.konkur.in

FLEXURAL ANALYSIS AND DESIGN OF BEAMS 103

The fact that the beam is underreinforced could also have been established by calculating
p=3.16/(12 x 17.5) = 0.0151, which is less than p,,,, Which is calculated using Eq. (4.26d).

1 £,
Proax = 0854, 25— = (.85 x 0.85
f, €.+ &, + 0.003

i)( 0003 | _ 0181

60/10.003 + 0.005

Thus, ¢ = 0.90, and the design strength is taken as
¢M, = 0.90 x 2880 = 2590 in-kips

The ACI Code limit for the minimum reinforcement ratio

3V 200 _ 3v/4000 _ 200
Prin = 2= > = 0.0033
5 1 60,000 ~ 60,000

is satisfied for this beam.

EXAMPLE 4.6

FIGURE 4.12
Structural loads for
Example 4.6.
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Concrete dimensions and steel area to resist a given moment. Find the concrete cross
section and the steel area required for a simply supported rectangular beam with a span of 15 ft
that is to carry a calculated dead load of 1.27 kips/ft and a service live load of 2.15 kips/ft, as
shown in Fig. 4.12. Material strengths are f; = 4000 psi and f, = 60,000 psi.

SoLutioN. Load factors are first applied to the given service loads to obtain the factored
load for which the beam is to be designed, and the corresponding moment:

Wy = 12 X 127 + 1.6 X 2.15 = 4.96 kips/ft
M, = % X 4.96 x 15% x 12 = 1670 in-kips

The concrete dimensions depend on the designer’s choice of reinforcement ratio. To minimize
the concrete section, it is desirable to select the maximum permissible reinforcement ratio. To
maintain ¢ = 0.9, the maximum reinforcement ratio corresponding to a net tensile strain of
0.005 for Grade 60 reinforcement is selected (see Fig. 4.9). Then, from Eq. (4.26d)

L& 4 )

Prmux = OSSﬁl f & + €t min 60

0.003

= 0.85 x 0.85 —
0.003 + 0.005

)= 0.0181

Setting the required flexural strength equal to the design strength from Eq. (4.34), and substituting
the selected values for p and material strengths,

M, = oM,

1670 = 0.90 X 0.0181 x 60bd2(1 ~ 059 M)
from which

bd* = 2040 in’

A beam with width b = 10 in. and d = 14.3 in. satisfies this requirement. The required steel
area is found by applying the chosen reinforcement ratio to the required concrete dimensions:

A, = 0.0181 x 10 x 14.3 = 2.59 in’
Two No. 10 (No. 32) bars provide 2.54 in”, which is very close to the required area.
Service live load = 215 kips/ft
Calculated dead load = 1.27 kips/ft ﬁ
(including beam self-weight) e

ed
‘4—15/_0// —><
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Assuming 2.5 in. concrete cover from the centroid of the bars, the required total depth
is & = 16.8 in. In actual practice, however, the concrete dimensions b and h are always
rounded up to the nearest inch, and often to the nearest multiple of 2 in. (see Section 4.4).
The actual d is then found by subtracting the required concrete cover dimension from /. For
the present example, b = 10 in. and & = 18 in. are selected, resulting in effective depth
d = 15.5 in. Improved economy then may be possible, refining the steel area based on the
actual, larger, effective depth. One can obtain the revised steel requirement directly by solv-
ing Eq. (4.34) for p, with ¢M, = M,. A quicker solution can be obtained by iteration. First
a reasonable value of a is assumed, and A; is found from Eq. (4.33). From Eq. (4.28) a revised
estimate of a is obtained, and A; is revised. This method converges very rapidly. For example,
assume a = 5 in. Then

M, 1670

7 a)y 090 x 60(15.5 - 5/2 238 in’
(,bfy(d - 5) 90 x 60(15.5 — 5/2)
Checking the assumed a gives
A,f,
2k — _238x60 4.20 in.

CT085 b 085 x4x10

This is close enough to the assumed value that no further calculation is required. The required
steel area of 2.38 in” could be provided using three No. 8 (No. 25) bars, but for simplicity of
construction, two No. 10 (No. 32) bars will be used as before.

A somewhat larger beam cross section using less steel may be more economical and
will tend to reduce deflections. As an alternative solution, the beam will be redesigned with
a lower reinforcement ratio of p = 0.60p,,,x = 0.60 X 0.0181 = 0.0109. Setting the required
strength equal to the design strength [Eq. (4.34)] as before,

0.0109 x 60

1670 = 0.90 x 0.0109 x 60bd*(1 — 0.59 1

and
bd* = 3140 in’
A beam with b = 10 in. and d = 17.7 in. meets the requirement, for which
A, = 0.0109 x 10 x 17.7 = 1.93 in?

Two No. 9 (No. 29) bars are sufficient, providing an area of 2.00 in>. If the total concrete height
is rounded to 20 in., a 17.5 in. effective depth results, increasing the required steel area to
1.96 in®. Two No. 9 (No. 29) bars remain the best choice.
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It is apparent that an infinite number of solutions to the stated problem are
possible, depending upon the reinforcement ratio selected. That ratio may vary from
an upper limit of p .. to a lower limit of 3\/]? /fy = 200/f, for beams, according to
the ACI Code. To compare the two solutions (using the theoretical dimensions,
unrounded for the comparison, and assuming /4 is 2.5 in. greater than d in each case),
increasing the concrete section area by 14 percent achieves a steel saving of 20 percent.
The second solution would likely be more economical and would be preferred, unless
beam dimensions must be minimized for architectural or functional reasons. Economical
designs typically have reinforcement ratios between 0.50p,,,, and 0.75p,,..

There is a type of problem, occurring frequently, that does not fall strictly into
either the analysis or the design category. The concrete dimensions are given and
are known to be adequate to carry the required moment, and it is necessary only to
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find the steel area. Typically, this is the situation at critical design sections of con-
tinuous beams, in which the concrete dimensions are often kept constant, although
the steel reinforcement varies along the span according to the required flexural resist-
ance. Dimensions b, d, and h are determined at the maximum moment section,
usually at one of the supports. At other supports, and at midspan locations, where
moments are usually smaller, the concrete dimensions are known to be adequate and
only the tensile steel remains to be found. An identical situation was encountered in
the design problem of Example 4.6, in which concrete dimensions were rounded up
from the minimum required values, and the required steel area was to be found. In
either case, the iterative approach demonstrated in Example 4.6 is convenient.

EXAMPLE 4.7

Determination of steel area. Using the same concrete dimensions as were used for the
second solution of Example 4.6 (b = 10 in., d = 17.5 in., and & = 20 in.) and the same
material strengths, find the steel area required to resist a moment M, of 1300 in-kips.

SoLuTtioN. Assume a = 4.0 in. Then

A, = 1300 = 1.55 in?
0.90 x 60(17.5 — 4.0/2)
Checking the assumed a gives
a=1PXO0 5o,
0.85 x4 x 10
Next assume a = 2.6 in. and recalculate Aj:
1300 = 149 in®

A =
*0.90 x 60(17.5 — 1.3)

No further iteration is required. Use A; = 1.49 in>. Two No. 8 (No. 25) bars, A, = 1.58 in?, will
be used. A check of the reinforcement ratio shows p < p... and ¢ = 0.9.
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EXAMPLE 4.8

Determination of steel area for a fixed concrete section. Architectural considerations
limit the height of a 20 ft long simple span beam to 16 in. and the width to 12 in. The fol-
lowing loads and material properties are given: w, = 0.79 kips/ft, w, = 1.65 kips/ft, f, =
5000 psi, and f, = 60,000 psi. Determine the reinforcement for the beam.

SoLutioN. Calculating the factored loads gives

w, =12x0.79 + 1.6 x 1.65 = 3.59 kips/ft
2
M, = 3.59 x % = 179 ft-kips = 2150 in-kips
Assume a = 4.0 in. and ¢ = 0.90. The effective depth is (16 — 2.5) in. = 13.5 in. Calculating
A, gives
M,/$  2150/0.90

s = = = 3.46 in’
fi(d = a/2)  60(13.5 — 2.0)

Try two No. 10 (No. 32) and one No. 9 (No. 29) bar, A, = 3.54 in’.
Check a = 3.54 X 60/(0.85 X 5 x 12) = 4.16 in. from Eq. (4.28). This is more than
assumed; therefore, continue to check the moment capacity.

M, = 3.54 x 60(13.5 — 4.16/2) = 2426 in-kips
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Using a ¢ of 0.90 gives ¢M, = 2183 in-kips, which is adequate; however, the net tensile strain
must be checked to validate the selection of ¢p = 0.9. In this case ¢ = a/f; = 4.16/0.80 = 5.20 in.
The ¢/d ratio is 0.385 > 0.375, indicating that the criterion for a tension-controlled section for
Grade 60 reinforcement of ¢, > 0.005 is not satisfied. In this case, the net tensile strain is

e, = 6,47~ 0003 33252 _ 00479
c 52

To maintain the architectural depth limitations, two design options are possible: increase the
width of the beam or increase the strength of the concrete.

Option I: Increase the beam width by 2 inches.

3.81 x 60

a=-—2X20 —3844n,
085 x5 x 14
c=38%_ 480 in.
0.80
c _ 4.80

—=——=10.356 < 0.375 and ¢ = 0.90
d, 135

M, =381 x 60(13.5 - %) — 265 in-kips

M., = ¢M, = 0.90 x 2650 = 2380 in-kips
The nominal and design moments increase slightly and ¢ = 0.90, allowing the section to meet
the design requirements.

Option 2: Increase the concrete strength to 6000 psi.

a=-38LXO0 544,
0.85 x 6 x 12
c=37%_ 498 in.
0.75
€ _ 3498 _ 369 < 0.375 and ¢ = 0.90
d,” 135

M, =3.81 x 60(13.5 - %) = 2660 in-kips

M. = ¢M, = 0.90 x 2660 = 2390 in-kips

Again, the nominal and design moments increase slightly and ¢ = 0.90, allowing the section to
meet the design requirements.

In actuality, the first solution deviates less than 1 percent from the desired value and
would likely be acceptable. The remaining portion of the example demonstrates the design
implications of requiring a tension-controlled section. Option 1 is preferable to maintain a
common concrete strength in the structure. Option 2 may require different concrete strengths
in the structure and would be selected only if the width dimension of the section could not
be revised.
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In solving these examples, the basic equations have been used to develop familiarity
with them. In actual practice, however, design aids such as Table A.4 of Appendix A,
giving values of maximum and minimum reinforcement ratios, and Table A.5 and
Graph A.1, providing values of flexural resistance factor R, are more convenient. The
example problems are repeated in Section 4.4 to demonstrate the use of these aids.
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Overreinforced Beams

According to the ACI Code, all beams are to be designed for yielding of the tension
steel with & > &, i, or p < phax. Occasionally, however, such as when analyzing the
capacity of existing construction or members built under earlier Codes, it may be nec-
essary to calculate the flexural strength of an overreinforced compression-controlled
member, for which f; is less than f; at flexural failure.

In this case, the steel strain, in Fig. 4.11b, will be less than the yield strain,
but can be expressed in terms of the concrete strain &, and the still-unknown distance
¢ to the neutral axis:

(4.38)

From the equilibrium requirement that C = T, one can write
0.85p, f. bc = pe,Ebd

Substituting the steel strain from Eq. (4.38) in the last equation, and defining k, = ¢/d,
one obtains a quadratic equation in k&, as follows:

ki + mpk, — mp = 0

Here, p = A, /bd as usual, and m is a material parameter given by

ESEM
m=—— (4.39)
0.85p, f,
Solving the quadratic equation for &,
mp\2  mp
ky = + (—) _ 4.40
mp + = > (4.40)

The neutral axis depth for the overreinforced beam can then easily be found from
¢ = k,d, after which the stress-block depth a = f3;c. With steel strain &, then calculated
from Eq. (4.38), and with f; = E e, the nominal flexural strength is

M, = Asﬁ(d - %) 4.41)

The strength reduction factor ¢ will equal 0.65 for beams in this range or slightly
higher if the net tensile strain is in the transition zone shown in Fig. 4.9.

DESIGN AIDS

Basic equations were developed in Section 4.3 for the analysis and design of rein-
forced concrete beams, and these were used directly in the examples. In practice,
the design of beams and other reinforced concrete members is greatly facilitated
by the use of aids such as computer software and those in Appendix A of this text
and in Refs. 4.7 through 4.9. Tables A.1, A.2, A.4 through A.7, and Graph A.1 of
Appendix A relate directly to this chapter, and the student can scan this material
to become familiar with the coverage. Other aids will be discussed, and their use
demonstrated, in later chapters.
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Equation (4.35) gives the flexural design strength ¢M, of an underreinforced
rectangular beam with a reinforcement ratio at or below p,. The flexural resistance
factor R, from Eq. (4.32), is given in Table A.5a for lower reinforcement ratios or
Table A.Sb for higher reinforcement ratios. Alternatively, R can be obtained from
Graph A.1. For analysis of the capacity of a section with known concrete dimensions
b and d, having known reinforcement ratio p, and with known materials strengths,
the design strength ¢)M,, can be obtained directly by Eq. (4.35).

For design purposes, where concrete dimensions and reinforcement are to be
found and the factored load moment M, is to be resisted, there are two possible
approaches. One approach starts with selecting the optimum reinforcement ratio and
then calculating concrete dimensions, as follows:

1. Set the required strength M, equal to the design strength ¢M,, from Eq. (4.35):
M, = ¢pRbd*

2. With the aid of Table A.4, select an appropriate reinforcement ratio between
Pmax and pi,. Often a ratio of about 0.60p,,,, Will be an economical and practical
choice. Selection of p < p.x (€, > €, min) €nsures that ¢ remains equal to 0.90.

3. From Table A.5, for the specified material strengths and selected reinforcement
ratio, find the flexural resistance factor R. Then

M

4. Choose b and d to meet that requirement. Unless construction depth must be lim-
ited or other constraints exist (see Section 11.6), an effective depth about 2 to
3 times the width is often appropriate.

5. Calculate the required steel area

bd*

A, = pbd

Then, referring to Table A.2, choose the size and number of bars, giving prefer-
ence to the larger bar sizes to minimize placement costs.

6. Refer to Table A.7 to ensure that the selected beam width provides room for the
bars chosen, with adequate concrete cover and spacing. (These points are discussed
further in Section 4.5.)

The alternative approach starts with selecting concrete dimensions (see
Section 11.6 for practical guidelines), after which the required reinforcement is
found, as follows:

1. Select beam width b and effective depth d. Then calculate the required R:
ML(
R =
¢pbd*

2. Using Table A.5 for specified material strengths, find the reinforcement ratio
P < pmax that provides the required value of R.
3. Calculate the required steel area

A, = pbd

and from Table A.2 select the size and number of bars.
4. Using Table A.7, confirm that the beam width is sufficient to contain the selected
reinforcement.
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Use of design aids to solve the example problems of Section 4.3 is illustrated
as follows.

EXAMPLE 4.9

Flexural strength of a given member. Find the nominal flexural strength and design strength
of the beam in Example 4.5, which has b = 12 in. and d = 17.5 in. and is reinforced with four
No. 8 (No. 25) bars. Make use of the design aids of Appendix A. Material strengths are
f = 4000 psi and f, = 60,000 psi.

SorutioN. From Table A.2, four No. 8 (No. 25) bars provide A, = 3.16 in?, and with
b = 12 in. and d = 17.5 in., the reinforcement ratio is p = 3.16/(12 x 17.5) = 0.0150.
According to Table A.4, this is less than p,,, = 0.0181 and above p,;, = 0.0033. Then from
Table A.5b, with f," = 4000 psi, fy = 60,000 psi, and p = 0.015, the value R = 781 psi is
found. The nominal and design strengths with ¢ = 0.90 from Example 4.5 are, respectively,

2
M, = Rbd® = 781 x 12 x % — 2870 in-kips

¢M, = 0.90 x 2870 = 2580 in-kips

If R had been interpolated based on p = 0.0151, as used in Example 4.5, the solution would
have been as before.

EXAMPLE 4.10

Concrete dimensions and steel area to resist a given moment. Find the cross section of
concrete and the area of steel required for the beam in Example 4.6, making use of the design
aids of Appendix A. M, = 1670 in-kips, f, = 4000 psi, and f, = 60,000 psi. Use a reinforce-
ment ratio of 0.60p,,,- V

SorutioN. From Table A.4, the maximum reinforcement ratio is p,,,, = 0.0181. For economy,
a value of p = 0.60p,,,, = 0.0109 will be used. For that value, by interpolation from Table A.5a,
the required value of R is 596. Then

M, 1670 x 1000

=t = = 3113 in’
dR ~ 0.90 x 596

bd?

Concrete dimensions » = 10 in. and d = 17.6 in. satisfy this, but the depth will be rounded to
17.5 in. to provide a total beam depth of 20.0 in. It follows that

R = M, _ 1670 x 1000
¢bd®> 090 x 10 x 17.5%

= 606 psi

and from Table A.5a, by interpolation, p = 0.0112. This leads to a steel requirement of
A, =0.0112 x 10 x 17.5 = 1.96 in* as before.
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EXAMPLE 4.11

Determination of steel area. Find the steel area required for the beam in Example 4.7,
with concrete dimensions b = 10 in. and d = 17.5 in. known to be adequate to carry the
factored load moment of 1300 in-Ib. Material strengths are f; = 4000 psi and f, = 60,000 psi.
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SoLutioN. Note that in cases in which the concrete dimensions are known to be adequate
and only the reinforcement must be found, the iterative method used earlier is not required.
The necessary flexural resistance factor is

R = M, __ 1300 x 1000
¢bd*  0.90 x 10 x 17.5*

= 472 psi
According to Table A.5a, with the specified material strengths, this corresponds to a reinforce-
ment ratio of p = 0.0085, giving a steel area of
A, = 0.0085 x 10 x 17.5 = 1.49 in?
as before. Two No. 8 (No. 25) bars will be used, providing A, = 1.58 in*.
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4.5

The tables and graphs of Appendix A give basic information and are used
extensively throughout this text for illustrative purposes. The reader should be aware,
however, of the greatly expanded versions of these tables, plus many other useful
aids, that are found in Refs. 4.7 through 4.9 and in commercial design software.

PRACTICAL CONSIDERATIONS IN THE DESIGN OF BEAMS

To focus attention initially on the basic aspects of flexural design, the preceding exam-
ples were carried out with only minimum regard for certain practical considerations
that always influence the actual design of beams. These relate to optimal concrete pro-
portions for beams, rounding of dimensions, standardization of dimensions, required
cover for main and auxiliary reinforcement, and selection of bar combinations. Good
judgment on the part of the design engineer is particularly important in translating
from theoretical requirements to practical design. Several of the more important
aspects are discussed here; much additional guidance is provided by the publications
of ACI (Refs. 4.7 and 4.8) and CRSI (Refs. 4.9 to 4.11).

Concrete Protection for Reinforcement

To provide the steel with adequate concrete protection against fire and corrosion, the
designer must maintain a certain minimum thickness of concrete cover outside of the
outermost steel. The thickness required will vary, depending upon the type of member
and conditions of exposure. According to ACI Code 20.5.1, for cast-in-place concrete,
concrete protection at surfaces not exposed directly to the ground or weather should
be not less than % in. for slabs and walls and l% in. for beams and columns. If the con-
crete surface is to be exposed to the weather or in contact with the ground, a protective
covering of at least 2 in. is required [1% in. for No. 5 (No. 16) and smaller bars], except
that if the concrete is cast in direct contact with the ground without the use of forms, a
cover of at least 3 in. must be furnished.

In general, the centers of main flexural bars in beams should be placed 2% to 3 in.
from the top or bottom surface of the beam to furnish at least 1% in. of clear cover
for the bars and the stirrups (see Fig. 4.13). In slabs, 1 in. to the center of the bar
is ordinarily sufficient to give the required % in. cover.

To simplify construction and thereby to reduce costs, the overall concrete
dimensions of beams, b and h, are almost always rounded up to the nearest inch,
and often to the next multiple of 2 in. As a result, the actual effective depth d, found



www.konkur.in

FIGURE 4.13
Requirements for concrete
cover in beams and slabs not
exposed to weather or in
contact with ground.
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by subtracting the sum of cover distance, stirrup diameter, and one-half the main
reinforcing bar diameter from the total depth /4, is seldom an even dimension. For
slabs, the total depth is generally rounded up to the nearest % in. The differences
between h and d shown in Fig. 4.13 are not exact, but are satisfactory for design
purposes for beams with No. 4 (No. 13) stirrups and No. 10 (No. 32) longitudinal
bars or smaller, and for slabs using No. 4 (No. 13) or smaller bars. If larger bars are
used for the main flexural reinforcement or for the stirrups, as is frequently the case,
the corresponding dimensions are easily calculated.

Recognizing the closer tolerances that can be maintained under plant-control
conditions, ACI Code 20.5.1 permits some reduction in concrete protection for rein-
forcement in precast concrete.

Concrete Section Proportions

Reinforced concrete beams may be wide and shallow, or relatively narrow and deep. Con-
sideration of maximum material economy often leads to proportions with effective depth d
in the range from about 2 to 3 times the width b (or web width b,, for T beams). However,
constraints may dictate other choices, and as will be discussed in Section 11.6, maximum
material economy may not translate to maximum structural economy. For example, with
one-way concrete joists supported by monolithic beams (see Fig. 1.2 and Chapter 19), use
of beams and joists with the same total depth will permit the use of a single flat-bottom
form, resulting in fast, economical construction and permitting level ceilings. The beams
will generally be wide and shallow, with heavier reinforcement than otherwise, but the
result will be an overall saving in construction cost. In other cases, it may be necessary
to limit the total depth of floor or roof construction for architectural or other reasons. An
advantage of reinforced concrete is its adaptability to such special needs.

Selection of Bars and Bar Spacing

As noted in Section 2.14, common reinforcing bar sizes range from No. 3 to No. 11
(No. 10 to No. 36), the bar number corresponding closely to the number of eighth-inches
(millimeters) of bar diameter. The two larger sizes, No. 14 (No. 43) [1% in. (43 mm)
diameter] and No. 18 (No. 57) [2% in. (57 mm) diameter] are used mainly in columns.
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It is often desirable to mix bar sizes to meet steel area requirements more
closely. In general, mixed bars should be of comparable diameter, for practical
as well as theoretical reasons, and generally should be arranged symmetrically
about the vertical centerline. Many designers limit the variation in diameter of
bars in a single layer to two bar sizes, using, say, No. 10 and No. 8 (No. 32 and
No. 25) bars together, but not Nos. 11 and 6 (Nos. 36 and 19). There is some
practical advantage to minimizing the number of different bar sizes used for a
given structure.

Normally, it is necessary to maintain a certain minimum distance between
adjacent bars to ensure proper placement of concrete around them. Air pockets
below the steel are to be avoided, and full surface contact between the bars and
the concrete is desirable to optimize bond strength. ACI Code 25.2 specifies that
the minimum clear distance between adjacent bars not be less than the nominal
diameter of the bars, or 1 in. (For columns, these requirements are increased to 1%
bar diameters and 1% in.) Where beam reinforcement is placed in two or more
layers, the clear distance between layers must not be less than 1 in., and the bars
in the upper layer should be placed directly above those in the bottom layer. In no
case should the clear spacing of reinforcement be less than % of the maximum
aggregate size, a requirement that good practice suggests should be applied to the
clear cover of reinforcement as well.

The maximum number of bars that can be placed in a beam of given width is
limited by bar diameter and spacing requirements and is also influenced by stirrup
diameter, concrete cover requirement, and the maximum size of concrete aggregate
specified. Table A.7 of Appendix A gives the maximum number of bars that can be
placed in a single layer in beams, assuming 1% in. concrete cover and the use of No. 4
(No. 13) stirrups. When using the minimum bar spacing in conjunction with a large
number of bars in a single plane of reinforcement, the designer should be aware that
problems may arise in the placement and consolidation of concrete, especially when
multiple layers of bars are used or when the bar spacing is smaller than the size of the
vibrator head.

There are also restrictions on the minimum number of bars that can be placed
in a single layer, based on requirements for the distribution of reinforcement to
control the width of flexural cracks (see Section 7.3). Table A.8 gives the minimum
number of bars that satisfy ACI Code requirements, which will be discussed in
Chapter 7.

In large girders and columns, it is sometimes advantageous to “bundle”
tensile or compressive reinforcement with two, three, or four bars in contact to
provide for better deposition of concrete around and between adjacent bundles.
These bars may be assumed to act as a unit, with not more than four bars in
any bundle, provided that stirrups or ties enclose the bundle. No more than two
bars should be bundled in one plane; typical bundle shapes are triangular, square,
or L-shaped patterns. Individual bars in a bundle, cut off within the span of
flexural members, should terminate at different points. ACI Code 25.6.1 requires
at least 40 bar diameters stagger between points of cutoff. Where spacing lim-
itations and minimum concrete cover requirements are based on bar diameter, a
unit of bundled bars is treated as a single bar with a diameter that provides the
same total area.

ACI Code 25.6.1 states that bars larger than No. 11 (No. 36) shall not be bun-
dled in beams, although the AASHTO Specifications permit bundling of No. 14 and
No. 18 (No. 43 and No. 57) bars in highway bridges.
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RECTANGULAR BEAMS WITH TENSION
AND COMPRESSION REINFORCEMENT

If a beam cross section is limited because of architectural or other considerations, it may
happen that the concrete cannot develop the compression force required to resist the
given bending moment. In this case, reinforcement is added in the compression zone,
resulting in a doubly reinforced beam, that is, one with compression as well as tension
reinforcement (see Fig. 4.14). The use of compression reinforcement has decreased
markedly with the use of strength design methods, which account for the full-strength
potential of the concrete on the compressive side of the neutral axis. However, there are
situations in which compressive reinforcement is used for reasons other than strength.
It has been found that the inclusion of some compression steel will reduce the long-
term deflections of members (see Section 7.5). In addition, in some cases, bars will be
placed in the compression zone for minimum-moment loading (see Section 11.2) or as
stirrup support bars continuous throughout the beam span (see Chapter 5). It may be
desirable to account for the presence of such reinforcement in flexural design, although
in many cases it is neglected in flexural calculations.

Tension and Compression Steel Both at Yield Stress

If, in a doubly reinforced beam, the tensile reinforcement ratio p is less than or equal
to p;, the strength of the beam may be approximated within acceptable limits by dis-
regarding the compression bars. The strength of such a beam will be controlled by
tensile yielding, and the lever arm of the resisting moment will ordinarily be little
affected by the presence of the compression bars.

If the tensile reinforcement ratio is larger than p,, a somewhat more elaborate
analysis is required. In Fig. 4.14a, a rectangular beam cross section is shown with
compression steel A; placed a distance d’ from the compression face and with tensile
steel A, at effective depth d. It is assumed initially that both A; and A, are stressed
to f, at failure. The total resisting moment can be thought of as the sum of two parts.
The first part, M,;, is provided by the couple consisting of the force in the compres-
sion steel A, and the force in an equal area of tension steel

M, = A;fy(d —-d") 4.42a)
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FIGURE 4.14

Doubly reinforced rectangular beam.
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as shown in Fig. 4.14d. The second part, M,,, is the contribution of the remaining
tension steel A, — A; acting with the compression concrete

My = (A — A;)fy(d - %) (4.42b)
as shown in Fig. 4.14e, where the depth of the stress block is
a=—— h (4.43a)
0.85f b
With the definitions p = A,;/bd and p’ = A;/bd, this can be written
- pfd
a= M (4.43b)
0.85f,
The total nominal moment is then
M, =M, +M,=Af,d-d)+ @A, - A;)fy(d - %) (4.44)

In accordance with the safety provisions of the ACI Code, the net tensile strain is
checked; and if €, > &,,,;,, this nominal capacity is reduced by the factor ¢ = 0.90 to
obtain the design strength.

It is highly desirable, for reasons given earlier, that failure, should it occur, be
precipitated by tensile yielding rather than crushing of the concrete. This can be
ensured by setting an upper limit on the tensile reinforcement ratio. By setting the
tensile steel strain in Fig. 4.14b equal to &, to establish the location of the neutral
axis for the failure condition and then summing horizontal forces shown in Fig. 4.14¢
(still assuming the compressive steel to be at the yield stress at failure), it is easily
shown that the balanced reinforcement ratio p;, for a doubly reinforced beam is

Py =pp+p (4.45)

where p,, is the balanced reinforcement ratio for the corresponding singly reinforced
beam and is calculated from Eq. (4.24). The ACI Code establishes the strength reduc-
tion factor ¢ based on the net tensile strain, not the reinforcement ratio. The maximum
reinforcement ratio for ¢ = 0.90 is

Pmax = Pmax T P’ (4.46)

Since py,.« corresponds to &, = &, iy, N0 check of ¢, is required to determine the strength
reduction factor ¢ if p < ppax-

Compression Steel below Yield Stress

The preceding equations, through which the fundamental analysis of doubly rein-
forced beams is developed clearly and concisely, are valid only if the compression
steel yields when the beam reaches its nominal capacity. In many cases, such as for
wide, shallow beams, beams with more than the usual concrete cover over the com-
pression bars, beams with high yield strength steel, or beams with relatively small
amounts of tensile reinforcement, the compression bars will be below the yield stress
at failure. It is necessary, therefore, to develop more generally applicable equations to
account for the possibility that the compression reinforcement has not yielded when
the doubly reinforced beam fails in flexure.
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Whether or not the compression steel yields at failure can be determined as
follows. Referring to Fig. 4.14b, and taking as the limiting case &; = ¢,, one obtains,
from geometry,

£ — &y or ¢ = &y d,

d & — & £, — &,
Summing forces in the horizontal direction (Fig. 4.14¢) gives the minimum tensile
reinforcement ratio p,, that will ensure yielding of the compression steel at failure:

_ fa e
o= 0858 — = +p
Pey /ﬁ}idgu_gy P

(4.47)

If the tensile reinforcement ratio is less than this limiting value, the neutral
axis is sufficiently high that the compression steel stress at failure will be less than
the yield stress. In this case, it can easily be shown on the basis of Fig. 4.14b and
c that the balanced reinforcement ratio is

!

_ s
Po=pp+p (4.48)
1,

where

fi = E¢; = E; </ (4.49a)

d(
&y — F(eu + gy)
To determine p,,y, € = € min is substituted for €, in Eq. (4.49q), giving

I = E; <f (4.49b)

d/
& — 7(€u + et,min)

Hence, the maximum reinforcement ratio permitted for ¢ = 0.90 is

Pmax = Pmax + P’ £ (4.50)
5
where f; is given by Eq. (4.49b). A simple comparison shows that Egs. (4.48) and
(4.50), with f, given by Egs. (4.49a) and (4.49b), respectively, are the generalized
forms of Egs. (4.45) and (4.46).

It should be emphasized that Eqs. (4.49a) and (4.49bh) for compression steel
stress apply only for beams with exact strain values in the extreme tensile reinforce-
ment of €, and &, = &, rESpectively.

If the tensile reinforcement ratio is less than p,, as given by Eq. (4.48), and
less than p,,, as given by Eq. (4.47), then the tensile steel is at the yield stress at
failure but the compression steel is not, and new equations must be developed for
compression steel stress and flexural strength. The compression steel stress can be
expressed in terms of the still-unknown neutral axis depth as

c—d

fY, = euEs c

4.51)

Consideration of horizontal force equilibrium (Fig. 4.14c¢ with compression steel stress
equal to f;) then gives

A, fy = 0.856, f.bc + Age,E,

c—d
— (4.52)
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This is a quadratic equation in ¢, the only unknown, and is easily solved for c. The
nominal flexural strength is found using the value of f; from Eq. (4.41), and a = f\c
in the expression

M, = 0.85f ab(d - %) + A fd-d) (4.53)

This nominal capacity is reduced by the strength reduction factor ¢ to obtain the
design strength. As the yield strength of the reinforcement is increased, yielding of the
compression reinforcement becomes more unlikely. For example, the yield strain of
Grade 100 reinforcement is 0.0034, yet the maximum strain in the concrete is 0.003;
thus Grade 100 reinforcement cannot yield in compression.

If compression bars are used in a flexural member, precautions must be taken
to ensure that these bars will not buckle outward under load, spalling off the outer
concrete. ACI Code 9.7.6.4 imposes the requirement that such bars be enclosed by
closed stirrups or hoops much in the same way that compression bars in columns are
enclosed by transverse ties (Section 9.2). Such transverse reinforcement must be used
throughout the distance where the compression reinforcement is required.

Examples of Analysis and Design of Beams with Tension
and Compression Steel

As was the case for beams with only tension reinforcement, doubly reinforced beam
problems can be placed in one of two categories: analysis problems or design prob-
lems. For analysis, in which the concrete dimensions, reinforcement, and material
strengths are given, one can find the flexural strength directly from the equations in
Section 4.6a or 4.6b. First, it must be confirmed that the tensile reinforcement ratio is
less than p,, given by Eq. (4.48), with compression steel stress from Eq. (4.49a). Once
it is established that the tensile steel has yielded, the tensile reinforcement ratio
defining compression steel yielding is calculated from Eq. (4.47), and compared
to the actual tensile reinforcement ratio. If it is greater than p,,, then f; = f,,
and M, is found from Eq. (4.44). If it is less than p,, then f| < f,. In this case,
¢ is calculated by solving Eq. (4.52), f; comes from Eq. (4.53), and M,, is found from
Eq. (4.53).

For design, in which case the factored moment M, to be resisted is known
and the section dimensions and reinforcement are to be found, a direct solution is
impossible. The steel areas to be provided depend on the steel stresses, which are
not known before the section is proportioned. It can be assumed that the compres-
sion steel stress is equal to the yield stress, but this must be confirmed; if it has
not yielded, the design must be adjusted. The design procedure can be outlined as
follows:

1. Calculate the maximum moment that can be resisted by the underreinforced
section with p = p,,.., to ensure that ¢ = 0.90. The corresponding tensile steel area
is Ay = pbd, and, as usual,

=gl

with
A f,
a =
0.85f/ b
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2. Find the excess moment, if any, that must be resisted, and set M, = M,, as
calculated in step 1.
M,
]

Now A, from step 1 is defined as Ay, that is, that part of the tension steel area
in the doubly reinforced beam that works with the compression force in the con-
crete. In Fig. 4.14e, A, — A; = Ay,.

3. Tentatively assume that f; = f,. Then

M1=

_M2

’ Ml
Ay = ———
fHd—=4d)

4. Add an additional amount of tensile steel A,; = A_. Thus, the total tensile steel
area A, is Ay, from step 2 plus Ay;.

5. Analyze the doubly reinforced beam to see if f; = f,; that is, check the tensile
reinforcement ratio against p...

6. If p < p,,, then the compression steel stress is less than f; and the compression
steel area must be increased to provide the needed force. This can be done as
follows. The stress block depth is found from the requirement of horizontal equi-
librium (Fig. 4.14e),

Ay — A)fy or [As = AL DN
— a =
0.85f/b 0.85f/b
and the neutral axis depth is ¢ = a/f,. From Eq. (4.51),
r_ c—d’
I = &k - a—

The revised compression steel area, acting at f, , must provide the same force as
the trial steel area that was assumed to act at f,. Therefore,

’ ’ f.;]

s;revised — ‘s trial f/
s

The tensile steel area need not be revised, because it acts at f, as assumed. Using
a spreadsheet or MathCAD, steps 3 through 6 are easily solved by varying f; .
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EXAMPLE 4.12 Flexural strength of a given member. A rectangular beam, shown in Fig. 4.15, has a

width of 12 in. and an effective depth to the centroid of the tension reinforcement of 24 in.
The tension reinforcement consists of six No. 10 (No. 32) bars in two rows. For simplicity
in calculating ¢, d, will be taken as d. Compression reinforcement consisting of two No. 8
(No. 25) bars is placed 2.5 in. from the compression face of the beam. If f, = 60,000 psi
and f; = 5000 psi, what is the design moment capacity of the beam?

SoLuTtioN. The steel areas and ratios are
7.62

A, = 7.62 in’ =22 —0.02
s 62 in P 12 x 24 0.0265
) 1.58
Al =1. 2 = =0.
! 58 in P =i 0.0055

Check the beam first as a singly reinforced beam to see if the compression bars can be disregarded,

Pmax = 0.0243  from Table A.4 or Eq. (4.26d)
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FIGURE 4.15
Doubly reinforced beam of
Example 4.12.

1n
22

I 12// |
| |

2 No. 8 (No. 25) @ a —

24"

6 No. 10 (No. 32) —

The actual p = 0.0265 is larger than p,,,,, so the beam must be analyzed as doubly reinforced.
From Eq. (4.47), with 5, = 0.80,

Pey = 0.85 x 0.80 x S X 25 X 0003 + 0.0055 = 0.0245

60 24  0.003 — 0.00207

The tensile reinforcement ratio is greater than this, so the compression bars yield when the
beam fails. The maximum reinforcement ratio thus can be found from Eq. (4.46),

Pmax = 0.0213 4 0.0055 = 0.0268

The actual tensile reinforcement ratio is below the maximum value, as required. Then, from

Eq. (4.43a),

A — A)fy  (7.62 — 1.58)60
085fb  085x5x12

=7.11 in.

7.11 .
c=alf = 080 - 8.89 in.
d - c 24 — 8.89
e = eu( ’C—) - 0‘003(W) = 0.0051 > 0.005
and thus,
é =090

and from Eq. (4.44),

M, =158 x 60(24 — 2.5) 4+ 6.04 x 60(24 - %) = 9450 in-kips

The design strength is
¢M, = 0.90 x 9450 = 8500 in-kips

EXAMPLE 4.13

Telegram: @uni_k

Design of a doubly reinforced beam. A rectangular beam that must carry a service live
load of 2.47 kips/ft and a calculated dead load of 1.05 kips/ft on an 18 ft simple span is
limited in cross section for architectural reasons to 10 in. width and 20 in. total depth. If
f, = 60,000 psi and f; = 4000 psi, what steel area(s) must be provided?
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SoLutioN. The service loads are first increased by load factors to obtain the factored load
of 1.2 x 1.05 + 1.6 x 2.47 = 5.21 kips/ft. Then M, = 5.21 x 18%/8 = 211 ft-kips = 2530
in-kips. To satisfy spacing and cover requirements (see Section 4.5), assume that the tension
steel centroid will be 4 in. above the bottom face of the beam and that compression steel, if
required, will be placed 2.5 in. below the beam’s top surface. Then d = 16 in. and d’ = 2.5 in.

First, check the capacity of the section if singly reinforced. Table A.4 shows that p.,
the maximum value of p for ¢ = 0.90, to be 0.0181. So A, = 10 x 16 x 0.0181 = 2.90 in’.
Then with

2.90 x 60

a=——"""—=5121in.
0.85 x 4 x 10

c=a/p; =5.12/0.85 = 6.02 in., and the maximum nominal moment that can be developed is
M, =290 x 60(16 — 5.12/2) = 2340 in-kips

Alternatively, using R = 913 from Table A.5b, the nominal moment is M, = 913 x 10 X
167/1000 = 2340 in-kips. Because the corresponding design moment ¢pM,, = 2100 in-kips is
less than the required capacity 2530 in-kips, compression steel is needed as well as additional
tension steel.

The remaining moment to be carried by the compression steel couple is

2530 L
M; = —— — 2340 = 470 in-kips
' 0,90 P
Assume d is less than the value required to develop the compression reinforcement yield stress,
in which case a reduced stress in the compression reinforcement must be used. Using the strain

distribution in Fig. 4.11b, &, and f, can be calculated as

6.02 — 25

e, = 0.003
6.02

= 0.00175 and fi = 0.00175 x 29,000 = 50.9 ksi

Try f; = 50 ksi for the compression reinforcement to obtain the required area of compression steel.

) 470

Al =—2 =070 in’
50(16 — 2.5)

The total area of tensile reinforcement at 60 ksi is
A, =290 + 0.70(%) = 348 in

Two No. 7 (No. 22) bars will be used for the compression reinforcement, and four No. 9
(No. 29) bars will be used for the tension reinforcement, as shown in Fig. 4.16. To place the
tension bars in a 10 in. wide beam, two rows of reinforcement of two bars each will be used.

A final check is made to ensure that the design selections meet the problem requirements.

A, — Al =40 - 1.20($) = 3.00 in?
60

(A, — ADf, 3.00 x 60

a = = = 5.29 in.
0.85f'b 0.85 x 4 x 10
=932 _6o3in,
p 085
b [e=d) _ 6.23 — 2.5\ _ .
f = Eed | = 29,000 x o.oos(T) = 521 ksi
Which is close enough to the assumed value to continue.
d, — -
£ = e(.( ’ C) - 0.003(M) — 0.0054
6.23
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FIGURE 4.16 21
Doubly reinforced beam of ’.7 10” 4.‘ ?
Example 4.13. i
2 No. 7 (No. 22)—, _ -
143"
4 20//
4aNo.oNo.29) =< | | || A
<
37
5 %rr ZZ

&, 1s greater than the 0.005 limit allowing ¢ = 0.90. Then
oM, = @A = ADf(d = 5] + ALE @ = d)

= 0.90[3.00 X 60(16 - %) + 1.20 x 50(16 — 2.5)] = 2890 in-kips

This is greater than M,, so no further refinement is necessary.
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4.7

Tensile Steel below the Yield Stress

All doubly reinforced beams designed according to the ACI Code must be underre-
inforced, in the sense that the tensile reinforcement ratio is limited to ensure yielding
at beam failure. Two cases were considered in Sections 4.6a and 4.6b, respectively:
(a) both tension steel and compression steel yield and (b) tension steel yields but com-
pression steel does not. Two other combinations may be encountered in analyzing
the capacity of existing beams: (c) tension steel does not yield, but compression steel
does, and (d) neither tension steel nor compression steel yields. The last two cases are
unusual, and in fact, it would be difficult to place sufficient tension reinforcement to
create such conditions, but it is possible. The solution in such cases is obtained as a
simple extension of the treatment of Section 4.6b. An equation for horizontal equilib-
rium is written, in which both tension and compression steel stress are expressed in
terms of the unknown neutral axis depth c. The resulting quadratic equation is solved
for ¢, after which steel stresses can be calculated and the nominal flexural strength
determined.

T BEAMS

With the exception of precast systems, reinforced concrete floors, roofs, decks, and
beams are almost always monolithic. Forms are built for beam soffits and sides and for
the underside of slabs, and the entire construction is cast at once, from the bottom of
the deepest beam to the top of the slab. Beam stirrups and bent bars extend up into the
slab. It is evident, therefore, that a part of the slab will act with the upper part of the
beam to resist longitudinal compression. The resulting beam cross section is T-shaped
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FIGURE 4.17
Effective flange width of
T beams.

FIGURE 4.18

Stress distribution in T beam.
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rather than rectangular. The slab forms the beam flange, while the part of the beam
projecting below the slab forms what is called the web or stem. The upper part of
such a T beam is stressed laterally due to slab action in that direction. Although trans-
verse compression at the level of the bottom of the slab may increase the longitudinal
compressive strength by as much as 25 percent, transverse tension at the top surface
reduces the longitudinal compressive strength (see Section 2.10). Neither effect is usu-
ally taken into account in design.

Effective Flange Width

The next issue to be resolved is that of the effective width of flange. In Fig. 4.17a,
it is evident that if the flange is but little wider than the stem width, the entire
flange can be considered effective in resisting compression. For the floor system
shown in Fig. 4.17b, however, it may be equally obvious that elements of the
flange midway between the beam stems are less highly stressed in longitudinal
compression than those elements directly over the stem. This is so because of
shearing deformation of the flange, which relieves the more remote elements of
some compressive stress.

The effect of this shear-lag on the stresses in the flange of a beam under posi-
tive bending is illustrated in Fig. 4.18, with higher stress near the web and lower
stresses farther out in the flange. Rather than attempting to work with the variable
stresses, it is convenient to make use of an effective flange width b;, which may be
smaller than the actual flange width but is considered to be uniformly stressed. This
effective flange width has been found to depend on the span length and the relative
thickness of the flange.

S | or | |
I | f i i f
he
[ X X J [ X N J [ X X J
by, by,
(@ (b)
Equivalent stress = 0.85f,
/over effective flange width
Stress
distribution
in flange
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FIGURE 4.19
Effective cross sections of
T beams.
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The criteria for effective width b, given in ACI Code 6.3.2 can be summarized
as follows:

1. For T beams with flanges on both sides of the web, the overhanging slab width on
either side of the beam web shall not exceed one-eighth of the beam clear span £,
8 times the thickness of the slab &, or go beyond one-half the clear distance to the
next beam s,,.

2. For beams having a slab on one side only, the effective overhanging slab width
shall not exceed one-twelfth the beam clear span £, 6 times the thickness of the
slab A, or go beyond one-half the clear distance to the next beam s,,.

3. For isolated beams in which the flange is used only for the purpose of providing
additional compressive area, the flange thickness shall not be less than one-half
the width of the web b,,, and the total flange width shall not be more than 4 times
the web width b,,.

Strength Analysis

The neutral axis of a T beam may be either in the flange or in the web, depending
upon the proportions of the cross section, the amount of tensile steel, and the strengths
of the materials. If the calculated depth to the neutral axis is less than or equal to the
flange thickness /,, the beam can be analyzed as if it were a rectangular beam of width
equal to by, the effective flange width. The reason is illustrated in Fig. 4.19a, which
shows a T beam with the neutral axis in the flange. The compressive area is indicated
by the shaded portion of the figure. If the additional concrete indicated by areas 1 and
2 had been added when the beam was cast, the physical cross section would have been
rectangular with a width b,. No bending strength would have been added because
areas 1 and 2 are entirely in the tension zone, and tension concrete is disregarded in
flexural calculations. The original T beam and the rectangular beam are equal in flex-
ural strength, and rectangular beam analysis for flexure applies.

When the neutral axis is in the web, as in Fig. 4.19b, the preceding argument
is no longer valid. In this case, methods must be developed to account for the actual
T-shaped compressive zone.

In treating T beams, it is convenient to adopt the same equivalent stress distri-
bution that is used for beams of rectangular cross section. The rectangular stress
block, having a uniform compressive-stress intensity 0.85f,, was devised originally
on the basis of tests of rectangular beams (see Section 4.3a), and its suitability for
T beams may be questioned. However, extensive calculations based on actual stress-
strain curves (reported in Ref. 4.12) indicate that its use for T beams, as well as for
beams of circular or triangular cross section, introduces only minor deviations and
is fully justified.

: b | ) b
|

- - - T~ Neutral T
d

|
i
T} | axis
|
\
|
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FIGURE 4.20
Strain and equivalent stress
distributions for T beams.

FIGURE 4.21
Computational model for
design and analysis of

T beams.
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Accordingly, a T beam may be treated as a rectangular beam if the depth of
the equivalent stress block is less than or equal to the flange thickness. Figure 4.20
shows a tensile-reinforced T beam with effective flange width b;, web width b,
effective depth to the steel centroid d, and flange thickness hy. If for trial purposes
the stress block is assumed to be completely within the flange,

L Asfy 3 phd
0.85f, by  0.85f;

where p = A;/bsd. If a is less than or equal to the flange thickness &, the member
may be treated as a rectangular beam of width b, and depth d. If a is greater than &, a
T beam analysis is required as follows.

It is assumed that the strength of the T beam is controlled by yielding of the
tensile steel. This is nearly always the case because of the large compressive concrete
area provided by the flange. In addition, an upper limit can be established for the
reinforcement ratio to ensure that this is so, as will be shown.

As a computational device, it is convenient to divide the total tensile steel into
two parts, as shown in Fig. 4.21. The first part, A, represents the steel area that, when
stressed to f,, is required to balance the longitudinal compressive force in the over-
hanging portions of the flange that are stressed uniformly at 0.85f, (Fig. 4.21b). Thus,

0.85f.(by — bk
y

The force Af, and the equal and opposite force 0.85 f; (b;— b,,)hyact with a lever arm
d — hs/2 to provide the nominal resisting moment

(4.54)

(4.55)

h .
d—l) (4.56)

M,y = Ayl >
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The remaining steel area A; — A, at a stress f;, is balanced by the compression
in the rectangular portion of the beam (Fig. 4.21c). The depth of the equivalent
rectangular stress block in this zone is found from horizontal equilibrium.

A, — A,
a= J (4.57)
0.85f, b,,

An additional moment M, is thus provided by the forces (A; — A,)f, and 0.85f ab,,
acting at the lever arm d — a /2.

M,y = (A, — Ay, (d - %) (4.58)

and the total nominal resisting moment is the sum of the parts:

h,
M, =M, + M, =Asf, (d - Ef + (A, - A f, (d ~ %) (4.59)
This moment is reduced by the strength reduction factor ¢ in accordance with the
safety provisions of the ACI Code to obtain the design strength.

As for rectangular beams, the tensile steel should yield prior to sudden crush-
ing of the compression concrete, as assumed in the preceding development. Yielding
of the tensile reinforcement and Code compliance are ensured if the net tensile strain
g 1s greater than ¢, ,,;,, in which case a strength reduction factor ¢ = 0.90 may be
used. From the geometry of the section,

£ < &y
d e te

(4.60)

Setting €, = 0.003 and &, = 0.005 for Grade 60 reinforcement provides a maximum
c¢/d, ratio of 0.375, as shown in Fig. 4.10. Thus, as long as the depth to the neutral axis
is less than 0.375d,, the net tensile strain requirements are satisfied, as they are for
rectangular beam sections. This will occur if p,, = A, /b, d is less than

Pw, max = Pmax + /)f (461)

where p; = Ay /b, d and p, is as previously defined for a rectangular cross section
[Eq. (4.264d)].

The practical result of applying Eq. (4.61) is that the stress block of T beams
will almost always be within the flange, except for unusual geometry or combina-
tions of material strength. Consequently, rectangular beam equations may be applied
in most cases.

The ACI Code restriction that the tensile reinforcement ratio for beams not be
less than pp,;, = 3\/E /fy and > 200/f, (see Section 4.3d) applies to T beams as well
as rectangular beams. For T beams, the ratio p should be calculated for this purpose
based on the web width b,,.

Proportions of Cross Section

When designing T beams, in contrast to analyzing the capacity of a given section, nor-
mally the slab dimensions and beam spacing will have been established by transverse
flexural requirements. Consequently, the only additional section dimensions that must
be determined from flexural considerations are the width and depth of the web and the
area of the tensile steel.
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If the stem dimensions were selected on the basis of concrete stress capacity in
compression, they would be very small because of the large compression flange width
furnished by the presence of the slab. Such a design would not represent the optimum
solution because of the large tensile steel requirement resulting from the small effective
depth, because of the excessive web reinforcement that would be required for shear,
and because of large deflections associated with such a shallow member. It is better
practice to select the proportions of the web (1) so as to keep an arbitrarily low web
reinforcement ratio p,, or (2) so as to keep web-shear stress at desirably low limits
(Chapter 5) or (3) for continuous T beams, on the basis of the flexural requirements
at the supports, where the effective cross section is rectangular and of width b,

In addition to the main reinforcement calculated according to the preceding
requirements, it is necessary to ensure the integrity of the compressive flange of T
beams by providing steel in the flange in the direction transverse to the main span.
In typical construction, the slab steel serves this purpose. In other cases, additional
bars must be added to permit the effective overhanging flanges to carry, as cantilever
beams, the loads directly applied. According to ACI Code 7.7.2, the spacing of such bars
must not exceed 5 times the thickness of the flange or in any case exceed 18 in.

Examples of Analysis and Design of T Beams

For analyzing the capacity of a T beam with known concrete dimensions and tensile
steel area, it is reasonable to start with the assumption that the stress block depth a does
not exceed the flange thickness /,. In that case, all ordinary rectangular beam equa-
tions (see Section 4.3) apply, with beam width taken equal to the effective width of the
flange. If, upon checking that assumption, a proves to exceed h;, then T beam analysis
must be applied. Equations (4.55) through (4.59) can be used, in sequence, to obtain
the nominal flexural strength, after which the design strength is easily calculated.
For design, the following sequence of calculations may be followed:

1. Establish flange thickness &, based on flexural requirements of the slab, which

normally spans transversely between parallel T beams.

Determine the effective flange width b, according to ACI limits.

Choose web dimensions b,, and d based on either of the following:

(a) Negative bending requirements at the supports, if a continuous T beam

(b) Shear requirements, setting a reasonable upper limit on the nominal unit shear

stress v, in the beam web (see Chapter 5)

4. With all concrete dimensions thus established, calculate a trial value of A, assum-
ing that a does not exceed h;, with beam width equal to flange width b;. Use ordi-
nary rectangular beam design methods.

5. For the trial A, check the depth of stress block a to confirm that it does not exceed
hy. If it should exceed that value, revise A, using the T beam equations.

6. Check to ensure that &, > &, or ¢/d is less than the appropriate limit in Fig. 4.9
to ensure that ¢» = 0.90. (This will almost invariably be the case.)

7. Check to ensure that p,, > p,, min-

W
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EXAMPLE 4.14

Moment capacity of a given section. The isolated T beam shown in Fig. 4.22 is composed
of a flange 28 in. wide and 6 in. deep cast monolithically with a web of 10 in. width that
extends 24 in. below the bottom surface of the flange to produce a beam of 30 in. total depth.
Tensile reinforcement consists of six No. 10 (No. 32) bars placed in two horizontal rows sep-
arated by 1 in. clear spacing. The centroid of the bar group is 26 in. from the top of the beam.
The concrete has a strength of 3000 psi, and the yield strength of the steel is 60,000 psi. What
is the design moment capacity of the beam?
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FIGURE 4.22 i 28" i
T beam of Example 4.14.
= = T
'
26”
30//
[
6 No. 10 (No. 32) —1H:———: — -
[ ]

1

SoLutioN. It is easily confirmed that the flange dimensions are satisfactory according to the
ACI Code for an isolated beam. The entire flange can be considered effective. For six No. 10
(No. 32) bars, A, = 7.62 in”. First check the location of the neutral axis, on the assumption that
rectangular beam equations may be applied. Using Eq. (4.28) with by = b

Ay 762 %60

a= = = 6.40 in.
0-85fc,bf 0.85 x 3 x 28

This exceeds the flange thickness, and so a T beam analysis is required. From Eq. (4.55) and
Fig. 4.20b,

Ay = 0.85%(@- — b,)hy = 0.85 x 63—0 (28 — 10) X 6 = 4.59 in’

Then, from Eq. (4.56),
h
M, = Ayf, (d - Ef) = 4.59 x 60(26 — 3) = 6330 in-kips

Then, from Fig. 4.20c,
Ay — Ay =762 — 459 = 3.03 in®
and from Egs. (4.54) and (4.55)

Y= Ady 303 %60
0.85f/b, 0.85x3x 10

My = (A — Ay fy(d - g) = 3.03 x 60(26 — 3.56) = 4080 in-kips

=7.13 in.

The depth to the neutral axis is ¢ = a/f; = 7.13/0.85 = 8.39 and d, = 27.5 in. to the lowest
bar. The c/d, ratio is 8.39/27.5 = 0.305 < 0.375, so the & > 0.005 for Grade 60 reinforcement
requirement is met and ¢ = 0.90. When the ACI strength reduction factor is incorporated, the
design strength is

¢M, = ¢(M,, + M,,) = 0.90(6330 + 4080) = 9370 in-Kips

Telegram: @uni_k
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EXAMPLE 4.15 Determination of steel area for a given moment. A floor system, shown in Fig. 4.23,

FIGURE 4.23
T beam of Example 4.15.

Telegram: @uni_k

consists of a 3 in. concrete slab supported by continuous T beams with a clear span £, = 24 ft,
47 in. on centers. Web dimensions, as determined by negative-moment requirements at the
supports, are b, = 11 in. and d = 20 in. What tensile steel area is required at midspan to
resist a factored moment of 6400 in-kips if £, = 60,000 psi and f, = 3000 psi?

SoLutioN.  First determining the effective flange width by,

16k + b, = 16 X 3 + 11 = 59 in.

L,
2§+bw=2x¥+11=83in.

Centerline beam spacing = 47 in.

The centerline T beam spacing controls in this case, and by = 47 in. The concrete dimensions
b, and d are known to be adequate in this case, since they have been selected for the larger
negative support moment applied to the effective rectangular section b,,d. The tensile steel at
midspan is most conveniently found by trial. Assuming the stress-block depth a is equal to the
flange thickness of /= 3 in., one gets

d—%=20—%=18.50in.
Trial:

M

A, = R 6490 = 641 in®
¢fy(d —af2)  0.90 x 60 x 18.50

Checking the assumed value for a,

A f,

o 641x60 391 in,

T 085/b, 085 x3x47

Since a is greater than £y, a T beam design is required and ¢ = 0.90 is assumed.

085/ (b= bl 0.85x 3 x (47 — 11) x 3

o = 4.59 in’
£, 60

h
M, = pAf, (d - Ef) = 0.90 x 4.59 X 60 X (20 - %) — 4590 in-kips
M,y = M, — $M,, = 6400 — 4590 = 1810 in-kips
Assume a = 4.0 in.:

M, 1810

A=Ay = = = 1.86 in’
#f,(d = a/2)  0.90 x 60 X (20 — 4/2)
Check:
A, — Ay
_ A AN 186X 60 | agei
0.85(/b, 0.85x3x1l
| 47—

TR L

‘ ‘

11”
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This is satisfactorily close to the assumed value of 4 in. Then
Ay =Ay+ A, — Ay =459 + 1.86 = 6.45 in’

Checking to ensure that the net tensile strain requirement is met to allow ¢ = 0.90,

=239 _ 468

B 085
€468 _ 593 <0325
d 20

indicating that the design is satisfactory.

The close agreement should be noted between the approximate tensile steel area of
6.41 in? found by assuming the stress-block depth equal to the flange thickness and the more
exact value of 6.45 in® found by T beam analysis. The approximate solution would be satis-
factory in most cases.

Telegram: @uni_k
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PROBLEMS

Problems 4.1 through 4.8 address service-level behavior, Problems 4.9 through 4.16
are sectional analysis problems, Problems 4.17 through 4.22 are sectional design
problems, and Problems 4.23 through 4.30 are comprehensive problems requiring
discussion of findings.

4.1. Compare the cracking moment based on the gross section properties and the
transformed section properties with four No. 11 (No. 36) bars in Fig. P4.1a
based on a concrete tensile capacity of 7.5 \/E .

4.2.  Compare the cracking moment based on the gross section properties and the
transformed section properties with two No. 10 (No. 32) bars in Fig. P4.1b
based on a concrete tensile capacity of 7.5 \/E .
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(a) f. = 4000 psi
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(b) f. = 5000 psi
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(c) . = 6000 psi (d) f. =3000 psi

Compare the cracking moment based on the gross section properties and the
transformed section properties with four No. 9 (No. 29) bars in Fig. P4.1c
based on a concrete tensile capacity of 7.5 \/E .

Compare the cracking moment based on the gross section properties and the
transformed section properties with two No. 11 (No. 36) bars in Fig. P4.1d
based on a concrete tensile capacity of 7.5 \/E .

Determine the cracking moment based on the gross section properties in
Fig. P4.1d if the section is prestressed such that there is a 300 psi compression
stress in the extreme tension zone and the concrete tensile capacity is 7.5 \/fc' .
Determine the service level moment capacity of the section in Fig. P4.1a if the
allowable stress for concrete is 0.45f) and the allowable stress for the
reinforcement is 30,000 psi. Use the areas of reinforcement from Problem 4.1.
Determine the service level moment capacity of the section in Fig. P4.1b if
the allowable stress for concrete is 0.45f, and the allowable stress for the
reinforcement is 30,000 psi. Use the areas of reinforcement from Problem 4.2.
Determine the service level moment capacity of the section in Fig. P4.1c if
the allowable stress for concrete is 0.45f, and the allowable stress for the
reinforcement is 30,000 psi. Use the areas of reinforcement from Problem 4.3.
Determine the nominal moment capacity of the section in Fig. 4.1a using the
reinforcement areas from Problem 4.1. f, = 60,000 psi.

Determine the nominal moment capacity of the section in Fig. 4.1 using the
reinforcement areas from Problem 4.2. f, = 60,000 psi.

Determine the nominal moment capacity of the section in Fig. 4.1¢ using
the reinforcement areas from Problem 4.3. f, = 60,000 psi.

Determine the nominal moment capacity of the section in Fig. 4.1d using the
reinforcement areas from Problem 4.4. f, = 60,000 psi.

Determine the nominal and design moment capacity of the section in
Fig. 4.1d using the reinforcement areas from Problem 4.4. f, = 80,000 psi.
Determine the nominal and design moment capacity of the section in
Fig. 4.1a using the reinforcement areas from Problem 4.1 and two No. 10
(No. 32) compression bars at d’ = 2.5 in. f, = 60,000 psi.

Calculate the moment capacity of the section in Fig. 4.1a using eight No. 11
(No. 36) bars positive reinforcement and four No. 10 (No. 32) compression
bars at d’ = 2.5 in. f, = 60,000 psi.
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4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

Calculate the moment capacity of a section 30 in. wide and 16 in. deep
having eight No. 11 (No. 36) bars positive reinforcement and four No. 10 (No.
32) compression bars at d’ = 2.5 in. f, = 60,000 psi.

Determine the required area of reinforcement and the corresponding rein-

forcement ratio for the section in Fig P4.1a if the ultimate moment is

(@) 10,000 in-kips and (b) 5000 in-kips. f, = 60,000 psi.

Determine the required area of reinforcement and the corresponding rein-

forcement ratio for the section in Fig P4.1b if the ultimate moment is

(@) 7,000 in-kips (b) 3500 in-kips. f, = 60,000 psi.

Determine the required area of reinforcement and the corresponding rein-

forcement ratio for the section in Fig P4.1c¢ if the ultimate moment is

(@) 10,000 in-kips (b) 5000 in-kips. f, = 60,000 psi.

Determine the required area of reinforcement and the corresponding reinforce-

ment ratio for the section in Fig P4.1d if the ultimate moment is (a) 10,000

in-kips and (b) 5000 in-kips. f, = 60,000 psi. Comment on your solutions.

Determine the required area of reinforcement and the corresponding rein-

forcement ratio for the section in Fig P4.1a if the ultimate moment is

(a) 10,000 in-kips and (b) 5000 in-kips. f, = 80,000 psi.

Determine the required area of reinforcement and the corresponding rein-

forcement ratio for the section in Fig P4.1b if the ultimate moment is

(@) 7,000 in-kips (b) 3500 in-kips. f, = 80,000 psi.

A rectangular beam made using concrete with £’ = 6000 psi and steel with

fy, = 60,000 psi has a width b = 20 in., an effective depth of d = 17.5 in,,

and a total depth of & = 20 in. The concrete modulus of rupture f, = 530 psi.

The elastic moduli of the concrete and steel are, respectively, £, = 4,030,000 psi

and E; = 29,000,000 psi. The tensile steel consists of four No. 11 (No. 36) bars.

(a) Find the maximum service load moment that can be resisted without
stressing the concrete above 0.45f, or the steel above 0.40f,.

(b) Determine whether the beam cracks before reaching the service load.

(c) Calculate the nominal flexural strength of the beam.

(d) Calculate the ratio of the nominal flexural strength of the beam to the
maximum service load moment, and compare your findings to the ACI
load factors and strength reduction factor.

A rectangular reinforced concrete beam with dimensions » = 14 in., d = 25 in.,

and /& = 28 in. is reinforced with three No. 10 (No. 32) bars. Material strengths

are f, = 60,000 psi and f, = 5000 psi.

(a) Find the moment that produces the first cracking at the bottom surface
of the beam, basing your calculation on /,, the moment of inertia of the
gross concrete section.

(b) Repeat the calculation, using /,,, the moment of inertia of the uncracked
transformed section.

(¢) Determine the maximum moment that can be carried without stressing
the concrete beyond 0.45f, or the steel beyond 0.60f,.

(d) Find the nominal flexural strength of this beam.

(e) Calculate the ratio of the flexural strength from part (d) to the service
capacity from part (¢).

(f) Comment on your results, paying particular attention to comparing parts
(a) and (b) and comparing the result in part (e) with the load factors in
the ACI Code.

A rectangular, tension-reinforced beam is to be designed for dead load of

500 Ib/ft plus self-weight and service live load of 1200 lb/ft, with a 22 ft
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simple span. Material strengths are f, = 60 ksi and f," = 3 ksi for steel and
concrete, respectively. The total beam depth must not exceed 16 in. Calculate
the required beam width and tensile steel requirement, using a reinforcement
ratio of approximately 0.60p,,,,. Use ACI load factors and strength reduction
factors. The effective depth may be assumed to be 2.5 in. less than the total depth.
A four-span continuous beam of constant rectangular cross section is sup-
ported at A, B, C, D, and E. The factored moments resulting from analysis
are as follows:

At Supports, ft-kips At Midspan, ft-kips
M, =138 M,, = 158
M, = 220 M, = 138
M, = 200 M., = 138
M, =220 M, = 158
M, = 138

Determine the required final concrete dimensions for this beam, using
d = 1.75b, and determine the reinforcement requirements at each critical
moment section. Your final reinforcement ratio should not exceed = 0.6p,,,.
Use f, = 60,000 psi and f." = 6000 psi.

A two-span continuous concrete beam is to be supported by three concrete
walls spaced 30 ft on centers. A service live load of 1.5 kips/ft is to be carried
in addition to the self-weight of the beam. Use pattern loading; that is, consider
two loading conditions: (1) live load on both spans and (2) live load on a
single span. A constant rectangular cross section is to be used with d = 2b, but
reinforcement is to be varied according to requirements. Find the required concrete
dimensions and reinforcement at all critical sections. Allow for No. 3 (No. 10)
stirrups. Use a span-to-depth ratio of 15 as the first estimate of the depth.
Adjust the depth if the reinforcement ratio is too high. Include sketches, drawn
to scale, of the critical cross sections. Use f, = 60,000 psi and f, = 6000 psi.
A rectangular concrete beam of width b = 24 in. is limited by architectural
considerations to a maximum total depth 2 = 16 in. It must carry a total
factored load moment M, = 400 ft-kips. Design the flexural reinforcement
for this member, using compression steel if necessary. Allow 3 in. to the
center of the bars from the compression or tension face of the beam. Material
strengths are f, = 60,000 psi and f' = 4000 psi. Select reinforcement to
provide the needed areas, and show a sketch of your final design, including
provision for No. 4 (No. 13) stirrups.

A precast T beam is to be used as a bridge over a small roadway. Concrete
dimensions are b = 48 in., b,, = 16 in., hy; = 5 in., and h = 25 in. The effec-
tive depth d = 20 in. Concrete and steel strengths are 6000 psi and 60,000
psi, respectively. Using approximately one-half the maximum tensile rein-
forcement permitted by the ACI Code (select the actual size of bar and num-
ber to be used), determine the design moment capacity of the girder. If the
beam is used on a 30 ft simple span, and if in addition to its own weight it
must support railings, curbs, and suspended loads totaling 0.475 kip/ft, what
uniform service live load limit should be posted?

Using Eq. (4.27) and assuming that d = 0.9h, show that A; is approximately
equal to M, /4h for Grade 60 reinforcement and where M, is in kip-ft.



www.konkur.in

132

Telegram: @uni_k

5.1

Shear and Diagonal Tension
in Beams

INTRODUCTION

Chapter 4 dealt with the flexural behavior and flexural strength of beams. Beams must
also have an adequate safety margin against other types of failure, some of which may
be more dangerous than flexural failure. This may be so because of greater uncertainty
in predicting certain other modes of collapse, or because of the catastrophic nature of
some other types of failure, should they occur.

Shear failure of reinforced concrete, more properly called diagonal tension
failure, is one example. Shear failure is difficult to predict accurately. In spite of
many decades of experimental research (Refs. 5.1 to 5.6) and the use of highly
sophisticated analytical tools (Refs. 5.7 and 5.8), it is not fully understood. Further-
more, if a beam without properly designed shear reinforcement is overloaded to
failure, shear collapse is likely to occur suddenly, with no advance warning of dis-
tress. This is in strong contrast with the nature of flexural failure. For typically
underreinforced beams, flexural failure is initiated by gradual yielding of the tension
steel, accompanied by obvious cracking of the concrete and large deflections, giving
ample warning and providing the opportunity to take corrective measures. Because
of these differences in behavior, reinforced concrete beams are generally provided
with special shear reinforcement to ensure that flexural failure would occur before
shear failure if the member were severely overloaded.

Figure 5.1 shows a shear-critical beam tested under third point loading. With
no shear reinforcement provided, the member failed immediately upon formation of
the critical crack in the high-shear region near the right support.

It is important to realize that shear analysis and design are not really concerned
with shear as such. The shear stresses in most beams are far below the direct shear
strength of the concrete. The real concern is with diagonal tension stress, resulting
from the combination of shear stress and longitudinal flexural stress. Most of this
chapter deals with analysis and design for diagonal tension, and it provides back-
ground for understanding and using the shear provisions of the ACI Code. Members
without web reinforcement are studied first to establish the location and orientation
of cracks and the diagonal cracking load. Methods are then developed for the design
of shear reinforcement according to the present ACI Code, both in ordinary beams
and in special types of members, such as deep beams.

Over the years, alternative methods of shear design have been proposed, based
on variable angle truss models and diagonal compression field theory (Refs. 5.9 and
5.10). These approaches will be reviewed briefly later in this chapter, with one such
approach, the modified compression field theory, presented in detail.
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FIGURE 5.1

Shear failure of reinforced
concrete beam: (a) overall
view and (b) detail near right
support. (Photograph by Arthur
H. Nilson.)

5.2
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Finally, there are some circumstances in which consideration of direct shear is
appropriate. One example is in the design of composite members combining precast
beams with a cast-in-place top slab. Horizontal shear stresses on the interface between
components are important. The shear-friction theory, useful in this and other cases,
will be presented following development of methods for the analysis and design of
beams for diagonal tension.

DIAGONAL TENSION IN HOMOGENEOUS
ELASTIC BEAMS

The stresses acting in homogeneous beams were briefly reviewed in Section 3.6. It
was pointed out that when the material is elastic (stresses proportional to strains),
shear stresses

Vo
== 3.13
V= (3.13)
act at any section in addition to the bending stresses
M
f= Ty 3.11)

except for those locations at which the shear force V happens to be zero.

The role of shear stresses is easily visualized by the performance under load of
the laminated beam of Fig. 5.2; it consists of two rectangular pieces bonded together
along the contact surface. If the adhesive is strong enough, the member will deform
as one single beam, as shown in Fig. 5.2a. On the other hand, if the adhesive is weak,
the two pieces will separate and slide relative to each other, as shown in Fig. 5.2b.
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FIGURE 5.2
Shear in homogeneous
rectangular beams.
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Evidently, then, when the adhesive is effective, there are forces or stresses acting in
it that prevent this sliding or shearing. These horizontal shear stresses are shown in
Fig. 5.2c¢ as they act, separately, on the top and bottom pieces. The same stresses
occur in horizontal planes in single-piece beams; they are different in intensity at
different distances from the neutral axis.

Figure 5.2d shows a differential length of a single-piece rectangular beam acted
upon by a shear force of magnitude V. Upward translation is prevented; that is,
vertical equilibrium is provided by the vertical shear stresses v. Their average value
is equal to the shear force divided by the cross-sectional area v,, = V/ab, but their
intensity varies over the depth of the section. As is easily computed from Eq. (3.13),
the shear stress is zero at the outer fibers and has a maximum of 1.5v,, at the neutral
axis, the variation being parabolic as shown. Other values and distributions are found
for other shapes of the cross section, the shear stress always being zero at the outer
fibers and of maximum value at the neutral axis.

Figure 5.3 shows a simply supported beam under uniform load. If a small
square element located at the neutral axis of such a beam is isolated, as shown in
Fig. 5.3b, the vertical shear stresses on it, equal and opposite on the two faces for
reasons of equilibrium, act as shown. However, if these were the only stresses pres-
ent, the element would not be in equilibrium; it would spin. Therefore, on the two
horizontal faces there exist equilibrating horizontal shear stresses of the same mag-
nitude. That is, at any point within the beam, the horizontal shear stresses of Fig. 5.3
are equal in magnitude to the vertical shear stresses of Fig. 5.2d.

As demonstrated in any strength-of-materials text for an element cut at 45° these
shear stresses combine in such a manner that their effect is as shown in Fig. 5.3c. That
is, the action of the two pairs of shear stresses on the vertical and horizontal faces is
the same as that of two pairs of normal stresses, one tensile and one compressive,
acting on the 45° faces and of numerical value equal to that of the shear stresses. If
an element of the beam is considered that is located neither at the neutral axis nor at
the outer edges, its vertical faces are subject not only to the shear stresses but also to
the familiar bending stresses whose magnitude is given by Eq. (3.11) (Fig. 5.3d). The
six stresses that now act on the element can again be combined into a pair of inclined
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Stress trajectories in
homogeneous rectangular
beam.
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Tension trajectories
——— Compression trajectories

compressive stresses and a pair of inclined tensile stresses that act at right angles to
each other. They are known as principal stresses (Fig. 5.3e). Their value, as men-
tioned in Section 3.6, is given by

2

+ S + 12 (3.10)

=
4

TR

and their inclination « by tan 2a = 2v /f.

Since the magnitudes of the shear stresses v and the bending stresses f change
both along the beam and vertically with distance from the neutral axis, the inclina-
tions as well as the magnitudes of the resulting principal stresses ¢ also vary from
one place to another. Figure 5.3f shows the inclinations of these principal stresses
for a rectangular beam uniformly loaded. That is, these stress trajectories are lines
which, at any point, are drawn in that direction in which the particular principal
stress, tension or compression, acts at that point. It is seen that at the neutral axis
the principal stresses in a beam are always inclined at 45° to the axis. In the vicin-
ity of the outer fibers they are horizontal near midspan.

An important point follows from this discussion. Tensile stresses, which are of
particular concern in view of the low tensile strength of the concrete, are not con-
fined to the horizontal bending stresses f that are caused by bending alone. Tensile
stresses of various inclinations and magnitudes, resulting from shear alone (at the
neutral axis) or from the combined action of shear and bending, exist in all parts of
a beam and can impair its integrity if not adequately provided for. It is for this rea-
son that the inclined tensile stresses, known as diagonal tension, must be carefully
considered in reinforced concrete design.
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5.3

REINFORCED CONCRETE BEAMS WITHOUT SHEAR
REINFORCEMENT

The discussion of shear in a homogeneous elastic beam applies very closely to a plain
concrete beam without reinforcement. As the load is increased in such a beam, a ten-
sion crack will form where the tensile stresses are largest and will immediately cause
the beam to fail. Except for beams of very unusual proportions, the largest tensile
stresses are those caused at the outer fiber by bending alone, at the section of maxi-
mum bending moment. In this case, shear has little, if any, influence on the strength
of a beam.

However, when tension reinforcement is provided, the situation is quite different.
Even though tension cracks form in the concrete, the required flexural tension strength
is furnished by the steel, and much higher loads can be carried. Shear stresses increase
proportionally to the loads. In consequence, diagonal tension stresses of significant
intensity are created in regions of high shear forces, chiefly close to the supports. The
longitudinal tension reinforcement has been so calculated and placed that it is chiefly
effective in resisting longitudinal tension near the tension face. It does not reinforce
the tensionally weak concrete against the diagonal tension stresses that occur else-
where, caused by shear alone or by the combined effect of shear and flexure. Eventu-
ally, these stresses attain magnitudes sufficient to open additional tension cracks in a
direction perpendicular to the local tension stress. These are known as diagonal cracks,
in distinction to the vertical flexural cracks. The latter occur in regions of large
moments, the former in regions in which the shear forces are high. In beams in which
no reinforcement is provided to counteract the formation of large diagonal tension
cracks, their appearance has far-reaching and detrimental effects. For this reason, meth-
ods of predicting the loads at which these cracks will form are desired.

Criteria for Formation of Diagonal Cracks

It is seen from Eq. (3.10) that the diagonal tension stresses ¢ represent the combined
effect of the shear stresses v and the bending stresses f. These in turn are, respectively,
proportional to the shear force V and the bending moment M at the particular location
in the beam [Eqgs. (3.11) and (3.13)]. Depending on configuration, support conditions,
and load distribution, a given location in a beam may have a large moment combined
with a small shear force, or the reverse, or large or small values for both shear and
moment. Evidently, the relative values of M and V will affect the magnitude as well
as the direction of the diagonal tension stresses. Figure 5.4 shows a few typical beams
and their moment and shear diagrams and draws attention to locations at which vari-
ous combinations of high or low V and M occur.

At a location of large shear force V and small bending moment M, there will
be little flexural cracking, if any, prior to the development of a diagonal tension
crack. Consequently, the average shear stress prior to crack formation is

Vv

%
The exact distribution of these shear stresses over the depth of the cross section is not
known. It cannot be computed from Eq. (3.13) because this equation does not account
for the influence of the reinforcement and because concrete is not an elastic homoge-
neous material. The value computed from Eq. (5.1) must therefore be regarded merely
as a measure of the average intensity of shear stresses in the section. The maximum
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Typical locations of critical
combinations of shear and
moment.
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value, which occurs at the neutral axis, will exceed this average by an unknown but
moderate amount.

If flexural stresses are negligibly small at the particular location, the diagonal
tensile stresses, as in Fig. 5.3 and c, are inclined at about 45° and are numerically
equal to the shear stresses, with a maximum at the neutral axis. Consequently, diag-
onal cracks form mostly at or near the neutral axis and propagate from that location,
as shown in Fig. 5.5a. These web-shear cracks can be expected to form when the
diagonal tension stress in the vicinity of the neutral axis becomes equal to the tensile
strength of the concrete. The former, as was indicated, is of the order of, and some-
what larger than, v = V/bd, the latter, as discussed in Section 2.9, varies from about
3\/E to about 5\/]? . An evaluation of a very large number of beam tests is in fair
agreement with this reasoning (Ref. 5.1). It was found that in regions with large
shear and small moment, diagonal tension cracks form at an average or nominal
shear stress v, of about 3.54/f,, that is,

Yer 3.54f! 5.2
Ver = bd - f( ( . a)
where V,, is that shear force at which the formation of the crack was observed.” Web-
shear cracking is relatively rare and occurs chiefly near supports of deep, thin-webbed
beams or at inflection points of continuous beams.

Actually, diagonal tension cracks form at places where a compressive stress acts in addition to and perpendicular to the diagonal tension stress,
as shown in Fig. 5.3d and e. The crack, therefore, occurs at a location of biaxial stress rather than uniaxial tension. However, the effect of this
simultaneous compressive stress on the cracking strength appears to be small, in agreement with the information in Fig. 2.12.
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FIGURE 5.5
Diagonal tension cracking in
reinforced concrete beams.
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The situation is different when both the shear force and the bending moment
have large values. At such locations, in a well-proportioned and reinforced beam,
flexural tension cracks form first. Their width and length are well controlled and
kept small by the presence of longitudinal reinforcement. However, when the diag-
onal tension stress at the upper end of one or more of these cracks exceeds the
tensile strength of the concrete, the crack bends in a diagonal direction and continues
to grow in length and width (see Fig. 5.5b). These cracks are known as flexure-shear
cracks and are more common than web-shear cracks.

It is evident that at the instant at which a diagonal tension crack of this type
develops, the average shear stress is larger than that given by Eq. (5.1). This is so
because the preexisting tension crack has reduced the area of uncracked concrete
that is available to resist shear to a value smaller than that of the uncracked area bd
used in Eq. (5.1). The amount of this reduction will vary, depending on the unpre-
dictable length of the preexisting flexural tension crack. Furthermore, the simulta-
neous bending stress f combines with the shear stress v to increase the diagonal
tension stress ¢ further [see Eq. (3.10)]. No way has been found to calculate reliable
values of the diagonal tension stress under these conditions, and recourse must be
made to test results.

A large number of beam tests have been evaluated for this purpose (Ref. 5.1).
They show that in the presence of large moments (for which adequate longitudinal
reinforcement has been provided) the nominal shear stress at which diagonal tension
cracks form and propagate is, in most cases, conservatively given by

V.
=L = 1.9+f 5.2b
Vo = 77 V! (5.2b)

Comparison with Eq. (5.2a) shows that large bending moments can reduce the shear
force at which diagonal cracks form to roughly one-half the value at which they would
form if the moment were zero or nearly so. This is in qualitative agreement with the
discussion just given.
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It is evident, then, that the shear at which diagonal cracks develop depends on
the ratio of shear force to bending moment, or, more precisely, on the ratio of shear
stress v to bending stress f near the top of the flexural crack. Neither of these can
be accurately calculated. It is clear, though, that v = K,(V/bd), where, by compari-
son with Eq. (5.1), constant K; depends chiefly on the depth of penetration of the
flexural crack. On the other hand [see Eq. (4.6)], f = KZ(M/bdz), where K, also
depends on crack configuration. Hence, the ratio

v _Kivd

f KM
must be expected to affect that load at which flexural cracks develop into flexure-shear
cracks, the unknown quantity K;/K, to be explored by tests. Equation (5.2a) gives
the cracking shear for very large values of Vd/M, and Eq. (5.2b) for very small val-
ues. Moderate values of Vd/M result in magnitudes of v, intermediate between these
extremes.

In addition to the effect of bending moment, there are two other important
factors dealing with the shear strength of reinforced concrete members without shear
reinforcement that must be considered. The first is tied to the experimental obser-
vation that increasing the quantity of flexural reinforcement, which, in turn, limits
the width of flexural cracks, results in an increase in the average shear stress at which
flexure-shear cracks form. For typical laboratory test specimens with depths between
8 and 13 in., the combined relationship can be conservatively expressed by the
empirical relationship (Ref. 5.11)

V., Vd \"3
= 59(1:0%2)
bd J.

where p = A,/bd, as before, and 59 is an empirical constant. The effect of concrete
compressive strength in Eq. (5.3a) is represented by £/ because the developers of
the equation found that it gave a better match with test results than \/ﬁ A graph of
this relation and comparison with test data are given in Fig. 5.6.
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The second factor becomes apparent when specimens are tested that match the
size of larger beams used in practice. As the depth of a member increases above that
typical of laboratory specimens, Eq. (5.3a) becomes progressively unconservative
(that is, progressively overestimates v,,). This is illustrated in Fig. 5.7 for members
with effective depths d of up to 84 in. This lower relative strength, known as the
size effect, is directly tied to the fact that shear failure results from both the formation
and the propagation of a critical shear crack at failure. As demonstrated in Fig. 5.7,
the size effect can be quite adequately described for members that fail in shear using
the concepts of fracture mechanics as

2

(1 + d/10) (5.36)

Behavior of Diagonally Cracked Beams

In regard to flexural cracks, as distinct from diagonal tension cracks, it was explained
in Section 4.2 that cracks on the tension side of a beam are permitted to occur and
are in no way detrimental to the strength of the member. One might expect a similar
situation in regard to diagonal cracking caused chiefly by shear. The analogy, how-
ever, is not that simple. Flexural tension cracks are harmless only because adequate
longitudinal reinforcement has been provided to resist the flexural tension stresses
that the cracked concrete is no longer able to transmit. In contrast, the beams now
being discussed, although furnished with the usual longitudinal reinforcement, are
not equipped with any other reinforcement to offset the effects of diagonal cracking.
This makes the diagonal cracks much more decisive in subsequent performance and
strength of the beam than the flexural cracks.

Two types of behavior have been observed in the many tests on which present
knowledge is based:

1. The diagonal crack, once formed, spreads either immediately or at only slightly
higher load, traversing the entire beam from the tension reinforcement to the com-
pression face, splitting it in two and failing the beam. This process is sudden
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Forces at a diagonal crack
in a beam without web
reinforcement.
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and without warning and occurs chiefly in the shallower beams, that is, beams
with span-depth ratios of about 8 or more. Beams in this range of dimensions are
very common. Complete absence of shear reinforcement would make them very
vulnerable to accidental large overloads, which would result in catastrophic fail-
ures without warning. For this reason, it is good practice to provide a minimum
amount of shear reinforcement even if calculation does not require it, because
such reinforcement restrains growth of diagonal cracks, thereby increasing duc-
tility and providing warning in advance of actual failure. Only in situations where
an unusually large safety factor against inclined cracking is provided, that is,
where actual shear stresses are very small compared with v, as in some slabs and
most footings, is it permissible to omit shear reinforcement.

2. Alternatively, the diagonal crack, once formed, spreads toward and partially into
the compression zone but stops short of penetrating to the compression face. In
this case no sudden collapse occurs, and the failure load may be significantly
higher than that at which the diagonal crack first formed. This behavior is chiefly
observed in the deeper beams with smaller span to depth ratios and will be ana-
lyzed now.

Figure 5.8a shows a portion of a beam, arbitrarily loaded, in which a diagonal
tension crack has formed. Consider the part of the beam to the left of the crack,
shown in solid lines. There is an external upward shear force V., = R, — P; acting
on this portion.

Once a crack is formed, no tension force perpendicular to the crack can be
transmitted across it. However, as long as the crack is narrow, it can still transmit
forces in its own plane through interlocking of the surface roughnesses. Sizable inter-
lock forces V; of this kind have in fact been measured, amounting to one-third and
more of the total shear force. The components V;, and V,, of V; are shown in Fig. 5.8a.

Py )
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The other internal vertical forces are those in the uncracked portion of the concrete V.,
and across the longitudinal steel, acting as a dowel, V,. Thus, the internal shear force is

Vim = ch + Vd + Viy

Equilibrium requires that V;,, = V., so that the part of the shear resisted by the
uncracked concrete is

Vee = Ve = Va = Viy (5.4

In a beam provided with longitudinal reinforcement only, the portion of the shear
force resisted by the steel in dowel action is usually quite small. In fact, the reinforcing
bars on which the dowel force V, acts are supported against vertical displacement
chiefly by the thin concrete layer below. The bearing pressure caused by V, creates,
in this concrete, vertical tension stresses as shown in Fig. 5.8b. Because of these
stresses, diagonal cracks often result in splitting of the concrete along the tension
reinforcement, as shown. (See also Fig. 5.1.) This reduces the dowel force V, and also
permits the diagonal crack to widen. This, in turn, reduces the interface force V; and
frequently leads to immediate failure.

Next consider moments about point a at the intersection of V., and C; the exter-
nal moment M., acts at a and happens to be R;x, — Pi(x, — x;) for the loading
shown. The internal moment is

Mo =Tpz + Vgp — Vim

Here p is the horizontal projection of the diagonal crack and m is the moment arm of
the force V; with respect to point a. The designation 7}, for T is meant to emphasize that
this force in the steel acts at point b rather than vertically below point a. Equilibrium

requires that M, , = My, so that the longitudinal tension in the steel at b is
Moo — Vap + Vim
r= (5.5)

Neglecting the forces V,; and V,, which decrease with increasing crack opening, one
has, with very little error,

The formation of the diagonal crack, then, is seen to produce the following
redistribution of internal forces and stresses:

1. At the vertical section through point a, the average shear stress before crack for-
mation was V., /bd. After crack formation, the shear force is resisted by a com-
bination of the dowel shear, the interface shear, and the shear force on the much
smaller area by of the remaining uncracked concrete. As tension splitting develops
along the longitudinal bars, V,; and V; decrease; this, in turn, increases the shear
force and the resulting shear stress on the remaining uncracked concrete area.

2. The diagonal crack, as described previously, usually rises above the neutral axis
and traverses some part of the compression zone before it is arrested by the com-
pression stresses. Consequently, the compression force C also acts on an area
equal to y times the width of the beam, which is smaller than the area on which it
acted before the crack was formed. Correspondingly, formation of the crack has
increased the compression stresses in the remaining uncracked concrete.

3. Prior to diagonal cracking, the tension force in the steel at point b was caused by,
and was proportional to, the bending moment in a vertical section through the
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same point b. As a consequence of the diagonal crack, however, Eq. (5.6) shows
that the tension in the steel at b is now caused by, and is proportional to, the
bending moment at a. Since the moment at a is evidently larger than that at b,
formation of the crack has caused a sudden increase in the steel stress at b.

If the two materials are capable of resisting these increased stresses, equilibrium
will establish itself after internal redistribution and further load can be applied before
failure occurs. Such failure can then develop in various ways. For one, if only enough
steel has been provided at b to resist the moment at that section, the increase of the
steel force, described in item 3, will cause the steel to yield because of the larger
moment at a, thus failing the beam. If the beam is properly designed to prevent this
occurrence, it is usually the concrete at the head of the crack that will eventually crush.
This concrete is subject simultaneously to large compression and shear stresses, and
this biaxial stress combination is conducive to earlier failure than would take place if
either of these stresses were acting alone. Finally, if there is splitting along the rein-
forcement, it will cause the bond between steel and concrete to weaken to such a degree
that the reinforcement may pull loose. This either may be the cause of failure of the
beam or may occur simultaneously with crushing of the remaining uncracked concrete.

It was noted earlier that relatively deep beams will usually show continued and
increasing resistance after formation of a critical diagonal tension crack, but rela-
tively shallow beams will fail almost immediately upon formation of the crack. The
amount of reserve strength, if any, was found to be erratic. In fact, in several test
series in which two specimens as identical as one can make them were tested, one
failed immediately upon formation of a diagonal crack, while the other reached
equilibrium under the described redistribution and failed at a higher load.

For this reason, this reserve strength is discounted in modern design proce-
dures. As previously mentioned, most beams are furnished with at least a minimum
of web reinforcement. For those flexural members that are not, such as slabs, foot-
ings, and others as described in Section 5.5b, design is based on that shear force V.,
or shear stress v, at which formation of inclined cracks must be expected.

REINFORCED CONCRETE BEAMS WITH
WEB REINFORCEMENT

Economy of design demands, in most cases, that a flexural member be capable of
developing its full moment capacity rather than having its strength limited by pre-
mature shear failure. This is also desirable because structures, if overloaded, should
not fail in the sudden and explosive manner characteristic of many shear failures,
but should show adequate ductility and warning of impending distress. The latter, as
pointed out earlier, is typical of flexural failure caused by yielding of the longitudinal
bars, which is preceded by gradual excessively large deflections and noticeable wid-
ening of cracks. Therefore, if a fairly large safety margin relative to the available shear
strength of the concrete alone does not exist, special shear reinforcement, known as
web reinforcement, is used to increase this strength.

Types of Web Reinforcement

Typically, web reinforcement is provided in the form of vertical stirrups, spaced at
varying intervals along the axis of the beam depending on requirements, as shown
in Fig. 5.9a. Relatively small bars are used, generally Nos. 3 to 5 (Nos. 10 to 16).
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FIGURE 5.9

Types of web reinforcement.

Telegram: @uni_k

(Vertical stirrups

(@)

Stirrup support bars

o/’ °
J [J U

(b) (c)

j \ Bent-up To” E

longitudinal bars

(d)

Simple U-shaped bars similar to Fig. 5.9 are most common. Multiple-leg stirrups, such
as shown in Fig. 5.9¢, are required in beams with widths larger than the depth, where
U-shaped stirrups at the boundary of the members may not provide adequate shear
capacity across the width of the members (Refs. 5.13 to 5.15). Stirrups are formed to fit
around the main longitudinal bars at the bottom and hooked or bent around longitudinal
bars at the top of the member to improve anchorage and provide support during con-
struction. Detailed requirements for anchorage of stirrups will be discussed in Chapter 6.

Alternatively, shear reinforcement may be provided by bending up a part of the
longitudinal steel where it is no longer needed to resist flexural tension, as suggested
by Fig. 5.9d. In continuous beams, these bent-up bars may also provide all or part
of the necessary reinforcement for negative moments. The requirements for longitu-
dinal flexural reinforcement often conflict with those for diagonal tension, and
because the savings in steel resulting from use of the capacity of bent bars as shear
resistance is small, most designers prefer to include vertical stirrups to provide for
all the shear requirement, counting on the bent part of the longitudinal bars, if bent
bars are used, only to increase the overall safety against diagonal tension failure.

Welded wire reinforcement is also used for shear reinforcement, particularly
for small, lightly loaded members with thin webs, and for certain types of precast,
prestressed beams.

Behavior of Web-Reinforced Concrete Beams

Web reinforcement has no noticeable effect prior to the formation of diagonal cracks.
In fact, measurements show that the web steel is practically free of stress prior to crack
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Forces at a diagonal crack in

a beam with vertical stirrups.
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formation. After diagonal cracks have developed, web reinforcement augments the
shear resistance of a beam in four separate ways:

1. Part of the shear force is resisted by the bars that traverse a particular crack. The
mechanism of this added resistance is discussed below.

2. The presence of these same bars restricts the growth of diagonal cracks and
reduces their penetration into the compression zone. This leaves more uncracked
concrete available at the head of the crack for resisting the combined action of
shear and compression, already discussed.

3. The stirrups also counteract the widening of the cracks, so that the two crack
faces stay in close contact. This makes for a significant and reliable interface
force V; (see Fig. 5.8).

4. As shown in Fig. 5.9, the stirrups are arranged so that they tie the longitudinal
reinforcement into the main bulk of the concrete. This provides some measure
of restraint against the splitting of concrete along the longitudinal reinforcement,
shown in Figs. 5.1 and 5.8b, and increases the share of the shear force resisted by
dowel action.

From this it is clear that failure will be imminent when the stirrups start
yielding. This not only exhausts their own resistance but also permits a wider crack
opening with consequent reduction of the beneficial restraining effects, points 2 to
4, above.

It becomes clear from this description that member behavior, once a crack is
formed, is quite complex and dependent in its details on the particulars of crack
configuration (length, inclination, and location of the main or critical crack). The
latter, in turn, is quite erratic and has so far defied purely analytical prediction. For
this reason, the concepts that underlie present design practice are not wholly rational.
They are based partly on rational analysis, partly on test evidence, and partly on
successful long-time experience with structures in which certain procedures for
designing web reinforcement have resulted in satisfactory performance.

BEAMS WITH VERTICAL STIRRUPS. Since web reinforcement is ineffective in the
uncracked beam, the magnitude of the shear force or stress that causes cracking to
occur is the same as in a beam without web reinforcement and is approximated by
Eq. (5.3a). Most frequently, web reinforcement consists of vertical stirrups; the
forces acting on the portion of such a beam between the crack and the nearby support
are shown in Fig. 5.10. They are the same as those of Fig. 5.8, except that each
stirrup traversing the crack exerts a force A, f, on the given portion of the beam.
Here A, is the cross-sectional area of the stirrup (in the case of the U-shaped stirrup




www.konkur.in

146 DESIGN OF CONCRETE STRUCTURES Chapter 5

FIGURE 5.11
Redistribution of internal
shear forces in a beam with
stirrups. (Adapted from Ref. 5.3.)

Telegram: @uni_k

Vint

Flexural Inclined Yield of Failure

cracking  cracking stirrups

of Fig. 5.9b it is twice the area of one bar), and f, is the tensile stress in the stirrup.
Equilibrium in the vertical direction requires

Vexl = ch + Vd + Viy + Vs ([1)

where V, = nA, f, is the vertical force in the stirrups, n being the number of stirrups
traversing the crack. If s is the stirrup spacing and p the horizontal projection of the
crack, as shown, then n = p/s.

The approximate distribution of the four components of the internal shear force
with increasing external shear V., is shown schematically in Fig. 5.11. It is seen that
after inclined cracking, the portion of the shear V; = nA,f, carried by the stirrups
increases linearly, while the sum of the three other components, V., + V, + V;,, stays
nearly constant. When the stirrups yield, their contribution remains constant at the
yield value V; = nA, f,;, where f,, represents the yield strength of the stirrup (or
transverse) reinforcement. However, because of widening of the inclined cracks and
longitudinal splitting, V;, and V, fall off rapidly. This overloads the remaining
uncracked concrete and very soon precipitates failure.

While total shear carried by the stirrups at yielding is known, the individual
magnitudes of the three other components are not. Limited amounts of test evidence
have led to the conservative assumption in present-day methods that just prior to
failure of a web-reinforced beam, the sum of these three internal shear components
is equal to the cracking shear V,,. This sum is generally (somewhat loosely) referred
to as the contribution of the concrete to the total shear resistance and is denoted V..
Thus, V. = V., and

Vo = ch + Vd + Viy (b)
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Forces at a diagonal crack in
a beam with inclined web
reinforcement.
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The number of stirrups n spaced a distance s apart was seen to depend on the
length p of the horizontal projection of the diagonal crack. This length is conserva-
tively assumed to be equal to the effective depth of the beam; thus n = d/s, imply-
ing a crack somewhat flatter than 45°. Then, at failure, when V,, = V,, Eqgs. (@) and
(b) yield for the nominal shear strength

A, fud

Vo=V, + —

(5.7a)
Dividing both sides of Eq. (5.7a) by bd, the same relation is expressed in terms
of the nominal shear stress:
v, A, Sy
Vn=7;= V¢

bd bs

(5.7b)

BEAMS WITH INCLINED BARS. The function of inclined web reinforcement
(Fig. 5.9d) can be discussed in very similar terms. Figure 5.12 again indicates the forces
that act on the portion of the beam to one side of the diagonal crack that results in
eventual failure. The crack with horizontal projection p and inclined length
i = p/cos O is crossed by inclined bars horizontally spaced a distance s apart. The
inclination of the bars is « and that of the crack 0, as shown. The distance between bars
measured parallel to the direction of the crack is seen from the irregular triangle to be

s
a=—
sin € (cot 8 + cot a)

(@)

The number of bars crossing the crack n = i/a, after some transformation, is
p

n:§(1+c0tatan9) (b)

The vertical component of the force in one bar or stirrup is A, f, sin @, so that the total
vertical component of the forces in all bars that cross the crack is

V.= nA,fysina = A, £, (sin a + cos  tan 0) (5.8)

As in the case of vertical stirrups, shear failure occurs when the stress in the
web reinforcement reaches the yield point. Also, the same assumptions are made as
in the case of stirrups, namely, that the horizontal projection of the diagonal crack
is equal to the effective depth d, and that V., + V,; + V; is equal to V.. Lastly, the
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5.5

inclination @ of the diagonal crack, which varies somewhat depending on various

influences, is generally assumed to be 45°. On this basis, when failure is caused by

shear, the nominal strength is

A, fy d(sin a + cos a)
s

V,=V. + 5.9
It is seen that Eq. (5.7a), developed for vertical stirrups, is only a special case, for
a =90°, of the more general expression in Eq. (5.9).

Note that Eqs. (5.7) and (5.9) apply only if web reinforcement is so spaced that
any conceivable diagonal crack is traversed by at least one stirrup or inclined bar.
Otherwise web reinforcement would not contribute to the shear strength of the beam,
because diagonal cracks that could form between widely spaced web reinforcement
would fail the beam at the load at which it would fail if no web reinforcement were
present. This imposes upper limits on the permissible spacing s to ensure that the
web reinforcement is actually effective as calculated.

To summarize, at this time the nature and mechanism of diagonal tension
failure are clearly understood qualitatively, but some of the quantitative assumptions
that have been made in the preceding development cannot be proved by rational
analysis. However, the calculated results are in acceptable and generally conservative
agreement with a very large body of empirical data, and structures designed on this
basis have proved satisfactory. Newer methods, introduced in Section 5.8, provide
alternatives that are slowly being incorporated into the ACI Code and the AASHTO
Bridge Specifications (Ref. 5.12). Chapter 17 presents a detailed description of one
such alternative, the so-called strut-and-tie model, which appears in Chapter 23 of
the ACI Code.

ACl CODE PROVISIONS FOR SHEAR DESIGN

According to ACI Code 9.5.1.1, the design of beams for shear is to be based on the
relation

V.2 ¢V, (5.10)

where V, is the total shear force applied at a given section of the beam due to factored
loads and V,, = V.. + V, is the nominal shear strength, equal to the sum of the contribu-
tions of the concrete and the web steel if present. Thus for vertical stirrups

PA, fy d
Vo< gV + — (5.11a)
and for inclined bars
@A, f,,d(sin a + cos a)
V, < ¢V, + — (5.11b)

N

where all terms are as previously defined. The strength reduction factor ¢ is to be
taken equal to 0.75 for shear. The additional conservatism, compared with the value
of ¢ = 0.90 for bending for typical beam designs, reflects both the sudden nature of
diagonal tension failure and the large scatter of test results.

For typical support conditions, where the reaction from the support surface or
from a monolithic column introduces vertical compression at the end of the beam,
sections located less than a distance d from the face of the support may be designed
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FIGURE 5.13

Location of critical section
for shear design: (a) end-
supported beam; (b) beam
supported by columns;

(c¢) concentrated load within
d of the face of the support;
(d) member loaded near the
bottom; (e) beam supported
by girder of similar depth;
and (f') beam supported by
monolithic vertical element.
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for the same shear V, as that computed at a distance d, as shown in Fig. 5.13a and b.
However, the critical design section should be taken at the face of the support if
concentrated loads act within that distance (Fig. 5.13c), if the beam is loaded near
its bottom edge (as may occur for an inverted T beam, as shown in Fig. 5.13d), or
if the reaction causes vertical tension rather than compression [for example, if the
beam is supported by a girder of similar depth (Fig. 5.13¢) or at the end of a mon-
olithic vertical element (Fig. 5.13f)].

Shear Strength Provided by the Concrete

To establish the nominal shear strength contribution of the concrete (including the
contributions from aggregate interlock, dowel action of the main reinforcing bars, and
that of the uncracked concrete), ACI Code 22.5.5.1 uses an approach that simplifies
that shown in Egs. (5.3a) and (5.3b). It does so by (1) neglecting the effect of bending
moment on the shear stress at which diagonal tension cracks form v, and (2) represent-

ing the contribution of concrete compressive strength on v, using \/ﬁ in place of /'3,

"The effect of bending moment on the shear stress at which diagonal tension cracks form is considered for prestressed concrete members, as

discussed in Chapter 22.
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with an upper limit on \/f_C’ of 100 psi unless a minimum amount of web reinforcement
(defined in Section 5.5b) is used.

To permit application of the Code provisions to T beams having web width
b, the rectangular beam width b is replaced by b,, with the understanding that for
rectangular beams b is used for b,,. Thus, for members without a minimum amount
of web reinforcement, according to ACI Code 22.5.5.1, the concrete contribution to
shear strength is

V. = 80M(p,)" " Vfib,d (5.124)
where A, is the size effect factor given in Eq. (5.3b)
hy = 4|—2 (5.12b)
(1 +d/10)

and p,, is the longitudinal reinforcement ratio A;/b,d or A,/bd, with A taken as the
sum of the areas of longitudinal bars located more than two-thirds of the overall mem-
ber depth away from the extreme compression fiber.

The term A in Eq. (5.12a) is a modification factor reflecting the lower tensile
strength of lightweight concrete compared with normalweight concrete of the same
compressive strength (see Table 2.3 and Ref. 5.13). Lightweight aggregate concretes
having densities from 90 to 135 pcf are used widely, particularly for precast elements.
For these concretes, A may be taken as 0.75. In accordance with ACI Code 19.2.4.1
and 19.2.4.2, however, values between 0.75 and 1.0 may be used based on either the
equilibrium density w,. or composition of the aggregate. Following ACI Code 19.2.4.1,
A =0.75 for w, < 100 pcf and 1.0 for w, > 135 pcf. Linear interpolation between 0.75
and 1.0 is used for values of w, between 100 and 135 pcf. Alternatively, in accordance
with ACI Code 19.2.4.2, A = 0.75 for “all-lightweight” concrete and 0.85 for “sand-
lightweight” concrete. Linear interpolation between 0.75 and 0.85, based on volumetric
fractions, is permitted when a portion of the lightweight fine aggregate is replaced by
normalweight fine aggregate. Linear interpolation between 0.85 and 1.0 is also per-
mitted for concretes containing normalweight fine aggregate and a blend of lightweight
and normalweight coarse aggregate. For normalweight concrete, A = 1.0.

For members with a minimum amount of web reinforcement, the ACI Code
recognizes that because web reinforcement limits crack width, it both increases the
effective contribution of concrete to the shear strength of the member V. and reduces
the size effect, as represented by A,. Based on these observations, ACI Code 22.5.5.1
permits the concrete contribution to shear strength to be calculated for members with
a minimum amount of web reinforcement as either

V, = 20/f.b,d (5.12¢)
or

V. = 8Mp,) " Vfib,d (5.12d)

Equation (5.12¢) is close to the conservative value shown in Eq. (5.2b). It has been
used successfully for many years, and because of its simplicity, is often used in prac-
tice. Equation (5.12d) is Eq. (5.12a) with A, set to 1.0. The value of V, calculated using
Eq. (5.12d) will exceed V. calculated using (5.12c¢) for p,, greater than 0.0156.

For members with a circular cross section, ACI Code 22.5.2.2 provides that V.
in Egs. (5.12a), (5.12¢), and (5.12d) be calculated using b,, equal to the diameter of
solid sections and twice the wall thickness for hollow sections and d equal to
0.8 times the diameter of the member.

The upper limit on \/f_c’ of 100 psi is based on experimental results (Refs. 5.14
to 5.17) for beams constructed using concrete with f; above 6000 psi (see Section 2.12)
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showing that the concrete contribution to shear strength V, increases more slowly than
\/fj’ as f, increases. This effect, however, is greatly reduced in the presence of web
reinforcement. Thus, values of \/f_c’ greater than 100 psi may be used in computing V.
if a minimum amount of web reinforcement is used (see Section 5.5b).

Minimum Web Reinforcement

If V,, the shear force at factored loads, is no larger than ¢V,, calculated by Eq. (5.12a),

then theoretically no web reinforcement is required. Even in such a case, however, ACI

Code 9.6.3 requires provision of at least a minimum area of web reinforcement equal to
b,,s b,s

Aymin = 0.75Vf] == > 5022 (5.13a)

S St

where s = longitudinal spacing of web reinforcement, in.

Sy = yield strength of web steel, psi, and
A, min = total cross-sectional area of web steel within distance s, in%.

This provision holds unless V, is one-half or less of the design strength provided
by the concrete based on Eq. (5.12¢), that is, unless

V, < pMfib,d (5.13b)
corresponding to
V. = M/f/b,d (5.13¢)

Specific exceptions to this requirement for minimum web steel are made for concrete
joist floor construction; for beams with total depth A not greater than 10 in.; and for
beams integral with slabs with £ not greater than 24 in. and not greater than the larger of
2.5 times the thickness of the flange and 0.5 times the thickness of the web. These
members are excluded because of their capacity to redistribute internal forces before
diagonal tension failure, as confirmed by both tests and successful design experience.
In addition, beams constructed of steel fiber reinforced, normalweight concrete with f;
not exceeding 6000 psi, total depth % not greater than 24 in., and V, not greater than ¢»2
\/E b,d are not required to meet the requirements for minimum web reinforcement
because beams meeting these requirements have been shown to have shear strength in
excess of 3.5 \/ﬁbwd (Ref. 5.16)."

For beams without web reinforcement, Eq. (5.12a) will govern in place of Egs.
(5.13b) and (5.13¢) in cases where the product 8}»S(pw)”3 is less than 1.0. This will
occur, for example, for members with reinforcement ratios p,, of 0.008, 0.010, and
0.012 with effective depths d that exceed, respectively, 41, 49, and 57 in. For shallower
members, Eqgs. (5.13b) and (5.13¢) will govern.

For high-strength concrete beams, the limitation of 100 psi imposed on
the value of \/}7 used in calculating V. is waived by ACI Code 22.5.3.2 if such
beams are designed with minimum web reinforcement equal to the amount required
by Eq. (5.13a). In this case, the concrete contribution to shear strength may be
calculated based on the full concrete compressive strength. Tests described in Refs. 5.17
and 5.18 indicate that for beams with concrete strength above about 6000 psi, the
concrete contribution V. was significantly less than predicted by the ACI Code equations,
although the steel contribution V; was higher. The total nominal shear strength V,

"To qualify, the fiber-reinforced concrete must conform to requirements in ACI Code 26.4.1.5, 26.4.2.2(i), and 26.12.7.1 that specify a minimum
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deformed steel fiber content of 100 Ib/yd® and minimum residual flexural strength values when the concrete is tested in accordance with
ASTM C1609, “Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading).”
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was greater than predicted by ACI Code methods in all cases. The use of minimum
web steel for high-strength concrete beams is intended to enhance the post-cracking
capacity, thus resulting in safe designs even though the concrete contribution to shear
strength is overestimated.*

EXAMPLE 5.1

Beam without web reinforcement. A rectangular beam, with p,, estimated to be 0.01, is
designed to carry a shear force V, of 27 kips. No web reinforcement is used, and f; is 4000 psi.
What is the minimum cross section if controlled by shear?

SoLuTION. If no web reinforcement is used, the cross-sectional dimensions must be selected
so that the applied shear V, is no larger than design strength given in Eq. (5.13b).

V. = ¢M/flb,d
B 27,000
0.75 x 1.0v/4000

A beam with b, = 18 in. and d = 32 in. is required. As described earlier, because the beam
is relatively shallow, Eq. (5.13b) will govern this design because 87xs(pw)”3 in Eq. (5.12a)
exceeds 1.0. For comparison, however, the cross section will also be checked based on
Eq. (5.12a) with

b,d = 569 in®

A = 2 2 _ 069
(1 4 d/10) (1 + 32/10)
and p,, = 0.01, giving 8A,(p,)"* = 8 x 0.69 x (0.01)"* = 1.19.

V. = ¢80 Mp,) " Vfib,d
B 27,000
0.75 x 8 x 0.69 x 1.0 x (0.01)"3+/4000

As expected, the section calculated using Eq. (5.12a) is too small, and the cross section with
b, = 18 in. and d = 32 in. will be used. Alternately, if the minimum amount of web reinforce-
ment given by Eq. (5.13a) is used, the concrete shear resistance may be taken at its full value
¢V,, with V, given by Eq. (5.12¢), and it is easily confirmed that a beam with b,, = 12 in. and
d = 24 in. will be sufficient.

b,d = 479 in’

Region in which Web Reinforcement is Required

If the required shear strength V,, is greater than the design shear strength ¢V, provided
by the concrete in any portion of a beam, with V, based on Eq. (5.12a), there is a theo-
retical requirement for web reinforcement. Following ACI Code 22.5.5.1, the quantity
of web reinforcement would be based on V, given in Eq. (5.12¢) or Eq. (5.12d). In
addition, web reinforcement at least equal to the amount given by Eq. (5.13a) must be
provided, unless the factored shear force is low enough to satisfy Eq. (5.130).

The portion of any span through which web reinforcement is theoretically
necessary can be found from the shear diagram for the span, superimposing a plot
of the shear strength of the concrete. Where the shear force V, exceeds ¢V,., shear
reinforcement must provide for the excess. The additional length through which at
least the minimum web steel is needed can be found by superimposing a plot of

PMfIb,d, as given in Eq. (5.13b).

“The shortcomings of the ACI Code “V, + V,” approach to shear design, particularly the provisions relating to the concrete contribution V,,
have provided motivation for the development of more rational procedures, as will be discussed in Section 5.8.
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EXAMPLE 5.2

FIGURE 5.14

Shear design example.
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Limits of web reinforcement. A simply supported rectangular beam 16 in. wide having an
effective depth of 22 in. carries a total factored load of 9.4 kips/ft on a 20 ft clear span.
It is reinforced with 7.62 in” of tensile steel, which continues uninterrupted into the supports.
If f = 4000 psi, throughout what part of the beam is web reinforcement required?

SorutioN. The variation of V, along the beam is shown in Fig. 5.14a. The maximum
external shear force occurs at the ends of the span, where V, = 9.4 X 20/2 = 94 kips. At the
critical section for shear, a distance d from the support, V, = 94 — 9.4 x 1.83 = 76.8 kips.
The shear force varies linearly to zero at midspan.

The size effect factor A, = 1/2/(1 + d/10) = \/2/(1 + 22/10) = 0.79, and the rein-
forcement ratio p,, = A,/b,,d = 7.62/(16 x 22) = 0.0216. Using these values to calculate V,
for a member without web reinforcement gives

V. = 8, Mp) P /flbd = 8 x 0.79 x 1.0 x (0.0216)*+/4000 x 16 x 22 = 39,200 Ib

By inspection, web reinforcement is needed.
Adopting Eq. (5.12¢) for V. where web reinforcement is used gives

V.= 27»\/Ebwd =2 x 1.0v4000 x 16 x 22 = 44,500 1b

Hence ¢V. = 0.75 x 44.5 = 33.4 kips. This value is superimposed on the shear diagram in
Fig. 5.14a, and from geometry, the point at which web reinforcement theoretically is no longer
required is

94.0 — 33.4
10(4) — 645 fi
94.0
d= 183
V, = 94.0 kips
V, = 76.8 kips
S = Smax
¢
PV = 33.4 kips ‘
4,35 210" —f
PMEb,d=16Tkips [~——————————"- P——
6.45'
8.22'
Web reinforcement
10.00’

(a)

2 H |
- 7@5 2@7 4@
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from the support face. According to the ACI Code, however, at least a minimum amount of web
reinforcement is required wherever the shear force exceeds ¢\ \/ﬁ b,d, or 16.7 kips in this case.
As shown in Fig. 5.14aq, this applies to a distance

94.0 — 16.7

1
O( 94.0

) =822 ft

from the support face. To summarize, at least the minimum web steel must be provided within a
distance of 8.22 ft from the supports, and within 6.45 ft the web steel must provide for the shear
force corresponding to the shaded area.

Telegram: @uni_k

Design of Web Reinforcement

The design of web reinforcement, under the provisions of the ACI Code, is based on
Eq. (5.11a) for vertical stirrups and Eq. (5.115) for inclined stirrups or bent bars. In
design, it is usually convenient to select a trial web-steel area A, based on standard
stirrup sizes [usually in the range from No. 3 to 5 (No. 10 to 16) for stirrups, and
according to the longitudinal bar size for bent-up bars], for which the required spac-
ing s can be found. Equating the design strength ¢V, to the required strength V,, and
transposing Egs. (5.11a) and (5.11b) accordingly, one finds that the required spacing
of web reinforcement is, for vertical stirrups,

A, fird
s = PASud (5.14a)
Vu - ¢VC
and for bent bars
A, fd(sin @ + cos Q)
s = e (5.14b)

Vu - ¢VC

It should be emphasized that when conventional U stirrups such as in Fig. 5.9 are
used, the web area A, provided by each stirrup is twice the cross-sectional area of
the bar; for stirrups such as those of Fig. 5.9c¢, A, is 4 times the area of the bar used.
Equation (5.14a) is applicable to members with circular, as well as rectangular, cross
sections. For circular members, d is taken as 0.8 times the effective depth, as defined
earlier in Section 5.5a, and A, is taken as 2 times the area of the bar, hoop, or spiral.

While the ACI Code requires only that the inclined part of a bent bar make an
angle of at least 30° with the longitudinal part, bars are usually bent at a 45° angle.
Only the center three-fourths of the inclined part of any bar is to be considered
effective as web reinforcement.

It is undesirable to space vertical stirrups closer than about 4 in.; the size of
the stirrups should be chosen to avoid a closer spacing. When vertical stirrups are
required over a comparatively short distance, it is good practice to space them uni-
formly over the entire distance, the spacing being calculated for the point of greatest
shear (minimum spacing). If the web reinforcement is required over a long distance,
and if the shear varies materially throughout this distance, it is more economical to
compute the spacings required at several sections and to place the stirrups accord-
ingly, in groups of varying spacing.

Where web reinforcement is needed, ACI Code 9.7.6.2 requires the legs of
vertical shear reinforcement to be spaced no more than d/2 along the length of the
member and no more than d across the width of the member, with neither exceeding
24 in. The maximum spacing across the width of the member is to provide a uniform
transfer of force from the stirrups to the concrete across the beam web of wide
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Maximum spacing of

web reinforcement for

V, < 4+/f!b,d () along the
length of the member as
governed by diagonal crack
interception and (b) across
the width of the member.
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beams. When V exceeds 4\/]? b,d, these maximum spacings are halved. Inclined
stirrups or bars must be spaced so that every 45° line, representing a potential diag-
onal crack and extending from the mid-depth d/2 of the member to the longitudinal
tension bars, is crossed by at least one line of web reinforcement. These limitations
are shown in Fig. 5.15 for both vertical stirrups and inclined bars, for situations in
which the excess shear does not exceed the stated limit.

For design purposes, Eq. (5.13) giving the minimum web-steel area A, is more
conveniently inverted to permit calculation of maximum spacing s for the selected A,.
Thus, for the usual case of vertical stirrups, with V, < 44/f! b, d, the maximum
spacing of stirrups is the smallest of

A, f, ;
Smax = f;t fiw (515(1)
0.75v/f/b,, b,,
d
max = = 5.15b
s > ( )
Smax = 24 in. (5.15¢)

For longitudinal bars bent at 45°, Eq. (5.15b) is replaced by s, = 3d/4, as confirmed
by Fig. 5.15.

To avoid excessive crack width in beam webs, ACI Code 20.2.2.4 limits the
yield strength of the reinforcement to f;, = 60,000 psi or less for reinforcing bars
and 80,000 psi or less for welded wire reinforcement. In no case, according to
ACI Code 22.5.1, is V; to exceed 8\/ﬁbwd regardless of the amount of web steel
used.
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EXAMPLE 5.3
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Design of web reinforcement. Using vertical U stirrups with f,, = 60,000 psi, design the
web reinforcement for the beam in Example 5.2.

SorutioN. The solution will be based on the shear diagram in Fig. 5.14a. The stirrups must

be designed to resist that part of the shear shown shaded. With No. 3 (No. 10) stirrups used for

trial, the three maximum spacing criteria are first applied. For ¢V, = V, — ¢V, = 43,400 Ib,

which is less than 4¢\/fL_.’ b,.d = 66,800 b, the maximum spacing along the length of the member

must exceed neither d/2 = 11 in. nor 24 in. The spacing across the width of the member may not

exceed d = 22 in. nor 24 in., criteria that are satisfied because b,, = 16 in. Also, from Eq. (5.15a),
A, f 0.22 x 60,000

Sy = - =174 in.
0.75v/f b,  0.75v/4000 x 16

Avfy 0.22 x 60,000 .
< = = 16.5 in
500, 50 x 16

The first criterion for longitudinal spacing controls in this case, and a maximum spacing of
11 in. is imposed. From the support to a distance d from the support, the excess shear V, — ¢V.
is 43,400 Ib. In this region, the required spacing is

_ PASd 075 % 0.22 X 60,000 X 22
TV, - ¢V, 43,400

=5.0in.

N

This is neither so small that placement problems would result nor so large that maximum spac-
ing criteria would control, and the choice of No. 3 (No. 10) stirrups is confirmed. Solving
Eq. (5.14a) for the excess shear at which the maximum spacing can be used gives

DA S d ~0.75 x 0.22 x 60,000 x 22
s 11

With reference to Fig. 5.14a, this is attained at a distance x; from the point of zero excess shear,

where x; = 6.45 x 19,800/60,600 = 2.10 ft. This is 4.35 ft from the support face. With this

information, a satisfactory spacing pattern can be selected. The first stirrup is usually placed at
a distance s/2 from the support. The following spacing pattern is satisfactory:

Vi,—¢Ve. = = 19,800 Ib

1 space at 2 in. = 2 in.
7 spaces at 5 in. = 35 in.
2 spaces at 7 in. = 14 in.
4 spaces at 11 in. = 44 in.
Total = 95 in. = 7 ft 11 in.
The resulting stirrup pattern is shown in Fig. 5.14b. As an alternative solution, it is possible
to plot a curve showing required spacing as a function of distance from the support. Once the
required spacing at some reference section, say at the support, is determined,
PASd 075 x 0.22 X 60,000 x 22
TV, —gv. 94,000 — 33,400

= 3.59 in.

So

it is easy to obtain the required spacings elsewhere. In Eq. (5.14a), only V,, — ¢V, changes with
distance from the support. For uniform load, this quantity is a linear function of distance from
the point of zero excess shear, 6.45 ft from the support face. Hence, at 1 ft intervals,

s =3.59 X 6.45/5.45 = 4.25 in.
5y = 3.59 X 6.45/4.45 = 5.20 in.
s3 = 3.59 x 6.45/3.45 = 6.70 in.
54 =3.59 X 6.45/2.45 = 9.45 in.
55 = 3.59 x 6.45/1.45 = 15.97 in.
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Required stirrup spacings for

Example 5.3.
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This is plotted in Fig. 5.16 together with the maximum spacing of 11 in., and a practical spacing
pattern is selected. The spacing at a distance d from the support face is selected as the minimum
requirement, in accordance with the ACI Code. The pattern of No. 3 (No. 10) U-shaped stirrups
selected (shown on the graph) is identical with the previous solution. In most cases, the experienced
designer would find it unnecessary actually to plot the spacing diagram of Fig. 5.16 and would select
a spacing pattern directly after calculating the required spacing at intervals along the beam.

Although not required by the ACI Code, it is good design practice to continue the
stirrups (at maximum spacing) through the middle region of the beam, even though the
calculated shear is low. Doing so satisfies the dual purposes of providing continuing support
for the top longitudinal reinforcement that is required wherever stirrups are used and provid-
ing additional shear capacity in the region to handle load cases not considered in developing
the shear diagram. If this were done, the number of stirrups would increase from 14 to
16% per half-span (that is, one stirrup at midspan), respectively.
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5.6

EFFECT OF AXIAL FORCES

The beams considered in the preceding sections were subjected to shear and flexure
only. Reinforced concrete beams may also be subjected to axial forces, acting simulta-
neously with shear and flexure, due to a variety of causes. These include external axial
loads, longitudinal prestressing, and restraint forces introduced as a result of shrinkage
of the concrete or temperature changes. Beams may have their strength in shear sig-
nificantly modified in the presence of axial tension or compression, as is evident from
areview of Sections 5.1 through 5.4.

Prestressed concrete members are treated by somewhat specialized methods,
according to present practice, based largely on results of testing prestressed concrete
beams. They will be considered separately in Chapter 22, and only nonprestressed
reinforced concrete beams will be treated here.

The main effect of axial load is to modify the diagonal cracking load of the mem-
ber. It was shown in Section 5.3 that diagonal tension cracking will occur when the
principal tensile stress in the web of a beam, resulting from combined action of shear
and bending, reaches the tensile strength of the concrete. It is clear that the introduction
of longitudinal force, which modifies the magnitude and direction of the principal tensile
stresses, may significantly alter the diagonal cracking load. Axial compression will
increase the cracking load, while axial tension will decrease it. The effect of axial
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compression or tension on the maximum tensile stress ¢ in Eq. (3.10) can be easily vis-
ualized by adding the stress due to axial load to the stress due to flexure f.

For members carrying only flexural and shear loading, the shear force at which
diagonal cracking occurs V., is predicted by Eq. (5.3a), based on a combination of theory
and experimental evidence. Furthermore, for reasons that were explained in Section 5.4b,
in beams with web reinforcement, the contribution of the concrete to shear strength V.
is taken equal to the diagonal cracking load V,,. Thus, according to the ACI Code, val-
ues of V., = V,, for members without axial load are given by Egs. (5.12a), (5.12¢), and
(5.12d). Based on comparisons with tests, however, the ACI Code has added modified
versions of these equations that include the effect of axial load. Indeed, the earlier equa-
tions represent the special case of zero axial load of those that follow.

For members with axial load and web reinforcement below A, ,;,, as given in
Eq. (5.13a), the concrete contribution to shear strength is given by

N,
V., = [&@(pw)” .+ —|b,d (5.16a)

6A,

For members with axial load and web reinforcement of at least A, ,;,, the concrete
contribution to shear strength is given by

N
V.= |20/ + =~|b,d 5.16b
o + 2 siep
or
3 e Nu
V.= |8 () PVE + b,d (5.16¢)
6A,

where N, is the axial load, taken as positive for compression and negative for tension,
and A, is the gross area of the concrete cross section. A, does not include voids if a
member is hollow. According to ACI Code 22.5.5, N,/6A, may not be taken greater
than 0.05 £, and V. may not be taken greater than 5A+/f,b,d nor less than zero.

EXAMPLE 54
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Effect of axial forces on V.. A beam with dimensions b = 12 in., d = 24 in,, and & = 27 in.,
with f, = 4000 psi, carries a single concentrated factored load of 100 kips at midspan. Find the
maximum shear strength of the concrete V, at the first critical section for shear at a distance d from
the support (@) if no axial forces are present, (b) if axial compression of 60 kips acts, and (c) if
axial tension of 60 kips acts. In each case, compute V. by both the more complex and simplified
expressions of the ACI Code. Neglect the self-weight of the beam. At the section considered,
tensile reinforcement consists of three No. 10 (No. 32) bars with a total area of 3.81 in’.

SoLUTION. At the critical section, V, = 50 kips, while A, = v/ 2/(1 + d/10) = v/ 2/(1 + 24/10)
= 0.77 and p = 3.81/(12 x 24) = 0.013.

(a) If N, =0, Eq. (5.16a) gives

N,
6A,

Ve= 8 Mp) VI + | bud

= [8 x 0.77 x 1.0(0.013)"*+/4000 + 0]12 x % = 26.4 kips
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Since ¢V, based on Eq. (5.16b) is below V,, web reinforcement will be needed and
Eq. (5.16b) will be used to calculate V..

N u
6A

bod = [2 x 1.0v/3000 + 0]12 x % — 36.4 kips

vV, = [m f +

4

(b) With a compression force of 60 kips introduced and N, taken as positive,
N,/6A, = 60,000/(6 x 12 X 24) = 35 psi, which is less than the upper limit of 0.05 f, =
0.05 x 4000 = 200 psi.

V. based on Eq. (5.16b) gives

N,
V.= [2M/f] + —
|27 +

bod = [2 x 1.0/3000 + 35]12 x % — 46.5 kips

By inspection, V. does not exceed SX\/ﬁ b,d.

(¢) With an axial tension of 60 kips acting (¥, is now negative), the reduced V., is also found
using Eq. (5.16b).

byd = [2 x 1.0v/A000 — 3512 x —2% = 26.3 kips

V.= [2M/f + N,
< ¢ 1000

6A,

a reduction of nearly 30 percent from the value for N, = 0.

In all cases above, the strength reduction factor ¢p = 0.75 must be applied to V, to obtain
the design strength.
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5.7

BEAMS WITH VARYING DEPTH

Reinforced concrete members having varying depth are frequently used in the form
of haunched beams for bridges or portal frames, as shown in Fig. 5.17a, as precast
roof girders such as shown in Fig. 5.17b, or as cantilever slabs. Generally the depth
increases in the direction of increasing moments. For beams with varying depth, the
inclination of the internal compressive and tensile stress resultants may significantly
affect the shear for which the beam should be designed. In addition, the shear resist-
ance of such members may differ from that of prismatic beams.

Figure 5.17¢ shows a cantilever beam, with fixed support at the left end, carrying
a single concentrated load P at the right. The depth increases linearly in the direction
of increasing moment. In such cases, the internal tension in the steel and the compres-
sive stress resultant in the concrete are inclined, and introduce components transverse
to the axis of the member. With reference to Fig. 5.17d, showing a short length dx of
the beam, if the slope of the top surface is 6, and that of the bottom is 6,, the net shear
force V,, for which the beam should be designed is very nearly equal to

V,=V,—Ttan 0, — C tan 6,

where V, is the external shear force equal to the load P here, and C = T = M,, /z. The
internal lever arm z = d — a/2 as usual. Thus, in a case for which the beam depth
increases in the direction of increasing moment, the shear for which the member
should be designed is approximately

_ M,
V.=V, - = (tan 8, + tan 6,) (5.17a)
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FIGURE 5.17 Y| |

Effect of varying beam depth ==

on shear. == —
(@)
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5.8

T/cos 6,

(c) (d)

For the infrequent case in which the member depth decreases in the direction of
increasing moment, it is easily confirmed that the corresponding equation is

M,
V.=V, + =" (tan 0, + tan 0,) (5.17b)

These equations are approximate because the direction of the internal forces is not
exactly as assumed; however, the equations may be used without significant error
provided the slope angles do not exceed about 30°.

There has been very little research studying the shear strength of beams having
varying depth. Tests reported in Ref. 5.19 on simple span beams with haunches at
slopes up to about 15° and with depths both increasing and decreasing in the direc-
tion of increasing moments indicate no appreciable change in the cracking load V.,
compared with that for prismatic members. Furthermore, the strength of the haunched
beams, which contained vertical stirrups as web reinforcement, was not significantly
decreased or increased, regardless of the direction of decreasing depth. Based on this
information, it appears safe to design beams with varying depth for shear using
equations for V. and V developed for prismatic members, provided the actual depth
d at the section under consideration is used in the calculations.

ALTERNATIVE MODELS FOR SHEAR ANALYSIS
AND DESIGN

The ACI Code method of design for shear and diagonal tension in beams, presented in
preceding sections of this chapter, is essentially empirical. While generally leading to
safe designs, the ACI Code “V, + V,” approach lacks a physical model for the behavior
of beams subject to shear combined with bending, and its shortcomings are now gen-
erally recognized. The “concrete contribution” V. is generally considered to be some
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combination of force transfer by dowel action of the main steel, aggregate interlock along
a diagonal crack, and shear in the uncracked concrete beyond the end of the crack. The
values of each contribution are not identified. Furthermore, as discussed in Section 5.4,
Eqgs. (5.12a), (5.12¢), and (5.12d) ignore the influence of V,d/M, (Ref. 5.3).

Ad hoc procedures are built into the ACI Code to adjust for some of these
deficiencies, but it follows that it is necessary to include equations, also empirically
developed for the most part, for specific classes of members (such as, deep beams
vs. normal beams, beams with axial loads, prestressed vs. nonprestressed beams,
high-strength concrete beams)—with restrictions on the range of applicability of such
equations. And it is necessary to incorporate seemingly arbitrary provisions for the
maximum nominal shear stress and for the extension of flexural reinforcement past
the theoretical point of need. The end result is that the number of ACI Code equa-
tions for shear design has grown from 4 prior to 1963 to 38 in the current Code.

With this as background, attention has been given to the development of design
approaches based on rational behavioral models, generally applicable, rather than on
empirical evidence alone (Ref. 5.6).

The truss model was originally introduced by Ritter (Ref. 5.20) and Morsch
(Ref. 5.21) at the turn of the last century. A simplified version has long provided
the basis for the ACI Code design of shear steel. The essential features of the truss
model are reviewed with reference to Fig. 5.18a, which shows one-half the span of
a simply supported, uniformly loaded beam. The combined action of flexure and
shear produces the pattern of cracking shown. Reinforcement consists of the main
flexural steel near the tension face and vertical stirrups distributed over the span.

The structural action can be represented by the truss of Fig. 5.18b, with the
main steel providing the tension chord, the concrete top flange acting as the com-
pression chord, the stirrups providing the vertical tension web members, and the
concrete between inclined cracks acting as 45° compression diagonals. The truss is
formed by lumping all the stirrups cut by section a-a into one vertical member and
all the diagonal concrete struts cut by section b-b into one compression diagonal.
Experience shows that for typical cases, the results of the model described are quite
conservative, particularly for beams with small amounts of web reinforcement. As
noted above, in the ACI Code the observed excess shear capacity is taken equal to
the shear at the commencement of diagonal cracking and is referred to as the con-
crete contribution V..

The truss concept has been greatly extended by the work of Schlaich, Marti,
Collins, MacGregor, and others (Refs. 5.6, 5.22 to 5.27). It was realized that the angle
of inclination of the concrete struts is generally not 45° but may range between about
25° and 65°, depending to a large extent on the arrangement of reinforcement. This led
to what has become known as the variable-angle truss model, shown in Fig. 5.18c,
which illustrates the five basic components of the improved model: (@) struts or concrete
compression members uniaxially loaded; (b) ties or steel tension members; (c¢) joints at
the intersection of truss members assumed to be pin-connected; (d) compression fans,
which form at “disturbed” regions, such as at the supports or under concentrated loads,
transmitting the forces into the beam; and (e) diagonal compression fields, occurring
where parallel compression struts transmit force from one stirrup to another. As in the
ACI Code development, stirrups are typically assumed to reach yield stress at failure.
With the force in all the verticals known and equal to A,f,, the truss of Fig. 5.18¢
becomes statically determinate. Direct design equations can be based on the variable-
angle truss model for ordinary cases. The model also permits direct numerical solution
for the required reinforcement for special cases. The truss model does not include
components of the shear failure mechanism such as aggregate interlock and friction,
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FIGURE 5.18

Truss model for beams with
web reinforcement:

(a) uniformly loaded beam;
(b) simple truss model; and
(c) more realistic model.
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dowel action of the longitudinal steel, and shear carried across uncracked concrete.
Furthermore, in the format originally proposed, the truss model does not account for
compatibility requirements; that is, it is based on plasticity theory. One form of the truss
model is incorporated in Chapter 23 of the ACI Code; strut-and-tie models are discussed
in detail in Chapter 17.

Compression Field Theory

The Canadian National Standard for reinforced concrete (Ref. 5.28) includes a method
of shear design that is essentially the same as the present ACI method but also includes
an alternative “general method” based on the variable-angle truss and the compres-
sion field theory (Refs. 5.25 and 5.29). The latter is incorporated in AASHTO LRFD
Bridge Design Specifications (Ref. 5.12). In its complete form, known as the modi-
fied compression field theory, it accounts for requirements of compatibility as well as
equilibrium and incorporates stress-strain characteristics of both materials. Thus, it is
capable of predicting not only the failure load but also the complete load-deformation
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FIGURE 5.19

Basis of compression field
theory for shear: (a) beam
with shear and longitudinal
steel; (b) tension in
horizontal bars due to shear;
(c) diagonal compression
on beam web; (d) vertical
tension in stirrups; and

(e) equilibrium diagram of
forces due to shear. (Adapted
from Ref. 5.25.)

Telegram: @uni_k

SHEAR AND DIAGONAL TENSION IN BEAMS 163

S N I N

x ’

L1 w1
]]25/97;7/%2&}

P -

() ()

0
(d)
ﬁ
l —_—
Aty
0
dV
tan

(€)

response. The most basic elements of the compression field theory, applied to members
carrying combined flexure and shear, will be clear from Fig. 5.19. Figure 5.19a shows
a simple-span concrete beam, reinforced with longitudinal bars and transverse stirrups,
and carrying a uniformly distributed loading along the top face. The light diagonal lines
are an idealized representation of potential tensile cracking in the concrete.

Figure 5.19b illustrates that the net shear V at a section a distance x from the
support is resisted by the vertical component of the diagonal compression force in
the concrete struts. The horizontal component of the compression in the struts must
be equilibrated by the total tension force AN in the longitudinal steel. Thus, with
reference to Fig. 5.19b and ¢, the magnitude of the longitudinal tension resulting
from shear is

Vv
tan

AN = =Vcotd

(5.18)

where 6 is the angle of inclination of the diagonal struts. These forces superimpose on
the longitudinal forces owing to flexure, not shown in Fig. 5.195.
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The effective depth for shear calculations, according to this method, is taken
at the distance between longitudinal force resultants d,. Thus, from Fig. 5.19d, the
diagonal compressive stress in a web having width b, is

_ 1%
b,d,sin 6 cos 6
The tensile force in the vertical stirrups, each having area A, and assumed to

act at the yield stress f,, can be found from the free body of Fig. 5.19¢. With stirrups
assumed to be at uniform spacing s,

fa (5.19)

Vs tan 6
d,

Note, with reference to the free-body diagram, that the transverse reinforcement within
the length d, /tan 6 can be designed to resist the lowest shear that occurs within this
length, that is, the shear at the right end.

In the ACI Code method developed in Section 5.4, it was assumed that the angle
6 was 45°. With that assumption, and if d is substituted for d,, Eq. (5.20) is identical
to that used earlier for the design of vertical stirrups. It is generally recognized,
however, that the slope angle of the compression struts is not necessarily 45°, and
following Refs. 5.12 and 5.28 that angle can range from 20° to 75°, provided the same
value of 6 is used in satisfying all requirements at a section. It is evident from
Eqgs. (5.18) and (5.20) that if a lower slope angle is selected, less vertical reinforcement
but more horizontal reinforcement will be required. In addition, the compression in the
concrete diagonals will be increased. Conversely, if a higher slope angle is used, more
vertical steel but less horizontal steel will be needed, and the diagonal thrust will be
less. It is generally economical to use a slope angle € somewhat less than 45°, with
the limitation that the concrete diagonal struts not be overstressed in compression.

In addition to providing an improved basis for the design of reinforcement for
shear, the variable angle truss model gives important insights into detailing needs.
For example, it becomes clear from the above that the increase in longitudinal steel
tension resulting from the diagonal compression in the struts requires that flexural
steel be extended beyond the point at which it is theoretically not needed for flexure,
to account for the increased horizontal tensile force resulting from the thrust in the
compression diagonals. This is not recognized explicitly in the ACI Code method
for beam design. (The ACI Code, however, does contain the requirement that the
flexural steel be extended a distance equal to the greater of d or 12 bar diameters
beyond the point indicated by flexural requirements.) Also, it is clear from the basic
concept of the truss model that stirrups must be capable of developing their full
tensile strength throughout the entire stirrup height. For wide beams, focus on truss
action indicates that special attention should be given to lateral distribution of web
reinforcement. It is often the practice to use conventional U stirrups for wide beams,
with the vertical tension from the stirrups concentrated around the outermost bars.
According to the discussion above, diagonal compression struts transmit forces only
at the joints. Lack of stirrup joints at the interior of the wide-beam web would force
joints to form only at the exterior longitudinal bars, which would concentrate the
diagonal compression at the outer faces of the beam and possibly result in premature
failure. It is best to form a truss joint at each of the longitudinal bars, and as in the
ACI Code, multiple leg stirrups should always be used in wide beams (see Fig. 5.9¢).

References 5.12 and 5.28 incorporate a refined version of the approach just
described, known as the modified compression field theory (MCFT), in which the
cracked concrete is treated as a new material with its own stress-strain characteristics,

Afy = (5.20)
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including the ability to carry tension following crack formation. The compressive strength
and the stress-strain curve of the concrete in the diagonal compression struts decrease as
the diagonal tensile strain in the concrete increases. Equilibrium, compatibility, and con-
stitutive relationships are formulated in terms of average stresses and average strains.
Variability in the angle of inclination of the compression struts and stress-strain softening
effects in the response of the concrete are taken into account. Consideration is also given
to local stress conditions at crack locations. The method is capable of accurately predict-
ing the response of complex elements such as shear walls, diaphragms, and membrane
elements subjected to in-plane shear and axial loads through the full range of loading,
from zero load to failure (Refs. 5.26 and 5.27). The version of the method adopted in
Ref. 5.12 has been simplified to allow its use for routine design.

Design Provisions

The version of the MCFT adopted in the AASHTO LRFD Bridge Design Specifications
(Ref. 5.12) is, like the shear provisions in the ACI Code, based on nominal shear
capacity, with V, equal to the lesser of

Vo=V, +V (5.21)
V, = 0.25f/b,d, (5.22)
where b, = web width (the same as b,, in the ACI Code) and d, = effective depth in
shear, taken as equal to the flexural lever arm (the distance between the centroids of

the tensile and compressive forces), but not less than the greater of 0.9d or 0.72A.
The values of V. and V, differ from those used by the ACI, with

V. = B\ b,d, (5.23)
and
A, fd,(cot € + cot a) sin a
v, =2 ; (5.24)

where A,, f,,, 5, @, and 0 are as defined before. f3 is the concrete tensile stress factor and
is based on the ability of diagonally cracked concrete to resist tension, which also
controls the angle of the diagonal tension crack 6. In Ref. 5.12, the values of § and 6
are determined based on the strain in the longitudinal tension reinforcement, which
can be approximated by’

|Mu|/dv - OSNu + |Vu|
&= E.A,

The sign convention for N, is the same as used in Section 5.6 and the ACI Code:
compression is positive and tension is negative (the opposite sign convention is used
in Ref. 5.12). M, should not be taken less than V,d,; when calculating A, the area of
bars terminated less than their development length (see Chapter 6) from the section
under consideration should be reduced in proportion to the decreased development; &
should be taken as zero if the value calculated in Eq. (5.25) is negative; and &, should
be doubled if N, is high enough to cause cracking to the flexural compression face of
the member. For sections closer than d, to the face of the support, g, calculated at d,
from the face of the support may be used to determine  and 6.

< 0.006 (5.25)

|M,/d,| = 0.5N, + 0.5 |V,| cot 6

, with 0.5]V,| cot @ approximated by |V,|. The simplification eliminates the

need for an iterative solution between &, and 6.
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FIGURE 5.20
Equilibrium diagram for
calculating tensile force in
reinforcement. (Adapted from
Ref. 5.12.)
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For members with at least the minimum shear reinforcement, the concrete
tensile stress factor is given by

4.8
=—° 5.26
“ 1 + 750¢ (5:26)
The angle 0, in degrees, is given by
6 =29 + 3500¢, (5.27)

As shown in Eq. (5.18), the strength of the longitudinal reinforcement must be
adequate to carry the additional forces induced by shear. Referring to Fig. 5.20, this
leads to

Af T IM.|  0.5N, N [Vl

S A

where ¢y, ¢, and ¢, are, respectively, the capacity reduction factors for flexure, axial

load (tension or compression), and shear. V; need not be taken greater than V,/¢.

Since the inclination of the compression struts changes, tension in the longitudinal
reinforcement does not exceed that required to resist the maximum moment alone.

For members with less than the minimum transverse reinforcement, the angle
6 is given by Eq. (5.27), while the value of f becomes a function of ¢, and a crack
spacing parameter s,,.

— 0.5V;|cot 6 (5.28)

4.8 51
= 5.29
b 1 + 750¢; 39 + s,, ( )
The crack spacing parameter is
Sxe = Sy 138 (5.30)
a, + 0.63

where 12.0 in. < s, < 80.0 in., s, = lesser of the shear depth d, or the spacing between
layers of longitudinal crack control reinforcement, each layer with an area of steel
of at least 0.003b,s,, and a, = maximum size of the coarse aggregate. Note that
See = S, for % in. coarse aggregate.

Since 6 is not, in general, equal to 45°, the critical section might appropriately be
taken as d, cot @ from the face of the support if all the load were applied to the upper
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surface of the member. For simplicity, however, the critical section is taken a distance d,
from the face of the support when the reaction introduces compression into the end region
of the member, similar to the loading cases shown in Fig. 5.13a and b. For all other cases,
the crucial section is taken at the face of the support, as shown in Fig. 5.13¢ to f.

AASHTO requires a minimum amount of transverse reinforcement A, =
\/fj’ b,s/f,; (compared to 0.75\/]? b,s/f, for ACI), when V, > 0.5¢V,, and specifies maxi-
mum spacings of transverse reinforcement of s < 0.8d, < 24 in. when v, < 0.125f, and
s < 04d, < 12 in. when v, > 0.125f/. AASHTO allows f;, up to 75 ksi (compared to
60 ksi for ACI). Because the predictions obtained with the MCFT are generally more
accurate than those obtained with the ACI method, AASHTO allows the use of ¢ = 0.90
for shear in normalweight concrete and ¢ = 0.80 in lightweight concrete.

EXAMPLE 5.5 Design by modified compression field approach. Resolve the problem given in Examples
5.2 and 5.3 based on the MCFT. Use ACI load factors and ¢ = 0.9 for shear, as used in
AASHTO LRFD Bridge Design Specifications (Ref. 5.12). Assume an aggregate size d,
of 3 in.
4

SorutioN. For simplicity, the effective depth for shear d, will be set at the minimum
allowable value = 0.9d = 0.9 x 22 = 19.8 in. The values of M, and V, are tabulated in
Table 5.1.

The critical section for shear is located a distance d, = 19.8 in. = 1.65 ft from the
support where V,, = 94 — 9.4 x 1.65 = 78.5 kips. Calculating 0.125f/b,d, = 0.125 x 4000
X 16 x 19.8 = 158,400 Ib leads to maximum stirrup spacing equal to the smallest of
0.8d, = 0.8 x 19.8 = 15.8 in., 24 in., and [for No. 3 (No. 10) stirrups]

A 0.22 % 60,000

Smax = = 13.0 in.
Vb, V4000 x 16

TABLE 5.1
Modified compression field design example using ¢ = 0.9 for shear

¢V, for at Least ¢V, for Less Than
Distance Minimum Stirrups Minimum Stirrups
from M,
Support, ft- V., oV, V., s, oV, PV, /2,
ft kips kips €5 X 1000 (7] p kips kips in. p kips kips
0 0 94.0 0.85 32.0 2.93 52.8 45.7 9.2 2.54 45.8 22.9
1 89 84.6 0.77 31.7 3.05 55.0 329 129 2.64 47.7 23.8
1.65" 144 78.5 0.75 31.6 3.07 554 25.6 16.5 2.66 48.1 24.0
2 169 75.2 0.80 31.8 2.99 54.0 23.6 17.9 2.60 46.8 23.4
3 240 65.8 0.96 32.3 2.80 50.4 17.1 24.2 2.43 43.7 21.9
4 301 56.4 1.08 32.8 2.65 47.8 9.5 42.6 2.30 41.5 20.7
5 353 47.0 1.18 33.1 2.55 459 1.2 336 2.21 39.8 199
6 395 37.6 1.25 33.4 2.47 44.6 — — 2.15 38.7 194
7 428 28.2 1.30 33.6 2.43 43.8 — — 2.11 38.0 19.0
8 451 18.8 1.32 33.6 2.41 43.5 — — 2.09 37.7 18.8
9 465 9.4 1.32 33.6 2.41 43.5 — — 2.09 37.7 18.9
10 470 0.0 1.29 33.5 2.44 44.0 — — 2.12 38.2 19.1

'd, from face of support.
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FIGURE 5.21
Modified compression field
design for Example 5.5.
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Using Eq. (5.25), the strain in the longitudinal tension steel is approximated as

[M,|/19.8 + |V,]
= 729.000 x 7.62

with M, and V,, in in-kips and kips, respectively.

The values of M,, V,, and ¢, are tabulated in Table 5.1. These values are used to cal-
culate 6 using Eq. (5.27) and f using Eqgs. (5.26) and (5.29) for sections with and without
minimum stirrups, respectively. Where the section meets the minimum stirrup criterion, the
values of f# are used to calculate the values of V., which are then used, along with the values
of 0, to calculate V; and the required stirrup spacing s (see Table 5.1).

For transverse reinforcement less than the minimum, the values of f are based on g,
and s,. The latter may be taken as the lesser of d, or the spacing of longitudinal crack
control reinforcement. In this case, d, = 19.8 in. controls since crack control reinforcement
is not used. The equivalent crack spacing parameter s,, = s, because a, = 0.75 in. These
values of f are used to determine the point where ¢V, /2 > V,, the point at which stirrups
may be terminated (Table 5.1). The values of V,, ¢V. with at least minimum stirrups, and
¢V, /2 for less than minimum stirrups are plotted in Fig. 5.21a. The following stirrup spac-
ings can be used for this case:

1 space at 6 in. = 6 in.

6 spaces at 13 in. = 78 in.
Total = 84 in. =7 ft

For this example, Vi is selected based on V, at each point, not the minimum V,, on a crack with
angle 6. This simplifies the design procedure and results in a somewhat more conservative
design. Even so, only 7 No. 3 (No. 10) stirrups are needed, or 9 stirrups if the stirrups are con-
tinued at the maximum spacing through the middle region of the beam. These values compare
favorably with the minimum number of stirrups per half-span, 11 and 14, previously calculated
(Example 5.3) using the two methods required by the ACI Code. The resulting stirrup pattern
is shown in Fig. 5.21b.
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V, = 94.0 kips ‘

V, = 78.5 kips
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By way of comparison, had ¢, = 0.75 been used in this example, the stirrup spacing
would have been

1 space at 4 in. = 4 in.
4 spaces at 9 in. = 36 in.
4 spaces at 13 in. = 52 in.
Total = 92 in. = 7 ft 8 in.
for a total of 9 stirrups.
The MCFT recognizes that shear increases the force in the flexural steel, although, as
explained earlier, the maximum tensile force in the steel is not affected. Equation (5.28)

should be used to calculate the tensile force T along the span, which will then govern the
locations where tensile steel may be terminated. This will be discussed further in Chapter 6.
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5.9

The MCEFT is not included in the ACI Code. ACI Code 1.10.1, however,
permits the use of “any system of design or construction . . . , the adequacy of which
has been shown by successful use or by analysis or test,” if approved by the appro-
priate building official. The application of the MCFT in Canada and in U.S. bridge
practice provides the evidence needed to demonstrate “successful use.”

SHEAR-FRICTION DESIGN METHOD

Generally, in reinforced concrete design, shear is used merely as a convenient measure
of diagonal tension, which is the real concern. In contrast, there are circumstances
such that direct shear may cause failure of reinforced concrete members. Such situ-
ations occur commonly in precast concrete structures, particularly in the vicinity of
connections, as well as in composite construction combining cast-in-place concrete
with either precast concrete or structural steel elements. Potential failure planes can
be established for such cases along which direct shear stresses are high, and failure to
provide adequate reinforcement across such planes may produce disastrous results.

The necessary reinforcement may be determined on the basis of the shear-
friction method of design (Refs. 5.30 to 5.36). The basic approach is to assume that
the concrete may crack in an unfavorable manner, or that slip may occur along a
predetermined plane of weakness. Reinforcement must be provided crossing the
potential or actual crack or shear plane to prevent direct shear failure.

The shear-friction theory is very simple, and the behavior is easily visualized.
Figure 5.22a shows a cracked block of concrete, with the crack crossed by rein-
forcement. A shear force V, acts parallel to the crack, and the resulting tendency
for the upper block to slip relative to the lower is resisted largely by friction along
the concrete interface at the crack. Since the crack surface is naturally rough and
irregular, the effective coefficient of friction may be quite high. In addition, the
irregular surface will cause the two blocks of concrete to separate slightly, as shown
in Fig. 5.22b.

If reinforcement is present normal to the crack, then slippage and subsequent
separation of the concrete will stress the steel in tension. Tests have confirmed that
well-anchored steel will be stressed to its yield strength when shear failure is obtained
(Ref. 5.32). The resulting tensile force sets up an equal and opposite pressure between
the concrete faces on either side of the crack. It is clear from the free body of
Fig. 5.22¢ that the maximum value of this interface pressure is A,f,, where A, is
the total area of steel crossing the crack and f; is its yield strength.
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FIGURE 5.22

(b) ()

Basis of shear-friction design method: (a) applied shear; (b) enlarged representation of crack surface; and (c¢) free-body sketch of

concrete above crack.
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The concrete resistance to sliding may be expressed in terms of the normal
force times a coefficient of friction y. By setting the summation of horizontal forces
equal to zero

V= uAyfy (5.31)

Based on tests, 4 may be taken as 1.4 for cracks in monolithic concrete, but
V,, should not be assumed to be greater than 0.2f, A., (480 + 0.08f))A., or 16004,
(Refs. 5.30, 5.35, and 5.36).

The relative movement of the concrete on opposite sides of the crack also
subjects the individual reinforcing bars to shearing action, and the dowel resistance
of the bars to this shearing action contributes to shear resistance. However, it is
customary to neglect the dowel effect for simplicity in design and to compensate for
this by using an artificially high value of the friction coefficient.

The provisions of ACI Code 22.9 are based on Eq. (5.31). The design strength
is equal to ¢V, where ¢ = 0.75 for shear-friction design, and V,, must not exceed the
smallest of 0.2f A., (480 + 0.08f))A., and 1600A, for monolithic or intentionally
roughened normalweight concrete or the smaller of 0.2fA. and 800A, Ib for other
cases. When concretes of different strengths are cast against each another, V, should
be based on the lower value of f,. Recommendations for friction factor u are as
follows:

Concrete placed monolithically 1.4\
Concrete placed against hardened concrete with surface

intentionally roughened 1.0A
Concrete placed against hardened concrete not intentionally

roughened 0.6A
Concrete anchored to as-rolled structural steel by headed

studs or reinforcing bars 0.7An

where A is 1.0 for normalweight concrete. In other cases, A is as described in Section
5.5a and specified in ACI Code 19.2.4, but not greater than 0.85. The yield strength of
the reinforcement f; may not exceed 60,000 psi. Direct tension across the shear plane,
if present, must be carried by additional reinforcement, and permanent net compres-
sion across the shear plane may be taken as additive to the force in the shear-friction
reinforcement A, f;, when calculating the required A,.



www.konkur.in

FIGURE 5.23
Shear-friction reinforcement
inclined with respect to
crack face.

SHEAR AND DIAGONAL TENSION IN BEAMS 171
v
—
;o A, cos a
Shear transfer / al Crack T |
reinforcement R o |
\%// // // /7 | A, sin a
/
I At
h
Vi

When shear is transferred between concrete newly placed against hardened
concrete, the surface roughness is an important variable; an intentionally roughened
surface is defined to have a full amplitude of approximately i in. In any case, the
old surface must be clean and free of laitance. When shear is to be transferred
between as-rolled steel and concrete, the steel must be clean and without paint,
according to ACI Code 25.5.6.1(d).

If V, is the shear force to be resisted at factored loads, then with V, = ¢V,
the required steel area is found by transposition of Eq. (5.31):

A= Vu
T uf,

In some cases, the shear-friction reinforcement may not cross the shear plane
at 90° as described in the preceding paragraphs. If the shear-friction reinforcement
is inclined to the shear plane so that the shear force is applied in the direction to
increase tension in the steel, as in Fig. 5.23a, then the component of that tension
parallel to the shear plane, shown in Fig. 5.23b, contributes to the resistance to slip.
Then the shear strength may be computed from

V,=Ayf, (usin a + cos a) (5.33)

(5.32)

in lieu of Eq. (5.31). Here a is the angle between the shear-friction reinforcement
and the shear plane. If  is larger than 90°, that is, if the inclination of the steel is such that
the tension in the bars tends to be reduced by the shear force, then the assumption that the
steel stress equals f; is not valid, and a better arrangement of bars should be made.
Certain precautions should be observed in applying the shear-friction method of
design. Reinforcement, of whatever type, should be well anchored to develop the yield
strength of the steel, by the full development length or by hooks or bends, in the case
of reinforcing bars, or by proper heads and welding, in the case of studs joining con-
crete to structural steel. The concrete should be well confined, and the liberal use of
hoops has been recommended (Ref. 5.30). Care must be taken to consider all possible
failure planes and to provide sufficient well-anchored steel across these planes.

EXAMPLE 5.6
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Design of beam bearing detail. A precast beam must be designed to resist a support reac-
tion, at factored loads, of V, = 100 kips applied to a 3 X 3 steel angle, as shown in Fig. 5.24.
In lieu of a calculated value, a horizontal force N,., owing to restrained volume change, will be
assumed to be 20 percent of the vertical reaction, or 20 kips. Determine the required auxiliary
reinforcement, using steel of yield strength f, = 60,000 psi. Concrete strength f, = 5000 psi.

SoLuTION. A potential crack will be assumed at 20°, initiating at a point 4 in. from the end
of the beam, as shown in Fig. 5.24a. The total required steel A, is the sum of that required to
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resist the resultant of V, and N, acting parallel to the cracks = V, cos 20° + N, sin 20°.
Equation (5.32) is modified accordingly:

_ V, cos 20° + N, sin 20°

A, =
vf
dufy
100 x 0.940 + 20 x 0.340 _ 101 kips
0.75 x 1.4 x 60 63 ksi

= 1.60 in’

The net compression normal to the potential crack would be no less than V, sin 20° — N,
cos 20° = 15.4 kips. This could be counted upon to reduce the required shear-friction steel, accord-
ing to the ACI Code, but it will be discounted conservatively here. Four No. 6 (No. 19) bars will
be used, providing an area of 1.76 in”. They will be welded to the 3 x 3 angle and will extend into
the beam a sufficient distance to develop the yield strength of the bars. According to the ACI Code,
the development length for a No. 6 (No. 19) bar is 26 in., 32 in. without the y; factor (see Chapter
6). Considering the uncertainty of the exact crack location, the bars will be extended 32 in. into the
beam as shown in Fig. 5.24a. The bars will be placed at an angle of 15° with the bottom face of the
member. For the crack oriented at an angle of 20°, as assumed, the area of the crack is

4
sin 20°
Thus, according to the ACI Code, the maximum nominal shear strength of the surface is not
to exceed V, =0.2f) A.= 187 kips, V,, = (480 + 0.08f,)A. = 165 kips, or V,, = 16004 = 299 kips.
The maximum design strength to be used is ¢V, = 0.75 X 165 = 124 kips. As calculated
earlier, the applied shear on the interface at factored loads is
V, = 100 cos 20° + 20 sin 20° = 101 kips

and so the design is judged satisfactory to this point.

A, = 16( )= 187 in?
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A second possible crack must be considered, as shown in Fig. 5.24b, resulting from
the tendency of the entire anchorage weldment to pull horizontally out of the beam.

The required steel area Ay, and the concrete shear stress will be calculated based on
the development of the full yield tension in the bars A,. (Note that the factor ¢ need not be
used here because it has already been introduced in computing A,.)

Ayfy cos 15°
Hfy

1.76 x 0.966
1.4

1.21 in®

Ash =

Four No. 4 (No. 13) hoops will be used, providing an area of 1.60 in®.

The maximum shear force that can be transferred, according to the ACI Code limits,
will be based conservatively on a horizontal plane 32 in. long. No strength reduction factor
need be included in the calculation of this maximum value because it was already introduced
in determining the steel area A,; by which the shear force is applied. Accordingly,

V, < (480 + 0.08f)) x 16 x 32 = 451 kips

The maximum shear force that could be applied in the given instance is the value used to
calculate Ay,

V., = 1.76 x 60 cos 15° = 102 kips

which is well below the specified maximum.

The first hoop will be placed 2 in. from the end of the member, with the others spaced
at 8 in., as shown in Fig. 5.24c¢. Also shown in Fig. 5.24d are four No. 5 (No. 16) bars that
will provide anchorage for the hoop steel.
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PROBLEMS
5.1. A rectangular beam is 10 in. wide and has an effective depth of 13.5 in.
Flexural reinforcement consists of two No. 8 (No. 25) bars. For f;, = 4000 psi
and no shear reinforcement, determine the nominal shear capacity in accordance
with the ACI Code.
5.2. A rectangular beam is 14 in. wide and has an effective depth of 20.5 in.
Flexural reinforcement consists of three No. 9 (No. 29) bars. The beam con-
tains No. 3 (No. 10) stirrups spaced at 9 in. For £, = 3000 psi and f,, = 60,000
psi, calculate the nominal shear capacity of the section.
5.3. A rectangular beam is 16 in. wide and has an effective depth of 26 in. Flex-
ural reinforcement consists of three No. 10 (No. 32) bars. The beam contains
No. 3 (No. 10) stirrups spaced at 13 in. For f; = 4000 psi and f,, = 60,000
psi, calculate the nominal shear capacity of the section.
5.4. A rectangular beam is 16 in. wide and has an effective depth of 26 in. Flex-

ural reinforcement consists of six No. 10 (No. 32) bars. The beam contains
No. 4 (No. 13) stirrups spaced at 13 in. For f = 4000 psi and f,, = 60,000
psi, calculate the nominal shear capacity of the section.
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The T beam shown in Fig. P5.5 has an effective depth d = 22 in., a web
width b,, = 8 in., and a flange width of b, = 36 in. Flexural reinforcement
consists of four No. 8 (No. 25) bars. For f, = 5000 psi, Sy = 60,000 psi, and
No. 3 (No. 10) stirrups spaced at 10 in, determine the nominal shear capacity
of the section.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.
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A rectangular beam is 16 in. wide and has an effective depth of 26.5 in.
Flexural reinforcement consists of five No. 9 (No. 29) bars. For f; = 4000 psi
and f}, = 60,000 psi, determine the required spacing of No. 4 (No. 13) stirrups
for a factored shear of 90 kips.

The T beam shown in Fig. P5.5 has an effective depth d = 24 in., a web
width b,, = 8 in., and a flange width of b, = 36 in. Flexural reinforcement
consists of six No. 8 (No. 25) bars. For f, = 5000 psi, f,, = 60,000 psi, and
a factored shear of 50 kips, determine the spacing of No. 3 (No. 10) stirrups.
A simple span rectangular beam has an effective length of 18 ft, a width
of 14 in., and an effective depth of 24 in. It is reinforced with three No. 9
(No. 29) bars longitudinally and No. 3 (No. 10) stirrups at 12 in. on center
over the entire length. Determine the maximum factored load the beam can
carry in plf. £ = 5000 psi, f, = 60,000 psi, and f,, = 40,000 psi.

A beam is to be designed for loads causing a maximum factored shear of
60.0 kips, using concrete with f, = 5000 psi. Proceeding on the basis that
the concrete dimensions will be determined by diagonal tension, select the
appropriate width and effective depth (a) for a beam in which no web
reinforcement is to be used, (b) for a beam in which only the minimum
web reinforcement is provided, as given by Eq. (5.13a), and (c¢) for a beam
in which web reinforcement provides shear strength V, = 2V.. Follow
the ACI Code requirements, and let d = 2b in each case. Assume that
P = 0.012.

A rectangular beam having b = 10 in. and d = 17.5 in. spans 15 ft face to
face of simple supports. It is reinforced for flexure with three No. 9 (No. 29)
bars that continue uninterrupted to the ends of the span. It is to carry service
dead load D = 1.27 kips/ft (including self-weight) and service live load
L = 3.70 kips/ft, both uniformly distributed along the span. Design the shear
reinforcement, using No. 3 (No. 10) vertical U stirrups. Equation (5.12¢) for
V. may be used. Material strengths are f; = 4000 psi and f, = 60,000 psi.
Redesign the shear reinforcement for the beam of Problem 5.10, basing V.
on Eq. (5.12d). Comment on your results, with respect to design time and
probable construction cost difference.

Design the shear reinforcement, using No. 4 (No. 13) vertical U stirrups for
the independent T beam shown in Fig. P5.12. The beam spans 24 ft face to
face between simple supports, has an effective depth d = 31 in., and is
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42 in.

6in.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

35in.

14 in.

reinforced for flexure with six No. 10 (No. 32) bars in two layers that con-
tinue uninterrupted to the ends of the span. It is to carry service dead load
D = 2.67 kips/ft (including self-weight) and service live load L = 5.36
kips/ft, both uniformly distributed along the span. Equation (5.12¢) for V.
may be used. Material strengths are f; = 5000 psi and f, = 60,000 psi.

A beam of 11 in. width and effective depth of 16 in. carries a factored uni-
formly distributed load of 5.3 kips/ft, including its own weight, in addition
to a central, concentrated factored load of 12 kips. It spans 18 ft, and restrain-
ing end moments at full factored load are 137 ft-kips at each support. It is
reinforced with three No. 9 (No. 29) bars for both positive and negative
bending. If f = 4000 psi, through what part of the beam is web reinforcement
theoretically required (a) if Eq. (5.12c¢) is used and (b) if Eq. (5.12d) is used?
Comment.

The beam of Problem 5.10 will be subjected to a factored axial compression
load of 88 kips on the 10 X 20 in. gross cross section, in addition to the
loads described earlier. What is the effect on concrete shear strength V,.?
The beam of Problem 5.10 will be subjected to a factored axial tension load
of 44 kips on the 10 X 20 in. gross cross section, in addition to the loads
described earlier. What is the effect on concrete shear strength V.?
Redesign the shear reinforcement for the beam of Problem 5.10, using the
modified compression field theory with (@) ¢gear = 0.90 and (D) Pgpear = 0.75.
Redesign the shear reinforcement for the beam of Problem 5.12, using the
modified compression field theory with (@) ¢gear = 0.90 and (D) ¢pgpear = 0.75.
A precast concrete beam with cross-sectional dimensions » = 10 in. and
h = 24 in. is designed to act in a composite sense with a cast-in-place top
slab having depth &, = 5 in. and width 48 in. At factored loads, the maximum
compressive stress in the flange at midspan is 2400 psi; at the supports of
the 28 ft simple span the flange force must be zero. Vertical stirrups provided
for flexural shear will be extended into the slab and suitably anchored to
provide also for transfer of the flange force by shear friction. Find the min-
imum number of No. 4 (No. 13) stirrups that must be provided, based on
shear-friction requirements. Concrete in both precast and cast-in-place parts
will have f, = 4000 psi and f, = 60,000 psi. The top surface of the precast
web will be intentionally roughened according to the ACI Code definition.
Redesign the beam-end reinforcement of Example 5.6, given that a roller
support will be provided so that N,. = 0.
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6.1

Bond, Anchorage,
and Development Length

FUNDAMENTALS OF FLEXURAL BOND

If the reinforced concrete beam of Fig. 6.1a were constructed using plain round rein-
forcing bars, and, furthermore, if those bars were greased or otherwise lubricated
before the concrete were cast, the beam would be very little stronger than if it were
built of plain concrete, without reinforcement. If a load were applied, as shown in
Fig. 6.1b, the bars would tend to maintain their original length as the beam deflected.
The bars would slip longitudinally with respect to the adjacent concrete, which would
experience tensile strain due to flexure. Proposition 2 of Section 3.4, the assumption
that the strain in an embedded reinforcing bar is the same as that in the surround-
ing concrete, would not be valid. For reinforced concrete to behave as intended, it is
essential that bond forces be developed on the interface between concrete and steel,
such as to prevent significant slip from occurring at that interface.

Figure 6.1c shows the bond forces that act on the concrete at the interface as a
result of bending, while Fig. 6.1d shows the equal and opposite bond forces acting on
the reinforcement. It is through the action of these interface bond forces that the slip
indicated in Fig. 6.1b is prevented.

Some years ago, when plain bars without surface deformations were used, ini-
tial bond strength was provided only by the relatively weak chemical adhesion and
mechanical friction between steel and concrete. Once adhesion and static friction were
overcome at larger loads, small amounts of slip led to interlocking of the natural
roughness of the bar with the concrete. However, this natural bond strength is so low
that in beams reinforced with plain bars, the bond between steel and concrete was
frequently broken. Such a beam will collapse as the bar is pulled through the concrete.
To prevent this, end anchorage was provided, chiefly in the form of hooks, as in
Fig. 6.2. If the anchorage is adequate, such a beam will not collapse, even if the bond
is broken over the entire length between anchorages. This is so because the member
acts as a tied arch, as shown in Fig. 6.2, with the uncracked concrete shown shaded
representing the arch and the anchored bars the tie-rod. In this case, over the length
in which the bond is broken, bond forces are zero. This means that over the entire
unbonded length the force in the steel is constant and equal to 7' = M, /jd. As a
consequence, the total steel elongation in such beams is larger than in beams in which
bond is preserved, resulting in larger deflections and greater crack widths.

To improve this situation, deformed bars are now universally used in the
United States and many other countries (see Section 2.14). With such bars, the shoulders
of the projecting deformations bear on the surrounding concrete and result in greatly
increased bond strength. It is then possible in most cases to dispense with special anchor-
age devices such as hooks. In addition, crack widths as well as deflections are reduced.

177
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FIGURE 6.1
Bond forces due to flexure:
(a) beam before loading;

(b) unrestrained slip between

concrete and steel; (¢) bond

forces acting on concrete; and

(d) bond forces acting on
steel.

FIGURE 6.2
Tied-arch action in a beam
with little or no bond.
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Bond Force Based on Simple Cracked Section Analysis

In a short piece of a beam of length dx, such as shown in Fig. 6.3a, the moment at one
end will generally differ from that at the other end by a small amount dM. If this piece
is isolated, and if one assumes that, after cracking, the concrete does not resist any ten-
sion stresses, the internal forces are those shown in Fig. 6.3a. The change in bending

moment dM produces a change in the bar force

_ M
jd

dr

(@)

where jd is the internal lever arm between tensile and compressive force resultants.
Since the bar or bars must be in equilibrium, this change in bar force is resisted at the
contact surface between steel and concrete by an equal and opposite force produced by

bond, as indicated by Fig. 6.3b.
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FIGURE 6.3

Forces acting on elemental
length of beam: (a) free-body
sketch of reinforced concrete
element and (b) free-body
sketch of steel element.
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If U is the magnitude of the local bond force per unit length of bar, then, by
summing horizontal forces

Udx =dT (b)
Thus,
dT
U=— 6.1
I (6.1)

indicating that the local unit bond force is proportional to the rate of change of bar
force along the span. Alternatively, substituting Eq. (a) in Eq. (6.1), the unit bond
force can be written as

1 dM
=< (©)
jd dx
from which
\%
U=— 6.2
id (6.2)

Equation (6.2) is the “elastic cracked section equation” for flexural bond force, and it
indicates that the bond force per unit length is proportional to the shear at a particular
section, that is, to the rate of change of bending moment.

Note that Eq. (6.2) applies to the tension bars in a concrete zone that is assumed
to be fully cracked, with the concrete resisting no tension. It applies, therefore, to the
tensile bars in simple spans, or, in continuous spans, either to the bottom bars in
the positive bending region between inflection points or to the top bars in the negative
bending region between the inflection points and the supports. It does not apply to
compression reinforcement, which bears against the concrete at the end of the bar.

Actual Distribution of Flexural Bond Force

The actual distribution of bond force along deformed reinforcing bars is much more
complex than that represented by Eq. (6.2), and Eq. (6.1) provides a better basis for
understanding beam behavior. Figure 6.4 shows a beam segment subject to pure bend-
ing. The concrete fails to resist tensile stresses only where the actual crack is located;
there the steel tension is maximum and has the value predicted by simple theory:
T = M /jd. Between cracks, the concrete does resist moderate amounts of tension, intro-
duced by bond forces acting along the interface in the direction shown in Fig. 6.4a.
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FIGURE 6.4

Variation of steel and bond
forces in a reinforced
concrete member subject to
pure bending: (a) cracked
concrete segment; (b) bond
forces acting on reinforcing
bar; (c) variation of

tensile force in steel; and
(d) variation of bond force
along steel.
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This reduces the tensile force in the steel, as illustrated by Fig. 6.4c. From Eq. (6.1), it
is clear that U is proportional to the rate of change of bar force, and thus will vary as
shown in Fig. 6.4d; unit bond forces are highest where the slope of the steel force curve
is greatest and are zero where the slope is zero. Very high local bond forces adjacent to
cracks have been measured in tests (Refs. 6.1 and 6.2). They are so high that inevitably
some slip occurs between concrete and steel adjacent to each crack.

Beams are seldom subject to pure bending moment; they generally carry trans-
verse loads producing shear and moment that vary along the span. Figure 6.5a shows
a beam carrying a distributed load. The cracking indicated is typical. The steel force
T predicted by simple cracked section analysis is proportional to the moment diagram
and is as shown by the dashed line in Fig. 6.5b. The actual value of 7, however, is
less than that predicted by the simple analysis everywhere except at the actual crack
locations. The actual variation of T is shown by the solid line of Fig. 6.5b. In Fig. 6.5¢,
the bond forces predicted by the simplified theory are shown by the dashed line, and
the actual variation is shown by the solid line. Note that the value of U is equal to
that given by Eq. (6.2) only at those locations where the slope of the steel force diagram
equals that of the simple theory. Elsewhere, if the slope is greater than assumed, the
local bond force is greater; if the slope is less, local bond force is less. Just to the left
of the cracks, for the present example, U is higher than predicted by Eq. (6.2), and in

\ \
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FIGURE 6.5

Effect of flexural cracks on
bond forces in beam:

(a) beam with flexural
cracks; (b) variation of tensile
force T in steel along span;
and (¢) variation of bond
force per unit length U along
span.

6.2
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span

all probability will result in local bond failure. Just to the right of the cracks, U is
much lower than predicted and in fact is generally negative very close to the crack;
that is, the bond forces act in the reverse direction.

It is evident that actual bond forces in beams bear very little relation to those
predicted by Eq. (6.2), except in the general sense that they are highest in the regions
of high shear.

BOND STRENGTH AND DEVELOPMENT LENGTH

For reinforcing bars in tension, two types of bond failure have been observed. The
first is direct pullout of the bar, which occurs when ample confinement is provided by
the surrounding concrete. This could be expected when relatively small-diameter bars
are used with sufficiently large concrete cover distances and bar spacing. The second
type of failure is splitting of the concrete along the bar when cover, confinement,
or bar spacing is insufficient to resist the lateral concrete tension resulting from the
wedging effect of the bar deformations. Present-day design methods require that both
possible failure modes be accounted for.

Bond Strength

If the bar is sufficiently confined by a mass of surrounding concrete, then as the tensile
force on the bar is increased, adhesive bond and friction are overcome, the concrete
eventually crushes locally ahead of the bar deformations, and bar pullout results.
The surrounding concrete remains intact, except for the crushing that takes place
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FIGURE 6.6
Splitting of concrete along
reinforcement.
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ahead of the deformations immediately adjacent to the bar interface. For deformed
bars, adhesion and friction are much less important than the mechanical interlock of
the deformations with the surrounding concrete.

Bond failure resulting from splitting of the concrete is more common in beams
than direct pullout. Such splitting comes mainly from wedging action when the
deformations on the bars bear against the concrete (Refs. 6.3 and 6.4). It may occur
either in a vertical plane as in Fig. 6.6a or horizontally in the plane of the bars as in
Fig. 6.6b. The horizontal type of splitting of Fig 6.6 frequently begins at a diagonal
crack. In this case, as discussed in connection with Fig. 5.8b and shown in Fig. 5.1,
dowel action increases the tendency toward splitting. This indicates that shear and bond
failures are often intricately interrelated.

When pullout resistance is overcome or when splitting has spread all the way
to the end of an unanchored bar, complete bond failure occurs. Sliding of the steel
relative to the concrete leads to immediate collapse of the beam.

If one considers the large local variations of bond force caused by flexural and
diagonal cracks (see Figs. 6.4 and 6.5), it becomes clear that local bond failures imme-
diately adjacent to cracks will often occur at loads considerably below the failure load
of the beam. These local failures result in small local slips and some widening of cracks
and increase of deflections, but will be harmless as long as failure does not propagate
all along the bar, with resultant total slip. In fact, as discussed in connection with
Fig. 6.2, when end anchorage is reliable, bond can be severed along the entire length
of the bar, excluding the anchorages, without endangering the carrying capacity of the
beam. End anchorage can be provided by hooks, as suggested by Fig. 6.2 and discussed
in Section 6.4, or by heads, as discussed in Section 6.5, or much more commonly, by
extending the straight bar a sufficient distance from the point of maximum stress.

Extensive testing (Refs. 6.5 to 6.15), using beam specimens, has established
limiting values of bond strength. This testing provides the basis for current design
requirements.

Development Length

The preceding discussion suggests the concept of development length of a reinforcing
bar. In the ACI Code, the development length is defined as that length of embedment
necessary to develop the specified yield strength of the bar, controlled by either pull-
out or splitting. With reference to Fig. 6.7, the moment, and therefore the steel stress,
is evidently maximum at point a (neglecting the weight of the beam) and zero at the
supports. If the bar stress is f; at a, then the total tension force A, f; must be transferred

Splittin Splittin
. | pliting | 4_ote | plitting

(@) (b)
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FIGURE 6.7
Development length.
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from the bar to the concrete in the distance £ by bond forces. To fully develop the yield
strength of the bar A, f;, the distance £ must be at least equal to the development length
of the bar, established by tests. In the beam shown in Fig. 6.7, if the actual length ¢
is equal to or greater than the development length £, no premature bond failure will
occur. That is, the beam will fail in bending or shear rather than by bond failure. This
will be so even if in the vicinity of cracks local slip may have occurred over small
regions along the beam.

It is seen that the main requirement for safety against bond failure is this: the
length of the bar, from any point of given steel stress (f; or at most f,) to its nearby
free end, must be at least equal to its development length. If this requirement is
satisfied, the magnitude of the nominal flexural bond force along the beam, as given
by Eq. (6.2), is of only secondary importance, since the integrity of the member is
ensured even in the face of possible minor local bond failures. However, if the actual
available length is inadequate for full development, special anchorage, such as by
hooks or heads, must be provided.

Factors Influencing Development Length

Experimental research has identified the factors that influence bond strength and, thus,
development length, and analysis of the test data has resulted in the empirical equa-
tions used in present design practice. The most basic factors will be clear from review
of the preceding paragraphs and include concrete tensile strength, cover distance,
spacing of the reinforcing bars, and the presence of transverse steel reinforcement.

Clearly, the tensile strength of the concrete is important because the most
common type of bond failure in beams is the type of splitting shown in Fig. 6.6.
Although tensile strength does not appear explicitly in experimentally derived equa-
tions for development length (see Section 6.3), a term representing the tensile
strength of concrete, typically \/f , appears in the denominator of those equations
and reflects the influence of concrete tensile strength.

As discussed in Section 2.9, the fracture energy of concrete plays an important
role in bond failure because a splitting crack must propagate after it has formed.
Since, as shown in Fig. 2.11, fracture energy is largely independent of compressive
strength, bond strength increases more slowly than \/E , and as data for higher-strength
concretes have become available, f/'/* has been shown to provide a better representa-
tion of the effect of concrete strength on bond than \/ﬁ (Refs. 6.12 to 6.14). This
point is recognized by ACI Committee 408, Bond and Development of Reinforce-
ment (Ref. 6.15), in proposed design expressions based on f; /% and within the ACI
Code, which sets an upper limit on the value of \/ﬁ for use in design.

For lightweight concretes, the tensile strength is usually less than for normal-
density concrete having the same compressive strength; accordingly, if lightweight
concrete is used, development lengths must be increased.

Cover distance—conventionally measured from the center of the bar to the nearest
concrete face and measured either in the plane of the bars or perpendicular to that
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plane—also influences splitting. Clearly, if the vertical or horizontal cover is increased,
more concrete is available to resist the tension resulting from the wedging effect of the
deformed bars, resistance to splitting is improved, and development length is less.

Similarly, Fig. 6.6b illustrates that if the bar spacing is increased (such as, if
only two instead of three bars are used), more concrete per bar will be available to
resist horizontal splitting (Ref. 6.16). In beams, bars are typically spaced about one or
two bar diameters apart. On the other hand, for slabs, footings, and certain other types
of member, bar spacings are typically much greater, and the required development
length is reduced, if not limited by cover.

Transverse reinforcement, such as that provided by stirrups of the types shown
in Fig. 5.8, improves the resistance of tensile bars to both vertical or horizontal
splitting failure because the tensile force in the transverse steel tends to prevent
opening of the actual or potential crack. The effectiveness of such transverse rein-
forcement depends on its cross-sectional area and spacing along the development
length. Its effectiveness does not depend on its yield strength f,,, because transverse
reinforcement rarely yields during a bond failure (Refs. 6.12 to 6.15).

Based on the results of a statistical analysis of test data available in the 1970s
(Ref. 6.10), it was found that the length ¢, needed to develop stress f; in a reinforc-
ing bar could be expressed (with some modification and updating to reflect more
recent test results) as

- 200

= h+K)h (6.3)

where d), = bar diameter
¢, = smaller of minimum cover or one-half of bar spacing measured to
center of bar

K, = 40A,,/sn, which represents effect of confining reinforcement
A, = area of transverse reinforcement normal to plane of splitting through
the bars being developed
s = spacing of transverse reinforcement
n = number of bars developed or spliced at same location

Equation (6.3) has been simplified to

7 R —
o

which serves as the basis for calculating development length in the ACI Code.

An important difference between Egs. (6.3) and (6.4) is that Eq. (6.3) reflects the
experimental result that the required development length increases disproportionately
more than the bar stress f;, while in Eq. (6.4) development length is proportional to f;. To
address this shortcoming, a special factor must be added to Eq. (6.4) to account for the
extra length needed for bars with higher yield strengths, as will be shown in Section 6.3.
Although both equations are written to express development length as a multiple of bar
diameter, the presence of d,, in the denominator leads to development lengths that actually
increase with the square of the bar diameter and, thus, the area of the bar.

Equation (6.4) captures the effects of concrete strength, concrete cover, and
transverse reinforcement on £, and serves as the basis for design in the ACI Code.
For full development of the bar, f; is set equal to f,.

d, 6.4)
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In addition to the factors just discussed, other influences have been identified.
The vertical location of horizontal bars relative to beam depth has been found to have
an effect (Ref. 6.17). If bars are placed in the forms during construction such that a
substantial depth of concrete is placed below those bars, there is a tendency for excess
water, often used in the mix for workability, and for entrapped air to rise to the top
of the concrete during consolidation. Air and water tend to accumulate on the under-
side of the bars. Tests have shown a loss in bond strength for bars with more than
12 in. of fresh concrete cast beneath them, and accordingly the development length
must be increased. This effect increases as the slump of the concrete increases and is
greatest for bars cast near the upper surface of a concrete placement (Ref. 6.18).

Epoxy-coated reinforcing bars are used regularly in projects where the structure
may be subjected to corrosive environmental conditions or deicing chemicals, such
as for highway bridge decks and parking garages. Zinc and epoxy dual-coated bars
have also been produced. Studies have shown that bond strength is reduced because
the epoxy coating reduces the friction between the concrete and the bar, and the
required development length must be increased (Refs. 6.19 to 6.23). Early evi-
dence showed that if cover and bar spacing were large, the effect of the epoxy
coating would not be so pronounced, and as a result, a smaller increase was felt
justified under these conditions (Ref. 6.20). Although later research (Ref. 6.12) does
not support this conclusion, provisions to allow for a smaller increase remain in the
ACI Code. Since the bond strength of epoxy-coated bars is already reduced because
of lack of adhesion, an upper limit has been established for the product of develop-
ment length factors accounting for the depth of concrete cast below horizontal bars
and epoxy coating.

Not infrequently, tensile reinforcement somewhat in excess of the calculated
requirement is provided, for example, as a result of upward rounding A, when bars are
selected or when minimum steel requirements govern. Logically, in this case, the required
development length may be reduced by the ratio of steel area required to steel area
actually provided. The modification for excess reinforcement should be applied only
where anchorage or development for the full yield strength of the bar is not required.

Finally, based on bars with very short development lengths (most with values
of ¢,/d, < 15), it was observed that smaller-diameter bars required lower development
lengths than predicted by Eq. (6.4). As a result, the required development lengths for
No. 6 (No. 19) and smaller bars were reduced below the values required by Eq. (6.4).

Reference 6.15 presents a detailed discussion of the factors that control the bond
and development of reinforcing bars in tension. Except as noted, these influences are
accounted for in the basic equation for development length in the ACI Code. All
modification factors for development length are defined explicitly in the Code, with
appropriate restrictions. Details are given next.

ACl CODE PROVISIONS FOR DEVELOPMENT
OF TENSION REINFORCEMENT

The approach to bond strength incorporated in the ACI Code follows from the dis-
cussion presented in Section 6.2. The fundamental requirement is that the calculated
force in the reinforcement at each section of a reinforced concrete member be devel-
oped on each side of that section by adequate embedment length, hooks, mechanical

" The use of Eq. (6.4) for low values of £,/d, greatly underestimates the actual value of bond strength and makes it appear that a lower value
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of £, can be used safely. An evaluation of test results for small bars with more realistic development lengths (¢,/d, > 16), however, has shown
that the special provision in the ACI Code for smaller bars is not justified (Refs. 6.14, 6.15, and 6.24). Because of the unconservative nature of
the small bar provision, ACI Committee 408 (Ref. 6.15) recommends that it not be applied in design.
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anchorage, or a combination of these, to ensure against pullout. Local high bond
forces, such as are known to exist adjacent to cracks in beams, are not considered to be
significant. Generally, the force to be developed is calculated based on the yield stress
in the reinforcement; that is, the bar strength is to be fully developed.

In the ACI Code, the required development length for deformed bars in ten-
sion is based on Eq. (6.4). A single basic equation is given that includes all the
influences discussed in Section 6.2 and thus appears highly complex because of
its inclusiveness. It does, however, permit the designer to see the effects of all the
controlling variables and allows more rigorous calculation of the required devel-
opment length when it is critical. The ACI Code also includes simplified equations
that can be used for most cases in ordinary design, provided that some restrictions
are accepted on bar spacing, cover values, and minimum transverse reinforcement.
These alternative equations can be further simplified for normalweight concrete
and uncoated bars.

In the following presentation of development length, the basic ACI equation is
given first and its terms are defined and discussed. After this, the alternative equa-
tions, also part of the ACI Code, are presented. Note that, in any case, development
length £, must not be less than 12 in.

Equation for Development Length for Bars and Wires in Tension

According to ACI Code 25.4.2.3, for deformed bars or deformed wires,

0 (3 VAR AVATA d ©6.5)

d E K\/f (Cb + Ktr) b
d

b

in which the term (¢, + K,,)/d, may not be taken greater than 2.5. In Eq. (6.5), the
terms are defined and values established as follows.

W, = casting position factor
More than 12 in. of fresh concrete is placed below horizontal
reinforcement: 1.3
Other situations: 1.0

W, = epoxy coating factor
Epoxy-coated or zinc and epoxy dual-coated bars or wires

with cover less than 3d, or clear spacing less than 6d,: 1.5
All other epoxy-coated or zinc and epoxy dual-coated bars or wires: 1.2
Uncoated and zinc-coated (galvanized) reinforcement: 1.0

However, the product of y,p, need not be taken greater than 1.7.
y, = reinforcement size factor

No. 6 (No. 19) and smaller bars and deformed wires: 0.8"

No. 7 (No. 22) and larger bars: 1.0
w, = reinforcement grade factor

Grade 40 or 60 1.0

Grade 80 1.15

Grade 100 1.3

T ACI Committee 408 recommends a value of 1.0 for all bar sizes based on experimental evidence. The ACI Code value of 0.8, however, is

used in what follows.
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A = lightweight aggregate concrete factor

When lightweight aggregate concrete is used: 0.75

When normalweight concrete is used: 1.0

¢, = spacing or cover dimension, in.

Use the smaller of either the distance from the center of the bar to the
nearest concrete surface or one-half the center-to-center spacing of the bars
being developed.

K, = transverse reinforcement index: 404,./sn

where A, = total cross-sectional area of all transverse reinforcement that is

within the spacing s and that crosses the potential plane of
splitting through the reinforcement being developed, in’
s = maximum spacing of transverse reinforcement within £, center
to center, in.
n = number of bars or wires being developed along the plane of
splitting
As a simplification, the designer is permitted to use K. = 0 even if transverse rein-
forcement is present.

According to ACI Code 25.4.2.2, for reinforcement with f, > 80,000 psi spaced
closer than 6 in. on center, transverse reinforcement must be provided such that K,
is not smaller than 0.5d,. According to ACI Code 9.7.1.4 and 10.7.1.3, however, K,
must be at least 0.5d,, in all beams and columns where reinforcement with f, > 80,000
psi is developed or spliced, independent of the bar spacing.

The limit of 2.5 on (¢ + K,,)/d, is imposed to avoid pullout failure. With that term
taken equal to its limit of 2.5, evaluation of Eq. (6.4) results in £, = 0.03d, f,/\/f—c',
the experimentally derived limit found in earlier ACI Codes when pullout failure
controls. Note that in Eq. (6.5) and in all other ACI Code equations relating to the
development length and splices of reinforcement, values of \/ﬁ are not to be taken
greater than 100 psi because, as explained in Section 6.2¢ and recognized in ACI
Commentary 25.4.1.4, bond strength increases more slowly than \/}TC/ . The \/]TC' ,
however, is reasonably accurate for values of £ up to 10,000 psi.

Simplified Equations for Development Length

Calculation of required development length (in terms of bar diameter) by Eq. (6.5)
requires that the term (¢, + K,,)/d, be calculated for each particular combination of
cover, spacing, and transverse reinforcement. Alternatively, according to the Code,
a simplified form of Eq. (6.5) may be used in which (¢, + K},)/d, is set equal to 1.5,
provided that certain restrictions are placed on cover, spacing, and transverse rein-
forcement. Two cases of practical importance are:

1. Minimum clear cover of 1.0d,, minimum clear spacing of 1.0d,, and at least the
Code required minimum stirrups or ties (see Section 5.5b) throughout ¢,
2. Minimum clear cover of 1.0d;, and minimum clear spacing of 2d,

For either of these common cases, it is easily confirmed from Eq. (6.4) that for No. 7
(No. 22) and larger bars

0, = i d, (6.6a)
RVIR



www.konkur.in

188 DESIGN OF CONCRETE STRUCTURES Chapter 6

TABLE 6.1

Simplified tension development length in bar diameters according to the ACI Code

No. 6 (No. 19) and

Smaller Bars and No. 7 (No. 22)
Deformed Wires® and Larger Bars
Clear spacing of bars or wires being developed or Ly, Sy,

spliced > d,, clear cover > d,, and stirrups or ties 250V b ¢ 200/f b
throughout £, not less than the Code minimum
Clear spacing of bars or wires being developed or Same as above Same as above

spliced > 2d,, and clear cover > d,,

Other cases

P 3fy v,
d= |7 ————(F— |9 b
500/,

0= 3 vy,
4001,

 For reasons discussed in Section 6.3a, ACI Committee 408 recommends that £, for No. 7 (No. 22) and larger bars be used for all bar sizes.

and for No. 6 (No. 19) bars and smaller

250/F)

If these restrictions on spacing are not met, then, provided that Code-imposed mini-
mum spacing requirements are met (see Section 4.5¢), the term (¢, + K,,) /d), will have
a value not less than 1.0 (rather than 1.5 as before) whether or not transverse steel
is used. The values given by Egs. (6.6a) and (6.6b) are then multiplied by the factor
1.5/1.0.

Thus, if the designer accepts certain restrictions on bar cover, spacing, and
transverse reinforcement, simplified calculation of development requirements is pos-
sible. The simplified equations are summarized in Table 6.1.

Further simplification is possible for the most common condition of normalweight
concrete and uncoated reinforcement. Then A and y, in Table 6.1 take the value 1.0,
and the development length, in terms of bar diameters, is simply a function of f, f;,
and the bar location factor y;,. Thus, development lengths are easily tabulated for the
usual combinations of material strengths and bottom or top bars and for the restrictions
on bar spacing, cover, and transverse steel defined.” Results are given in Table A.10
of Appendix A.

Regardless of whether development length is calculated using the basic Eq. (6.5)
or the more approximate Egs. (6.6a) and (6.6b), development length may be reduced
where reinforcement in a flexural member is in excess of that required by analysis,
except where anchorage or development for f; is specifically required in seismic-
force-resisting systems in structures assigned to Seismic Design Categories D, E, or
F (discussed in Chapter 20). According to ACI Code 25.4.10, the reduction in £, is
made according to the ratio (A, required /A, provided).

"Note that, for convenient reference, the term top bar is used for any horizontal reinforcing bar placed with more than 12 in. of fresh concrete cast
below the development length or splice. This definition may require that bars relatively near the bottom of a deep member be treated as top bars.
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EXAMPLE 6.1

FIGURE 6.8

Bar details at beam-column
joint for bar development
examples.

Development length in tension. Figure 6.8 shows a beam-column joint in a continuous build-
ing frame. Based on frame analysis, the negative steel required at the end of the beam is 1.80 in%;
two No. 9 (No. 29) bars are used, providing A; = 2.00 in>. Beam dimensions are » = 10 in.,
d = 18 in,, and & = 21 in. The design will include No. 3 (No. 10) stirrups spaced four at 3 in.,
followed by a constant 5 in. spacing in the region of the support, with 1.5 in. clear cover. Normal-
weight concrete is to be used, with f, = 4000 psi, and the reinforcing bars have f, = 60,000 psi.
Find the minimum distance ¢, at which the negative bars can be cut off, based on devel-
opment of the required steel area at the face of the column, (a) using the simplified equations
of Table 6.1, (b) using Table A.10 of Appendix A, and (c) using the more accurate Eq. (6.5).

SorutioN. Checking for lateral spacing of the No. 9 (No. 29) bars determines that the clear
distance between the bars is 10 — 2(1.50 + 0.38 + 1.128) = 4 in., or 3.55 times the bar
diameter d,,. The clear cover of the No. 9 (No. 29) bars to the side face of the beam is 1.50 +
0.38 = 1.88 in., or 1.67 bar diameters, and that to the top of the beam is 3.00 — 1.128/2 =
2.44 in., or 2.16 bar diameters. These dimensions meet the restrictions stated in the second
row of Table 6.1. Then for top bars, uncoated, Grade 60 reinforcement cast in normalweight
concrete, we have values of y;, = 1.3, w, = 1.0, y, = 1.0, and A = 1.0. From Table 6.1,

_ (fwnwew, 4 = 60000 % 13 x 1.0 x 1.0
“loowg | 20 x 1.0/2000

1.128 = 62 x 1.128 = 70 in.

This can be reduced by the ratio of steel required to that provided, so that the final development
length is 70 x 1.80/2.00 = 63 in.

Alternatively, from the lower portion of Table A.10, £,/d, = 62. The required length
to point of cutoff is 62 x 1.128 x 1.80/2.00 = 63 in., as before.

The more accurate Eq. (6.5) will now be used. The center-to-center spacing of the
No. 9 (No. 29) bars is 10 — 2(1.50 + 0.38 + 1.128/2) = 5.11 in., one-half of which is 2.56
in. The side cover to the bar centerline is 1.50 + 0.38 + 1.128/2 = 2.44 in., and the top
cover to the bar centerline is 3.00 in. The smallest of these three dimensions controls, giving
¢, = 2.44 in. Potential splitting would be in the horizontal plane of the bars, and in calculating
A, two times the stirrup bar area is used.” Based on No. 3 (No. 10) stirrups at 5 in. spacing:

404, 40 x 0.11 x 2 ¢, + Ky 244 +0.88

K, = =088  and - =294
sn 5x2 d, 1.128
21"
ﬁ 7/ No. 10 (No. 32)
——
1 _Ii_ 1l 2 No. 9 (No. 29)
Column | I
splice | _J_I e, |
SH— )
——=T p—
FATT T T — |
2" clear —» _\\ [ 111 | | 1%//H 18" 21"
t__riiil_L_J___ |
F——F/ No. 11 (No. 36) No. 3 (No. 10)
——r ) stirrups
| N No. 4 (No. 13) ties

(a) (b)

If the top cover had controlled, the potential splitting plane would be vertical and one times the stirrup bar area would be used in calculating

A, withn = 1.
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This exceeds the limit value of 2.5, so (¢, + K,,)/d, is set to 2.5. Then from Eq. (6.5) with
v, = 1.0,

KA A A
40 }\’\/fj Cp + Ktr)

b
=37.0 x 1.128 = 41.7 in.

and the required development length is 41.7 x 1.80/2.00 = 41.7 x 0.90 = 37.5 in. rather than
63 in. as before. Clearly, the use of the more accurate Eq. (6.5) permits a considerable reduction
in development length. Even though its use requires much more time and effort, it is justified if
the design is to be repeated many times in a structure.

_ ( 360,000 1.3x1.0x1.0x10); g
* = 140 1.0/2000 2.5 '

d =

6.4 ANCHORAGE OF TENSION BARS BY HOOKS

a. Standard Dimensions

In the event that the desired tensile stress in a bar cannot be developed by bond along
the length of the bar alone, it is necessary to provide special anchorage at the ends of
the bar, usually by means of a 90° or a 180° hook or a headed bar (the latter is dis-
cussed in Section 6.5). The dimensions and bend radii for hooks have been standard-
ized in ACI Code 25.3.1 and 25.3.2 as follows (see Figs. 6.9 and 6.10 and Table 6.2):

1. A 90° bend plus an extension of at least 12 bar diameters at the free end of the bar,
or

2. A 180° bend plus an extension of at least 4 bar diameters, but not less than 2% in.
at the free end of the bar, or

Inside bend diameter = D

6dy> 3
N 4 714% >25"
No. 5 (No. 16) Nos. 6,7, or 8 No. 8 (No. 25) No. 8 (No. 25)
bar or smaller g\éc:s. 19, 22, or 25) bar or smaller bar or smaller
J Ldb J Lkdb "j Ldb a‘ Ldb
(b)

FIGURE 6.9
Standard bar hooks: (@) main reinforcement and (b) stirrups and ties. ACI Code 25.3.2 requires that standard
hooks for stirrups and ties enclose longitudinal reinforcement.
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FIGURE 6.10
Bar details for development
of standard hooks.
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Lo N
clTb > Critical \{ i

section 12d,

|
dp D
— 4dj, for Nos. 3 through 8 (Nos. 10 through 25) bars

17 |
Ad, > 25
b=<2 t:i/ 5d,, for Nos. 9 through 11 (Nos. 29 through 36) bars
="} 6d,, for Nos. 14 and 18 (Nos. 43 and 57) bars

’__»{

—r-

Lan

TABLE 6.2

Minimum inside bend diameters for standard hooks

Bar Size Minimum Diameter
Nos. 3 through 8 (Nos. 10 through 25) 6 bar diameters”
Nos. 9, 10, and 11 (Nos. 29, 32, and 36) 8 bar diameters

Nos. 14 and 18 (Nos. 43 and 57) 10 bar diameters

“ Nos. 3, 4, and 5 (Nos. 10, 13, and 16): 4 bar diameters for stirrups and ties.

3. For stirrup and tie anchorage only:

(a) For Nos. 3, 4,5 (Nos. 10, 13, and 16) bars, a 90° bend plus an extension of at
least 6 bar diameters, but not less than 3 in., at the free end of the bar, or

(b) For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) bars, a 90° bend plus an extension
of at least 12 bar diameters at the free end of the bar, or

(¢) For No. 8 (No. 25) bars and smaller, a 135° bend plus an extension of at least
6 bar diameters, but not less than 3 in., at the free end of the bar, or

(d) For No. 8 (No. 25) bars and smaller, a 180° bend plus an extension of at least
4 bar diameters, but not less than 2.5 in., at the free end of the bar.

The minimum diameter of bend, measured on the inside of the bar, for stand-
ard hooks other than for stirrups or ties in sizes Nos. 3 through 5 (Nos. 10 through
16), should be not less than the values shown in Table 6.2. For stirrup and tie hooks,
for bar sizes No. 5 (No. 16) and smaller, the inside diameter of bend is reduced to
4 bar diameters, according to ACI Code 25.3.2.

When welded wire reinforcement (smooth or deformed wires) is used for stirrups
or ties, the inside diameter of bend should not be less than 4 wire diameters for
deformed wire larger than D6 and 2 wire diameters for all other wires. Bends with
an inside diameter of less than 8 wire diameters should not be less than 4 wire
diameters from the nearest welded intersection.

Behavior of Hooked Bars

Hooked bars resist pullout by the combined actions of bond along the straight length
of the bar leading to the hook and anchorage provided by the hook. Tests indicate that
the failure of hooked bars in tension is accompanied by breakout of the concrete in
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FIGURE 6.11
Failure mode of beam-column
test specimen used to determine
anchorage strength of hooked
bars (Ref. 6.25).

FIGURE 6.12
Beam-column test specimens
containing hooked bars at
failure: (a) breakout failure
and (b) side splitting failure
(Ref. 6.25).
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the direction of the tensile force and, to a lesser degree, splitting of the concrete par-
allel to the plane of the hook. Splitting failure becomes more prevalent as the cover
decreases and the bar size increases (Ref. 6.25). These modes of failure are illustrated
in Figs. 6.11 and 6.12.

Tests demonstrate that the anchorage strength of hooked bars:

Increases with the compressive strength of the concrete, but to a power of f, close
to Y rather than to %2, as traditionally represented by \/f7 .

Increases with the center-to-center spacing s of hooked bars up to about 6d,, and
then remains constant for higher values of s.

Increases with confinement provided by the surrounding concrete. Hooks located
within a column core with at least 2.5 in. of side cover or in other members with
at least 6d,, of side cover on the outer hook have about 25 percent greater anchor-
age strength than hooked bars with lower levels of confinement.

Increases with confinement provided in the form of closed stirrups, ties, or other
reinforcement enclosing the hook. Based on the ACI Code, the confining reinforce-
ment must extend at least 0.75€,, in the direction of the bar in tension, as shown in



www.konkur.in

FIGURE 6.13

Confining reinforcement that
contributes to the anchorage
strength of hooked bars:

(a) confining reinforcement
parallel to bar in tension and
(b) confining reinforcement
perpendicular to bar in
tension.
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Lan |
Lan | > 0756, —d,
> 0.7544, — dp
( P — = = = T = f T
15d,, < 8d,
— Ties or stirrups

Ties or stirrups < 8d,

(@ (b)

Fig. 6.13, where £, is the development length of the hooked bar. The confining rein-
forcement may be parallel to £, enclosing the hooks within 154, of the centerline of
the straight portion of the hooked bars (Fig. 6.13a), or perpendicular to £,, enclosing
the hooked bars along ¢, (Fig. 6.13b). The contribution of confining reinforcement
to anchorage strength is based on the ratio of the total area of the confining reinforce-
ment A, (all legs of stirrups or ties) to the total area of the enclosed hooked bars A,.

The ACI Code includes other criteria, which are described in Section 6.4c. The
contribution of confining reinforcement is greatest for closely spaced hooks, becom-
ing less effective as the spacing between the hooked bars increases. Thus, the effects
of increased spacing and increased confinement are not strictly additive.

The provisions in ACI Code 25.4.3 for hooked bars in tension are based on
research summarized in Refs. 6.25 to 6.29. Based on that research, the development
length of hooked bars £, was shown to be a function of the bar diameter to the
1.5 power, as shown in Eq. (6.7):

= (Lw‘fzﬁ’s e ©6.7)
500£."

where y, = factor that increases with the level of the confinement provided by stir-
rups or ties enclosing the hooked bars and the spacing of the hooked bars, as
shown in Table 6.3.

y, = 1.0 for hooked bars terminating inside a column core with side cover normal to
the plane of hook > 2.5 in., or with a side cover normal to the plane of hook > 6d,,;

= 1.25 otherwise.
Based on the limited test results for higher-strength concretes, an upper limit of
16,000 psi is placed on f; in Eq. (6.7). Due to a lack of experimental data, the effect

of confining reinforcement is not considered for hooked bars larger than No. 11 (No. 36),
as shown in Table 6.3 (Refs. 6.25 to 6.29).

Development Length and Modification Factors for Hooked Bars

The development length £, is defined as shown in Fig. 6.10 and is measured from
the critical section to the farthest point on the bar, parallel to the straight part of the
bar. The ACI Code requirements for the development length of hooked bars are based
on Eq. (6.7) but with a number of modifications, as shown in Eq. (6.8). Rather than
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TABLE 6.3
Confinement and spacing factor y for use in Eq. (6.7) for
hooked bars’

4
Bar size and confinement level <
s/dyt= 2 sldpyt > 6
For No. 11 (No. 36) bar and smaller hooks with
Ath
> 04 1.0 5/6
hs
For No. 11 (No. 36) bar and smaller hooks with
Ath
=0 5/3 1.0
Ahs
(no confining reinforcement)
Hooked bars larger than No. 11 (No. 36) with any 5/3 1.0

value of A, /A,

"Interpolation permitted.
*d, = diameter of hooked bar.

represent the effect of concrete compressive strength as /%%, as it is in Eq. (6.7), the
ACI Code approximates f,** (for concrete compressive strengths below 6000 psi) as
\/j? /w., where . is defined following Eq. (6.8). Above 6000 psi, y,. = 1.0. The ACI
Code also simplifies y,, by replacing it with y,, also defined following Eq. (6.8). Like
Eq. (6.5) for straight bar development, Eq. (6.8) includes a term for epoxy-coated rein-
forcement y,. In accordance with ACI Code 25.4.3, the development length of hooked
bars in tension is

INAVRVATA

550/F)

In Eq. (6.8), the terms are defined as follows:

dh —

d)’ (6.8)

W, = epoxy coating factor
For epoxy-coated or zinc and epoxy dual-coated reinforcement: 1.2
For uncoated and zinc-coated (galvanized) reinforcement: 1.0

y, = confining reinforcement factor
For No. 11 (No. 36) and smaller bars with A,, > 0.4A4,, or
minimum spacing between hooked bars s > 6d, 1.0
Other: 1.6
y, = location factor
For No. 11 (No. 36) and smaller diameter hooked bars
(1) terminating inside a column core with side cover normal to
the plane of hook > 2.5 in., or (2) with side cover normal to the

plane of the hook > 6d, 1.0

Other: 1.25
. = concrete strength factor

For f < 6000 psi £/15,000 + 0.6

Other 1.0
A = lightweight concrete factor

For lightweight concrete: 0.75

Other: 1.0
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FIGURE 6.14

Transverse reinforcement
requirements at discontinuous
ends of members with small
cover distances.
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Ties or stirrups
required

edh

| fa

\

N
&

J L < 2dp Section a—a

— < 3d,

ot |1

In any case, \/E may not exceed 100 psi in Eq. (6.8), and £,, may not be less than 8d,
and not less than 6 in. Finally, unlike straight reinforcement, £, may not be reduced
by the ratio (A, required/A, provided).

Transverse confinement steel is essential if the full bar strength must be devel-
oped with minimum concrete confinement, such as when hooks may be required at
the ends of a simply supported beam or where a beam in a continuous structure
frames into an end column and does not extend past the column or when bars must
be anchored in a short cantilever, as shown in Fig. 6.14 (Ref. 6.11). According to
ACI Code 25.4.3.4, for bars hooked at the discontinuous ends of members with both
side cover and top or bottom cover less than 2% in., hooks must be enclosed with
closed stirrups or ties along the full development length, as shown in Fig. 6.14. The
spacing of the confinement steel must not exceed 3 times the diameter of the hooked
bar d,, and the first stirrup or tie must enclose the bent portion of the hook within a
distance equal to 2d,, of the outside of the bend.

EXAMPLE 6.2

Telegram: @uni_k

Development of hooked bars in tension. Referring to the beam-column joint shown in
Fig. 6.8, the No. 9 (No. 29) negative bars are to be extended into the column and terminated
in a standard 90° hook, keeping 2 in. clear to the outside face of the column. The column
width in the direction of beam width is 16 in. Find the minimum length of embedment of
the hook past the column face, and specify the hook details.

SoLutioN. The development length for hooked bars, measured from the critical section along
the bar to the far side of the vertical hook, is given by Eq. (6.8). In this case, the bars are uncoated,
giving an epoxy coating factor of y, = 1.0. The No. 9 (No. 29) bars are anchored within the
column core and the side cover exceeds 2.5 in., so the location factor y, = 1.0. From Example 6.1,
the spacing between the bars is 5.11 in., or less than 6d,, but the confining reinforcement
consists of two No. 4 (No. 13) closed ties with a total area A,;, = 4 x 0.4 in? = 0.8 in’, giving
Ay /Ay = 0.4; thus, w, = 1.0. For f, = 4000 psi, w, = f./15,000 + 0.6 = 4000/15,000 + 0.6
= 0.867. This gives

1.128"° = 17.9 in.

_ (Fveyvawe s _ (60,000 x 1.0 x 1.0 x 1.0 x 0.867
= Ussanr ) 55 x 1.0v/4000
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The available length within the column is 21 — 2 = 19 in. and can thus accommodate
£,,. Note that although £, is less that the available length, the hook should be placed to the
far side of the column to use the full 19 in. available. The hook will be bent to a minimum
diameter of 8 X 1.128 = 9.02 in. The bar will continue for 12 bar diameters, or 13.5 in. past
the end of the bend in the vertical direction.

6.5 ANCHORAGE IN TENSION USING HEADED BARS

a. Requirements for Headed Bars

Headed bars provide an alternative to hooks when the desired tensile stress in the bar
cannot be developed by bond alone. ACI Code 20.2.1.6 requires that headed deformed
bars conform to the requirements for HA heads in Annex Al of ASTM A970. Both
ASTM A970 and ACI Code 25.4.4.1 require that bearing area of the head A,,, be equal
to at least 4 times the area of the bar A,. For headed bars with obstructions, A,,, is taken
as the gross area of the head minus the maximum area of the obstruction. Figure 6.15a
shows the maximum dimensions of an obstruction as permitted by ASTM A970. When
an obstruction has a gap adjacent to the head, as shown in Fig. 6.15b, A;,, is taken as
the gross area of the head minus the area of the obstruction adjacent to the bearing face
provided that the gap has a width at least equal to the larger of % in. (10 mm) and %db,
the depth of the gap does not exceed the width of the gap, and the obstruction every-
where within the gap falls inside a straight line connecting the outer dimension of the
obstruction at the initiation of the gap with the dimension of the obstruction at the
bearing face of the head. Test results (Refs. 6.29 to 6.32) show that small obstructions,
no larger than the dimensions shown in Fig. 6.16, do not affect that anchorage strength
of headed bars and, as a result, according to ASTM A970 are not considered to detract
from the net bearing area of the head.

FIGURE 6.15 Bearing face
Headed deformed reinforcing

bar: (a) maximum dimensions

for obstruction of the i —
deformations and (b) details dp
of gap in obstruction adjacent

to a head [gap width > larger

of 2in. (10 mm) and d,,

depth of gap < width of gap,
obstruction within gap falls

inside straight line connecting

outer dimension of obstruction < 5.25d,
at initiation of gap with
dimension of obstruction at
bearing face of head].

Gap

Depth of gap

Width of gap
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FIGURE 6.16

Headed deformed bar with an
obstruction not considered to
detract from the net bearing
area of the head.

FIGURE 6.17

Breakout failure in beam-
column test specimens
containing headed deformed
bars: (a) cone-shaped and
(b) back cover splitting
(Ref. 6.29).
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< 0.6dj for > No. 8 bar
< Min (0.6 in., dp) for < No. 8 bar

Behavior of Headed Bars

Headed deformed bars resist pullout by a combination of bond along the straight
length of the bar leading to the head and bearing resistance provided by the head.
Many aspects of the anchorage behavior of headed bars are similar to those of hooked
bars, but with some important differences. Tests indicate that failure of headed bars in
tension is most often accompanied by breakout of the concrete in the direction of the
tensile force, sometimes accompanied by side-face blowout. Two types of breakout
failure surface were observed in the beam-column test specimens that served as the
basis for the ACI Code provisions: a cone-shaped failure, as shown in Fig. 6.17a, and
a similar failure where a crack extended above the joint region toward the top of the
column, as shown in Fig. 6.17b.
Tests demonstrate that the anchorage strength of deformed headed bars:

1. Increases with the compressive strength of the concrete to a power of f; close to i,
as observed for hooked bars.

(b)
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FIGURE 6.18

Parallel ties located within
8d,, of the centerline of the
headed bar toward the middle
of the joint contribute to the
anchorage strength of headed
bars in beam-column joints.
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2. Increases with the center-to-center spacing s of hooked bars up to about 8d,, and
then remains constant for higher values of s.

3. Increases with confinement provided by the surrounding concrete. Headed deformed
bars located within a column core with at least 2.5 in. of side cover or in other mem-
bers with at least 8d,, of side cover on the outer headed bar have about 25 percent
greater anchorage strength than headed bars with lower levels of confinement.

4. Increases with confinement provided in the form of “parallel tie reinforcement”
(closed stirrups or ties parallel to the development length £,) in beam-column
joints and located within 8d,, of the centerline of the headed bar toward the mid-
dle of the joint, as shown in Fig. 6.18. As for hooked bars, the contribution of
parallel tie reinforcement to anchorage strength is based on the ratio of the total
area of the parallel tie reinforcement A, (all legs of stirrups or ties) to the total
area of the enclosed headed bars A,,. Unlike hooked bars, however, the anchorage
strength of headed bars is not increased by confining reinforcement perpendicular
to the development length. Because of a lack of test data, A, is not considered for
anchorages other than beam-column joints.

The ACI Code includes other criteria that are described in Section 6.5c. As
with hooked bars, the contribution of confining reinforcement (for headed bars in
the form of parallel ties) is greatest for closely spaced headed bars, becoming less
effective as the spacing between the hooked bars increases. Thus, the effects of
increased spacing and increased confinement are not strictly additive.

The provisions in ACI Code 25.4.4 for headed deformed bars in tension are
based on research summarized in Refs. 6.29 to 6.32. Like hooked bars, the develop-
ment length of headed deformed bars £, is a function of the bar diameter to the
1.5 power, as shown in Eq. (6.9):

_ ( f;y/csllla d}lls (6.9)

“ |00

where ., = factor that increases with the level of the confinement provided by parallel
ties and spacing of headed deformed bars, as shown in Table 6.4.

v, = 1.0 for headed deformed bars terminating inside a column core with side
cover to the bar > 2.5 in., or in any member with a side cover to the bar > 8d,,;

= 1.25 otherwise.

Because of a lack of experimental data, no recommendations were made for
headed deformed bars larger than No. 11 (No. 36).

SdbL —

Parallel tie reinforcement
within 8dj, of centerline of
headed bar
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FIGURE 6.19
Development length of
headed deformed bars.
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TABLE 6.4
Confinement and spacing factor y for use in Eq. (6.9) for
deformed headed bars*

"2
Bar size and confinement level <
s/dpyit= 2 s/dp,t > 8

A

2>03 1.2 0.8

hs
Arh

=0 2.0 1.0

Ahs

(no confining reinforcement)

"Interpolation permitted.
*d, = diameter of headed deformed bar.

Development Length and Modification Factors for Headed Bars

The development length ¢, is defined as shown in Fig. 6.19 and is measured from
the bearing face of the head to the critical section. The ACI Code requirements for
development length of headed bars are based on Eq. (6.9) but with the modifications
shown in Eq. (6.10). As in the case of hooked bars, rather than represent the effect of
concrete compressive strength as f,%%°, as shown in Eq. (6.9), the ACI Code approx-
imates £,%% as \/]? /w., where y, is defined following Egs. (6.8) and (6.10). Also, as
with hooked bars, the ACI Code simplifies y,, by replacing it with another term, in
this case y,, defined following Eq. (6.10), and although the limits on v, are based on
values of s/d, between 2 and 8, the limits on y, are based on values of s/d;, between
3 and 6. Equation (6.10) includes a term for epoxy-coated reinforcement y, but does
not include a term for lightweight concrete because no tests have been performed to
evaluate the anchorage strength of headed deformed bars in lightweight concrete, and
for that reason, their use is limited to normalweight concrete. In accordance with ACI
Code 25.4.4, the development length of headed deformed bars in tension is

YRVATATATA
by = [ a)? (6.10)
75V
In Eq. (6.10), the terms are defined as follows:
W, = epoxy coating factor
For epoxy-coated or zinc and epoxy dual-coated reinforcement: 1.2
For uncoated and zinc-coated (galvanized) reinforcement: 1.0

Critical
section
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FIGURE 6.20
Headed deformed bar
extended to far side of
column with anchorage
length that exceeds £,
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w, = parallel tie reinforcement factor
For No. 11 (No. 36) and smaller bars with A,, > 0.34,, or minimum
spacing between hooked bars s > 6d, 1.0
Other: 1.6

v, = location factor
For headed bars (1) terminating inside a column core with side

cover to bar > 2.5 in., or (2) with side cover to bar > 6d, 1.0
Other: 1.25
y, = concrete strength factor
For f! < 6000 psi f7/15,000 + 0.6
Other: 1.0

The design provisions are restricted to No. 11 (No. 36) and smaller headed
bars. The bars, as distinct from the heads, must have a clear cover of at least 2d,
and a center-to-center spacing between bars of at least 3d;,. The value of \/ﬁ may
not exceed 100 psi in Eq. (6.10), and £, may not be less than 8d, and not less than
6 in. Like €4, £, may not be reduced by the ratio (A, required/A, provided).

When headed bars from a member, such as a beam or slab, terminate in a
supporting member, such as the column shown in Fig. 6.20, ACI Commentary
25.4.4.2 recommends that the bar be extended “through the joint of the far face of
the confined core of the supporting member, allowing for cover and avoidance of
interference with column reinforcement, even though the resulting anchorage length
may exceed £,.” Doing so helps adequately anchor the compressive forces that are
developed at the face of the head and improves the performance of the beam column
connection.

Mechanical Anchorage

In cases where headed bars do not meet the requirements specified in ACI Code
25.4.4.1 or in cases where bars are terminated by mechanisms such as welded plates
or other manufactured devices, ACI Code 25.4.5 allows such devices to be used to
develop the reinforcement if the adequacy of the devices is established by tests. In
such cases, the development of the reinforcement may consist of the combined con-
tributions of bond along the length of the bar leading to the critical section, plus that
of the mechanical anchorage, much in the way that the total resistance of headed
bars is provided.
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EXAMPLE 6.3 Development of headed deformed bars in tension. Two No. 7 (No. 22) bars serve as top

FIGURE 6.21
Column and bracket for
headed deformed bar
development example.

reinforcement for a bracket framing into a 16 X 16 in. column (Fig. 6.21). The bracket projects
15 in. from the column and is the same width as the column. The top cover to the center of
the bars is 3 in., and the side cover to the center of the bars is 3.5 in. The bars are spaced
laterally at 4.9 in. These dimensions are inadequate for straight development length or for
standard hooks. Based on other reinforcement, cover requirements, and head thickness, total
development lengths for headed bars of 13.5 in. in the column and 12.5 in. in the bracket are
available. The reinforcing bars have f, = 60,000 psi, and the concrete is normalweight with
f! = 5000 psi. Determine if a bar with heads at both ends can be used in this application.

SoLutioN.  The minimum head size is A,,, = 44, = 2.4 in®. The smaller available anchorage
length in the bracket governs. The bars are uncoated, giving an epoxy coating factor of y, = 1.0.
The No. 7 (No. 22) bars are not anchored in a column core and have less than 6d, of side
cover, so the location factor y, = 1.25. The center-to-center bar spacing between the bars is
9 in., which is greater than 6d,; thus, y, = 1.0. For f] = 5000 psi, y, = f,/15,000 + 0.6 =
5000/15,000 + 0.6 = 0.933. The development length ¢ calculated using Eq. (6.10) is

o [y | s _ (60,000 x 1.0 x 1.0 x 1.25 x 0.93
s )T 75+/5000

which must be checked against the minimum values for £,, which are

0.875"° = 10.8 in.

Ed, > Sdb =7 in.
Zd} > 6 in.

The value of ¢, obtained using Eq. (6.10) governs and is less than the available anchorage
lengths in both the column and the bracket. Thus, a bar with heads at both ends can be used. As
shown in Fig. 6.21, the heads are located at the far faces of the column and the bracket, with a
distance between the faces of the heads of 26 in.

i 16" | 15"
Column \
/ Bracket

L ||

r | ]
Available | 135" | 12.5” |
anchorage | | |
lengths
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6.6 ANCHORAGE REQUIREMENTS FOR WEB REINFORCEMENT

Stirrups should be carried as close as possible to the compression and tension faces of
a beam, and special attention must be given to proper anchorage. The truss model (see
Section 5.8 and Fig. 5.18) for design of shear reinforcement indicates the development of
diagonal compressive struts, the thrust from which is equilibrated, near the top and bottom
of the beam, by the tension web members (i.e., the stirrups). Thus, at the factored load,
the tensile strength of the stirrups must be developed for almost their full height. Clearly,
it is impossible to do this by development length. For this reason, stirrups normally are
provided with 90°, 135°, or 180° hooks at their upper end (see Fig. 6.9b for standard hook
details) and at their lower end are bent 90° to pass around the longitudinal reinforcement.
In simple spans, or in the positive bending region of continuous spans, where no top bars
are required for flexure, stirrup support bars must be used. These are usually about the
same diameter as the stirrups themselves, and they not only provide improved anchorage
of the hooks but also facilitate fabrication of the reinforcement cage, holding the stirrups
in position during placement of the concrete.

ACI Code 25.7.1 includes special provisions for anchorage of web reinforce-
ment. The ends of single-leg, simple-U, or multiple-U stirrups are to be anchored
by one of the following means:

1. For No. 5 (No. 16) bars and smaller, and for Nos. 6, 7, and 8 (Nos. 19, 22, and 25)
bars with f;, of 40,000 psi or less, a standard hook around longitudinal reinforce-
ment, as shown in Fig. 6.22a.

2. For Nos. 6, 7, and 8 (Nos. 19, 22, and 25) stirrups with Sy greater than 40,000 psi,
a standard hook around a longitudinal bar, plus an embedment between mid-
height of the member and the outside end of the hook equal to or greater than
0.014d,,fy,/7»\/ﬁ in., as shown in Fig. 6.22b.

ACI Code 25.7.1 specifies further that, between anchored ends, each bend in
the continuous portion of a simple-U or multiple-U stirrup must enclose a longitu-
dinal bar, as in Fig. 6.22¢. Longitudinal bars bent to act as shear reinforcement, if
extended into a region of tension, must be continuous with longitudinal reinforce-
ment and, if extended into a region of compression, must be anchored beyond
middepth d/2 as specified for development length. Pairs of U stirrups or ties so
placed as to form a closed unit are considered properly spliced when length of laps
are 1.3, as shown in Fig. 6.22d. In members at least 18 in. deep, such splices are

FIGURE 6.22 —

. . 0.014dpf,¢
ACI requirements for stirrup >
anchorage: (a) No. 5 (No. 16) v ANFE

stirrups and smaller, and Nos.
6,7, and 8 (Nos. 19, 22, and
25) stirrups with yield stress
not exceeding 40,000 psi;

(b) Nos. 6,7, and 8 (Nos.

19, 22, and 25) stirrups with
yield stress exceeding 40,000
psi; (¢) wide beam with
multiple-leg U stirrups; and
(d) pairs of U stirrups
forming a closed unit. See
Fig. 6.9b for alternative
standard hook details.

>1.344

.
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FIGURE 6.23
Development of (a) welded
deformed wire reinforcement
and (b) welded plain wire
reinforcement.
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considered adequate if A,f,, < 9000 Ib and the stirrup legs extend the full depth of
the member. As will be discussed in Sections 6.11 and 8.5e, respectively, pairs of
U stirrups may not be used in perimeter beams or for torsional reinforcement.
Other provisions are contained in ACI Code 25.7.1 relating to the use of welded
wire reinforcement, which is sometimes used for web reinforcement in precast and

prestressed concrete beams.

WELDED WIRE REINFORCEMENT

Tensile steel consisting of welded wire reinforcement, with either deformed or smooth
wires, is commonly used in one-way and two-way slabs and certain other types of
members (see Section 2.15). For deformed wire reinforcement, some of the develop-
ment is assigned to the welded cross wires and some to the embedded length of the
deformed wire. According to ACI Code 25.4.6, the development length of welded
deformed wire reinforcement measured from the point of the critical section to the end
of the wire is computed as the product of the development length £, from Table 6.1
or from the more accurate Eq. (6.5) and the appropriate modification factor or factors
related to those equations, except that the development length may not to be less than
8 in. For welded deformed wire reinforcement with at least one cross wire within the
development length and not less than 2 in. from the point of the critical section, as
shown in Fig. 6.23a, a deformed wire factor y,, equal to the greater of

£y — 35,000
— (6.11a)
5
and
5d,
— (6.11b)

is applied, where s is the lateral spacing of the wires being developed; but this factor
need not exceed 1.0. When y,, from Eq. (6.11a) or (6.11b) is used, the epoxy coating
factor y, is taken as 1.0. For welded deformed wire reinforcement with no cross wires

‘ edz 8"

(a)
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6.8

within the development length or with a single cross wire less than 2 in. from the point
of the critical section, the wire fabric factor is taken to be equal to 1.0 and the develop-
ment length determined as for the deformed wire.

For welded plain wire reinforcement, development is considered to be pro-
vided by embedment of two cross wires, with the closer wire not less than 2 in.
from the critical section, as shown in Fig. 6.23b. However, the development
length measured from the critical section to the outermost cross wire is not to

be less than
O\ (A
0, = 0.27( i )(—") (6.12)

MW

according to ACI Code 25.4.7, where A, is the cross-sectional area of an individual
wire to be developed or spliced. The modification factor for excess reinforcement
may be applied, but £, is not to be less than 6 in. for the welded plain wire
reinforcement.”

DEVELOPMENT OF BARS IN COMPRESSION

Reinforcement may be required to develop its compressive strength by embedment
under various circumstances, for example, where bars transfer their share of column
loads to a supporting footing or where lap splices are made of compression bars in
a column (see Section 6.13). In the case of bars in compression, a part of the total
force is transferred by bond along the embedded length, and a part is transferred by
end bearing of the bars on the concrete. Because the surrounding concrete is rela-
tively free of cracks and because of the beneficial effect of end bearing, shorter basic
development lengths are permissible for compression bars than for tension bars. If
transverse confinement steel is present, such as spiral column reinforcement, special
spiral steel around an individual bar, or column ties with a minimum spacing, the
required development length is further reduced. Hooks and heads such as are shown
in Figs. 6.9 and 6.15 are not effective in transferring compression from bars to con-
crete, and, if present for other reasons, should be disregarded in determining required
embedment length.

According to ACI Code 25.4.9, the development length in compression is the
greater of

N
by = |————=|d 6.13a
and
£y = 0.0003 f, y, dp, (6.13b)

The factor y, is based on confining reinforcement and along with the factor for excess
reinforcement is given in Table 6.5. y, may be taken as 1.0.

In no case is £, to be less than 8 in., according to the ACI Code. Basic
and modified compressive development lengths are given in Table A.11 of
Appendix A.

“The ACI Code offers no explanation as to why £,,,;, = 6 in. for welded plain wire reinforcement, but 8 in. for welded deformed wire reinforcement,
but two cross wires are required for welded plain wire reinforcement versus one cross wire for welded deformed wire reinforcement.
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TABLE 6.5
Development lengths for deformed bars in compression

. fwr
A. Basic development length £, > ( d,
SURV/A

> 0.0003 f, w,d,,
B. Modification factors to be applied to £,

v, Reinforcement enclosed within a spiral, a circular continuously
wound tie with d;, > % in. and a pitch of 4 in., No. 4 (No. 13)
bar ties spaced < 4 in. on center, or hoops (closed tie or
continuously wound tie with seismic hooks at both ends) spaced
< 4 in. on center 0.75
Other 1.0
A, required

Reinforcement in excess of that required by analysis _—
A, provided

BUNDLED BARS

It was pointed out in Section 4.5c¢ that it is sometimes advantageous to “bundle” ten-
sile reinforcement in large beams, with two, three, or four bars in contact, to provide
for improved placement of concrete around and between bundles of bars. Bar bundles
are typically triangular or L-shaped for three bars, and square for four and must be
enclosed in transverse reinforcement. If the bars are in compression, the transverse
reinforcement must be at least No. 4 (No. 13) bars. When bars are cut off in a bun-
dled group, the cutoff points must be staggered at least 40 diameters. According to
ACI Code 25.6.1, the development length of individual bars within a bundle, for both
tension and compression, is that of the individual bar increased by 20 percent for a
three-bar bundle and by 33 percent for a four-bar bundle, to account for the probable
deficiency of bond at the inside of the bar group.

A unit of bundled bars is treated as a single bar with a diameter d, derived
from the equivalent total area and having a centroid that coincides with that of the
bar group (1) to determine the appropriate spacing limitations and cover requirements
based on d,, (2) for use in Table 6.1, (3) when calculating the confinement term K,
in Eq. (6.5), and (4) when selecting the epoxy coating factor ,.

BAR CUTOFF AND BEND POINTS IN BEAMS

Chapter 4 deals with moments, flexural stresses, concrete dimensions, and longitudi-
nal bar areas at the critical moment sections of beams. These critical moment sections
are generally at the face of the supports (negative bending) and near the middle of the
span (positive bending). Occasionally, haunched members having variable depth or
width are used so that the concrete flexural capacity will agree more closely with the
variation of bending moment along a span or series of spans. Usually, however, pris-
matic beams with constant concrete cross-sectional dimensions are used to simplify
formwork and thus to reduce cost.

The steel requirement, on the other hand, is easily varied in accordance with
requirements for flexure, and it is common practice either to cut off bars where they
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are no longer needed to resist stress or, sometimes in the case of continuous beams,
to bend up the bottom steel (usually at 45°) so that it provides tensile reinforcement
at the top of the beam over the supports.

a. Theoretical Points of Cutoff or Bend

The tensile force to be resisted by the reinforcement at any cross section is

T=Af=Y

jd
where M is the value of bending moment at that section and jd is the internal lever arm of
the resisting moment. The lever arm jd varies only within narrow limits and is never less
than the value at the maximum-moment section. Consequently, the tensile force can be
taken with good accuracy directly proportional to the bending moment. Since it is desira-
ble to design so that the steel everywhere in the beam is as nearly fully stressed as possible,

it follows that the required steel area is very nearly proportional to the bending moment.

To illustrate, the moment diagram for a uniformly loaded simple-span
beam shown in Fig. 6.24a can be used as a steel requirement diagram. At the

FIGURE 6.24 Moment
Bar cutoff points from diagram
moment diagrams.

—100 —0

—50

Percent Ag required
\
al
o
Percent A discontinued

L— Theoretical cut points *»‘
for 1/3 of Ag

Theoretical cut points ——
for additional 1/3 of Ag

—0 —100

(@)

Diagram for
maximum span

moment
™

Theoretical cut points

\
<}
o
Percent A discontinued

for 1/2 of A — — 50 <It
Diagram for 25
maximum support
moments —0
(b)

Telegram: @uni_k



www.konkur.in

Telegram: @uni_k

BOND, ANCHORAGE, AND DEVELOPMENT LENGTH 207

maximum-moment section, 100 percent of the tensile steel is required (0 percent can
be discontinued or bent), while at the supports, O percent of the steel is theoretically
required (100 percent can be discontinued or bent). The percentage of bars that could
be discontinued elsewhere along the span is obtainable directly from the moment
diagram, drawn to scale. To facilitate the determination of cutoff or bend points for
simple spans, Graph A.2 of Appendix A has been prepared. It represents a half-
moment diagram for a uniformly loaded simple span.

To determine cutoff or bend points for continuous beams, the moment dia-
grams resulting from loading for maximum span moment and maximum support
moment are drawn. A moment envelope results that defines the range of values
of moment at any section. Cutoff or bend points can be found from the appropri-
ate moment curve as for simple spans. Figure 6.24b illustrates, for example, a
continuous beam with moment envelope resulting from alternate loadings to pro-
duce maximum span and maximum support moments. The locations of the points
at which 50 percent of the bottom and top steel may theoretically be discontinued
are shown.

According to ACI Code 6.5, uniformly loaded, continuous reinforced concrete
beams of fairly regular span may be designed using moment coefficients (see Table 11.1).
These coefficients, analogous to the numerical constant in the expression ész for
simple-beam bending moment, give a conservative approximation of span and sup-
port moments for continuous beams. When such coefficients are used in design,
cutoff and bend points may conveniently be found from Graph A.3 of Appendix A.
Moment curves corresponding to the various span and support-moment coefficients
are given at the top and bottom of the chart, respectively.

Alternatively, if moments are found by frame analysis rather than from ACI
moment coefficients, the location along the span where bending moment reduces to
any particular value (e.g., as determined by the bar group after some bars are cut
off), or to zero, is easily computed by statics.

Practical Considerations and ACI Code Requirements

Actually, in no case should the tensile steel be discontinued exactly at the theoretically
described points. As described in Section 5.3 and shown in Fig. 5.8, when diagonal
tension cracks form, an internal redistribution of forces occurs in a beam. Prior to
cracking, the steel tensile force at any point is proportional to the moment at a vertical
section passing through the point. However, after the crack has formed, the tensile
force in the steel at the crack is governed by the moment at a section nearer midspan,
which may be much larger. Furthermore, the actual moment diagram may differ from
that used as a design basis, due to approximation of the real loads, approximations in
the analysis, or the superimposed effect of settlement or lateral loads. In recognition of
these facts, ACI Code 7.7.3.3 and 9.7.3.3, covering one-way slabs and beams, respec-
tively, require that every bar be continued at least a distance equal to the effective
depth of the beam or 12 bar diameters (whichever is larger) beyond the point at which
it is theoretically no longer required to resist stress, except at supports of simple spans
and at the free end of cantilevers.

In addition, it is necessary that the calculated stress in the steel at each section
be developed by adequate embedded length or end anchorage, or a combination of
the two. For the usual case, with no special end anchorage, this means that the full
development length ¢, must be provided beyond critical sections at which peak
stress exists in the bars. These critical sections are located at points of maximum
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moment and at points where adjacent terminated reinforcement is no longer needed
to resist bending.’

Further reflecting the possible change in peak stress location, ACI Code 7.7.3.8
and 9.7.3.8 require that at least one-third of the positive-moment steel (one-fourth
in continuous spans) be continued uninterrupted along the same face of the beam a
distance at least 6 in. into the support. When a flexural member is a part of a primary
lateral load resisting system, positive-moment reinforcement required to be extended
into the support must be anchored to develop the yield strength of the bars at the
face of support to account for the possibility of reversal of moment at the supports.
According to ACI Code 7.7.3.8 and 9.7.3.8, at least one-third of the total reinforce-
ment provided for negative moment at the support must be extended beyond the
extreme position of the point of inflection a distance not less than one-sixteenth the
clear span, or d, or 12d,, whichever is greatest.

Requirements for bar cutoff or bend point locations are summarized in Fig. 6.25.
If negative bars L are to be cut off, they must extend a full development length ¢,
beyond the face of the support. In addition, they must extend a distance d or 12d,, beyond
the theoretical point of cutoff defined by the moment diagram. The remaining negative
bars M (at least one-third of the total negative area) must extend at least £, beyond the
theoretical point of cutoff of bars L and in addition must extend d, 12d,, or £,/16
(whichever is greatest) past the point of inflection of the negative-moment diagram.

If the positive bars N are to be cut off, they must project £, past the point of
theoretical maximum moment, as well as d or 12d, beyond the cutoff point from the
positive-moment diagram. The remaining positive bars O must extend £, past the theo-
retical point of cutoff of bars NV and must extend at least 6 in. into the face of the support.

When bars are cut off in a tension zone, there is a tendency toward the formation
of premature flexural and diagonal tension cracks in the vicinity of the cut end. This
may result in a reduction of shear capacity and a loss in overall ductility of the beam.
ACI Code 7.7.3.5 and 9.7.3.5 require special precautions, specifying that no flexural
bar may be terminated in a tension zone unless one of the following conditions is
satisfied:

1. The shear is not over two-thirds of the design strength ¢V,

2. For No. 11 (No. 36) or smaller bars, continuing bars provide twice the area
required for flexure at that point, and the shear does not exceed three-quarters of
the design strength ¢V,

3. Stirrups in excess of those normally required are provided over a distance along
each terminated bar from the point of cutoff equal to % d. These “binder” stirrups

shall provide an area A, > 60b,s/f,. In addition, the stirrup spacing must not

exceed d/8f,, where [, is the ratio of the area of bars cut off to the total area of
bars at the section.

As an alternative to cutting off the steel, tension bars may be anchored by bending
them across the web and making them continuous with the reinforcement on the oppo-
site face. Although this leads to some complication in detailing and placing the steel,
thus adding to construction cost, some engineers prefer the arrangement because added
insurance is provided against the spread of diagonal tension cracks. In some cases,
particularly for relatively deep beams in which a large percentage of the total bottom

"The ACI Code is ambiguous as to whether or not the extension length d or 12d, is to be added to the required development length £,. The
Code Commentary presents the view that these requirements need not be superimposed, and Fig. 6.25 has been prepared on that basis.
However, the argument just presented regarding possible shifts in moment curves or steel stress distribution curves leads to the conclusion that
these requirements should be superimposed. In such cases, each bar should be continued a distance ¢, plus the greater of d or 12d, beyond the

peak stress location.
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steel is to be bent, it may be impossible to locate the bend-up point for bottom bars
far enough from the support for the same bars to meet the requirements for top
steel. The theoretical points of bend should be checked carefully for both bottom and
top steel.

Because the determination of cutoff or bend points may be rather tedious,
particularly for frames that have been analyzed by elastic methods rather than by
moment coefficients, many designers specify that bars be cut off or bent at more or
less arbitrarily defined points that experience has proved to be safe. For nearly equal
spans, uniformly loaded, in which not more than about one-half the tensile steel is
to be cut off or bent, the locations shown in Fig. 6.26 are satisfactory. Note, in
Fig. 6.26, that the beam at the exterior support at the left is shown to be simply
supported. If the beam is monolithic with exterior columns or with a concrete wall
at that end, details for a typical interior span could be used for the end span as well.

Special Requirements near the Point of Zero Moment

While the basic requirement for flexural tensile reinforcement is that a full develop-
ment length ¢, be provided beyond the point where the bar is assumed fully stressed
to f,, this requirement may not be sufficient to ensure safety against bond distress.
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FIGURE 6.26

Cutoff or bend points for
bars in approximately equal
spans with uniformly
distributed loads.

FIGURE 6.27
Development length
requirement at point of
inflection.
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Figure 6.27 shows the moment and shear diagram representative of a uniformly
loaded continuous beam. Positive bars provided to resist the maximum moment at 3
are required to have a full development length beyond the point 3, measured in the
direction of decreasing moment. Thus, £, in the limiting case could be exactly equal
to the distance from point 3 to the point of inflection. However, if that requirement
were exactly met, then at point 2, halfway from 3 to the point of inflection, those bars
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would have only one-half their development length remaining, whereas the moment
would be three-quarters of that at point 3, and three-quarters of the bar force must
yet be developed. This situation arises whenever the moments over the development
length are greater than those corresponding to a linear reduction to zero. Therefore, the
problem is a concern in the positive-moment region of continuous uniformly loaded
spans, but not in the negative-moment region.

As discussed in Section 6.1, the bond force U per unit length along the tensile
reinforcement in a beam is U = dT/dx, where dT is the change in bar tension in the
length dx. Since dT = dM/jd, this can be written

M
U=
Jd dx @)

that is, the bond force per unit length of bar, generated by bending, is proportional to
the slope of the moment diagram. In reference to Fig. 6.27a, the maximum bond force
U in the positive-moment region would therefore be at the point of inflection, and
U would gradually diminish along the beam toward point 3. Clearly, a conservative
approach in evaluating adequacy in bond for those bars that are continued as far as
the point of inflection (not necessarily the full A, provided for M, at point 3) would
be to require that the bond resistance, which is assumed to increase linearly along the
bar from its end, be governed by the maximum rate of moment increase, that is, the
maximum slope dM /dx of the moment diagram, which for positive bending is seen to
occur at the inflection point.

Because the slope of the moment diagram at any point is equal to the value of
the shear force at that point, the slope of the moment diagram at the point of inflec-
tion is V,. With reference to Fig. 6.27, a dashed line may therefore be drawn tangent
to the moment curve at the point of inflection having the slope equal to the value
of shear force V,. Then if M, is the nominal flexural strength provided by those bars
that extend to the point of inflection, and if the moment diagram were conservatively
assumed to vary linearly along the dashed line tangent to the actual moment curve,
from the basic relation that M, /a = V,, a distance a is established:

=4 )
“T,

If the bars in question were fully stressed at a distance a to the right of the point of
inflection, and if the moments diminished linearly to the point of inflection, as sug-
gested by the dashed line, then bond failure would not occur if the development length
£, did not exceed the distance a. The actual moments are less than indicated by the
dashed line, so the requirement is on the safe side.

If the bars extend past the point of inflection toward the support, as is always
required, then the extension can be counted as contributing toward satisfying the
requirement for embedded length. Arbitrarily, according to ACI Code 7.7.3.8 and
9.7.3.8, a length past the point of inflection not greater than the larger of the beam
depth d or 12 times the bar diameter d;, may be counted toward satisfying the require-
ment. Thus, the requirement for tensile bars at the point of inflection is that

M,
<+ L (6.14)

where M, = nominal flexural strength assuming all reinforcement at section to be
stressed to f,
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V, = factored shear force at section
£, = embedded length of bar past point of zero moment, but not to
exceed the greater of d or 12d,

A corresponding situation occurs near the supports of simple spans carrying uni-
form loads, and similar requirements must be imposed. However, because of the bene-
ficial effect of vertical compression in the concrete at the end of a simply supported span,
which tends to prevent splitting and bond failure along the bars, the value M, /V, may
be increased 30 percent for such cases, according to ACI Code 7.7.3.8 and 9.7.3.8. Thus,
at the ends of a simply supported span, the requirement for tension reinforcement is

M
£, <13 7" + £, (6.15)

u

The consequence of these special requirements at the point of zero moment is
that, in some cases, smaller bar sizes must be used to obtain smaller ¢;, even though
requirements for development past the point of maximum stress are met.

It may be evident from review of Sections 6.10b and 6.10c that the determi-
nation of cutoff or bend points in flexural members is complicated and can be
extremely time-consuming in design. It is important to keep the matter in perspective
and to recognize that the overall cost of construction will be increased very little if
some bars are slightly longer than absolutely necessary, according to calculation, or
as dictated by ACI Code provisions. In addition, simplicity in construction is a
desired goal, and can, in itself, produce compensating cost savings. Accordingly,
many engineers in practice continue all positive reinforcement into the face of the
supports the required 6 in. and extend all negative reinforcement the required dis-
tance past the points of inflection, rather than using staggered cutoff points.

STRUCTURAL INTEGRITY PROVISIONS

Experience with structures that have been subjected to damage to a major supporting
element, such as a column, owing to accident or abnormal loading has indicated that
total collapse can be prevented through relatively minor changes in bar detailing. If
some reinforcement, properly confined, is carried continuously through a support, then
even if that support is damaged or destroyed, catenary action of the beams can prevent
total collapse. In general, if beams have bottom and top steel meeting or exceeding the
requirements summarized in Sections 6.10b and 6.10c, and if binding steel is provided in
the form of properly detailed stirrups, then that catenary action can usually be ensured.
According to ACI Code 9.7.7.1, beams at the perimeter of the structure (span-
drel beams) must have continuous reinforcement passing through the region bounded
by the longitudinal reinforcement of the columns consisting of at least one-sixth of
the tension reinforcement required for negative moment at the support, but not less
than two bars, and at least one-quarter of the tension reinforcement required for
positive moment at midspan, but not less than two bars. At noncontinuous supports,
the reinforcement must be anchored using a standard hook or a headed deformed bar
to develop f, at the face of the support. The continuous reinforcement must be
enclosed in accordance with ACI Code 25.7.1.6 by closed stirrups perpendicular to
the axis of the member, hoops as used in seismic design (see Section 20.4), or a
closed cage of welded wire reinforcement with transverse wires perpendicular to the
axis of the member. This transverse reinforcement must be anchored by a 135°
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FIGURE 6.28

Two-piece stirrup meeting
the requirements of ACI

Code 25.7.1.6 for

confinement of longitudinal
integrity reinforcement in
perimeter beams. The 90°
hook must be placed adjacent

to the slab.
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Confinement
from slab

standard hook (Fig. 6.9b) around a longitudinal bar, or where the concrete surround-
ing the anchorage is restrained against spalling by a flange or slab, by either a 90°
or 135° standard hook around a longitudinal bar.

Figure 6.28 shows a two-piece stirrup that meets the requirements of ACI Code
25.7.1.6. Although the spacing of these stirrups is not specified, the requirements
for minimum shear steel given in Section 5.5b provide guidance in regions where
shear does not require closer spacing. The stirrups need not be extended through the
joints. Overlapping pairs of U stirrups of the type shown in Fig. 6.22d are not per-
mitted in perimeter beams because damage to the side cover concrete may cause
both the stirrups and top longitudinal reinforcement to tear out of the concrete, thus
preventing the longitudinal reinforcement from acting as a catenary.

The required continuity of longitudinal steel can be provided using top rein-
forcement spliced at midspan and bottom reinforcement spliced at or near the supports
using Class B tension splices, or mechanical or welded splices (see Section 6.13).

In other than perimeter beams, ACI Code 9.7.7.2 requires that at least one-quarter
of the positive-moment reinforcement required at midspan, but not less than two bars,
must pass through the column longitudinal reinforcement and must be continuous. The
requirements for anchoring this longitudinal reinforcement at noncontinuous supports
and for splicing the bars to provide continuity are the same as for perimeter beams.

For one-way slabs, ACI Code 7.7.7 requires that at least one-quarter of the
maximum positive-moment reinforcement be continuous and, at noncontinuous sup-
ports, the reinforcement be anchored to develop f, at the face of the support. If splices
are necessary in the structural integrity reinforcement, the reinforcement must be
spliced near supports using Class B tension splices, or mechanical or welded splices.

Note that these provisions require very little additional steel in the structure.
At least one-quarter of the bottom bars must be extended 6 in. into the support by
other ACI Code provisions; the structural integrity provisions merely require that
these bars be made continuous or spliced. Similarly, ACI Code 9.7.3.8 requires that
at least one-third of the negative bars in beams be extended a certain minimum
distance past the point of inflection; the structural integrity provisions for perimeter
beams require only that one-half of those bars (that is, one-sixth of the negative bars
at the face of the support) be further extended and spliced at midspan.

INTEGRATED BEAM DESIGN EXAMPLE

In this and in the preceding chapters, the several aspects of the design of reinforced
concrete beams have been studied more or less separately: first the flexural design,
then design for shear, and finally for bond and anchorage. The following example is
presented to show how the various requirements for beams, which are often in some
respects conflicting, are satisfied in the overall design of a representative member.
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EXAMPLE 6.4

Equipment loads

Integrated design of T beam. A floor system consists of single-span T beams 8 ft on centers,
supported by 12 in. masonry walls spaced at 25 ft between inside faces. The general arrange-
ment is shown in Fig. 6.29a. A 5 in. monolithic slab carries a uniformly distributed service
live load of 165 psf. The T beams, in addition to the slab load and their own weight, must
carry two 16,000 1b equipment loads applied over the stem of the T beam 3 ft from the span

Equipment
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T beam design for Example 6.4.
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centerline as shown. A complete design is to be provided for the T beams, using concrete of
4000 psi strength and bars with 60,000 psi yield stress. (Note: Because normalweight concrete
and uncoated reinforcement with a yield strength of 60,000 psi are used, A, y,, and y, = 1.0. A
is dropped from the calculations for shear and bond, and y, and vy, are dropped from the
calculations for bond.)

SoruTtioN.  According to the ACI Code, the span length is to be taken as the clear span plus
the beam depth, but need not exceed the distance between the centers of supports. The latter
provision controls in this case, and the effective span is 26 ft. Estimating the beam web
dimensions to be 12 X 24 in., the calculated and factored dead loads are as follows:

Slab:
5
T3 X 150 % 7 = 440 Ib/ft
Beam:
12 X 24 150 — 300 Ib/ft
144

wy = 740 Ib/ft
1.2w, = 890 Ib/ft

The uniformly distributed live load is

w; = 165 X 8 = 1320 Ib/ft
1.6w; = 2110 Ib/ft

The factored live load is
w, = 1.2w, + 1.6w; = 890 + 2110 = 3000 Ib/ft = 3.0 kips/ft

Live load factors are applied to the two concentrated loads to obtain P, = 16,000 x 1.6 =
25,600 1b. Factored loads are summarized in Fig. 6.295.

In lieu of other controlling criteria, the beam web dimensions will be selected on the basis
of shear. The left and right reactions under factored load are 25.6 + 3.00 X 13 = 64.6 kips. With
the effective beam depth estimated to be 20 in., the maximum shear that need be considered
in design is 64.6 — 3.00(0.50 + 1.67) = 58.1 kips. Although the ACI Code permits V, as
high as 8\/ﬁ b,d, this would require very heavy web reinforcement. A lower limit of
4+/f. b,d will be adopted. With V, = 2/f/ b,d this results in a maximum V, = 6/, b,d. Then
b,d = V,/(6¢ \/fj) = 58,100/(6 x 0.75V4000) = 204 in®. Cross-sectional dimensions
b, = 12 in. and d = 18 in. are selected, providing a total beam depth of 22 in. The assumed
dead load of the beam need not be revised.

According to the Code, the effective flange width b is the smallest of the three quantities

16k + b,, = 80 + 12 = 92 in.

+ 12 =90 in.

2¢, 26 x 12
+ b, =
8 4

Centerline beam spacing = 96 in.

The second controls in this case. The maximum moment is at midspan, where

M, = (% % 3.00 x 262) +(25.6 x 10) = 510 fi-kips
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Assuming for trial that the stress-block depth will equal the slab thickness leads to

M, _ 510 x 12

A= = =731 in®
¢f(d — aj2)  0.90 x 60 x 15.5

Then

Y Asfy __731x60
0.85(b  0.85 x 4 x 90

= 1.43 in.

The stress-block depth is seen to be less than the slab depth; rectangular beam equations are
valid. An improved determination of A; is

510 x 12

= = 6.56 in’
0.90 x 60 x 17.28

A check confirms that this is well below the maximum permitted reinforcement ratio. Four
No. 9 (No. 29) plus four No. 8 (No. 25) bars will be used, providing a total area of 7.14 in’.
They will be arranged in two rows, as shown in Fig. 6.29d, with No. 9 (No. 29) bars at the outer
end of each row. Beam width b,, is adequate for this bar arrangement.

While the ACI Code permits discontinuation of two-thirds of the longitudinal reinforce-
ment for simple spans, in the present case it is convenient to discontinue only the upper layer
of steel, consisting of one-half of the total area. The moment capacity of the member after
the upper layer of bars has been discontinued is then found:

"= 3.57 x 60
085 x4 x78

oM, = (ﬁAsfy(d - %) =0.90 x 3.57 X 60 X 18.66 x é = 300 ft-Kips

= 0.81 in.

For the present case, with a moment diagram resulting from combined distributed and con-
centrated loads, the point at which the applied moment is equal to this amount must be
calculated. (In the case of uniformly loaded beams, Graphs A.2 and A.3 in Appendix A are
helpful.) If x is the distance from the support centerline to the point at which the moment is
300 ft-kips, then

3.00x°
2

64.6x — = 300

x =530

The upper bars must be continued at least d = 1.50 ft or 12d, = 1.13 ft beyond this theoretical
point of cutoff. In addition, the full development length £; must be provided past the maximum-
moment section at which the stress in the bars to be cut is assumed to be f,. Because of the
heavy concentrated loads near the midspan, the point of peak stress will be assumed to be at the
concentrated load rather than at midspan. For the four upper bars, assuming 1.50 in. clear cover
to the outside of the No. 3 (No. 10) stirrups, the clear side cover is 1.50 + 0.38 = 1.88 in., or
1.66d,. Assuming equal clear spacing between all four bars, that clear spacing is [12.00 — 2 X
(1.50 + 0.38 + 1.13 + 1.00)]/3 = 1.33 in., or 1.18d,,. Noting that the ACI Code requirements
for minimum stirrups are met, it is clear that all restrictions for the use of the simplified equa-
tion for development length are met. From Table 6.1 (Section 6.3), the required development
length is

g, = 8000 s %113 =53,

204000

or 4.42 ft. Thus, the bars must be continued at least 3.00 + 4.42 = 7.42 ft past the midspan
point, but in addition they must continue to a point 5.30 — 1.50 = 3.80 ft from the support
centerline. The second requirement controls and the upper layer of the bars will be terminated,
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as shown in Fig. 6.29¢, 3.30 ft from the support face. The bottom layer of bars will be extended
to a point 3 in. from the end of the beam, providing 5.55 ft embedment past the critical section
for cutoff of the upper bars. This exceeds the development length of the lower set of bars, con-
firming that cutoff and extension requirements are met.

Note that a simpler design, using very little extra steel, would result from extending
all eight positive bars into the support. Whether or not the more elaborate calculations and
more complicated placement are justified would depend largely on the number of repetitions
of the design in the total structure.

Checking by Eq. (6.15) to ensure that the continued steel is of sufficiently small diameter
determines that

333 x 12
646

£, <13 3 =283 in.
The actual £, of 53 in. meets this restriction.

Since the cut bars are located in the tension zone, special binding stirrups will be used
to control cracking; these will be selected after the normal shear reinforcement has been
determined.

The shear diagram resulting from application of factored loads is shown in Fig. 6.29c.
The shear contribution of the concrete is

¢V.=0.75 x 2+/4000 x 12 x 18 = 20,500 1b

Thus, web reinforcement must be provided for that part of the shear diagram shown shaded.

No. 3 (No. 10) stirrups are selected. The maximum spacings must not exceed d/2 =9 in.,
24 in,, or A,f,,/(0.75 \/f7 b,) = 0.22 x 60,000/(0.75v4000 x 12) = 23 in. < A, f,,/50b,, = 0.22 X
60,000/(50 x 12) = 22 in. The first criterion controls here. For reference, from Eq. (5.14a)
the hypothetical stirrup spacing at the support is

_0.75 x0.22 x 60 x 18

0= T 646 — 205 = 404 1in.
and at 2 ft intervals along the span,
s, = 4.68 in.
s, = 5.55 in.
s¢ = 6.83 in.
sg = 8.87 in.
S0 = 12.64 in.

The spacing need not be closer than that required 2.00 ft from the support centerline (d = 18 in.
at the face of the support). In addition, stirrups are not required past the point of application
of concentrated load, since beyond that point the shear is less than one-half of ¢V,. The final
spacing of vertical stirrups selected is

1 space at 2 in. = 2 in.
7 spaces at 4 in. = 28 in.
8 spaces at 5 in. = 40 in.
S spaces at 9 in. = 45 in.

Total = 115 in. = 9 ft 7 in. from the face of the
support (121 in. = 10 ft 1 in.
from the support centerline)

Two No. 3 (No. 10) longitudinal bars will be added to meet anchorage requirements and fix the
top of the stirrups.

In addition to the shear reinforcement just specified, it is necessary to provide extra web
reinforcement over a distance equal to % d, or 13.5 in., from the cut ends of the discontinued steel.
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The spacing of this extra web reinforcement must not exceed d/8f, = 18/(8 X %) =45 in. In
addition, the area of added steel within the distance s must not be less than 60b,,s/f,, = 60 X
12 x 4.5/60,000 = 0.054 in%. For convenience, No. 3 (No. 10) stirrups will be used for this
purpose also, providing an area of 0.22 in® in the distance s. The placement of the four extra
stirrups is shown in Fig. 6.29e.
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6.13

BAR SPLICES

In general, reinforcing bars are stocked by suppliers in lengths of 60 ft for bars from
No. 5 to No. 18 (No. 16 to No. 57) and in 20 or 40 ft lengths for smaller sizes. For this
reason, and because it is often more convenient to work with shorter bar lengths, it is
frequently necessary to splice bars in the field. Splices in reinforcement at points of
maximum stress should be avoided, and when splices are used, they should be stag-
gered, although neither condition is practical, for example, in compression splices in
columns.

Splices for No. 11 (No. 36) bars and smaller are usually made simply by lap-
ping the bars a sufficient distance to transfer stress by bond from one bar to the
other. The lapped bars are usually placed in contact and lightly wired so that they
stay in position as the concrete is placed. Alternatively, splicing may be accom-
plished by welding or by sleeves or mechanical devices. ACI Code 25.5.1.5 requires
that for spliced reinforcement with f;, > 80,000 psi spaced closer than 6 in. on center,
transverse reinforcement must be provided so that K,, is not smaller than 0.5d,. As
pointed out in Section 6.3a, however, ACI Code 9.7.1.4 and 10.7.1.3 require that K,,
be at least 0.5d,, in beams and columns where reinforcement with f, > 80,000 psi is
developed or spliced, independent of the bar spacing. ACI Code 25.5.1.1 prohibits
use of lapped splices for bars larger than No. 11 (No. 36), except that No. 14 and
No. 18 (No. 43 and No. 57) bars may be lapped in compression with No. 11 (No.
36) and smaller bars per ACI Code 16.3.5.4 and 25.5.5.3. For bars that carry only
compression, it is possible to transfer load by end bearing of square cut ends, if the
bars are accurately held in position by a sleeve or other device. If bars of different
sizes must be spliced, the splice length must equal or exceed the greater of the splice
length of the smaller bar and the development length of the larger bar.

Lap splices of bars in bundles are based on the lap splice length required for
individual bars within the bundle but must be increased in length by 20 percent for
three-bar bundles and by 33 percent for four-bar bundles because of the reduced
effective perimeter. Individual bar splices within a bundle should not overlap, and
entire bundles must not be lap-spliced.

According to ACI Code 25.5.7.1, welded splices must develop at least 125 percent
of the specified yield strength of the bar. The same requirement applies to full
mechanical connections. This ensures that an overloaded spliced bar would fail by
ductile yielding in the region away from the splice, rather than at the splice where
brittle failure is likely.

Lap Splices in Tension

The required length of lap for tension splices £, is stated in terms of the development
length £,. In the process of calculating ¢,, the usual modification factors are applied,
except that the reduction factor for excess reinforcement should not be applied because
that factor is already accounted for in the splice specification.
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Two different classifications of lap splices are established, corresponding to the
minimum length of lap required: a Class A splice requires a lap of 1.0¢,, and a Class B
splice requires a lap of 1.3¢,. In either case, a minimum length of 12 in. applies. For
Class B splices, the 12 in. minimum applies to 1.3, not to the value of ¢, used to
calculate the lap length. Lap splices, in general, must be Class B splices, according to
ACI Code 25.5.2.1, except that Class A splices are allowed when the area of reinforce-
ment provided is at least twice that required by analysis over the entire length of the
splice and when one-half or less of the total reinforcement is spliced within the required
lap length. The effect of these requirements is to encourage designers to locate splices
away from regions of maximum stress, to a location where the actual steel area is at
least twice that required by analysis, and to stagger splices.

Spiral reinforcement is spliced with a lap of 484, for uncoated bars and 72d,, for
epoxy-coated bars, in accordance with ACI Code 25.7.3.6. The lap for epoxy-coated
bars is reduced to 48d,, if the bars are anchored with a standard stirrup or tie hook.

Compression Splices

Reinforcing bars in compression are spliced mainly in columns, where bars are most
often terminated just above each floor or every other floor. This is done partly for
construction convenience, to avoid handling and supporting very long column bars,
but it is also done to permit column steel area to be reduced in steps, as loads become
lighter at higher floors.

Compression bars may be spliced by lapping, by direct end bearing, or by
welding or mechanical devices that provide positive connection. The minimum
length of lap for compression splices is set according to ACI Code 25.5.5.1:

For bars with f, < 60,000 psi £, = 0.0005f, d,
For bars with 60,000 psi < f, < 80,000 psi £, = (0.0009f, — 24)d,

For bars with f, > 80,000 psi £,. = longer of (0.0009f, — 24)d,
and £,

but not less than 12 in. For f less than 3000 psi, the required lap is increased by one-
third. When bars of different size are lap-spliced in compression, the splice length is
to be the larger of the development length of the larger bar and the splice length of the
smaller bar. In exception to the usual restriction on lap splices for large-diameter bars,
No. 14 and No. 18 (No. 43 and No. 57) bars may be lap-spliced to No. 11 (No. 36) and
smaller bars.

Direct end bearing of the bars has been found by test and experience to be an
effective means for transmitting compression. In such a case, the bars must be held
in proper alignment by a suitable device. The bar ends must terminate in flat surfaces
within 1.5° of a right angle, and the bars must be fitted within 3° of full bearing
after assembly, according to ACI Code 25.5.6. End bearing splices are limited to
members where ties, closed stirrups, or spirals are used.

Column Splices

Lap splices, butt-welded splices, mechanical connections, or end-bearing splices may
be used in columns, with certain restrictions. Reinforcing bars in columns may be
subjected to compression or tension, or, for different load combinations, both tension
and compression. Accordingly, column splices must conform in some cases to the
requirements for compression splices only or tension splices only or to requirements
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for both. ACI Code 10.7.5.2 requires that a minimum tension capacity be provided in
each face of all columns, even where analysis indicates compression only. Ordinary
compressive lap splices provide sufficient tensile resistance, but end-bearing splices
may require additional bars for tension, unless the splices are staggered.

For lap splices, where the bar stress due to factored loads is compression,
column lap splices must conform to the requirements presented in Section 6.13b for
compression splices. Where the stress is tension and does not exceed 0.5f;, ACI Code
10.7.5.2 requires that lap splices must be Class B if more than one-half the bars are
spliced at any section, or Class A if one-half or fewer are spliced and alternate lap
splices are staggered by £,. If the stress is tension and exceeds 0.5f,, then lap splices
must be Class B, according to ACI Code 10.7.5.2.

If lateral ties are used throughout the splice length having an effective area of
at least 0.00154s in both directions, where s is the spacing of ties and % is the over-
all thickness of the member, the required splice length may be multiplied by 0.83
but must be at least 12 in. The tie legs perpendicular to the dimension 4 are used
to calculate the effective tie area. If spiral reinforcement confines the splice, the
length required may be multiplied by 0.75 but again must be at least 12 in.

End-bearing splices, as described above, may be used for column bars stressed
in compression, if the splices are staggered or additional bars are provided at splice
locations. The continuing bars in each face must have a tensile strength of not less
than 0.25f, times the area of reinforcement in that face.

As mentioned in Section 6.13b, column splices are commonly made just above
a floor. However, for frames subjected to lateral loads, a better location is within the
center half of the column height, where the moments due to lateral loads are much
lower than at floor level. Such placement is mandatory for columns in “special
moment frames” designed for seismic loads, as will be discussed in Chapter 20.

EXAMPLE 6.5
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Compression splice of column reinforcement. In reference to Fig. 6.8, four No. 11 (No. 36)
column bars from the floor below are to be lap-spliced with four No. 10 (No. 32) column
bars from above, and the splice is to be made just above a construction joint at floor level.
The column, measuring 12 X 21 in. in cross section, will be subject to compression only for
all load combinations. Transverse reinforcement consists of No. 4 (No. 13) ties at 16 in.
spacing. All vertical bars may be assumed to be fully stressed. Calculate the required splice
length. Material strengths are f, = 60,000 psi and f; = 4000 psi.

SorutioN. The length of the splice must be the larger of the development length £, of the
No. 11 (No. 36) bars and the splice length £. of the No. 10 (No. 32) bars. For the No. 11
(No. 36) bars, the development length is equal to the larger of the values obtained with
Egs. (6.10a) and (6.10b):

_( . ) . =( 60,000 X 1.0 V4 41 = 27 in.

“ 7\ sonr 50 x 1.0 x /4000
€4 = 0.0003 f,d, = 0.0003 X 60,000 X 1.41 = 25 in.

The first criterion controls. No modification factors apply. For the No. 10 (No. 32) bars, the
compression splice length is

£, = 0.0005 f,d, = 0.0005 x 60,000 x 1.27 = 38 in.

In the check for use of the modification factor for tied columns, the critical column dimension is
21 in., and the required effective tie area is thus 0.0015 X 21 X 16 x 0.50 in”. The No. 4 (No. 13)
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ties provide an area of only 0.20 X 2 = 0.40 in%, so the reduction factor of 0.83 cannot be applied
to the splice length. Thus, the compression splice length of 38 in., which exceeds the develop-
ment length of 27 in. for the No. 11 (No. 36) bars, controls, and a lap splice of 38 in. is required.
Note that if the spacing of the ties at the splice were reduced to 12.8 in. or less (say 12 in.), the
required lap would be reduced to 38 x 0.83 = 32 in. This would save steel, and, although place-
ment cost would increase slightly, would probably represent the more economical design.
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PROBLEMS

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

For the beam cross section shown in Fig. 4.16, what are the development
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4
(No. 13) stirrups with 1% in. clear side cover spaced at 6 in. using Egs. (6.5)
and (6.6)? Normalweight concrete, £, = 4000 psi, f, = 60,000 psi. Comment.
For the beam cross section shown in Fig. 4.16, what are the development
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4
(No. 13) stirrups with 1% in. clear side cover spaced at 4 in. using Egs. (6.5)
and (6.6)? Lightweight concrete, f, = 4000 psi, f, = 80,000 psi. Comment.
For the beam cross section shown in Fig. 4.16, what are the development
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4
(No. 13) stirrups with 1% in. clear side cover spaced at 6 in. using Egs. (6.5)
and (6.6)? Normalweight concrete, £, = 8000 psi, f, = 60,000 psi. Comment.
For the beam cross section shown in Fig. 4.16, what are the development
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4
(No. 13) stirrups with 1% in. clear side cover spaced at 6 in. using Egs. (6.5)
and (6.6)? The bars are epoxy coated. Lightweight concrete, £, = 8000 psi,
fy = 60,000 psi. Comment.

For the beam cross section shown in Fig. 4.16, what are the development
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4
(No. 13) stirrups with 1% in. clear side cover spaced at 3 in. using Egs. (6.5)
and (6.6)? Normalweight concrete, £ = 4000 psi, f, = 80,000 psi. Comment.
For the beam cross section shown in Fig. 4.16, what are the development
lengths of the top No. 7 (No. 22) bars and bottom No. 9 (No. 29) bars for No. 4
(No. 13) stirrups with 1% in. clear side cover spaced at 6 in. using Egs. (6.5)
and (6.6)? Normalweight concrete, f; = 12,000 psi, f, = 60,000 psi. Comment.
Compare the development lengths of No. 8 (No. 25) hooked (180° bend) and
headed bars cast in a beam-column joint with 2% in. clear cover on the bars and
4 in. clear spacing between the bars. A, > 0.4A,, and A, > 0.3A,,. Normal-
weight concrete, f; = 4000 psi, f, = 60,000 psi. Comment.

Compare the development lengths of No. 11 (No. 36) hooked (90° bend) and
headed bars cast in a beam-column joint with 3 in. clear cover on the bars
and 6 in. clear spacing between the bars. A, = 0.24,, and A, = 0.15A4,,.
Normalweight concrete, f, = 7000 psi, f, = 60,000 psi. Comment.
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The short beam shown in Fig. P6.9 cantilevers from a supporting column at

the left. The beam must carry a calculated dead load of 2.0 kips/ft including

its own weight and a service live load of 2.6 kips/ft. Tensile flexural
reinforcement consists of two No. 10 (No. 32) bars at a 21 in. effective depth.

Transverse No. 3 (No. 10) U stirrups with 1.5 in. cover are provided at the

following spacings from the face of the column: 4 in., 3 at 8 in., 5 at 10.5 in.

Within the beam-column joint, No. 4 (No. 13) closed ties are provided at

an 8 in. spacing, with the first tie located 2 in. below the centerline of the

hooked bar.

(a) If the flexural and shear steel use f, = 60,000 psi and if the beam uses
lightweight concrete having f) = 4000 psi, check to see if proper
development length can be provided for the No. 10 (No. 32) bars. Use
the simplified development length equations, Eq. (6.6a) or (6.6b), as
appropriate.

(b) Recalculate the required development length for the beam bars using the
basic Eq. (6.5). Comment on your results.

(c) If the column material strengths are f, = 60,000 psi and f, = 5000 psi
(normalweight concrete), check to see if adequate embedment can be
provided within the column for the No. 10 (No. 32) bars. If hooks are
required, specify detailed dimensions.

T  2No.10 (No.32) T

=
,Q\ﬁ, ,g\ﬁ,
247 96" <157

The beam shown in Fig. P6.10 is simply supported with a clear span of 26 ft
and is to carry a distributed dead load of 1.05 kips/ft including its own
weight and live load of 1.62 kips/ft, unfactored, in service. The reinforcement
consists of five No. 10 (No. 32) bars at a 16 in. effective depth, two of which
are to be discontinued where no longer needed. Material strengths specified
are f, = 60,000 psi and f, = 5000 psi. No. 3 (No. 10) stirrups are used with

a cover of 1.5 in. at spacing less than ACI Code maximum.

(a) Calculate the point where two bars can be discontinued.

(b) Check to be sure that adequate embedded length is provided for contin-
ued and discontinued bars.

(¢) Check special requirements at the support, where M, = 0.

(d) If No. 3 (No. 10) bars are used for transverse reinforcement, specify
special reinforcing details in the vicinity where the No. 10 (No. 32) bar
is cut off.

(e) Comment on the practical aspects of the proposed design. Would you
recommend cutting off the steel as suggested? Could three bars be dis-
continued rather than two?
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6.11.

FIGURE P6.11

No. 3 (No. 10)
spiral at 2” pitch

6.12.

FIGURE P6.12
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Figure P6.11 shows the column reinforcement for a 16 in. diameter concrete
column, with f, = 80,000 psi and f, = 8000 psi. Analysis of the building
frame indicates a required A, = 7.30 in” in the lower column and 5.80 in” in
the upper column. Spiral reinforcement consists of a % in. diameter rod with
a 2 in. pitch. Column bars are to be spliced in compression just above the
construction joint at the floor level, as shown in the sketch. Calculate the
minimum permitted length of splice.

16

—

6 No. 9 (No. 29) bars

T
=
L

Mr———FRTFEAT
HAE —— —H+H+H H+

5

Uil ———Hdritriil

6 No. 10 (No. 32) bars

<167

The short cantilever shown in Fig. P6.12 carries a heavy concentrated load
6 in. from its outer end. Flexural analysis indicates that three No. 8 (No. 25)
bars are required, suitably anchored in the supporting wall and extending to a
point no closer than 2 in. from the free end. The bars will be fully stressed to
/f, at the fixed support. Investigate the need for hooks and transverse confine-
ment steel at the right end of the member. Material strengths are f, = 60,000 psi
and f; = 4000 psi. If hooks and transverse steel are required, show details in
a sketch.

Pu 6//
j ‘F — ‘52” cover

- =/

———————————— oo —T

P 1//
18" 203

l

Minimum 2” coverJ ~— L‘IO’S‘
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A continuous-strip wall footing is shown in cross section in Fig. P6.13. It is
proposed that tensile reinforcement be provided using No. 8 (No. 25) bars at 16 in.
spacing along the length of the wall, to provide a bar area of 0.59 in®/ft. The
bars have strength £, = 60,000 psi, and the footing concrete has f; = 4000 psi.
The critical section for bending is assumed to be at the face of the supported
wall, and the effective depth to the tensile steel is 12 in. Check to ensure that
sufficient development length is available for the No. 8 (No. 25) bars, and if
hooks are required, sketch details of the hooks, giving dimensions.

Note: If hooks are required for the No. 8 (No. 25) bars, prepare an alter-
nate design using bars having the same area per foot but of smaller diameter
such that hooks could be eliminated; use the largest bar size possible to
minimize the cost of steel placement.

FIGURE P6.13 66"
— 27”ﬂ<—»12” 27—
Wall
I12” 16"
e — v
< No. 8 (No. 25) bars at 16” spacing
6.14. A closure strip is to be used between two 8 in. precast slabs (Fig. P6.14).
The slabs contain No. 5 (No. 16) bars spaced at 10 in. Determine the mini-
mum width of the closure strip for use with headed bars spliced within the
strip. A,,, = 4A,. Material strengths are f, = 60,000 psi and f; = 5000 psi.
The maximum size aggregate = 13 in. Assume head thickness = 0.5 in.
FIGURE P6.14 Closure strip
No. 5 (No. 16) / Precast slab
6.15. The continuous beam shown in Fig. P6.15 has been designed to carry a service

Telegram: @uni_k

dead load of 2.25 kips/ft including self-weight and service live load of
3.25 kips/ft. Flexural design has been based on ACI moment coefficients of ﬁ

and % at the face of support and midspan, respectively, resulting in a concrete
section with b = 14 in. and d = 22 in. Negative reinforcement at the support
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FIGURE P6.15

FIGURE P6.16
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face is provided by four No. 10 (No. 32) bars, which will be cut off in pairs
where no longer required by the ACI Code. Positive bars consist of four No. 8
(No. 25) bars, which will also be cut off in pairs. Specify the exact point of
cutoff for all negative and positive steel. Specify also any supplementary web
reinforcement that may be required. Check for satisfaction of ACI Code require-
ments at the point of inflection, and suggest modifications of reinforcement if
appropriate. Material strengths are f, = 60,000 psi and f, = 4000 psi.

4 No. 10 (No. 32) 4 No. 10 (No. 32)

[ Lt

0" 4No.8(No.25) 1t

24/_0//

6.16. Figure P6.16 shows a deep transfer girder that carries two heavy column

loads at its outer ends from a high-rise concrete building. Ground-floor col-
umns must be offset 8 ft as shown. The loading produces an essentially
constant moment (neglect self-weight of girder) calling for a concrete section
with b = 22 in. and d = 50 in., with main tensile reinforcement at the top
of the girder comprised of 12 No. 11 (No. 36) bars in three layers of four
bars each. The maximum available bar length is 60 ft, so tensile splices must
be provided. Design and detail all splices, following ACI Code provisions.
Splices will be staggered, with no more than four bars spliced at any section.
Also, investigate the need for special anchorage at the outer ends of main
reinforcement, and specify details of special anchorage if required. Material
strengths are f, = 60,000 psi and f, = 5000 psi.

P, = 465 Kips P, = 465 Kips

12 No. 11 (No. 36) (3 rows)

<8 58’
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7.2

Serviceability

INTRODUCTION

Chapters 4, 5, and 6 have dealt mainly with the strength design of reinforced concrete
beams. Methods have been developed to ensure that beams will have a proper safety
margin against failure in flexure or shear, or due to inadequate bond and anchorage
of the reinforcement. The member has been assumed to be at a hypothetical overload
state for this purpose.

It is also important that member performance in normal service be satisfactory,
when loads are those actually expected to act, that is, when load factors are 1.0. This
is not guaranteed simply by providing adequate strength. Service load deflections
under full load may be excessively large, or long-term deflections due to sustained
loads may cause damage. Tension cracks in beams may be wide enough to be visually
disturbing, and in some cases may reduce the durability of the structure. These and
other questions, such as vibration or fatigue, require consideration.

Serviceability studies are carried out based on elastic theory, with stresses in
both concrete and steel assumed to be proportional to strain. The concrete on the
tension side of the neutral axis may be assumed uncracked, partially cracked, or fully
cracked, depending on the loads and material strengths (see Section 4.2).

In early reinforced concrete designs, questions of serviceability were dealt with
indirectly, by limiting the stresses in concrete and steel at service loads to the rather
conservative values that had resulted in satisfactory performance. In contrast, with
current design methods that permit more slender members through more accurate
assessment of capacity, and with higher-strength materials further contributing to
the trend toward smaller member sizes, such indirect methods no longer work. The
current approach is to investigate service load cracking and deflections specifically,
after proportioning members based on strength requirements.

In this chapter, methods will be developed to ensure that the cracks associated
with flexure of reinforced concrete beams are narrow and well distributed, and
that short- and long-term deflections at loads up to the full service load are not
objectionably large.

CRACKING IN FLEXURAL MEMBERS

All reinforced concrete beams crack, generally starting at loads well below service
level, and possibly even prior to loading due to restrained shrinkage. Flexural cracking
due to loads is not only inevitable but actually necessary for the reinforcement to be

227
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used effectively. Prior to the formation of flexural cracks, the steel stress is no more
than n times the stress in the adjacent concrete, where n is the modular ratio E,/E.,.
For materials common in current practice, n is approximately 8. Thus, when the con-
crete is close to its modulus of rupture of about 500 psi, the steel stress will be only
8 X 500 = 4000 psi, far too low to be very effective as reinforcement. At normal ser-
vice loads, steel stresses 8 or 9 times that value can be expected.

In a well-designed beam, flexural cracks are fine, so-called hairline cracks,
almost invisible to the casual observer, and they permit little if any corrosion of the
reinforcement. As loads are gradually increased above the cracking load, both the
number and the width of cracks increase, and at service load level a maximum width
of crack of about 0.016 in. is typical. If loads are further increased, crack widths
increase further, although the number of cracks is more or less stable.

Cracking of concrete is a random process, highly variable and influenced by
many factors. Because of the complexity of the problem, present methods for pre-
dicting crack widths are based primarily on test observations. Most equations that
have been developed predict the probable maximum crack width, which usually
means that about 90 percent of the crack widths in the member are below the cal-
culated value. However, isolated cracks exceeding twice the computed width can
sometimes occur (Ref. 7.1).

Variables Affecting Width of Cracks

In the discussion of the importance of a good bond between steel and concrete in
Section 6.1, it was pointed out that if proper end anchorage is provided, a beam will
not fail prematurely, even though the bond is destroyed along the entire span. How-
ever, crack widths will be greater than for an otherwise identical beam in which good
resistance to slip is provided along the length of the span. In general, beams with
smooth round bars will display a relatively small number of rather wide cracks in ser-
vice, while beams with good slip resistance ensured by proper surface deformations
on the bars will show a larger number of very fine, almost invisible cracks. Because
of this improvement, reinforcing bars in current practice are always provided with
surface deformations, the maximum spacing and minimum height of which are estab-
lished by ASTM Specifications A615, A706, A996, and A1035.

A second variable of importance is the stress in the reinforcement. Studies by
Gergely and Lutz and others (Refs. 7.2 to 7.4) have confirmed that crack width is
proportional to £, where f, is the steel stress and 7 is an exponent that varies in the
range from about 1.0 to 1.4. For steel stresses in the range of practical interest, say
from 20 to 40 ksi, » may be taken equal to 1.0. The steel stress is easily computed
based on elastic cracked-section analysis (Section 4.2b). Alternatively, f; may be
taken equal to % fy according to ACI Code 24.3.2.

Experiments by Broms (Ref. 7.5) and others have shown that both crack spacing
and crack width are related to the concrete cover distance d,., measured from the center
of the bar to the face of the concrete. In general, increasing the cover increases the
spacing of cracks and also increases crack width. Furthermore, the distribution of the
reinforcement in the tension zone of the beam is important. Generally, to control
cracking, it is better to use a larger number of smaller-diameter bars to provide the
required A, than to use the minimum number of larger bars, and the bars should be
well distributed over the tensile zone of the concrete. For deep flexural members, this
includes additional reinforcement on the sides of the web to prevent excessive surface
crack widths above or below the level of the main flexural reinforcement.
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Equations for Crack Width

A number of expressions for maximum crack width have been developed based on
the statistical analysis of experimental data. Two expressions that have figured prom-
inently in the development of the crack control provisions in the ACI Code are those
developed by Gergely and Lutz (Ref. 7.2) and Frosch (Ref. 7.4) for the maximum
crack width at the tension face of a beam. They are, respectively,

w = 0.0764f,/d, A (7.1)

w = 2000 gﬁ,/df + (%)2 (1.2)

where w = maximum width of crack, thousandth inches
[, = steel stress at load for which crack width is to be determined, ksi
E; = modulus of elasticity of steel, ksi

and

The geometric parameters are shown in Fig. 7.1 and are as follows:

d. = thickness of concrete cover measured from tension face to center of bar
closest to that face, in.

p = ratio of distances from tension face and from steel centroid to neutral axis,
equal to hy/h,

A = concrete area surrounding one bar, equal to total effective tension area of
concrete surrounding reinforcement and having same centroid, divided by
number of bars, in’

s = maximum bar spacing, in.

Equations (7.1) and (7.2), which apply only to beams in which deformed bars are
used, include all the factors just named as having an important influence on the width
of cracks: steel stress, concrete cover, and the distribution of the reinforcement in the
concrete tensile zone. In addition, the factor f is added to account for the increase in
crack width with distance from the neutral axis (see Fig. 7.1b).

Cyclic and Sustained Load Effects

Both cyclic and sustained loading account for increasing crack width. While there is a
large amount of scatter in test data, results of fatigue tests and sustained loading tests
indicate that a doubling of crack width can be expected with time (Ref. 7.1). Under
most conditions, the spacing of cracks does not change with time at constant levels of
sustained stress or cyclic stress range.
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7.3

ACl CODE PROVISIONS FOR CRACK CONTROL

In view of the random nature of cracking and the wide scatter of crack width meas-
urements, even under laboratory conditions, crack width is controlled in accordance
with ACI Code 24.3.2 by establishing a maximum center-to-center spacing s for the
reinforcement closest to the surface of a tension member as a function of the bar stress
under service conditions f; (in psi) and the clear cover from the nearest surface in ten-
sion to the surface of the flexural tension reinforcement c., as shown in Fig. 7.1.

40,000

(7.3)

s s

s=15( )—2.5c0512

40,000)

The choice of clear cover c,, rather than the cover to the center of the bar d,., was
made to simplify design, since this allows s to be independent of bar size. As a con-
sequence, maximum crack widths will be somewhat greater for larger bars than for
smaller bars.

As shown in Eq. (7.3), the ACI Code sets an upper limit on s of 12(40,000/f;).
The stress f; is calculated by dividing the service load moment by the product of the
area of reinforcement and the internal moment arm, as shown in Eq. (4.4). Alterna-
tively, the ACI Code permits f; to be taken as two-thirds of the specified yield
strength f,. For members with only a single bar, the width of the extreme tension
face may not exceed s, in accordance with ACI Code 24.3.3.

Figure 7.2a compares the values of spacing s obtained using Eqgs. (7.1) and (7.2)
for a beam containing No. 8 (No. 25) reinforcing bars, for f; = 40,000 psi (corre-
sponding to f, = 60,000 psi), f = 1.2, and a maximum crack width w = 0.016 in.,
to the values calculated using Eq. (7.3). Equations (7.1) and (7.2) give identical
spacings for two values of clear cover, but significantly different spacings for other
values of c¢.. Equation (7.3) provides a practical representation of the values of s that
are calculated using the two experimentally based expressions. The equation is
plotted in Fig. 7.2b for f, = 26,667, 40,000, and 53,333 psi, corresponding to % 5
for Grade 40, 60, and 80 bars, respectively.

ACI Code 24.3.5 points out that the spacing s in structures subject to fatigue,
designed to be watertight, or exposed to corrosion should be based on “investigations or
precautions specific to those conditions.” These include the use of expressions such as
Egs. (7.1) and (7.2) to determine the probable maximum crack width. Further guidance
is given in Ref. 7.1. In any case, s should not exceed the value obtained using Eq. (7.3).

When concrete T beam flanges are in tension, as in the negative-moment region
of continuous T beams, concentration of the reinforcement over the web may result
in excessive crack width in the overhanging slab, even though cracks directly over
the web are fine and well distributed. To prevent this, the tensile reinforcement
should be distributed over the width of the flange, rather than concentrated. However,
because of shear lag, the outer bars in such a distribution would be considerably less
highly stressed than those directly over the web, producing an uneconomical design.
As a reasonable compromise, ACI Code 24.3.4 requires that the tension reinforce-
ment in such cases be distributed over the effective flange width or a width equal
to one-tenth the span, whichever is smaller. If the effective flange width exceeds
one-tenth of the span, some longitudinal reinforcement must be provided in the outer
portions of the flange. The amount of such additional reinforcement is left to the
discretion of the designer; it should at least be the equivalent of temperature rein-
forcement for the slab (see Section 12.3) and is often taken as twice that amount.
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Maximum bar spacing versus
clear cover: (@) Comparison
of Egs. (7.1), (7.2), and
(7.3) for w,=0.016 in.,

fs =40,000 psi, p = 1.2, bar
size = No. 8 (No. 25) and
(b) Eq. (7.3) for f, = 26,667,
40,000, and 53,333 psi,
corresponding to % b

for Grades 40, 60, and 80
reinforcement, respectively.
[Part (a) after Ref. 7.6.]
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For beams with relatively deep webs, some ‘“skin” reinforcement should be
placed near the vertical faces of the web to control the width of cracks in the concrete
tension zone above the level of the main reinforcement. Without such steel, well-
distributed cracks at the level of the main bars tend to consolidate into a smaller
number of wider cracks closer to the neutral axis (Ref. 7.7), as shown in Fig. 7.3a.
With such steel, the cracks do not consolidate, and remain narrow, as shown in Fig. 7.3b.
According to ACI Code 9.7.2.3, if the total depth of the beam h exceeds 36 in.,
longitudinal skin reinforcement must be uniformly distributed along both side faces
of the member for a distance 4/2 from the tension face, as shown in Fig. 7.4. The
spacing s between longitudinal bars or wires is as specified in Eq. (7.3). The size of
the bars or wires is not specified, but as indicated in ACI Commentary 9.7.2.3, No. 3
to No. 5 (No. 10 to No. 16) bars or welded wire reinforcement with a minimum area
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FIGURE 7.3

Cracking in beams with
relatively deep webs:

(a) beam with only flexural

reinforcement and (b) beam Z

with both flexural and skin

reinforcement. (After
Ref. 7.7.)
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of 0.1 in® per foot of depth are typically used. The contribution of the skin reinforce-
ment to flexural strength is usually disregarded, although it may be included in the
strength calculations if a strain compatibility analysis is used to establish the stress
in the skin steel at the flexural failure load.

Figure 7.2b provides a convenient design aid for determining the maximum
center-to-center bar spacing as a function of clear cover for the usual case used in
design, f, = % f;- From a practical point of view, it is even more helpful to know the
minimum number of bars across the width of a beam stem that is needed to satisfy
the ACI Code requirements for crack control. That number depends on side cover,
as well as clear cover to the tension face, and is dependent on bar size. Table A.8
in Appendix A gives the minimum number of Grade 60 bars across a beam stem for
two common cases, 2 in. clear cover on the sides and bottom, which corresponds to
using No. 3 or No. 4 (No. 10 or No. 13) stirrups, and 1% in. clear cover on the sides
and bottom, representing beams in which no stirrups are used.

Telegram: @uni_k
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EXAMPLE 7.1 Check crack control criteria. Figure 7.5 shows the main flexural reinforcement at midspan

FIGURE 7.5

T beam for crack width
determination in
Example 7.1.

for a T girder in a high-rise building that carries a service load moment of 8630 in-kips. The
clear cover on the side and bottom of the beam stem is 2% in. f, = 60 ksi. Determine if the
beam meets the crack control criteria in the ACI Code.

SorutioN.  Since the depth of the beam equals but does not exceed 36 in., skin reinforcement
is not needed. To check the bar spacing criteria, the steel stress can be estimated closely by
taking the internal lever arm equal to the distance d — hy/2:

_ M, _ 8630
A, (d—hy/2) 79 x2925

I = 37.3 ksi

(Alternately, the ACI Code permits using f; = % fy» giving 40.0 ksi.)
Using f; = 40.0 ksi in Eq. (7.3) gives

) —2.5x225 =105 in.

=15 40,000\ 25¢, = 15 (40,000
37,300

5

By inspection, it is clear that this requirement is satisfied for the beam. If the results had been un-
favorable, a redesign using a larger number of smaller-diameter bars would have been indicated.

L J IG//
17
32—
4 36"
10 No. 8 (No. 25) Y
o oo o 1|
e o o o o |, — ¢
:‘\ 1
\ " | 37
‘ 27 | 22
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7.4

CONTROL OF DEFLECTIONS

In addition to limitations on cracking, described in the preceding sections, it is usually
necessary to impose certain controls on deflections of beams to ensure serviceabil-
ity. Excessive deflections can lead to cracking of supported walls and partitions, ill-
fitting doors and windows, poor roof drainage, misalignment of sensitive machinery
and equipment, or visually offensive sag. It is important, therefore, to maintain control
of deflections, in one way or another, so that members designed mainly for strength at
prescribed overloads will also perform well in normal service.

There are presently two approaches to deflection control. The first is indirect
and consists in setting suitable upper limits on the span-depth ratio. This is simple,
and it is satisfactory in many cases where spans, loads and load distributions, and
member sizes and proportions fall in the usual ranges. Otherwise, it is essential to
calculate deflections and to compare those predicted values with specific limitations
that may be imposed by codes or by special requirements.
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7.5

It will become clear, in the sections that follow, that calculations can, at best,
provide a guide to probable actual deflections. This is so because of uncertainties
regarding material properties, effects of cracking, and load history for the member
under consideration. Extreme precision in the calculations, therefore, is never justified,
because highly accurate results are unlikely. However, it is generally sufficient to
know, for example, that the deflection under load will be about % in. rather than
2 in., while it is relatively unimportant to know whether it will actually be % in.
rather than 1 in.

The deflections of concern are generally those that occur during the normal
service life of the member. In service, a member sustains the full dead load, plus
some fraction or all of the specified service live load. Safety provisions of the ACI
Code and similar design specifications ensure that, under loads up to the full service
load, stresses in both steel and concrete remain within the elastic ranges. Conse-
quently, deflections that occur at once upon application of load, the immediate
deflections, can be calculated based on the properties of the uncracked elastic mem-
ber, the cracked elastic member, or some combination of these (see Section 4.2).

It was pointed out in Sections 2.8 and 2.11, however, that in addition to con-
crete deformations that occur immediately when load is applied, there are other
deformations that take place gradually over an extended time. These time-dependent
deformations are chiefly due to concrete creep and shrinkage. As a result of these
influences, reinforced concrete members continue to deflect with the passage of time.
Long-term deflections continue over a period of several years, and may eventually
be 2 or more times the initial elastic deflections. Clearly, methods for predicting both
instantaneous and time-dependent deflections are essential.

IMMEDIATE DEFLECTIONS

Elastic deflections can be expressed in the general form

f(loads, spans, supports)
EI

where EI is the flexural rigidity and f(loads, spans, supports) is a function of the par-
ticular load, span, and support arrangement. For instance, the deflection of a uniformly
loaded simple beam is Swi*/384EI, so that f = 5wi*/384. Similar deflection equa-
tions have been tabulated or can easily be computed for many other loadings and span
arrangements, simple, fixed, or continuous, and the corresponding f functions can be
determined. The particular problem in reinforced concrete structures is therefore the
determination of the appropriate flexural rigidity EI for a member consisting of two
materials with properties and behavior as widely different as steel and concrete.

If the maximum moment in a flexural member is so small that the tensile stress
in the concrete does not exceed the modulus of rupture f,, no flexural tension cracks
will occur. The full, uncracked section is then available for resisting stress and pro-
viding rigidity. This stage of loading was analyzed in Section 4.2a based on the
uncracked, transformed section (see Fig. 4.2). In agreement with this analysis, the
effective moment of inertia for this low range of loads is that of the uncracked
transformed section 1,,, and E is the modulus of concrete E, as given by Eq. (2.3).
Correspondingly, for this load range,

Aiu = ((1)
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At higher loads, flexural tension cracks form. In addition, if shear stresses
exceed v, [see Eq. (5.3)] and web reinforcement is employed to resist them, diago-
nal cracks can exist at service loads. In the region of flexural cracks, the position of
the neutral axis varies: directly at each crack, it is located at the level calculated for
the cracked transformed section (see Section 4.2b); midway between cracks, it dips
to a location closer to that calculated for the uncracked transformed section. Corre-
spondingly, flexural-tension cracking causes the effective moment of inertia to be
that of the cracked transformed section (Fig. 4.4) in the immediate neighborhood of
flexural-tension cracks and closer to that of the uncracked transformed section mid-
way between cracks, with a gradual transition between these extremes.

The value of the local moment of inertia varies in those portions of the beam
in which the bending moment exceeds the cracking moment of the section

Sl
Y

M., (7.4)

where y, is the distance from the neutral axis to the tension face and f, is the modu-
lus of rupture. The exact variation of / depends on the shape of the moment diagram
and on the crack pattern and is difficult to determine. This makes an exact deflection
calculation impossible.

However, extensively documented studies (Refs. 7.8 to 7.11) have shown that
deflections A;. occurring in a beam after the maximum moment M, has reached and
exceeded the cracking moment M., can be calculated by using an effective moment
of inertia /,; that is,

f
A, = b
© =BT (b)
For many years, I, was approximated as
M.\’ M.\
I, = (M L.+ |1 - (M) ]16, <lI, (7.5)

where 1., is the moment of inertia of the cracked transformed section.

More recent studies (Refs 7.9 to 7.11) have demonstrated that Eq. (7.5) under-
estimates the deflection of beams and slabs with reinforcement ratios p below 0.01
and members where cracking occurs for M, < M., because the member has been
subjected to tensile stresses caused by restrained shrinkage. In such cases, a more
appropriate expression for reinforced concrete flexural members is

I.

I, = cr <1, 76

1 ((2/3)Mcr)2 | e ' (7.0)
M, ( I_m)

The term (2/3)M,, approximates the effective cracking moment under combined
bending and restraint. Equations (7.5) and (7.6) produce similar results for members
with p > 0.01 and M, > 2M,,. Equation (7.5) remains the basis in the ACI Code for
calculating /, for prestressed concrete members.

In Fig. 7.6, the effective moment of inertia, given by Eq. (7.6), is plotted as a
function of the ratio M,/M., (the reciprocal of the moment ratio used in the equa-
tion). As shown in the figure for values of maximum moment M, less than the two-
thirds of the cracking moment M., (that is, M,/M,, < %), 1, = 1,,. With increasing
values of M, I, approaches I.,; for values of M,/M,, of 3 or more, I, is almost the
same as /... Typical values of M,/M., at full service load range from about 1.5 to 3.
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FIGURE 7.6
Variation of /, with moment
ratio.

FIGURE 7.7
Deflection of a reinforced
concrete beam using

Eq. (7.6).
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Figure 7.7 shows the growth of deflections with increasing moment for a simple-
span beam and illustrates the use of Eq. (7.6). For moments no larger than % M.,
deflections are practically proportional to moments, and the deflection at which
cracking begins (assuming that the member is subject to restraint of shrinkage) is
obtained from Eq. (a) with M = %MC,. At larger moments, the effective moment of
inertia I, becomes progressively smaller, according to Eq. (7.6), and deflections are
found by Eq. (b) for the load level of interest.

The moment M, might correspond to the full service load, for example, while
the moment M; would represent the dead load moment for a typical case. A
moment-deflection curve corresponding to the line E_./., represents an upper bound
for deflections, consistent with Fig. 7.6, except that at loads somewhat beyond the
service load, the nonlinear response of steel, concrete, or both causes a further non-
linear increase in deflections.
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Note that to calculate the increment of deflection due to live load, causing a
moment increase M, — M,, a two-step computation is required: the first for deflection
A, due to live and dead load and the second for deflection A; due to dead load
alone, each with the appropriate value of /,. Then the deflection increment due to
live load is found, equal to A, — A;.

Most reinforced concrete spans are continuous, not simply supported. The con-
cepts just introduced for simple spans can be applied, but the moment diagram for
a given span will include both negative and positive regions, reflecting the rotational
restraint provided at the ends of the spans by continuous frame action. The effective
moment of inertia for a continuous span can be found by a simple averaging proce-
dure, according to the ACI Code, that will be described in Section 7.7c.

A fundamental problem for continuous spans is that although the deflections
are based on the moment diagram, the moment diagram depends, in turn, on the
flexural rigidity EI for each member of the frame. The flexural rigidity depends on
the extent of cracking, as has been demonstrated. Cracking, in turn, depends on the
moments, which are to be found. The circular nature of the problem is evident.

One could use an iterative procedure, initially basing the frame analysis on
uncracked concrete members, determining the moments, calculating effective EI
terms for all members, then recalculating moments, adjusting the EI values, etc. The
process could be continued for as many iterations as needed, until changes are not
significant. However, such an approach would be expensive and time-consuming,
even with computer use.

Usually, a very approximate approach is adopted. Member flexural stiffnesses
for the frame analysis are based simply on properties of uncracked rectangular con-
crete cross sections. This can be defended by noting that the moments in a contin-
uous frame depend only on the relative values of EI in its members, not the absolute
values. Hence, if a consistent assumption, that is, uncracked section, is used for all
members, the results should be valid. Although cracking is certainly more prevalent
in beams than in columns, thus reducing the relative EI for the beams, this is com-
pensated to a large extent, in typical cases, by the stiffening effect of the flanges in
the positive bending regions of continuous T beam construction. This subject is
discussed at greater length in Section 11.5.

DEFLECTIONS DUE TO LONG-TERM LOADS

Initial deflections are increased significantly if loads are sustained over a long period
of time, due to the effects of shrinkage and creep. These two effects are usually com-
bined in deflection calculations. Creep generally dominates, but for some types of
members, shrinkage deflections are large and should be considered separately (see
Section 7.8).

It was pointed out in Section 2.8 that creep deformations of concrete are directly
proportional to the compressive stress up to and beyond the usual service load range.
They increase asymptotically with time and, for the same stress, are larger for low-
strength than for high-strength concretes. The ratio of additional time-dependent strain
to initial elastic strain is given by the creep coefficient C,, (see Table 2.2).

For a reinforced concrete beam, the long-term deformation is much more com-
plicated than for an axially loaded cylinder, because while the concrete creeps under
sustained load, the steel does not. The situation in a reinforced concrete beam is
illustrated by Fig. 7.8. Under sustained load, the initial strain &; at the top face of
the beam increases, due to creep, by the amount &, while the strain ¢, in the steel
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FIGURE 7.8

Effect of concrete creep on
curvature: (a) beam cross
section; (b) strains; and

(c) stresses and forces.
(Adapted from Ref. 7.8.)
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is essentially unchanged. Because the rotation of the strain distribution diagram is

therefore about a point at the level of the steel, rather than about the cracked elastic

neutral axis, the neutral axis moves down as a result of creep, and
o &

6, &

demonstrating that the usual creep coefficients cannot be applied to initial curvatures

to obtain creep curvatures (hence deflections).

The situation is further complicated. Due to the lowering of the neutral axis
associated with creep (see Fig. 7.8b) and the resulting increase in compression area,
the compressive stress required to produce a given resultant C to equilibrate 7 = A, f;
is less than before, in contrast to the situation in a creep test of a compressed
cylinder, because the beam creep occurs at a gradually diminishing stress. On the
other hand, with the new lower neutral axis, the internal lever arm between com-
pressive and tensile resultant forces is less, calling for an increase in both resultants
for a constant moment. This, in turn, will require a small increase in stress, and
hence strain, in the steel; thus, ¢, is not constant as assumed originally.

Because of such complexities, it is necessary in practice to calculate additional,
time-dependent deflections of beams due to creep (and shrinkage) using a simplified,
empirical approach by which the initial elastic deflections are multiplied by a factor A,
to obtain the additional long-time deflections. Values of A, for use in design are based
on long-term deflection data for reinforced concrete beams (Refs. 7.12 to 7.15). Thus,

At = }\‘A Ai (77)

where A, is the additional long-term deflection due to the combined effect of creep and
shrinkage and A, is the initial elastic deflection calculated by the methods described
in Section 7.5.

The coefficient A, depends on the duration of the sustained load. It also depends
on whether the beam has only reinforcement A, on the tension side or whether additional
longitudinal reinforcement A; is provided on the compression side. In the latter case,
the long-term deflections are much reduced. This is so because when no compression
reinforcement is provided, the compression concrete is subject to unrestrained creep and
shrinkage. On the other hand, since steel is not subject to creep, if additional bars are
located close to the compression face, they will resist and thereby reduce the amount
of creep and shrinkage and the corresponding deflection (Ref. 7.15). Compression steel
may be included for this reason alone. Specific values of A,, used to account for the
influence of creep and compression reinforcement, will be given in Section 7.7.

(@)
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If a beam carries a certain sustained load W (such as the dead load plus the
average traffic load on a bridge) and is subject to a short-term heavy live load P
(such as the weight of an unusually heavy vehicle), the maximum total deflection
under this combined loading is obtained as follows:

1. Calculate the instantaneous deflection A;, caused by the sustained load W by
methods given in Section 7.5.
2. Calculate the additional long-term deflection caused by W, that is,

Atw = }"A Aiw
3. Then the total deflection caused by the sustained part of the load is
Aw = Aiw + Atw

4. In calculating the additional instantaneous deflection caused by the short-term
load P, account must be taken of the fact that the load-deflection relation after
cracking is nonlinear, as illustrated by Fig. 7.7. Hence,

Aip = Ai(w +p = Ay

where A, ; , is the total instantaneous deflection that would be obtained if W
and P were applied simultaneously, calculated by using /, determined for the
moment caused by W+ P.

5. Then the total deflection under the sustained load plus heavy short-term load is

A=A, + A,

In calculations of deflections, careful attention must be paid to the load history,
that is, the time sequence in which loads are applied, as well as to the magnitude of
the loads. The short-term peak load on the bridge girder just described might be applied
early in the life of the member, before time-dependent deflections had taken place.
Similarly, for buildings, heavy loads such as stacked material are often placed during
construction. These temporary loads may be equal to, or even greater than, the design
live load. The state of cracking will correspond to the maximum load that was carried,
and the sustained load deflection, on which the long-term effects are based, would
correspond to that cracked condition. /, for the maximum load reached should be used
to recalculate the sustained load deflection before calculating long-term effects.

This will be illustrated referring to Fig. 7.9, showing the load-deflection plot
for a building girder that is designed to carry a specified dead and live load. Assume
first that the dead and live loads increase monotonically. As the full dead load W, is
applied, the load deflection curve follows the path 0-1, and the dead load deflection
A, is found using 1,; calculated from Eq. (7.6), with M, = M,. The time-dependent
effect of the dead load would be A A, As live load is then applied, path 1-2 would
be followed. Live load deflection A; would be found in two steps, as described in
Section 7.5, first finding A, , ; based on 1,5, with M, in Eq. (7.6) equal to M, , ;, and
then subtracting dead load deflection A,

If, on the other hand, short-term construction loads were applied, then removed,
the deflection path 1-2-3 would be followed. Then, under dead load only, the resulting
deflection would be A . Note that this deflection can be found in one step using W,
but with /,, corresponding to the maximum load reached. The long-term deflection
now would be M A ', significantly larger than before. Should the full design live load
then be applied, the deflection would follow path 3-4, and the live load deflection
would be /less than for the first case. It, too, can be calculated by a simple one-step
calculation using W, alone, in this case, and with moment of inertia equal to /..
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FIGURE 7.9

Effect of load history on
deflection of a building
girder.
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Clearly, in calculating deflections, the engineer must anticipate, as nearly as
possible, both the magnitude and the time sequence of the loadings. Although long-
term deflections are often calculated assuming monotonic loading, with both imme-
diate and long-term effects of dead load occurring before application of live load,
in many cases this is not realistic.

ACl CODE PROVISIONS FOR CONTROL OF DEFLECTIONS

Minimum Depth-Span Ratios

As pointed out in Section 7.4, two approaches to deflection control are in current use,
both acceptable under the provisions of the ACI Code, within prescribed limits. The
simpler of these is to impose restrictions on the minimum member depth £, relative to
the span /, to ensure that the beam will be sufficiently stiff that deflections are unlikely
to cause problems in service. Deflections are greatly influenced by support conditions
(for example, a simply supported uniformly loaded beam will deflect 5 times as much
as an otherwise identical beam with fixed supports), so minimum depths must vary
depending on conditions of restraint at the ends of the spans.

According to ACI Code 7.3.1 and 9.3.1, the minimum depths of Table 7.1
apply to one-way construction not supporting or attached to partitions or other con-
struction likely to be damaged by large deflections, unless computation of deflections
indicates that a lesser depth can be used without adverse effects. The values given
in Table 7.1 are to be used directly for normalweight concrete with w. = 145 pcf
and reinforcement with f;, = 60,000 psi. For members using lightweight concrete with
density in the range from 90 to 115 pcf, the values of Table 7.1 should be multiplied
by 1.65 — 0.005w,. > 1.09. For reinforcing steel with yield strengths other than

60,000 psi, the values should be multiplied by 0.4 + f,/100,000.
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TABLE 7.1
Minimum thickness of nonprestressed beams or one-way slabs unless deflections are
computed
Minimum Thickness h
Member Simply One End Both Ends
Supported Continuous Continuous Cantilever

Members Not Supporting or Attached to Partitions or Other
Construction Likely to Be Damaged by Large Deflections

Solid one-way slabs

/20 0/24 /28 /10

Beams or ribbed one-way slabs

/16 €/18.5 /21 /3
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Calculation of Immediate Deflections

When there is need to use member depths shallower than are permitted by Table 7.1,
when members support construction that is likely to be damaged by large deflections,
or for prestressed members, deflections must be calculated and compared with limit-
ing values (see Section 7.7¢e). The calculation of deflections, when required, proceeds
along the lines described in Sections 7.5 and 7.6. For design purposes, the moment
of the uncracked transformed section /,, can be replaced by that of the gross concrete
section /,, neglecting reinforcement, without serious error. With this simplification,
Egs. (7.4) and (7.6) are replaced by the following:

1,
M. = 3, (7.8)
and
ICI"
1, = <I (7.9)
(@M
M, I,

The modulus of rupture is to be taken equal to

1= 1.5\Wf, (7.10)

As explained in Section 5.5a, in accordance with ACI Code 19.2.4, A may be taken as
1.0 for normalweight concrete and 0.75 for lightweight concrete. Values between 0.75
and 1.0 may also be used by applying linear interpolation between A = 0.75 and 1.0
for concretes with unit weights of w. < 100 pcf and w,. > 135 pcf, respectively. Alter-
natively, A = 0.75 for all-lightweight concrete and 0.85 for sand-lightweight concrete,
using linear interpolation between 0.75 and 0.85 when a portion of the lightweight
fine aggregate is replaced by normalweight fine aggregate and between 0.85 and 1.0
for concretes containing normalweight fine aggregate and a blend of lightweight and
normalweight coarse aggregate.

Continuous Spans

For continuous spans, ACI Code 24.2.3.6 calls for a simple average of values obtained
from Eq. (7.9) for the critical positive- and negative-moment sections, that is,

I, =0.501, + 025 (I,; + 1») (7.11a)
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FIGURE 7.10
Time variation of & for
long-term deflections.
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where 1, is the effective moment of inertia for the midspan section and /,; and /,, are
those for the negative-moment sections at the respective beam ends, each calculated
from Eq. (7.9) using the applicable value of M,. It is shown in Ref. 7.16 that a some-
what improved result can be had for continuous prismatic members using a weighted
average for beams with both ends continuous of

1, =0.701,, + 0.15 (I,; + 1,») (7.11b)
and for beams with one end continuous and the other simply supported of
I, = 0.851,, + 0.151, (7.11¢)

where /,; is the effective moment of inertia at the continuous end. As an option, ACI Code
24.2.3.7 permits 1, for continuous prismatic beams to be taken equal to the value obtained
from Eq. (7.9) at midspan; for cantilevers, /, calculated at the support section may be used.

After /, is found, deflections may be computed with due regard for rotations
of the tangent to the elastic curve at the supports. In general, in computing the
maximum deflection, the loading producing the maximum positive moment may be
used, and the midspan deflection may normally be used as an acceptable approxi-
mation of the maximum deflection. For members where supports may be considered
fully fixed or hinged, handbook equations for deflections may be used.

Long-Term Deflection Multipliers

On the basis of empirical studies (Refs. 7.8, 7.13, and 7.14), ACI Code 24.2.4.1 spec-
ifies that additional long-term deflections A, due to the combined effects of creep and
shrinkage be calculated by multiplying the immediate deflection A, by the factor

__ s
1 + 500

where p’ = A/ /bd and ¢ is a time-dependent coefficient that varies as shown in Fig. 7.10.
In Eq. (7.12), the quantity 1/(1 + 50p") is a reduction factor that is essentially a section
property, reflecting the beneficial effect of compression reinforcement A’ in reducing
long-term deflections, whereas £ is a material property depending on creep and shrink-
age characteristics. For simple and continuous spans, the value of p’ used in Eq. (7.12)
should be that at the midspan section, according to the ACI Code, or that at the support
for cantilevers. Equation (7.12) and the values of & given by Fig. 7.10 apply to both
normalweight and lightweight concrete beams. The additional, time-dependent deflec-
tions are thus found using values of A, from Eq. (7.12) in Eq. (7.7).

N (7.12)
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Values of & given in the ACI Code and Commentary are satisfactory for ordi-
nary beams and one-way slabs, but may result in underestimation of time-dependent
deflections of two-way slabs, for which Branson has suggested a 5-year value of
£ =3.0 (Ref. 7.8).

Research described in Ref. 7.17 indicates that Eq. (7.12) does not properly
reflect the reduced creep that is characteristic of higher-strength concretes. As indi-
cated in Table 2.2, the creep coefficient for high-strength concrete may be as low as
one-half the value for normal concrete. Clearly, the long-term deflection of high-
strength concrete beams under sustained load, expressed as a ratio of immediate
elastic deflection, correspondingly will be less. This suggests a lower value of the
material modifier £ in Eq. (7.12) and Fig. 7.10. On the other hand, in high-strength
concrete beams, the influence of compression steel in reducing creep deflections is
less pronounced, requiring an adjustment in the section modifier 1/(1 + 50p") in that
equation.

Based on long-term tests involving six experimental programs, the following
modified form of Eq. (7.12) is recommended (Ref. 7.17):

L (7.13)
1+ 50 pup
in which
u=14—f /10,000
04<u<10 (7.14)

The proposed equation gives results identical to Eq. (7.12) for concrete strengths of
4000 psi and below, and much improved predictions for concrete strengths between
4000 and 12,000 psi.

Permissible Deflections

To ensure satisfactory performance in service, ACI Code 24.2.2 imposes certain limits
on deflections calculated according to the procedures just described. These limits are
given in Table 7.2. Limits depend on whether or not the member supports or is attached

TABLE 7.2
Maximum permissible calculated deflections
Deflection
Member Condition Deflection to Be Considered Limitatilon
Immediate deflection due to maximum of ¢
Flat roofs Not supporting or attached to nonstructural roof live load L,, snow load S, and rain 130
elements likely to be damaged by large load R
Floors deflections Immediate deflection due to live load L £
360
Likely to be That part of the total deflection occurring
Supporting or damaged by large after attachment of nonstructural elements, L
Roof or attgfhe d t(g) deflections which is the sum of the time-dependent 480
floors nonstructural - deflection due to all sustained loads and
elements Not likely to be the immediate deflection due to any ¢
damaged by large additional live load —
deflections 240

Telegram: @uni_k



www.konkur.in

244 DESIGN OF CONCRETE STRUCTURES Chapter 7

to other nonstructural elements, and whether or not those nonstructural elements are
likely to be damaged by large deflections. When long-term deflections are computed,
that part of the deflection that occurs before attachment of the nonstructural elements
may be deducted; information from Fig. 7.10 is useful for this purpose. The last two lim-
its of Table 7.2 may be exceeded under certain conditions, according to the ACI Code.

EXAMPLE 7.2

Telegram: @uni_k

Deflection calculation. The beam shown in Fig. 7.11 is a part of the floor system of an
apartment house and is designed to carry a dead load w, of 1.65 kips/ft and a service live
load w; of 3.3 kips/ft. Of the total live load, 20 percent is sustained in nature, while 80 per-
cent will be applied only intermittently over the life of the structure. Under full dead and live
load, the moment diagram is as shown in Fig. 7.11c. The beam will support nonstructural
partitions that would be damaged if large deflections were to occur. They will be installed
shortly after construction shoring is removed and dead loads take effect, but before significant
creep occurs. Calculate that part of the total deflection that would adversely affect the parti-
tions, that is, the sum of long-time deflection due to dead and partial live load plus the
immediate deflection due to the nonsustained part of the live load. Material strengths are
f. = 4000 psi and f, = 60 ksi.

Sorution. For the specified materials, E. = 57,000v4000 = 3.60 X 10° psi, and with
E, = 29 x 10° psi, the modular ratio n = 8. The modulus of rupture f, = 7.5 X 1.0v/4000 =
474 psi. The effective moment of inertia will be calculated for the moment diagram shown
in Fig. 7.11¢ corresponding to the full service load, on the basis that the extent of cracking
will be governed by the full service load, even though that load is intermittent. In the positive-
moment region, the centroidal axis of the uncracked T section of Fig. 7.11b is found by taking
moments about the top surface, to be at 7.66 in. depth, and I, = 33,160 in, By similar means,
the centroidal axis of the cracked transformed T section shown in Fig. 7.11d is located 3.73 in.
below the top of the slab and I, = 10,860 in*. The cracking moment is then found by means
of Eq. (7.8):

VA _ 474 x 33,160 1

Mcr = = X
Vi 16.84 12,000

= 78 ft-kips
With M,./M, = 78/162 = 0.481, the effective moment of inertia in the positive bending region
is found from Eq. (7.9) to be

Lo 10, .
I, = = 0,860 = 11,667 in*

2
Lo (GPIMN L g (3 x 0.481> <1 - 10’86())
i I 3 33,160

a

In the negative bending region, the gross moment of inertia will be based on the rectangu-
lar section shown in Fig. 7.11b. For this area, the centroid is 12.25 in. from the top surface
and /, = 17,200 in*. For the cracked transformed section shown in Fig. 7.11e, the centroidal
axis is found, taking moments about the bottom surface, to be 8.65 in. from that level, and
I, = 11,366 in*. Then

474 x 17,200 1

M. = X = 55.5 ft-ki
o 12.25 12,000 P
giving M,./M,, = 55.5/225 = 0.247. Thus, for the negative-moment regions,
11
I, = ’3626 36a = 11,472 in*
1—(3x0.247)(1— ’ )
3 17,260
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FIGURE 7.11
Continuous T beam for
deflection calculations in
Example 7.2. The uncracked
section is shown in (b), the
cracked transformed section
in the positive-moment
region is shown in (d), and
the cracked transformed
section in the negative-
moment region is shown

in (e).
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The average value of I, to be used in calculation of deflection is

Ie,av

% (11,667 + 11,472) = 11,570 in*

It is next necessary to find the sustained-load deflection multiplier given by Eq. (7.12) and
Fig. 7.10. For the positive bending zone, with no compression reinforcement, A pos = 2.00.
For convenient reference, the deflection of the member under full dead plus live load

of 4.95 kips/ft, corresponding to the moment diagram of Fig. 7.11c¢, will be found. Making
use of the moment-area principles,

7620

1
Ay, = —
dHET R El

(% X 387 x 12.5 % % X 12.5) — (225 x 12.5 X 6.25)| =

_ 7620 x 1728
3600 x 11,570

Using this figure as a basis, the time-dependent portion of dead load deflection (the only part of
the total that would affect the partitions) is

Ad—0316><@><200—02111n
4.95

= 0.316 in.
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while the sum of the immediate and time-dependent deflection due to the sustained portion of
the live load is

Aoy = 0.316 x % x 0.20 x 3.00 = 0.126 in.

and the instantaneous deflection due to application of the short-term portion of the live load is

Agso = 0316 X 2 % 0.80 = 0.169 in.
4.95

Thus, the total deflection that would adversely affect the partitions, from the time they are
installed until all long-time and subsequent instantaneous deflections have occurred, is

A =0211 + 0.126 + 0.169 = 0.506 in.

For comparison, as shown in Table 7.2, the limitation imposed by the ACI Code in such cir-
cumstances is £/480 = 26 x 12/480 = 0.650 in., indicating that the stiffness of the proposed
member is sufficient.

Note that essentially no error would have been introduced in the above solution if the
cracked-section moment of inertia had been used for both positive and negative sections rather than
I,. Significant savings in computational effort would have resulted. If M, /M, is less than %,
use of /.. would almost always be acceptable. Note further that computation of the moment
of inertia for both uncracked and cracked sections is greatly facilitated by design aids like
those included in Ref. 7.18.
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7.8

DEFLECTIONS DUE TO SHRINKAGE AND TEMPERATURE
CHANGES

Concrete shrinkage will produce compressive stress in the longitudinal reinforcement
in beams and slabs and equilibrating tensile stress in the concrete. If, as usual, the
reinforcement is not symmetrically placed with respect to the concrete centroid, then
shrinkage will produce curvature and corresponding deflection. The deflections will
be in the same direction as those produced by the loads, if the reinforcement is mainly
on the side of the member subject to flexural tension.

Shrinkage deflection is not usually calculated separately, but is combined with
creep deflection, according to ACI Code procedures (see Section 7.7d). However,
there are circumstances where a separate and more accurate estimation of shrinkage
deflection may be necessary, particularly for thin, lightly loaded slabs. Compression
steel, while it has only a small effect in reducing immediate elastic deflections,
contributes significantly in reducing deflections due to shrinkage (as well as creep),
and is sometimes added for this reason.

Curvatures due to shrinkage of concrete in an unsymmetrically reinforced con-
crete member can be found by the fictitious tensile force method (Ref. 7.8). Figure 7.12a
shows the member cross section, with compression steel area A, and tensile steel area
A,, at depths d’ and d, respectively, from the top surface. In Fig. 7.12b, the concrete
and steel are imagined to be temporarily separated, so that the concrete can assume
its free shrinkage strain &4. Then a fictitious compressive force Ty, = (A, + A;)
eq E, 1s applied to the steel, at the centroid of all the bars, a distance e below
the concrete centroid, such that the steel shortening will exactly equal the free shrink-
age strain of the concrete. The equilibrating tension force Ty, is then applied to the
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FIGURE 7.12

Shrinkage curvature of a
reinforced concrete beam or
slab: (a) cross section;

(b) free shrinkage strain; and
(c) shrinkage curvature.
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recombined section, as in Fig. 7.12¢. This produces a moment 7j,e, and the corre-
sponding shrinkage curvature is

Tshe
EI

ho =

The effects of concrete cracking and creep complicate the analysis, but comparisons
with experimental data (Ref. 7.8) indicate that good results can be obtained using e,
and I, for the uncracked gross concrete section and by using a reduced modulus E,
equal to %EC to account for creep. Thus,

2Tsheg
"B

(7.15)

where E. is the usual value of concrete modulus given by Eq. (2.3).

Empirical methods are also used, in place of the fictitious tensile force
method, to calculate shrinkage curvatures. These methods are based on the simple
but reasonable proposition that the shrinkage curvature is a direct function of the
free shrinkage and steel percentage, and an inverse function of the section depth
(Ref. 7.8). Branson suggests that for steel percentage p — p’ < 3 percent (where
p = 1004, /bd and p’ = 1004;/bd),

) — p'\1)2
b =07 o = )7 (P55 (7.160)
h p
and for p — p’ > 3 percent,
Esn
b = m (7.16b)

With shrinkage curvature calculated by either method, the corresponding
member deflection can be determined by any convenient means such as the moment-
area or conjugate-beam method. If steel percentages and eccentricities are constant
along the span, the deflection ¢, resulting from the shrinkage curvature can be
determined from

Ay = Ky pol? (7.17)
where K, is a coefficient equal to 0.500 for cantilevers, 0.125 for simple spans, 0.065

for interior spans of continuous beams, and 0.090 for end spans of continuous beams
(Ref. 7.8).
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EXAMPLE 7.3

Shrinkage deflection. Calculate the midspan deflection of a simply supported beam of 20 ft
span due to shrinkage of the concrete for which g, = 780 X 107%. With reference to Fig. 7.12a,

b =10 in., d = 17.5 in.,, h = 20 in., A, = 3.00 in% and A; = 0. The elastic moduli are
E.= 3.6 x 10° psi and E, = 29 x 10° psi.
SoLutioN. By the fictitious tensile force method,

Ty, = (A, + A) &4 E, = 3.00 x 780 x 107° x 29 x 10° = 67,900 Ib

and from Eq. (7.15) with I, = 6670,

_2Twe; 267900 x 7.5

by = = . =424 % 107°
Ecly 36 % 10° x 6670

while from Eq. (7.17) with K, = 0.125 for the simple span,
Ay, = Kyl = 0.125 x 42.4 x 107° x 240% = 0.305 in.

Alternatively, by Branson’s approximate Eq. (7.16a) with p = 100 x 3/175 = 1.7 per-
cent and p’ = 0,

1/2 -6
=07 /80 x 107 AN VY2 =325%107°

20

p—p’)
p

£, )
bo=07"" =)'

compared with 42.4 x 107® obtained by the equivalent tensile force method. Considering the
uncertainties such as the effects of cracking and creep, the approximate approach can usually
be considered satisfactory.
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7.9

Deflections will be produced as a result of differential temperatures varying
from top to bottom of a member also. Such variation will result in a strain vari-
ation with member depth that may usually be assumed to be linear. For such cases,
the deflection due to differential temperature can be calculated using Eq. (7.17)
in which ¢y, is replaced by aAT/h, where the thermal coefficient a for concrete
may be taken as 5.5 x 107® per °F and AT is the temperature differential in
degrees Fahrenheit from one side to the other. The presence of the reinforcement
has little influence on curvatures and deflections resulting from differential tem-
peratures, because the thermal coefficient for the steel (6.5 X 107%) is very close
to that for concrete.

MOMENT VS. CURVATURE FOR REINFORCED CONCRETE
SECTIONS

Although it is not needed explicitly in ordinary design and is not a part of ACI
Code procedures, the relation between moment applied to a given beam section
and the resulting curvature, through the full range of loading to failure, is impor-
tant in several ways. It is basic to the study of member ductility, understanding
the development of plastic hinges, and accounting for the redistribution of elastic
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Unit length —

FIGURE 7.13
Unit curvature resulting from
bending of beam section.

FIGURE 7.14
Idealized stress-strain curves:
(a) steel and (b) concrete.
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moments that occurs in most reinforced concrete structures before collapse (see
Section 11.9).

It will be recalled, with reference to Fig. 7.13, that curvature is defined as the
angle change per unit length at any given location along the axis of a member sub-
jected to bending loads:

p=1 (7.18)

where ¢ = unit curvature and » = radius of curvature. With the stress-strain rela-
tionships for steel and concrete, represented in idealized form in Fig. 7.14a and b,
respectively, and the usual assumptions regarding perfect bond and plane sections, it is
possible to calculate the relation between moment and curvature for a typical underre-
inforced concrete beam section, subject to flexural cracking, as follows.

Figure 7.15a shows the transformed cross section of a rectangular, tensile-
reinforced beam in the uncracked elastic stage of loading, with steel represented by
the equivalent concrete area nA,, that is, with area (n — 1)A, added outside of the
rectangular concrete section.” The neutral axis, a distance c; below the top surface
of the beam, is easily found (see Section 4.2a). In the limiting case, the concrete
stress at the tension face is just equal to the modulus of rupture f, and the strain is
e, = f,/E.. The steel is well below yield at this stage, which can be confirmed by
computing, from the strain diagram, the steel strain ¢, = €., where ¢ is the concrete

fyi—— \
bl \ \
@ \ \
[0
=] \ \
@ \ \
\ \
\ \
€y [e%)
Strain &
(a)
il =

Linear range

Strain &
(b)

"Note that compression reinforcement, or multiple layers of tension reinforcement, can easily be included in the analysis with no essential

complication.
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FIGURE 7.15 E1< &gl fi=&E;
Uncracked beam in the "7 b "‘
elastic range of loading: T T T
(a) transformed cross ] -— —C
section; (b) strains; and da h & qﬁ < ¢cr
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(014, i !
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strain at the level of the steel. It is easily confirmed, also, that the maximum concrete
compressive stress is well below the proportional limit. The curvature is seen, in
Fig. 7.15b, to be

€1 £,

bo=c =06 (7.19)
and the corresponding moment is

Jr L
cor = c)

(7.20)

where [, is the moment of inertia of the uncracked transformed section. Equations
(7.19) and (7.20) provide the information needed to plot point 1 of the moment-
curvature graph of Fig. 7.18.

When tensile cracking occurs at the section, the stiffness is immediately
reduced, and curvature increases to point 2 in Fig. 7.18 with no increase in moment.
The analysis now is based on the cracked transformed section of Fig. 7.16a, with
steel represented by the transformed area nA; and tension concrete deleted. The
cracked, elastic neutral axis distance ¢; = kd is easily found by the usual methods
(see Section 4.2b). In the limiting case, the concrete strain just reaches the propor-
tional limit, as shown in Fig. 7.16b, and typically the steel is still below the yield
strain. The curvature is easily computed by

£ Eel

Ga = o= (7.21)
and the corresponding moment is
1 .
M, = 3 fur ki bd* (7.22)
FIGURE 7.16 €= Eg fi="fy
Cracked beam in the elastic r‘* b 4“
range of material response: F
(a) transformed cross section; d cy=kd e b <—|—/—C
(b) strains; and (c) stresses ‘o el I
and forces. B B k‘d i
nA cs=d—kd jJd=d- =
N | Fes< g, |
I ] > T = AsgsEs
(@) (b) ()
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FIGURE 7.17

Cracked beam with concrete
in the inelastic range of
loading: (a) cross section;
(b) strains; and (c) stresses
and forces.

FIGURE 7.18
Moment-curvature relation
for tensile-reinforced beam.
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as was derived in Section 4.2b. This provides point 3 in Fig. 7.18. The curvature at
point 2 can now be found from the ratio M,./M.,.

Next, the cracked, inelastic stage of loading is shown in Fig. 7.17. Here the
concrete is well into the inelastic range, although the steel has not yet yielded. The
neutral axis depth ¢, is less than the elastic kd and is changing with increasing load
as the shape of the concrete stress distribution changes and the steel stress changes.

It is now convenient to adopt a numerical representation of the concrete com-
pressive stress distribution, to find both the total concrete compressive force C and
the location of its centroid, for any arbitrarily selected value of maximum concrete
strain g in this range. The compressive strain diagram is divided into an arbitrary
number of steps (such as, four in Fig. 7.17b), and the corresponding compressive
stresses for each strain are read from the stress-strain curve of Fig. 7.14b. The step-
wise representation of the actual continuous stress block is integrated numerically to
find C, and its point of application is located, taking moments of the concrete forces
about the top of the section. The basic equilibrium requirement C = T then can be
used to find the correct location of the neutral axis, for the particular compressive
strain selected, following an iterative procedure.

The entire process can be summarized as follows:

1. Select any top face concrete strain ¢, in the inelastic range, that is, between &,; and ¢,,.
2. Assume the neutral axis depth, a distance c¢; below the top face.

Ec/lut Eclet
/ 7

M, L | /g 6 —e Failure

/ 4 // — Steel yielding

/
S /
S Mei = | 34 —— Proportional limit
£ / of concrete
p //

12
Me, |- — Cracking
Curvature ¢
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From the strain diagram geometry, determine &, = €.

Compute f; = ¢,E, < fyand T = A f,.

Determine C by integrating numerically under the concrete stress distribution curve.
Check to see if C = T. If not, the neutral axis must be adjusted upward or down-
ward, for the particular concrete strain that was selected in step 1, until equilib-
rium is satisfied. This determines the correct value of c;.

AW

Curvature can then be found from

&
¢inel = c_l (723)

The internal lever arm jd from the centroid of the concrete stress distribution to the
tensile resultant, Fig. 7.17¢, is calculated, after which

Minel = C.]d = T]d (724)

The sequence of steps 1 through 6 is then repeated for newly selected values
of concrete strain €. The end result will be a series of points, such as 4, 5, 6, and
7 in Fig. 7.18. The limit of the moment-curvature plot is reached when the concrete
top face strain equals ¢,, corresponding to point 7. The steel would be well past the
yield strain at this loading, and at the yield stress.

It is important to be aware of the difference between a moment-unit curvature
plot, such as Fig. 7.18, and a moment-rotation diagram for the hinging region of a
reinforced concrete beam. The hinging region normally includes a number of discrete
cracks, but between those cracks, the uncracked concrete reduces the steel strain,
leading to what is termed the tension stiffening effect. The result is that the total
rotation at the hinge is much less than would be calculated by multiplying the cur-
vature per unit length at the cracked section by the observed or assumed length of
the hinging region. Furthermore, the sharp increase in unit curvature shown in
Fig. 7.18 at cracking would not be seen on the moment-rotation plot, only a small,
but progressive, reduction of the slope of the diagram.
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PROBLEMS

7.1.

7.2.

7.3.

74.

A rectangular beam of width » = 15 in., effective depth d = 21.5 in., and
total depth & = 24 in. spans 18.5 ft between simple supports. It will carry a
dead load of 1.08 kips/ft including self-weight, plus a service live load of
4.00 kips/ft. Reinforcement consists of four evenly spaced No. 7 (No. 22)
bars in one row. The clear cover on the sides is 2 in. Material strengths are
Sy = 80,000 psi and f. = 4000 psi.
(a) Compute the stress in the steel at full service load, and using the Gergely-
Lutz equation, estimate the maximum crack width.
(b) Confirm the suitability of the proposed design based on Eq. (7.3).
To save steel-handling costs, an alternative design is proposed for the beam
in Problem 7.1, using two No. 9 (No. 29) Grade 80 bars to provide approx-
imately the same steel strength as the originally proposed four No. 7 (No. 22)
Grade 60 bars. Check to determine if the redesigned beam is satisfactory with
respect to cracking according to the ACI Code. What modification could you
suggest that would minimize the number of bars to reduce cost, yet satisfy
requirements of crack control?
For the beam in Problem 7.1:
(a) Calculate the increment of deflection resulting from the first application
of the short-term live load.
(b) Find the creep portion of the sustained load deflection plus the immediate
deflection due to live load.
(¢) Compare your results with the limitations imposed by the ACI Code, as
summarized in Table 7.2.
Assume that the beam is a part of a floor system and supports cinder
block partitions susceptible to cracking if deflections are excessive.
A beam having b = 12 in., d = 21.5 in., and h = 24 in. is reinforced with
three No. 11 (No. 36) bars. Material strengths are f, = 60,000 psi and
J/ = 4000 psi. It is used on a 28 ft simple span to carry a total service load
of 2430 1b/ft. For this member, the sustained loads include self-weight of
the beam plus additional superimposed dead load of 510 1b/ft, plus 400 1b/ft
representing that part of the live load that acts more or less continuously,
such as furniture, equipment, and time-average occupancy load. The remain-
ing 1220 Ib/ft live load consists of short-duration loads, such as the brief
peak load in the corridors of an office building at the end of a workday.
(a) Find the increment of deflection under sustained loads due to creep.
(b) Find the additional deflection increment due to the intermittent part of
the live load.
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FIGURE P7.7

Telegram: @uni_k

7.5.

7.6.

7.7.

‘ 24”
3No.10(No.32) e oo -—*

In your calculations, you may assume that the peak load is applied almost
immediately after the building is placed in service, then reapplied intermit-
tently. Compare with ACI Code limits from Table 7.2. Assume that, for this
long-span floor beam, construction details are provided that will avoid dam-
age to supported elements due to deflections. If ACI Code limitations are not
met, what changes would you recommend to improve the design?

A reinforced concrete beam is continuous over two equal 22 ft spans, simply
supported at the two exterior supports, and fully continuous at the interior
support. Concrete cross-sectional dimensions are » = 10 in., # = 22 in., and
d = 19.5 in. for both positive and negative bending regions. Positive reinforce-
ment in each span consists of two No. 9 (No. 29) bars, and negative reinforcement
at the interior support is made up of three No. 10 (No. 32) bars. No compression
steel is used. Material strengths are f, = 60,000 psi and f; = 5000 psi. The
beam will carry a service live load, applied early in the life of the member,
of 1800 Ib/ft distributed uniformly over both spans; 20 percent of this load
will be sustained more or less permanently, while the rest is intermittent. The
total service dead load is 1000 1b/ft including self-weight.
(a) Find the immediate deflection when shores are removed and the full dead
load is applied.
(b) Find the long-term deflection under sustained load.
(¢) Find the increment of deflection when the short-term part of the live load
is applied.

Compare with ACI Code deflection limits; piping and brittle conduits

are carried that would be damaged by large deflections. Note that midspan
deflection may be used as a close approximation of maximum deflection.
Recalculate the deflections of Problem 7.5 based on the assumption that
20 percent of the live load represents the normal service condition of loading
and is sustained more or less continuously, while the remaining 80 percent
is a short-term peak loading that would probably not be applied until most
creep deflections have occurred. Compare with your earlier results.
The tensile-reinforced rectangular beam shown in Fig. P7.7 is made using
steel with f, = 60,000 psi and E; = 29,000,000 psi. A perfectly plastic
response after yielding can be assumed. The concrete has a stress-strain curve
in compression that may be approximated by the parabola f. = f! [2¢./eq —
(6‘6/80)2], where f. and &, are the stress and strain in the concrete. The vari-
able g is the strain at the peak stress = 0.002, and f; = 4000 psi. The ultimate
strain in the concrete is 0.003. The concrete responds elastically in tension
up to the modulus of rupture f, = 475 psi. Based on this information, plot a
curve relating applied moment to unit curvature at a section subjected to
flexural cracking. Label points corresponding to first cracking, first yielding
of steel, and peak moment.

|

21"
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8.1

Analysis and Design
for Torsion

INTRODUCTION

Reinforced concrete members are commonly subjected to bending moments, trans-
verse shears associated with those bending moments, and, in the case of columns,
axial forces often combined with bending and shear. In addition, torsional forces may
act, tending to twist a member about its longitudinal axis. Such torsional forces
seldom act alone and are almost always concurrent with bending moment and trans-
verse shear, and sometimes with axial force as well.

For many years, torsion was regarded as a secondary effect and was not con-
sidered explicitly in design, its influence being absorbed in the overall factor of safety
of rather conservatively designed structures. Current methods of analysis and design,
however, have resulted in less conservatism, leading to somewhat smaller members
that, in many cases, must be reinforced to increase torsional strength. In addition,
there is increasing use of structural members for which torsion is a central feature of
behavior; examples include curved bridge girders, eccentrically loaded box beams,
and helical stairway slabs. The design procedures in the ACI Code were first proposed
in Switzerland (Refs. 8.1 and 8.2) and are also included in the European and Canadian
model codes (Refs. 8.3 and 8.4). Reference 8.5 provides a summary of the develop-
ment of design procedures for reinforced concrete members subjected to torsion.

It is useful in considering torsion to distinguish between primary and second-
ary torsion in reinforced concrete structures. Primary torsion, sometimes called equi-
librium torsion or statically determinate torsion, exists when the external load has
no alternative load path but must be supported by torsion. For such cases, the torsion
required to maintain static equilibrium can be uniquely determined. An example is
the cantilevered slab of Fig. 8.1a. Loads applied to the slab surface cause twisting
moments 1, to act along the length of the supporting beam. These are equilibrated
by the resisting torque 7 provided at the columns. Without the torsional moments,
the structure will collapse.

In contrast to this condition, secondary torsion, also called compatibility torsion
or statically indeterminate torsion, arises from the requirements of continuity, that is,
compatibility of deformation between adjacent parts of a structure. For this case, the
torsional moments cannot be found based on static equilibrium alone. Disregard of
continuity in the design will often lead to extensive cracking, but generally will not
cause collapse. An internal readjustment of forces is usually possible and an alterna-
tive equilibrium of forces found. An example of secondary torsion is found in the
spandrel or edge beam supporting a monolithic concrete slab, shown in Fig. 8.1b. If
the spandrel beam is torsionally stiff and suitably reinforced, and if the columns can
provide the necessary resisting torque 7, then the slab moments will approximate
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FIGURE 8.1

T

Torsional effects in /\/ -

reinforced concrete: 'D
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(a) primary or equilibrium
torsion at a cantilevered slab; a/ )
(b) secondary or compatibility 7
torsion at an edge beam;

(c) slab moments if edge
beam is stiff torsionally;

and (d) slab moments if edge
beam is flexible torsionally.
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those for a rigid exterior support as shown in Fig. 8.1c. However, if the beam has
little torsional stiffness and inadequate torsional reinforcement, cracking will occur to
further reduce its torsional stiffness, and the slab moments will approximate those for
a hinged edge, as shown in Fig. 8.1d. If the slab is designed to resist the altered
moment diagram, collapse will not occur (see discussion in Section 11.10).

Although current techniques for analysis permit the realistic evaluation of tor-
sional moments for statically indeterminate conditions as well as determinate, design-
ers often neglect secondary torsional effects when torsional stresses are low and
alternative equilibrium states are possible. This is permitted according to the ACI
Code and many other design specifications. On the other hand, when torsional
strength is an essential feature of the design, such as for the bridge shown in Fig. 8.2,
special analysis and special torsional reinforcement are required, as described in the
remainder of this chapter.

8.2 TORSION IN PLAIN CONCRETE MEMBERS

Figure 8.3 shows a portion of a prismatic member subjected to equal and opposite
torques 7T at the ends. If the material is elastic, St. Venant’s torsion theory indicates
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FIGURE 8.2

Curved continuous beam
bridge, Las Vegas, Nevada,
designed for torsional effects.
(Courtesy of Portland Cement
Association.)

FIGURE 8.3

Stresses caused by torsion.

\
\ 1 ITmax

(b)

that torsional shear stresses are distributed over the cross section, as shown in
Fig. 8.3b. The largest shear stresses occur at the middle of the wide faces. If the
material deforms inelastically, as expected for concrete, the stress distribution is
closer to that shown by the dashed line.
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FIGURE 8.4 T
Thin-walled tube under

torsion.
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Shear stresses in pairs act on an element at or near the wide surface, as shown
in Fig. 8.3a. As explained in strength of materials texts, this state of stress corre-
sponds to equal tension and compression stresses on the faces of an element at 45°
to the direction of shear. These inclined tension stresses are of the same kind as
those caused by transverse shear, discussed in Section 5.2. However, in the case of
torsion, since the torsional shear stresses are of opposite sign on opposing sides of
the member (Fig. 8.3b), the corresponding diagonal tension stresses are at right
angles to each other (Fig. 8.3a).

When the diagonal tension stresses exceed the tensile resistance of the concrete,
a crack forms at some accidentally weaker location and spreads immediately across
the beam. The value of torque corresponding to the formation of this diagonal crack
is known as the cracking torque T,.

There are several ways of analyzing members subjected to torsion. The non-
linear stress distribution shown by the dotted lines in Fig. 8.3b lends itself to the use
of the thin-walled tube, space truss analogy. Using this analogy, the shear stresses
are treated as constant over a finite thickness ¢ around the periphery of the member,
allowing the beam to be represented by an equivalent tube, as shown in Fig. 8.4.
Within the walls of the tube, torque is resisted by the shear flow g, which has units
of force per unit length. In the analogy, ¢ is treated as a constant around the perim-
eter of the tube. As shown in Fig. 8.4, the resultants of the individual components
of shear flow are located within the walls of the tube and act along lengths y, in the
vertical walls and along lengths x, in the horizontal walls, with y, and x, measured
at the center of the walls.

The relationship between the applied torque and the shear flow can be obtained
by summing the moments about the axial centerline of the tube, giving

T = 2gx,y,/2 + 2qyX,/2 (a)

where the two terms on the right-hand side represent the contributions of the hori-
zontal and vertical walls to the resting torque, respectively. Thus,

T = 2gx,y, (b)
The product x,y, represents the area enclosed by the shear flow path A,, giving
T = 2qA, ()
and
- T
1= 4 (d)
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Note that although A, is an area, it derives from the moment calculation shown in
Eq. (a) above. Thus, A, is applicable for hollow box sections, as well as solid sec-
tions, and in such case includes the area of the central void.

For a tube wall thickness #, the unit shear stress acting within the walls of the
tube is

9_ T
t T 2A

8.1)

As shown in Fig. 8.3qa, the principal tensile stress ¢ = 7. Thus, the concrete
will crack only when 7 = ¢ = f/, the tensile strength of concrete. Considering that
concrete is under biaxial tension and compression, f; can be conservatively repre-
sented by 4\/ﬁ rather than the value typically used for the modulus of rupture of
concrete, which is taken as f, = 7.5\/]§ for normal-density concrete. Substituting
7 =7, = 44/f/ in Eq. (8.1) and solving for T give the value of the cracking torque:

T = 4\f] QA (8.2)

Remembering that A, represents the area enclosed by the shear flow path, A,
must be some fraction of the area enclosed by the outside perimeter of the full con-
crete cross section A.,. The value of 7 can, in general, be approximated as a fraction
of the ratio A,,/p.,, where p,, is the perimeter of the cross section. For solid mem-
bers with rectangular cross sections, ¢ is typically one-sixth to one-fourth of the
minimum width. Using a value of one-fourth for a member with a width-to-depth
ratlo of 0.5 yields a value of A, approximately equal to ¥ A . For the same member,
t = Aup/Pep- Using these values for A, and 7 in Eq. (8 2) glves

AS
T, = 4\/f! p—qf in.-Ib (8.3)

It has been found that Eq. (8.3) gives a reasonable estimate of the cracking torque of
solid reinforced concrete members regardless of the cross-sectional shape. For hollow
sections, T, in Eq. (8.3) should be reduced by the ratio A,/A,,, where A, is the gross
cross section of the concrete, that is, not including the area of the V01ds (Ref. 8.6).

TORSION IN REINFORCED CONCRETE MEMBERS

To resist torsion for values of 7 above T, reinforcement must consist of closely
spaced stirrups and longitudinal bars. Tests have shown that longitudinal bars alone
hardly increase the torsional strength, with test results showing an improvement of
at most 15 percent (Ref. 8.6). This is understandable because the only way in which
longitudinal steel can directly contribute to torsional strength is by dowel action,
which is particularly weak and unreliable if longitudinal splitting along bars is not
restrained by transverse reinforcement. Thus, the torsional strength of members rein-
forced only with longitudinal steel is satisfactorily, and somewhat conservatively,
predicted by Eqgs. (8.2) and (8.3).

When members are adequately reinforced, as in Fig. 8.5a, the concrete cracks
at a torque that is equal to or only somewhat larger than in an unreinforced member,
as given by Eq. (8.3). The cracks form a spiral pattern, as shown in Fig. 8.5b. Upon
cracking, the torsional resistance of the concrete drops to about one-half of that of
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FIGURE 8.5
Reinforced concrete beam
in torsion: (@) torsional
reinforcement and

(b) torsional cracks.

FIGURE 8.6
Torque-twist curve in
reinforced concrete member.
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the uncracked member, the remainder being now resisted by reinforcement. This
redistribution of internal resistance is reflected in the torque-twist curve (Fig. 8.6),
which at the cracking torque shows continued twist at constant torque until the
internal forces have been redistributed from the concrete to the steel. As the section
approaches the ultimate load, the concrete outside the reinforcing cage cracks and
begins to spall off, contributing progressively less to the torsional capacity of the
member.

Tests show that, after cracking, the area enclosed by the shear path is defined
by the dimensions x, and y, measured to the centerline of the outermost closed
transverse reinforcement, rather than to the center of the tube walls as before. These
dimensions define the gross area A,, = x,y, and the shear perimeter p;, = 2(x, + y,)
measured at the steel centerline.

Analysis of the torsional resistance of the member is aided by treating the
member as a space truss consisting of spiral concrete diagonals that are able to take
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Space truss analogy.
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Stirrups

Cracks

Longitudinal
Concrete bar
compression
struts

load parallel but not perpendicular to the torsional cracks, transverse fension tie
members that are provided by closed stirrups or ties, and tension chords that are
provided by longitudinal reinforcement. The hollow-tube, space truss analogy repre-
sents a simplification of actual behavior, since, as will be demonstrated, the calcu-
lated torsional strength is controlled by the strength of the transverse reinforcement,
independent of concrete strength. Such a simplification will be used here because it
aids understanding, although it greatly underestimates torsional capacity and does
not reflect the higher torsional capacities obtained with higher concrete strengths
(Refs. 8.7 and 8.8).

With reference to Fig. 8.7, the torsional resistance provided by a member with
a rectangular cross section can be represented as the sum of the contributions of the
shears in each of the four walls of the equivalent hollow tube. The contribution of
the shear acting in the right-hand vertical wall of the tube to the torsional resistance,
for example, is

V4 Xo

T, = ) (@)

Following a procedure similar to that used for analyzing the variable-angle
truss shear model discussed in Section 5.8 and shown in Figs. 5.18 and 5.19, the
equilibrium of a section of the vertical wall—with one edge parallel to a torsional
crack with angle #—can be evaluated using Fig. 8.8a.

Assuming that the stirrups crossing the crack are yielding, the shear in the wall
under consideration is

V, = Atfyt” (b)

where A, = area of one leg of a closed stirrup
Jfy = yield strength of transverse reinforcement
n = number of stirrups intercepted by torsional crack

Since the horizontal projection of the crack is y, cot € and n = y, cot /s,
where 6 is the slope angle of the strut and s is the spacing of the stirrups,

Aufyio
Vy=—""cot 0 (©)
Combining Egs. (¢) and (a) gives
AfstYoXo
T, = Zrrrere cot 0 (d)
2s
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FIGURE 8.8

Basis for torsional design:
(a) vertical tension in
stirrups; (b) diagonal
compression in vertical wall
of beam; and (c¢) equilibrium
diagram of forces due to
shear in vertical wall.
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Again with reference to Fig. 8.7, the contribution of the shear in the left-hand
vertical wall V, to the torsional resistance 7, can be obtained by following the steps
outlined for Egs. (a), (b), and (c), giving a value that is identical with that for 7} in
Eq. (d). The contributions of the horizontal walls 7| and 75 can be determined in
the same way, except that the internal moment arm in Eq. (a) becomes y, and the
horizontal projection of the crack becomes x, cot 8, which leads to expressions for
T, and T; that are also identical to that for 7, in Eq. (d). Thus, summing over all
four sides, the nominal capacity of the section is

§ 24y
n= 3 1=l g ©
i=1

Noting that y,x, = A,, and rearranging slightly give

_ 2thAtfvt
ST

ot 6 (8.4)

The diagonal compression struts that form parallel to the torsional cracks are
necessary for the equilibrium of the cross section. As shown in Fig. 8.8b and c, the
horizontal component of compression in the struts in the vertical wall must be equil-
ibrated by an axial tensile force AN,. Based on the assumed uniform distribution of
shear flow around the perimeter of the member, the diagonal stresses in the struts
must be uniformly distributed, resulting in a line of action of the resultant axial force
that coincides with the midheight of the wall. Referring to Fig. 8.8c, the total con-
tribution of the right-hand vertical wall to the change in axial force of the member
due to the presence of torsion is

cot’ 0

AifyiYo
AN4 = V4 cot 6 = tj;;ty
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Again, summing over all four sides, the total increase in axial force for the
member is

4 _ Arfyt
' s

A, f,
oy P cot’ 0 (8.5b)

2 (x, + y,) cot’ 0 (8.5a)

AN =

where pj, is the perimeter of the centerline of the closed stirrups.
Longitudinal reinforcement must be provided to carry the added axial force
AN. If that steel is designed to yield, then

A, f,
Af, = @ cot’ 0 (8.6)
and
AN
Ag="Lpy—= cot’ 0 (8.7)

y

where A, = total area of longitudinal reinforcement to resist torsion, in’
f, = yield strength of longitudinal torsional reinforcement, psi

Solving Eq. (8.4) for A, f,,, substituting the value in Eq. (8.7), and solving for
T, gives the limiting value of the nominal torsional capacity 7, based on A,.

24, A f,
T,= """ ng (8.8)
Ph

It has been found experimentally that, after cracking, the effective area enclosed
by the shear flow path is somewhat less than the value of A,, used in the previous
development. It is recommended in Ref. 8.8 that the reduced value be taken as
A, = 0.854,,, where, it will be recalled, A,, is the area enclosed by the centerline
of the transverse reinforcement. This recommendation is incorporated in the ACI
Code (see Section 8.5) and in a modified form of Eq. (8.4) with A, substituted for
A, It has further been found experimentally that the thickness of the equivalent tube
at loads near ultimate is closely approximated by ¢ = A,,/p;, where p, is the perimeter
of Auh'

TORSION PLUS SHEAR

Members are rarely subjected to torsion alone. The prevalent situation is that of a
beam subject to the usual flexural moments and shear forces, which, in addition,
must resist torsional moments. In an uncracked member, shear forces as well as
torque produce shear stresses. In a cracked member, both shear and torsion increase
the forces in the diagonal struts (Figs. 5.19d and 8.8b), increase the width of diagonal
cracks, and increase the forces required in the transverse reinforcement (Figs. 5.19¢
and 8.8a).

Using the usual representation for reinforced concrete, the nominal shear stress
caused by an applied shear force V'is 7, = V/b,d. The shear stress caused by torsion,
given in Eq. (8.1), is 7, = T/(2A,f). As shown in Fig 8.9a for hollow sections, these
stresses are directly additive on one side of the member. Thus, for a cracked concrete
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FIGURE 8.9

Addition of torsional and
shear stresses: (a) hollow
section and () solid section.

(Adapted from Ref. 8.8.)
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cross section with A, = 0.854,, and t = A,,/p;, the maximum shear stress can be
expressed as

T;
T=TV+T,=l+ Pi

byd 1742,

8.9)

For a member with a solid section, Fig. 8.9b, 7, is predominately distributed
around the perimeter, as represented by the hollow tube analogy, but the full cross
section contributes to carrying z,. Comparisons with experimental results show that
Eq. (8.9) is somewhat overconservative for solid sections and that a better representa-
tion for maximum shear stress is provided by the square root of the sum of the
squares of the nominal shear stresses:

o \/(bfd)z i

Equations (8.9) and (8.10) serve as a measure of the shear stresses in the
concrete under both service and ultimate loading.

Tp, ’

2
1742,

(8.10)

ACl CODE PROVISIONS FOR TORSION DESIGN

The basic principles upon which ACI Code design provisions are based have been
presented in the preceding sections. ACI Code 9.5.1.1 safety provisions require that

T, > ¢T, (8.11)

where 7, = nominal torsional strength of member

T, = required torsional strength at factored loads
The strength reduction factor ¢ = 0.75 applies for torsion. Strength 7, as a function
of the transverse reinforcement is based on Eq. (8.4) with A, substituted for A, thus

24,A,f,
T, = % cot 6 (8.12)

With the same substitution, 7, as a function of the longitudinal reinforcement, based
on Eq. (8.8), is

_ ZADAZ.](:V
"D

tan 6 (8.13)
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Portion of slab to be included
with beam for torsional
design.

FIGURE 8.11

Definition of A,
(Adapted from Ref. 8.8.)
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In accordance with ACI Code 9.4.4.3, sections located less than a distance d
from the face of a support may be designed for the same torsional moment 7;, as that
computed at a distance d, recognizing the beneficial effects of support compression.
However, if a concentrated torque is applied within this distance, the critical section
must be taken at the face of the support. These provisions parallel those used in shear
design. For beams supporting slabs such as are shown in Fig. 8.1, the torsional load-
ing from the slab may be treated as being uniformly distributed along the beam.

T Beams and Box Sections

For T beams, a portion of the overhanging flange contributes to the cracking tor-
sional capacity and, if reinforced with closed stirrups, to the torsional strength.
According to ACI Code 9.2.4.4, the contributing width of the overhanging flange on
either side of the web is equal to the smaller of (1) the projection of the beam above
or below the slab, whichever is greater, and (2) 4 times the slab thickness, as shown
in Fig. 8.10. As with solid sections, A, for box sections, with or without flanges,
represents the area enclosed by the outside perimeter of the concrete section.

After torsional cracking, the applied torque is resisted by the portion of the
section represented by A,,, the area enclosed by the centerline of the outermost
closed transverse torsional reinforcement. For rectangular, box, and T sections, A,
is illustrated in Fig. 8.11. For sections with flanges, the Code does not require that
the section used to establish A, coincide with that used to establish A,

Threshold Torsion

If the value of factored torsional moment 7, is low enough, the effects of torsion
may be neglected, according to ACI Code 22.7.1.1. This lower limit is ¢ times the
threshold torsion Ty, which equals 25 percent of the cracking torque, given by
Eq. (8.3). The presence of torsional moment at or below this limit will have a
negligible effect on the flexural and shear strength of the member.

h,, < 4hy

by + 2hy < by, + 8hf |

¥ v
by, b,
(a) Symmetric slab (b) Single side slab
Closed
(stirrup
&7 ;

Aon = shaded area
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For solid cross sections without axial load, ACI Code 22.7.4 defines the threshold
torsion as

Ag
Ty = MW |— (8.14a)
pcp
and for members with axial load N, and gross area A, as
T, = MY Ay 1 al (8.14b)
th = ¢ +— .
Pep 44, ML
For hollow cross sections without axial load, the threshold torsion is
A2
T, = MY —g) (8.15a)
pcp
and for hollow members with axial load, the threshold torsion is
! Ag Nu
Ty = MW, 1+ —2— (8.15b)
Pep 44, M/T!

Thus, if T, > ¢T,,, the member must be designed for torsion.

When calculating Afp/pcp for solid sections and A;/pcp for hollow sections
for beams with flanges, ACI Code 9.2.4.4 requires that the flanges must be neglected
when doing so produces higher values for these terms than when the flanges are
included.

The value of A is specified in ACI Code 19.2.4.2 and previously described in
Section 5.5a. A may be taken as 1.0 for normalweight concrete and 0.75 for light-
weight concrete. Values between 0.75 and 1.0 may also be used by applying linear
interpolation between A = 0.75 and 1.0 for concretes with unit weights of w,. < 100
pcf and w,. > 135 pcf, respectively. Alternatively, A = 0.75 for all-lightweight con-
crete and 0.85 for sand-lightweight concrete, using linear interpolation between 0.75
and 0.85 when a portion of the lightweight fine aggregate is replaced by normal-
weight fine aggregate and between 0.85 and 1.0 for concretes containing normal-
weight fine aggregate and a blend of lightweight and normalweight coarse aggregate.

A comparison of Egs. (8.14) and (8.15) shows that for hollow sections (with
or without axial load), A, has been replaced by the gross area of the concrete A, to
determine if torsional effects may be neglected. This has the effect of multiplying
25 percent of the cracking torque by the ratio A,/A,, twice—once to account for the
reduction in cracking torque for hollow sections from the value shown in Eq. (8.3)
and a second time to account for the transition from the circular interaction of com-
bined shear and torsion stresses in Eq. (8.10) to the linear interaction represented by
Eq. (8.9).

Equilibrium vs. Compatibility Torsion

A distinction is made in the ACI Code between equilibrium (primary) torsion and
compatibility (secondary) torsion. For the first condition, described earlier with refer-
ence to Fig. 8.1a, the supporting member must be designed to provide the torsional
resistance required by static equilibrium. For secondary torsion resulting from
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compatibility requirements, shown in Fig. 8.1b, it is assumed that cracking will result
in a redistribution of internal forces; and according to ACI Code 22.7.3.2, the maximum
torsional moment 7, may be reduced to ¢ times the cracking torque 7, or
4¢7»\/j? (A%,,/pc‘,,) for members not subjected to axial load and 4(]5}»\/]‘7 (A%p/pq,) X

\/ 1 + N,/(4A, )»\/E ) for members subjected to axial load. In the case of hollow
sections, A, is not replaced by A,, and unlike the Code requirements for the thresh-
old torsion of members with flanges, the designer is free to include or exclude
flanges when calculating Afp/pcp and Aéz,/pcp, but the choice should be consistent
with the section properties used to calculate 7,. The design moments and shears in
the supported member must be adjusted accordingly. The reduced value of 7, per-
mitted by the ACI Code is intended to approximate the torsional cracking strength
of the supporting beam, for combined torsional and flexural loading. The large rota-
tions that occur at essentially constant torsional load result in significant redistribu-
tion of internal forces, justifying use of the reduced value for design of the torsional
member and the supported elements.

Limitations on Shear Stress

Based largely on empirical observations, the width of diagonal cracks caused by
combined shear and torsion under service loads can be limited by limiting the
calculated shear stress under factored shear and torsion (Ref. 8.4) so that

Ve ;
v 8\/5) (8.16)

Vimax < ¢

where v, in Eq. (8.16) corresponds to the upper limits on shear capacity described
in Section 5.5d. Combining Eq. (8.16) with Eq. (8.9) provides limits on the
cross-sectional dimensions of hollow sections, in accordance with ACI Code 22.7.7.1.

Vu Tuph VC 7
+ < + 8v/f. 8.17
b 1742, ¢(bwd v ®17
Likewise, for solid sections, combining Eq. (8.16) with Eq. (8.10) gives
Vu 2 T“ph > Vc 7
< + 8V, 8.18
\/ iy R AR (8.18)

Either member dimensions or concrete strength must be increased if the crite-
ria in Eq. (8.17) or (8.18) are not satisfied.

ACI Code 22.7.7.1 requires that if the wall thickness varies around the perim-
eter of a hollow section, Eq. (8.17) be evaluated at the location where the left-hand
side of the expression is a maximum. If the wall thickness is less than the assumed
value of f used in the development of Eq. (8.9) A,,/ps, the actual value of f must be
used in the calculation of torsional shear stress. As a result, the second term on the
left-hand side of Eq. (8.17) must be taken as

T,
1.7A,,t

where ¢ is the thickness of the wall of the hollow section at the location where the
stresses are being checked.
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FIGURE 8.12

Stirrup-ties and longitudinal
reinforcement for torsion:

(a) spandrel beam with
flanges on one side;

(b) interior beam; (c) isolated
rectangular beam; (d) wide
spandrel beam; and

(e) T beam with torsional
reinforcement in flanges.
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Reinforcement for Torsion

The nominal torsional strength based on the capacity of the transverse reinforcement
is given by Eq. (8.12).

24,A.f,
T, = % cot 0 (8.12)

According to ACI Code 22.7.6.1, the angle # may assume any value between
30 and 60°, with a value of € = 45° suggested. The area enclosed by the shear flow
A, may be determined by analysis using procedures such as suggested in Ref. 8.9,
or A, may be taken as equal to 0.854,,. Combining Eq. (8.12) with Eq. (8.11), the
required cross-sectional area of one stirrup leg for torsion is

T,s

= (8.19)
2¢A, f cot 0

t

The Code limits f;, to a maximum of 60,000 psi for reasons of crack control.
The reinforcement provided for torsion must be combined with that required
for shear. Based on the typical two-leg stirrup, this may be expressed as

Ay A

A A,
5 _T+2? (8.20)

As described in Section 8.3, the transverse stirrups used for torsional reinforce-
ment must be of a closed form to provide the required tensile capacity across the
diagonal cracks of all faces of the beam. U-shaped stirrups commonly used for
transverse shear reinforcement are not suitable for torsional reinforcement. On the
other hand, one-piece closed stirrups make field assembly of beam reinforcement
difficult, and for practical reasons, torsional stirrups are generally two-piece
stirrup-ties, as shown in Fig. 8.12. A U-shaped stirrup is combined with a horizon-
tal top bar, suitably anchored.

Confinement Confinement No confinement—

from slab> (from slab \ 135° hooks
| |

(d) (e)
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Because concrete outside the reinforcing cage tends to spall off when the mem-
ber is subjected to high torque, transverse torsional reinforcement must be anchored
within the concrete core (Ref. 8.10). ACI Code 25.7.1.6 and 25.7.2.5 require that
stirrups or ties used for transverse longitudinal reinforcement be anchored with a
135° standard hook around a longitudinal bar, unless the concrete surrounding the
anchorage is restrained against spalling by a flange or a slab, in which case 90°
standard hooks may be used, as shown in Fig. 8.12a, b, and d. Overlapping U-shaped
stirrups, such as shown in Fig. 6.22d, may not be used. If flanges are included in
the computation of torsional strength for T- or L-shaped beams, closed torsional
stirrups must be provided in the flanges, as shown in Fig. 8.12e.

The required spacing of closed stirrups, satisfying Eq. (8.20), is selected for
the trial design based on standard bar sizes.

To control spiral cracking, the maximum spacing of torsional stirrups should not
exceed p;,/8 or 12 in., whichever is smaller. In addition, for members requiring both
shear and torsion reinforcement, the minimum area of closed stirrups is equal to

b, b,
A, + 24, = 075VF 22 > 5027
S S

(8.21)

according to ACI Code 9.6.4.2.

The area of longitudinal bar reinforcement A, required to resist 7, in Eq. (8.13)
is given by Eq. (8.7)

A :
Ay = ?t ph%cot2 0 (8.7

where € must have the same value used to calculate A,.

The term A,/s in Eq. (8.7) should be taken as the value calculated using
Eq. (8.19), not modified based on minimum transverse steel requirements. ACI Code
9.5.4.5 permits the portion of A, in the flexural compression zone to be reduced by
an amount equal to M,/(0.9df,), where M, is the factored moment acting at the
section in combination with T7,,.

Based on an evaluation of the performance of reinforced concrete beam tor-
sional test specimens, ACI Code 9.6.4.3 requires a minimum value of A, equal to
the lesser of Eqs. (8.22a) and (8.22b).

SV Ay A, fu

Apin=—————<=Dn — (8.22a)
L fy s hfy
5vVfA. 25b,,
Agmin = VIAy ph& (8.22b)
Iy S Iy

with f,, in Eq. (8.22b) in psi. As a general rule, the term (25b,/f,,) in Eq. (8.22b)
serves as a lower bound for the term A,/s in Eq. (8.22a).

According to ACI Code 9.7.5, the spacing of the longitudinal bars should not
exceed 12 in., and they should be distributed around the perimeter of the cross sec-
tion to control cracking. The bars may not be less than No. 3 (No. 10) in size or
have a diameter less than 0.042 times the spacing of the transverse stirrups. At least
one longitudinal bar must be placed at each corner of the stirrups. Careful attention
must be paid to the anchorage of longitudinal torsional reinforcement so that it is
able to develop its yield strength at the face of the supporting columns, where
torsional moments are often maximum.
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Reinforcement required for torsion may be combined with that required for
other forces, provided that the area furnished is the sum of the individually required
areas and that the most restrictive requirements of spacing and placement are met.
According to ACI Code 9.7.6.3, torsional reinforcement must be provided at least a
distance b, + d beyond the point theoretically required, where b, is the width of that
part of the cross section containing the closed stirrups resisting torsion. According
to the provisions of the ACI Code, the point at which the torsional reinforcement is
no longer required is the point at which 7, < ¢T,,, where T, is the threshold torque
given in Section 8.5b.

The subject of torsional design of prestressed concrete is not treated here, but
as presented in the ACI Code, it differs only in certain details from the above pres-
entation for nonprestressed reinforced concrete beams.

Design for Torsion

Designing a reinforced concrete flexural member for torsion involves a series of
steps. The following sequence ensures that each is covered:

1. Determine if the factored torque is less than ¢T,, = ¢7»\/f7 (Afp/ Dep) OF (M\/E

(A fp / pcp)\/ 1+N,/ (4Ag7»\/]§ ) for members subjected to axial load. If so, torsion
may be neglected. If not, proceed with the design. Note that in this step, portions
of over hanging flanges, as defined in Section 8.5a, must be included in the
calculation of A, and p,,.

2. If the torsion is compatibility torsion, rather than equilibrium torsion, as
described in Sections 8.1 and 8.5¢, the maximum factored torque may be reduced

t0 4MVTL (A2,/pey) or 4AT (A2 /o)1 + Nu/(AAMA/F) for members sub-
jected to axial load, with the moments and shears in the supported members
adjusted accordingly. Equilibrium torsion cannot be adjusted.

3. Check the shear stresses in the section under combined torsion and shear, using
the criteria of Section 8.5d.

4. Calculate the required transverse reinforcement for torsion using Eq. (8.19) and
shear using Eq. (5.14a). Combine A, and A, using Eq. (8.20).

5. Check that the minimum transverse reinforcement requirements are met for both
torsion and shear. These include the maximum spacing, as described in Sections
8.5e and 5.5d, and minimum area, as given in Eq. (8.21).

6. Calculate the required longitudinal torsional reinforcement A,, using the larger
of the values given in Eqs. (8.7) and (8.22), and satisfy the spacing and bar size
requirements given in Section 8.5e. The portion of A, in the flexural compres-
sion zone may be reduced by M,/(0.9df,), providing that Eq. (8.22) and the
spacing and bar size requirements are satisfied.

7. Continue torsional reinforcement b, + d past the point where 7, is less than

ONT (A2 [pey) or AN (A2 /pe)\/1 + N/ (BALA/F)) for members subjected

to axial load.

EXAMPLE 8.1

Telegram: @uni_k

Design for torsion with shear. The 28 ft span beam shown in Fig. 8.13a and b carries a
monolithic slab cantilevering 6 ft past the beam centerline. The resulting L beam supports
a live load of 900 1b/ft along the beam centerline plus 50 psf uniformly distributed over the
upper slab surface. The effective depth to the flexural steel centroid is 21.5 in., and the
distance from the beam surfaces to the centroid of stirrup steel is 1%in. Material strengths
are f, = 5000 psi and f, = 60,000 psi. Design the torsional and shear reinforcement for
the beam.
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FIGURE 8.13 ‘ 6’
Shear and torsion design — 56" —»
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(e)

SoLutioN.  Applying ACI load factors gives the slab load as
12w, = 1.2 X 75 X 5.5 = 495 1b/ft

1.6w, = 1.6 X 50 X 5.5 = 440 Ib/ft

Total = 935 1b/ft at 3.25 ft eccentricity

while the beam carries directly
12w, = 1.2 X 300 = 360 Ib/ft
1.6w; = 1.6(900 + 50) = 1520 1b/ft
Total = 1880 Ib/ft

Telegram: @uni_k
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Thus, the uniformly distributed load on the beam is 2815 1b/ft, acting together with a uniformly
distributed torque of 935 x 3.25 = 3040 ft-1b/ft. At the face of the column, the design shear
force is V, = 2.815 x 28/2 = 39.4 kips. At the same location, the design torsional moment is
T, =3.040 x 28/2 = 42.6 ft-kips.

The variation of V, and 7, with distance from the face of the supporting column is
shown in Fig. 8.13¢ and d, respectively. The values of V, and T, at the critical design section,
a distance d from the column face, are

V, =394 x 1221

= 34.4 kips

T, = 42.6 x % — 37.2 fikips

For the effective beam, A, =12x24 +6x 18 =396 in® and Pep=2%X24+2x30=108 in.
According to the ACI Code, torsion may be neglected for normalweight concrete (A = 1.0)
if T, < ¢Ty = PAT (AL /pey) = 0.75 x 1.0v/5000 (3967/108)/12,000 = 6.4 ft-kips. Clearly,
torsion must be considered in the present case. Since the torsional resistance of the beam is
required for equilibrium, no reduction in 7, may be made.

Before designing the torsional reinforcement, the section will be checked for adequacy
in accordance with Eq. (8.18). Although A, was calculated considering the flange to check
if torsion could be neglected (as required by ACI Code 22.7.4), subsequent calculations for
serviceability and strength will neglect the flange and no torsional reinforcement will be
provided in the flange. For reference, b,d = 12 x 21.5 = 258 in®. With 1% in. cover to the
center of the stirrup bars from all faces, x, = 12 — 3.5 = 8.5 in. and y, = 24.0 — 3.5 = 20.5 in.
Thus, A,, = 8.5 X 20.5 = 174 in®, A, = 0.85 x 174 = 148 in’, and p, = 2(8.5 + 20.5) = 58 in.
Because minimum shear reinforcement must be used, V, = 2\/]?. Using Eq. (8.18),

Vu 2
(m) *

\/(34.4)2 (37.2 x 12 x 58
- + 5
258 1.7 x 174

0.520 ksi < 0.530 ksi

Tuph
1742,

E 5+ VT

2
< ?(')Z)f) (24/5000 + 8+/5000)

Therefore, the cross section is of adequate size for the given concrete strength.
The values of A, and A, will now be calculated at the column face (for reference only).
Using Eq. (8.19) and choosing 6 = 45°,
_ T,s
204, f,cot 0
_ 42.6 X 12s
2 x0.75 x 148 x 60 x 1

t

= 0.0384s

for one leg of a closed vertical stirrup or 0.0768s for two legs.
The shear capacity of the concrete alone, obtained using Eq. (5.12¢), is

$V. = 0.75 x 20\/f. b, d

_0.75 x 2 x 1.0/5000 x 258
- 1000

= 27.4 kips

From Eq. (5.14a), the web reinforcement for transverse shear, again computed at the column
face, is
V= ¢Vs (394 — 274)s

A, = = = 0.0124s
bfd 0.75 x 60 x 21.5

to be provided in two vertical legs.
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The calculated value of A, will decrease linearly to zero at the midspan, and the cal-
culated value of A, will decrease linearly to zero 4.26 ft from the face of the support, the
point at which V,, = ¢V... Thus, the total area to be provided by the two vertical legs is

24, + A, = 0.0768s(1 - %) + 0.0124s(1 - ﬁ)

for 0 < x < 4.26 ft., where x is the distance from the face of the support, and
24, + A, = 0.0768s(1 — =
A s( 14)

for 4.26 <x < 14 ft.

No. 4 (No. 13) closed stirrups will provide a total area in the two legs of 0.40 in®. For
24, + A, = 0.40 in’, the required spacing at d and at 2 ft intervals along the span can be
found using the given relationships between stirrup area and spacing:

s = 5.39 in.
s, = 5.52 in.
s, = 7.19 in.
s¢ = 9.11 in.
sg = 12.2 in.
S10 = 18.2 in.

These values of s are plotted in Fig. 8.13e. ACI provisions for maximum spacing should now be
checked. For torsion reinforcement, the maximum spacing is the lesser of
Pn _ 58

s -8 7.25 in.

or 12 in., whereas for shear reinforcement, the maximum spacing is d/2 = 10.75 in. < 24 in.
The most restrictive provision is the first, and the maximum spacing of 7.25 in. is plotted in
Fig. 8.13e. Stirrups between the face of the support and the distance d can be spaced at s,. The
resulting spacing requirements are shown by the solid line in the figure. These requirements are
met in a practical way by No. 4 (No. 13) closed stirrups, the first placed 2 in. from the face of
the column, followed by 9 at 5 in. spacing and 17 at 7 in. spacing. According to the ACI Code,
stirrups may be discontinued at the point where V, < ¢V, /2 (4.9 ft from the span centerline)
or b, + d = 2.8 ft past the point at which 7, < qﬁk\/f (Ag,,/pcp). The latter point is past the
centerline of the member; therefore, minimum stirrups are required throughout the span. The
minimum web steel provided, 0.40 in?, satisfies the ACI Code minimum = 0.75\/ﬁ b, s/t =
0.75v/5000 (12) x 7/60,000 = 0.074 in* > 50b,s/f,, = 50 x 12 x 7/60,000 = 0.070 in.

The longitudinal steel required for torsion at a distance d from the column face is
computed next. At that location

A
= 0.0384(1 - ﬂ) = 0.0335
s 14
and from Eq. (8.7)
A .
Ae = ?lph&COtz 9

5

= 0.0335 x 58 X % x 12 = 1.94 in®

with a total not less than the lower value from Eqgs. (8.22a) and (8.22b), which are, respectively,

SVIAw Ay

£,mi Ph
min f; s f;
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Al,min =

SVIEAg  (25b,\ i
3 (f )p"fy

Because 25b,,/f,, = 25 x 12/60,000 = 0.005 is less than A,/s, Eq. (8.22a) will give the lower
value of Ay -

_ 5v/5000 x 396

Apmin = — 00335 x 58 x 2 = 039 in?
: 60 x 1000 60

According to the ACI Code, the spacing must not exceed 12 in., and the bars may not
be less than No. 3 (No. 10) in size or have a diameter less than 0.042s = 0.29 in. Reinforcement
will be placed at the top, middepth, and bottom of the member—each level to provide not less
than 1.94/3 = 0.65 in”. Two No. 6 (No. 19) bars will be used at middepth, and reinforcement
to be placed for flexure will be increased by 0.65 in” at the top and bottom of the member.

Although A, reduces in direct proportion to A, and, hence, decreases linearly starting at
d from the face of the column to the midspan, for simplicity of construction, the added bars
and the increment in the flexural steel will be maintained throughout the length of the member.
Although ACI Code 9.5.4.5 states that A, may be decreased in flexural compression zones by
an amount equal to M, /(0.9df,), that reduction will not be made here. Adequate embedment
must be provided past the face of the column to fully develop f; in the bars at that location.

Telegram: @uni_k
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PROBLEMS

8.1. A rectangular beam is 15 in. wide and 30 in. deep. For f, = 4000 psi and
Sy = 60,000 psi, determine the required spacing of No. 4 (No. 13) closed
stirrups for a factored shear of 80 kips and factored torsional moment of
50 ft-kips. The stirrup centroid is located 1.75 in. from each concrete face.
The effective depth is 26.5 in.

8.2. A beam of rectangular cross section having b = 22 in. and h = 15 in. is to
carry a total factored load of 3600 1b/ft uniformly distributed over its 26 ft
span, and in addition the beam will be subjected to a uniformly distributed
torsion of 1800 ft-1b/ft at factored loads. Closed stirrup-ties will be used to
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Transfer girder: (a) top view;
(b) front view; and (¢) side
view.

FIGURE P8.4
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provide for flexural shear and torsion, placed with the stirrup steel centroid
1.75 in. from each concrete face. The corresponding flexural effective depth
will be approximately 12.5 in. Design the transverse reinforcement for this
beam and calculate the increment of longitudinal steel area needed to provide
for torsion, using f, = 4000 psi and f, = 60,000 psi.

Architectural and clearance requirements call for the use of a transfer girder,
shown in Fig. P8.3, spanning 20 ft between supporting column faces. The
girder must carry from above a concentrated column load of 17.5 kips at
midspan, applied with eccentricity 2 ft from the girder centerline. (Load
factors are already included, as is an allowance for girder self-weight.) The
member is to have dimensions » = 10 in., 2 = 20 in., x, = 6.5 in., y, = 16.5 in.,
and d = 17 in. Supporting columns provide full torsional rigidity; flexural
rigidity at the ends of the span can be assumed to develop 40 percent of the
maximum moment that would be obtained if the girder were simply sup-
ported. Design both transverse and longitudinal steel for the beam. Material
strengths are f, = 5000 psi and f, = 60,000 psi.

]

I

i

(a)

17.5 kips ) 17.5 kips
l ’/“ 24"

y

20"

‘

— 10

10’ | 10’ |

8.4.

(b) (c)

The beam shown in cross section in Fig. P8.4 is a typical interior member
of a continuous building frame, with span 30 ft between support faces. At
factored loads, it will carry a uniformly distributed vertical load of 3200 1b/ft,
acting simultaneously with a uniformly distributed torsion of 2700 ft-1b/ft.
Transverse reinforcement for shear and torsion will consist of No. 4 (No. 13)
stirrup-ties, as shown, with 1.5 in. clear to all concrete faces. The effective
depth to flexural steel is taken equal to 22.5 in. for both negative and positive

e

No. 4 (No. 13) stirrup-ties

14—
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FIGURE P8.6
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8.5.

8.6.

bending regions. Design the transverse reinforcement for shear and torsion,
and calculate the longitudinal steel to be added to the flexural requirements
to provide for torsion. Torsional reinforcement will be provided only in
the web, not in the flanges. Material strengths are f, = 4000 psi and
Sy = 60,000 psi.

The single-span T beam bridge described in Problem 4.29 is reinforced for
flexure with four No. 10 (No. 32) bars in two layers, which continue unin-
terrupted into the supports, permitting a service live load of 1.50 kips/ft to
be carried, in addition to the dead load of 0.93 kip/ft, including self-weight.
Assume now that only one-half of that live load acts but that it is applied
over only one-half the width of the member, entirely to the right of the sec-
tion centerline. Design the transverse reinforcement for shear and torsion, and
calculate the modified longitudinal steel needed for this eccentric load con-
dition. Torsional reinforcement can be provided in the slab if needed, as well
as in the web. Stirrup-ties will be No. 3 or No. 4 (No. 10 or No. 13) bars,
with 1.5 in. clear to all concrete faces. Supports provide no restraint against
flexural rotations but do provide full restraint against twist. Show a sketch
of your final design, detailing all reinforcement. Material strengths are as
given for Problem 4.29.

Design a spandrel (edge) girder for shear and torsion that is loaded with a
uniform factored load of 1.1 kips/ft. In addition, beams framing into the
girder apply concentrated factored vertical loads F,; and F,, and torsional
moments 7,; and 7,,, as shown in Fig. P8.6. Girder dimensions are 7 = 32 in.
and b, = 28 in., and slab thickness (one side of girder only) = 6 in. An
analysis of various loading combinations indicates the following results:

Case 1 F, = F, = 80 kips
T, = T,, = 160 ft-kips
Case 2 F,, = 83 kips; F,, = 22 kips
T,, = 160 ft-kips; T,, = 53 ft-kips
Case 3 F, = 22 kips; F,, = 83 kips
T, = 53 ft-kips; T,, = 160 ft-kips
To calculate reactions, treat the ends of the girder as fixed. Use f, = 60,000

psi and £/ = 4000 psi. Provide design drawings showing the transverse steel
and the longitudinal steel required in addition to the flexural steel.

Fu1 Fu2

Face of support
1 12/ o

vy ) 1) vy

8.7.

4 <
7-u1 Tu2 )
11 kips/ft

A 20 ft long rectangular beam, free-standing except for being fixed at each
end against rotation, must carry a midspan live load of 35 kips. The load can
be as much as 12 in. off the axis of the beam. Beam dimensions are b = 12 in.,
d =20 in., and & = 23 in. Use f, = 60,000 psi and f, = 4000 psi. Design
the shear and torsion reinforcement.
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9.1

Short Columns

INTRODUCTION: AXIAL COMPRESSION

Columns are defined as members that carry loads chiefly in compression. Usu-
ally columns carry bending moments as well, about one or both axes of the cross
section, and the bending action may produce tensile forces over a part of the cross
section. Even in such cases, columns are generally referred to as compression
members, because the compression forces dominate their behavior. In addition to
the most common type of compression member, that is, vertical elements in struc-
tures, compression members include arch ribs; rigid frame members inclined or
otherwise; compression elements in trusses, shells, or portions thereof that carry
axial compression; and other forms. In this chapter the term column will be used
interchangeably with the term compression member, for brevity and in conformity
with general usage.
Two types of reinforced concrete compression members are in use:

1. Members reinforced with longitudinal bars and transverse ties.
2. Members reinforced with longitudinal bars and continuous spirals.

The main reinforcement in columns is longitudinal, parallel to the direction of
the load, and consists of bars arranged in a square, rectangular, or circular pattern, as
was shown in Fig. 3.2. Figure 9.1 shows an ironworker tightening splices for the main
reinforcing steel during construction of the 60-story Bank of America Corporate Center
in Charlotte, North Carolina. The ratio of longitudinal steel area A, to gross concrete
cross section A, is in the range from 0.01 to 0.08, according to ACI Code 10.6.1.1.
The lower limit is necessary to ensure resistance to bending moments not accounted
for in the analysis and to reduce the effects of creep and shrinkage of the concrete
under sustained compression. Ratios higher than 0.08 not only are uneconomical but
also would cause difficulty owing to congestion of the reinforcement, particularly
where the steel must be spliced. Most columns are designed with ratios below 0.04.
Larger-diameter bars are used to reduce placement costs and to avoid unnecessary
congestion. The largest bars, No. 14 and No. 18 (No. 43 and No. 57), are produced
mainly for use in columns. According to ACI Code 10.7.3.1, a minimum of four lon-
gitudinal bars is required when the bars are enclosed by spaced rectangular or circular
ties, and a minimum of six bars must be used when the longitudinal bars are enclosed
by a continuous spiral. A minimum of three longitudinal bars must be used when the
bars are enclosed by triangular ties.

Columns may be divided into two broad categories: short columns, for
which the strength is governed by the strength of the materials and the geometry
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FIGURE 9.1
Reinforcement for primary
column of 60-story Bank of
America Corporate Center in
Charlotte, North Carolina.
(Courtesy of Walter P. Moore
and Associates.)
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of the cross section, and slender columns, for which the strength may be signif-
icantly reduced by lateral deflections. A number of years ago, an ACI-ASCE
survey indicated that 90 percent of columns braced against sidesway and
40 percent of unbraced columns could be designed as short columns. Effective
lateral bracing, which prevents relative lateral movement of the two ends of a
column, is commonly provided by shear walls, elevator and stairwell shafts, diag-
onal bracing, or a combination of these. Although slender columns are more
common now because of the wider use of high-strength materials and improved
methods of dimensioning members, it is still true that most columns in ordinary
practice can be considered short columns. Only short columns will be discussed
in this chapter; the effects of slenderness in reducing column strength will be
covered in Chapter 10.

The behavior of short, axially loaded compression members was discussed in
Section 3.5 in introducing the basic aspects of reinforced concrete. It is suggested
that the earlier material be reviewed at this point. In Section 3.5, it was demonstrated
that, for lower loads at which both materials remain elastic, the steel carries a rela-
tively small portion of the total load. The steel stress f; is equal to n times the con-
crete stress:

fs = nf. 9.1)
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FIGURE 9.2
Transformed section in axial
compression.
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where n = E,/E, is the modular ratio. In this range, the axial load P is given by
P =fl[A; + (n — DAy] 9.2)

where A, is the gross area of the cross section, Ay, is the total area of the reinforcing
steel, and the term in brackets is the area of the transformed section (see Fig. 9.2).
Equations (9.2) and (9.1) can be used to find concrete and steel stresses, respectively,
for given loads, provided both materials remain elastic. Example 3.1 demonstrated the
use of these equations.

In Section 3.5, it was further shown that the nominal strength of an axially loaded
column can be found, recognizing the nonlinear response of both materials, by

P, =085f/A. + f, A, (9.3a)
where A, = net area of concrete, or
Pn = 085fc,(Ag - Ast) +.f:vAxt (93b)

that is, by summing the strength contributions of the two components of the column.
At this stage, the steel carries a significantly larger fraction of the load than was the
case at lower total load.

Equations (9.3a) and (9.3b) are based on the assumption that f, in compression
will be attained once the concrete reaches its limiting strain &, = 0.003. For f;, much
above 80,000 psi, however, concrete will surpass a strain of 0.003 and, thus, may no
longer provide an average stress of 0.85f, at a strain corresponding to f,. For this
reason, ACI Code 22.4.2 places an upper limit on f, in compression of 80,000 psi.

The calculation of the nominal strength of an axially loaded column was
demonstrated in Section 3.5.

According to ACI Code 22.4.2, the design strength of an axially loaded col-
umn is to be found based on Eq. (9.3b) with the introduction of certain strength
reduction factors. These strength reduction factors are lower for columns than for
beams, reflecting the greater effect of column failure on a structure. A beam failure
would normally affect only a local region, whereas a column failure could result
in the collapse of the entire structure. In addition, these factors reflect differences
in the behavior of tied columns and spirally reinforced columns that will be dis-
cussed in Section 9.2. A basic ¢ factor of 0.75 is used for spirally reinforced
columns and 0.65 for tied columns, vs. ¢p = 0.90 for most beams.

A further limitation on column strength is imposed by ACI Code 22.4.2 to
allow for accidental eccentricities of loading not considered in the analysis. This is
done by imposing an upper limit on the axial load that is less than the calculated
design strength. This upper limit is taken as 0.85 times the design strength for spirally
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FIGURE 9.3
Tie arrangements for square
and rectangular columns.
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reinforced columns and 0.80 times the calculated strength for tied columns. Thus,
according to ACI Code 22.4.2, for spirally reinforced columns

¢Pn,max = 085¢ [Ogsfcl(Ag - Ast) + f; Ast] (940)
with ¢ = 0.75. For tied columns
PPymax = 0.80¢[0.85/: (A, — Ay) + £, Al (9.4b)

with ¢ = 0.65.

TRANSVERSE TIES AND SPIRALS

Figure 3.2 shows cross sections of the simplest types of columns, spirally reinforced
or provided with transverse ties. Other cross sections frequently found in buildings
and bridges are shown in Fig. 9.3. In general, in members with large axial forces
and small moments, longitudinal bars are spaced more or less uniformly around the
perimeter (Fig. 9.3a to d). When bending moments are large, much of the longitu-
dinal steel is concentrated at the faces of highest compression or tension, that is, at
maximum distances from the axis of bending (Fig. 9.3e to h). Specific recommended
patterns for many combinations and arrangements of bars are found in Refs. 9.1 and
9.2. In heavily loaded columns with large steel percentages, the result of a large num-
ber of bars, each of them positioned and held individually by ties, is steel congestion
in the forms and difficulties in placing the concrete. In such cases, bundled bars
are frequently employed. Bundles consist of two to four bars tied in direct contact,

. . _j — Crossties
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Model for action of a spiral.
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wired, or otherwise fastened together. These are usually placed in the corners, as
shown in Fig. 9.3i. Tests have shown that adequately bundled bars act as one unit;
that is, they are detailed as if a bundle constituted a single round bar of area equal to
the sum of the bundled bars.

Transverse reinforcement, in the form of individual relatively widely spaced ties or
a continuous closely spaced spiral, serves several functions. For one, such reinforcement
is needed to hold the longitudinal bars in position in the forms while the concrete is
being placed. For this purpose, longitudinal and transverse steel is wired together to form
cages, which are then moved into the forms and properly positioned before placing the
concrete. For another, transverse reinforcement is needed to prevent the highly stressed,
slender longitudinal bars from buckling outward by bursting the thin concrete cover.

Closely spaced spirals serve these two functions. Ties, which can be arranged and
spaced in various ways, must be so designed that these two requirements are met. This
means that the spacing must be sufficiently small to prevent buckling between ties and
that, in any tie plane, a sufficient number of ties must be provided to position and hold
all bars. On the other hand, in columns with many longitudinal bars, if the column
section is crisscrossed by too many ties, they interfere with the placement of concrete
in the forms. To achieve adequate tying yet hold the number of ties to a minimum, ACI
Code 10.7.6 and 25.7.2 give rules for tie arrangement that may be summarized as:

Longitudinal reinforcement shall be laterally supported using ties or hoops (the latter
are discussed in Chapter 20).

Tie bars or wire shall be at least No. 3 (No. 10) for No. 10 (No. 32) or smaller longi-
tudinal bars and at least No. 4 (No. 13) for No. 11 (No. 36) or larger longitudinal bars
and bundled longitudinal bars.

Center-to-center tie spacing shall not exceed the least of 16d, of the longitudinal bar,
48d,, of the tie bar, and smallest dimension of member.

Rectilinear ties shall be arranged so that every corner and alternate longitudinal bar shall
have lateral support provided by the corner of a tie with an included angle of not more
than 135°, as shown in Fig. 9.3/, and no bar shall be farther than 6 in. clear on each
side along the tie from a laterally supported bar, as illustrated in Fig. 9.3b, ¢, e, and f.
Intermediate lateral support can be provided by crossties, such as those shown in Fig. 9.3¢
and e, which must be continuous with a hook at one end with a bend not less than 135°
and a standard hook at the other end, both of which must engage a longitudinal bar.
Deformed wire or welded wire reinforcement of equivalent area may be used in place of ties.
Circular ties may be used where longitudinal bars are located around the perimeter of
a circle.

For spirally reinforced columns, ACI Code 25.7.3 gives requirements for lateral rein-
forcement that may be summarized as follows:

Spirals shall consist of evenly spaced continuous bar or wire at least % in. in diameter,
with a clear spacing between turns of the spiral not greater than 3 in. nor less than 1 in.

In addition, a minimum ratio of spiral steel is imposed such that the structural perfor-
mance of the column is significantly improved, with respect to both ultimate load and
the type of failure, compared with an otherwise identical tied column.

The structural effect of a spiral is easily visualized by considering as a model
a steel drum filled with sand (Fig. 9.4). When a load is placed on the sand, a lateral
pressure is exerted by the sand on the drum, which causes hoop tension in the steel
wall. The load on the sand can be increased until the hoop tension becomes large
enough to burst the drum. The sand pile alone, if not confined in the drum, would
have been able to support little load. A cylindrical concrete column, to be sure, does
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FIGURE 9.5

Failure of a tied column.

FIGURE 9.6
Behavior of spirally

reinforced and tied columns.
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have a definite strength without any transverse confinement. As it is being loaded,
it shortens longitudinally and expands laterally, depending on Poisson’s ratio. A
closely spaced spiral confining the column counteracts the expansion, as did the steel
drum in the model. This causes hoop tension in the spiral, while the carrying capac-
ity of the confined concrete in the core is greatly increased. Failure occurs only when
the spiral steel yields, which greatly reduces its confining effect, or when it fractures.

A tied column fails at the load given by Eq. (9.3a or b). At this load, the
concrete fails by crushing and shearing outward along inclined planes, and the
longitudinal steel by buckling outward between ties (Fig. 9.5). In a spirally rein-
forced column, when the same load is reached, the longitudinal steel and the con-
crete within the core are prevented from moving outward by the spiral. The concrete
in the outer shell, however, not being so confined, does fail; that is, the outer shell
spalls off when the load P, is reached. It is at this stage that the confining action
of the spiral has a significant effect, and if sizable spiral steel is provided, the load
that will ultimately fail the column by causing the spiral steel to yield or fracture
can be much larger than that at which the shell spalled off. Furthermore, the axial
strain limit when the column fails will be much greater than otherwise; the tough-
ness of the column has been much increased.

In contrast to the practice in some foreign countries, it is reasoned in the
United States that any excess capacity beyond the spalling load of the shell is
wasted because the member, although not actually failed, would no longer be con-
sidered serviceable. For this reason, the ACI Code provides a minimum spiral
reinforcement of such an amount that its contribution to the carrying capacity is
just slightly larger than that of the concrete in the shell. The situation is best
understood from Fig. 9.6, which compares the performance of a tied column with
that of a spiral column whose spalling load is equal to the ultimate load of the tied
column. The failure of the tied column is abrupt and complete. This is true, to
almost the same degree, of a spiral column with a spiral so light that its strength
contribution is considerably less than the strength lost in the spalled shell. With a
heavy spiral the reverse is true, and with considerable prior deformation the spalled
column would fail at a higher load. The “ACI spiral,” its strength contribution about
compensating for that lost in the spalled shell, hardly increases the ultimate load.
However, by preventing instantaneous crushing of concrete and buckling of steel,
it produces a more gradual and ductile failure, that is, a tougher column.

Spiral column Heavy spiral
hell 1]

(S P ACI spiral

\\ |_|ght Splral

(

Failure of columns
tied or with very
light spirals

Load

Longitudinal strain (shortening)
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Confinement of core concrete
due to hoop tension.
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It has been found experimentally (Refs. 9.3 to 9.5) that the increase in compres-
sive strength of the core concrete in a column provided through the confining effect
of spiral steel is closely represented by the equation

fi=0.85f, = 4.0f (a)

where f; = compressive strength of spirally confined core concrete
0.85f. = compressive strength of concrete if unconfined
Jf, = lateral confinement stress in core concrete produced by spiral

The confinement stress f; is calculated assuming that the spiral steel reaches its yield
stress f, when the column eventually fails. With reference to Fig. 9.7, a hoop tension
analysis of an idealized model of a short segment of column confined by one turn of
transverse steel shows that

A,
27 ds

(b)

where f;, = yield strength of spiral steel
Ay, = cross-sectional area of spiral wire
d. = outside diameter of spiral
s = spacing or pitch of spiral wire

A volumetric ratio is defined as the ratio of the volume of spiral steel to the volume
of core concrete:

2rd. Ay, 4
B 2 ﬂd% s

Ps

from which
P d.s
sp = 4
Substituting the value of Ay, from Eq. (¢) into Eq. (b) results in

A (©

. Pstu
h==

(d)

To find the right amount of spiral steel, one calculates
Strength contribution of the shell = 0.85f, (A, — A.;) (e)

where A, and A, are, respectively, the gross and core concrete areas. Then substituting
the confinement stress from Eq. (d) into Eq. (a) and multiplying by the core concrete
area, one finds

Strength provided by spiral = 2p, f,, A.s H

The basis for the design of the spiral is that the strength gain provided by the spiral
should be at least equal to that lost when the shell spalls, so combining Egs. (¢) and

(f) yields
0.85f. (A — An) = 2p, fyuAci

from which

A ’
ps=0.425( . 1)fc 03]

Ach f;n‘
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9.3

According to the ACI Code, this result is rounded upward slightly, and ACI Code
25.7.3.3 states that the ratio of spiral reinforcement shall not be less than

A /
Py = 0.45( £ 1)Ji 9.5)

Ach Sy

It is further stipulated in the ACI Code that f), should not be taken greater than 100,000
psi and that spiral reinforcement should not be spliced if f}, is greater than 60,000 psi.

It follows from this development that two concentrically loaded columns
designed in accordance with the ACI Code, one tied and one with spiral but other-
wise identical, will fail at about the same load, the former in a sudden and brittle
manner, the latter gradually with prior spalling of the shell and with more ductile
behavior. This advantage of the spiral column is much less pronounced if the load
is applied with significant eccentricity or when bending from other sources is pres-
ent simultaneously with axial load. For this reason, while the ACI Code permits
somewhat larger design loads on spiral than on tied columns when the moments are
small or zero (¢p = 0.75 for spirally reinforced columns vs. ¢ = 0.65 for tied), the
difference is not large, and it is even further reduced for large eccentricities, for
which ¢ approaches 0.90 for both.

The design of spiral reinforcement according to the ACI Code provisions is
easily reduced to tabular form, as in Table A.14 of Appendix A.

COMPRESSION PLUS BENDING OF RECTANGULAR
COLUMNS

Members that are axially, that is, concentrically, compressed occur rarely, if ever, in
buildings and other structures. Components such as columns and arches chiefly carry
loads in compression, but simultaneous bending is almost always present. Bending
moments are caused by continuity, that is, by the fact that building columns are parts
of monolithic frames in which the support moments of the girders are partly resisted
by the abutting columns, by transverse loads such as wind forces, by loads carried
eccentrically on column brackets, or in arches when the arch axis does not coincide
with the pressure line. Even when design calculations show a member to be loaded
purely axially, inevitable imperfections of construction will introduce eccentricities
and consequent bending in the member as built. For this reason, members that must
be designed for simultaneous compression and bending are very frequent in almost all
types of concrete structures.

When a member is subjected to combined axial compression P and moment M,
as in Fig. 9.8a, it is usually convenient to replace the axial load and moment with
an equal load P applied at eccentricity e = M/P, as in Fig. 9.8b. The two loadings
are statically equivalent. All columns may then be classified in terms of the equiv-
alent eccentricity. Those having relatively small e are generally characterized by
compression over the entire concrete section, and if overloaded, will fail by crushing
of the concrete accompanied by yielding of the steel in compression on the more
heavily loaded side. Columns with large eccentricity are subject to tension over at
least a part of the section, and if overloaded, may fail due to tensile yielding of the
steel on the side farthest from the load.

For columns, load stages below the ultimate are generally not important. Crack-
ing of concrete, even for columns with large eccentricity, is usually not a serious
problem, and lateral deflections at service load levels are seldom, if ever, a factor.
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Design of columns is therefore based on the factored load, which must not exceed
the design strength, as usual, that is,

M, > M, (9.6a)
¢P, 2 P, (9.6b)

STRAIN COMPATIBILITY ANALYSIS AND INTERACTION
DIAGRAMS

Figure 9.9a shows a member loaded parallel to its axis by a compressive force P, at
an eccentricity e measured from the centerline. The distribution of strains at a section
a-a along its length, at incipient failure, is shown in Fig. 9.9b. With plane sections
assumed to remain plane, concrete strains vary linearly with distance from the neutral
axis, which is located a distance ¢ from the more heavily loaded side of the member.
With full compatibility of deformations, the steel strains at any location are the same
as the strains in the adjacent concrete; thus, if the ultimate concrete strain is ¢,, the
strain in the bars nearest the load is €, while that in the tension bars at the far side is &;.
Compression steel with area A; and tension steel with area A; are located at distances
d' and d, respectively, from the compression face.

The corresponding stresses and forces are shown in Fig. 9.9¢. Just as for sim-
ple bending, the actual concrete compressive stress distribution is replaced by an
equivalent rectangular distribution having depth a = fc. A large number of tests on
columns with a variety of shapes have shown that the strengths computed on this
basis are in satisfactory agreement with test results (Ref. 9.6).

Equilibrium between external and internal axial forces shown in Fig. 9.9¢
requires that

P, =085 ab + f/ A — f.A, 9.7)

Also, the moment about the centerline of the section of the internal stresses and forces
must be equal and opposite to the moment of the external force P, so that
h a h h
M= e =ossran(t- 9w (- a)wsafe-t) o

e feab |5 =S|+ LA f > 9.8)
These are the two basic equilibrium relations for rectangular eccentrically compressed
members. For reasons discussed in Section 9.1, an upper limit of 80,000 psi should be
placed on stress in the compression steel f; .
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The fact that the presence of the compression reinforcement A; has displaced
a corresponding amount of concrete of area A; is neglected in writing these equa-
tions. If necessary, particularly for large reinforcement ratios, one can account for
this very simply. Evidently, in the above equations, a nonexistent concrete compres-
sion force of amount A; (0.85f,") has been included as acting in the displaced concrete
at the level of the compression steel. This excess force can be removed in both
equations by multiplying A; by f; — 0.85f, rather than by f;.

For large eccentricities, failure is initiated by yielding of the tension steel A,.
Hence, for this case, f; = f,. When the concrete reaches its ultimate strain g,, the
compression steel may or may not have yielded; this must be determined based on
compatibility of strains. For small eccentricities, the concrete will reach its limit
strain &, before the tension steel starts yielding; in fact, the bars on the side of the
column farther from the load may be in compression, not tension. For small eccen-
tricities, too, the analysis must be based on compatibility of strains between the steel
and the adjacent concrete.

For a given eccentricity determined from the frame analysis (that is, e = M, /P,)
it is possible to solve Eqgs. (9.7) and (9.8) for the load P, and moment M, that would
result in failure as follows. In both equations, f;, f;, and a can be expressed in terms
of a single unknown c, the distance to the neutral axis. This is easily done based on
the geometry of the strain diagram, with ¢, taken equal to 0.003 as usual, and using
the stress-strain curve of the reinforcement. The result is that the two equations
contain only two unknowns, P, and ¢, and can be solved for those values simulta-
neously. However, to do so in practice would be complicated algebraically, particu-
larly because of the need to incorporate the limit f, on both f; and f..

A better approach, providing the basis for practical design, is to construct a
strength interaction diagram defining the failure load and failure moment for a given
column for the full range of eccentricities from zero to infinity. For any eccentricity,
there is a unique pair of values of P, and M, that will produce the state of incipient
failure. That pair of values can be plotted as a point on a graph relating P, and M,,
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FIGURE 9.10
Interaction diagram for
nominal column strength
in combined bending and
axial load.

Telegram: @uni_k

SHORT COLUMNS 287
Pn
Po Compression failure range
@ / M
£ Radial lines show constant e = —"
o | P
oy n
o
I //
¢ | Load
path for
/ given e
/
// Tension failure range
| o T

such as shown in Fig. 9.10. A series of such calculations, each corresponding to a
different eccentricity, will result in a curve having a shape typically as shown in
Fig. 9.10. On such a diagram, any radial line represents a particular eccentricity
e = M/P. For that eccentricity, gradually increasing the load will define a load path
as shown, and when that load path reaches the limit curve, failure will result. Note
that the vertical axis corresponds to e = 0, and Py is the capacity of the column if
concentrically loaded, as given by Eq. (9.3b). The horizontal axis corresponds to an
infinite value of e, that is, pure bending at moment capacity M,. Small eccentricities
will produce failure governed by concrete compression, while large eccentricities
give a failure triggered by yielding of the tension steel.

For a given column, selected for trial, the interaction diagram is most easily
constructed by selecting successive choices of neutral axis distance ¢, from infinity
(axial load with eccentricity 0) to a very small value found by trial to give P, = 0
(pure bending). For each selected value of ¢, the steel strains and stresses and the
concrete force are easily calculated as follows. For the tension steel,

&, = ¢, d ; ¢ 9.9)
ﬁ=q&i%£sﬁ (9.10)
while for the compression steel,
el =6, <=1 ©.11)
f =¢kE,~ - d’ f, < 80,000 psi 9.12)
The concrete stress block has depth
a=pc<h 9.13)
and consequently the concrete compressive resultant is
C = 0.85f/ab 9.14)
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The nominal axial force P, and nominal moment M, corresponding to the selected
neutral axis location can then be calculated from Eqgs. (9.7) and (9.8), respectively, and
thus a single point on the strength interaction diagram is established. The calculations
are then repeated for successive choices of neutral axis to establish the curve defining
the strength limits, as in Fig. 9.10. The calculations, of a repetitive nature, are easily
programmed for the computer or performed using a spreadsheet.

BALANCED FAILURE

As already noted, the interaction curve is divided into a compression failure range and
a tension failure range.” It is useful to define what is termed a balanced failure mode
and corresponding eccentricity e, with the load P, and moment M,, acting in combina-
tion to produce failure, with the concrete reaching its limiting strain ¢, at precisely the
same instant that the tensile steel on the far side of the column reaches yield strain.
This point on the interaction diagram is the dividing point between compression
failure (small eccentricities) and tension failure (large eccentricities).

The values of P, and M, are easily computed with reference to Fig. 9.9. For
balanced failure,

Eu
c=o=d (9.15)
and
a = a, = ﬂle (916)

Equations (9.9) through (9.14) are then used to obtain the steel stresses and the
compressive resultant, after which P, and M,, are found from Egs. (9.7) and (9.8).

Note that, in contrast to beam design, one cannot restrict column designs such
that yielding failure rather than crushing failure would always be the result of over-
loading. The type of failure for a column depends on the value of eccentricity e,
which in turn is defined by the load analysis of the building or other structure.

It is important to observe, in Fig. 9.10, that in the region of compression fail-
ure the larger the axial load P,, the smaller the moment M, that the section is able
to sustain before failing. However, in the region of tension failure, the reverse is true;
the larger the axial load, the larger the simultaneous moment capacity. This is easily
understood. In the compression failure region, failure occurs through overstraining
of the concrete. The larger the concrete compressive strain caused by the axial load
alone, the smaller the margin of additional strain available for the added compression
caused by bending. On the other hand, in the tension failure region, yielding of the
steel initiates failure. If the member is loaded in simple bending to the point at which
yielding begins in the tension steel, and if an axial compression load is then added,
the steel compressive stresses caused by this load will be superimposed on the pre-
vious tensile stresses. This reduces the total steel stress to a value below its yield
strength. Consequently, an additional moment can now be sustained of such magni-
tude that the combination of the steel stress from the axial load and the increased
moment again reaches the yield strength.

" The terms compression failure range and tension failure range are used for the purpose of general description and are distinct from
tension-controlled and compression-controlled failures, as described in Chapter 4 and Section 9.9.
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The typical shape of a column interaction diagram shown in Fig. 9.10 has
important design implications. In the range of tension failure, a reduction in axial
load may produce failure for a given moment. When performing a frame analysis,
the designer must consider all combinations of loading that may occur, including the
combination that produces minimum axial load paired with a moment because the
combined loading may place the column in the tension failure range. Within this
range, only the compressive load that is certain to be present should be used to
calculate the capacity of the column subject to the given moment.

EXAMPLE 9.1

Column strength interaction diagram. A 12 X 20 in. column is reinforced with four No. 9
(No. 29) bars of area 1.0 in” each, one in each corner as shown in Fig. 9.11a. The concrete
cylinder strength is f; = 4000 psi and the steel yield strength is 60 ksi. Determine () the load
P,, moment M,, and corresponding eccentricity e, for balanced failure; (b) the load and
moment for a representative point in the tension failure region of the interaction curve; (c) the
load and moment for a representative point in the compression failure region; and (d) the axial
load strength for zero eccentricity. Then (e) sketch the strength interaction diagram for this
column. Finally, (f) design the transverse reinforcement, based on ACI Code provisions.
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FIGURE 9.11

Column interaction diagram for Example 9.1: (a) cross section; (b) strain distribution; (c) stresses and forces; and

(d) strength interaction diagram.
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SOLUTION.
(a) The neutral axis for the balanced failure condition is easily found from Eq. (9.15) with
£,=0.003 and &, = 60/29,000 = 0.0021:

0.003
0.0051

¢y =17.5 x = 10.3 in.

giving a stress-block depth @ = 0.85 X 10.3 = 8.76 in. For the balanced failure condition,
by definition, f; = f,. The compressive steel stress is found from Eq. (9.12):

£/ = 0.003 x 29,000 % —659ksi  but <60 ksi

confirming that the compression steel, too, is at the yield. The concrete compressive resultant is
C =0.85 x4 x 876 x 12 = 357 kips
The balanced load P, is then found from Eq. (9.7) to be
P, =0.85 flab + f/A; — [, A,
=357 + 60 x 2.0 — 60 x 2.0 = 357 kips
and the balanced moment from Eq. (9.8) is

’ h a 7oAt h h
M, =085fab (P - s rpa(B_a)-ra(a=t
b Ogsf‘“b(z 2)+f‘ ‘ (2 d) JAs (d 2)

= 357 (10 — 4.38) + 60 x 2.0 (10 — 2.5) + 60 x 2.0 (17.5 — 10)
= 3806 in-kips = 317 ft-kips
The corresponding eccentricity of load is e, = 3806/357 = 10.66 in.
(b) Any choice of ¢ smaller than c, = 10.3 in. will give a point in the tension failure region

of the interaction curve, with eccentricity larger than e,. For example, choose ¢ = 5.0 in.
By definition, f; = f. The compressive steel stress is found to be

50-25

/i =0.003 x 29,000 = 43.5 ksi

With the stress-block depth @ = 0.85 X 5.0 = 4.25, the compressive resultant is C = 0.85 X
4 x 4.25 x 12 = 173 kips. Then from Eq. (9.7), the thrust is

P, =173 4435 x 2.0 — 60 x 2.0 = 140 kips
and the moment capacity from Eq. (9.8) is

M, = 173 (10 — 2.12) + 43.5 X 2.0 (10 — 2.5) + 60 x 2.0 (17.5 — 10)
= 2916 in-kips = 243 ft-kips

giving eccentricity e = 2916/140 = 20.83 in., well above the balanced value.

(c) Now selecting a ¢ value larger than c, to demonstrate a compression failure point on the
interaction curve, choose ¢ = 18.0 in., for which a = 0.85 X 18.0 = 15.3 in. The compres-
sive concrete resultant is C = 0.85 X 4 X 15.3 X 12 = 624 kips. From Eq. (9.10) the stress
in the steel at the left side of the column is

_ d——c _ 17.5 — 18.0 _ .

fi = €.E; — = 0.003 x 29,000 EEETY —2 ksi
Note that the negative value of f; indicates correctly that A; is in compression if ¢ is greater
than d, as in the present case. The compressive steel stress is found from Eq. (9.12) to be

c—d’ 18.0 — 2.5

= 0.003 x 29,000 ———= =75 ksi but < 60 ksi

= e
fo = ks 18.0
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Then the column capacity is

P, =624 + 60 X 2.0 + 2 x 2.0 = 748 kips
M, = 624 (10 — 7.65) + 60 x 2.0 (10 — 2.5) — 2 x 2.0 (17.5 — 10)
= 2336 in-kips = 195 ft-kips
giving eccentricity e = 2336/748 = 3.12 in.

The axial strength of the column if concentrically loaded corresponds to ¢ = oo and e = 0.
For this case,

P, = 085f/A, + f,Ay
=0.85x 4 x 12 X 20 + 60 x 4.0 = 1056 kips

Note that, for this as well as the preceding calculations, subtraction of the concrete
displaced by the steel has been neglected. For comparison, if the deduction were made
in the last calculation as done in Fig. 9.3b,

P, =085f/(A, — Ay + fLAy
=0.85 X 4(12 x 20 — 4) + (60 x 4.0) = 1042 kips

The error in neglecting this deduction is only 1 percent in this case; the difference generally
can be neglected, except perhaps for columns with reinforcement ratios close to the maximum
of 8 percent. In the case of design aids, however, such as those presented in Refs. 9.2 and 9.7
and discussed in Section 9.10, the deduction is usually included for all reinforcement ratios.

From the calculations just completed, plus similar repetitive calculations that will not be
given here, the strength interaction curve of Fig. 9.11d is constructed. Note the characteris-
tic shape, described earlier, the location of the balanced failure point as well as the “small
eccentricity” and “large eccentricity” points just found, and the axial load capacity.

In the process of developing a strength interaction curve, it is possible to select the
values of steel strain g, as done in step a, for use in steps b and c. Selecting &, uniquely
establishes the neutral axis depth ¢, as shown by Egs. (9.9) and (9.15), and is useful in
determining M, and P, for values of steel strain that correspond to changes in the strength
reduction factor ¢, as will be discussed in Section 9.9.

The design of the column ties will be carried out following the ACI Code restrictions. For
the minimum permitted tie, a No. 3 (No. 10) bar, which has a diameter of % in., used with
No. 9 (No. 29) longitudinal bars having a diameter of 1.128 in a column the least dimen-
sion of which is 12 in., the tie spacing is not to exceed

3 .
48 x = =18 in.
2 in
16 x 1.128 = 18.05 in.
b =12 in.

The last restriction controls in this case, and No. 3 (No. 10) ties will be used at 12 in.
spacing, detailed as shown in Fig. 9.11a. Note that the permitted spacing as controlled by
the first and second criteria, 18 in., must be reduced because of the 12 in. column dimension.

9.6 DISTRIBUTED REINFORCEMENT

When large bending moments are present, it is most economical to concentrate all or
most of the steel along the outer faces parallel to the axis of bending. Such arrange-
ments are shown in Figs. 9.3e to . On the other hand, with small eccentricities so
that axial compression is predominant, and when a small cross section is desired, it
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is often advantageous to place the steel more uniformly around the perimeter, as in
Fig. 9.3a to d. In this case, special attention must be paid to the intermediate bars,
that is, those that are not placed along the two faces that are most highly stressed.
This is so because when the ultimate load is reached, the stresses in these interme-
diate bars are usually below the yield point, even though the bars along one or both
extreme faces may be yielding. This situation can be analyzed by a simple and obvi-
ous extension of the previous analysis based on compatibility of strains. A strength
interaction diagram may be constructed just as before. A sequence of choices of neu-
tral axis location results in a set of paired values of P, and M,
a particular eccentricity of load.

EXAMPLE 9.2

FIGURE 9.12

Column in Example 9.2:

(a) cross section; (b) strain
distribution; and (c) stresses
and forces.
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Analysis of eccentrically loaded column with distributed reinforcement.
Fig. 9.12a is reinforced with ten No. 11 (No. 36) bars distributed around the perimeter as
shown. Load P, will be applied with eccentricity e about the strong axis. Material strengths
are f, = 6000 psi and f, = 75 ksi. Find the load and moment corresponding to a failure point

with neutral axis ¢ = 18 in. from the right face.
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SoLuTtioN. When the concrete reaches its limit strain of 0.003, the strain distribution is that
shown in Fig. 9.12b, the strains at the locations of the four bar groups are found from similar
triangles, after which the stresses are found by multiplying strains by E; = 29,000 ksi applying
the limit value f:

e, = 0.00258 fs1 = 74.8 ksi compression

£, = 0.00142 fio = 41.2 ksi compression

e = 0.00025 fi3 7.3 ksi compression

e, = 0.00091 fi = 26.4 ksi tension

For f/ = 6000 psi, #; = 0.75 and the depth of the equivalent rectangular stress block is
a =0.75 x 18 = 13.5 in. The concrete compressive resultant is C = 0.85 X 6 X 13.5 X 12 =
826 kips, and the respective steel forces in Fig. 9.12¢ are
C,; = 4.68 x 74.8 = 350 kips
Cy = 3.12 x 41.2 = 129 kips
Cy=3.12x73 = 23Kkips
Ty = 4.68 x 26.4 = 124 kips
The axial load and moment that would produce failure for a neutral axis 18 in. from the right
face are found by the obvious extensions of Egs. (9.7) and (9.8):
P, =826 + 350 + 129 + 23 — 124 = 1204 kips
M, = 826 (13 — 6.75) + 350 (13 — 2.5) + 129 (13 — 9.5) — 23 (13 - 9.5)
+ 124 (13 - 2.5)
10,510 in-kips
876 ft-kips

The corresponding eccentricity is e = 10,510/1204 = 8.73 in. Other points on the interaction
diagram can be computed in a similar way.
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Two general conclusions can be made from this example:

1. Even with the relatively small eccentricity of about one-third of the depth of the
section, only the bars of group 1 just barely reached their yield strain, and conse-
quently their yield stress. All other bar groups of the relatively high-strength steel
that was used are stressed far below their yield strength, which would also have been
true for group 1 for a slightly larger eccentricity. It follows that the use of the more
expensive high-strength steel is economical in symmetrically reinforced columns
only for very small eccentricities, for example, in the lower stories of tall buildings.

2. The contribution of the intermediate bars of groups 2 and 3 to both P, and M, is quite
small because of their low stresses. Again, intermediate bars, except as they are needed
to hold ties in place, are economical only for columns with very small eccentricities.

9.7 UNSYMMETRICAL REINFORCEMENT

Most reinforced concrete columns are symmetrically reinforced about the axis of
bending. However, for some cases, such as the columns of rigid portal frames in which
the moments are uniaxial and the eccentricity is large, it is more economical to use
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FIGURE 9.13

Plastic centroid of an

unsymmetrically reinforced

column.
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an unsymmetrical pattern of bars, with most of the bars on the tension side, as shown
in Fig. 9.13. Such columns can be analyzed by the same strain compatibility approach
as described above. However, for an unsymmetrically reinforced column to be loaded
concentrically, the load must pass through a point known as the plastic centroid. The
plastic centroid is defined as the point of application of the resultant force for the col-
umn cross section (including concrete and steel forces) if the column is compressed
uniformly to the failure strain &, = 0.003 over its entire cross section. Eccentricity of
the applied load must be measured with respect to the plastic centroid, because only
then will e = 0 correspond to an axial load with no moment. The location of the plastic
centroid for the column of Fig. 9.13 is the resultant of the three internal forces to be
accounted for. Its distance from the left face is

0.85(/bh’J2 + f,A,d + f,Ad'
©0.85fbh + f,A, + f,A!

9.17)

Clearly, in a symmetrically reinforced cross section, the plastic centroid and the
geometric center coincide.

CIRCULAR COLUMNS

The transverse reinforcement in circular columns may consist of ties or spirals. It was
mentioned in Section 9.2 that when load eccentricities are small, spirally reinforced
columns show greater toughness, that is, greater ductility, than tied columns, although
this difference fades out as the eccentricity is increased. For this reason, as discussed
in Section 9.2, the ACI Code provides a more favorable strength reduction factor
¢ = 0.75 for spiral columns, compared with ¢ = 0.65 for tied columns. Also, the max-
imum stipulated design load for entirely or nearly axially loaded members is larger for
spirally reinforced members than for comparable tied members (see Section 9.9). It
follows that spirally reinforced columns permit a somewhat more economical utiliza-
tion of the materials, particularly for small calculated eccentricities, although the cost
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FIGURE 9.14
Circular column with
compression plus bending.
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of spirals is greater than the cost of circular ties. A further advantage lies in the fact
that the circular shape is frequently desired by the architect.

Figure 9.14 shows the cross section of a circular-reinforced concrete column.
The reinforcement is as required for a spirally reinforced column, where six or
more longitudinal bars of equal size must be provided for longitudinal reinforce-
ment. The strain distribution at the instant at which the ultimate load is reached
is shown in Fig. 9.14b. Bar groups 2 and 3 are seen to be strained to much smaller
values than groups 1 and 4. The stresses in the four bar groups are easily found.
For any of the bars with strains in excess of yield strain &, = f,/E;, the stress at
failure is evidently the yield stress of the bar. For bars with smaller strains, the
stress is found from f;, = ¢,E,.

One then has the internal forces shown in Fig. 9.14c¢. Note that the situation is
analogous to that discussed in Sections 9.4 to 9.6 for rectangular columns. Calcula-
tions for P, and M, can be carried out exactly as in Example 9.1, except that for
circular columns the concrete compression zone subject to the equivalent rectangular
stress distribution has the shape of a segment of a circle, shown shaded in Fig. 9.14a.

Although the shape of the compression zone and the strain variation in the
different groups of bars make longhand calculations awkward, no new principles are
involved and computer solutions are easily developed.

Design or analysis of spirally reinforced columns is usually carried out by means
of design aids, such as Graphs A.13 to A.16 of Appendix A. Additional tables and
graphs are available, for example, in Ref. 9.7. In developing such design aids, the
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entire steel area is often assumed to be arranged in a uniform, concentric ring, rather
than being concentrated in the actual bar locations; this simplifies calculations with-
out noticeably affecting the results if the column contains at least eight longitudinal
bars. When fewer bars are used, the interaction curve should be calculated based on
the weakest orientation in bending.

Note that to qualify for the more favorable safety provisions for spiral columns,
the reinforcement ratio of the spiral must be at least equal to that given by Eq. (9.5)
for reasons discussed in Section 9.2.

ACl CODE PROVISIONS FOR COLUMN DESIGN

For columns, as for all members designed according to the ACI Code, adequate safety
margins are established by applying load factors to the service loads and strength
reduction factors to the nominal strengths. Thus, for columns, ¢P, > P, and pM, > M,
are the basic safety criteria. For most members subject to axial compression or com-
pression plus flexure (compression-controlled members, as described in Chapter 4),
the ACI Code provides basic reduction factors:

¢ = 0.65 for tied columns
¢ = 0.75 for spirally reinforced columns

The spread between these two values reflects the added safety furnished by the greater
toughness of spirally reinforced columns.

There are various reasons why the ¢ values for columns are lower than those for
flexure or shear (0.90 and 0.75, respectively). One is that the strength of underrein-
forced flexural members is not much affected by variations in concrete strength, since
it depends primarily on the yield strength of the steel, while the strength of axially
loaded members depends strongly on the concrete compressive strength. Because the
cylinder strength of concrete under site conditions is less closely controlled than
the yield strength of mill-produced steel, a larger occasional strength deficiency must
be allowed for. This is particularly true for columns, in which concrete, being placed
from the top down in a long, narrow form, is more subject to segregation than in
horizontally cast beams. Moreover, electrical and other conduits are frequently located
in building columns; this reduces their effective cross sections, often to an extent
unknown to the designer, even though this is poor practice and restricted by the ACI
Code. Finally, the consequences of a column failure, say in a lower story, would be
more catastrophic than those of a single beam failure in the same building.

For high eccentricities, as the eccentricity increases from e, to infinity (pure
bending), the ACI Code recognizes that the member behaves progressively more like
a flexural member and less like a column. As described in Chapter 4 and shown in
Fig. 4.9d, this is acknowledged in ACI Code 21.2.2 by providing a linear transition
in ¢ from values of 0.65 and 0.75 to 0.90 as the net tensile strain in the extreme
tensile steel ¢, increases from &, = f,/E; (which may be taken as 0.002 for Grade
60 reinforcement) to &, + 0.003.

Within the transition between tension-controlled and compression-controlled
sections:

(& — &)

¢ =0.75+ 0.15 TO; for sections with an ACI spiral (9.18a)
=065+ 025 2 for other secti (9.18b)
=0. .25 ————— for other sections .
0.003
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ACI safety provisions
superimposed on column
strength interaction diagram.

9.10
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Ties: ¢ =065 a=0.80
Spirals: ¢p = 0.75; o = 0.85

Nominal strength

PPy

adPg

ACI design
strength

At the other extreme, for columns with very small or zero calculated eccen-
tricities, the ACI Code recognizes that accidental construction misalignments and
other unforeseen factors may produce actual eccentricities in excess of these small
design values. Also, the concrete strength under high, sustained axial loads may be
somewhat smaller than the short-term cylinder strength. Therefore, regardless of the
magnitude of the calculated eccentricity, ACI Code 22.4.2 limits the maximum
design strength to 0.80¢P, for tied columns (with ¢ = 0.65) and to 0.85¢P, for
spirally reinforced columns (with ¢ = 0.75), where P, is the nominal strength of the
axially loaded column with zero eccentricity [see Eq. (9.4)].

The effects of the safety provisions of the ACI Code are shown in Fig. 9.15.
The solid curve labeled “nominal strength” is the same as Fig. 9.10 and represents
the actual carrying capacity, as nearly as can be predicted. The smooth curve shown
partially dashed, then solid, then dashed, represents the basic design strength obtained
by reducing the nominal strengths P, and M,, for each eccentricity, by ¢ = 0.65 for
tied columns and ¢ = 0.75 for spiral columns. The horizontal cutoff at a¢P, repre-
sents the maximum design load stipulated in the ACI Code for small eccentricities,
that is, large axial loads, as just discussed. At the other end, for large eccentricities,
that is, small axial loads, the ACI Code permits a linear transition of ¢ from 0.65
or 0.75, applicable for &, < f,/E, (or 0.002 for Grade 60 reinforcement) to 0.90 at
€ = &, + 0.003. By definition, ¢, = f,/E; at the balanced condition. The effect of
the transition in ¢ is shown at the lower right end of the design strength curve.'

As mentioned in Section 4.5c, the spacing between longitudinal reinforcement
in columns must be at least l% dy, 1% in., and % the maximum aggregate size.

DESIGN AIDS

The design of eccentrically loaded columns using the strain compatibility method of
analysis described requires that a trial column be selected. The trial column is then inves-
tigated to determine if it is adequate to carry any combination of P, and M, that may act
on it should the structure be overloaded, that is, to see if P, and M, from the analysis of

" While the general intent of the ACI Code safety provisions relating to eccentric columns is clear and fundamentally sound, the end result is a
set of strangely shaped column design curves following no discernible physical law, as is demonstrated in Fig. 9.15. Improved column safety
provisions, resulting in a smooth design curve appropriately related to the strength curve, would be simpler to use and more rational as well.
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FIGURE 9.16

Column cross section and
loading for use with
interaction diagrams in
Graphs A.5 through A.16 in
Appendix A.

the structure, when plotted on a strength interaction diagram as in Fig. 9.15, fall within
the region bounded by the curve labeled “ACI design strength.” Furthermore, economical
design requires that the controlling combination of P, and M, be close to the limit curve.
If these conditions are not met, a new column must be selected for trial.

While a simple computer program or spreadsheet can be developed, based on
the strain compatibility analysis, to calculate points on the design strength curve, and
even to plot the curve, for any trial column, in practice, design aids are used such
as are available in handbooks and special volumes published by the American Con-
crete Institute (Ref. 9.7) and the Concrete Reinforcing Steel Institute (Ref. 9.2). They
cover the most frequent practical cases, such as symmetrically reinforced rectangular
and square columns and circular spirally reinforced columns. There are also a
number of commercially available computer programs (for example, spCOLUMN,
Structure Point, Skokie, Illinois).

Graphs A.5 through A.16 of Appendix A are representative of column design
charts (as found in Ref. 9.7), in this case for concrete with £/ = 4000 psi and steel with
yield strength f;, = 60 ksi, for varying cover distances.” Reference 9.7 includes charts for
a broad range of material strengths. Graphs A.5 through A.8 are drawn for rectangular
columns with reinforcement distributed around the column perimeter; Graphs A.9 through
A.12 are for rectangular columns with reinforcement along two opposite faces. Circular
columns with bars in a circular pattern are shown in Graphs A.13 through A.16.

The graphs consist of nominal strength interaction curves of the type shown in
Fig. 9.15. However, instead of plotting P, versus M,, corresponding parameters have
been used to make the charts more generally applicable, that is, load is plotted as
K, = P,/(f!A,), while moment is expressed as R, = P,e/(f.Ah). Families of curves
are drawn for various values of p, = A, /A, between 0.01 and 0.08. The graphs also
include radial lines representing different eccentricity ratios e/h, as well as lines
representing different ratios of stress f;/f, or values of strain &, = 0.002 and 0.005
in the extreme tension steel.

Charts such as these permit the direct design of eccentrically loaded columns
throughout the common range of strength and geometric variables. They may be
used in one of two ways as follows. For a given factored load P, and equivalent
eccentricity e = M, /P,:

1. (a) Select trial cross-sectional dimensions b and h (refer to Fig. 9.16).
(b) Calculate the ratio y (see Fig. 9.16) based on required cover distances to the
bar centroids, and select the corresponding column design chart.
(c) Calculate K, = P,/(¢f/A,) and R, = P.e/(¢f.Ah), where A, = bh.
(d) From the graph, for the values found in (c¢), read the required reinforcement
ratio p,.
(e) Calculate the total steel area A, = p,bh.
2. (a) Select the reinforcement ratio p,.
(b) Choose a trial value of /4 and calculate ¢/h and y.
(¢) From the corresponding graph, read K, = P,/(¢f/A,) and calculate the
required A,.
(d) Calculate b = A,/h.
(e) Revise the trial value of A if necessary to obtain a well-proportioned section.
() Calculate the total steel area A, = p,bh.

" Graphs A.5 through A.16 were developed for the specific bar configurations shown on the graphs. The curves exhibit changes in curvature,
especially apparent near the balanced load, that result when bars within the cross section yield. The values provided in the graphs, however,
are largely insensitive to the exact number of bars in the cross section and may be used for columns with similar bar configurations, but with

smaller or larger numbers of bars.
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Use of the column design charts will be illustrated in Examples 9.3 and 9.4.
Other design aids pertaining to ties and spirals, as well as recommendations
for standard practice, will be found in Refs. 9.2 and 9.7.

EXAMPLE 9.3

Selection of reinforcement for column of given size. In a three-story structure, an exterior
column is to be designed for a service dead load of 222 kips, maximum live load of 297 kips,
dead load moment of 136 ft-kips, and live load moment of 194 ft-kips. The minimum live
load compatible with the full live load moment is 166 kips, obtained when no live load is
placed on the roof but a full live load is placed on the second floor. Architectural considerations
require that a rectangular column be used, with dimensions » = 20 in. and 4 = 25 in.

(a) Find the required column reinforcement for the condition that the full live load acts.

(b) Check to ensure that the column is adequate for the condition of no live load on the roof.
Material strengths are f; = 4000 psi and f, = 60,000 psi.

SOLUTION.

(a) The column will be designed initially for full load, then checked for adequacy when live
load is partially removed. According to the ACI safety provisions, the column must be
designed for a factored load P, = 1.2 X 222 + 1.6 X 297 = 742 kips and a factored moment
M, =1.2x 136 + 1.6 X 194 = 474 ft-kips. A column 20 X 25 in. is specified, and rein-
forcement distributed around the column perimeter will be used. Bar cover is estimated to
be 2.5 in. from the column face to the steel centerline for each bar. The column parameters
(assuming bending about the strong axis) are

P, 742

DfA,  0.65x 4 x 500

M, 474 x 12

¢fiAHh  0.65 X 4 X500 x 25

With 2.5 in. cover, the parameter y = (25 — 5)/25 = 0.80. For this column geometry
and material strengths, Graph A.7 of Appendix A applies. From that figure, with the
calculated values of K, and R,, p, = 0.024. Thus, the required reinforcement is
A, = 0.024 x 500 = 12.00 in*. Twelve No. 9 (No. 29) bars will be used, one at each
corner and two evenly spaced along each face of the column, providing A, = 12.00 in”.

(b) With the roof live load absent, the column will carry a factored load P, = 1.2 X 222 + 1.6 X
166 = 532 kips and factored moment M, = 474 ft-kips, as before. Thus, the column param-
eters for this condition are

P, 532

K, = = = 0.409
@fiA,  0.65 x4 x 500

M, 474 x 12

R, = = =0.175
Gf AR 0.65 % 4 x 500 X 25

and y = 0.80 as before. From Graph A.7 it is found that a reinforcement ratio of
p, = 0.017 is sufficient for this condition, less than that required in part (), so no mod-
ification is required.

Selecting No. 3 (No. 10) ties for trial, the maximum tie spacing must not exceed
48 x 0.375 = 18 in.,, 16 x 1.128 = 18.05 in., or 20 in. Spacing is controlled by the
diameter of the ties, and No. 3 (No. 10) ties will be used at 18 in. spacing, in the pattern
shown in Fig. 9.3d.
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EXAMPLE 9.4 Selection of column size for a given reinforcement ratio. A column is to be designed to

carry a factored load P, = 481 kips and factored moment M, = 492 ft-kips. Material strengths
f, = 60,000 psi and f; = 4000 psi are specified. Cost studies for the particular location indi-
cate that a reinforcement ratio p, of about 0.03 is optimum. Find the required dimensions
b and h of the column. Bending will be about the strong axis, and an arrangement of steel
with bars concentrated in two layers, adjacent to the outer faces of the column and parallel
to the axis of bending, will be used.

SorutioN. It is convenient to select a trial column dimension 4, perpendicular to the axis
of bending; a value of 4 = 25 in. will be selected, and assuming a concrete cover of 2.5 in.
to the bar centers, the parameter y = 0.80. Graph A.11 of Appendix A applies. For the stated
loads, the eccentricity is e = 492 X 12/481 = 12.3 in.,, and e/h = 12.3/25 = 0.49. From
Graph A.11 with ¢/h = 0.49 and p, = 0.03, K, = P,,/¢f/A, = 0.51. For the trial dimension
h = 25 in., the required column width is

Py _ 481
GfKh 0.65 X 4 % 0.51 x 25

= = 14.5 in.

A column 15 x 25 in. will be used, for which the required steel area is A;; = 0.03 X 15 X 25 =
11.25 in”. Eight No. 11 (No. 36) bars will be used, providing A, = 12.48 in%, arranged in two
layers of four bars each, similar to the sketch shown in Graph A.11.
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BIAXIAL BENDING

The methods discussed in the preceding sections permit rectangular or square columns
to be designed if bending is present about only one of the principal axes. There are
situations, by no means exceptional, in which axial compression is accompanied by
simultaneous bending about both principal axes of the section. Such is the case, for
instance, in corner columns of buildings where beams and girders frame into the col-
umns in the directions of both walls and transfer their end moments into the columns
in two perpendicular planes. Similar loading may occur at interior columns, particu-
larly if the column layout is irregular.
The situation with respect to strength of biaxially loaded columns is shown in
Fig. 9.17. Let X and Y denote the directions of the principal axes of the cross section.
In Fig. 9.17a, the section is shown subject to bending about the Y axis only, with
load eccentricity e, measured in the X direction. The corresponding strength inter-
action curve is shown as case (a) in the three-dimensional sketch in Fig. 9.17d and
is drawn in the plane defined by the axes P, and M,,. Such a curve can be established
by the usual methods for uniaxial bending. Similarly, Fig. 9.17b shows bending about
the X axis only, with eccentricity e, measured in the Y direction. The corresponding
interaction curve is shown as case (b) in the plane of P, and M, in Fig. 9.17d. For
case (c), which combines X and Y axis bending, the orientation of the resultant
eccentricity is defined by the angle A:
e, Mny
A = arctan — = arctan —
€y nx
Bending for this case is about an axis defined by the angle @ with respect to the X
axis. The angle A in Fig. 9.17¢ establishes a plane in Fig. 9.17d, passing through the
vertical P, axis and making an angle A with the M,, axis, as shown. In that plane,
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FIGURE 9.17

Interaction diagram for
compression plus biaxial
bending: (@) uniaxial bending
about Y axis; (b) uniaxial
bending about X axis;

(c) biaxial bending about
diagonal axis; and

(d) interaction surface.
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Plane of Case (a)
constant P,

Load contour

MnxO

Plane of
constant A

(d)

column strength is defined by the interaction curve labeled case (c¢). For other values
of A, similar curves are obtained to define a failure surface for axial load plus biaxial
bending, as shown in Fig. 9.17d. The surface is exactly analogous to the interaction
curve for axial load plus uniaxial bending. Any combination of P,, M,,, and M, fall-
ing inside the surface can be applied safely, but any point falling outside the surface
would represent failure. Note that the failure surface can be described either by a set
of curves defined by radial planes passing through the P, axis, as shown by case (c),
or by a set of curves defined by horizontal plane intersections, each for a constant P,,
defining load contours.

Constructing such an interaction surface for a given column would appear to
be an obvious extension of uniaxial bending analysis. In Fig. 9.17¢, for a selected
value of 6, successive choices of neutral axis distance ¢ could be taken. For each,
using strain compatibility and stress-strain relations to establish bar forces and the
concrete compressive resultant, then using the equilibrium equations to find P,, M,,,
and M,,, one can determine a single point on the interaction surface. Repetitive
calculations, easily done by computer, then establish sufficient points to define the
surface. The triangular or trapezoidal compression zone, as shown in Fig. 9.17¢, is
a complication, and in general the strain in each reinforcing bar will be different,
but these features can be incorporated.

The main difficulty, however, is that the neutral axis will not, in general, be
perpendicular to the resultant eccentricity, drawn from the column center to the load
P,. For each successive choice of neutral axis, there are unique values of P,, M,,, and
M,,, and only for special cases will the ratio of M, /M, be such that the eccentricity
is perpendicular to the neutral axis chosen for the calculation. The result is that, for
successive choices of ¢ for any given 6, the value of A in Fig. 9.17¢ and d will vary.
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Points on the failure surface established in this way will wander up the failure surface
for increasing P,, not representing a plane intersection, as shown for case (c) in
Fig. 9.174.

In practice, the factored load P, and the factored moments M,, and M,, to be
resisted are known from the frame analysis of the structure. Therefore, the actual
value of A = arctan(M,,/M,,,) is established, and one needs only the curve of case (c),
Fig. 9.17d, to test the adequacy of the trial column. An iterative computer method
to establish the interaction line for the particular value of A that applies will be
described in Section 9.14.

Alternatively, simple approximate methods are widely used. These will be
described in Sections 9.12 and 9.13.

LOAD CONTOUR METHOD

The load contour method is based on representing the failure surface of Fig. 9.17d by
a family of curves corresponding to constant values of P, (Ref. 9.8). The general form
of these curves can be approximated by a nondimensional interaction equation

M\ M, \?
(Mnxo) + ( Mny()) =1.0 (9.19)
where
M, = P,e,
Mo = M,, when M,, = 0
M,; = P,e,

M,y = M, when M,, =0

and «; and a, are exponents depending on column dimensions, amount and distribu-
tion of steel reinforcement, stress-strain characteristics of steel and concrete, amount
of concrete cover, and size of transverse ties or spiral. When a; = @, = a, the shapes of
such interaction contours are as shown in Fig. 9.18 for specific o values.

Calculations reported by Bresler in Ref. 9.9 indicate that a falls in the range
from 1.15 to 1.55 for square and rectangular columns. Values near the lower end of
that range are the more conservative. Methods and design aids permitting a more
defined estimation of a are found in Ref. 9.7.

In practice, the values of P,, M,,, and M,, are known from the analysis of the
structure. For a trial column section, the values of M, and M,,, corresponding to the
load P,/¢ can easily be found by the usual methods for uniaxial bending. Then replac-
ing M, with M,,./¢ and M, with M,,/¢ and using a@; = @, = a in Eq. (9.19), or alter-
natively by plotting (M,,/¢)/M,, and (M,,/¢)/M,,, in Fig. 9.18, it can be confirmed
that a particular combination of factored moments falls within the load contour (safe
design) or outside the contour (failure), and the design modified if necessary.

An approximate approach to the load contour method, in which the curved load
contour is represented by a bilinear approximation, will be found in Ref. 9.10. It
leads to a method of trial design in which the biaxial bending moments are repre-
sented by an equivalent uniaxial bending moment. Design charts based on this
approximate approach will be found in the ACI Design Manual (Ref. 9.7). Trial
designs arrived at in this way should be checked for adequacy by the load contour
method, described above, or by the method of reciprocal loads that follows.
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FIGURE 9.18 p
Interaction contours at
constant P, for varying a.
(Adapted from Ref. 9.8.)

0 0.2 0.4 0.6 0.8 1.0
Mnx/MnxO

9.13 RECIPROCAL LOAD METHOD

A simple, approximate design method developed by Bresler (Ref. 9.9) has been sat-
isfactorily verified by comparison with results of extensive tests and accurate calcu-
lations (Ref. 9.11). It is noted that the column interaction surface in Fig. 9.17d can,
alternatively, be plotted as a function of the axial load P, and eccentricities e, = M, /P,
and e, = M, /P,, as is shown in Fig. 9.19a. The surface S, of Fig. 9.19a can be trans-
formed into an equivalent failure surface §,, as shown in Fig. 9.19b, where e, and e,

FIGURE 9.19 1
Interaction surfaces for the P, P,
reciprocal load method.

Approximating

plane surface S5 Actual failure

surface S,

Failure
surface S,

@) (b) P, approx.

I
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are plotted against 1/P, rather than P,. Thus, e, = e, = 0 corresponds to the inverse
of the capacity of the column if it were concentrically loaded P,, and this is plotted
as point C. For ¢, = 0 and any given value of e,, there is a load P,,, (corresponding
to moment M,,,) that would result in failure. The reciprocal of this load is plotted as
point A. Similarly, for e, = 0 and any given value of e,, there is a certain load P,
(corresponding to moment M,,) that would cause failure, the reciprocal of which is
point B. The values of P,,, and P, are easily established, for known eccentricities of
loading applied to a given column, using the methods already established for uniaxial
bending, or using design charts for uniaxial bending.

An oblique plane S, is defined by the three points: A, B, and C. This plane is
used as an approximation of the actual failure surface S,. Note that, for any point on
the surface S, (that is, for any given combination of e, and e,), there is a correspond-
ing plane §;. Thus, the approximation of the true failure surface S, involves an
infinite number of planes S determined by particular pairs of values of e, and e,,
that is, by particular points A, B, and C.

The vertical ordinate 1/P, e to the true failure surface will always be con-
servatively estimated by the distance 1/P,, 4y to the oblique plane ABC (extended),
because of the concave upward eggshell shape of the true failure surface. In other
words, 1/P, joprox 18 always greater than 1/P, ¢y, Which means that P, o« is always
less than P, exacr-

Bresler’s reciprocal load equation derives from the geometry of the approxi-
mating plane. It can be shown that

1 1 1 1

— = + - — (9.20)
Pn an() Pny() P()

where P, = approximate value of nominal load in biaxial bending with eccentricities
e and e,
P,,o = nominal load when only eccentricity e, is present (e, = 0)
P,o = nominal load when only eccentricity e, is present (e, = 0)
Py = nominal load for concentrically loaded column

Equation (9.20) has been found to be acceptably accurate for design purposes provided
P, > 0.10P,. It is not reliable where biaxial bending is prevalent and accompanied by
an axial force smaller than P,/10. In the case of such strongly prevalent bending, fail-
ure is initiated by yielding of the steel in tension, and the situation corresponds to the
lowest tenth of the interaction diagram of Fig. 9.17d. In this range, it is conservative
and accurate enough to neglect the axial force entirely and to calculate the section for
biaxial bending only.

Over most of the range for which the Bresler method is applicable, above
0.10Py, ¢ is constant, although for very small eccentricities the ACI Code imposes
an upper limit on the maximum design strength that has the effect of flattening the
upper part of the column strength interaction curve (see Section 9.9 and Graphs A.5
through A.16 of Appendix A). When using the Bresler method for biaxial bending,
it is necessary to use the uniaxial strength curve without the horizontal cutoff (as
shown by the lighter lines in the graphs of Appendix A) in obtaining values for use
in Eq. (9.20). The value of ¢P, obtained in this way should then be subject to the
restriction, as for uniaxial bending, that it must not exceed 0.80¢ P, for tied columns
and 0.85¢ P, for spirally reinforced columns.

In a typical design situation, given the size and reinforcement of the trial col-
umn and the load eccentricities e, and e,, one finds by computation or from design
charts the nominal loads P, and P, for uniaxial bending around the X and Y axes,
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respectively, and the nominal load P, for concentric loading. Then 1/P, is computed
from Eq. (9.20), and from that P, is calculated. The design requirement is that the
factored load P, not exceed ¢P,, as modified by the horizontal cutoff mentioned
above, if applicable.

EXAMPLE 9.5 Design of column for biaxial bending. The 12 x 20 in. column shown in Fig. 9.20 is rein-
forced with eight No. 9 (No. 29) bars arranged around the column perimeter, providing an area
A, = 8.00 in®. A factored load P, of 255 kips is to be applied with eccentricities e, = 3 in. and
e, = 6 in., as shown. Material strengths are f, = 4 ksi and f, = 60 ksi. Check the adequacy of
the trial design (a) using the reciprocal load method and () using the load contour method.

SOLUTION.

(a) By the reciprocal load method, first considering bending about the Y axis, y = 15/20 = 0.75
and e/h = 6/20 = 0.30. With the reinforcement ratio of A;,/bh = 8.00/240 = 0.033, using
the average of Graphs A.6 (y = 0.70) and A.7 (y = 0.80),

Py
0 avg) = 002066 _ o 6u p = 0.64 x 4 x 240 = 614 Kips
Py .
— = 1.31 Py =131 x 4 x 240 = 1258 kips
JeAq
Then for bending about the X axis, y = 5 = 0.58 (say 0.60) and e/h = ‘— = 0.25. Graph

A.5 of Appendix A gives

P .
= =065 Puo=0.65 X 4 X 240 = 624 kips
JiA

Py .

— =131 Py =131 X 4 x 240 = 1258 kips
JeAq

Substituting these values in Eq. (9.20) results in

11 1

1
=—+— - = 0.00244
P, 624 614 1258

from which P, = 410 kips. Thus, according to the Bresler method, the design load of
P, = 0.65 x 410 = 267 kips can be applied safely.

FIGURE 9.20 Y
Column cross section for T
Example 9.5.
2.5"— 15" | +—25"
=l
| |

e e
U N P % LI
-

. s

f L 6,,J 8 No. 9 (No. 29) bars

20//
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(b) By the load contour method, for Y axis bending with P, /(¢ f/A,) = 255 /(0.65 x 4 x 240) =
0.41. The average from Graphs A.6 and A.7 of Appendix A is

M,y 0.212 + 0.235
— (avg) = ——————

SfeAGh 2
Hence, M,,, = 0.224 X 4 x 240 x 20 = 4300 in-kips. Then for X axis bending, with
P./(@f!A,) = 0.41, as before, from Graph A.5,

=0.224

MnxO
0 0.186
JeAgh

So M,y = 0.186 X 4 x 240 x 12 = 2140 in-kips. The factored load moments about the
Y and X axes, respectively, are

M,, = 255 x 6 = 1530 in-kips
M,, = 255 x 3 = 765 in-kips

Adequacy of the trial design will now be checked using Eq. (9.19) with an exponent a
conservatively taken equal to 1.15. Then with M,, = M,,/¢ and M,, = M,,/¢p, that
equation indicates

(765/0.65)“5 (1530/0.65

115
= 0.502 . = 1.002
2140 2300 ) 0.502 + 0.500 00

This is close enough to 1.0 that the design would be considered safe by the load contour
method also.
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In actual practice, the values of a used in Eq. (9.19) should be checked, for
the specific column, because predictions of that equation are quite sensitive to
changes in a. In Ref. 9.10, it is shown that @« = log 0.5/log f, where values of f
can be tabulated for specific column geometries, material strengths, and load ranges
(see Ref. 9.7). For the present example, it can be confirmed from Ref. 9.7 that
£ = 0.56 and hence a = 1.19, approximately as chosen.

One observes that, in Example 9.5a, an eccentricity in the Y direction equal to
50 percent of that in the X direction causes a reduction in nominal capacity of
33 percent, that is, from 614 to 410 kips. For cases in which the ratio of eccentric-
ities is smaller, there is some justification for the frequent practice in framed struc-
tures of neglecting the bending moments in the direction of the smaller eccentricity.
In general, biaxial bending should be taken into account when the estimated eccen-
tricity ratio approaches or exceeds 0.2.

COMPUTER ANALYSIS FOR BIAXIAL BENDING
OF COLUMNS

Although the load contour method and the reciprocal load method are widely used in
practice, each has serious shortcomings. With the load contour method, selection of
the appropriate value of the exponent « is made difficult by a number of factors relat-
ing to column shape and bar distribution. For many cases, the usual assumption that
a; = a, is a poor approximation. Design aids are available, but they introduce further
approximations, for example, the use of a bilinear representation of the load contour.
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The reciprocal load method is very simple to use, but the representation of the curved
failure surface by an approximating plane is not reliable in the range of large eccen-
tricities, where failure is initiated by steel yielding.

With the general availability and wide use of computers, it is better to use sim-
pler methods to obtain faster, and more exact, solutions to the biaxial column problem.
Such a method is that developed by Ehsani (Ref. 9.12). A column strength interaction
curve is established for a trial column, exactly analogous to the curve for axial load
plus uniaxial bending, as described in Sections 9.3 to 9.7. However, the curve is
generated for the particular value of the eccentricity angle that applies, as determined
by the ratio of M,,/M,, from the structural frame analysis [see case (c) of Fig. 9.17d].
This is done by taking successive choices of neutral axis distance, measured in this
case along one face of the column from the most heavily compressed corner, from
very small (large eccentricity) to very large (small eccentricity), then calculating the
axial force P, and moments M,, and M,,. For each neutral axis distance, iteration is
performed with successive values of the orientation angle 6, Fig. 9.17¢, until
A = arctan (M,,/M,,) is in agreement with the value of A = arctan (M,,/M,,) from
the structural frame analysis. Thus, one point on curve (c) of Fig. 9.17d is established.
The sequence of calculations is repeated: another choice of neutral axis distance is
made, a value of @ is selected, the axial force and moments are calculated, A is found,
and the value of @ is iterated until A is correct. Thus, the next point is established,
and so on, until the complete strength interaction curve for that particular value of A
is complete. ACI Code safety provisions may then be imposed in the usual way, and
the adequacy of the proposed design tested, for the known load and moments, against
the design strength curve for the trial column.

The method is obviously impractical for manual calculation, but the iterative
steps are easily and quickly performed by computer, which can also provide a graph-
ical presentation of results. Full details will be found in Ref. 9.12.

A number of computer programs for biaxial bending are available commer-
cially, such as spCOLUMN (Structure Point, Skokie, Illinois).

BAR SPLICING IN COLUMNS AND TIES NEAR
BEAM-COLUMN JOINTS

The main vertical reinforcement in columns is usually spliced just above each floor,
or sometimes at alternate floors. This permits the column steel area to be reduced pro-
gressively at the higher levels in a building, where loads are smaller, and in addition
avoids handling and supporting very long column bars. Column steel may be spliced
by lapping, butt welding, various types of mechanical connections, or direct end bear-
ing, using special devices to ensure proper alignment of bars.

Special attention must be given to the problem of bar congestion at splices. Lap-
ping the bars, for example, effectively doubles the steel area in the column cross section
at the level of the splice and can result in problems placing concrete and meeting the
ACI Code requirement for minimum lateral spacing of bars (1.5d,, or 1.5 in.). To avoid
difficulty, column steel percentages are often limited in practice to not more than about
4 percent, or the bars are extended two stories and staggered splices are used.

The most common method of splicing column steel is the simple lapped bar splice,
with the bars in contact throughout the lapped length. It is standard practice to offset the
lower bars, as shown in Fig. 9.21, to permit the proper positioning of the upper bars. To
prevent outward buckling of the bars at the bottom bend point of such an offset, with
spalling of the concrete cover, it is necessary to provide special transverse reinforcement
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FIGURE 9.21
Splice details at typical
interior column. Beams
frame into joint from four
directions.
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in the form of extra ties. According to ACI Code 10.7.4.1, the slope of the inclined part
of an offset bar must not exceed 1 in 6. According to ACI Code 10.7.6.4, the transverse
steel must be provided to resist 1% times the horizontal component of the computed force
in the inclined part of the offset bar, and this special reinforcement must be placed not
more than 6 in. from the point of bend, as shown in Fig. 9.21.

Elsewhere in the column, above and below the floor, the usual spacing require-
ments described in Section 9.2 apply, except that ties must be located not more than
one-half the normal spacing s above the floor and must be located not farther than
one-half s below the lowest horizontal reinforcement in the slab, drop panel, or shear
cap, according to ACI Code 10.7.6.2. Where beams frame from four directions into a
joint, as shown in Fig. 9.21, ties may be terminated within the beam-column joint. In
this case, the top tie in a column must be located not more than 3 in. below the lowest
reinforcement in the shallowest beam or bracket. As a result of these requirements, if
beams are not present on four sides, such as for exterior columns, ties must be placed
vertically at the usual spacing through the depth of the joint up to a level not more than
one-half the usual spacing s below the lowest reinforcement in the slab.

Analogous requirements are found in ACI Code 10.7.6.3 and are illustrated in
Ref. 9.1 for spirally reinforced columns.

As discussed in Section 6.13, in frames subjected to lateral loading, a viable
alternative to splicing bars just above the floor is to splice them in the center half
of the column height, where the moment due to lateral loading is much lower than
at floor level. Splicing near midheight is mandatory in “special moment frames”
designed for seismic loading (Chapter 20). The use of midheight splices removes the
requirement for the special ties shown in Fig. 9.21 because bent bars are not used.

Column splices are mainly compression splices, although load combinations pro-
ducing moderate to large eccentricity require that splices transmit tension as well. ACI
Code 10.7.5 permits splicing by lapping, butt welding, mechanical connectors, or end
bearing. As discussed in Section 6.13, the length of compression lap splices may be
reduced in cases where ties or spiral reinforcement throughout the lap length meets
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specific requirements. If the column bars are in tension, Class A tension lap splices are
permitted if the tensile stress does not exceed 0.5f, and less than one-half of the bars
are spliced at any section. Class B tension splices are required if the tensile stresses are
higher than 0.5f; under factored loads or where more than one-half of the reinforcement
is spliced at one location. When end bearing splices are used, they must be staggered
or additional reinforcement must be added so that the continuing bars on each column
face possess a tensile strength not less than 0.25f times the area of the vertical rein-
forcement on that face, according to ACI Code 10.7.5.3.

Full requirements for both compression and tension lap splices are discussed
in Section 6.13, and the design of a compression splice in a typical column is illus-
trated in Example 6.5.

TRANSMISSION OF COLUMN LOADS THROUGH
FLOOR SYSTEMS

Quite often, the specified compressive strength of the concrete in columns will exceed
that of the floor system. This is especially true for the lower stories in high-rise build-
ings, where high-strength concrete is used to minimize the cross-sectional area of the
columns and thus maximize the usable floor space. High-strength concrete, however,
is not needed for the beams and slabs that make up the floor system.

Floor systems and columns must be cast in separate placements. This is not
only good construction practice to allow the concrete in the columns to settle prior
to placement of the floor system but also required by ACI Code 26.5.7.2 to prevent
cracking at the interface between the floor and the column that would occur if the
floor and supporting members were cast at the same time. This standard practice,
however, opens the possibility for placement of lower-strength concrete within the
portion of a floor system that directly supports the columns above, which would, in
turn, significantly reduce their capacity. The high lateral confinement provided by
the floor system to the concrete in the vicinity of the column does have a mitigating
effect because it places that region in triaxial compression and thus increases its
usable compressive strength, as explained in Section 2.10.

To address the effects on performance of using concretes with significantly
different compressive strengths in the columns and floor system, ACI Code 15.5
specifies that if £, of the floor system is less than 0.7f, of the column, one of three
requirements must be met:

1. At the time of concrete placement in the floor system, concrete with the strength
specified for the column must be placed in the floor at the column location. The
concrete must extend at least 2 ft into the floor system from the face of the column
for the full depth of the floor system and be integrated with the floor concrete.

2. The strength of the column through the floor system must be based on the lower
compressive strength of the floor concrete. Additional reinforcement may be
required.

3. For beam-column joints that are laterally supported on four sides by beams of
approximately the same depth and at least three-quarters of the width of the
column or slab-column joints that are supported by slabs on four sides, the strength
of the column may be based on a compressive strength equal to 75 percent of the
column concrete strength plus 35 percent of the floor concrete strength. The ratio
of the column concrete strength to the slab concrete strength may not be taken
greater than 2.5 for use in design.



www.konkur.in

310 DESIGN OF CONCRETE STRUCTURES Chapter 9

Telegram: @uni_k

9.17 SHEAR IN COLUMNS

Columns are subjected to shear due to lateral load—for example, from wind or
earthquakes—as well as from bending moments transferred by beams and slabs at
joints. The design of columns subjected to shear in a single direction is handled as
described in Section 5.6 for members under axial load, with the column ties serving as
shear reinforcement. As such, the ties must meet all requirements for shear reinforce-
ment described in Section 5.5.

When structures are subjected to lateral load due to wind or earthquake, or
columns are subjected to bending moments from orthogonal flexural members, how-
ever, columns will be subjected to biaxial shear loading. According to ACI Code
22.5.1.10, the effects of biaxial shear may be neglected if either Eq. (9.21a) or
Eq. (9.21b) is satisfied:

Via <05 (9.21a)
¢ Vn,x
Yy <05 (9.21b)
¢ Vn, y

where V,, and V,,, are, respectively, the factored shear forces in the x and y directions,
and V,, and V,, are, respectively, the shear strengths in the x and y directions.
If V,./(¢V,,) > 0.5 and V,,/(¢V,,) > 0.5, ACI Code 22.5.1.11 requires that

Vi Vi <15 (9.22)
+ —< 1. .
HVix PV

If needed, shear reinforcement may be added to satisfy Eq. (9.22).
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PROBLEMS

9.1.

9.2.

9.3.

94.

9.5.

A 16 in. square column is reinforced with four No. 11 (No. 36) bars, one in
each corner, with cover distances 3 in. to the steel center in each direction.
Material strengths are f; = 5000 psi and f, = 60,000 psi. Construct the inter-
action diagram relating axial strength P, and flexural strength M,. Bending
will be about an axis parallel to one face. Calculate the coordinates for P,, Py,
and at least three other representative points on the curve.

Starting with the column in Problem 9.1, perform enough additional calcula-
tions to determine the effects of increasing f. from 5000 to 8000 psi on
column capacity at both high and low axial loads. Assuming that a compres-
sive strength of 8000 psi is appropriate for the lower stories of a high-rise
structure, would you recommend using concrete with f, = 8000 psi for the
columns supporting all stories within the building? Use your analysis to sup-
port your answer.

Plot the design strength curve relating ¢P, and ¢M, for the column of
Problem 9.1. Design and detail the tie steel required by the ACI Code. Is the
column a good choice to resist a load P, = 540 kips applied with an
eccentricity e = 4.44 in.?

The short column shown in Fig. P9.4 will be subjected to an eccentric load
causing uniaxial bending about the Y axis. Material strengths are f, = 60 ksi
and f, = 4 ksi.

Y
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(a) Construct the nominal strength interaction curve for this column, calcu-
lating no fewer than five points, including those corresponding to pure
bending, pure axial thrust, and balanced failure.

(b) Compare the calculated values with those obtained using Graph A.10 in
Appendix A.

(¢) Show on the same drawing the design strength curve obtained through
introduction of the ACI ¢ factors.

(d) Design the transverse reinforcement for the column, giving key dimen-
sions for ties.

The column shown in Fig. P9.5 is subjected to axial load and bending moment,

causing bending about an axis parallel to that of the rows of bars. What moment

M,, would cause the column to fail if the axial load P, applied simultaneously

was 1250 kips? Material strengths are f, = 4000 psi and f, = 60 ksi.
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FIGURE P9.5 ‘
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9.6.  What is the strength M, of the column of Problem 9.5 if it was loaded in
pure bending (axial force = 0) about one principal axis?

9.7.  Construct the interaction diagram relating P, to M, for the building column
shown in Fig. P9.7. Bending will be about the axis a-a. Calculate specific
coordinates for concentric loading (e = 0), for P,, and at least three other
points, well chosen, on the curve. Material strengths are f, = 8000 psi and
Sy = 60,000 psi.

FIGURE P9.7 a
. + | o
a
— 37— g” *,L 8” 4,‘47 8" 4,‘ 37—
30//
A =10 No. 14 (No. 43)
9.8. A short rectangular reinforced concrete column shown in Fig. P9.8 is to be

Telegram: @uni_k

a part of a long-span rigid frame and will be subjected to high bending
moments combined with relatively low axial loads, causing bending about
the strong axis. Because of the high eccentricity, steel is placed unsymmet-
rically as shown, with three No. 14 (No. 43) bars near the tension face and
two No. 11 (No. 36) bars near the compression face. Material strengths are
fi = 6 ksi and f, = 75 ksi. Construct the complete strength interaction dia-
gram, plotting P, vs. M,, relating eccentricities to the plastic centroid of the
column (not the geometric center).
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9.9.  The square column shown in Fig. P9.9 must be designed for a factored axial
load of 130 kips. Material strengths are f," = 4000 psi and f, = 60,000 psi.

(a) Select the longitudinal and transverse reinforcement for an eccentricity
e, = 2.7 in.

(b) Select the longitudinal and transverse reinforcement for the same axial
load with e, = e, = 2.7 in.

(¢) Construct the strength interaction diagram and design strength curves for
the column designed in part (b), given that the column will be subjected
to biaxial bending with equal eccentricities about both principal axes.

9.10. The square column shown in Fig. P9.10 is a corner column subject to axial load
and biaxial bending. Material strengths are f, = 60,000 psi and f. = 4000 psi.

(a) Find the unique combination of P,, M,,, and M, that will produce incip-
ient failure with the neutral axis located as in the figure. The compressive
zone is shown shaded. Note that the actual neutral axis is shown, not the
equivalent rectangular stress block limit; however, the rectangular stress
block may be used as the basis of calculations.

(b) Find the angle between the neutral axis and the eccentricity axis, the
latter defined as the line from the column center to the point of load.

FIGURE P9.10 A = 4 No. 14 (No. 43)

o .

o\ e

- 37

}
I
f

Neutral axis
~—

"

|
3
L

< ,‘ 3”

15//

Telegram: @uni_k



www.konkur.in

314 DESIGN OF CONCRETE STRUCTURES Chapter 9

FIGURE P9.13
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9.11.

9.12.

9.13.

For the axial load P, found in Problem 9.10, and for the same column, with
the same eccentricity ratio e,/e,, find the values of M,, and M, that would
produce incipient failure, using the load contour method. Compare with the
results of Problem 9.10. Take a = 1.30, and use the graphs in Appendix A,
as appropriate.

For the eccentricities e, and e, found in Problem 9.10, find the value of axial
load P, that would produce incipient failure, using the reciprocal load
(Bresler) method. Use the graphs in Appendix A, as appropriate. Compare
with the results of Problems 9.10 and 9.11.

A 20 in. square lower-story interior building column must be designed for
maximum and minimum factored axial loads P, of 880 and 551 kips, respec-
tively. For both values of P,, the column will be subjected to simultaneous
factored bending moments M, of 295 and 24 ft-kips about the Y and X axes,
respectively (Fig. P9.13). Material strengths are f, = 60,000 psi and
/= 4000 psi. Using equal reinforcement on all sides, design the longitudinal

C

and transverse reinforcement for this column.

20" |

— — 20" — X

9.14.

9.15.

A 16 in. square lower-story corner column in the building described in
Problem 9.13 will be subjected to maximum and minimum factored axial
loads P, of 209 and 130 kips, respectively. For both values of P,, the columns
must be designed for simultaneous factored bending moments M, of 110 and
104 ft-kips about the Y and X axes, respectively. Using equal reinforcement
on all sides, design the longitudinal and transverse reinforcement for this
column.

Using the column interaction diagrams in Appendix A (f, = 4000 psi and
£y = 60,000 psi) with p, approximately equal to 0.02, design square columns
with equal reinforcement on all sides to carry each of the following loads
and select the longitudinal and transverse reinforcement:

(a) P, = 2500 kips and M, = 220 ft-kips

(b) P, = 1500 kips and M, = 330 ft-kips

(¢) P, =600 kips and M, = 180 ft-kips
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Slender Columns

INTRODUCTION

The material presented in Chapter 9 pertained to concentrically or eccentrically loaded
short columns, for which the strength is governed entirely by the strength of the mate-
rials and the geometry of the cross section. Most columns in present-day practice fall
in that category. However, with the increasing use of high-strength materials and
improved methods of dimensioning members, it is now possible, for a given value
of axial load, with or without simultaneous bending, to design a much smaller cross
section than in the past. This clearly makes for more slender members. It is because
of this, together with the use of more innovative structural concepts, that rational and
reliable design procedures for slender columns have become increasingly important.

A column is said to be slender if its cross-sectional dimensions are small
compared with its length. The degree of slenderness is generally expressed in terms
of the slenderness ratio £/r, where £ is the unsupported length of the member and
r is the radius of gyration of its cross section, equal to \/I/_A For square or circular
members, the value of r is the same about either axis; for other shapes, r is smallest
about the minor principal axis, and it is generally this value that must be used in
determining the slenderness ratio of a freestanding column.

It has long been known that a member of great slenderness will collapse under
a smaller compression load than a stocky member with the same cross-sectional
dimensions. When a stocky member, say with £/r = 10 (such as a square column
of length equal to about 3 times its cross-sectional dimension #), is loaded in axial
compression, it will fail at the load given by Eq. (9.3), because at that load both
concrete and steel are stressed to their maximum carrying capacity and give way,
respectively, by crushing and by yielding. If a member with the same cross section
has a slenderness ratio £/r = 100 (such as a square column hinged at both ends and
of length equal to about 30 times its section dimension), it may fail under an axial
load equal to one-half or less of that given by Eq. (9.3). In this case, collapse is
caused by buckling, that is, by sudden lateral displacement of the member between
its ends, with consequent overstressing of steel and concrete by the bending stresses
that are superimposed on the axial compressive stresses.

Most columns in practice are subjected to bending moments as well as axial
loads, as discussed in Chapter 9. These moments produce lateral deflection of a mem-
ber between its ends and may also result in relative lateral displacement of joints. Asso-
ciated with these lateral displacements are secondary moments that add to the primary
moments and that may become very large for slender columns, leading to failure. A
practical definition of a slender column is one for which there is a significant reduction
in axial load capacity because of these secondary moments. In the development of

315
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10.2

ACI Code column provisions, for example, any reduction greater than about 5 percent
is considered significant, requiring consideration of slenderness effects.

The ACI Code and Commentary contain detailed provisions governing the
design of slender columns. ACI Code 6.6.4 presents approximate methods for
accounting for slenderness through the use of moment magnification factors. The
provisions are quite similar to those used for many years for steel columns designed
under the American Institute of Steel Construction (AISC) Specification. Alterna-
tively, in ACI Code 6.7 and 6.8, a more fundamental approach is endorsed, in which
the effect of lateral displacements is accounted for directly in the frame analysis.
The latter approach, known as second-order analysis, is often incorporated as a
feature in commercially available structural analysis software.

As noted, most columns in practice continue to be short columns. Simple
expressions are included in the ACI Code to determine whether slenderness effects
must be considered. These will be presented in Section 10.4 following the develop-
ment of background information in Sections 10.2 and 10.3 relating to column buck-
ling and slenderness effects.

CONCENTRICALLY LOADED COLUMNS

The basic information on the behavior of straight, concentrically loaded slender col-
umns was developed by Euler more than 250 years ago. In generalized form, it states
that such a member will fail by buckling at the critical load

_7’El
L ke
where k£ is the effective length of the column.

10.1)

It is seen that the buckling load for a given column cross section decreases
rapidly as the effective length increases (Ref. 10.1).

For the simplest case of a column hinged at both ends and made of elastic
material, E, simply becomes Young’s modulus and the effective length k¢ is equal
to the actual length £ of the column. At the load given by Eq. (10.1), the originally
straight member buckles into a half sine wave, as shown in Fig. 10.1a. In this bent
configuration, bending moments Py act at any section such as a; y is the deflection
at that section. These deflections continue to increase until the bending stress caused
by the increasing moment, together with the original compression stress, overstresses
and fails the member.

If the stress-strain curve of a short piece of the given member has the shape
shown in Fig. 10.2a, as it would be for reinforced concrete columns, E, is equal to
Young’s modulus, provided that the buckling stress P./A is below the proportional
limit f,. If the strain is larger than f,, buckling occurs in the inelastic range. In this
case, in Eq. (10.1), E, is the tangent modulus, that is, the slope of the tangent to the
stress-strain curve. As the stress increases, E, decreases. A plot of the buckling load
vs. the slenderness ratio, the so-called column curve, therefore has the shape given
in Fig. 10.2b, which shows the reduction in buckling strength with increasing slen-
derness. For very stocky columns, the value of the buckling load, calculated from
Eq. (10.1), exceeds the direct crushing strength of the stocky column P,, given by
Eq. (9.3). This is also shown in Fig. 10.2b. Correspondingly, there is a limiting
slenderness ratio (k€/r);,. For values smaller than this, failure occurs by simple
crushing, regardless of k€/r; for values larger than (k€/r);,, failure occurs by buck-
ling, the buckling load or stress decreasing for greater slenderness.
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If a member is fixed against rotation at both ends, it buckles in the shape of
Fig. 10.1b, with inflection points (IPs) as shown. The portion between the inflection
points is in precisely the same situation as the hinge-ended column of Fig. 10.1a,
and thus, the effective length k€ of the fixed-fixed column, that is, the distance
between inflection points, is seen to be k¢ = £/2. Equation (10.1) shows that an
elastic column fixed at both ends will carry 4 times as much load as when hinged.

Columns in real structures are rarely either hinged or fixed but have ends par-
tially restrained against rotation by abutting members. This is shown schematically in
Fig. 10.1¢, from which it is seen that for such members the effective length k¢, that



www.konkur.in

318 DESIGN OF CONCRETE STRUCTURES Chapter 10

FIGURE 10.2 f Prail

Effect of slenderness on

strength of axially loaded I~
columns. tan™ E; P, N

Telegram: @uni_k

—

Crushing | Buckling
|

tan~'E

€ (KEIr Y Keir
(@) (b)

is, the distance between inflection points, has a value between £ and £/2. The precise
value depends on the degree of end restraint, that is, on the ratio of the stiffness EI/¢
of the column to the sum of stiffnesses EI/¢ of the restraining members at both ends.

In the columns of Fig. 10.1a to ¢, it was assumed that one end was prevented
from moving laterally relative to the other end, by horizontal bracing or otherwise.
In this case, it is seen that the effective length k€ is always smaller than (or at most
it is equal to) the real length £.

If a column is fixed at one end and entirely free at the other (cantilever column
or flagpole), it buckles as shown in Fig. 10.1d. That is, the upper end moves laterally
with respect to the lower, a kind of deformation known as sidesway. It buckles into
a quarter of a sine wave and is therefore analogous to the upper half of the hinged
column in Fig. 10.1a. The inflection points, one at the end of the actual column and
the other at the imaginary extension of the sine wave, are a distance 2¢ apart, so
that the effective length is k¢ = 2¢.

If the column is rotationally fixed at both ends but one end can move laterally
with respect to the other, it buckles as shown in Fig. 10.1e, with an effective length
k€ = €. If one compares this column, fixed at both ends but free to sidesway, with
a fixed-fixed column that is braced against sidesway (Fig. 10.1b), one sees that the
effective length of the former is twice that of the latter. By Eq. (10.1), this means
that the buckling strength of an elastic fixed-fixed column that is free to sidesway
is only one-quarter that of the same column when braced against sidesway. This is
an illustration of the general fact that compression members free to buckle in a side-
sway mode are always considerably weaker than when braced against sidesway.

Again, the ends of columns in actual structures are rarely hinged, fixed, or entirely
free but are usually restrained by abutting members. If sidesway is not prevented, buck-
ling occurs as shown in Fig. 10.1f, and the effective length, as before, depends on the
degree of restraint. If the cross beams are very rigid compared with the column, the
case of Fig. 10.1e is approached and k¥ is only slightly larger than £. On the other hand,
if the restraining members are extremely flexible, a hinged condition is approached at
both ends. Evidently, a column hinged at both ends and free to sidesway is unstable. It
will simply topple, being unable to carry any load whatever.

In reinforced concrete structures, one is rarely concerned with single members
but rather with rigid frames of various configurations. The manner in which the
relationships just described affect the buckling behavior of frames is illustrated by
the simple portal frame shown in Fig. 10.3, with loads applied concentrically to
the columns. If sidesway is prevented, as indicated schematically by the brace in
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Fig. 10.3a, the buckling configuration will be as shown. The buckled shape of the
column corresponds to that in Fig. 10.1¢, except that the lower end is hinged. It is
seen that the effective length k€ is smaller than £. On the other hand, if no sidesway
bracing is provided to an otherwise identical frame, buckling occurs as shown in
Fig. 10.3b. The column is in a situation similar to that shown in Fig. 10.1d, upside
down, except that the upper end is not fixed but only partially restrained by the
girder. It is seen that the effective length k€ exceeds 2¢ by an amount depending on
the degree of restraint. The buckling strength depends on k¢/r in the manner shown
in Fig. 10.2b. As a consequence, even though they are dimensionally identical, the
unbraced frame will buckle at a radically smaller load than the braced frame.
In summary, the following can be noted:

1. The strength of concentrically loaded columns decreases with increasing slender-
ness ratio k€/r.

2. In columns that are braced against sidesway or that are parts of frames braced
against sidesway, the effective length k¢, that is, the distance between inflection
points, falls between £/2 and ¢, depending on the degree of end restraint.

3. The effective lengths of columns that are not braced against sidesway or that are
parts of frames not so braced are always larger than ¢, the more so the smaller
the end restraint. In consequence, the buckling load of a frame not braced against
sidesway is always substantially smaller than that of the same frame when braced.

10.3 COMPRESSION PLUS BENDING

Most reinforced concrete compression members are also subject to simultaneous flex-
ure, caused by transverse loads or by end moments owing to continuity. The behavior of
members subject to such combined loading also depends greatly on their slenderness.

Figure 10.4a shows such a member, axially loaded by P and bent by equal end
moments M,. If no axial load were present, the moment M, in the member would
be constant throughout and equal to the end moments M,. This is shown in Fig. 10.4b.
In this situation, that is, in simple bending without axial compression, the member
deflects as shown by the dashed curve of Fig. 10.4a, where y, represents the deflec-
tion at any point caused by bending only. When P is applied, the moment at any
point increases by an amount equal to P times its lever arm. The increased moments
cause additional deflections, so that the deflection curve under the simultaneous
action of P and M, is the solid curve of Fig. 10.4a. At any point, then, the total
moment is now

M = M, + Py (10.2)
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FIGURE 10.4

Moments in slender members
with compression plus
bending, bent in single
curvature.
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that is, the total moment consists of the moment M, that acts in the presence of P and
the additional moment caused by P, equal to P times the deflection. This is one illus-
tration of the so-called P-A effect.

A similar situation is shown in Fig. 10.4c, where bending is caused by the
transverse load H. When P is absent, the moment at any point x is My = Hx/2, with
a maximum value at midspan equal to H¢/4. The corresponding M, diagram is
shown in Fig. 10.4d. When P is applied, additional moments Py are caused again,
distributed as shown, and the total moment at any point in the member consists of
the same two parts as in Eq. (10.2).

The deflections y of elastic columns of the type shown in Fig. 10.4 can be
calculated from the deflections y, that is, from the deflections of the corresponding
beam without axial load, using the following expression (see, for example, Ref. 10.1).

1
=y —— 10.3
Y=Y " pp, (10.3)
If A is the deflection at the point of maximum moment M., as shown in
Fig. 10.4, M, can be calculated using Eqs. (10.2) and (10.3).

1
M, = My + PA = My + PAg ———— 10.4
0 0 OI—P/PC (10.4)

It can be shown (Ref. 10.2) that Eq. (10.4) can be written as

1 + yP/P,
M =y, L TYEIP (10.5)
1= PP,

where yis a coefficient that depends on the type of loading and varies between about
+0.20 for most practical cases. Because P/P, is always significantly smaller than I,
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kl/r

the second term in the numerator of Eq. (10.5) is small enough to be neglected. Doing
so, one obtains the simplified design equation

1

My = My ————
max OI—P/PC

(10.6)
where 1/(1 — P/P,) is known as the moment magnification factor, which reflects the
amount by which the moment M, is magnified by the presence of a simultaneous axial
force P.

Since P, decreases with increasing slenderness ratio, it is seen from Eq. (10.6)
that the moment M in the member increases with the slenderness ratio k¢/r. The
situation is shown schematically in Fig. 10.5. It indicates that, for a given transverse
loading (that is, a given value of M), an axial force P causes a larger additional
moment in a slender member than in a stocky member.

In the two members in Fig. 10.4, the largest moment caused by P, namely PA,
adds directly to the maximum value of M,; for example,

_He
4

in Fig. 10.4d. As P increases, the maximum moment at midspan increases at a rate
faster than that of P in the manner given by Egs. (10.2) and (10.6) and shown in
Fig. 10.6. The member will fail when the simultaneous values of P and M become
equal to P, and M,,, the nominal strength of the cross section at the location of maxi-
mum moment.

This direct addition of the maximum moment caused by P to the maximum
moment caused by the transverse load, clearly the most unfavorable situation, does

M,
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FIGURE 10.7

Moments in slender members
with compression plus
bending, bent in double
curvature.
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not result for all types of deformations. For instance, the member in Fig. 10.7a, with
equal and opposite end moments, has the M, diagram shown in Fig. 10.7b. The
deflections caused by M, alone are again magnified when an axial load P is applied.
In this case, these deflections under simultaneous bending and compression can be
approximated by (Ref. 10.1)

y = (10.7)

1
YT = pap,
By comparison with Eq. (10.3), it is seen that the deflection magnification here is
much smaller.

The additional moments Py caused by the axial load are distributed as shown
in Fig. 10.7¢. Although the M, moments are largest at the ends, the Py moments are
seen to be largest at some distance from the ends. Depending on their relative mag-
nitudes, the total moments M = M, + Py are distributed as shown in either Fig. 10.7d
or e. In the former case, the maximum moment continues to act at the end and to
be equal to M,; the presence of the axial force, then, does not result in any increase
in the maximum moment. Alternatively, in the case of Fig. 10.7¢, the maximum
moment is located at some distance from the end; at that location, M, is significantly
smaller than its maximum value M,, and for this reason, the added moment Py
increases the maximum moment to a value only moderately greater than M,.

Comparing Figs. 10.4 and 10.7, one can generalize as follows. The moment
M, will be magnified most strongly when the location where M, is largest coincides
with that where the deflection y, is largest. This occurs in members bent into single
curvature by symmetrical loads or equal end moments. If the two end moments of
Fig. 10.4a are unequal but of the same sign, that is, producing single curvature, M,
will still be strongly magnified, though not quite so much as for equal end moments.
On the other hand, as evident from Fig. 10.7, there will be little or possibly no
magnification if the end moments are of opposite sign and produce an inflection
point along the member.

P<P,
Mg c Mmax = Mo + Py
Me Mmax = Me
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It can be shown (Ref. 10.2) that the way in which moment magnification
depends on the relative magnitude of the two end moments (as in Figs. 10.4a
and 10.7a) can be expressed by a modification of Eq. (10.6):

Chn

Mo =M, —" 10.8
"1 pJp. (10.8)

where

M,
C,=06-04—>04 (10.9)
M,
Here M, is the numerically smaller and M, the numerically larger of the two end
moments; hence, by definition, M, = M,. The fraction M, /M, is defined as negative if
the end moments produce single curvature and positive if they produce double curva-
ture. It is seen that when M; = M,, as in Fig. 10.4a, C,, = 1, so that Eq. (10.8) becomes
Eq. (10.6), as it should. Note that Eq. (10.9) applies only to members braced against side-
sway. As will become apparent from the discussion that follows, for members not braced
against sidesway, maximum moment magnification usually occurs, that is, C,, = 1.

Members that are braced against sidesway include columns that are parts of
structures in which sidesway is prevented in one of various ways: by walls suffi-
ciently strong and rigid in their own planes to effectively prevent horizontal displace-
ment, by special bracing in vertical planes, in buildings by designing the utility core
to resist horizontal loads and furnish bracing to the frames, or by bracing the frame
against some other essentially immovable support.

If no such bracing is provided, sidesway can occur only for the entire frame
simultaneously, not for individual columns in the frame. If this is the case, the com-
bined effect of bending and axial load is somewhat different from that in braced col-
umns. As an illustration, consider the simple portal frame of Fig. 10.8a subject to a
horizontal load H, such as a wind load, and compression forces P, such as from grav-
ity loads. The moments M, caused by H alone, in the absence of P, are shown in
Fig. 10.8b; the corresponding deformation of the frame is given in dashed curves. When
P is added, horizontal moments are caused that result in the magnified deformations
shown in solid curves and in the moment diagram of Fig. 10.8d. It is seen that
the maximum values of M,,, both positive and negative, and the maximum values of the
additional moments Mp of the same sign occur at the same locations, namely, at the
ends of the columns. They are therefore fully additive, leading to a large moment
magnification. In contrast, if the frame in Fig. 10.8 is laterally braced and vertically

Moments from
H P H+P
MO, max MP, max Mmax

(b) () (d)
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FIGURE 10.9

Fixed portal frame, laterally

braced.
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loaded, Fig. 10.9 shows that the maximum values of the two different moments occur
in different locations; the moment magnification, if any, is therefore much smaller,
as correctly expressed by C,,.

The moments that cause a frame to sidesway need not be caused by horizontal
loads as in Fig. 10.8. Asymmetries, of frame configuration, vertical loading, or both,
also result in sidesway displacements. In this case, the presence of axial column
loads again results in the increased deflection and moment magnification.

In summary, it can be stated as follows:

1. In flexural members, the presence of axial compression causes additional
deflections and additional moments Py. Other things being equal, the additional
moments increase with increasing slenderness ratio k€ /r.

2. In members braced against sidesway and bent in single curvature, the maxima of
both types of moments, M, and Py, occur at the same or at nearby locations and
are fully additive; this leads to large moment magnifications. If the M, moments
result in double curvature (that is, in the occurrence of an inflection point), the
opposite is true and less or no moment magnification occurs.

3. In members in frames not braced against sidesway, the maximum moments of
both kinds, M, and Py, almost always occur at the same locations, the ends of
the columns; they are fully additive, regardless of the presence or absence of an
inflection point. Here, too, other things being equal, the additional deflections
and the corresponding moments increase with increasing k¢ /r.

This discussion is a simplified presentation of a fairly complex subject. The
provisions of the ACI Code regarding slender columns are based on the behavior
and the corresponding equations that have just been presented. They take account,
in an approximate manner, of the additional complexities that arise from the fact that
concrete is not an elastic material, tension cracking changes the moment of inertia
of a member, and under sustained load, creep increases the short-term deflections
and, thereby, the moments caused by these deflections.

ACI CRITERIA FOR SLENDERNESS EFFECTS IN COLUMNS

The procedure of designing slender columns is inevitably lengthy, particularly
because it involves a trial-and-error process. At the same time, studies have shown
that most columns in existing buildings are sufficiently stocky that slenderness effects
reduce their capacity by only a few percent. As stated in Chapter 9, an ACI-ASCE
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survey indicated that 90 percent of columns braced against sway, and 40 percent of
unbraced columns, could be designed as short columns; that is, they could develop
essentially the full cross-sectional strength with little or no reduction from slenderness
(Ref.10.3). Furthermore, lateral bracing is usually provided by shear walls, elevator
shafts, stairwells, or other elements for which resistance to lateral deflection is much
greater than for the columns of the building frame. It can be concluded that in most
cases in reinforced concrete buildings, slenderness effects may be neglected.

To permit the designer to dispense with the complicated analysis required for
slender column design for these ordinary cases, ACI Code 6.2.5 provides limits below
which the effects of slenderness are insignificant and may be neglected. These limits
are adjusted to result in a maximum unaccounted reduction in column capacity of no
more than 5 percent. Separate limits are applied to braced and unbraced structures,
alternately described in the ACI Code as nonsway and sway frames, respectively. For
the purpose of determining if slenderness effects may be neglected, ACI Code 6.2.5
permits compression members to be considered as braced against sidesway if the total
stiffness of the bracing elements resisting lateral movement of a story is at least 12 times
the stiffness of all columns in that story. The Code provisions are as follows:

1. For compression members braced against sidesway (that is, in nonsway structures),
the effects of slenderness may be neglected when k¢,/r < 34 + 12M,/M, and
ke, /r < 40.

2. For compression members not braced against sidesway (that is, in sway struc-
tures), the effects of slenderness may be neglected when k¢, /r is less than 22.

In these provisions, & is the effective length factor (see Section 10.2); £, is the unsup-
ported length, taken as the clear distance between floor slabs, beams, or other members
providing lateral support; M, is the smaller factored end moment on the compression
member; M, is the larger factored end moment on the compression member (if trans-
verse loading occurs between supports, M, is the largest moment in member); and
M, /M, is negative if the member is bent in single curvature and positive if bent in
double curvature.

The radius of gyration r for rectangular columns may be taken as 0.30A, where
h is the overall cross-sectional dimension in the direction in which stability is being
considered. For circular members, it may be taken as 0.25 times the diameter. For
other shapes, » may be computed for the gross concrete section.

The effective length factor k£ may be conservatively taken as 1.0 for compres-
sion members that are braced against sidesway if a more accurate value is not deter-
mined by analysis. By necessity, k must be determined by analysis for compression
members that are not braced against sidesway. The ACI criteria for determining k
for both braced and unbraced columns are discussed in Section 10.6.

If slenderness effects must be considered, ACI Code 6.2.6 requires that the design
of columns, beams restraining those columns, and other supporting members in the struc-
ture be based on a second-order analysis. The analysis may be elastic (ACI Code 6.7) or
inelastic (ACI Code 6.8), or may be in accordance with the ACI moment magnifier
procedure (ACI Code 6.6.4). Finite element analysis (ACI Code 6.9) is also permitted.
To limit the potential for excessive moment magnification, the total factored moment
including second-order effects in compression members may not exceed 1.4 times the
factored moment due to first-order effects. In addition, second-order effects must be
considered along the length of a member to cover cases in which the maximum moment
may occur away from the ends. If a second-order analysis program is used, checking
along the length of a member will require subdividing the member when it is modeled.
In lieu of doing so, the ACI moment magnification method may be used. ACI Code
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6.6.4, 6.7, and 6.8 require that the dimensions of all members used in the analysis be
within 10 percent of the final dimensions. If not, the structure must be reanalyzed.

Elastic and inelastic second-order analyses, which are covered in ACI Code 6.7
and 6.8, are discussed in Section 10.8. The ACI moment magnification method of
second-order analysis is discussed next.

ACI CRITERIA FOR NONSWAY VS. SWAY STRUCTURES

The discussion of Section 10.3 clearly shows important differences in the behavior
of slender columns in nonsway (braced) structures and corresponding columns in
sway (unbraced) structures. ACI Code provisions and Commentary guidelines for the
approximate design of slender columns reflect this, and there are separate provisions
in each relating to the important parameters in nonsway vs. sway structures, including
moment magnification factors and effective length factors.

In practice, a structure is seldom either completely braced or completely
unbraced. It is necessary, therefore, to determine in advance if bracing provided by
shear walls, elevator and utility shafts, stairwells, or other elements is adequate to
restrain the structure against significant sway effects. Both the ACI Code and Com-
mentary provide guidance.

As suggested in ACI Commentary 6.6.4.1, a compression member can be
assumed braced if it is located in a story in which the bracing elements (shear walls,
etc.) have a stiffness substantial enough to limit lateral deflection to the extent that
the column strength is not substantially affected. Such a determination can often be
made by inspection. If not, ACI Code 6.6.4.3 provides two alternate criteria for
determining if columns and stories are treated as nonsway or sway.

To be considered as a nonsway or braced column, the first criterion requires that
the increase in column end moments due to second-order effects not exceed 5 percent
of the first-order end moments. The designer is free to select the method for such a
determination.

As an alternative, ACI Code 6.6.4.3 allows a story to be considered nonsway
when the stability index

P8, 10.10

Q VLt.YEC ( ' )
for a story is not greater than 0.05, where XP, and V,, are the total factored vertical
load and story shear, respectively, for the story; A, is the first-order relative deflec-
tion between the top and the bottom of the story due to V,; and £. is the length of the
compressive member measured center to center of the joints in the frame. ACI Com-
mentary 6.6.4.3 provides the guidance that XP, should be based on the lateral loading
that maximizes the value of XP,; the case of V,, = 0 is not included. In most cases,
this calculation involves the combinations of load factors in Table 1.2 for wind, earth-
quake, or soil pressure (for example, 1.2D + 1.0W + 1.0L + 0.5L,).

As shown in Refs. 10.3 and 10.4, for Q not greater than 0.6, the stability index
closely approximates the ratio P/P,. used in the calculation of the moment magnifi-
cation factor, so that 1/(1 — P/P.) can be replaced by 1/(1 — Q). Thus, for
Q = 0.05, My ~ 1.05M,."

" The near equivalence of Q to P/P, for reinforced concrete columns can be demonstrated using a single sway column with ends fixed against
rotation, as shown in Fig. 10.1e. For this column, Q = P,A,/V, /.. Since V,,/A, = the lateral stiffness of the column = 12EI/£, the stability
index can be expressed as Q = P,/(12EI/¢€2). For an unsupported length of the column (the length used to calculate P,) €, = 0.9£, and
P =P, Q= P,/(9.72EI/?) compared to P/P. = P,/(xEI/€2) = P,/(9.87El/C2).
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The section properties of the frame members used to calculate Q need to account
for the effects of axial loads, cracked regions along the length of the member, and the
duration of the loads. ACI Code 6.6.3 provides useful guidance that is appropriate for
first-order as well as second-order analysis. According to ACI Code 6.6.3.1, section
properties may be represented using the modulus of elasticity E. given in Eq. (2.3)
and the following section properties:

Moments of inertia

Beams 0.351,
Columns 0.701,
Walls—uncracked 0.701,

—cracked 0.351,
Flat plates and flat slabs  0.251,
Area 1.0A,

where I, and A, are based on the gross concrete cross section, neglecting reinforcement.
As discussed in Section 11.5, I, for T beams can be closely approximated as 2 times
I, for the web. The reduced values of I given above take into account the effect of
nonlinear material behavior on the effective stiffness of the members. Reference 10.3
shows that these values for moments of inertia underestimate the true moments of
inertia and conservatively overestimate second-order effects by 20 to 25 percent for
reinforced concrete frames.

Based on work described in Refs. 10.5 and 10.6, ACI Code 6.6.3.1 indicates
that the moments of inertia / of compression members and flexural members may
also be computed using alternative expressions. For compression members,

Ay M, P,
I={080+25—|(1 - - O'SF I, < 0.8751, (10.11)

A, P,

where P, and M, are based on the load combination under consideration, or the combi-
nation of P, and M, resulting in the smallest value of /. The value of I calculated using
Eq. (10.11) need not be taken less than 0.351,.

For flexural members,

b,
I =(0.10 + 25p) (1.2 - 0.2;) I, <0351, (10.12)

The value of / calculated using Eq. (10.12) need not be taken less than 0.251,. For con-
tinuous flexural members, I may be taken as the average value of [ calculated at crit-
ical positive and negative moment locations along the length of the beam. The Code
requires that the member dimensions and reinforcement ratios used in Eqgs. (10.11)
and (10.12) be within 10 percent of the final values.

To account for the effects of creep on A, in Eq. (10.10) when sustained lateral
loads act, the moments of inertia for compression members must be divided by (1 + f),
where f,;, is the ratio of the maximum factored sustained shear within a story to the
maximum factored shear in that story associated with the same load combination.

AClI MOMENT MAGNIFIER METHOD FOR NONSWAY
FRAMES

A slender reinforced concrete column reaches the limit of its strength when the com-
bination of P and M at the most highly stressed section causes that section to fail. In
general, P is essentially constant along the length of the member. This means that the
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FIGURE 10.10
Effect of slenderness on
carrying capacity.
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column approaches failure when, at the most highly stressed section, the axial force P
combines with a moment M = M,,,,, as given by Eq. (10.8), so that this combination
becomes equal to P, and M,, which will cause the section to fail. This is easily visual-
ized by means of Fig. 10.10.

For a column of given cross section, Fig. 10.10 presents a typical interaction
diagram. For simplicity, suppose that the column is bent in single curvature with
equal eccentricities at both ends. For this eccentricity, the strength of the cross section
is given by point A on the interaction curve. If the column is stocky enough for the
moment magnification to be negligibly small, then P, gy, at point A represents the
member strength of the column under the simultaneous moment M,, socky = €0P stocky-

On the other hand, if the same column is sufficiently slender, significant
moment magnification will occur with increasing P. Then the moment at the most
highly stressed section is M, as given by Eq. (10.8), with C,, = 1 because of equal
end eccentricities. The solid curve in Fig. 10.10 shows the nonlinear increase of M,
as P increases. The point where this curve intersects the interaction curve, that is,
point B, defines the member strength P, enq.r Of the slender column, combined
with the simultaneously applied end moments My = €yP,, gender- If €nd moments are
unequal, the factor C,, will be less than 1, as discussed in Section 10.3.

For slender column design, the axial load and end moments in a column are
first determined using conventional frame analysis (see Chapter 11), typically using
the section properties given in Section 10.5. The member is then designed for that
axial load and a simultaneous magnified column moment.

For a nonsway frame, the ACI Code equation for magnified moment, acting
with the factored axial load P,, is written as

M.=6M, (10.13)
where the moment magnification factor is
s G5y (10.14)
~1-P,/075P, = '
P
A Pn,stocky
eo/h /
¢ Pn slender
- X
/ /!
ya
/ Mypax = M
/ max — 0
/
/
M
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The 0.75 term in Eq. (10.14) is a stiffness reduction factor, designed to provide a
conservative estimate of P.. The critical load P,., in accordance with Eq. (10.1), is
given as

b T(ED oy
ke,

(10.15)

where (EI),; is defined later in this section and ¢, is defined as the unsupported length
of the compression member. The value of k in Eq. (10.15) should be set equal to 1.0,
unless calculated using the values of E, and / given in Section 10.5 and procedures
described later in this section.

In Eq. (10.14), the value of C,, is as previously given in Eq. (10.9):

M,

C,=06-04—2>04 (10.9)

M,
for columns braced against sidesway and without transverse loads between supports.
Here M, is the larger of the two end moments, and M,/M, is negative when the end
moments produce single curvature and positive when they produce double curvature.
The variation of C,, with M, /M, is shown in Fig. 10.11. C,, = 1.0 for columns with
transverse loads applied between the supports. In Eq. (10.14), when the calculated
value of § is smaller than 1, it indicates that the larger of the two end moments, M,, is
the largest moment in the column, a situation depicted in Fig. 10.7d.

In this way, the ACI Code provides for the capacity-reducing effects of slen-
derness in nonsway frames by means of the moment magnification factor §. However,
it is well known that for columns with no or very small applied moments, that is,
axially or nearly axially loaded columns, increasing slenderness also reduces the
column strength. For this situation, ACI Code 6.6.4.5 provides that the factored
moment M, in Eq. (10.13) not be taken less than

M in = P,(0.6 + 0.03h) (10.16)

about each axis separately, where 0.6 and / are in inches. For members in which M, i,
exceeds M,, the value of C,, in Eq. (10.9) is taken equal to 1.0 or is based on the ratio
of the computed end moments M, and M.

The value of (EI).; used in Eq. (10.15) to calculate P, for an individual mem-
ber must be both accurate and reasonably conservative to account for the greater
variability inherent in the properties of individual columns, as compared to the

Sway Cp,
frames
SN S IR
—0.8
Nonsway / ~Q.6
frames 04
—0.2
\ \
(j -10 -05 0 +0.5 +1.0 (2‘
/ M1/M5 S}
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properties of the reinforced concrete frame, as a whole. The values of EI provided
in Section 10.5 are adequate for general frame analysis but not for establishing P.
for individual columns.

In homogeneous elastic members, such as steel columns, EI is easily obtained
from Young’s modulus and the usual moment of inertia. Reinforced concrete col-
umns, however, are nonhomogeneous, since they consist of both steel and concrete.
Whereas steel is substantially elastic, concrete is not and is, in addition, subject to
creep and to cracking if tension occurs on the convex side of the column. All these
factors affect the effective value of EI for a reinforced concrete member. It is possi-
ble by computer methods to calculate fairly realistic effective section properties,
taking account of these factors. Even these calculations are no more accurate than
the assumptions on which they are based. On the basis of elaborate studies, both
analytical and experimental (Ref. 10.7), the ACI Code requires that (EI),; be deter-
mined using Eq. (10.11) or by either

0.2E, + EJ,,

Elyy=——"—"— 10.17
(ED oy T+ fon ( )
or the simpler expression
El O4Ed, 10.18
(ED g = Tﬁdm (10.18)

where E.= modulus of elasticity of concrete, psi

I, = moment of inertia of gross section of column, in*

E, = modulus of elasticity of steel = 29,000,000 psi

I,, = moment of inertia of reinforcement about centroidal axis of member cross
section, in’

Puins = ratio of maximum factored sustained axial load to maximum factored

axial load associated with same load combination (this definition differs
from that used in Section 10.5 to calculate A,)

The factor f,,, approximately accounts for the effects of creep. That is, the larger
the sustained loads, the larger are the creep deformations and corresponding curvatures.
Consequently, the larger the sustained loads relative to the temporary loads, the smaller
the effective rigidity, as correctly reflected in Eqs. (10.17) and (10.18). Because, of
the two materials, only concrete is subject to creep, and reinforcing steel as ordinarily
used is not, the argument can be made that the creep parameter 1 + f,,, should be
applied only to the term 0.2E.I, in Eq. (10.17). However, as explained in ACI Com-
mentary 6.6.4.4, the creep parameter is applied to both terms because of the potential
for premature yielding of steel in columns under sustained loading.

Both Egs. (10.17) and (10.18) are conservative lower limits for large numbers
of actual members (Ref. 10.3). The simpler but more conservative Eq. (10.18) is not
unreasonable for lightly reinforced members, but it greatly underestimates the effect
of reinforcement for more heavily reinforced members, that is, for the range of higher
p, values. Equation (10.17) is more reliable for the entire range of p, and definitely
preferable for medium and high p, values (Ref. 10.8).

An accurate determination of the effective length factor & is essential in connection
with Egs. (10.13) and (10.15). In Section 10.2, it was shown that, for frames braced
against sidesway (nonsway frames), k varies from 21 to 1, whereas for laterally unbraced
frames (sway frames), it varies from 1 to oo, depending on the degree of rotational
restraint at both ends. This was illustrated in Fig. 10.1. For frames, it is seen that this
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degree of rotational restraint depends on whether the stiffnesses of the beams framing
into the column at top and bottom are large or small compared with the stiffness of the
column itself. An approximate but generally satisfactory way of determining k is by
means of alignment charts based on isolating the given column plus all members fram-
ing into it at top and bottom, as shown in Fig. 10.12. The degree of end restraint at each
end is w = X(EI/L. of columns) + Z(EI/¢ of floor members). Only floor members that
are in a plane at either end of the column are to be included. The value of k can be read
directly from the chart of Fig. 10.13, as illustrated by the dashed lines."

It is seen that k must be known before a column in a frame can be dimensioned.
Yet k depends on the stiffness EI/€ of the members to be dimensioned, as well as
on that of the abutting members. Thus, the dimensioning process necessarily involves
iteration; that is, one assumes member sizes, calculates member stiffnesses and cor-
responding k values, and then calculates the critical buckling load and more accurate
member sizes on the basis of these k values until assumed and final member sizes
coincide or are satisfactorily close. The stiffness EI/£ should be calculated based on
the values of E. and / given in Section 10.5, and the span lengths of the members
L. and £ should be measured center to center of the joints.

An outline of the separate steps in the analysis/design procedure for nonsway
stories or frames follows along these lines:

1. Select a trial column section to carry the factored axial load P, and moment
M, = M, from the elastic first-order frame analysis, assuming short column
behavior and following the procedures of Chapter 9.

2. Determine if the frame should be considered as nonsway or sway, using the crite-
ria of Section 10.5.

3. Find the unsupported length £,.

4. For the trial column, check for consideration of slenderness effects, using the
criteria of Section 10.4 with k = 1.0.

5. Ifslenderness is tentatively found to be important, refine the calculation of k based
on the alignment chart in Fig. 10.13a, with member stiffnesses E7/€ (Section 10.5)

Y2774
4 A 2
7 v
,— Column being
designed
1 B 7
2 v

7777

" Equations for the determination of effective length factors k, more convenient than charts for developing computer solutions, are presented in
Refs. 10.9 through 10.12. The expressions in Ref. 10.12 are the most accurate.
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FIGURE 10.13

Alignment charts for effective length factors k.

(a) Nonsway frames

10.

11.

(b) Sway frames

and rotational restraint factors y based on trial member sizes. Recheck against the
slenderness criteria.

If moments from the frame analysis are small, check to determine if the minimum
moment from Eq. (10.16) controls.

Calculate the equivalent uniform moment factor C,, from Eq. (10.9).

Calculate f,,,, EI from Eq. (10.17) or (10.18), and P, from Eq. (10.15) for the trial
column.

Calculate the moment magnification factor § from Eq. (10.14) and magnified
moment M. from Eq. (10.13).

Check the adequacy of the column to resist axial load and magnified moment,
using the column design charts of Appendix A in the usual way. Revise the col-
umn section and reinforcement if necessary.

If column dimensions are altered, repeat the calculations for &, y, and P, based
on the new cross section. Determine the revised moment magnification factor and
check the adequacy of the new design.

EXAMPLE 10.1

Telegram: @uni_k

Design of a slender column in a nonsway frame.

Figure 10.14 shows an elevation view

of a multistory concrete frame building, with 48 in. wide X 12 in. deep beams on all column
lines, carrying two-way slab floors and roof. The clear height of the columns is 13 ft. Interior
columns are tentatively dimensioned at 18 X 18 in., and exterior columns at 16 X 16 in. The
frame is effectively braced against sway by stair and elevator shafts having concrete walls
that are monolithic with the floors, located in the building corners (not shown in the figure).
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The structure will be subjected to vertical dead and live loads. Trial calculations by first-
order analysis indicate that the pattern of live loading shown in Fig. 10.14, with full load
distribution on roof and upper floors and a checkerboard pattern adjacent to column C3,
produces maximum moments with single curvature in that column, at nearly maximum axial
load. Dead loads act on all spans. Service load values of dead and live load axial force and
moments for the typical interior column C3 are as follows:

Dead load Live load
P = 230 kips P = 173 kips
M, = 2 ft-kips M, = 108 ft-kips

M, = -2 ft-kips M, = 100 ft-kips

The column is subjected to double curvature under dead load alone and single curvature under
live load.

Design column C3, using the ACI moment magnifier method. Use f; = 4000 psi and
S, = 60,000 psi.

SorutioN. The column will first be designed as a short column, assuming no slenderness
effect. With the application of the usual load factors,

P,=12x230+ 1.6 X 173 = 553 kips

M,=12x2+ 1.6 x 108 = 175 ft-kips

For an 18 X 18 in. column, with the 1.5 in. clear to the outside steel, No. 3 (No. 10) stirrups, and
(assumed) No. 10 (No. 32) longitudinal steel:

y=(18.00 -2 x 1.50 — 2 x 0.38 — 1.27)/18 = 0.72

Graph A.6 for y = 0.70, with bars arranged around the column perimeter, will be used. Then

P
w__ 553 — 0.656
o A, 0.65 x 4 x 324
M

Of A 065 x4 x 324 x 18

and from the graph p, = 0.02. This is low enough that an increase in steel area could be made,
if necessary, to allow for slenderness, and the 18 X 18 in. concrete dimensions will be retained.
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For an initial check on slenderness, an effective length factor k = 1.0 will be used. Then

kC, 1.0x 13 x 12

= =289
r 03 x 18

For a braced frame, the upper limit for short column behavior is

M, 1.2 X (=2) + 1.6 x 100
344+ 12 — =34 + 12— =232
M, 12 x 2+ 1.6 x 108

The calculated value of 28.9 exceeds this, so slenderness must be considered in the design. A
more refined calculation of the effective length factor k is thus called for.

Because E., is the same for column and beams, it will be canceled in the stiffness calcula-
tions. For this step, the column moment of inertia will be taken as 0.7I, = 0.7 X 18 x 18°/12 =
6124 in*, giving I/, = 6124 /(14 x 12) = 36.5 in’. For the beams, the moment of inertia will
be taken as 0.351,, where I, is taken as 2 times the gross moment of inertia of the web. Thus,
0.35I, = 0.35 x 2 x 48 x 12°/12 = 4838 in* and I/£ = 4838 /(24 x 12) = 16.8 in’. Rotational
restraint factors at the top and bottom of column C3 are the same and are

365+ 365
T 168 + 16.8

From Fig. 10.13a for the braced frame, the value of k is 0.87, rather than 1.0 as used
previously. Consequently,

Yo =Yp 2.17

ke
ke, _ 087 x 1312 _ o |
r 0.3 x 18

This is still above the limit value of 23.3, confirming that slenderness must be considered.
A check will now be made of minimum moment. According to Eq. (10.16), M, i, =
P, (0.6 + 0.03h) = 553 x (0.6 + 0.03 x 18)/12 = 53 ft-kips. It is seen that this does not control.
The coefficient C,, can now be found from Eq. (10.9) with M; = 1.2 X (=2) + 1.6 X 100 =
158 ft-kips and M, = 1.2 X 2 + 1.6 X 108 = 175 ft-kips:
M
C,=06-04—=06—04 (—@) = 0.96
M, 175
Next the factor f3,,; will be found based on the ratio of the maximum factored axial sustained
load (the factored dead load in this case) to the maximum factored axial load:
1.2 x 230

= = 0.50
Pans 1.2 x 230 + 1.6 x 173

For a relatively low reinforcement ratio, one estimated to be in the range of 0.02 to
0.03, the more approximate Eq. (10.18) for EI will be used, and

04El, 0.4 x3.60 x 10° x 18 x 18°/12
1+ Buns 1 + 0.50
The critical buckling load is found from Eq. (10.15) to be

= 8.40 x 10° in>-lb

(EDyy =

b _ T EDy 2 x 840 x 10°
O ke)?  (0.87 x 13 x 12)°
The moment magnification factor can now be found from Eq. (10.14).

Cy _ 0.96 _
1 -1P,/0.75P, 1 —553/(0.75 x 4500)

=450 x 10° Ib

S = 1.15

Thus, the required axial strength of the column is P, = 553 kips (as before), while the
magnified design moment is M, = oM, = 1.15 X 175 = 201 ft-kips. As described in Section 10.4,
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Cross section of column C3,

Example 10.1.

SLENDER COLUMNS 335

I
T OI | 4 No.10 (No. 32) corners

18//

|4 No. 9 (No. 29) sides

L ™ No. 3 (No. 10) ties @ 18"

1n
Clear cover 15

ACI Code 6.2.6 limits the magnified moment to 1.4 times the moment due to first-order effects.
This limitation is clearly satisfied. With reference again to the column design chart A.6 with

P
— 253 = 0.656
GfA, 065 x4x324
M

Gf/Ah  0.65 X 4 X 324 x 18

it is seen that the required reinforcement ratio is increased from 0.020 to 0.026 because of slen-
derness. The steel area now required is

A, = 0.026 x 324 = 8.42 in’

which can be provided using four No. 10 (No. 32) and four No. 9 (No. 29) bars (A, = 9.08 in%),
arranged as shown in Fig. 10.15. No. 3 (No. 10) ties will be used at a spacing not to exceed the
least dimension of the column (18 in.), 48 tie diameters (18 in.), or 16 bar diameters (18 in.).
Single ties at 18 in. spacing, as shown in the figure, will meet requirements of the ACI Code.

Further refinements in the design could, of course, be made by recalculating the criti-
cal buckling load using Eq. (10.17). This extra step is not justified here because the column
slenderness is barely above the upper limit for short column behavior and the moment mag-
nification is not great.
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10.7

AClI MOMENT MAGNIFIER METHOD FOR SWAY FRAMES

The important differences in behavior between columns braced against sidesway and
columns for which sidesway is possible were discussed in Sections 10.2 and 10.3.
The critical load for a column P, depends on the effective length k¢, and although the
effective length factor k falls between 0.5 and 1.0 for braced columns, it is between
1.0 and oo for columns that are unbraced (see Figs. 10.1 and 10.13). Consequently, an
unbraced column will buckle at a much smaller load than will a braced column that is
otherwise identical.

Columns subject to sidesway do not normally stand alone but are part of a
structural system including floors and roof. A floor or roof is normally very stiff in
its own plane. Consequently, all columns at a given story level in a structure are
subject to essentially identical sway displacements; that is, sidesway of a particular
story can occur only by simultaneous lateral motion of all columns of that story.
Clearly, all columns at a given level must be considered together in evaluating slen-
derness effects relating to sidesway.
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On the other hand, it is also possible for a single column in a sway frame to
buckle individually under gravity loads, the ends of the column being held against
relative lateral movement by other, stiffer columns at the same floor level. This pos-
sibility, resulting in magnification of nonsway moments due to gravity loads, must
also be considered in the analysis and design of slender columns in unbraced frames.

The ACI moment magnifier approach can still be used for frames subject to
sidesway, but it is necessary, according to ACI Code 6.6.4.6, to separate the loads
acting on a structure into two categories: loads that result in no appreciable sidesway
and loads that result in appreciable sidesway. Clearly two separate frame analyses
are required, one for loads of each type. In general, gravity loads acting on reason-
ably symmetrical frames produce little sway, and the effects of gravity load may
therefore be placed in the first category. This is confirmed by tests and analyses in
Ref. 10.13 that show that the sway magnification of gravity moments by the sway
multiplier is unwarranted.

The maximum magnified moments caused by sway loading occur at the ends
of the column, but those due to gravity loads may occur somewhere in the midheight
of the column, the exact location of the latter varying depending on the end moments.
Because magnified gravity moments and magnified sway moments do not occur at
the same location, the argument can be made that, in most cases, no magnification
should be applied to the nonsway moments when sway moments are considered; that
is, it is unlikely that the actual maximum moment will exceed the sum of the non-
magnified gravity moment and the magnified sway moment. Consequently, for cases
involving sidesway, Eq. (10.13) is replaced by

Ml = Mlns + 6les (1019)
M2 = M2ns + 6SM2S (1020)

where M, = smaller factored end moment on compression member
M, = larger factored end moment on compression member

M,,, = factored end moment on compression member at end at which M, acts,
due to loads that cause no appreciable sidesway, calculated using a
first-order elastic frame analysis

M,,,; = factored end moment on compression member at end at which M, acts,
due to loads that cause no appreciable sidesway, calculated using a first-
order elastic frame analysis

M, = factored end moment on compression member at end at which M, acts,
due to loads that cause appreciable sidesway, calculated using a first-
order elastic frame analysis

M,, = factored end moment on compression member at end at which M, acts,
due to loads that cause appreciable sidesway, calculated using a first-
order elastic frame analysis

d, = moment magnification factor for frames not braced against sidesway, to

reflect lateral drift resulting from lateral (and sometimes gravity) loads

ACI Code 6.6.4.6 provides two alternate methods for calculating the moment
magnification factor for frames not braced against sidesway J;.
With the first alternative, the moment magnification factor is calculated as

1
5, =——-2>1 10.21
=1-g2 (10.21)
where Q is the stability index calculated using Eq. (10.10). The ACI Code limits
application of Eq. (10.21) to values of §; = 1/(1 — Q) < 1.5. An elastic second-order
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analysis, as described in ACI Code 6.7, or the second alternative described in ACI
Code 6.6.4.6 must be used for higher values of J;.
For the second alternative, the moment magnification factor is calculated as

5, = I > 1
1 — £P,/0.75%P,

(10.22)

in which 2P, is the total axial load on all columns and XP. is the total critical buck-
ling load for all columns in the story under consideration. As with Eq. (10.14), the
0.75 factor in Eq. (10.22) is a stiffness reduction factor to provide a conservative esti-
mate of the critical buckling loads P... The individual values of P, are calculated using
Eq. (10.15) with effective length factors k for unbraced frames (Fig. 10.130) and val-
ues of EI from Eq. (10.17) or (10.18).

When calculating J;, the factor f;, is defined differently than S, is for nonsway
frames. As described earlier, in Section 10.5, f,, is the ratio of the maximum factored
sustained shear within a story to the maximum factored shear in that story. Thus,
for most applications, f,, = 0 for the purpose of calculating J,. In unusual situations,
Pas 7 0 will occur, such as a building located on a sloping site that is subjected to
soil pressure on a single side (Refs. 10.14 and 10.15).

The sequence of design steps for slender columns in sway frames is similar to
that outlined in Section 10.6 for nonsway frames, except for the requirement that loads
be separated into gravity loads, which are assumed to produce no sway, and horizon-
tal loads producing sway. Separate frame analyses are required, and different equiv-
alent length factors k and creep coefficients f,,, and f; must be applied. Note that
according to ACI Code 5.3.1 (see also Table 1.2), if wind effects W are included in
the design, four possible factored load combinations are to be applied:

U=12D + 1.6L

U=12D+ 1.6 (L, or S or R) + 0.5W
U=12D + 1.0W + 1.0L + 0.5 (L, or S or R)
U=09D + 1.0W

Similar provisions are included for cases where earthquake loads are to be considered.
This represents a significant complication in the sway frame analysis; however, the
factored loads can be separated into gravity effects and sway effects, as required, and
a separate analysis can be performed for each.

It is important to realize that, for sway frames, the beams must be designed for
the total magnified end moments of the compression members at the joint. Even
though the columns may be very rigid, if plastic hinges were to form in the restrain-
ing beams adjacent to the joints, the effective column length would be greatly
increased and the critical column load much reduced.

The choice of which of the methods to use for calculating J, depends upon the
desired level of accuracy and the available analytical tools.

Second-order analysis (discussed in greater detail in Section 10.8) provides the
most accurate estimate of the magnified sway moments but requires more sophisti-
cated techniques. The extra effort required for second-order analysis, however, usually
produces a superior design. The first alternative, Eq. (10.21), will in most cases be
the easiest to apply, since matrix analysis is used for virtually all frames to determine
member forces under gravity and lateral loading. Such an analysis automatically gen-
erates the value of A, the first-order relative deflection within a story, allowing Q to
be calculated for each story within a structure. The second alternative, Eq. (10.22),
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is retained with minor modifications from previous versions of the ACI Code. As will
be demonstrated in the following example, calculations using Eq. (10.22) are more
tedious than those needed for Eq. (10.21) but do not require knowledge of A,. Appli-
cation of Eq. (10.21) is limited by the Code to values of §; < 1.5. For §, > 1.5,
application of Eq. (10.22) is mandatory if a second-order analysis is not used.

EXAMPLE 10.2

Telegram: @uni_k

Design of a slender column in a sway frame. Consider now that the concrete building frame
of Example 10.1 acts as a sway frame, without the stairwells or elevator shafts described earlier.
An initial evaluation is carried out using the member dimensions and reinforcement given in
Example 10.1. The reinforcement for the interior 18 X 18 in. columns, shown in Fig. 10.15,
consists of four No. 10 (No. 32) bars at the corners and four No. 9 (No. 29) bars at the center
of each side. Reinforcement for the exterior 16 X 16 in. columns consists of eight No. 8 (No. 25)
bars distributed in a manner similar to that shown for the longitudinal reinforcement in
Fig. 10.15. The building will be subjected to gravity dead and live loads and horizontal wind
loads. Elastic first-order analysis of the frame at service loads (all load factors = 1.0) using the
values of E and I defined in Section 10.5 gives the following results at the third story:

Cols. A3 and F3 Cols. B3 and E3 Cols. C3 and D3
Piead 115 kips 230 kips 230 kips
Piive 90 kips 173 kips 173 kips
Pina + 48 kips + 29 kips + 10 kips
Viwind 9 kips 18 kips 18 kips
M) geaa 2 ft-kips
M, jive 108 ft-kips
M yind + 126 ft-kips
M geaq —2 ft-kips
M jive 100 ft-kips
M wing + 112 ft-kips

To simplify the analysis in this example, roof loads will not be considered. The relative lateral
deflection for the third story under total wind shear V,,;,q = 90 kips is 1.25 in.

Column C3 is to be designed for the critical loading condition, using f; = 4000 psi
and f, = 60,000 psi as before.

SoLutioN. The column size and reinforcement must satisfy requirements for each of the
four load conditions noted above.

Initially, a check is made to see if a sway frame analysis is required. The factored shear
Vs = Vaina = 90 kips. The corresponding deflection A, = 1.25 in. The total factored axial
force on the story is obtained using the load table.

Columns A3 and F3: P,=12x 115+ 1.0 x 90 = 228 kips
Columns B3, C3, D3, and E3: P,=12x230+ 1.0 x 173 = 449 kips

Note that in this case the values of P;,q in the columns are not considered since they cancel out
for the floor as a whole, that is, XP;,q = 0. Thus, ZP, = 2 X 228 + 4 x 449 = 2252 kips, and
the stability index is

_IPA, 2252 x 1.25

Vil 90 x 14 x 12 0.19

Since Q > 0.05, sway frame analysis is required for this story.

(a) Gravity loads only. All columns in sway frames must first be considered as braced col-
umns under gravity loads acting alone, that is, for U = 1.2D + 1.6L. This check has already
been made for column C3 in Example 10.1.
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(b) Gravity plus wind loads. Three additional load combinations must be considered when

wind effects are included: U = 1.2D + 1.6(L, or S or R) + 0.5W, U = 1.2D + 1.0W +
1.0L + 0.5(L, or S or R), and U = 0.9D + 1.0W. By inspection, the second combination
will control for this case, and the others will not be considered further. From Example 10.1,
v, =y, = 2.17. With reference to the alignment chart in Fig. 10.135, the effective length
factor for an unbraced frame k£ = 1.64 and

ke
My 1.64 X 13 X 12 — 474
r 03 x 18

This is much above the limit value of 22 for short column behavior in an unbraced frame.
(This should be no surprise since k€, /r = 25.1 for column C3 in the braced condition.) For
sway frame analysis, the loads must be separated into gravity loads and sway loads, and the
appropriate magnification factor must be computed and applied to the sway moments. The
factored end moments resulting from the nonsway loads on column C3 are

M, =12 x (=2) + 1.0 x 100 = 98 ft-kips
My, =12x2+ 1.0 x 108 = 110 ft-kips
The sway effects will amplify the moments:
M, = —112 ft-kips
M, = 126 ft-kips

For the purposes of comparison, the magnified sway moments will be calculated based on
both QO [Eq. (10.21)] and 2P, /2P, [Eq. (10.22)].
Using Eq. (10.21),

giving
oM, = 1.23 x (—=112) = —138 ft-kips
oMy, = 1.23 X 126 = 155 ft-kips

To use Eq. (10.22), the critical loads must be calculated for each of the columns
as follows. For columns A3 and F3,

Columns: I=0.71,=0.7 x 16 X 16°/12 = 3823 in*
and 1/6, = 3823/(14 x 12) = 22.8 in’

Beams: [=4838in* and I/, =168 in’

Rotational restraint factors for this case, with two columns and one beam framing
into the joint, are

2284228

=y = =271
Ya Yy 16.8

which, with reference to the alignment chart for unbraced frames, gives k = 1.77. For wind
load, f;; = 0. Since reinforcement has been initially selected for one column, EI will be
calculated using Eq. (10.17).

(ED g = 02E1, + EJ,, = 02 X 3.6 x 10° x 16 X 16°/12 + 29 x 10° X 6 x 0.79 x 5.6
= 8.24 x 10’ in*-Ib
Then the critical load is

b T EDg _ 2 x824 % 10°
ke, (1.77 x 13 x 12)*

=1.07 x 10° Ib
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For columns B3, C3, D3, and E3, from earlier calculations for column C3, k = 1.64 for the
sway loading case. For these columns,

(EDy=0.2x 3.6 x 10°x 18 X 18°/12 + 29 x 10° (4 X 1.27 x 6.4 + 2 X 1.0 X 6.5
= 14.8 x 10’ in*1b

2 9
p = X 14.8 x 10

= ————" = =223 x 10°1b
(1.64 x 13 x 12)°

Thus, for all the columns at this level of the structure,
ZP. =2 x 1070 + 4 x 2230 = 11,060 kips

The sway moment magnification factor is

1 -Z%2P,/0.752P, 1 — 2252/(0.75 x 11,060)

s

and the magnified sway moments for the top and bottom of column C3 are

SM,, = 1.37 x (=112) = —153 ft-kips

8.My, = 1.37 x 126 = 173 ft-kips

The values