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PREFACE

In the years since the first edition of Electric Machinery Fundamentals was
published, there has been rapid advance in the development of larger and more
sophisticated solid-state motor drive packages. The first edition of this book stated
that dc motors were the method of choice for demanding variable-speed applica-
tions. That statement is no longer true today. Now, the system of choice for speed
control applications is most often an ac induction motor with a solid-state motor
drive. DC motors have been largely relegated to special-purpose applications
where a dc power source is readily available, such as in automotive electrical
systems.

The third edition of the book was extensively restructured to reflect these
changes. The material on ac motors and generators is now covered in Chapters 3
through 6, before the material on dc machines. In addition, the dc machinery cov-
erage was reduced compared to earlier editions. This edition continues with this
same basic structure.

In addition, the former Chapter 3 on solid-state electronics has been deleted
from the fifth edition. Feedback from users has indicated that that material was too
detailed for a quick overview, and not detailed enough for a solid-state electronics
course. Since very few instructors were using this material, it has been removed
from this edition and added as a supplement on the book’s website. Any instruc-
tor or student wishing to continue using the material in this chapter can freely
download it.

Learning objectives have been added to the beginning of each chapter to
enhance student learning.

Chapter 1 provides an introduction to basic machinery concepts, and con-
cludes by applying those concepts to a linear dc machine, which is the simplest
possible example of a machine. Chapter 2 covers transformers, which are not ro-
tating machines, but which share many similar analysis techniques.

After Chapter 2, an instructor may choose to teach either dc or ac machin-
ery first. Chapters 3 through 6 cover ac machinery, and Chapters 7 and 8 cover dc
machinery. These chapter sequences have been made completely independent of

xxi
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each other, so that an instructor can cover the material in the order which best suits
his or her needs. For example, a one-semester course with a primary concentration
in ac machinery might consist of parts of Chapters 1, 2, 3, 4, 5, and 6, with any
remaining time devoted to dc machinery. A one-semester course with a primary
concentration in dc machinery might consist of parts of Chapters 1, 2, 7, and 8,
with any remaining time devoted to ac machinery. Chapter 9 is devoted to single-
phase and special-purpose motors, such as universal motors, stepper motors,
brushless dc motors, and shaded-pole motors.

The homework problems and the ends of chapters have been revised and
corrected, and more than 70% of the problems are either new or modified since
the last edition.

In recent years, there have been major changes in the methods used to
teach machinery to electrical engineering and electrical technology students.
Excellent analytical tools such as MATLAB® have become widely available in
university engineering curricula. These tools make very complex calculations
simple to perform, and they allow students to explore the behavior of problems
interactively. This edition of Electric Machinery Fundamentals makes selected
use of MATLAB to enhance a student’s learning experience where appropriate.
For example, students use MATLAB in Chapter 6 to calculate the torque-speed
characteristics of induction motors, and to explore the properties of double-cage
induction motors.

This text does not teach MATLAB; it assumes that the student is familiar
with it through previous work. Also, the book does not depend on a student hav-
ing MATLAB. MATLAB provides an enhancement to the learning experience if
it is available, but if it is not, the examples involving MATLAB can simply be
skipped, and the remainder of the text still makes sense.

This book would never have been possible without the help of dozens of
people over the past 25 years. It is gratifying for me to see the book still popular
after all that time, and much of that is due to the excellent feedback provided by
reviewers. For this edition, I would especially like to thank:

Ashoka K.S. Bhat Jesus Fraile-Ardanuy

University of Victoria Universidad Politécnica de Madrid
William Butuk Riadh Habash

Lakehead University University of Ottawa

Shaahin Filizadeh Floyd Henderson

University of Manitoba Michigan Technological University

MATLARB is a registered trademark of The MathWorks, Inc.
The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA
E-mail: info@mathworks.com; www.mathworks.com
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Rajesh Kavasseri
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Ali Keyhani
The Ohio State University

Andrew Knight
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University of Wisconsin—Platteville

Ahmad Nafisi
California Polytechnic State University,
San Luis Obispo

Subhasis Nandi
University of Victoria

PREFACE  xxiii

M. Hashem Nehrir
Montana State University—Bozeman

Ali Shaban
California Polytechnic State University,
San Luis Obispo

Kuang Sheng
Rutgers University

Barna Szabados
McMaster University

Tristan J. Tayag
Texas Christian University

Rajiv K. Varma
The University of Western Ontario

Stephen J. Chapman
Melbourne, Victoria, Australia



xxiv ELECTRIC MACHINERY FUNDAMENTALS

MCGRAW-HILL DIGITAL OFFERINGS INCLUDE:

Supplemental materials supporting the book are available from the book’s website
at www.mhhe.com/chapman. The materials available at that address include
MATLAB source code, the supplement “Introduction to Power Electronics,”
pointers to sites of interest to machinery students, a list of errata in the text, some
supplemental topics which are not covered in the main text, and supplemental
MATLAB tools.

McGraw-Hill Higher Education and Blackboard® have teamed up.

Blackboard, the web-based course management system, has partnered with
McGraw-Hill to better allow students and faculty to use online materials and ac-
tivities to complement face-to-face teaching. Blackboard features exciting social
learning and teaching tools that foster more logical, visually impactful and active
learning opportunities for students. You’ll transform your closed-door classrooms
into communities where students remain connected to their educational experi-
ence 24 hours a day.

McGraw-Hill and Blackboard can now offer you
easy access to industry leading technology and con-
tent, whether your campus hosts it, or we do. Be
sure to ask your local McGraw-Hill representative

Blackboard

DO More for details.

Professors can benefit from McGraw-Hill’s Complete Online Solutions
Manual Organization System (COSMOS). COSMOS enables instructors to gen-
erate a limitless supply of problem material for assignment, as well as transfer and
integrate their own problems into the software. Contact your McGraw-Hill sales
representative for additional information.


http://www.mhhe.com/chapman

CHAPTER

1

INTRODUCTION
TO MACHINERY
PRINCIPLES

OBJECTIVES

1.1

Learn the basics of rotational mechanics: angular velocity, angular accelera-
tion, torque, and Newton’s law for rotation.

Learn how to produce a magnetic field.

Understand magnetic circuits.

Understand the behavior of ferromagnetic materials.
Understand hysteresis in ferromagnetic materials.
Understand Faraday’s law.

Understand how to produce an induced force on a wire.
Understand how to produce an induced voltage across a wire.
Understand the operation of a simple linear machine.

Be able to work with real, reactive, and apparent powers.

ELECTRICAL MACHINES,

TRANSFORMERS, AND DAILY LIFE

An electrical machine is a device that can convert either mechanical energy to elec-
trical energy or electrical energy to mechanical energy. When such a device is used
to convert mechanical energy to electrical energy, it is called a generator. When it
converts electrical energy to mechanical energy, it is called a motor. Since any given
electrical machine can convert power in either direction, any machine can be used as

1



2 ELECTRIC MACHINERY FUNDAMENTALS

either a generator or a motor. Almost all practical motors and generators convert en-
ergy from one form to another through the action of a magnetic field, and only ma-
chines using magnetic fields to perform such conversions are considered in this book.

The transformer is an electrical device that is closely related to electrical ma-
chines. It converts ac electrical energy at one voltage level to ac electrical energy at
another voltage level. Since transformers operate on the same principles as genera-
tors and motors, depending on the action of a magnetic field to accomplish the
change in voltage level, they are usually studied together with generators and motors.

These three types of electric devices are ubiquitous in modern daily life.
Electric motors in the home run refrigerators, freezers, vacuum cleaners, blenders,
air conditioners, fans, and many similar appliances. In the workplace, motors pro-
vide the motive power for almost all tools. Of course, generators are necessary to
supply the power used by all these motors.

Why are electric motors and generators so common? The answer is very
simple: Electric power is a clean and efficient energy source that is easy to trans-
mit over long distances, and easy to control. An electric motor does not require
constant ventilation and fuel the way that an internal-combustion engine does, so
the motor is very well suited for use in environments where the pollutants associ-
ated with combustion are not desirable. Instead, heat or mechanical energy can be
converted to electrical form at a distant location, the energy can be transmitted
over long distances to the place where it is to be used, and it can be used cleanly
in any home, office, or factory. Transformers aid this process by reducing the en-
ergy loss between the point of electric power generation and the point of its use.

1.2 A NOTE ON UNITS AND NOTATION

The design and study of electric machines and power systems are among the old-
est areas of electrical engineering. Study began in the latter part of the nineteenth
century. At that time, electrical units were being standardized internationally, and
these units came to be universally used by engineers. Volts, amperes, ohms, watts,
and similar units, which are part of the metric system of units, have long been
used to describe electrical quantities in machines.

In English-speaking countries, though, mechanical quantities had long been
measured with the English system of units (inches, feet, pounds, etc.). This prac-
tice was followed in the study of machines. Therefore, for many years the electri-
cal and mechanical quantities of machines have been measured with different sys-
tems of units.

In 1954, a comprehensive system of units based on the metric system was
adopted as an international standard. This system of units became known as the
Systeme International (SI) and has been adopted throughout most of the world.
The United States is practically the sole holdout—even Britain and Canada have
switched over to SI.

The SI units will inevitably become standard in the United States as time
goes by, and professional societies such as the Institute of Electrical and Elec-
tronics Engineers (IEEE) have standardized on metric units for all work. How-
ever, many people have grown up using English units, and this system will remain



INTRODUCTION TO MACHINERY PRINCIPLES 3

in daily use for a long time. Engineering students and working engineers in the
United States today must be familiar with both sets of units, since they will en-
counter both throughout their professional lives. Therefore, this book includes
problems and examples using both SI and English units. The emphasis in the ex-
amples is on SI units, but the older system is not entirely neglected.

Notation

In this book, vectors, electrical phasors, and other complex values are shown in bold
face (e.g., F), while scalars are shown in italic face (e.g., R). In addition, a special
font is used to represent magnetic quantities such as magnetomotive force (e.g., JF).

1.3 ROTATIONAL MOTION, NEWTON’S
LAW, AND POWER RELATIONSHIPS

Almost all electric machines rotate about an axis, called the shaft of the machine.
Because of the rotational nature of machinery, it is important to have a basic un-
derstanding of rotational motion. This section contains a brief review of the con-
cepts of distance, velocity, acceleration, Newton’s law, and power as they apply to
rotating machinery. For a more detailed discussion of the concepts of rotational
dynamics, see References 2, 4, and 5.

In general, a three-dimensional vector is required to completely describe the
rotation of an object in space. However, machines normally turn on a fixed shaft, so
their rotation is restricted to one angular dimension. Relative to a given end of the
machine’s shaft, the direction of rotation can be described as either clockwise (CW)
or counterclockwise (CCW). For the purpose of this volume, a counterclockwise an-
gle of rotation is assumed to be positive, and a clockwise one is assumed to be nega-
tive. For rotation about a fixed shaft, all the concepts in this section reduce to scalars.

Each major concept of rotational motion is defined below and is related to
the corresponding idea from linear motion.

Angular Position 6

The angular position 6 of an object is the angle at which it is oriented, measured
from some arbitrary reference point. Angular position is usually measured in
radians or degrees. It corresponds to the linear concept of distance along a line.

Angular Velocity w

Angular velocity (or speed) is the rate of change in angular position with respect
to time. It is assumed positive if the rotation is in a counterclockwise direction.
Angular velocity is the rotational analog of the concept of velocity on a line. One-
dimensional linear velocity along a line is defined as the rate of change of the dis-
placement along the line (r) with respect to time.

_dr
V= (1-1)
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Similarly, angular velocity w is defined as the rate of change of the angular dis-
placement 6 with respect to time.

_ db

0="9 (1-2)

If the units of angular position are radians, then angular velocity is measured in ra-
dians per second.

In dealing with ordinary electric machines, engineers often use units other
than radians per second to describe shaft speed. Frequently, the speed is given in
revolutions per second or revolutions per minute. Because speed is such an im-
portant quantity in the study of machines, it is customary to use different symbols
for speed when it is expressed in different units. By using these different symbols,
any possible confusion as to the units intended is minimized. The following sym-
bols are used in this book to describe angular velocity:

w, angular velocity expressed in radians per second
fn angular velocity expressed in revolutions per second
n, angular velocity expressed in revolutions per minute

The subscript m on these symbols indicates a mechanical quantity, as opposed to
an electrical quantity. If there is no possibility of confusion between mechanical
and electrical quantities, the subscript is often left out.

These measures of shaft speed are related to each other by the following
equations:

= 60f;, (1-3a)
fn=52 (1-3b)

Angular Acceleration «

Angular acceleration is the rate of change in angular velocity with respect to
time. It is assumed positive if the angular velocity is increasing in an algebraic
sense. Angular acceleration is the rotational analog of the concept of accelera-
tion on a line. Just as one-dimensional linear acceleration is defined by the
equation

_dv
a= (14
angular acceleration is defined by
_do
a=" (1-5)

If the units of angular velocity are radians per second, then angular acceleration is
measured in radians per second squared.
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T

7=0 Torque is counterclockwise

Torque is zero

(a) (b)

FIGURE 1-1

(a) A force applied to a cylinder so that it passes through the axis of rotation. T = 0.

(b) A force applied to a cylinder so that its line of action misses the axis of rotation. Here 7 is
counterclockwise.

Torque 7

In linear motion, a force applied to an object causes its velocity to change. In the
absence of a net force on the object, its velocity is constant. The greater the force
applied to the object, the more rapidly its velocity changes.

There exists a similar concept for rotation. When an object is rotating, its
angular velocity is constant unless a torque is present on it. The greater the torque
on the object, the more rapidly the angular velocity of the object changes.

What is torque? It can loosely be called the “twisting force” on an object.
Intuitively, torque is fairly easy to understand. Imagine a cylinder that is free to
rotate about its axis. If a force is applied to the cylinder in such a way that its line
of action passes through the axis (Figure 1-1a), then the cylinder will not rotate.
However, if the same force is placed so that its line of action passes to the right of
the axis (Figure 1-1b), then the cylinder will tend to rotate in a counterclockwise
direction. The torque or twisting action on the cylinder depends on (1) the magni-
tude of the applied force and (2) the distance between the axis of rotation and the
line of action of the force.

The torque on an object is defined as the product of the force applied to the
object and the smallest distance between the line of action of the force and the object’s
axis of rotation. If r is a vector pointing from the axis of rotation to the point
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r sin(180° — ) = r sinf
f—_\l

T= ndicular distance) (force \
(perpe ) ) \ FIGURE 1-2

F Derivation of the equation for the torque

7 = (r sin @)F, counterclockwise on an object,

of application of the force, and if F is the applied force, then the torque can be
described as

7 = (force applied)(perpendicular distance)
= (F) (r sin 0)
rF sin 0 (1-6)

where 6 is the angle between the vector r and the vector F. The direction of the
torque is clockwise if it would tend to cause a clockwise rotation and counter-
clockwise if it would tend to cause a counterclockwise rotation (Figure 1-2).

The units of torque are newton-meters in SI units and pound-feet in the Eng-
lish system.

Newton’s Law of Rotation

Newton’s law for objects moving along a straight line describes the relationship
between the force applied to an object and its resulting acceleration. This rela-
tionship is given by the equation

F =ma (1-7)
where
F = net force applied to an object

m = mass of the object
a = resulting acceleration

In SI units, force is measured in newtons, mass in kilograms, and acceleration in
meters per second squared. In the English system, force is measured in pounds,
mass in slugs, and acceleration in feet per second squared.
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A similar equation describes the relationship between the torque applied to
an object and its resulting angular acceleration. This relationship, called Newton's
law of rotation, is given by the equation

T=Jua (1-8)

where 7 is the net applied torque in newton-meters or pound-feet and « is the re-
sulting angular acceleration in radians per second squared. The term J serves the
same purpose as an object’s mass in linear motion. It is called the moment of
inertia of the object and is measured in kilogram-meters squared or slug-feet
squared. Calculation of the moment of inertia of an object is beyond the scope of
this book. For information about it see Ref. 2.

Work W

For linear motion, work is defined as the application of a force through a distance.
In equation form,

W= f Fdr (1-9)

where it is assumed that the force is collinear with the direction of motion. For the
special case of a constant force applied collinearly with the direction of motion,
this equation becomes just

W=Fr (1-10)

The units of work are joules in SI and foot-pounds in the English system.
For rotational motion, work is the application of a torque through an angle.
Here the equation for work is

W=J"rd0 (1-11)

and if the torque is constant,

W=10 (1-12)

Power P

Power is the rate of doing work, or the increase in work per unit time. The equa-
tion for power is

—aw

P="a

(1-13)
It is usually measured in joules per second (watts), but also can be measured in
foot-pounds per second or in horsepower.
By this definition, and assuming that force is constant and collinear with the
direction of motion, power is given by
_dw_d dr\ _

P_W__t(Fr)=F(Z> = Fy (1-14)
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Similarly, assuming constant torque, power in rotational motion is given by

_aw _d . _ _(df)_
P= ar _dt(TO) T(dt) TW
P=10 (1-15)

Equation (1-15) is very important in the study of electric machinery, because it
can describe the mechanical power on the shaft of a motor or generator.

Equation (1-15) is the correct relationship among power, torque, and speed if
power is measured in watts, torque in newton-meters, and speed in radians per
second. If other units are used to measure any of the above quantities, then a
constant must be introduced into the equation for unit conversion factors. It is still
common in U.S. engineering practice to measure torque in pound-feet, speed in rev-
olutions per minute, and power in either watts or horsepower. If the appropriate
conversion factors are included in each term, then Equation (1-15) becomes

7 (Ib-ft) n (r/min)

P (watts) = 704 (1-16)
_ 7 (Ib-ft) n (r/min)
P (horsepower) = BT S— (1-17)

where torque is measured in pound-feet and speed is measured in revolutions per
minute.

1.4 THE MAGNETIC FIELD

As previously stated, magnetic fields are the fundamental mechanism by which en-
ergy is converted from one form to another in motors, generators, and transform-
ers. Four basic principles describe how magnetic fields are used in these devices:

1. A current-carrying wire produces a magnetic field in the area around it.

2. Atime-changing magnetic field induces a voltage in a coil of wire if it passes
through that coil. (This is the basis of transformer action.)

3. A current-carrying wire in the presence of a magnetic field has a force in-
duced on it. (This is the basis of motor action.)

4. A moving wire in the presence of a magnetic field has a voltage induced in it.
(This is the basis of generator action.)

This section describes and elaborates on the production of a magnetic field by a
current-carrying wire, while later sections of this chapter explain the remaining
three principles.

Production of a Magnetic Field

The basic law governing the production of a magnetic field by a current is
Ampere’s law:

3§H-dl = I, (1-18)



INTRODUCTION TO MACHINERY PRINCIPLES 9

| [
/
/)

[[]]]]

[——— Cross-sectional
area A

Mean path length [,

FIGURE 1-3
A simple magnetic core.

where H is the magnetic field intensity produced by the current I,,, and d! is a dif-
ferential element of length along the path of integration. In SI units, / is measured
in amperes and H is measured in ampere-turns per meter. To better understand the
meaning of this equation, it is helpful to apply it to the simple example in Figure 1-3.
Figure 1-3 shows a rectangular core with a winding of N turns of wire wrapped
about one leg of the core. If the core is composed of iron or certain other similar
metals (collectively called ferromagnetic materials), essentially all the magnetic
field produced by the current will remain inside the core, so the path of integration
in Ampere’s law is the mean path length of the core /.. The current passing within
the path of integration I, is then Ni, since the coil of wire cuts the path of inte-
gration N times while carrying current i. Ampere’s law thus becomes

HI, = Ni (1-19)

Here H is the magnitude of the magnetic field intensity vector H. Therefore, the
magnitude of the magnetic field intensity in the core due to the applied current is

=N

H I,

(1-20)

The magnetic field intensity H is in a sense a measure of the “effort” that a
current is putting into the establishment of a magnetic field. The strength of the
magnetic field flux produced in the core also depends on the material of the core.
The relationship between the magnetic field intensity H and the resulting mag-
netic flux density B produced within a material is given by

B = uH (1-21)
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where

H = magnetic field intensity
@ = magnetic permeability of material
B = resulting magnetic flux density produced

The actual magnetic flux density produced in a piece of material is thus
given by a product of two terms:

H, representing the effort exerted by the current to establish a magnetic field

u, representing the relative ease of establishing a magnetic field in a given
material

The units of magnetic field intensity are ampere-turns per meter, the units of per-
meability are henrys per meter, and the units of the resulting flux density are
webers per square meter, known as teslas (T).

The permeability of free space is called ., and its value is

Bo = 47 X 1077 H/m (1-22)

The permeability of any other material compared to the permeability of free space
is called its relative permeability:

= (1-23)
Relative permeability is a convenient way to compare the magnetizability of
materials. For example, the steels used in modern machines have relative perme-
abilities of 2000 to 6000 or even more. This means that, for a given amount of
current, 2000 to 6000 times more flux is established in a piece of steel than in a
corresponding area of air. (The permeability of air is essentially the same as the
permeability of free space.) Obviously, the metals in a transformer or motor core
play an extremely important part in increasing and concentrating the magnetic
flux in the device.

Also, because the permeability of iron is so much higher than that of air, the
great majority of the flux in an iron core like that in Figure 1-3 remains inside the
core instead of traveling through the surrounding air, which has much lower per-
meability. The small leakage flux that does leave the iron core is very important
in determining the flux linkages between coils and the self-inductances of coils in
transformers and motors.

In a core such as the one shown in Figure 1-3, the magnitude of the flux
density is given by

uNi

B =pH =7

(1-24)
Now the total flux in a given area is given by

b= j B.dA (1-25a)
A
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FIGURE 14
(a) A simple electric circuit. (b) The magnetic circuit analog to a transformer core.

where dA is the differential unit of area. If the flux density vector is perpendicu-
lar to a plane of area A, and if the flux density is constant throughout the area, then
this equation reduces to

¢ =BA (1-25b)

Thus, the total flux in the core in Figure 1-3 due to the current i in the
winding is

¢ =BA = “IIWA (1-26)

where A is the cross-sectional area of the core.

Magnetic Circuits

In Equation (1-26) we see that the current in a coil of wire wrapped around a core pro-
duces a magnetic flux in the core. This is in some sense analogous to a voltage in an
electric circuit producing a current flow. It is possible to define a “magnetic circuit”
whose behavior is governed by equations analogous to those for an electric circuit. The
magnetic circuit model of magnetic behavior is often used in the design of electric ma-
chines and transformers to simplify the otherwise quite complex design process.

In a simple electric circuit such as the one shown in Figure 1-4a, the voltage
source V drives a current / around the circuit through a resistance R. The relation-
ship between these quantities is given by Ohm’s law:

V=IR

In the electric circuit, it is the voltage or electromotive force that drives the cur-
rent flow. By analogy, the corresponding quantity in the magnetic circuit is called
the magnetomotive force (mmf). The magnetomotive force of the magnetic circuit
is equal to the effective current flow applied to the core, or

F = Ni 1-27)

where I is the symbol for magnetomotive force, measured in ampere-turns.
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L

FIGURE 1-5
Determining the polarity of a magnetomotive force source in a magnetic circuit.

Like the voltage source in the electric circuit, the magnetomotive force
in the magnetic circuit has a polarity associated with it. The positive end of the mmf
source is the end from which the flux exits, and the negative end of the mmf source
is the end at which the flux reenters. The polarity of the mmf from a coil of
wire can be determined from a modification of the right-hand rule: If the fingers
of the right hand curl in the direction of the current flow in a coil of wire, then
the thumb will point in the direction of the positive mmf (see Figure 1-5).

In an electric circuit, the applied voltage causes a current / to flow. Simi-
larly, in a magnetic circuit, the applied magnetomotive force causes flux ¢ to be
produced. The relationship between voltage and current in an electric circuit is
Ohm’s law (V = IR); similarly, the relationship between magnetomotive force and
flux is

F=¢R (1-28)

where
F = magnetomotive force of circuit
¢ = flux of circuit
QR = reluctance of circuit

The reluctance of a magnetic circuit is the counterpart of electrical resistance, and
its units are ampere-turns per weber.



INTRODUCTION TO MACHINERY PRINCIPLES 13

There is also a magnetic analog of conductance. Just as the conductance of
an electric circuit is the reciprocal of its resistance, the permeance P of a magnetic
circuit is the reciprocal of its reluctance:

=3 (1-29)

The relationship between magnetomotive force and flux can thus be expressed as
¢ =FP (1-30)

Under some circumstances, it is easier to work with the permeance of a magnetic
circuit than with its reluctance.

What is the reluctance of the core in Figure 1-3? The resulting flux in this
core is given by Equation (1-26):

¢ =BA= ”‘7’” (1-26)
o
¢ = g(lﬁ) (1-31)

By comparing Equation (1-31) with Equation (1-28), we see that the reluctance
of the core is
@=Lk (1-32)
MA
Reluctances in a magnetic circuit obey the same rules as resistances in an electric
circuit. The equivalent reluctance of a number of reluctances in series is just the
sum of the individual reluctances:

Cpeq=CQl+CQ2+CQ3+~- (1-33)
Similarly, reluctances in parallel combine according to the equation

1 1 1 1
— ==+ ——+ ==+ 1-34
2 @ TR TR (=9

Permeances in series and parallel obey the same rules as electrical conductances.

Calculations of the flux in a core performed by using the magnetic circuit con-
cepts are always approximations—at best, they are accurate to within about 5 per-
cent of the real answer. There are a number of reasons for this inherent inaccuracy:

1. The magnetic circuit concept assumes that all flux is confined within a mag-
netic core. Unfortunately, this is not quite true. The permeability of a ferro-
magnetic core is 2000 to 6000 times that of air, but a small fraction of the flux
escapes from the core into the surrounding low-permeability air. This flux



14 ELECTRIC MACHINERY FUNDAMENTALS

FIGURE 1-6

The fringing effect of a magnetic field at an air gap. Note
the increased cross-sectional area of the air gap compared
with the cross-sectional area of the metal.

outside the core is called leakage flux, and it plays a very important role in
electric machine design.

2. The calculation of reluctance assumes a certain mean path length and
cross-sectional area for the core. These assumptions are not really very good,
especially at corners.

3. In ferromagnetic materials, the permeability varies with the amount of flux
already in the material. This nonlinear effect is described in detail. It adds yet
another source of error to magnetic circuit analysis, since the reluctances used
in magnetic circuit calculations depend on the permeability of the material.

4. If there are air gaps in the flux path in a core, the effective cross-sectional
area of the air gap will be larger than the cross-sectional area of the iron core
on either side. The extra effective area is caused by the “fringing effect” of
the magnetic field at the air gap (Figure 1-6).

It is possible to partially offset these inherent sources of error by using a “cor-
rected” or “effective” mean path length and cross-sectional area instead of the ac-
tual physical length and area in the calculations.

There are many inherent limitations to the concept of a magnetic circuit, but
it is still the easiest design tool available for calculating fluxes in practical ma-
chinery design. Exact calculations using Maxwell’s equations are just too diffi-
cult, and they are not needed anyway, since satisfactory results may be achieved
with this approximate method.

The following examples illustrate basic magnetic circuit calculations. Note
that in these examples the answers are given to three significant digits.

Example 1-1. A ferromagnetic core is shown in Figure 1-7a. Three sides of this
core are of uniform width, while the fourth side is somewhat thinner. The depth of the core
(into the page) is 10 cm, and the other dimensions are shown in the figure. There is a 200-
turn coil wrapped around the left side of the core. Assuming relative permeability u, of
2500, how much flux will be produced by a 1-A input current?
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FIGURE 1-7

(a) The ferromagnetic core of Example 1-1. (b) The magnetic circuit corresponding to (a).
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Solution
We will solve this problem twice, once by hand and once by a MATLAB program, and
show that both approaches yield the same answer.

Three sides of the core have the same cross-sectional areas, while the fourth side has
a different area. Thus, the core can be divided into two regions: (1) the single thinner side
and (2) the other three sides taken together. The magnetic circuit corresponding to this core
is shown in Figure 1-7b.

The mean path length of region 1 is 45 cm, and the cross-sectional area is 10 X 10
cm = 100 cm?. Therefore, the reluctance in the first region is

oo b b
PTMAL T oA,

_ 0.45m
(2500)(47r X 1077)(0.01 m?)

= 14,300 A  turns/Wb

(1-32)

The mean path length of region 2 is 130 cm, and the cross-sectional area is 15 X 10
cm = 150 cm?. Therefore, the reluctance in the second region is

— 1_2 __bh (1-32)
HAz e poAs

_ 1.3m
(2500)(47r X 1077)(0.015 m?)

= 27,600 A ¢ turns/Wb

R

Therefore, the total reluctance in the core is

Reg= Ry + R,
= 14,300 A * turns/Wb + 27,600 A ¢ turns/Wb
= 41,900 A * turns/Wb

The total magnetomotive force is
F = Ni = (200 turns)(1.0 A) = 200 A * turns
The total flux in the core is given by

b= g _ ___200A-tuns
T Q@ 41,900 A « turns/ Wb

= 0.0048 Wb

This calculation can be performed by using a MATLAB script file, if desired. A sim-
ple script to calculate the flux in the core is shown below.

% M-file: exl_1l.m
% M-file to calculate the flux in Example 1-1.

11 = 0.45; % Length of region 1

12 = 1.3; % Length of region 2

al = 0.01; % Area of region 1

a2 = 0.015; % Area of region 2

ur = 2500; % Relative permeability
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u0 = 4*pi*lE-7; % Permeability of free space
n = 200; % Number of turns on core
i=1; % Current in amps

% Calculate the first reluctance
rl = 11 / (ur * u0 * al);

disp (['rl = ' num2str(rl)]);

% Calculate the second reluctance
r2 = 12 / (ur * u0 * a2);

disp (['r2 = ' num2str(r2)]);

% Calculate the total reluctance
rtot = rl + r2;

% Calculate the mmf
mmf = n * i;

% Finally, get the flux in the core
flux = mmf / rtot;

% Display result

disp (['Flux = ' num2str(flux)]);

When this program is executed, the results are:

» exl_1
rl = 14323.9449
r2 = 27586.8568

Flux = 0.004772

17

This program produces the same answer as our hand calculations to the number of signifi-

cant digits in the problem.

Example 1-2. Figure 1-8a shows a ferromagnetic core whose mean path length is
40 cm. There is a small gap of 0.05 cm in the structure of the otherwise whole core. The
cross-sectional area of the core is 12 cm?, the relative permeability of the core is 4000, and
the coil of wire on the core has 400 turns. Assume that fringing in the air gap increases the
effective cross-sectional area of the air gap by 5 percent. Given this information, find
(a) the total reluctance of the flux path (iron plus air gap) and (b) the current required to

produce a flux density of 0.5 T in the air gap.

Solution
The magnetic circuit corresponding to this core is shown in Figure 1-8b.

(a) The reluctance of the core is

L L,
CQL‘ = e— =
MA: By poA.
_ 0.4 m
(4000)(47 X 1077)(0.002 m?)

= 66,300 A ¢ turns/Wb

(1-32)
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FIGURE 1-8
(a) The ferromagnetic core of Example 1-2. (b) The magnetic circuit corresponding to (a).

The effective area of the air gap is 1.05 X 12 cm? = 12.6 cm?, so the reluctance of the air gap is
)

a

HoAq

R, = (1-32)

_ 0.0005 m
(47 X 1077)(0.00126 m?)
= 316,000 A ¢ turns/Wb
Therefore, the total reluctance of the flux path is
Reg = R + R,
= 66,300 A * turns/Wb + 316,000 A * turns/Wb
= 382,300 A * turns/Wb

Note that the air gap contributes most of the reluctance even though it is 800 times shorter
than the core.
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(b) Equation (1-28) states that

F=¢R (1-28)
Since the flux ¢ = BA and F = Ni, this equation becomes
Ni = BAR

)

_ BAQR

Y

_ (0.5 T)(0.00126 m*)(383,200 A * turns/ Wb)

B 400 turns

=0.602 A

Notice that, since the air-gap flux was required, the effective air-gap area was used in the
above equation.

Example 1-3. Figure 1-9a shows a simplified rotor and stator for a dc motor. The
mean path length of the stator is 50 cm, and its cross-sectional area is 12 cm?. The mean
path length of the rotor is 5 cm, and its cross-sectional area also may be assumed to be
12 cm?. Each air gap between the rotor and the stator is 0.05 cm wide, and the cross-
sectional area of each air gap (including fringing) is 14 cm?. The iron of the core has a rel-
ative permeability of 2000, and there are 200 turns of wire on the core. If the current in the
wire is adjusted to be 1 A, what will the resulting flux density in the air gaps be?

Solution
To determine the flux density in the air gap, it is necessary to first calculate the magneto-
motive force applied to the core and the total reluctance of the flux path. With this infor-
mation, the total flux in the core can be found. Finally, knowing the cross-sectional area of
the air gaps enables the flux density to be calculated.

The reluctance of the stator is

R, = c
" e oA,
_ 0.5m
(2000)(47 X 1077)(0.0012 m?)
= 166,000 A ¢ turns/Wb
The reluctance of the rotor is
R, = b
" oA,
_ 0.05 m
(2000)(47 X 1077)(0.0012 m?)
= 16,600 A * turns/Wb
The reluctance of the air gaps is
L
Ly
0.0005 m

T ()@ X 1077)(0.0014 m?)
= 284,000 A ¢ turns/Wb
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FIGURE 1-9
(a) A simplified diagram of a rotor and stator for a dc motor. (b) The magnetic circuit corresponding to (a).

The magnetic circuit corresponding to this machine is shown in Figure 1-9b. The total re-
luctance of the flux path is thus

Cpeq=cps+cpal+cpr+cga2
= 166,000 + 284,000 + 16,600 + 284,000 A * turns/Wb
= 751,000 A * turns/Wb

The net magnetomotive force applied to the core is
F = Ni = (200 turns)(1.0 A) = 200 A ¢ turns

Therefore, the total flux in the core is
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¢=E= 200 A e turns
® ~ 751,000 A * turns/ Wb

= 0.00266 Wb

Finally, the magnetic flux density in the motor’s air gap is

_ ¢ _ 0.000266 Wb _
B=4="0001am 01T

Magnetic Behavior of Ferromagnetic Materials
Earlier in this section, magnetic permeability was defined by the equation
B = uH (1-21)

It was explained that the permeability of ferromagnetic materials is very high, up
to 6000 times the permeability of free space. In that discussion and in the examples
that followed, the permeability was assumed to be constant regardless of the mag-
netomotive force applied to the material. Although permeability is constant in free
space, this most certainly is not true for iron and other ferromagnetic materials.

To illustrate the behavior of magnetic permeability in a ferromagnetic ma-
terial, apply a direct current to the core shown in Figure 1-3, starting with 0 A and
slowly working up to the maximum permissible current. When the flux produced
in the core is plotted versus the magnetomotive force producing it, the resulting
plot looks like Figure 1-10a. This type of plot is called a saturation curve or a
magnetization curve. At first, a small increase in the magnetomotive force pro-
duces a huge increase in the resulting flux. After a certain point, though, further
increases in the magnetomotive force produce relatively smaller increases in the
flux. Finally, an increase in the magnetomotive force produces almost no change
at all. The region of this figure in which the curve flattens out is called the satu-
ration region, and the core is said to be saturated. In contrast, the region where the
flux changes very rapidly is called the unsaturated region of the curve, and the
core is said to be unsaturated. The transition region between the unsaturated re-
gion and the saturated region is sometimes called the knee of the curve. Note that
the flux produced in the core is linearly related to the applied magnetomotive
force in the unsaturated region, and approaches a constant value regardless of
magnetomotive force in the saturated region.

Another closely related plot is shown in Figure 1-10b. Figure 1-10b is a
plot of magnetic flux density B versus magnetizing intensity H. From Equations
(1-20) and (1-25b),

Ni T
=T=7 (1-20)
¢ =BA (1-25b)

it is easy to see that magnetizing intensity is directly proportional to magnetomotive
force and magnetic flux density is directly proportional to flux for any given core.
Therefore, the relationship between B and H has the same shape as the relationship
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FIGURE 1-10

(a) Sketch of a dc magnetization curve for a ferromagnetic core. (b) The magnetization curve
expressed in terms of flux density and magnetizing intensity. (c) A detailed magnetization curve for a
typical piece of steel. (d) A plot of relative permeability u, as a function of magnetizing intensity H
for a typical piece of steel.
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FIGURE 1-10
(continued)

between flux and magnetomotive force. The slope of the curve of flux density ver-
sus magnetizing intensity at any value of H in Figure 1-10b is by definition the per-
meability of the core at that magnetizing intensity. The curve shows that the perme-
ability is large and relatively constant in the unsaturated region and then gradually
drops to a very low value as the core becomes heavily saturated.

Figure 1-10c is a magnetization curve for a typical piece of steel shown in
more detail and with the magnetizing intensity on a logarithmic scale. Only with
the magnetizing intensity shown logarithmically can the huge saturation region of
the curve fit onto the graph.

The advantage of using a ferromagnetic material for cores in electric ma-
chines and transformers is that one gets many times more flux for a given magne-
tomotive force with iron than with air. However, if the resulting flux has to be pro-
portional, or nearly so, to the applied magnetomotive force, then the core must be
operated in the unsaturated region of the magnetization curve.

Since real generators and motors depend on magnetic flux to produce volt-
age and torque, they are designed to produce as much flux as possible. As a result,
most real machines operate near the knee of the magnetization curve, and the flux
in their cores is not linearly related to the magnetomotive force producing it. This



24 ELECTRIC MACHINERY FUNDAMENTALS

nonlinearity accounts for many of the peculiar behaviors of machines that will be
explained in future chapters. We will use MATLAB to calculate solutions to prob-
lems involving the nonlinear behavior of real machines.

Example 1-4. Find the relative permeability of the typical ferromagnetic material
whose magnetization curve is shown in Figure 1-10c at (a) H = 50, (b) H = 100, (c) H =
500, and (d) H = 1000 A ¢ turns/m.

Solution
The permeability of a material is given by

B
H
and the relati ve pemeabi]ity iS gl ven by

ol

M= (1-23)

Thus, it is easy to determine the permeability at any given magnetizing intensity.
(a) At H=50Aturns/m, B = 0.25T, so

_B___025T _
E=H 504 umsm _ 0050 H/m
and
x _ 0.0050 H/m
=£ - 2P _ 3980
Pr= 46~ a7 x 100 H/m
(b) At H=100A ¢ turns/m, B = 0.72 T, so
_B___ 072T  _
K ="H T 100 A « turns/m 0.0072 H/m
and
_ K _ _00072Hm _
P = e amx 107 Him 00
(c) AtH = 500A ¢turns/m, B = 1.40T, so
_B____140T  _
H = H 5004 tumym 00028 H/m
and
_ 4 _ _00028Hm _
M= e amx 107 Hm 220
(d) At H= 1000 A * turns/m, B = 1.51 T, so
_B_ 1.51T _
H = H = 1000 A+ tumg/m _ 200151 H/m
and
_ 4 _ 000151 H/m _
P = e = rx 107 Wim 20
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Notice that as the magnetizing intensity is increased, the relative perme-
ability first increases and then starts to drop off. The relative permeability of a typ-
ical ferromagnetic material as a function of the magnetizing intensity is shown in
Figure 1-10d. This shape is fairly typical of all ferromagnetic materials. It can
easily be seen from the curve for u, versus H that the assumption of constant rel-
ative permeability made in Examples 1-1 to 1-3 is valid only over a relatively
narrow range of magnetizing intensities (or magnetomotive forces).

In the following example, the relative permeability is not assumed to be
constant. Instead, the relationship between B and H is given by a graph.

Example 1-5. A square magnetic core has a mean path length of 55 cm and a cross-
sectional area of 150 cm?. A 200-turn coil of wire is wrapped around one leg of the core. The
core is made of a material having the magnetization curve shown in Figure 1-10c.

(a) How much current is required to produce 0.012 Wb of flux in the core?
(b) What is the core’s relative permeability at that current level?
(c) What is its reluctance?

Solution
(a) The required flux density in the core is
_¢_1012Wb _
B4~ 0015m 087

From Figure 1-10c, the required magnetizing intensity is
H =115 A+ turns/m

From Equation (1-20), the magnetomotive force needed to produce this magnetizing
intensity is

F = Ni=HI,
= (115 A * turns/m)(0.55 m) = 63.25 A * turns

so the required current is

._F _63.25A «turns

N 200 tumns 0.316A
(b) The core’s permeability at this current is
_B _ 08T _
F=H TI5A wmsm _ -00696 H/m
Therefore, the relative permeability is
_ M _ _000696Hm _ 5540

" Ko 4w X 107 H/m
(c) The reluctance of the core is

_F _6325Aturns _ .
R= b T 002Wb - 5270 A ¢ turns/Wb
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FIGURE 1-11
The hysteresis loop traced out by the flux in a core when the current i(z) is applied to it.

Energy Losses in a Ferromagnetic Core

Instead of applying a direct current to the windings on the core, let us now apply
an alternating current and observe what happens. The current to be applied is
shown in Figure 1-11a. Assume that the flux in the core is initially zero. As the
current increases for the first time, the flux in the core traces out path ab in Figure
1-11b. This is basically the saturation curve shown in Figure 1-10. However,
when the current falls again, the flux traces out a different path from the one it fol-
lowed when the current increased. As the current decreases, the flux in the core
traces out path bcd, and later when the current increases again, the flux traces out
path deb. Notice that the amount of flux present in the core depends not only on
the amount of current applied to the windings of the core, but also on the previous
history of the flux in the core. This dependence on the preceding flux history and
the resulting failure to retrace flux paths is called hysteresis. Path bcdeb traced out
in Figure 1-11b as the applied current changes is called a hysteresis loop.
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FIGURE 1-12
(a) Magnetic domains oriented randomly. (b) Magnetic domains lined up in the presence of an
external magnetic field.

Notice that if a large magnetomotive force is first applied to the core and
then removed, the flux path in the core will be abc. When the magnetomotive
force is removed, the flux in the core does not go to zero. Instead, a magnetic field
is left in the core. This magnetic field is called the residual flux in the core. It is in
precisely this manner that permanent magnets are produced. To force the flux to
zero, an amount of magnetomotive force known as the coercive magnetomotive
force . must be applied to the core in the opposite direction.

Why does hysteresis occur? To understand the behavior of ferromagnetic
materials, it is necessary to know something about their structure. The atoms of
iron and similar metals (cobalt, nickel, and some of their alloys) tend to have their
magnetic fields closely aligned with each other. Within the metal, there are many
small regions called domains. In each domain, all the atoms are aligned with their
magnetic fields pointing in the same direction, so each domain within the material
acts as a small permanent magnet. The reason that a whole block of iron can ap-
pear to have no flux is that these numerous tiny domains are oriented randomly
within the material. An example of the domain structure within a piece of iron is
shown in Figure 1-12.

When an external magnetic field is applied to this block of iron, it causes do-
mains that happen to point in the direction of the field to grow at the expense of
domains pointed in other directions. Domains pointing in the direction of the mag-
netic field grow because the atoms at their boundaries physically switch orientation
to align themselves with the applied magnetic field. The extra atoms aligned with
the field increase the magnetic flux in the iron, which in turn causes more atoms to
switch orientation, further increasing the strength of the magnetic field. It is this pos-
itive feedback effect that causes iron to have a permeability much higher than air.

As the strength of the external magnetic field continues to increase, whole
domains that are aligned in the wrong direction eventually reorient themselves as
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a unit to line up with the field. Finally, when nearly all the atoms and domains in
the iron are lined up with the external field, any further increase in the magneto-
motive force can cause only the same flux increase that it would in free space.
(Once everything is aligned, there can be no more feedback effect to strengthen
the field.) At this point, the iron is saturated with flux. This is the situation in the
saturated region of the magnetization curve in Figure 1-10.

The key to hysteresis is that when the external magnetic field is removed,
the domains do not completely randomize again. Why do the domains remain
lined up? Because turning the atoms in them requires energy. Originally, energy
was provided by the external magnetic field to accomplish the alignment; when
the field is removed, there is no source of energy to cause all the domains to rotate
back. The piece of iron is now a permanent magnet.

Once the domains are aligned, some of them will remain aligned until a
source of external energy is supplied to change them. Examples of sources of ex-
ternal energy that can change the boundaries between domains and/or the align-
ment of domains are magnetomotive force applied in another direction, a large
mechanical shock, and heating. Any of these events can impart energy to the do-
mains and enable them to change alignment. (It is for this reason that a permanent
magnet can lose its magnetism if it is dropped, hit with a hammer, or heated.)

The fact that turning domains in the iron requires energy leads to a common
type of energy loss in all machines and transformers. The hysteresis loss in an iron
core is the energy required to accomplish the reorientation of domains during each
cycle of the alternating current applied to the core. It can be shown that the area
enclosed in the hysteresis loop formed by applying an alternating current to the
core is directly proportional to the energy lost in a given ac cycle. The smaller the
applied magnetomotive force excursions on the core, the smaller the area of
the resulting hysteresis loop and so the smaller the resulting losses. Figure 1-13
illustrates this point.

Another type of loss should be mentioned at this point, since it is also
caused by varying magnetic fields in an iron core. This loss is the eddy current
loss. The mechanism of eddy current losses is explained later after Faraday’s law
has been introduced. Both hysteresis and eddy current losses cause heating in the
core material, and both losses must be considered in the design of any machine or
transformer. Since both losses occur within the metal of the core, they are usually
lumped together and called core losses.

1.5 FARADAY’S LAW—INDUCED VOLTAGE
FROM A TIME-CHANGING MAGNETIC FIELD

So far, attention has been focused on the production of a magnetic field and on its
properties. It is now time to examine the various ways in which an existing mag-
netic field can affect its surroundings.

The first major effect to be considered is called Faraday’s law. It is the ba-
sis of transformer operation. Faraday’s law states that if a flux passes through a
turn of a coil of wire, a voltage will be induced in the turn of wire that is directly
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FIGURE 1-13
The effect of the size of magnetomotive force excursions on the magnitude of the hysteresis loss.

proportional to the rate of change in the flux with respect to time. In equation
form,

d
€ind = —d_(f (1-35)

where e;,4 is the voltage induced in the turn of the coil and ¢ is the flux passing
through the turn. If a coil has N turns and if the same flux passes through all of
them, then the voltage induced across the whole coil is given by

dgb

eind = - dt (1—36)

where
€, = voltage induced in the coil
N = number of turns of wire in coil
¢ = flux passing through coil

The minus sign in the equations is an expression of Lenz’s law. Lenz’s law states that
the direction of the voltage buildup in the coil is such that if the coil ends were short
circuited, it would produce current that would cause a flux opposing the original
flux change. Since the induced voltage opposes the change that causes it, a minus
sign is included in Equation (1-36). To understand this concept clearly, examine
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The meaning of Lenz’s law: (a) A coil enclosing an increasing magnetic flux; (b) determining the
resulting voltage polarity.

Figure 1-14. If the flux shown in the figure is increasing in strength, then the volt-
age built up in the coil will tend to establish a flux that will oppose the increase. A
current flowing as shown in Figure 1-14b would produce a flux opposing the in-
crease, so the voltage on the coil must be built up with the polarity required to drive
that current through the external circuit. Therefore, the voltage must be built up with
the polarity shown in the figure. Since the polarity of the resulting voltage can be de-
termined from physical considerations, the minus sign in Equations (1-35) and
(1-36) is often left out. It is left out of Faraday’s law in the remainder of this book.

There is one major difficulty involved in using Equation (1-36) in practical
problems. That equation assumes that exactly the same flux is present in each turn
of the coil. Unfortunately, the flux leaking out of the core into the surrounding air
prevents this from being true. If the windings are tightly coupled, so that the vast
majority of the flux passing through one turn of the coil does indeed pass through
all of them, then Equation (1-36) will give valid answers. But if leakage is quite
high or if extreme accuracy is required, a different expression that does not make
that assumption will be needed. The magnitude of the voltage in the ith turn of the
coil is always given by

_ 44
& =g (1-37)
If there are N turns in the coil of wire, the total voltage on the coil is
N
€ind = 2 €; (1-38)
i=1
d($)

=y = (1-39)
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d N
= ;;,(g cbi) (1-40)

The term in parentheses in Equation (1-40) is called the flux linkage A of the coil,
and Faraday’s law can be rewritten in terms of flux linkage as

et = 2 (1-41)

N
where A= (1-42)
i=1

The units of flux linkage are weber-turns.

Faraday’s law is the fundamental property of magnetic fields involved in
transformer operation. The effect of Lenz’s law in transformers is to predict the
polarity of the voltages induced in transformer windings.

Faraday’s law also explains the eddy current losses mentioned previously.
A time-changing flux induces voltage within a ferromagnetic core in just the same
manner as it would in a wire wrapped around that core. These voltages cause
swirls of current to flow within the core, much like the eddies seen at the edges of
ariver. It is the shape of these currents that gives rise to the name eddy currents.
These eddy currents are flowing in a resistive material (the iron of the core), so
energy is dissipated by them. The lost energy goes into heating the iron core.

The amount of energy lost due to eddy currents depends on the size of the
current swirls and the resistivity of the material in which the current flows. The
larger the size of the swirl, the greater the resulting induced voltage will be (due
to the larger flux inside the swirl). The larger the induced voltage, the larger the
current flow that results, and therefore the greater the I? R losses will be. On the
other hand, the greater the resistivity of the material containing the currents, the
lower the current flow will be for a given induced voltage in the swirl.

These facts give us two possible approaches to reduce the eddy current
losses in a transformer or an electric machine. If a ferromagnetic core that may be
subject to alternating fluxes is broken up into many small strips, or laminations,
then the maximum size of a current swirl will be reduced, resulting in a lower in-
duced voltage, a lower current, and lower losses. This reduction is roughly pro-
portional to the width of these laminations, so smaller laminations are better. The
core is built up out of many of these laminations in parallel. An insulating resin is
used between the strips, so that the current paths for eddy currents are limited to
very small areas. Because the insulating layers are extremely thin, this action re-
duces eddy current losses with very little effect on the core’s magnetic properties.

The second approach to reducing eddy current losses is to increase the re-
sistivity of the core material. This is often done by adding some silicon to the steel
of the core. If the resistance of the core is higher, the eddy currents will be smaller
for a given flux, and the resulting /2 R losses will be smaller.
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The core of Example 1-6. Determination of the voltage polarity at the terminals is shown.

Either laminations or high-resistivity materials can be used to control eddy
currents. In many cases, both approaches are combined. Together, they can reduce
the eddy current losses to the point where they are much smaller than the hystere-
sis losses in the core.

Example 1-6. Figure 1-15 shows a coil of wire wrapped around an iron core. The
flux in the core is given by the equation

¢ = 0.05 sin 377t Wb

If there are 100 turns on the core, what voltage is produced at the terminals of the coil?
Of what polarity is the voltage during the time when flux is increasing in the reference
direction shown in the figure? Assume that all the magnetic flux stays within the core (i.e.,
assume that the flux leakage is zero).

Solution
By the same reasoning as in the discussion on pages 29-30, the direction of the voltage
while the flux is increasing in the reference direction must be positive to negative, as shown
in Figure 1-15. The magnitude of the voltage is given by

do

€ina = N7p
d .

= (100 turns) ar (0.05 sin 3771)

= 1885 cos 377t
or alternatively,

ena = 1885 sin(3771 + 90°) V
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1.6 PRODUCTION OF INDUCED FORCE
ON A WIRE

A second major effect of a magnetic field on its surroundings is that it induces a force
on a current-carrying wire within the field. The basic concept involved is illustrated
in Figure 1-16. The figure shows a conductor present in a uniform magnetic field of
flux density B, pointing into the page. The conductor itself is / meters long and con-
tains a current of i amperes. The force induced on the conductor is given by

F =il X B) (1-43)
where
i = magnitude of current in wire

1 = length of wire, with direction of 1 defined to be in the direction of
current flow

B = magnetic flux density vector

The direction of the force is given by the right-hand rule: If the index finger of the
right hand points in the direction of the vector 1 and the middle finger points in the
direction of the flux density vector B, then the thumb points in the direction of
the resultant force on the wire. The magnitude of the force is given by the equation

F =ilBsin 0 (1-44)

where 0 is the angle between the wire and the flux density vector.

Example 1-7. Figure 1-16 shows a wire carrying a current in the presence of a
magnetic field. The magnetic flux density is 0.25 T, directed into the page. If the wire is
1.0 m long and carries 0.5 A of current in the direction from the top of the page to the bot-
tom of the page, what are the magnitude and direction of the force induced on the wire?

Solution
The direction of the force is given by the right-hand rule as being to the right. The magni-
tude is given by
F =ilBsin 6 (1-44)
= (0.5 A)(1.0 m)(0.25 T) sin 90° = 0.125 N
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Therefore,
F = 0.125 N, directed to the right

The induction of a force in a wire by a current in the presence of a magnetic
field is the basis of motor action. Almost every type of motor depends on this
basic principle for the forces and torques which make it move.

1.7 INDUCED VOLTAGE ON A CONDUCTOR
MOVING IN A MAGNETIC FIELD

There is a third major way in which a magnetic field interacts with its surround-
ings. If a wire with the proper orientation moves through a magnetic field, a volt-
age is induced in it. This idea is shown in Figure 1-17. The voltage induced in the
wire is given by

€ng = (VX B)el (1-45)

where
v = velocity of the wire
B = magnetic flux density vector
1 = length of conductor in the magnetic field

Vector 1 points along the direction of the wire toward the end making the smallest
angle with respect to the vector v X B. The voltage in the wire will be built up so
that the positive end is in the direction of the vector v X B. The following exam-
ples illustrate this concept.

Example 1-8. Figure 1-17 shows a conductor moving with a velocity of 5.0 m/s
to the right in the presence of a magnetic field. The flux density is 0.5 T into the page, and
the wire is 1.0 m in length, oriented as shown. What are the magnitude and polarity of the
resulting induced voltage?

Solution
The direction of the quantity v X B in this example is up. Therefore, the voltage on the con-
ductor will be built up positive at the top with respect to the bottom of the wire. The direc-
tion of vector 1 is up, so that it makes the smallest angle with respect to the vector v X B.
Since v is perpendicular to B and since v X B is parallel to 1, the magnitude of the
induced voltage reduces to
€ina = (VXB)el (1-45)
= (vB sin 90°) [ cos 0°
= vBI
= (5.0 m/s)(0.5 T)(1.0 m)
=25V

Thus the induced voltage is 2.5 V, positive at the top of the wire.

Example 1-9. Figure 1-18 shows a conductor moving with a velocity of 10 m/s
to the right in a magnetic field. The flux density is 0.5 T, out of the page, and the wire is
1.0 m in length, oriented as shown. What are the magnitude and polarity of the resulting
induced voltage?
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The conductor of Example 1-9.

Solution

The direction of the quantity v X B is down. The wire is not oriented on an up-down line,
so choose the direction of 1 as shown to make the smallest possible angle with the direction
of v X B. The voltage is positive at the bottom of the wire with respect to the top of the
wire. The magnitude of the voltage is
ena = (vXB)-1 (1-45)

= (vB sin 90°) I cos 30°

= (10.0 m/s)(0.5 T)(1.0 m) cos 30°

=433V

The induction of voltages in a wire moving in a magnetic field is funda-

mental to the operation of all types of generators. For this reason, it is called
generator action.
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A linear dc machine. The magnetic field points into the page.

1.8 THE LINEAR DC MACHINE—A SIMPLE
EXAMPLE

A linear dc machine is about the simplest and easiest-to-understand version of a
dc machine, yet it operates according to the same principles and exhibits the same
behavior as real generators and motors. It thus serves as a good starting point in
the study of machines.

A linear dc machine is shown in Figure 1-19. It consists of a battery and a
resistance connected through a switch to a pair of smooth, frictionless rails. Along
the bed of this “railroad track” is a constant, uniform-density magnetic field di-
rected into the page. A bar of conducting metal is lying across the tracks.

How does such a strange device behave? Its behavior can be determined
from an application of four basic equations to the machine. These equations are

1. The equation for the force on a wire in the presence of a magnetic field:

143

where F = force on wire
i = magnitude of current in wire

1 = length of wire, with direction of 1 defined to be in the direction
of current flow

B = magnetic flux density vector
2. The equation for the voltage induced on a wire moving in a magnetic field:

| €pa= (VX B)el | (1-45)

where e,y = voltage induced in wire
v = velocity of the wire
B = magnetic flux density vector
1 = length of conductor in the magnetic field
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FIGURE 1-20
Starting a linear dc machine.

3. Kirchhoff’s voltage law for this machine. From Figure 1-19 this law gives
VB_iR“eind=0

[Vs=ena+iR=0] (1-46)

4. Newton’s law for the bar across the tracks:
Fr = ma (1-7)

We will now explore the fundamental behavior of this simple dc machine
using these four equations as tools.

Starting the Linear DC Machine

Figure 1-20 shows the linear dc machine under starting conditions. To start this

machine, simply close the switch. Now a current flows in the bar, which is given

by Kirchhoff’s voltage law:

Vb — €ina
R

i= (1-47)
Since the bar is initially at rest, e;,y = 0, so i = Vg/R. The current flows down
through the bar across the tracks. But from Equation (1-43), a current flowing
through a wire in the presence of a magnetic field induces a force on the wire. Be-
cause of the geometry of the machine, this force is

F,.q = ilB to the right (1-48)

Therefore, the bar will accelerate to the right (by Newton’s law). However,
when the velocity of the bar begins to increase, a voltage appears across the bar.
The voltage is given by Equation (1-45), which reduces for this geometry to

€nq = VBI positive upward (1-49)

The voltage now reduces the current flowing in the bar, since by Kirchhoff’s
voltage law
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R FIGURE 1-21
The linear dc machine on starting.
0 , . (a) Velocity v(t) as a function of time;

(b) induced voltage e;,4(#); (c) current i(t);
) (d) induced force Fq(t).

Vg — eindT

il = R

(1-47)
As e,y increases, the current i decreases.

The result of this action is that eventually the bar will reach a constant
steady-state speed where the net force on the bar is zero. This will occur when e;,4
has risen all the way up to equal the voltage Vp. At that time, the bar will be mov-
ing at a speed given by

Vg = €ing = VBl
_Vs
~ Bl

vSS

(1-50)

The bar will continue to coast along at this no-load speed forever unless some ex-
ternal force disturbs it. When the motor is started, the velocity v, induced voltage
e;ng»> current i, and induced force F,,, are as sketched in Figure 1-21.

To summarize, at starting, the linear dc machine behaves as follows:

1. Closing the switch produces a current flow i = Vz/R.
2. The current flow produces a force on the bar given by F = ilB.
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FIGURE 1-22
The linear dc machine as a motor.

3. The bar accelerates to the right, producing an induced voltage e;,4 as it
speeds up.
4. This induced voltage reduces the current flow i = (V3 — €4 T/R.

5. The induced force is thus decreased (F = il IB) until eventually F = 0.
At that point, e;,4 = Vjp, i = 0, and the bar moves at a constant no-load speed
v = Vg/BIL.

This is precisely the behavior observed in real motors on starting.

The Linear DC Machine as a Motor

Assume that the linear machine is initially running at the no-load steady-state con-
ditions described above. What will happen to this machine if an external load is
applied to it? To find out, let’s examine Figure 1-22. Here, a force F ., is applied
to the bar opposite the direction of motion. Since the bar was initially at steady
state, application of the force F,,,4 will result in a net force on the bar in the direc-
tion opposite the direction of motion (F,., = F\,,q — F;n4). The effect of this force
will be to slow the bar. But just as soon as the bar begins to slow down, the in-
duced voltage on the bar drops (e;,y = v\ BI). As the induced voltage decreases,
the current flow in the bar rises:

, Vi — eind’l'

iT= — (1-47)
Therefore, the induced force rises too (F,q = iTIB). The overall result of this
chain of events is that the induced force rises until it is equal and opposite to the
load force, and the bar again travels in steady state, but at a lower speed. When a
load is attached to the bar, the velocity v, induced voltage e;4, current i, and in-
duced force F,4 are as sketched in Figure 1-23.

There is now an induced force in the direction of motion of the bar, and

power is being converted from electrical form to mechanical form to keep the bar
moving. The power being converted is
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FIGURE 1-23
i The linear dc machine operating at no-load
conditions and then loaded as a motor.
F 0 . . ) (a) Velocity v(t) as a function of time;
load ! (b) induced voltage e;q(1); (c) current i(1);
d) (d) induced force Fi4(1).
Pconv = eindi = Findv (1_51)

An amount of electric power equal to e;,4i is consumed in the bar and is replaced
by mechanical power equal to F, 4v. Since power is converted from electrical to
mechanical form, this bar is operating as a motor.

To summarize this behavior:

[

. Aforce F,,4 is applied opposite to the direction of motion, which causes a net
force F,; opposite to the direction of motion.

2. The resulting acceleration a = F,,, /m is negative, so the bar slows down (v{).

3. The voltage e, = v Bl falls, and so i = (V; — einal)/R increases.

4. The induced force F,,y = iTIB increases until |Fi,,d| = |F,°ad| at a lower
speed v.

5. An amount of electric power equal to e;,4i is now being converted to me-
chanical power equal to F; 4v, and the machine is acting as a motor.

A real dc motor behaves in a precisely analogous fashion when it is loaded:
As aload is added to its shaft, the motor begins to slow down, which reduces its in-
ternal voltage, increasing its current flow. The increased current flow increases its
induced torque, and the induced torque will equal the load torque of the motor at a
new, slower speed.
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FIGURE 1-24
The linear dc machine as a generator.

Note that the power converted from electrical form to mechanical form by
this linear motor was given by the equation P,,,, = F;,qv. The power converted
from electrical form to mechanical form in a real rotating motor is given by the
equation

Pconv = Ting® ( 1- 52)

where the induced torque T7;,4 is the rotational analog of the induced force F; 4, and
the angular velocity w is the rotational analog of the linear velocity v.

The Linear DC Machine as a Generator

Suppose that the linear machine is again operating under no-load steady-state con-
ditions. This time, apply a force in the direction of motion and see what happens.
Figure 1-24 shows the linear machine with an applied force F,, in the di-
rection of motion. Now the applied force will cause the bar to accelerate in the
direction of motion, and the velocity v of the bar will increase. As the velocity
increases, e,y = vTBI will increase and will be larger than the battery voltage V5.
With e;,4 > Vp, the current reverses direction and is now given by the equation
. _ €~ Vs
i=—p— (1-53)
Since this current now flows up through the bar, it induces a force in the bar
given by

Foa=ilB  totheleft (1-54)

The direction of the induced force is given by the right-hand rule. This induced
force opposes the applied force on the bar.

Finally, the induced force will be equal and opposite to the applied force,
and the bar will be moving at a higher speed than before. Notice that now the bat-
tery is charging. The linear machine is now serving as a generator, converting me-
chanical power F,4v into electric power é;,4i.
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To summarize this behavior:

1. A force F,y, is applied in the direction of motion; F,,, is in the direction of
motion.

2. Acceleration a = F,./m is positive, so the bar speeds up (vT).

3. The voltage e;,y = vTBl increases, and so i = (e;,q T—V})/R increases.

4. The induced force F,,y = iTIB increases until |Find| = |Fload| at a higher
speed v.

5. An amount of mechanical power equal to F;,4v is now being converted to
electric power e;,4i, and the machine is acting as a generator.

Again, a real dc generator behaves in precisely this manner: A torque is ap-
plied to the shaft in the direction of motion, the speed of the shaft increases, the in-
ternal voltage increases, and current flows out of the generator to the loads. The
amount of mechanical power converted to electrical form in the real rotating gen-
erator is again given by Equation (1-52):

Pconv = Tind® ( 1_52)

It is interesting that the same machine acts as both motor and generator. The
only difference between the two is whether the externally applied forces are in the
direction of motion (generator) or opposite to the direction of motion (motor).
Electrically, when e;,4 > V3, the machine acts as a generator, and when e;,4 < Vj, the
machine acts as a motor. Whether the machine is a motor or a generator, both in-
duced force (motor action) and induced voltage (generator action) are present at all
times. This is generally true of all machines—both actions are present, and it is only
the relative directions of the external forces with respect to the direction of motion
that determine whether the overall machine behaves as a motor or as a generator.

Another very interesting fact should be noted: This machine was a genera-
tor when it moved rapidly and a motor when it moved more slowly, but whether it
was a motor or a generator, it always moved in the same direction. Many begin-
ning machinery students expect a machine to turn one way as a generator and the
other way as a motor. This does not occur. Instead, there is merely a small change
in operating speed and a reversal of current flow.

Starting Problems with the Linear Machine

A linear machine is shown in Figure 1-25. This machine is supplied by a 250-V
dc source, and its internal resistance R is given as about 0.10 ). (The resistor R
models the internal resistance of a real dc machine, and this is a fairly reasonable
internal resistance for a medium-size dc motor.)

Providing actual numbers in this figure highlights a major problem with ma-
chines (and their simple linear model). At starting conditions, the speed of the bar
is zero, so e,y = 0. The current flow at starting is

Vg 250V

lsta = R o010 2500 A
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FIGURE 1-25

The linear dc machine with component values illustrating the problem of excessive starting current.
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FIGURE 1-26

A linear dc machine with an extra series resistor inserted to control the starting current.

This current is very high, often in excess of 10 times the rated current of the ma-
chine. Such currents can cause severe damage to a motor. Both real ac and real dc
machines suffer from similar high-current problems on starting.

How can such damage be prevented? The easiest method for this simple lin-
ear machine is to insert an extra resistance into the circuit during starting to limit
the current flow until e;,4 builds up enough to limit it. Figure 1-26 shows a start-
ing resistance inserted into the machine circuitry.

The same problem exists in real dc machines, and it is handled in precisely
the same fashion—a resistor is inserted into the motor armature circuit during
starting. The control of high starting current in real ac machines is handled in a
different fashion, which will be described in Chapter 6.

Example 1-10. The linear dc machine shown in Figure 1-27a has a battery volt-
age of 120V, an internal resistance of 0.3 (2, and a magnetic flux density of 0.1 T.

(a) What is this machine’s maximum starting current? What is its steady-state velocity
at no load?

(b) Suppose that a 30-N force pointing to the right were applied to the bar. What
would the steady-state speed be? How much power would the bar be producing
or consuming? How much power would the battery be producing or consuming?
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FIGURE 1-27

The linear dc machine of Example 1-10. (a) Starting conditions; (b) operating as a generator;
(c) operating as a motor.

Explain the difference between these two figures. Is this machine acting as a
motor or as a generator?

(c) Now suppose a 30-N force pointing to the left were applied to the bar. What would
the new steady-state speed be? Is this machine a motor or a generator now?

(d) Assume that a force pointing to the left is applied to the bar. Calculate speed of
the bar as a function of the force for values from O N to 50 N in 10-N steps. Plot
the velocity of the bar versus the applied force.

(e) Assume that the bar is unloaded and that it suddenly runs into a region where the
magpnetic field is weakened to 0.08 T. How fast will the bar go now?

Solution
(a) At starting conditions, the velocity of the bar is 0, so e;,q = 0. Therefore,
Ve— € 120V-0V

I=—R T osa _40A




(b

~

(c)
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When the machine reaches steady state, F;,y = 0 and i = 0. Therefore,

VB = e,y = v, Bl
Vss = —B—i
120V

= 01T0m) _ [20ms

Refer to Figure 1-27b. If a 30-N force to the right is applied to the bar, the final
steady state will occur when the induced force F; 4 is equal and opposite to the
applied force F,;, so that the net force on the bar is zero:

Fipp = Fina = ilB

Therefore,

Faa __ 30N

IB (10m)©0.1T)

=30A flowing up through the bar

=

The induced voltage e;,4 on the bar must be
ena = Vg + iR
=120V + (30A)(0.3 Q) = 129V
and the final steady-state speed must be

€ind
Ve = —

SS Bl

129V
~ (0.1 T)(10 m)

The bar is producing P = (129 V)(30 A) = 3870 W of power, and the battery is
consuming P = (120 V)(30 A) = 3600 W. The difference between these two num-
bers is the 270 W of losses in the resistor. This machine is acting as a generator.
Refer to Figure 1-25c. This time, the force is applied to the left, and the induced
force is to the right. At steady state,
Fapp = Find = ilB
§= Fioa 30N

" IB " (10m)(0.1T)
=30A flowing down through the bar

= 129 m/s

The induced voltage e;,4 on the bar must be
€ind — VB — IR
=120V - (30A)03Q)=111V
and the final speed must be
SS Bl
_ 111V
(0.1 T)(10 m)

This machine is now acting as a motor, converting electric energy from the bat-
tery into mechanical energy of motion on the bar.

=111 m/s
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(d) This task is ideally suited for MATLAB. We can take advantage of MATLAB’s
vectorized calculations to determine the velocity of the bar for each value of
force. The MATLAB code to perform this calculation is just a version of the
steps that were performed by hand in part c. The program shown below calcu-
lates the current, induced voltage, and velocity in that order, and then plots the
velocity versus the force on the bar.

$ M-file: ex1_10.m
% M-file to calculate and plot the velocity of
% a linear motor as a function of load.

VB = 120; % Battery voltage (V)
r = 0.3; % Resistance (ohms)

1 =1; % Bar length (m)

B =20.6; % Flux density (T)

% Select the forces to apply to the bar
F = 0:10:50; % Force (N)

% Calculate the currents flowing in the motor.
i=F ./ (1L *B); % Current (A)

% Calculate the induced voltages on the bar.
eind = VB - i .* r; % Induced voltage (V)

% Calculate the velocities of the bar.
v_bar = eind ./ (1 * B); % Velocity (m/s)

% Plot the velocity of the bar versus force.
plot (F,v_bar) ;

title ('Plot of Velocity versus Applied Force');
xlabel ('Force (N)');

ylabel ('Velocity (m/s)');

axis ([0 50 0 200]);

The resulting plot is shown in Figure 1-28. Note that the bar slows down more
and more as load increases.

(e) If the bar is initially unloaded, then e,y = Vj. If the bar suddenly hits a region
of weaker magnetic field, a transient will occur. Once the transient is over,
though, e;,q Will again equal Vj.

This fact can be used to determine the final speed of the bar. The initial speed was
120 m/s. The final speed is
VB = e;g = v,,Bl
" Bl
_ 120 V
(0.08 T)(10 m)

Thus, when the flux in the linear motor weakens, the bar speeds up. The same behavior oc-
curs in real dc motors: When the field flux of a dc motor weakens, it turns faster. Here,
again, the linear machine behaves in much the same way as a real dc motor.

vSS

= 150 m/s
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FIGURE 1-28
Plot of velocity versus force for a linear dc machine.

1.9 REAL, REACTIVE, AND APPARENT
POWER IN SINGLE-PHASE AC CIRCUITS

This section describes the relationships among real, reactive, and apparent power
in single-phase ac circuits. A similar discussion for three-phase ac circuits can be
found in Appendix A.

In a dc circuit such as the one shown in Figure 1-29a, the power supplied to
the dc load is simply the product of the voltage across the load and the current
flowing through it.

P=VI (1-55)

Unfortunately, the situation in sinusoidal ac circuits is more complex, be-
cause there can be a phase difference between the ac voltage and the ac current
supplied to the load. The instantaneous power supplied to an ac load will still be
the product of the instantaneous voltage and the instantaneous current, but the av-
erage power supplied to the load will be affected by the phase angle between the
voltage and the current. We will now explore the effects of this phase difference
on the average power supplied to an ac load.

Figure 1-29b shows a single-phase voltage source supplying power to a
single-phase load with impedance Z = Z£6 (). If we assume that the load is in-
ductive, then the impedance angle 0 of the load will be positive, and the current
will lag the voltage by 6 degrees.
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w(t) V=v«O0° Z | 2Z=Z4Z6 FIGURE1-29
(a) A dc voltage source supplying a
l load with resistance R. (b) An ac
voltage source supplying a load with
(b) impedance Z = Z £ 6 ().

The voltage applied to this load is
v() = \/2V cos wt (1-56)

where V is the rms value of the voltage applied to the load, and the resulting cur-
rent flow is

i(r) = \/2I cos(wt — 6) (1-57)

where [ is the rms value of the current flowing through the load.
The instantaneous power supplied to this load at any time ¢ is

p®) = v(0)i(t) = 2VI cos wt cos(wt — 6) (1-58)

The angle 6 in this equation is the impedance angle of the load. For inductive
loads, the impedance angle is positive, and the current waveform lags the voltage
waveform by 6 degrees.

If we apply trigonometric identities to Equation (1-58), it can be manipu-
lated into an expression of the form

p(t) = VIcos 0 (1 + cos 2wt) + VI sin 6 sin 2wt (1-59)

The first term of this equation represents the power supplied to the load by the
component of current that is in phase with the voltage, while the second term rep-
resents the power supplied to the load by the component of current that is 90° out of
phase with the voltage. The components of this equation are plotted in Figure 1-30.

Note that the first term of the instantaneous power expression is always pos-
itive, but it produces pulses of power instead of a constant value. The average
value of this term is

P = VIcos 6 (1-60)

which is the average or real power (P) supplied to the load by term 1 of the Equa-
tion (1-59). The units of real power are watts (W), where 1 W =1V X 1 A.
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FIGURE 1-30

The components of power supplied to a single-phase load versus time. The first component represents
the power supplied by the component of current in phase with the voltage, while the second term
represents the power supplied by the component of current 90° out of phase with the voltage.

Note that the second term of the instantaneous power expression is positive
half of the time and negative half of the time, so that the average power supplied
by this term is zero. This term represents power that is first transferred from the
source to the load, and then returned from the load to the source. The power that
continually bounces back and forth between the source and the load is known as re-
active power (Q). Reactive power represents the energy that is first stored and then
released in the magnetic field of an inductor, or in the electric field of a capacitor.

The reactive power of a load is given by

Q = VIsin (1-61)

where 6 is the impedance angle of the load. By convention, Q is positive for in-
ductive loads and negative for capacitive loads, because the impedance angle 6 is
positive for inductive loads and negative for capacitive loads. The units of reac-
tive power are volt-amperes reactive (var), where 1 var = 1 V X 1 A. Even though
the dimensional units are the same as for watts, reactive power is traditionally
given a unique name to distinguish it from power actually supplied to a load.
The apparent power (S) supplied to a load is defined as the product of the
voltage across the load and the current through the load. This is the power that
“appears” to be supplied to the load if the phase angle differences between volt-
age and current are ignored. Therefore, the apparent power of a load is given by
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S=Vi (1-62)

The units of apparent power are volt-amperes (VA), where | VA =1V X 1 A. As
with reactive power, apparent power is given a distinctive set of units to avoid
confusing it with real and reactive power.

Alternative Forms of the Power Equations

If a load has a constant impedance, then Ohm’s law can be used to derive alterna-
tive expressions for the real, reactive, and apparent powers supplied to the load.
Since the magnitude of the voltage across the load is given by

V=1IZ (1-63)

substituting Equation (1-63) into Equations (1-60) to (1-62) produces equations
for real, reactive, and apparent power expressed in terms of current and impedance:

P=12Zcos 0 (1-64)
Q=1%Zsinb (1-65)
S=1Z (1-66)

where | Z| is the magnitude of the load impedance Z.
Since the impedance of the load Z can be expressed as

Z=R+jX=|Z|cos 8 + j|Z]|sin 6

we see from this equation that R = |Z| cos 6 and X = |Z| sin 6, so the real and
reactive powers of a load can also be expressed as

P=1R (1-67)
Q=I%X (1-68)

where R is the resistance and X is the reactance of load Z.

Complex Power

For simplicity in computer calculations, real and reactive power are sometimes
represented together as a complex power S, where

S=P+jO (1-69)
The complex power S supplied to a load can be calculated from the equation
S = VI* (1-70)

where the asterisk represents the complex conjugate operator.

To understand this equation, let’s suppose that the voltage applied to a load
is V=V £ « and the current through the load is I = I £ . Then the complex
power supplied to the load is
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FIGURE 1-31
An inductive load has a positive impedance angle 6. This load produces a lagging current, and it
consumes both real power P and reactive power Q from the source.

S =VI*= (VLa)IL—-B) = VI L(a — B)
= VI cos(a — B) + jVI sin(a — B)

The impedance angle 0 is the difference between the angle of the voltage and the
angle of the current (§ = @ — 3), so this equation reduces to

S =VIcos 0 + jVIsin 6
=P +jQ

The Relationships between Impedance Angle,
Current Angle, and Power

As we know from basic circuit theory, an inductive load (Figure 1-31) has a pos-
itive impedance angle 6, since the reactance of an inductor is positive. If the im-
pedance angle 6 of a load is positive, the phase angle of the current flowing
through the load will lag the phase angle of the voltage across the load by 6.

y_vie_ vV

Z z|ce |z
Also, if the impedance angle 6 of a load is positive, the reactive power consumed
by the load will be positive (Equation 1-65), and the load is said to be consuming
both real and reactive power from the source.

In contrast, a capacitive load (Figure 1-32) has a negative impedance
angle 6, since the reactance of a capacitor is negative. If the impedance angle 6 of
a load is negative, the phase angle of the current flowing through the load will
lead the phase angle of the voltage across the load by 6. Also, if the impedance an-
gle 0 of a load is negative, the reactive power Q consumed by the load will be
negative (Equation 1-65). In this case, we say that the load is consuming real
power from the source and supplying reactive power to the source.

4 —0

The Power Triangle

The real, reactive, and apparent powers supplied to a load are related by the power
triangle. A power triangle is shown in Figure 1-33. The angle in the lower left
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A capacitive load has a negative impedance angle 6. This load produces a leading current, and it
consumes real power P from the source while supplying reactive power Q to the source.

P
cos @ = S
5 Q=Ssing sin 9=%
A 0 FIGURE 1-33
tan 9= —
P=Scos@ P The power triangle.

corner is the impedance angle 6. The adjacent side of this triangle is the real
power P supplied to the load, the opposite side of the triangle is the reactive power
Q supplied to the load, and the hypotenuse of the triangle is the apparent power S
of the load.

The quantity cos 6 is usually known as the power factor of a load. The
power factor is defined as the fraction of the apparent power S that is actually sup-
plying real power to a load. Thus,

PF = cos 6 (1-71)

where 6 is the impedance angle of the load.

Note that cos 8 = cos (—8), so the power factor produced by an imped-
ance angle of +30° is exactly the same as the power factor produced by an im-
pedance angle of —30°. Because we can’t tell whether a load is inductive or ca-
pacitive from the power factor alone, it is customary to state whether the current
is leading or lagging the voltage whenever a power factor is quoted.

The power triangle makes the relationships among real power, reactive
power, apparent power, and the power factor clear, and provides a convenient way
to calculate various power-related quantities if some of them are known.

Example 1-11. Figure 1-34 shows an ac voltage source supplying power to a load
with impedance Z = 204 —30° . Calculate the current I supplied to the load, the power
factor of the load, and the real, reactive, apparent, and complex power supplied to the load.
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FIGURE 1-34
The circuit of Example 1-11.

Solution
The current supplied to this load is
_V_ 120£0°V _ o
1=7=%,-300 " 04304
The power factor of the load is
PF = cos 6 = cos (—30°) = 0.866 leading (1-71)

(Note that this is a capacitive load, so the impedance angle 6 is negative, and the current
leads the voltage.)
The real power supplied to the load is
P =VIcos 6 (1-60)
P = (120 V)(6 A) cos (—30°) = 623.5 W
The reactive power supplied to the load is
Q = VIsin 6 (1-61)
Q0 = (120 V)(6 A) sin (—30°) = —360 VAR
The apparent power supplied to the load is
S=VI (1-62)
0 = (120 V)(6 A) = 720 VA
The complex power supplied to the load is
S =VI* (1-70)
= (120£0° V)(6£—30° A)*
= (120£0° V)(6£30° A) = 720430° VA
= 623.5 — j360 VA

1.10  SUMMARY

This chapter has reviewed briefly the mechanics of systems rotating about a sin-
gle axis and introduced the sources and effects of magnetic fields important in the
understanding of transformers, motors, and generators.

Historically, the English system of units has been used to measure the
mechanical quantities associated with machines in English-speaking countries.
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Recently, the SI units have superseded the English system almost everywhere in
the world except in the United States, but rapid progress is being made even there.
Since SI is becoming almost universal, most (but not all) of the examples in this
book use this system of units for mechanical measurements. Electrical quantities
are always measured in SI units.

In the section on mechanics, the concepts of angular position, angular veloc-
ity, angular acceleration, torque, Newton’s law, work, and power were explained
for the special case of rotation about a single axis. Some fundamental relationships
(such as the power and speed equations) were given in both SI and English units.

The production of a magnetic field by a current was explained, and the spe-
cial properties of ferromagnetic materials were explored in detail. The shape of the
magnetization curve and the concept of hysteresis were explained in terms of the
domain theory of ferromagnetic materials, and eddy current losses were discussed.

Faraday’s law states that a voltage will be generated in a coil of wire that is
proportional to the time rate of change in the flux passing through it. Faraday’s
law is the basis of transformer action, which is explored in detail in Chapter 3.

A current-carrying wire present in a magnetic field, if it is oriented properly,
will have a force induced on it. This behavior is the basis of motor action in all
real machines.

A wire moving through a magnetic field with the proper orientation will
have a voltage induced in it. This behavior is the basis of generator action in all
real machines.

A simple linear dc machine consisting of a bar moving in a magnetic field
illustrates many of the features of real motors and generators. When a load is at-
tached to it, it slows down and operates as a motor, converting electric energy into
mechanical energy. When a force pulls the bar faster than its no-load steady-state
speed, it acts as a generator, converting mechanical energy into electric energy.

In ac circuits, the real power P is the average power supplied by a source to
a load. The reactive power Q is the component of power that is exchanged back
and forth between a source and a load. By convention, positive reactive power is
consumed by inductive loads (+8) and negative reactive power is consumed (or
positive reactive power is supplied) by capacitive loads (—8). The apparent power
S is the power that “appears” to be supplied to the load if only the magnitudes of
the voltages and currents are considered.

QUESTIONS

1-1. What is torque? What role does torque play in the rotational motion of machines?

1-2. What is Ampere’s law?

1-3. What is magnetizing intensity? What is magnetic flux density? How are they related?

1-4. How does the magnetic circuit concept aid in the design of transformer and machine
cores?

1-5. What is reluctance?

1-6. What is a ferromagnetic material? Why is the permeability of ferromagnetic mate-
rials so high?
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1-7. How does the relative permeability of a ferromagnetic material vary with magneto-
motive force?
1-8. What is hysteresis? Explain hysteresis in terms of magnetic domain theory.
1-9. What are eddy current losses? What can be done to minimize eddy current losses in
a core?
1-10. Why are all cores exposed to ac flux variations laminated?
1-11. What is Faraday’s law?
1-12. What conditions are necessary for a magnetic field to produce a force on a wire?
1-13. What conditions are necessary for a magnetic field to produce a voltage in a wire?
1-14. Why is the linear machine a good example of the behavior observed in real dc
machines?
1-15. The linear machine in Figure 1-19 is running at steady state. What would happen to
the bar if the voltage in the battery were increased? Explain in detail.
1-16. Just how does a decrease in flux produce an increase in speed in a linear machine?
1-17. Will current be leading or lagging voltage in an inductive load? Will the reactive
power of the load be positive or negative?
1-18. What are real, reactive, and apparent power? What units are they measured in? How
are they related?
1-19. What is power factor?

PROBLEMS

1-1. A motor’s shaft is spinning at a speed of 1800 r/min. What is the shaft speed in ra-
dians per second?

1-2. A flywheel with a moment of inertia of 4 kg ¢ m? is initially at rest. If a torque of
6 N * m (counterclockwise) is suddenly applied to the flywheel, what will be the
speed of the flywheel after 5 s? Express that speed in both radians per second and
revolutions per minute.

1-3. Aforce of 10 N is applied to a cylinder of radius » = 0.15 m, as shown in Figure P1-1.
The moment of inertia of this cylinder is J = 4 kg * m?. What are the magnitude and
direction of the torque produced on the cylinder? What is the angular acceleration o
of the cylinder?

r=0.15m
J=4kge+m?

F=10N

FIGURE P1-1
The cylinder of Problem 1-3.
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1-4. A motor is supplying 50 N ¢ m of torque to its load. If the motor s shaft is turning

at 1500 r/min, what is the mechanical power supplied to the load in watts? In
horsepower?

1-5. A ferromagnetic core is shown in Figure P1-2. The depth of the core is 5 cm. The

1-6.

1-7

1-8.

other dimensions of the core are as shown in the figure. Find the value of the current
that will produce a flux of 0.005 Wb. With this current, what is the flux density at
the top of the core? What is the flux density at the right side of the core? Assume
that the relative permeability of the core is 800.

| |Scm
|-——10cm | 20 cm | |

15cm

P

D

P 500 turns 15Scm
b

15cm

Core depth = 5 cm

FIGURE P1-2
The core of Problems 1-5 and 1-16.

A ferromagnetic core with a relative permeability of 1500 is shown in Figure P1-3.
The dimensions are as shown in the diagram, and the depth of the core is 5 cm. The
air gaps on the left and right sides of the core are 0.050 and 0.070 cm, respectively.
Because of fringing effects, the effective area of the air gaps is S percent larger than
their physical size. If there are 300 turns in the coil wrapped around the center leg
of the core and if the current in the coil is 1.0 A, what are the flux values for the left,
center, and right legs of the core? What is the flux density in each air gap?

A two-legged core is shown in Figure P1-4. The winding on the left leg of the core
(N)) has 600 turns, and the winding on the right (¥,) has 200 turns. The coils are
wound in the directions shown in the figure. If the dimensions are as shown, then
what flux would be produced by currents i, = 0.5 A and i, = 1.00 A? Assume pu, =
1200 and constant.

A core with three legs is shown in Figure P1-5. Its depth is 5 cm, and there are 100
turns on the leftmost leg. The relative permeability of the core can be assumed to be
2000 and constant. What flux exists in each of the three legs of the core? What is the
flux density in each of the legs? Assume a 5 percent increase in the effective area of
the air gap due to fringing effects.
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The core of Problems 1-7 and 1-12.
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| 9cm

25

cm

9cm
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| i 25 cm | 15cm I 25cm
i
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L~ 100 tuns 005 cm
Core depth = 5 cm
FIGURE P1-5

The core of Problem 1-8.

1-9. A wire is shown in Figure P1-6 that is carrying 2.0 A in the presence of a magnetic

field. Calculate the magnitude and direction of the force induced on the wire.

>

B=05T,

——————— totheright

AN

i=20A —

FIGURE P1-6

A current-carrying wire in a
magnetic field (Problem 1-9).

1-10. A wire is shown in Figure P1-7 that is moving in the presence of a magnetic field.
With the information given in the figure, determine the magnitude and direction of
the induced voltage in the wire.

1-11. Repeat Problem 1-10 for the wire in Figure P1-8.

1-12. The core shown in Figure P1-4 is made of a steel whose magnetization curve is
shown in Figure P1-9. Repeat Problem 1-7, but this time do not assume a constant
value of u,. How much flux is produced in the core by the currents specified? What
is the relative permeability of this core under these conditions? Was the assumption



1-13.

1-14.

INTRODUCTION TO MACHINERY PRINCIPLES 59

X X X
X X X
X X X
X X X
X X X
X X X  FIGURE P1-7
A wire moving in a
magnetic field (Problem
1-10).
—_— B=05T
———-
————-
———-
FIGURE P1-8
—_— A wire moving in a magnetic field
R (Problem 1-11).

in Problem 1-7 that the relative permeability was equal to 1200 a good assumption

for these conditions? Is it a good assumption in general?

A core with three legs is shown in Figure P1-10. Its depth is 5 cm, and there are 400

turns on the center leg. The remaining dimensions are shown in the figure. The core

is composed of a steel having the magnetization curve shown in Figure 1-10c. An-

swer the following questions about this core:

(a) What current is required to produce a flux density of 0.5 T in the central leg of
the core?

(b) What current is required to produce a flux density of 1.0 T in the central leg of
the core? Is it twice the current in part (a)?

(c) What are the reluctances of the central and right legs of the core under the con-
ditions in part (a)?

(d) What are the reluctances of the central and right legs of the core under the con-
ditions in part (b)?

(e) What conclusion can you make about reluctances in real magnetic cores?

A two-legged magnetic core with an air gap is shown in Figure P1-11. The depth of

the core is 5 cm, the length of the air gap in the core is 0.05 cm, and the number of

turns on the coil is 1000. The magnetization curve of the core material is shown in
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FIGURE P1-9
The magnetization curve for the core material of Problems 1-12 and 1-14.
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FIGURE P1-10
The core of Problem 1-13.

Figure P1-9. Assume a 5 percent increase in effective air-gap area to account for
fringing. How much current is required to produce an air-gap flux density of 0.5 T?
What are the flux densities of the four sides of the core at that current? What is the
total flux present in the air gap?
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FIGURE P1-11
The core of Problem 1-14.

A transformer core with an effective mean path length of 6 in has a 200-turn coil

wrapped around one leg. Its cross-sectional area is 0.25 in?, and its magnetization

curve is shown in Figure 1-10c. If current of 0.3 A is flowing in the coil, what is the
total flux in the core? What is the flux density?

The core shown in Figure P1-2 has the flux ¢ shown in Figure P1-12. Sketch the

voltage present at the terminals of the coil.

Figure P1-13 shows the core of a simple dc motor. The magnetization curve for the

metal in this core is given by Figure 1-10c and d. Assume that the cross-sectional

area of each air gap is 18 cm? and that the width of each air gap is 0.05 cm. The ef-
fective diameter of the rotor core is 5 cm.

(a) We wish to build a machine with as great a flux density as possible while avoid-
ing excessive saturation in the core. What would be a reasonable maximum flux
density for this core?

(b) What would be the total flux in the core at the flux density of part (a)?

(c) The maximum possible field current for this machine is 1 A. Select a reasonable
number of turns of wire to provide the desired flux density while not exceeding
the maximum available current.

Assume that the voltage applied to a load is V = 208 £ —30° V and the current flow-

ing through the load is I = 2220° A.

(a) Calculate the complex power S consumed by this load.

(b) Is this load inductive or capacitive?

(c) Calculate the power factor of this load.
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FIGURE P1-12
Plot of flux ¢ as a function of time for Problem 1-16.
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FIGURE P1-13
The core of Problem 1-17.

Figure P1-14 shows a simple single-phase ac power system with three loads. The
voltage source is V = 240£0° V, and the impedances of these three loads are

Z,=10£30°Q  Z,=10£45°Q  Z;=102-90°Q

Answer the following questions about this power system.

(a) Assume that the switch shown in the figure is initially open, and calculate the
current I, the power factor, and the real, reactive, and apparent power being
supplied by the source.

(b) How much real, reactive, and apparent power is being consumed by each load
with the switch open?
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(c) Assume that the switch shown in the figure is now closed, and calculate the cur-
rent I, the power factor, and the real, reactive, and apparent power being sup-
plied by the source.

(d) How much real, reactive, and apparent power is being consumed by each load
with the switch closed?

(e) What happened to the current flowing from the source when the switch closed?
Why?

I

—

+
@ v z, z, z

FIGURE P1-14
The circuit of Problem 1-19.

1-20. Demonstrate that Equation (1-59) can be derived from Equation (1-58) using sim-
ple trigonometric identities.

p(®) = v(Bi(t) = 2VI cos wt cos(wt — 6) (1-58)
p(t) = VIcos 6 (1 + cos 2wt) + VI sin 0 sin 2wt (1-59)

Hint: The following identities will be useful:

cos a cos 3 =-é- [cos (@ — B) + cos (a + B)]
cos (@ — B) = cos a cos B + sin a sin B

1-21. A linear machine shown in Figure P1-15 has a magnetic flux density of 0.5 T di-
rected into the page, a resistance of 0.25 (), a bar length / = 1.0 m, and a battery
voltage of 100 V.

(a) What is the initial force on the bar at starting? What is the initial current flow?

(b) What is the no-load steady-state speed of the bar?

(c) If the bar is loaded with a force of 25 N opposite to the direction of motion,
what is the new steady-state speed? What is the efficiency of the machine under
these circumstances?

Vg =100V = 1'm

FIGURE P1-15
The linear machine in Problem 1-21.
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1-22. A linear machine has the following characteristics:

B = 0.5 T into page R=025Q
I=05m V=120V

(a) If this bar has a load of 20 N attached to it opposite to the direction of motion,
what is the steady-state speed of the bar?

(b) If the bar runs off into a region where the flux density falls to 0.45 T, what hap-
pens to the bar? What is its final steady-state speed?

(c) Suppose Vp is now decreased to 100 V with everything else remaining as in
part (b). What is the new steady-state speed of the bar?

(d) From the results for parts (b) and (c), what are two methods of controlling the
speed of a linear machine (or a real dc motor)?

1-23. For the linear machine of Problem 1-22:

(a) When this machine is operating as a motor, calculate the speed of the bar for
loads of O N to 30 N in 5 N steps. Plot the speed of the bar as a function of load.

(b) Assume that the motor is operation with a 30 N load, and calculate and plot the
speed of the bar for magnetic flux densities of 0.3 T to 0.5 T in 0.05 T steps.

(c) Assume that the motor is running at no-load conditions with a flux density of
0.5 T. What is the speed of the bar? Now apply a 30 N load to the bar. What is
the new speed of the bar? What flux density would be required to restore the
loaded bar to the same speed that it had under no-load conditions?
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CHAPTER

TRANSFORMERS

OBJECTIVES

¢ Understand the purpose of a transformer in a power system.

* Know the voltage, current, and impedance relationships across the windings
of an ideal transformer.

¢ Understand how real transformers approximate the operation of an ideal
transformer.

* Be able to explain how copper losses, leakage flux, hysteresis, and eddy cur-
rents are modeled in transformer equivalent circuits.

¢ Use a transformer equivalent circuit to find the voltage and current transfor-
mations across a transformer.

* Be able to calculate the losses and efficiency of a transformer.

* Be able to derive the equivalent circuit of a transformer from measurements.
* Understand the per-unit system of measurements.

* Be able to calculate the voltage regulation of a transformer.

* Understand the autotransformer.

* Understand three-phase transformers, including special cases where only two
transformers are used.

* Understand transformer ratings.

* Understand instrument transformers—potential transformers and current
transformers.

65
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A transformer is a device that changes ac electric power at one frequency and
voltage level to ac electric power at the same frequency and another voltage level
through the action of a magnetic field. It consists of two or more coils of wire
wrapped around a common ferromagnetic core. These coils are (usually) not di-
rectly connected. The only connection between the coils is the common magnetic
flux present within the core.

One of the transformer windings is connected to a source of ac electric
power, and the second (and perhaps third) transformer winding supplies electric
power to loads. The transformer winding connected to the power source is called
the primary winding or input winding, and the winding connected to the loads is
called the secondary winding or output winding. If there is a third winding on the
transformer, it is called the tertiary winding.

2.1 WHY TRANSFORMERS ARE
IMPORTANT TO MODERN LIFE

The first power distribution system in the United States was a 120-V dc system in-
vented by Thomas A. Edison to supply power for incandescent light bulbs. Edison’s
first central power station went into operation in New York City in September
1882. Unfortunately, his power system generated and transmitted power at such
low voltages that very large currents were necessary to supply significant amounts
of power. These high currents caused huge voltage drops and power losses in the
transmission lines, severely restricting the service area of a generating station. In
the 1880s, central power stations were located every few city blocks to overcome
this problem. The fact that power could not be transmitted far with low-voltage dc

FIGURE 2-1
The first practical modern transformer, built by William Stanley in 1885. Note that the core is made
up of individual sheets of metal (laminations). (Courtesy of General Electric Company.)
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power systems meant that generating stations had to be small and localized and so
were relatively inefficient.

The invention of the transformer and the concurrent development of ac
power sources eliminated forever these restrictions on the range and power level
of power systems. A transformer ideally changes one ac voltage level to another
voltage level without affecting the actual power supplied. If a transformer steps up
the voltage level of a circuit, it must decrease the current to keep the power into
the device equal to the power out of it. Therefore, ac electric power can be gener-
ated at one central location, its voltage stepped up for transmission over long dis-
tances at very low losses, and its voltage stepped down again for final use. Since
the transmission losses in the lines of a power system are proportional to the
square of the current in the lines, raising the transmission voltage and reducing the
resulting transmission currents by a factor of 10 with transformers reduces power
transmission losses by a factor of 100. Without the transformer, it would simply
not be possible to use electric power in many of the ways it is used today.

In a modern power system, electric power is generated at voltages of 12 to
25 kV. Transformers step up the voltage to between 110 kV and nearly 1000 kV for
transmission over long distances at very low losses. Transformers then step down
the voltage to the 12- to 34.5-kV range for local distribution and finally permit the
power to be used safely in homes, offices, and factories at voltages as low as 120 V.

2.2 TYPES AND CONSTRUCTION
OF TRANSFORMERS

The principal purpose of a transformer is to convert ac power at one voltage level
to ac power of the same frequency at another voltage level. Transformers are also
used for a variety of other purposes (e.g., voltage sampling, current sampling, and
impedance transformation), but this chapter is primarily devoted to the power
transformer.

Power transformers are constructed on one of two types of cores. One type
of construction consists of a simple rectangular laminated piece of steel with the
transformer windings wrapped around two sides of the rectangle. This type of
construction is known as core form and is illustrated in Figure 2-2. The other type
consists of a three-legged laminated core with the windings wrapped around the
center leg. This type of construction is known as shell form and is illustrated in
Figure 2-3. In either case, the core is constructed of thin laminations electrically
isolated from each other in order to minimize eddy currents.

The primary and secondary windings in a physical transformer are wrapped
one on top of the other with the low-voltage winding innermost. Such an arrange-
ment serves two purposes:

1. It simplifies the problem of insulating the high-voltage winding from the core.

2. Itresults in much less leakage flux than would be the case if the two windings
were separated by a distance on the core.
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Core-form transformer construction.
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FIGURE 2-3
(a) Shell-form transformer construction. (b) A typical shell-form transformer. (Courtesy of General

Electric Company.)

Power transformers are given a variety of different names, depending on
their use in power systems. A transformer connected to the output of a generator
and used to step its voltage up to transmission levels (110+ kV) is sometimes
called a unit transformer. The transformer at the other end of the transmission line,
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which steps the voltage down from transmission levels to distribution levels (from
2.3 to 34.5 kV), is called a substation transformer. Finally, the transformer that
takes the distribution voltage and steps it down to the final voltage at which the
power is actually used (110, 208, 220 V, etc.) is called a distribution transformer.
All these devices are essentially the same—the only difference among them is
their intended use.

In addition to the various power transformers, two special-purpose trans-
formers are used to measure voltage and current in electric machinery and power
systems. The first of these special transformers is a device specially designed to
sample a high voltage and produce a low secondary voltage directly proportional
to it. Such a transformer is called a potential transformer. A power transformer
also produces a secondary voltage directly proportional to its primary voltage; the
difference between a potential transformer and a power transformer is that the
potential transformer is designed to handle only a very small current. The second
type of special transformer is a device designed to provide a secondary current
much smaller than but directly proportional to its primary current. This device is
called a current transformer. Both special-purpose transformers are discussed in a
later section of this chapter.

2.3 THE IDEAL TRANSFORMER

An ideal transformer is a lossless device with an input winding and an output
winding. The relationships between the input voltage and the output voltage, and
between the input current and the output current, are given by two simple equa-
tions. Figure 2—4 shows an ideal transformer.

The transformer shown in Figure 2—4 has N, turns of wire on its primary
side and N turns of wire on its secondary side. The relationship between the volt-
age vp(1) applied to the primary side of the transformer and the voltage v¢() pro-
duced on the secondary side is

ve®) _ Np _
vs(0) = N, =a 2-1)

where a is defined to be the turns ratio of the transformer:

N,
— —£ —
a N, 2-2)
The relationship between the current ip(¢) flowing into the primary side of the
transformer and the current is(f) flowing out of the secondary side of the trans-

former is

| Npip(t) = Nsis(1) | (2-3a)
BP0 _ 1 _
or i)~ a (2-3b)
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(a) Sketch of an ideal transformer. (b) Schematic symbols of a transformer. Sometimes the iron core
is shown in the symbol, and sometimes not.

In terms of phasor quantities, these equations are

v
Vf =a (2-4)
I
and ils: = % (2-5)

Notice that the phase angle of V, is the same as the angle of V and the phase an-
gle of I, is the same as the phase angle of Is. The turns ratio of the ideal trans-
former affects the magnitudes of the voltages and currents, but not their angles.
Equations (2-1) to (2-5) describe the relationships between the magnitudes
and angles of the voltages and currents on the primary and secondary sides of the
transformer, but they leave one question unanswered: Given that the primary cir-
cuit’s voltage is positive at a specific end of the coil, what would the polarity of
the secondary circuit’s voltage be? In real transformers, it would be possible to tell
the secondary’s polarity only if the transformer were opened and its windings ex-
amined. To avoid this necessity, transformers utilize the dot convention. The dots
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appearing at one end of each winding in Figure 2—4 tell the polarity of the voltage
and current on the secondary side of the transformer. The relationship is as
follows:

1. If the primary voltage is positive at the dotted end of the winding with respect
to the undotted end, then the secondary voltage will be positive at the dotted
end also. Voltage polarities are the same with respect to the dots on each side
of the core.

2. If the primary current of the transformer flows into the dotted end of the pri-
mary winding, the secondary current will flow out of the dotted end of the
secondary winding.

The physical meaning of the dot convention and the reason polarities work out
this way will be explained in Section 2.4, which deals with the real transformer.

Power in an Ideal Transformer

The real power P, supplied to the transformer by the primary circuit is given by
the equation

| Pin = Vplp cos 6| (2-6)

where 0, is the angle between the primary voltage and the primary current. The
real power P, supplied by the transformer secondary circuit to its loads is given
by the equation

Py, = Vgl cos 6 (2-7)

where 0 is the angle between the secondary voltage and the secondary current.
Since voltage and current angles are unaffected by an ideal transformer, 6, = 65 = 6.
The primary and secondary windings of an ideal transformer have the same power
factor.

How does the power going into the primary circuit of the ideal transformer
compare to the power coming out of the other side? It is possible to find out
through a simple application of the voltage and current equations [Equations (2—4)
and (2-5)]. The power out of a transformer is

Applying the turns-ratio equations gives Vs = Vp/a and Is = alp, so

V,
Poy = L (alp) cos 6

I Pout = VPIP cos § = Pm—l (2-9)

Thus, the output power of an ideal transformer is equal to its input power.
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FIGURE 2-5

(a) Definition of impedance. (b) Impedance scaling through a transformer.

The same relationship applies to reactive power Q and apparent power S:

|Qin = Vplpsin 0 = VIgsin 6 = Q,

(2-10)

and [Si = Vol = Vs = S, (2-11)

Impedance Transformation through a Transformer

The impedance of a device or an element is defined as the ratio of the phasor volt-
age across it to the phasor current flowing through it:

2-12)

One of the interesting properties of a transformer is that, since it changes voltage
and current levels, it changes the ratio between voltage and current and hence the
apparent impedance of an element. To understand this idea, refer to Figure 2-5. If
the secondary current is called I and the secondary voltage Vj, then the imped-
ance of the load is given by

ZL = —= (2—13)
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The apparent impedance of the primary circuit of the transformer is
Zi=y, (2-14)

Since the primary voltage can be expressed as
Vo = aVg

and the primary current can be expressed as

8 |

I

the apparent impedance of the primary is

g Ye_a¥%s_ oY%
L= 1, " I/a I

Z, =adZ, (2-15)

With a transformer, it is possible to match the magnitude of a load imped-
ance to a source impedance simply by picking the proper turns ratio.

Analysis of Circuits Containing Ideal Transformers

If a circuit contains an ideal transformer, then the easiest way to analyze the circuit
for its voltages and currents is to replace the portion of the circuit on one side of the
transformer by an equivalent circuit with the same terminal characteristics. After the
equivalent circuit has been substituted for one side, then the new circuit (without a
transformer present) can be solved for its voltages and currents. In the portion of the
circuit that was not replaced, the solutions obtained will be the correct values of volt-
age and current for the original circuit. Then the turns ratio of the transformer can be
used to determine the voltages and currents on the other side of the transformer. The
process of replacing one side of a transformer with its equivalent at the other side’s
voltage level is known as referring the first side of the transformer to the second side.

How is the equivalent circuit formed? Its shape is exactly the same as the shape
of the original circuit. The values of voltages on the side being replaced are scaled by
Equation (2—4), and the values of the impedances are scaled by Equation (2-15). The
polarities of voltage sources in the equivalent circuit will be reversed from their di-
rection in the original circuit if the dots on one side of the transformer windings are
reversed compared to the dots on the other side of the transformer windings.

The solution for circuits containing ideal transformers is illustrated in the
following example.

Example 2-1. A single-phase power system consists of a 480-V 60-Hz gen-
erator supplying a load Z,,,y = 4 + j3 () through a transmission line of impedance
Zine = 0.18 + j0.24 Q). Answer the following questions about this system.

(a) If the power system is exactly as described above (and shown in Figure 2—6a),
what will the voltage at the load be? What will the transmission line losses be?



74 ELECTRIC MACHINERY FUNDAMENTALS

Iie 0180  j024Q

MN———r I
load
IGI Z ine + l *
+ V4
V=480 0°V V 1oad load
- 4+j3Q
(a)
Tt Xy 0.18Q j024Q LERES S
1:10 ——~ ~ A 10:1 __—*
1 AW ) o
¢ e o line e o 4+j3Q
vload_
V=480 20V
(b)
FIGURE 2-6

The power system of Example 2-1 (a) without and (b) with transformers at the ends of the
transmission line.

(b) Suppose a 1:10 step-up transformer is placed at the generator end of the trans-
mission line and a 10:1 step-down transformer is placed at the load end of the
line (as shown in Figure 2-6b). What will the load voltage be now? What will
the transmission line losses be now?

Solution
(a) Figure 2-6a shows the power system without transformers. Here I = I, =
I,oa¢- The line current in this system is given by

fine ™ Ziine + Zioad

_ 480 £0°V
(0180 +,024Q) + 4Q +,3Q)
480 £0° 480 £0°

T 418 + 324~ 529.378°
=90.82£-37.8°A

Therefore the load voltage is
Vioad = LineZicad
= (90.8 £—-37.8°A)4 Q + j3 Q)
= (90.8 £—37.8° A)(5 £36.9° Q)
=454 £-09°V
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and the line losses are
Ploss = (Iline)2 Rline
= (90.8 A)*(0.18 ) = 1484 W

(b) Figure 2—-6b shows the power system with the transformers. To analyze this sys-
tem, it is necessary to convert it to a common voltage level. This is done in two
steps:

1. Eliminate transformer 7T, by referring the load over to the transmission line’s
voltage level.

2. Eliminate transformer T, by referring the transmission line’s elements and
the equivalent load at the transmission line’s voltage over to the source side.

The value of the load’s impedance when reflected to the transmission system’s
voltage is

Zl'oad = a2 Zload
_ (102 :
=T 4Q+j3Q)
=400 Q + j300 Q
The total impedance at the transmission line level is now
Zeq = Z]ine +Zz ioad
= 400.18 + j300.24 ) = 500.3 £36.88° 2

This equivalent circuit is shown in Figure 2-7a. The total impedance at the transmission
line level (Z;,e + Z\5q) is now reflected across 7, to the source’s voltage level:

Z, =7,
= a2(zline + Z{oad)
2
= (11—0) (0.18 Q + j0.24 Q + 400 Q + j300 2)
= (0.0018 Q +j0.0024 Q + 4Q + j3 Q)

= 5.003 £36.88° ()

Notice that Zi 4 = 4 + j3 Q and Z,. = 0.0018 + j0.0024 ). The resulting equivalent cir-
cuit is shown in Figure 2-7b. The generator’s current is
___480«£0°V __ _ _ o
I; = 5003 23688° 0 — 95.94 £—36.88° A
Knowing the current I, we can now work back and find I;,. and I,,,4. Working back
through 7', we get

NpIg = Ng L.
Np,
Line = N_sn I;

= 11—0(95.94 £—36.88° A) = 9.594 £—36.88° A
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FIGURE 2-7

(a) System with the load referred to the transmission system voltage level. (b) System with the load
and transmission line referred to the generator’s voltage level.

Working back through T, gives
Npoliine = Nioliaa

N,
P2
Iload = st Iline

= 109504 /-36.88° A) = 95.94 £-36.88° A

It is now possible to answer the questions originally asked. The load voltage is given by
Vload = Iload Zload

= (95.94 £—36.88° A)(5 £36.87° Q)
=479.7£-0.01°V
and the line losses are given by
Ploss = (Iline)leine
= (9.594 A)2(0.18 Q) = 16.7TW

Notice that raising the transmission voltage of the power system reduced
transmission losses by a factor of nearly 90! Also, the voltage at the load dropped
much less in the system with transformers compared to the system without
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transformers. This simple example dramatically illustrates the advantages of
using higher-voltage transmission lines as well as the extreme importance of
transformers in modern power systems.

Real power systems generate electric power at voltages in the range of 4 to
30kV. They then use step-up transformers to raise the voltage to a much higher level
(say 500 kV) for transmission over long distances, and step-down transformers to re-
duce the voltage to a reasonable level for distribution and final use. As we have seen
in Example 2.1, this can greatly decrease transmission losses in the power system.

2.4 THEORY OF OPERATION OF REAL
SINGLE-PHASE TRANSFORMERS

The ideal transformers described in Section 2.3 can of course never actually be
made. What can be produced are real transformers—two or more coils of wire
physically wrapped around a ferromagnetic core. The characteristics of a real
transformer approximate the characteristics of an ideal transformer, but only to a
degree. This section deals with the behavior of real transformers.

To understand the operation of a real transformer, refer to Figure 2-8.
Figure 2-8 shows a transformer consisting of two coils of wire wrapped around a
transformer core. The primary of the transformer is connected to an ac power
source, and the secondary winding is open-circuited. The hysteresis curve of the
transformer is shown in Figure 2-9.

The basis of transformer operation can be derived from Faraday’s law:

Cing = % (1-41)

where \ is the flux linkage in the coil across which the voltage is being induced.
The flux linkage N is the sum of the flux passing through each turn in the coil
added over all the turns of the coil:

N
A= (142)
i=1
ip(f)
+4 5 +
+ C__—_)
vt (~ Np Ng ¢ b vg (t)
- '
D
A T -
FIGURE 2-8

Sketch of a real transformer with no load attached to its secondary.
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/ Magnetomotive force
F

FIGURE 2-9
The hysteresis curve of the transformer.

The total flux linkage through a coil is not just N¢, where N is the number of turns
in the coil, because the flux passing through each turn of a coil is slightly differ-
ent from the flux in the other turns, depending on the position of the turn within
the coil.

However, it is possible to define an average flux per turn in a coil. If the
total flux linkage in all the turns of the coils is A and if there are N turns, then the
average flux per turn is given by

¢ = (2-16)

2>

and Faraday’s law can be written as

ep = N2 (2-17)

The Voltage Ratio across a Transformer

If the voltage of the source in Figure 2-8 is vp(?), then that voltage is placed di-
rectly across the coils of the primary winding of the transformer. How will the
transformer react to this applied voltage? Faraday’s law explains what will hap-
pen. When Equation (2-17) is solved for the average flux present in the primary
winding of the transformer, and the winding resistance is ignored, the result is

ép = NL,, [vp(0) dt (2-18)

This equation states that the average flux in the winding is proportional to the in-
tegral of the voltage applied to the winding, and the constant of proportionality is
the reciprocal of the number of turns in the primary winding 1/N5p.
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FIGURE 2-10
Mutual and leakage fluxes in a transformer core.

This flux is present in the primary coil of the transformer. What effect does
it have on the secondary coil of the transformer? The effect depends on how much
of the flux reaches the secondary coil. Not all the flux produced in the primary
coil also passes through the secondary coil—some of the flux lines leave the iron
core and pass through the air instead (see Figure 2-10). The portion of the flux
that goes through one of the transformer coils but not the other one is called leak-
age flux. The flux in the primary coil of the transformer can thus be divided into
two components: a mutual flux, which remains in the core and links both wind-
ings, and a small leakage flux, which passes through the primary winding but re-
turns through the air, bypassing the secondary winding:

bp = bu + dip
¢p = total average primary flux
¢y = flux component linking both primary and secondary coils
¢ p = primary leakage flux

(2-19)

where

There is a similar division of flux in the secondary winding between mutual flux
and leakage flux which passes through the secondary winding but returns through
the air, bypassing the primary winding:

bs = byt Pis

(2-20)
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where &’—s = total average secondary flux
¢, = flux component linking both primary and secondary coils
¢.s = secondary leakage flux

With the division of the average primary flux into mutual and leakage com-
ponents, Faraday’s law for the primary circuit can be reexpressed as

dé
vp(t) = Np dtP
doy ddnp
-
= Np— 2 + Np— g, (2-21)

The first term of this expression can be called ep(t), and the second term can be
called e p(?). If this is done, then Equation (2-21) can be rewritten as

vp(t) = ep(t) + e p() (2-22)

The voltage on the secondary coil of the transformer can also be expressed
in terms of Faraday’s law as

-
vs(t) = Ns%

ddy , \ ddis
— N —IM
= N5, + Ny 7 (2-23)

= eg(t) + e.5(f) (2-24)

The primary voltage due to the mutual flux is given by

d
ent) = N, 22 (2-25)

and the secondary voltage due to the mutual flux is given by
ddy
es(t) = Ng g’t (2-26)
Notice from these two relationships that

ept) _ ddy _ es(t)
Np  dt  Ng

Therefore,

epd) _ Np _
es(?) = N, =aq 2-27)

This equation means that the ratio of the primary voltage caused by the mutual
flux to the secondary voltage caused by the mutual flux is equal to the turns ratio
of the transformer. Since in a well-designed transformer ¢, >> ¢ p and
by >> ¢y, the ratio of the total voltage on the primary of a transformer to the to-
tal voltage on the secondary of a transformer is approximately
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vl) _ Np _ ~
v N, ¢ (2-28)

The smaller the leakage fluxes of the transformer are, the closer the total transformer
voltage ratio approximates that of the ideal transformer discussed in Section 2.3.

The Magnetization Current in a Real Transformer

When an ac power source is connected to a transformer as shown in Figure 2-8, a
current flows in its primary circuit, even when the secondary circuit is open-
circuited. This current is the current required to produce flux in a real ferromag-
netic core, as explained in Chapter 1. It consists of two components:

1. The magnetization current iy, which is the current required to produce the
flux in the transformer core, and

2. The core-loss current iy, which is the current required to make up for hys-
teresis and eddy current losses in the core.

Figure 2-11 shows the magnetization curve of a typical transformer core. If
the flux in the transformer core is known, then the magnitude of the magnetization
current can be found directly from Figure 2-11.

Ignoring for the moment the effects of leakage flux, we see that the average
flux in the core is given by

B = 5 [ vetor (2-18)

If the primary voltage is given by the expression vp(f) = V), cos wt V, then the re-
sulting flux must be

- 1
= — | V), cos wt dt

¢P pr M
= Y Wb 2-29
= wNPsm wt (2-29)

If the values of current required to produce a given flux (Figure 2—11a) are com-
pared to the flux in the core at different times, it is possible to construct a sketch
of the magnetization current in the winding on the core. Such a sketch is shown in
Figure 2-11b. Notice the following points about the magnetization current:

1. The magnetization current in the transformer is not sinusoidal. The higher-
frequency components in the magnetization current are due to magnetic
saturation in the transformer core.

2. Once the peak flux reaches the saturation point in the core, a small increase
in peak flux requires a very large increase in the peak magnetization current.

3. The fundamental component of the magnetization current lags the voltage ap-
plied to the core by 90°.

4. The higher-frequency components in the magnetization current can be quite large
compared to the fundamental component. In general, the further a transformer
core is driven into saturation, the larger the harmonic components will become.
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(a) The magnetization curve of the transformer core. (b) The magnetization current caused by the
flux in the transformer core.
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ih+z ¢ ih+e

FIGURE 2-12
The core-loss current in a transformer.

The other component of the no-load current in the transformer is the current
required to supply power to make up the hysteresis and eddy current losses in the
core. This is the core-loss current. Assume that the flux in the core is sinusoidal.
Since the eddy currents in the core are proportional to d¢/dt, the eddy currents are
largest when the flux in the core is passing through 0 Wb. Therefore, the core-loss
current is greatest as the flux passes through zero. The total current required to
make up for core losses is shown in Figure 2-12.

Notice the following points about the core-loss current:

1. The core-loss current is nonlinear because of the nonlinear effects of hysteresis.

2. The fundamental component of the core-loss current is in phase with the volt-
age applied to the core.

The total no-load current in the core is called the excitation current of the
transformer. It is just the sum of the magnetization current and the core-loss cur-
rent in the core:

e = iy + iy, (2-30)

The total excitation current in a typical transformer core is shown in Figure 2-13.
In a well-designed power transformer, the excitation current is much smaller than
the full-load current of the transformer.

The Current Ratio on a Transformer and the
Dot Convention

Now suppose that a load is connected to the secondary of the transformer. The re-
sulting circuit is shown in Figure 2—-14. Notice the dots on the windings of the trans-
former. As in the ideal transformer previously described, the dots help determine the
polarity of the voltages and currents in the core without having to physically exam-
ine its windings. The physical significance of the dot convention is that a current
flowing into the dotted end of a winding produces a positive magnetomotive force %,
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FIGURE 2-13
The total excitation current in a transformer.

Ip / \ Ig
—_— [ ] [ ] ——
1 \/__, o=
\ L—
I~ L— Vs
N —
Vp Np [ N an
N— p—
N— p—
\ L—
N— —
- \ ] -
O K / j o
FIGURE 2-14

A real transformer with a load connected to its secondary.

while a current flowing into the undotted end of a winding produces a negative
magnetomotive force. Therefore, two currents flowing into the dotted ends of
their respective windings produce magnetomotive forces that add. If one current
flows into a dotted end of a winding and one flows out of a dotted end, then the
magnetomotive forces will subtract from each other.

In the situation shown in Figure 2-14, the primary current produces a posi-
tive magnetomotive force &, = Npip, and the secondary current produces a neg-
ative magnetomotive force g = —Nis. Therefore, the net magnetomotive force
on the core must be

Frer = Npip — Neis (2-31)
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This net magnetomotive force must produce the net flux in the core, so the net
magnetomotive force must be equal to

Froo = Npip — Nois = ¢ R (2-32)

where QR is the reluctance of the transformer core. Because the reluctance of a well-
designed transformer core is very small (nearly zero) until the core is saturated, the
relationship between the primary and secondary currents is approximately

as long as the core is unsaturated. Therefore,
-39

] 1
or -~N T4 (2-35)

It is the fact that the magnetomotive force in the core is nearly zero which gives
the dot convention the meaning in Section 2.3. In order for the magnetomotive
force to be nearly zero, current must flow into one dotted end and out of the other
dotted end. The voltages must be built up in the same way with respect to the dots
on each winding in order to drive the currents in the direction required. (The po-
larity of the voltages can also be determined by Lenz’s law if the construction of
the transformer coils is visible.)

What assumptions are required to convert a real transformer into the ideal
transformer described previously? They are as follows:

1. The core must have no hysteresis or eddy currents.

2. The magnetization curve must have the shape shown in Figure 2-15. Notice
that for an unsaturated core the net magnetomotive force %, = 0, implying
that Npip = Ngig.

6, Wb

%, A * turns

FIGURE 2-15
The magnetization curve of an ideal
transformer.
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3. The leakage flux in the core must be zero, implying that all the flux in the
core couples both windings.

4. The resistance of the transformer windings must be zero.

While these conditions are never exactly met, well-designed power transformers
can come quite close.

2.5 THE EQUIVALENT CIRCUIT OF
A TRANSFORMER

The losses that occur in real transformers have to be accounted for in any accurate
model of transformer behavior. The major items to be considered in the construc-
tion of such a model are

1. Copper (I’R) losses. Copper losses are the resistive heating losses in the pri-
mary and secondary windings of the transformer. They are proportional to the
square of the current in the windings.

2. Eddy current losses. Eddy current losses are resistive heating losses in the
core of the transformer. They are proportional to the square of the voltage ap-
plied to the transformer.

3. Hysteresis losses. Hysteresis losses are associated with the rearrangement of the
magnetic domains in the core during each half-cycle, as explained in Chapter 1.
They are a complex, nonlinear function of the voltage applied to the transformer.

4. Leakage flux. The fluxes ¢, p and ¢ g which escape the core and pass through
only one of the transformer windings are leakage fluxes. These escaped
fluxes produce a leakage inductance in the primary and secondary coils, and
the effects of this inductance must be accounted for.

The Exact Equivalent Circuit of a
Real Transformer

It is possible to construct an equivalent circuit that takes into account all the ma-
jor imperfections in real transformers. Each major imperfection is considered in
turn, and its effect is included in the transformer model.

The easiest effect to model is the copper losses. Copper losses are resistive
losses in the primary and secondary windings of the transformer core. They are
modeled by placing a resistor R, in the primary circuit of the transformer and a re-
sistor Ry in the secondary circuit.

As explained in Section 2.4, the leakage flux in the primary windings ¢,
produces a voltage ¢, p given by

dop (2-36a)

erp(t) = Np=;

and the leakage flux in the secondary windings ¢, s produces a voltage ¢, s given by

d
eLs() = Ns—‘:}i (2-36b)
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Since much of the leakage flux path is through air, and since air has a constant re-
luctance much higher than the core reluctance, the flux ¢, p is directly proportional
to the primary circuit current ip, and the flux ¢, g is directly proportional to the
secondary current ig:

dLp = (PNp)ip (2-37a)
dLs = (PNy)is (2-37b)
where % = permeance of flux path

Np = number of turns on primary coil
Ng = number of turns on secondary coil

Substitute Equations (2-37) into Equations (2-36). The result is

d . di
eLp(t) = Np 7 (PNplip = N3P E (2-382)
d ) di
eLs(®) = No: (PNois = N3P 5} (2-38b)
The constants in these equations can be lumped together. Then
di
ep(t) = Ly (2-39a)
di
e s(t) = ng (2-39b)

where L, = NAP is the leakage inductance of the primary coil and Ly = NZP is
the leakage inductance of the secondary coil. Therefore, the leakage flux will be
modeled by primary and secondary inductors.

How can the core excitation effects be modeled? The magnetization current
i,, is a current proportional (in the unsaturated region) to the voltage applied to the
core and lagging the applied voltage by 90°, so it can be modeled by a reactance X,
connected across the primary voltage source. The core-loss current iy, . . is a current
proportional to the voltage applied to the core that is in phase with the applied volt-
age, so it can be modeled by a resistance R connected across the primary voltage
source. (Remember that both these currents are really nonlinear, so the inductance
X, and the resistance R are, at best, approximations of the real excitation effects.)

The resulting equivalent circuit is shown in Figure 2-16. In this circuit, R is
the resistance of the primary winding, X, (= wL,) is the reactance due to the pri-
mary leakage inductance, Rj is the resistance of the secondary winding, and X
(= wLy) is the reactance due to the secondary leakage inductance. The excitation
branch is modeled by the resistance R (hysteresis and core losses) in parallel with
the reactance X, (the magnetization current).

Notice that the elements forming the excitation branch are placed inside the
primary resistance R, and reactance Xp. This is because the voltage actually applied
to the core is really the input voltage less the internal voltage drops of the winding.
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The model of a real transformer.
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(a) The transformer model referred to its primary voltage level. (b) The transformer model referred

to its secondary voltage level.

Although Figure 2-16 is an accurate model of a transformer, it is not a very
useful one. To analyze practical circuits containing transformers, it is normally
necessary to convert the entire circuit to an equivalent circuit at a single voltage
level. (Such a conversion was done in Example 2-1.) Therefore, the equivalent
circuit must be referred either to its primary side or to its secondary side in
problem solutions. Figure 2-17a is the equivalent circuit of the transformer re-
ferred to its primary side, and Figure 2-17b is the equivalent circuit referred to its

secondary side.
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Approximate Equivalent Circuits of a Transformer

The transformer models shown before are often more complex than necessary in
order to get good results in practical engineering applications. One of the princi-
pal complaints about them is that the excitation branch of the model adds another
node to the circuit being analyzed, making the circuit solution more complex than
necessary. The excitation branch has a very small current compared to the load
current of the transformers. In fact, the excitation current is only about 2—-3% of
the full load current for typical power transformers. Because this is true, a simpli-
fied equivalent circuit can be produced that works almost as well as the original
model. The excitation branch is simply moved to the front of the transformer, and
the primary and secondary impedances are left in series with each other. These
impedances are just added, creating the approximate equivalent circuits in
Figure 2-18a and b.

In some applications, the excitation branch may be neglected entirely with-
out causing serious error. In these cases, the equivalent circuit of the transformer
reduces to the simple circuits in Figure 2—-18c and d.

I
5
L, Rap Xy . e Rags  iXeqe Mo
+ o M r~YY Y\ o+ +o0 M Y Y\ o+
R X
V, <Rc Xy av, \/: = jom v,
a a a
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(a) Regp =R, + a’R; (b) Regs = a—’z’ +R,
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Vv, av, Yr v,
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-0 o- -o o-
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FIGURE 2-18

Approximate transformer models. (a) Referred to the primary side; (b) referred to the secondary
side; (c) with no excitation branch, referred to the primary side; (d) with no excitation branch,
referred to the secondary side.
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FIGURE 2-19
Connection for transformer open-circuit test.

Determining the Values of Components in the
Transformer Model

It is possible to experimentally determine the values of the inductances and resis-
tances in the transformer model. An adequate approximation of these values can
be obtained with only two tests, the open-circuit test and the short-circuit test.

In the open-circuit test, one transformer winding is open-circuited, and the
other winding is connected to full rated line voltage. Look at the equivalent circuit
in Figure 2-17. Under the conditions described, all the input current must be flow-
ing through the excitation branch of the transformer. The series elements, Rp and X,
are too small in comparison to R and X, to cause a significant voltage drop, so
essentially all the input voltage is dropped across the excitation branch.

The open-circuit test connections are shown in Figure 2-19. Full line volt-
age is applied to one side of the transformer, and the input voltage, input current,
and input power to the transformer are measured. (This measurement is normally
done on the low-voltage side of the transformer, since lower voltages are easier to
work with.) From this information, it is possible to determine the power factor of
the input current and therefore both the magnitude and the angle of the excitation
impedance.

The easiest way to calculate the values of R and X, is to look first at the
admittance of the excitation branch. The conductance of the core-loss resistor is
given by

-1
Gc = Re (2-40)
and the susceptance of the magnetizing inductor is given by
By, = (2-41)
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Since these two elements are in parallel, their admittances add, and the total exci-
tation admittance is

1 .1
Ye=% —Jjv— 2-43
E”Re Xy (2-43)

The magnitude of the excitation admittance (referred to the side of the trans-
former used for the measurement) can be found from the open-circuit test voltage and
current:

1,
Vel = 2= (2-44)
oC

The angle of the admittance can be found from a knowledge of the circuit power
factor. The open-circuit power factor (PF) is given by

PF = cos § = Poc 2-45
= cos = Vocloe (2-45)

and the power-factor angle 0 is given by
P
Vocloc

6 = cos™! (2-46)

The power factor is always lagging for a real transformer, so the angle of the current
always lags the angle of the voltage by 6 degrees. Therefore, the admittance Yy is

IOC
Vg = yoo 46
I
Y = —V‘(’)CC Z—cos™! PF (2-47)

By comparing Equations (2—43) and (2-47), it is possible to determine the values of
R and X, referred to the low-voltage side directly from the open-circuit test data.

In the short-circuit test, the low-voltage terminals of the transformer are short-
circuited, and the high-voltage terminals are connected to a variable voltage source,
as shown in Figure 2-20. (This measurement is normally done on the high-voltage
side of the transformer, since currents will be lower on that side, and lower currents
are easier to work with.) The input voltage is adjusted until the current in the short-
circuited windings is equal to its rated value. (Be sure to keep the primary voltage at
a safe level. It would not be a good idea to burn out the transformer’s windings
while trying to test it.) The input voltage, current, and power are again measured.

Since the input voltage is so low during the short-circuit test, negligible cur-
rent flows through the excitation branch. If the excitation current is ignored, then
all the voltage drop in the transformer can be attributed to the series elements in
the circuit. The magnitude of the series impedances referred to the primary side of
the transformer is

V.
|Zel = 755 (2-48)
SC
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FIGURE 2-20
Connection for transformer short-circuit test.
The power factor of the current is given by
_ _ _Psc
PF =cos 6§ = Vel (2-49)
scisc

and is lagging. The current angle is thus negative, and the overall impedance an-
gle 0 is positive:

P
0 = cos™! =5 (2-50)
Vsclsc
Therefore,
_ Vsc40° _Vsc
Zse = 1o 7=° = Iy 0 (2-51)

The series impedance Zg is equal to
Zgp = Roq + jXeq
Zsp = (Rp + a’Rg) + j(Xp + a?Xy) (2-52)

It is possible to determine the total series impedance referred to the high-
voltage side by using this technique, but there is no easy way to split the series im-
pedance into primary and secondary components. Fortunately, such separation is
not necessary to solve normal problems.

Note that the open-circuit test is usually performed on the low-voltage side
of the transformer, and the short-circuit test is usually performed on the high-
voltage side of the transformer, so R and X, are usually found referred to the
low-voltage side, and R,, and X,, are usually found referred to the high-voltage
side. All of the elements must be referred to the same side (either high or low) to
create the final equivalent circuit.

Example 2-2. The equivalent circuit impedances of a 20-kVA, 8000/240 V, 60-Hz
transformer are to be determined. The open-circuit test was performed on the secondary
side of the transformer (to reduce the maximum voltage to be measured) and the short-
circuit test were performed on the primary side of the transformer (to reduce the maximum
current to be measured). The following data were taken:
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Open-circuit test Short-circuit test
(on secondary) (on primary)

Voc =240V Vsc =489V

Ioc =7.133A Isc=25A

Poc = 400 W Pgc =240 W

Find the impedances of the approximate equivalent circuit referred to the primary side, and
sketch that circuit.

Solution

The turns ratio of this transformer is a = 8000/240 = 33.3333. The power factor during the
open-circuit test is

P,
PF = cos § = —2€

Voclog (2-45)
- —___400W
PF = c0s 6 = G40 v)(7.133 A)
PF = 0.234 lagging
The excitation admittance is given by
- Ioc -1
Yp = Voo £—cos™! PF (2-47)

_7133A ,
Yp = 240 V Z—cos™ 0.234

Yp = 0.0297 £-76.5°S
= —; -1 _ .1
Yp = 0.00693 — j0.02888 = 7~ —j -

Therefore, the values of the excitation branch referred to the low-voltage (secondary) side are

1

Rc = 500693 = 1440
1 _

Xy = §oogeg = 34630

The power factor during the short-circuit test is

P
PF = cos § = =% (2-49)
VscIsc

_ _ 240 W - .
PF = cos 60 = @89 V)2.5 A) 0.196 lagging

The series impedance is given by

V.

Zg = I—SCA cos™! PF
sC

ZSE = 42§591 478.7°

Zgp = 195.6 £78.7° = 38.4 + j192 Q
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FIGURE 2-21
The equivalent circuit of Example 2-2.

Therefore, the equivalent resistance and reactance referred to the high-voltage (primary)
side are
R, =3840Q Xeq=1920

The resulting simplified equivalent circuit referred to the high-voltage (primary) side can
be found by converting the excitation branch values to the high-voltage side.

Rc’p = azRas = (33333)2 (144 Q)=159 kQ
Xyp = @ Xyys = (33.333)2 (34.63 () = 38.4 kQ

The resulting equivalent circuit is shown in Figure 2-21.

2.6 THE PER-UNIT SYSTEM OF MEASUREMENTS

As the relatively simple Example 2-1 showed, solving circuits containing trans-
formers can be quite a tedious operation because of the need to refer all the dif-
ferent voltage levels on different sides of the transformers in the system to a com-
mon level. Only after this step has been taken can the system be solved for its
voltages and currents.

There is another approach to solving circuits containing transformers which
eliminates the need for explicit voltage-level conversions at every transformer in
the system. Instead, the required conversions are handled automatically by the
method itself, without ever requiring the user to worry about impedance transfor-
mations. Because such impedance transformations can be avoided, circuits con-
taining many transformers can be solved easily with less chance of error. This
method of calculation is known as the per-unit (pu) system of measurements.

There is yet another advantage to the per-unit system that is quite significant
for electric machinery and transformers. As the size of a machine or transformer
varies, its internal impedances vary widely. Thus, a primary circuit reactance of
0.1 2 might be an atrociously high number for one transformer and a ridiculously
low number for another—it all depends on the device’s voltage and power ratings.
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However, it turns out that in a per-unit system related to the device’s ratings, ma-
chine and transformer impedances fall within fairly narrow ranges for each type and
construction of device. This fact can serve as a useful check in problem solutions.
In the per-unit system, the voltages, currents, powers, impedances, and other
electrical quantities are not measured in their usual SI units (volts, amperes, watts,
ohms, etc.). Instead, each electrical quantity is measured as a decimal fraction of
some base level. Any quantity can be expressed on a per-unit basis by the equation

Actual value
base value of quantity

Quantity per unit = (2-53)
where “actual value” is a value in volts, amperes, ohms, etc.

It is customary to select two base quantities to define a given per-unit sys-
tem. The ones usually selected are voltage and power (or apparent power). Once
these base quantities have been selected, all the other base values are related to
them by the usual electrical laws. In a single-phase system, these relationships are

5 base* Qbase’ or Sbase = Vbaserase (2_54)
Vi
Rbase’ Xbase’ or Zbase = Ibase (2—55)
base
Ve = e (2-56)
Vbase
(Voase)”
and Zose = ﬁ (2-57)

Once the base values of S (or P) and V have been selected, all other base values
can be computed easily from Equations (2-54) to (2-57).

In a power system, a base apparent power and voltage are selected at a spe-
cific point in the system. A transformer has no effect on the base apparent power
of the system, since the apparent power into a transformer equals the apparent
power out of the transformer [Equation (2-11)]. On the other hand, voltage
changes when it goes through a transformer, so the value of V,,,, changes at every
transformer in the system according to its turns ratio. Because the base quantities
change in passing through a transformer, the process of referring quantities to a
common voltage level is automatically taken care of during per-unit conversion.

Example 2-3. A simple power system is shown in Figure 2-22. This system con-
tains a 480-V generator connected to an ideal 1:10 step-up transformer, a transmission line,
an ideal 20:1 step-down transformer, and a load. The impedance of the transmission line is
20 + j60 (2, and the impedance of the load is 10£30°€). The base values for this system are
chosen to be 480 V and 10 kVA at the generator.

(a) Find the base voltage, current, impedance, and apparent power at every point in
the power system.

(b) Convert this system to its per-unit equivalent circuit.

(c) Find the power supplied to the load in this system.

(d) Find the power lost in the transmission line.
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Lie 200 600 s Ziosa = 10-30°0
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\/ 480 L 0°V
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FIGURE 2-22

The power system of Example 2-3.

Solution
(a) In the generator region, Vy,.. = 480 V and S;,.. = 10 kVA, so

_ Sbase _ 10,000 VA

o1 = 2 = 10 = 2083
_ Vbasel _ 480 V _
Zuse 1y =7, T 20834 22040

The turns ratio of transformer T} is a = 1/10 = 0.1, so the base voltage in the
transmission line region is

The other base quantities are
Spase2 = 10kVA

10,000 VA
Ibasez = 4800 Vv = 2.083 A
4800 V
Zuases =083 ~ 23040

The turns ratio of transformer 7, is a = 20/1 = 20, so the base voltage in the
load region is

Vosser _ 4800V

Voase3 = " g 20 240V
The other base quantities are
Spases = 10kVA
10,000 VA
hases = "240v = 41.67 A
240V
Zowses = 31674~ 0700

(b) To convert a power system to a per-unit system, each component must be di-
vided by its base value in its region of the system. The generator’s per-unit volt-
age is its actual value divided by its base value:
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[G,pu = Ljipe, pu= Tioad, pu= Ipu

FIGURE 2-23
The per-unit equivalent circuit for Example 2-3.

_ 480£0°V

Vopu = 480V - 1.0 £0° pu

The transmission line’s per-unit impedance is its actual value divided by its base
value:
20 + j60 Q)

Zinegn = 3304 = 0-0087 + j0.0260 pu

The load’s per-unit impedance is also given by actual value divided by base value:

_10£30°0

Ziaa = 55 = 1736 £30° pu

The per-unit equivalent circuit of the power system is shown in Figure 2-23.
(c) The current flowing in this per-unit power system is
I = _V&
moZ

tot,pu

_ 1£0°
(0.0087 + j0.0260) + (1.736 £30°)

_ 1£0°
~ (0.0087 + j0.0260) + (1.503 + j0.868)

100 140
1512 +j0.894 ~ 1.757 £30.6°

= 0.569 £—30.6° pu
Therefore, the per-unit power of the load is
Pioagpn = lf,uRpu = (0.569)%(1.503) = 0.487
and the actual power supplied to the load is
Boad = Poad,puSease = (0.487)(10,000 VA)
= 4870 W
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(b)

FIGURE 2-24

(a) A typical 13.2-kV to 120/240-V distribution transformer. (Courtesy of General Electric
Company.) (b) A cutaway view of the distribution transformer showing the shell-form transformer
inside it. (Courtesy of General Electric Company.)

(d) The per-unit power lost in the transmission line is
Piivers = ll?iuRune,pu = (0.569)2(0.0087) = 0.00282
and the actual power lost in the transmission line is
Bine = Pine,puSvase = (0.00282)(10,000 VA)
=282W

pu

When only one device (transformer or motor) is being analyzed, its own rat-
ings are usually used as the base for the per-unit system. If a per-unit system based
on the transformer’s own ratings is used, a power or distribution transformer’s
characteristics will not vary much over a wide range of voltage and power ratings.
For example, the series resistance of a transformer is usually about 0.01 per unit,
and the series reactance is usually between 0.02 and 0.10 per unit. In general, the
larger the transformer, the smaller the series impedances. The magnetizing reac-
tance is usually between about 10 and 40 per unit, while the core-loss resistance is
usually between about 50 and 200 per unit. Because per-unit values provide a con-
venient and meaningful way to compare transformer characteristics when they are
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of different sizes, transformer impedances are normally given in per-unit or as a
percentage on the transformer’s nameplate (see Figure 2—45, later in this chapter).
The same idea applies to synchronous and induction machines as well: Their
per-unit impedances fall within relatively narrow ranges over quite large size ranges.
If more than one machine and one transformer are included in a single
power system, the system base voltage and power may be chosen arbitrarily, but
the entire system must have the same base. One common procedure is to choose
the system base quantities to be equal to the base of the largest component in the
system. Per-unit values given to another base can be converted to the new base by
converting them to their actual values (volts, amperes, ohms, etc.) as an in-
between step. Alternatively, they can be converted directly by the equations

P — Sbase 1 )
(P, Q’ S)puon base2 — (P, Q’ S)pu onbase 1¢ ( -58)
base 2
= Vbase 1
Vpu onbase2 — Vpu on base 1 V. (2-59)
base 2
(Vbase l)z(sbase 2)

(Rr X: Z)pu on base 2 = (R) X: Z) (2_60)

pu on base I(Vbase 2)2( Sbase 1)
Example 2—4. Sketch the approximate per-unit equivalent circuit for the trans-
former in Example 2-2. Use the transformer’s ratings as the system base.

Solution
The transformer in Example 2-2 is rated at 20 kVA, 8000/240 V. The approximate equiva-
lent circuit (Figure 2-21) developed in the example was referred to the high-voltage side of
the transformer, so to convert it to per-unit, the primary circuit base impedance must be
found. On the primary,

Viase 1 = 8000 V
Spase1 = 20,000 VA

Therefore,
384 +j192Q )
Zegpu = 3000 - 0.012 + j0.06 pu
_ 159k _
Repuw = 32000 49.7 pu
38.4 k()

Zypu = 32000 12 pu

The per-unit approximate equivalent circuit, expressed to the transformer’s own base, is
shown in Figure 2-25.

2.7 TRANSFORMER VOLTAGE
REGULATION AND EFFICIENCY

Because a real transformer has series impedances within it, the output voltage of
a transformer varies with the load even if the input voltage remains constant. To
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FIGURE 2-25

The per-unit equivalent circuit of Example 2—4.

conveniently compare transformers in this respect, it is customary to define a
quantity called voltage regulation (VR). Full-load voltage regulation is a quantity
that compares the output voltage of the transformer at no load with the output
voltage at full load. It is defined by the equation

_ VS,nI -V

VR v S 100% (2-61)
S.fl

Since at no load, Vg = V,/a, the voltage regulation can also be expressed as

Vp/a - ‘/Sﬂ
VS,ﬂ

VR = x 100% (2-62)

If the transformer equivalent circuit is in the per-unit system, then voltage regula-
tion can be expressed as

Vorw — Vi
VR = 2R SOB o 1009, (2-63)

VS,ﬂ,pu

Usually it is a good practice to have as small a voltage regulation as possible.
For an ideal transformer, VR = 0 percent. It is not always a good idea to have a
low-voltage regulation, though—sometimes high-impedance and high-voltage reg-
ulation transformers are deliberately used to reduce the fault currents in a circuit.
How can the voltage regulation of a transformer be determined?

The Transformer Phasor Diagram

To determine the voltage regulation of a transformer, it is necessary to understand
the voltage drops within it. Consider the simplified transformer equivalent circuit in
Figure 2-18b. The effects of the excitation branch on transformer voltage regulation
can be ignored, so only the series impedances need be considered. The voltage
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regulation of a transformer depends both on the magnitude of these series imped-
ances and on the phase angle of the current flowing through the transformer. The
easiest way to determine the effect of the impedances and the current phase angles
on the transformer voltage regulation is to examine a phasor diagram, a sketch of
the phasor voltages and currents in the transformer.

In all the following phasor diagrams, the phasor voltage V is assumed to be
at an angle of 0°, and all other voltages and currents are compared to that refer-
ence. By applying Kirchhoff’s voltage law to the equivalent circuit in Figure
2-18b, the primary voltage can be found as

\/ :
= Vst Rgls + X, I (2-64)

A transformer phasor diagram is just a visual representation of this equation.
Figure 2-26 shows a phasor diagram of a transformer operating at a lagging
power factor. It is easy to see that V/a > V; for lagging loads, so the voltage reg-
ulation of a transformer with lagging loads must be greater than zero.
A phasor diagram at unity power factor is shown in Figure 2-27a. Here again,
the voltage at the secondary is lower than the voltage at the primary, so VR > 0.

\/

— 3

:2 6 VS \Aqlx
Regl,

I

s

FIGURE 2-26
Phasor diagram of a transformer operating at a lagging power factor.

(b)

FIGURE 2-27
Phasor diagram of a transformer operating at (a) unity and (b) leading power factor.
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However, this time the voltage regulation is a smaller number than it was with a lag-
ging current. If the secondary current is leading, the secondary voltage can actually
be higher than the referred primary voltage. If this happens, the transformer actually
has a negative voltage regulation (see Figure 2-27b).

Transformer Efficiency

Transformers are also compared and judged on their efficiencies. The efficiency
of a device is defined by the equation

_ F, out
n =2 % 100% (2-65)
P,
POLll
= o 100% 2-66
n R)ll! ROSS 7 ( )

These equations apply to motors and generators as well as to transformers.
The transformer equivalent circuits make efficiency calculations easy. There
are three types of losses present in transformers:

1. Copper (IR) losses. These losses are accounted for by the series resistance in
the equivalent circuit.

2. Hysteresis losses. These losses were explained in Chapter 1. These losses are
included in resistor R.

3. Eddy current losses. These losses were explained in Chapter 1. These losses
are included in resistor R.

To calculate the efficiency of a transformer at a given load, just add the losses
from each resistor and apply Equation (2-67). Since the output power is given by

Py = Vslgcos O 2-7

the efficiency of the transformer can be expressed by

_ Vsl cos 6
M= Py + Py + Vilgcos 6

core

x 100% (2-67)

Example 2-5. A 15-kVA, 2300/230-V transformer is to be tested to determine its
excitation branch components, its series impedances, and its voltage regulation. The fol-
lowing test data have been taken from the transformer:

Open-circuit test Short-circuit test
(low voltage side) (high voltage side)
Voc =230V Vsc =47V
Ioc=21A Isc =6.0A

Poc = S0W Psc = 160 W
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The data have been taken by using the connections shown in Figures 2-19 and 2-20.

(a) Find the equivalent circuit of this transformer referred to the high-voltage side.

(b) Find the equivalent circuit of this transformer referred to the low-voltage side.

(c) Calculate the full-load voltage regulation at 0.8 lagging power factor, 1.0 power
factor, and at 0.8 leading power factor using the exact equation for Vp.

(d) Plot the voltage regulation as load is increased from no load to full load at power
factors of 0.8 lagging, 1.0, and 0.8 leading.

(e) What is the efficiency of the transformer at full load with a power factor of 0.8

lagging?

Solution

(a) The turns ratio of this transformer is a = 2300/230 = 10. The excitation branch
values of the transformer equivalent circuit referred to the secondary (low voltage)
side can be calculated from the open-circuit test data, and the series elements re-
ferred to the primary (high voltage) side can be calculated from the short-circuit
test data. From the open-circuit test data, the open-circuit impedance angle is

P,
= -1 oC
00(: Ccos Vol
0oc = cos™ 30 = 84°

(230 V)(2.1 A)

The excitation admittance is thus

Inc
Yp = e £-84°
OC
21A .
Yp = 355y £-84°S

Yp = 0.00913 £—84° S = 0.000954 — j0.00908 S
The elements of the excitation branch referred to the secondary are

1

Res = 5000953 = 1050 Q)
1
Xus = 900008 ~ 1100
From the short-circuit test data, the short-circuit impedance angle is
Psc
6gc = cos™!
3¢ Vsclsc
= cos— 1 —L0OW <o 4o
Ogc = cos @ V)6 A) 55.4

The equivalent series impedance is thus
Vsc
Zgg = K £6sc

47V
6A

Zgp = 71.833 £55.4° = 4.45 + j6.45

Zg = L5 £554° Q)
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The series elements referred to the primary side are

Rgp =445Q  X,p=6450Q

The resulting simplified equivalent circuit referred to the primary side can be
found by converting the excitation branch values to the primary side.

Rcp = a?Reg = (10)* (1050 ) = 105 kQ
Xyp= a*Xys = (102 (110 Q) = 11kQ

This equivalent circuit is shown in Figure 2-28a.

(b) To find the equivalent circuit referred to the low-voltage side, it is simply neces-
sary to divide the impedance by a. Since a = Np/N; = 10, the resulting values are

R-=1050 Q R, = 0.0445 Q)
Xy =1100 Xeq = 0.0645 Q

The resulting equivalent circuit is shown in Figure 2-28b.

. I
IP Reqp J X‘qp _(—IS_
s AN A 54+

L 4450 j6.45Q

lh+e ‘ 1 m
R, iX,
J \%
"105k0§ +j1TkQ Vs
o o-
(a)
alp Re‘l; jx“l: I
F om VW Y'Y\ o+
I 0.0445 0  j0.0645Q
alp 4 e 1 lalm
v
2 %= 1050.0§ \E
fi‘gt:jnon
a
(b)
FIGURE 2-28

The transfer equivalent circuit for Example 2-5 referred to (a) its primary side and (b) its secondary
side.
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(c) The full-load current on the secondary side of this transformer is

_ sra\ed _ ISIOOOVA

IS,raled = ‘/s'rated = 230 v = 65.2 A
To calculate V,/a, use Equation (2-64):
Ve .
i Vs + Reqls +1Xeqls (2-64)

At PF = 0.8 lagging, current I = 65.2 £-36.9° A. Therefore,

\/
_a—P =230£0°V + (0.0445 0)(65.2 £—36.9° A) + j(0.0645 2)(65.2 £—36.9° A)

=230£0°V + 290£-36.9°V + 421 £53.1°V

=230 + 2.32 — j1.74 + 2.52 + j3.36

= 234.84 + j1.62 = 234.85 £0.40° V

The resulting voltage regulation is
Vp/a — Vsq

- sl

_ 23485V — 230V
230V

VR x 100% (2-62)

x 100% = 2.1%

At PF = 1.0, current Iy = 65.2 £ 0° A. Therefore,

Ve o o .
i 230 £0° V + (0.0445 Q)(65.2 £0° A) + j(0.0645 Q)(65.2 £0° A)
=230£0°V +290Z£0°V + 421 £L90°V
=230 + 2.90 + j4.21
= 2329 + j4.21 = 23294 £1.04° V
The resulting voltage regulation is
_ 23294V — 230V
230V
At PF = 0.8 leading, current Iy = 65.2 £36.9° A. Therefore,

V
TP = 230£0°V + (0.0445 Q)(65.2 £36.9° A) + j(0.0645 )(65.2 £36.9° A)

VR x 100% = 1.28%

=230£0°V + 2.90£369°V + 421 £1269°V
=230 + 2.32 + j1.74 — 2.52 + j3.36

= 229.80 + j5.10 = 229.85 £1.27° V

The resulting voltage regulation is

22985V - 230V

VR = 230V x 100% = —0.062%
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\/

7” =2349 £04°V

V,=230£0°V

Xl =421 £53.1°V
Regl,=2.9 £-369°V
I,=652.£-369°A

(a)
vP
£=23292104°V
421 £90°V
)
I,=652Z0°A 230£0°V ——
2920°V
(b)
VP
Z£=2298£121°V
I,=652£369°A
\4\.21 £1269°V
M
29 2369°V
230 £0°V
(©
FIGURE 2-29

Transformer phasor diagrams for Example 2-5.

Each of these three phasor diagrams is shown in Figure 2-29.

(d) The best way to plot the voltage regulation as a function of load is to repeat the
calculations in part ¢ for many different loads using MATLAB. A program to do
this is shown below.

% M-file: trans_vr.m

% M-file to calculate and plot the voltage regulation
% of a transformer as a function of load for power

% factors of 0.8 lagging, 1.0, and 0.8 leading.

VS = 230; % Secondary voltage (V)
amps = 0:6.52:65.2; % Current values (A)
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Req = 0.0445; % Equivalent R (ohms)
Xeq = 0.0645; % Equivalent X (ohms)
% Calculate the current values for the three
% power factors. The first row of I contains
% the lagging currents, the second row contains
% the unity currents, and the third row contains
% the leading currents.
I(l,:) = amps .* ( 0.8 - j*0.6); % Lagging
I(2,:) = amps .* ( 1.0 ) % Unity
I(3,:) = amps .* ( 0.8 + j*0.6); % Leading

% Calculate VP/a.
VPa = VS + Req.*I + j.*Xeq.*I;

% Calculate voltage regulation
VR = (abs(VPa) - VS) ./ VS .* 100;

% Plot the voltage regulation

plot (amps,VR(1,:),'b-");
hold on;

plot (amps,VR(2,:),'k—");
plot (amps,VR(3,:),'r-.");

title ('Voltage Regulation Versus Load');

xlabel ('Load (A)');

ylabel ('Voltage Regulation (%)');

legend('0.8 PF lagging','l.0 PF','0.8 PF leading');
hold off;

The plot produced by this program is shown in Figure 2-30.
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To find the efficiency of the transformer, first calculate its losses. The copper

losses are
Pg, = (Ig)’Req = (65.2 A)%(0.0445 ) = 189 W
The core losses are given by

p o (Vplal _ (23485Vp
core = TR, T 1050 Q

=525W

The output power of the transformer at this power factor is
Py = Vslgcos 0
= (230 V)(65.2 A) cos 36.9° = 12,000 W
Therefore, the efficiency of the transformer at this condition is

_ Vsl cos 0
M= Py + Pop + Vslscos 6

12,000 W
189 W + 525W + 12,000 W

98.03%

x 100%

x 100%

(2-68)
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Voltage regulation versus load
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FIGURE 2-30
Plot of voltage regulation versus load for the transformer of Example 2-5.

2.8 TRANSFORMER TAPS AND
VOLTAGE REGULATION

In previous sections of this chapter, transformers were described by their turns ra-
tios or by their primary-to-secondary-voltage ratios. Throughout those sections, the
turns ratio of a given transformer was treated as though it were completely fixed.
In almost all real distribution transformers, this is not quite true. Distribution trans-
formers have a series of taps in the windings to permit small changes in the turns
ratio of the transformer after it has left the factory. A typical installation might have
four taps in addition to the nominal setting with spacings of 2.5 percent of full-load
voltage between them. Such an arrangement provides for adjustments up to 5 per-
cent above or below the nominal voltage rating of the transformer.

Example 2-6. A 500-kVA, 13,200/480-V distribution transformer has four
2.5 percent taps on its primary winding. What are the voltage ratios of this transformer at
each tap setting?

Solution
The five possible voltage ratings of this transformer are

+5.0% tap 13,860/480 V
+2.5% tap 13,530/480 V
Nominal rating 13,200/480 V
—2.5% tap 12,870/480 V

—5.0% tap 12,540/480 V
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The taps on a transformer permit the transformer to be adjusted in the field
to accommodate variations in local voltages. However, these taps normally can-
not be changed while power is being applied to the transformer. They must be set
once and left alone.

Sometimes a transformer is used on a power line whose voltage varies
widely with the load. Such voltage variations might be due to a high line imped-
ance between the generators on the power system and that particular load (perhaps
it is located far out in the country). Normal loads need to be supplied an essen-
tially constant voltage. How can a power company supply a controlled voltage
through high-impedance lines to loads which are constantly changing?

One solution to this problem is to use a special transformer called a rap
changing under load (TCUL) transformer or voltage regulator. Basically, a TCUL
transformer is a transformer with the ability to change taps while power is con-
nected to it. A voltage regulator is a TCUL transformer with built-in voltage sens-
ing circuitry that automatically changes taps to keep the system voltage constant.
Such special transformers are very common in modern power systems.

2.9 THE AUTOTRANSFORMER

On some occasions it is desirable to change voltage levels by only a small amount.
For example, it may be necessary to increase a voltage from 110 to 120 V or from
13.2 to 13.8 kV. These small rises may be made necessary by voltage drops that
occur in power systems a long way from the generators. In such circumstances, it
is wasteful and excessively expensive to wind a transformer with two full wind-
ings, each rated at about the same voltage. A special-purpose transformer, called
an autotransformer, is used instead.

A diagram of a step-up autotransformer is shown in Figure 2-31. In Figure
2-31a, the two coils of the transformer are shown in the conventional manner. In
Figure 2-31b, the first winding is shown connected in an additive manner to the
second winding. Now, the relationship between the voltage on the first winding
and the voltage on the second winding is given by the turns ratio of the trans-
former. However, the voltage at the output of the whole transformer is the sum of
the voltage on the first winding and the voltage on the second winding. The first
winding here is called the common winding, because its voltage appears on both
sides of the transformer. The smaller winding is called the series winding, because
it is connected in series with the common winding.

A diagram of a step-down autotransformer is shown in Figure 2-32. Here
the voltage at the input is the sum of the voltages on the series winding and the
common winding, while the voltage at the output is just the voltage on the com-
mon winding.

Because the transformer coils are physically connected, a different termi-
nology is used for the autotransformer than for other types of transformers. The
voltage on the common coil is called the common voltage V., and the current in
that coil is called the common current I.. The voltage on the series coil is called
the series voltage Vg, and the current in that coil is called the series current Igg.
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FIGURE 2-31

A transformer with its windings (a) connected in the conventional manner and (b) reconnected as an
autotransformer.
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FIGURE 2-32

A step-down autotransformer connection.

The voltage and current on the low-voltage side of the transformer are called V,
and I, respectively, while the corresponding quantities on the high-voltage side
of the transformer are called Vj, and I,. The primary side of the autotransformer
(the side with power into it) can be either the high-voltage side or the low-voltage
side, depending on whether the autotransformer is acting as a step-down or a step-up
transformer. From Figure 2-31b the voltages and currents in the coils are related
by the equations

Ve _ Ne
Vse  Ngg
Ncle = Neglge (2-70)

(2-69)
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The voltages in the coils are related to the voltages at the terminals by the equations
V., =V¢ (2-71)

and the currents in the coils are related to the currents at the terminals by the
equations

I =1+ Ig (2-73)
I, =1 (2-74)

Voltage and Current Relationships in
an Autotransformer

What is the voltage relationship between the two sides of an autotransformer? It
is quite easy to determine the relationship between V and V,. The voltage on the
high side of the autotransformer is given by

Vu=Vc+ Vg (2-72)
But V./ Vg = N/ Ngg, so
Vv, =V, + ey 2-75
H= Vet N Y (2-75)
c
Finally, noting that V, = V., we get
Ns
Ngg + N¢
= —Nc v, (2-76)
or V,  Ne + Ne 2-77)

The current relationship between the two sides of the transformer can be
found by noting that

=1+ Ig (2-73)
From Equation (2-69), I = (Nsg /N)Igg, so
_ N
L =7 T+ L (2-78)
c
Finally, noting that I; = Igg, we find
N
I =2E1, + 1

Nc
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Nl (2-79)
or T (2-80)

The Apparent Power Rating Advantage
of Autotransformers

It is interesting to note that not all the power traveling from the primary to the sec-
ondary in the autotransformer goes through the windings. As a result, if a con-
ventional transformer is reconnected as an autotransformer, it can handle much
more power than it was originally rated for.

To understand this idea, refer again to Figure 2-31b. Notice that the input
apparent power to the autotransformer is given by

Sin = VLI (2-81)
and the output apparent power is given by
Sout = Vuly (2-82)

It is easy to show, by using the voltage and current equations [Equations (2-77) and
(2-80)], that the input apparent power is again equal to the output apparent power:

Sin = Sout = SIO (2_83)

where Sj is defined to be the input and output apparent powers of the transformer.
However, the apparent power in the transformer windings is

Sw = Vel = Vsplse (2-84)

The relationship between the power going into the primary (and out the sec-
ondary) of the transformer and the power in the transformer’s actual windings can
be found as follows:

Sw = Vclc
=V, — Iy
=W, — Vly
Using Equation (2-80), we get
Sw=WV1 — VL’L%
SE c
Nge + No) — N,
- szL( S'jVSE +C)NC < (2-85)
Nse

= S0 m (2-86)
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Therefore, the ratio of the apparent power in the primary and secondary of the
autotransformer to the apparent power actually traveling through its windings is

So Neg + Ne
2o - SE— ¢ 2-87
S Neg (2-87)

Equation (2-87) describes the apparent power rating advantage of an auto-
transformer over a conventional transformer. Here S\ is the apparent power enter-
ing the primary and leaving the secondary of the transformer, while Sy, is the ap-
parent power actually traveling through the transformer’s windings (the rest passes
from primary to secondary without being coupled through the transformer’s wind-
ings). Note that the smaller the series winding, the greater the advantage.

For example, a 5000-k VA autotransformer connecting a 110-kV system to
a 138-kV system would have an N /Ngg turns ratio of 110:28. Such an autotrans-
former would actually have windings rated at

NSE

Sw = S0 Nsg + Nc

(2-86)

= (5000 kVA)ﬁ — 1015 kVA

The autotransformer would have windings rated at only about 1015 kVA, while a
conventional transformer doing the same job would need windings rated at 5000 kVA.
The autotransformer could be S times smaller than the conventional transformer and
also would be much less expensive. For this reason, it is very advantageous to build
transformers between two nearly equal voltages as autotransformers.

The following example illustrates autotransformer analysis and the rating
advantage of autotransformers.

Example 2-7. A 100-VA, 120/12-V transformer is to be connected so as to form a
step-up autotransformer (see Figure 2-33). A primary voltage of 120 V is applied to the
transformer.

(a) What is the secondary voltage of the transformer?
(b) What is its maximum voltampere rating in this mode of operation?

(c) Calculate the rating advantage of this autotransformer connection over the trans-
former’s rating in conventional 120/12-V operation.

Solution
To accomplish a step-up transformation with a 120-V primary, the ratio of the turns on the
common winding N to the turns on the series winding Ngg in this transformer must be
120:12 (or 10:1).

(a) This transformer is being used as a step-up transformer. The secondary voltage
is Vi, and from Equation (2-76),

_ Nsg + Ne

==

_ 12+ 120 _
=120 120V =132V

Vy \/) (2-76)
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FIGURE 2-33
The autotransformer of Example 2-7.

(b) The maximum voltampere rating in either winding of this transformer is 100 VA.
How much input or output apparent power can this provide? To find out, examine
the series winding. The voltage Vg on the winding is 12 V, and the voltampere rat-
ing of the winding is 100 VA. Therefore, the maximum series winding current is

Since I is equal to the secondary current I (or /) and since the secondary
voltage Vg = V,; = 132V, the secondary apparent power is

Sou = Vslg = Vyly
= (132 V)(8.33 A) = 1100 VA = §;,

(c) The rating advantage can be calculated from part () or separately from Equa-
tion (2-87). From part (b),

Sio _ 1100 VA _ 1"
Sw  100VA —

From Equation (2-87),
Sio _ Nsg + N¢
Sw Ngg

_ 24120 _132_

(2-87)

By either equation, the apparent power rating is increased by a factor of 11.

It is not normally possible to just reconnect an ordinary transformer as an
autotransformer and use it in the manner of Example 2-7, because the insulation on
the low-voltage side of the ordinary transformer may not be strong enough to with-
stand the full output voltage of the autotransformer connection. In transformers



TRANSFORMERS 115

(@) (b)

FIGURE 2-34
(a) A variable-voltage autotransformer. (b) Cutaway view of the autotransformer. (Courtesy of
Superior Electric Company.)

built specifically as autotransformers, the insulation on the smaller coil (the series
winding) is made just as strong as the insulation on the larger coil.

It is common practice in power systems to use autotransformers whenever
two voltages fairly close to each other in level need to be transformed, because the
closer the two voltages are, the greater the autotransformer power advantage be-
comes. They are also used as variable transformers, where the low-voltage tap
moves up and down the winding. This is a very convenient way to get a variable
ac voltage. Such a variable autotransformer is shown in Figure 2-34.

The principal disadvantage of autotransformers is that, unlike ordinary
transformers, there is a direct physical connection between the primary and the
secondary circuits, so the electrical isolation of the two sides is lost. If a particu-
lar application does not require electrical isolation, then the autotransformer is a
convenient and inexpensive way to tie nearly equal voltages together.

The Internal Impedance of an Autotransformer

Autotransformers have one additional disadvantage compared to conventional
transformers. It turns out that, compared to a given transformer connected in the
conventional manner, the effective per-unit impedance of an autotransformer is
smaller by a factor equal to the reciprocal of the power advantage of the auto-
transformer connection.

The proof of this statement is left as a problem at the end of the chapter.

The reduced internal impedance of an autotransformer compared to a con-
ventional two-winding transformer can be a serious problem in some applications
where the series impedance is needed to limit current flows during power system
faults (short circuits). The effect of the smaller internal impedance provided by an
autotransformer must be taken into account in practical applications before auto-
transformers are selected.
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Example 2-8. A transformer is rated at 1000 kVA, 12/1.2kV, 60 Hz when it is op-
erated as a conventional two-winding transformer. Under these conditions, its series resis-
tance and reactance are given as 1 and 8 percent per unit, respectively. This transformer is
to be used as a 13.2/12-kV step-down autotransformer in a power distribution system. In
the autotransformer connection, (a) what is the transformer’s rating when used in this man-
ner and (b) what is the transformer’s series impedance in per-unit?

Solution
(a) The N/Ngg turns ratio must be 12:1.2 or 10:1. The voltage rating of this trans-
former will be 13.2/12 kV, and the apparent power (voltampere) rating will be
Ngg + N¢
10~ Neg Sw
-1+10
1

(b) The transformer’s impedance in a per-unit system when connected in the con-
ventional manner is

1000 kVA = 11,000 kVA

Z,, = 0.01 + j0.08 pu separate windings

The apparent power advantage of this autotransformer is 11, so the per-unit im-
pedance of the autotransformer connected as described is

;- 0.01 + j0.08
eq 11

= 0.00091 + j0.00727 pu  autotransformer

2.10 THREE-PHASE TRANSFORMERS

Almost all the major power generation and distribution systems in the world to-
day are three-phase ac systems. Since three-phase systems play such an important
role in modern life, it is necessary to understand how transformers are used in
them.

Transformers for three-phase circuits can be constructed in one of two
ways. One approach is simply to take three single-phase transformers and connect
them in a three-phase bank. An alternative approach is to make a three-phase
transformer consisting of three sets of windings wrapped on a common core.
These two possible types of transformer construction are shown in Figures 2-35
and 2-36. Both designs (three separate transformers and a single three-phase
transformer) are in use today, and you are likely to run into both of them in prac-
tice. A single three-phase transformer is lighter, smaller, cheaper, and slightly
more efficient, but using three separate single-phase transformers has the advan-
tage that each unit in the bank could be replaced individually in the event of trou-
ble. A utility would only need to stock a single spare single-phase transformer to
back up all three phases, potentially saving money.
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FIGURE 2-35

A three-phase transformer bank composed of independent transformers.
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FIGURE 2-36

A three-phase transformer wound on a single three-legged core.
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Three-Phase Transformer Connections

A three-phase transformer consists of three transformers, either separate or com-
bined on one core. The primaries and secondaries of any three-phase transformer
can be independently connected in either a wye (Y) or a delta (A). This gives a to-
tal of four possible connections for a three-phase transformer bank:

1. Wye-wye (Y-Y)

2. Wye—delta (Y-A)
3. Delta—wye (A-Y)
4. Delta—delta (A-A)

These connections are shown over the next several pages in Figure 2-37.

The key to analyzing any three-phase transformer bank is to look at a single
transformer in the bank. Any single transformer in the bank behaves exactly like
the single-phase transformers already studied. The impedance, voltage regula-
tion, efficiency, and similar calculations for three-phase transformers are done on
a per-phase basis, using exactly the same techniques already developed for
single-phase transformers.

The advantages and disadvantages of each type of three-phase transformer
connection are discussed below.

WYE-WYE CONNECTION. The Y-Y connection of three-phase transformers is
shown in Figure 2-37a. In a Y-Y connection, the primary voltage on each phase
of the transformer is given by V,p = Vip/ V3. The primary-phase voltage is re-
lated to the secondary-phase voltage by the turns ratio of the transformer. The
phase voltage on the secondary is then related to the line voltage on the secondary
by Vis = V3V Therefore, overall the voltage ratio on the transformer is

Vie _ V3V _

= - 2-88

The Y-Y connection has two very serious problems:

1. If loads on the transformer circuit are unbalanced, then the voltages on the
phases of the transformer can become severely unbalanced.

2. Third-harmonic voltages can be large.

If a three-phase set of voltages is applied to a Y-Y transformer, the voltages
in any phase will be 120° apart from the voltages in any other phase. However, the
third-harmonic components of each of the three phases will be in phase with each
other, since there are three cycles in the third harmonic for each cycle of the fun-
damental frequency. There are always some third-harmonic components in a
transformer because of the nonlinearity of the core, and these components add up.
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FIGURE 2-37
Three-phase transformer connections and wiring diagrams: (a) Y-Y; (b) Y-A; (c) A-Y; (d) A-A.

The result is a very large third-harmonic component of voltage on top of the 50-
or 60-Hz fundamental voltage. This third-harmonic voltage can be larger than the
fundamental voltage itself.

Both the unbalance problem and the third-harmonic problem can be solved
using one of two techniques:

1. Solidly ground the neutrals of the transformers, especially the primary wind-
ing’s neutral. This connection permits the additive third-harmonic components
to cause a current flow in the neutral instead of building up large voltages. The
neutral also provides a return path for any current imbalances in the load.

2. Add a third (tertiary) winding connected in A to the transformer bank. If a third
A-connected winding is added to the transformer, then the third-harmonic
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components of voltage in the A will add up, causing a circulating current flow
within the winding. This suppresses the third-harmonic components of voltage
in the same manner as grounding the transformer neutrals.

The A-connected tertiary windings need not even be brought out of the
transformer case, but they often are used to supply lights and auxiliary power
within the substation where it is located. The tertiary windings must be large
enough to handle the circulating currents, so they are usually made about
one-third the power rating of the two main windings.

One or the other of these correction techniques must be used any time a Y-Y
transformer is installed. In practice, very few Y-Y transformers are used, since the
same jobs can be done by one of the other types of three-phase transformers.

WYE-DELTA CONNECTION. The Y-A connection of three-phase transformers
is shown in Figure 2-37b. In this connection, the primary line voltage is related to
the primary phase voltage by V| p = \/§V¢P, while the secondary line voltage is
equal to the secondary phase voltage Vi g = V. The voltage ratio of each phase is

Vor

Vas
so the overall relationship between the line voltage on the primary side of the
bank and the line voltage on the secondary side of the bank is

=a

Vie _ V3V

v,

V—”’ =V3a Y-A (2-89)
LS

The Y-A connection has no problem with third-harmonic components in its
voltages, since they are consumed in a circulating current on the A side. This con-
nection is also more stable with respect to unbalanced loads, since the A partially
redistributes any imbalance that occurs.

This arrangement does have one problem, though. Because of the connec-
tion, the secondary voltage is shifted 30° relative to the primary voltage of the
transformer. The fact that a phase shift has occurred can cause problems in paral-
leling the secondaries of two transformer banks together. The phase angles of
transformer secondaries must be equal if they are to be paralleled, which means
that attention must be paid to the direction of the 30° phase shift occurring in each
transformer bank to be paralleled together.

In the United States, it is customary to make the secondary voltage lag the
primary voltage by 30°. Although this is the standard, it has not always been ob-
served, and older installations must be checked very carefully before a new trans-
former is paralleled with them, to make sure that their phase angles match.
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FIGURE 2-37
(b) Y-A (continued)

The connection shown in Figure 2-37b will cause the secondary voltage to
be lagging if the system phase sequence is abc. If the system phase sequence is
acbh, then the connection shown in Figure 2—-37b will cause the secondary voltage
to be leading the primary voltage by 30°.

DELTA-WYE CONNECTION. A A-Y connection of three-phase transformers is
shown in Figure 2-37c. In a A-Y connection, the primary line voltage is equal to
the primary-phase voltage V;p = V,p, while the secondary voltages are related
by Vis = \/§V¢S. Therefore, the line-to-line voltage ratio of this transformer
connection is
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FIGURE 2-37
(c) A-Y (continued)
Vie _ _Vor
VLS \/ng
VLP a
_LP _ _ (2-90)
s~ Vi ATY

This connection has the same advantages and the same phase shift as the
Y-A transformer. The connection shown in Figure 2-37c makes the secondary
voltage lag the primary voltage by 30°, as before.
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FIGURE 2-37
(d) A-A (concluded)

DELTA-DELTA CONNECTION. The A-A connection is shown in Figure 2-37d.
In a A-A connection, Vip = Vjp and V5 = Vg, so the relationship between pri-
mary and secondary line voltages is

Vie _ Vor
TSP, A-A 2-91
Vis Vs ( )

This transformer has no phase shift associated with it and no problems with
unbalanced loads or harmonics.

The Per-Unit System for Three-Phase Transformers

The per-unit system of measurements applies just as well to three-phase trans-
formers as to single-phase transformers. The single-phase base equations (2-53)
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to (2-56) apply to three-phase systems on a per-phase basis. If the total base
voltampere value of the transformer bank is called Sy, then the base voltampere
value of one of the transformers Sy yase is

S
S1¢,base = b3ase (2—92)

and the base phase current and impedance of the transformer are

Sigb
Iqb.base = V. e (2—93&)
@,base

S base
3 Vd),base

I ¢,base = (2—93'2))

V. 2
Ty, = 0 (2-94a)

3(V ase)2
Zypge = =g (2-94b)

Line quantities on three-phase transformer banks can also be represented in
the per-unit system. The relationship between the base line voltage and the base
phase voltage of the transformer depends on the connection of windings. If the
windings are connected in delta, Vi y,se = Vi pase» While if the windings are con-
nected in wye, V; . = V3V, The base line current in a three-phase trans-
former bank is given by

_ Sbase
IL,base a \/§VL.base (2-95)

The application of the per-unit system to three-phase transformer problems
is similar to its application in the single-phase examples already given.

Example 2-9. A 50-kVA, 13,800/208-V, A-Y distribution transformer has a resis-
tance of 1 percent and a reactance of 7 percent per unit.

(a) What is the transformer’s phase impedance referred to the high-voltage side?

(b) Calculate this transformer’s voltage regulation at full load and 0.8 PF lagging,
using the calculated high-side impedance.

(c) Calculate this transformer’s voltage regulation under the same conditions, using
the per-unit system.

Solution

(a) The high-voltage side of this transformer has a base line voltage of 13,800 V
and a base apparent power of 50 kVA. Since the primary is A-connected, its
phase voltage is equal to its line voltage. Therefore, its base impedance is

3V, pae)?
_ 2o bme)” (2-94b)

ase Sbase
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2

The per-unit impedance of the transformer is
Z,, = 0.01 + j0.07 pu
so the high-side impedance in ohms is
Zeq = eq,pquase
= (0.01 + j0.07 pu)(11,426 ) = 114.2 + j800 O

(b) To calculate the voltage regulation of a three-phase transformer bank, determine
the voltage regulation of any single transformer in the bank. The voltages on a
single transformer are phase voltages, so

Vip — aV,
VR = £ —95, 100%
aVM
The rated transformer phase voltage on the primary is 13,800 V, so the rated
phase current on the primary is given by

S
I, =375
¢~ 3,

The rated apparent power S = 50 kVA, so

[ = 50.000 VA
¢~ 3(13,800 V)

= 1.208 A

The rated phase voltage on the secondary of the transformer is 208 V/ V3 = 120 V. When
referred to the high-voltage side of the transformer, this voltage becomes Vys = aVys
= 13,800 V. Assume that the transformer secondary is operating at the rated voltage and
current, and find the resulting primary phase voltage:

Vop = aVys + Rl + jX 1,

13,800 £0°V +(114.2 Q)(1.208 £ —36.87° A) +(j800 2)(1.208 £—36.87° A)
13,800 + 138 £—36.87° + 966.4 £53.13°

13,800 + 110.4 — j82.8 + 579.8 + j773.1

14,490 + j690.3 = 14,506 £2.73° V

Therefore,

V,p — aV,
VR = 22— o 100%
aVys

14,506 — 13,800
13,800

x 100% = 5.1%
(c) Inthe per-unit system, the output voltage is 1 £ 0°, and the current is 1 £ -36.87°.
Therefore, the input voltage is
Ve = 1£0° + (0.01)(1 £-36.87°) + (jO.07)(1 £—36.87°)
1 + 0.008 — j0.006 + 0.042 + j0.056
1.05 + j0.05 = 1.051 £2.73°
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The voltage regulation is

_ 1051 - 1.0

VR 10

x 100% = 5.1%
Of course, the voltage regulation of the transformer bank is the same
whether the calculations are done in actual ohms or in the per-unit system.

2.11 THREE-PHASE TRANSFORMATION
USING TWO TRANSFORMERS

In addition to the standard three-phase transformer connections, there are ways to
perform three-phase transformation with only two transformers. These techniques
are sometimes employed to create three-phase power at locations where not all
three power lines are available. For example, in rural areas a power company will
often run only one or two of the three phases on a distribution line, because the
power requirements in the area do not justify the cost of running all three wires. If
there is an isolated user of three-phase power along a route served by a distribu-
tion line with two of the three phases, these techniques can be used to create three-
phase power for that local user.

All techniques that create three-phase power with only two transformers in-
volve a reduction in the power-handling capability of the transformers, but they
may be justified by certain economic situations.

Some of the more important two-transformer connections are

1. The open-A (or V-V) connection
2. The open-Y—open-A connection
3. The Scott-T connection

4. The three-phase T connection

Each of these transformer connections is described in this section.

The Open-A (or V-V) Connection

In some situations a full transformer bank may not be used to accomplish three-
phase transformation. For example, suppose that a A-A transformer bank com-
posed of separate transformers has a damaged phase that must be removed for
repair. The resulting situation is shown in Figure 2-38. If the two remaining sec-
ondary voltages are V, = V £0° and V, = V £ 120° V, then the voltage across the
gap where the third transformer used to be is given by

VC = _VA - VB
—VZ0° - VZ£L-120°
-V = (—0.5V — j0.866V)
—0.5V + j0.866V
VZ120° V
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The open-A or V-V transformer connection.

This is exactly the same voltage that would be present if the third transformer
were still there. Phase C is sometimes called a ghost phase. Thus, the open-delta
connection lets a transformer bank get by with only two transformers, allowing
some power flow to continue even with a damaged phase removed.

How much apparent power can the bank supply with one of its three trans-
formers removed? At first, it seems that it could supply two-thirds of its rated
apparent power, since two-thirds of the transformers are still present. Things are
not quite that simple, though. To understand what happens when a transformer is
removed, see Figure 2-39.

Figure 2-39a shows the transformer bank in normal operation connected to
a resistive load. If the rated voltage of one transformer in the bank is V, and the
rated current is I, then the maximum power that can be supplied to the load is

P= 3V¢I¢cos 6

The angle between the voltage V, and the current I, in each phase is 0°, so the to-
tal power supplied by the transformer is

P= 3V¢I¢cos 0

The open-delta transformer is shown in Figure 2-39b. It is important to note
the angles on the voltages and currents in this transformer bank. Because one of
the transformer phases is missing, the transmission line current is now equal to the
phase current in each transformer, and the currents and voltages in the transformer
bank differ in angle by 30°. Since the current and voltage angles differ in each of
the two transformers, it is necessary to examine each transformer individually to
determine the maximum power it can supply. For transformer 1, the voltage is at
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FIGURE 2-39

(a) Voltages and currents in a A-A transformer bank. (b) Voltages and currents in an open-A
transformer bank.

an angle of 150° and the current is at an angle of 120°, so the expression for the
maximum power in transformer 1 is
P, = 3V, I cos (150° —120°)
= 3Vy 14 cos 30°

- ? V1, (2-97)

For transformer 2, the voltage is at an angle of 30° and the current is at an angle
of 60°, so its maximum power is

P2 = 3V¢I¢COS (300 _600)
= 3V¢l¢ cos (—30°)

Therefore, the total maximum power of the open-delta bank is given by
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The rated current is the same in each transformer whether there are two or three of
them, and the voltage is the same on each transformer; so the ratio of the output
power available from the open-delta bank to the output power available from the
normal three-phase bank is

Popen A \/§V¢I¢ 1
= = —==0.577 2-100
Pyphase  3Valy V3 ( )

The available power out of the open-delta bank is only 57.7 percent of the origi-
nal bank’s rating.

A good question that could be asked is: What happens to the rest of the open-
delta bank’s rating? After all, the total power that the two transformers together can
produce is two-thirds that of the original bank’s rating. To find out, examine the re-
active power of the open-delta bank. The reactive power of transformer 1 is

0, = 3Vl sin (150° — 120°)
= 3V¢I¢ Sin 300
The reactive power of transformer 2 is
Q, = 3V, 14 sin (30° — 60°)
=YV,

Thus one transformer is producing reactive power which the other one is con-
suming. It is this exchange of energy between the two transformers that limits the
power output to 57.7 percent of the original bank’s rating instead of the otherwise
expected 66.7 percent.

An alternative way to look at the rating of the open-delta connection is that
86.6 percent of the rating of the two remaining transformers can be used.

Open-delta connections are used occasionally to supply a small amount of
three-phase power to an otherwise single-phase load. In such a case, the connec-

tion in Figure 2—40 can be used, where transformer 7, is much larger than trans-
former T;,.

Three-
¢ phase
power

b

FIGURE 240
Using an open-A transformer connection to supply a small amount of three-phase power along with a
lot of single-phase power. Transformer T;, is much larger than transformer 7).
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The open-Y-open-A transformer connection and wiring diagram. Note that this connection is
identical to the Y-A connection in Figure 2-37b, except for the absence of the third transformer and
the presence of the neutral lead.

The Open-Wye—Open-Delta Connection

The open-wye—open-delta connection is very similar to the open-delta connection
except that the primary voltages are derived from two phases and the neutral. This
type of connection is shown in Figure 2—41. It is used to serve small commercial
customers needing three-phase service in rural areas where all three phases are not
yet present on the power poles. With this connection, a customer can get three-
phase service in a makeshift fashion until demand requires installation of the third
phase on the power poles.



TRANSFORMERS 131

A major disadvantage of this connection is that a very large return current
must flow in the neutral of the primary circuit.

The Scott-T Connection

The Scott-T connection is a way to derive two phases 90° apart from a three-phase
power supply. In the early history of ac power transmission, two-phase and three-
phase power systems were quite common. In those days, it was routinely neces-
sary to interconnect two- and three-phase power systems, and the Scott-T trans-
former connection was developed for that purpose.

Today, two-phase power is primarily limited to certain control applications,
but the Scott T is still used to produce the power needed to operate them.

The Scott T consists of two single-phase transformers with identical ratings.
One has a tap on its primary winding at 86.6 percent of full-load voltage. They are
connected as shown in Figure 2—42a. The 86.6 percent tap of transformer T} is
connected to the center tap of transformer T,. The voltages applied to the primary
winding are shown in Figure 2-42b, and the resulting voltages applied to the pri-
maries of the two transformers are shown in Figure 2—42c. Since these voltages
are 90° apart, they result in a two-phase output.

It is also possible to convert two-phase power into three-phase power with
this connection, but since there are very few two-phase generators in use, this is
rarely done.

The Three-Phase T Connection

The Scott-T connection uses two transformers to convert three-phase power to
two-phase power at a different voltage level. By a simple modification of that
connection, the same two transformers can also convert three-phase power to
three-phase power at a different voltage level. Such a connection is shown in Fig-
ure 2—43. Here both the primary and the secondary windings of transformer T, are
tapped at the 86.6 percent point, and the taps are connected to the center taps of
the corresponding windings on transformer T;. In this connection 7 is called the
main transformer and T, is called the teaser transformer.

As in the Scott T, the three-phase input voltage produces two voltages 90°
apart on the primary windings of the transformers. These primary voltages pro-
duce secondary voltages which are also 90° apart. Unlike the Scott T, though, the
secondary voltages are recombined into a three-phase output.

One major advantage of the three-phase T connection over the other three-
phase two-transformer connections (the open-delta and open-wye—open-delta) is
that a neutral can be connected to both the primary side and the secondary side of
the transformer bank. This connection is sometimes used in self-contained three-
phase distribution transformers, since its construction costs are lower than those
of a full three-phase transformer bank.

Since the bottom parts of the teaser transformer windings are not used on ei-
ther the primary or the secondary sides, they could be left off with no change in
performance. This is, in fact, typically done in distribution transformers.
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The Scott-T transformer connection. (a) Wiring diagram; (b) the three-phase input voltages; (c) the
voltages on the transformer primary windings; (d) the two-phase secondary voltages.
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(e

The three-phase T transformer connection. (a) Wiring diagram; (b) the three-phase input voltages;
(c) the voltages on the transformer primary windings; (d) the voltages on the transformer secondary

windings; (e) the resulting three-phase secondary voltages.
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2.12 TRANSFORMER RATINGS AND
RELATED PROBLEMS

Transformers have four major ratings:

1. Apparent power (kVA, or MVA)

2. Primary and secondary voltage (V)

3. Frequency (Hz)

4. Per-unit series resistance and reactance
These ratings can be found on the nameplates of most transformers. This section
examines why these ratings are used to characterize a transformer. It also consid-

ers the related question of the current inrush that occurs when a transformer is first
connected to the line.

The Voltage and Frequency Ratings
of a Transformer

The voltage rating of a transformer serves two functions. One is to protect the wind-
ing insulation from breakdown due to an excessive voltage applied to it. This is not
the most serious limitation in practical transformers. The second function is related
to the magnetization curve and magnetization current of the transformer. Figure
2-11 shows a magnetization curve for a transformer. If a steady-state voltage

w(t) = V) sin wt A%

is applied to a transformer’s primary winding, the flux of the transformer is given by
- L
o0 =5 v ar

1y
= NPIVM sin wt dt

-
@) = N, cos wt (2-101)

If the applied voltage v(r) is increased by 10 percent, the resulting maximum
flux in the core also increases by 10 percent. Above a certain point on the magne-
tization curve, though, a 10 percent increase in flux requires an increase in mag-
netization current much larger than 10 percent. This concept is illustrated in
Figure 2-44. As the voltage increases, the high-magnetization currents soon
become unacceptable. The maximum applied voltage (and therefore the rated
voltage) is set by the maximum acceptable magnetization current in the core.

Notice that voltage and frequency are related in a reciprocal fashion if the
maximum flux is to be held constant:

v,

Prmax = wLAZ (2-102)
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The effect of the peak flux in a transformer core upon the required magnetization current.

Thus, if a 60-Hz transformer is to be operated on 50 Hz, its applied voltage must
also be reduced by one-sixth or the peak flux in the core will be too high. This re-
duction in applied voltage with frequency is called derating. Similarly, a 50-Hz
transformer may be operated at a 20 percent higher voltage on 60 Hz if this action
does not cause insulation problems.

Example 2-10. A 1-kVA, 230/115-V, 60-Hz single-phase transformer has 850
turns on the primary winding and 425 turns on the secondary winding. The magnetization
curve for this transformer is shown in Figure 2-45.

(a) Calculate and plot the magnetization current of this transformer when it is run
at 230 V on a 60-Hz power source. What is the rms value of the magnetization
current?

(b) Calculate and plot the magnetization current of this transformer when it is run at
230V on a 50-Hz power source. What is the rms value of the magnetization cur-
rent? How does this current compare to the magnetization current at 60 Hz?
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Magnetization curve for 230/115-V transformer
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Magnetization curve for the 230/115-V transformer of Example 2-10.

Solution
The best way to solve this problem is to calculate the flux as a function of time for this
core, and then use the magnetization curve to transform each flux value to a corresponding
magnetomotive force. The magnetizing current can then be determined from the equation

-z
Np

Assuming that the voltage applied to the core is v(f) = V), sin w? volts, the flux in
the core as a function of time is given by Equation (2-102):

i (2-103)

- _Vu
() = N, cos wt (2-101)

The magnetization curve for this transformer is available electronically in a file called
mag_curve_1l.dat. This file can be used by MATLAB to translate these flux values
into corresponding mmf values, and Equation (2-102) can be used to find the required
magnetization current values. Finally, the rms value of the magnetization current can be
calculated from the equation

1

Inms = [ o # dt (2-104)

A MATLAB program to perform these calculations follows:

M-file: mag_current.m

M-file to calculate and plot the magnetization
current of a 230/115 transformer operating at
230 volts and 50/60 Hz. This program also
calculates the rms value of the mag. current.

o0 00 P 0P of
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% Load the magnetization curve. It is in two

% columns, with the first column being mmf and
% the second column being flux.

load mag_curve_1l.dat;

mmf_data = mag_curve_1(:,1);

flux_data = mag_curve_1(:,2);

% Initialize values
VM = 325; % Maximum voltage (V)
NP = 850; % Primary turns

% Calculate angular velocity for 60 Hz
freq = 60; % Freq (Hz)
w =2 * pi * freq;

% Calculate flux versus time
time = 0:1/3000:1/30; $ 0 to 1/30 sec
flux = -VM/ (w*NP) * cos(w .* time);

% Calculate the mmf corresponding to a given flux
% using the flux's interpolation function.
mmf = interpl(flux_data,mmf_data, flux);

% Calculate the magnetization current
im = mmf / NP;

% Calculate the rms value of the current
irms = sqgrt(sum(im.”2)/length(im));
disp(['The rms current at 60 Hz is ', num2str(irms)]);

% Plot the magnetization current.

figure(1l)

subplot(2,1,1);

plot (time, im);

title ('\bfMagnetization Current at 60 Hz');
xlabel ('\bfTime (s)');

ylabel ('\bf\itI_{m} \rm(A)');

axis ([0 0.04 -2 2]);

grid on;

% Calculate angular velocity for 50 Hz
freq = 50; % Freq (Hz)
w =2 * pi * freq;

% Calculate flux versus time
time = 0:1/2500:1/25; % 0 to 1/25 sec
flux = -VM/(W*NP) * cos(w .* time);

% Calculate the mmf corresponding to a given flux
% using the flux's interpolation function.
mmf = interpl(flux_data,mmf_data, flux);

% Calculate the magnetization current
im = mmf / NP;

137
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FIGURE 246
(a) Magnetization current for the transformer operating at 60 Hz. (b) Magnetization current for the
transformer operating at 50 Hz.

% Calculate the rms value of the current
irms = sqrt(sum(im.”2)/length(im));

disp(['The rms current at 50 Hz is ', num2str(irms)]);

% Plot the magnetization current.
subplot(2,1,2);

plot (time, im);

title ('\bfMagnetization Current at 50 Hz');
xlabel ('\bfTime (s)');

ylabel ('\bf\itI_{m} \rm(A)');

axis([0 0.04 -2 2]);

grid on;

When this program executes, the results are

» mag_current
The rms current at 60 Hz is 0.4894
The rms current at 50 Hz is 0.79252

The resulting magnetization currents are shown in Figure 2—46. Note that the rms magne-
tization current increases by more than 60 percent when the frequency changes from 60 Hz
to 50 Hz.

The Apparent Power Rating of a Transformer

The principal purpose of the apparent power rating is that, together with the volt-
age rating, it limits the current flow through the transformer windings. The current
flow is important because it controls the iR losses in the transformer, which in turn
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control the heating of the transformer coils. It is the heating that is critical, since
overheating the coils of a transformer drastically shortens the life of its insulation.

Transformers are rated in apparent power instead of real or reactive powers
because the same amount of heating occurs for a given amount of current, regard-
less of its phase with respect to the terminal voltage. The magnitude of the current
affects the heating, not the phase of the current.

The actual apparent power rating of a transformer may be more than a sin-
gle value. In real transformers, there may be an apparent power rating for the
transformer by itself, and another (higher) rating for the transformer with forced
cooling. The key idea behind the power rating is that the hot-spot temperature in
the transformer windings must be limited to protect the life of the transformer.

If a transformer’s voltage is reduced for any reason (e.g., if it is operated at
a lower frequency than normal), then the transformer’s apparent power rating must
be reduced by an equal amount. If this is not done, then the current in the transformer’s
windings will exceed the maximum permissible level and cause overheating.

The Problem of Current Inrush

A problem related to the voltage level in the transformer is the problem of current
inrush at starting. Suppose that the voltage

v(t) = Vy,sin (ot + 6) \" (2-105)

is applied at the moment the transformer is first connected to the power line. The
maximum flux height reached on the first half-cycle of the applied voltage depends
on the phase of the voltage at the time the voltage is applied. If the initial voltage is

W(t) = Vy sin (wf + 90°) = Vj,cos otV (2-106)

and if the initial flux in the core is zero, then the maximum flux during the first
half-cycle will just equal the maximum flux at steady state:

V,

max

P = e (2-102)

This flux level is just the steady-state flux, so it causes no special problems. But
if the applied voltage happens to be

w(£) = V), sin ot \"/
the maximum flux during the first half-cycle is given by
T/
() = leo wVMsin wt dt
Yu
NP
‘w_m[‘—” )

w/w

——y COS wt ’

2V
Pmax = "GN, (2-107)
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FIGURE 247
The current inrush due to a transformer’s magnetization current on starting.

This maximum flux is twice as high as the normal steady-state flux. If the
magnetization curve in Figure 211 is examined, it is easy to see that doubling the
maximum flux in the core results in an enormous magnetization current. In fact,
for part of the cycle, the transformer looks like a short circuit, and a very large
current flows (see Figure 2—47).

For any other phase angle of the applied voltage between 90°, which is no
problem, and 0°, which is the worst case, there is some excess current flow. The
applied phase angle of the voltage is not normally controlled on starting, so there
can be huge inrush currents during the first several cycles after the transformer is
connected to the line. The transformer and the power system to which it is con-
nected must be able to withstand these currents.

The Transformer Nameplate

A typical nameplate from a distribution transformer is shown in Figure 2—48. The
information on such a nameplate includes rated voltage, rated kilovoltamperes, rated
frequency, and the transformer per-unit series impedance. It also shows the voltage
ratings for each tap on the transformer and the wiring schematic of the transformer.

Nameplates such as the one shown also typically include the transformer
type designation and references to its operating instructions.

2.13 INSTRUMENT TRANSFORMERS

Two special-purpose transformers are used with power systems for taking mea-
surements. One is the potential transformer, and the other is the current transformer.
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A sample distribution transformer nameplate. Note the ratings listed: voltage, frequency, apparent
power, and tap settings. (Courtesy of General Electric Company.)

A potential transformer is a specially wound transformer with a high-
voltage primary and a low-voltage secondary. It has a very low power rating, and
its sole purpose is to provide a sample of the power system’s voltage to the in-
struments monitoring it. Since the principal purpose of the transformer is voltage
sampling, it must be very accurate so as not to distort the true voltage values too
badly. Potential transformers of several accuracy classes may be purchased, de-
pending on how accurate the readings must be for a given application.

Current transformers sample the current in a line and reduce it to a safe and
measurable level. A diagram of a typical current transformer is shown in Figure
2-49. The current transformer consists of a secondary winding wrapped around a
ferromagnetic ring, with the single primary line running through the center of the
ring. The ferromagnetic ring holds and concentrates a small sample of the flux
from the primary line. That flux then induces a voltage and current in the sec-
ondary winding.

A current transformer differs from the other transformers described in this
chapter in that its windings are loosely coupled. Unlike all the other transformers,
the mutual flux ¢,, in the current transformer is smaller than the leakage flux ¢,.
Because of the loose coupling, the voltage and current ratios of Equations (2-1)
to (2-5) do not apply to a current transformer. Nevertheless, the secondary current
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Sketch of a current transformer.

in a current transformer is directly proportional to the much larger primary
current, and the device can provide an accurate sample of a line’s current for mea-
surement purposes.

Current transformer ratings are given as ratios of primary to secondary cur-
rent. A typical current transformer ratio might be 600:5,800:5, or 1000:5. A 5-A
rating is standard on the secondary of a current transformer.

It is important to keep a current transformer short-circuited at all times,
since extremely high voltages can appear across its open secondary terminals. In
fact, most relays and other devices using the current from a current transformer
have a shorting interlock which must be shut before the relay can be removed for
inspection or adjustment. Without this interlock, very dangerous high voltages
will appear at the secondary terminals as the relay is removed from its socket.

2.14 SUMMARY

A transformer is a device for converting electric energy at one voltage level to
electric energy at another voltage level through the action of a magnetic field. It
plays an extremely important role in modern life by making possible the econom-
ical long-distance transmission of electric power.

When a voltage is applied to the primary of a transformer, a flux is produced in
the core as given by Faraday’s law. The changing flux in the core then induces a volt-
age in the secondary winding of the transformer. Because transformer cores have
very high permeability, the net magnetomotive force required in the core to produce
its flux is very small. Since the net magnetomotive force is very small, the primary
circuit’s magnetomotive force must be approximately equal and opposite to the sec-
ondary circuit’s magnetomotive force. This fact yields the transformer current ratio.

A real transformer has leakage fluxes that pass through either the primary or
the secondary winding, but not both. In addition there are hysteresis, eddy current,
and copper losses. These effects are accounted for in the equivalent circuit of the
transformer. Transformer imperfections are measured in a real transformer by its
voltage regulation and its efficiency.
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The per-unit system of measurement is a convenient way to study systems
containing transformers, because in this system the different system voltage lev-
els disappear. In addition, the per-unit impedances of a transformer expressed to
its own ratings base fall within a relatively narrow range, providing a convenient
check for reasonableness in problem solutions.

An autotransformer differs from a regular transformer in that the two wind-
ings of the autotransformer are connected. The voltage on one side of the trans-
former is the voltage across a single winding, while the voltage on the other side
of the transformer is the sum of the voltages across both windings. Because only
a portion of the power in an autotransformer actually passes through the windings,
an autotransformer has a power rating advantage compared to a regular trans-
former of equal size. However, the connection destroys the electrical isolation be-
tween a transformer’s primary and secondary sides.

The voltage levels of three-phase circuits can be transformed by a proper
combination of two or three transformers. Potential transformers and current
transformers can sample the voltages and currents present in a circuit. Both de-
vices are very common in large power distribution systems.

QUESTIONS

2-1. Is the turns ratio of a transformer the same as the ratio of voltages across the trans-
former? Why or why not?
2-2. Why does the magnetization current impose an upper limit on the voltage applied to
a transformer core?
2-3. What components compose the excitation current of a transformer? How are they
modeled in the transformer’s equivalent circuit?
2-4. What is the leakage flux in a transformer? Why is it modeled in a transformer
equivalent circuit as an inductor?
2-5. List and describe the types of losses that occur in a transformer.
2-6. Why does the power factor of a load affect the voltage regulation of a transformer?
2-7. Why does the short-circuit test essentially show only i2R losses and not excitation
losses in a transformer?
2-8. Why does the open-circuit test essentially show only excitation losses and not iR
losses?
2-9. How does the per-unit system of measurement eliminate the problem of different
voltage levels in a power system?
2-10. Why can autotransformers handle more power than conventional transformers of
the same size?
2-11. What are transformer taps? Why are they used?
2-12. What are the problems associated with the Y-Y three-phase transformer connection?
2-13. What is a TCUL transformer?
2-14. How can three-phase transformation be accomplished using only two transformers?
What types of connections can be used? What are their advantages and disadvantages?
2-15. Explain why the open-A transformer connection is limited to supplying 57.7 percent
of a normal A-A transformer bank’s load.
Can a 60-Hz transformer be operated on a 50-Hz system? What actions are neces-
sary to enable this operation?

2-16.



144 ELECTRIC MACHINERY FUNDAMENTALS

2-17. What happens to a transformer when it is first connected to a power line? Can any-
thing be done to mitigate this problem?

2-18. What is a potential transformer? How is it used?

2-19. What is a current transformer? How is it used?

2-20. A distribution transformer is rated at 18 kVA, 20,000/480 V, and 60 Hz. Can this
transformer safely supply 15 kVA to a 415-V load at 50 Hz? Why or why not?
2-21. Why does one hear a hum when standing near a large power transformer?

PROBLEMS
2-1. A 100-kVA, 8000/277-V distribution transformer has the following resistances and
reactances:
Re=5Q R =0.005 Q
Xp=60Q X5 = 0.006 O
Rc = 50k Xy = 10kQ

The excitation branch impedances are given referred to the high-voltage side of the

transformer.

(a) Find the equivalent circuit of this transformer referred to the low-voltage side.

(b) Find the per-unit equivalent circuit of this transformer.

(c) Assume that this transformer is supplying rated load at 277 V and 0.85 PF lag-
ging. What is this transformer’s input voltage? What is its voltage regulation?

(d) What are the copper losses and core losses in this transformer under the condi-
tions of part (c)?

(e) What is the transformer’s efficiency under the conditions of part (c)?

2-2. A single-phase power system is shown in Figure P2—-1. The power source feeds a
100-kVA, 14/2.4-kV transformer through a feeder impedance of 38.2 + j140 (). The
transformer’s equivalent series impedance referred to its low-voltage side is 0.10 +
J0.40 €). The load on the transformer is 90 kW at 0.80 PF lagging and 2300 V.

3820 jl40Q 0.10Q 0400

LT

N | ' 3 | *Ejm

vV, V) v 90 kW
souree C‘) : : ‘ : s 0.80 PF lagging
| | I\
I I i
1 | |
I I 1
———r -~ e )
Source Feeder Transformer Load

(transmission line)

FIGURE P2-1
The circuit of Problem 2-2.

(a) What is the voltage at the power source of the system?
(b) What is the voltage regulation of the transformer?
(c) How efficient is the overall power system?
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2-3. The secondary winding of an ideal transformer has a terminal voltage of v(f) =
282.8 sin 377t V. The turns ratio of the transformer is 100:200 (a = 0.50). If the sec-
ondary current of the transformer is i(f) = 7.07 sin (377t — 36.87°) A, what is the
primary current of this transformer? What are its voltage regulation and efficiency?

2-4. The secondary winding of a real transformer has a terminal voltage of v(f) = 282.8
sin 377t V. The turns ratio of the transformer is 100:200 (a = 0.50). If the secondary
current of the transformer is i,(f) = 7.07 sin (377t — 36.87°) A, what is the primary
current of this transformer? What are its voltage regulation and efficiency? The im-
pedances of this transformer referred to the primary side are

Ry =0200 Rc=300Q
X, =0.80Q Xy =100 Q

2-5. When travelers from the USA and Canada visit Europe, they encounter a different
power distribution system. Wall voltages in North America are 120 V rms at 60 Hz,
while typical wall voltages in Europe are 230 V at 50 Hz. Many travelers carry
small step-up/step-down transformers so that they can use their appliances in the
countries that they are visiting. A typical transformer might be rated at 1 kVA and
115/230 V. It has 500 turns of wire on the 115-V side and 1000 turns of wire on the
230-V side. The magnetization curve for this transformer is shown in Figure P2-2,
and can be found in file p22 . mag at this book’s website.

0.0012

0.0010 —

0.0008

Flux, Wb

0.0006 //

0.0004 /

0.0002

0 50 100 150 200 250 300 350 400
MMF, A e« turns

FIGURE P2-2
Magnetization curve for the transformer of Problem 2-5.
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(a) Suppose that this transformer is connected to a 120-V, 60-Hz power source with
no load connected to the 240-V side. Sketch the magnetization current that
would flow in the transformer. (Use MATLAB to plot the current accurately, if
it is available.) What is the rms amplitude of the magnetization current? What
percentage of full-load current is the magnetization current?

(b) Now suppose that this transformer is connected to a 240-V, 50-Hz power source
with no load connected to the 120-V side. Sketch the magnetization current that
would flow in the transformer. (Use MATLAB to plot the current accurately, if
it is available.) What is the rms amplitude of the magnetization current? What
percentage of full-load current is the magnetization current?

(c) In which case is the magnetization current a higher percentage of full-load
current? Why?

A 1000-VA, 230/115-V transformer has been tested to determine its equivalent cir-

cuit. The results of the tests are shown below.

Open-circuit test Short-circuit test
(on secondary side) (on primary side)
Voc =115V Voc =171V
Ioc =0.11A Isc=87A

Poc =39W Psc =38.1W

(a) Find the equivalent circuit of this transformer referred to the low-voltage side of
the transformer.

(b) Find the transformer’s voltage regulation at rated conditions and (1) 0.8 PF lag-
ging, (2) 1.0 PF, (3) 0.8 PF leading.

(c) Determine the transformer’s efficiency at rated conditions and 0.8 PF lagging.

A 30-kVA, 8000/230-V distribution transformer has an impedance referred to the

primary of 20 + j100 (). The components of the excitation branch referred to

the primary side are R = 100 k{2 and X,, = 20 k().

(a) If the primary voltage is 7967 V and the load impedance is Z, = 2.0 + j0.7 (2,
what is the secondary voltage of the transformer? What is the voltage regulation
of the transformer?

(b) If the load is disconnected and a capacitor of —j3.0 ( is connected in its place,
what is the secondary voltage of the transformer? What is its voltage regulation
under these conditions?

A 150-MVA, 15/200-kYV, single-phase power transformer has a per-unit resistance of

1.2 percent and a per-unit reactance of 5 percent (data taken from the transformer’s

nameplate). The magnetizing impedance is j80 per unit.

(a) Find the equivalent circuit referred to the low-voltage side of this transformer.

(b) Calculate the voltage regulation of this transformer for a full-load current at
power factor of 0.8 lagging.

(c) Calculate the copper and core losses in the transformer at the conditions in (b).

(d) Assume that the primary voltage of this transformer is a constant 15 kV, and plot
the secondary voltage as a function of load current for currents from no-load to
full-load. Repeat this process for power factors of 0.8 lagging, 1.0, and 0.8 leading.

A 5000-kVA, 230/13.8-kV, single-phase power transformer has a per-unit resistance

of 1 percent and a per-unit reactance of 5 percent (data taken from the transformer’s
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nameplate). The open-circuit test performed on the low-voltage side of the trans-
former yielded the following data:

Voc=138kV  Ipc=21.1A  Poc = 90.8kW

(a) Find the equivalent circuit referred to the low-voltage side of this transformer.

(b) If the voltage on the secondary side is 13.8 kV and the power supplied is 4000 kW
at 0.8 PF lagging, find the voltage regulation of the transformer. Find its efficiency.

A three-phase transformer bank is to handle 500 kVA and have a 34.5/11-kV voltage

ratio. Find the rating of each individual transformer in the bank (high voltage, low

voltage, turns ratio, and apparent power) if the transformer bank is connected to (a)

Y-Y, (b) Y-A, (¢) A-Y, (d) A-A, (e) open-A, (f) open-Y—open-A.

A 100-MVA, 230/115-kV, A-Y three-phase power transformer has a per-unit resis-

tance of 0.015 pu and a per-unit reactance of 0.06 pu. The excitation branch elements

are Rc = 100 pu and X,, = 20 pu.

(a) If this transformer supplies a load of 80 MVA at 0.8 PF lagging, draw the pha-
sor diagram of one phase of the transformer.

(b) What is the voltage regulation of the transformer bank under these conditions?

(c) Sketch the equivalent circuit referred to the low-voltage side of one phase of
this transformer. Calculate all the transformer impedances referred to the low-
voltage side.

(d) Determine the losses in the transformer and the efficiency of the transformer un-
der the conditions of part ().

Three 20-kVA, 24,000/277-V distribution transformers are connected in A-Y. The

open-circuit test was performed on the low-voltage side of this transformer bank,

and the following data were recorded:

Vline.OC = 480 Vv Iline.OC = 410 A P3¢,0C = 945 w

The short-circuit test was performed on the high-voltage side of this transformer
bank, and the following data were recorded:

Vlinc,SC = 1400 Vv Iline.SC = 1.80A P3¢.SC = 912 w

(a) Find the per-unit equivalent circuit of this transformer bank.

(b) Find the voltage regulation of this transformer bank at the rated load and
0.90 PF lagging.

(c) What is the transformer bank’s efficiency under these conditions?

A 14,000/480-V, three-phase, A—Y-connected transformer bank consists of three

identical 100-kVA, 8314/480-V transformers. It is supplied with power directly

from a large constant-voltage bus. In the short-circuit test, the recorded values on

the high-voltage side for one of these transformers are

VSC=510V ISC= 126 A PSC=3OOOW

(a) If this bank delivers a rated load at 0.8 PF lagging and rated voltage, what is the
line-to-line voltage on the primary of the transformer bank?

(b) What is the voltage regulation under these conditions?

(c) Assume that the primary phase voltage of this transformer is a constant 8314 V,
and plot the secondary voltage as a function of load current for currents from
no-load to full-load. Repeat this process for power factors of 0.8 lagging, 1.0,
and 0.8 leading.
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(d) Plot the voltage regulation of this transformer as a function of load current for
currents from no-load to full-load. Repeat this process for power factors of 0.8
lagging, 1.0, and 0.8 leading.

(e) Sketch the per-unit equivalent circuit of this transformer.

2-14. A 13.8-kV, single-phase generator supplies power to a load through a transmission

line. The load’s impedance is Z,,4 = 500 £ 36.87°(), and the transmission line’s im-

pedance is Z;,. = 60 £ 60°QQ.

60 £ 60°Q
l Ziine '

+
@ Vs=138L0°kV 500£ 36.87°Q | Zy0ad I

(a)
60£ 60°Q
1:10 10:1 0
SO JOL 500£ 36.87°Q
+
(f}..) Vg=138L0° kV% 3 l Zioad l
T, T,
(b)

FIGURE P2-3
Circuits for Problem 2-14: (a) without transformers and (b) with transformers.

(a) If the generator is directly connected to the load (Figure P2-3a), what is the ra-
tio of the load voltage to the generated voltage? What are the transmission
losses of the system?

(b) What percentage of the power supplied by the source reaches the load (what is
the efficiency of the transmission system)?

(c) If a 1:10 step-up transformer is placed at the output of the generator and a 10:1
transformer is placed at the load end of the transmission line, what is the new
ratio of the load voltage to the generated voltage? What are the transmission
losses of the system now? (Note: The transformers may be assumed to be ideal.)

(d) What percentage of the power supplied by the source reaches the load now?

(e) Compare the efficiencies of the transmission system with and without
transformers.
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An autotransformer is used to connect a 12.6-kV distribution line to a 13.8-kV dis-
tribution line. It must be capable of handling 2000 kVA. There are three phases, con-
nected Y-Y with their neutrals solidly grounded.
(a) What must the N-/Ng turns ratio be to accomplish this connection?
(b) How much apparent power must the windings of each autotransformer handle?
(c) What is the power advantage of this autotransformer system?
(d) If one of the autotransformers were reconnected as an ordinary transformer,
what would its ratings be?
Prove the following statement: If a transformer having a series impedance Z, is con-
nected as an autotransformer, its per-unit series impedance Z,, as an autotransformer
will be
. __ Nse
Zeq = Ngg + N¢ Zeq

Note that this expression is the reciprocal of the autotransformer power advantage.
A 10-kVA, 480/120-V conventional transformer is to be used to supply power from
a 600-V source to a 120-V load. Consider the transformer to be ideal, and assume
that all insulation can handle 600 V.

(a) Sketch the transformer connection that will do the required job.

(b) Find the kilovoltampere rating of the transformer in the configuration.

(c) Find the maximum primary and secondary currents under these conditions.

A 10-kVA, 480/120-V conventional transformer is to be used to supply power from

a 600-V source to a 480-V load. Consider the transformer to be ideal, and assume

that all insulation can handle 600 V.

(a) Sketch the transformer connection that will do the required job.

(b) Find the kilovoltampere rating of the transformer in the configuration.

(c) Find the maximum primary and secondary currents under these conditions.

(d) The transformer in Problem 2-18 is identical to the transformer in Problem
2-17, but there is a significant difference in the apparent power capability of the
transformer in the two situations. Why? What does that say about the best cir-
cumstances in which to use an autotransformer?

Two phases of a 14.4-kV, three-phase distribution line serve a remote rural road (the

neutral is also available). A farmer along the road has a 480 V feeder supplying

200 kW at 0.85 PF lagging of three-phase loads, plus 60 kW at 0.9 PF lagging of

single-phase loads. The single-phase loads are distributed evenly among the three

phases. Assuming that the open-Y-open-A connection is used to supply power to his
farm, find the voltages and currents in each of the two transformers. Also find the real
and reactive powers supplied by each transformer. Assume the transformers are ideal.

What is the minimum required kVA rating of each transformer?

A 50-kVA, 20,000/480-V, 60-Hz, single-phase distribution transformer is tested

with the following results:

Open-circuit test Short-circuit test

(measured from secondary side) (measured from primary side)
Voc =480V Vsc = 1130V

Ioc=4.1A Isc =130A

Poc = 620 W Psc = 550 W




150

2-21

2-22

2-23

2-24.

ELECTRIC MACHINERY FUNDAMENTALS

(a) Find the per-unit equivalent circuit for this transformer at 60 Hz.

(b) What is the efficiency of the transformer at rated conditions and unity power
factor? What is the voltage regulation at those conditions?

(c) What would the rating of this transformer be if it were operated on a 50-Hz
power system?

(d) Sketch the equivalent circuit of this transformer referred to the primary side if it
is operating at 50 Hz.

(e) What is the efficiency of the transformer at rated conditions on a 50-Hz
power system, with unity power factor? What is the voltage regulation at
those conditions?

(f) How does the efficiency of a transformer at rated conditions and 60 Hz compare
to the same physical device running at 50 Hz?

Prove that the three-phase system of voltages on the secondary of the Y-A trans-

former shown in Figure 2-37b lags the three-phase system of voltages on the

primary of the transformer by 30°.

Prove that the three-phase system of voltages on the secondary of the A-Y trans-

former shown in Figure 2-37c lags the three-phase system of voltages on the

primary of the transformer by 30°.

A single-phase, 10-kVA, 480/120-V transformer is to be used as an autotransformer

tying a 600-V distribution line to a 480-V load. When it is tested as a conventional

transformer, the following values are measured on the primary (480-V) side of the
transformer:

Open-circuit test Short-circuit test
(measured on secondary side) (measured on primary side)
Voc =120V Vsc = 100V

Ioc = 1.60 A Isc =106 A

Poc = 38W Psc =25W

(a) Find the per-unit equivalent circuit of this transformer when it is connected in the
conventional manner. What is the efficiency of the transformer at rated condi-
tions and unity power factor? What is the voltage regulation at those conditions?

(b) Sketch the transformer connections when it is used as a 600/480-V step-down
autotransformer.

(c) What is the kilovoltampere rating of this transformer when it is used in the au-
totransformer connection?

(d) Answer the questions in (a) for the autotransformer connection.

Figure P2—4 shows a one-line diagram of a power system consisting of a three-

phase, 480-V, 60-Hz generator supplying two loads through a transmission line with

a pair of transformers at either end. (NOTE: One-line diagrams are described in

Appendix A, the discussion of three-phase power circuits.)
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FIGURE P24

A one-line diagram of the power system of Problem 2-24. Note that some impedance values are
given in the per-unit system, while others are given in ohms.

(a) Sketch the per-phase equivalent circuit of this power system.

(b) With the switch opened, find the real power P, reactive power Q, and apparent
power S supplied by the generator. What is the power factor of the generator?

(c) With the switch closed, find the real power P, reactive power Q, and apparent
power S supplied by the generator. What is the power factor of the generator?

(d) What are the transmission losses (transformer plus transmission line losses) in
this system with the switch open? With the switch closed? What is the effect of
adding Load 2 to the system?
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CHAPTER

AC MACHINERY
FUNDAMENTALS

LEARNING OBJECTIVES

* Learn how to generate an ac voltage in a loop rotating in a uniform magnetic
field.

* Learn how to generate torque in a loop carrying a current in a uniforrn mag-
netic field.

* Learn how to create a rotating magnetic field from a three-phase stator.

 Understand how a rotating rotor with a magnetic field induces ac voltages in
stator windings.

* Understand the relationship between electrical frequency, the number of
poles, and the rotational speed of an electrical machine.

¢ Understand how torque is induced in an ac machine.
* Understand the effects of winding insulation on machine lifetimes.
* Understand the types of losses in a machine, and the power flow diagram.

Ac machines are generators that convert mechanical energy to ac electrical energy
and motors that convert ac electrical energy to mechanical energy. The funda-
mental principles of ac machines are very simple, but unfortunately, they are
somewhat obscured by the complicated construction of real machines. This chap-
ter will first explain the principles of ac machine operation using simple exam-
ples, and then consider some of the complications that occur in real ac machines.

There are two major classes of ac machines—synchronous machines and in-
duction machines. Synchronous machines are motors and generators whose mag-
netic field current is supplied by a separate dc power source, while induction ma-
chines are motors and generators whose field current is supplied by magnetic
induction (transformer action) into their field windings. The field circuits of most
synchronous and induction machines are located on their rotors. This chapter covers
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some of the fundamentals common to both types of three-phase ac machines. Syn-
chronous machines will be covered in detail in Chapters 4 and 5, and induction
machines will be covered in Chapter 6.

3.1 ASIMPLE LOOP IN A UNIFORM
MAGNETIC FIELD

We will start our study of ac machines with a simple loop of wire rotating within a
uniform magnetic field. A loop of wire in a uniform magnetic field is the simplest
possible machine that produces a sinusoidal ac voltage. This case is not representa-
tive of real ac machines, since the flux in real ac machines is not constant in either
magnitude or direction. However, the factors that control the voltage and torque on
the loop will be the same as the factors that control the voltage and torque in real ac
machines.

Figure 3-1 shows a simple machine consisting of a large stationary magnet
producing an essentially constant and uniform magnetic field and a rotating loop
of wire within that field. The rotating part of the machine is called the rotor, and
the stationary part of the machine is called the stator. We will now determine the
voltages present in the rotor as it rotates within the magnetic field.

The Voltage Induced in a Simple Rotating Loop

If the rotor of this machine is rotated, a voltage will be induced in the wire loop.
To determine the magnitude and shape of the voltage, examine Figure 3-2. The
loop of wire shown is rectangular, with sides ab and cd perpendicular to the plane
of the page and with sides bc and da parallel to the plane of the page. The mag-
netic field is constant and uniform, pointing from left to right across the page.

!
l
L}

€dc l I €ba
'
|
'

Y
G—
[ —

Q

B is a uniform magnetic
field, aligned as shown. +o0-

€tot
(a) (b)

FIGURE 3-1
A simple rotating loop in a uniform magnetic field. (a) Front view; (b) view of coil.
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(@) (b) (©)

FIGURE 3-2

(a) Velocities and orientations of the sides of the loop with respect to the magnetic field. (b) The
direction of motion with respect to the magnetic field for side ab. (c) The direction of motion with
respect to the magnetic field for side cd.

To determine the total voltage e, on the loop, we will examine each seg-

ment of the loop separately and sum all the resulting voltages. The voltage on
each segment is given by Equation (1-45):

|

€na = (Vv x B) el (1-45)

Segment ab. In this segment, the velocity of the wire is tangential to the path of
rotation, while the magnetic field B points to the right, as shown in Figure 3-2b.
The quantity v X B points into the page, which is the same direction as seg-
ment ab. Therefore, the induced voltage on this segment of the wire is

€pg = (V X B) el
= vBlsin @,, into the page 3-1
Segment bc. In the first half of this segment, the quantity v X B points into the
page, and in the second half of this segment, the quantity v x B points out of the

page. Since the length 1 is in the plane of the page, v x B is perpendicular to 1 for
both portions of the segment. Therefore the voltage in segment bc will be zero:

e =0 (3-2)

Segment cd. In this segment, the velocity of the wire is tangential to the path of
rotation, while the magnetic field B points to the right, as shown in Figure 3-2c.
The quantity v x B points into the page, which is the same direction as seg-
ment cd. Therefore, the induced voltage on this segment of the wire is

e = (vx B)el
= vBlsin 6,;  out of the page (3-3)

Segment da. Just as in segment bc, v x B is perpendicular to 1. Therefore the
voltage in this segment will also be zero:

eq=0 (34



AC MACHINERY FUNDAMENTALS 155

€indr V

0, radians

T
n 3n 2
2

SR

FIGURE 3-3
Plot of e;,4 versus 6.

The total induced voltage on the loop e;q4 is the sum of the voltages on each of its
sides:

€ind = €pa T € T €5+ ey
= vBlsin 0,, + vBlsin 6, (3-5)

Note that 6, = 180° — 6,4, and recall the trigonometric identity sin 6 = sin
(180° — 8). Therefore, the induced voltage becomes

e,q = 2vBlsin 0 (3-6)

The resulting voltage e;,4 is shown as a function of time in Figure 3-3.

There is an alternative way to express Equation (3-6), which clearly relates
the behavior of the single loop to the behavior of larger, real ac machines. To de-
rive this alternative expression, examine Figure 31 again. If the loop is rotating
at a constant angular velocity w, then angle 6 of the loop will increase linearly
with time. In other words,

= wt
Also, the tangential velocity v of the edges of the loop can be expressed as
V=rw (3-7

where r is the radius from axis of rotation out to the edge of the loop and w is the an-
gular velocity of the loop. Substituting these expressions into Equation (3-6) gives

€ind = 2rwBlsin wt (3-8)

Notice also from Figure 3-1b that the area A of the loop is just equal to 2rl.
Therefore,

eind = ABw sin wt (3—9)
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B is a uniform magnetic field, aligned as shown. The x in I
a wire indicates current flowing into the page, and the e in o
a wire indicates current flowing out of the page.
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FIGURE 34
A current-carrying loop in a uniform magnetic field. (a) Front view; (b) view of coil.

Finally, note that the maximum flux through the loop occurs when the loop is per-
pendicular to the magnetic flux density lines. This flux is just the product of the
loop’s surface area and the flux density through the loop.

Dmax = AB (3-10)

Therefore, the final form of the voltage equation is

[ei,,d = ¢ 0@ SiN O (3-11)

Thus, the voltage generated in the loop is a sinusoid whose magnitude is
equal to the product of the flux inside the machine and the speed of rotation of the
machine. This is also true of real ac machines. In general, the voltage in any real
machine will depend on three factors:

1. The flux in the machine
2. The speed of rotation
3. A constant representing the construction of the machine (the number of loops, etc.)

The Torque Induced in a Current-Carrying Loop

Now assume that the rotor loop is at some arbitrary angle 6 with respect to the
magnetic field, and that a current i is flowing in the loop, as shown in Figure 3—4.
If a current flows in the loop, then a torque will be induced on the wire loop. To
determine the magnitude and direction of the torque, examine Figure 3-5. The
force on each segment of the loop will be given by Equation (1-43),

F =il x B) (1-43)

where i = magnitude of current in the segment

1 = length of the segment, with direction of 1 defined to be in the
direction of current flow

B = magnetic flux density vector
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(a) Derivation of force and torque on segment ab. (b) Derivation of force and torque on segment bc.
(c) Derivation of force and torque on segment cd. (d) Derivation of force and torque on segment da.

The torque on that segment will then be given by

T = (force applied) (perpendicular distance)

(F) (rsin 6)
rF sin 6

(1-6)

where 6 is the angle between the vector r and the vector F. The direction of the
torque is clockwise if it would tend to cause a clockwise rotation and counter-
clockwise if it would tend to cause a counterclockwise rotation.

1. Segment ab. In this segment, the direction of the current is into the page, while
the magnetic field B points to the right, as shown in Figure 3-5a. The quantity
1 x B points down. Therefore, the induced force on this segment of the wire is

The resulting torque is

F=ilxB)
= ilB down

T = (F) (7 sin 6,)

rilB sin 0,,  clockwise (3-12)

2. Segment bc. In this segment, the direction of the current is in the plane of the
page, while the magnetic field B points to the right, as shown in Figure 3-5b.
The quantity 1 x B points into the page. Therefore, the induced force on this

segment of the wire is

F

i1 x B)
ilB into the page
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For this segment, the resulting torque is 0, since vectors r and 1 are parallel
(both point into the page), and the angle 0, is 0.

Tpe = (F) (r sin 0,,)
=0 (3-13)
3. Segment cd. In this segment, the direction of the current is out of the page, while

the magnetic field B points to the right, as shown in Figure 3-5c. The quantity
1 X B points up. Therefore, the induced force on this segment of the wire is

F=ilxB)
= ilB up
The resulting torque is

Ted = (F) (r sin ocd)

= rilB sin 04 clockwise (3-14)
4. Segment da. In this segment, the direction of the current is in the plane of the
page, while the magnetic field B points to the right, as shown in Figure 3-5d.
The quantity 1 X B points out of the page. Therefore, the induced force on

this segment of the wire is

F=ilxB)
= ilB out of the page

For this segment, the resulting torque is 0, since vectors r and 1 are parallel
(both point out of the page), and the angle 6, is 0.

Tya = (F) (rsin 04,)
=0 (3-15)

The total induced torque on the loop 7,4 is the sum of the torques on each of
its sides:

Tid = Tab + Toe ¥ Tea + Taa
= rilB sin 0, + rilB sin 0,4 (3-16)

Note that 6,, = 6., so the induced torque becomes
Tina = 2rilB sin 0 3-17)

The resulting torque 7,4 is shown as a function of angle in Figure 3-6. Note that
the torque is maximum when the plane of the loop is parallel to the magnetic field,
and the torque is zero when the plane of the loop is perpendicular to the mag-
netic field.

There is an alternative way to express Equation (3-17), which clearly re-
lates the behavior of the single loop to the behavior of larger, real ac machines. To
derive this alternative expression, examine Figure 3-7. If the current in the loop is
as shown in the figure, that current will generate a magnetic flux density B, with
the direction shown. The magnitude of B,,,, will be
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Derivation of the induced torque equation.
(a) The current in the loop produces a
magnetic flux density B,,,, perpendicular to
the plane of the loop; (b) geometric

(a) (b) relationship between B, and B

i
Bloop = %
where G is a factor that depends on the geometry of the loop.! Also, note that the

area of the loop A is just equal to 2rl. Substituting these two equations into Equa-
tion (3-17) yields the result

Tog = A—fB,mp Bgsin 6 (3-18)

where k = AG/u is a factor depending on the construction of the machine, B; is used
for the stator magnetic field to distinguish it from the magnetic field generated by the
rotor, and 6 is the angle between By, and B;. The angle between By, and B can be
seen by trigonometric identities to be the same as the angle 6 in Equation (3-17).

Both the magnitude and the direction of the induced torque can be deter-
mined by expressing Equation (3-19) as a cross product:

Tind = kBIoop X BS (3_20)

'If the loop were a circle, then G = 2r, where r is the radius of the circle, s0 Bjo,, = ji/2r. For a rec-
tangular loop, the value of G will vary depending on the exact length-to-width ratio of the loop.
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Applying this equation to the loop in Figure 3-7 produces a torque vector into the
page, indicating that the torque is clockwise, with the magnitude given by
Equation (3-19).

Thus, the torque induced in the loop is proportional to the strength of the
loop’s magnetic field, the strength of the external magnetic field, and the sine of
the angle between them. This is also true of real ac machines. In general, the
torque in any real machine will depend on four factors:

1. The strength of the rotor magnetic field

2. The strength of the external magnetic field

3. The sine of the angle between them

4. A constant representing the construction of the machine (geometry, etc.)

3.2 THE ROTATING MAGNETIC FIELD

In Section 3.1, we showed that if two magnetic fields are present in a machine,
then a torque will be created which will tend to line up the two magnetic fields. If
one magnetic field is produced by the stator of an ac machine and the other one is
produced by the rotor of the machine, then a torque will be induced in the rotor
which will cause the rotor to turn and align itself with the stator magnetic field.

If there were some way to make the stator magnetic field rotate, then the in-
duced torque in the rotor would cause it to constantly “chase” the stator magnetic field
around in a circle. This, in a nutshell, is the basic principle of all ac motor operation.

How can the stator magnetic field be made to rotate? The fundamental prin-
ciple of ac machine operation is that if a three-phase set of currents, each of equal
magnitude and differing in phase by 120°, flows in a three-phase winding, then it
will produce a rotating magnetic field of constant magnitude. The three-phase
winding consists of three separate windings spaced 120 electrical degrees apart
around the surface of the machine.

The rotating magnetic field concept is illustrated in the simplest case by an
empty stator containing just three coils, each 120° apart (see Figure 3—8a). Since
such a winding produces only one north and one south magnetic pole, it is a two-
pole winding.

To understand the concept of the rotating magnetic field, we will apply a set
of currents to the stator of Figure 3-8 and see what happens at specific instants of
time. Assume that the currents in the three coils are given by the equations

iaa’(t) = IM sin wt A (3—213)
ibb' (t) = IM sin ((l)t - 1200) A (3—21b)
icer (£) = Iy sin (ot — 240°) A (3-21¢c)

The current in coil aa’ flows into the a end of the coil and out the a’ end of
the coil. It produces the magnetic field intensity

H,, (1) = Hysin wt £ 0° A eturns / m (3-22a)
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FIGURE 3-8

(a) A simple three-phase stator. Currents in this stator are assumed positive if they flow into the
unprimed end and out the primed end of the coils. The magnetizing intensities produced by each coil
are also shown. (b) The magnetizing intensity vector H,, (¢) produced by a current flowing in coil aa’.

where 0° is the spatial angle of the magnetic field intensity vector, as shown in
Figure 3-8b. The direction of the magnetic field intensity vector H,,(?) is given
by the right-hand rule: If the fingers of the right hand curl in the direction of the
current flow in the coil, then the resulting magnetic field is in the direction that the
thumb points. Notice that the magnitude of the magnetic field intensity vector
H_,(¢) varies sinusoidally in time, but the direction of H,,(?) is always constant.
Similarly, the magnetic field intensity vectors H,,(¢) and H_.(¢) are

H,, (1) = Hy,sin (of — 120°) £120° Aetums/m  (3-22b)
H,.(f) = Hy,sin (of — 240°) £240° Aetums/m  (3-22¢)

The flux densities resulting from these magnetic field intensities are given
by Equation (1-21):

B =puH (1-21)
They are
B, (t) = By sinwt £0° T (3-23a)
B, (£) = By sin (wt — 120°) £ 120° T (3-23b)
B..-(t) = By sin (wt - 240°) £ 240° T (3-23¢c)

where B, = uH,,. The currents and their corresponding flux densities can be ex-
amined at specific times to determine the resulting net magnetic field in the stator.
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For example, at time w? = 0°, the magnetic field from coil aa’ will be
B, =0 (3-24a)

The magnetic field from coil bb” will be

B, = B, sin (-120°) £ 120° (3-24b)
and the magnetic field from coil c¢” will be

B..- = By, sin (-240°) £ 240° (3-24c¢)
The total magnetic field from all three coils added together will be

B, =B, + B, +B.,

=0+ (—?BM)4120° + (—‘;—33,,,)4240°

= ﬁBM [—(cos 120°% + sin 120°9)+(cos 240° & + sin 240°%)]
2

“(VBp \(le_ M3, 1, V3,

= ($n)(32-F 5-32-F)

= (?BM) (‘ng)

= —1.5By§

= 1.5B,, £ —90°

where & is the unit vector in the x direction, and ¥ is the unit vector in the y direc-
tion in Figure 3-8. The resulting net magnetic field is shown in Figure 3-9a.
As another example, look at the magnetic field at time wt = 90°. At that
time, the currents are
Iger = Iy sin 90° A
iy = Iy sin (=30°) A
i.r = Iy sin (=150°) A
and the magnetic fields are
B, =By £0°
B,,-= -0.5 B;; £ 120°
B..- = -0.5 By, £ 240°
The resulting net magnetic field is
Bnet = Baa’ + Bbb' + Bcc’
1

=B, Z0°+ (—%BM) 2120° + (—EBM) 2 240°

1 1
=B, [ﬁ — 5 (cos 120°% + sin 120°9)— 5 (cos 240°% + sin 240°y)]
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(@ (b)

FIGURE 3-9
(a) The vector magnetic field in a stator at time w? = 0°. (b) The vector magnetic field in a stator at
time wt = 90°.

nfede B 1oy
- ($5.) (-39

= _%Buy

= 1.5B,, £ —90°

The resulting magnetic field is shown in Figure 3-9b. Notice that although the di-
rection of the magnetic field has changed, the magnitude is constant. The mag-
netic field is maintaining a constant magnitude while rotating in a counterclock-
wise direction.

Proof of the Rotating Magnetic Field Concept

At any time ¢, the magnetic field will have the same magnitude 1.5B,,, and it will
continue to rotate at angular velocity w. A proof of this statement for all time 7 is
now given.

Refer again to the stator shown in Figure 3-8. In the coordinate system
shown in the figure, the x direction is to the right and the y direction is upward.
The vector & is the unit vector in the horizontal direction, and the vector § is the
unit vector in the vertical direction. To find the total magnetic flux density in the
stator, simply add vectorially the three component magnetic fields and determine
their sum.
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The net magnetic flux density in the stator is given by

Bnet(t) = Baa' (t) + Bbb’ (t) + Bcc’ (t)
= By sinwt £0° + By, sin (wt — 120°) £120° + By, sin (wt —240°) £240° T

Each of the three component magnetic fields can now be broken down into its x
and y components.

B, (t) = By sin wt X

— [0.5B,, sin (wt — 120°)]% + [? B, sin (0t — 120°)]§'

— [0.5By, sin (ot — 240°)]% — [? By, sin (wt — 240°)}§'

Combining x and y components yields

B,.() = [B, sin wt — 0.5B,,sin (wt — 120°) — 0.5B,, sin (wf — 240°)] &

By the angle-addition trigonometric identities,

a

X

B..(0) = [BM sin wt + %BM sin wt + VTgBM cos wt + %BM sin wt — ?BM cos wt

y

+ [—?BM sin wt — %BM cos wt + ?BM sin wf — %BM cos wt

B,..(t) = (1.5B, sin wt)X — (1.5B,, cos wt)§ (3-25)

Equation (3-25) is the final expression for the net magnetic flux density. Notice
that the magnitude of the field is a constant 1.5B,, and that the angle changes con-
tinually in a counterclockwise direction at angular velocity w. Notice also that at
ot = 0° B, = 1.5B), £ -90° and that at wt = 90°, B, = 1.5B,, £ 0°. These re-
sults agree with the specific examples examined previously.

The Relationship between Electrical Frequency
and the Speed of Magnetic Field Rotation

Figure 3—10 shows that the rotating magnetic field in this stator can be represented
as a north pole (where the flux leaves the stator) and a south pole (where the flux
enters the stator). These magnetic poles complete one mechanical rotation around
the stator surface for each electrical cycle of the applied current. Therefore, the
mechanical speed of rotation of the magnetic field in revolutions per second is
equal to the electric frequency in hertz:

Jfie = fom two poles (3-26)
W, = W, two poles (3-27)
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FIGURE 3-10

The rotating magnetic field in a stator
represented as moving north and south stator
poles.

Here f,,, and o,,, are the mechanical speed of the stator magnetic fields in revolu-
tions per second and radians per second, while f;, and w,, are the electrical fre-
quency of the stator currents in hertz and radians per second.

Notice that the windings on the two-pole stator in Figure 3-10 occur in the
order (taken counterclockwise)

a-c’-b-a’-c-b’

What would happen in a stator if this pattern were repeated twice within it?
Figure 3—11a shows such a stator. There, the pattern of windings (taken counter-
clockwise) is

a-c’-b-a’-c-b’-a-c¢’-b-a’-c-b’

which is just the pattern of the previous stator repeated twice. When a three-phase
set of currents is applied to this stator, two north poles and two south poles are pro-
duced in the stator winding, as shown in Figure 3-11b. In this winding, a pole
moves only halfway around the stator surface in one electrical cycle. Since one
electrical cycle is 360 electrical degrees, and since the mechanical motion is 180
mechanical degrees, the relationship between the stator electrical angle 6,, and the
mechanical angle 6, in this stator is

0, = 20, (3-28)

Thus for the four-pole winding, the electrical frequency of the current is twice the
mechanical frequency of rotation:

fie = 2f,n  four poles (3-29)
w,, = 2w,, four poles (3-30)
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FIGURE 3-11

(a) A simple four-pole stator winding. (b) The resulting stator magnetic poles. Notice that there are
moving poles of alternating polarity every 90° around the stator surface. (c) A winding diagram of
the stator as seen from its inner surface, showing how the stator currents produce north and south
magnetic poles.

In general, if the number of magnetic poles on an ac machine stator is P, then
there are P/2 repetitions of the winding sequence a-c’-b-a’-c-b’ around its inner
surface, and the electrical and mechanical quantities on the stator are related by

P
b =7

0, (3-31)
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foe = %fm (3-32)

P
W5 = Ewsm (3-33)

Also, noting that f,,, = n,,,/60, it is possible to relate the electrical frequency of the
stator in hertz to the resulting mechanical speed of the magnetic fields in revolu-
tions per minute. This relationship is

Nyl

fe = 120 (3-34)

Reversing the Direction of Magnetic
Field Rotation

Another interesting fact can be observed about the resulting magnetic field. If the
current in any two of the three coils is swapped, the direction of the magnetic
field’s rotation will be reversed. This means that it is possible to reverse the direc-
tion of rotation of an ac motor just by switching the connections on any two of the
three coils. This result is verified below.

To prove that the direction of rotation is reversed, phases bb’ and cc” in Fig-
ure 3-8 are switched and the resulting flux density B, is calculated.

The net magnetic flux density in the stator is given by

Bnet(t) = Baa’ (t) + Bbb’ (t) + Bcc‘ (t)
= By sinwt £0° + By, sin (wt —240°) £ 120° + B, sin (wz—120°) £240° T

Each of the three component magnetic fields can now be broken down into its x
and y components:

B, (t) = By sin wt &
: e 4 V3 p o o
— [0.5B,, sin (wt — 240°)]1% + ) By sin (wt — 240°)|¥
— [0.5By, sin (ot — 120°)]% — [? By sin (wt — 120°)]S'

Combining x and y components yields

B,.() = [Bysin ot — 0.5B,, sin (wt — 240°) — 0.5B,, sin(wt — 120°]%
+ [? By sin (ot — 240°) — ?BM sin (ot — 120°)}§'
By the angle-addition trigonometric identities,

B () = [BM sin wt + %BM sin wt — ?BM cos wt + iBM sin wt + ?BM cos wt]i&

\

+ [—?BM sin wt + %BM cos wt + ?BM sin ot + %BM cos a¥
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B,.(t) = (1.5B); sin wf)& + (1.5B,, cos wt)y (3-35)

This time the magnetic field has the same magnitude but rotates in a clock-
wise direction. Therefore, switching the currents in two stator phases reverses the
direction of magnetic field rotation in an ac machine.

Example 3-1. Create a MATLAB program that models the behavior of a rotating
magnetic field in the three-phase stator shown in Figure 3-9.

Solution
The geometry of the loops in this stator is fixed as shown in Figure 3-9. The currents in the
loops are

Iy () = Iy sin wt A (3-21a)
iy () = Iy sin (wt — 120°) A (3-21b)
i (f) = Iy sin (0 —240°) A (3-21¢)

and the resulting magnetic flux densities are

B, (f) = Bysinwt £0° T (3-23a)

B,, (1) = By sin (wr — 120°) £120° T (3-23b)

B.. () = By sin (0t —240°) £240° T (3-23¢)
& =2rIB = diB

A simple MATLAB program that plots B,,, B,,, B.-, and B, as a function of time is
shown below:

% M-file: mag_field.m
% M-file to calculate the net magnetic field produced

% by a three-phase stator.

% Set up the basic conditions

bmax = 1; % Normalize bmax to 1
freq = 60; $ 60 Hz
w = 2*pi*freq; % angular velocity (rad/s)

% First, generate the three component magnetic fields

t = 0:1/6000:1/60;

Baa = sin(w*t) .* (cos(0) + j*sin(0));

Bbb = sin(w*t-2*pi/3) .* (cos(2*pi/3) + j*sin(2*pi/3));
Bcc = sin(w*t+2*pi/3) .* (cos(-2*pi/3) + j*sin(-2*pi/3));

% Calculate Bnet
Bnet = Baa + Bbb + Bcc;

% Calculate a circle representing the expected maximum
% value of Bnet
circle = 1.5 * (cos(w*t) + j*sin(w*t));
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% Plot the magnitude and direction of the resulting magnetic
% fields. Note that Baa is black, Bbb is blue, Bcc is

% magenta, and Bnet is red.

for ii = 1:length(t)

% Plot the reference circle
plot(circle, 'k');

hold on;

% Plot the four magnetic fields

plot ([0 real(Baa(ii))], [0 imag(Baa(ii))],'k','LineWidth',2);
plot ([0 real(Bbb(ii))], [0 imag(Bbb(ii))],'b','LineWidth',2);
plot ([0 real (Bcc(ii))], [0 imag(Bcc(ii))],'m','LineWidth',2);
plot ([0 real(Bnet(ii))], [0 imag(Bnet(ii))],'r','LinewWidth',3);

axis square;
axis([-2 2 -2 2]);
drawnow;

hold off;

end

When this program is executed, it draws lines corresponding to the three component mag-
netic fields as well as a line corresponding to the net magnetic field. Execute this program
and observe the behavior of B,

3.3 MAGNETOMOTIVE FORCE AND FLUX
DISTRIBUTION ON AC MACHINES

In Section 3.2, the flux produced inside an ac machine was treated as if it were in
free space. The direction of the flux density produced by a coil of wire was as-
sumed to be perpendicular to the plane of the coil, with the direction of the flux
given by the right-hand rule.

The flux in a real machine does not behave in the simple manner assumed
above, since there is a ferromagnetic rotor in the center of the machine, with a
small air gap between the rotor and the stator. The rotor can be cylindrical, like the
one shown in Figure 3-12a, or it can have pole faces projecting out from its
surface, as shown in Figure 3—12b. If the rotor is cylindrical, the machine is said
to have nonsalient poles; if the rotor has pole faces projecting out from it, the
machine is said to have salient poles. Cylindrical rotor or nonsalient-pole ma-
chines are easier to understand and analyze than salient-pole machines, and this
discussion will be restricted to machines with cylindrical rotors. Machines with
salient poles are discussed briefly in Appendix C and more extensively in
References 1 and 2.

Refer to the cylindrical-rotor machine in Figure 3—12a. The reluctance of
the air gap in this machine is much higher than the reluctances of either the rotor
or the stator, so the flux density vector B takes the shortest possible path across
the air gap and jumps perpendicularly between the rotor and the stator.

To produce a sinusoidal voltage in a machine like this, the magnitude of the
flux density vector B must vary in a sinusoidal manner along the surface of the air
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(a)

FIGURE 3-12
(a) An ac machine with a cylindrical or nonsalient-pole rotor. (b) An ac machine with a salient-pole
rotor.

gap. The flux density will vary sinusoidally only if the magnetizing intensity H
(and magnetomotive force &) varies in a sinusoidal manner along the surface of
the air gap (see Figure 3-13).

The most straightforward way to achieve a sinusoidal variation of magneto-
motive force along the surface of the air gap is to distribute the turns of the wind-
ing that produces the magnetomotive force in closely spaced slots around the
surface of the machine and to vary the number of conductors in each slot in a
sinusoidal manner. Figure 3—14a shows such a winding, and Figure 3-14b shows
the magnetomotive force resulting from the winding. The number of conductors
in each slot is given by the equation

ne = Ncocos a (3-36)

where N is the number of conductors at an angle of 0°. As Figure 3—-14b shows,
this distribution of conductors produces a close approximation to a sinusoidal dis-
tribution of magnetomotive force. Furthermore, the more slots there are around
the surface of the machine and the more closely spaced the slots are, the better this
approximation becomes.

In practice, it is not possible to distribute windings exactly in accordance
with Equation (3-36), since there are only a finite number of slots in a real ma-
chine and since only integral numbers of conductors can be included in each slot.
The resulting magnetomotive force distribution is only approximately sinusoidal,
and higher-order harmonic components will be present. Fractional-pitch windings
are used to suppress these unwanted harmonic components, as explained in
Appendix B.1.

Furthermore, it is often convenient for the machine designer to include
equal numbers of conductors in each slot instead of varying the number in accor-
dance with Equation (3—-36). Windings of this type are described in Appendix B.2;
they have stronger high-order harmonic components than windings designed in
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FIGURE 3-13

(a) A cylindrical rotor with sinusoidally varying air-gap flux density. (b) The magnetomotive force or
magnetizing intensity as a function of angle a in the air gap. (c) The flux density as a function of
angle ain the air gap.
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Assume N =10

(a)

(b)

FIGURE 3-14

(a) An ac machine with a distributed stator winding designed to produce a sinusoidally varying air-
gap flux density. The number of conductors in each slot is indicated on the diagram. (b) The
magnetomotive force distribution resulting from the winding, compared to an ideal distribution.

accordance with Equation (3-36). The harmonic-suppression techniques of
Appendix B.1 are especially important for such windings.

3.4 INDUCED VOLTAGE IN AC MACHINES

Just as a three-phase set of currents in a stator can produce a rotating magnetic
field, a rotating magnetic field can produce a three-phase set of voltages in the
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coils of a stator. The equations governing the induced voltage in a three-phase sta-
tor will be developed in this section. To make the development easier, we will be-
gin by looking at just one single-turn coil and then expand the results to a more
general three-phase stator.

The Induced Voltage in a Coil
on a Two-Pole Stator

Figure 3-15 shows a rotating rotor with a sinusoidally distributed magnetic
field in the center of a stationary coil. Notice that this is the reverse of the situ-
ation studied in Section 3.1, which involved a stationary magnetic field and a
rotating loop.

We will assume that the magnitude of the flux density vector B in the air
gap between the rotor and the stator varies sinusoidally with mechanical angle,
while the direction of B is always radially outward. This sort of flux distribution
is the ideal to which machine designers aspire. (What happens when they don’t
achieve it is described in Appendix B.2.) If a is the angle measured from the
direction of the peak rotor flux density, then the magnitude of the flux density
vector B at a point around the rotor is given by

B = By, cos a (3-37a)

Note that at some locations around the air gap, the flux density vector will really
point in toward the rotor; in those locations, the sign of Equation (3—-37a) is neg-
ative. Since the rotor is itself rotating within the stator at an angular velocity w,,,
the magnitude of the flux density vector B at any angle a around the stator is
given by

B = By, cos(wt — a) (3-37b)

The equation for the induced voltage in a wire is
e=(vxB)el (1-45)

where v = velocity of the wire relative to the magnetic field
B = magnetic flux density vector
1 = length of conductor in the magnetic field

However, this equation was derived for the case of a moving wire in a stationary
magnetic field. In this case, the wire is stationary and the magnetic field is mov-
ing, so the equation does not directly apply. To use it, we must be in a frame of
reference where the magnetic field appears to be stationary. If we “sit on the mag-
netic field” so that the field appears to be stationary, the sides of the coil will ap-
pear to go by at an apparent velocity v,,, and the equation can be applied. Figure
3-15b shows the vector magnetic field and velocities from the point of view of a
stationary magnetic field and a moving wire.
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FIGURE 3-15

(a) A rotating rotor magnetic field inside a stationary stator coil. Detail of coil. (b) The vector
magnetic flux densities and velocities on the sides of the coil. The velocities shown are from a frame
of reference in which the magnetic field is stationary. (c) The flux density distribution in the air gap.
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The total voltage induced in the coil will be the sum of the voltages induced
in each of its four sides. These voltages are determined below:

1. Segment ab. For segment ab, a = 180°. Assuming that B is directed radially
outward from the rotor, the angle between v and B in segment ab is 90°,
while the quantity v X B is in the direction of 1, so

€, = (vxB)el
= vBI directed out of the page
= —v[B); cos (w,,t — 180°)]I
= —vBy,l cos (w,,t — 180°) (3-38)
where the minus sign comes from the fact that the voltage is built up with a
polarity opposite to the assumed polarity.

2. Segment bc. The voltage on segment bc is zero, since the vector quantity

v x B is perpendicular to 1, so
e, = (vxB)el=0 (3-39)

3. Segment cd. For segment cd, the angle & = 0°. Assuming that B is directed
radially outward from the rotor, the angle between v and B in segment cd is
90°, while the quantity v x B is in the direction of 1, so

;= (vxB)el
= vBl directed out of the page
= V(B cos w,,t)l
= vByl cos w,,t (3-40)

4. Segment da. The voltage on segment da is zero, since the vector quantity
v x B is perpendicular to 1, so

ea=(wvxB)el=0 (341

Therefore, the total voltage on the coil will be

€ind = €pq + €dc
= —vB,l cos(w,t — 180°) + vBy,l cos w,,t (342)

Since cos 8 = —cos (6 — 180°),

€nd = VBl cos w,t + vBy,l cos w,,t
= 2vB,,l cos w,t (3-43)

Since the velocity of the end conductors is given by v = rw,,, Equation
(3-43) can be rewritten as

€ind = 2(rw,,)Byl cos w,t

= 2riByw,, cos w,t
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Finally, the flux passing through the coil can be expressed as ¢ = 2riB,, (see
Problem 3-9), while w,, = w, = w for a two-pole stator, so the induced voltage
can be expressed as

| €pg = P COs Wt | (3-44)

Equation (3—44) describes the voltage induced in a single-turn coil. If the coil
in the stator has N turns of wire, then the total induced voltage of the coil will be

€ina = Ncdow cos wt (3-45)

Notice that the voltage produced in the stator of this simple ac machine
winding is sinusoidal with an amplitude which depends on the flux ¢ in the ma-
chine, the angular velocity o of the rotor, and a constant depending on the con-
struction of the machine (N in this simple case). This is the same as the result that
we obtained for the simple rotating loop in Section 3.1.

Note that Equation (3-45) contains the term cos wt instead of the sin wt¢
found in some of the other equations in this chapter. The cosine term has no spe-
cial significance compared to the sine—it resulted from our choice of reference
direction for a in this derivation. If the reference direction for a had been rotated
by 90° we would have had a sin w? term.

The Induced Voltage in a Three-Phase Set of Coils

If three coils, each of N turns, are placed around the rotor magnetic field as
shown in Figure 3-16, then the voltages induced in each of them will be the same
in magnitude but will differ in phase by 120°. The resulting voltages in each of the
three coils are

FIGURE 3-16
The production of three-phase voltages from
three coils spaced 120° apart.
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€,.(t) = N¢ dw sin ot \Y% (3—46a)
ey (t) = N¢ ¢w sin (wt — 120°) \Y (3-46b)
e.(1) = N¢ dw sin (wr — 240°) \Y (3—46¢)

Therefore, a three-phase set of currents can generate a uniform rotating
magnetic field in a machine stator, and a uniform rotating magnetic field can gen-
erate a three-phase set of voltages in such a stator.

The RMS Voltage in a Three-Phase Stator
The peak voltage in any phase of a three-phase stator of this sort is
Epox = Ncdo 347
Since w = 2mf, this equation can also be written as
Epox = 27N Of (3-48)

Therefore, the rms voltage of any phase of this three-phase stator is

Ey = ZENcof (3-49)

E, = VZ1N.¢f (3-50)

The rms voltage at the terminals of the machine will depend on whether the stator
is Y- or A-connected. If the machine is Y-connected, then the terminal voltage will
be V3 times E,; if the machine is A-connected, then the terminal voltage will just
be equal to E,.

Example 3-2. The following information is known about the simple two-pole
generator in Figure 3-16. The peak flux density of the rotor magnetic field is 0.2 T, and the
mechanical rate of rotation of the shaft is 3600 r/min. The stator diameter of the machine is
0.5 m, its coil length is 0.3 m, and there are 15 turns per coil. The machine is Y-connected.

(a) What are the three phase voltages of the generator as a function of time?
(b) What is the rms phase voltage of this generator?
(c) What is the rms terminal voltage of this generator?

Solution
The flux in this machine is given by
¢ = 2rlB = dIB

where d is the diameter and / is the length of the coil. Therefore, the flux in the machine is
given by

¢ = (0.5 m)(0.3 m)(0.2 T) = 0.03 Wb
The speed of the rotor is given by
® = (3600 r/min)(27r rad)(1 min/60 s) = 377 rad/s
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(a) The magnitudes of the peak phase voltages are thus

Epax = Nedpw
= (15 turns)(0.03 Wb)(377 rad/s) = 169.7 V
and the three phase voltages are
e,q(t) = 169.7 sin 377t %
ep(t) = 169.7 sin (377t — 120°) A%
e.(1) = 169.7 sin (377t — 240°) \%
(b)  The rms phase voltage of this generator is

E

(c)  Since the generator is Y-connected,

Vy = V3E, = V3(120 V) = 208 V

3.5 INDUCED TORQUE IN AN AC MACHINE

In ac machines under normal operating conditions, there are two magnetic fields
present—a magnetic field from the rotor circuit and another magnetic field from
the stator circuit. The interaction of these two magnetic fields produces the torque
in the machine, just as two permanent magnets near each other will experience a
torque which causes them to line up.

Figure 3-17 shows a simplified ac machine with a sinusoidal stator flux dis-
tribution that peaks in the upward direction and a single coil of wire mounted on
the rotor. The stator flux distribution in this machine is

By(a) = Bgsin a (3-51)

where By is the magnitude of the peak flux density; Bg(a) is positive when the flux

density vector points radially outward from the rotor surface to the stator surface.

How much torque is produced in the rotor of this simplified ac machine? To find

out, we will analyze the force and torque on each of the two conductors separately.
The induced force on conductor 1 is

F=ilxB) (1-43)
= ilBg sin a with direction as shown
The torque on the conductor is
Ting1 = ( X F)
= rilBs sin a counterclockwise
The induced force on conductor 2 is
F =il xB) (1-43)

= ilB sin a with direction as shown
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[Bg(@)| = Bg sin &

FIGURE 3-17
A simplified ac machine with a sinusoidal stator flux distribution and a single coil of wire mounted
in the rotor.

The torque on the conductor is
Tind1 = (r X F)
= rilBg sin a counterclockwise

Therefore, the torque on the rotor loop is

Tina = 2rilBgsin @ counterclockwise (3-52)

Equation (3-52) can be expressed in a more convenient form by examining
Figure 3-18 and noting two facts:

1. The current i flowing in the rotor coil produces a magnetic field of its own.
The direction of the peak of this magnetic field is given by the right-hand
rule, and the magnitude of its magnetizing intensity Hy is directly propor-
tional to the current flowing in the rotor:
where C is a constant of proportionality.

2. The angle between the peak of the stator flux density By and the peak of the
rotor magnetizing intensity Hp is y. Furthermore,

v=180°-«a (3-54)
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FIGURE 3-18
The components magnetic flux density inside the machine of Figure 3-17.

sin y = sin (180° - @) = sin « (3-55)

By combining these two observations, the torque on the loop can be expressed as
Tina = KHRBg sin a counterclockwise (3-56)

where K is a constant dependent on the construction of the machine. Note that both
the magnitude and the direction of the torque can be expressed by the equation

Tina = KHg X By (3-57)

Finally, since B = wHp, this equation can be reexpressed as

Tina = kB X By (3-58)

where k = K/u. Note that in general k will not be constant, since the magnetic per-
meability u varies with the amount of magnetic saturation in the machine.

Equation (3-58) is just the same as Equation (3-20), which we derived for the
case of a single loop in a uniform magnetic field. It can apply to any ac machine, not
just to the simple one-loop rotor just described. Only the constant k will differ from
machine to machine. This equation will be used only for a qualitative study of
torque in ac machines, so the actual value of k is unimportant for our purposes.

The net magnetic field in this machine is the vector sum of the rotor and sta-
tor fields (assuming no saturation):

B... = Bz + Bg (3-59)
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This fact can be used to produce an equivalent (and sometimes more useful) ex-
pression for the induced torque in the machine. From Equation (3-58)

Tina = kBg % By (3-58)
But from Equation (3-59), Bg = B, — B, so
Tina = kB X (Bpe, — Bg)
= k(Bg % B,) — k(B x Bp)

Since the cross product of any vector with itself is zero, this reduces to

| Tina = kBg x By, (3-60)

so the induced torque can also be expressed as a cross product of Bg and B,,, with
the same constant k as before. The magnitude of this expression is

| Tna = kBgBe(sin 8 (3-61)

where 6 is the angle between B and B,

Equations (3-58) to (3—61) will be used to help develop a qualitative un-
derstanding of the torque in ac machines. For example, look at the simple syn-
chronous machine in Figure 3-19. Its magnetic fields are rotating in a counter-
clockwise direction. What is the direction of the torque on the shaft of the
machine’s rotor? By applying the right-hand rule to Equation (3-58) or (3-60),
the induced torque is found to be clockwise, or opposite the direction of rotation
of the rotor. Therefore, this machine must be acting as a generator.

FIGURE 3-19
A simplified synchronous machine showing
its rotor and stator magnetic fields.
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3.6 WINDING INSULATION IN AN
AC MACHINE

One of the most critical parts of an ac machine design is the insulation of its wind-
ings. If the insulation of a motor or generator breaks down, the machine shorts
out. The repair of a machine with shorted insulation is quite expensive, if it is even
possible. To prevent the winding insulation from breaking down as a result of
overheating, it is necessary to limit the temperature of the windings. This can be
partially done by providing a cooling air circulation over them, but ultimately the
maximum winding temperature limits the maximum power that can be supplied
continuously by the machine.

Insulation rarely fails from immediate breakdown at some critical tempera-
ture. Instead, the increase in temperature produces a gradual degradation of the in-
sulation, making it subject to failure from another cause such as shock, vibration,
or electrical stress. There was an old rule of thumb that said that the life ex-
pectancy of a motor with a given type of insulation is halved for each 10 percent
rise in temperature above the rated temperature of the winding. This rule still ap-
plies to some extent today.

To standardize the temperature limits of machine insulation, the National
Electrical Manufacturers Association (NEMA) in the United States has defined a
series of insulation system classes. Each insulation system class specifies the
maximum temperature rise permissible for that class of insulation. There are three
common NEMA insulation classes for integral-horsepower ac motors: B, F, and H.
Each class represents a higher permissible winding temperature than the one be-
fore it. For example, the armature winding temperature rise above ambient tem-
perature in one type of continuously operating ac induction motor must be limited
to 80°C for class B, 105°C for class F, and 125°C for class H insulation.

The effect of operating temperature on insulation life for a typical machine
can be quite dramatic. A typical curve is shown in Figure 3-20. This curve shows
the mean life of a machine in thousands of hours versus the temperature of the
windings, for several different insulation classes.

The specific temperature specifications for each type of ac motor and gen-
erator are set out in great detail in NEMA Standard MG1-1993, Motors and Gen-
erators. Similar standards have been defined by the International Electrotechnical
Commission (IEC) and by various national standards organizations in other
countries.

3.7 AC MACHINE POWER FLOWS
AND LOSSES

AC generators take in mechanical power and produce electric power, while ac
motors take in electric power and produce mechanical power. In either case, not
all the power input to the machine appears in useful form at the other end—there
is always some loss associated with the process.
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The efficiency of an ac machine is defined by the equation

_ Ru
n =% x 100% (3-62)
mn

The difference between the input power and the output power of a machine is the
losses that occur inside it. Therefore,

P, — P
n= in 5 lossxlOO% (3—63)

n

The Losses in AC Machines

The losses that occur in ac machines can be divided into four basic categories:

1. Electrical or copper losses (I2R losses)
2. Core losses

3. Mechanical losses

4. Stray load losses

ELECTRICAL OR COPPER LOSSES. Copper losses are the resistive heating losses
that occur in the stator (armature) and rotor (field) windings of the machine. The sta-
tor copper losses (SCL) in a three-phase ac machine are given by the equation

a-ob

where 1, is the current flowing in each armature phase and R, is the resistance of
each armature phase.

The rotor copper losses (RCL) of a synchronous ac machine (induction ma-
chines will be considered separately in Chapter 7) are given by

e

where I is the current flowing in the field winding on the rotor and Rp is the re-
sistance of the field winding. The resistance used in these calculations is usually
the winding resistance at normal operating temperature.

CORE LOSSES. The core losses are the hysteresis losses and eddy current losses
occurring in the metal of the motor. These losses were described in Chapter 1.
These losses vary as the square of the flux density (B?) and, for the stator, as the
1.5th power of the speed of rotation of the magnetic fields (n'>).

MECHANICAL LOSSES. The mechanical losses in an ac machine are the losses
associated with mechanical effects. There are two basic types of mechanical
losses: friction and windage. Friction losses are losses caused by the friction of the
bearings in the machine, while windage losses are caused by the friction between
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the moving parts of the machine and the air inside the motor’s casing. These
losses vary as the cube of the speed of rotation of the machine.

The mechanical and core losses of a machine are often lumped together and
called the no-load rotational loss of the machine. At no load, all the input power
must be used to overcome these losses. Therefore, measuring the input power to
the stator of an ac machine acting as a motor at no load will give an approximate
value for these losses.

STRAY LOSSES (OR MISCELLANEOUS LOSSES). Stray losses are losses that
cannot be placed in one of the previous categories. No matter how carefully losses
are accounted for, some always escape inclusion in one of the above categories.
All such losses are lumped into stray losses. For most machines, stray losses are
taken by convention to be 1 percent of full load.

The Power-Flow Diagram

One of the most convenient techniques for accounting for power losses in a ma-
chine is the power-flow diagram. A power-flow diagram for an ac generator is
shown in Figure 3-21a. In this figure, mechanical power is input into the machine,
and then the stray losses, mechanical losses, and core losses are subtracted. After

PCOI'IV
Py, = Tapp Wm Tind ©Om Py = 3V¢IA cos Gor
V3V, I} cos 8
) Core IR losses
Stray~ Mechanical losses
losses losses @)
Pconv
Pin = 3V01A cos 6 Tind [ Poul = Tload Om
=+/3V,I, cos 0
Core Mechanical Stray
I*R losses Josses losses losses
(b)
FIGURE 3-21

(a) The power-flow diagram of a three-phase ac generator. (b) The power-flow diagram of a three-
phase ac motor.
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they have been subtracted, the remaining power is ideally converted from me-
chanical to electrical form at the point labeled P.,,,. The mechanical power that is
converted is given by

R:onv = TindWm (3—66)

and the same amount of electrical power is produced. However, this is not the
power that appears at the machine’s terminals. Before the terminals are reached,
the electrical /2R losses must be subtracted.

In the case of ac motors, this power-flow diagram is simply reversed. The
power-flow diagram for a motor is shown in Figure 3-21b.

Example problems involving the calculation of ac motor and generator effi-
ciencies will be given in the next three chapters.

3.8 VOLTAGE REGULATION AND SPEED
REGULATION

Generators are often compared to each other using a figure of merit called voltage
regulation. Voltage regulation (VR) is a measure of the ability of a generator to
keep a constant voltage at its terminals as load varies. It is defined by the equation

Vu— Y
VR = v x 100% (3-67)
fl

where V,, is the no-load terminal voltage of the generator and Vj is the full-load
terminal voltage of the generator. It is a rough measure of the shape of the gener-
ator’s voltage-current characteristic—a positive voltage regulation means a
drooping characteristic, and a negative voltage regulation means a rising charac-
teristic. A small VR is “better” in the sense that the voltage at the terminals of the
generator is more constant with variations in load.

Similarly, motors are often compared to each other by using a figure of
merit called speed regulation. Speed regulation (SR) is a measure of the ability of
a motor to keep a constant shaft speed as load varies. It is defined by the equation

Ny — Ny
SR = "y x 100% (3-68)

or SR = % x 100% (3-69)
1l

It is a rough measure of the shape of a motor’s torque-speed characteristic—a
positive speed regulation means that a motor’s speed drops with increasing load,
and a negative speed regulation means a motor’s speed increases with increasing
load. The magnitude of the speed regulation tells approximately how steep the
slope of the torque-speed curve is.
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3.9 SUMMARY

There are two major types of ac machines: synchronous machines and induction
machines. The principal difference between the two types is that synchronous
machines require a dc field current to be supplied to their rotors, while induction ma-
chines have the field current induced in their rotors by transformer action. They
will be explored in detail in the next three chapters.

A three-phase system of currents supplied to a system of three coils spaced
120 electrical degrees apart on a stator will produce a uniform rotating magnetic
field within the stator. The direction of rotation of the magnetic field can be re-
versed by simply swapping the connections to any two of the three phases. Con-
versely, a rotating magnetic field will produce a three-phase set of voltages within
such a set of coils.

In stators of more than two poles, one complete mechanical rotation of the
magnetic fields produces more than one complete electrical cycle. For such a sta-
tor, one mechanical rotation produces P/2 electrical cycles. Therefore, the electri-
cal angle of the voltages and currents in such a machine is related to the mechan-
ical angle of the magnetic fields by

ese =

Sl

3

O
The relationship between the electrical frequency of the stator and the mechanical
rate of rotation of the magnetic fields is

_ n,, P
fe = 120

The types of losses that occur in ac machines are electrical or copper losses
(IR losses), core losses, mechanical losses, and stray losses. Each of these losses
was described in this chapter, along with the definition of overall machine effi-
ciency. Finally, voltage regulation was defined for generators as

vV, — V.
VR=LV——“><100%
fl

and speed regulation was defined for motors as

n, — n
SR=¥XIOO%
fl

QUESTIONS

3-1. What is the principal difference between a synchronous machine and an induction
machine?

3-2. Why does switching the current flows in any two phases reverse the direction of ro-
tation of a stator’s magnetic field?
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What is the relationship between electrical frequency and magnetic field speed for
an ac machine?
What is the equation for the induced torque in an ac machine?

PROBLEMS

3-1.

3-2.

33

3-5.

3-7

.

The simple loop rotating in a uniform magnetic field shown in Figure 3-1 has the
following characteristics:

B = 1.0 T to the right r=0.1m
1=03m ,, = 377 rad/s

(a) Calculate the voltage e,(#) induced in this rotating loop.

(b) What is the frequency of the voltage produced in this loop?

(c) Suppose that a 10 () resistor is connected as a load across the terminals of the
loop. Calculate the current that would flow through the resistor.

(d) Calculate the magnitude and direction of the induced torque on the loop for
the conditions in (c).

(e) Calculate the instantaneous and average electric power being generated by the
loop for the conditions in (c).

(f) Calculate the mechanical power being consumed by the loop for the conditions
in (c). How does this number compare to the amount of electric power being
generated by the loop?

Develop a table showing the speed of magnetic field rotation in ac machines of 2, 4,

6, 8, 10, 12, and 14 poles operating at frequencies of 50, 60, and 400 Hz.

The first ac power system in the United States ran at a frequency of 133 Hz. If the

ac power for this system were produced by a four-pole generator, how fast would

the shaft of the generator have to rotate?

. A three-phase, Y-connected, four-pole winding is installed in 24 slots on a stator.

There are 40 turns of wire in each slot of the windings. All coils in each phase are
connected in series. The flux per pole in the machine is 0.060 Wb, and the speed of
rotation of the magnetic field is 1800 r/min.

(a) What is the frequency of the voltage produced in this winding?

(b) What are the resulting phase and terminal voltages of this stator?

A three-phase, A-connected, six-pole winding is installed in 36 slots on a stator.
There are 150 turns of wire in each slot of the windings. All coils in each phase are
connected in series. The flux per pole in the machine is 0.060 Wb, and the speed of
rotation of the magnetic field is 1000 r/min.

(a) What is the frequency of the voltage produced in this winding?

(b) What are the resulting phase and terminal voltages of this stator?

A three-phase, Y-connected, 60 Hz, two-pole synchronous machine has a stator with
5000 turns of wire per phase. What rotor flux would be required to produce a termi-
nal (line-to-line) voltage of 13.2 kV?

Modify the MATLAB in Example 3-1 by swapping the currents flowing in any two
phases. What happens to the resulting net magnetic field?

If an ac machine has the rotor and stator magnetic fields shown in Figure P3-1, what
is the direction of the induced torque in the machine? Is the machine acting as a mo-
tor or generator?
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FIGURE P3-1
The ac machine of Problem 3-8.

The flux density distribution over the surface of a two-pole stator of radius r and
length [ is given by

B = By, cos (w,t — o) (3-37b)
Prove that the total flux under each pole face is
(b = 2rlBM

In the early days of ac motor development, machine designers had great difficulty

controlling the core losses (hysteresis and eddy currents) in machines. They had not

yet developed steels with low hysteresis, and were not making laminations as thin
as the ones used today. To help control these losses, early ac motors in the United

States were run from a 25 Hz ac power supply, while lighting systems were run from

a separate 60 Hz ac power supply.

(a) Develop a table showing the speed of magnetic field rotation in ac machines of
2,4,6, 8,10, 12, and 14 poles operating at 25 Hz. What was the fastest rota-
tional speed available to these early motors?

(b) For a given motor operating at a constant flux density B, how would the core
losses of the motor running at 25 Hz compare to the core losses of the motor
running at 60 Hz?

(c) Why did the early engineers provide a separate 60-Hz power system for lighting?

In later years, motors improved and could be run directly from a 60 Hz power sup-

ply. As a result, 25 Hz power systems shrank and disappeared. However, there were

many perfectly good working 25 Hz motors in factories around the country that
owners were not ready to discard. To keep them running, some users created their
own 25 Hz power in the plant using motor-generator sets. A motor-generator set
consists of two machines connected on a common shaft, one acting as a motor and
the other acting as a generator. If the two machines have different numbers of poles
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but exactly the same shaft speed, then the electrical frequency of the two machines
will be different due to Equation (3—-34). What combination of poles on the two ma-
chines could convert 60 Hz power to 25 Hz power?

fo="2 (3-34)
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CHAPTER

A

SYNCHRONOUS
GENERATORS

LEARNING OBJECTIVES

Understand the equivalent circuit of a synchronous generator.
Be able to sketch phasor diagrams for a synchronous generator.
Know the equations for power and torque in a synchronous generator.

Know how to derive the characteristics of a synchronous machine from
measurements (OCC and SCC).

Understand how terminal voltage varies with load in a synchronous genera-
tor operating alone. Be able to calculate the terminal voltage at various load
conditions.

Understand the conditions required to parallel two or more synchronous
generators.

Understand the procedure for paralleling synchronous generators.

Understand the operation of synchronous generators in parallel with a very
large power system (or infinite bus).

Understand the static stability limit of a synchronous generator, and why the
transient stability limit is less than the static stability limit.

Understand the transient currents that flow under fault (short-circuit) conditions.

Understand synchronous generator ratings, and what condition limits each
rating value.

Synchronous generators or alternators are synchronous machines used to convert
mechanical power to ac electric power. This chapter explores the operation of

191
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synchronous generators, both when operating alone and when operating together
with other generators.

4.1 SYNCHRONOUS GENERATOR
CONSTRUCTION

In a synchronous generator, a rotor magnetic field is produced either by designing
the rotor as a permanent magnet or by applying a dc current to a rotor winding to
create an electromagnet. The rotor of the generator is then turned by a prime mover,
producing a rotating magnetic field within the machine. This rotating magnetic field
induces a three-phase set of voltages within the stator windings of the generator.

Two terms commonly used to describe the windings on a machine are field
windings and armature windings. In general, the term field windings applies to the
windings that produce the main magnetic field in a machine, and the term arma-
ture windings applies to the windings where the main voltage is induced. For syn-
chronous machines, the field windings are on the rotor, so the terms rotor wind-
ings and field windings are used interchangeably. Similarly, the terms stator
windings and armature windings are used interchangeably.

The rotor of a synchronous generator is essentially a large electromagnet. The
magnetic poles on the rotor can be of either salient or nonsalient construction. The
term salient means “protruding” or “sticking out,” and a salient pole is a magnetic
pole that sticks out radially from the shaft of the rotor. On the other hand, a non-
salient pole is a magnetic pole with windings embedded flush with the surface of the
rotor. A nonsalient-pole rotor is shown in Figure 4-1. Note that the windings of the
electromagnet are embedded in notches on the surface of the rotor. A salient-pole
rotor is shown in Figure 4-2. Note that here the windings of the electromagnet are
wrapped around the pole itself, instead of being embedded in notches on the surface
of the rotor. Nonsalient-pole rotors are normally used for two- and four-pole rotors,
while salient-pole rotors are normally used for rotors with four or more poles.

Because the rotor is subjected to changing magnetic fields, it is constructed
of thin laminations to reduce eddy current losses.

A dc current must be supplied to the field circuit on the rotor if it is an elec-
tromagnet. Since the rotor is rotating, a special arrangement is required to get the

End View Side View

FIGURE 4-1
A nonsalient two-pole rotor for a synchronous machine.
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(c)

FIGURE 4-2

(a) A salient six-pole rotor for a synchronous
machine. (b) Photograph of a salient eight-pole
synchronous machine rotor showing the windings
on the individual rotor poles. (Courtesy of
General Electric Company.) (c) Photograph of

a single salient pole from a rotor with the field
windings not yet in place. (Courtesy of General Electric Company.) (d) A single salient pole shown
after the field windings are installed but before it is mounted on the rotor. (Courtesy of Westinghouse
Electric Company.)

(@

dc power to its field windings. There are two common approaches to supplying
this dc power:

1. Supply the dc power from an external dc source to the rotor by means of slip
rings and brushes.

2. Supply the dc power from a special dc power source mounted directly on the
shaft of the synchronous generator.

Slip rings are metal rings completely encircling the shaft of a machine but in-
sulated from it. One end of the dc rotor winding is tied to each of the two slip rings
on the shaft of the synchronous machine, and a stationary brush rides on each slip
ring. A “brush” is a block of graphitelike carbon compound that conducts electric-
ity freely but has very low friction, so that it doesn’t wear down the slip ring. If the
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positive end of a dc voltage source is connected to one brush and the negative end
is connected to the other, then the same dc voltage will be applied to the field wind-
ing at all times regardless of the angular position or speed of the rotor.

Slip rings and brushes create a few problems when they are used to supply
dc power to the field windings of a synchronous machine. They increase the
amount of maintenance required on the machine, since the brushes must be
checked for wear regularly. In addition, brush voltage drop can be the cause of
significant power losses on machines with larger field currents. Despite these
problems, slip rings and brushes are used on all smaller synchronous machines,
because no other method of supplying the dc field current is cost-effective.

On larger generators and motors, brushless exciters are used to supply
the dc field current to the machine. A brushless exciter is a small ac generator
with its field circuit mounted on the stator and its armature circuit mounted on
the rotor shaft. The three-phase output of the exciter generator is rectified to di-
rect current by a three-phase rectifier circuit also mounted on the shaft of the
generator, and is then fed into the main dc field circuit. By controlling the
small dc field current of the exciter generator (located on the stator), it is
possible to adjust the field current on the main machine without slip rings
and brushes. This arrangement is shown schematically in Figure 4-3, and a

: Exciter : Three-phase | Synchronous
| | rectifier | machine
I | I
I
| Exciter armature | £~ Main Field
| | |
: I ]
]
| | ]
.| L :
=}
21 1 I
2| | |
: | ]
t ]
| 1
| | ]
- —: -------------- ittt e
]
| Exciter : Three-phase
"R ﬁﬁ'd !  output
| I ]
1 | ] L
l I I
=3 | I
3 I I B
1 ] ]
: : : Main armature
| ] I
: Il : :
) Three-phase | |
: input (low current) : :
FIGURE 4-3

A brushless exciter circuit. A small three-phase current is rectified and used to supply the field circuit
of the exciter, which is located on the stator. The output of the armature circuit of the exciter (on the
rotor) is then rectified and used to supply the field current of the main machine.
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synchronous machine rotor with a brushless exciter mounted on the same shaft
is shown in Figure 4—4. Since no mechanical contacts ever occur between the
rotor and the stator, a brushless exciter requires much less maintenance than
slip rings and brushes.

To make the excitation of a generator completely independent of any exter-
nal power sources, a small pilot exciter is often included in the system. A pilot ex-
citer is a small ac generator with permanent magnets mounted on the rotor shaft
and a three-phase winding on the stator. It produces the power for the field circuit
of the exciter, which in turn controls the field circuit of the main machine. If a
pilot exciter is included on the generator shaft, then no external electric power is
required to run the generator (see Figure 4-5).

Many synchronous generators that include brushless exciters also have slip
rings and brushes, so that an auxiliary source of dc field current is available in
emergencies.

The stator of a synchronous generator has already been described in Chap-
ter 3, and more details of stator construction are found in Appendix B. Syn-
chronous generator stators are normally made of preformed stator coils in a
double-layer winding. The winding itself is distributed and chorded in order to
reduce the harmonic content of the output voltages and currents, as described in
Appendix B.

A cutaway diagram of a complete large synchronous machine is shown in
Figure 4-6. This drawing shows an eight-pole salient-pole rotor, a stator with dis-
tributed double-layer windings, and a brushless exciter.

FIGURE 44

Photograph of a synchronous machine rotor with a brushless exciter mounted on the same shaft.
Notice the rectifying electronics visible next to the armature of the exciter. (Courtesy of
Westinghouse Electric Company.)
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A brushless excitation scheme that includes a pilot exciter. The permanent magnets of the pilot exciter
produce the field current of the exciter, which in turn produces the field current of the main machine.

FIGURE 4-6
A cutaway diagram of a large synchronous machine. Note the salient-pole construction and the
on-shaft exciter. (Courtesy of General Electric Company.)
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4.2 THE SPEED OF ROTATION OF A
SYNCHRONOUS GENERATOR

Synchronous generators are by definition synchronous, meaning that the electrical
frequency produced is locked in or synchronized with the mechanical rate of
rotation of the generator. A synchronous generator’s rotor consists of an electro-
magnet to which direct current is supplied. The rotor’s magnetic field points in
whatever direction the rotor is turned. Now, the rate of rotation of the magnetic
fields in the machine is related to the stator electrical frequency by Equation (3-34):

n,P
fie =120 (3-34)

where  f,, = electrical frequency, in Hz

n,, = mechanical speed of magnetic field, in r/min (equals speed of
rotor for synchronous machines)

P = number of poles

Since the rotor turns at the same speed as the magnetic field, this equation relates
the speed of rotor rotation to the resulting electrical frequency. Electric power is
generated at 50 or 60 Hz, so the generator must turn at a fixed speed depending on
the number of poles on the machine. For example, to generate 60-Hz power in a
two-pole machine, the rotor must turn at 3600 r/min. To generate 50-Hz power in
a four-pole machine, the rotor must turn at 1500 r/min. The required rate of rota-
tion for a given frequency can always be calculated from Equation (3-34).

4.3 THE INTERNAL GENERATED VOLTAGE
OF A SYNCHRONOUS GENERATOR

In Chapter 3, the magnitude of the voltage induced in a given stator phase was
found to be

E, = VZuN.¢f (3-50)

This voltage depends on the flux ¢ in the machine, the frequency or speed of ro-
tation, and the machine’s construction. In solving problems with synchronous ma-
chines, this equation is sometimes rewritten in a simpler form that emphasizes the
quantities that are variable during machine operation. This simpler form is

E, = K¢w 4-1)

where K is a constant representing the construction of the machine. If w is ex-
pressed in electrical radians per second, then

NC
K=15 @-2)

while if w is expressed in mechanical radians per second, then

N.P
K=373 4-3)
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0 E, ® = gy, (constant)

(a) (b)

FIGURE 4-7
(a) Plot of flux versus field current for a synchronous generator. (b) The magnetization curve for the
synchronous generator.

The internal generated voltage E, is directly proportional to the flux and to
the speed, but the flux itself depends on the current flowing in the rotor field
circuit. The field circuit I, is related to the flux ¢ in the manner shown in
Figure 4-7a. Since E, is directly proportional to the flux, the internal generated
voltage E, is related to the field current as shown in Figure 4-7b. This plot is
called the magnetization curve or the open-circuit characteristic of the machine.

44 THE EQUIVALENT CIRCUIT OF A
SYNCHRONOUS GENERATOR

The voltage E, is the internal generated voltage produced in one phase of a syn-
chronous generator. However, this voltage E, is not usually the voltage that ap-
pears at the terminals of the generator. In fact, the only time the internal voltage
E, is the same as the output voltage V, of a phase is when there is no armature
current flowing in the machine. Why is the output voltage V,, from a phase not
equal to E,, and what is the relationship between the two voltages? The answer to
these questions yields the equivalent circuit model of a synchronous generator.
There are a number of factors that cause the difference between E, and V:

1. The distortion of the air-gap magnetic field by the current flowing in the sta-
tor, called armature reaction.

2. The self-inductance of the armature coils.
3. The resistance of the armature coils.
4. The effect of salient-pole rotor shapes.

We will explore the effects of the first three factors and derive a machine model
from them. In this chapter, the effects of a salient-pole shape on the operation of a
synchronous machine will be ignored; in other words, all the machines in this
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chapter are assumed to have nonsalient or cylindrical rotors. Making this assump-
tion will cause the calculated answers to be slightly inaccurate if a machine does
indeed have salient-pole rotors, but the errors are relatively minor. A discussion of
the effects of rotor pole saliency is included in Appendix C.

The first effect mentioned, and normally the largest one, is armature reac-
tion. When a synchronous generator’s rotor is spun, a voltage E, is induced in the
generator’s stator windings. If a load is attached to the terminals of the generator,
a current flows. But a three-phase stator current flow will produce a magnetic
field of its own in the machine. This stator magnetic field distorts the original ro-
tor magnetic field, changing the resulting phase voltage. This effect is called
armature reaction because the armature (stator) current affects the magnetic field
which produced it in the first place.

To understand armature reaction, refer to Figure 4-8. Figure 4-8a shows
a two-pole rotor spinning inside a three-phase stator. There is no load con-
nected to the stator. The rotor magnetic field B produces an internal generated
voltage E, whose peak value coincides with the direction of Bg. As was shown
in the last chapter, the voltage will be positive out of the conductors at the top
and negative into the conductors at the bottom of the figure. With no load on
the generator, there is no armature current flow, and E, will be equal to the
phase voltage V.

Now suppose that the generator is connected to a lagging load. Because the
load is lagging, the peak current will occur at an angle behind the peak voltage.
This effect is shown in Figure 4-8b.

The current flowing in the stator windings produces a magnetic field of its
own. This stator magnetic field is called B and its direction is given by the right-
hand rule to be as shown in Figure 4-8c. The stator magnetic field Bg produces a
voltage of its own in the stator, and this voltage is called E,, on the figure.

With two voltages present in the stator windings, the total voltage in a phase
is just the sum of the internal generated voltage E, and the armature reaction
voltage E,:

Vcto = EA + Estat (4_4)
The net magnetic field B, is just the sum of the rotor and stator magnetic fields:
Bnet = BR + BS (4_5)

Since the angles of E, and By are the same and the angles of E, and Bg are the
same, the resulting magnetic field B,., will coincide with the net voltage V,. The
resulting voltages and currents are shown in Figure 4-8d.

The angle between B, and B, is known as the internal angle or torque an-
gle A (gr A) for the machine. This angle is proportional to the amount of power
being supplied by the generator, as we shall see in Section 4.6.

How can the effects of armature reaction on the phase voltage be modeled?
First, note that the voltage E,, lies at an angle of 90° behind the plane of maxi-
mum current I,. Second, the voltage E,, is directly proportional to the current I,,.
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EA.max |'
1

FIGURE 4-8

The development of a model for armature reaction: (a) A rotating magnetic field produces the
internal generated voltage E,. (b) The resulting voltage produces a lagging current flow when
connected to a lagging load. (c) The stator current produces its own magnetic field Bs, which
produces its own voltage E,, in the stator windings of the machine. (d) The field Bs adds to B,
distorting it into B,.,. The voltage E,, adds to E,, producing V, at the output of the phase.

If X is a constant of proportionality, then the armature reaction voltage can be
expressed as

Egu = — jXI, (4-6)
The voltage on a phase is thus

V, = E, — jXI, 4-7)

Look at the circuit shown in Figure 4-9. The Kirchhoff’s voltage law equa-
tion for this circuit is
V, = E, — jXI, (4-8)
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FIGURE 4-9
o — A simple circuit (see text).

This is exactly the same equation as the one describing the armature reaction volt-
age. Therefore, the armature reaction voltage can be modeled as an inductor in
series with the internal generated voltage.

In addition to the effects of armature reaction, the stator coils have a self-
inductance and a resistance. If the stator self-inductance is called L, (and its cor-
responding reactance is called X,) while the stator resistance is called Ry, then the
total difference between E, and V,, is given by

V, = E, — jXI, — jX\ 1, — R,1, 49

The armature reaction effects and the self-inductance in the machine are both
represented by reactances, and it is customary to combine them into a single reac-
tance, called the synchronous reactance of the machine:

Xs=X+X, (4-10)

Therefore, the final equation describing V,, is

[Vy =B, — X1, — R, | @-11)

It is now possible to sketch the equivalent circuit of a three-phase synchro-
nous generator. The full equivalent circuit of such a generator is shown in
Figure 4-10. This figure shows a dc power source supplying the rotor field circuit,
which is modeled by the coil’s inductance and resistance in series. In series with
Rp is an adjustable resistor R,y which controls the flow of field current. The rest
of the equivalent circuit consists of the models for each phase. Each phase has an
internal generated voltage with a series inductance X (consisting of the sum of
the armature reactance and the coil’s self-inductance) and a series resistance R,.
The voltages and currents of the three phases are 120° apart in angle, but other-
wise the three phases are identical.

These three phases can be either Y- or A-connected as shown in Figure 4-11.
If they are Y-connected, then the terminal voltage V; (which is the same as the
line-to-line voltage V, is related to the phase voltage by

V=V, = V3V, 4-12)

If they are A-connected, then
V=V, (4-13)
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FIGURE 4-10
The full equivalent circuit of a three-phase synchronous generator.

The fact that the three phases of a synchronous generator are identical in
all respects except for phase angle normally leads to the use of a per-phase equiv-
alent circuit. The per-phase equivalent circuit of this machine is shown in
Figure 4-12. One important fact must be kept in mind when the per-phase equiv-
alent circuit is used: The three phases have the same voltages and currents only
when the loads attached to them are balanced. If the generator’s loads are not bal-
anced, more sophisticated techniques of analysis are required. These techniques
are beyond the scope of this book.

4.5 THE PHASOR DIAGRAM OF A
SYNCHRONOUS GENERATOR

Because the voltages in a synchronous generator are ac voltages, they are usually
expressed as phasors. Since phasors have both a magnitude and an angle, the
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(b)

FIGURE 4-11
The generator equivalent circuit connected in (a) Y and (b) A.

relationship between them must be expressed by a two-dimensional plot. When
the voltages within a phase (E,, V,, jX;I,, and R,1,) and the current I, in the
phase are plotted in such a fashion as to show the relationships among them, the
resulting plot is called a phasor diagram.
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FIGURE 4-12

The per-phase equivalent circuit of a synchronous generator. The internal field circuit resistance and
the external variable resistance have been combined into a single resistor Rp.

E,
JXsIy
6 ]
I, V, LR,
FIGURE 4-13

The phasor diagram of a synchronous generator at unity power factor.

For example, Figure 4-13 shows these relationships when the generator is
supplying a load at unity power factor (a purely resistive load). From Equation
(4-11), the total voltage E, differs from the terminal voltage of the phase V, by
the resistive and inductive voltage drops. All voltages and currents are referenced
to V,, which is arbitrarily assumed to be at an angle of 0°.

This phasor diagram can be compared to the phasor diagrams of generators
operating at lagging and leading power factors. These phasor diagrams are shown
in Figure 4-14. Notice that, for a given phase voltage and armature current, a
larger internal generated voltage E, is needed for lagging loads than for leading
loads. Therefore, a larger field current is needed with lagging loads to get the
same terminal voltage, because

E, = K¢ 41

and w must be constant to keep a constant frequency.

Alternatively, for a given field current and magnitude of load current, the
terminal voltage is lower for lagging loads and higher for leading loads.

In real synchronous machines, the synchronous reactance is normally much
larger than the winding resistance R,, so R, is often neglected in the qualitative
study of voltage variations. For accurate numerical results, R, must of course be
considered.
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E,

(b)

FIGURE 4-14
The phasor diagram of a synchronous generator at (a) lagging and (b) leading power factor.

4.6 POWER AND TORQUE IN
SYNCHRONOUS GENERATORS

A synchronous generator is a synchronous machine used as a generator. It con-
verts mechanical power to three-phase electrical power. The source of mechanical
power, the prime mover, may be a diesel engine, a steam turbine, a water turbine,
or any similar device. Whatever the source, it must have the basic property that its
speed is almost constant regardless of the power demand. If that were not so, then
the resulting power system’s frequency would wander.

Not all the mechanical power going into a synchronous generator becomes
electrical power out of the machine. The difference between input power and output
power represents the losses of the machine. A power-flow diagram for a synchro-
nous generator is shown in Figure 4-15. The input mechanical power is the shaft
power in the generator B, = 7,,,@p,, While the power converted from mechanical
to electrical form internally is given by

Pconv = TindWm (4’_14)
3E,l, cos y 4-15)

where v is the angle between E, and I,,. The difference between the input power
to the generator and the power converted in the generator represents the mechan-
ical, core, and stray losses of the machine.

The real electrical output power of the synchronous generator can be ex-
pressed in line quantities as

P, = V3V,I, cos 6 (4-16)
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FIGURE 4-15
The power-flow diagram of a synchronous generator.
and in phase quantities as
Py = 3V 1, cos 0 4-17)
The reactive power output can be expressed in line quantities as
Qo = V3V, I, sin 6 (4-18)
or in phase quantities as
Qo = 3V, I, sin 0 4-19)

If the armature resistance R, is ignored (since X5 >> R,), then a very useful
equation can be derived to approximate the output power of the generator. To de-
rive this equation, examine the phasor diagram in Figure 4-16. Figure 4-16 shows
a simplified phasor diagram of a generator with the stator resistance ignored. No-
tice that the vertical segment bc can be expressed as either E, sin 8 or X; I, cos 6.
Therefore,

E, sin &
X
and substituting this expression into Equation (4-17) gives

_3V,E,

conv XS sin (4_20)

I,cos 6 =

Since the resistances are assumed to be zero in Equation (4-20), there are no elec-
trical losses in this generator, and this equation is both P..,, and P,,.

Equation (4-20) shows that the power produced by a synchronous genera-
tor depends on the angle & between V, and E,. The angle & is known as the inter-
nal angle or torque angle of the machine. Notice also that the maximum power
that the generator can supply occurs when 8 = 90°. At 8 = 90°, siné = 1, and

3V,E,
P = —)gsu @-21)
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E,siné
= Xgl,cos @

FIGURE 4-16
Simplified phasor diagram with armature resistance ignored.

The maximum power indicated by this equation is called the static stability limit
of the generator. Normally, real generators never even come close to that limit.
Full-load torque angles of 20 to 30 degrees are more typical of real machines.

Now take another look at Equations (4-17), (4-19), and (4-20). If V, is as-
sumed constant, then the real power output is directly proportional to the quanti-
ties I, cos 0 and E, sin 8, and the reactive power output is directly proportional to
the quantity , sin 6. These facts are useful in plotting phasor diagrams of syn-
chronous generators as loads change.

From Chapter 3, the induced torque in this generator can be expressed as

Tina = kBg X Bg (3-58)
or as

Tind = kBg X B, (3-60)
The magnitude of Equation (3—60) can be expressed as
Tind = kBgBipe, Sin & (3-61)

where 6 is the angle between the rotor and net magnetic fields (the so-called
torque angle). Since By produces the voltage E, and B, produces the voltage V,,
the angle & between E, and V, is the same as the angle § between B and B,,.

An alternative expression for the induced torque in a synchronous generator
can be derived from Equation (4-20). Because P,,,, = Ti,q@.,» the induced torque
can be expressed as

3V,E,

Tind = sin & (4-22)

meS
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This expression describes the induced torque in terms of electrical quantities,
whereas Equation (3-60) gives the same information in terms of magnetic
quantities.

Note that both the power converted from mechanical form to electrical form
P, in a synchronous generator and the torque induced 7,4 in the rotor of the gen-
erator are dependent on the torque angle 6.

3V,E,
_ T 'emA .
conv XS sin & (4-20)
B
Tind = 0, Xs sin (4-22)

Both of these quantities reach their maximum values when the torque angle &
reaches 90°. The generator is not capable of exceeding those limits even instanta-
neously. Real generators typically have full-load torque angles of 20-30°, so the ab-
solute maximum instantaneous power and torque that they can supply is at least
twice their full-load values. This reserve of power and torque is essential for the sta-
bility of power systems containing these generators, as we will see in Section 4.10.

4.7 MEASURING SYNCHRONOUS
GENERATOR MODEL PARAMETERS

The equivalent circuit of a synchronous generator that has been derived contains
three quantities that must be determined in order to completely describe the be-
havior of a real synchronous generator:

1. The relationship between field current and flux (and therefore between the
field current and E,)

2. The synchronous reactance
3. The armature resistance

This section describes a simple technique for determining these quantities in a
synchronous generator.

The first step in the process is to perform the open-circuit test on the gener-
ator. To perform this test, the generator is turned at the rated speed, the terminals
are disconnected from all loads, and the field current is set to zero. Then the field
current is gradually increased in steps, and the terminal voltage is measured at each
step along the way. With the terminals open, I, = 0, so E, is equal to V}. It is thus
possible to construct a plot of E, (or V) versus I from this information. This plot
is the so-called open-circuit characteristic (OCC) of a generator. With this charac-
teristic, it is possible to find the internal generated voltage of the generator for any
given field current. A typical open-circuit characteristic is shown in Figure 4—17a.
Notice that at first the curve is almost perfectly linear, until some saturation is ob-
served at high field currents. The unsaturated iron in the frame of the synchronous
machine has a reluctance several thousand times lower than the air-gap reluctance,
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FIGURE 4-17
(a) The open-circuit
characteristic (OCC) of a
synchronous generator. (b)
The short-circuit

I, A characteristic (SCC) of a
synchronous generator.
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so at first almost all the magnetomotive force is across the air gap, and the result-
ing flux increase is linear. When the iron finally saturates, the reluctance of the iron
increases dramatically, and the flux increases much more slowly with an increase
in magnetomotive force. The linear portion of an OCC is called the air-gap line of
the characteristic.

The second step in the process is to conduct the short-circuit test. To per-
form the short-circuit test, adjust the field current to zero again and short-circuit
the terminals of the generator through a set of ammeters. Then the armature cur-
rent I, or the line current ; is measured as the field current is increased. Such a
plot is called a short-circuit characteristic (SCC) and is shown in Figure 4-17b. It
is essentially a straight line. To understand why this characteristic is a straight line,
look at the equivalent circuit in Figure 4-12 when the terminals of the machine
are short-circuited. Such a circuit is shown in Figure 4-18a. Notice that when the
terminals are short-circuited, the armature current I, is given by
E,

=R+,

(4-23)
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FIGURE 4-18
(a) The equivalent circuit of a synchronous generator during the short-circuit test. (b) The resulting
phasor diagram. (c) The magnetic fields during the short-circuit test.

and its magnitude is just given by
E,
W=V rxt (=)

The resulting phasor diagram is shown in Figure 4-18b, and the corresponding
magnetic fields are shown in Figure 4-18c. Since Bgalmost cancels By, the
net magnetic field B, is very small (corresponding to internal resistive and in-
ductive drops only). Since the net magnetic field in the machine is so small, the
machine is unsaturated and the SCC is linear.

To understand what information these two characteristics yield, notice that,
with V,, equal to zero in Figure 4-18, the internal machine impedance is given by

E
Z=VR + X2 = ,—: (4-25)
Since X >> R,, this equation reduces to
E V,
Xg=~J4=22 (4-26)
A A

If E, and I, are known for a given situation, then the synchronous reactance X
can be found.

Therefore, an approximate method for determining the synchronous reac-
tance X at a given field current is

1. Get the internal generated voltage E, from the OCC at that field current.
2. Get the short-circuit current flow I, s at that field current from the SCC.
3. Find X; by applying Equation (4-26).
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FIGURE 4-19

A sketch of the approximate synchronous reactance of a synchronous generator as a function of the
field current in the machine. The constant value of reactance found at low values of field current is
the unsaturated synchronous reactance of the machine.

There is a problem with this approach, however. The internal generated
voltage E, comes from the OCC, where the machine is partially saturated for
large field currents, while I, is taken from the SCC, where the machine is unsatu-
rated at all field currents. Therefore, at higher field currents, the E, taken from the
OCC at a given field current is not the same as the E, at the same field current un-
der short-circuit conditions, and this difference makes the resulting value of X
only approximate.

However, the answer given by this approach is accurate up to the point of
saturation, so the unsaturated synchronous reactance X;, of the machine can be
found simply by applying Equation (4-26) at any field current in the linear por-
tion (on the air-gap line) of the OCC curve.

The approximate value of synchronous reactance varies with the degree of
saturation of the OCC, so the value of the synchronous reactance to be used in a
given problem should be one calculated at the approximate load on the machine.
A plot of approximate synchronous reactance as a function of field current is
shown in Figure 4-19.

To get a more accurate estimation of the saturated synchronous reactance,
refer to Section 5-3 of Reference 2.

If it is important to know a winding’s resistance as well as its synchronous
reactance, the resistance can be approximated by applying a dc voltage to the
windings while the machine is stationary and measuring the resulting current
flow. The use of dc voltage means that the reactance of the windings will be zero
during the measurement process.
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This technique is not perfectly accurate, since the ac resistance will be
slightly larger than the dc resistance (as a result of the skin effect at higher fre-
quencies). The measured value of the resistance can even be plugged into Equa-
tion (4-26) to improve the estimate of Xj, if desired. (Such an improvement is not
much help in the approximate approach—saturation causes a much larger error in
the X; calculation than ignoring R, does.)

The Short-Circuit Ratio

Another parameter used to describe synchronous generators is the short-circuit
ratio. The short-circuit ratio of a generator is defined as the ratio of the field cur-
rent required for the rated voltage at open circuit to the field current required for
the rated armature current at short circuit. It can be shown that this quantity is
just the reciprocal of the per-unit value of the approximate saturated synchronous
reactance calculated by Equation (4-26).

Although the short-circuit ratio adds no new information about the genera-
tor that is not already known from the saturated synchronous reactance, it is im-
portant to know what it is, since the term is occasionally encountered in industry.

Example 4-1. A 200-kVA, 480-V, 50-Hz, Y-connected synchronous generator
with a rated field current of 5 A was tested, and the following data were taken:

1. Vpoc at the rated I was measured to be 540 V.

2. I, gc at the rated I was found to be 300 A.

3. When adc voltage of 10 V was applied to two of the terminals, a current of 25 A
was measured.

Find the values of the armature resistance and the approximate synchronous reactance in
ohms that would be used in the generator model at the rated conditions.

Solution
The generator described above is Y-connected, so the direct current in the resistance test
flows through two windings. Therefore, the resistance is given by

v
2R, = 72¢

DC

V
R, =52 =10V - _ 020

The internal generated voltage at the rated field current is equal to

Vr
Ey=Vsoc =3
540V _
= 3 = 311.8V

The short-circuit current I, is just equal to the line current, since the generator is
Y-connected:

Iysc = Ipsc = 300 A
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The per-phase equivalent circuit of the generator in Example 4-1.

Therefore, the synchronous reactance at the rated field current can be calculated from
Equation (4-25):

"R -1 @-29)
o7 - Y
JO02Q) +X3=1.0390
0.04 + X2 = 1.08
X2 =104
Xs=1.020

How much effect did the inclusion of R, have on the estimate of X;? Not much. If X
is evaluated by Equation (4-26), the result is

Since the error in X due to ignoring R, is much less than the error due to saturation effects,
approximate calculations are normally done with Equation (4-26).
The resulting per-phase equivalent circuit is shown in Figure 4-20.

48 THE SYNCHRONOUS GENERATOR
OPERATING ALONE

The behavior of a synchronous generator under load varies greatly depending on
the power factor of the load and on whether the generator is operating alone or in
parallel with other synchronous generators. In this section, we will study the be-
havior of synchronous generators operating alone. We will study the behavior of
synchronous generators operating in parallel in Section 4.9.

Throughout this section, concepts will be illustrated with simplified phasor
diagrams ignoring the effect of R,. In some of the numerical examples the resis-
tance R, will be included.

Unless otherwise stated in this section, the speed of the generators will be
assumed constant, and all terminal characteristics are drawn assuming constant
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Generator Load

FIGURE 4-21
A single generator supplying a load.

speed. Also, the rotor flux in the generators is assumed constant unless their field
current is explicitly changed.

The Effect of Load Changes on a Synchronous
Generator Operating Alone

To understand the operating characteristics of a synchronous generator operating
alone, examine a generator supplying a load. A diagram of a single generator sup-
plying a load is shown in Figure 4-21. What happens when we increase the load
on this generator?

An increase in the load is an increase in the real and/or reactive power
drawn from the generator. Such a load increase increases the load current drawn
from the generator. Because the field resistor has not been changed, the field cur-
rent is constant, and therefore the flux ¢ is constant. Since the prime mover also
keeps a constant speed w, the magnitude of the internal generated voltage E, =
Kw is constant.

If E, is constant, just what does vary with a changing load? The way to find
out is to construct phasor diagrams showing an increase in the load, keeping the
constraints on the generator in mind.

First, examine a generator operating at a lagging power factor. If more load
is added at the same power factor, then |1,| increases but remains at the same an-
gle 6 with respect to V,, as before. Therefore, the armature reaction voltage j X1,
is larger than before but at the same angle. Now since

E, =V, + jXl,

JXs1, must stretch between V,, at an angle of 0° and E,, which is constrained to be
of the same magnitude as before the load increase. If these constraints are plotted
on a phasor diagram, there is one and only one point at which the armature reac-
tion voltage can be parallel to its original position while increasing in size. The re-
sulting plot is shown in Figure 4-22a.

If the constraints are observed, then it is seen that as the load increases, the
voltage V, decreases rather sharply.

Now suppose the generator is loaded with unity-power-factor loads. What
happens if new loads are added at the same power factor? With the same con-
straints as before, it can be seen that this time V, decreases only slightly (see
Figure 4-22b).
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FIGURE 4-22
The effect of an increase in generator loads at constant power factor upon its terminal voltage.
(a) Lagging power factor; (b) unity power factor; (c) leading power factor.

Finally, let the generator be loaded with leading-power-factor loads. If new
loads are added at the same power factor this time, the armature reaction voltage
lies outside its previous value, and V, actually rises (see Figure 4-22c). In this last
case, an increase in the load in the generator produced an increase in the terminal
voltage. Such a result is not something one would expect on the basis of intuition
alone.

General conclusions from this discussion of synchronous generator behav-
ior are

1. If lagging loads (+Q or inductive reactive power loads) are added to a gen-
erator, V, and the terminal voltage V decrease significantly.

2. If unity-power-factor loads (no reactive power) are added to a generator, there
is a slight decrease in V, and the terminal voltage.

3. If leading loads (—Q or capacitive reactive power loads) are added to a gener-
ator, V, and the terminal voltage will rise.

A convenient way to compare the voltage behavior of two generators is by
their voltage regulation. The voltage regulation (VR) of a generator is defined by
the equation
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Vu —Va
VR = v x 100% (3-67)
fl

where V,, is the no-load voltage of the generator and Vj, is the full-load voltage of
the generator. A synchronous generator operating at a lagging power factor has a
fairly large positive voltage regulation, a synchronous generator operating at a
unity power factor has a small positive voltage regulation, and a synchronous gen-
erator operating at a leading power factor often has a negative voltage regulation.

Normally, it is desirable to keep the voltage supplied to a load constant, even
though the load itself varies. How can terminal voltage variations be corrected for?
The obvious approach is to vary the magnitude of E, to compensate for changes in
the load. Recall that E, = K¢w. Since the frequency should not be changed in a
normal system, E, must be controlled by varying the flux in the machine.

For example, suppose that a lagging load is added to a generator. Then the
terminal voltage will fall, as was previously shown. To restore it to its previous
level, decrease the field resistor Ry. If Ry decreases, the field current will increase.
An increase in I increases the flux, which in turn increases E,, and an increase in
E, increases the phase and terminal voltage. This idea can be summarized as
follows:

1. Decreasing the field resistance in the generator increases its field current.
2. Anincrease in the field current increases the flux in the machine.

3. Anincrease in the flux increases the internal generated voltage E, = K¢w.
4. Anincrease in E, increases V, and the terminal voltage of the generator.

The process can be reversed to decrease the terminal voltage. It is possible
to regulate the terminal voltage of a generator throughout a series of load changes
simply by adjusting the field current.

Example Problems

The following three problems illustrate simple calculations involving voltages,
currents, and power flows in synchronous generators. The first problem is an ex-
ample that includes the armature resistance in its calculations, while the next two
ignore R,. Part of the first example problem addresses the question: How must a
generator’s field current be adjusted to keep Vy constant as the load changes? On
the other hand, part of the second example problem asks the question: If the load
changes and the field is left alone, what happens to the terminal voltage? You
should compare the calculated behavior of the generators in these two problems
to see if it agrees with the qualitative arguments of this section. Finally, the third
example illustrates the use of a MATLAB program to derive the terminal charac-
teristics of synchronous generator.

Example 4-2. A 480-V, 60-Hz, A-connected, four-pole synchronous generator has
the OCC shown in Figure 4-23a. This generator has a synchronous reactance of 0.1 ) and
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FIGURE 4-23
(a) Open-circuit characteristic of the generator in Example 4-2. (b) Phasor diagram of the generator
in Example 4-2.

an armature resistance of 0.015 (. At full load, the machine supplies 1200 A at 0.8 PF lag-
ging. Under full-load conditions, the friction and windage losses are 40 kW, and the core
losses are 30 kW. Ignore any field circuit losses.
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(a) What is the speed of rotation of this generator?

(b) How much field current must be supplied to the generator to make the terminal
voltage 480 V at no load?

(c) If the generator is now connected to a load and the load draws 1200 A at 0.8 PF
lagging, how much field current will be required to keep the terminal voltage
equal to 480 V?

(d) How much power is the generator now supplying? How much power is supplied
to the generator by the prime mover? What is this machine’s overall efficiency?

(e) If the generator’s load were suddenly disconnected from the line, what would
happen to its terminal voltage?

(f) Finally, suppose that the generator is connected to a load drawing 1200 A at 0.8
PF leading. How much field current would be required to keep Vat 480 V?

Solution
This synchronous generator is A-connected, so its phase voltage is equal to its line voltage
V, = Vr, while its phase current is related to its line current by the equation I, = \/514, .

(a) The relationship between the electrical frequency produced by a synchronous
generator and the mechanical rate of shaft rotation is given by Equation (3-34):
Nl
fie =120 (3-34)

Therefore,

120f,
m = P
120(60 Hz

= 4 poles = 1800 r/min

n

(b) In this machine, Vr = V;. Since the generator is at no load, I, = 0 and E, = V.
Therefore, Vy = V,, = E, = 480V, and from the open-circuit characteristic,
Ir=45A.

(c) If the generator is supplying 1200 A, then the armature current in the machine is

1, =204 _ 60284

The phasor diagram for this generator is shown in Figure 4-23b. If the terminal
voltage is adjusted to be 480 V, the size of the internal generated voltage E, is
given by
E, = V4, + R, + jXs1,

= 480 £0° V + (0.015 2)(692.8 £ —36.87° A) + (j0.1 2)(692.8 £—36.87° A)

=480£0°V + 10.39 £—36.87° V + 69.28 £53.13° V

= 5299 +j49.2V = 532£5.3°V
To keep the terminal voltage at 480 V, E, must be adjusted to 532 V. From
Figure 4-23, the required field current is 5.7 A.

(d) The power that the generator is now supplying can be found from Equation
(4-16):

Py = V3V, I cos 6 (4-16)
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= V3(480 V)(1200 A) cos 36.87°
= 798 kW

To determine the power input to the generator, use the power-flow diagram (Fig-
ure 4-15). From the power-flow diagram, the mechanical input power is given by

P;n =P, out + Pelec loss + R:ore loss + PR, mech loss + Pstmy loss

The stray losses were not specified here, so they will be ignored. In this genera-
tor, the electrical losses are
Pelec loss — 3IAZRA
= 3(692.8 A)%(0.015 Q) = 21.6 kW

The core losses are 30 kW, and the friction and windage losses are 40 kW, so the
total input power to the generator is

P, = 798 kW + 21.6 kW + 30kW + 40 kW = 889.6 kW
Therefore, the machine’s overall efficiency is

_ Pou _ 798 kW
m="p, X 100% = ggo 6 kW

(e) If the generator’s load were suddenly disconnected from the line, the current I,
would drop to zero, making E, = V,,. Since the field current has not changed, |E,|
has not changed and V, and V; must rise to equal E,. Therefore, if the load were
suddenly dropped, the terminal voltage of the generator would rise to 532 V.

(f) If the generator were loaded down with 1200 A at 0.8 PF leading while the ter-
minal voltage was 480 V, then the internal generated voltage would have to be

E, = Vu + R, + jXs1,
= 480 £0° V + (0.015 2)(692.8 £36.87° A) + (j0.1 2)(692.8 £36.87° A)
= 480£0°V + 10.39 £36.87° V + 69.28 £126.87° V
= 446.7 + j61.7V = 451 £L7.1°V
Therefore, the internal generated voltage E, must be adjusted to provide 451 V if V.

is to remain 480 V. Using the open-circuit characteristic, the field current would
have to be adjusted to 4.1 A.

x 100% = 89.75%

Which type of load (leading or lagging) needed a larger field current to
maintain the rated voltage? Which type of load (leading or lagging) placed more
thermal stress on the generator? Why?

Example 4-3. A 480-V, 50-Hz, Y-connected, six-pole synchronous genera-
tor has a per-phase synchronous reactance of 1.0 (2. Its full-load armature current is
60 A at 0.8 PF lagging. This generator has friction and windage losses of 1.5 kW and
core losses of 1.0 kW at 60 Hz at full load. Since the armature resistance is being ig-
nored, assume that the IR losses are negligible. The field current has been adjusted
so that the terminal voltage is 480 V at no load.

(a) What is the speed of rotation of this generator?
(b) What is the terminal voltage of this generator if the following are true?
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1. It is loaded with the rated current at 0.8 PF lagging.
2. It is loaded with the rated current at 1.0 PF.
3. Itis loaded with the rated current at 0.8 PF leading.

(c) What is the efficiency of this generator (ignoring the unknown electrical losses)
when it is operating at the rated current and 0.8 PF lagging?

(d) How much shaft torque must be applied by the prime mover at full load? How
large is the induced countertorque?

(e) What is the voltage regulation of this generator at 0.8 PF lagging? At 1.0 PF? At
0.8 PF leading?

Solution

This generator is Y-connected, so its phase voltage is given by V, = V;/ V3. That means
that when V; is adjusted to 480 V, V,, = 277 V. The field current has been adjusted so that
Vr.m = 480V, so V;, = 277 V. At no load, the armature current is zero, so the armature re-
action voltage and the I,R, drops are zero. Since I, = 0, the internal generated voltage
E, =V, = 277 V. The internal generated voltage E,(= Kdw) varies only when the field
current changes. Since the problem states that the field current is adjusted initially and then
left alone, the magnitude of the internal generated voltage is E, = 277 V and will not
change in this example.

(a) The speed of rotation of a synchronous generator in revolutions per minute is
given by Equation (3-34):

ol

Jee = 120 (3-34)

Therefore,
120f,,
n=p

= 120600H2) _ 1000 £/min
poles

n

Alternatively, the speed expressed in radians per second is

£
I

= (1000 r/nﬁn)(—lg(‘)“s")(—z”l;ad)

104.7 rad/s

(b) 1. If the generator is loaded down with rated current at 0.8 PF lagging, the re-
sulting phasor diagram looks like the one shown in Figure 4-24a. In this
phasor diagram, we know that Vj is at an angle of 0°, that the magnitude of
E, is 277 V, and that the quantity jX¢I, is

JXI, = j(1.0 Q)(60 £ —36.87° A) = 60 £53.13° V

The two quantities not known on the voltage diagram are the magnitude of
V,, and the angle & of E,. To find these values, the easiest approach is to con-
struct a right triangle on the phasor diagram, as shown in the figure. From
Figure 4-24a, the right triangle gives

E} = (V, + Xl sin 6)2 + (Xgl, cos 6)?

Therefore, the phase voltage at the rated load and 0.8 PF lagging is
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FIGURE 4-24

Generator phasor diagrams for Example 4-3. (a) Lagging power factor; (b) unity power factor;
(c) leading power factor.
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(277 V)2 = [V, + (1.0 Q2)(60 A) sin 36.87°1> + [(1.0 Q)(60 A) cos 36.87°]

76,729 = (V, + 36) + 2304
74,425 = (V, + 36)?
2728 =V, + 36
V, =2368V

Since the generator is Y-connected, V= V3V, = 410 V.

2. If the generator is loaded with the rated current at unity power factor, then
the phasor diagram will look like Figure 4-24b. To find Vj, here the right

triangle is
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E} = Vi + (Xdo)
Q277 V)2 = V3 + [(1.0 Q)(60 A)]?
76,729 = V3 + 3600
VE=13,129
V,=2704V

Therefore, Vr = V3V, = 468.4 V.
. When the generator is loaded with the rated current at 0.8 PF leading, the re-
sulting phasor diagram is the one shown in Figure 4-24c. To find Vj in this
situation, we construct the triangle OAB shown in the figure. The resulting
equation is

E} = (Vy — Xl, sin 6)? + (X,l, cos 6)
Therefore, the phase voltage at the rated load and 0.8 PF leading is

(277 V) = [V, — (1.0 2)(60 A) sin 36.87°1> + [(1.0 Q)(60 A) cos 36.87°]

76,729 = (V, — 36)* + 2304
74,425 = (V, — 36)?
2728 =V, — 36
V, =308.8V
Since the generator is Y-connected, Vr = V3V, = 535 V.
(c) The output power of this generator at 60 A and 0.8 PF lagging is
P, =3V I, cos 6
= 3(236.8 V)(60 A)(0.8) = 34.1 kW

The mechanical input power is given by

Pin = R)ut + Pelec loss + Pcore loss + R, mech loss
=341kW + 0+ 1.0kW + 1.5kW = 36.6 kW

The efficiency of the generator is thus

Poy 34.1 kW
=—x100% =
=P = 36.6kW

x 100% = 93.2%

(d) The input torque to this generator is given by the equation

Pin=7 @,

app@m
_ B, _366kW__
so Tp = @~ 125.7radss - 201-2Nem

m
The induced countertorque is given by
P

conv — Tind@m

Row _ _34.1kW
SO Tind = wy 125.7 rad/s

=2713N+m

(e) The voltage regulation of a generator is defined as
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Vy— V;
VR = -2 x 100% (3-67)
fl

By this definition, the voltage regulation for the lagging, unity, and leading
power-factor cases are

. . _ 480V - 410V =
1. Lagging case: VR = 410V x 100% = 17.1%
. . _ 480V — 468V =
2. Unity case: VR = 463 V x 100% = 2.6%
3. Leading case: VR = ‘_1§Q_\5’3__;\51_35_Y x 100% = —10.3%

In Example 4-3, lagging loads resulted in a drop in terminal voltage, unity-
power-factor loads caused little effect on V7, and leading loads resulted in an
increase in terminal voltage.

Example 44. Assume that the generator of Example 4-3 is operating at no load
with a terminal voltage of 480 V. Plot the terminal characteristic (terminal voltage versus
line current) of this generator as its armature current varies from no-load to full load at a
power factor of (a) 0.8 lagging and (b) 0.8 leading. Assume that the field current remains
constant at all times.

Solution
The terminal characteristic of a generator is a plot of its terminal voltage versus line cur-
rent. Since this generator is Y-connected, its phase voltage is given by V, = V; V3 . If Vr
is adjusted to 480 V at no-load conditions, then V, = E, = 277 V. Because the field current
remains constant, E, will remain 277 V at all times. The output current /; from this gener-
ator will be the same as its armature current I, because it is Y-connected.

(a) If the generator is loaded with a 0.8 PF lagging current, the resulting phasor di-
agram looks like the one shown in Figure 4-24a. In this phasor diagram, we
know that V, is at an angle of 0°, that the magnitude of E, is 277 V, and that the
quantity jXl, stretches between V,, and E, as shown. The two quantities not
known on the phasor diagram are the magnitude of V, and the angle 8 of E,. To
find V,, the easiest approach is to construct a right triangle on the phasor dia-
gram, as shown in the figure. From Figure 4-24a, the right triangle gives

E} = (V4 + Xl sin 0)2 + (Xl cos 6)?
This equation can be used to solve for V,, as a function of the current 1,:
Vg = VE} — (X4 cos 6)2 — Xl, sin 6

A simple MATLAB M-file can be used to calculate V,, (and hence V;) as a func-
tion of current. Such an M-file is shown below:

o

M-file: term_char_a.m
M-file to plot the terminal characteristics of the
generator of Example 4-4 with an 0.8 PF lagging load.

o 0P

0P

First, initialize the current amplitudes (21 values
in the range 0-60 A)
i_a = (0:1:20) * 3;

o
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% Now initialize all other values

v_phase = zeros(1l,21);

e_a = 277.0;

x_s =1.0;

theta = 36.87 * (pi/180); % Converted to radians

% Now calculate v_phase for each current level

for ii = 1:21

v_phase(ii) = sqgrt(e_a”2 - (x_s * i_a(ii) * cos(theta))"2)
- (x_s * i_a(ii) * sin(theta));

end

% Calculate terminal voltage from the phase voltage
v_t = v_phase * sqgrt(3);

% Plot the terminal characteristic, remembering the

% the line current is the same as i_a

plot(i_a,v_t,'Color', 'k', 'Linewidth',2.0);

xlabel ('Line Current (A)','Fontweight', 'Bold');

ylabel ('Terminal Voltage (V)','Fontweight', 'Bold');

title ('Terminal Characteristic for 0.8 PF lagging load',
'Fontweight', 'Bold') ;

grid on;

axis ([0 60 400 550]);

The plot resulting when this M-file is executed is shown in Figure 4-25a.

(b) If the generator is loaded with a 0.8 PF leading current, the resulting phasor di-
agram looks like the one shown in Figure 4-24c. To find V;, the easiest ap-
proach is to construct a right triangle on the phasor diagram, as shown in the
figure. From Figure 4-24c, the right triangle gives

E} = (V4 — Xgl, sin 62 + (Xgl, cos 6)?
This equation can be used to solve for V,, as a function of the current ,:
V4 = VE§ — (X4l cos 6)2 + X, sin 6

This equation can be used to calculate and plot the terminal characteristic in a
manner similar to that in part a above. The resulting terminal characteristic is
shown in Figure 4-25b.

4.9 PARALLEL OPERATION OF
AC GENERATORS

In today’s world, an isolated synchronous generator supplying its own load inde-
pendently of other generators is very rare. Such a situation is found in only a few
out-of-the-way applications such as emergency generators. For all usual genera-
tor applications, there is more than one generator operating in parallel to supply
the power demanded by the loads. An extreme example of this situation is the U.S.
power grid, in which literally thousands of generators share the load on the
system.
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(a) Terminal characteristic for the generator of Example 44 when loaded with a 0.8 PF lagging load.
(b) Terminal characteristic for the generator when loaded with a 0.8 PF leading load.

Why are synchronous generators operated in parallel? There are several ma-
jor advantages to such operation:

1. Several generators can supply a bigger load than one machine by itself.
2. Having many generators increases the reliability of the power system, since
the failure of any one of them does not cause a total power loss to the load.

3. Having many generators operating in parallel allows one or more of them to
be removed for shutdown and preventive maintenance.
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FIGURE 4-26

A generator being paralleled with a running power system.

4. If only one generator is used and it is not operating at near full load, then it
will be relatively inefficient. With several smaller machines in parallel, it is
possible to operate only a fraction of them. The ones that do operate are op-
erating near full load and thus more efficiently.

This section explores the requirements for paralleling ac generators, and
then looks at the behavior of synchronous generators operated in parallel.

The Conditions Required for Paralleling

Figure 4-26 shows a synchronous generator G, supplying power to a load, with
another generator G, about to be paralleled with G, by closing the switch S;. What
conditions must be met before the switch can be closed and the two generators
connected?

If the switch is closed arbitrarily at some moment, the generators are liable
to be severely damaged, and the load may lose power. If the voltages are not ex-
actly the same in each conductor being tied together, there will be a very large cur-
rent flow when the switch is closed. To avoid this problem, each of the three
phases must have exactly the same voltage magnitude and phase angle as the con-
ductor to which it is connected. In other words, the voltage in phase a must be ex-
actly the same as the voltage in phase a’, and so forth for phases b-b’ and c-c”. To
achieve this match, the following paralleling conditions must be met:

1. The rms line voltages of the two generators must be equal.
2. The two generators must have the same phase sequence.
3. The phase angles of the two a phases must be equal.

4. The frequency of the new generator, called the oncoming generator, must be
slightly higher than the frequency of the running system.

These paralleling conditions require some explanation. Condition 1 is
obvious—in order for two sets of voltages to be identical, they must of course
have the same rms magnitude of voltage. The voltage in phases a and a’ will be
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(a) The two possible phase sequences of a three-phase system. (b) The three-light-bulb method for
checking phase sequence.
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completely identical at all times if both their magnitudes and their angles are the
same, which explains condition 3.

Condition 2 ensures that the sequence in which the phase voltages peak in
the two generators is the same. If the phase sequence is different (as shown in
Figure 4-27a), then even though one pair of voltages (the a phases) are in phase,
the other two pairs of voltages are 120° out of phase. If the generators were con-
nected in this manner, there would be no problem with phase a, but huge currents
would flow in phases b and ¢, damaging both machines. To correct a phase se-
quence problem, simply swap the connections on any two of the three phases on
one of the machines.

If the frequencies of the generators are not very nearly equal when they are
connected together, large power transients will occur until the generators stabilize
at a common frequency. The frequencies of the two machines must be very nearly
equal, but they cannot be exactly equal. They must differ by a small amount so
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that the phase angles of the oncoming machine will change slowly with respect to
the phase angles of the running system. In that way, the angles between the volt-
ages can be observed and switch S, can be closed when the systems are exactly in
phase.

The General Procedure for Paralleling Generators

Suppose that generator G, is to be connected to the running system shown in
Figure 4-27. The following steps should be taken to accomplish the paralleling.

First, using voltmeters, the field current of the oncoming generator should be
adjusted until its terminal voltage is equal to the line voltage of the running system.

Second, the phase sequence of the oncoming generator must be compared to
the phase sequence of the running system. The phase sequence can be checked in
a number of different ways. One way is to alternately connect a small induction
motor to the terminals of each of the two generators. If the motor rotates in the
same direction each time, then the phase sequence is the same for both generators.
If the motor rotates in opposite directions, then the phase sequences differ, and
two of the conductors on the incoming generator must be reversed.

Another way to check the phase sequence is the three-light-bulb method. In
this approach, three light bulbs are stretched across the open terminals of the
switch connecting the generator to the system as shown in Figure 4-27b. As the
phase changes between the two systems, the light bulbs first get bright (large
phase difference) and then get dim (small phase difference). If all three bulbs get
bright and dark together, then the systems have the same phase sequence. If the
bulbs brighten in succession, then the systems have the opposite phase sequence,
and one of the sequences must be reversed.

Next, the frequency of the oncoming generator is adjusted to be slightly
higher than the frequency of the running system. This is done first by watching a
frequency meter until the frequencies are close and then by observing changes in
phase between the systems. The oncoming generator is adjusted to a slightly
higher frequency so that when it is connected, it will come on the line supplying
power as a generator, instead of consuming it as a motor would (this point will be
explained later).

Once the frequencies are very nearly equal, the voltages in the two systems
will change phase with respect to each other very slowly. The phase changes are
observed, and when the phase angles are equal, the switch connecting the two sys-
tems together is shut.

How can one tell when the two systems are finally in phase? A simple way
is to watch the three light bulbs described above in connection with the discussion
of phase sequence. When the three light bulbs all go out, the voltage difference
across them is zero and the systems are in phase. This simple scheme works, but
it is not very accurate. A better approach is to employ a synchroscope. A synchro-
scope is a meter that measures the difference in phase angle between the a phases
of the two systems. The face of a synchroscope is shown in Figure 4-28. The dial
shows the phase difference between the two a phases, with 0 (meaning in phase)
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Synchroscope

FIGURE 4-28
\ ~/ A synchroscope.

at the top and 180° at the bottom. Since the frequencies of the two systems are
slightly different, the phase angle on the meter changes slowly. If the oncoming
generator or system is faster than the running system (the desired situation), then
the phase angle advances and the synchroscope needle rotates clockwise. If the
oncoming machine is slower, the needle rotates counterclockwise. When the syn-
chroscope needle is in the vertical position, the voltages are in phase, and the
switch can be shut to connect the systems.

Notice, though, that a synchroscope checks the relationships on only one
phase. It gives no information about phase sequence.

In large generators belonging to power systems, this whole process of par-
alleling a new generator to the line is automated, and a computer does this job. For
smaller generators, though, the operator manually goes through the paralleling
steps just described.

Frequency-Power and Voltage-Reactive Power
Characteristics of a Synchronous Generator

All generators are driven by a prime mover, which is the generator’s source of
mechanical power. The most common type of prime mover is a steam turbine, but
other types include diesel engines, gas turbines, water turbines, and even wind
turbines.

Regardless of the original power source, all prime movers tend to behave in
a similar fashion—as the power drawn from them increases, the speed at which
they turn decreases. The decrease in speed is in general nonlinear, but some form
of governor mechanism is usually included to make the decrease in speed linear
with an increase in power demand.

Whatever governor mechanism is present on a prime mover, it will always
be adjusted to provide a slight drooping characteristic with increasing load. The
speed droop (SD) of a prime mover is defined by the equation

n, — ng
SD = —— x 100% 4-27)
ng

where n,, is the no-load prime-mover speed and ng is the full-load prime-mover
speed. Most generator prime movers have a speed droop of 2 to 4 percent, as de-
fined in Equation (4-27). In addition, most governors have some type of set point
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(a) The speed-versus-power curve
for a typical prime mover. (b) The
Power,  resulting frequency-versus-power
kW curve for the generator.
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adjustment to allow the no-load speed of the turbine to be varied. A typical speed-
versus-power plot is shown in Figure 4-29.
Since the shaft speed is related to the resulting electrical frequency by
Equation (3-34),
_n,P
f:\‘e - m

the power output of a synchronous generator is related to its frequency. An exam-
ple plot of frequency versus power is shown in Figure 4-29b. Frequency—power
characteristics of this sort play an essential role in the parallel operation of syn-
chronous generators.

The relationship between frequency and power can be described quantita-
tively by the equation

(3-34)

P = sp(fu — fsys) (4-28)

where P = power output of the generator
Jfu = no-load frequency of the generator
fiys = operating frequency of system
sp = slope of curve, in kW/Hz or MW/Hz

A similar relationship can be derived for the reactive power Q and terminal
voltage V. As previously seen, when a lagging load is added to a synchronous
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The curve of terminal voltage (V7) versus reactive power (Q) for a synchronous generator.

generator, its terminal voltage drops. Likewise, when a leading load is added to a
synchronous generator, its terminal voltage increases. It is possible to make a plot
of terminal voltage versus reactive power, and such a plot has a drooping charac-
teristic like the one shown in Figure 4-30. This characteristic is not intrinsically
linear, but many generator voltage regulators include a feature to make it so. The
characteristic curve can be moved up and down by changing the no-load terminal
voltage set point on the voltage regulator. As with the frequency—power charac-
teristic, this curve plays an important role in the parallel operation of synchronous
generators.

The relationship between the terminal voltage and reactive power can be
expressed by an equation similar to the frequency—power relationship [Equation
(4-28)] if the voltage regulator produces an output that is linear with changes in
reactive power.

It is important to realize that when a single generator is operating alone, the
real power P and reactive power Q supplied by the generator will be the amount
demanded by the load attached to the generator—the P and Q supplied cannot be
controlled by the generator’s controls. Therefore, for any given real power, the
governor set points control the generator’s operating frequency f, and for any given
reactive power, the field current controls the generator’s terminal voltage V7.

Example 4-5. Figure 4-31 shows a generator supplying a load. A second load is
to be connected in parallel with the first one. The generator has a no-load frequency of
61.0 Hz and a slope s, of 1 MW/Hz. Load 1 consumes a real power of 1000 kW at 0.8 PF
lagging, while load 2 consumes a real power of 800 kW at 0.707 PF lagging.

(a) Before the switch is closed, what is the operating frequency of the system?

(b) After load 2 is connected, what is the operating frequency of the system?

(c) After load 2 is connected, what action could an operator take to restore the sys-
tem frequency to 60 Hz?
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FIGURE 4-31
The power system in Example 4-5.

Solution
This problem states that the slope of the generator’s characteristic is | MW/Hz and that its
no-load frequency is 61 Hz. Therefore, the power produced by the generator is given by

P = sp(for — fiyy) (4-28)

_ P
so fsys _fnl - 5

(a) The initial system frequency is given by

P
fsys =fnl - $

1000 kW

= 61 Hz = V1w

=61 Hz — 1 Hz = 60 Hz

(b) After load 2 is connected,

P
fsys =fu— Sp

1800 kW

= 61 Hz = TV w2

=61Hz — 1.8 Hz = 59.2 Hz

(c) After the load is connected, the system frequency falls to 59.2 Hz. To restore the
system to its proper operating frequency, the operator should increase the gov-
ernor no-load set points by 0.8 Hz, to 61.8 Hz. This action will restore the sys-
tem frequency to 60 Hz.

To summarize, when a generator is operating by itself supplying the system
loads, then

1. The real and reactive power supplied by the generator will be the amount de-
manded by the attached load.

2. The governor set points of the generator will control the operating frequency
of the power system.
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Curves for an infinite bus: (a) frequency versus power and (b) terminal voltage versus reactive power.

3. The field current (or the field regulator set points) controls the terminal volt-
age of the power system.

This is the situation found in isolated generators in remote field environments.

Operation of Generators in Parallel with Large
Power Systems

When a synchronous generator is connected to a power system, the power system
is often so large that nothing the operator of the generator does will have much of
an effect on the power system. An example of this situation is the connection of a
single generator to the U.S. power grid. The U.S. power grid is so large that no
reasonable action on the part of the one generator can cause an observable change
in overall grid frequency.

This idea is idealized in the concept of an infinite bus. An infinite bus is a
power system so large that its voltage and frequency do not vary regardless of
how much real and reactive power is drawn from or supplied to it. The power—
frequency characteristic of such a system is shown in Figure 4-32a, and the reac-
tive power—voltage characteristic is shown in Figure 4-32b.

To understand the behavior of a generator connected to such a large system,
examine a system consisting of a generator and an infinite bus in parallel supply-
ing a load. Assume that the generator’s prime mover has a governor mechanism,
but that the field is controlled manually by a resistor. It is easier to explain gener-
ator operation without considering an automatic field current regulator, so this dis-
cussion will ignore the slight differences caused by the field regulator when one
is present. Such a system is shown in Figure 4-33a.

When a generator is connected in parallel with another generator or a large
system, the frequency and terminal voltage of all the machines must be the same,
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FIGURE 4-33

(a) A synchronous generator operating in parallel with an infinite bus. (b) The frequency-versus-
power diagram (or house diagram) for a synchronous generator in parallel with an infinite bus.

since their output conductors are tied together. Therefore, their real power—
frequency and reactive power—voltage characteristics can be plotted back to back,
with a common vertical axis. Such a sketch, sometimes informally called a house
diagram, is shown in Figure 4-33b.

Assume that the generator has just been paralleled with the infinite bus ac-
cording to the procedure described previously. Then the generator will be essen-
tially “floating” on the line, supplying a small amount of real power and little or
no reactive power. This situation is shown in Figure 4-34.

Suppose the generator had been paralleled to the line but, instead of being at
a slightly higher frequency than the running system, it was at a slightly lower fre-
quency. In this case, when paralleling is completed, the resulting situation is shown
in Figure 4-35. Notice that here the no-load frequency of the generator is less than
the system’s operating frequency. At this frequency, the power supplied by the gen-
erator is actually negative. In other words, when the generator’s no-load frequency
is less than the system’s operating frequency, the generator actually consumes elec-
tric power and runs as a motor. It is to ensure that a generator comes on line sup-
plying power instead of consuming it that the oncoming machine’s frequency is
adjusted higher than the running system’s frequency. Many real generators have a
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FIGURE 4-35
The frequency-versus-power diagram if the no-load frequency of the generator were slightly less
than system frequency before paralleling.

reverse-power trip connected to them, so it is imperative that they be paralleled
with their frequency higher than that of the running system. If such a generator
ever starts to consume power, it will be automatically disconnected from the line.

Once the generator has been connected, what happens when its governor set
points are increased? The effect of this increase is to shift the no-load frequency
of the generator upward. Since the frequency of the system is unchanged (the fre-
quency of an infinite bus cannot change), the power supplied by the generator
increases. This is shown by the house diagram in Figure 4-36a and by the phasor
diagram in Figure 4-36b. Notice in the phasor diagram that E, sin 6 (which is pro-
portional to the power supplied as long as V;is constant) has increased, while the
magnitude of E, (= K¢w) remains constant, since both the field current /- and the
speed of rotation w are unchanged. As the governor set points are further in-
creased, the no-load frequency increases and the power supplied by the generator
increases. As the power output increases, E4 remains at constant magnitude while
E, sin & is further increased.
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FIGURE 4-36
The effect of increasing the governor’s set points on (a) the house diagram; (b) the phasor diagram.

What happens in this system if the power output of the generator is in-
creased until it exceeds the power consumed by the load? If this occurs, the extra
power generated flows back into the infinite bus. The infinite bus, by definition,
can supply or consume any amount of power without a change in frequency, so
the extra power is consumed.

After the real power of the generator has been adjusted to the desired value,
the phasor diagram of the generator looks like Figure 4-36b. Notice that at this
time the generator is actually operating at a slightly leading power factor, supply-
ing negative reactive power. Alternatively, the generator can be said to be con-
suming reactive power. How can the generator be adjusted so that it will supply
some reactive power Q to the system? This can be done by adjusting the field cur-
rent of the machine. To understand why this is true, it is necessary to consider the
constraints on the generator’s operation under these circumstances.

The first constraint on the generator is that the power must remain constant
when I is changed. The power into a generator (ignoring losses) is given by the
equation P, = T,qw,. Now, the prime mover of a synchronous generator has a
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The effect of increasing the generator’s field current on the phasor diagram of the machine.

fixed torque—speed characteristic for any given governor setting. This curve
changes only when the governor set points are changed. Since the generator is tied
to an infinite bus, its speed cannot change. If the generator’s speed does not
change and the governor set points have not been changed, the power supplied by
the generator must remain constant.

If the power supplied is constant as the field current is changed, then the
distances proportional to the power in the phasor diagram (I, cos 6 and E; sin 6)
cannot change. When the field current is increased, the flux ¢ increases, and
therefore E, (= K¢Tw) increases. If E, increases, but E, sin 6 must remain con-
stant, then the phasor E, must “slide” along the line of constant power, as shown
in Figure 4-37. Since V is constant, the angle of jXI, changes as shown, and
therefore the angle and magnitude of I, change. Notice that as a result the distance
proportional to Q (I, sin 8) increases. In other words, increasing the field current
in a synchronous generator operating in parallel with an infinite bus increases the
reactive power output of the generator.

To summarize, when a generator is operating in parallel with an infinite bus:

1. The frequency and terminal voltage of the generator are controlled by the sys-
tem to which it is connected.

2. The governor set points of the generator control the real power supplied by
the generator to the system.

3. The field current in the generator controls the reactive power supplied by the
generator to the system.

This situation is much the way real generators operate when connected to a very
large power system.

Operation of Generators in Parallel with Other
Generators of the Same Size

When a single generator operated alone, the real and reactive powers (P and Q)
supplied by the generator were fixed, constrained to be equal to the power de-
manded by the load, and the frequency and terminal voltage were varied by the
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governor set points and the field current. When a generator operated in parallel
with an infinite bus, the frequency and terminal voltage were constrained to be
constant by the infinite bus, and the real and reactive powers were varied by the
governor set points and the field current. What happens when a synchronous gen-
erator is connected in parallel not with an infinite bus, but rather with another
generator of the same size? What will be the effect of changing governor set
points and field currents?

If a generator is connected in parallel with another one of the same size, the
resulting system is as shown in Figure 4-38a. In this system, the basic constraint
is that the sum of the real and reactive powers supplied by the two generators
must equal the P and Q demanded by the load. The system frequency is not con-
strained to be constant, and neither is the power of a given generator constrained
to be constant. The power—frequency diagram for such a system immediately af-
ter G, has been paralleled to the line is shown in Figure 4-38b. Here, the total
power P, (which is equal to P,,,4) is given by

Py = Pigag = Py + Py (4-29a)
and the total reactive power is given by

Qiot = Qioad = Qa1 + O (4-29b)

What happens if the governor set points of G, are increased? When the gov-
ernor set points of G, are increased, the power—frequency curve of G, shifts up-
ward, as shown in Figure 4-38c. Remember, the total power supplied to the load
must not change. At the original frequency f,, the power supplied by G, and G,
will now be larger than the load demand, so the system cannot continue to oper-
ate at the same frequency as before. In fact, there is only one frequency at which
the sum of the powers out of the two generators is equal to P,.,4. That frequency f,
is higher than the original system operating frequency. At that frequency, G, sup-
plies more power than before, and G, supplies less power than before.

Therefore, when two generators are operating together, an increase in gov-
ernor set points on one of them

1. Increases the system frequency.

2. Increases the power supplied by that generator, while reducing the power
supplied by the other one.

What happens if the field current of G, is increased? The resulting behavior
is analogous to the real-power situation and is shown in Figure 4-38d. When two
generators are operating together and the field current of G, is increased,

1. The system terminal voltage is increased.

2. The reactive power Q supplied by that generator is increased, while the re-
active power supplied by the other generator is decreased.
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(a) A generator connected in parallel with another machine of the same size. (b) The corresponding
house diagram at the moment generator 2 is paralleled with the system. (c) The effect of increasing
generator 2’s governor set points on the operation of the system. (d) The effect of increasing
generator 2’s field current on the operation of the system.
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The house diagram for the system in Example 4-6.

If the slopes and no-load frequencies of the generator’s speed droop
(frequency—power) curves are known, then the powers supplied by each generator
and the resulting system frequency can be determined quantitatively. Example
4-6 shows how this can be done.

Example 4-6. Figure 4-38a shows two generators supplying a load. Generator 1
has a no-load frequency of 61.5 Hz and a slope sp, of | MW/Hz. Generator 2 has a no-load
frequency of 61.0 Hz and a slope sp, of 1 MW/Hz. The two generators are supplying a real
load totaling 2.5 MW at 0.8 PF lagging. The resulting system power-frequency or house
diagram is shown in Figure 4-39.

(a) At what frequency is this system operating, and how much power is supplied by
each of the two generators?

(b) Suppose an additional 1-MW load were attached to this power system. What
would the new system frequency be, and how much power would G, and G,
supply now?

(c) With the system in the configuration described in part b, what will the system
frequency and generator powers be if the governor set points on G, are in-
creased by 0.5 Hz?

Solution
The power produced by a synchronous generator with a given slope and no-load frequency
is given by Equation (4-28):

Py = spi(fas _fsys)
P, = sz(fnl,z _fsys)

Since the total power supplied by the generators must equal the power consumed by the
loads,

P = P, + P,

These equations can be used to answer all the questions asked.
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In the first case, both generators have a slope of 1 MW/Hz, and G, has a no-load
frequency of 61.5 Hz, while G, has a no-load frequency of 61.0 Hz. The total
load is 2.5 MW. Therefore, the system frequency can be found as follows:
P load — P 1 + P 2
= sPl(f;)l,l - fsys) + sPZ(nt‘Z _fsys)
25MW = (1 MW/Hz)(61.5 Hz — f,) + (1 MW/Hz)(61 Hz — f,)

= 61.5 MW — (1 MW/Hz)f,, + 61 MW — (1 MW/H2)f,,

122.5 MW — (2 MW/Hz)f,,

therefore Jos = 122.5(1541\‘4VW_/H22.)5 MW _ 60.0 Hz

The resulting powers supplied by the two generators are

Py = spi(fan1 —fsys)

= (1 MW/Hz)(61.5 Hz — 60.0 Hz) = 1.5 MW
Py = spy(faz2 = fiys)

= (1 MW/Hz)(61.0 Hz — 60.0 Hz) = 1 MW

When the load is increased by 1 MW, the total load becomes 3.5 MW. The new
system frequency is now given by
Pioag = spi(fay — fiys) + Spa(fuiz = figs)
3.5 MW = (1 MW/Hz)(61.5 Hz — f,) + (1 MW/Hz)(61 Hz — f,)
61.5 MW — (1 MW/Hz)f,; + 61 MW — (1 MW/Hz)f,,
122.5 MW — (2 MW/Hz)f,,

therefore foys = 122'5(154I\YIVW_/H32')5 MV 59.5Hz

The resulting powers are
P = sPl(fnl.l _fsys)
= (1 MW/Hz)(61.5 Hz — 59.5 Hz) = 2.0 MW
P, = st(fnl,Z - fsys)
= (1 MW/Hz)(61.0 Hz — 59.5 Hz) = 1.5 MW

If the no-load governor set points of G, are increased by 0.5 Hz, the new system
frequency becomes

Pigaa = spi(fa1 = Jiys) T Sp2(faz = fiys)
3.5MW = (I MW/HZ)(61.5 Hz — f,,) + (I MW/H2)(61.5 Hz — £,,,)
123 MW — (2 MW/Hz)f,,,

123 MW — 3.5 MW
fos = MWL) = 9975 He

The resulting powers are

Py =Py = spi(fu, _fsys)
= (1 MW/Hz)(61.5 Hz — 59.75 Hz) = 1.75 MW
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Notice that the system frequency rose, the power supplied by G, rose, and the power
supplied by G, fell.

When two generators of similar size are operating in parallel, a change in
the governor set points of one of them changes both the system frequency and the
power sharing between them. It would normally be desired to adjust only one of
these quantities at a time. How can the power sharing of the power system be ad-
justed independently of the system frequency, and vice versa?

The answer is very simple. An increase in governor set points on one gen-
erator increases that machine’s power and increases system frequency. A decrease
in governor set points on the other generator decreases that machine’s power and
decreases the system frequency. Therefore, to adjust power sharing without
changing the system frequency, increase the governor set points of one generator
and simultaneously decrease the governor set points of the other generator (see
Figure 4-40a). Similarly, to adjust the system frequency without changing the
power sharing, simultaneously increase or decrease both governor set points (see
Figure 4-40b).

Reactive power and terminal voltage adjustments work in an analogous
fashion. To shift the reactive power sharing without changing Vy, simultaneously
increase the field current on one generator and decrease the field current on the
other (see Figure 4-40c). To change the terminal voltage without affecting the re-
active power sharing, simultaneously increase or decrease both field currents (see
Figure 4-40d).

To summarize, in the case of two generators operating together:

1. The system is constrained in that the total power supplied by the two genera-
tors together must equal the amount consumed by the load. Neither f;,, nor V;
is constrained to be constant.

2. To adjust the real power sharing between generators without changing f;.,
simultaneously increase the governor set points on one generator while de-
creasing the governor set points on the other. The machine whose governor
set point was increased will assume more of the load.

3. To adjust f,,, without changing the real power sharing, simultaneously in-
crease or decrease both generators’ governor set points.

4. To adjust the reactive power sharing between generators without changing
Vy, simultaneously increase the field current on one generator while decreas-
ing the field current on the other. The machine whose field current was in-
creased will assume more of the reactive load.

5. To adjust V; without changing the reactive power sharing, simultaneously in-
crease or decrease both generators’ field currents.

It is very important that any synchronous generator intended to operate in par-
allel with other machines have a drooping frequency—power characteristic. If two
generators have flat or nearly flat characteristics, then the power sharing between
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(a) Shifting power sharing without affecting system frequency. (b) Shifting system frequency
without affecting power sharing. (c) Shifting reactive power sharing without affecting terminal
voltage. (d) Shifting terminal voltage without affecting reactive power sharing.
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FIGURE 441
Two synchronous generators with flat frequency—power characteristics. A very tiny change in the no-
load frequency of either of these machines could cause huge shifts in the power sharing.

them can vary widely with only the tiniest changes in no-load speed. This problem
is illustrated by Figure 4-41. Notice that even very tiny changes in f;, in one of the
generators would cause wild shifts in power sharing. To ensure good control of
power sharing between generators, they should have speed droops in the range
of 2 to 5 percent.

4.10 SYNCHRONOUS
GENERATOR TRANSIENTS

When the shaft torque applied to a generator or the output load on a generator
changes suddenly, there is always a transient lasting for a finite period of time be-
fore the generator returns to steady state. For example, when a synchronous gen-
erator is paralleled with a running power system, it is initially turning faster and
has a higher frequency than the power system does. Once it is paralleled, there is
a transient period before the generator steadies down on the line and runs at line
frequency while supplying a small amount of power to the load.

To illustrate this situation, refer to Figure 4—42. Figure 4-42a shows the
magnetic fields and the phasor diagram of the generator at the moment just before
it is paralleled with the power system. Here, the oncoming generator is supplying
no load, its stator current is zero, E, = V,, and By = B,,.

At exactly time ¢ = 0, the switch connecting the generator to the power sys-
tem is shut, causing a stator current to flow. Since the generator’s rotor is still
turning faster than the system speed, it continues to move out ahead of the sys-
tem’s voltage V,. The induced torque on the shaft of the generator is given by

Tind = kBR X Bnel (3"60)

The direction of this torque is opposite to the direction of motion, and it increases as
the phase angle between B and B, (or E, and V) increases. This torque opposite
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Tind = kK Bp X By
Tind IS clockwise

FIGURE 4-42

(a) The phasor diagram and magnetic fields of a generator at the moment of paralleling with a large
power system. (b) The phasor diagram and house diagram shortly after (a). Here, the rotor has
moved on ahead of the net magnetic fields, producing a clockwise torque. This torque is slowing the
rotor down to the synchronous speed of the power system.

the direction of motion slows down the generator until it finally turns at synchronous
speed with the rest of the power system.

Similarly, if the generator were turning at a speed lower than synchronous
speed when it was paralleled with the power system, then the rotor would fall be-
hind the net magnetic fields, and an induced torque in the direction of motion
would be induced on the shaft of the machine. This torque would speed up the
rotor until it again began turning at synchronous speed.

Transient Stability of Synchronous Generators

We learned earlier that the static stability limit of a synchronous generator is the
maximum power that the generator can supply under any circumstances. The
maximum power that the generator can supply is given by Equation (4-21):

3V,E,
s = @-21)

and the corresponding maximum torque is

3V,E
Toax = # (4-30)

In theory, a generator should be able to supply up to this amount of power and
torque before becoming unstable. In practice, however, the maximum load that
can be supplied by the generator is limited to a much lower level by its dynamic
stability limit.

To understand the reason for this limitation, consider the generator in Figure
4-42 again. If the torque applied by the prime mover (7,;,) is suddenly increased,
the shaft of the generator will begin to speed up, and the torque angle 6 will increase
as described. As the angle 6 increases, the induced torque 7,4 of the generator will
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The dynamic response when an applied torque equal to 50% of 7,,,, is suddenly added to a
synchronous generator.

increase until an angle & is reached at which 7,,4 is equal and opposite to . This is
the steady-state operating point of the generator with the new load. However, the ro-
tor of the generator has a great deal of inertia, so its torque angle § actually over-
shoots the steady-state position, and gradually settles out in a damped oscillation, as
shown in Figure 4-43. The exact shape of this damped oscillation can be determined
by solving a nonlinear differential equation, which is beyond the scope of this book.
For more information, see Reference 4, p. 345.

The important point about Figure 443 is that if at any point in the transient
response the instantaneous torque exceeds Ty, the synchronous generator will be
unstable. The size of the oscillations depends on how suddenly the additional
torque is applied to the synchronous generator. If it is added very gradually, the
machine should be able to almost reach the static stability limit. On the other
hand, if the load is added sharply, the machine will be stable only up to a much
lower limit, which is very complicated to calculate. For very abrupt changes in
torque or load, the dynamic stability limit may be less than half of the static sta-
bility limit.

Short-Circuit Transients
in Synchronous Generators

By far the severest transient condition that can occur in a synchronous generator
is the situation where the three terminals of the generator are suddenly shorted
out. Such a short on a power system is called a fault. There are several compo-
nents of current present in a shorted synchronous generator, which will be de-
scribed below. The same effects occur in less severe transients like load changes,
but they are much more obvious in the extreme case of a short circuit.



SYNCHRONOUS GENERATORS 247

Current

DC component

Current

Current

’ DC component Phase ¢

FIGURE 444
The total fault currents as a function of time during a three-phase fault at the terminals of a
synchronous generator.

When a fault occurs on a synchronous generator, the resulting current flow
in the phases of the generator can appear as shown in Figure 4—44. The current in
each phase shown in Figure 4-42 can be represented as a dc transient component
added on top of a symmetrical ac component. The symmetrical ac component by
itself is shown in Figure 445.

Before the fault, only ac voltages and currents were present within the gen-
erator, while after the fault, both ac and dc currents are present. Where did the
dc currents come from? Remember that the synchronous generator is basically
inductive—it is modeled by an internal generated voltage in series with the syn-
chronous reactance. Also, recall that a current cannot change instantaneously in
an inductor. When the fault occurs, the ac component of current jumps to a very
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FIGURE 445
The symmetric ac component of the fault current.

large value, but the total current cannot change at that instant. The dc component
of current is just large enough that the sum of the ac and dc components just after
the fault equals the ac current flowing just before the fault. Since the instanta-
neous values of current at the moment of the fault are different in each phase, the
magnitude of the dc component of current will be different in each phase.

These dc components of current decay fairly quickly, but they initially av-
erage about 50 or 60 percent of the ac current flow the instant after the fault
occurs. The total initial current is therefore typically 1.5 or 1.6 times the ac com-
ponent taken alone.

The ac symmetrical component of current is shown in Figure 445. It can be
divided into roughly three periods. During the first cycle or so after the fault oc-
curs, the ac current is very large and falls very rapidly. This period of time is
called the subtransient period. After it is over, the current continues to fall at a
slower rate, until at last it reaches a steady state. The period of time during which
it falls at a slower rate is called the transient period, and the time after it reaches
steady state is known as the steady-state period.

If the rms magnitude of the ac component of current is plotted as a function
of time on a semilogarithmic scale, it is possible to observe the three periods of
fault current. Such a plot is shown in Figure 4-46. It is possible to determine the
time constants of the decays in each period from such a plot.

The ac rms current flowing in the generator during the subtransient period
is called the subtransient current and is denoted by the symbol 1”. This current is
caused by the damper windings on synchronous generators (see Chapter 5 for a
discussion of damper windings). The time constant of the subtransient current is
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A semilogarithmic plot of the magnitude of the ac component of fault current as a function of time.
The subtransient and transient time constants of the generator can be determined from such a plot.

given the symbol T”, and it can be determined from the slope of the subtransient
current in the plot in Figure 4-46. This current can often be 10 times the size of
the steady-state fault current.

The rms current flowing in the generator during the transient period is
called the transient current and is denoted by the symbol I'. It is caused by a dc
component of current induced in the field circuit at the time of the short. This field
current increases the internal generated voltage and causes an increased fault cur-
rent. Since the time constant of the dc field circuit is much longer than the time
constant of the damper windings, the transient period lasts much longer than the
subtransient period. This time constant is given the symbol 7". The average rms
current during the transient period is often as much as 5 times the steady-state
fault current.

After the transient period, the fault current reaches a steady-state condition.
The steady-state current during a fault is denoted by the symbol /. It is given ap-
proximately by the fundamental frequency component of the internal generated
voltage E, within the machine divided by its synchronous reactance:

E
I, = 7’; steady state (4-31)

The rms magnitude of the ac fault current in a synchronous generator varies
continuously as a function of time. If I” is the subtransient component of current
at the instant of the fault, I’ is the transient component of current at the instant of
the fault, and I, is the steady-state fault current, then the rms magnitude of the
current at any time after a fault occurs at the terminals of the generator is

10 =" -1e?™ + (I' - 1)e "™ + 1, (4-32)
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It is customary to define subtransient and transient reactances for a syn-
chronous machine as a convenient way to describe the subtransient and transient
components of fault current. The subtransient reactance of a synchronous gener-
ator is defined as the ratio of the fundamental component of the internal generated
voltage to the subtransient component of current at the beginning of the fault. It is
given by

X'=-= subtransient (4-33)

Similarly, the transient reactance of a synchronous generator is defined as the ra-
tio of the fundamental component of E, to the transient component of current I’ at
the beginning of the fault. This value of current is found by extrapolating the sub-
transient region in Figure 446 back to time zero:

’ EA :
X' = G transient (4-34)

For the purposes of sizing protective equipment, the subtransient current is
often assumed to be E,/X”, and the transient current is assumed to be E,/X’, since
these are the maximum values that the respective currents take on.

Note that the preceding discussion of faults assumes that all three phases were
shorted out simultaneously. If the fault does not involve all three phases equally,
then more complex methods of analysis are required to understand it. These meth-

ods (known as symmetrical components) are beyond the scope of this book.

Example 4-7. A 100-MVA, 13.5-kV, Y-connected, three-phase, 60-Hz synchro-
nous generator is operating at the rated voltage and no load when a three-phase fault
develops at its terminals. Its reactances per unit to the machine’s own base are

Xs=10 X'=025 7=0.12
and its time constants are
T'=1.10s T” = 0.04s
The initial dc component in this machine averages 50 percent of the initial ac component.

(a) What is the ac component of current in this generator the instant after the fault
occurs?

(b) What is the total current (ac plus dc) flowing in the generator right after the fault
occurs?

(c) What will the ac component of the current be after two cycles? After 5 s?

Solution
The base current of this generator is given by the equation
_ sbase
Iwse = 3y, — (2-95)
100 MVA

= V3138kv) ~ 4184A
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The subtransient, transient, and steady-state currents, per unit and in amperes, are

r==d8 g3

= (8.333)(4184 A) = 34,900 A
r=2=20 - 400

= (4.00)(4184 A) = 16,700 A
L=2=10_ 0

= (1.00)(4184 A) = 4184 A

(a) The initial ac component of current is I” = 34,900 A.
(b) The total current (ac plus dc) at the beginning of the fault is

I, = 1.5I" = 52350 A
(c) The ac component of current as a function of time is given by Equation (4-32):
IO=d"-1Ne’T + (' =1)e?T + I, (4-32)
= 18,200e70%s + 12,516 !5 + 4184 A
At two cycles, t = 1/30 s, the total current is

1(%) =T7910 A + 12,142 A + 4184 A = 24236 A

After two cycles, the transient component of current is clearly the largest one
and this time is in the transient period of the short circuit. At 5 s, the current is
down to

I5)=0A + 133 A + 4184 A = 4317 A

This is part of the steady-state period of the short circuit.

4.1 SYNCHRONOUS GENERATOR RATINGS

There are certain basic limits to the speed and power that may be obtained from a
synchronous generator. These limits are expressed as ratings on the machine. The
purpose of the ratings is to protect the generator from damage due to improper op-
eration. To this end, each machine has a number of ratings listed on a nameplate
attached to it.

Typical ratings on a synchronous machine are voltage, frequency, speed, ap-
parent power (kilovoltamperes), power factor, field current, and service factor.
These ratings, and the interrelationships among them, will be discussed in the fol-
lowing sections.

The Voltage, Speed, and Frequency Ratings

The rated frequency of a synchronous generator depends on the power system to
which it is connected. The commonly used power system frequencies today are
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50 Hz (in Europe, Asia, etc.), 60 Hz (in the Americas), and 400 Hz (in special-
purpose and control applications). Once the operating frequency is known, there
is only one possible rotational speed for a given number of poles. The fixed rela-
tionship between frequency and speed is given by Equation (3-34):
_ Ml
fse ~ 120 (3-34)
as previously described.

Perhaps the most obvious rating is the voltage at which a generator is de-
signed to operate. A generator’s voltage depends on the flux, the speed of rotation,
and the mechanical construction of the machine. For a given mechanical frame
size and speed, the higher the desired voltage, the higher the machine’s required
flux. However, flux cannot be increased forever, since there is always a maximum
allowable field current.

Another consideration in setting the maximum allowable voltage is the
breakdown value of the winding insulation—normal operating voltages must not
approach breakdown too closely.

Is it possible to operate a generator rated for one frequency at a different fre-
quency? For example, is it possible to operate a 60-Hz generator at S0 Hz? The
answer is a qualified yes, as long as certain conditions are met. Basically, the
problem is that there is a maximum flux achievable in any given machine, and
since E4, = K¢w, the maximum allowable E, changes when the speed is changed.
Specifically, if a 60-Hz generator is to be operated at 50 Hz, then the operating
voltage must be derated to 50/60, or 83.3 percent, of its original value. Just the
opposite effect happens when a 50-Hz generator is operated at 60 Hz.

Apparent Power and Power-Factor Ratings

There are two factors that determine the power limits of electric machines. One is
the mechanical torque on the shaft of the machine, and the other is the heating of
the machine’s windings. In all practical synchronous motors and generators, the
shaft is strong enough mechanically to handle a much larger steady-state power
than the machine is rated for, so the practical steady-state limits are set by heating
in the machine’s windings.

There are two windings in a synchronous generator, and each one must be
protected from overheating. These two windings are the armature winding and the
field winding. The maximum acceptable armature current sets the apparent power
rating for a generator, since the apparent power S is given by

S =13V,1, (4-35)

If the rated voltage is known, then the maximum acceptable armature current de-
termines the rated kilovoltamperes of the generator:

Sraled = 3‘{1),ratcd IA,max (4_36)
or Srated = ﬁVL,ratedlL,max (4_37)
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FIGURE 447
How the rotor field current limit sets the rated power factor of a generator.

It is important to realize that, for heating the armature windings, the power factor
of the armature current is irrelevant. The heating effect of the stator copper losses
is given by

Pscr = 3IR, (4-38)

and is independent of the angle of the current with respect to V,. Because the
current angle is irrelevant to the armature heating, these machines are rated in
kilovoltamperes instead of kilowatts.
The other winding of concern is the field winding. The field copper losses
are given by
PreL = IPRy (4-39)

so the maximum allowable heating sets a maximum field current for the machine.
Since E, = K¢w this sets the maximum acceptable size for E,.

The effect of having a maximum /- and a maximum E, translates directly
into a restriction on the lowest acceptable power factor of the generator when it is
operating at the rated kilovoltamperes. Figure 447 shows the phasor diagram of
a synchronous generator with the rated voltage and armature current. The current
can assume many different angles, as shown. The internal generated voltage E, is
the sum of V,, and jX;1,. Notice that for some possible current angles the required
E, exceeds E, ... If the generator were operated at the rated armature current and
these power factors, the field winding would burn up.

The angle of 1, that requires the maximum possible E, while V, remains at
the rated value gives the rated power factor of the generator. It is possible to op-
erate the generator at a lower (more lagging) power factor than the rated value, but
only by cutting back on the kilovoltamperes supplied by the generator.
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FIGURE 448
Derivation of a synchronous generator capability curve. (a) The generator phasor diagram; (b) the
corresponding power units.

Synchronous Generator Capability Curves

The stator and rotor heat limits, together with any external limits on a synchro-
nous generator, can be expressed in graphical form by a generator capability dia-
gram. A capability diagram is a plot of complex power § = P + jQ. It is derived
from the phasor diagram of the generator, assuming that V, is constant at the ma-
chine’s rated voltage.

Figure 4-48a shows the phasor diagram of a synchronous generator operat-
ing at a lagging power factor and its rated voltage. An orthogonal set of axes is
drawn on the diagram with its origin at the tip of V,, and with units of volts. On
this diagram, vertical segment AB has a length X/, cos 0, and horizontal segment
OA has a length X/, sin 6.

The real power output of the generator is given by

P =3V,1, cos 0 4-17)
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the reactive power output is given by

Q =3V, sin 6 (4-19)
and the apparent power output is given by

S =3V,1, (4-35)

so the vertical and horizontal axes of this figure can be recalibrated in terms of
real and reactive power (Figure 4-48b). The conversion factor needed to change
the scale of the axes from volts to voltamperes (power units) is 3V}, /Xg:

3V,
P =3V,I,cos 6 = —)—(—s"—’(xsl,, cos 6) (4-40)

3V
and Q =3V,I,sin 6= —Xi’(XSIA sin 6) (4-41)
s

On the voltage axes, the origin of the phasor diagram is at —V,, on the hori-
zontal axis, so the origin on the power diagram is at

.
Q_XS( 4))

3v3
= -5 (4-42)
s
The field current is proportional to the machine’s flux, and the flux is proportional
to E, = K¢w. The length corresponding to E, on the power diagram is

Dg = “:;ETAVQ (4-43)
s
The armature current /, is proportional to X/,, and the length corresponding to
Xl on the power diagram is 3V, 1.
The final synchronous generator capability curve is shown in Figure 4-49.
It is a plot of P versus Q, with real power P on the horizontal axis and reactive
power Q on the vertical axis. Lines of constant armature current I, appear as lines
of constant § = 3V, I,, which are concentric circles around the origin. Lines of
constant field current correspond to lines of constant E,, which are shown as cir-
cles of magnitude 3E,V,, /X centered on the point

2
= Vs (442)
Xs

The armature current limit appears as the circle corresponding to the rated
1, or rated kilovoltamperes, and the field current limit appears as a circle corre-
sponding to the rated I or E,. Any point that lies within both circles is a safe op-
erating point for the generator.

It is also possible to show other constraints on the diagram, such as the max-
imum prime-mover power and the static stability limit. A capability curve that
also reflects the maximum prime-mover power is shown in Figure 4-50.
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A capability diagram showing the prime-mover power limit.
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Example 4-8. A 480-V, 50-Hz, Y-connected, six-pole synchronous generator is
rated at 50 kVA at 0.8 PF lagging. It has a synchronous reactance of 1.0 {) per phase.
Assume that this generator is connected to a steam turbine capable of supplying up to
45 kW. The friction and windage losses are 1.5 kW, and the core losses are 1.0 kW.

(a) Sketch the capability curve for this generator, including the prime-mover power

limit.

(b) Can this generator supply a line current of 56 A at 0.7 PF lagging? Why or why not?

(c) What is the maximum amount of reactive power this generator can produce?

(d) If the generator supplies 30 kW of real power, what is the maximum amount of
reactive power that can be simultaneously supplied?

Solution
The maximum current in this generator can be found from Equation (4-36):
Sraled = 3V¢.rated IA.max (4_36)
The voltage V;, of this machine is
Vr _ 480V

With this information, it is now possible to answer the questions.

(a) The maximum permissible apparent power is 50 kVA, which specifies the max-
imum safe armature current. The center of the E, circles is at

0=-52 (4-42)
= 3QUIVE _ _p30kvaR
1.0Q
The maximum size of E, is given by
E, = V4 +jXsl,

=277 £0°V + (j1.0 Q)(60 £ —36.87° A)

=313 +j48V =317£8.7°V
Therefore, the magnitude of the distance proportional to E, is

_3EY,

Dg = X, (4-43)
_ 3617271 V) _
10Q 263 kVAR
The maximum output power available with a prime-mover power of 45 kW is
approximately
Pmax‘oul = Pmax.in ~ ¥ 'mech loss — Pcore loss

=45kW - 1.5kW - 1.0 kW = 42.5 kW
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FIGURE 4-51
The capability diagram for the generator in Example 4-8.

(This value is approximate because the I?R loss and the stray load loss were not
considered.) The resulting capability diagram is shown in Figure 4-51.
(b) A current of 56 A at 0.7 PF lagging produces a real power of

P =3Vl cos 0
= 3(277 V)(56 A)(0.7) = 32.6 kW
and a reactive power of
Q =13V, 1I,sin0
= 3(277 V)(56 A)(0.714) = 33.2 kVAR

Plotting this point on the capability diagram shows that it is safely within the
maximum /, curve but outside the maximum I, curve. Therefore, this point is
not a safe operating condition.
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FIGURE 4-52

Capability curve for a real synchronous generator rated at 470 kVA. (Courtesy of Marathon Electric
Company.)

(c) When the real power supplied by the generator is zero, the reactive power that
the generator can supply will be maximum. This point is right at the peak of the
capability curve. The Q that the generator can supply there is

QO =263 kVAR — 230 kVAR = 33 kVAR

(d) If the generator is supplying 30 kW of real power, the maximum reactive power
that the generator can supply is 31.5 kVAR. This value can be found by entering
the capability diagram at 30 kW and going up the constant-kilowatt line until a
limit is reached. The limiting factor in this case is the field current—the arma-
ture will be safe up to 39.8 kVAR.

Figure 4-52 shows a typical capability for a real synchronous generator.
Note that the capability boundaries are not a perfect circle for a real generator.
This is true because real synchronous generators with salient poles have additional
effects that we have not modeled. These effects are described in Appendix C.
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Short-Time Operation and Service Factor

The most important limit in the steady-state operation of a synchronous generator
is the heating of its armature and field windings. However, the heating limit usu-
ally occurs at a point much less than the maximum power that the generator is
magnetically and mechanically able to supply. In fact, a typical synchronous gen-
erator is often able to supply up to 300 percent of its rated power for a while (until
its windings burn up). This ability to supply power above the rated amount is
used to supply momentary power surges during motor starting and similar load
transients.

It is also possible to use a generator at powers exceeding the rated values for
longer periods of time, as long as the windings do not have time to heat up too much
before the excess load is removed. For example, a generator that could supply
1 MW indefinitely might be able to supply 1.5 MW for a couple of minutes without
serious harm, and for progressively longer periods at lower power levels. However,
the load must finally be removed, or the windings will overheat. The higher the
power over the rated value, the shorter the time a machine can tolerate it.

Figure 4-53 illustrates this effect. This figure shows the time in seconds re-
quired for an overload to cause thermal damage to a typical electrical machine,
whose windings were at normal operating temperature before the overload oc-
curred. In this particular machine, a 20 percent overload can be tolerated for 1000
seconds, a 100 percent overload can be tolerated for about 30 seconds, and a 200
percent overload can be tolerated for about 10 seconds before damage occurs.

The maximum temperature rise that a machine can stand depends on the in-
sulation class of its windings. There are four standard insulation classes: A, B, F,
and H. While there is some variation in acceptable temperature depending on a
machine’s particular construction and the method of temperature measurement,
these classes generally correspond to temperature rises of 60, 80, 105, and 125°C,
respectively, above ambient temperature. The higher the insulation class of a
given machine, the greater the power that can be drawn out of it without over-
heating its windings.

Overheating of windings is a very serious problem in a motor or generator.
It was an old rule of thumb that for each 10°C temperature rise above the rated
windings temperature, the average lifetime of a machine is cut in half (see Figure
3-20). Modern insulating materials are less susceptible to breakdown than that,
but temperature rises still drastically shorten their lives. For this reason, a syn-
chronous machine should not be overloaded unless absolutely necessary.

A question related to the overheating problem is: Just how well is the power
requirement of a machine known? Before installation, there are often only ap-
proximate estimates of load. Because of this, general-purpose machines usually
have a service factor. The service factor is defined as the ratio of the actual max-
imum power of the machine to its nameplate rating. A generator with a service
factor of 1.15 can actually be operated at 115 percent of the rated load indefinitely
without harm. The service factor on a machine provides a margin of error in case
the loads were improperly estimated.



Maximum time, s

SYNCHRONOUS GENERATORS 261

103

- \\

- N

- —~ , [T T —
101 oo
l00 1 | 1 l

0 1.2 1.4 1.6 1.8 2 2.2 24 2.6 2.8

Per-unit current

FIGURE 4-53

Thermal damage curve for a typical synchronous machine, assuming that the windings were already
at operational temperature when the overload is applied. (Courtesy of Marathon Electric Company.)

4.12 SUMMARY

A synchronous generator is a device for converting mechanical power from a prime
mover to ac electric power at a specific voltage and frequency. The term synchro-
nous refers to the fact that this machine’s electrical frequency is locked in or syn-
chronized with its mechanical rate of shaft rotation. The synchronous generator is
used to produce the vast majority of electric power used throughout the world.

The internal generated voltage of this machine depends on the rate of shaft
rotation and on the magnitude of the field flux. The phase voltage of the machine
differs from the internal generated voltage by the effects of armature reaction in the
generator and also by the internal resistance and reactance of the armature wind-
ings. The terminal voltage of the generator will either equal the phase voltage or be
related to it by V3, depending on whether the machine is A- or Y-connected.

The way in which a synchronous generator operates in a real power system
depends on the constraints on it. When a generator operates alone, the real and
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reactive powers that must be supplied are determined by the load attached to it,
and the governor set points and field current control the frequency and terminal
voltage, respectively. When the generator is connected to an infinite bus, its fre-
quency and voltage are fixed, so the governor set points and field current control
the real and reactive power flow from the generator. In real systems containing
generators of approximately equal size, the governor set points affect both fre-
quency and power flow, and the field current affects both terminal voltage and re-
active power flow.

A synchronous generator’s ability to produce electric power is primarily
limited by heating within the machine. When the generator’s windings overheat,
the life of the machine can be severely shortened. Since there are two different
windings (armature and field), there are two separate constraints on the generator.
The maximum allowable heating in the armature windings sets the maximum
kilovoltamperes allowable from the machine, and the maximum allowable heat-
ing in the field windings sets the maximum size of E,. The maximum size of E,
and the maximum size of I, together set the rated power factor of the generator.

QUESTIONS

4-1. Why is the frequency of a synchronous generator locked into its rate of shaft
rotation?

4-2. Why does an alternator’s voltage drop sharply when it is loaded down with a lag-
ging load?

4-3. Why does an alternator’s voltage rise when it is loaded down with a leading load?

4-4. Sketch the phasor diagrams and magnetic field relationships for a synchronous gen-
erator operating at (a) unity power factor, (b) lagging power factor, (c) leading
power factor.

4-5. Explain just how the synchronous impedance and armature resistance can be deter-
mined in a synchronous generator.

4-6. Why must a 60-Hz generator be derated if it is to be operated at 50 Hz? How much
derating must be done?

4-7. Would you expect a 400-Hz generator to be larger or smaller than a 60-Hz genera-
tor of the same power and voltage rating? Why?

4-8. What conditions are necessary for paralleling two synchronous generators?

4-9. Why must the oncoming generator on a power system be paralleled at a higher fre-
quency than that of the running system?

4-10. What is an infinite bus? What constraints does it impose on a generator paralleled
with it?

4-11. How can the real power sharing between two generators be controlled without af-
fecting the system’s frequency? How can the reactive power sharing between two
generators be controlled without affecting the system’s terminal voltage?

4-12. How can the system frequency of a large power system be adjusted without affect-
ing the power sharing among the system’s generators?

4-13. How can the concepts of Section 4.9 be expanded to calculate the system frequency
and power sharing among three or more generators operating in parallel?

4-14. Why is overheating such a serious matter for a generator?
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4-15. Explain in detail the concept behind capability curves.
4-16. What are short-time ratings? Why are they important in regular generator operation?

PROBLEMS

4-1. Atalocation in Europe, it is necessary to supply 1000 kW of 60-Hz power. The only
power sources available operate at 50 Hz. It is decided to generate the power by
means of a motor-generator set consisting of a synchronous motor driving a syn-
chronous generator. How many poles should each of the two machines have in or-
der to convert 50-Hz power to 60-Hz power?

A 13.8-kV, 50-MVA, 0.9-power-factor-lagging, 60-Hz, four-pole Y-connected syn-
chronous generator has a synchronous reactance of 2.5 €} and an armature resis-
tance of 0.2 Q. At 60 Hz, its friction and windage losses are 1 MW, and its core
losses are 1.5 MW. The field circuit has a dc voltage of 120 V, and the maximum
I is 10 A. The current of the field circuit is adjustable over the range from O to
10 A. The OCC of this generator is shown in Figure P4-1.

4-2

Open-circuit characteristic

A

/
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10 ,/

Open-circuit voltage (kV)
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/
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Field current (A)

0

FIGURE P4-1
Open-circuit characteristic curve for the generator in Problem 4-2.

(a) How much field current is required to make the terminal voltage V; (or line
voltage V) equal to 13.8 kV when the generator is running at no load?
(b) What is the internal generated voltage E, of this machine at rated conditions?
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(c) What is the phase voltage V,, of this generator at rated conditions?

(d) How much field current is required to make the terminal voltage V; equal to
13.8 kV when the generator is running at rated conditions?

(e) Suppose that this generator is running at rated conditions, and then the load is
removed without changing the field current. What would the terminal voltage of
the generator be?

(f) How much steady-state power and torque must the generator’s prime mover be
capable of supplying to handle the rated conditions?

(g) Construct a capability curve for this generator.

Assume that the field current of the generator in Problem 4-2 has been adjusted to

a value of 5 A.

(a) What will the terminal voltage of this generator be if it is connected to a
A-connected load with an impedance of 24 £ 25° )?

(b) Sketch the phasor diagram of this generator.

(c) What is the efficiency of the generator at these conditions?

(d) Now assume that another identical A-connected load is to be paralleled with the
first one. What happens to the phasor diagram for the generator?

(e) What is the new terminal voltage after the load has been added?

(f) What must be done to restore the terminal voltage to its original value?

Assume that the field current of the generator in Problem 4-2 is adjusted to achieve

rated voltage (13.8 kV) at full-load conditions in each of the following questions.

(a) What is the efficiency of the generator at rated load?

(b) What is the voltage regulation of the generator if it is loaded to rated kilo-
voltamperes with 0.9-PF-lagging loads?

(c) What is the voltage regulation of the generator if it is loaded to rated kilo-
voltamperes with 0.9-PF-leading loads?

(d) What is the voltage regulation of the generator if it is loaded to rated kilo-
voltamperes with unity-power-factor loads?

(e) Use MATLAB to plot the terminal voltage of the generator as a function of load
for all three power factors.

Assume that the field current of the generator in Problem 4-2 has been adjusted so

that it supplies rated voltage when loaded with rated current at unity power factor.

(a) What is the torque angle & of the generator when supplying rated current at
unity power factor?

(b) What is the maximum power that this generator can deliver to a unity power
factor load when the field current is adjusted to the current value?

(c) When this generator is running at full load with unity power factor, how close
is it to the static stability limit of the machine?

. The internal generated voltage E, of a Y-connected, three-phase synchronous gen-

erator is 14.4 kV, and the terminal voltage V; is 12.8 kV. The synchronous reactance

of this machine is 4 ), and the armature resistance can be ignored.

(a) If the torque angle of the generator & = 18°, how much power is being supplied
by this generator at the current time?

(b) What is the power factor of the generator at this time?

(c) Sketch the phasor diagram under these circumstances.

(d) Ignoring losses in this generator, what torque must be applied to its shaft by the
prime mover at these conditions?
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A 100-MVA, 14.4-kV, 0.8-PF-lagging, 50-Hz, two-pole, Y-connected synchronous
generator has a per-unit synchronous reactance of 1.1 and a per-unit armature resis-
tance of 0.011.

(a) What are its synchronous reactance and armature resistance in ohms?

(b) What is the magnitude of the internal generated voltage E, at the rated condi-
tions? What is its torque angle & at these conditions?

(c) Ignoring losses in this generator, what torque must be applied to its shaft by the
prime mover at full load?

A 200-MVA, 12-kV, 0.85-PF-lagging, 50-Hz, 20-pole, Y-connected water turbine

generator has a per-unit synchronous reactance of 0.9 and a per-unit armature resis-

tance of 0.1. This generator is operating in parallel with a large power system

(infinite bus).

(a) What is the speed of rotation of this generator’s shaft?

(b) What is the magnitude of the internal generated voltage E, at rated conditions?

(c) What is the torque angle of the generator at rated conditions?

(d) What are the values of the generator’s synchronous reactance and armature
resistance in ohms?

(e) If the field current is held constant, what is the maximum power possible out of
this generator? How much reserve power or torque does this generator have at
full load?

(f) At the absolute maximum power possible, how much reactive power will this
generator be supplying or consuming? Sketch the corresponding phasor dia-
gram. (Assume /[ is still unchanged.)

A 480-V, 250-k VA, 0.8-PF-lagging, two-pole, three-phase, 60-Hz synchronous gen-

erator’s prime mover has a no-load speed of 3650 r/min and a full-load speed of

3570 r/min. It is operating in parallel with a 480-V, 250-kVA, 0.85-PF-lagging, four-

pole, 60-Hz synchronous generator whose prime mover has a no-load speed of

1800 r/min and a full-load speed of 1780 r/min. The loads supplied by the two gen-

erators consist of 300 kW at 0.8 PF lagging.

(a) Calculate the speed droops of generator 1 and generator 2.

(b) Find the operating frequency of the power system.

(c) Find the power being supplied by each of the generators in this system.

(d) What must the generator’s operators do to adjust the operating frequency to 60 Hz?

(e) If the current line voltage is 460 V, what must the generator’s operators do to
correct for the low terminal voltage?

Three physically identical synchronous generators are operating in parallel. They

are all rated for a full load of 100 MW at 0.8 PF lagging. The no-load frequency

of generator A is 61 Hz, and its speed droop is 3 percent. The no-load frequency of
generator B is 61.5 Hz, and its speed droop is 3.4 percent. The no-load frequency
of generator C is 60.5 Hz, and its speed droop is 2.6 percent.

(a) If a total load consisting of 230 MW is being supplied by this power system,
what will the system frequency be, and how will the power be shared among the
three generators?

(b) Create a plot showing the power supplied by each generator as a function of the
total power supplied to all loads (you may use MATLAB to create this plot). At
what load does one of the generators exceed its ratings? Which generator ex-
ceeds its ratings first?
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(c) Is this power sharing in (a) acceptable? Why or why not?

(d) What actions could an operator take to improve the real power sharing among
these generators?

A paper mill has installed three steam generators (boilers) to provide process steam

and also to use some its waste products as an energy source. Since there is extra ca-

pacity, the mill has installed three 10-MW turbine generators to take advantage of
the situation. Each generator is a 4160-V, 12.5 MVA, 60 Hz, 0.8-PF-lagging, two-
pole, Y-connected synchronous generator with a synchronous reactance of 1.10 {)
and an armature resistance of 0.03 (). Generators 1 and 2 have a characteristic
power—frequency slope sp of 5 MW/Hz, and generators 3 has a slope of 6 MW/Hz.

(a) If the no-load frequency of each of the three generators is adjusted to 61 Hz,
how much power will the three machines be supplying when the actual system
frequency is 60 Hz?

(b) What is the maximum power the three generators can supply in this condition
without the ratings of one of them being exceeded? At what frequency does this
limit occur? How much power does each generator supply at that point?

(c) What would have to be done to get all three generators to supply their rated real
and reactive powers at an overall operating frequency of 60 Hz?

(d) What would the internal generated voltages of the three generators be under this
condition?

Suppose that you were an engineer planning a new electric co-generation facility for

a plant with excess process steam. You have a choice of either two 10-MW turbine-

generators or a single 20-MW turbine-generator. What would be the advantages and

disadvantages of each choice?

A 25-MVA, 12.2-kV, 0.9-PF-lagging, three-phase, two-pole, Y-connected, 60-Hz

synchronous generator was tested by the open-circuit test, and its air-gap voltage

was extrapolated with the following results:

Open-circuit test

Field current, A 320 365 380 475 570
Line voltage, kV 13.0 13.8 14.1 15.2 16.0
Extrapolated air-gap voltage, kV 154 17.5 18.3 22.8 27.4

The short-circuit test was then performed with the following results:

Short-circuit test

Field current, A 320 365 380 475 570
Armature current, A 1040 1190 1240 1550 1885

The armature resistance is 0.6 () per phase.

(a) Find the unsaturated synchronous reactance of this generator in ohms per phase
and ohms per unit.

(b) Find the approximate saturated synchronous reactance Xj at a field current of
380 A. Express the answer both in ohms per phase and per unit.
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(c) Find the approximate saturated synchronous reactance at a field current of
475 A. Express the answer both in ohms per phase and in per unit.

(d) Find the short-circuit ratio for this generator.

(e) What is the internal generated voltage of this generator at rated conditions?

(f) What field current is required to achieve rated voltage at rated load?

During a short-circuit test, a Y-connected synchronous generator produces 100 A of

short-circuit armature current per phase at a field current of 2.5 A. At the same field

current, the open-circuit line voltage is measured to be 440 V.

(a) Calculate the saturated synchronous reactance under these conditions.

(b) If the armature resistance is 0.3 € per phase, and the generator supplies 60 A to
a purely resistive Y-connected load of 3 () per phase at this field current setting,
determine the voltage regulation under these load conditions.

A three-phase, Y-connected synchronous generator is rated 120 MVA, 13.8 kV, 0.8-

PF-lagging, and 60 Hz. Its synchronous reactance is 1.2 () per phase, and its arma-

ture resistance is 0.1 ) per phase.

(a) What is its voltage regulation?

(b) What would the voltage and apparent power rating of this generator be if it were
operated at 50 Hz with the same armature and field losses as it had at 60 Hz?

(c) What would the voltage regulation of the generator be at 50 Hz?

Problems 4-16 to 4-26 refer to a six-pole, Y-connected synchronous generator rated
at 1 MVA, 3.2 kV, 0.9 PF lagging, and 60 Hz. Its armature resistance R, is 0.7 ().
The core losses of this generator at rated conditions are 8 kW, and the friction and
windage losses are 10 kW. The open-circuit and short-circuit characteristics are
shown in Figure P4-2.

(a) What is the saturated synchronous reactance of this generator at the rated
conditions?

(b) What is the unsaturated synchronous reactance of this generator?

(c) Plot the saturated synchronous reactance of this generator as a function of load.

(a) What are the rated current and internal generated voltage of this generator?

(b) What field current does this generator require to operate at the rated voltage,
current, and power factor?

What is the voltage regulation of this generator at the rated current and power

factor?

If this generator is operating at the rated conditions and the load is suddenly re-

moved, what will the terminal voltage be?

What are the electrical losses in this generator at rated conditions?

If this machine is operating at rated conditions, what input torque must be applied to

the shaft of this generator? Express your answer both in newton-meters and in

pound-feet.

What is the torque angle 8 of this generator at rated conditions?

Assume that the generator field current is adjusted to supply 3200 V under rated

conditions. What is the static stability limit of this generator? (Note: You may ignore

R, to make this calculation easier.) How close is the full-load condition of this gen-

erator to the static stability limit?

Assume that the generator field current is adjusted to supply 3200 V under rated

conditions. Plot the power supplied by the generator as a function of the torque

angle 8.
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(a) Open-circuit characteristic curve for the generator in Problems 4-16 to 4-26. (b) Short-circuit
characteristic curve for the generator in Problems 4-16 to 4-26.
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Assume that the generator’s field current is adjusted so that the generator supplies
rated voltage at the rated load current and power factor. If the field current and the
magnitude of the load current are held constant, how will the terminal voltage
change as the load power factor varies from 0.9 PF lagging to 0.9 PF leading? Make

a plot of the terminal voltage versus the load power factor.

Assume that the generator is connected to a 3200-V infinite bus, and that its field cur-

rent has been adjusted so that it is supplying rated power and power factor to the bus.

You may ignore the armature resistance R, when answering the following questions.

(a) What will happen to the real and reactive power supplied by this generator if the
field flux (and therefore E,) is reduced by 5 percent?

(b) Plot the real power supplied by this generator as a function of the flux ¢ as the
flux is varied from 80 percent to 100 percent of the flux at rated conditions.

(c) Plot the reactive power supplied by this generator as a function of the flux ¢ as
the flux is varied from 80 percent to 100 percent of the flux at rated conditions.

(d) Plot the line current supplied by this generator as a function of the flux ¢ as the
flux is varied from 80 percent to 100 percent of the flux at rated conditions.

Two identical 2.5-MVA, 1200-V 0.8-PF-lagging, 60-Hz, three-phase synchronous

generators are connected in parallel to supply a load. The prime movers of the two

generators happen to have different speed droop characteristics. When the field cur-
rents of the two generators are equal, one delivers 1200 A at 0.9 PF lagging, while
the other delivers 900 A at 0.75 PF lagging.

(a) What are the real power and the reactive power supplied by each generator to
the load?

(b) What is the overall power factor of the load?

(c) In what direction must the field current on each generator be adjusted in order
for them to operate at the same power factor?

A generating station for a power system consists of four 300-MVA, 15-kV, 0.85-PF-

lagging synchronous generators with identical speed droop characteristics operating

in parallel. The governors on the generators’ prime movers are adjusted to produce

a 3-Hz drop from no load to full load. Three of these generators are each supplying

a steady 200 MW at a frequency of 60 Hz, while the fourth generator (called the

swing generator) handles all incremental load changes on the system while main-

taining the system’s frequency at 60 Hz.

(a) At a given instant, the total system loads are 650 MW at a frequency of 60 Hz.
What are the no-load frequencies of each of the system’s generators?

(b) If the system load rises to 725 MW and the generator’s governor set points do
not change, what will the new system frequency be?

(c) To what frequency must the no-load frequency of the swing generator be ad-
justed in order to restore the system frequency to 60 Hz?

(d) If the system is operating at the conditions described in part (c), what would
happen if the swing generator were tripped off the line (disconnected from the
power line)?

A 100-MVA, 14.4-kV, 0.8-PF-lagging, Y-connected synchronous generator has a

negligible armature resistance and a synchronous reactance of 1.0 per unit. The gen-

erator is connected in parallel with a 60-Hz, 14.4-kV infinite bus that is capable of
supplying or consuming any amount of real or reactive power with no change in
frequency or terminal voltage.

(a) What is the synchronous reactance of the generator in ohms?

(b) Whatis the internal generated voltage E, of this generator under rated conditions?
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(c) What is the armature current I, in this machine at rated conditions?

(d) Suppose that the generator is initially operating at rated conditions. If the inter-
nal generated voltage E, is decreased by 5 percent, what will the new armature
current I, be?

(e) Repeat part (d) for 10, 15, 20, and 25 percent reductions in E,,.

(f) Plot the magnitude of the armature current /, as a function of E,. (You may wish
to use MATLAB to create this plot.)
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CHAPTER

S

SYNCHRONOUS
MOTORS

LEARNING OBJECTIVES

* Understand the equivalent circuit of a synchronous motor.
* Be able to sketch phasor diagrams for a synchronous motor.
* Know the equations for power and torque in a synchronous motor.

* Understand how and why power factor varies as synchronous motor load in-
creases.

* Understand how and why power factor varies as synchronous motor field current
varies—the “V” curve.

* Understand how synchronous motors can be started.

* Be able to tell whether a synchronous machine is acting as a motor or a gen-
erator and whether it is supplying or consuming reactive power by examining
its phasor diagram.

* Understand synchronous motor ratings.

Synchronous motors are synchronous machines used to convert electrical power
to mechanical power. This chapter explores the basic operation of synchronous
motors and relates their behavior to that of synchronous generators.

5.1 BASIC PRINCIPLES OF
MOTOR OPERATION

To understand the basic concept of a synchronous motor, look at Figure 5-1, which
shows a two-pole synchronous motor. The field current / of the motor produces a
steady-state magnetic field Bg. A three-phase set of voltages is applied to the stator
of the machine, which produces a three-phase current flow in the windings.
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Tind = k Bg X Bg
= counterclockwise

FIGURE 5-1
A two-pole synchronous motor.

As was shown in Chapter 3, a three-phase set of currents in an armature
winding produces a uniform rotating magnetic field Bs. Therefore, there are two
magnetic fields present in the machine, and the rotor field will tend to line up with
the stator field, just as two bar magnets will tend to line up if placed near each
other. Since the stator magnetic field is rotating, the rotor magnetic field (and the
rotor itself) will constantly try to catch up. The larger the angle between the two
magnetic fields (up to a certain maximum), the greater the torque on the rotor of
the machine. The basic principle of synchronous motor operation is that the rotor
“chases” the rotating stator magnetic field around in a circle, never quite catching
up with it.

Since a synchronous motor is the same physical machine as a synchronous
generator, all of the basic speed, power, and torque equations of Chapters 3 and 4
apply to synchronous motors also.

The Equivalent Circuit of a Synchronous Motor

A synchronous motor is the same in all respects as a synchronous generator, except
that the direction of power flow is reversed. Since the direction of power flow in the
machine is reversed, the direction of current flow in the stator of the motor may be
expected to reverse also. Therefore, the equivalent circuit of a synchronous motor is
exactly the same as the equivalent circuit of a synchronous generator, except that the
reference direction of I is reversed. The resulting full equivalent circuit is shown in
Figure 5-2a, and the per-phase equivalent circuit is shown in Figure 5-2b. As be-
fore, the three phases of the equivalent circuit may be either Y- or A-connected.

Because of the change in direction of I, the Kirchhoff’s voltage law equa-
tion for the equivalent circuit changes, too. Writing a Kirchhoff’s voltage law
equation for the new equivalent circuit yields
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FIGURE 5-2
(a) The full equivalent circuit of a three-phase synchronous motor. (b) The per-phase equivalent circuit.

| Vs = B, +jXs1, + R,1, | (5-1)

or | E, =V, = jXsly — Ryl | (5-2)

This is exactly the same as the equation for a generator, except that the sign on the
current term has been reversed.

The Synchronous Motor from a Magnetic
Field Perspective

To begin to understand synchronous motor operation, take another look at a syn-
chronous generator connected to an infinite bus. The generator has a prime mover
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turning its shaft, causing it to rotate. The direction of the applied torque T, from
the prime mover is in the direction of motion, because the prime mover makes the
generator rotate in the first place.

The phasor diagram of the generator operating with a large field current is
shown in Figure 5-3a, and the corresponding magnetic field diagram is shown in
Figure 5-3b. As described before, B; corresponds to (produces) E,, B, corre-
sponds to (produces) V,, and Bg corresponds to E,, (= —jXsl,). The rotation of
both the phasor diagram and magnetic field diagram is counterclockwise in the
figure, following the standard mathematical convention of increasing angle.

The induced torque in the generator can be found from the magnetic field
diagram. From Equations (3-60) and (3-61) the induced torque is given by

Tind = kBgr X B (3-60)

or Tind = kBgB e sin 6 (3-61)

Notice that from the magnetic field diagram the induced torque in this machine is
clockwise, opposing the direction of rotation. In other words, the induced torque
in the generator is a countertorque, opposing the rotation caused by the external
applied torque 7,

Suppose that, instead of turning the shaft in the direction of motion, the
prime mover suddenly loses power and starts to drag on the machine’s shaft. What
happens to the machine now? The rotor slows down because of the drag on its shaft
and falls behind the net magnetic field in the machine (see Figure 5—4a). As the ro-
tor, and therefore By, slows down and falls behind B, the operation of the machine
suddenly changes. By Equation (3—60), when By is behind B, the induced
torque’s direction reverses and becomes counterclockwise. In other words, the
machine’s torque is now in the direction of motion, and the machine is acting as a
motor. The increasing torque angle & results in a larger and larger torque in the di-
rection of rotation, until eventually the motor’s induced torque equals the load

E, By
JXsla @y
F)
B
\@; v¢ f 7 6 net
IA S~o ~ //
>~ - /
~{g
() B (b)
FIGURE 5-3

(a) Phasor diagram of a synchronous generator operating at a lagging power factor. (b) The
corresponding magnetic field diagram.
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FIGURE 54

(a) Phasor diagram of a synchronous motor. (b) The corresponding magnetic field diagram.

torque on its shaft. At that point, the machine will be operating at steady state and
synchronous speed again, but now as a motor.

The phasor diagram corresponding to generator operation is shown in Fig-
ure 5-3a, and the phasor diagram corresponding to motor operation is shown in
Figure 5—4a. The reason that the quantity jXI, points from V,, to E, in the gen-
erator and from E, to V, in the motor is that the reference direction of I, was re-
versed in the definition of the motor equivalent circuit. The basic difference be-
tween motor and generator operation in synchronous machines can be seen
either in the magnetic field diagram or in the phasor diagram. In a generator, E,
lies ahead of V,,, and By lies ahead of B,,. In a motor, E, lies behind V,, and B
lies behind B,,. In a motor the induced torque is in the direction of motion, and
in a generator the induced torque is a countertorque opposing the direction of
motion.

5.2 STEADY-STATE SYNCHRONOUS
MOTOR OPERATION

This section explores the behavior of synchronous motors under varying condi-
tions of load and field current as well as the question of power-factor correction
with synchronous motors. The following discussions will generally ignore the ar-
mature resistance of the motors for simplicity. However, R, will be considered in
some of the worked numerical calculations.

The Synchronous Motor Torque-Speed
Characteristic Curve

Synchronous motors supply power to loads that are basically constant-speed devices.
They are usually connected to power systems very much larger than the individual
motors, so the power systems appear as infinite buses to the motors. This means that



276 ELECTRIC MACHINERY FUNDAMENTALS

Tind

Tpullout F——— e — — o

SR="al=" . 100%

nq
SR =0%
Tated F———————"—"—-"—-"—-"————— -+
n
nsync "

FIGURE 5-5

The torque—speed characteristic of a synchronous motor. Since the speed of the motor is constant, its
speed regulation is zero.

the terminal voltage and the system frequency will be constant regardless of the amount
of power drawn by the motor. The speed of rotation of the motor is locked to the rate of
rotation of the magnetic fields, and the rate of rotation of the applied mechanical fields
is locked to the applied electrical frequency, so the speed of the synchronous motor will
be constant regardless of the load. This fixed rate of rotation is given
120

n, = ——P—fﬁ (5-3)
where n,, is the mechanical rate of rotation, f;, is the stator electrical frequency,
and P is the number of poles in the motor.

The resulting torque—speed characteristic curve is shown in Figure 5-5. The
steady-state speed of the motor is constant from no load all the way up to the max-
imum torque that the motor can supply (called the pullout torque), so the speed
regulation of this motor [Equation (3—68)] is 0%. The torque equation is

Tind = kBgB,e Sin & (3-61)
3V£E sin &
or Tind = wAX (4-22)
m“*S

The maximum or pullout torque occurs when 8 = 90°. Normal full-load torques
are much less than that, however. In fact, the pullout torque may typically be three
times the full-load torque of the machine.

When the torque on the shaft of a synchronous motor exceeds the pullout
torque, the rotor can no longer remain locked to the stator and net magnetic fields.
Instead, the rotor starts to slip behind them. As the rotor slows down, the stator
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magnetic field “laps” it repeatedly, and the direction of the induced torque in the
rotor reverses with each pass. The resulting huge torque surges, first one way and
then the other way, cause the whole motor to vibrate severely. The loss of syn-
chronization after the pullout torque is exceeded is known as slipping poles.

The maximum or pullout torque of the motor is given by

Tmax = KBgBpe (54a)
3V,E
Z9”A
or Tmax = @, Xg (5-4b)

These equations indicate that the larger the field current (and hence E,), the greater
the maximum torque of the motor. There is therefore a stability advantage in operat-
ing the motor with a large field current or a large E,.

The Effect of Load Changes on a
Synchronous Motor

If a load is attached to the shaft of a synchronous motor, the motor will develop
enough torque to keep the motor and its load turning at a synchronous speed.
What happens when the load is changed on a synchronous motor?

To find out, examine a synchronous motor operating initially with a leading
power factor, as shown in Figure 5-6. If the load on the shaft of the motor is in-
creased, the rotor will initially slow down. As it does, the torque angle 6 becomes
larger, and the induced torque increases. The increase in induced torque eventu-
ally speeds the rotor back up, and the motor again turns at synchronous speed but
with a larger torque angle 6.

What does the phasor diagram look like during this process? To find out, ex-
amine the constraints on the machine during a load change. Figure 5-6a shows the
motor’s phasor diagram before the loads are increased. The internal generated volt-
age E, is equal to K¢w and so depends on only the field current in the machine and
the speed of the machine. The speed is constrained to be constant by the input
power supply, and since no one has touched the field circuit, the field current is
constant as well. Therefore, |E,| must be constant as the load changes. The dis-
tances proportional to power (E, sin 6 and I, cos 6) will increase, but the magni-
tude of E, must remain constant. As the load increases, E, swings down in the
manner shown in Figure 5-6b. As E, swings down further and further, the quantity
JXs1, has to increase to reach from the tip of E4 to V,, and therefore the armature
current I also increases. Notice that the power-factor angle 6 changes too, becom-
ing less and less leading and then more and more lagging.

Example 5-1. A 208-V, 45-hp, 0.8-PF-leading, A-connected, 60-Hz synchronous
machine has a synchronous reactance of 2.5 {) and a negligible armature resistance. Its
friction and windage losses are 1.5 kW, and its core losses are 1.0 kW. Initially, the shaft is
supplying a 15-hp load, and the motor’s power factor is 0.80 leading.
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(b)

FIGURE 5-6
(a) Phasor diagram of a motor operating at a leading power factor. (b) The effect of an increase in
load on the operation of a synchronous motor.

(a) Sketch the phasor diagram of this motor, and find the values of I, /;, and E,.

(b) Assume that the shaft load is now increased to 30 hp. Sketch the behavior of the
phasor diagram in response to this change.

(c) Find I, I;, and E, after the load change. What is the new motor power factor?

Solution
(a) Initially, the motor’s output power is 15 hp. This corresponds to an output of

P, = (15 hp)(0.746 KW/hp) = 11.19 kW
Therefore, the electric power supplied to the machine is

Pin = Poul + Pmech loss + Pcore loss + Pelec loss
=11.19kW + 1.5kW + 1.0kW + 0 kW = 13.69 kW
Since the motor’s power factor is 0.80 leading, the resulting line current flow is
b Pa
L™ V3V;cos 6

13.69 kW

= V3208 V)(0.80) ~ 479 A
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and the armature current is /;/V3 , with 0.8 leading power factor, which gives
the result

I, =274 £3687°A
To find E,, apply Kirchhoff’s voltage law [Equation (5-2)]:
E, = V4 — jXsl,
=208 £0°V — (j2.5 1)(27.4 £ 36.87° A)
=208 £0°V — 68.5 £126.87°V
=249.1 — j548V =255 2 —124°V

The resulting phasor diagram is shown in Figure 5-7a.

(b) As the power on the shaft is increased to 30 hp, the shaft slows momentarily, and
the internal generated voltage E, swings out to a larger angle 6 while maintain-
ing a constant magnitude. The resulting phasor diagram is shown in Figure 5-7b.

(c) After the load changes, the electric input power of the machine becomes

Pin = Poul + Pmech loss + Pcore loss + Pelec loss
= (30 hp)(0.746 kW/hp) + 1.5 kW + 1.0 kW + 0 kW
= 24.88 kW

7
I,=27.4 £3687° A
Ab V, =208 £0°V

3

JjXsl, = 68.5 £ 126.87°
E,=255/-124°V

(a)

NV, =208 £0°V

E,=2552-124°V

E’,=255/-23°V

(b)

FIGURE 5-7
(a) The motor phasor diagram for Example 5-1a. (b) The motor phasor diagram for Example 5—1b.
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From the equation for power in terms of torque angle [Equation (4-20)], it is pos-
sible to find the magnitude of the angle 6 (remember that the magnitude of E, is

constant):
3V,E, sin 6
P=—t=— (4-20)
s
X.P
= gin~! S
) 6 = sin 3V¢ E,

1 (2.5 D)(24.88 kW)
3(208 V)(255 V)

= sin"!0.391 = 23°

= sin

The internal generated voltage thus becomes E, = 355 £ -23° V. Therefore, 1,

will be given by
=Y Fa
A /XS
_208£0°V — 255 £-23°V
Jj25Q
_ 103.1 £105°V _ °
= 250 =412Z15°A

and /; will become
I, =V3l,=714A
The final power factor will be cos (—15°) or 0.966 leading.

The Effect of Field Current Changes on a
Synchronous Motor

We have seen how a change in shaft load on a synchronous motor affects the
motor. There is one other quantity on a synchronous motor that can be readily
adjusted—its field current. What effect does a change in field current have on a
synchronous motor?

To find out, look at Figure 5-8. Figure 5-8a shows a synchronous motor ini-
tially operating at a lagging power factor. Now, increase its field current and see
what happens to the motor. Note that an increase in field current increases the
magnitude of E, but does not affect the real power supplied by the motor. The
power supplied by the motor changes only when the shaft load torque changes.
Since a change in I does not affect the shaft speed n,,, and since the load attached
to the shaft is unchanged, the real power supplied is unchanged. Of course, V; is
also constant, since it is kept constant by the power source supplying the motor.
The distances proportional to power on the phasor diagram (E, sin é and I, cos 6)
must therefore be constant. When the field current is increased, E, must increase,
but it can only do so by sliding out along the line of constant power. This effect is
shown in Figure 5-8b.
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FIGURE 5-8
(a) A synchronous motor operating at a lagging power factor. (b) The effect of an increase in field
current on the operation of this motor.

Notice that as the value of E, increases, the magnitude of the armature cur-
rent I, first decreases and then increases again. At low E,, the armature current is
lagging, and the motor is an inductive load. It is acting like an inductor-resistor
combination, consuming reactive power Q. As the field current is increased, the
armature current eventually lines up with V,, and the motor looks purely resistive.
As the field current is increased further, the armature current becomes leading,
and the motor becomes a capacitive load. It is now acting like a capacitor-resistor
combination, consuming negative reactive power —Q or, alternatively, supplying
reactive power Q to the system.

A plot of 1, versus I for a synchronous motor is shown in Figure 5-9. Such
a plot is called a synchronous motor V curve, for the obvious reason that it is
shaped like the letter V. There are several V curves drawn, corresponding to dif-
ferent real power levels. For each curve, the minimum armature current occurs at
unity power factor, when only real power is being supplied to the motor. At any
other point on the curve, some reactive power is being supplied to or by the mo-
tor as well. For field currents less than the value giving minimum /4, the armature
current is lagging, consuming Q. For field currents greater than the value giving
the minimum /,, the armature current is leading, supplying Q to the power system
as a capacitor would. Therefore, by controlling the field current of a synchronous
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FIGURE 5-9
Ir Synchronous motor V curves.

motor, the reactive power supplied to or consumed by the power system can be
controlled.

When the projection of the phasor E, onto V,, (E4 cos 8) is shorter than V
itself, a synchronous motor has a lagging current and consumes Q. Since the field
current is small in this situation, the motor is said to be underexcited. On the other
hand, when the projection of E, onto V, is longer than V,, itself, a synchronous
motor has a leading current and supplies Q to the power system. Since the field
current is large in this situation, the motor is said to be overexcited. Phasor dia-
grams illustrating these concepts are shown in Figure 5-10.

Example 5-2. The 208-V, 45-hp, 0.8-PF-leading, A-connected, 60-Hz synchro-
nous motor of the previous example is supplying a 15-hp load with an initial power factor
of 0.85 PF lagging. The field current I at these conditions is 4.0 A.

(a) Sketch the initial phasor diagram of this motor, and find the values I, and E,.
(b) If the motor’s flux is increased by 25 percent, sketch the new phasor diagram of
the motor. What are E,, I, and the power factor of the motor now?

E cos <V, Ejcos 8>V,

(b)

FIGURE 5-10
(a) The phasor diagram of an underexcited synchronous motor. (b) The phasor diagram of an
overexcited synchronous motor.
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(c) Assume that the flux in the motor varies linearly with the field current /.. Make
a plot of 1, versus I for the synchronous motor with a 15-hp load.

Solution

(a) From the previous example, the electric input power with all the losses included
is P, = 13.69 kW. Since the motor’s power factor is 0.85 lagging, the resulting
armature current flow is

P

= 3V, cos 0

_ __13.69kW
3(208 V)(0.85)

Iy

=258A

The angle 0 is cos™! 0.85 = 31.8°, so the phasor current I, is equal to
I, =258 2 -31.8°A
To find E,, apply Kirchhoff’s voltage law [Equation (5-2)]:
E, =V, — jX,
=208 £0°V — (j2.5)(25.8 £ —31.8° A)
=208 £0°V — 64.5£582°V

=182« -175°V
The resulting phasor diagram is shown in Figure 5-11, together with the results
for part b.
(b) If the flux ¢ is increased by 25 percent, then E, = K¢w will increase by 25 per-
cent too:

Eyp=125E, = 1.25(182V) = 2275V

However, the power supplied to the load must remain constant. Since the dis-
tance E, sin d is proportional to the power, that distance on the phasor diagram
must be constant from the original flux level to the new flux level. Therefore,

E,, sin 6, = E,, sin §,

/V,, =208 £0°V

JXsla oP

E,=1822-17.5° v/ NE,=22752-139°V

FIGURE 5-11
The phasor diagram of the motor in Example 5-2.
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E
= gin~! —Al
8, = sin ( E, sin 8,)

= sin 1[212725Vv sin (—17. 5°)] —13.9°

The armature current can now be found from Kirchhoff’s voltage law:

I _ VQ - EA2
A2 T sz
L = 208 £0°V —227.5£—139°V
A 250
_ 56.2£103.2°V _ o
= 250 =225Z132°A

Finally, the motor’s power factor is now
PF = cos (13.2°) = 0.974 leading

The resulting phasor diagram is also shown in Figure 5-11.

(c) Because the flux is assumed to vary linearly with field current, E, will also vary
linearly with field current. We know that E, is 182 V for a field current of 4.0 A,
so E, for any given field current can be found from the ratio

EA2 = IFZ
182V 40A
or EA2 =45.5 In (5—5)

The torque angle & for any given field current can be found from the fact that
the power supplied to the load must remain constant:

E, sin 6; = E,, sin §,

E
50 8, = sin”! (E_:i sin 8,) (5-6)

These two pieces of information give us the phasor voltage E,. Once E, is avail-
able, the new armature current can be calculated from Kirchhoff’s voltage law:

V,—E
[, =% 42 5-7

A2 X (5-7)
A MATLAB M-file to calculate and plot I, versus I using Equations (5-5)
through (5-7) is shown below:

M-file: v_curve.m
M-file create a plot of armature current versus field
current for the synchronous motor of Example 5-2.

First, initialize the field current values (21 values

% in the range 3.8-5.8 A)

f = (38:1:58) / 10;

% Now initialize all other values

i_a = zeros(1,21); % Pre-allocate i_a array
X_s = 2.5; % Synchronous reactance
v_phase = 208; % Phase voltage at 0 degrees
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deltal = -17.5 * pi/180; % delta 1 in radians
e_al = 182 * (cos(deltal) + j * sin(deltal));

% Calculate the armature current for each value
for ii = 1:21

% Calculate magnitude of e_a2

e_a2 = 45.5 * i_f(ii);

% Calculate delta2
delta2 = asin ( abs(e_al) / abs(e_a2) * sin(deltal) );

% Calculate the phasor e_a2
e_a2 = e_a2 * (cos(delta2) + j * sin(delta2));

% Calculate i_a
i_a(ii) = ( v_phase - e_a2 ) / ( j * x_s);
end

% Plot the v-curve

plot (i_f,abs(i_a),'Color', 'k', 'Linewidth',2.0);

xlabel ('Field Current (A)','Fontweight', 'Bold');

ylabel ('Armature Current (A)','Fontweight','Bold');
title ('Synchronous Motor V-Curve','Fontweight', 'Bold’');
grid on;
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The plot produced by this M-file is shown in Figure 5-12. Note that for a field current of

4.0 A, the armature current is 25.8 A. This result agrees with part a of this example.

The Synchronous Motor and
Power-Factor Correction

Figure 5-13 shows an infinite bus whose output is connected through a transmis-
sion line to an industrial plant at a distant point. The industrial plant shown consists

Armature current, A

30

» /
.l /
l\ /

26 ‘F
s\ /

24 \ /
; \ /

\\v/ d

22

21
3.5 4.0 4.5 5.0 5.5 6.0

Field current, A

FIGURE 5-12
V curve for the synchronous motor of Example 5-2.
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FIGURE 5-13
A simple power system consisting of an infinite bus supplying an industrial plant through a
transmission line.

of three loads. Two of the loads are induction motors with lagging power factors,
and the third load is a synchronous motor with a variable power factor.

What does the ability to set the power factor of one of the loads do for the
power system? To find out, examine the following example problem. (Note: A re-
view of the three-phase power equations and their uses is given in Appendix A.
Some readers may wish to consult it when studying this problem.)

Example 5-3. The infinite bus in Figure 5-13 operates at 480 V. Load 1 is an induc-
tion motor consuming 100 kW at 0.78 PF lagging, and load 2 is an induction motor consum-
ing 200 kW at 0.8 PF lagging. Load 3 is a synchronous motor whose real power consumption
is 150 kW.

(a) If the synchronous motor is adjusted to operate at 0.85 PF lagging, what is the
transmission line current in this system?

(b) If the synchronous motor is adjusted to operate at 0.85 PF leading, what is the
transmission line current in this system?

(c) Assume that the transmission line losses are given by

P =3I?R, lineloss

where LL stands for line losses. How do the transmission losses compare in the
two cases?

Solution
(a) In the first case, the real power of load 1 is 100 kW, and the reactive power of
load 1 is
Q, =P tan 0
= (100 kW) tan (cos™' 0.78) = (100 kW) tan 38.7°
= 80.2 kVAR



(b)

SYNCHRONOUS MOTORS

The real power of load 2 is 200 kW, and the reactive power of load 2 is
Q, = P,tan 6
= (200 kW) tan (cos™! 0.80) = (200 kW) tan 36.87°
= 150 kVAR
The real power load 3 is 150 kW, and the reactive power of load 3 is
Q; = P;tan 0
= (150 kW) tan (cos™! 0.85) = (150 kW) tan 31.8°
= 93 kVAR
Thus, the total real load is
Py =P, + P, + P,
= 100 kW + 200 kW + 150 kW = 450 kW
and the total reactive load is
Qu=0+0,+ 0
= 80.2kVAR + 150 kVAR + 93 kVAR = 323.2 kVAR

The equivalent system power factor is thus

PF = cos 6 = cos (tan‘l %) = cos (tan“ 3232 kVAR kVAR)

450 kW
= cos 35.7° = 0.812 lagging

Finally, the line current is given by

[ = Do _ ___450kW
L™ V3V cos § ~ V3(480 V)(0.812)

= 667 A

287

The real and reactive powers of loads 1 and 2 are unchanged, as is the real

power of load 3. The reactive power of load 3 is
Q; = Pytan 6
= (150 kW) tan (-cos™' 0.85) = (150 kW) tan (-31.8°)
= —93 kVAR
Thus, the total real load is
Py =P, + P, + Py
= 100 kW + 200 kW + 150 kW = 450 kW
and the total reactive load is
Q=01+ 0+ Qs
= 80.2kVAR + 150 kVAR - 93 kVAR = 137.2 kVAR

The equivalent system power factor is thus

PF = cos 6 = cos (tan‘l %) = cos (tan" l:;LM)

450 kW
= cos 16.96° = 0.957 lagging
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Finally, the line current is given by

| = Py _ 450 kW
L™ V3V, cos 6 ~ V3(480 V)(0.957)

= 566 A

(c) The transmission losses in the first case are
P = 3I2R, = 3(667 A)?R, = 1,344,700 R,
The transmission losses in the second case are
P, = 3I2R, = 3(566 A)2R, = 961,070 R,

Notice that in the second case the transmission power losses are 28 percent less
than in the first case, while the power supplied to the loads is the same.

As seen in Example 5-3, the ability to adjust the power factor of one or
more loads in a power system can significantly affect the operating efficiency of
the power system. The lower the power factor of a system, the greater the losses
in the power lines feeding it. Most loads on a typical power system are induction
motors, so power systems are almost invariably lagging in power factor. Having
one or more leading loads (overexcited synchronous motors) on the system can be
useful for the following reasons:

1. Aleading load can supply some reactive power Q for nearby lagging loads,
instead of it coming from the generator. Since the reactive power does not
have to travel over the long and fairly high-resistance transmission lines, the
transmission line current is reduced and the power system losses are much
lower. (This was shown by the previous example.)

2. Since the transmission lines carry less current, they can be smaller for a given
rated power flow. A lower equipment current rating reduces the cost of a
power system significantly.

3. In addition, requiring a synchronous motor to operate with a leading power
factor means that the motor must be run overexcited. This mode of operation
increases the motor’s maximum torque and reduces the chance of acciden-
tally exceeding the pullout torque.

The use of synchronous motors or other equipment to increase the overall
power factor of a power system is called power-factor correction. Since a syn-
chronous motor can provide power-factor correction and lower power system
costs, many loads that can accept a constant-speed motor (even though they do not
necessarily need one) are driven by synchronous motors. Even though a synchro-
nous motor may cost more than an induction motor on an individual basis, the
ability to operate a synchronous motor at leading power factors for power-factor
correction saves money for industrial plants. This results in the purchase and use
of synchronous motors.

Any synchronous motor that exists in a plant is run overexcited as a matter
of course to achieve power-factor correction and to increase its pullout torque.
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However, running a synchronous motor overexcited requires a high field current
and flux, which causes significant rotor heating. An operator must be careful not
to overheat the field windings by exceeding the rated field current.

The Synchronous Capacitor or
Synchronous Condenser

A synchronous motor purchased to drive a load can be operated overexcited to
supply reactive power Q for a power system. In fact, at some times in the past a
synchronous motor was purchased and run without a load, simply for power-
factor correction. The phasor diagram of a synchronous motor operating overex-
cited at no load is shown in Figure 5-14.

Since there is no power being drawn from the motor, the distances propor-
tional to power (E,4 sin 6 and I, cos 6) are zero. Since the Kirchhoff’s voltage law
equation for a synchronous motor is

Vs = E, + X1y (5-1)

the quantity jXI, points to the left, and therefore the armature current I, points
straight up. If V,;, and I, are examined, the voltage—current relationship between
them looks like that of a capacitor. An overexcited synchronous motor at no load
looks just like a large capacitor to the power system.

Some synchronous motors used to be sold specifically for power-factor cor-
rection. These machines had shafts that did not even come through the frame of
the motor—no load could be connected to them even if one wanted to do so. Such
special-purpose synchronous motors were often called synchronous condensers or
synchronous capacitors. (Condenser is an old name for capacitor.)

The V curve for a synchronous capacitor is shown in Figure 5-15a. Since
the real power supplied to the machine is zero (except for losses), at unity power
factor the current I, = 0. As the field current is increased above that point, the line
current (and the reactive power supplied by the motor) increases in a nearly linear
fashion until saturation is reached. Figure 5—15b shows the effect of increasing the
field current on the motor’s phasor diagram.

Today, conventional static capacitors are more economical to buy and use
than synchronous capacitors. However, some synchronous capacitors may still be
in use in older industrial plants.

JXsly FIGURE 5-14
=——————= The phasor diagram of a synchronous
\2) A capacitor or synchronous condenser.
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FIGURE 5-15
(a) The V curve of a synchronous capacitor. (b) The corresponding machine phasor diagram.

5.3 STARTING SYNCHRONOUS MOTORS

Section 5.2 explained the behavior of a synchronous motor under steady-state
conditions. In that section, the motor was always assumed to be initially turning
at synchronous speed. What has not yet been considered is the question: How did
the motor get to synchronous speed in the first place?

To understand the nature of the starting problem, refer to Figure 5-16. This
figure shows a 60-Hz synchronous motor at the moment power is applied to its
stator windings. The rotor of the motor is stationary, and therefore the magnetic
field By is stationary. The stator magnetic field By is starting to sweep around the
motor at synchronous speed.

Figure 5-16a shows the machine at time ¢t = O s, when By and B; are exactly
lined up. By the induced-torque equation

Tina = kBg % Bg (3-58)

the induced torque on the shaft of the rotor is zero. Figure 5-16b shows the situa-
tion at time ¢ = 1/240 s. In such a short time, the rotor has barely moved, but the
stator magnetic field now points to the left. By the induced-torque equation, the
torque on the shaft of the rotor is now counterclockwise. Figure 5-16c shows
the situation at time ¢ = 1/120 s. At that point B and B point in opposite direc-
tions, and 7,4 again equals zero. At 1 = 3/240 s, the stator magnetic field now
points to the right, and the resulting torque is clockwise.

Finally, at ¢ = 1/60 s, the stator magnetic field is again lined up with the ro-
tor magnetic field, and 7,4 = 0. During one electrical cycle, the torque was first
counterclockwise and then clockwise, and the average torque over the complete
cycle was zero. What happens to the motor is that it vibrates heavily with each
electrical cycle and finally overheats.

Such an approach to synchronous motor starting is hardly satisfactory—
managers tend to frown on employees who burn up their expensive equipment. So
just how can a synchronous motor be started?
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Starting problems in a synchronous motor—the torque alternates rapidly in magnitude and direction,
so that the net starting torque is zero.

Three basic approaches can be used to safely start a synchronous motor:

1. Reduce the speed of the stator magnetic field to a low enough value that the rotor
can accelerate and lock in with it during one half-cycle of the magnetic field’s ro-
tation. This can be done by reducing the frequency of the applied electric power.

2. Use an external prime mover to accelerate the synchronous motor up to syn-
chronous speed, go through the paralleling procedure, and bring the machine
on the line as a generator. Then, turning off or disconnecting the prime mover
will make the synchronous machine a motor.

3. Use damper windings or amortisseur windings. The function of damper
windings and their use in motor starting will be explained below.

Each of these approaches to synchronous motor starting will be described

in turn.

Motor Starting by Reducing Electrical Frequency

If the stator magnetic fields in a synchronous motor rotate at a low enough speed,
there will be no problem for the rotor to accelerate and to lock in with the stator
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magnetic field. The speed of the stator magnetic fields can then be increased to
operating speed by gradually increasing f;, up to its normal 50- or 60-Hz value.
This approach to starting synchronous motors makes a lot of sense, but it does
have one big problem: Where does the variable electrical frequency come from?
Regular power systems are very carefully regulated at 50 or 60 Hz, so until recently
any variable-frequency voltage source had to come from a dedicated generator.
Such a situation was obviously impractical except for very unusual circumstances.
Today, things are different. Solid-state motor controllers can be used to convert
a constant input frequency to any desired output frequency. With the development of
modern solid-state variable-frequency drive packages, it is perfectly possible to con-
tinuously control the electrical frequency applied to the motor all the way from a frac-
tion of a hertz up to and above full rated frequency. If such a variable-frequency drive
unit is included in a motor-control circuit to achieve speed control, then starting the
synchronous motor is very easy—simply adjust the frequency to a very low value for
starting, and then raise it up to the desired operating frequency for normal running.
When a synchronous motor is operated at a speed lower than the rated speed,
its internal generated voltage E, = K¢w will be smaller than normal. If E, is re-
duced in magnitude, then the terminal voltage applied to the motor must be reduced
as well in order to keep the stator current at safe levels. The voltage in any variable-
frequency drive or variable-frequency starter circuit must vary roughly linearly with
the applied frequency.
To learn more about such solid-state motor-drive units, refer to Reference 9.

Motor Starting with an External Prime Mover

The second approach to starting a synchronous motor is to attach an external start-
ing motor to it and bring the synchronous machine up to full speed with the ex-
ternal motor. Then the synchronous machine can be paralleled with its power sys-
tem as a generator, and the starting motor can be detached from the shaft of the
machine. Once the starting motor is turned off, the shaft of the machine slows
down, the rotor magnetic field B, falls behind B,,, and the synchronous machine
starts to act as a motor. Once paralleling is completed, the synchronous motor can
be loaded down in an ordinary fashion.

This whole procedure is not as preposterous as it sounds, since many syn-
chronous motors are parts of motor-generator sets, and the synchronous machine in
the motor-generator set may be started with the other machine serving as the start-
ing motor. Also, the starting motor only needs to overcome the inertia of the syn-
chronous machine without a load—no load is attached until the motor is paralleled
to the power system. Since only the motor’s inertia must be overcome, the starting
motor can have a much smaller rating than the synchronous motor it starts.

Since most large synchronous motors have brushless excitation systems
mounted on their shafts, it is often possible to use these exciters as starting motors.

For many medium-size to large synchronous motors, an external starting
motor or starting by using the exciter may be the only possible solution, because
the power systems they are tied to may not be able to handle the starting currents
needed to use the amortisseur winding approach described next.
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Motor Starting by Using Amortisseur Windings

By far the most popular way to start a synchronous motor is to employ amortisseur
or damper windings. Amortisseur windings are special bars laid into notches
carved in the face of a synchronous motor’s rotor and then shorted out on each end
by a large shorting ring. A pole face with a set of amortisseur windings is shown in
Figure 5-17, and amortisseur windings are visible in Figures 4-2 and 44.

To understand what a set of amortisseur windings does in a synchronous mo-
tor, examine the stylized salient two-pole rotor shown in Figure 5-18. This rotor
shows an amortisseur winding with the shorting bars on the ends of the two rotor

FIGURE 5-17

A rotor field pole for a synchronous
machine showing amortisseur
windings in the pole face. (Courtesy
of General Electric Company.)

Shorting
bars

Shorting
bars

FIGURE 5-18

A simplified diagram of a salient two-
pole machine showing amortisseur
windings.
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pole faces connected by wires. (This is not quite the way normal machines are con-
structed, but it will serve beautifully to illustrate the point of the windings.)

Assume initially that the main rotor field winding is disconnected and that a
three-phase set of voltages is applied to the stator of this machine. When the
power is first applied at time ¢ = 0 s, assume that the magnetic field By is vertical,
as shown in Figure 5-19a. As the magnetic field Bg sweeps along in a counter-
clockwise direction, it induces a voltage in the bars of the amortisseur winding
given by Equation (1-45):

ena = (vxB)el (1-45)

where v = velocity of the bar relative to the magnetic field
B = magnetic flux density vector
1 = length of conductor in the magnetic field

The bars at the top of the rotor are moving to the right relative to the magnetic
field, so the resulting direction of the induced voltage is out of the page. Similarly,
the induced voltage is into the page in the bottom bars. These voltages produce a
current flow out of the top bars and into the bottom bars, resulting in a winding
magnetic field By, pointing to the right. By the induced-torque equation

Tind = kBy x Bg

the resulting torque on the bars (and the rotor) is counterclockwise.

Figure 5-19b shows the situation at # = 1/240 s. Here, the stator magnetic
field has rotated 90° while the rotor has barely moved (it simply cannot speed up
in so short a time). At this point, the voltage induced in the amortisseur windings
is zero, because v is parallel to B. With no induced voltage, there is no current in
the windings, and the induced torque is zero.

Figure 5-19c shows the situation at = 1/120 s. Now the stator magnetic
field has rotated 90°, and the rotor still has not moved yet. The induced voltage
[given by Equation (1-45)] in the amortisseur windings is out of the page in the
bottom bars and into the page in the top bars. The resulting current flow is out of
the page in the bottom bars and into the page in the top bars, causing a magnetic
field By, to point to the left. The resulting induced torque, given by

Tina = kBy x Bg

is counterclockwise.

Finally, Figure 5-19d shows the situation at time ¢ = 3/240 s. Here, as at
t = 1/240 s, the induced torque is zero.

Notice that sometimes the torque is counterclockwise and sometimes it is
essentially zero, but it is always unidirectional. Since there is a net torque in a sin-
gle direction, the motor’s rotor speeds up. (This is entirely different from starting
a synchronous motor with its normal field current, since in that case torque is first
clockwise and then counterclockwise, averaging out to zero. In this case, torque is
always in the same direction, so there is a nonzero average torque.)
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Tina=0

() r=1/240s

Tina=0

d) t=3/240s

The development of a unidirectional torque with synchronous motor amortisseur windings.

Although the motor’s rotor will speed up, it can never quite reach synchro-
nous speed. This is easy to understand. Suppose that a rotor is turning at syn-
chronous speed. Then the speed of the stator magnetic field By is the same as the
rotor’s speed, and there is no relative motion between Bg and the rotor. If there is
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no relative motion, the induced voltage in the windings will be zero, the result-
ing current flow will be zero, and the winding magnetic field will be zero. There-
fore, there will be no torque on the rotor to keep it turning. Even though a rotor
cannot speed up all the way to synchronous speed, it can get close. It gets close
enough to ngy, that the regular field current can be turned on, and the rotor will
pull into step with the stator magnetic fields.

In a real machine, the field windings are not open-circuited during the start-
ing procedure. If the field windings were open-circuited, then very high voltages
would be produced in them during starting. If the field winding is short-circuited
during starting, no dangerous voltages are produced, and the induced field current
actually contributes extra starting torque to the motor.

To summarize, if a machine has amortisseur windings, it can be started by
the following procedure:

1. Disconnect the field windings from their dc power source and short them out.

2. Apply a three-phase voltage to the stator of the motor, and let the rotor accel-
erate up to near-synchronous speed. The motor should have no load on its
shaft, so that its speed can approach n,. as closely as possible.

3. Connect the dc field circuit to its power source. After this is done, the motor
will lock into step at synchronous speed, and loads may then be added to its
shaft.

The Effect of Amortisseur Windings
on Motor Stability

If amortisseur windings are added to a synchronous machine for starting, we get
a free bonus—an increase in machine stability. The stator magnetic field rotates at
a constant speed ngy,,., which varies only when the system frequency varies. If the
rotor turns at ny,., then the amortisseur windings have no induced voltage at all.
If the rotor turns slower than n,., then there will be relative motion between the
rotor and the stator magnetic field and a voltage will be induced in the windings.
This voltage produces a current flow, and the current flow produces a magnetic
field. The interaction of the two magnetic fields produces a torque that tends to
speed the machine up again. On the other hand, if the rotor turns faster than the
stator magnetic field, a torque will be produced that tries to slow the rotor down.
Thus, the torque produced by the amortisseur windings speeds up slow machines
and slows down fast machines.

These windings therefore tend to dampen out the load or other transients on the
machine. It is for this reason that amortisseur windings are also called damper wind-
ings. Amortisseur windings are also used on synchronous generators, where they
serve a similar stabilizing function when a generator is operating in parallel with
other generators on an infinite bus. If a variation in shaft torque occurs on the gener-
ator, its rotor will momentarily speed up or slow down, and these changes will be op-
posed by the amortisseur windings. Amortisseur windings improve the overall sta-
bility of power systems by reducing the magnitude of power and torque transients.
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Amortisseur windings are responsible for most of the subtransient current in
a faulted synchronous machine. A short circuit at the terminals of a generator is just
another form of transient, and the amortisseur windings respond very quickly to it.

5.4 SYNCHRONOUS GENERATORS AND
SYNCHRONOUS MOTORS

A synchronous generator is a synchronous machine that converts mechanical
power to electric power, while a synchronous motor is a synchronous machine
that converts electric power to mechanical power. In fact, they are both the same
physical machine.

A synchronous machine can supply real power to or consume real power from
a power system and can supply reactive power to or consume reactive power from a
power system. All four combinations of real and reactive power flows are possible,
and Figure 5-20 shows the phasor diagrams for these conditions.

Supply Consume
reactive power Ejcosd >V, | reactive power Ejcosd <V,
0 Q
Supply
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E, E,

Generator
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%
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=
r‘j
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E, lags
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FIGURE 5-20
Phasor diagrams showing the generation and consumption of real power P and reactive power Q by
synchronous generators and motors.
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FIGURE 5-21
A typical nameplate for a large synchronous motor. (Courtesy of General Electric Company.)

Notice from the figure that

1. The distinguishing characteristic of a synchronous generator (supplying P) is
that E, lies ahead of V,, while for a motor E, lies behind V.

2. The distinguishing characteristic of a machine supplying reactive power Q is
that E, cos 8 > V, regardless of whether the machine is acting as a generator or
as a motor. A machine that is consuming reactive power Q has E, cos 8 < V.

5.5 SYNCHRONOUS MOTOR RATINGS

Since synchronous motors are the same physical machines as synchronous gener-
ators, the basic machine ratings are the same. The one major difference is that a
large E, gives a leading power factor instead of a lagging one, and therefore the
effect of the maximum field current limit is expressed as a rating at a leading
power factor. Also, since the output of a synchronous motor is mechanical power,
a synchronous motor’s power rating is usually given in output horsepower (in the
USA) or output kilowatts (everywhere else in the world), instead of being speci-
fied by a voltampere rating and power factor the way generators are.

The nameplate of a large synchronous motor is shown in Figure 5-21. In
addition to the information shown in the figure, a smaller synchronous motor
would have a service factor on its nameplate.

In general, synchronous motors are more adaptable to low-speed, high-
power applications than induction motors (see Chapter 6). They are therefore
commonly used for low-speed, high-power loads.

5.6 SUMMARY

A synchronous motor is the same physical machine as a synchronous generator,
except that the direction of real power flow is reversed. Since synchronous motors
are usually connected to power systems containing generators much larger than
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the motors, the frequency and terminal voltage of a synchronous motor are fixed
(i.e., the power system looks like an infinite bus to the motor).

The equivalent circuit of a synchronous motor is the same as the equivalent
circuit of a synchronous generator, except that the assumed direction of the arma-
ture current is reversed.

The speed of a synchronous motor is constant from no load to the maximum
possible load on the motor. The speed of rotation is

120,

M P (5-3)

from no load all the way up to the maximum possible load. The maximum possi-
ble power a synchronous motor can produce is

3V.E
Poax = (@-21)

And the maximum possible torque is given by

_ 3V4E,

T
X

" nax (4-22)
If this value is exceeded, the rotor will not be able to stay locked in with the stator
magnetic fields, and the motor will slip poles.

If we ignore the effect of electrical and mechanical losses, then power con-
verted from electrical to mechanical form in the motor is given by

Peony = 474 5in 5 (4-20)
X

If the input voltage V,, is constant, then the power converted (and thus the power
supplied) is directly proportional to the quantity E, sin 8. This relationship can be
useful when plotting synchronous motor phasor diagrams. For example, if the field
current is increased or decreased, the internal generated voltage of the motor will
increase or decrease, but the quantity E, sin § will remain constant. This constraint
makes it easy to plot the changes in the motor’s phasor diagram (see Figure 5-9),
and to calculate synchronous motor V curves.

If the field current of a synchronous motor is varied while its shaft load re-
mains constant, then the reactive power supplied or consumed by the motor will
vary . If E, cos & > V,, the motor will supply reactive power, while if E, cos § <V,
the motor will consume reactive power. A synchronous motor is usually operated
with E, cos 8 >V}, so that the synchronous motor supplies reactive power to the
power system and reduces the overall power factor of the loads.

A synchronous motor has no net starting torque and so cannot start by itself.
There are three main ways to start a synchronous motor:

1. Reduce the stator frequency to a safe starting level.
2. Use an external prime mover.

3. Put amortisseur or damper windings on the motor to accelerate it to near-
synchronous speed before a direct current is applied to the field windings.
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If damper windings are present on a motor, they will also increase the stability

of the motor during load transients.

QUESTIONS

5-1.
5-2.
5-3.

54.
5-5.
5-6.

5-7.
5-8

5-9.

5-10.

5-11.

What is the difference between a synchronous motor and a synchronous generator?
What is the speed regulation of a synchronous motor?

When would a synchronous motor be used even though its constant-speed charac-
teristic was not needed?

Why can’t a synchronous motor start by itself?

What techniques are available to start a synchronous motor?

What are amortisseur windings? Why is the torque produced by them unidirectional
at starting, while the torque produced by the main field winding alternates direction?
What is a synchronous capacitor? Why would one be used?

Explain, using phasor diagrams, what happens to a synchronous motor as its field
current is varied. Derive a synchronous motor V curve from the phasor diagram.

Is a synchronous motor’s field circuit in more danger of overheating when it is op-
erating at a leading or at a lagging power factor? Explain, using phasor diagrams.
A synchronous motor is operating at a fixed real load, and its field current is in-
creased. If the armature current falls, was the motor initially operating at a lagging
or a leading power factor?

Why must the voltage applied to a synchronous motor be derated for operation at
frequencies lower than the rated value?

PROBLEMS

5-1.

5-2.

A 480-V, 60-Hz, 400-hp, 0.8-PF-leading, eight-pole, A-connected synchronous mo-

tor has a synchronous reactance of 0.6 {) and negligible armature resistance. Ignore

its friction, windage, and core losses for the purposes of this problem. Assume that

IE,| is directly proportional to the field current I (in other words, assume that the

motor operates in the linear part of the magnetization curve), and that [E;| = 480 V

when I = 4 A.

(a) What is the speed of this motor?

(b) If this motor is initially supplying 400 hp at 0.8 PF lagging, what are the mag-
nitudes and angles of E, and 1,?

(c) How much torque is this motor producing? What is the torque angle 67 How
near is this value to the maximum possible induced torque of the motor for this
field current setting?

(d) If IE4l is increased by 30 percent, what is the new magnitude of the armature
current? What is the motor’s new power factor?

(e) Calculate and plot the motor’s V curve for this load condition.

Assume that the motor of Problem 5-1 is operating at rated conditions.

(a) What are the magnitudes and angles of E, and I, and /;?

(b) Suppose the load is removed from the motor. What are the magnitudes and an-
gles of E4 and I, now?
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5-3. A 230-V, 50-Hz, two-pole synchronous motor draws 40 A from the line at unity
power factor and full load. Assuming that the motor is lossless, answer the follow-
ing questions:

(a) What is the output torque of this motor? Express the answer both in newton-me-
ters and in pound-feet.

(b) What must be done to change the power factor to 0.85 leading? Explain your
answer, using phasor diagrams.

(c) What will the magnitude of the line current be if the power factor is adjusted to
0.85 leading?

5-4. A 2300-V, 1000-hp, 0.8-PF-leading, 60-Hz, two-pole, Y-connected synchronous
motor has a synchronous reactance of 5.0 {) and an armature resistance of 0.3 (). At
60 Hz, its friction and windage losses are 30 kW, and its core losses are 20 kW. The
field circuit has a dc voltage of 200 V, and the maximum /- is 10 A. The open-cir-
cuit characteristic of this motor is shown in Figure P5-1. Answer the following
questions about the motor, assuming that it is being supplied by an infinite bus.

3000

2750 /,/
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2250 /

o /
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250 /

0
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Field current, A

Open-circuit terminal voltage, V

FIGURE P5-1
The open-circuit characteristic for the motor in Problems 54 and 5-5.
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55

5-7

5-8

5-9.

(a) How much field current would be required to make this machine operate at
unity power factor when supplying full load?

(b) What is the motor’s efficiency at full load and unity power factor?

(c) If the field current were increased by 5 percent, what would the new value of
the armature current be? What would the new power factor be? How much re-
active power is being consumed or supplied by the motor?

(d) What is the maximum torque this machine is theoretically capable of supplying
at unity power factor? At 0.8 PF leading?

Plot the V curves (I, versus Ir) for the synchronous motor of Problem 54 at no-

load, half-load, and full-load conditions. (Note that an electronic version of the

open-circuit characteristics in Figure P5-1 is available at the book’s website. It may
simplify the calculations required by this problem.)

If a 60-Hz synchronous motor is to be operated at S0 Hz, will its synchronous reac-

tance be the same as at 60 Hz, or will it change? (Hint: Think about the derivation

of X,.)

A 208-V, Y-connected synchronous motor is drawing 50 A at unity power factor from

a 208-V power system. The field current flowing under these conditions is 2.7 A. Its

synchronous reactance is 1.6 {). Assume a linear open-circuit characteristic.

(a) Find V, and E, for these conditions.

(b) Find the torque angle 6.

(c) What is the static stability power limit under these conditions?

(d) How much field current would be required to make the motor operate at 0.80 PF
leading?

(e) What is the new torque angle in part (d)?

A 4.12-kV, 60-Hz, 3000-hp, 0.8-PF-leading, A-connected, three-phase synchro-

nous motor has a synchronous reactance of 1.1 per unit and an armature resistance

of 0.1 per unit. If this motor is running at rated voltage with a line current of 300 A

at 0.85 PF leading, what is the internal generated voltage per phase inside this mo-

tor? What is the torque angle §?

Figure P5-2 shows a synchronous motor phasor diagram for a motor operating at a

leading power factor with no R,. For this motor, the torque angle is given by

Xl cos 0

Xgl4 cos
= tan™! SA E
8 =tan (V¢+XSIAsin0) A

FIGURE P5-2
Phasor diagram of a motor at a leading power factor.
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Xgl, cos 0
tan & = V, + Xgl, sin 0
Xsl, cos 0
- -1 ZsAP T
8 = tan (‘{,, + X1, sin 9)

Derive an equation for the torque angle of the synchronous motor if the armature

resistance is included.

A synchronous machine has a synchronous reactance of 1.0 £} per phase and an ar-

mature resistance of 0.1 () per phase. If E, = 460 £ —10° V and V, = 480 £ 0° V,

is this machine a motor or a generator? How much power P is this machine con-

suming from or supplying to the electrical system? How much reactive power Q is

this machine consuming from or supplying to the electrical system?

A 500-kVA, 600-V, 0.8-PF-leading, Y-connected synchronous motor has a synchro-

nous reactance of 1.0 per unit and an armature resistance of 0.1 per unit. At the current

time, E, = 1.00 £ 12° puand V, = 1 £0° pu.

(a) Is this machine currently acting as a motor or a generator?

(b) How much power P is this machine consuming from or supplying to the elec-
trical system?

(c) How much reactive power Q is this machine consuming from or supplying to
the electrical system?

(d) Is this machine operating within its rated limits?

Figure P5-3 shows a small industrial plant supplied by an external 480-V, three-phase

power supply. The plant includes three main loads as shown in the figure. Answer the

following questions about the plant. The synchronous motor is rated at 100 hp, 460 V,

and 0.8 PF leading. The synchronous reactance is 1.1 pu and armature resistance is

0.01 pu. The OCC for this motor is shown in Figure P5—4.

Bus 1
Iy
0.9 PF lagging
I
Load2 | 80KVA
480V 0.8 PF lagging
Y-connected
_— 4@ Synchronous
— motor
)
FIGURE P5-3

A small industrial facility.
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Open-circuit characteristic

—

700
600 //
500 //
400

Open-circuit voltage (V)

100 /
0 1 2 3 4 5
Field current (A)

FIGURE P54
Open-circuit characteristic of synchronous motor.

(a) If the switch on the synchronous motor is open, how much real, reactive, and
apparent power is being supplied to the plant? What is the current /; in the
transmission line?

The switch is now closed and the synchronous motor is supplying rated power with

the field current adjusted to 1.5 A.

(b) What is the real and reactive power supplied to the motor?

(c) What is the torque angle of the motor?

(d) What is the power factor of the motor?

(e) How much real, reactive, and apparent power is being supplied to the plant
now? What is the current /; in the transmission line?

Now suppose that the field current is increased to 3.0 A.

(f) What is the real and reactive power supplied to the motor?

(g) What is the torque angle of the motor?

(h) What is the power factor of the motor?

(i) How much real, reactive, and apparent power is being supplied to the plant
now? What is the current /; in the transmission line?

(j) How does the line current when the field current is 1.5 A compare to the line
current when the field current is 3.0 A?

A 480-V, 100-kW, 0.8-PF-leading, 50-Hz, four-pole, Y-connected synchronous mo-

tor has a synchronous reactance of 1.8 ) and a negligible armature resistance. The

rotational losses are also to be ignored. This motor is to be operated over a continu-
ous range of speeds from 300 to 1500 r/min, where the speed changes are to be ac-
complished by controlling the system frequency with a solid-state drive.

(a) Over what range must the input frequency be varied to provide this speed con-
trol range?

(b) How large is E, at the motor’s rated conditions?

(c) What is the maximum power the motor can produce at rated speed with the E,
calculated in part (b)?
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(d) What is the largest value that E, could be at 300 r/min?

(e) Assuming that the applied voltage V is derated by the same amount as E,, what
is the maximum power the motor could supply at 300 r/min?

(f) How does the power capability of a synchronous motor relate to its speed?

A 2300-V, 400-hp, 60-Hz, eight-pole, Y-connected synchronous motor has a rated

power factor of 0.85 leading. At full load, the efficiency is 90 percent. The armature

resistance is 0.8 (), and the synchronous reactance is 11 {). Find the following
quantities for this machine when it is operating at full load:

(a) Output torque

(b) Input power

©) n,

(@ E,

(e) L,

(f) PCOI'IV

(g) Pmech + R:ore + Pst.ray

The Y-connected synchronous motor whose nameplate is shown in Figure 5-21 has

a per-unit synchronous reactance of 0.70 and a per-unit resistance of 0.02.

(a) What is the rated input power of this motor?

(b) What is the magnitude of E, at rated conditions?

(c) If the input power of this motor is 12 MW, what is the maximum reactive power
the motor can simultaneously supply? Is it the armature current or the field cur-
rent that limits the reactive power output?

(d) How much power does the field circuit consume at the rated conditions?

(e) What is the efficiency of this motor at full load?

(f) What is the output torque of the motor at the rated conditions? Express the an-
swer both in newton-meters and in pound-feet.

A 480-V, 500-kVA, 0.8-PF-lagging, Y-connected synchronous generator has a syn-
chronous reactance of 0.4 {) and a negligible armature resistance. This generator is
supplying power to a 480-V, 80-kW, 0.8-PF-leading, Y-connected synchronous mo-
tor with a synchronous reactance of 2.0 {) and a negligible armature resistance. The
synchronous generator is adjusted to have a terminal voltage of 480 V when the mo-
tor is drawing the rated power at unity power factor.

(a) Calculate the magnitudes and angles of E, for both machines.

(b) If the flux of the motor is increased by 10 percent, what happens to the terminal
voltage of the power system? What is its new value?

(c) What is the power factor of the motor after the increase in motor flux?

A 440-V, 60-Hz, three-phase, Y-connected synchronous motor has a synchronous re-

actance of 1.5 () per phase. The field current has been adjusted so that the torque an-

gle & is 25° when the power supplied by the generator is 90 kW.

(a) What is the magnitude of the internal generated voltage E, in this machine?

(b) What are the magnitude and angle of the armature current in the machine? What
is the motor’s power factor?

(c) If the field current remains constant, what is the absolute maximum power this
motor could supply?

A 460-V, 200-kVA, 0.85-PF-leading, 400-Hz, four-pole, Y-connected synchronous

motor has negligible armature resistance and a synchronous reactance of 0.90 per

unit. Ignore all losses.

(a) What is the speed of rotation of this motor?

(b) What is the output torque of this motor at the rated conditions?
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(c) What is the internal generated voltage of this motor at the rated conditions?

(d) With the field current remaining at the value present in the motor in part (c),
what is the maximum possible output power from the machine?

A 100-hp, 440-V, 0.8-PF-leading, A-connected synchronous motor has an armature

resistance of 0.3 () and a synchronous reactance of 4.0 (). Its efficiency at full load

is 96 percent.

(a) What is the input power to the motor at rated conditions?

(b) What is the line current of the motor at rated conditions? What is the phase cur-
rent of the motor at rated conditions?

(c) What is the reactive power consumed by or supplied by the motor at rated
conditions?

(d) What is the internal generated voltage E, of this motor at rated conditions?

(e) What are the stator copper losses in the motor at rated conditions?

() Whatis P, at rated conditions?

(g) If E, is decreased by 10 percent, how much reactive power will be consumed
by or supplied by the motor?

Answer the following questions about the machine of Problem 5-19.

(a) IfE, = 430 £ 15° V and V; = 440 £ 0° V, is this machine consuming real
power from or supplying real power to the power system? Is it consuming reac-
tive power from or supplying reactive power to the power system?

(b) Calculate the real power P and reactive power Q supplied or consumed by the
machine under the conditions in part (a). Is the machine operating within its rat-
ings under these circumstances?

(c) IfE, = 470 £—-20° V and V, = 440 £ 0° V, is this machine consuming real
power from or supplying real power to the power system? Is it consuming reac-
tive power from or supplying reactive power to the power system?

(d) Calculate the real power P and reactive power Q supplied or consumed by the
machine under the conditions in part (c). Is the machine operating within its rat-
ings under these circumstances?
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CHAPTER

INDUCTION MOTORS

LEARNING OBJECTIVES

* Understand the key differences between a synchronous motor and an induction
motor.

¢ Understand the concept of rotor slip and its relationship to rotor frequency.

¢ Understand and know how to use the equivalent circuit of an induction motor.
¢ Understand power flows and the power flow diagram of an induction motor.
* Be able to use the equation for the torque—speed characteristic curve.

* Understand how the torque—speed characteristic curve varies with different
rotor designs.

* Understand the techniques used for induction motor starting.
 Understand how the speed of induction motors can be controlled.

* Understand how to measure induction motor circuit model parameters.
* Understand the induction machine used as a generator.

* Understand induction motor ratings.

In Chapter 5, we saw how amortisseur windings on a synchronous motor could de-
velop a starting torque without the necessity of supplying an external field current
to them. In fact, amortisseur windings work so well that a motor could be built
without the synchronous motor’s main dc field circuit at all. A machine with only
a continuous set of amortisseur windings is called an induction machine. Such ma-
chines are called induction machines because the rotor voltage (which produces the
rotor current and the rotor magnetic field) is induced in the rotor windings rather
than being physically connected by wires. The distinguishing feature of an induc-
tion motor is that no dc field current is required to run the machine.

Although it is possible to use an induction machine as either a motor or a gen-
erator, it has many disadvantages as a generator and so is only used as a generator in
special applications. For this reason, induction machines are usually referred to as
induction motors. 307
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FIGURE 6-1

The stator of a typical induction
motor, showing the stator
windings. (Courtesy of
MagneTek, Inc.)
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(b)

FIGURE 6-2
(a) Sketch of cage rotor. (b) A typical cage rotor. (Courtesy of General Electric Company.)
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6.1 INDUCTION MOTOR CONSTRUCTION

An induction motor has the same physical stator as a synchronous machine, with
a different rotor construction. A typical two-pole stator is shown in Figure 6-1. It
looks (and is) the same as a synchronous machine stator. There are two different
types of induction motor rotors which can be placed inside the stator. One is called
a cage rotor, while the other is called a wound rotor.

Figures 6-2 and 6-3 show cage induction motor rotors. A cage induction
motor rotor consists of a series of conducting bars laid into slots carved in the face

(a)

(b)

FIGURE 6-3

(a) Cutaway diagram of a typical small cage rotor induction motor. (Courtesy of MagneTek, Inc.)
(b) Cutaway diagram of a typical large cage rotor induction motor. (Courtesy of General Electric
Company.)
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of the rotor and shorted at either end by large shorting rings. This design is re-
ferred to as a cage rotor because the conductors, if examined by themselves,
would look like one of the exercise wheels that squirrels or hamsters run on.

The other type of rotor is a wound rotor. A wound rotor has a complete set
of three-phase windings that are similar to the windings on the stator. The three
phases of the rotor windings are usually Y-connected, and the ends of the three ro-
tor wires are tied to slip rings on the rotor’s shaft. The rotor windings are shorted
through brushes riding on the slip rings. Wound-rotor induction motors therefore
have their rotor currents accessible at the stator brushes, where they can be exam-
ined and where extra resistance can be inserted into the rotor circuit. It is possible
to take advantage of this feature to modify the torque—speed characteristic of the
motor. Two wound rotors are shown in Figure 64, and a complete wound-rotor
induction motor is shown in Figure 6-5.

‘Wound-rotor induction motors are more expensive than cage induction motors,
and they require much more maintenance because of the wear associated with their
brushes and slip rings. As a result, wound-rotor induction motors are rarely used.

(a)

(b)

FIGURE 64
Typical wound rotors for induction motors. Notice the slip rings and the bars connecting the rotor
windings to the slip rings. (Courtesy of General Electric Company.)



INDUCTION MOTORS 311

FIGURE 6-5
Cutaway diagram of a wound-rotor induction motor. Notice the brushes and slip rings. Also notice
that the rotor windings are skewed to eliminate slot harmonics. (Courtesy of MagneTek, Inc.)

6.2 BASIC INDUCTION MOTOR CONCEPTS

Induction motor operation is basically the same as that of amortisseur windings on
synchronous motors. That basic operation will now be reviewed, and some im-
portant induction motor terms will be defined.

The Development of Induced Torque
in an Induction Motor

Figure 6-6 shows a cage rotor induction motor. A three-phase set of voltages has
been applied to the stator, and a three-phase set of stator currents is flowing. These
currents produce a magnetic field Bg, which is rotating in a counterclockwise
direction. The speed of the magnetic field’s rotation is given by

120
Royne = Tf;e (6-1)

where f,, is the system frequency applied to the stator in hertz and P is the number
of poles in the machine. This rotating magnetic field Bg passes over the rotor bars
and induces a voltage in them.

The voltage induced in a given rotor bar is given by the equation

enda = (VX B)el (1-45)
where v = velocity of the bar relative to the magnetic field

B = magnetic flux density vector
1 = length of conductor in the magnetic field
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induced voltage induced voltage .
Maximum
\ .
\ induced current
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By Net voltage
\\ : Eg

FIGURE 6-6

The development of induced torque in an induction
motor. (a) The rotating stator field Bg induces a voltage
in the rotor bars; (b) the rotor voltage produces a rotor
current flow, which lags behind the voltage because of
the inductance of the rotor; (c) the rotor current
produces a rotor magnetic field B, lagging 90° behind
itself, and By interacts with B, to produce a
counterclockwise torque in the machine.

It is the relative motion of the rotor compared to the stator magnetic field
that produces induced voltage in a rotor bar. The velocity of the upper rotor bars
relative to the magnetic field is to the right, so the induced voltage in the upper
bars is out of the page, while the induced voltage in the lower bars is into the page.
This results in a current flow out of the upper bars and into the lower bars. How-
ever, since the rotor assembly is inductive, the peak rotor current lags behind the
peak rotor voltage (see Figure 6-6b). The rotor current flow produces a rotor mag-
netic field Bg.

Finally, since the induced torque in the machine is given by

Toa = kBg X B (3-58)
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the resulting torque is counterclockwise. Since the rotor induced torque is coun-
terclockwise, the rotor accelerates in that direction.

There is a finite upper limit to the motor’s speed, however. If the induction
motor’s rotor were turning at synchronous speed, then the rotor bars would be sta-
tionary relative to the magnetic field and there would be no induced voltage. If e; 4
were equal to 0, then there would be no rotor current and no rotor magnetic field.
With no rotor magnetic field, the induced torque would be zero, and the rotor
would slow down as a result of friction losses. An induction motor can thus speed
up to near-synchronous speed, but it can never exactly reach synchronous speed.

Note that in normal operation both the rotor and stator magnetic fields By
and By rotate together at synchronous speed nqy,., while the rotor itself turns at a
slower speed.

The Concept of Rotor Slip

The voltage induced in a rotor bar of an induction motor depends on the speed of
the rotor relative to the magnetic fields. Since the behavior of an induction motor
depends on the rotor’s voltage and current, it is often more logical to talk about
this relative speed. Two terms are commonly used to define the relative motion of
the rotor and the magnetic fields. One is slip speed, defined as the difference be-
tween synchronous speed and rotor speed:

Ngip = Mgync — N (6-2)

where  ng;, = slip speed of the machine
nyne = speed of the magnetic fields
mechanical shaft speed of motor

ny,

The other term used to describe the relative motion is slip, which is the rela-
tive speed expressed on a per-unit or a percentage basis. That is, slip is defined as

Ng
s = 22 (x 100%) (6-3)
sync
Rync — Mo
s = (% 100%) (64)
sync

This equation can also be expressed in terms of angular velocity w (radians per
second) as

, - W
s = 22— (x 100%) (6-5)

sync

Notice that if the rotor turns at synchronous speed, s = 0, while if the rotor is sta-
tionary, s = 1. All normal motor speeds fall somewhere between those two limits.

It is possible to express the mechanical speed of the rotor shaft in terms of
synchronous speed and slip. Solving Equations (6—4) and (6-5) for mechanical
speed yields
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n, =1 - S)nsync (6-6)

or w, = (1 = oy, ©6-7

These equations are useful in the derivation of induction motor torque and power
relationships.

The Electrical Frequency on the Rotor

An induction motor works by inducing voltages and currents in the rotor of the
machine, and for that reason it has sometimes been called a rorating transformer.
Like a transformer, the primary (stator) induces a voltage in the secondary (rotor),
but unlike a transformer, the secondary frequency is not necessarily the same as
the primary frequency.

If the rotor of a motor is locked so that it cannot move, then the rotor will
have the same frequency as the stator. On the other hand, if the rotor turns at syn-
chronous speed, the frequency on the rotor will be zero. What will the rotor fre-
quency be for any arbitrary rate of rotor rotation?

At n,, = 0 r/min, the rotor frequency f,, = f,, and the slip s = 1. Atn,, = n,,,
the rotor frequency f,, = 0 Hz, and the slip s = 0. For any speed in between, the ro-
tor frequency is directly proportional to the difference between the speed of the mag-
netic field n,y, and the speed of the rotor n,,. Since the slip of the rotor is defined as

s = 64

the rotor frequency can be expressed as

(6-8)

Several alternative forms of this expression exist that are sometimes useful. One of the
more common expressions is derived by substituting Equation (6—4) for the slip into
Equation (6-8) and then substituting for n,, in the denominator of the expression:

n - n
_ Ttsync m
fre - f;e

Rgync

But ngy,. = 120, /P [from Equation (6-1)], so

_ P
fre = (nsync - n,) lzof;efye

Therefore,

P
Jre = 120 (nsync —n,) (6-9)

Example 6-1. A 208-V, 10-hp, four-pole, 60-Hz, Y-connected induction motor has
a full-load slip of 5 percent.

(a) What is the synchronous speed of this motor?
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(b) What is the rotor speed of this motor at the rated load?
(c) What is the rotor frequency of this motor at the rated load?
(d) What is the shaft torque of this motor at the rated load?

Solution
(a) The synchronous speed of this motor is

120
Nyyne = Pf“ 6-1)

12060 He) _ 1800 r/min
poles

(b) The rotor speed of the motor is given by
Ny = (1 = $ngy (6-6)
= (1 — 0.05)(1800 r/min) = 1710 r/min

(c) The rotor frequency of this motor is given by

f.. = 5f,, = (0.05)(60 Hz) = 3 Hz (6-8)

Alternatively, the frequency can be found from Equation (6-9):

fre = T35 hme = 1) 69

4

= m(lSOO r/min — 1710 r/min) = 3 Hz

(d) The shaft load torque is given by
P

out
w"l

Tioad =

_ (10 hp)(746 W/hp)
~ (1710 r/min)(27 rad/r)(1 min/60 s)

=417Nem
The shaft load torque in English units is given by Equation (1-17):

5252pP
n

Tioad =

where 7 is in pound-feet, P is in horsepower, and n,, is in revolutions per minute.
Therefore,

5252(10 hp)

Tioad = 1710 r/min 30.7 1b « ft

6.3 THE EQUIVALENT CIRCUIT
OF AN INDUCTION MOTOR

An induction motor relies for its operation on the induction of voltages and currents
in its rotor circuit from the stator circuit (transformer action). Because the induction
of voltages and currents in the rotor circuit of an induction motor is essentially a
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FIGURE 6-7

The transformer model of an induction motor, with rotor and stator connected by an ideal
transformer of turns ratio a.g.

transformer operation, the equivalent circuit of an induction motor will turn out to
be very similar to the equivalent circuit of a transformer. An induction motor is
called a singly excited machine (as opposed to a doubly excited synchronous ma-
chine), since power is supplied to only the stator circuit. Because an induction mo-
tor does not have an independent field circuit, its model will not contain an internal
voltage source such as the internal generated voltage E, in a synchronous machine.

It is possible to derive the equivalent circuit of an induction motor from a
knowledge of transformers and from what we already know about the variation of
rotor frequency with speed in induction motors. The induction motor model will
be developed by starting with the transformer model in Chapter 2 and then decid-
ing how to take the variable rotor frequency and other similar induction motor ef-
fects into account.

The Transformer Model of an Induction Motor

A transformer per-phase equivalent circuit, representing the operation of an in-
duction motor, is shown in Figure 6-7. As in any transformer, there is a certain
resistance and self-inductance in the primary (stator) windings, which must be
represented in the equivalent circuit of the machine. The stator resistance will be
called R;, and the stator leakage reactance will be called X,. These two compo-
nents appear right at the input to the machine model.

Also, like any transformer with an iron core, the flux in the machine is re-
lated to the integral of the applied voltage E,. The curve of magnetomotive force
versus flux (magnetization curve) for this machine is compared to a similar curve
for a power transformer in Figure 6-8. Notice that the slope of the induction mo-
tor’s magnetomotive force-flux curve is much shallower than the curve of a good
transformer. This is because there must be an air gap in an induction motor, which
greatly increases the reluctance of the flux path and therefore reduces the coupling
between primary and secondary windings. The higher reluctance caused by the air
gap means that a higher magnetizing current is required to obtain a given flux
level. Therefore, the magnetizing reactance X, in the equivalent circuit will have
a much smaller value (or the susceptance B, will have a much larger value) than
it would in an ordinary transformer.
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FIGURE 6-8
The magnetization curve of an induction motor compared to that of a transformer.

The primary internal stator voltage E, is coupled to the secondary E, by an
ideal transformer with an effective turns ratio a.g. The effective turns ratio a.g is
fairly easy to determine for a wound-rotor motor—it is basically the ratio of the
conductors per phase on the stator to the conductors per phase on the rotor, modi-
fied by any pitch and distribution factor differences. It is rather difficult to see a g
clearly in the case of a cage rotor motor because there are no distinct windings on
the cage rotor. In either case, there is an effective turns ratio for the motor.

The voltage E; produced in the rotor in turn produces a current flow in the
shorted rotor (or secondary) circuit of the machine.

The primary impedances and the magnetization current of the induction mo-
tor are very similar to the corresponding components in a transformer equivalent
circuit. An induction motor equivalent circuit differs from a transformer equiva-
lent circuit primarily in the effects of varying rotor frequency on the rotor voltage
E; and the rotor impedances Ry and jXj.

The Rotor Circuit Model

In an induction motor, when the voltage is applied to the stator windings, a volt-
age is induced in the rotor windings of the machine. In general, the greater the
relative motion between the rotor and the stator magnetic fields, the greater the
resulting rotor voltage and rotor frequency. The largest relative motion occurs
when the rotor is stationary, called the locked-rotor or blocked-rotor condition, so
the largest voltage and rotor frequency are induced in the rotor at that condition.
The smallest voltage (0 V) and frequency (0 Hz) occur when the rotor moves at
the same speed as the stator magnetic field, resulting in no relative motion. The
magnitude and frequency of the voltage induced in the rotor at any speed between
these extremes is directly proportional to the slip of the rotor. Therefore, if the
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magnitude of the induced rotor voltage at locked-rotor conditions is called Eg,, the
magnitude of the induced voltage at any slip will be given by the equation

E, R = SERO (6—10)
and the frequency of the induced voltage at any slip will be given by the equation

Jre = $fe (6-8)

This voltage is induced in a rotor containing both resistance and reactance.
The rotor resistance Ry is a constant (except for the skin effect), independent of
slip, while the rotor reactance is affected in a more complicated way by slip.

The reactance of an induction motor rotor depends on the inductance of the
rotor and the frequency of the voltage and current in the rotor. With a rotor induc-
tance of L, the rotor reactance is given by

XR = wreLR = 27TfreLR
By Equation (6-8), f,, = sf,., SO
Xz = 27sf, Ly

s(27rf;eLR)
= sXro (6-11)

where Xp, is the blocked-rotor rotor reactance.
The resulting rotor equivalent circuit is shown in Figure 6-9. The rotor cur-
rent flow can be found as

I = __ER__
R~ Re + jXg
Eg
" Rt ¥ 12
Epo
or I; = Re/s + 1Xng (6-13)

Notice from Equation (6-13) that it is possible to treat all of the rotor effects due
to varying rotor speed as being caused by a varying impedance supplied with
power from a constant-voltage source Eg,. The equivalent rotor impedance from
this point of view is

Iz JXg = JsXgo
- ~A

o 3

FIGURE 6-9
The rotor circuit model of an induction motor.
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ZR,eq = RR/S +]XR0 (6—14)

and the rotor equivalent circuit using this convention is shown in Figure 6-10. In
the equivalent circuit in Figure 6-10, the rotor voltage is a constant Eg, V and the
rotor impedance Zg ., contains all the effects of varying rotor slip. A plot of the
current flow in the rotor as developed in Equations (6—12) and (6—13) is shown in

Figure 6-11.

Iz
—

JXro
A

O~

§ Re
s
FIGURE 6-10

The rotor circuit model with all the frequency

(slip) effects concentrated in resistor Rp.

T~

FIGURE 6-11
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Rotor current as a function of rotor speed.
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Notice that at very low slips the resistive term Rz/s >> X, so the rotor re-
sistance predominates and the rotor current varies linearly with slip. At high slips,
Xro is much larger than Ry/s, and the rotor current approaches a steady-state
value as the slip becomes very large.

The Final Equivalent Circuit

To produce the final per-phase equivalent circuit for an induction motor, it is nec-
essary to refer the rotor part of the model over to the stator side. The rotor circuit
model that will be referred to the stator side is the model shown in Figure 6-10,
which has all the speed variation effects concentrated in the impedance term.

In an ordinary transformer, the voltages, currents, and impedances on the
secondary side of the device can be referred to the primary side by means of the
turns ratio of the transformer:

V, =V} =aV (6-15)
IS
e (6-16)
and Z; = a’Zg (6-17)

where the prime refers to the referred values of voltage, current, and impedance.

Exactly the same sort of transformation can be done for the induction mo-
tor’s rotor circuit. If the effective turns ratio of an induction motor is a.g, then the
transformed rotor voltage becomes

E, = E} = aEg (6-18)
the rotor current becomes
I
L= (6-19)
Qesf

and the rotor impedance becomes

2 RR .
Z, = ag\ T iXko (6-20)

If we now make the following definitions:
R, = a%Ry (6-21)
X, = Xy Xpo (6-22)

then the final per-phase equivalent circuit of the induction motor is as shown in
Figure 6-12.

The rotor resistance Ry and the locked-rotor rotor reactance Xy, are very dif-
ficult or impossible to determine directly on cage rotors, and the effective turns ra-
tio a. is also difficult to obtain for cage rotors. Fortunately, though, it is possible
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FIGURE 6-12

The per-phase equivalent circuit of an induction motor.

to make measurements that will directly give the referred resistance and reactance
R, and X,, even though R, Xz, and a4 are not known separately. The measurement
of induction motor parameters will be taken up in Section 6.7.

64 POWERAND TORQUE IN
INDUCTION MOTORS

Because induction motors are singly excited machines, their power and torque re-
lationships are considerably different from the relationships in the synchronous
machines previously studied. This section reviews the power and torque relation-
ships in induction motors.

Losses and the Power-Flow Diagram

An induction motor can be basically described as a rotating transformer. Its input
is a three-phase system of voltages and currents. For an ordinary transformer, the
output is electric power from the secondary windings. The secondary windings in
an induction motor (the rotor) are shorted out, so no electrical output exists from
normal induction motors. Instead, the output is mechanical. The relationship be-
tween the input electric power and the output mechanical power of this motor is
shown in the power-flow diagram in Figure 6-13.

The input power to an induction motor P, is in the form of three-phase elec-
tric voltages and currents. The first losses encountered in the machine are /2R
losses in the stator windings (the stator copper loss Pscr). Then some amount of
power is lost as hysteresis and eddy currents in the stator (P,,.). The power re-
maining at this point is transferred to the rotor of the machine across the air gap
between the stator and rotor. This power is called the air-gap power P,g of the
machine. After the power is transferred to the rotor, some of it is lost as /2R losses
(the rotor copper loss Py ), and the rest is converted from electrical to mechani-
cal form (P,,,,). Finally, friction and windage losses Prgw and stray losses P, ;. are
subtracted. The remaining power is the output of the motor P, ..
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FIGURE 6-13
The power-flow diagram of an induction motor.

The core losses do not always appear in the power-flow diagram at the
point shown in Figure 6—-13. Because of the nature of core losses, where they are
accounted for in the machine is somewhat arbitrary. The core losses of an in-
duction motor come partially from the stator circuit and partially from the rotor
circuit. Since an induction motor normally operates at a speed near synchronous
speed, the relative motion of the magnetic fields over the rotor surface is quite
slow, and the rotor core losses are very tiny compared to the stator core losses.
Since the largest fraction of the core losses comes from the stator circuit, all the
core losses are lumped together at that point on the diagram. These losses are
represented in the induction motor equivalent circuit by the resistor R (or the
conductance G¢). If core losses are just given by a number (X watts) instead
of as a circuit element, they are often lumped together with the mechanical
losses and subtracted at the point on the diagram where the mechanical losses
are located.

The higher the speed of an induction motor, the higher its friction, windage,
and stray losses. On the other hand, the higher the speed of the motor (up to ny,),
the lower its core losses. Therefore, these three categories of losses are sometimes
lumped together and called rotational losses. The total rotational losses of a mo-
tor are often considered to be constant with changing speed, since the component
losses change in opposite directions with a change in speed.

Example 6-2. A 480-V, 60-Hz, 50-hp, three-phase induction motor is drawing
60 A at 0.85 PF lagging. The stator copper losses are 2 kW, and the rotor copper losses are
700 W. The friction and windage losses are 600 W, the core losses are 1800 W, and the
stray losses are negligible. Find the following quantities:

(a) The air-gap power Pyg

(b) The power converted P,
(c) The output power P,

(d) The efficiency of the motor
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Solution
To answer these questions, refer to the power-flow diagram for an induction motor
(Figure 6-13).

(a) The air-gap power is just the input power minus the stator /2R losses and core
losses. The input power is given by
P, = V3V, cos 0
= V3(480 V)(60 A)(0.85) = 42.4 kW

From the power-flow diagram, the air-gap power is given by

Ppg = By — PscL — Rore
=424kW — 2kW — 1.8 kW = 38.6 kW

(b) From the power-flow diagram, the power converted from electrical to mechan-
ical form is

Pconv=PAG_PRCL
= 38.6 kW — 700 W = 37.9 kW

(c) From the power-flow diagram, the output power is given by

Post = Ronv — Praw — Fnise
=379kW —600W — OW = 37.3kW

or, in horsepower,

1h
Pt = (313 kW) gzeig = S0hp

(d) Therefore, the induction motor’s efficiency is

P
n="p" x 100%

in

=-‘%x100%=88%

Power and Torque in an Induction Motor

Figure 6-12 shows the per-phase equivalent circuit of an induction motor. If the
equivalent circuit is examined closely, it can be used to derive the power and
torque equations governing the operation of the motor.

The input current to a phase of the motor can be found by dividing the input
voltage by the total equivalent impedance:

I = 8 (6-23)
1 Z,,
where Zo =R, +jX, + 1 (6-24)
Ge = iBu * v 75 ¥ x,
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Therefore, the stator copper losses, the core losses, and the rotor copper losses can
be found. The stator copper losses in the three phases are given by

Pscp = 3I3R, (6-25)

The core losses are given by

Pcore = 3E%GC (6_26)

so the air-gap power can be found as

Pag = Py = PscL = Peore (6-27)

Look closely at the equivalent circuit of the rotor. The only element in the
equivalent circuit where the air-gap power can be consumed is in the resistor R,/s.
Therefore, the air-gap power can also be given by

R
Py =313 (6-28)

The actual resistive losses in the rotor circuit are given by the equation
Prcr = 313 Ry (6-29)

Since power is unchanged when referred across an ideal transformer, the rotor
copper losses can also be expressed as

After stator copper losses, core losses, and rotor copper losses are sub-
tracted from the input power to the motor, the remaining power is converted from
electrical to mechanical form. This converted power, which is sometimes called
developed mechanical power, is given by

FPeonw = Pag = Pra

R
=32 - 313R,

— 3y l_)
312R2(s 1

Py = 303 R 1) (6-31)

Notice from Equations (6-28) and (6-30) that the rotor copper losses are
equal to the air-gap power times the slip:

Frer = sPag (6-32)

Therefore, the lower the slip of the motor, the lower the rotor losses in the ma-
chine. Note also that if the rotor is not turning, the slip s = 1 and the air-gap
power is entirely consumed in the rotor. This is logical, since if the rotor is not
turning, the output power P, (= 7o, @,,) Mmust be zero. Since P..,, = Py — FrcLs
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this also gives another relationship between the air-gap power and the power con-
verted from electrical to mechanical form:

Fony = Pag — BreL

=Py — 5P

| R:onv = (1 - S)PAG | (6_33)

Finally, if the friction and windage losses and the stray losses are known,
the output power can be found as

| Fout = Bony — Praw — P mis:| (6-34)

The induced torque 7,4 in a machine was defined as the torque generated by
the internal electric-to-mechanical power conversion. This torque differs from the
torque actually available at the terminals of the motor by an amount equal to the
friction and windage torques in the machine. The induced torque is given by the
equation

PCOl'IV
Tog = (6-35)

m

This torque is also called the developed torque of the machine.

The induced torque of an induction motor can be expressed in a different
form as well. Equation (6-7) expresses actual speed in terms of synchronous
speed and slip, while Equation (6-33) expresses P.,,, in terms of P,g and slip.
Substituting these two equations into Equation (6-35) yields

(1 — 5)Pg

1'. =
ind (1 — s)wsync

PAG
,

Tind =

(6-36)

sync

The last equation is especially useful because it expresses induced torque directly
in terms of air-gap power and synchronous speed, which does not vary. A knowl-
edge of P,g thus directly yields 7;,4.

Separating the Rotor Copper Losses and
the Power Converted in an Induction
Motor’s Equivalent Circuit

Part of the power coming across the air gap in an induction motor is consumed in
the rotor copper losses, and part of it is converted to mechanical power to drive
the motor’s shaft. It is possible to separate the two uses of the air-gap power and
to indicate them separately on the motor equivalent circuit.

Equation (6-28) gives an expression for the total air-gap power in an in-
duction motor, while Equation (6-30) gives the actual rotor losses in the motor.
The air-gap power is the power which would be consumed in a resistor of value
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FIGURE 6-14
The per-phase equivalent circuit with rotor losses and P, separated.

R,/s, while the rotor copper losses are the power which would be consumed in a
resistor of value R,. The difference between them is P.,,, which must therefore be
the power consumed in a resistor of value

R,

1
Reony = T - R, = RZ(; - 1)

Rconv = RZ(I ; s) (6_37)

Per-phase equivalent circuit with the rotor copper losses and the power con-
verted to mechanical form separated into distinct elements is shown in Figure 6-14.

Example 6-3. A 460-V, 25-hp, 60-Hz, four-pole, Y-connected induction motor has
the following impedances in ohms per phase referred to the stator circuit:

R, =0641Q R,=03320
X, = 11060 X,=0464Q X, =263Q

The total rotational losses are 1100 W and are assumed to be constant. The core loss is
lumped in with the rotational losses. For a rotor slip of 2.2 percent at the rated voltage and
rated frequency, find the motor’s

(a) Speed

(b) Stator current
(c) Power factor
(d) Peony and Py,

(e) Ting and Tioyg

(f) Efficiency

Solution
The per-phase equivalent circuit of this motor is shown in Figure 6-12, and the power-flow
diagram is shown in Figure 6-13. Since the core losses are lumped together with the friction
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and windage losses and the stray losses, they will be treated like the mechanical losses and
be subtracted after P,,, in the power-flow diagram.

(a) The synchronous speed is
_ 120f, _ 120(60 Hz) _

nsync - P = 4 pOlCS = 1800 r/min
OF Wy = (1800 r/min)(%)(lgg—lsn) = 188.5 rad/s

The rotor’s mechanical shaft speed is

n, = a1- s)nsync
= (1 — 0.022)(1800 r/min) = 1760 r/min

or w, = (1 = gy,
= (1 — 0.022)(188.5rad/s) = 184.4 rad/s

(b) To find the stator current, get the equivalent impedance of the circuit. The first
step is to combine the referred rotor impedance in parallel with the magnetiza-
tion branch, and then to add the stator impedance to that combination in series.
The referred rotor impedance is

R, .

L= t1i%

_ 0.332

0.022

= 15.09 + j0.464 Q) = 15.10£1.76° )

The combined magnetization plus rotor impedance is given by
-1
1/jX, + 1/Z,

_ 1
~ —j0.038 + 0.0662£—1.76°

_ 1
T 0.07734-31.1°

+ j0.464

Zf=

=12.94231.1°Q

Therefore, the total impedance is
2y =2y + Z
= 0.641 + j1.106 + 12.94,31.1° Q
= 11.72 + j7.79 = 14.07433.6° O

The resulting stator current is

A
! Z!Ol

266£0°V

=1207.336°Q 18.884—33.6° A
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(c) The power motor power factor is
PF = cos 33.6° = 0.833 lagging
(d) The input power to this motor is
P, = V3VyI, cos 0
= V3(460 V)(18.88 A)(0.833) = 12,530 W
The stator copper losses in this machine are
Py = 3I3R, (6-25)
= 3(18.88 A)%0.641 Q) = 685 W
The air-gap power is given by
P =P, — Psc, = 12,530 W — 685 W = 11,845 W
Therefore, the power converted is
Pony = (1 — )Py = (1 — 0.022)(11,845 W) = 11,585 W
The power P, is given by

Py=Pow — Py =11,585W — 1100 W = 10,485 W
- ﬁ) _
= 10,485 w(746W = 14.1 hp
(e) The induced torque is given by
_ b
Tind = wsync
_ _11845W .
= 1885rad/s ~ 028N°m
and the output torque is given by
L
Tioad = W,
_ _10485W _ .
= 1844radss ~ S0ON°m

(In English units, these torques are 46.3 and 41.9 1b-ft, respectively.)
(f) The motor’s efficiency at this operating condition is

P,

n =" x 100%

1

_ 10485 W
12,530 W

x 100% = 83.7%

6.5 INDUCTION MOTOR TORQUE-SPEED
CHARACTERISTICS

How does the torque of an induction motor change as the load changes? How
much torque can an induction motor supply at starting conditions? How much
does the speed of an induction motor drop as its shaft load increases? To find out
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FIGURE 6-15
(a) The magnetic fields in an induction motor under light loads. (b) The magnetic fields in an
induction motor under heavy loads.

the answers to these and similar questions, it is necessary to clearly understand the
relationships among the motor’s torque, speed, and power.

In the following material, the torque—speed relationship will be examined
first from the physical viewpoint of the motor’s magnetic field behavior. Then, a
general equation for torque as a function of slip will be derived from the induction
motor equivalent circuit (Figure 6-12).

Induced Torque from a Physical Standpoint

Figure 6-15a shows a cage rotor induction motor that is initially operating at no
load and therefore very nearly at synchronous speed. The net magnetic field B, in
this machine is produced by the magnetization current I,, flowing in the motor’s
equivalent circuit (see Figure 6-12). The magnitude of the magnetization current
and hence of B, is directly proportional to the voltage E,. If E, is constant, then the
net magnetic field in the motor is constant. In an actual machine, E, varies as the
load changes, because the stator impedances R, and X, cause varying voltage drops
with varying load. However, these drops in the stator windings are relatively small,
so E, (and hence I, and B,,,) is approximately constant with changes in load.
Figure 6—15a shows the induction motor at no load. At no load, the rotor
slip is very small, and so the relative motion between the rotor and the magnetic
fields is very small and the rotor frequency is also very small. Since the relative
motion is small, the voltage E; induced in the bars of the rotor is very small, and
the resulting current flow I is small. Also, because the rotor frequency is so very
small, the reactance of the rotor is nearly zero, and the maximum rotor current I,
is almost in phase with the rotor voltage E. The rotor current thus produces a
small magnetic field B, at an angle just slightly greater than 90° behind the net
magnetic field B,,. Notice that the stator current must be quite large even at no
load, since it must supply most of B,,. (This is why induction motors have large
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no-load currents compared to other types of machines. The no-load current of an
induction motor is usually 30-60 percent of the full-load current.)
The induced torque, which keeps the rotor turning, is given by the equation

Tina = kBg X B, (3-60)
Its magnitude is given by
Tina = kBgBye siné (3-61)

Since the rotor magnetic field is very small, the induced torque is also quite
small—just large enough to overcome the motor’s rotational losses.

Now suppose the induction motor is loaded down (Figure 6-15b). As the
motor’s load increases, its slip increases, and the rotor speed falls. Since the rotor
speed is slower, there is now more relative motion between the rotor and the sta-
tor magnetic fields in the machine. Greater relative motion produces a stronger ro-
tor voltage E; which in turn produces a larger rotor current Ir. With a larger rotor
current, the rotor magnetic field B also increases. However, the angle of the ro-
tor current and B, changes as well. Since the rotor slip is larger, the rotor fre-
quency rises (f,, = sf,.), and the rotor’s reactance increases (w,,Lg). Therefore, the
rotor current now lags further behind the rotor voltage, and the rotor magnetic
field shifts with the current. Figure 6-15b shows the induction motor operating at
a fairly high load. Notice that the rotor current has increased and that the angle &
has increased. The increase in By tends to increase the torque, while the increase
in angle & tends to decrease the torque (7,4 is proportional to sin 8, and § > 90°).
Since the first effect is larger than the second one, the overall induced torque in-
creases to supply the motor’s increased load.

When does an induction motor reach pullout torque? This happens when the
point is reached where, as the load on the shaft is increased, the sin 8 term de-
creases more than the By term increases. At that point, a further increase in load
decreases 7;,4, and the motor stops.

It is possible to use a knowledge of the machine’s magnetic fields to approx-
imately derive the output torque-versus-speed characteristic of an induction motor.
Remember that the magnitude of the induced torque in the machine is given by

Tind = kBRBnet sin (3—61)

Each term in this expression can be considered separately to derive the overall
machine behavior. The individual terms are

1. Bg. The rotor magnetic field is directly proportional to the current flowing in the
rotor, as long as the rotor is unsaturated. The current flow in the rotor increases
with increasing slip (decreasing speed) according to Equation (6-13). This cur-
rent flow was plotted in Figure 6-11 and is shown again in Figure 6-16a.

2. B,.. The net magnetic field in the motor is proportional to E; and therefore is ap-
proximately constant (E, actually decreases with increasing current flow, but this
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effect is small compared to the other two, and it will be ignored in this graphical
development). The curve for B, versus speed is shown in Figure 6-16b.

3. sin 8. The angle 8 between the net and rotor magnetic fields can be expressed
in a very useful way. Look at Figure 6-15b. In this figure, it is clear that the
angle & is just equal to the power-factor angle of the rotor plus 90°:

6= 6 +90° (6-38)
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Therefore, sin 6 = sin (6 + 90°) = cos 6. This term is the power factor of
the rotor. The rotor power-factor angle can be calculated from the equation

X sX
-12R _ . —12_R0
6 = tan Ry tan Re (6-39)
The resulting rotor power factor is given by
PF, = cos 6,
_1 5Xgo
PF; = cos (tan ! R, ) (6-40)

A plot of rotor power factor versus speed is shown in Figure 6-16c.

Since the induced torque is proportional to the product of these three terms, the
torque—speed characteristic of an induction motor can be constructed from the graph-
ical multiplication of the previous three plots (Figure 6-16a to c). The torque—speed
characteristic of an induction motor derived in this fashion is shown in Figure 6-16d.

This characteristic curve can be divided roughly into three regions. The first
region is the low-slip region of the curve. In the low-slip region, the motor slip in-
creases approximately linearly with increased load, and the rotor mechanical
speed decreases approximately linearly with load. In this region of operation, the
rotor reactance is negligible, so the rotor power factor is approximately unity,
while the rotor current increases linearly with slip. The entire normal steady-state
operating range of an induction motor is included in this linear low-slip region.
Thus in normal operation, an induction motor has a linear speed droop.

The second region on the induction motor’s curve can be called the moderate-
slip region. In the moderate-slip region, the rotor frequency is higher than before,
and the rotor reactance is on the same order of magnitude as the rotor resistance. In
this region, the rotor current no longer increases as rapidly as before, and the power
factor starts to drop. The peak torque (the pullout torque) of the motor occurs at the
point where, for an incremental increase in load, the increase in the rotor current is
exactly balanced by the decrease in the rotor power factor.

The third region on the induction motor’s curve is called the high-slip re-
gion. In the high-slip region, the induced torque actually decreases with increased
load, since the increase in rotor current is completely overshadowed by the de-
crease in rotor power factor.

For a typical induction motor, the pullout torque on the curve will be 200 to
250 percent of the rated full-load torque of the machine, and the starting torque (the
torque at zero speed) will be 150 percent or so of the full-load torque. Unlike a syn-
chronous motor, the induction motor can start with a full load attached to its shaft.

The Derivation of the Induction Motor
Induced-Torque Equation

It is possible to use the equivalent circuit of an induction motor and the power-flow
diagram for the motor to derive a general expression for induced torque as a
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function of speed. The induced torque in an induction motor is given by Equation
(6-35) or (6-36):

P

Tind = ;O'::V (6_35)
P,

Tog = o (6-36)

sync

The latter equation is especially useful, since the synchronous speed is a constant
for a given frequency and number of poles. Since w;y, is constant, a knowledge
of the air-gap power gives the induced torque of the motor.

The air-gap power is the power crossing the gap from the stator circuit to
the rotor circuit. It is equal to the power absorbed in the resistance R,/s. How can
this power be found?

Refer to the equivalent circuit given in Figure 6-17. In this figure, the air-
gap power supplied to one phase of the motor can be seen to be

R
Py = 13 Tz

Therefore, the total air-gap power is

If I, can be determined, then the air-gap power and the induced torque will be
known.

Although there are several ways to solve the circuit in Figure 6-17 for the cur-
rent I,, perhaps the easiest one is to determine the Thevenin equivalent of the por-
tion of the circuit to the left of the X’s in the figure. Thevenin’s theorem states that
any linear circuit that can be separated by two terminals from the rest of the system
can be replaced by a single voltage source in series with an equivalent impedance.
If this were done to the induction motor equivalent circuit, the resulting circuit
would be a simple series combination of elements as shown in Figure 6-18c.

L R, L
+ ~A ¢ ~
s A1
A JXm 2 E, § %
-0 _
FIGURE 6-17

Per-phase equivalent circuit of an induction motor.
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FIGURE 6-18
(a) The Thevenin equivalent voltage of an induction motor input circuit. (b) The Thevenin equivalent
impedance of the input circuit. (c) The resulting simplified equivalent circuit of an induction motor.

To calculate the Thevenin equivalent of the input side of the induction motor
equivalent circuit, first open-circuit the terminals at the X’s and find the resulting
open-circuit voltage present there. Then, to find the Thevenin impedance, kill
(short-circuit) the phase voltage and find the Z,, seen “looking” into the terminals.

Figure 6-18a shows the open terminals used to find the Thevenin voltage.
By the voltage divider rule,

Zy
Zy + Z
=V ]X—M
®Ry + jX; + jXy

The magnitude of the Thevenin voltage Vi is

Vi =V, Xy
™ VR + (X, + X))

(6-41a)
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Since the magnetization reactance X, >> X, and X, >> R,, the magnitude of the
Thevenin voltage is approximately

Ve~ vy, — XM

to quite good accuracy.
Figure 6-18b shows the input circuit with the input voltage source killed.
The two impedances are in parallel, and the Thevenin impedance is given by

Zoy = 2L (6-42)
™ Z +2y
This impedance reduces to
_ W _JXMR, + jX))
Ziy =Ry + jXm = —R1 + X, + X,) (6-43)

Because X, >> X, and X, + X, >> R,, the Thevenin resistance and reactance are
approximately given by

Rey =R (L)z (6-44)
T™H = TIX, + Xy,
Xy =~ X, (6-45)

The resulting equivalent circuit is shown in Figure 6-18c. From this circuit,
the current I, is given by

Vi

L= Zm + 7, (6-46)
= VTH
" Ry + Ry/s + jXpy + X,

(6-47)

The magnitude of this current is

VTH
L= 648
27 V(Roy + Ry/sP? + Xpy + X,)? (6-48)

The air-gap power is therefore given by

R,
Pao = 3037
_ 3Vi, Ry/s
= R * Ry/sP T gy + X, (6-49)
and the rotor-induced torque is given by
ind wsync
A V34 R,/s (6-50)
ind " gyl (Ryy + R,/5)* + Xy + X,)?]
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FIGURE 6-19
A typical induction motor torque—speed characteristic curve.

A plot of induction motor torque as a function of speed (and slip) is shown
in Figure 6-19, and a plot showing speeds both above and below the normal mo-

tor range

is shown in Figure 6-20.

Comments on the Induction Motor
Torque-Speed Curve

The induction motor torque—speed characteristic curve plotted in Figures 6-19
and 6-20 provides several important pieces of information about the operation of

induction motors. This information is summarized as follows:

1. The induced torque of the motor is zero at synchronous speed. This fact has

been discussed previously.

2. The torque—speed curve is nearly linear between no load and full load. In this
range, the rotor resistance is much larger than the rotor reactance, so the ro-
tor current, the rotor magnetic field, and the induced torque increase linearly

with

3. There is a maximum possible torque that cannot be exceeded. This torque,
called the pullout torque or breakdown torque, is 2 to 3 times the rated full-
load torque of the motor. The next section of this chapter contains a method

increasing slip.

for calculating pullout torque.
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FIGURE 6-20
Induction motor torque—speed characteristic curve, showing the extended operating ranges (braking
region and generator region).

4.

5.

The starting torque on the motor is slightly larger than its full-load torque, so
this motor will start carrying any load that it can supply at full power.
Notice that the torque on the motor for a given slip varies as the square of the
applied voltage. This fact is useful in one form of induction motor speed con-
trol that will be described later.

If the rotor of the induction motor is driven faster than synchronous speed,
then the direction of the induced torque in the machine reverses and the ma-
chine becomes a generator, converting mechanical power to electric power.
The use of induction machines as generators will be described later.

If the motor is turning backward relative to the direction of the magnetic fields,
the induced torque in the machine will stop the machine very rapidly and will
try to rotate it in the other direction. Since reversing the direction of magnetic
field rotation is simply a matter of switching any two stator phases, this fact
can be used as a way to very rapidly stop an induction motor. The act of
switching two phases in order to stop the motor very rapidly is called plugging.

The power converted to mechanical form in an induction motor is equal to

Pconv = Tind Wn

and is shown plotted in Figure 6-21. Notice that the peak power supplied by the
induction motor occurs at a different speed than the maximum torque; and, of
course, no power is converted to mechanical form when the rotor is at zero speed.
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Induced torque and power converted versus motor speed in revolutions per minute for an example
four-pole induction motor.

Maximum (Pullout) Torque in an Induction Motor

Since the induced torque is equal to Pyg/ @y, the maximum possible torque oc-
curs when the air-gap power is maximum. Since the air-gap power is equal to the
power consumed in the resistor R,/s, the maximum induced torque will occur
when the power consumed by that resistor is maximum.

When is the power supplied to R, /s at its maximum? Refer to the simplified
equivalent circuit in Figure 6-18c. In a situation where the angle of the load im-
pedance is fixed, the maximum power transfer theorem states that maximum
power transfer to the load resistor R, /s will occur when the magnitude of that im-
pedance is equal to the magnitude of the source impedance. The equivalent source

impedance in the circuit is
Zsource = RTH + jXTH + jXZ (6‘51)

so the maximum power transfer occurs when

R
2= VREy + gy + X (6-52)
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Solving Equation (6-52) for slip, we see that the slip at pullout torque is given by

R2
s —
™% VRZ, + Xy + X,)?

Notice that the referred rotor resistance R, appears only in the numerator, so the
slip of the rotor at maximum torque is directly proportional to the rotor resistance.

The value of the maximum torque can be found by inserting the expression
for the slip at maximum torque into the torque equation [Equation (6-50)]. The re-
sulting equation for the maximum or pullout torque is

(6-53)

3 3V,
2040 [Rrs + VR3y + Xy + X))

(6-54)

Tmax

This torque is proportional to the square of the supply voltage and is also inversely
related to the size of the stator impedances and the rotor reactance. The smaller a
machine’s reactances, the larger the maximum torque it is capable of achieving.
Note that slip at which the maximum torque occurs is directly proportional to rotor
resistance [Equation (6-53)], but the value of the maximum torque is independent
of the value of rotor resistance [Equation (6-54)].

The torque—speed characteristic for a wound-rotor induction motor is shown
in Figure 6-22. Recall that it is possible to insert resistance into the rotor circuit
of a wound rotor because the rotor circuit is brought out to the stator through slip
rings. Notice on the figure that as the rotor resistance is increased, the pullout
speed of the motor decreases, but the maximum torque remains constant.

It is possible to take advantage of this characteristic of wound-rotor induc-
tion motors to start very heavy loads. If a resistance is inserted into the rotor circuit,
the maximum torque can be adjusted to occur at starting conditions. Therefore, the
maximum possible torque would be available to start heavy loads. On the other
hand, once the load is turning, the extra resistance can be removed from the cir-
cuit, and the maximum torque will move up to near-synchronous speed for regu-
lar operation.

Example 64. A two-pole, 50-Hz induction motor supplies 15 kW to a load at a
speed of 2950 r/min.

(a) What is the motor’s slip?

(b) What is the induced torque in the motor in N * m under these conditions?

(c) What will the operating speed of the motor be if its torque is doubled?

(d) How much power will be supplied by the motor when the torque is doubled?

Solution
(a) The synchronous speed of this motor is

_ 120f,  120(50 Hz) _ .
Moyne =~ 2poles 3000 r/ min
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The effect of varying rotor resistance on the torque-speed characteristic of a wound-rotor induction
motor.

Therefore, the motor’s slip is
Rgne — N,
s = —L=—T(x 100%) (6-4)
sync
_ 3000 r/ min — 2950 r/ min
3000 r/ min
= 0.0167 or 1.67%

(b) The induced torque in the motor must be assumed equal to the load torque, and
P,,,, must be assumed equal to P4, since no value was given for mechanical
losses. The torque is thus

(x 100%)

_ Row
Tind = oy
_ 15 kW
(2950 r/min)(27r rad/r)(1 min/60 s)
=486Ne*m

(c) In the low-slip region, the torque-speed curve is linear, and the induced torque
is directly proportional to slip. Therefore, if the torque doubles, then the new
slip will be 3.33 percent. The operating speed of the motor is thus

ny = (1 = $)nge = (1 — 0.0333)(3000 r/min) = 2900 r/min
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(d) The power supplied by the motor is given by
P

conv — Tind@m
= (97.2 N * m)(2900 r/ min)(27 rad/ r)(1 min/ 60 s)
= 29.5kW

Example 6-5. A 460-V, 25-hp, 60-Hz, four-pole, Y-connected wound-rotor induc-
tion motor has the following impedances in ohms per phase referred to the stator circuit:

R, =0641Q R,=03320
X, =11060 X,=0464Q X, =263Q

(a) What is the maximum torque of this motor? At what speed and slip does it
occur?

(b) What is the starting torque of this motor?

(c) When the rotor resistance is doubled, what is the speed at which the maximum
torque now occurs? What is the new starting torque of the motor?

(d) Calculate and plot the torque—speed characteristics of this motor both with the
original rotor resistance and with the rotor resistance doubled.

Solution
The Thevenin voltage of this motor is
Vig =V, Xy (6-41a)
=Y, —M a
™ VR F (X, + X,
_ (266 V)(26.3 ) = 2552V
V(0.641 Q)* + (1.106 Q + 26.3 Q)?
The Thevenin resistance is
~R (_XM_)2 6—44
R = Ri\x +x, (6-44)
_ 2630 )2 _
=~ (0.641 Q)(1.106 Q+2630q) 03900

The Thevenin reactance is
Xy = X, = 1.106
(a) The slip at which maximum torque occurs is given by Equation (6-53):
R,
Smax = VR + (Xqy + X,)? (€-53)

_ 03320
V{(0.590 Q)2 + (1.106 Q + 0.464 Q)

= 0.198

This corresponds to a mechanical speed of

n,=(1- s)nsync = (1 — 0.198)(1800 r/min) = 1444 r/ min
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The torque at this speed is

Wiy (6-54)
T =
e 2wsync[RTH + \/R%'H + (XTH + X2)2]
_ 3(255.2 V)?
2(188.5 rad/s)[0.590 @ + V/(0.590 Q)% + (1.106 Q + 0.464 Q)%
=229Nem
(b) The starting torque of this motor is found by setting s = 1 in Equation (6-50):
_ 3VAR,
Tt = g [Rygg + Ry + Xy + X))
_ 3(255.2 V)%(0.332 Q)
(188.5 rad/s)[(0.590 Q + 0.332 Q)% + (1.106 Q + 0.464 Q)?]
=104 Nem
(c) If the rotor resistance is doubled, then the slip at maximum torque doubles, too.
Therefore,
Smax = 0.396

and the speed at maximum torque is

ny, = (1 = )ngp. = (1 — 0.396)(1800 r/min) = 1087 r/min
The maximum torque is still

Tmax = 229 Nem
The starting torque is now
;o= 3(255.2 V)%(0.664 Q)
start ™ (188.5 rad/s)[(0.590 © + 0.664 Q)% + (1.106 Q + 0.464 Q)%
=170Nem

(d) We will create a MATLAB M-file to calculate and plot the torque-speed char-
acteristic of the motor both with the original rotor resistance and with the dou-
bled rotor resistance. The M-file will calculate the Thevenin impedance using
the exact equations for Vqy; and Zpy; [Equations (6—41a) and (6—43)] instead of
the approximate equations, because the computer can easily perform the exact
calculations. It will then calculate the induced torque using Equation (6-50) and
plot the results. The resulting M-file follows:

$ M-file: torque_speed_curve.m
% M-file create a plot of the torque-speed curve of the

%

induction motor of Example 6-5.

% First, initialize the values needed in this program.

rl
x1
r2
x2

Xm =

0.641; % Stator resistance
1.106; % Stator reactance
0.332; % Rotor resistance
0.464; % Rotor reactance
26.3; % Magnetization branch reactance
v_phase = 460 / sqrt(3); % Phase voltage
% Synchronous speed (r/min)

n_sync = 1800;
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w_sync = 188.5; % Synchronous speed (rad/s)

% Calculate the Thevenin voltage and impedance from Equations
% 6-4la and 6-43.

v_th = v_phase * ( xm / sqrt(rl”2 + (x1 + xm)"2) );

z_th = ((j*xm) * (rl + j*x1)) / (rl + j*(x1 + xm));

r_th = real(z_th);

X_th = imag(z_th);

% Now calculate the torque-speed characteristic for many
% slips between 0 and 1. Note that the first slip value
% is set to 0.001 instead of exactly 0 to avoid divide-
% by-zero problems.

s = (0:1:50) / 50; % Slip

s(1) = 0.001;

nm = (1 - s) * n_sync; % Mechanical speed

% Calculate torque for original rotor resistance
for ii = 1:51
t_indl(ii) = (3 * v_th"2 * r2 / s(ii)) /
(w_sync * ((r_th + r2/s(ii))”2 + (x_th + x2)72) );
end

% Calculate torque for doubled rotor resistance
for ii = 1:51
t_ind2(ii) = (3 * v_th"2 * (2*r2) / s(ii)) /
(w_sync * ((r_th + (2*r2)/s(ii))”"2 + (x_th + x2)"°2) );
end

% Plot the torque-speed curve

plot (nm,t_indl, 'Color', 'b', 'LineWidth',2.0);

hold on;

plot (nm, t_ind2, 'Color', 'k', 'LineWidth', 2.0, 'LineStyle', '-."');
xlabel ('\bf\itn_{m}"');

ylabel ('\bf\tau_{ind}"');

title ('\bfInduction motor torque-speed characteristic');
legend ('Original R_{2}', 'Doubled R_{2}');

grid on;

hold off;

The resulting torque-speed characteristics are shown in Figure 6-23. Note that the peak
torque and starting torque values on the curves match the calculations of parts (a) through
(c). Also, note that the starting torque of the motor rose as R, increased.

6.6 VARIATIONS IN INDUCTION MOTOR
TORQUE-SPEED CHARACTERISTICS

Section 6.5 contained the derivation of the torque-speed characteristic for an
induction motor. In fact, several characteristic curves were shown, depending on the
rotor resistance. Example 6-5 illustrated an induction motor designer’s dilemma—
if a rotor is designed with high resistance, then the motor’s starting torque is quite
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FIGURE 6-23
Torque—speed characteristics for the motor of Example 6-5.

high, but the slip is also quite high at normal operating conditions. Recall that P, =
(1 = 5)Psg, SO the higher the slip, the smaller the fraction of air-gap power actually
converted to mechanical form, and thus the lower the motor’s efficiency. A motor
with high rotor resistance has a good starting torque but poor efficiency at normal
operating conditions. On the other hand, a motor with low rotor resistance has a low
starting torque and high starting current, but its efficiency at normal operating con-
ditions is quite high. An induction motor designer is forced to compromise between
the conflicting requirements of high starting torque and good efficiency.

One possible solution to this difficulty was suggested in passing in Section
6.5: use a wound-rotor induction motor and insert extra resistance into the rotor
during starting. The extra resistance could be completely removed for better effi-
ciency during normal operation. Unfortunately, wound-rotor motors are more ex-
pensive, need more maintenance, and require a more complex automatic control
circuit than cage rotor motors. Also, it is sometimes important to completely seal
a motor when it is placed in a hazardous or explosive environment, and this is eas-
ier to do with a completely self-contained rotor. It would be nice to figure out
some way to add extra rotor resistance at starting and to remove it during normal
running without slip rings and without operator or control circuit intervention.

Figure 6-24 illustrates the desired motor characteristic. This figure shows
two wound-rotor motor characteristics, one with high resistance and one with low
resistance. At high slips, the desired motor should behave like the high-resistance
wound-rotor motor curve; at low slips, it should behave like the low-resistance
wound-rotor motor curve.

Fortunately, it is possible to accomplish just this effect by properly taking
advantage of leakage reactance in induction motor rotor design.



INDUCTION MOTORS 345

Tind

High R, Ve Low R,

Looks like

Looks
like _ Desired low R,
high curve
R,

nm
FIGURE 6-24

A torque-speed characteristic curve combining high-resistance effects at low speeds (high slip) with
low-resistance effects at high speed (low slip).

Control of Motor Characteristics
by Cage Rotor Design

The reactance X, in an induction motor equivalent circuit represents the referred
form of the rotor’s leakage reactance. Recall that leakage reactance is the reac-
tance due to the rotor flux lines that do not also couple with the stator windings. In
general, the farther away from the stator a rotor bar or part of a bar is, the greater
its leakage reactance, since a smaller percentage of the bar’s flux will reach the sta-
tor. Therefore, if the bars of a cage rotor are placed near the surface of the rotor,
they will have only a small leakage flux and the reactance X, will be small in the
equivalent circuit. On the other hand, if the rotor bars are placed deeper into the ro-
tor surface, there will be more leakage and the rotor reactance X, will be larger.

For example, Figure 6-25a is a photograph of a rotor lamination showing
the cross section of the bars in the rotor. The rotor bars in the figure are quite large
and are placed near the surface of the rotor. Such a design will have a low resis-
tance (due to its large cross section) and a low leakage reactance and X, (due to
the bar’s location near the stator). Because of the low rotor resistance, the pullout
torque will be quite near synchronous speed [see Equation (6-53)], and the motor
will be quite efficient. Remember that

Pconv = (1 - S)PAG (6—33)

so very little of the air-gap power is lost in the rotor resistance. However, since R,
is small, the motor’s starting torque will be small, and its starting current will be
high. This type of design is called the National Electrical Manufacturers Associa-
tion (NEMA) design class A. It is more or less a typical induction motor, and its
characteristics are basically the same as those of a wound-rotor motor with no ex-
tra resistance inserted. Its torque—speed characteristic is shown in Figure 6-26.
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FIGURE 6-25

Laminations from typical cage induction motor rotors, showing the cross section of the rotor bars:
(a) NEMA design class A—large bars near the surface; (b) NEMA design class B—large, deep rotor
bars; (c) NEMA design class C—double-cage rotor design; (d) NEMA design class D—small bars
near the surface. (Courtesy of MagneTek, Inc.)

Figure 6-25d, however, shows the cross section of an induction motor rotor
with small bars placed near the surface of the rotor. Since the cross-sectional area
of the bars is small, the rotor resistance is relatively high. Since the bars are lo-
cated near the stator, the rotor leakage reactance is still small. This motor is very
much like a wound-rotor induction motor with extra resistance inserted into the
rotor. Because of the large rotor resistance, this motor has a pullout torque occur-
ring at a high slip, and its starting torque is quite high. A cage motor with this type
of rotor construction is called NEMA design class D. Its torque—speed character-
istic is also shown in Figure 6-26.
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Deep-Bar and Double-Cage Rotor Designs

Both of the previous rotor designs are essentially similar to a wound-rotor motor
with a set rotor resistance. How can a variable rotor resistance be produced to
combine the high starting torque and low starting current of a class D design with
the low normal operating slip and high efficiency of a class A design?

It is possible to produce a variable rotor resistance by the use of deep rotor
bars or double-cage rotors. The basic concept is illustrated with a deep-bar rotor
in Figure 6-27. Figure 6-27a shows a current flowing through the upper part of a
deep rotor bar. Since current flowing in that area is tightly coupled to the stator,
the leakage inductance is small for this region. Figure 6-27b shows current flow-
ing deeper in the bar. Here, the leakage inductance is higher. Since all parts of the
rotor bar are in parallel electrically, the bar essentially represents a series of par-
allel electric circuits, the upper ones having a smaller inductance and the lower
ones having a larger inductance (Figure 6-27c).

At low slip, the rotor’s frequency is very small, and the reactances of all
the parallel paths through the bar are small compared to their resistances. The im-
pedances of all parts of the bar are approximately equal, so current flows through
all parts of the bar equally. The resulting large cross-sectional area makes the ro-
tor resistance quite small, resulting in good efficiency at low slips. At high slip
(starting conditions), the reactances are large compared to the resistances in the
rotor bars, so all the current is forced to flow in the low-reactance part of the bar
near the stator. Since the effective cross section is lower, the rotor resistance is
higher than before. With a high rotor resistance at starting conditions, the start-
ing torque is relatively higher and the starting current is relatively lower than in
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FIGURE 6-27

Flux linkage in a deep-bar rotor. (a) For a current flowing in the top of the bar, the flux is tightly
linked to the stator, and leakage inductance is small; (b) for a current flowing in the bottom of the
bar, the flux is loosely linked to the stator, and leakage inductance is large; (c) resulting equivalent
circuit of the rotor bar as a function of depth in the rotor.

a class A design. A typical torque—speed characteristic for this construction is the
design class B curve in Figure 6-26.

A cross-sectional view of a double-cage rotor is shown in Figure 6-25c. It con-
sists of a large, low-resistance set of bars buried deeply in the rotor and a small, high-
resistance set of bars set at the rotor surface. It is similar to the deep-bar rotor, except
that the difference between low-slip and high-slip operation is even more exagger-
ated. At starting conditions, only the small bar is effective, and the rotor resistance is
quite high. This high resistance results in a large starting torque. However, at normal
operating speeds, both bars are effective, and the resistance is almost as low as in a
deep-bar rotor. Double-cage rotors of this sort are used to produce NEMA class B
and class C characteristics. Possible torque—speed characteristics for a rotor of this
design are designated design class B and design class C in Figure 6-26.

Double-cage rotors have the disadvantage that they are more expensive than
the other types of cage rotors, but they are cheaper than wound-rotor designs. They
allow some of the best features possible with wound-rotor motors (high starting
torque with a low starting current and good efficiency at normal operating condi-
tions) at a lower cost and without the need of maintaining slip rings and brushes.
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Induction Motor Design Classes

It is possible to produce a large variety of torque—speed curves by varying the ro-
tor characteristics of induction motors. To help industry select appropriate motors
for varying applications in the integral-horsepower range, NEMA in the United
States and the International Electrotechnical Commission (IEC) in Europe have
defined a series of standard designs with different torque—speed curves. These
standard designs are referred to as design classes, and an individual motor may be
referred to as a design class X motor. It is these NEMA and IEC design classes
that were referred to earlier. Figure 626 shows typical torque—speed curves for
the four standard NEMA design classes. The characteristic features of each stan-
dard design class are given below.

DESIGN CLASS A. Design class A motors are the standard motor design, with a
normal starting torque, a normal starting current, and low slip. The full-load slip
of design A motors must be less than 5 percent and must be less than that of a de-
sign B motor of equivalent rating. The pullout torque is 200 to 300 percent of the
full-load torque and occurs at a low slip (less than 20 percent). The starting torque
of this design is at least the rated torque for larger motors and is 200 percent or
more of the rated torque for smaller motors. The principal problem with this de-
sign class is its extremely high inrush current on starting. Current flows at starting
are typically 500 to 800 percent of the rated current. In sizes above about 7.5 hp,
some form of reduced-voltage starting must be used with these motors to prevent
voltage dip problems on starting in the power system they are connected to. In the
past, design class A motors were the standard design for most applications below
7.5 hp and above about 200 hp, but they have largely been replaced by design
class B motors in recent years. Typical applications for these motors are driving
fans, blowers, pumps, lathes, and other machine tools.

DESIGN CLASS B. Design class B motors have a normal starting torque, a lower
starting current, and low slip. This motor produces about the same starting torque as
the class A motor with about 25 percent less current. The pullout torque is greater
than or equal to 200 percent of the rated load torque, but less than that of the class A
design because of the increased rotor reactance. Rotor slip is still relatively low (less
than 5 percent) at full load. Applications are similar to those for design A, but design
B is preferred because of its lower starting-current requirements. Design class B
motors have largely replaced design class A motors in new installations.

DESIGN CLASS C. Design class C motors have a high starting torque with low
starting currents and low slip (less than 5 percent) at full load. The pullout torque
is slightly lower than that for class A motors, while the starting torque is up to 250
percent of the full-load torque. These motors are built from double-cage rotors, so
they are more expensive than motors in the previous classes. They are used for
high-starting-torque loads, such as loaded pumps, compressors, and conveyors.
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DESIGN CLASS D. Design class D motors have a very high starting torque (275
percent or more of the rated torque) and a low starting current, but they also have
a high slip at full load. They are essentially ordinary class A induction motors, but
with the rotor bars made smaller and with a higher-resistance material. The high
rotor resistance shifts the peak torque to a very low speed. It is even possible for
the highest torque to occur at zero speed (100 percent slip). Full-load slip for these
motors is quite high because of the high rotor resistance. It is typically 7 to 11 per-
cent, but may go as high as 17 percent or more. These motors are used in applica-
tions requiring the acceleration of extremely high-inertia-type loads, especially
large flywheels used in punch presses or shears. In such applications, these motors
gradually accelerate a large flywheel up to full speed, which then drives the
punch. After a punching operation, the motor then reaccelerates the flywheel over
a fairly long time for the next operation.

In addition to these four design classes, NEMA used to recognize design
classes E and F, which were called soft-start induction motors (see Figure 6-28).
These designs were distinguished by having very low starting currents and were
used for low-starting-torque loads in situations where starting currents were a
problem. These designs are now obsolete.

Example 6-6. A 460-V, 30-hp, 60-Hz, four-pole, Y-connected induction motor has
two possible rotor designs, a single-cage rotor and a double-cage rotor. (The stator is iden-
tical for either rotor design.) The motor with the single-cage rotor may be modeled by the
following impedances in ohms per phase referred to the stator circuit:

R, =0641Q R, =03000Q
X, =0750Q X,=0500Q X, =2630Q

The motor with the double-cage rotor may be modeled as a tightly coupled, high-
resistance outer cage in parallel with a loosely coupled, low-resistance inner cage (similar
to the structure of Figure 6-25c). The stator and magnetization resistance and reactances
will be identical with those in the single-cage design.

The resistance and reactance of the rotor outer cage are:

Ry, =3200Q X,, = 0.500

Note that the resistance is high because the outer bar has a small cross section, while the re-
actance is the same as the reactance of the single-cage rotor, since the outer cage is very
close to the stator, and the leakage reactance is small.

The resistance and reactance of the inner cage are

Ry =0400Q X, = 33000

Here the resistance is low because the bars have a large cross-sectional area, but the leak-
age reactance is quite high.

Calculate the torque-speed characteristics associated with the two rotor designs.
How do they compare?

Solution
The torque—speed characteristic of the motor with the single-cage rotor can be calculated
in exactly the same manner as Example 6-5. The torque—speed characteristic of the motor
with the double-cage rotor can also be calculated in the same fashion, except that at each
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FIGURE 6-28

Rotor cross section, showing the construction of the former design class F induction motor. Since the
rotor bars are deeply buried, they have a very high leakage reactance. The high leakage reactance
reduces the starting torque and current of this motor, so it is called a soft-start design. (Courtesy of
MagneTek, Inc.)

slip the rotor resistance and reactance will be the parallel combination of the impedances
of the inner and outer cages. At low slips, the rotor reactance will be relatively unimportant,
and the large inner cage will play a major part in the machine’s operation. At high slips, the
high reactance of the inner cage almost removes it from the circuit.

A MATLAB M-file to calculate and plot the two torque—speed characteristics
follows:

% M-file: torque_speed_2.m
% M-file create and plot of the torque-speed curve of an
% induction motor with a double-cage rotor design.

% First, initialize the values needed in this program.

rl = 0.641; % Stator resistance
x1 = 0.750; % Stator reactance
r2 = 0.300; % Rotor resistance for single-

% cage motor
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r2i = 0.400; % Rotor resistance for inner
% cage of double-cage motor
r2o = 3.200; % Rotor resistance for outer
% cage of double-cage motor
x2 = 0.500; % Rotor reactance for single-
% cage motor
x2i = 3.300; % Rotor reactance for inner
% cage of double-cage motor
x20 = 0.500; % Rotor reactance for outer
% cage of double-cage motor
xm = 26.3; % Magnetization branch reactance
v_phase = 460 / sqrt(3); % Phase voltage
n_sync = 1800; % Synchronous speed (r/min)
w_sync = 188.5; % Synchronous speed (rad/s)

% Calculate the Thevenin voltage and impedance from Equations
% 6-41la and 6-43.

v_th = v_phase * ( xm / sqgrt(rl”*2 + (x1 + xm)"2) );

z_th = ((j*xm) * (rl + j*x1)) / (rl + j*(x1 + xm));

r_th = real(z_th);

X_th = imag(z_th);

% Now calculate the motor speed for many slips between
% 0 and 1. Note that the first slip value is set to

% 0.001 instead of exactly 0 to avoid divide-by-zero

% problems.

s = (0:1:50) / 50; % Slip

s(1) = 0.001; % Avoid division-by-zero
nm = (1 - s) * n_sync; % Mechanical speed

% Calculate torque for the single-cage rotor.
for ii = 1:51
t_indl(ii) = (3 * v_th"2 * r2 / s(ii)) /
(w_sync * ((r_th + r2/s(ii))”2 + (x_th + x2)"2) );
end

% Calculate resistance and reactance of the double-cage
% rotor at this slip, and then use those values to
% calculate the induced torque.
for ii = 1:51
y_r = 1/(r2i + j*s(ii)*x2i) + 1/(r2o0 + j*s(ii)*x20);

z_r = 1/y_r; % Effective rotor impedance
r2eff = real(z_r); % Effective rotor resistance
x2eff = imag(z_r); % Effective rotor reactance

% Calculate induced torque for double-cage rotor.
t_ind2(ii) = (3 * v_th"2 * r2eff / s(ii)) /
(w_sync * ((r_th + r2eff/s(ii))”2 + (x_th + x2eff)"2)
end

% Plot the torque-speed curves

plot (nm,t_indl, 'b-"', 'LineWidth',2.0);
hold on;

plot (nm,t_ind2, 'k-."', 'LineWidth',2.0);
xlabel ('\bf\itn_{m}"');

);
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FIGURE 6-29

Comparison of torque—speed characteristics for the single- and double-cage rotors of Example 6-6.

ylabel ('\bf\tau_{ind}");

title ('\bfInduction motor torque-speed characteristics');
legend ('Single-cage design', 'Double-cage design');

grid on;

hold off;

The resulting torque—speed characteristics are shown in Figure 6-29. Note that the double-
cage design has a slightly higher slip in the normal operating range, a smaller maximum
torque and a higher starting torque compared to the corresponding single-cage rotor design.
This behavior matches our theoretical discussions in this section.

6.7 TRENDS IN INDUCTION
MOTOR DESIGN

The fundamental ideas behind the induction motor were developed during the late
1880s by Nicola Tesla, who received a patent on his ideas in 1888. At that time, he
presented a paper before the American Institute of Electrical Engineers [AIEE, pre-
decessor of today’s Institute of Electrical and Electronics Engineers (IEEE)] in which
he described the basic principles of the wound-rotor induction motor, along with ideas
for two other important ac motors—the synchronous motor and the reluctance motor.

Although the basic idea of the induction motor was described in 1888, the
motor itself did not spring forth in full-fledged form. There was an initial period
of rapid development, followed by a series of slow, evolutionary improvements
which have continued to this day.

The induction motor assumed recognizable modern form between 1888 and
1895. During that period, two- and three-phase power sources were developed to
produce the rotating magnetic fields within the motor, distributed stator windings



354 ELECTRIC MACHINERY FUNDAMENTALS

1903

1940 1974

FIGURE 6-30

The evolution of the induction motor. The motors shown in this figure are all rated at 220 V and 15
hp. There has been a dramatic decrease in motor size and material requirements in induction motors
since the first practical ones were produced in the 1890s. (Courtesy 