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XV1 

NOTATION 

acceleration 

some arbitrary direction or length (Sec. 2.1) 

resistance of filter medium (Sec. 11.4) 

x, y, and z components of acceleration 

centrifugal acceleration 

exponents in algebraic procedure (Sec. 9.3) 

area or cross-sectional area perpendicular to flow 

independent variable (Sec. 9.3) 

arbitrary constants 

background concentration (Sec. 3.6) 

dependent variable (Sec. 9.3) 

volume fraction in hindered settling 

speed of light (Chap. 4 only) 

speed of sound 

concentration 

heat capacity 

drag coefficient (Sec. 6.13) 

constants of integration 

lift coefficient (Sec. 6.13) 

integrated drag coefficient (Sec. 17.2) 

local drag coefficient (Sec. 17.2) 

heat capacity at constant pressure 

orifice or venturi coefficient (Sec. 5.8) 

heat capacity at constant volume 

capital cost factor (Sec. 6.12) 

diameter 

particle diameter 

Stokes or substantive or convective derivative 

diffusivity, molecular or turbulent 

gauss error function (see Fig. 19.5) 

energy 

voltage 

surface energy 

Fanning friction factor (Sec. 6.4) 

friction factor for porous medium (Sec. 11.1) 

spectrum function (Sec. 18.4) 

various 

various 

Ibm / ft* 
various 

ft/s 

ft/s 

Ibm / ft* 
Btu / lbm- °F or 

Btu / lbmol : °F 

various 

Btu / lbm : °F or 

Btu / lbmol : °F 

Btu / lbm: °F or 

Btu / lbmol - °F 

1/yr 

‘ft 

ft 

l/s 

ft/s 

Btu or equivalent 

volt 

ft Ibe/ ft? 

1 / hertz 

m/s 

m/s 

kg/m? 

J/kg: Kor 

J/mol:K 

various 

J/kg: Kor 

J/mol:K 

J/kg: Kor 

J/mol:K 

Ls YE 

1 / hertz 
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temperature or temperature interval, degrees 

Fahrenheit 

force 

friction heating per lbm 

x, y, and z components of force 

tangential component of force 

inertia, viscous, gravity, surface, elastic, 

and pressure forces (Sec. 9.3) 

spectrum function (Sec. 18.4) 

Froude number 

acceleration of gravity 

conversion factor = 1 = 32.2 lbm: ft/Ibf-s 

height or depth 

enthalpy per unit mass or mole (u + Pu) 

2 

centroid depth measured from free surface 

(Prob. 2.26) 

enthalpy (U + PV) 

height 

effective stack height (Chap. 19) 

mixing height (Chap. 3) 

horsepower 

Hedstrom number (Chap. 13) 

hydraulic radius 

unit vectors in the x, y, and z directions 

electric current (dQ / dt) 
angular moment of inertia (Chap. 7) 

specific impulse 

x, y, and z components of the electric current 

density (Sec. 16.3) 

number of independent dimensions (Sec. 9.3) 

ratio of specific heats, Cp / Cy (Sec. 8.1) 

thermal conductivity (Sec. 16.3) 

permeability (Sec. 16.3 and Chap. 11) 

ratio of radii in a Couette viscometer 

turbulent ke per unit mass 

kinetic energy per unit mass 

arbitrary constant in “power law” (Chap. 13) 

bulk modulus (Sec. 8.1) 

resistance coefficient (Sec. 6.9) 

arbitrary constant in jet equation (Chap. 19) 

kinetic energy 

length 

length or lever arm 

angular momentum (Chap. 7) 

mass 

mass flow rate 

molecular weight 

Mach number 

number of independent variables 

number of moles 

arbitrary power in “power law” (Chap. 13) 

frequency 

constant in Chézy Eq. (Chap. 6) 

a 

Ibf 

ft - lbf / Ibm 

or equivalent 

lbf 

ft 

Btu / lbm or 

Btu / lbmol 

ft 

Btu 

ft 

ft 

ft 

ft: lbf/s 

amp 

Ibm - ft? 
Ibf-s /lbm 

amp / m? 

Btu / hr: °F- ft 
ft? 

Btu / lbm 

Btu / lbm 

Ibf : s"/ ft 
Ibf / in? 

ft 
Ibm: ft? /s 
lbm 

lbm/s 

Ibm / Ibmol 
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SEL OQwr * 

erower law 

RBingham 

Dr erostlen 

centerline 

4f Ax/ D (Sec. 8.4) 
rotation rate (rpm or rps) 

potential energy per unit mass 

pressure 

power 

potential energy 

pumping cost (Sec. 6.12) 

purchased price factor for a pipe (Sec. 6.12) 

emission rate per unit area (Sec. 3.6) 

x, y, and z components of heat flux (Sec, 16.3) 

volumetric flow rate 

heat 

charge 

radius 

universal gas constant 

correlation coefficient (Sec. 18.5) 

radius of curvature (Chap. 14) 

Reynolds number 

particle Reynolds number 

Reynolds number for porous media 

Reynolds number based on distance from 

leading edge 

Reynolds number for power law fluids 

Reynolds number for Bingham plastics 

Reynolds number for a mixer impeller 

entropy per unit mass or per mole 

cake compressibility coefficient (Sec. 11.4) 

specific gravity 

time 

wall thickness (Sec. 2.4) 

absolute temperature 

relative intensity of turbulence (Sec. 18.4) 

internal energy per unit mass or per mole 

friction velocity (Sec. 17.4) 

V,./ u* (Sec. 17.4) 
internal energy 

volume per unit mass 

fluctuating component of velocity (Chaps. 17 and 18) 
velocity 

volume 

x, y, and z components of velocity 

tangential component of velocity 

radial velocity 

average velocity 

centerline velocity in a pipe 

free-stream velocity 

superficial velocity (Sec. 11.1) 

interstitial velocity (Sec. 11.1) 

minimum fluidizing velocity (Sec. 11.5) 

work 

weight 

width 

1/min; 1/s 

Btu /lbm 

Ibf / in? 
ft: lbf/s 

Btu 

$/yr-hp 

$/in- ft 

Ibm /s - ft? 
Btu /h- ft? 
ft?/s 
Btu 

coul 

ft 

See inside 

back cover 

> 

Btu /lbm- °R or 

Btu / lbmol - °R 

S 

ft 

°RorK 

Btu / Ibm or 

Btu / lbmol 

ft/s 

Btu 

ft / Ibm 
ft/s 

ft/s 

ft 
ft/s 

ft/s 

ft/s 

ft/s 

ft/s 

ft/s 

ft/s 

ft/s 

ft/s 

ft - lbf 

Ibf 

ft 

1/min;1/s 

J/kg 

Pa 

WwW 

J 

kg/s:m? 

W/m? 

m°/s 

J 

coul 

m 

See inside 

back cover 

J/kg:Kor 

J/mol:K 
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Superscripts 
* 

Xx 

non-flow work (excluding injection work) 

volumetric solids content of slurry (Sec. 11.4) 

directions of coordinate axes, or lengths 

distance 

distance perpendicular to the flow direction 

(rTwan — r)u* / v (Sec. 17.4) 
elevation 

coefficient of thermal expansion 

specific resistance of filter cake (Sec. 11.4) 

small angle, jet angle (Chap. 19) 

thermal diffusivity 

constant in Chézy Eq. (Chap. 6) 

isothermal compressibility = 1 / (bulk modulus) 

specific weight = pg 

torque 

boundary-layer thickness (Chap. 17) 

displacement thickness (Sec. 17.2) 

absolute roughness 

porosity or void fraction or volume fraction of gas 

eddy (kinematic) viscosity 

turbulent dissipation rate 

vorticity = 20 

efficiency 

y(V,/ v,)'/? (Sec. 17.2) 
viscosity (non-Newtonian fluids) 

angle 

momentum thickness (Sec. 17.2) 

contact angle (Sec. 17.3) 

viscosity 

kinematic viscosity (u / p) 
number of dimensionless groups (Chap. 9) 

density 

resistivity (Sec. 16.3) 

surface tension 

stress 

shear rate 

turbulent dispersion coefficients (Chap. 19) 

normal stress in x direction 

shear stress 

shear stress in the x direction on a face 

perpendicular to the y axis 

shear stress at a solid wall 

shear stress at a solid surface 

yield stress for a Bingham fluid 

potential 

arbitrary function of time (Sec. 16.2) 

stream function 

angular velocity 

sonic condition (Chap. 8) 

time average of X 

1/°F 
1 /lbf 
rad 

ft?/s 

1 / (Ibf / in”) 
Ibf / ft? 
ft: Ibf 

Ibm / ft: s or cP 

rad 

ft 

rad 

Ibm / ft: s or cP 

ft? /s or cSt 

Ibm / ft? 

Ibf / ft 
Ibf / in? 
Lis 

ft 
Ibf / in? 
Ibf / in? 
Ibf / in? 

Ibf / in? 
Ibf / in? 
Ibf / in? 
ft? /s for 

fluid flow 

ft? /s 
rad/s 

various 
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Pa 

m’/s for 

fluid flow 

m*/s 

rad/s 

various 
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Subscripts 

2 

oy = 

Vector 

boldface 

Vv 

reservoir state in Chap. 8 

isentropic condition (speed of sound) 

arbitrary states 

conditions before and after a normal 

shock in Chap. 8 

indicates a vector various 

7) ts) 0 
V =) + 1/ft 

ox oy Oz 

various 
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PREFACE 

T his book presents an introduction to fluid mechanics for undergraduate chemical 
engineering students. 

Throughout the text, emphasis is placed on the connection between physical 

reality and the mathematical models of reality, which we manipulate. The ultimate 

test of a mathematical solution is its ability to predict the results of future experi- 

ments. Because a mathematically correct consequence of inapplicable assumptions is 

often simply wrong, the text occasionally offers intentionally wrong solutions to cau- 

tion the student. 

The simplest mathematical approaches are used, consistent with technical vigor. 

Considerable attention is paid to the units of quantities in the equations because 

students usually have trouble with them, and because this reminds them that each 

symbol in our equations stands for a real physical quantity. 

The book is divided into four sections. Section I, preliminaries, provides back- 

ground for the study of flowing fluids. It includes a separate chapter on the balance 

equation. One might think that this is such a simple topic that it deserves only a few 

lines. However, it is a continual source of trouble to students. Furthermore, it is the 

most all-pervasive concept of chemical engineering, forming the basic mathematical 

framework for the application of the laws of thermodynamics, Newtonian mechanics, 

stoichiometry, and for the study of chemically reacting systems. There is also a chap- 

ter on the first law of thermodynamics. In the undergraduate program at the Univer- 

sity of Utah, the students study basic engineering thermodynamics before they are 

introduced to fluid mechanics; thus, Chapter 4 is merely a review for them. 

Section II discusses flows that are practically one-dimensional or can be treated 

as such. This organization of the book is radically different from the organization of flu- 

ids books written by mechanical and civil engineers, who begin with three-dimensional 

fluid mechanics and work their way down to one-dimensional fluid mechanics. The 

reasons for this organization, which fits better with the background of chemical engi- 

neers, are spelled out in Section 1.11. Sections I and II are the core of the book, cov- 

ering all the basic ideas in fluid mechanics, and many of the problems of greatest interest 

to chemical engineers. 

Section III discusses some other topics that can be viewed by the methods of 

one-dimensional fluid mechanics. These six chapters introduce other areas of fluid 

Xxi 
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mechanics that are of great practical interest to some chemical engineers but that are 

not covered in an introductory course for want of time. They can be assigned, in any 

order, as supplementary reading, or covered briefly in class, introducing students to 

the terminology and basic ideas of these fields and helping them to read related mat- 

ters in the current literature. 
Section IV introduces the student to two- and three-dimensional fluid mechan- 

ics. It shows the relations between the methods used for these flows and the simpler 

approaches used in Sections II and III. It shows what two- and three-dimensional prob- 

lems can be solved by hand (a small number) and shows the basis on which most 

such problems are currently solved by Computational Fluid Mechanics programs. A 

separate chapter introduces the student to mixing, which is basic chemical engineer- 

ing, but not routinely covered in fluid mechanics texts. 

Computers do not make hand calculations unnecessary. No new or unfamiliar 

computer solution should be believed until manual plausibility checks have shown that 

the computer is indeed solving the problem we think it is solving and that its solu- 

tion is physically reasonable. Simply plugging values into available computer pack- 

ages does not build physical insight, which is one of the most important tools of the 

successful engineer. Good pedagogy begins with hand solutions of simplified versions 

of the real problem, which build physical insight and some understanding of physi- 

cal magnitudes, followed by computer solutions, which can relax the simplifications 

and cover a wider variety of conditions, followed by manual plausibility checks of 

the computer solutions. 

After an initial rush of enthusiasm for SI, engineering educators seem to be 

deciding that the English system of units is not likely to vanish overnight. For this 

reason our students must become like educated Europeans, who speak more than one 

language fluently and can read and understand one or two additional languages. Our 

students must be fluent in SI and in the English system of units and must understand 

traditional metric and cgs, and be able to read and understand texts using the slug and 

the poundal. This book has a long discussion of these various systems of units. Exam- 

ples are presented in both SI and English units. This is unlikely to please purists of 

any persuasion, but it probably serves our students as well as any other approach and 

better than some. 

My goal is to present a text that average chemical engineering undergraduates 

can read and understand and from which they can attack a variety of meaningful prob- 

lems. I have tried to help the student develop a physical insight into the processes of 
fluid mechanics and develop the understanding that the equations on these pages truly 
describe what nature does. I have tried to choose examples from the student’s own 

experiences, or that relate to things they can observe in their everyday lives. The home 
is a wonderful place to observe the principles of chemical engineering; good teach- 
ers help students interpret what they see in the home in terms of chemical engineer- 
ing principles. 

The true test of the quality of a textbook is whether it becomes the most worn 
and tattered book on a practicing engineer’s bookshelf. Former students tell me that 
the first two editions of this book pass that test. I hope copies of this edition will 
become even more worn and tattered. 
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For instructor resources visit the text’s Web site at http://www.mhhe.com/ 
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CHAPTER 

I 
INTRODUCTION 

1.1 WHAT IS FLUID MECHANICS? 

Mechanics is the study of forces and motions. Therefore, fluid mechanics is the study 

of forces and motions in fluids. But what is a fluid? We all can think of some things 

that obviously are fluids: air, water, gasoline, lubricating oil, and milk. We also can 

think of some things that obviously are not fluids: steel, diamonds; rubber bands, and 

paper. These we call solids. But there are some very interesting intermediate types of 

matter: gelatin, peanut butter, cold cream, mayonnaise, toothpaste, roofing tar, library 

paste, bread dough, and auto grease. 

To decide what we mean by the word “fluid,” we first have to consider the idea 

of shear stress. It is easiest to discuss shear stress in comparison with tensile stress 

and compressive stress; see Fig. 1.1. 

In Fig. 1.1(a) a rope is holding up a weight. The weight exerts a force that tends 

to pull the rope apart. A stress is the ratio of the applied force to the area over which 

it is exerted (force/area). Thus, the stress in the rope is the force exerted by the weight 

divided by the cross-sectional area of the rope. The force that tries to pull things apart 

is called a tensile force, and the stress it causes is called a tensile stress. 

In Fig. 1.1(6) a steel column is holding up a weight. The weight exerts a force 

that tends to crush the column. This kind of force is called a compressive force, and 

the stress in the column, the force divided by the cross-sectional area of the column, 

is called a compressive Stress. 

In Fig. 1.1(c) some glue is holding up a weight. The weight exerts a force that 

tends to pull the weight down the walls and thus to shear the glue. This force, which 

tends to make one surface slide parallel to an adjacent surface, is called a shear force, 

and the stress in the glue, the force divided by the area of the glue joint, is called a 

shear stress. 

A more detailed examination of these examples would show that all three kinds 

of stress are present in each case, but those we have identified are the main ones. (For 

more information on this topic, see any text on strength of materials.) 
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Rope 

js) Steel 100 

column Ib 

ames 

(a) (b) 

FIGURE 1.1 

Comparison of tensile, compressive and shear stresses. (a) The rope 

is in tensile stess; (b) the column is in compressive stress; (c) the 

glue is in shear stress. 

Solids are substances that can permanently resist very large shear forces. When 

subject to a shear force, they move a short distance (elastic deformation), thereby set- 

ting up internal shear stresses that resist the external force, and then they stop mov- 

ing. Materials that obviously are fluids cannot permanently resist a shear force, no 

matter how small. When subject to a shear force, they start to move and keep on mov- 

ing as long as the force is applied. 

Substances intermediate between solids and fluids can permanently resist a small 

shear force but cannot permanently resist a large one. For example, if we put a “blob” 

of any obvious liquid on a vertical wall, gravity will make it run down the wall. If we 

attach a piece of steel or diamond securely to a wall, it will remain there, no matter 

how long we wait. If we attach some peanut butter to a wall, it will probably stay, but 

if we increase the shear stress on the peanut butter by spreading it with a knife, it will 

flow like a fluid. We cannot spread steel with a knife as we spread peanut butter. 

If, as shown above, the relevant difference between peanut butter and steel is 

the magnitude of the shear stress that the material can resist, then the difference is 

one of degree, not of kind. At extreme shear stresses steel can be made to “flow like 

a fluid.” In the remainder of this book we will be talking mostly about materials such 

as air and water, which cannot permanently resist any shear force. However, it is well 

to keep our minds open to other possibilities of “fluid” behavior [1]. (Numbers in 

brackets refer to items listed in the References at the end of the chapter.) 

1.2 WHAT GOOD IS FLUID MECHANICS? 

The problems in fluid mechanics are basically no different from those in “ordinary” 
mechanics (the mechanics of solids) or in thermodynamics. Therefore, in principle 
one can solve problems in fluid mechanics with the same methods used to solve 
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problems in mechanics or thermodynamics. However, for many of the problems 
involving the flow of fluids (or the movement of bodies through fluids), we use a com- 
bination of the problem-solving methods of mechanics and thermodynamics. Fur- 
thermore, the methods that work for hydraulics problems (dams, canals, locks, river 

flow, etc.) are applicable, with slight modifications, to aerodynamics problems (air- 

planes, rockets, wind forces on bridges, etc.) and to problems of special interest to 

chemical engineers such as the flow in chemical reactors, in distillation columns, or 

in polymer extrusion dies. Therefore, it makes sense to combine the study of this class 

of similar problems into one discipline, which we call fluid mechanics. 

Consider the important fluids in our lives: the air we breathe, the water we drink, 

many of the foods we consume, most of the fuels for heating our houses or propelling 

our vehicles, and the various fluids in our bodies that make up our internal environ- 

ment. Without some idea of the behavior of fluids, we can have only a very limited 

understanding of how the world works. 

Some of the subdivisions and applications of fluid mechanics are: 

. Hydraulics: the flow of water in rivers, pipes, canals, pumps, turbines. 

. Aerodynamics: the flow of air around airplanes, rockets, projectiles, structures. 

. Meteorology: the flow of the atmosphere. 

2 ww nN = . Particle dynamics: the flow of fluids around particles, the interaction of particles 

and fluids (i.e., dust settling, slurries, pneumatic transport, fluidized beds, air pol- 

lutant particles, corpuscles in our blood). 

5. Hydrology: the flow of water and water-borne pollutants in the ground. 

6. Reservoir mechanics: the flow of oil, gas, and water in petroleum reservoirs. 

7. Multiphase flow: coffee percolators, oil wells, carburetors, fuel injectors, combus- 

tion chambers, sprays. 

8. Combinations of fluid flow: with chemical reactions in combustion, with electro- 

magnetic phenomena in magnetohydrodynamics, with mass transport in distillation 

or drying. 

9. Viscosity-dominated flows: lubrication, injection molding, wire coating, lava, and 

continental drift. 

1.3. BASIC IDEAS IN FLUID MECHANICS 

Fluid mechanics is based largely on working out the detailed consequences of four 

basic ideas: 

1. The principle of the conservation of mass. 

2. The first law of thermodynamics (the principle of the conservation of energy). 

3. The second law of thermodynamics. 

4. Newton’s second law of motion, which may be summarized in the form F = ma. 

Each of these four ideas is a generalization of experimental data. None of them 

can be deduced from the others or from any other prior principle. None of them can 

be “proven” mathematically. Rather, they stand on their ability to predict correctly the 

results of any experiment ever run to test them. 
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Sometimes in fluid mechanics we may start with these four ideas and the mea- 

sured physical properties of the fluid(s) and proceed directly to solve mathematically 

for the desired forces, velocities, etc. This is generally possible only in the case of 

very simple flows. The observed behavior of a great many fluid flows is too complex 

to be solved directly from these four principles, so we must resort to experimental 

tests. Through the use of techniques called dimensional analysis (Chap. 9), we often 

can use the results of one experiment to predict the results of a much different exper- 

iment. Thus, careful experimental work is very important in fluid mechanics. With 

modern computers we can find useful numerical solutions to problems which would 

previously have required experimental tests. The methods for doing that are outlined 

in part IV of this book. As computers become faster and cheaper, we will see addi- 

tional complex fluid mechanics problems solved on computers. Ultimately, though, 

the computer solutions must be tested experimentally. 

These four ideas are applied to fluid mechanical problems as follows. This intro- 

ductory chapter launches our study and defines some important terms. Then Part I of 

the book, Chaps. 2—4, deals with preliminaries. We will need these in our study of mov- 

ing fluids, and they provide direct solutions and/or insight into many practical prob- 

lems. Parts II and III, Chaps. 5-14, deal with the flow of fluids that are one-dimensional 

or can be treated as if they were. Part IV, Chaps. 15-20, deals with two- and three- 

dimensional fluid mechanics. Each of these sections will be described as we begin them. 
Students using this book should have previously completed a course in elemen- 

tary thermodynamics. Chapters 3 and 4 should serve as a review of matter previously 

covered; they are included because the principles involved are central to fluid mechan- 

ics. It is assumed that the student is familiar with the second law of thermodynamics, 

which is used occasionally. Remember that this entire book is devoted to the applica- 

a tion of the four basic ideas and the results of experimental 

| tests to fluid-flow problems. Although the details can 

become quite involved, the basic ideas are few. 

1.4 LIQUIDS AND GASES 
Fluid 

Fluids are of two types, liquids and gases. On the molec- 

1 ular level these are quite different. In liquids the molecules 

Cylinder 

FIGURE 1.2 

Piston and cylinder. If the 

fluid is a gas, we can move 

the piston up and down as 

much as we like, and the gas 

will expand or contract to 

fill the volume available. If 

the fluid is a liquid, we can 

move the piston down very 

little without producing 

extreme pressures; if we 

move it up, the liquid must 

partly evaporate to produce 

a gas to fill the space. 

are close together and are held together by significant 

forces of attraction; in gases the molecules are relatively 

far apart and have very weak forces of attraction. As a rule, 

the specific volumes of gases are ~ 1000 times those of lig- 

uids, which means that the average intermolecular distance 

(center to center of the molecules) is roughly 10 times as 

far in a typical gas as in a typical liquid. As temperature 

and pressure increase, these differences become less and 

less, until the liquid and gas become identical at the criti- 

cal temperature and pressure. The difference between the 

behavior of liquids and gases is most marked when these 

fluids are expanded. Suppose that some fluid completely 

fills the space below the piston in Fig. 1.2. When we raise 

the piston, the volume occupied by the fluid is increased. 



CHAPTER | INTRODUCTION 5 

If the fluid is a gas, it will expand readily, filling all the space vacated by the piston; 
gases can expand without limit to occupy space made available to them. But if the 
fluid is a liquid, then as the piston is raised, the liquid can expand only a small amount, 
and then it can expand no more. What fills the space between the piston and the liq- 
uid? Part of the liquid must turn into a gas by boiling, and this gas expands to fill the 
vacant space. This can be explained on the molecular level by saying that there is a 
maximum distance between molecules over which the attractive forces hold them 
together to form a liquid and that, when the molecules separate more than this dis- 

tance, they cease behaving as a liquid and behave as a gas. 

Because of their closer molecular spacing, liquids normally have higher densi- 

ties, viscosities, refractive indices, etc., than gases (see Prob. 1.2). In engineering this 

frequently leads to quite different behaviors of liquids and gases, as we will see. 

1.5 PROPERTIES OF FLUIDS 

The physical properties of fluids that will enter our calculations most often are den- 

sity, viscosity, and surface tension. 

1.5.1 Density 

The density p is defined the mass per unit volume: 

Ria (1.1) 

We are all aware of the differences in density between various materials, such as that 

between lead and wood. How can we measure the density of a material? If we want 

to know the density of a liquid, we can weigh a bottle of known volume (determine 

its mass), fill it with the liquid, weigh it again, and compute the density with the aid 

of Eq. 1.1. (This is one of the standard laboratory methods of determining liquid den- 

sity; the special weighing bottles designed for this purpose are called pyncnometers, 

Prob. 1.5) If we want to know the density of a cubical solid block, we can measure 

the length of its sides, compute its volume, weigh it, and apply these results to Eq. 1.1. 

Now suppose we are asked to determine the density of a piece of Swiss cheese. 

If we have a large block of the cheese, we can cut off a cube, measure its sides, 

compute its volume, weigh it, and then calculate its density. This is an average den- 

sity, one that includes the density of the air in the holes in the cheese. As long as we 

are dealing with large pieces of cheese, it is a satisfactory density. Suppose, however, 

we are asked to find the density at some point inside a large block of the cheese. If 

we can cut the cheese open, and if we find that the point in question is in the solid 

cheese and not in one of its holes, we can find the density easily enough or, if the 

point in question is in a hole, we find the density of the air in the hole. But if the 

point is on the surface of a hole, the problem is more difficult. Then the density is 

discontinuous; see Fig. 1.3. There is no meaningful single value of the density at x. 

Why this long discussion about the density of Swiss cheese? Because the world 

is full of holes! Atomic physics tells us that even in a solid bar of steel the space 

occupied by the electrons, protons, and neutrons is a very small fraction of the total 

space; the rest presumably is empty. Furthermore, even at the molecular level there 
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ise ok Density of 
“solid” cheese 

Average density 

of cheese and holes 

Density of 
air in holes 

Distance 

FIGURE 1.3 

The density of Swiss cheese is not uniform from point to point, but 

has local point densities and an average density. 

are holes; in a typical gas the space actually occupied by the individual gas molecules 

at any instant is a small fraction of the total space. Thus, in any attempt to speak of 

density at a given point we are in the same trouble as with the Swiss cheese. There- 

fore, we must restrict the definition of density to samples large enough to average out 

the holes. This causes no problem in fluid mechanics, because of the size of the sam- 

ples normally used, but it indicates that the concept of density does not readily apply 

to samples of molecular and subatomic sizes. 

In addition, we must be careful in defining the densities of composite materials. 

For example, a piece of reinforced concrete consists of several parts with different den- 

sities. In discussing such materials we must distinguish between the particle densities 

of the individual pebbles or steel-reinforcing bars and the bulk density of the mixed 

mass. When we refer to bulk density, our sample must be large compared with the 

dimensions of one particle. Some examples of composite solid materials are cast iron, 

fiberglass-reinforced plastics, and wood. Some examples of composite liquids are 

slurries, such as muds, milkshakes, and toothpaste, and emulsions, such as homogenized 

milk, mayonnaise, and cold cream. Smokes and clouds behave as composite gases. 

Example 1.1. A typical mud is 70 wt. % sand and 30 wt. % water. What is 

its density? The sand is practically pure quartz (SiO), for which Psanq = 

165 lbm / ft* (2.65 g / cm®). See the inside back cover for the properties of water 

used in all examples and problems. 

Here we assume that there is no volume change on mixing sand and water. 

There are volume changes on mixing for some substances like ethanol and 

water, but they are small enough to ignore for most problems, including this 

one. Then 

p= m = Msand zt Mwater a: Msand al Mater (1.A) 

Vi Vand mi Viwater (m/ p)sana ry Create 

[Every equation in this book has a number. Those, like this one, that are parts of 

examples or in other ways specific to some situation are identified with number- 

letter combinations, such as (1.A). General equations have number-number com- 

binations, such as (1.1).] 
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We could simplify Eq. 1.A algebraically, but a more intuitive approach is 
to choose as our basis 100 lbm of mud, and substitute into Eq. 1.A, finding 

Freee T Maater 70 Ibm + 30 Ibm 
(“) i (“) ( 70 Ibm ) 3 ( 30 Ibm ) 

PJsand \P/waer \165Ibm/ft?/sana \62.3 Ibm/ ft? /water 
Ibm kg 

= 110.4 —- = 1769 —~ 
ft? m°? ¢B) 

| 
The @ indicates the end of an example. 

1.5.2 Specific Gravity 

Specific gravity of liquids and solids (SG) is defined as 

density 
a ee eee (12) 

density of water at some specified temperature and pressure 

This definition has the merit of being a ratio and, hence, a pure number, which is 

independent of the system of units chosen. Occasionally it leads to confusion, because 

some specific gravities are referred to water at 60°F, some to water at 70°F, and some 

to water at 39°F = 4°C (all at a pressure of 1 atm). The differences are small but 

great enough to cause trouble. 

If the temperature of the water is specified as 39°F = 4°C, then the density of 

water is 1.000 g/cm?*. (The gram was defined to make this number come out 1.000). 

Thus, if this basis of measurement is chosen, then specific gravities become numeri- 

cally identical with densities expressed in g/cm° or kg/L or metric tons / m°*. The 

mud in Example 1.1 has SG = 1.769. 

Many process industries use special scales of fluid density, which are usually 

referred to as gravities. Some of them are the API gravity (American Petroleum 

Institute) for oil and petroleum products (Prob. 1.6), Brix gravity for the sugar indus- 

try, and Baumé gravity for sulfuric acid. Each scale is directly convertible to density; 

conversion tables and formulae are available in handbooks. 

Specific gravities of gases are normally defined as 

oe =“) A one of the gas 
(1:3) 

a gas density of air ee at the same temperature and pressure 

For ideal gases the specific gravity of any gas = (Mgas / Mair)- 

Throughout this text we use liquid and solid specific gravities referred to water 

at 4°C. Thus a liquid with a specific gravity of 0.8 is a liquid with a density of 

0.8 g/cm?. 

1.5.3 Viscosity 

Viscosity is a measure of internal, frictional resistance to flow. If we tip over a glass 

of water on the dinner table, the water will spill out before we can stop it. If we tip 

over a jar of honey, we probably can set it upright again before much honey flows 
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Y out; this is possible because the 

honey has much more resistance to 

Plate moving with velocity Vo flow, more viscosity, than water. A 

x more precise definition of viscosity 

is possible in terms of the follow- 

Y= Vom ing conceptual experiment. 

Consider two long, solid 

plates separated by a thia film of 

fluid (see Fig. 1.4). This apparatus 

is easy to grasp conceptually and 

mathematically but difficult to use, 

because the fluid leaks out at the 

SE edges and gravity pulls the two 

eee eae plates together. Other devices that 

are more complex mathematically but easier to use are actually used to measure vis- 

cosities (see Example 1.2 and Chaps. 6 and 13). If we slide the upper plate steadily 

in the x direction with velocity Vo, a force will be required to overcome the internal 

friction in the fluid between the plates. This force will be different for different veloc- 

ities, different plate sizes, different fluids, and different distances between the plates. 

We can eliminate the effect of different plate sizes, however, by measuring the force 

per unit area of the plate, which we define as the shear stress T. 

It has been demonstrated experimentally that at low values of Vo the velocity 

profile in the fluid between the plates is linear, 1.e., 

Vo 
y= 0 a 

ae Finid 

Stationary plate, V = 0 

VY =a-0re (1.C) 

so that 

ss fee rate, sep zi DV Va 

coordinates dy > Yo (1.D) 

It also has been demonstrated experimentally that for most fluids the results of this 

experiment can be shown most conveniently on a plot of 7 versus dV/ dy (see Fig. 

1.6). As shown here, dV / dy is simply a velocity divided by a distance. In more com- 

plex geometries it is the limiting value of such a ratio at a point. It is commonly called 

shear rate, the rate of strain, and rate of shear deformation, all of which mean exactly 

the same thing. 

Example 1.2. Figure 1.5 shows a cutaway photograph of a concentric-cylinder 

(“cup and bob”) viscometer also called a Couette viscometer. An inner cylinder 

(the bob) rotates inside a stationary outer cylinder (the cup). The shaft that drives 

the bob is instrumented to record both the angular velocity and the applied 

torque. The solid bob has D; = 25.15 mm and L = 92.27 cm. The surrounding 

cup has D, = 27.62 mm and is longer than the bob. When the bob is driven at 

10 rpm, the observed torque is PF = 0.005 Nm. What are 7 and dV/ dy? 
This viscometer is simply the device in Fig. 1.4, wrapped around a 

cylinder. In this form, the leakage-at-the-edges problem and the difficulty of 



FIGURE 1.5 

Cutaway photograph of a concentric- 

cylinder viscometer. This is simply the 

sliding-plate arrangement in Fig. 1.4, 

wrapped around a cylinder, thus 

eliminating the leaky edges in Fig. 1.4. 

The drive mechanism at the top holds the 

outer cylinder fixed and rotates the inner 

closed cylindrical bob. It provides a 

measured, controllable rotation rate and 

simultaneously measures the torque 

required to produce that rotation. The 

two flexible hoses circulate constant- 

temperature water or other fluid, to hold 

the whole apparatus at a constant 

temperature. Example 1.2 shows the 

dimensions of this device. (Courtesy of 

Brookfield Engineering Company.) 
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keeping the distance between the two surfaces 

constant are solved. (Fluid forces hold the rotat- 

ing inner cylinder properly centered inside the 

outer cylinder.) Here we must replace the ys 

in Eq. 1.5 with rs, because the velocity is 

changing in the radial direction. Ay = yo is 

replaced by 

Ar = 0.5(D — D,) = 0.5(27.62 — 25.15) 
= 1,235 mm (1.E) 

and 

10 
Vo = wD,‘ rpm = 7: 25.15 mm - — 

min 

27904 et py (LF) 
min 

Thus, 

dV | Vo ten 13.17 mm/s of 10.66 = LG 

dr Ar 1-235 monitere Geen 6 CES 

This is a linearized approximation of a cylin- 

drical problem that understates the correct 

value, which is 12.26 (1/s), (see Prob. 1.10), a 

difference of 15%. We will use the correct 

(cylindrical) value in the rest of this chapter. 

The shear stress at the surface of the 

inner cylinder is 

F  T/r, _ 0.005 Nm/(0.5 25.15 mm) 

A mD,L 7-25.15mm-92.37 mm 
T= 

(1.H) 

& 

we N 
= 5.45: 10°§ — = 0.0545 5 

nm m 

This example ignores the stress on the bottom surface of the bob, a small effect, 

for which a correction is made in real viscosity measurements. The whole device is 

shown immersed in a constant-temperature bath, because the results are very temper- 

ature dependent. 

The experiment in Example 1.2 can be repeated at different rotational speeds and 

the results plotted as shown in Fig. 1.6. Four different kinds of curve are shown as exper- 

imental results in the figure. All four of these results are observed in nature. The most 

common behavior is that represented by the straight line through the origin in the figure. 

This line is called Newtonian because it is described by Newton’s law of viscosity: 

dV 
siecle a [ Newtonian fluids] (1.4) 
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This equation says that the shear 

stress T is linearly proportional to 

the velocity gradient dV/ dy. It 

is also the definition of viscosity, 

because we can rearrange it to 

5 
4 & 3 ae ks 
Z be eet 

Here wp is called the viscosity or 

the coefficient of viscosity. [We 

occasionally see this equation 

written with a minus sign in 

front of the 7. This is done so 

dV _ Velocity of moving plate _ Vo that the equation will have the 

dy — Distance between plates Yo same form as the heat-conduction 
FIGURE 1.6 and mass-diffusion equations 

Possible outcomes of the sliding-plate experiment at constant ({2], p. 12). Since the shear 

temperature and pressure. stress acts in one direction on 

the rotating cylinder and in the 

opposite direction on the fluid adjacent to it, we can introduce this minus sign and 

reverse our idea of the direction of 7 so that the result is always the same as in 

Eq. (1.5).] For Example 1.2, we would calculate 

tT _ 0.0.0545 N/m? N-s 
= = = 0.0044 
dV / dy 12.26/s vi? 

m (1.D 

For fluids such as air the value of w is very low; therefore, their observed behavior 

is represented in Fig. 1.6 by a straight line through the origin, very close to the dV/ dy 

axis. For fluids such as corn syrup the value of yu is very large, and the straight line 

through the origin is close to the 7 axis. 

Fluids that exhibit this behavior in the sliding-plate experiment or its cylin- 

drical equivalent (i.e., fluids that obey Newton’s law of viscosity) are called 

Newtonian fluids. Ail the others are called non-Newtonian fluids. Which fluids are 

Newtonian? All gases are Newtonian. All liquids for which we can write a simple 

chemical formula are Newtonian, such as water, benzene, ethyl alcohol, carbon 

tetrachloride, and hexane. Most dilute solutions of simple molecules in water or 

organic solvents are Newtonian, such as solutions of inorganic salts, or sugar in 

water, or benzene. Which fluids are non-Newtonian? Generally, non-Newtonian flu- 

ids are complex mixtures: slurries, pastes, gels, polymer solutions, etc. (some 

authors refer to them as complex fluids). Most non-Newtonian fluids are mixtures 

with constituents of very different sizes. For example, toothpaste consists of solid 

particles suspended in an aqueous solution of various polymers. The solid particles 

are much, much bigger than water molecules, and the polymer molecules are much 

bigger than water molecules. 

In discussing non-Newtonian fluids we must agree on what we mean by vis- 

cosity. If we retain the definition given by Eq. 1.5, then the viscosity can no longer 
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Slope = = “apparent viscosity” 

O dV / dy 

FIGURE 1.7 

The “apparent viscosity” of a pseudoplastic fluid decreases as the 

shear rate increases. 

be considered a constant independent of dV/ dy for a given temperature, but must be 

considered a function of dV/ dy. This is shown in Fig. 1.7. Here each of the lines 

OA, OB, and OC have slope pz, so the viscosity is decreasing with increasing dV/ dy. 

(Viscosities defined as the slopes in Fig. 1.7 are often called apparent viscosities.) 

Using this definition, we can observe that there are three common types of non-New- 

tonian fluid (Fig. 1.6): 

1. Pseudoplastic fluids show an apparent viscosity that decreases with increasing 

velocity gradient. Examples are most slurries, muds, polymer solutions, solutions 

of natural gums, and blood. These fluids are referred to as shear thinning fluids. 

This is the most common type of non-Newtonian behavior. 

2. Bingham fluids, sometimes called Bingham plastics, resist a small shear stress 

indefinitely but flow easily under larger shear stresses. One may say that at low 

stresses the viscosity is infinite and at higher stresses the viscosity decreases with 

increasing velocity gradient. Examples are bread dough, toothpaste, applesauce, 

some paints, jellies, and some slurries. 

Dilatant fluids show a viscosity that increases with increasing velocity gradient. 

This behavior is called shear thickening; it is uncommon, but starch suspen- 

sions and some muds behave this way. For these materials the liquid lubri- 

cates the passage of one solid particle over another; at high shear rate the 

lubrication breaks down, and the particles have more resistance to slipping past 

each other. 

- 

So far, we have assumed that the curve of 7 versus dV/ dy is not a function of 

time; i.e., if we move the sliding plate at a constant speed, we will always require 

the same force. This is true of most fluids, but not of all. A more complete picture 
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Time 

Section A-A 

FIGURE 1.8 
The viscosity of fluids can be independent of time of shearing or can increase or decrease with time as 

the fluid is sheared. 

is given in Fig. 1.8. In Fig. 1.8 we see a constant dV/ dy slice out of the solid 

constructed of + versus dV/ dy versus time. We see three possibilities: 

1. The viscosity can remain constant with time, in which case the fluid is called time 

independent. 

2. The viscosity can decrease with time, in which case the fluid is called thixotropic. 

3. The viscosity can increase with time, in which case the fluid is called rheopectic. 

All Newtonian fluids are time independent, as are most non-Newtonian fluids. 

Many thixotropic fluids are known, almost all of which are slurries or solutions of 

polymers, and a few examples of rheopectic fluids are known. 

In addition, some fluids, called viscoelastic fluids, can show not only the kinds 

of behavior represented in Figs. 1.6 and 1.8 but also elastic properties, which allow 

them to “spring back” when a shear force is released. The most common examples 

of viscoelastic fluids are egg whites, cookie dough, and the rubber cement sold at sta- 

tionery stores. Rubber cement’s viscoelastic properties can be demonstrated most 

easily by starting to pour a little out of the bottle and then snapping it back into the 

bottle with a quick jerk of the hand. The same can be done with egg white. This is 

quite impossible with any ordinary fluid such as water; try it! 

These strange types of fluid behavior are of considerable practical use. A good 

toothpaste should be a Bingham fluid, so that it can easily be squeezed out of the tube 
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but will not drip off the toothbrush the way water or honey would. A good paint 
should be a thixotropic Bingham fluid, so that in the can it will be very viscous and 
the pigment will not settle to the bottom, but when it is stirred, it will become less 
viscous and can easily be brushed onto a surface. In addition, the brushing should 

temporarily reduce the viscosity so that the paint will flow sideways (under the influ- 

ence of surface tension; see below) and fill in the brush marks (called leveling in the 

paint industry); then, as it stands, its viscosity should increase, so that it will not form 

drops and run down the wall. 

Most engineering applications of fluid flow involve water, air, gases, and sim- 

ple fluids. Therefore, most fluid-flow problems have to do with Newtonian fluids, as 

do most of the problems in this book. Non-Newtonian fluids are important, however, 

precisely because of their non-Newtonian behavior; they are discussed in Chap. 13. 

The viscosity of simple gases, such as helium, can be calculated for all tem- 

peratures and pressures from the kinetic theory of gases using only one experimental 

measurement for each gas [2]. For the viscosities of most gases and all liquids sev- 

eral experimental data points are required, although ways of predicting viscosity 

change with changing temperature and pressure are available [3]. As a general rule, 

the viscosity of gases increases slowly with increasing temperature, and the viscosity 

of liquids decreases rapidly with increasing temperature. The viscosity of both gases 

and liquids is practically independent of pressure at low and moderate pressures. 

The basic unit of viscosity is the poise, where P = 1 g/(cm:s) = 0.1 Pa:s = 

6.72 X 10 7 Ibm/(ft-s) [See the inside front cover for conversion factors.] The 

poise is widely used for materials like high-polymer solutions and molten poly- 

mers. However, it too large a unit for most common fluids. By sheer coincidence 

the viscosity of pure water at about 68°F = 20°C is 0.01 poise; for that reason the 

common unit of viscosity in the United States is the centipoise, cP = 0.01 P = 

0.01 g/(cm-s) = 0.001 N-s/m? = 0.001 Pa: s = 6.72 X 10° * Ibm/ (ft: s). Hence, 
the viscosity of a fluid expressed in centipoise is the same as the ratio of its viscos- 

ity to that of water at room temperature. The viscosities of some common liquids 

and gases are shown in App. A.1. The computed viscosity of the fluid in Example 1.2 

is 4.4 cP. 

1.5.4 Kinematic Viscosity 

In many engineering problems, viscosity appears only in the relation (viscosity/density). 

Therefore, to save writing we define 

Kinematic viscosity = v = / p (1.6) 

The most common unit of kinematic viscosity is the centistoke (cSt): 

2 2 ft 
seks Gal ope: 10g (1.3) estes) Sones po LO 
g/cm 

at 68°F = 20°C, water has a kinematic viscosity of 1.004 ~ 1 cSt. To avoid confusion 

over which viscosity is being used, some writers refer to the viscosity 4 as the absolute 

viscosity. The kinematic viscosity has the same dimension (length? / time) as the ther- 

mal diffusivity and the molecular diffusivity; in many problems it acts the same way 
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as them. In Chap. 6 we will see some 

examples of the practical convenience of 

the kinematic viscosity. 

1.5.5 Surface Tension 

Liquids behave as if they were sur- 

rounded by a skin that tends to shrink, or 

contract, like a sheet of stretched rubber, 

a phenomenon known as surface tension. 

It is seen in many everyday events, the 

most disheartening of which is the ten- 

dency of water, when poured slowly from 

FIGURE 1.9 a glass, to dribble down the edge of the 
Disheartening effect of surface tension. The water glass (see Fig. 1.9). 

dribbles down the surface of the container. 
Surface tension is caused by the 

attractive forces in liquids. All of the 

molecules attract each other; those in the center are attracted equally in all direc- 

tions, but those at the surface are drawn toward the center because there are no liq- 

uid molecules in the other direction to pull them outward (see Fig. 1.10). The “effort” 

of each molecule to reach the center causes the fluid to try to take a shape that will 

have the greatest number of molecules nearest the center, a sphere (Prob. 1.11). Any 

other shape has more surface per unit volume; therefore, regardless of the shape of 

a liquid the attractive forces tend to pull the liquid into a sphere. Other forces, such 

as gravity often oppose surface tension forces, so the spherical shape is only seen 

for small systems, such as small water drops on a water-repellent surface. The fluid 

thus tries to decrease its surface area to a minimum. (An analogous situation in 

two dimensions is observable in the behavior of some army ants. They travel in 

large groups, and, viewed 

from above, the swarm 

often looks like a circle. 

The reason appears to be 

that the ants are attracted 

by the scent of other ants 

and, hence all try to get 

| Surface t© the place where the 

Liquid Gas 

Forces of 

attraction to 

other molecules 

re ae 
scent is strongest, the cen- 

ter. The ants all stay in 

one plane, so the result 

is the plane figure with 

Molecule in the Molecule at the the smallest possible ratio 
center is pulled surface is pulled of perimeter to area—a 
equally in all toward the center circle [4].) 
directions : 

The tendency of a 
FIGURE 1.10 surface to contract can be 
Surface tension is caused by the attractive forces between molecules. measured with the device 
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shown in Fig. 1.11. A wire frame with 

one movable side is dipped into a liq- 

uid and carefully removed with a film 

of liquid in the space formed by the 

frame. The film tries to assume a spher- 

ical shape, but since it adheres to the 

wire, it draws the movable part of the 

Sliding part frame inward. The force necessary to 
of frame resist this motion is measured by a 

weight. It is found experimentally that 

the ratio of the force to the length of the 

sliding part of the wire is always the 

his same for a given liquid at a given tem- 
FIGURE 1.11 perature, regardless of the size of the 

A very simple way to measure surface tension; apparatus. The liquid film in the frame 
see Example 1.3. has two surfaces (front and back), so 

the force-to-length ratio of one of the 
surfaces is exactly one-half of the total measurement. The surface tension of the liquid 

is then defined as 

force of one film 
Surface tension = ——————— or c= oe LF 

length l ee) 

Example 1.3. The device in Fig. 1.10 has a sliding part 10 cm long. The mass 

needed to resist the inward pull of the fluid is 0.6 g, which exerts a force of 

0.00589 N. What is the surface tension of the fluid? 

From Eq. 1.7, 

F(one film) 0.00589 N/2 N lbf 
es) ea) (O04 a (OO NOS) ae (1.K) 

l 0.1 m m in 
C= 

The device shown in Fig. 1.11 is easy to understand but not very practical as a mea- 

suring device; more practical ones are discussed in Chap. 14. 

Surface tension is very slightly influenced by what the surrounding gas is—air 

or water vapor or some other gas. Typical values of the surface tension of liquids 

exposed to air are shown in Table 1.1. The traditional unit of surface tension is the 

dyne /cm = 0.001 N/m. At 68°F = 20°C, most organic liquids have about the same 

surface tension (~25 dyne/cm) whereas that of water is about 3 times higher, and 

that of mercury is 20 times higher. 
We indicated that the liquid adheres to the solid in the apparatus shown in 

Fig. 1.11. Liquids adhere strongly to some solids and not to others. For example, 

water adheres strongly to glass but very weakly to polyethylene. This greatly com- 

plicates the whole subject of surface tension; the phenomenon shown in Fig. 1.9 

occurs much more often with glass, ceramic, or metal cups than with polyethylene 

or Teflon cups. 
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TABLE 1.1 

Surface tensions of pure fluids exposed to air at 68°F = 20°C 

Surface tension, Surface tension, 

Fluid dyne /cm = 0.001 N/m Ibf /in 

Acetic acid 27.8 0.000159 

Acetone Peel 0.000135 

Benzene 28.25 0.000161 

Carbon tetrachloride 26.95 0.000154 
Ethyl alcohol 22.75 0.000130 

n-Octane 21.8 0.000124 

Toluene 28.5 0.000163 

Water 72.74 0.000415 

Mercury 484 0.002763 

Extensive tables are available in the Handbook of Chemistry and Physics, annual editions, 

published by CRC Press, Boca Raton, Florida, and various other handbooks. 

Two important effects attributable to surface tension are the capillary rise of liq- 
uids in small tubes and porous wicks (without which candles, kerosene lanterns or 
copper sweat-solder fittings would not work at all) and the tendency of jets of liquid 
to break up into drops (as from a garden hose or gasoline or diesel fuel injector or in 
an ink-jet printer). Surface tension effects are very important in systems involving 
large surface areas, such as emulsions (mayonnaise, cold cream, water-based paints) 
and multiphase flow through porous media (oil fields). We will discuss the effects in 
Chap. 14; see also references [5, 6]. 

1.6 PRESSURE 

Pressure is defined as a compressive stress, or compressive force per unit area. In a sta- 
tionary fluid (liquid or gas) the compressive force per unit area is the same in all direc- 
tions. In a solid or in a moving fluid, the compressive force per unit area at some point 
is not necessarily the same in all directions. We can visualize why by squeezing a rub- 
ber eraser between our fingers; see Fig. 1.12. As we Squeeze the eraser, it becomes thin- 

ner and longer, as shown. If we analyze the stresses 
in the eraser, we find that in the y direction the eraser 
is in compression, whereas in the x direction it is in 
tension. (This seems strange, but the eraser has been 

’) Eraser ‘Stretched in the x direction, and its elastic forces will 
pull it back when we let go; hence the tension.) The 
contraction in one direction and expansion in 

Eraser in another in an elastic solid is described in terms of 
compressed state Poisson’s ratio, discussed in any text on strength of 

FIGURE 1.12 materials. Because the tensile and compressive 
The response of an elastic solid to forces are at right angles to each other, there is also 
compression in one direction. a strong shear stress at 45° to the x axis. 
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What would happen if we held our fingers in a cup of water and tried to squeeze 
the water between our fingers? Obviously, the water would run out from between our 
fingers, and our fingers would come together. Why? When we start to squeeze the 
water, it behaves like the eraser, setting up internal shear and tensile forces in the 
same directions as the eraser. However, ordinary fluids cannot permanently resist shear 
forces, so the water begins to flow and finally flows away. The eraser also flowed, 
until it had taken up a new shape, in which its internal tensile and shear resistance 
were enough to hold our fingers apart. Water cannot set up such resistance and so it 
simply flows away. 

If we really wanted to squeeze the water, we would put it in some container 

that would prevent its flowing out to the side. If we did this with the eraser, then as 

we compressed it from the top, it would press out on the sides of the container. So 

also does water. 

The foregoing is a description of why the pressure at a point in a fluid at rest 

is the same in all directions. It is not a proof of that fact; for a proof see App. B.1. 

What we mean by pressure is not so clear for a solid as it is for a liquid or a 

gas. The compressive stresses at a given point in a solid are not the same in all direc- 

tions. The usual definition of pressure in a solid is as follows: Pressure at a point is 

the average of the compressive stresses measured in three perpendicular directions. 

Since, as we have seen, these three stresses are all the same in a fluid at rest, the two 

definitions are the same. For a fluid in motion, the three perpendicular compressive 

stresses may not be the same. However, for this difference to be significant, the shear 

stresses must be very large, well outside the range of normal problems in fluid 

mechanics. Therefore, we normally extend the notion that pressure in a fluid at rest 

is the same in all directions to fluids in motion, with the reservation that at very high 

shear stresses (such as in the flow of metals or polymer melts through forming dies) 

this is not necessarily true. For polymer solutions and polymer melts the differences 

between the compressive stresses in directions at right angles to one another can be 

very significant and can lead to behavior quite different from the behavior of simple 

fluids; see [7]. 

In the solution of many problems, particularly those involving gases, it is most 

convenient to deal with pressures in an absolute sense, i.e., pressures relative to a 

compressive stress of zero; these are called absolute pressures. In the solution of many 

other problems, particularly those involving liquids with free surfaces, such as are 

encountered in rivers, lakes, and open or vented tanks, it is more convenient to deal 

with pressures above an arbitrary datum, the local atmospheric pressure. Pressures rel- 

ative to the local atmospheric pressure are called gauge pressures. 

Because both systems of measurement are in common use, it is necessary to 

make clear which kind of pressure we mean when we write “a pressure of 15 lb / in” 

[This unit is also called psi (pounds per square inch)]. It is usual to say “15 psi 

absolute” or “15 psia” for absolute pressure and “15 psi gauge” or “15 psig” for gauge 

pressure. The SI unit of pressure is the pascal, Pa = N/ m?. There does not seem to 

be a common set of abbreviations for Pascal absolute and Pascal gauge, so these must 

be written out. 

Another two-datum situation familiar to the reader is found in the measurement 

of elevation. Mountain tops, road routes, and rivers are normally surveyed relative to 
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The relation between gauge and absolute pressure, and a comparison with elevation measurements. 

mean sea level, which serves as an “absolute” datum, but most buildings are designed 

and constructed relative to some local elevation (usually a marker in the street); see 

Fig. 1.13. In both cases the most common measuring method gives answers in terms of 

the local datum. Most pressure gauges read the difference between the measured pres- 

sure and the local atmospheric pressure. For instance, the pressure gauge on the com- 

pressed air system in the figure would read 20 psig = 137.9 kPa gauge; the building 

height (by tape measure or transits) might be given as 100 ft = 30.5 m elevation. Both 

such measurements usually involve negative values, based on the local datum; the 

basement has a negative elevation relative to the street, —30 ft = —9.15 m, and the 

vacuum system has a negative pressure relative to the atmosphere, —5 psig = 

—34.5 kPa gauge. 

Negative elevations relative to sea level can exist; the Dead Sea, for instance, 

is about 1200 feet (366 m) below sea level. Can negative absolute pressures exist? 

Certainly; a negative absolute pressure is a negative compressive stress, i.e., a tensile 

stress. These occur often in solids, very rarely in liquids, never in gases. They are rare 

in liquids because all liquids possess a finite vapor pressure. If the pressure of a lig- 

uid is reduced below its vapor pressure, the liquid boils and thus replaces the low 

pressure with the equilibrium vapor pressure of the liquid. However, this boiling never 

takes place spontaneously in an absolutely pure liquid [8], but rather occurs around 

small particles of impurities or at the wall of the container. (Most people have 

observed this phenomenon when they pour a cold carbonated drink into a glass; the 

bubbles form mostly at the edge of the glass, not in the bulk of the liquid. It can be 

shown dramatically by dropping some sugar into a cold, fresh glass of soft drink; do 

this over a sink!) Thus, if a liquid is very pure and the surfaces of its container are 

very smooth, the liquid can exist in tension at a negative absolute pressure. This sit- 

uation is unstable, and a slight disturbance can cause the liquid to boil [9]. 
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1.7 FORCE, MASS, AND WEIGHT 

In fluid mechanics we are often concerned with forces, masses, and weights. The prob- 
lem of units of force and mass is discussed in the next section. An unbalanced force 
makes things change speed or direction. Most forces in the world are balanced by 
opposite forces (a building exerts a force on the ground; the ground exerts an equal 
and opposite force on the building; neither moves). To make anything start moving 
or stop moving, we must exert an unbalanced force. 

Mass is an indication of how much matter is present. The more matter, the more 

mass. (We may think of matter in any size, as bricks, molecules, atoms, nucleons, 

quarks, etc.). Mass is also an indicator of how hard it is to get some amount of mat- 

ter moving or how hard it is to stop it once it is moving. We can all stop a baseball 

moving 50 ft/s (15.2 m/s) with little more damage than a possible sore hand. If we 
step in front of an automobile moving at the same speed, we will certainly be killed. 

The auto has much more mass; it is much harder to stop. 

Weight is a force—the force that a body exerts due to the acceleration of grav- 

ity. When there is no gravity, there is no weight (e.g., in earth satellites there is no 

apparent gravity; this state is referred to as weightlessness). 

1.8 UNITS AND CONVERSION FACTORS 

Engineering is about real physical things, which can be measured and described in terms 

of those units of measure. Most engineering calculations involve these units of mea- 

sure. It would be simple if there were only one set of such units that the whole world 

agreed upon and used; but that is not the case today. In the United States most mea- 

surements use the English system of units, based on the foot, the pound and the °F, but 

most of the world uses the metric (or SI) system of units based on the meter, the kg 

and the °C. The metric system has been legally accepted in the United States since 1866, 

and it has been the declared policy of the U.S. government to convert to metric since 

1975 [10]. Progress has been disappointingly slow. 

The situation is similar with languages; it would be easier if we all spoke one 

language. But we do not; the world has many languages. Educated Europeans all 

speak at least two languages well and generally can read one or two more. Similarly, 

U.S. engineers must be fluent in English and in metric units, be able to understand 

older literature written in the centimeter-gram-second (cgs) system, and in variant 

English systems that use the poundal or the slug and in specialized industrial units, 

like the 42-gal barrel for petroleum products or pressure differences expressed in 

inches of water. U.S. engineers must even deal with mixed systems, like automotive 

air pollutant emissions expressed in grams per mile. Furthermore, they must under- 

stand the differences between the common-use version of metric and SI, discussed 

below; they will be better able to deal with those differences if they understand why 

the differences arise. 
In fluid mechanics we most often deal with dimensioned quantities, such as 

12 ft/s (= 3.66 m/s), rather than with pure numbers such as 12 or 3.66. We often 

drop the units, for example, “I was driving 60,” which in the United States normally 

means 60 mi/h, but in the rest of the world means 60 km/h. This is poor practice, 
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but common. In 1999 [11] a $125 million NASA Mars probe was destroyed because 

someone failed to check their units. In technical work we always make clear the units 

in which any value is expressed! To become competent at solving fluid mechanics 

problems we must become virtually infallible in the handling of such units and their 

Conversion factors. For most engineers the major sources of difficulties with units and 

conversion factors are carelessness and the simultaneous appearance of force and mass 

in the same equation. 
A useful “system” for avoiding carelessness and consistently converting the 

dimensions of engineering quantities from one set of units to another has two rules: 

1. Always (repeat, always) include the dimensions with any engineering quantity you 

write down. 

2. Convert the dimensions you have written down to the dimensions you want in your 

answer by multiplying or dividing by 1. 

Example 1.4. We are required to convert a speed of 327 mi/h to a speed in 

ft/s. The first step is to write the equation 

Speed = 327 mi/h (1.L) 

This is not the same as 327 km/h or 327. If we omit the dimensions, our equa- 
tion is meaningless. We now write, as an equation, the definition of a mile: 

1 mi = 5280 ft (1.M) 

Dividing both sides of this equation by | mi, we find 

1 mi 5280 ft 
es ae : (1.N) 
1 mi mi 

You may not be used to thinking of 5280 ft/ mi as being the same thing as 1, 
but Eq. 1.N shows that they are the same. Similarly, we write the definition of 
an hour as an equation, 

1h = 3600s (1.0) 

and divide both sides by 3600 s to find 

SO h (.P) 

3600 s 3600 s 

Again, you may not be used to thinking of 1 h/ 3600s as the same thing as 1, 
but it is, Now let us return to Eq. 1.L and multiply both sides by 1 twice, choos- 
ing our equivalents of | from Eqs. 1.N and 1.P: 

_ 327 mi 5280ft . h 

h mi 3600s 

We can now cancel the two 1’s on the left side, because they do not change the 
value of “Speed,” and we can cancel the units that appear both above and below 
the line on the right side to find 

_ 327m S280ft oh Bet SRB Ee oante, alt sh m 

h mi 3600s 3600ve' 1, shunt WA satiany SanI a 
| 

Speed - 1-1 (1.Q) 

Speed 
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This was an easy example, one you could certainly solve without going into as much 
detail as shown here, but it illustrates the procedure to be used in more complicated 
problems. 

Example 1.5. Suppose Time equals 2.6 h. How many seconds is this? Again 
we begin by writing Time with its dimension as an equation: 

Time = 2.6h (GES) 

We want to know its value in seconds, so we divide by 1, 

; 3600 
Time = 2.6h- areal = 2.6 3600s = 9380s (.T) 

& 

How did we know to multiply by 1 h/ 3600s in Example 1.4 and to divide by 

1 h/ 3600 s in Example 1.5? In each case we chose the value of 1 that allowed us to 

cancel the unwanted dimension. Three ideas are involved here: 

1. Dimensions are treated as algebraic quantities and multiplied or divided accordingly. 

2. Multiplying or dividing any quantity by 1 does not change its value. 

3. Any dimensioned equation can be converted to 1 = 1 by dividing through by either 

side. 

Using the last procedure, we can write 

, — 808 _ 12in _ 7000 gr _ imi? sayang Beli to. cy bh 
min ft Ibm 640 acres 252cal VA 

etc. (1.8) 

and as many other values of | as we like. 

The previous examples did not involve the unit conversions that cause difficul- 

ties, the ones involving force and mass or thermal and mechanical energies. If every- 

one always used SI, we would never have those difficulties. In SI there is no diffi- 

culty with the units of force and mass; force is measured in newtons (N) and mass 

in kilograms (kg), and the only unit of energy is the mechanical-energy unit, the joule, 

where J = N-m. 

Unfortunately, in the English system (and in the traditional metric system as it 

is used by the public in Europe) there is difficulty with force-mass unit conversion. 

If we ask a typical European male what he weighs, he might well respond “80 kilos,” 

meaning 80 kg. If he were speaking in SI he would not use kg as a unit of weight, 

because weight is a force and the SI unit of force is the newton. He should respond, 

“784.6 newtons” because that is the weight of an 80 kg mass in a standard gravita- 

tional field of 9.807 m/s” = 32.17 ft/s”. It is hard enough to teach novice engineers 

the difference between weight and mass; it is probably impossible to get the general 

public to take the view that a mass of 80 kg does not exert a force of 80 kg. To make 

this come out right, we need to decide that there are really two kilogram units, the 

kilogram-mass (kgm) and the kilogram-force (kgf). We can define these so that one 

kgm exerts a force of one kgf at standard gravity. That is what most of the people in 

the world actually do. Similarly, in the English system of units we need two kinds of 
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pounds; pound-mass (Ibm) and pound-force (lbf). Again we have defined these so that 

one Ibm has a weight of (exerts a force of) one Ibf at standard gravity. 

Why does this cause problems? Because the kgm and kgf look like the same 

thing, so we are tempted to believe they are the same thing, and the Ibm and the Ibf 

look like the same thing, so we are tempted to believe they are the same thing. That 

is wrong. It is a trap for the unwary. They are not the same. This leads to serious 

errors in engineering calculations. 

Newton’s second law of motion is 

F=ma (1.9) 

where F is force, m is mass, and a is acceleration. The pound-force (lbf) is defined 

as that force which, acting on a mass of 1 Ibm, produces an acceleration of 32.2 ft / s*. 

Substituting this definition into the last equation, we find 

ft 
ldbfi=dbmed2:2ic5 (1.U) 

s 

Dividing both sides of this by 1 lbf, we find 

A A of gene Ibf Ibf-s 1 (1.V) 

If we then make the mistake of canceling the lbm on the top and the lbf on the 

bottom right-hand side, we will conclude that 1 = 32.2 ft/s*. This is clearly wrong, 

and if we do it in a problem we will find that the dimensions do not check and 

the numerical value of the answer will be wrong by a factor of 32.2 (if we use 

English units) or 9.8 (if we use metric units). Similarly, in the traditional metric 

system we have 

1 kfg = kgm: 9.8 m/s? (1.W) 

and if we divide both sides by kgf, we find 

kgf kgm: m 
1=—=9.8 1X 

kef kef - s? eh 

If we then cancel kgm and kgf on the right side we will conclude that 1 = 9.8 m/s?, 

which is equally absurd. 

How can we get out of this difficulty? One way is to always work exclusively 

in SI. In that case kg will always mean kgm, and kgf will never appear. Instead the 
unit of force will always be the N = (1/9.8) kgf. However, then we will be unable 
to deal with the public, who speak (unintentionally) in kgf and Ibf, or to deal with 
those parts of the engineering literature that use kgf and Ibf. The other way is to decide 
we must live with the kgf and Ibf, and so we will regularly have to use the force- 
mass conversion factor whenever units of force and of mass occur in the same equa- 
tion. This conversion factor has the following values: 

kgm: m kgm: m Ibm - ft 
1=9.8 = 1.0 = 32.2 itsi! 

kgf: s” N-s? Ibf - s? ow 
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Furthermore, we must know some history to understand the older literature. 
First, we must know that many older textbooks and articles used the symbol g, to 
stand for this force-mass conversion factor. So whenever we see a g, written into an 
equation, we must recognize it as a reminder that we must use the force-mass con- 
version factor. We must not confuse g,, the force-mass conversion factor, with g, the 
acceleration of gravity; they are not the same. 

Second, we should recognize that engineers using English units have tried to 

evade this difficulty by inventing two new units, the slug (1 slug = 32.2 lbm = 

14.6kg) and the poundal (pdl) (1 pdl = Ibf/ 32.2 = 0.138 N = 0.014 kgf). Using 
these, we have the following force-mass conversion factors: 

kgm-m kgm-m Ibm: ft _ slug: ft _ Ibm - ft 
ji219'8 = 10 — = 32.2 Fick 1.11 

kgf: s? N-s? Ibf - s? Ibf - s” pdl - s* iia 

The poundal finds little current use, but aeronautical engineers use the slug. 

The kgf and the lbf have been around a long time, in spite of the efforts of sci- 

entists and engineers to replace them with the newton or the poundal. They survive 

because they seem natural to nonscientific users. Probably they will continue to 

be widely used, in spite of the efforts of the scientific community to replace them. 

Prudent engineers will learn to live with this fact, to use them when it seems appro- 

priate, and to understand why they came about. 

The second difficulty with units concerns mechanical and thermal units of 

energy. In SI the only unit of energy is the joule, 1J = 1N-m. This is clearly a 

mechanical unit, the product of a force and a distance. If we are transferring thermal 

energy (e.g., heating our houses or our soup), it seems natural to base the measure- 

ments on the quantity of thermal energy required to raise the temperature of some 

reference substance by some finite temperature interval. In the English system this 

quantity is the British thermal unit (Btu), which is the quantity of thermal energy 

required to raise the temperature of 1 lbm of water by 1°F. In the metric system the 

unit is the calorie (cal), which is the quantity of thermal energy required to raise the 

temperature of 1 g of water 1°C, or the kcal (kcal = 1000 cal; this is the “calorie” 

used in describing the energy content of foods). If we want to use the calorie or the 

Btu, then we need to convert from joules to calories or ft-lbf to Btu: 

Btu ox Btu 2 cal i2 kcal E kcal 

778 ft-Ibf 10553 4.183 41803 4.18k) 
ee FA) 

The Btu and the cal (or kcal) seem likely to continue in common usage; the Btu 

appears on almost all U.S. heating appliance and fuel bills (sometimes natural gas 

bills use the therm = 10° Btu), and kcal appears on numerous food products. 

In summary, if we can do all our work in SI, we need never be concerned about 

force-mass conversions (N = kg: m/s) or energy conversions (J = N-m = Ws). If 

we are confronted with problems (or literature, or current U.S. legal definitions) involv- 

ing the kgf, Ibf, cal, kcal, or Btu, we must follow the rules outlined above. Always 

write down the dimensions, treat the dimensions as algebraic quantities, and multiply 

by 1 as often as needed to get the quantities into the desired set of units, using the 

appropriate values of the force-mass conversion factor and the thermal-mechanical 
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energy conversion factor. Even in SI, if we stray from the basic units (m, kg, s, A, K, 

mol, and cd), we will need conversion factors such as 

‘ee 1000g_  100cm _ 1000 mV 
113). 

kg m MW ( 

Example 1.6. A mass of 10 Ibm (4.54 kgm) is acted on by a force of 3.5 lbf 

(15.56 N or 1.59 kgf); What is the acceleration in ft / min*? 
Rearranging Eq. 1.9, we find 

a=F/m (1.14) 

Substituting, we find 

3.5 lbf 
pa at Ly 
10 Ibm oe? 

Here we want the acceleration in ft/min’, so we must multiply or divide by 

those equivalents of 1 that will convert the units: 

2 B: . Pownce eee ft ft xcs aS1bh 222 bm h (Bs) 2 3d:322100) iBloon gepaggeadt sanaagy 
10lbm —_Ibf- s? min 10 min min 

or 

; kg: Z ft = 1556N kg 2 .(2s) = 123.4— +; = 40,480— (AA) 4.54kg N-s* \min min min 

or 

1.59kgf 98kgm:m /60s\ a - ee ene (Ss) = 123.6 —; = 40,540 ——| (1-AB) 
4.54kgm  kfg-s min min min 

The difference between these three answers is due to round-off error in the con- 

version factors used. If more figures had been carried (e.g., kgf = 9.80650 N), 

the answers would have agreed exactly, but since we know the input data to 

only two significant figures, our best answer, in all three cases, should be 

40,500 ft / min’. im 

Example 1.6 will be the last example in this book to use the kgf. Clearly the 

method of dealing with kgm and kgf is just the same as the method of dealing with 

Ibm and Ibf. For the rest of this book, we will use either Ibm and Ibf, or SI. 

Example 1.7. An aluminum cell (Hall-Héroult process) has a current of 

50,000 amp. If we assume it is 100% efficient, how much metallic aluminum 
does it produce per hour? 

We first convert the current to gram equivalents per hour, using the nec- 

essary values of 1, one of which we take out of Prob. 1.16: 

C 3600s gequiv g equiv I = 50,000 A-—-- >. 2 
Asse cnraltaal hOSIS00HC pad (1.AC) 
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For aluminum, 

27 ¢ = 1 mol (1.AD) 

and 

1 mol = 3 g equiv (1.AE) 

therefore, 

g equiv mol 27g bm Ibm kg 
I = 1870 r = : =37. l= 16:8 : 

h 3gequiv mol 454¢ h ls h ae 

& 

In solving Example 1.7 we multiplied by 1 six times. Nonetheless, the proce- 

dure is simple and straightforward. Each multiplication by 1 gets rid of an undesired 

dimension and brings us closer to an answer in the desired units. We saw that an 

apparently complex problem was really a simple conversion-of-units problem. In the 

course of our studies and our professional careers we will have to convert units as 

quickly and as easily as we now add and subtract. It will be easiest if we develop the 

habit of following the two rules given at the start of Sec. 1.8, namely: 

1. Always include the dimensions with any engineering quantity you write. 

2. Convert the dimensions you have written to the dimensions you want in your 

answer by multiplying or dividing by 1. 

A short table of these conversion factors can be found inside the front cover of 

this text. The American Society for Testing and Materials (ASTM) [12] has prepared 

a much longer and more complete table, which reveals some additional complexity. 

For example, there are five different calorie definitions in common usage. The largest 

is 1.002 times the smallest. Only in the most careful work is this small a difference 

relevant. But if we are doing that kind of work, it is worthwhile to find, study, and 

use the ASTM tables. 

1.9 PRINCIPLES AND TECHNIQUES 

As discussed in Sec. 1.3, there are very few underlying ideas in fluid mechanics. With 

these few ideas we can solve a great variety of problems. In so doing, we can focus 

our attention either on the application of principles or on the techniques of solving 

problems. The author recommends attention to the principles. In the 10 years fol- 

lowing his graduation from college, the engineering business was revolutionized by 

the digital computer, the transistor, and the space industry, among other things. None 

of these amounted to much in 1954, and they were not part of undergraduate courses. 

All these technologies rigidly obey Newton’s laws and the laws of thermody- 

namics. Students who learned “cookbook” techniques for solving problems on 1954 

were not well prepared for the technologies that appeared during the next 10 years, 

but those who learned the basic principles and how to apply them could adapt to any 

one of them. There seems to be little reason to believe that the pace of technological 

change will become slower in the future. If we concentrate on learning techniques, 
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we may be faced in a few years with “technical obsolescence,” but if we learn prin- 

ciples and their applications, we should have no such problem. The author believes 

that there will never be a surplus of people who really understand Newton’s laws and 

the laws of thermodynamics. 

1.10 ENGINEERING PROBLEMS 

Although this book may fall into the hands of a practicing engineer, most of its read- 

ers will be college juniors; the following is addressed to them. 

Engineering students start out in their freshman and sophomore years by doing 

“plug-in” problems. Given a problem statement, they select the appropriate formula 

either from the textbook or from their memory, and “plug in” the data in the prob- 

lem to find the final answer. In their junior year they begin to find problems that can 

be readily reduced to plug-ins or to problems involving two or more equations that 

require some manipulations to be put in plug-in form. Furthermore, they may be 

exposed to problems that cannot be reduced to plug-ins and must be solved by trial 

and error. It is assumed that they can do simple plug-ins (such as gas-law calcula- 

tions) without hesitation. 

Instructors of third-year students would like to assign more complicated or dif- 

ficult problems but generally cannot because: 

1. The time required for them is too great—they cannot be done in the time that most 

students will devote to one homework problem. 

2. The students would probably get intellectual indigestion on them. Therefore, at the 

third-year level most of the problems and examples in texts like this one are plug- 

ins or can be readily reduced to plug-ins. 

When students start a senior laboratory or design course, they find their first real 

engineering problems. One of these may require 10 or 20 h of work and consist of 15 

or 20 parts, each comparable to the problems and examples in this book. To deal with 

these problems, students break them into pieces small enough to handle as plug-ins. 

The interesting and exciting part of engineering is often the task of deciding how to 

divide a problem into reasonable pieces and how then to reassemble these pieces into 

a recognizable whole so that they fit together properly. 

In the examples and problems in this book there are numerous simple plug-in 

problems. They are included because their solutions give the reader some feel for the 

numerical values involved in fluid mechanics. There are also more complex problems, 

in which two or more basic principles are involved (such as the mass balance and the 

energy balance). In these some manipulation is required to get the equations into plug- 

in form. The recommended procedure for solving such problems is this: 

1. Make sure you understand precisely what the problem is; in particular, make sure 

you know precisely what is being asked for. 

2. Decide which physical laws relate what you know to what you want to find. 

3. Write the working form of these laws (as discussed later), and rearrange them to 

get the symbol for the quantity you seek standing alone to the left of the equal 
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sign. In so doing you will probably have to discard several terms in the physical- 
law equations. Discarding a term corresponds to making an assumption about the 
physical nature of the system (e.g., that a certain velocity is negligible). Thus, a 
list of such terms dropped is a list of assumptions made in solving the problem. 

4. When step 3 is finished, the problem is reduced to a plug-in. Insert the given data, 

check the units, and find the numerical value of the answer. 

5. Check the answer for plausibility: Does it indicate negative masses, velocities 

greater than the speed of light, or efficiencies greater than 100%? Does it pass the 

test of common sense, that is, do the results match your intuitive idea of what they 

should be? If not, is the difficulty with the calculations? or with your intuition? If 

neither is incorrect, perhaps you have made a new technical discovery! Also, re- 

examine the assumptions listed in step 3 to see whether they are consistent with 

the answer. If these checks are met, the answer probably is satisfactory. 

A If the problem is one that you may have to repeat with different data (such as the 

calculation of a fluid-flow rate from a measured pressure difference), then it might 

be worthwhile to see whether the answer can be put in a more convenient form, 

for example, some general plot or diagram. Perhaps the problem will occur often 

enough to justify programming its solution on a personal computer or entering it 

in a spreadsheet program. 

In all engineering we must consider the degree of precision needed. Voltaire’s 

famous dictum “The perfect is the enemy of the good!” describes the situation of the 

engineer. We could always spend more engineering effort, and do more testing, and 

thereby refine our design or our calculation a little more. But in any real problem the 

engineer’s time is one of the limiting resources. We would all like the conditions that 

the famous architect Kobori Enshu demanded and received from the Japanese dicta- 

tor Hideyoshi for the Katsura Villa: no limit on expense, no limit on time, and no 

client visits until the job is done. Many believe the result to be the greatest achieve- 

ment of Japanese architecture and garden planning [13]. (If you are ever in Kyoto, 

visit it and decide for yourself.) But most engineers (and other professionals) are 

always working with limited time and limited budgets as well as clients who want 

intermediate progress reports. For us the goal is always to do the best possible, within 

the time, budget, and other constraints imposed by the client (or codes and regula- 

tions). So engineers must allocate their time well, handling routine things swiftly, and 

concentrating on those that are not routine and that may be a source of trouble. Much 

of what you learn in this book is routine to practicing engineers. The goal of this book 

is that students not only learn to do those routine things but also learn the scientific 

basis of the solution of those routine problems. In so doing, you will learn how engi- 

neers and scientists have turned yesterday’s difficult problems into today’s routine 

ones. That will help you to develop the habits of mind that will turn today’s difficult 

problems into tomorrow’s routine problems. 

You should consider your degree of confidence in the answer to a problem. If 

the calculation used physical property data that is accurate to no more than +5%, 

then it makes no sense to report the answer to 3 or more significant figures. If the 

solution presented required really speculative calculating approaches, or questionable 

input data, the reader should be alerted to that fact. 
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In the problems at the end of each chapter, one or two need to be broken down 

into simpler ones before they can be solved. The practice gained in doing these is 

well worth the effort. 

1.11 WHY THIS BOOK IS DIFFERENT FROM 
OTHER FLUID MECHANICS BOOKS 

Most undergraduate fluid mechanics books are written by mechanical or civil engi- 

neers. Please look at one; your impression will be that those books and this one are 

about totally different subjects. The reasons they look so different are these: 

1. The fluid mechanics problems of greatest interest to mechanical and civil engineers 

(aerodynamics, flow around structures) are inherently two- or three-dimensional. 

They cannot be understood as or easily reduced to one-dimensional form. Most of 

the fluid mechanics problems of greatest interest to chemical engineers are inher- 

ently one-dimensional or can be understood and easily reduced to one-dimensional 

form. For this reason, civil and mechanical engineers start fluid mechanics as a 

three-dimensional study, and then derive the one-dimensional forms of greatest 

interest to chemical engineers from those three-dimensional forms. 

~ Mechanical and civil engineers base most of their work on force and momentum. 

Those are the basic tools of the mechanical and civil engineer. Chemical engineers 

base most of their work on the conservation of mass and energy; the first course 

in chemical engineering is about mass and energy balances. Chemical engineers 

learn about force and momentum in physics but use them much less in their pro- 

fessional careers than they use mass and energy. The single most useful equation 

in fluid mechanics, Bernoulli’s equation, can be found by starting with force and 

momentum, or with energy. Mechanical and civil engineers start with momentum. 

This book starts with energy. The energy approach makes much more sense to 

chemical engineers than does the momentum approach. 

3. Momentum and force are vectors. For mechanical and civil engineers, fluid mechan- 

ics is inherently an exercise in vector calculus. Their books are full of vector equa- 

tions. Many take the view that one of the main purposes of a fluid mechanics course 

is to immerse their students in the vector calculus, and make them exercise it. Mass 

and energy are scalars. Most of the quantities in chemical engineering are also 

scalars. Thus, chemical engineers have much less use of the vector calculus than do 

mechanical and civil engineers. Our graduate students are normally expected to 

become good at the vector calculus, but our undergraduates rarely use it. 

For these reasons, this book uses scalars as much as possible and vectors only 
when necessary. It begins with the conservation of mass and energy and shows the 
vast range of practical fluid mechanical problems that can be solved with them, before 
it shows the momentum balance (which is inherently a vector balance) and shows the 
problems for which we’need it. As a consequence, this book has far simpler mathe- 
matics than other fluids books. That does not mean that it sacrifices rigor; complex- 
ity is not rigor, or simplicity carelessness. In many cases the complete derivations are 
shown in appendices, with only the practical result shown in the main text. 
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In Parts II and III of this book, we cover the wide range of fluid mechanical prob- 
lems of interest to chemical engineers that are best approached in a one-dimensional, 
energy-first approach. Then in Part IV we introduce the two- or three-dimensional, 

momentum-first approach, and discuss some of the chemical engineering problems that 

are best approached that way. 

Figure 1.14 shows a chemical processing plant, in which lower-price chemicals 

are converted to higher-price (more useful) chemicals for profit and social benefit (and 

jobs for chemical engineers!). Many readers of this book will participate in the design, 

construction, and/or operation of similar plants. In such a plant the fluid flows are 

almost entirely inside pipes, pumps, vessels, fractionators, reactors, etc. We keep them 

inside because they are too valuable to waste and/or because their release would be 

dangerous or polluting. Almost all the flows in such a plant are most easily studied, 

predicted, and managed by the one-dimensional, mass-and-energy balance approach 

that forms Parts II and III of this book. 

Figure 1.15 shows a schematic of a “cabin-type” industrial furnace. These 

are widely used for pyrolysis and reforming reactions in chemical engineering. 

Fifty years ago these were designed by hand using the one-dimensional methods 

presented in Parts II and III. With the recent spectacular advances in computer power, 

such furnaces are now designed using the two- and three-dimensional fluid mechan- 

ics methods presented in Part IV. Those methods and their computer implementa- 

tion were largely developed by aeronautical engineers, to deal with the inherently 

FIGURE 1.14 4 . 

The mercaptan manufacturing unit at the Borger, Texas, complex of the Chevron Phillips Chemical 

Company. This plant is full of fluid flows, almost all of which are inside pipes, pumps, distillation 

columns, and associated vessels. (Courtesy of the Phillips Petroleum Company.) 
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FIGURE 1.15 

Cutaway drawing of a modern industrial furnace. The external 

steel frame supports the high-temperature refractory ceramic 

walls. There are multiple burners at the bottom, of which only 

one is shown. The flame heats the walls and the pipes through 

which the fluid being heated flows. Above the combustion 

chamber the hot gases pass over another bank of tubes, in 

which cooler fluid is warmed by the hot gases before they 

pass up the exhaust stacks seen at the top. (Courtesy of John 

Zinc Co. LLC.) 

three-dimensional flow around 

airplanes. Furnace designers 

and other chemical engineers 

now use large computer codes 

to model the simultaneous 

three-dimensional fluid flow, 

heat transfer, and chemical 

reactions in such furnaces. The 

improvement in computational 

accuracy more than repays the 

additional cost and complexity. 

Part IV only introduces the 

basic ideas underlying such 

computations, and gives a bit 

of their history. 

1.12 SUMMARY 

1. Fluid mechanics is the 

study of forces and motions 

in fluids. 

2. Fluids are substances that 

move continually when sub- 

jected to a shear force as 

long as the force is applied. 

Solids are substances that 

deform slightly when sub- 

jected to a shear force and 

then stop moving and per- 

manently resist the force. 

There are, however, inter- 

mediate types of substance; 

the distinction between 

solid and liquid is one of 

degree rather than of kind. 

3. Fluid mechanics is based on the principle of the conservation of matter, the first 

two laws of thermodynamics, Newton’s laws of motion, and careful experi- 
ments. 

4, Gases have weak intermolecular attractions and expand without limit. Liquids 

have much stronger intermolecular attractions and can expand very little. With 

increasing temperature and pressure, the differences between liquids and gases 
gradually disappear. 

5. Density is mass per unit volume. Specific gravity of liquids is density / (density 

of water at 4°C). Specific gravity of gases is density / (density of air at the same 
Leander: 
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6. Viscosity is a measure of a fluid’s resistance to flow. Most simple fluids are rep- 
resented well by Newton’s law of viscosity. The exceptions (non-Newtonian flu- 
ids) are generally complex mixtures, some of which are of great practical signif- 
icance. Kinematic viscosity is viscosity divided by density. 

7. Surface tension is a measure of a liquid’s tendency to take a spherical shape, 
caused by the mutual attraction of the liquid’s molecules. 

8. Pressure is compressive force divided by area. It is the same in all directions for 
a fluid at rest and practically the same in all directions for most moving fluids. 

9. In handling the units (dimensions) in this text, one should always write down the 

units of any dimensioned quantity and then multiply or divide by 1 to find the 

desired units in the answer. 

10. Much of fluid mechanics can be based either on force and momentum, or on 

energy. This book, for chemical engineers, bases most of fluid mechanics on 

energy, thus dealing mostly with scalars instead of vectors. Momentum and vec- 

tors are used where they are needed. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover 

of this text. An asterisk (*) on the problem number indicates that the answer is in 

App. D. 

1.1. In Sec. 1.3 the basic laws on which fluid mechanics rests are listed. How many of the 

basic laws of nature are not included in the list? To answer this question, make a list 

of what you consider to be the basic laws of nature. By basic laws, we mean laws that 

cannot be derived from other more basic ones; for example, Galileo’s “laws of falling 

bodies” can be derived form Newton’s laws and are not basic. 

1.2. At low pressures there is a significant difference between the densities of liquids and of 

gases. For example, at 1 atm the densest gas known to the author is uranium hexafluo- 

ride, which has M = 352 g/mol; its normal boiling point is 56.2°C. Calculate its den- 

sity in the gas phase at 1 atm and 56.2°C, assuming that it obeys the ideal gas law. The 

least dense liquid known to the author is liquid hydrogen, which at its normal boiling 

point, 20 K, has a density of 0.071 g/ cm*. Liquid helium also has a very low density, 

about 0.125 g/cm? (at 4 K). Excluding these remarkable materials, make a list of liq- 

uids which at 1 atm can exist at densities of less than 0.5 g/cm®. A good source of data 

is The Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, annual 

editions. 

1.3.*For some oil and gas drilling operations we need a high-density drilling fluid (called 

“drilling mud”). Repeat Example 1.1 for a mud that is 50 wt. % water, 50 wt. % BaSO, 

(barite), SGparite = 4.49. 

1.4. Why are specific gravities most often referred to the density of water at 4°C instead of 

0°C? 

1.5.*A special-purpose piece of laboratory glassware, called a pyncnometer, is used to meas- 

ure liquid densities. It has a volume of 25 cc, and a mass of 17.24 g when it is full of 

air. When filled with a liquid of unknown density, its mass = 45.00 g. What is the den- 

sity of this liquid? How large an error do we make if we ignore the mass of the air that 

was in it when we weighed it and found m = 17.24 g? 
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1.6. 

bth 

1.8. 

1.9. 

1.10. 

The American Petroleum Institute (API) gravity (used extensively in the petroleum indus- 

try) is defined, in “degrees,” by 

Deg API = _- adhe rf Siles: (1.AG) 
specific gravity 

Here the specific gravity is the ratio of the density of the liquid to that of water, both at 

60°F. Sketch the relation between density in g/cm* and degrees API. What advantages 

of this scale might have led the petroleum industry to invent and adopt it? 

Estimate the specific gravities (gas) for methane and propane. Their molecular weights are 

shown inside the back cover. (Commercial natural gas and commercial propane are mostly 

methane and propane, with small amounts of other substances, which may be ignored for 

this problem.) Which is more dangerous, a natural gas leak or a propane leak? Why? 

What are the dimensions of dV/ dy? What are the dimensions of shear stress? Shear 

stress in liquids is often called “momentum flux” [2]. Show that shear stress has the same 

dimensions as momentum / (area - time). What are the dimensions of viscosity? 
List as many applications as you can of industrial, domestic, or other materials in which 

non-Newtonian viscosity behavior is desirable. In each case specify why this behavior is 

desirable. 

In Example 1.2 we replaced a cylindrical problem with a linear approximation. The veloc- 

ity distribution for this flow, taking the cylindrical character into account (see Prob. 15.22 

and also [2], p. 91) is 

a Re 
Vg = o(—.) : (= = r) (1.AH) 

where R is the radius of the outer cylinder, r is the local radius, k = rinner syinask R, and 

w is the angular velocity of the inner cylinder. 

(a) Verify that this distribution shows a zero velocity at the radius of the outer, non- 

moving cylinder and shows Vg = wkR at the surface of the inner, rotating cylinder. 

(b) The shear rate in cylindrical coordinates, for a fluid whose velocity depends only on 

r (equivalent to dV/ dy in rectangular coordinates) is given by 

_ (shear rate cylindrical) d [Vo 

aie anne ) Forth <( < (LAD 

Show that for the above velocity distribution, the shear rate at the surface of the inner 

cylinder is given by 

2 
=o = 1.AJ 

iG = a : ) 

(c) Show that the shear rate computed by Eq. 1.AJ using the values in Example 1.2 is 
12.26/s, which is 1.15 times the value for the flat approximation in Example 1.2. 
The manual for the viscometer shown in Fig. 1.5 provides formulae equivalent to 
those in this problem. 

1.11.*Calculate the surface / volume of a sphere, a cube, and a right cylinder of height equal 

1.12. 

to diameter. Which has the least surface / volume? 

A liquid under tensile stress is unstable [9]; a small disturbance can cause it to boil and 
thereby change to a stable state. Make a list of other unstable situations demonstrable in 
a chemistry or physics laboratory. The working criterion of instability is that a very small 
disturbance can cause a large effect. 
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1.13. Earth may be considered a sphere with a diameter of ~8000 mi and an average SG of 
~5.5. What is its mass? What is its weight? Explain your answer. 

1.14. A cubic foot of water at 68°F = 20°C weighs 62.3 lbf on earth. 
(a) What is its density? 

(b) What does it weigh on the moon (g ~ 6 ft/s”)? 

(c) What is its density on the moon? 

1.15.*How many U.S. gallons are there in a cubic mile? The total proven oil reserves of the 
U.S. are roughly 30 x 10° bbl. How many cubic miles is this? 

1.16. In electrochemical equations it is common to write in the symbol & (called Faraday’s 

constant) to remind the user to convert from moles of electrons to coulombs. This is 

just like the force-mass and thermal energy-mechanical energy conversion factor, 

namely, 

96,500 C 
F=1= 
Ae g equiv of electrons 

(1.AK) 

1 g equiv of electrons = 6.02 - 10°* electrons. How many electrons are there in 1 C? 

1.17. Older thermodynamics and fluids textbooks not only put the symbol g, into equations to 

remind us to make the force-mass conversion but also put a J in equations to remind us / 

to make the conversion from mechanical units of energy (e.g., ft: Ibf) to thermal units of 

energy (e.g., Btu). Equation 1.11 shows the values of g, = 1 for a variety of systems of 

units. Show the corresponding equation for J. (The use of the symbol g,. caused confu- 

sion because it is similar to g. Is there a symbol with which the J discussed in this prob- 

lem can be confused?) 

1.18.*As discussed in the text, the slug and the poundal were invented to make the conversion 

factor (mass length) / (force time”) have a coefficient of 1. A new unit of length or a new 

unit of time could just as logically have been invented for this. Let us name those units 

the toof and the dnoces. What are the values of the toof and the dnoces in terms of the 

foot and the second? 

1.19. In U.S. irrigation practice water is measured in acre-feet, which is the volume of water that 

covers an acre of land, one foot deep. What is the mass of an acre-foot of water (1 mi* = 

640 acres)? What is the mass of a hectare-meter (ha: m) of water (km* = 100 ha)? Why 
would the acre-foot be a practical measure of irrigation water? 

1.20. Einstein’s equation E = mc’ indicates that the speed of light squared must be expressible 

in units of energy per unit mass. What is the value of the square of the speed of light 

in Btu/lbm? In J/kg? The speed of light c ~ 186,000 mi/s = 2.998 - 10° m/s. 

1.21.*A common basis for comparing rocket fuel systems is the specific impulse, defined as lbf 

of thrust produced divided by Ibm/s of fuel and oxidizer consumed (see Chap. 7). The 

common values are 250 to 400 Ibf-s/lbm. We frequently see the specific impulse 

referred to simply as “300 s.” Is 300 s the same thing as 300 Ibf s / bm? European engi- 

neers regularly express the same quantity in terms of the equivalent exhaust velocity of 

the rocket. If a rocket has a specific impulse of 300 Ibf s/lbm, what is its equivalent 

exhaust velocity? 

1.22. Most U.S. engineers work with heat fluxes with the unit Btu / (h ft’). In the rocket busi- 

ness the common unit is cal/(s cm”). How many Btu/(h ft’) is 1 cal/(scm7)? The 

proper SI unit is J/(m* s). How many Btu/(h fi?) =I vii? s)? 

1.23.*The Reynolds number, discussed in Chap. 6, is defined for a pipe as 

(velocity - diameter - density) / viscosity. What is the Reynolds number for water flowing 

at 10 ft / s in a pipe with a diameter of 6 in? What are its dimensions? 
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1.24. The flow of fluids through porous media (such as oil sands) is often described by Darcy's 

equation (see Chap. 11): 

Flow permeability 
= : : ‘ pressure gradient (1.AL) 

Area viscosity 

The unit of permeability is the darcy, which is defined as that permeability for which a 

pressure gradient of 1 ae /cm for a fluid of 1 cP viscosity produces a flow of 1 cm?/s 

through an area of | cm’. What are the dimensions of the darcy? What is its numerical 

value in the dimension? Give the answer both in English units and in SI units. 

1.25.*What mass (weight?) would be needed in Example 1.3 if the liquid had been water? 

1.26. Determine the value of X in the equation, 

Bt 10——— = x (1AM) 

1.27. In strict SI, the only unit of pressure is the Pascal (Pa). The most widely used derived 

unit is the bar (bar = 10° Pa = 0.1 MPa). What is the relation between the bar and the 
pressure of the atmosphere at sea level? Why is the bar a popular choice for a working 

SI derived unit? 

1.28.*Air pollutant emissions from autos and trucks in the United States are reported in a mixed 

metric-English unit, g / mi. Suggest reasons why this might be a practical] unit. 

1.29. Many European pressure gauges give the pressure in kg / cm’. Is this kgm or kgf? Why 

would this be a convenient unit of pressure? 

1.30. In the third part of Example 1.6, what would have happened if we had taken the force- 

mass conversion factor as 32.2 Ibm: ft / (Ibf - s”) instead of 9.8 kgm - m/ (kgf: s*)? 
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PART 

PRELIMINARIES 

his part of the book (which includes the previous chapter) covers topics we need 

before we begin the study of flowing fluids. Chapter | introduced the basic idea 

of a fluid and its most important properties, as well as discussing units. Chapter 2 dis- 

cusses fluid statics, the behavior of nonmoving fluids. We will need some of its results 

in subsequent chapters, but some are useful directly. 

Chapters 3 and 4 discuss the conservation of mass and of energy. These are 

basic tools of the chemical engineer. Most readers of this book have been exposed to 

these in their previous course work. The treatment here is partly a review of that mate- 

rial and partly a recasting of these ideas in the form that is useful for the study of 

flowing fluids. 
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CHAPTER 

e: 
FLUID STATICS 

Te this chapter we apply Newton’s law of motion, F = ma, to fluids at rest. We will 

see that this leads to a remarkably simple equation: 

Sf Pe (2.1) 

This equation and its applications are almost the whole of fluid statics. 

In Chap. 7 we will apply Newton’s law of motion to moving fluids. This chap- 

ter is really only part of the more general application made in Chap. 7. In Chaps. 5, 

and 6, however, we will need some of the results from this chapter, and the kinds of 

problem we deal with here are different from (and simpler than) those in Chap. 7; for 

these reasons a separate chapter on fluid statics is practical at this point. Remember 

that all we do in this chapter is apply F = ma to a static fluid; the more general appli- 

cations, covering both moving and static fluids, are discussed in Chap. 7. 

In the most careful work, we would write Eq. 2.1 as a vector equation, because 

the acceleration of gravity has both magnitude and direction, as does the gradient of 

the pressure. We will see that this chapter can be developed, to give all the correct 

and useful results, without using vector calculus. But remember than any application 

of Newton’s law of motion is a vector application. We will say more about that in the 

introduction to Chap. 7, where we consider the classes of problems in which we must 

use the vector nature of forces and of momentum, and again in Chap. 15, where we 

reintroduce Newton’s law in three-dimensional vector calculus form. 

ay) 
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2.1 THE BASIC EQUATION 
OF FLUID STATICS 

For a simple fluid at rest the pressure is the same in all directions. This idea seems 

hard for students. Suppose you compress a small coil spring between your thumb and 

forefinger. The spring exerts the same force on thumb and forefinger, but in opposite 

directions. If you rotate your hand any way, it still exerts equal forces in two oppo- 

site directions. So also with pressures in fluids at rest. There are no shear stresses in 

a fluid at rest. These facts lead to the basic equation of fluid statics. Consider a small 

block of fluid that is part of a large mass of fluid at rest in a gravity field; see Fig. 

2.1. Since the fluid is at rest, there are no accelerations, and the sum of the forces on 

any part of the fluid in any direction is zero. Let us consider the z direction, opposite 

to the direction of gravity. The forces that act on the small block of fluid in the z 

direction are the pressure forces on the top and bottom and the force of gravity act- 

ing on the mass of the element. Their sum (positive upward) is 

(P:. 9) Ax Ay — (P4;) Ae by = pe he ay Az (2.2) 

Dividing by Ax Ay Az and rearranging, we find 

Phe ee 
aa = —pg (2.3) 

z 

If we now let Az approach zero, then 

eae 
limit == —pg (2.1) 
Az>o0 Az dz 

This is the basic equation of fluid statics, also called the barometric equation. It is 

correct only if there are no shear stresses on the vertical faces of the cube in Fig. 2.1. 

If there are such shear stresses, then they may have a component in the vertical direc- 

tion, which must be added into the sum of forces in Eq. 2.2. For simple Newtonian 

fluids, shear stresses in the vertical directions can exist only if the fluid has a differ- 

ent vertical velocity on one side of the cube from that on the other (see Eq. 1.4). Thus, 

Eq. 2.1 is correct if the fluid is not moving at all, which is the case in fluid statics; 

or if it is moving but only in the x and y directions; or if it has a uniform velocity in 

the z direction. In this chapter we will apply it only when a fluid has no motion rel- 

ative to its container or to some set of fixed coordinates. In later chapters we will 

Direction 
of gravity 

FIGURE 2.1 

A small cube of fluid at rest. 



CHAPTER 2 FLUID STATICS 39 

apply it to flows in which there is no motion in the z direction or there is a motion 
with a uniform z component. We will also describe nonmoving fluids in accelerated 
motion in this chapter. 

For complicated fluids, such as toothpaste, paints, and jellies, Eq. 2.1 is not cor- 
rect, because these fluids can sustain small but finite shear stresses without any 
motion. The equation simply is not applicable. To find its equivalent, it is necessary 
to make up a sum of forces that includes shear forces on the vertical sides of the cube. 

The barometric equation describes the change in pressure with distance upward, 

where “upward” is opposite to the direction of gravity, called z. (The minus sign 

appears in Eq. 2.1 because gravity points in the minus z direction.) If we want to 

know the change of pressure with distance in some other, nonvertical direction, call 

it direction a, then we can write 

adie zr har dz 

gon patigpniane BST Ga) 
But, as shown in Fig. 2.2, 

dz Az 
“iieinNani cos 0 (2.5) 

where @ is the angle between the direction a and the z axis. Substituting this equa- 

tion into Eq. 2.4, we have 

dey SVhg i P LON 
ar rere cos or as —pg cos 8 (2.6) 

A particularly interesting direction a is the one at right angles to z, that is, any 

direction parallel to the x-y plane. For that direction 6 is 90°, cos 6 is 0, and the pres- 

sure does not change with distance. Thus, from Eq. 2.6 we see that for a fluid at rest 

any surface that is perpendicular to the direction of gravity is a surface of constant 

pressure. The most interesting constant-pressure surface of a body of fluid at rest is 

the one with zero gauge pressure, that is, the surface in contact with the atmosphere. 

Since this is a constant-pressure surface, it must be everywhere perpendicular to the 

direction of gravity. On a global scale this makes the free surface of the oceans prac- 

tically a sphere. (The earth is not quite spherical, being slightly flattened at the poles.) 

In typical engineering operations it means that the free sur- 

face of a liquid exposed to the atmosphere is practically a hor- 

izontal plane (Prob. 2.1). 

The product of density and gravity, which appears in 

Eq. 2.1, is often called the specific weight, and is given the 

symbol y: 

pg = y = specific weight (2.7) 

At any place where the acceleration of gravity is equal to 

32.2 ft / s* = 9.81 m/s? (practically any place on the surface of 

the earth), the specific weight expressed in Ibf / ft? (or kgf / m*) 

is numerically equal to the density expressed in Ibf/ ft’ 

(or kgf / m?). The value in N/m? is numerically different. 

FIGURE 2.2 

Relations between the a 

and z directions. 
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Example 2.1. Calculate the specific weight of water at a place where the 

acceleration of gravity is 32.2 ft/s. 

Ibm fixie Tot at bf = pg = 62.3 -32.25° = 623 Y= PB = 0235922 3399 Ibm: ft ft? 
kgf N = 998.2 = 9792 5 (2.4) 
m m 

If one deals principally with fluid flows in which the forces of gravity are dom- 

inant, then one often can simplify the calculations by replacing the density in all equa- 

tions by y/g. In civil engineering hydraulics this is normally the case, and this is 

common practice. On the other hand, if one deals mostly with flows whose gravity 

terms are small compared with the other terms, then it is more convenient to work 

with p than with y/g. In chemical engineering problems the gravity terms are nor- 

mally small, so the specific weight is seldom used. 

2.2 PRESSURE-DEPTH RELATIONSHIPS 

Equation 2.1 is a separable, first-order differential equation that can be separated and 

integrated as follows: 

[ar = -| oe dz (2.8) 

However, to perform the integration, it is necessary to have some relation between 

p, g, and z. In situations on the surface of the earth g is practically constant (see Sec. 

2.8), SO we may take it outside the integral sign. Several possible relations between 

p and z lead to simple integrations of the equation, as shown in the following material. 

2.2.1 Constant-Density Fluids 

No real substances have constant density; the density of all substances increases as 

the pressure increases. However, for most liquids at temperatures far below their crit- 

ical temperatures, the effect Of pressure on density is very small. For example, rais- 

ing the pressure of water at 100°F from | to 1000 psia while holding the temperature 

constant causes the density to increase by 0.3%. In most engineering calculations we 

can neglect such small changes in density. Then we can take p outside the integral 

sign in Eq. 2.8 and. find that the pressure change is 

P, — P,. = —pe(z'= [constant density] (2.9) 

Example 2.2. When the submarine Thresher sank in the Atlantic in 1963, it 

was estimated in the newspapers that the accident had occurred at a depth of 

1000 ft (304.9 m). What is the pressure of the sea at that depth? 

Seawater may be considered incompressible, with density 63.9 Ibm / ft* 
(1024 kg / m*). Thus 

lbf Ibm ft ft Ibf - s* 
P = 14.7— + 63.9 —— : 32.2 —-.1000 ft - 
pate in? fe s 144 in? 32.2 Ibm: ft 

lbf Ibf lbf = 14.7— + 444 = 459 — (2.B) 
in in In~ 
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or 

k oe 
Paodom = LORSRPart 1024 2-9.81 3730409 mine ie Ns 

m s° N/m kg-m 

In hydraulics problems and in all problems involving a free surface exposed to 
the atmosphere, we can further simplify Eq. 2.9 by working in gauge pressure. The 
gauge pressure is zero at the free surface: P; gauge = 0. We now define the depth as 
the distance measured downward from the free surface and give it the symbol h, 

US Zfree surface — < (2.10) 

in which case Eq. 2.9 simplifies to 

P = pgh [gauge pressure, constant density] (2.11) 

In Example 2.2, at h = 1000 ft the gauge pressure is P = 444 psig = 3062.8 kPa, 

gauge. 

Example 2.3. A cylindrical oil-storage tank is 60 ft deep and contains an oil 

of density 55 lbm/ft*. Its top is open to the atmosphere. What is the gauge- 

pressure-depth relation in this tank? 

The gauge pressure is zero at the free surface. At the bottom it is 

Ibm fi i Ibf - s* lbf t 
/2) SD en Be O° aes See eS ESS = 2.) 
Botpm ft? 5? 144 in? 32.2 lbm ft in? Bie ED) 

From Eq. 2.11 we know that the pressure-depth relation is linear; see Fig. 2.3. 

a 

2.2.2. Ideal Gases 

The density of gases changes significantly with pressure changes, so we must be cau- 

tious about taking the density outside the integral sign in Eq. 2.8. At low pressure the’. 

densities of most gases are well approximated by the ideal gas law, 
ee . 

p= RT [ideal gas] (m2) 

Surf. : : 
Sa econ Here T is the absolute temperature, in ° Rank- 

ine or in Kelvins (T°R = T°F + 459.69, 
or TK = T°C + 273.15); R is the universal 

gas constant, whose value in various systems 

of units is shown on the inside back cover; 

M is the molecular weight, normally 

expressed in g/mol or lbm/Ibmol. [This 

formulation of the ideal gas law gives the 

Sevec Preah density in units of lbm// ft®. In chemistry one 
FIGURE 2.3 often sees the ideal gas law written as 

Pressure-depth relation in Example 2.3. p=P / RT, which gives the density in 

Depth, ft 

Bottom of tank 

eo 22.9 
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Ibmol / ft? or mol/m*. Multiplying the latter density by the molecular weight (in 

lbm/Ibmol or g/mol) gives the density, shown here.] 

Substituting Eq. 2.12 for the density in Eq, 2.1, we find 

M 
- = oe [ideal gas] (2.13) 

If the temperature is constant, this can be separated and integrated as follows: 

= d 2.14 
po pion FREON oo ie 

P, — 9M 

In— = = DAS n P, RT (=z) ( ) 

—gMA ! : 
P, = P, exp RT {isothermal, ideal gas} (2.16) 

Example 2.4. At sea level the atmospheric pressure is 14.7 psia and the tem- 

perature is 59°F = 15°C = 519°R. Assuming that the temperature does not 

change with elevation (a poor assumption, but one that simplifies the mathe- 

matics and that will be reexamined in a few pages), calculate the pressure at 

1000, 10,000, and 100,000 ft. For z = 1000 ft, we find 

—32.2 ft/s*+29Ibm/Ibmol-1000ft ft? Ib s* ) 
(10.73 Ibf / in? - ft® /Ibmol -°R)-519°R 144 in* 32.2 Ibm- ft 

P\ le | 
exp 0.03616 1.0368 

We can calculate the pressures at the other two elevations and show them, along 

with the results from the next example, in Table 2.1. a 

P, = P, csn( 

= P, exp(—0.03616) = = 0.965 atm (2.E) 

How much error would we have made if we had used the constant-density formulae 

instead of taking the change in density into account? 

Example 2.5. Rework Example 2.4, assuming that air is a constant-density 

fluid, which has the same density at all elevations as it has at 14.7 psia and 59°F. 

Here we use Eq. 2.9: 

Py — P; = —pyg(z2 — 21) = (—Pi\M/ RT)g(z — 2) (2.F) 

P, = P{1 — (gM/RT)(z — z)I (2.G) 

TABLE 2.1 

Calculated atmospheric pressures for Examples 2.4 and 2.5 
ee ee ee a a ) 

P,, atm, P,, atm, 
Elevation, z, ft Elevation, z, m gM Az/ RT Example 2.4 Example 2.5 

1,000 304.8 0.03616 0.965 0.964 
10,000 3,048 0.3616 0.697 0.638 

100,000 30,480 3.616 0.0269 261 
LS 
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For 1000 feet we find 

By SP, (1 _ _32.2 ft/'s*- 29 Ibm/Ibmol- 1000 ft ft? bf: ) 
(10.73 Ibf / in - ft* /Ibmol -°R)-519°R 144 in? 32.2 Ibm: ft 

= P,-(1 — 0.03616) = 0.964 atm (2.H) 
This value, plus the corresponding ones for 10,000 and 100,000 ft, are shown 
in Table 2.1. | 

From Table 2.1 we see that up to 1000 ft the assumption of constant density 
creates a negligible error, at 10,000 ft it makes a 9% error, and at 100,000 ft it gives 
absurd results (negative absolute pressure in a gas??). Thus, for ordinary industrial- 
sized equipment (generally less than 1000 ft high) one can accurately calculate 

changes in gas pressure with elevation as if the gas had a constant density. On the 

other hand, in aeronautics and meteorological problems, in which the elevations are 

often from 10,000 to 100,000 ft, this simplification leads to disastrous errors. 

In Examples 2.4 and 2.5 we made the simplifying assumption that the atmo- 

sphere was isothermal. Anyone who has gone to the mountains in the summer to get 

out of the heat did so because the atmosphere is not isothermal. To understand why 

the air temperature decreases with elevation, consider a mass of air being lifted from 

one elevation to a higher one (by a wind, for example, blowing it over a mountain 

range). The air mass expands because the pressure of the surrounding air decreases as 

it rises. The air mass is cooled because as it expands it does expansion work on the 

surrounding air. Air is a fairly poor conductor of heat, so during this process the ris- 

ing air undergoes an expansion that is close to adiabatic and close to reversible. If it 

were exactly reversible and adiabatic, then the temperature-pressure-elevation relation 

would be exactly the isentropic one. For an isentropic atmosphere one can work out 

the following elevation-temperature and elevation-pressure relationships (Prob. 2.16): 

k—1 gMAz¥i er) 39H 
P, p(1 = wap va RT, ) [isentropic, ideal gas] Ca) 

eee n(1 pea). a) [isentropic, ideal gas] (2.18) 
k RT 

Here k is the ratio of specific heats (discussed in Chap. 8); for air its value is practi- 

cally constant at 1.4. 

The isothermal atmosphere in Examples 2.4 and 2.5 would be observed if air 

were a perfect conductor of heat, evening out all temperature differences instantly. 

The isentropic atmosphere in Eqs. 2.17 and 2.18 would be observed if air were a per- 

fect insulator against heat conduction, transferring no heat at all. Experimental mea- 

surements show that the real behavior of the atmosphere is intermediate between these 

two extremes. Heat is conducted outward from the earth not only by simple conduc- 

tion in the air (which is fairly slow) but also by winds, which mix cold and warm air 

layers, and by condensation of water vapor and by infrared radiation. For calculation 

purposes meteorologists and aeronautical engineers have defined a “standard atmo- 

sphere,” which agrees well with the average of many observations over the whole 

planet and all seasons of the year. As shown in Fig. 2.4, this standard atmosphere is 
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65,840 ft 

20,061 m 

Isothermal atmosphere 

36,150 ft 

11,021 m 

Height above sea level, z 
“Standard” atmosphere 

Isentropic atmosphere 

Troposphere 

me PIR SAC Oi 2G ip G 

=jisisyt8 —69.7°F pies 

324.7°R 390°R 518.7°R 

Temperature 

FIGURE 2.4 

Comparison of standard atmosphere, isentropic atmosphere, and isothermal atmosphere. 

indeed intermediate between the isothermal and isentropic atmospheres. It is an aver- 

age; most interesting weather phenomena are caused by deviations from it. For a sim- 

ple discussion of this see ({1], Chap. 5). From the standard-atmosphere temperature 

one may calculate a “standard” pressure-height curve (Prob. 2.17). Tables showing all 

the properties of the standard atmosphere are found in handbooks [2]. 

2.3 PRESSURE FORCES ON SURFACES 

Static, simple fluids can exert only pressure forces on surfaces adjacent them. Since pres- 

sure is the normal (perpendicular) force per unit area, the pressure forces must act nor- 

mal to the surface. Moving fluids can exert not only pressure forces but also shear forces, 

so the combined force exerted by a moving fluid on a surface is generally not normal 

to the surface. However, in problems involving moving fluids it is often convenient to 

treat the pressure and shear forces as separate and thus calculate the pressure force 

exactly as we do here, but use the pressure distribution on the surface corresponding to 

the flow situation rather than to the static-fluid one discussed in this chapter. 

For an infinitesimal surface area the force exerted is 

dF =PdA arto) 
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This dF is a vector quantity: it has direction (perpendicular to the surface) and mag- 
nitude. For a plane surface all the differential dF vectors point in the same direction, 
so that we can find the total force simply by integrating this equation: 

F= fe dA (2.20) 

To calculate pressure forces on curved surfaces, we normally resolve the infinitesimal 
dF in Eq. 2.19 into its x and y components and integrate those. That calculation is 

shown in most civil and mechanical engineering fluid mechanics textbooks, for exam- 
ple, Reference 3 (Chap. 2). . 

If the pressure over an entire plane surface is constant, then Eq. 2.20 becomes 

F=PA [constant pressure, plane surface] (2.21) 

Because the static pressure in gases changes very slowly with elevation, this is prac- 

tically true for all moderate-sized flat surfaces exposed to gases, independent of the 

orientation of the surface. The same is not true for liquids. 

For horizontal plane surfaces exposed to static liquids the pressure is constant 

over the- entire surface, so Eq. 2.21 gives the required force. 

Example 2.6. An oil-storage tank has a flat, horizontal, circular roof 120 ft in 

diameter. What force does the atmosphere exert on the roof? 

lbf in? 
F = PA=14.7—- m (120 ft)? - 144 = 2.39-10’lbf = 106.5MN (2.1 

in? 4 t? 
| 

The roof of the storage tank can withstand this startlingly large downward 

force because the gas or air inside it exerts an equal upward force, so the net force 

due to the pressure of the atmosphere and the pressure of the gas inside the tank is 

zero. Since these forces ordinarily cancel out of force calculations, it is customary 

to make such calculation in gauge pressure, whenever both sides of the surface are 

subjected to the pressure of the atmosphere in addition to the gauge pressure of 

the liquid. Such tanks normally are vented to the atmosphere, to prevent having a 

gauge pressure or a vacuum in the tank (which it is not designed to withstand). 

Often the vent will have a vapor conservation valve, which prevents the tank from 

“breathing” in and out with small changes of atmospheric pressure or of the tem- 

perature of the tank contents; such valves are normally set to open for an internal 

pressure of vacuum of less than +0.1 psig. If for some reason that vent is closed 

(e.g., blocked by ice in a storm), then pumping liquid into the tank can bulge the 

tank outward, and pumping liquid out can collapse the tank inward. For fluids like 

gasoline this tank breathing can be a significant air pollution emission [1], which 

must be controlled. 

Example 2.7. A layer of rain water 8 in deep collects on the roof of the oil- 

storage tank of Example 2.6. What net pressure force does it exert on the roof 

of the tank? 
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Here 

Ss ara eciet Ibf - s” 
Pgage' PER Odd ag: 12. 32.2 Ibm ft 

lbf 
= 41.5 = = 0.288 — = 1.989 kPa (2.J) 

in? 

lbf 7 3 
F = PA= 41.5 (120 ft)? = 4.70 - 10° Ibf = 3.24 MN (2.K) 

fe 4 

We could have found exactly the same answer by asking what the weight W of 

the liquid on the roof was that is, 

8 Ibm ft ibis? ers ay Sent Da 2.538.379 Wie trig WV pet pte | 7 (120 ft)? 62.3 fc s? 32.2 Ibm: fi 
= 4.70: 10° lbf = 3.24 MN (2.L) 

where V is volume of the liquid. This is typical of fluid-statics problems involving 

horizontal surfaces. Since we found the basic equation of fluid statics by considering 

the weight of the fluid, we could work this kind of problem just as well by simply 

considering the weight of the fluid involved. This large a weight would collapse the 

roof of an ordinary tank and of some other light-duty structures; proper rainfall 

drainage is important. 

For vertical plane surfaces the pressure is not constant over the whole surface. 

Therefore, Eq. 2.20 must be used to find the force, and in Bence we cannot take the 

pressure outside the integral sign. 

Example 2.8. The lock gate of a canal (Fig. 2.5) is rectangular, 20 m wide 

and 10 m high. One side is exposed to the atmosphere, the other side to water 

whose top surface is level with the top eS the lock gate. What is the net force 

on the lock gate? 

The net force is the force exerted by the water on the front of the gate minus 

the force exerted by the atmosphere on the back of the gate. Over the short vertical 

distance involved, the pressure of the atmosphere may be considered constant 

= Pam. Thus, the force exerted on the back of the gate by the atmosphere is 

Pressure of atmosphere on water 

Lock gate 

Pressure of fs Pressure of 
on front of : gate atmosphere 

on back of gate 

FIGURE 2.5 

Horizontal pressure forces on a vertical surface. 
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PamA, where A is the area of the gate. The pressure at any point in the water is 
given by Eq. 2.11. Here we define W as the width of the gate and h as the depth 
below the free surface. Then, substituting Eq. 2.11 in Eg. 2.20, we find 

Fuuce= f PdA = f (Pam + pak) dA = Paw + pg Jnwan 
2° 110m 

= FA pew™ | (2.M) 
2 Io 

The net force in the x direction is 

210m 

Fast = vate a Tg = age ae pew | a” Pen (2.N) 
0 

The two atmospheric pressure terms cancel each other, and 

re p2va=lom ny. 2 

Fret = 998.2 9.81 +20 m:— a 
m Se 2 les kg-m 

= 9.80 MN = 2.20: 10° lbf (2.0) 

In this problem—and in all others in which a liquid, open to the atmosphere, 

acts on one side of a surface and the atmosphere acts on the opposite side—the effect 

of the atmospheric pressure cancels. Thus, such problems can be worked most easily 

by using gauge pressure. If it had been used in this problem, it would have given 

exactly the result just shown. 

In the next section (and some other problems of practical interest) we want to 

know the x or y components of the pressure force on some surface that is curved, or 

that is flat but not perpendicular to the x or y axis. The basic procedure is to write 

Xx-component : , 

dF, = = sin@:dF = sin@:PdA (222) 
of dF 

and 

= t dF, = € ae ) = —cos §:dF = —cos 0° PdA (2.23) 

where 6 is the angle between the normal to the surface and the vertical. If P is con- 

stant, then the x or y components of the pressure force are equal to P times the pro- 

jected area of the surface in the x or y direction. 

2.4 PRESSURE VESSELS AND PIPING 

Figure 2.6 shows part of an oil refinery “tank farm.” Three different types of storage 

vessels are shown. The largest are cylindrical with vertical axes and flat bottoms; these 

are used for liquids stored at approximately atmospheric pressure. The spherical tanks 

are used to store liquids (and rarely gases) at pressures substantially above atmo- 

spheric. The sausage-shaped tanks (horizontal cylinders with hemispherical ends) are 

also used to store liquids (and rarely gases) at high pressures. The choice between 
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FIGURE 2.6 

Part of an oil refinery “tank farm” showing 24 flat-bottomed atmospheric pressure storage tanks, 2 

high-pressure spherical storage tanks, and 24 high-pressure sausage-shaped storage tanks. [Courtesy 

of Chicago Bridge and Iron Company (CB&]).] 

these three types of tank is based on economics, which is mostly driven by the neces- 

sity to make them strong enough to resist the pressure of the fluid they contain. 

Returning to the oil-storage tank in Example 2.3 and Fig. 2.3, we can ask, how 

thick do the walls of the tank have to be to contain the fluid inside? Figure 2.7 shows an 

atmospheric-pressure, flat-bottomed tank like those shown in Fig. 2.6. Part (a) shows the 

whole tank, which is a cylindrical shell with a flat bottom and which rests on a concrete 

or gravel foundation. The tank has a lightweight roof (either flat or domed in Fig. 2.6). 

Cylindrical 
tank 

z 

Tensile 

force 

Pressure force 

= PAgrcu — PDAz 

Tensile force = otAz 

(a) (b) 

FIGURE 2.7 

(a) A cylindrical flat-bottomed tank, showing a horizontal slice used in part (b). (b) A force 
balance on half of the horizontal slice, showing the pressure force in the x direction, and 
the tensile force in the two pieces of the tank’s shell, which resists this pressure force. 
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Part (a) shows a horizontal slice (like one pancake in a stack) and part (b) shows 
that slice cut vertically (like a half pancake). Part (b) shows both the steel shell of the 
tank, whose thickness is exaggerated for’ clarity, and the liquid that is within the “half 
pancake.” 

Making a force balance in the x direction on the piece shown on Fig. 2.7(b), we 
see that the pressure force on the liquid surface E-F-G-H acts in the positive x direction, 
while the tensile forces in the two cut pieces of the shell of the tank act in the negative 
x direction. The liquid shown in the tank section in part (b) exerts a force radially out- 
ward over the part of the tank it contacts, but we are only interested in the x compo- 
nent of that force, which is equal to the x component of the force.that the rest of the 
fluid exerts on this segment of fluid. We do not bother with forces in the y or z directions, 

because they do not concern us here. If the tank is not in the act of rupturing, then the 

sum of the forces in the x direction (or any other) must be zero, so we may write 

(Peay Az — 2G evens ; Az ab (2.24) 

where Gensiie 1S the tensile stress in the shell, P is the gauge pressure, also assumed 

to be uniform, and 1 is the thickness of the metal shell. Now we make the thin-walled 

assumption that Otensiie is uniform over the wall thickness (see below). Solving for 

the required thickness of the shell, we find 

PD 
t= 5 [cylindrical, thin-walled assumption] @2Z5) 

Otensile 

The tensile stress in Eq. 2.25 is resisted by the external metal hoops in barrels and in 

wooden water tanks; it is normally called the hoop stress. 

Example 2.9. If the design tensile stress (normally + of the stress at rupture) 

of the tank wall is 20,000 psia, how thick must the shell of the tank in Exam- 

ple 2.3 be at the bottom of the tank? The diameter of the tank is 120 ft. 

Substituting directly into Eq. 2.25, we write 

(22.9 Ibf / in?) - 120 ft 
t= —— = 0.0688 ft = 0.825 in = 2.10 cm (2.P) 

2 - 20,000 Ibf / in 

From this example, we see that this large a tank requires a fairly thick wall. We 

also see from Fig. 2.3 that the gauge pressure falls to zero at the top, so the thick- 

ness required to resist the internal pressure has a triangular shape, thick at the bot- 

tom, zero at the top. As a practical matter we cannot have a zero thickness at the 

top—that would be impossible to build, would not support the roof of the tank, and 

would not resist wind and seismic forces. But such tanks are actually made up by 

welding (or bolting) together prefabricated curved plates, the thickness of which 

decreases from bottom to top (Prob. 2.28). 

The actual design of this type of tank [4] adds a corrosion allowance to the 

thickness calculated in Eq. 2.25 and uses practically the thickness computed in Exam- 

ple 2.9 (adequate to resist pressure forces) at the bottom, but a thickness based on 

wind and seismic forces at the top. Equation 2.25 (and the corresponding equation 
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for spherical containers shown below) makes the thin-walled vessel assumption. For 

pressures above about 3000 psia the required wall thicknesses become large enough 

that this uniform-stress assumption becomes inaccurate, and one must use thick-walled 

vessel equations, not shown here [5]. If t/ D > 0.25 one should use such formulae. 

The barrels of firearms are normally thick-walled vessels, as are extremely high- 

pressure chemical reactors (see Prob. 2.33 and Table 2.2). 

The other two types of tank shown in Fig. 2.6 (spherical and sausage-shaped) 

are pressure vessels designed to contain fluids with pressures much higher than that 

due to gravity (Examples 2.3 and 2.9). They are aot vented to the atmosphere. The 

sausage-shaped tanks to the right in Fig. 2.6 are the standard storage tanks for propane, 

with a design pressure of 250 psig. The analysis of the required shell thickness for 

them is the same as in Fig. 2.7. In this case the cylinder is horizontal, so the pres- 

sure at the bottom is greater than the pressure at the top. However, these tanks are 

typically about 10 ft in diameter, and liquid propane has a SG of ~0.5, so the dif- 

ference in pressure from the top to the bottom of the liquid in the tank is 

Ib ft f-s° 2 AP = pgh = 0.5-62.3 5-32.24 10ft- LE heirs ft? 32.2 Ibm: ft 144 in 
= 2.16 psi = 14.9 kPa (2.Q) 

which is less than 1% of the 250 psig design pressure, and is normally ignored. Thus, 

we may design such vessels by using Eq. 2.25. 

Example 2.10. Estimate the necessary wall thickness for a horizontal cylin- 

drical pressure vessel with a diameter of 10 ft, a working pressure of 250 psig, 

and a design tensile stress of 20,000 psig. This is similar to Example 2.9, in 

which the pressure was due to gravity, 

__ (250 Ibf / in’) - 10 ft 
= 0.0625 ft = 0.75 in = 1. 7 

2 - (20,000 bf / in”) 
in = 1.90 cm (2.R) 

For spherical pressure vessels, the same calculation procedure leads to a differ- 
ent equation. Figure 2.8 shows a spherical pressure vessel cut in half, with the wall 

< » x 

Tensile force = omDt \ 

Ww 

Pressure force = — 

FIGURE 2.8 

Half of a spherical pressure vessel, cut along its mid-plane, showing the 

pressure force in the x direction and the tensile force in the shell, which 

resists this pressure force. 
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thickness and diameter shown. The internal pressure force, acting in the plus x direc- 
tion along the plane of the cut, is equal and opposite to the tensile stress in the wall 
in the plane of the cut, which acts in the minus x direction. Setting these equal and 
opposite, we find 

Up) 
Je ca LO ia TOE (2.26) 

or 

PD 
t= ae [spherical vessel, thin-walled assumption] Oval 

tensile 

This shows that for equal pressure and diameter, the required wall thickness for a 

spherical pressure vessel is exactly one-half that for a cylindrical pressure vessel. 

This suggests that one can store a given volume of high-pressure fluid in a container 

with much less metal in the walls if the container is spherical than if it is cylindri- 

cal. Figure 2.6 shows two such spherical containers in an oil refinery, holding high- 

pressure fluids. For space travel applications, where weight is critical, high-pressure 

fluids are always stored in spherical containers, to minimize container weight. The 

hemispherical ends of the sausage containers shown in Fig. 2.6 normally have thick- 

nesses about one-half the thickness of the cylindrical section as suggested by Eqs. 

Pas an 2.21, 

However, economics often dictate the use of the sausage-shaped containers of 

which 24 are shown in Fig. 2.6. These can be mass-produced in factories and shipped 

complete, whereas the spherical containers shown in Fig. 2.6 are too large to ship, so 

they are prefabricated in factories and then assembled in place. The supports for the 

spherical containers are more complex than those for the sausages, and the number 

of pieces is greater (look at the number of pieces on a soccer ball!). If a special steel 

with a high price per pound is needed (e.g., liquid natural gas shipping or storage), 

then the spherical container is often more economical. For most high-pressure liquid 

storage applications, the sausage container, in spite of its extra weight of metal, is 

often the most economical (see Prob. 2.36). 

Ordinary pipes and tubes are thin-walled pressure vessels. The relation between 

their dimensions and their safe working pressure is given by Eq. 2.25 (with an added 

thickness as a corrosion allowance, and a joint efficiency term for welded pipe). The 

distillation towers, reflux drums, and other vessels in Fig. 1.14 are also pressure ves- 

sels, whose external shells are designed by the same formulae as are the sausage- 

shaped storage tanks in Fig. 2.6. For significant internal pressures (like the 250 psig 

in the previous examples) the required wall thickness to contain the pressure is enough 

that the resulting vessels are self-supporting and need no external structural support 

(other than foundations). Vessels with lower working pressures often have walls thin 

enough that they need external or internal bracing to resist gravity, wind forces, or 

seismic forces, [4]. The large trucks that deliver gasoline to local service stations have 

a standard truck chassis, on which the gasoline tank is mounted; the low-pressure 

gasoline tank is not very strong. The large trucks that deliver propane to regional dis- 

tribution plants do not have a truck chassis; the high-pressure propane tank is strong 

enough that the wheels and axles are attached directly to it. 
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2.5 BUOYANCY 

We can calculate the force exerted by static fluids on floating and immersed bodies 

by integrating the vertical component of the pressure force over the entire surface of 

the body. This leads to a very simple generalization, called Archimedes’ principle, 

which is much easier to apply than the integration over the whole surface. 

Consider the floating block of wood shown in Fig. 2.9. The block is at rest, so 

the sum of forces in any direction on it is zero. The only forces acting on it are the 

gravity force and the total pressure force around its entire surface; these must be equal 

and opposite. The vertical component of the pressure force integrated around the entire 

surface of a floating or submerged body is called a buoyant force. The buoyant force 

over the entire surface is then given by 

Fyertical = Fz = [- cos 6 dA (2.28) 

The cos @ appears in this equation because the pressure forces act directly inward nor- 

mal to all the surfaces they contact, whereas the vertical component is that pressure 

force times the cosine of the angle between the direction of the pressure force and 

the vertical direction, 6. For the block shown in Fig. 2.9, cos @ is zero for the sides, 

—1 for the bottom, and +1 for the top; so 

F = (Prono - Pew Ax Ay (2.29) 

Here 

(estiocs = Pico = PliquiaQ ie Pairg(l a h) (2.30) 

Multiplying by Ax Ay gives 

|e 7 Prig8 Vig a Parc OV ain (2.31) 

where Vj, is the volume of liquid displaced, and V,j;, is the volume of air displaced. 

Thus the buoyant force is exactly equal to the weight of both fluids displaced. 

This is Archimedes’ principle. In most 

ie z cases the term for the weight of air 
eg Ee » in Eq. 2.31 is negligible compared 

with that for the weight of the water 

involved (density of water ~800 times 

that of air!). For floating bodies 

Archimedes’ principle is often restated: 

“A floating body displaces a volume of 

fluid whose weight is exactly equal 

to its own.” If a body is completely 

immersed in a fluid, then there is 

only one term on the right in Eq. 2.31 

and the statement becomes, “The buoy- 
FIGURE 2.9 ant force on a completely submerged 

A floating block of wood, used to show ‘Archimedes’ | body is equal to the weight of fluid 
principle. displaced.” 



FIGURE 2.10 

Any arbitrary-shaped object can be thought of as being made up 

of many blocks with vertical sides, like the one in Fig. 2.9. 
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The preceding | state- 

ments were worked out for a 

block with the axis vertical. 

This was convenient, because 

Any kindof the pressure on the vertical 

body sides did not contribute to the 
buoyant force. However, the 

result is true for any kind of 

body because, as shown in 

Fig. 2.10, any shape at all can 

be visualized as made up of 

such blocks. 

If the blocks are large, 

as shown in the figure, then 

their combined volume will 

be a rough approximation to 

the volume of the body. How- 

Internal division into 

block-shaped elements 

ever, as the x and y dimensions of the blocks decrease, the blocks form a steadily 

improving approximation to the body, becoming identical with it as the x and y dimen- 

sions approach zero. Nonetheless, for each block, no matter how small, the foregoing 

argument holds, and therefore Archimedes’ principle holds for any shape of body. 

Thus, although it would be very difficult to perform the indicated pressure integration 

over a body shaped like an octopus, if we know its volume (and hence the volume of 

fluid it displaces), then we can easily calculate the buoyant force by means of 

Archimedes’ principle. 

Example 2.1 1. A helium balloon is at the same pressure and temperature 

as the surrounding air (1 atm, 20°C) and has a diameter of 3 m. The weight of 

the plastic skin of the balloon is negligible. How much payload can the balloon 
ift? 

iss The buoyant force is the weight of air displaced: 

Pecovant = ain SW balloon (2.S) 

The weight of helium is 

Whelium = Phelium 8 Voattoon (2.T) 

Therefore, the payload is 

Payload a Fuoyant cor Whelium a VnaiconBAQeir i Prati) 

fy 
= Ve (Mie — Moctiom & ae helium) 

3 9.81 m 1 atm 
-(3 3 eC 

ON a Feo 1)? ines atm ji(mol“K)]- 293,15K 
sis 
6 

k - 52 
ipa et ta omiiee ee NS AON = 32d ERR 

mole mole/ 1000g kg-m 
a 
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Example 2.12. A block of wood is floating at the 

interface between a layer of gasoline and a layer of water; 

see Fig. 2.11. What fraction of the wood is below the 

interface? 
Here che weight of the wood is equal to the buoyant 

force, which is in turn equal to the weight of the two flu- 

ids displaced: 

Vwood PwooaS — Vwater Pwater& RL, Veasoline Pgasoline § (2 i), 

where Vyooq is the volume of the block, and Vwater and 

Veasoline are the volumes of water and gasoline displaced. 

Dividing by gPwater. We find 

FIGURE 2.11 VwoodS Gwood = Vwater aL Veasoline » Ggasoline (2.W) 

A block of wood floating at a 
; where SG is the specific gravity. But since 

gasoline-water interface. 

Vinod a Vlaice eo V easoline (2.X) 

we may eliminate Veasoline 

Viyood Gwood = Vwater + (arosd ae Veggies) SGyasoline (2.Y) 

and we then find 

SGy od SG asoline 0.96 — 0.72 ae Bier Sate = 0.857 (2.2) 
Vreed i SGyacohne b=0:72 

Ss 

This result appears paradoxical. The gasoline pushes down on the top of the 

block, not up on it at any point, yet the volume of gasoline displaced enters the buoy- 

ant force calculation. However, if we examine the pressure integral around the sur- 

face, we see that the pressure difference from top to bottom of the block does indeed 

involve the gasoline in the way shown. 

Remember that the basic operation is the integration of the vertical components 

of the pressure force over the entire surface of the 

body. The convenient result of this integration is 

Archimedes’ principle: the buoyant force is equal 

to the weight of the fluid displaced. 

2.6 PRESSURE MEASUREMENT 

Pressures usually are measured by letting them act 

across some area and opposing them with either a 

gravity force or the force of a compressed spring. 

The gravity-force method uses a device called a 

manometer, described in the following example, 

FIGURE 2.12 Example 2.13. Figure 2.12 shows a tank of 
A simple manometer, filled with gas connected to a manometer. The manome- 
colored water. ter is a U-shaped glass or transparent plastic 



CHAPTER 2 FLUID STATICS 55 

tube open to the atmosphere at one end and containing colored water. From the 
elevations shown calculate the gauge pressure in the vessel. 

We want to know the pressure at D. The simple way to work all manome- 
ter problems is to start with some pressure we know and work step by step to 
the pressure we want to find. In this case, we know the gauge pressure at A is 

zero, because the manometer is open to the atmosphere at A. The water is prac- 

tically a constant-density fluid: therefore, we can use Eq. 2.11 to find the pres- 
sure at B: 

Pz oF Pa Th Pwater8Np = O07 Pwater8 ° Sat (2.AA) 

To find the pressure at C we need Eq. 2.9: 

Poser (siaecB. 2ft) (2.AB) 
To find the pressure at D we use the same equation (i.e., we assume that the 

density change of the gas is negligible): 

Pee ox (Peas ; rft) (2.AC) 

Adding these three equations and canceling like terms, we find 

l 1 
Pp zz (Ovrstoc®) . (3 = sf) = (coms 2 ft) 

ft Ibm Ib ee 2 

SUR (023 rom 25 i) = (007s HONS n)| _ toms ft 

< “70 bf 144402 
Ibf lbf lbf 

See a UN — 1s faupe = 7 46 kPa (2.AD) 
in in in 

The example illustrates several points. 

. The contribution of the section of the manometer full of gas is only 0.03% of the 

answer. It is generally neglected in manometer problems. 

. Manometers that are open to the atmosphere are gauge-pressure devices and should 

be calculated in gauge pressure. 

. In reading such a device, we normally read an elevation; the actual operational 

reading in Example 2.13 was 2.5 ft. For many purposes it is convenient to think 

of pressures and to report them in terms of such manometer readings as heights; 

the U.S. air conditioning industry, for example, commonly refers to all pressure in 

air conditioning ducts as “inches of water,’ and most U.S. vacuum-equipment man- 

ufacturers refer to vacuums as “inches of mercury.” 

. At no place in our last calculation did the cross-sectional area of the manometer 

tube enter. Therefore, this tube can be of any convenient size and need not be made 

of constant-diameter tubing. The only measurements necessary are the fluid den- 

sities, which can be looked up in handbooks, and the differences in elevation, 

which can be read directly with tape measures and rulers. Thus, manometers 

require neither calibration nor testing with standards; one simply connects them 

and takes the reading. There is no requirement that the tubes be vertical, only that 

we can read the vertical distance between the horizontal liquid surfaces. 
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5. It may seem that we went to a lot of trouble for such a simple problem. This is 

true; working engineers use shorter calculation methods than the one shown here. 

However, with complicated systems, such as two-fluid manometers, the shortcuts 

are confusing, and the step-by-step method just shown is always reliable. 

Example 2.14. A two-fluid manometer is often used to make it unnecessary to 

read small differences in liquid level. The one shown in Fig. 2.13 is measuring 

the pressure difference between two tanks. What is that pressure difference? 

We want to know P, — Pr. All the fluids have practically constant den- 

sity, so we can use Eq. 2.9. We begin by calling Pz known. Then 

Por mp water8 * | ft) (2.AE) 

Po= Pp-+ (pug? 2 ft) (2.AF) 

oe = Real peng 1 at) (2.AG) 

= Pp Pane 2 ft) (2.AH) 

Adding these and Rat: like terms, we find 

Py Ng Peaers(l ft Fi 2 ft) 2 Poi (2 ft = 1 ft) = ae 1 ft- 8 (Poi — Putaten) 

Ibf 
= 0.043 —, = 298 Pa 

in” 

Ibm Ibf - s* ie 
2 

1 ft- 9225 (11 — 1.0) - 62.3 
32.2 lbm: ft 144 in? 

(2.Al) 

| 

This reading corresponds to a pressure difference of 0.1 ft of water. The actual 

reading of this two-fluid manometer is | ft. If we assume that we can read liquid level 

differences with an accuracy of +0.005 ft (= £0.06 in), then a simple water manome- 

ter would have an uncertainty of 5% for this difference; the two-fluid manometer 

shown has an uncertainty of 0.5%. 

Because a manometer is a device for measuring pressure differences, to use one 

to measure absolute pressure we must measure the difference between the pressure in 

Manometer oil 

SG = 1.1 

FIGURE 2.13 

A two-fluid manometer, with water and a manometer oil. 

question and a perfect vac- 

uum. In principle this is im- 

possible, because there is no 

such thing as a perfect vac- 

uum, but in practice we may 

produce vacuums of sufficient 

quality that the error intro- 

duced by calling them perfect 

is negligible. This idea is used 

in the mercury barometer 

shown in Fig. 2.14. This com- 

mon device for measuring the 

pressure of the atmosphere is 

found in most laboratories. 
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The atmosphere acts on the mercury in the cup at the bottom, 

and the weight of the column of mercury opposes it. Calcu- 

lating this, we find 

Glass tube LS Naat ig Puggh (2.AJ) 

> where Pz is the pressure in the vapor space above the liq- 

uid mercury. In well-built manometers this will be simply 

the vapor pressure of mercury, which at 68°F = 20°C is 

about 10° © atm; this is so small compared with | atm that 

it can be neglected. Thus, although the barometer, like all 

manometers, measures pressure differences, it can be used 

with satisfactory accuracy as an absolute-pressure device in 

this case; see Prob. 2.56. 

FIGURE 2.14 The second way to measure pressure is to let the 

Mercury barometer. pressure act on some piston, which compresses a spring, 

and to measure the displacement. Figure 2.15 shows an 

impractical but illustrative way of doing this. The fluid whose pressure is to be meas- 

ured presses on the piston, compressing the spring and moving the pointer along the 

scale. If we know the area of the piston, the spring constant, and the pointer read- 

ing for zero pressure, we can calculate the pressure on the piston from the pointer 

position. 

Mercury 

Example 2.15. The piston in Fig. 2.15 has an area of 100 cm”, and the spring 

constant k is 100 N / cm. We set the pointer so that there is a zero reading when 

both sides of the piston are exposed to the atmosphere. Now we attach the gauge 

to a tank with an unknown pressure, and the pointer moves to 2.5 cm. What is 

the pressure in the tank? 

Here the net force acting on the piston is 

ar gs eat a Pal i = AP rank, gauge (2.AK) 

This must be equal to the force on the spring, which is k Ax, and therefore 

k Ax (100 N/ cm): 2.5 cm 100 cm\* a =. Ibf 
TS ee aby Wi eae : = = 25 kPa = 3.62 a2 (2.AL) 

os 

7 Spring 
! From this example we 

| observe the following: 
Piston 

1. This device, like the ma- 

* abe Powter nometer, measures pressure 
(mem eet differences. To use it as 

Scale an absolute-pressure device, 

we must make it compare 

Bie pressure with a vacuum. We 

FIGURE 2.15 can do this by placing it in 

Piston-and-spring pressure gauge. an evacuated chamber. 

57 
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2. This device, unlike the manometer, requires a precise measurement of its dimen- 

sions or a calibration. Spring-type pressure gauges usually are calibrated by com- 

paring their reading with those of manometers like the one shown in Fig. 2.16, or 

other equivalent devices (see Prob. 2.65). 

The gauge shown in Fig. 2.15 is impractical because of the problem of leak- 

age around the piston. The most widely used type of spring pressure gauge uses a 

bourdon tube, as shown in Fig. 2.16. A bourdon tube is a stiff, flattened metal tube 

bent into a circular shape; the fluid whose pressure is to be measured is inside the 

tube. One end of the tube is fixed, and the other is free to move inward or outward. 

The inward or outward movement of the free end moves a pointer through a linkage- 

and-gear arrangement. As Fig. 2.16 shows, the tube cross section is a flattened cir- 

cle. Internal pressure makes its cross section become closer to circular, like blowing 

up a balloon, which stresses the outer surface, thus tending to straighten the curved 

tube. With a high enough pressure the tube would become straight with a circular 

cross section [6]. The tube itself serves as the spring; it is made of metal, which is 

stiff and has a reasonable spring constant. The internal pressures are low enough that 

the tube returns to the cross section shown in Fig. 2.16 when the pressure is removed. 

With such a tube the calculation of the movement as a function of the inside and 

outside pressures is more difficult than with the linear piston-and-spring gauge of 

Fig. 2.15. However, the bourdon tube is a very convenient shape and causes no 

Cy 
Section AA 

Bourdon 

tube 

Pointer for 
dial gauge 

\ 
\ \_ Flattened tube deflects 

© 5 outward under pressure 

Linkage 

High pressure 

FIGURE 2.16 

Bourdon-tube pressure gauge. The whole assembly is in a shallow, 
cylindrical container. The tube and linkage are at the back, a sheet with 
numbers comes next, the pointer is in front of that, and a glass cover plate 
protects the whole assembly. 
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leakage problems, as does the piston-and-spring gauge. Since both are calibrated 
devices, the difficulty in calculating the performance of the bourdon tube is not a 
real disadvantage. Bourdon-tube pressure gauges are simple, rugged, leak-free, rea- 
sonably reliable, and cheap; they are the most widely used type of industrial pressure 
gauge. 

Neither the manometer nor the bourdon-tube gauge is suited to measuring rap- 

idly changing pressures. Both are unsatisfactory for this purpose because of their high 

inertial mass; this mass makes them move slowly to accommodate a change in pres- 

sure, and so their readings lag behind a rapidly changing pressure. For rapidly chang- 

ing pressures (such as pressure fluctuations in rocket motors, or the rapid oscillations 

in air pressure that we call sound, which are measured with a microphone), two other 

types of pressure gauges respond much more quickly. One is the diaphragm gauge, 

which is similar to that of Fig. 2.15 but has, instead of the piston and spring, a thin 

metal diaphragm, which acts as both. When the pressure increases, the diaphragm 

stretches very slightly; the stretch is detected by an electric strain gauge (or other elec- 

tronic means) and recorded electrically. The advantage of the diaphragm over the 

bourdon tube is its very low mass, which allows it to move quickly in response to a 

change in pressure. The other type of rapid-response pressure gauge is the quartz- 

crystal piezometer, which uses the change in electrical properties of quartz crystals 

with change in pressure. Other electronic pressure gauges are available that take 

advantage of the response of fixed or oscillating microstructures to changes in external 

pressure or other electronic phenomena. 

2.7 MANOMETER-LIKE SITUATIONS 

In Sec. 2.6 we discussed manometers as pressure-measuring devices. There are many 

other fluid mechanical situations that are most easily understood if we analyze them 

just as we analyze manometers. Several examples are shown here. 

Figure 2.17 shows a schematic cross section of a percolator-type coffee maker. 

In it, the pot is filled to a height z, with water. The basket above the water is filled 

with ground coffee. The whole assembly is placed on a stove and heated from below. 

When the water has been warmed, it begins to flow in irregular spurts up the central 

tube; it is diverted by the cap on the top, falls on the coffee grounds, and percolates 

through them, extracting the water-soluble constituents of the ground coffee, to make 

the hot drink many of us enjoy. 

How can the fluid do this? Here we have a fluid flowing from a low elevation 

to a high one, with no mechanical device lifting it. How can that be? To answer the 

question, we compute the pressures at B and C. It will be easiest if we do this all in 

gauge pressure. In that case, the pressure at B will be 

Pp = pgz (2.AM) 

and if the fluid in the tube is up to the level where it spills out at D, then the pres- 

sure at C will be 

Po = p822 (2.AN) 



60 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

and 

Py Po = ei(pzi (pz)2] 

(2.AO) 

When we put the pot on the stove, 

the density inside and outside the 

riser tube will be the same (that 

of water), and the liquid in the 

a tube will stand at the same level 

as the liquid outside, z,;. There 

will be no flow. 

As the water at the bottom 

is heated by the stove, the loose- 

fitting cover prevents it from mix- 

ing with the rest of the fluid in 

the pot, so that a small amount 

FIGURE 2.17 of liquid is heated to its boiling 
Coffee percolator, showing fluid flow driven by boiling. point. When it boils. the bubbles 

Coffee grounds 

Riser tube 

of steam flow by buoyancy up 

through the riser tube. While they do so, the average density of the gas-liquid mix- 

ture in the riser tube decreases. If there is no net flow under the loose-fitting cover, 

then the pressure difference from one side of it to the other, (Pg — P<), must be zero, 

and the level in the riser tube, z2, must increase to keep this pressure difference equal 

to zero. 
When the generation rate of bubbles becomes high enough that z. becomes 

greater than the height of the top of the riser tube, then a mixture of steam and water 

will flow out the top of the tube. If the rate of generation of steam bubbles increases 

even more, then the average density of the steam-water mixture in the riser tube will 

fall low enough that (Pg — P-) can no longer be zero but must become a positive 

number. Then the pressure force due to gravity will force water from the pot under 

the loose-fitting cover, and the circulation will be established, with flow downward 

under the cover, up the riser tube, and down through the coffee grounds. For that flow, 

we can no longer use the simple equations of fluid statics, which we have used so far 

in this discussion; the methods of Chaps. 5, 6, 7, and 12 must be used. But this simple 

discussion shows how the pressure forces that move the fluids in coffee percolators 

arise. The exact same discussion applies to geysers (where the flow is intermittent 

instead of the steady flow in the boiling coffee pot) and to the circulation system in 

most steam boilers, in gas- and propane-fired refrigerators, and in the reboilers of 

many distillation columns. In all of these, the formation of bubbles of steam (or the 

vapor of some other liquid being boiled) lowers the average density in one leg of the 

“equivalent manometer,” producing the pressure difference that drives the flow. 

Such pressure differences can also arise in systems that do not involve boiling 
liquids, as is illustrated in Example 2.16 

Example 2.16. Figure 2.18 shows a schematic of a home fireplace, with part 
of the house that surrounds it. The burping logs in the fireplace heat the gases 
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y Rain cap 

Chimney, or flue 

Living room 

Fireplace 

S501 Ba - 20 t 

FIGURE 2.18 

Home fireplace, showing fluid flow driven by temperature 

differences. 

in the chimney to 300°F. If we treat this as a static situation, what will be the 

difference in pressure between the air in the room adjacent to the fireplace and 

the air inside the fireplace at the same level? 
Here we assume that the house is leaky enough, or has an open window, 

so that the pressure inside the house is the same as the pressure in the atmos- 
phere outside. (This is true for older houses, but not necessarily true for mod- 
ern “tight” energy-conserving houses, which have much less air exchange with 
the surroundings!) Here, as shown in the figure, we have taken the elevation 
datum, z = 0, at the top of the chimney; this choice makes the solution simple. 
Taking the pressure at z = 0 to be atmospheric pressure, and working in gauge 
pressures, we Can compute that 

Pa = Pair8Z1 (2.AP) 

and that 

Pg = Powe gas821 (2.AQ) 

The chimney is also called a flue, and the gas in it is normally called flue gas. 

Then 

PAP SEP R= O(paitto ane gas) Ll (2.AR) 

Assuming that both the air and the flue gas are ideal gases, we can express the 
density of each in terms of the ideal gas law and write 

P|(M M 
— Pg =gy—-|(—} -(= 2.AS 

i tf pe R ( ah ( a . 

In the most careful work we need to take into account the small difference in 
molecular weights of air and flue gas, but here we can assume that the molecular 
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weights are practically equal. Then we multiply and divide by (M / T)aie and 

substitute p,;, for its ideal gas equivalent: 

PM, fhe fee 

Pie Ppeeeee ae[y — Te |  pespual = | 
RT ir True gas z Thue gas 

Fa any ee ) - 2. Ibe geek cals? 
Sean ee 760°R | 32.2 Ibm ft 144 in? 

lbf 
= 0.0032 —, ='22 Pa (2.AT) 

in 

This is a small pressure difference. But as we will see in Chap. 5, very small pressure 

differences can produce significant velocities in gas flows; this small pressure differ- 

ence would produce a velocity, in frictionless air flow, of about 20 ft/s ~ 6m/s. 

In this example the calculation was made for a static fluid. In the real situation, 

the fluid would be set in motion by the pressure difference calculated above, and we 

would need the methods developed in later chapters to compute the velocity. But this 

calculation shows how pressure differences can arise not only in boiling liquids but 

also in gases if one side of an “equivalent manometer” is heated to a temperature 

higher than the other. This explains how chimneys work. For all but the largest fur- 

naces the air flow is driven through the furnace by the pressure difference computed 

here (called “natural draft”). That explains why large furnaces have tall stacks; the 

available pressure difference as just shown is proportional to the height of the stack. 

Many large furnaces now use powered fans to drive the gases through them (called 

“forced draft’). The choice between natural and forced draft is based on economics; 

the tall stacks are expensive, but once installed they require no power to run the 

forced-draft fans. 

This calculation also explains many meteorological phenomena. Oceans and 

lakes are heated and cooled slowly by the sun because currents and waves mix their 

upper layers; the ground surface on the shore heats more rapidly in the daytime and 

cools more rapidly at night because it can transfer heat up and down only by con- 

duction, which is slow compared to the convective mixing in bodies of water. Thus, 

during the day the hot ground surface heats the air above it, and hot air above the 

ground plays the same role as the hot flue gas in Example 2.16. The winds blow from 

the ocean or lake onto the shore. At night the ground cools, and cools the air above 

it, and the direction of the pressure gradient reverses, causing the wind to blow from 

the shore out over the body of water. The monsoon rains of India and parts of trop- 

ical Africa (and in weaker form, the southwestern United States) are the same 

phenomenon on a much larger scale. In the summer the heated air over the continents 

rises, and the cooler moist air from the adjacent oceans flows in and brings rains. The 

same description applies to firestorms, in which the rising, heated air above a large 

forest or urban fire induces strong winds blowing inward toward its center. Volcanoes 

are also manometer-like situations, but more complex than these meteorological 
examples. 
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2.8 VARIABLE GRAVITY 

So far we have assumed that the acceleration of gravity is constant, 32.2 ft/s? = 
9.81 m/s? in the minus z direction. This is not exactly true in any problem involving 
two different elevations. However, the change in gravity with change in elevation is 
quite small. Near the surface of the earth, the acceleration of gravity is propor- 
tional to the reciprocal of the square of the distance from the center of earth. 
The radius of the earth is about 4000 mi = 6440 km, so the acceleration of gravity 

1 mi = 1.609 km above the surface is 4000* / 40017 = 0.9995 times the acceleration 

of gravity at the surface. Few engineering problems include data precise enough to 

justify making such corrections. (Deposits of metal ores perturb the acceleration of 

gravity above them; sensitive gravitometers flown in airplanes can detect the small 

gravity perbations caused by such deposits. Such gravitometers are widely used in 

mineral exploration.) 

In two types of problem, however, nonconstant gravity is important: 

1. Space travel and rocket problems; in these the distances from the earth become 

significant compared with 4000 mi, so the changing value of gravity must be taken 

into account. 

2. Acceleration and centrifugal force problems. 

Since this is a chapter on fluid statics, it seems a strange place to consider accel- 

eration or centrifugal force problems, in which the fluid is certainly moving. We do 

so because, in these problems the fluid is not moving relative to its container or rel- 

ative to other parts of the fluid. Really, all problems in terrestrial fluid statics involve 

moving fluids, because the fluids are on the earth, and the earth is rotating about its 

axis and revolving around the sun, and the sun is moving through space. As long as 

the individual particles of fluid are not moving relative to each other, we can treat 

such moving problems by the methods of fluid statics. Such motions of fluids are 

called rigid-body motions. 

2.9 PRESSURE IN ACCELERATED 
RIGID-BODY MOTIONS 

We now repeat the derivation of Eq. 2.1 for the case in which an entire mass of fluid 

is in some kind of accelerated rigid-body motion. Again we will use the small, cubi- 

cal element of fluid shown in Fig. 2.1 and consider it to be part of a larger mass of 

fluid. In Sec. 2.1 we showed that if the fluid was not being accelerated, then the sum 

of the forces on it must be zero. If the fluid was being accelerated, then the sum of 

the forces acting on it, in the direction of the acceleration, must equal the mass times 

the acceleration. For the cubical element of fluid being accelerated in the vertical (+z) 

direction, we rewrite Eq. 2.2 as 

2 d 
(P,<o) Ax Ay — (P,=a,) Ax Ay — pg Ax Ay Az = p Ax Ay Az a (2.AU) 
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Dividing by Ax Ay Az and taking the limit as Az approaches zero, we find 

dP “:) 
—— = ie ao (732) 
gprs OR (: dt? 

which for constant-density fluids can be integrated to 

dz : 
Po Pag aes Pl Sia pe (25's Z¥) [constant density] (2.33) 

t 

and which for gauge pressure simplifies further to 

d 

Pink or a <) [constant density, gauge pressure] (2.34) 
t 

Example 2.17. An open tank containing water 5 m deep is sitting on an ele- 

vator. Calculate the gauge pressure at the bottom of the tank 

(a) when the elevator is standing still, 

(b) when the elevator is accelerating upward at the rate of 5 m/ s*, and 

(c) when the elevator is accelerating downward at the rate of 5 m/ s?. 

From Eq. 2.11, part (a) is simply 

kg m N:s? Pa 
Pie pont= S982 — 19) Sit tim : bott Ps m 32 m kg -m N/ fat 

Ibf 
= 49.0 KPa ad bbe (2.AV) 

in 

For parts (b) and (c) we use Eq. 2.34: 

d*z k ee 

Prom = pi(g + £3) = 998.2 “8 -5m-(og1 2+ 52).% 
Sivonls 

mts 2 oy 
S s°/ kg-m N/m? 

lbf 
= 74.0 kPa = 10.73 —> (2.AW) ine 

and 

d°z k Kr Protom = pr(« + :) - 9982 “8-5 m-(981 Bes 5%) MS Pa 
dt’ / m SF SY Kee Nidanic 

lbf 
= 24.0 kPa = 3.48 — (2.AX) 

in* 
a 

Most of us can tell which way an elevator starts to move, by sensing these small 
changes in our weight. 

If the acceleration is not in the same direction as gravity or in the direction 
Opposite to it, it must be in some direction a, as in Fig. 2.2. Then we can take the 
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summation of forces in the a direction and substitute g cos @ for g in Eq. 2.34: 

aP d’a 
Str -o(« cos 6 + <) (235) 

Example 2.18. A rectangular tank of orange juice on a cart is moving in the 

x direction with a steady acceleration of | ft/s”; see Fig. 2.19. What angle does 

its free surface make with the horizontal? 

Here we assume that the tank has been under acceleration so long that the 

initial sloshing back and forth of the liquid at the start of acceleration has died 

out and that the fluid is truly in rigid-body motion. In the figure the points A 

and B are both on the free surface; neglecting the very slight change in atmo- 

spheric pressure over this change in elevation, we may say that the gauge pres- 

sure is zero at both points. Then we can calculate the pressure at C from the 

pressure at A by using Eq. 2.35. Here we are applying it in the y direction 

(a = y), so we have cos 6 = 1 and d*y/dt* = 0. Hence, the result is the same 
as Eq. 2.11: 

Pc = —pg Ay (2.AY) 

(Here Ax and Ay are both negative moving from the free surface, so P¢ is pos- 

itive.) We may also calculate the gauge pressure at C by using Eq. 2.35 for the 

horizontal direction, in which case we have a = x, cos 8 = 0, and 

Pos por > (2.AZ) 

But the pressure at C is the same no matter how we calculate it, so we may 

eliminate Pc between these two equations and rearrange to find 

Ay dx/dt _ 
Ax 

an 0 (2.BA) 

FIGURE 2.19 

A system in linear acceleration. 
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where @ is the angle shown in Fig. 2.19. For this problem 

dx/ dt aft / s? 
6 = arc tan "ee = arc tan Sere = 1.76° (2.BB) 

To calculate the pressure at any point in the tank, we may now use Eq. 2.11, 

being careful to measure the depth from the free surface vertically above the point in 

question. The force on the wall FG, for example, is exactly the same at every point 

as it would be if the cart were standing still and filled with liquid up to point F. The 

force on wall HI is exactly the same as it would be if the cart were standing still and 

filled with liquid up to the level of H. 

Example 2.18, a case of uniform, rectilinear acceleration holds little practical 

interest, because such an acceleration acting for a reasonable period of time (e.g., long 

enough for the sloshing to die out) would produce enormous velocities. However, it 

serves as an introduction to the more interesting case of rigid-body rotation. Consider 

an open-topped cylindrical tank of water with a vertical axis. The system is initially at 

rest; then the tank is set in steady motion, rotating about its vertical axis. At first the 

fluid in the center will not be affected by the rotation of the walls but will stand still, 

and only the fluid near the walls will rotate. This sets up motions of parts of the fluid 

relative to each other, so that this is not a fluid-statics problem. Eventually, however, 

the shear forces due to this relative motion will bring the fluid at the center to the same 

angular velocity as the tank, and thereafter there is no relative motion within the fluid. 

Once the fluid in the center reaches the same angular velocity as the wall of the con- 

tainer, the whole of the fluid moves as if it were a rigid body; hence the name, “rigid- 

body rotation.” Pressures in rigid-body rotation can be calculated by the method of 

fluid statics. 

Example 2.19. An open-topped can of water 30 cm in inside diameter is rotat- 

ing at 78 rpm. It has been rotating a long time and is in rigid-body rotation. 

What is the shape of the free surface? 

A cross section of this system is sketched in Fig. 2.20. Here we use 

Zz the same procedure as we did for Fig. 
‘ ‘ 2.19, calculating the pressure at C in 

two directions. To simplify the calcula- 
=. tion, we choose C to be at exactly the 

same elevation as the lowest point on 

the free surface. As in Example 2.18, we 

assume that the pressures at A and B are 

the same, the local atmospheric pres- 

sure. Then, from Eq. 2.35 applied for the 

z direction, we can write 

Po gauge —  P8 Az Kan1SKS) 

because the rotational acceleration is 
FIGURE 2.20 perpendicular to the z axis. In the radial 

A system with rotation, leading to centrifugal direction, which is the r direction in Fig. 
acceleration. 2.20, the only forces acting on the 
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element of fluid are the pressure forces and the centripetal acceleration, whose 
magnitude is given by 

Centripetal acceleration = —(angular velocity)” - radius 

a. = —w’r (2.BD) 

Substituting this for d7a/ dt* in Eq. 2.35 and noting that cos 6 is zero for the 
radial direction, we find 

aP 
— = pwr (2.36) 
dr 

(No minus sign appears here because the centrifugal force points in the +r 

direction, whereas the gravity force points in the —z direction.) We then find 

the gauge pressure at C: 

r=Ar r Ar (Ar)? 

Po= | wr dr = pw” — = pw” c ert p ah po 7 

The pressure at C is the same no matter how we calculate it, so we may elim- 

inate Pc between these two equations and divide pg to find 
2 

Se Mee Az 2g (Ar) (2.BE) 

O37) 

If we now let the elevation of point B (the lowest point on the free surface) be 

z = 0, then the length Az is minus the value of z at point A, and Ar is the value 

of r at point A; so those points on the free surface are described by 
w? 

"ise 
The free surface is a parabola with vertex at the center of the can. The height 

of the free surface at the wall of the can is 

(27 - 78 rpm) - (15 cm)? (= 

2-9.81 m/s? 60 s 

Zz (2.38) 

fs m 
: = 7. = 3.011 : ) 100 cm 7.65 cm = 3.01in (2.BF) 

ish 

To find the pressure at any point in the rotat- 

ing system (with the axis of rotation vertical) we 

use Eq. 2.11 and measure the distance down from 

the free surface directly upward from the point in 

question. The pressure at any point on the wall of 

the can in Fig. 2.20 is exactly the same as if the can 

were not rotating and were filled to the level of the 

rotating free surface at the edge of the can. 

Example 2.20. An industrial centrifuge has 

a basket with a 30 in diameter and is 20 in 

high. Its speed is 1000 rpm; see Fig. 2.21. If 

the liquid layer against the wall of the cen- 

FIGURE 2.21 trifuge is 1 in thick at the top, how thick is 

The basket of an industrial centrifuge. it at the bottom? 
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This is really the same problem as Ex. 2.19, except that only part of the para- 

bolic free surface is present. To solve it, we write Eq. 2.38 twice, for points A 

and B on the figure, and we then subtract one from the other; 

@W 

Zp. = =- (a= TB) (2.39) 
2g 

The only unknown here is rg. Solving for it, we find 

/ 
es ye Nin, 

TR | TA (Za Zp) 2 
w 

tc , 20 in: 2 - 32.2 ft/s? (3) es 
aeead in 

. F . 

(27 - 1000/ min)? \min ft 

= (196 in? — 1.4 in?)!/? = 13.95 in = 0.354_m (2.BG) 
* 

Thus, the liquid film is 1.05 in (2.67 cm) thick at the bottom. One may readily cal- 

culate that at the outer side of the centrifuge, the ratio of the centrifugal acceleration 

to that of gravity is 

Centrifugal acceleration\ wr (27-1000/60s)*- 1.25 ft 
ee ee eee = = 426 (2.BH) 

Gravity acceleration 7 g 32.2 ft/s? 

This ratio explains why liquids can be separated from solids much more effectively 

in such a centrifuge than by simple gravity draining, both in industrial usage and in 

home clothes washing machines. We will see in Chap. 10 that a centrifugal pump is 

a modified centrifuge; and in studying air pollution control, the widely used cyclone 

separators that collect particles are also modified centrifuges. 

2.10 MORE PROBLEMS IN FLUID STATICS 

Having worked out the basic equation and its simplifications for constant density, 

gauge pressure, isothermal and isentropic ideal gas, centrifugal-force fields, etc., we 

can attack a wide range of problems. In this text we will pass over some types of 

problems that have been widely treated elsewhere. Forces, distribution of forces, 

overturning moments, etc., on dams, retaining walls, flood gates, etc., are treated in 

all texts on civil or mechanical engineering fluid mechanics, such as that by White 

[3]. The subject of the buoyancy and stability of ships (why some turn over and 

others do not) is treated in the same texts. That analysis shows that the paral- 
lelepiped blocks floating with their axes vertical in Figs. 2.11 and 2.13 are unsta- 
ble; they will instantly turn over to have their long axes horizontal. One may test 
that with a short piece of lumber in a pond; it never floats vertically. Figures 2.11 
and 2.13 are convenient for showing the derivations, but physically unstable. The 
behavior of lighter-than-air craft is covered in books on aeronautics, for example, 
Prandtl and Tietjens [7]. 
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2.11 SUMMARY 

1. For simple fluids at rest, the pressure-depth relationship is given by the basic equation 
of fluid statics, dP / dz = —pg, found by considering the weight of a small element 
of fluid and the pressure change with depth necessary to support that weight. 

2. For constant-density fluids the basic equation can be integrated to P) — P, = 
—pg(z2 — Z;). This equation is an excellent approximation for liquids and a good 

approximation for gases when the change in elevation is small. 

3. For changes in elevation measured in thousands of feet, gases cannot be treated 
as constant-density fluids. For isothermal, isentropic, or constant-temperature- 

gradient behavior, the basic equation can be easily integrated for ideal gases. 

4. Problems involving liquids with free surfaces are generally easiest to work in gauge 

pressure, in which case the basic equation simplifies further to Pyauge = pgh. 

5. The force exerted by a static fluid on any infinitesimal surface is given by dF = P dA 

and points normal to the surface. This equation can be integrated to find total forces 

and the x and y components of pressure forces for a wide variety of situations. 

6. The necessary wall thickness of pressure vessels and pipes for modest internal 

pressures are calculated using the thin-walled approximation. 

7. The buoyant force exerted by a fluid on a floating or submerged body is equal to 

the weight of the fluid displaced. 

8. Most pressure-measuring devices either balance the pressure against the weight 

of a column of fluid, in which case the height of the fluid column is the reading, 

or let the pressure act on some area, compressing a spring, in which case the 

deflection of the spring is the reading. 

9. The manometer, used for measuring fluid pressure differences, is a logical model 

for manometer-like flows, including most chimneys and flues, and circulating fluid 

flows, driven by heating one side of the equivalent manometer. 

10. Problems involving accelerated motion can be handled by the methods of fluid 

statics if the particles of fluid do not move relative to each other, for example, in 

rigid-body rotation. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover of 

this text. An asterisk (*) on the problem number indicates that the answer is in App. D. 

2.1.* A large petroleum storage tank is 100 ft in diameter. The free surface is really a very 

small part of a sphere with radius ~4000 mi (the radius of the earth). If one drew an 

absolutely straight line from the liquid surface at one side of the tank to the liquid sur- 

face directly across the diameter on the other side, how deep into the fluid would that 

line go? In most fluid mechanics problems we ignore the curvature of the earth. Does 

this calculation support that simplification? 

2.2. Calculate the specific weight of water at a place where the acceleration of gravity is 

32.2 ft/s* = 9.81 m/s”. Express your answer in Ibf/ft* and in kgf / m°. Calculate its 

specific weight on the moon, where g ~ 6 ft/ se 9m I's. 
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2.3.* Calculate the specific weight of water in the SI system of units. 

2.4. Calculate the pressure gradient due to gravity in water, in psi/ ft. Most experienced 

engineers round this to 0.5 psi/ ft, and use it for making routine calculations in their 

heads. 

2.5. Most swimmers find the pressure at a depth of about 10 ft painful to ears. What is the 

gauge pressure at this depth? 

2.6. A new submarine can safely resist an external pressure of 1000 psig. How deep in the 

ocean can it safely dive? 

2.7. The tallest buildings in the world (excluding TV towers, which are not buildings in the 

common sense) are the Petronas Twin Towers in Kuala Lumpur, 1483 ft tall. If the pres- 

sure in the supply line to the drinking fountain on the top floor (perhaps 1450 ft high) 

is 15 psig, what is the required pressure in the supply line at street level? Assume zero 

flow in the water line. 

2.8.* The deepest point in the oceans of the world is believed to be in the Marianas Trench, 

southeast of Japan; there the depth is about 11,000 m. What is the pressure at that point? 

2.9. In the deep oil fields of Louisiana one occasionally encounters a fluid pressure of 

10,000 psig at a depth of 15,000 ft. If this pressure is greater than the hydrostatic pressure 

of the drilling fluid in the well from the surface, the 

result may be a blowout, which is dangerous to life and 

a) Vent property. Assuming that you are responsible for select- 

ing the drilling fluid for an area where such pressures 

its are expected, what.is the minimum density drilling fluid 

20 ft you can use, assuming a surface pressure 0 psig for the 

drilling fluid? 

2.10. The tank in Fig. 2.22 contains gasoline and water. What 

20 ft is the absolute pressure at the bottom? Sketch the curve 

of gauge pressure versus depth for this tank. 

2.11. Large hydrocarbon storage tanks normally have a 

FIGURE 2.22 valve on their vents that allows free flow of air in or out 

A storage tank holding two fluids. when liquid is being pumped in or out but that prevents 
air flow for small pressure differences caused by wind, 

solar heating of the tank, and changes in atmospheric pressure. These reduce the breath- 

ing losses of valuable hydrocarbons as well as the amount of atmospheric pollution. 

These valves are typically set to. open at an internal pressure of 4 in of water and an 

external pressure of 2 in of water. 

(a) Estimate the force on the roof of the tank in Example 2.6 at the opening pressures 

for internal pressure and for vacuum. 

(b) Why is the setting larger for internal pressure than 

external pressure? 

2.12.*An open-ended can 1 ft long is originally full of air at 
eS 70°F. The can is now immersed in water, as shown in 
LORE oie etic resig Fig. 2.23. Assuming that the air stays at 70°F and behaves 

Boerne Navneet: NaS as a ideal gas, how high will the water rise in the can? 

2.13. Normally we assume that liquids are constant-density 
fluids. To find out how large an error we make that way, 
compute the pressure at the deepest point in the oceans 
(about 11,000 m) two ways; 

FIGURE 2.23 (a) Assume seawater is a constant-density fluid with 
Figure for Prob. 2.12. properties shown inside the back cover of this book. 

Water 
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(b) Assume that the density of water is given by p = poll + B(P’—Po)|a The,.def- 
initions of the symbols in this equation and the value of 8 for water are given in 
App. A.6 and A.9. 

2.14. On a very cold day in Antarctica the temperature of the air is —60°F. Assuming that the 
air remains isothermal up to a 10,000-ft elevation and that the pressure at sea level is 

1 atm, estimate the pressure at 10,000 ft. 

2.15. An airplane takes off from sea level and is climbing at 2000 ft/min. The plane is not 
pressurized, so that the pressure of the cabin is falling as the plane rises. At sea level 

(just after takeoff), how fast is the pressure falling (psi / min or kPa/ min)? 

2.16. Derive Eqs. 2.17 and 2.18, starting with P/ p* = constant and p = PM / (RT). 

2.17. For the “standard atmosphere” shown in Fig. 2.4, 

(a) derive the pressure-height relation for the troposphere, 

(b) calculate the pressure at the troposphere-stratosphere interface, and 

(c) derive the pressure-height relation for the stratosphere. 

2.18.*(a) At what height does the equation for an isentropic atmosphere, Eg. 2.17, indicate 

that the temperature of the air is 0 K? Assume that the surface temperature is 

59°F 15°C 

(b) What is the physical significance of this prediction? 

(c) What is the predicted pressure (Eq. 2.17) for this elevation? 

2.19. For most problems we assume that P.., = 14.7 psia. This is a reasonable approximation 

for sea level but not for other elevations. What is the average atmospheric pressure at 

(a) Salt Lake City, whose elevation is 4300 ft; 

(b) 10,000 ft, the elevation to which the cabins on commercial airliners are pressurized; 

(c) on the top of Mt. Everest (29,028 ft)? 

(For simplicity, use the isothermal atmosphere; but see also Prob. 2.21.) 

2.20.*What is the sea-level temperature gradient in °F/ ft in 

(a) the standard atmosphere (Fig. 2.4) and 

(b) the isentropic atmosphere (Eq. 2.17) with a surface temperature of 59°F = 15°C? 

(The negative of this gradient, called the lapse rate, is widely used in meteorology.) 

2.21. The conditions at sea level are 14.7 psia and 59°F = 15°C. Calculate the pressure and 

temperature at 10,000 ft according to 

(a) the isothermal atmosphere, 

(b) the isentropic atmosphere, and 

(c) the standard atmosphere. 

2.22.*What is the mass of the entire atmosphere of the earth? The earth may be considered 

a sphere of radius ~4000 mi. All of the atmosphere is so close to the surface of the 

earth that all of it may be considered to be subjected to the same acceleration due to 

gravity. 

2.23. The oil-storage tank in Examples 2.6 and 2.7 has a vent to the atmosphere to allow air 

to move in or out as the tank is filled or emptied. This vent is plugged by snow in a bliz- 

zard while the oil is being pumped out of the tank, and the gauge pressure in the tank 

falls to —1 psig. What is the net force on the roof of the tank? 

2.24.*In the hydraulic lift in Fig. 2.24 the total mass of car, rack, and piston is 1800 kg. The 

piston has a cross-sectional area of 0.2 m?. What is the pressure in the hydraulic fluid in 

the cylinder if the car is not moving? 

2.25. Hoover Dam is approximately 230 m high and 76 m wide at the top. Consider it to be 

a rectangle (only approximately true). When the water is up to the top, what is the pres- 

sure at the bottom? What is the net force tending to move the dam? 
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2.26. Example 2.8, leading to Eq. 

2.M, was simple because 

the width of the surface 

was constant. Suppose that 

instead of being a rectangle, 

the lock was an isosceles 

triangle, apex down, 20 m 

wide at the top and 10 m 

deep. 

(a) Show that the width, 

instead of being con- 

FIGURE 2.24 stant is given by 
Hydraulic lift. 

Reservoir 

Hydraulic 

cylinder 

h 
= A i ear a 2.BI W=20m (1 a ( ) 

(b) Show that replacing the W in Eq. 2.M with this value of W and carrying out the inte- 

gration leads to 

hr 3 10 m 
| (2.BJ) 

h 
F = pg-20m f r(1 - 1.) an = pg 20 m| = ya pe 

10m 0 

(c) Calculate the net force on the triangular lock gate, and compare it to that on the rec- 

tangular lock gate in Example 2.8. 

(d) Show that the right-hand integral in Eq. 2.M can be written as 

F = pgAh, (2.BK) 

where h, is the depth of the centroid of the surface exposed to the fluid, defined as 

reek a oe [as 

centoid/ © A None 

for any shape. 

(e) For a triangle, A, = Amaximum/ 3 Measured from the base toward the apex. Repeat 

part (c) using this simplification. Are the answers the same? 

2.27.*A dam has an upstream face that is vertical and has the shape of a semicircle with a 

diameter of 100 m at the top. Water is up to the top of the dam. The atmosphere presses 

on the rear of the dam. What is the net horizontal force on the dam? Work this problem 

two ways: 

(a) by direct integration of the pressure force as shown in part (b) of the preceding 
problem. 

(b) by using the centroid of depth (as in parts-d and e of the preceding problem). The 
centroid of a semicircle about its diameter is 2D / 377. Centroids of all common geo- 
metric figures are shown in books on strength of materials. 

2.28. Example 2.9 shows the calculated thickness at the bottom needed for steel plate making 
up the shell of a vertical-axis, flat-bottomed, atmospheric-pressure storage tank. In the 
United States such tanks are normally made from steel sheets either 8 or 10 ft wide, so 
their heights are normally multiples of 8 or 10 ft. The 60-ft-high tank in that example 
would be made of 6 bands, one atop the other, each made of steel sheets 10 ft wide, each 
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with its own uniform thickness. The lowest band would have the thickness calculated in 
Example 2.9. 

(a) What would the required thickness be for the remaining bands above the bottom band? 
(b) If the calculation in part (a) leads to a thickness of less than about 0.25 in, then a 

plate with 0.25 in thickness will be used. Is that the case here? Suggest reasons why 
a plate with less than 0.25 in thickness will not be used. 

(c) The thicknesses calculated above are wasteful, because they use a uniform thickness, 

instead of one that tapers from bottom to top, which would keep the stress constant 

in the whole wall of the tank. If we could buy such tapered plates, in which the thick- 

ness at the top of one band exactly matched the thickness at the bottom of the next 

upper band, how many pounds of steel (SG = 7.9) would we save on that tank? For 

really big tanks, the steel mills will roll tapered such plates for you, to make this 

savings, but that is uncommon. 

2.29. The largest vertical-axis, flat-bottomed, atmospheric-pressure storage tanks have heights 

of about 70 ft'and diameters of about 400 ft. The largest spherical storage tanks are about 

80 ft in diameter. The largest sausage-shaped tanks are about 11 ft in diameter and 90 ft 

long. Suggest reasons for these maximum dimensions for each shape of container. 

2.30.*We want to select a pipe with an inside diameter of 1 ft that will withstand an internal 

pressure of 1000 psig. The steel to be used has a maximum allowable tensile stress of 

40,000 psi but, to allow for a safety factor of 4, we design for a maximum stress of 

10,000 psi. How thick must the pipe walls be? ; 

2.31. From the data given in App. A.2 on the diameter and wall-thickness of schedule 40 pipes, 

sizes 2.5 in and larger, show that these correspond almost exactly to the formula 

t=A+BD (2.BM) 

where ¢ is the wall thickness, D is the diameter, A is an arbitrary constant known as the 

“corrosion allowance,’ and B is the value one would compute from Eq. 2.25. Calculate 

the values of A and B in this equation from the best straight line through a plot of thick- 

ness versus diameter data for schedule 40 pipes. 

2.32. The thin-walled formulae are based on the assumption that the stress is practically uni- 

form across the cross section of the vessel wall. It is generally used when D,/ D; < 1.5. 

Sketch what the stress distribution would be for a vessel if internal pressure caused both the 

inside and outside diameter to increase by the same amount. Estimate how big the differ- 

ence in pressure from inside to outside would be for a pipe or vessel with D, (0 eon Bee 

2.33. The thin-walled formulae in the text, Eqs. 2.25 and 2.27, are simplifications of the for- 

mulae in the piping codes [5], which are reproduced in Table 2.2. 

(a) Repeat Example 2.10, using the thin-walled formula for a cylinder from Table 2.2, 

with E, = 1.00 and Cc = 0.0. How much difference does it make? 

(b) Same as part (a), but use the thick-walled formula from Table 2.2. 

(c) For a cylindrical vessel with r; = 5.00 ft, S = 20,000 psi, E, = 1.00, and Cc = 0.0, 

prepare a plot of ¢ versus P showing the calculated t from Eq. 2.25 and from the 

thin- and thick-walled equations from Table 2.2. Cover the pressure range from 0 to 

10,000 psi. 

2.34. An ordinary rifle has a maximum pressure of about 50,000 psig during firing. This peak 

value occurs a short way down the barrel from the chamber and lasts about 0.001 s. Far- 

ther down the barrel, the peak pressure is substantially less than this [8]. 

(a) If the inside diameter of the barrel is 0.22 in, estimate the required thickness of 

the barrel wall and the barrel diameter by the thin-walled and thick-walled formulae 
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TABLE 2.2 

Vessel wall thickness formulae, Ref. [5] 
eh a a re 

Thickness equations Limiting conditions 
oS Die hots a ee eee 

Cylindrical shells 

Pr; 
Thin-walled: t = ees mice t<r/2. or P<=0385SE, 

uf TT . 

SE, + P\V2 
Thick-walled: t = (= *) ir Ge pean. or P > 0.385SE, — 

Spherical shells 

Jes se) 

Thin-walled:t = Ce EN: + Ce $<=0:356r; - or P= 0.665SE, 
if 7 . 

2SE, + 2P\\? 
x: ewan t>0.356r; or  P > 0.665SE, Thick-walled: t = n( 2SE, — P 

Here tf = wall thickness, r; = internal radius, § = design stress, E, = joint efficiency, and Cc = corrosion allowance. 

in Table 2.2 and by Eq. 2.25. Use S ~ 80,000 psig. Rifles are seamless, so that they 

have no joint, making E, = 1.00. Their owners take good care of them, so that 

Ce = 0.0. 

(b —S 

Eq. 2.31? 
(c) A simple, single-shot target rifle has an inside barrel diameter of 0.22 in. The barrel 

tapers from the chamber to the outlet, have a diameter of 0.74 in near the chamber 

and 0.605 in at the muzzle. Using all three of the values calculated in part (a), esti- 

mate the safety factor in the diameter at the thick end of the barrel. (Much thinner- 

walled barrels can be used on guns. They work, but they have very small safety 

factors and are risky [8]. They are also inaccurate, because the thin-walled barrel is 

flexible, and flexes during firing. Target rifles often have barrels thicker than the val- 

ues shown here, not for safety but for stiffness and accuracy.) 

2.35. Estimate the required wall thickness for the lowest ring of a flat-bottomed atmospheric 

pressure tank that will store water, with height 64 ft, diameter 200 ft, and o = 30,000 

psig, using Eq. 2.25. The American Petroleum Institute (API) Standard [9] uses a calcu- 

lation method somewhat different from the equations in Table 2.2 and Eq. 2.25. Using 

it, they compute a wall thickness (page K-7) of 1.092 in. How does that compare with 
the value you compute in this example? 

2.36. We wish to purchase a steel tank to store 20,000 gallons of propane; design pressure is 

250 psig, and design stress is 20,000 psi. What will be the weight of metal in the shell 
(excluding foundations, valves, manholes, etc.) if the tank is 

(a) cylindrical with hemispherical ends, like those in Fig. 2.6. The cylindrical section 
will have length = 6 times diameter. 

(b) spherical. 
xe 

Assume that the simple thin-walled formulae (Eqs. 2.25 and 2.27) may be used. For steel, 
SG = 7.9. 

The common practice in design of ordinary pressure vessels is to use a value of S 

(in Table 2.2) of 20,000 psig instead of 80,000 psig, thus providing a safety fac- 

tor of 4. Does this work for the formulae in Table 2.2? For Eq. 2.27? Could one 

design rifles using S = 80,000 psi and then apply a suitable safety factor to the 

calculated wall thickness? Would that work in the formulae in Table 2.2? For 
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2.37. Assuming that steel pipes have an allowable wall stress of 10,000 psi, calculate the max- 
imum internal pressure allowable for a 5 in, schedule 40 pipe that has an outside diam- 
eter of 5.563 in and an inside diameter of 5.047 in. 

2.38. For a cylindrical vessel with spherical ends, what is the relation between the circumfer- 
ential (hoop) stress in the cylindrical section and the axial stress in the same section? 

2.39.* Archimedes is said to have discovered the buoyancy rules, which are called Archimedes’ 
principle, when he was asked by the King of Syracuse in Sicily to determine whether 

a crown was pure gold, as the goldsmith said, or was an alloy. At that time no chem- 

ical means were known for settling the question without destroying the crown. 

Archimedes was struck with the idea of how to do so while taking a bath, and he 

jumped out of his tub and ran through the streets yelling “Eureka” (“I have found it”). 

The story goes that he was so excited that he did not bother to get dressed before doing 

this. 

Suppose that in testing the crown Archimedes found that in air it had a weight of 

5.0 N and a weight of 4.725 N in water. Assuming that the crown was made of gold or 

of silver or of an alloy of both, what percentage by volume was the gold? Assume that 

the density of gold-silver alloys is Panoy = Psiiver + (VOl.% gold) * (Pgoia — Psitver) / 100. 

The densities of gold and silver are 19.3 and 10.5 g/cm’, respectively. 

2.40.*A helium balloon has a flexible skin of negligible weight and infinite capacity for expan- 

sion, so that the helium is always at the same pressure as the surrounding air. If the bal- 

loon moves up and down slowly, then the temperature of the gas in the balloon will be 

practically the same as that of the surrounding air. If the mass of helium in the balloon 

is 10 Ibm, how much payload can it lift under the following conditions: 

(a) 1 atm and 70°F, 

(b) 0.01 atm and O°F, and 

(c) 0.001 atm and —100°F? Assume that helium behaves as an ideal gas. 

2.41. Helium is preferred to hydrogen in balloons because it is nonflammable. However, hydro- 

gen has only half the weight of helium. By how much would the payload of the balloon 

in Example 2.11 have been increased if hydrogen had been used to fill it instead of 

helium? 

2.42. Currently, recreational balloons are not filled with hydrogen or helium but with hot air; 

the pilot has a small propane burner to heat the air in the balloon. If the balloon is a 

sphere 20 m in diameter, and if the total weight of balloon, pilot, passenger compart- 

ment, propane burner, propane tank, ropes, etc. is 200 kg, what average temperature must 

the air in the balloon have to just barely lift the balloon? Assume that the air inside and 

outside the balloon both have atmospheric pressure and have equal molecular weights, 

29 gm/mol. (The latter is slightly inaccurate because of the products of combustion 

inside the balloon; this inaccuracy is small.) 

2.43.*A sample of lead is weighed on a pan balance by means of brass weights. It weighs 2.500 Ibf. 

(a) With the same set of brass weights, what would the lead weigh if the entire scale 

with weights and lead were at the bottom of a tank of water? 

(b) If they were in a vacuum chamber? Here SGy,a,, = 8.5 and SGjeag = 11.3. 

2.44. Rework Example 2.12, not by Archimedes’ principle, but by assuming the block has only 

vertical and horizontal faces and calculating the difference in pressure between the top 

and bottom faces. 

2.45. A 150-Ib drunkard falls in a vat of whiskey. Whiskey has SG = 0.92, whereas the drunk- 

ard has SG = 0.99. The drunkard, who wants to stay alive long enough to drink his fill 

of the whiskey, “treads water,” keeping his head above the whiskey. If his head up to his 
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mouth is 15% of his body volume, how much upward force must he exert by “treading 

water” to keep his head out of the whiskey? 

2.46.*It is proposed to build a raft of pine logs for carrying a cargo on a river. The cargo will 

weigh 500 kg, and it must be kept entirely above the water level. How many kilograms 

of pine logs must we use to make the raft, if the logs may be entirely submerged, and 

they have SG = 0.80? 

2.47. A sunken battleship weighs 40,000 tons. It may be considered to be all steel, SG = 7.9. 

(a) We now propose to raise the battleship by sinking steel tanks adjacent to it, attaching 

them to the battleship, and then blowing the water out of them with compressed air, 

making them buoyant. Assuming that the compressed-air tanks will have negligible 

mass, what volume must they have to raise the battleship? Assume that the battleship 

is in seawater and that the insides of the battleship are completely filled with water. 

(b) It has been suggested that we could raise the ship by attaching a cable to it and haul- 

ing it up. If the cable has a working tensile stress of 20,000 psi, how thick would it 

have to be? 

(c) If the battleship is 1000 ft deep and the cable is of uniform thickness, what is the 

stress in the cable at the top due to the weight of the cable alone? 

2.48. A swimming pool is emptied for cleaning. The dimensions of the pool are 

20 ft - 30 ft - 6 ft (average depth). A rainstorm causes the water table in the ground around 

the pool to rise so that the water level in the ground is up to 1 ft below the surface of 

the ground and thus up to within one foot of the top of the pool. The liquid pressure 

exerted by this groundwater on the pool is the same as if the pool were immersed to a 

depth of 5 ft in pure water. What is the upward (buoyant) force exerted by the ground- 

water on the pool? 

2.49.*On July 2, 1982, Larry Walters attached 42 helium-filled weather balloons to a lawn chair, 

sat in it, and took a balloon ride high over Los Angeles [10]. People who saw him were 

amazed; air traffic controllers were dumbfounded. Estimate the diameter of the individ- 

ual weather balloons, which are assumed to be spherical and to all have the same 

diameter. Assume that Mr. Walters, plus the lawn chair, 

plus the ropes, the empty balloons, and the miscella- 

neous things he took along had a weight of 200 Ibf. 

2.50. A rowboat is in a circular swimming pool with diameter 

10 ft. The person in the rowboat throws overboard a 100 

Ibm block of steel, SG = 7.9, which sinks to the bottom. 

Does this action cause the level in the swimming pool to 

rise, stay the same, or decline? How much? 

FIGURE 2.25 2.51. The fluid shown shaded in the manometer of Fig. 2.25 

Simple manometer. is ethyl iodide, SG = 1.93. The heights are h, = 44 in 

and hy = 8 in 

t (a) What is the gauge pressure in the tank? 

(b) What is the absolute pressure in the tank? 

2.52.*The two tanks in Fig. 2.26 are connected 

through a mercury manometer. What is the 

relation between Az and Ah? 

2.53. Figure 2.27 is a schematic diagram of a 
general two-fluid manometer. What is 

Pa — Pg in terms of h, g, p;, and p>? If 

we want maximal sensitivity—that is, 
FIGURE 2.26 Ah/(P, — Pz) as large as possible—what 
Mercury-water two-fluid manometer. relation of p; to pz should we choose? 
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Fluid 1, p, 2.54.*For low pressure differences the inclined manometer 

shown in Fig. 2.28 is often used (this device is so often 

used to measure the “draft” of a furnace that its com- 

mon name is a draft tube). 

(a) If the scale is set to read zero length at P, = Pp 

and the manometer fluid is colored water, what 

will the reading be at P, — Pz, = 0.1 Ibf / in? 

(b) What would the reading of an ordinary mano- 

meter with vertical legs be for this pressure 

difference? 

2.55. The manometer in Prob. 2.54 has as its reservoir a 

FIGURE 2.27 cylinder with a diameter of 2 in. The tube has a diam- 

eter of } in. The scale is set to read zero at P, = Pp. 

When the level is at the 10 in mark, how much has 

the level in the reservoir fallen? 

2.56. The conventional barometer shown in 

A Fig. 2.14 is filled with mercury. 
(a) How high must it be to record a pres- 

sure of 1 atm? 
(b) How high would it have to be if we 

used water instead of mercury as the 

barometer fluid. 

(c) How large an error in pressure would 

we make with a water barometer by 

ignoring the pressure of the water in 

space above the liquid? 

. 2,57. Television and newspaper meteorologists regularly show atmospheric high and low pres- 

sure regions. Typically, a high will have a sea level pressure of about 1025 millibar and 

a low will have a sea level pressure of 995 millibar. (Engineers would state these as 1.025 

and 0.995 bars, but meteorologists always use the millibar.) Assuming a static atmos- 

phere (impossible, but useful for this problem), estimate the average temperature differ- 

ence between ground level and the top of the troposphere between the high and the low 

needed to cause this pressure difference. Could these pressure difference be caused by 

differences in moisture content? 

2.58.*A common scheme for measuring the liquid depth in tanks is shown in Fig. 2.29. Com- 

pressed air or nitrogen flows slowly through a “dip tube” into the liquid. The gas-flow 

rate is so low that the gas may be considered a static fluid. The pressure gauge is 6 ft 

above the end of the dip tube. 

Two-fluid manometer. 

Reservoir 

15% 

FIGURE 2.28 

Draft tube. 

(a) If the pressure gauge reads 2 psig 

and the dip tube is 6 in from the 

bottom of the tank, what is the 

RipsaeSANEe depth of the liquid in the tank? 
Vent Here Piiquia = 60 lbm/ft* and 

Peas = 0.075 Ibm / ft’. 
(b) Customarily, engineers read 

these gauges as if p,,, were Zero. 

How much error is made by such 

a simplification? 

2.59. The system shown in Fig. 2.30 is 

FIGURE 2.29 used to measure the density of a 

Dip-tube depth gauge. liquid in a tank. Compressed air or 

Compressed 

air 
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Compressed air nitrogen flows at a very low rate through two 

dip tubes, whose ends are vertically 1.00 m 

apart. The difference in pressure between the 

two dip tubes is measured by a water 

manometer, which reads 1.5 m of water. The’ 

gas-flow rate is so slow that the gas in the 

dip tubes may be considered a static fluid. 

The density of the gas is 1.21 kg / m*. What 
is the density of the fluid in the tank? 

2.60.*A furnace has a stack 100 ft high. The gases 

in the stack have M = 28g/mol and 

T = 300°F. If the pressures of the air and 

the gas in the stack are equal at the top of 

the stack, what is the pressure difference at 

the bottom of the stack? 

2.61. An oil well is 10,000 ft deep. The pressure of the oil at the bottom is equal to the pressure 

of a column of seawater 10,000 ft deep. (This is typical of oil fields; most of them, at the 

time of discovery, have about the pressure of a hydrostatic column of seawater of equal 

depth; there are exceptions.) The density of the oil is 55 Ibm / ft?. What is the gauge pres- 

sure of the oil at the top of the well (at the surface)? 

FIGURE 2.30 

Two dip-tube density gauge. 

2.62.*A natural-gas well contains methane, which is practically an ideal gas. The pressure at 

the surface is 1000 psig. 

(a) What is the pressure at a depth of 10,000 ft? 

(b) How much error would be made by assuming that methane was a constant-density 

fluid? Assume the temperature is constant at 70°F. 

2.63. An oil pipeline was constructed to transport an oil with SG = 0.8 for a distance of 10 mi. 

The country was hilly, so that the line made many ups and downs. These may be con- 

sidered equivalent to 10 rises of 200 ft, followed by descents of 200 ft. When the pipe 

was completed it was tested by pumping water through it. The water flowed satisfacto- 

rily with an inlet pressure of 150 psi. Then the oil was slowly fed into the pipe. As the 

oil flowed the pressure_at the inlet end began to rise, and the flow rate began to fall. 

Finally, the flow stopped altogether, while the pressure at the inlet side remained at 

150 psi. Explain what caused this. (Hint: This is a manometer problem.) 

2.64. The tank in Fig. 2.31 is completely full of water; there is 

no air. Both valves are closed; now we open valve B and 

allow the water to drain out, without opening valve A. 

What is the minimum pressure that will be reached in the 

tank? 

Valve A 

2.65.*Bourdon tube pressure gauges and some electronic ones are 

inherently calibrated devices. The standard device for cali- 

brating them is the dead-weight tester. This is a laboratory- 

sized equivalent of the hydraulic lift in Fig. 2.24. Precision 

weights are placed on the lift, instead of the automobile. 

The connection for the pressure gauge to be tested is placed 

between the pump and the cylinder. When the pump has 

just lifted the piston and the weights on it off the bottom, 
FIGURE 2.31 the pump is stopped, the cylinder and weights are rotated 
A tank that can be collapsed by hand to make sure they are not sticking, and the read- 
by draining. ing of the pressure gauge is recorded. More weights are 

30 ft 

Valve B 
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added and the process repeated. If the diameter of the pis- 

ton is 0.500 in, and the weight of the piston plus weights 

is 25.00 Ibf, what is the pressure exerted on the pressure 

gauge? Manufacturers claim that these testers are accurate 

to 0.5% of the pressures calculated this way. 

ea 

2.66. A popular, low cost way of marking the tops of fence posts 

level uses a transparent plastic garden hose. One partly fills 

the hose with water, holds the two ends to two different 

} posts, and adjusts the liquid level in one end of the hose (by 

-— Aft ae raising or lowering it) until it is level with the top of the post 

that is being used for reference. Then one marks the level of 

FIGURE 2.32 the fluid in the hose on the next post; and so on. Will this 

A very simple accelerometer. system work if there are trapped air bubbles in the hose? 

2.67. Rework Example 2.17 for the elevator falling freely, i.e., 

for downward acceleration of 9.81 m/s*. 

2.68.*The device in Fig. 2.32 consists of two pieces of pipe of 1 in inside diameter that is con- 

nected to a pressure gauge. The whole apparatus is on a elevator, which moves in the z 

direction. The pressure gauge reads 5 psig. 

(a) How fast is the elevator accelerating? 

(b) Which way? 

2.69. The rectangular tank in Fig. 2.33 is sitting on a cart. We now slowly accelerate the cart. 

What is the maximum acceleration we can give the cart without having the fluid spill 

over the edge of the tank? 

2.70.*A closed tank contains water and heating 

oil, SG = 0.96, and is completely full of 

the two liquids, with no air space at the top. 

The tank is being steadily accelerated in the 

x direction at 1 ft/s*. What angle does the 
water-oil interface make with the vertical? 

2.71. If the fluid in the centrifuge in Example 

2.20 is water, what is the gauge pressure at 

the outer wall of the centrifuge (under the 

FIGURE 2.33 layer of water | in thick)? 

Figure for Prob. 2.69. 2.72.*In the centrifuge in Example 2.20 a solid 
particle of volume 0.01 in° is settling 

| Axis of through the fluid. 
j merry-go-round (a) When it is almost at the wall, where the 

radius is 15 in, what is the buoyant 

force acting on it? 

(b) Which way does the buoyant force act? 

2.73. The tank and manometer shown in Fig. 2.34 

are mounted on a merry-go-round that is 

revolving at 10 rpm. The vessel is filled with 

a gas of negligible density; the manometer 

fluid is water. What is the pressure in the 

eceeatis: vessel? 

2.74. A cylindrical, open-topped can contains a 

FIGURE 2.34 layer of gasoline 4 in deep on top of a layer 

Manometer on merry-go-round. of water 4 in deep. The can is now set on 
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FIGURE 2.35 

Gravity fountain. 

2.19 
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3 
THE 

BALANCE 
EQUATION 
AND THE 

MASS 
BALANCE 

ucK of engineering is simply careful accounting of things other than money. 

The accountings are called mass balances, energy balances, component bal- 

ances, momentum balances, etc. In this chapter we examine the basic idea of a bal- 

ance and then apply it to mass. The result is the mass balance, one of the four basic 

ideas listed in Sec. 1.3. Chemical engineers use some form of the balance equation 

in almost every problem they encounter. 

3.1 THE GENERAL BALANCE EQUATION 

Let us illustrate the general balance idea by making a population balance around the 

State of Utah. The population of Utah can change by: 

1. Births 

2. Deaths 

3. Immigration 

4. Emigration 

81 
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Adding these with the correct algebraic signs and equating them to the increase in 

population, we get 

Increase in population = births — deaths + immigration — emigration (3.1) 

This equation is a special case of the general balance equation: 

Accumulation = creation — destruction + flow in — flow out (322) 

We can now make four comments: 

1. These equations must apply to some period of time. If we simultaneously talk about 

the births in one year and the deaths in one month, the balance will be queer 

indeed. If in the population balance we are talking about one year, then we can 

divide Eq. 3.1 by one year to find 

Annual a) ay! bres: ) = (jaa ) 4 (an ) 

in population ~ \ birth rate death rate immigration rate 

= ae , ) (5) 
emigration rate 

This is a rate equation. If someone promises you a million dollars, you will be 

happy. If he pays you at the rate of $0.01 per year, you will be unhappy; we are 

all normally interested in rates. 

2. If we apply the population balance to the State of Utah for a one-day period, we 

will find misleading rates. The number of births per day fluctuates; the annual rate 

is practically constant. To get meaningful rates, the period over which measure- 

ments are made must be long enough to average out fluctuations. (There are some 

situations in which we want to study the short-time fluctuations, e.g., the statisti- 

cal study of turbulence. For such studies it is worthwhile to make balances over 

time periods short enough for these fluctuations not to “average out.’) 

3. In the example above, the balance was made over an identifiable set of bound- 

aries (the legal boundaries of the state of Utah; see Prob. 3.1). A general princi- 

ple of engineering balances is that there can be no meaningful balance without a 

carefully defined and stated set of boundaries. The set of boundaries need not be 

fixed, but they must be identifiable. Suppose a group of people was shipwrecked 

in the Antarctic and took refuge on a floating iceberg. We could make a popula- 

tion balance around the iceberg, and it would have the same terms in it as did our 

population balance around the state of Utah. The boundaries of the iceberg are 
perfectly well-defined, but the iceberg is not fixed in place, and its size is con- - 
stantly changing. 

Whatever is inside a set of boundaries is often called system. Everything that 
is outside the boundaries we will call the surroundings. Thus, the boundaries divide 

the whole universe into two parts, the system and the surroundings. 
For some problems it is convenient to choose as our system the contents of 

some closed container, which does not allow flow into or out of it. For such a sys- 
tem the balance equation reduces to 

Accumulation = creation — destruction [closed system] (3.4) 
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Such a system is called a closed system. An example might be the population of 
a sealed space capsule traveling through space, for which the population balance 
equation would be 

Increase in population = births — deaths (3.A) 

The closed system is widely used in chemistry. It is very convenient when a chem- 
ical reaction is taking place in a closed container, in which new species may be 
created by chemical reaction and old ones destroyed but none flow into or out of 
the container. 

An open system is usually some kind of container.or vessel that has flow in 

and out across its boundaries at some small number of places. This is used much 

more commonly in engineering than is the closed system and will be used exten- 

sively in this book. 

We consider flows in and out of most open systems only at some small num- 

ber of places: for example, a household water heater that has one cold water inlet 

pipe, one hot water outlet pipe, one drain pipe, and one connection for a pressure 

relief valve. If we choose as a system some arbitrary region of space that can have 

flow in or out over its entire boundary, then this system is called a control volume. 

In this book we will treat any control volume as a special kind of open system. 

4. The balance equation deals only with changes in the thing being accounted for, 

not with the total amount present. The population balance given above tells the 

change in the population of Utah but not the numerical value of the population. If 

we want to know the numerical value of the population of that state, we may con- 

duct a census. Alternatively, if we could find birth, death, immigration, and emi- 

gration data from the time that the first person entered the state to the present, we 

could compute the change in population starting with population zero. Mathemat- 

ically, this is 

present 

Current population = | (rate of change of population) d(time) (3.5) 
time at population =0 

Beginners are often tempted to find a place in their balances for the total amount 

contained, such as a numerical value of population; resist this temptation! 

To what can the balance equation be applied? It can be applied to any count- 

able set of units or to any extensive property. An extensive property is one that dou- 

bles when the amount of matter present doubles. Some examples are mass, energy, 

entropy, mass of any chemical species, momentum, and electric charge. Some exam- 

ples of countable units are people, apples, pennies, molecules, home runs, electrons, 

and bacteria. 
The balance equation cannot be applied to uncountable individuals (units) or to 

intensive properties. Intensive properties are independent of the amount of matter pres- 

ent. Some examples are temperature, pressure, viscosity, hardness, color, honesty, 

electric voltage, beauty, and density. An example of uncountable individuals is all the 

decimal fractions between 0 and 1. 

Because the balance equation is so important, we consider one more non- 

engineering illustration. 
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Example 3.1. Write out the appropriate terms to apply Eq. 3.2 to your bank 

account. 
By inspection we can write that 

eae in aad a oe 
, ) — charges + deposits — withdrawals (3.B) 

payments balance 

a 

As in the population example, the value of the current bank balance does not 

enter into this equation. (It is unfortunate that the current value of your account is 

called a bank balance, which conflicts with our use of the term balance.) In both the 

population example and this example, there are terms that are roughly proportional to 

the current value of what is accounted for. The birth and death rates in any state are 

roughly proportional to the total population, and the interest payment in your bank 

account is proportional to the current amount in the account. Thus the current values 

do often enter such balance equations indirectly. But they have no direct entry into 

the accountings. 

3.2 THE MASS BALANCE 

Our example of a balance equation in the preceding section would be of interest to 

demographers but not necessarily to engineers. The most important chemical engi- 

neering balance is the mass balance. Mass obeys the general balance equation: cre- 

ation and destruction terms are zero. Thus, the mass balance is 

Increase in mass within flow of flow of 

( ) = eee) esate) oon the chosen boundaries mass in mass out 

The careful application of this equation is necessary to most fluid-mechanics prob- 

lems. We can divide by time and find 

Ge of increase of mass - flow rate flow rate 

within the chosen boundaries/ of mass in of mass out G7) 

The mass balance cannot be derived from any prior principle. Like all the other 

basic “laws of nature,” it rests on its ability to explain observed facts. Every careful 

experimental test indicates that it is correct. Mass can exist in a variety of forms, for 

example, solid, liquid, gas, and some other bizarre forms, and can convert from one 

to the other. When liquid water evaporates we see the liquid disappear, but we have 

no visual evidence that the mass of the surrounding air ihcreased by exactly the mass 
of the water vapor thus produced. Lavoisier made the first clear statement of the law 
[1] and demonstrated that if processes similar to the evaporation of water were car- 
ried out in a closed glass jar resting on a balance, there was no loss of mass; the vis- 
ible water had changed to invisible water vapor, but the mass of the contents of the 
jar did not change. The idea that mass is conserved seems quite obvious to us now, 
but it was not known nor believed by the human race before about 1780. The key dis- 
covery was that gases had mass, which was not intuitively obvious to scientists or the 
public before then. 
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We will see in Chap. 4 that mass and energy can be converted from one to the 
other. In most engineering problems we can neglect this fact and use the simple for- 
mulation in Eq. 3.5 (but we cannot neglect it in dealing with atomic bombs or the 

energy source of the sun). There is no experimental evidence on earth that matter is 

created except by conversion of energy to mass, as just described. A more interesting 

prospect is the idea of the “steady-state universe,’ put forward by the British 

astronomer Fred Hoyle. According to his theories, matter is being created all the time, 

everywhere; however, the rate is very slow, about one hydrogen atom per hour per 

cubic mile of space [2]. No instruments now exist that could detect such an event, so 

a confirmation of this theory on an earthbound scale seems impossible at present. 

Hoyle claimed that the experimental observations of the behavior of the farthest galax- 

ies support his theories; most other astronomers disagree. Although these theories have 

no foreseeable application to engineering problems, it is well to keep an open mind 

on the subject of the absolute nature of the mass balance or the other laws of nature 

as we currently understand them. 

Example 3.2. Consider the simple pot-bellied stove, burning natural gas, 

shown in Fig. 3.1. Applying Eq. 3.7 to this stove, we choose as our system 

boundaries the walls of the stove. Then Eq. 3.7 becomes 

Rate of increase of 
2 mass flow rate mass flow 

mass within the chosen | = ; . 
: of gas in rate of air in 

boundaries 

mass flow rate 

— | of exhaust (3.C) 

gas out 

= 

Here we have two mass-flow-in terms. There is no limit to the number of such 

terms. Recall our population balance around the state of Utah; we could have immi- 

gration by airplane, car, boat, train, etc. We would have a term for each and add the 

terms to get the total immigration 

Exhaust gas term. Similarly here we add the 

% individual mass-flow-in terms to 

get the total mass-flow-in term. 

The mass balance has several 

other names that are in wide use. 

These are the principle of conser- 

System vation of mass, the continuity equa- 

boundaries tion, the continuity principle, and 

. the material balance. They all mean 

eT exactly the same thing as mass bal- 
ance, namely, that mass obeys the 

FIGURE 3.1 general balance equation, with no 

Pot-bellied stove. creation or destruction. 
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3.3 STEADY-STATE BALANCES 

When the pot-bellied stove in Fig. 3.1 is first lighted after being turned off for a long 

time, the temperature of its various parts will change rapidly. After a certain time it 

will be warmed up, and thereafter the temperature of the various parts will not change 

with time. During the warm-up period, the velocities and temperatures of the gases 

passing through it at some fixed point will be changing with time. A thermometer at 

some fixed point in the flue will régister a continually increasing temperature. After 

the stove has warmed up, this thermometer will register a constant temperature. When 

the stove has warmed up and is running steadily we speak of it as being at steady state. 

A steady state does not mean that nothing is changing; it means that nothing is 

changing with respect to time. Consider a waterfall with a steady flow over it. From 

the viewpoint of a particle of water there is a rapid increase in velocity as it falls and 

a sudden decrease in velocity at the bottom. From the viewpoint of an observer watch- 

ing one specific point in space the waterfall is always the same: there is always water 

going by at a fixed velocity. Mathematically, if the velocity V is some function of time 

and position, 

V = f(t, x, y, Z) (3.8) 

then at steady state 

OV 
(=) =0 [steady state] (3.9) 

OO) ae 

We may similarly write for steady state that (d/ dr), ,,, of any measurable property 

of the system at any point is zero. Thus, if we write the balance equation for some 

measurable quantity such as mass and divide by dr to find the rate form, then we see 

that the left-hand side (the time rate of mass increase within the system) must be zero, 

because at every point in the system the mass contained is not changing with time. 

Entirely analogous arguments indicate that at steady state the accumulation term must 

be zero for all possible balances, including the energy and momentum balances, which 

we will discuss in Chaps. 4 and 7. 

Returning now to the pot-bellied stove of Example 3.2, we see that, at steady 

state, the mass balance simplifies to 

Mass flow rate mass flow rate flow rate of 
0= “+ =e = (3.D) 

of gas in of air in exhaust gas out 

This is the familiar “flow in equals flow out” idea, which is true only for steady state, 
with no creation or destruction. 

Example 3.3. For the pot-bellied stove of Example 3.2 we now make a steady- 
state carbon dioxide balance. By chemical analysis we find that the amount of 
carbon dioxide in the natural gas and in the air is small enough to ignore; so, 
omitting the unnecessary terms from Eq. 3.2, we find 

Creation rate destruction mass flow rate 

0 = | of carbon +. rate of . — | of carbon dioxide (3.E) 

dioxide carbon dioxide out in exhaust gas 
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Chemical analysis of the exhaust gas indicates that it contains 8% to 12% car- 
bon dioxide, so the mass flow rate out is not negligible. Thus, for this equation 
to be satisfied, there must be significant creation minus destruction of carbon 
dioxide in the stove; i.e., carbon dioxide is formed by combustion in the stove. 

In this case, the destruction term is negligible. | 

If we made a similar balance for natural gas we would see that the destruc- 

tion term would be approximately equal to the mass-flow-in term. In the field of 

chemical reactions, the creation and destruction terms are very important and can- 

not be ignored. The momentum balance (Chap. 7) includes creation and destruc- 

tion terms, as does the entropy balance or the second law of thermodynamics 

(see any elementary textbook on thermodynamics). Thus, although the two most 

common balances, the mass and energy balances, have no creation or destruc- 

tion terms, one should remember that these terms are very important in some other 

balances. 

3.4 THE STEADY-STATE FLOW, 
ONE-DIMENSIONAL MASS BALANCE 

Consider the steady-state flow of some fluid in a pipe of varying cross section, Fig. 3.2. 

If we apply the steady-state mass balance equation to the system shown, we find 

Mass flow rate in at point 1 = mass flow rate out at point 2 (3.F) 

In general, velocity is not the same at every point in a cross section of a pipe; it is 

faster near the center than at the walls. (One may verify this for the analogous open- 

channel flow by dropping bits of wood or leaves on a flow of water in a ditch or 

gutter and noting that those in the center go faster than those at the side.) There- 

fore, to calculate the total flow rate in across the system boundaries at point 1, we 

should break the area across which the flow is coming in into small subareas (A), 

over each of which the flow is practically uniform: 

Mass flow rate in at point 1 = ass pAV (3.10) 
many subareas 

Here the individual elements of area must be taken perpendicular to the local 

flow velocity. For flow in a straight pipe or channel this is no problem, because the 

flow is all in one direction, and the area we 

normally consider is one perpendicular to the 

flow. If we then take the limit, as each sub- 

area becomes infinitely small, the term on the 

right becomes the integral, over the entire sys- 

tem boundary at point 1, of pV dA. Therefore, 

the steady-state mass balance for the system 

shown in Fig. 3.2 is 

FIGURE 3.2 h= “) pV dA — fi PV dA (3.G) 
area | area A system with one flow in and one flow out. 
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But we could choose points 1 and 2 to be any locations in the pipe, so for steady- 

state flow in a pipe or channel this equation becomes 

pV dA = constant [steady flow in a pipe or channel] (3.11) 
area at any boundary 
perpendicular to the flow 

3.4.1 Average Velocity 

No real flow has a completely uniform velocity over the whole cross section. But for 

many problems we use an appropriate average velocity as if it were uniform across 

the whole cross section. The constant in Eq. 3.11 is the total mass per unit time pass- 

ing down the pipe or channel, called the mass flow rate. It is normally measured in 

kg /s or lbm/s and given the symbol m. If the density is uniform across the cross 

section of the pipe or channel (almost always practically true) then we may further 

define 

= Q=——— =— (3.12) 
ees mass flow rate m 

density p flow rate 

(In civil engineering books this quantity is called the discharge.) If we now divide the 

volumetric flow rate by the cross-sectional area of the pipe or channel, we find 

Av ( | = Veverage = 2 (3.13) 
velocity A 

Example 3.4. A typical self-service gasoline pump puts 15 gal of fuel into 

our tank in 2 min. The inside diameter of the nozzle is 1.0 in. What are the vol- 

umetric flow rate, mass flow rate, and average velocity? 

The volumetric flow rate is 

Y wy Legal a gal fc 2 t out one 0.0167 — = 0.00047 3.) 
t 22min s ; ~ min, 

The density of gasoline varies from refiner to refiner and with time of the year. 

On average, it has an SG of about 0.72, so that 

Ibm Ibm kg 
3 

ft" 
m = Op ~ 0.0167 — - 0.72 - 62.3 —- = 0.75 — =034— GJ) 

Ss ft" Ss Ss 

and 

Q 0.0167 ft?/s 144 in? ft m 
Vieeiss = = = = 3.06— = 0.93 — ; 

S viata (ei A)alinAs of ae ee 
af 

3.4.2 Velocity Distributions 

For most of the rest of Parts I, II, and III of this book we will characterize a flow in 
a pipe or channel as having one velocity (the block flow or plug flow assumption), the 
average velocity calculated above. How good an approximation is that? How big a 
price in accuracy do we pay for the huge calculational simplification we get that way? 
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FIGURE 3.3 

Velocity distributions in a circular pipe with an average velocity of 6 ft / s. 

The Block flow curve (vertical line) corresponds to the simplification that 

the whole flow may be represented by its average velocity. The Laminar 

flow curve (discussed in detail in Chap. 6) shows that for this type of flow 

the velocity at the center of the pipe is twice the average velocity, and the 

velocity distribution is parabolic. The Turbulent curve is an approximation 

of experimental measurements, represented by “Prandtl’s 1 / 7 power rule” 

(see Prob. 3.10 and Chap. 17). 

“Figure 3.3 compares the velocity distributions in a pipe computed by various 

assumptions. In all three cases the average velocity, Vayerage = 6 ft/s, a common velocity 

in industrial pipe flow. Figure 3.3 shows that for the block flow assumption, the velocity 

is constant at 6 ft/s over the entire cross section of the pipe. Turbulent flow, discussed 

in Chap. 6, is the most common type of flow in industrial pipes, tubes, and channels. 

The curve shown for turbulent flow is an approximation; see Prob. 3.8. It shows that the 

velocity goes to zero at each of the pipe walls, as you can observe in flows in a river or 

rain gutter. For the average velocity to be 6 ft/s, the maximum velocity at the center of 

the channel must be 7.35 ft/s. Laminar flow, also discussed in Chap. 6, occurs in very 

small pipes and channels (e.g., almost all the blood flows in your body) and for high- 

viscosity fluids (pouring syrup on your pancakes) but not very frequently in common 

industrial flows. We will speak more about it in subsequent chapters. For laminar flow, 

as for turbulent flow, the velocity at the pipe walls is zero. To have the average velocity 

be 6 ft/s, the maximum velocity at the center must be 12 ft/s. 

The average kinetic energy (KE) and average momentum in a pipe flow (dis- 

cussed in Chap. 7) are always somewhat larger than those corresponding to the aver- 

age velocity, because in calculating them (Probs. 3.10 and 3.11) we see that the 

velocity appears to the second or third power. Table 3.1 shows how much difference 

it makes if we assume either of these three distributions. For example, laminar flow 

is quite different from block or turbulent flows; we will speak more about that in 

Chap. 6. But turbulent flow is not much different from block flow. If we estimate the 

kinetic energy in a turbulent flow by the block flow (average velocity) assumption we 
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TABLE 3.1 

Comparisons of block flow, turbulent and laminar velocity distributions 

Block flow Turbulent flow Laminar flow 
te eS eee Ee eee 

Maximum velocity Waverace W22 Vaversse ZOU Viverage 

Minimum velocity Vaverre 0 0 

Ve e Va Vive 

Kinetic energy per unit mass ae 1.06 - =r Ot 2.00 ° 5 

Total momentum in the flow Were we pA 1.014- Vile pA 13333 pein pA 

will make an error of only about 6%. If we estimate the momentum in the flow by 

the same simplification, we will make an error of about 1.4%. We rarely have input 

data (in industrial situations) accurate enough to worry about errors this small, so we 

will normally ignore these differences. For the rest of Parts I, I, and III of this book 

we will make the block-flow assumption, that the velocity of flow in a duct, pipe, or 

channel is adequately represented by its average value. Where we do not make that 

assumption, we will make that clear in the text. For the most careful work, reconsider 

that assumption, looking again at Table 3.1. Table 3.1 applies only to flow in a cir- 

cular pipe or duct; for other geometries (the atmosphere, the oceans, all two- and 

three-dimensional flows), the results are more complex. 

With this simplification, and the additional (very good) assumption that the den- 

sity of the fluid is constant across the cross section, the integration in Eq. 3.11 can 

be easily performed, giving 

pyA:V; = p2A2V2 = m = constant [steady flow in a pipe or channel] (3.14) 

Example 3.5. In a natural-gas pipeline at station 1 the pipe diameter is 2 ft 

and the flow conditions are 800 psia, 60°F, and 50 ft/s velocity. At station 2 

the pipe diameter is 3 ft and the flow conditions are 500 psia, 60°F. What is 

the velocity at station 2? What is the mass flow rate? 

Solving Eq. 3.14 for V2, we find 

(Z\e ft)? A ft 4 
Wace ae me (3.K) 

pr2A S p2 
; f (Z\c ft)? 

The density of natural gas (principally methane) at 800 psia and 60°F is APPLOK: 
imately 2.58 lbm / ft®, and at 500 psia and 60°F it is approximately 1.54 Ibm / ft? 
[3]. Therefore, 

7 o) 

: rool (EAE A pA, _ ft 2.58(Ibm / ft) (=) r ‘a 
Ma SV roe at ise hae t = 37 Qipsadl ld 
sin a2 Dota S 1.54(lbm/ft*) (a - ely i s Sk) 

ravi} Saft) 

brn ft 
DV ay rpelciovacm > raps 7d 05 = = = 184 (3.M) 
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. For liquids at temperatures well below their critical temperature the changes in 
density with moderate temperature and pressure changes are small. Therefore, for liq- 
uids we can divide the density out of Eq. 3.14, finding 

25 constant density 

A,V, = AxV2 = 7 = constant steady flow ina (215) 

pipe or channel 

Mass divided by density equals volume; therefore, the constant in this equation (the 

mass flow rate divided by the density) is the volumetric flow rate, Q, discussed above. 

Example 3.6. Water is flowing in a pipe. At point 1 the inside diameter is 0.25 m 

and the velocity is 2 m/s. What are the mass flow rate and the volumetric flow 

rate? What is the velocity at point 2 where the inside diameter is 0.125 m? 

k k Ib ri = p\ViA; = 998.2 -2 = - = (0.25 m= 98.0-= = 216 B.N) 
m s 4 S S 

Q = = ya, =2™-7 0.25 m)? = 0.09817" = 3.46 Go i 1A; 5 ag alr Aoi (3.0) 

T 

— }(0.25 my? A (=) ft 
Vo =V,2=2— =~ =22- (.P) 

A> S [7 2 S Ss 
(=)(0.125 m) 
4 

® 

3.5 UNSTEADY-STATE MASS BALANCES 

The steady-state behavior of systems, shown in the preceding examples, is very impor- 

tant. Most of the examples and problems shown in elementary textbooks concern 

steady-state behavior. However, unsteady-state behavior is probably more important. 

The characteristics of the two are compared in Table 3.2. 

A power plant burns fuel and produces electricity by means of a boiler, tur- 

bine, condenser, generator, etc.; its steady-state behavior is fairly easy to calculate. 

However, its behavior when the power demand on the generator is suddenly increased 

or decreased is much more difficult to calculate. The power company would prefer 

TABLE 3.2 

Comparison of steady-state and unsteady-state processes 

Property Steady state Unsteady state 

Calculations Generally easy More difficult 

Normally requires calculus? No Yes 

Setup in laboratory Difficult Easy 

Large-scale industrial use Desirable Undesirable 

Efficiency Generally high Generally lower 

Capital cost per unit of production 

Large-volume product (e.g., gasoline) Low High 

Small-volume product (e.g., pharmaceuticals) High Low 
 ————————— 
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to have a steady load, because then they could always operate the plant at its 

maximum efficiency. Nonetheless, they must plan for and be equipped for sudden 

load disturbances (e.g., a lightning strike shuts down a major consumer, thus quickly 

reducing the power demand). It has also been observed that most industrial disas- 

ters, such as explosions and fires, do not occur during periods of steady-state oper- 

ation but during startup or shutdown of some processing unit, for example, the 

Chernobyl nuclear disaster in 1986 near Kiev. It occurred during an unusual shut- 

down. Thus we see that the unsteady-state behavior is very important and worthy of 

our attention. 

Unsteady-state mass balances do not introduce any new ideas beyond those seen 

so far. However, as shown by the following examples, they generally lead to more 

complicated mathematics. 

Example 3.7. The microchip diffusion furnace in Fig. 3.4 contains air, which 

may be considered an ideal gas. The vacuum pump is pumping air out prior 

to beginning the thermal diffusion step. During the pumpout process the heat- 

ing coils in the tank hold the temperature in the tank constant at 68°F. The 

volumetric flow rate at the inlet of the pump, independent of pressure, is 

1.0 ft? / min. How long does it take the pressure to fall from 1 atm to 

0.0001 atm? 

We choose as our system the tank up to the pump inlet. For this system 

the mass balance gives 

(2) ‘ (3.Q) 
_—_— on ==>Fit u 

Js 

dt system ag 

But we know that 

Msystem Ft system Psystem (3.R) 

where V,)stem 18 the volume of the system, which does not change. Thus, 

dm GD. crear 

mone = V, ste 
7 

( dt eM ast dt 3 

Furthermore, 

Mou = Cou Dom (3:T) 

But Q.,; is constant and 

Volume 10 ft? 
68°F Pout = Psystem (3.U) 

so that 
Heater 

APpsys 
Vacuum Vays = Ooi Psys (3.V) 

pump dt 

Taree This As separable, first-order differential 
controller equation, which can be rearranged to 

FIGURE 3.4 APsys Qout yay seme (3.W) Evacuation of a microchip diffusion furnace. Psys V 
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and integrated from initial to final states, yielding 

Ps s, fina ou 

ee Oe (3.16) 
Psys, initial Vigs 

For low-pressure gases at constant temperature the densities are propor- 
tional to the pressures, so we can solve for the required time: 

Voys Pina __1Oft? 1 atm 
At = =—, pe 

Qout Piinat 1ft’/min 0.0001latm 
= 92.1 min (3.X) 

& 

Example 3.8. In Example 3.7 we considered a vacuum system with zero leaks. 

No real vacuum systems are totally leak-free; engineers work very hard to keep 

the leakage rate as low as possible. If the tank in Example 3.7 has a leak of 

0.0001 Ibm / min of air, what will the pressure-time plot look like, and what will 

be the final pressure? 

Equation 3.Q becomes 

dm . : 
at ceed 1 ares RL Sig 
( dt pots vou Bb 

we then follow the preceding problem, retaining mj, as a constant in our equa- 

tions. We find 

apsys ; 

ae dt 7G Gen Psys Hi Min (3.Z) 

dp sys ary Qout 
: = dt (3.AA) 

[Pays in (Min / Qout)] Voys 

sys, final Min! Qou ou oe ) _ Gow 4, (3.17) 
Psys, initial — (Min / Qout) Voys 

If we ask how long it takes this system to reach 0.0001 atm, we will find that 

it can never get there. To see why, we ask what its steady state pressure is by 

setting At = ©. That can only be possible if the numerator of the fraction on 

the left becomes zero, or 

Mm; 0.0001 Ibm / min Ibm 
halts asleep ee ee 10-000 (3.AB) 
0. 1 f° / min fe 

At 68°F = 20°C the density of air is 0.075 Ibm/ ft’, and for ideal gases densi- 

ties are proportional to pressures, so 

0.0001 Ibm / ft? 
0.075 Ibm / ft? 

Solving Eq. 3.17 for the density at any time, we find 

Min Baik Min 

Psys, any time — (oa initial a exp — 2 as) a OR 
sys 

= 0.00133 atm (3.AC) sy steady state = | atm 

Ibm 0.1 Ibm 
= e(), — ee eA Ct O.OU0L (aA) (0.075 — 0.0001) 3 exo( we ) Pe ( ) 
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FIGURE 3.5 
Calculated pressure-time behavior of the microchip diffusion furnace 

with zero leakage (Example 3.7) and with a constant 0.0001 lbm / min 

leakage (Example 3.8). 

For At = 50 min, we have 

Ibm 0.1 : Ibm 
Psys, 50 mine 010749, Fe exp( 24 ZOU) min + 0.0001 rm 

Ib 
= 0.000505 + 0.0001 = 0.000605 ae (3.AE) 

and 

0.000605 Ibm / ft* 
Pegi = iatii = = 0.00806 atm (3.AF) 

0.075 Ibm / ft 

The same calculation is repeated for other times, on a spreadsheet. The result- 

ing pressure-time curves for this example and the previous one are shown in 

Fig. 3.5. m 

In many unsteady-state mass-balance problems it is convenient to take as the 

system the fluid within some container. Thus, as the mass of fluid increases or 

decreases, the volume of the system will change. 

Example 3.9. A cylindrical tank 3 m in diameter, with axis vertical, has an inflow 

line of 0.1 m inside diameter and an outflow line of 0.2 m inside diameter. Water 

is flowing in the inflow line at a velocity of 2 m/s and leaving by the outflow 

line at a velocity of 1 m/s. Is the level in the tank rising or falling? How fast? 

Here we take as our system the instantaneous mass of water in the tank. 
For this system 

dm ‘ : 

( dt ‘al Pak: Aout oe 
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For any fluid we have m = pV and m = pQ. Substituting these into the last 
equation and canceling the constant density, we find 

dV 
(= ie Z. On cay Oo (3.18) 

The volumetric flow in or out is equal to VA, so 

dV m 7 mea — =o hy Pommepesdg aah : 2 eae cy (@.tmn)" — 4 ee, (0.2 m) 

3 
0.0157 — 0.03147 ~0.0157 ~— (3.AH) 

The volume of liquid in the tank is decreasing, and the level is falling. The rate 

of decrease of volume is equal to the cross-sectional area times the rate of fall 
of the level: 

dV d. (<) 4 Zsurface 

dt system dt 

Bn 1 dV 1 ; 
el eee a, (-o.0157 ) 

dt Adt (m/4)(3m) s 
ft 

= ~0.0022 = = —0.00673 = (3.AD) 

3.6 MASS BALANCES FOR MIXTURES 

In the preceding examples, the flowing materials have been uniform single species, 

such as air or water. In most of the rest of this book we will deal with such uniform 

single species. However, there are many problems of great interest in which two or 

more components mix inside the system we are considering. If we make the simplest 

possible mixing assumption—perfect mixing of all components—then we can apply 

the simple balance equation as we have done before and find useful answers. The per- 

fect mixing assumption is obviously a great simplification of what must occur in 

nature, but it is often used because the results are so simple and useful. Several exam- 

ples illustrate the idea. 

Example 3.10. Figure 3.6 is a sketch of a rectangular city with length L and 

width W. The wind blows over the city in the x direction with velocity V. Atmo- 

spheric turbulence mixes the air over the city up to the height H, so we may 

assume that the air in the “box” with dimensions L times W times H is well 

mixed and has the same pollutant concentration c everywhere. The air flowing 

into the upwind side of the city has pollutant concentration b (which stands for 

background concentration). The city emits pollutants into the atmosphere uni- 

formly over its surface with an emission rate g. {Here g would have dimensions 

like kg /(m?~s). This uniform-emission assumption is a fair one for emissions 

from autos or small industry, which are more or less uniformly spread over the 

city, but a very poor one for emissions from a single large factory or power 
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FIGURE 3.6 

Idealized city used for Example 3.10. 

plant; such emissions are treated a very different way in air pollutant modeling 

and regulation. [4], Chap. 6.} What is the concentration of pollutant in the air 

over the city in terms of g, V W, L, and H? 

Here we make the steady-state assumption, that the concentration is not 

changing with time, so that the algebraic sum of the flows of pollutant in and 

out must be zero. Writing that sum, we see 

Flow rate of flow rate of 

0 = | pollutant into + | pollutant into 

city from upwind city air from city 

flow rate of pollutant : 

— | out of downwind (3.AJ) 

edge of city 

The pollutant flow rates are expressed as concentrations (e.g., kg / m*) times vol- 

umetric flow rates (e.g., m*/s), so 

0 = bVWH + qLW — cVWH 

an 3.19 c VHT (3.19) 

Equation 3.19 says that the pollutant concentration in the city is equal to that 

in the air entering the city (the background concentration) plus a term (qL / VH) 
that indicates how much the pollutant concentration has been increased by the 

emissions from the city itself. This is the “box model” or “proportional” or “roll- 

back” equation, which has played a very important role in the formulation of 

air pollution regulations in the USA [4]. | 
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Example 3.11. Our paint shop will use a special paint that contains benzene 
as a solvent. In the course of an 8-h day the paint will evaporate 5 kg (22 Ib) 
of benzene (¢ = 5kg/8hr). The shop dimensions are 10m:4m-:4m. To 
protect the health of our workers, we must limit the concentration of benzene 
in the shop air to less than or equal to the industrial hygiene standard for ben- 

zene [5], which was 1.3 mg / m° in 2003. If we want to keep the concentration 

c of benzene in the shop at or below this permitted concentration, how large a 

flow of ventilating air must we supply? 

This problem is very similar to Example 3.10. Here we assume that the 

benzene is well mixed into the air in the shop and that the air leaving the shop 

will have the permitted benzene concentration. Making a steady-state benzene 

balance on the shop, taking the inlet air flow as Q, we write 

ie ™ venzene in + ™ venzene evaporated - M yenzene in . Qb + ae Qc (3.AK) 
inlet air from paint outlet air 

Now we observe that there is negligible benzene in the incoming air (b = 0), 

so we can solve for Q, finding 

5kg/8h m 
= a = —_ 10° = = 481,000 

c¢ 1.3mg/m h 

m> ft? 
8000 —— = 283,000 

min 
(3.AL) 

a 
min 

This example (called the well-mixed model in industrial hygiene [6]) shows 

that, for the assumption of perfect mixing of the benzene into the shop air, it is 

quite straightforward to compute the required dilution air to meet the industrial 

hygiene standard. We can also see that this is an impossibly large airflow rate. If 

we divide the above flow rate by the cross-sectional area of the shop (4m-°4m), 

we find 

8000 m? / mi ft oa bn Se ET No 
A 16m min Ss Ss 

Velocity = = 18 = (3.AM) 

This very high velocity could hardly be used inside a paint shop. Our practical 

alternatives are to choose a less toxic solvent, for which the permitted concentration 

is higher, or to devise some kind of ventilation system, like a laboratory fume hood, 

that will prevent the mixing of the benzene with the air the workers breathe or to pro- 

vide the workers with personal protective devices. We also need to consider the air 

pollution consequences of emitting 5 kg / day of benzene to the atmosphere; in most 

U.S. cities that would require a permit and probably some form of capture or destruc- 

tion of the benzene. 
These two examples appear here because every chemical engineer is both an 

environmental engineer and a safety engineer. We are responsible for protecting the 

public and the workers under our supervision from harm due to our activities. The 

completely mixed model used here is also useful for more traditional chemical engi- 

neering problems. 
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TABLE 3.3 

Comparison of Examples 3.7 and 3.12 
SN ee eee eee 

Example 3.7, vacuum Example 3.12, tank 

Type of variable pump down washout 

Capacity variable Tank volume, Vystem Liquid volume, Vjiguia 

Flow variable Pump-out rate, Qout Flow-through rate, Qhiguia 

Concentration variable Gas density, Psystem Salt concentration, Cyt 

Starting variabie Initial gas density, Pxys, init Initial concentration, Catt. init 

P J p iE Cyalt 
Resulting ratio = —= 

Pin ‘| atm Csalt, initial 

Time variable Time, t Time, ¢ 

Example 3.12. A tank contains 1000 m° of salt solution, with salt concentra- 

tion = 10 kg/ m>. At time zero, salt-free water . arts to flow into the tank at a rate 

of 10 m*/ min. Simultaneously, salt solution flows out of the tank at 10 m° / min, 

so that the volume of solution in the tank is always 1000 m®. A mixer in the tank 

keeps the concentration of salt in the entire tank uniform so that the concentration 

in the effluent is the same as the concentration in the tank. What is the concen- 

tration in the effluent as a function of time? 

This example is exactly the same as Example 3.7, with the variables 

renamed, as shown in Table 3.3. The reader may make the substitutions shown 

there and have the resulting solution to this problem. See also Prob. 3.21. This 

same problem appears in heat transfer and mass transfer, with the variables 

renamed. a 

3.7 SUMMARY 

i 

2 

Balances are important in engineering. 

All balances can be made from the general balance equation (accumulation = 

creation — destruction + flow in — flow out) by dropping the unnecessary terms. 

. All balances can be divided by time to make rate equations. 

In any balance it is necessary to choose and state the boundaries over which the 

balance is made. Whatever is inside the boundaries over which the balance is made 

is called the “system.” Whatever is outside is called the “surroundings.” 

. The mtost important engineering balance is the mass balance, in which the creation 

and destruction terms are zero. This is also called “the continuity equation” or “the 
principle of conservation of mass.” 

In applying the mass balance to flowing fluids, we normally speak of the mass 
flow rate and the volumetric flow rate. We also normally assume that the average 
velocity adequately represents the fluid behavior, although we know that the most 
precise work must take into account the fact that the velocity is not uniform across 
the flow. 

The completely mixed model, used in several examples in this chapter, is 
immensely useful. 



CHAPTER 3 THE BALANCE EQUATION AND THE MASS BALANCE 99 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover of 
this text. An asterisk (*) on the problem number indicates that the answer is in App. D. 

3.1. In our balance equation for the population of the state of Utah, we must resolve several 

questions of definition. For example, are out-of-state students to be counted in the pop- 

ulation of Utah? Are tourists driving through the state to be counted while they are here? 

List several other ambiguous groups for which we must make a definition. 

3.2. Write out the balance for the number of one-dollar bills in circulation in the United States. 

3.3. Write out the balance for the mass of refined sugar in the state of Idaho (which is a sugar- 

producing state). 

3.4. A child’s toy balloon has just had its neck released. It is zipping through the air and 

shooting air out its neck. Write out the balance for the mass of air involved. Are your 

system boundaries fixed in space? Are they fixed in size? Are they identifiable? 

3.5. Write a carbon-atom balance for an automobile that is driving at a constant speed; include 

the carbon atoms that are bound in chemical compounds as well as the free carbon atoms. 

Consider other flows of carbon atoms than those in the exhaust gas. There are more terms 

in this balance than most students expect. 

3.6. Write a mass balance for an exploding firecracker. 

3.7.*A river has a cross section that is approximately a rectangle 10 ft deep and 50 ft wide. 

The average velocity is 1 ft/s. How many gallons per minute pass a given point? What 

is the average velocity (assuming steady flow) at a point downstream, where the channel 

shape has changed to 7 ft in depth and 150 ft in width? 

3.8. The annual flow of the Colorado River below Glen Canyon Dam is approximately 

10’ acre-ft / yr, where an acre-ft is the volume needed to cover one acre, one foot 

deep ~ 4.35: 10° ft®. This flow is not steady over the year, but varies from season to sea- 

son. At a point where the river is 200 ft wide and 10 ft deep (assume for this problem 

that the river has a rectangular cross section), what is the velocity of the river, averaged 

over the whole year? 

3.9. In March 1996 a special release of water, Q = 45,000 ft? /s, was made from the Glen 

Canyon Dam, to create an “artificial flood” in the Grand Canyon. 

(a) The flow was through 8 pipes, each with an internal diameter of 8 ft. Estimate the 

velocity through those pipes. 

(b) Estimate the average velocity of the river at some point downstream of the dam, 

where the width of the river was 200 ft and its average depth was 10 ft. 

3.10. There is steady flow in a circular pipe. The average velocity is given by 

Be Q * r=Twall / 2 

V average as A > wi V+ 2mrdr TF wall (3.20) 

Calculate the ratio of the average velocity to the maximum velocity for each of the fol- 

lowing cases. Compare your results to those shown in Table 3.1. 

(a) The flow is laminar (to be discussed in Chap. 6), and the local velocity at any point 

in the pipe is given by 

2 2 
Tw: stad 

V = Vinax (Sa) (3.21) 
wall 

where r is the radial distance from the center of the pipe and 7. 1s the radius at 

the wall of the pipe. 
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(b) The flow is turbulent (to be discussed in Chap. 6), and the local velocity is given by 

Twat — 7 1/7 

i ae (“1 ) (3.22) 
Twall 

(c) This is Prandtl’s 1/7 power rule, which is a good but not outstanding approxima- 

tion of the velocity distribution in turbulent flow in a circular pipe. It is the best sim- 

ple mathematical description of that distribution; see Table 17.1 and Fig. 17.7. At 

higher average velocities the | /7 is replaced by 1 / 10. Repeat part (b) using 1 / 10 

instead of 1/7. 

3.11. See the preceding problem. 

(a) The average kinetic energy per unit mass in any flow in any circular conduit is 

given by 

Average kinetic of “(V2/2)+ V+ ar dr 

energy, per = ae (3.23) 

unit mass | ‘ V-2ar dr 

but the denominator of this fraction equals 

ih is Vi 2 ara Q a Vaverace _— TT all Vaverape (3.24) 

so that Eq. 3.23 simplifies to 

Average kinetic if arn V?-rdr 

energy, per 

unit mass 

(3.25) 
2 

Fwall Vietexagé 

Show that substituting Eqs. 3.21 and 3.22 for V in this equation, integrating, and sim- 

plifying leads to the values shown in Table 3.1. 

(b) The total momentum flow in a pipe is given by 

(19 prt ete) 

flow “3 fs flow area ee / 0 a i noch a) yee 

For block flow this simplifies to 

Total momentum 5 
flow = ivemee Pa [block flow] (GL-T) 

Show that substituting Eqs. 3.21 and 3.22 for V in Eq. 3.26, integrating, and simplify- 

ing leads to the values shown in Table 3.1. Show the corresponding values for 1 / 10 
instead of 1/7 in Eq. 3.22. 

3.12. An ideal gas is flowing in a constant-diameter pipe at a constant temperature. What is 
the relation of average velocity to pressure? 

3.13.*A column of soldiers is marching 12 abreast at a speed of 4 mi/h. To get through a nar- 
row pass they must crowd in to form a column 10 men abreast. Assuming steady flow, 
how fast are the soldiers moving when they are 10 abreast? 

3.14.*A water tank has an inflow line | ft in diameter and two outflow lines of 0.5 ft diame- 
ter. The velocity in the inflow line is 5 ft/s. The velocity out one of the outflow lines is 
7 ft/s. The mass of water in the tank is not changing with time. What are the volumet- 
ric flow rate, mass flow rate, and velocity in the other outflow line? 
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3.15. A compressed-air vessel has a volume of 10 ft*. Cooling coils hold its temperature con- 
stant at 68°F. The pressure now in the vessel is 100 psia. Air is flowing in at the rate of 
10 Ibm /h. How fast is the pressure increasing? 

3.16.*Repeat Example 3.8 for a leak rate of 0.001 Ibm / min. 
3.17. The tank in Example 3.8 has a leak that admits air at an unknown but constant rate. We 

find that it takes 72 min to reach a pressure of 0.001 atm. 

(a) What is the leakage rate, in lbm/ min or some equivalent units? 

(b) What will the steady-state pressure be? 

3.18. The tank in Example 3.8 has a leak that admits air at the rate 

. _ 0.0005 Ibm 
ee ee Te WP sash: > Prank) (3.AN) 

min~: atm 

How long does it take the pump to reduce the pressure in the tank from 1 atm to 0.01 

atm? What is the steady-state pressure in the tank? 

3.19.*A lake has a surface area of 100 km’. 

One river is bringing water into the lake 

at the rate of 10,000 m?/ s, while another 

is taking water out at 8000 m*/s. Evap- 

oration and seepage are negligible. How 

fast is the level of the lake rising or 

falling? 

3.20. The tank in Fig. 3.7 has an inflow line 

with a cross-sectional area of 0.5 ft* 

and an outflow line with a cross- 

sectional area of 0.3 ft”. Water is flow- 
FIGURE Sei ing in the inflow line at a velocity of 
dank with twortluids for /Prob.3.20. 12 ft/s, and gasoline is flowing out the 

outflow line at a velocity of 16 ft/s. How many lbm/s of air are flowing through the 

vent? Which way? 

3.21.*A vacuum chamber has a volume of 10 ft®. When the vacuum pump is running, the 

steady-state pressure in the chamber is 0.1 psia. The pump is shut off, and the following 

pressure-time data are observed: 

Time after shutoff, min Pressure, psia 

0 0.1 

10 1.1 

20 2 

30 Bul 

Calculate the rate of air leakage into the vacuum chamber when the pump is running. Air 

may be assumed to be an ideal gas. The air temperature may be assumed constant at 68°F. 

3.22. Finish Example 3.12, showing the resulting numerical values and their dimensions. Can 

you use Fig. 3.5 in this problem? 

3.23. Repeat Prob. 3.22, except now there is a layer of solid salt on the bottom of the tank, 

which is steadily dissolving into the solution at a rate of 5 kg / min, and the inflowing 

water contains no salt. 

3.24. Repeat Prob. 3.22, except that the outflow is only 9 m? / min, so that the total volume of 

liquid contained in the tank is increasing by | m? / min. 
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3:25. Rework Example 3.7 with the following change. The tank is now somewhat flexible, so 

that it is being slowly crushed by the surrounding pressure. If it is crushed at such a rate 

that its volume decreases steadily by 0.1 ft® / min, and this rate of volume decrease begins 

as soon as the vacuum pump starts, how long does it take the pressure to fall from 1 atm 

to 0.0001 atm? 

3.26.*While Moses was crossing the Red Sea, he took up a liter of water, examined it, and 

Sea. 

then threw it back. The tides, currents, evaporation, and rainfall, have been steadily mix- 

ing the waters of the world’s oceans since, so we may assume (for this problem only!) 

that the molecules in that liter of water have now been uniformly distributed over the 

waters of all the oceans of the world. If you pick up a liter of water from the ocean and 

examine it, how many molecules will it contain that were in the liter which Moses exam- 

ined? State clearly your assumptions and simplifications. 

The typical human being breathes about 10 times / min and takes in about 1 liter per 

breath. Assuming that the atmosphere has been perfectly mixed since Julius Ceasar’s time, 

estimate the number of air molecules that you take in with a single breath that at some 

time were breathed in and out by Julius Caesar, who lived 56 yr. 
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CHAPTER 

A 
THE FIRST 

LAW OF 
THERMODYNAMICS 

W e have seen how the general balance equation applies to people and mass. We 

now apply it to the abstract quantity energy to find the energy balance, which 

is also called the first law of thermodynamics or the law of conservation of energy. 

This is one of the four basic ideas listed in Sec. 1.3 and one of the few truly funda- 

mental laws of nature. Like the others, it cannot be derived from any more basic prin- 

ciple; rather, it rests on its ability to explain all the pertinent observations of nature 

ever made and on the fact that all experiments designed to prove or disprove it have 

indicated that it is true. 

4.1 ENERGY 

The idea of energy and the first law of thermodynamics arose out of observations of 

friction heating. By the early 1800s scientists knew that a moving body possessed 

what we would call kinetic energy. They also knew that if it was allowed to come to 

rest by sliding across a rough surface, it lost this kinetic energy, but it and the sur- 

face became hotter. Various explanations of this phenomenon were tried, but, princi- 

pally through the work of Rumford, Joule, and Mayer [1], the idea was introduced 

that in any such process there is a quantity called energy that is conserved. This quan- 

tity could appear in the form of kinetic energy or of heat. We will see that it can also 

appear in other forms. 
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Like the law of conservation of mass, the law of conservation of energy seems 

intuitively obvious to us today. But it was far from obvious to scientists or the pub- 

lic before about 1800 that the various forms of energy were all manifestations of the 

same quantity. Furthermore, there is no satisfactory, simple definition of energy. The 

definition can be simple or accurate, but not both. The technically accurate definition 

is that energy is an abstract quantity, which can appear in various forms, which can 

be converted from one form to another subject to some restrictions, and which appears 

to be conserved in all energy transactions. 

Some quantities in engineering have absolute values: temperature, entropy, length, 

and mass (excluding relativistic effects). For each of these there is defined a standard 

unit of measurement, and the meaning of a zero amount of the quantity is clear. 

Other quantities in engineering have only relative values. The simplest example 

is elevation. We can speak of elevation relative to mean sea level, relative to some 

convenient bench mark, relative to ground level, or relative to the center of the earth. 

Any of these is useful. However, an “elevation of 23 ft” without mention of the datum 

is meaningless. Another example of a relative quantity is velocity. Normally we con- 

sider velocity relative to the local surface of the earth, and a “velocity of 23 km/hr” 

is perfectly clear. However, this statement has a built-in assumption of a datum, 

namely, the surface of the earth. If we speak of a star moving at 23 km/s, we prob- 

ably mean relative to the sun, but we could mean relative to the earth or to the cen- 

ter of our galaxy. We must state our datum, unless the datum is understood by all. 

All energy quantities are relative to some arbitrary datum. This statement is 

made simply so that you will remember it; a more precise statement is that no one 

has yet found a way to measure or to calculate absolute values of energies. From this 

it follows that all energy calculations will be based on changes in energy or on ener- 

gies relative to some arbitrary datum. This need not trouble us; all the buildings in 

the world were designed relative to some arbitrary elevation datum without any par- 

ticular trouble about the datum. 

4.2 FORMS OF ENERGY 

As already implied, energy has many forms, and they are interconvertible, subject to 

some restrictions (which apply only to the direction of conversion). Consider a 1 kg 

ball of steel. What forms of energy can it possess? 

4.2.1 Internal Energy 

If the steel ball is at a temperature of 20°C, you can hold it in your hand. If it is at 
a temperature of 200°C, you cannot hold it in your hand very long. Clearly, the ball 
at 200°C produces effects that the ball at 20°C cannot. Yet, if we measure the mass 
of the ball, it is the same at 20°C as it is: at 200°C (within the precision of current 
measuring techniques). If we could label the atoms when the ball was at 20°C and 
take a census of them when the ball was at 200°C, we would find exactly the same 
atoms present. Therefore, the difference between what the ball will do at 20°C and 
what it will do at 200°C is not dependent on changing the mass or identity of the 
matter present. Something else obviously is involved. We will say for now that a body 
that is hot possesses more internal energy than the same body does when cold. 



CHAPTER 4 THE FIRST LAW OF THERMODYNAMICS 

Now suppose that instead of an iron ball we had a balloon that contains a mix- 

ture of gasoline and oxygen with a total mass of 1 kg at 20°C. Now we can intro- 

duce a small spark, and the contents of the balloon will become very hot (explosively). 

After a moment the contents will be much hotter than at the start, and they will have 

a different chemical composition; instead of being oxygen and gasoline, they will be 

carbon dioxide and water vapor. Clearly, the oxygen-gasoline mixture at 20°C can 

produce effects that the mixture of carbon dioxide and water (when cooled to 20°C) 

cannot. Therefore, there must be a difference in energy. This we classify as a change 

of internal energy. 

Thus, an approximate rule (with exceptions to be seen later) is that internal 

energy is a measure of hotness plus the ability to cause heat-releasing chemical reac- 

tions. A more complete definition will be given in Sec. 4.6. We will denote internal 

energy of some mass of matter by U and internal energy per unit-mass by y, 

(U = mu). The use of uppercase letters for the total quantity and lowercase letters for 

the quantity per unit mass is very common in thermodynamics and will be used exten- 

sively in this chapter. The quantities per unit mass are often called specific quantities; 

for example, u would be called specific internal energy. This use of two symbols 

makes sense only for extensive properties—those that double when the mass doubles. 

It is never used for intensive properties—those that do not depend on the amount of 

mass present. (What would one mean by “the temperature per unit mass?”) 

4.2.2 Kinetic Energy 

Let us return to our 1 kg ball of steel. If I hand it to you gently, you can easily hold 

it. If I deliver it to you at a velocity of 100 m/s and you are foolish enough to get 

in the way, it will certainly kill you. The fast-moving ball can produce effects different 

from those produced by the slow-moving ball. The difference we call the difference 

in kinetic energy. Kinetic energy is the energy that a moving body possesses because 

of its motion. We will call the kinetic energy of some mass of matter “KE” and kinetic 

energy per unit-mass “ke.” 

4.2.3 Potential Energy 

If our 1 kg ball of steel is resting on the floor, it is not likely to damage the floor. If 

it is resting on a shelf 100 m above the floor and is then gently pushed off, it will 

probably go right through an ordinary wood floor. When it reaches the floor, its kinetic 

energy is very large. However, when it was sitting on a shelf a 100 m above the floor, 

it did not have that kinetic energy, but it obviously had the potentiality of acquiring 

it by falling. This potentiality to do work, or to acquire kinetic energy, we call poten- 

tial energy. In this instance it is the energy which the body possesses by being some 

distance above “bottom” in a gravity field. We will call potential energy of some mass 

of matter “PE” and potential energy per unit-mass “pers 

If we fabricate our iron ball into a coil spring, it will have a certain length when 

relaxed. When we compress it, it will have another length but, given the opportunity, 

it will return to its original length and in doing so can give some other body kinetic 

energy. Toy guns work exactly this way. If we compare the compressed spring with 

the relaxed one, we see that the compressed spring has the potentiality of speeding 
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up a projectile or doing some other useful work. This is due to a difference in energy; 

one might logically call this “spring energy,” but most writers have agreed to call it 

potential energy. This is particularly true in physical chemistry, in which the “springs” 

are the repulsive force fields between atoms or subatomic particles. Throughout the 

remainder of this chapter we will consider potential energy to mean the energy that 

a body possesses due to its position in a gravitational field; however, we must remem- 

ber this other meaning. 

4.2.4 Electrostatic Energy 

Suppose we take our ball of iron and some convenient dielectric and fabricate a huge 

electric condenser out of it. If it is not charged, we can touch the terminals with our 

fingers without effect. If it is charged, placing our fingers over the terminals will be 

a shocking experience. The charged condenser can do things that an uncharged one 

cannot. This difference is due to what we call electrostatic energy. 

4.2.5 Magnetic Energy 

If our ball of iron is shaped into a rod or horseshoe and annealed, it will not attract 

iron filings. If we subject it to a properly designed magnetic field and then remove 

the field, it will attract the filings; it has become a magnet. A magnet can do things 

that a bar of unmagnetized steel cannot. The difference is due to what we call mag- 

netic energy. 

4.2.6 Surface Energy 

Salad oil, egg yolks, and vinegar do not form a homogeneous mixture. If they are 

gently shaken together and then allowed to settle, they will separate cleanly. If, how-| 

ever, they are beaten very vigorously, to break the oil into small droplets, then they 

will form a stable system called mayonnaise. Under normal conditions mayonnaise 

will not separate back into salad oil, egg yolks, and vinegar; it is an emulsion. Emul- 

sions possess properties their unmixed constituents do not. These are due to the sur- 

face energy of all the microscopic droplets that make up an emulsion. 

4.2.7 Nuclear Energy 

Einstein showed that matter and energy are interconvertible; their conversion is the 
basis of nuclear explosives and nuclear power plants and the source of energy in the 
sun and the stars. We will discuss this conversion in Sec. 4.11; for the moment, we 
restrict ourselves to saying that it is convenient to talk of some materials as if they 
possessed another kind of energy, called nuclear energy. 

Of the kinds of energy that matter can possess, only internal, kinetic, and poten- 
tial appear in common fluid mechanics problems. In most of the rest of this book we 
will consider only these three. The other kinds of energy are important in other fields. 
Electrostatic energy is the basis of xerographic copying machines, TV tubes, light- 
ning, and electrostatic air cleaners. Magnetic energy is the basis of computer disk 
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storage devices and videotapes and all electromagnetic devices, such as electric motors 
and generators. Nuclear energy is the source of all life; solar energy is based on 
nuclear energy. But these three play little role in simple fluid mechanics and will not 
be discussed further. Surface energy does play a role in fluid mechanics. Chapter 14 
examines that role. For the rest of this book, we will ignore it as well, so for fluid 
mechanics we normally consider that a mass of fluid has three types of energy; inter- 

nal, kinetic, and potential. 

4.3 ENERGY TRANSFER 

If a kilogram of matter can possess energy, how can that energy be transferred from 

one body to another? 

One way to transfer energy from one body to another is to place two bodies at 

different temperatures in contact with each other. It is our universal experience that 

in such circumstance the internal energy of the hotter body will decrease and the inter- 

nal energy of the colder body will increase. Therefore, energy must have flowed from 

one to the other. The energy that flows directly between two bodies in contact because 

of a temperature difference we call heat. 

Our definition of heat is different from the one in common use. We say, “Heat 

is energy in transit from one body to another because of a temperature difference.” 

English speakers commonly use “heat” interchangeably with “temperature.” This leads 

to expressions such as “It’s not the heat; it’s the humidity” or “Beat the heat with a 

Brand X air conditioner.” Clearly, these rest on the human experience that, when the 

temperature of the air is high, energy will flow into our bodies, uncomfortably. While 

it is flowing, it is “heat.” 

The idea of energy “‘in transit” is also contradicted by common usage. Many 

people refer to a hot body as containing a large amount of heat rather than a large 

amount of internal energy. Rain is water in transit from clouds to ground under the 

influence of gravity. We would scarcely look at a cloud and say, “Look at all that 

rain,” or look at the ocean and refer to “all that rain.” Another useful analogy is to 

electric current. While electrons are flowing from a battery to a condenser, we speak 

of them as an electric current, but when the flow has stopped, we speak of them as 

“charge” and speak of a “charged battery” or a “charged condenser.’ We would 

scarcely speak of a “currented” condenser or a “currented” battery. These ideas are 

summarized in Table 4.1. 

TABLE 4.1 

Comparison of three kinds of flows 

Name of species Potential difference Name of species 

at rest causing species to flow flowing 

Water Elevation difference Rain 

Electrons or charge Voltage difference Current 

Energy Temperature difference Heat 
a 
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The second way two bodies can exchange energy is by doing work upon each 

other. Again we must distinguish between an engineer’s idea of work and common 

English usage. For an engineer 

Work = if force : d(distance) = ih F dx (4.1) 

or its equivalent. A hod carrier lifting plaster up a ladder is doing work in the engi- 

neering sense of the word. However, if he is required to stand and hold a load of plas- 

ter on his shoulder for an hour, he is not doing work in the engineering sense, although 

he will certainly feel just as tired as if he had kept moving. Similarly, a baby-sitter 

is “working” in common usage but not in the engineering sense. If we rub two arti- 

cles together, such as two pencil erasers, and they resist the rubbing, then we must 

exert a force and move them. Thus, rubbing is work in the engineering sense. 

We have considered work only as a force times a distance, F dx. There can also 

be the work of rotating shafts and electrical and magnetic work, considered in 

Sec. 4.11. 

The third way two bodies can exchange energy is by radiation. The sun heats 

the earth by radiation, and x-rays and gamma rays change the energy of bodies by 

radiation. Radiation does not fit perfectly into either of the categories work and heat. 

However, with a little adjustment of the definitions, it can be made to appear as heat. 

When a radiation is due to a difference in temperature, such as that between the sun 

and the earth or between the glowing wires in the toaster and the slice of bread, then 

that radiation fits our definition of heat well, except that the bodies are not in con- 

tact. However, if gamma radiation is flowing from a cold piece of radium to a warmer 

piece of lead, heat appears to flow from a cold body to a hot body. If we focus our 

attention, not on the average temperature of the bulk of the radium, but on the indi- 

vidual atom emitting the gamma ray, we see that at the instant of emitting the ray it 

undergoes a nuclear event, which raises its instantaneous “temperature” to a very high 

value. If one considers this “temperature” instead of the temperature of the large mass 

of radium, then radiation fits the definition of heat fairly well. 

4.4 THE ENERGY BALANCE 

Now we are ready to write the general energy balance equation. To write any balance 

equation, we need a well-defined system of boundaries. Let us choose as our system 

the tank shown in Fig. 4.1. 

We begin our balance by excluding from consideration magnetic, electrostatic, 
surface, and nuclear energies. Thus, the only kinds of energy that a pound of matter 
can contain will be internal, kinetic, and potential, uw + ke + pe. The general balance 
says that 

Accumulation = flow in — flow out + creation — destruction (3.2) 

However, observations of nature have led to the conclusion that energy can be nei- 
ther created nor destroyed (excluding nuclear effects, to be discussed later); so, for 
energy the balance equation is 

Accumulation = flow in — flow out (4.A) 
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Flow of matter Y = Volume-changing 

into system piston 

Heating or 

cooling jacket 

Rotating shaft 4 () Flow of matter 
— ere, out of system 

Insulation 

FIGURE 4.1 

Tank used as system for energy balance. 

Accumulation is the differential of the energy contained within the system boundary. 

The only such energy is that associated with the matter within the boundary. If the 

matter is uniform (if all has the same u, ke, and pe), then accumulation is 

d[m:(u + pe + ke)], where m is the mass in the system. 

Energy can enter in three ways. One way is by matter coming in the inlet pipe. 

For every infinitesimal amount of matter that flows in, the amount of energy that flows 

in with it is (u + pe + ke);, dmj,. Obviously, for matter flowing out the outlet line, 

the amount of energy flowing out is (u + pe + ke)ou:dmoy. The two other ways 

energy can flow in or out are via heat through the heating or cooling jacket, which 

we will call dQ, and via mechanical work of various forms, which we will call dW. 

As discussed in most thermodynamics texts dQ and dW are inexact differentials. This 
b b 

means that the value of i dQ or of if dW depends not only on the initial and final 

states of the system but also on the path followed. Quantities such as dz (an infini- 

tesimal change in elevation) are exact differentials. The elevation change going from 

New York to Chicago is the same, independent of the route taken; it depends only on 

the initial and final elevations. However, the fact that dQ and dW are inexact differ- 

entials has no effect on their role in most fluid-mechanics problems, so we shall not 

dwell further on this distinction. 

Substituting these terms into Eq. 4.A, we find 

d{[m(u + pe + ke)].ys = [(u + pe + ke)in dmin + dQin + dWin| 

— [(u + pe + ke)out dour + Four + dWoul (4.2) 

By letting dQ be the algebraic sum of the heat flows in and out, and dW be the alge- 

braic sum of the work flows in and out, this becomes 

d[m(u + pe + ke)]ys = (u + pe + ke)in dmin 

Aw pe ke) dma + dQ + dW (4.3) 
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4.4.1 The Sign Conventions for Work 

In the general balance equation (Eq. 3.2), the mass balance equation (Eq. 3.6), and 

Eq. 4.3 we expect that flows into the system have a positive sign and those out of 

the system have a negative sign. This convention is used in your bank account, in 

the national budget, in chemical reactions, and in almost every application of 

the balance idea. However, for historical reasons, in the first law, we have taken 

work as positive flowing out of the system and negative flowing into the system. 

The reason for this choice is that much of thermodynamics was developed to under- 

stand and improve the first steam engines, and for such an engine, the overall energy 

balance is 

he heat om ny & work ee = (4B) 

into engine into engine 

or 

Net heat flow _ _|{ net work flow _ ( net work ae (4.C) 

into engine into engine out of engine ' 

If one defines work as positive when flowing outward, then this becomes 

dO = dW or dQ —- dW=0 [classical sign convention] (4.D) 

This is the classical definition, appearing in all thermodynamics books before about 

1990, and in the first two editions of this book. 

That definition has been the source of unending confusion for students, and text- 

books have begun to abandon it, and take all flows of anything into the system as 

positive. That changes Eq. 4.D to 

dQ = —dW or dQ + dW=0 [“modern” sign convention] (4.E) 

This sign convention has the advantage that all flows in are positive and all flows 

out are negative, but the drawback that for a power plant like a steam engine the 

product (work delivered) is negative. This edition of this book uses this convention; 

work, like anything else, is positive flowing into the system and negative flowing out. 

Students will certainly encounter texts (all older texts, some modern ones) that make 

an exception to this rule and take work as positive when it flows out of the system 
(Eq. 4.D). 

4.5 KINETIC AND POTENTIAL ENERGIES 

Equation 4.3 can be used only if we can find a way to assign numerical values to the 
various symbols in it. We already have an expression for work, Eq. 4.1. It has the 
dimension of force times distance; in the SI system its unit is the Joule = 
Newton - meter, (J = N-m). In the English engineering system of units, its unit is the 
foot : pound force, (ft - Ibf). 

We deduced Eq. 4.3 for the system shown in Fig. 4.1, but it applies equally well 
to many other systems. Let us again choose as our system a 1 kg steel ball. We lift 
it slowly by a distance of dz. We insulate it so that during this lifting process no heat 
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is transferred to or from the surroundings: dQ = 0. Moreover, no matter flows into 
or out of the system: dm;, = dm oy, = 0. Since no matter flows in or out, we have 
d{m(u + pe + ke)],,, = m[d(u + pe + ke)]. Substituting this in Eq. 4.3, we find 

md[(u + pe + ke)],,, = dW (4.F) 

If we have proceeded without friction heating, the final temperature is the same as 

the initial temperature; so we conclude that du,y, 18 zero. The final and initial velo- 

cities are also zero; so d(ke),,, is zero. Furthermore, according to Eq. 4.1, dW equals 
F dz. Here the sign of the work is positive because work is done on the system. The 

force needed to lift the ball is the same as the weight of the ball, i.e., its mass times 

the acceleration of gravity; so 

md (pe) = myg dz (4.G) 

d(pe) = gdz (4.4) 

Here, then, is a convenient equation for the change in potential energy. If the accel- 

eration of gravity is constant (practically true in all earth-bound problems but cer- 

tainly not true in interplanetary space problems), we may integrate both sides of 

Eq. 4.4, taking the g outside the integral sign, and find 

pe = gz + constant (4.H) 

Here the constant is chosen to make the potential energy zero when the elevation 

above some arbitrary datum (such as sea level or local ground level) is zero. If z is 

measured above this datum, then the constant is zero, and 

pe. gz (4.5) 

Example 4.1. Determine the change in potential energy of a 10 kg bag of 

feathers that is raised a vertical distance of 23 m. 

Since we are dealing with a change in potential energy (as we do in all 

practical problems), we need not concern ourselves with the datum. We can see 

this by applying Eq. 4.H to the initial and final states: 

Ape = pein — Peinit = 8Ztin + Constant — (gZinix + Constant) = g(Zrin — Zinit) 
2 2 fi 

= 9.81 +23 m = 225.65 = 740.05 (4.1) 
Ss Sy Si 

This is the change in the potential energy per unit mass. We calculate the total 

change in potential energy by multiplying the potential energy change per unit 

mass by the mass present: 

5 kg-m Ibm - ft? 
APE = m Ape = 10 kg - 225.6 = 2256-—— = 53,400 eek (AD 

S S 

To find the answer in joules or ft: lbf, we use the force-mass conversion factor: 

ke: 2 N:- Z 

APE = 2256 Se —_ 2256J = 1664 ft-Ibf (4.K) 
s*  N-m kg-m 
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Now we take our 1 kg ball of steel and throw it horizontally. Again we take 

the ball as the system. As before, we can insulate it so that no heat flows in or out 

(dQ = 0). During the throwing process no matter flows into or out of the ball; so 

dm;, = dmoy = 0. Furthermore, if we proceed without friction heating, the tem- 

perature will not change; so du,y, = 0. If we throw it perfectly horizontally, then 

there is no change in elevation during the throwing; so d(gz),y, = 0. As before, 

dW = F dx. This F is the force exerted on the system. Substituting all of these in 

Eq. 4.3 yields 

My, d(ke) = F dx (4.L) 

We may replace F with m,,.a,y, (according to Newton’s law) to get 

d(ke) = ayy, dx (4.M) 

But a =dV/dt, where V is the velocity; so adx = dV dx/ dt. Furthermore, 

dx / dt = V; so a dx = V dV. We can now integrate both sides of Eq. 4.M to get 

y2 

ke = a + constant (4.N) 

Here, too, we may choose any value we like for the constant. The logical choice is 

zero, which makes the kinetic energy zero for a body at rest 

y" 

ke = on (4.6) 

Example 4.2. What is the kinetic energy of a 0.01 lbm bullet traveling 

2000 ft / s relative to the barrel of the gun it has just left? 

Here the velocity is measured relative to the same datum as we want the 

kinetic energy to be relative to, so we have no problem with the datum. 

2 

KE = m: ke = m— 
2 

_ 0.01 Ibm - (2000 ft/s)? bf s? 
2 .32,2:Jbom. sft 

= 621 ft: lbf = 842J (4.0) 

& 

Example 4.3. Suppose the gun of Example 4.2 were mounted, facing back- 

ward, on an airplane that just flew past us at a velocity of 1990 ft / s. What then 
would the kinetic energy of the bullet be (a) relative to the airplane and (b) rel- 
ative to us? s 

Obviously, the bullet is moving 2000 ft / s relative to the airplane, so the 
kinetic energy relative to the airplane is the same as in Example 4.2. However, 
relative to us, the bullet is moving 10 ft / s, and its kinetic energy is 

V? 0.01 Ibm: (10 ft/s)? bf s? 
2 2 39.2 Ibm. ft 

0.016 ft: Ibf = 0.021 J (4.P) 

KE = m 
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This result appears startling but is correct. It shows us that all energy measure- 
ments are relative to some datum. As a practical matter, if you were in front of the 
airplane in Example 4.2, the bullet would be lethal. If you are behind, the bullet fired 
backward would reach you at 10 ft/s, and you could easily catch it in your hand. 
From the viewpoint of someone riding in the airplane, the bullets are the same: they 
leave at a velocity of 2000 ft/s. 

4.66 INTERNAL ENERGY 

Now that we have the numerical forms of kinetic energy per unit mass and potential 

energy per unit mass, we can rewrite Eq. 4.3 as 

Vv? Vv? 
al m(u a Ete *)| = (. + ez ck ¥) Amin 

2 sys 2 in 
y2 

2 (. + 92+ ¥) dmon + dO + dW (4.7) 
out 

This is the semifinal form of the energy-balance equation. 

At this point we must reconsider our idea of the internal energy. Since the poten- 

tial energy has to do with elevation and gravity, we should expect its numerical 

formulation (Eq. 4.5) to involve g and z, as it does. Likewise, the kinetic energy 

depends on velocity, and its formulation (Eq. 4.6) indicates this. The internal energy, 

as we suggested before, is related to the “hotness” of a body, so we should expect is 

formulation to be related to heat in some way. The common unit of energy used for 

kinetic and potential energies is the ft-Ibf or J, but this is an inconvenient unit for 

heat flows or for the internal energy. Instead, we use a “heat” unit, the British ther- 

mal unit (Btu) or the calorie. The Btu, defined as the amount of energy that must be 

transferred into | lbm of water to raise its temperature 1°F starting at 59.5°F, is the 

unit used in English-speaking countries to measure most heat flows. (Inquisitive read- 

ers can find ratings in Btu per hour on the name plates of most U.S. household fur- 

naces and water heaters, and they can find the heating value of natural gas in Btu per 

cubic foot on their natural gas bill.) The calorie (cal) is defined as the amount of 

energy that must be transferred into | g of water to raise its temperatures 1°C start- 

ing at 0°C. The calorie is an impractically small engineering unit; we normally use 

kcal = 1000 cal. (The “calorie” in diet books is the kcal. A normal adult doing mod- 

erate work needs to eat about 2500 kcal of food per day.) The Btu is also impracti- 

cally small for industrial-sized equipment; we normally use 10° Btu as the working 

unit. (In 2004 the world wholesale price of natural gas was about $3 / 10° Btu, that 

of coal about $1 / 10° Btu. Natural gas bills often use the therm = 10° Btu.) 

Now suppose we take as our system the tank shown in Fig. 4.1. We close the 

valves in the inlet and outlet lines, so that dm;, = dm, = 0. We also stop the rotat- 

ing shaft and do not move the volume-changing piston, so there will be no work done 

(dW = 0). Now we transfer 100 Btu of energy into the tank from the heating jacket: 

2 
al m(u sia ey r) = dQ = 100 Btu (4.Q) 

sys ; 
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However, in this operation the elevation and velocity of the material in the tank did 

not change, so that d(gz).y; = d (v?/ 2)sys = 0 and, since m,y, remained constant, we 

may take it out of the differential. 

This leads to 

; ] dQ re 100 Btu 4 25,200 cal ss 25.2 kca (4.R) 

Msys Msys Msys Msys 
OU — 

The potential and kinetic energies per unit mass are expressed in units of 

ft - Ibf / lbm or J / kg. Here we have a change in internal energy expressed in Btu / ]bm 

or cal / kg. In our balance equation we obviously need some way to interconvert these 

units so that the sum (u + gz + V*/2) is in a consistent set of units. All efforts to 

calculate this conversion factor from some more basic principle have failed; however, 

it can be determined experimentally. 

Suppose we cool our system in Fig. 4.1 to its initial state by removing 100 Btu 

of energy via the cooling jacket. Now we start the stirrer and measure the work input 

required to produce the same temperature rise as was caused by the addition of 100 

Btu as heat. In this case Eq. 4.3 simplifies to 

dw 

Msys 

dU sys (4.S) 

By carefully measuring the temperature changes, we can find the exact number of 

ft - lbf or J of work that produces the same heating effects as 1 Btu or 1 cal of energy 

added as heat. This experiment was made by Joule [2] in 1849: it formed the key- 

stone in constructing the first law of thermodynamics. His experimental result (as cor- 

rected by later workers with better equipment) is 

1 Btu = 778 ft - Ibf; 1 cal = 4.184 J (4.8) 

This is an experimental fact, reproducible in any well-equipped laboratory. Using the 

conversion factors in Eq. 4.8, we can easily convert all the terms in the energy balance 

to a common basis. In the SI system the use of the calorie is discouraged; thermal 

energy quantities are to be expressed only in Joules. However, the use of the calorie 

(or kcal) in metric-using countries is quite common; today’s student will have to be 
familiar with its use. 

We said before that internal energy might be thought of as hotness plus chem- 
ical energy. However, there can also be internal-energy changes at constant tempera- 
ture. Suppose we have some mass of some substance in an absolutely rigid vessel. 
Now we transfer heat into the vessel. For this process, Eq. 4.7 yields 

mgy, du = dQ (4.T) 

Thus, we see that for a simple constant-volume heating we have du = dQ /m. What 
are the possible external signs of such an increase in internal energy? 

1. The substance may increase in temperature. 

2. The substance may undergo an energy-consuming chemical reaction, such as 

2NH; — N2 + 3H, (4.U) 
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3. The substance may undergo a phase change such as ice —> water or water —> steam. 
4. The substance may undergo a crystal-structure change, such aS Qjron > Yiron- This 

is really a phase change but is not so obvious as those shown above. 

5. Any combination of the four items listed above may occur simultaneously. 

We see that any exact definition of an internal-energy change must be based on 
a consideration of all the terms in Eq. 4.7. Thus, Eq. 4.7 is the exact definition of the 
change in internal energy. If we restrict ourselves to a closed system of constant mass, 
with no changes in kinetic or potential energy, Eq. 4.7 simplifies to 

mdu = dQ + dW (4.V) 

Integrating this, we find 

U = mu = Q + W + constant (4.W) 

Here there is no obvious choice for the constant, as there was in the case of kinetic 

or potential energy. In making up tabulations of thermodynamic properties we must 

arbitrarily select a value for this constant. For the common steam tables the constant 

is chosen to make u = 0 for liquid water at the triple point. This choice is made on 

the basis of convenience alone. 

In sum, internal energy may be thought of approximately as hotness plus chem- 

ical energy. Its exact formulation is Eq. 4.7, which allows us to calculate changes of 

internal energy. Using this equation, and an arbitrarily selected value in some datum 

state, we can make up a table showing the numerical value of the internal energy per 

unit mass for any state of any substance, e.g., the steam table. 

4.7 THE WORK TERM 

So far, we have said little about the work term in Eq. 4.7. Suppose our system is the 

1 kg steel ball described previously. The system is practically rigid, and the work done 

on it generally consists of something, e.g., our hand, pushing it. This work is shown 

by Eq. 4.1. 
Now consider the system shown in Fig. 4.1. Let us assume that the material in 

the tank is something easily compressed, such as air or steam. In this case we can do 

work on the system by moving the volume-changing piston; the magnitude of this 

work is shown by Eq. 4.1. As shown in Fig. 4.1, to compress the system we move 

the piston in the negative x direction. The force required to move the piston is equal 

to the piston’s cross-sectional area times the pressure in the tank. Further, the prod- 

uct of the piston’s cross-sectional area and the distance traveled is equal to the 

decrease in volume of the tank; so the work done on the system is 

dW = F dx = PAdx = —P dV (4.X) 

where V is the volume of the tank. The minus sign appears because the volume of 

the tank decreases as work is done on the system. This result is correct for any 

work done by a moving boundary. However, for boundaries moving at supersonic 

speeds the pressure at the boundary may be different from the pressure in the 
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nearby fluid. As long as the P in Eq. 4.X is the P experienced by the boundary, 

this result is correct. If we close the inlet and outlet lines of the tank, turn off the 

heating and cooling coils, and then move the piston inward, Eq. 4.7 shows the 

following: 

(m du).y; = dW = —P dV (4.Y) 

When we move the piston inward, dV is negative, so du,y, is positive. When du.,. 

is positive, the temperature of the system will rise unless a phase change or chemi- 

cal reaction occurs. This phenomenon can be observed easily in an ordinary bicy- 

cle pump. Driving the piston inward causes the air in the pump to become hot. So 

we see that one form of work we must consider is the work of moving the bound- 

aries of the system. This work is equal to —P dV and is often simply referred to as 

“P dV work.” 

4.8 INJECTION WORK 

If we considered only such systems as a cannon ball or a tank with no flow in or out, 

we would never need to introduce the idea of injection work. However, it is often 

advantageous to choose an open system, that is, a certain set of boundaries through 

which mass flows. If, for example, we wanted to analyze the power plant at Hoover 

Dam, we would find it easier to choose as our system the power plant from water 

inlet to water outlet than to choose 1 lbm or | kg of water passing through the plant 

as our system. By choosing the open system with mass flow through it we will have 

a much simpler analysis, because we do not need to consider the many changes in 

pressure, elevation, and velocity along the complex flow path taken by the water 

through valves, turbines, wicket gates, and so forth. However, we do have to consider 

the injection work. 

Suppose our system is the tank shown in Fig. 4.1. We now bring into the tank 

a mass dm;, from the inlet line; nothing flows out, there is no heat transfer, and there 

is no work due to moving the volume-changing piston or to turning the shaft. What 

will be the energy balance for this operation? This is easiest to see when we do it by 

a two-step process; see Fig. 4.2. 

In the first step we let the mass dm flow in and simultaneously move the volume- 

changing piston out. We move the piston at a rate such that the fluid originally in the 

tank is not compressed. This means that all the fluid pushed aside by the fluid com- 

ing in is pushed into the space vacated by the volume-changing piston. Thus, there is 

no net work done on the system because, for all the fluid involved, there is no vol- 

ume change. Therefore, the compression work, —P dV, is zero. The energy balance 
for step 1 is 

vy v2 
al m( ae ia ) = (« tet *) dmin (4.Z) 

2 7 Isys 2. Jin 

Now, to get to the desired final state, we must move the volume-changing pis- 
ton back to its original position. It must move back by a volume exactly equal to the 
volume of the fluid that moved in, ‘which is v;, dm;,; then the work to move it back 
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» Ee Before step 1 

After step | 

Volume swept out = v;, dm;, age 

After step 2 

—<———— Piston moves back to 

its original position 

FIGURE 4.2 

Two-step process to illustrate injection work. 

is dW = Pu;, dm;,,. The energy balance for this second step is 

y2 

al m(u ap ore ry = dW = (Pv) in Amin (4.AA) 
sys 

The energy balance for the entire injection process, which is the equivalent of the two 

steps given above, must be the sum of the energy balances for the two separate steps: 

v? Vie 
al m(u + 92 + r) = (. eet r) dmin + (PV) in dmin 

sys in 

y2 

= (. = 8 OE eden x) Amin (4.9) 

What does this (Pu);, dm;, term represent? We call it injection work, because it is 

exactly the work that is needed to inject the mass dm;, across the system boundaries. 

It is also sometimes called intrusion work, flow work, and flow energy. 

Obviously, we could repeat the calculation for fluid flowing out the outlet line. 

How, then, will we reconcile this injection-work idea with Eq. 4.7? Equation 4.7 is 

correct as it stands; for the process described above the (Pu);, dm;, term is included 

in the dW term. However, we now break up the dW term as follows: 

dw = dWinj ote dWns. = (PV)in dmiy =i dW. (4.10) 

where the subscripts “inj” and “n.f.” denote “injection” and “non-flow,” respectively. 
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We now make this substitution in Eq. 4.7 and factor the injection-work terms 

as shown in Eq. 4.10, to find 

Ve v? 
a|m(u+ s+ *)| =(u+rote+*) dmin 

4 sys 2 in 

y2 
B (« PU oe 4 ¥) dmgyy + dQ + dWa-e (4.11) 

out 

This is the final working form of the energy balance equation. Its restrictions are these: 

. Electrostatic, magnetic, surface, and nuclear energy effects are negligible. 

. The contents of the system are uniform. 

. The inflow and outflow streams are uniform. 

. The acceleration of gravity is constant. 

nh WN = . The dW, term represents all the work done on the system except the work of 

driving matter in and out across the system boundaries. It includes the work of 

moving the boundary of the system (the piston in Fig. 4.1), the work done by rotat- 

ing or reciprocating shafts that cross the system boundaries (e.g., the shaft between 

a pump, which is normally inside the system, and the motor that drives it, which 

is normally outside the system), the work of electrical flows across the system 

boundaries (e.g., if we take the motor that drives the pump into the system, then 

the wires that bring electricity to the motor must cross the system boundary), and 

some others. 

Using this equation, we can solve an immense array of problems of great variety. Fur- 

thermore, by making slight changes we can relax these four restrictions so that the 

equation will apply to any problem. 

4.9 ENTHALPY 

In Eq. 4.11 the combination u + Pu occurs in the flow-in and flow-out terms. This 

combination occurs so often in thermodynamics that it has been given a name and a 
symbol: 

u + Pv = h = enthalpy per unit mass, or specific enthalpy (4.12) 

Enthalpy is also called total heat, inherent heat, and several other names in older ther- 
modynamics texts. Obviously, it is the combination of the internal energy per unit 
mass and the injection work per unit mass. Its use is practically universal in classical 
thermodynamics, and most tables of thermodynamic properties show h but not u, 
because users of those tables prefer that. Substituting Eq. 4.12 in Eq. 4.11, we find 
its exact equivalent: 

v? 2 
al m(u “hy ate yl = (: + oz. + _ dmx, 

Z sys 2 in 

y2 

7 ( th. gZet *) dngyere dQ idWeeet (4.18) 
out 
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Let us summarize how we found this equation: 

1. We discussed the general idea of the balance equation. 

2. We then introduced the abstract quantity energy. 

3. We then asserted, without proof, that this abstract quantity, energy, obeys the bal- 
ance equation, the creation and destruction terms being set equal to zero. This 
assertion is unprovable; it rests on its ability to explain all the careful experiments 
ever run to test it. 

4. We then chose a fairly general system and listed a set of restrictions that would 

apply to that system. 

5. We wrote out in detail the balance equation for that system, subject to the restric- 

tions and subject to the sign conventions for heat and work, finding Eq. 4.7. 

6. We then introduced the idea of injection work, split up the work term in Eq. 4.7, 

and regrouped terms to find Eq. 4.11. 

7. Finally, we introduced the definition of enthalpy to find Eq. 4.13. 

Recognize that this is not a derivation of the first law of thermodynamics; that 

law is underivable. Rather, this is a set of algebraic manipulations and definitions that 

converts the statement “energy obeys the balance equation without creation or destruc- 

tion” into a very convenient and useful working equation. 

4.10 RESTRICTED FORMS 

Equation 4.13 is powerful because it is so general. However, whenever we write it, 

we have, in effect, written the four restrictions listed previously. The procedure rec- 

ommended for solving all thermodynamics problems is to write Eq. 4.11 or Eq. 4.13, 

select a system of boundaries, and cancel the terms that appear negligible. Each can- 

cellation represents an assumption. For example, if we assume no heat exchange with 

the surroundings, then dQ is zero. By crossing out dQ, we are making this assump- 

tion. When all of the unnecessary terms have been canceled, we have not only a work- 

ing equation but also a list of the assumptions on which that equation is based. 

Several restricted forms of Eq. 4.13 are in common use. 

Frictionless, : : : 
syeiphtless Example 4.4. Air and coal are contained in 

the constant-pressure cylinder shown in Fig. 

4.3. This cylinder has a frictionless, weightless 

piston, so the pressure inside the cylinder is 

always exactly the same as the pressure of the 

atmosphere. A small spark is now introduced, 

causing the coal to burn. When the burning is 

System boundary over, the piston has moved so that the volume 

of the contents has increased by 1 ft?. The heat 

transferred to the surroundings was 42 Btu. 

FIGURE 43 What is the internal-energy change for this 

_ Simple piston and cylinder. reaction? 

119 
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We choose as our system the contents of the cylinder. In this system 

there is no flow in or out, so that dm;, = dm,,, = 0. Furthermore, there is neg- 

ligible change in the kinetic or potential energies of the material contained in 

the system: d(gz),,; = d(V* / 2)sy; = 0. Because there is no mass flow in or 
out, we have d(mu).y, = m dusy, = dUs,,. Making these substitutions in Eq. 

4.13, we find 

dU.y; = dQ + dWas. (4.14) 

This formula appears in most chemistry books as the basic statement of the first 

law of thermodynamics. (In this statement the subscript for “non-flow” on the 

work term is unnecessary, since there can be no injection work into or out of a 

closed system. Thus, this term is usually written simply dW.) From the forego- 

ing we can see that Eq. 4.14 is a much more restricted form than that we have 

chosen (Eq. 4.13). We can now substitute for dW from Eq. 4.X and find 

[closed system] 

dU yg = dQ. + dWas, = dQi-wP dV 

a ip. Fe ees a7 fips: 144in* Btu 

ft? 778 ft- lbf 

= —44.7 Btu = oe cal = —47,153 J (4.AB) 
a 

Here dQ and dW are both negative according to our sign convention; heat flowed out 

and the system did work by expanding against the surroundings. The device in this 

example is a calorimeter. Refined versions of it are regularly used to determine the 

heating values of fuels like coal and natural gas, whose prices are adjusted up or down 

based on changes in heating value; see Prob. 4.18. 

Example 4.5. A steady-flow water power plant has its water inlet 15 m above 

its water outlet. The water enters the plant with a velocity of 3 m/s and leaves 

with a velocity of 10 m /.s. What is the work done by the plant per kilogram 

of water passing through it? 

We choose as our system the plant from inlet to outlet. If the flow is 

steady, then, as discussed in Sec. 3.3, we have d[m(u + gz + V7 / 2Nieys = 0. 
Furthermore, for the assumption of only one inlet and one outlet stream dm;, 
equals dm. We can then divide by dm to find 

Pac vy? 
O= (hit eq heb: ih + ez + — 
( es a ( : sl 

dWas. ds 

+ — 

dm 

[steady flow, open system] (4.15) 

This is the steady-flow form of the first law of thermodynamics. It appears in 
most chemical and mechanical engineering textbooks either as shown or as 
rearranged to 

y2 
dh + gdz+ a(~) = 

dQ 4 dwn. 

2 
Be Slips [steady flow, open system] (4.16) 
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In Eq. 4.16, we have applied Eq. 4.15 to two points negligibly far apart in a 

steadily flowing stream. The energy balance form shown in Eq. 4.16 will be 

used for high-velocity gas flows in Chap. 8; it is the convenient form for those 

flows. For low-velocity gas flows and all liquid flows, we find the convenient 

form by replacing dh by 

dh = d(u + Pv) = al + *) = du + (=) (4.4C) 

Substituting this in Eq 4.16, we find 

iw +d(4) + ed +a(4) u ai ae Ee; 

i 2 

_ 40, Was 
dm dm 

which will reappear at the start of Chap. 5. 

Returning to the water power plant, we assume that there is no heat 

transfer to the plant (dQ = 0) and that the enthalpy of the outlet water is the 

same as the enthalpy of the inlet water (this is equivalent to the assumption 

that the inlet and outlet water streams are at the same temperature and pres- 

[steady flow, open system] (4.17) 

sure). Then 

dW. Ee ( m ) (3 m/s)* — (10 m/s)” —** = 8 (Zin — Zou) + —— "= ( 9.81 =: 15m} + aii Bee eA 5 aimee 5 

2 ie 2 z 
m m m J N:s J 

= 40S SS = 2 20 SS = TUNES - , = -101.65 — 
52 5? 5? N:m kg -m kg 

ft - lbf Bt 
= 34.01 DEH pa (4.AD) 

lbm 

In Sec. 3.2 we divided the mass balance by di to find the rate form, which 

showed the mass flow rate, m. If we divide Eq. 4.13 by dt, we find 

y2 

d dsloal-the= 
[m(u oe Z. pa ( r) , 

a Min ts isk ag mae 
dt : 2 

Z 

- (: + gz + ~) Mou + O+ Wap (4.18) 
2 out 

The term on the left is the time rate of change of the energy contained in the system. 

We see two m terms on the right. One is the mass flow rate in (Ibm/s or kg/s) and 

the other the mass flow rate out. For steady-state flow these are equal. We also see a 

QO term, which represents the net heat flow rate into the system. This has no common 

name other than heat flow rate. The same is not true for the W,.¢ term on the right, 

which logically should be called the work flow rate into the system. But before we 
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had modern terminology, the work flow rate had a common name, the power, Po, 

which it retains. Both the heat flow rate and the power have dimensions (ft « lbf/s 

or J/s or Btu/s or cal/s or horsepower or watts; these terms are interconvertible by 

simple conversion factors.) ; 

In most of simple fluid mechanics the Q term is negligible, or, as we will see 

in Chap. 5, it is practically offset by (Ain — Mout). However, the W,.. term will be 

important if the system we are considering contains a pump or a turbine. Most of 

the electric power in the world is produced by turbines, driven by water or steam or 

hot combustion gases or windmills, so this term is very important in the fluid mechan- 

ics of those devices; see Chap. 10. 

4.11 OTHER FORMS OF WORK 
AND ENERGY 

So far we have discussed only F dx work and kinetic, potential, and internal energies. 

In this section we consider some of the other kinds of work and energy. 

In most modern machinery work is done by rotating shafts. In a simple crank 

arrangement, Fig. 4.4, a force is being exerted on a crank and being resisted by the 

shaft to which the crank is attached; the torque I in the shaft is given by 

l= FL (4.19) 

If we now allow the shaft to rotate about its axis, the force always being applied at 

right angles to the crank, the distance through which the force has moved will be 

dx = L dé (4.AE) 

where d@ is the angular displacement about the center, in radian measure. Solving Eq. 

4.19 for F and Eq. 4.AE for dx, we find 

r 
dW = Fax = (Fe dé = 1 dé (4.AF) 

The power is given by 

dW dé 
P = —— = — = 

7 sya dt ie re 

Here we see that the power output of a rotating device 

is the product of its torque T° and its rotating speed (w = 

27‘ revolutions per minute or per second). Generally, the 

torque a device can develop is roughly proportional to its 

size, so that to have a given amount of power we can use 

a large low-speed device or a small high-speed device. In 

speedboat, automobile, and airplane power plants, where 

low weight is important, the trend of the past 150 years has 
an eee: been to higher and higher rotational speeds, to get lighter 
lever ‘alan, And torque in’ and lighter weight engines (up to 6000 rpm in normal 
simple crank. autos, 12,000 rpm in racing autos and motorcycles). In 

FIGURE 4.4 
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large stationary engines like those in diesel electric power plants or large ship engines, 
where weight is of no serious concern, the economic choice is a large, low-speed 
engine (generally less than 1000 rpm), to minimize frictional resistance. Dental drill 
turbines, which are very small, rotate at 350,000 rpm! Auto superchargers are also 
small, and rotate up to 200,000 rpm. 

Much of the work of modern societies is done electrically. It is shown in texts 

on electricity that the force required to move a charge Q in an electric field is 

F= et 4.21 Qi (4.21) 

Here dE / dx is the potential (or voltage) gradient. Substituting this in Eq. 4.1, we find 

w= frac= [ea (4.4G) 

For any fixed amount of charge we can integrate this to find 

W = QAE (4.AH) 

If we now consider that both the voltage difference and the charge can vary, we can 

differentiate this equation and find 

dW = Qd(AE) + AEdQ (4.22) 

Ordinarily, we take either of two views of electric flows. One view is to consider some 

fixed piece of equipment with a steady flow of electrons through it and a fixed volt- 

age difference across it; this corresponds to a steady-flow open system with respect 

to electrons (or to “charge,” which by the usual conventions is the negative of elec- 

trons). In this case, since nothing is changing with time, d(AE) is zero and 

dW = AEdQ (4.Al) 

Dividing this equation by dt, we have 

dw d 
po Se ao apie (4.23) 

dt dt 

Here (dQ/ dt) =I is the current, so this is the familiar statement that the electric 
power is the product of the voltage difference and the current. This is our usual way 

of looking at motors, generators, electric cells, etc. 

The other way of looking at electric flows is to consider some fixed amount of 

charge (or a fixed number of electrons). This corresponds to a closed system for elec- 

trons. In this case dQ is zero, and Eq. 4.22 becomes 

dW = Qd(AE) (4.24) 

We normally consider one of the voltages to be a fixed ground voltage, to which we 

assign the arbitrary value of zero, so that d(AE) becomes simply dE. Equation 4.24 

is the usual way of regarding capacitors, television tubes, xerographic printers, and 

electron ballistics in general. 

So far we have treated energy and mass as two completely distinct entities. In 

most engineering problems this is a satisfactory approximation, but it is impossible 
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to understand nuclear reactors or atomic explosions or the behavior of the sun with- 

out taking into account the conversion of matter into energy. Einstein showed that this 

conversion may occur and that, when it does, it obeys the rule 

E = mc (4.25) 

where c is the speed of light in a vacuum. This equation indicates that c? must have 

the dimensions of energy divided by mass. Simple calculations show that 

J 
2 = 3.85- 1913 BM = 895-1916 — (4.26) 

fein kg 

In the statement of Eq. 4.13, we specifically excluded such nuclear effects. We have 

also indicated that mass is conserved. What is really true is that mass plus energy 

together obey a conservation law, with neither creation or destruction. In this case we 

could write a mass balance and add it to the energy balance: 

diye = dm, "dibut (4.AJ) 

We now multiply both sides of this equation by c* and add it to Eq. 4.13 to find 

y2 

al m(u ar Sey oF r) 

Obviously, if there is no conversion of mass to energy, the c* terms added here can- 

cel, and we find the same result as that from Eq. 4.13. 

: Vv? 
+ ¢ Ci ioe (; not ye De Se ) dmip 

sys in 

Hib O 
= (: Ae eas ) dimou + dQ + dWy- (4.27) 

out 

Example 4.6. A nuclear power plant, running steadily, produces 7 - 10° watts 

of electric power and rejects 13 - 10° watts of heat to the cooling water taken 

from a nearby river. How much matter is being converted into energy each hour? 

We choose as our system the complete power plant, excluding the cool- 

ing water passing through it. Then, in the period between fuel refuelings there 

is no mass flow into or out of the system (we will overlook such things as boiler 

feedwater makeup due to leaks or water-treating chemicals, since they are 

insignificant). Furthermore, at steady state the internal, potential, and kinetic 
energies of the various parts of the plant are not changing (again, this is slightly 
inaccurate, because chemical changes accompany nuclear fission, but the error 
is insignificant). Thus, the only terms remaining in Eq. 4.27 are 

c* dm, = dQ + dWy¢ (4.AK) 

We divide by dt and solve for dm / dt: 

dm _ (dQ/dt) + (dW, / dt) 

dt °C 

oe ; 8 = 8 arule 13-108 W) — (7-10 Wucpacl dryasn. 0 ve wells 

8.95- 10'° J/kg Ws S 

Ibm 
= —17.8-10 °— B (4.AL) 
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This is a medium-sized power plant; it converts less than 2 / 10,000 of a pound- 
mass per hour into energy. i 

Einstein’s relativity theory shows not only that mass and energy can be converted 
one to another but also that radiant energy (such as light and infrared radiation) has 
mass. This was demonstrated in classic experiments that showed that light beams pass- 
ing close to the sun are deflected by the sun’s gravity field. The theory shows that the 

mass of such radiation is proportional to its energy, and the proportionality is given by 

Eq. 4.26. Based on this and other arguments physics teaches that in all energy trans- 

actions there is a change in mass, with the proportionality given by Eq. 4.26. 

Example 4.7. A sample of water has a mass of exactly 1.0 Ibm. It is heated 

over a hot plate from 59.5 to 60.5°F. How much, if any, does its mass increase? 

We have so chosen the problem that Eq. 4.13 indicates that 

m du = dQ = | Btu (4.AM) 

Dropping the unnecessary terms from Eq. 4.27, we have 

WAG... 1 Btu 

~ 3.8510! Btu / Ibm 
Thus, we conclude that the final mass of the water is 1.000,000,000,000,026 Ibm. 

|_| 

Am = 2.6:10°'* Ibm = 5.7:10°'*kg (4.AN) 

Detecting the difference between this mass and a mass of | Ibm would be a seri- 

ous measurement challenge. However, because Einstein’s theory works whenever tests 

are possible, physicist are confident that, if such measurements were made, they would 

show this result. Obviously, for most engineering problems we may neglect this effect. 

Other kinds of energy generally considered are surface, electrostatic, and mag- 

netic energies. Although they are easily described, their mathematical formulation is 

more difficult than that of kinetic or potential energy. The reason is that a change in 

surface or electrostatic field or magnetic field usually is accompanied by an absorp- 

tion or rejection of heat or by a change in internal energy, whereas we can represent 

kinetic energy by a single term, because we can increase a body’s kinetic energy with- 

out any exchange of heat with the surroundings or any change in internal energy. The 

usual treatment of the other energies requires simultaneous applications of the first 

and second laws of thermodynamics and, hence, is beyond the scope of this chapter. 

An intuitive introduction to surface energy is given in Chap. 14. 

4.12 LIMITATIONS OF THE FIRST LAW 

The first law of thermodynamics is a conservation law. It accounts for the quantity 

called energy. It says nothing about the direction in which changes of energy occur. 

It is equally well satisfied with water flowing downhill and with water flowing uphill. 

It makes no distinction between gas flowing out of a high-pressure vessel into the 

atmosphere and gas flowing from the atmosphere into a high-pressure vessel. To 

see whether we can make such an interchange, we must rely on another basic principle 

of nature, the second law of thermodynamics. 
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4.13 SUMMARY 

1. The first law of thermodynamics resulted from a study of friction heating. 

2. This study led to the definition of an abstract quantity called energy and to the 

statement that (excluding nuclear reactions) energy follows the balance principle, 

with neither creation or destruction. 

3. All energy quantities are measured relative to some arbitrary datum. 

4. The first law of thermodynamics is not derivable or provable; it rests solely on its 

ability to predict the outcome of all the experiments ever run to test it. 

5. The first law of thermodynamics can be used to solve an enormous number of 

problems. 

6. The first law of thermodynamics says nothing about the direction of an energy 

change; that is covered by the second law of thermodynamics. 

PROBLEMS 

Please see the Common Units and Values for Problems and Examples inside the back 

cover! An asterisk (*) on the problem number indicates that the answer is in App. D. 

Several problems in this section deal with ideal gases. It may be shown that for 

an ideal gas the enthalpy and internal energy depend on temperature alone. If an ideal 

gas has a constant heat capacity (which may be assumed in all the ideal-gas problems 

in this chapter), it is very convenient to choose an enthalpy datum that leads to 

h = CpT and u = CyT where T is the absolute temperature; these values may be used 

in the ideal-gas problems in this chapter. 

4.1. 

4.2. 

The groups u + gz + V*/2 and h+gz+V7/2 occur in most thermodynamics 

problems. To evaluate the relative magnitude of the individual terms, calculate gz 

and V*/2 in Btu/lbm and J/kg for the following: z = 10, 100, 1000, 10,000 ft; 

V = 10, 100, 1000, 10,000 ft / s. Show these results on a log-log plot. 

A gun fires a bullet vertically upward. The bullet has a mass of 0.02 lbm and leaves the 

gun at a velocity of 2000 ft/s. Air resistance is negligible. 

(a) How much kinetic energy does the bullet possess when it leaves the gun? 

(b) How high will the bullet go? 

(c) At its highest point, how much potential energy will it have relative to the gun barrel? 

4.3.*On the moon g ~ 6 ft/s*. How much work is required to raise a 2.0 lbm ball of steel 

4.4, 

4.5. 

10 ft on the moon? 

A steel ball with mass of 3.0 kg is dropped from an airplane and goes 500 m in free fall. 

Air resistance may be neglected. How much work is done on the ball? What does the 
work? 

A hydraulic lift is shown in Fig. 2.24. The combined mass of the piston, rack, and car 

is 4000 Ibm. The working fluid is water. There is no heat transfer to or from the water, 

and the internal energy of the water per unit mass is constant. The water may be con- 

sidered incompressible. 

(a) Taking all the water in the reservoir, line, and hydraulic cylinder as the system (i.e., 

taking the closed-system approach), calculate the work necessary to raise the rack 

and car | ft (neglect the change in potential energy of the water in the system). 

(b) Repeat part (a), taking all the water plus the car and the rack as the system. 
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(c) Repeat part (a), taking an open-system approach; choose as your system the volume 
of the hydraulic cylinder, excluding the piston, rack, and car. If the absolute pres- 
sure in the system is 1000 Ibf/ in’, calculate the volume that must flow in to raise 
the car 1 ft. 

4.6.*At Hoover Dam the difference in elevation from lake level to the stream below the gen- 

erators ~ 750 ft. With 100 percent efficient machines, how many kilowatt-hours can be 

recovered per kilogram of water passing through the system? 

4.7.*A boiler feed pump takes water from a tank at 95°C and 100 kPa absolute (1 bar) and 

delivers it at 190°C and 2000 kPa absolute (20 bar). The flow is steady, and the heat loss 

from the pump is 2 kJ/kg of water passing through it. What is the work input to the 

pump in kJ/kg of water passing through it? Here use the density of water at 1 atm and 

20°C. If you have access to a steam table, rework the problem using the values from it, 

and comment on how much different the answer is. 

4.8. In a power plant, the inlet water has a velocity of 100 ft/s and an elevation of 80 ft 

above the outlet of the plant. The outlet water has a velocity of 5 ft/s. How much work 

can be extracted by the power plant per unit-mass of water passing through the system? 

The enthalpy of the outlet water may be assumed identical with the enthalpy of the inlet 

water. 

4.9.* Water flows steadily through a power plant. The enthalpy of the outlet water is the same 

as the enthalpy of the inlet water. The water inlet is 40 m above the water outlet. Both 

inlet and outlet are at atmospheric pressure. The inlet velocity is 9 m/s, and the outlet 

velocity is 15 m/s. The flow rate is 5000 kg /s. What is the power output of the plant? 

4.10. An ideal gas is flowing steadily in a horizontal, adiabatic nozzle. The inlet conditions are 

T, = 600°F and V, = 300 ft/s. The outlet velocity is 2000 ft/s. The heat capacity Cp 

is 0.3 Btu/lbm- °F. What is the temperature of the gas leaving the nozzle? 

4.11.*The rigid vessel shown in Fig. 4.5 has a volume of 1 ft® and contains an ideal gas. The 

temperature is 100°F. The input to the heater is regulated to hold the temperature constant 

at 100°F. Originally it is at a pressure of 100 Ibf / in’. The valve is partly opened, and the 

gas is allowed to escape slowly. When the pressure in the vessel has fallen to 20 Ibf / in’, 

the valve is closed. How much heat was added by the heater during this period? 

4.12. A rigid container is initially evacuated. Its valve is then 

opened and air flows in until the pressure is 1 atm. Assume 

that air is an ideal gas and that heat transfer is negligible. Dur- 

ing the filling process the kinetic energy of the inflowing gas 

is substantial, but at the end of the process the gas in the con- 

tainer has all come to rest. Write the energy balance for this 

process, and show the relation between the final temperature 

and the temperature of the surrounding air. 

' 4,13. The preceding problem is the simplest adiabatic bottle-filling 

problem. The general adiabatic bottle-filling problem allows 

for the container not to be initially empty, but instead to have 

some gas at some T and P. The final pressure may be less 

than the pressure of the inflowing gas (if we shut off the valve 

before the process stops on its own). Repeat the preceding 

problem for that case, thus producing the general solution of 

ideal-gas adiabatic bottle-filling problems. Present your 

answer as Ty = function of (Tin, etc.) Here the initial and final 

mass may not appear in the solution, but the final and initial 

FIGURE 4.5 

Rigid vessel with internal 

temperature held constant 

by an electric heater. pressures may appear. 
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4.14. A rigid, adiabatic container contains air at 0.5 atm and 20°C. The surroundings air is at 

1.0 atm and 20°C. We now open a valve between the container and the surroundings and 

allow air to flow in until the inside and outside pressures are equal. What is the final tem- 

perature of the air in the container? (The “general solution” to ideal gas bottle-filling 

problems, worked out in Prob. 4.13, may be useful here.) 

4.15.*In rating the energy release of nuclear explosives the Department of Energy uses the energy 

4.16. 

4.17. 

4.18. 

Sample 

unit “kiloton,” where 1 kton = 10'* cal. This is roughly the energy release involved in det- 

onating 10° tons of TNT (trinitrotoluene). The Hiroshima bomb was reported to be about 

14 ktons. How much matter was converted to energy in detonating it? 

Typical high explosives liberate about 1800 Btu /lbm of thermal energy on exploding. It 

has been suggested that a high-velocity projectile might liberate as much thermal energy 

on being stopped, by conversion of its kinetic energy to thermal energy. How fast must 

such a projectile be going in order that its kinetic energy, if all turned to internal energy, 

would be the same as that of the typical explosive described above? Under what cir- 

cumstances could a projectile have this kind of velocity? 

Simple diet books show that fats yield 9 kcal / g and carbohydrates yield 4 kcal / g. Present 

a simple description, based on organic chemistry, for this difference. Based on this difference 

in energy content, comment on where one would expect fats to occur in plants and animals. 

Figure 4.6 shows a simple combustion calorimeter. The sample is ignited electrically. 

After a few minutes the temperature of the water and calorimeter is constant at AT higher 

than the starting temperature. The heat of combustion is defined as 

Usinal products of combustion ~_ Vinitiat fuel + oxygen 

ARS npatanh = (4.AO) 

Msample 

Determine the heat of combustion of a sample from the following data: 

Sample mass 4¢ 

Calorimeter mass 500 g 

Water mass 5000 g 

Cy calorimeter 0.12 cal / g° Cc 

Gurnacs HOical ou Ge 

AT Sie 

Stier Tiecnomeree Ignore the heat capacity of the 

gases in the calorimeter. Make 

a list of possible sources of 

error in this experiment. 

4.19. From an energy balance 

around the earth estimate the 

rate of energy liberated by 

Heavy nuclear reactions in the earth. 
steel bomb Assume that heat losses from 

the earth are at steady state. 

Use the following: 

FIGURE 4.6 Earth is roughly a sphere 
Simple combustion calorimeter. 8000 mi in diameter. 
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Geothermal gradient of temperature, d7/ dx, is approximately 0.02 F°/ ft. 

Thermal conductivity k of earth (near the surface) is about 1 Btu / hr: F° - ft. 

Heat flow is estimated from dQ / dt = kA(dT/ dx), where A is area. 

Also calculate the rate at which matter is being converted to energy in the earth. 

Write an energy balance for the sun, indicating which terms are probably important and 

which are probably negligible. 

4.21.*A steady-flow water power plant has the following inlet and outlet conditions: 

4.22. 

4.23. 

Inlet Outlet 

Pressure, P, psig 0 0 

Elevation, z, ft 1 0 

Velocity, V, ft/s 400 50 

Temperature, 7; °F 70.0 70.1 

The plant is adiabatic. How much work does it deliver per lbm of fluid flowing through? 

An adiabatic throttle or throttling valve is a valve or orifice in a pipe, with an opening 

much smaller than the pipe diameter, such that although the fluid velocity through it 

may be quite high, the velocities upstream and downstream are negligible. Work out 

the steady-flow energy balance for such a throttle two ways, assuming negligible heat 

transfer: 

(a) Using the steady-flow form of the first law, taking the throttle as the system. 

(6) Using the closed system form, taking 1 kg of matter passing through as your 

system. 

Are the resulting equations the same? Should they be? 

Do any of the following processes violate the first law of thermodynamics? Do 

these processes violate common sense? Do they violate the second law of thermody- 

namics? 

(a) A baseball lying on a table spontaneously jumps to another table that is 10 ft higher. 

When the process is over, the temperature of the ball has fallen sufficiently for du 

to be —0.01284 Btu / Ibm. 

(b) In a rigid, insulated container | lbm of dry, saturated steam at 30 psia spontaneously 

converts to 0.105 lbm of ice at 32°F and to 0.895 lbm of superheated steam at 640°F 

and 42.8 psia. The properties of these materials are: 

Saturated steam Ice Superheated steam 

f bogota 250.34 Bz 640, 

P, psia 30.0 0.0886 . 42.8 

v, ft? / Ibm 13.748 0.01747 15.23 
u, Btu/ Ibm 1088.0 TAB RCS Wey 

(c) Freon 12 flows through a throttling valve. The velocities on both sides of the valve 

are negligible. The conditions before the valve (upstream) are 150°F and 

14.7 lbf/in?. The conditions after (downstream) are 160°F and 66 lbf / in’. The 

enthalpies upstream and downstream are both ~1230 Btu / Ibm. 
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his part of the book covers most of the flows of greatest interest to chemical 

engineers. No real fluid flow is completely one-dimensional. But many flows 

are practically one-dimensional, or can be studied and predicted with considerable 

accuracy using one-dimensional approximations. For most of these flows one can have 

a deeper and richer understanding if one reconsiders them from the two- or three- 

dimensional viewpoint. But learning about them first as one-dimensional is quicker 

and easier and does not prevent that later reconsideration in Part IV. 

Chapters 5, 6, 7, and 8 cover most of the flows of greatest technical interest and 

introduce most of the basic ideas and terminology used for these flows. 
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CHAPTER 

5 
BERNOULLI’S 

EQUATION 

he energy balance for steady, incompressible flow, called Bernoulli’s equation, is 

probably the most useful single equation in fluid mechanics. 

5.1 THE ENERGY BALANCE FORA 
STEADY, INCOMPRESSIBLE FLOW 

We begin with Eq. 4.17, 

2) > dm dm 

which applies to the changes from one point to the next along the direction of flow 

in any steady flow of a homogeneous fluid. Electrostatic, magnetic, and surface ener- 

gies are assumed to be negligible. 

Multiplying by minus | and regrouping produce 

2 

a(F + ec+—)= Ret -(au- 2) (5.1) 
p dm 

P V*\ dQ dWar. 
du+d yi = AA lg GAs! elt Ricerca sthegenersce [steady flow, open system] (4.17) 

Here AP stands for P,,; — Pin, etc. This equation is the preliminary form of Bernoulli’s 

equation. To save paper, in the rest of this chapter we will speak of Bernoulli’s equa- 

tion as B.E. The original form of B.E. was developed by Daniel Bernoulli (1700-1782) 

in an entirely different way. By considering momentum balance (Chap. 7) for a fric- 

tionless fluid he found A(P/p + gz + V?/2) = 0, the same as Eq. 5.1 but without 
the two terms to the right of the equal sign. The original equation was not applicable 
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to flows containing pumps or turbines or to flows in which fluid friction was impor- 

tant. Equation 5.1, based on the energy balance, is applicable to all the flows to which 

the original, momentum-based, frictionless B.E. applies as well as to those that have 

significant friction and / or pumps. Some writers refer to Eq. 5.1 as the extended form 

of B.E. or the engineering form of B.E. 

Before converting it to the final form, let us see what each of the terms repre- 

sents physically. The P/p terms are injection-work terms, representing the work 

required to inject a unit mass of fluid into or out of the system, or both. The gz terms 

are potential-energy terms, representing the potential energy of a unit mass of fluid 

above some arbitrary datum plane. Since they appear only as Agz, it is unnecessary 

in most problems to know or to state what that datum is. The V?/2 terms show the 

kinetic energy per unit mass of fluid. The dW,,¢ / dm term represents the amount of 

work done on the fluid per unit mass of fluid passing through the system (this does 

not include injection work, which was specifically excluded). Most often this repre- 

sents work input from a pump or compressor, or work output in a turbine or expansion 

engine. 

5.2. THE FRICTION-HEATING TERM 

We are all familiar with friction heating, as seen in the smoking brakes and tires of 

an auto that has stopped suddenly and in the high temperature of a saw that is cut- 

ting wood. We are less familiar with the idea of friction heating in fluids, because the 

temperature increases produced by friction heating in fluids are generally much less 

than those produced by rubbing two solids together. These temperature increases are 

less for the following reasons: 

1. The amount of frictional work per unit mass in typical fluid-flow problems is gen- 

erally less than in the examples cited above. In these examples the friction-heating 

energy is concentrated in a small volume; in fluid flows it is spread over a larger 

volume of fluid. 

2. The heat capacity of liquids is generally greater than that of solids. For example, 

the amount of heat required to raise the temperature of 1 Ibm of water by 1°F will 

raise the temperature of 1 lbm of steel by about 8°F. 

Example 5.1. One kilogram of water falls over a 100 m waterfall and lands 

in the pool at the bottom. This converts the potential energy it had at the top of 

the fall to internal energy. How much does the temperature of the water 
increase? 

In real waterfalls we must consider evaporation of part of the falling water, 

which cools the remaining water. But ignoring that for this example, we solve 

Eq. 5.1 for the change in internal energy, 

N:s? Air img (he) 9.81 ae S100) ri 
S kg-m N:-m 

J ft Ibf = 981 — = 328.1 (5.A) 
kg Ibm 



CHAPTER 5 BERNOULLI’S EQUATION 135 

and the temperature increase is 

A Mite. oY Ls AS ae ema ee 
Cy meee CO) Sac 

a 

This example shows why we rarely think about friction heating in liquids; the calcu- 
lated temperature increase, even for this large change in potential energy, is below our 
ability to sense by sticking our finger in the water. 

Friction heating involves the conversion of some other kind of energy (kinetic 

or potential) or of external work (injection, shaft, or expansion) into internal energy. 

For constant-density materials (gas, liquid, or solid) the only other way (excluding 

magnetic, electrostatic, etc.) the internal energy per unit mass can change is through 

external heating or cooling. Thus, 

Au = (5.2) 
d(friction heating) i dQ Arosa aha 

dm dm materials only 

Solving this equation for the friction heating per unit mass, we see that it is 

given by the Au — dQ/ dm term on the right of Eg. 5.1. 

This friction heating is not connected with any heating or cooling of the fluid 

through heat transfer with the surroundings and has the same meaning whether the 

fluid is being heated or cooled. This may be seen by considering the simple, fric- 

tionless heater for a constant-density fluid shown in Fig. 5.1. For such a heater there 

is no change in elevation or velocity and, because there is no friction, there is no 

change in pressure. Similarly, there is no pump or compressor work, so B.E. simpli- 

fies to 

0= (a. nF “) [frictionless heater] (5:5) 
dm 

If, however, there were friction in the heater, then Au — dQ / dm would be a positive 

number, whose value would be exactly equal to the amount of friction heating per 

unit mass. 
The increased internal energy produced by friction heating is generally useless 

for industrial purposes, so friction heating is often referred to as friction loss. Energy 

does not disappear in this case. Rather, energy of a valuable form is converted to 

energy of a normally useless form; hence the “loss” of energy (really, of useful 

energy). 
As discussed in Sec. 2.2, there 

is no such thing as an absolutely 

Q there are some situations in which 
i i ; Fl t 5 : 

Bats ; ow om" even a fluid with a very small com- 

pressibility, such as water, behaves in 

Bunsen burner a compressible way. Thus, we speak 

FIGURE 5.1 of an incompressible flow, by which 

A simple frictionless heater. we mean a flow in which the changes 
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in density are unimportant, rather than of an incompressible fluid. As a general rule, 

all steady flows of liquids and most steady flows of gases at low velocities (see 

Sec. 5.6) may be considered incompressible, whereas some unsteady flows of liquids 

(see Sec. 7.4) and all steady flows of gases at high velocities may not be consid- 

ered incompressible. We will consider the flow of gases at high velocities in Chap. 8, 

where we will see that the same terms that appear in B.E. will reappear in different 

combinations. Therefore, we will apply B.E. only to incompressible flows and use 

only the incompressible-flow meaning of Au — dQ/ dm, that is, friction heating per 

unit mass. 
To save writing, we now introduce a new symbol for the friction heating per 

unit mass, 

dQ . friction heating constant-density 
Au—-—=$4= ’ (5.4) 

dm per unit mass flow 

Here we use ¥ to avoid confusion with F for force. Most civil engineering texts call 

this quantity ghy or gh,, where g is the acceleration of gravity and hy or h, stands for 

friction head loss (Sec. 5.4). Some thermodynamics textbooks introduce the idea of 

the lost work in explaining the second law of thermodynamics. It can be.shown that 

for a constant-density fluid at the heat reservoir temperature the friction heating per 

unit mass is exactly equal to the lost work per unit mass, so some texts call this term 

LW. Other texts call it (—AP/ p)griction: Since for the most common pipe friction prob- 

lem, steady flow in horizontal, constant-area pipes, ¥ = (—AP/ p)sriction- 

Substituting the definition of ¥ into Eq. 5.1 changes it to the final working form 

of B.E., 

(4 Soe ae <) ae F 5.5) 
p &% 2 dm — = 

One may show as a consequence of the second law of thermodynamics that ¥ 

is zero for frictionless flows and positive for all real flows. One sometimes calculates 

flows in which ¥ is negative. This indicates that the assumed direction of the flow is 

incorrect; for the assumed conditions at the inlet and outlet locations the flow is ther- 

modynamically possible only in the opposite direction. On the other hand, friction- 

less flows are reversible; any flow described by B.E. in which ¥ is zero could be 

reversed in direction without any change in magnitude of the velocities, pressures, 

elevations, etc. 

Since for all real flows ¥ is positive, the effect in Eq. 5.5 with a minus sign 

before ¥ is to indicate that friction causes a decrease in pressure or a decrease in ele- 

vation or a decrease in velocity or a decrease in the work that can be extracted by a 

turbine or an increase in the work that must be put in by a pump or some combina- 

tion of these effects. 

In Eq. 5.5 we now have only terms that can be measured mechanically; we have 
eliminated the Q and wu terms, which require thermal measurements. Therefore, this 
equation, the working form of B.E., is often referred to as the mechanical-energy bal- 
ance. Mechanical energy is conserved only if we include an “energy destruction” term, 
#. This equation has the same restrictions as Eq. 5.1 and, in addition, the restriction 
that the effects of changes in density are negligible. 
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Brakes 
applied 

FIGURE 5.2 

A simple roller coaster, which illustrates four of the five terms in 

Bernoulli’s equation. 

In most applications we will be dealing with flow in a pipe or channel and will 

assume that the fluid velocity is constant across a given cross section perpendicular 

to the flow. This approximation is excellent for most engineering problems (see Table 

3.1); one interesting exception is discussed in See OL te 

BE. deals with the conversion of one kind of energy to another. These changes 

are illustrated in a common roller coaster, Fig. 5.2. At the left, the car, with passen- 

gers is lifted from ground level to the top of the first hill by a chain hoist driven by 

an electric motor, which engages teeth on the bottom of the car. For this part of the 

trip the change in potential energy, Agz, is equal to the work input (AW, +. /m). At 

the top of the first hill, the car disengages from the chain, pauses a moment for the 

passengers to anticipate what comes next, and then descends to the first valley. In this 

part of the trip the decrease in potential energy is practically equal to the increase in 

kinetic energy; at the first valley the car is going very fast. From the first valley to 

the top of the second hill, the car’s kinetic energy decreases as its potential energy 

increases. The top of the second hill is always somewhat lower than the top of the 

first hill, because there has been some friction slowing the car, both due to air resist- 

ance and due to rolling friction on the track. If there were no friction, the car could 

go up and down to the same original height forever; with friction, the top of each suc- 

ceeding high point must be lower than the preceding one. At the end of the ride (which 

has more than the two hills shown here), brakes on the track slow the car (convert 

kinetic energy to friction heating), bringing it to a safe stop at the end of the ride. 

Four of the five terms in B.E. appear in this description of a roller coaster. The fifth, 

involving pressure, is discussed im pec. 5.5. 

5.3 ZERO FLOW 

The basic equation of fluid statics is a limited form of Eg. 5.5. If we apply Eq. 5.1 

between any two points in a fluid flow in which the velocities are slowly becoming 

zero, then there will be no work or friction and the kinetic energy terms will approach 

zero so that 

(2 =e «) —=i() [zero flow] (OsG) 
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Rearranging, we find 

— AP = -g hz (5.D) 
p 

or 

cag AR dB 
eee Az dz 

a hap (2.1) 

which is the basic equation of fluid statics. It is found in Chap. 2 by making a force 

balance around an elemental particle of fluid. The derivation shown here points out 

only that Eq. 5.5 is general enough to include cases of zero flow. 

5.4 THE HEAD FORM OF 
BERNOULLI’S EQUATION 

In many problems, particularly those involving flow of water in dams, canals, and 

open channels, it is convenient to divide both sides of Eq. 5.5 by g to find 

‘ dW,, F 
s(F +24 J is = | (5.6) 

ps8 2g Rdm I Ne 

which is called the head form of B.E. 

Every term in Eq. 5.6 has the dimension of length. The lengths are at least con- 

ceptually convertible into elevation Az above some datum plane. These elevations are 

commonly referred to as “heads.” (“Head” is apparently a variant spelling and pro- 

nunciation of “height.”) Thus, we would refer to the various terms in Eq. 5.6 as the 

pressure head, gravity head, velocity head, pump or turbine head, and friction head 

loss. One occasionally sees the terms static head, which is the sum of the pressure 

and gravity heads, and dynamic head, which is the sum of the static head and the 

velocity head. 

There is no simple, universal rule for deciding when to use the head form of 

B.E. and when to use the energy form, Eq. 5.5; if correctly applied, both give the 

same result. Through practice engineers learn which is the most convenient for a given 

problem. Civil engineers use the head form much more than do chemical engineers; 

but the terms velocity head and pump head occur often in chemical engineering. 

5.5 DIFFUSERS AND 
SUDDEN EXPANSIONS 

In the following sections we will 

see several examples of flow in 

which a moving fluid is slowed to a 

stop. Here we consider two ways of 

slowing down a fluid: a diffuser and 
FIGURE 5.3 a sudden expansion. A diffuser is a 

A simple diffuser in which a fluid flow is slowed in an gradually expanding pipe or duct, 
orderly fashion. as sketched in Fig. 5.3. 
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Writing B.E. for the pipe between locations 1 and 2, both at the same eleva- 
tion, we find 

Po a V3 — Vi 

Solel eee i 
p 2 sires 

From the mass balance for a constant-density fluid we have 

ViAy 
V2 = pre (5.F) 

and, substituting for V2 in Eq. 5.E, we find 

Vi ( 4) 
tga re oe Dhenee, Be Aneel Bh la? : en th Bee Pig Adse of (5.7) 

This increase in pressure that accompanies the decrease in velocity is often called 

pressure recovery. In such a device kinetic energy is converted partly into injection 

work (shown by an increase in pressure) and partly into friction heating. 

Students find it hard to visualize why the pressure increases as the fluid slows 

down in steady flow. First, observe that in a constant-density steady flow the velocity 

can only change from one point to another if the cross-sectional area of the flow 

changes. In a constant-cross-section area pipe or duct, in steady flow, the velocity is the 

same at each downstream location. Figure 5.4 shows two types of flow channel, one of 

which contracts in the flow direction, the other of which expands in the flow direction. 

The left part of Fig. 5.4 is the common garden-hose nozzle with which the 

reader is familiar. In it the cross-sectional area decreases in the flow direction, and 

the velocity increases. Most students have observed that behavior; the slow-moving 

flow in the garden hose is converted to the much-faster moving jet of water by the 

nozzle. If we consider the small section marked Ax, we see that the fluid in it must 

be accelerating, From Newton’s second law we know that F = ma; and if the accel- 

eration is in the flow direction, then there must be a net force acting on this slice of 
fluid, in the flow direction. The only forces acting are the pressure forces, which act 

on the slice from behind and from in front (we ignore the small shear forces at the 

walls of the duct). For the algebraic sum of these forces to point in the flow direc- 

tion (which must occur if the flow is accelerating), the downstream pressure must be 

less than the upstream pressure. The right part of Fig. 5.4 is obviously the mirror 

og 08 Ase se tae £ Seas alueee 

Sony cel am 
(a) (b) 

FIGURE 5.4 
Two flow channels, one of which, (a), contracts in the flow direction, the 

other of which, (b), expands in the flow direction. 
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image of the left. Students have seldom experienced this flow—it has no common 

example like a garden hose nozzle. It is called a diffuser and appears in various indus- 

trial devices. In it the flow is slowing down, because the cross-sectional area perpen- 

dicular to the flow is increasing. If we apply the F = ma discussion to it, we see that 

it is the same, with the words upstream and downstream and increasing and decreas- 

ing interchanged. The pressure must increase in the flow direction across the section 

marked Ax for there to be a net force that decelerates the fluid. 

Students have experienced the increase in velocity in rolling down a hill on bicy- 

cles or skates and the decrease in velocity in rolling up a hill. The gz and Vv? /2 terms 

in B.E. show that interaction. The preceding paragraph shows that there is an analo- 

gous behavior as fluid flows up or down a pressure hill; down the pressure hill, the 

fluid speeds up (in frictionless flow) and up the hill, the fluid slows down. The P/p 

and V*/2 terms in B.E. show that behavior. 
It is possible to build diffusers in which friction heating is only about one-tenth 

of the decrease in kinetic energy; or, as is commonly stated, the pressure recovery 1s 

about 90 percent of the maximum possible from a frictionless diffuser. 

Now consider a fluid flowing through a duct into a large tank of fluid with no 

net velocity, as shown in Fig. 5.5. This is called a sudden expansion. Here point 2 is 

chosen far away from the fluid inlet, so that the velocity at point 2 is negligible. Writ- 

ing B.E. between points 1 and 2, we find 
2 

= a — pF# (5.G) 

which is quite similar to Eq. 5.7. Here, however, the friction term is much larger than 

that for the diffuser, because instead of the fluid being brought to rest in an orderly fash- 

ion it is stopped by a chaotic mass of eddies, which convert all its kinetic energy into 

internal energy. Thus, it is an experimental observation that for such sudden expansions 

the friction heating per unit mass is almost exactly equal to the decease in kinetic energy 

per unit mass, and there is no pressure recovery at all. Therefore, the pressure of a fluid 

flowing into such a sudden expansion is the same as the pressure of the fluid into which 

it flows. This conclusion is limited to flows with velocities less than the speed of sound; 

it does not apply to sonic or supersonic flows, which we will discuss in Chap. 8. 

These two ways of stopping a fluid are analogous to stopping a fast-moving auto 

by letting it run up a hill and thereby converting its kinetic energy into useful poten- 

tial energy and to stopping it with its brakes and thereby converting its kinetic energy 

into useless internal energy in the brakes. Most stu- 

dents have ridden on roller coasters and hence are 

comfortable with the idea of converting from poten- 

tial energy (at the top of the roller coaster) to kinetic 

energy (at the first valley) and then back to potential 

energy again at the top of the next rise. They are less 

used to the idea of a “pressure hill,’ but from B.E. we 

see that a rapidly moving fluid stream can convert its 

Hee 2a 

FIGURE 5.5 ase ; Ae 
A sudden expansion in which a kinetic energy to potential energy by climbing a grav- 

fluid, How is: slowed in a Chaone ity hill, or into injection work by climbing a “pressure 

fashion. hill,” or into internal energy by friction heating. 
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5.6 B.E. FOR GASES 

 BLE., as we have written it, is exactly correct for constant-density fluids and practi- 
cally correct for all flows in which the density changes are unimportant. For liquids 
this includes almost all steady flows. We show here that it also is practically correct 
for low-velocity gas flows. 

Example 5.2. The tank in Fig. 5.6 is full of air at 68°F = 20°C. The air is 

flowing out at a steady rate through a smooth, frictionless nozzle to the atmo- 

sphere. What is the flow velocity for various tank pressures? 

At point | the velocity is negligible and, as discussed in Sec. 5.5, the pres- 

sure at point 2 is equal to the local atmospheric pressure, if the flow is subsonic. 

Making these insertions in B.E., without friction, taking 1 to be in the tank away 

from the nozzle, and 2 to be in the jet, just outside the nozzle, we find 

[2 a Pan)" 
V, => =: tut ete > Pe 

p 

Which value of the density should we use here? It is obviously different at the 

two states, because the pressure is not the same at the two states. However, if 

the pressure change is small, the two densities will be practically the same. Let 

us use the upstream density (but see Prob. 5.5). This will be given by substi- 

tuting the ideal gas law, p = MP, / RT, in Eq. 5.8. 

(5.8) 

2RT, 1/2 

Vee 3a i — 39 2 PM (P; ‘a (5.9) 

Using this equation, we can calculate Vz for various values of P,. For example, 

[2 -(10.73 psi - ft’ / °R - Ibmol) - 528°R Ibf 144in? 32.2 Ibm- ft ]'/7 
= i= -——: 

M2 | (14.71 psi)(29 Ibm / Ibmol) PU atin a8 Ibf - s? 
1/2 

= [1231 7 se BSonts Wide (5.H) 
Ss S Ss 

Equation 5.9 is based on the assumption of a constant-density fluid, which is 

not exactly correct here; the exactly correct result for this system, taking gas 

expansion into account, is developed in Chap. 8. The 

velocities calculated from Eq. 5.9 and the correct 

solution from Chap. 8 are compared in Table 5.1. 
J 

From the values in Table 5.1, it is clear that to assume 

that gas flows are incompressible and are described by B.E. 

causes a very small error at gas velocities below about 

200 ft/s. Even at a velocity of 700 ft/s (213 m/s) the 

error caused by assuming incompressible flow is only about 

; 5%. The rightmost column in Table 5.1 shows why the 

nozzle driven by 2 modest answers from simple B.E. and the high-velocity calcula- 

pressure difference. tions in Chap. 8 differ. Using the methods in Chap. 8, we 
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TABLE 5.1 ; 

Comparison of Bernoulli’s equation and high-velocity gas flow equations 

for the flow in Fig. 5.6 
i 

(P, — P2), psia V, from Eq. 5.9, ft/s V, from Chap. 8, ft /s T, from Chap. 8, °F 
pe a Me ae: 

0.01 35 35 67.9 

0.1 110 111 67.0 

0.3 190 191 65.0 

0.6 267 268 62.0 

1 340 343 58.2 

DQ, 466 476 49.1 

3 554 Sie 40.7 

5 678 713 25.6 

see that as the velocity increases, the gas temperature falls; for the lowest row in the 

table the temperature is 42°F less than the starting temperature. In a high-velocity gas 

flow the gas can convert some of its internal energy to kinetic energy, so the velocity 

will be higher and the temperature lower than those we calculate using the constant 

density assumption in B.E. 
Most air-conditioning and low-speed aircraft problems involve velocities below 

200 ft/s (61 m/s), so these problems can be solved with engineering accuracy by 

B.E. On the other hand, where there are significant pressure changes for gases in flow, 

which lead to high velocities, the density changes must be taken into account, as 

shown in Chap. 8. Observe also the very high velocities caused by very small pres- 

sure differences acting on gases. The inverse of this observation is that for ordinary 

flow velocities the pressure differences in gases are at least an order of magnitude 

smaller than for the corresponding flow velocities in liquids. The reason is that the 

pressure appears in this type of calculation only as (AP/ p) and for gases p is typi- 

cally about 1 / 800 the value for liquids. 

Application of B.E. to a simple, horizontal pump or compressor with equal-sized 

inlet and outlet pipes (so that there is no velocity change) leads to 

dW. AP 
a eee t fo ; (5.10) 

If we ignore friction, this equation becomes 

dW.,¢ AP frictionless pump or compressor, A 8 (5.11) 
dm p constant-density fluid 

Real pumps and compressors are never frictionless. We normally define the efficiency 

of a pump or compressor as the ratio of this frictionless work requirement to the work 

actually needed to drive the pump or compressor. Equation 5.11 is the exactly correct 
frictionless work requirement for constant-density fluids and is practically correct for 
most pumps that are pumping real liquids. For gases, whose density will change in a 
compressor, it is not exactly correct. The correct result, taking the change of gas den- 
sity into account, is developed in Chap. 10. However, if the pressure change AP is 
small compared with the inlet pressure P;,, then Eq. 5.11 gives a very good estimate 
of the required frictionless work. For example, if AP / P is 0.1 or less, then the result 
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from Eq. 5.11 is certain to be within 10 percent of the calculated result which takes 
density changes into account. This pressure range includes most fans, blowers, air- 

conditioning systems, vacuum cleaners, etc., but does not include air compressors that 

inflate the tires of our vehicles or that drive paint sprayers or pneumatic tools (see 
Prob. 5.58). 

5.7. TORRICELLI’S EQUATION 
AND ITS VARIANTS 

The most interesting applications of B.E. include the effects of friction. Before we 

can solve these, we must learn how to evaluate the ¥ term, which we will do in 

Chap. 6. However, there are many flow problems in which the friction heating terms 

are small compared with the other terms and can be neglected. We can solve these 

by means of B.E. without the friction heating term. A good example of this type of 

problem is the tank-draining problem, which leads to Torricelli’s equation. 

Example 5.3. The tank in Fig. 5.7 is full of water and open at the top. There is 

a frictionless nozzle near the bottom, the diameter of which is small compared 

with the diameter of the tank. What is the velocity of the flow out of the nozzle? 

To solve this problem, we apply Eq. 5.5 between the free surface at the 

top of the tank, location 1, and the jet of fluid as it leaves the tank, location 2. 

In addition to the assumptions built into B.E. we make the following: 

1. The diameter of the tank is so large that the velocity at the free surface is 

practically zero, V; ~ 0. 

2. The pressures at locations 1 and 2 are the local atmospheric pressures. The 

pressure of the atmosphere is not exactly the same at both points, but it is 

practically the same; so we assume AP = 0. 

3. There is no friction or external work. 

4. Flow is steady; that is, the level at the top of the tank is not falling. This 

means that fluid must be flowing into the tank somewhere exactly as fast as 

it flows out at location 2. 

Subject to these restrictions, we may write 

V2 
82-7 ua) + = 0 (5.1) 

© Here zz — Zz; = —h, so 

V> = (2gh)'/? — [Torricelli’s equation] (5.12) 

nee Torricelli’s equation says that the fluid velocity is 

exactly the same as the velocity the fluid would attain 

—_ by falling freely from rest a distance h. Substituting the 

numerical values, we find 

ft ig ft m 
FIGURE 5.7 Y= (2 sagem OW) i) = 43.9— = 13.4 = (5.J) 

The flow described by Torricelli’s Ss s 

equation. BB 
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This is the classic tank-draining solution. It is correct only for situations in 

which the assumptions made in finding Torricelli’s equation apply; in Examples 5.4 

and 5.5 we examine some situations in which they may not apply. 

Example 5.4. Repeat Example 5.3, making the area of the outlet nozzle 1 ft? 

and the cross-sectional area.of the tank 4 ft’. 

In this case we cannot assume that the velocity at the free surface is zero, 

as we did in Example 5.3, so 

ieee 
5 = 

Using the mass balance for a constant-density fluid, we can solve for V; in terms 

of V2, A,, and A> and substitute for V,, finding 

g(—h) + 0 (5.K) 

1 all V3 (2) 
—h) + =| V3 -|[- =Q0 -—gh+—/1-(—) |=0 6D Ale uated 8 ( * nga rs 

2gh 1/2 

Vv, = | > (5.13) 
: ; ATV by we hip 

Inserting the numerical values, we find 

ae 
CS SS (5.M) 

; ( Pore 
This is the answer from Example 5.3, divided by (15 / 16)!/ vs 

43.9 ft / ft 
Vp = = 453 = 138 (5.N) 

(15/16)! s s 
ae 

Why does the water flow faster in this case? All the water in the tank has mea- 

surable kinetic energy; it is flowing down at a velocity of 11.4 ft/s. In Example 5.3 

the water in the tank has immeasurably small kinetic energy. 

What happens in Example 5.4 if the cross-sectional area of the tank is equal to 

the cross-sectional area of the outlet, that is, if A, = A,? If we substitute this in 

Eq. 5.13, it predicts an infinite velocity! Therefore, Eg. 5.13 does not describe this 

situation. Recall the assumptions that went into that equation. First, there is the B.E. 

assumption of steady flow. Second, there is the assumption in Eqs. 5.12 and 5.13 that 

friction is negligible. Suppose we have a vertical pipe of constant cross-sectional area 

and steady flow downward. Suppose also that the pressure gauges at two different ele- 
vations read the same value. Then this situation is analogous to that in Example 5.4, 
with A; = A. Returning to Eq. 5.5, we see that the only terms that can be signifi- 
cant are 

8 (ey 72{) SIRF (5.0) 

This situation, in which the friction forces are dominant, is quite different from the 
situation shown in Fig. 5.7, from which we found Torricelli’s equation, and is not cov- 
ered by the frictionless assumption of Torricelli’s equation. 
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Example 5.5. Repeat Example 5.3, making the tank contain carbon dioxide 
gas at the same temperature and pressure as the surrounding atmosphere. 

This looks strange: an open tank full of gas! However, it is easy to demon- 

strate in the laboratory or kitchen by mixing a little bicarbonate of soda and vinegar 

in a cup. When the bubbling has stopped, the cup will be filled with carbon dioxide 

gas. This gas is heavier than air and can be poured from cup to cup, visibly. How- 

ever, it mixes slowly with the air and ultimately will disperse by diffusion. 

Returning to the problem, it appears at first to be the same as Example 5.3. 

However, there is a big difference, namely, we cannot ignore the difference in 

atmospheric pressure between locations 1 and 2. The other assumptions for 

Example 5.3 appear sound, so B.E. becomes 

P, — P, v3 
x ae pas os 7 =O im " 8(2 —u)t> (5.P) 

From the basic equation of fluid statics we can calculate 

Po Ps." Dak \Zo = £1) (5.Q) 

Now we must be careful, because there are two densities in our problem: the 

Pair Shown here and the p in B.E. If we follow the derivation of B.E. back to 

its source, we see that the p in it is the p of the fluid that is flowing; we label 

it Pco,. Combining these two equations, we find 

Pasics Li) V3 ot —z)+—=0; Geo. 8 (22 — 21) ,) 

V3 ( Pair ) 
OSs 471 g(751 zt Dene (5.R) ) 8 (2 1) ies 

Solving for V2, we find . 
Dai iN fe) 

ae 2eh(1 - Pat.) (5.14) 
Pco, 

If we assume the air and carbon dioxide behave as ideal gases and are at the 

same temperature and pressure, their densities are proportional to their molec- 

ular weights, 29 and 44 g/ mol, respectively, so 
ft 1/2 29° 1/2, ft a 

Y= (2 °82.2-7830 i) (: a z) = 43.9 —-0.34 

t 
z 25.6 cs ne (5.8) 

If the difference in atmospheric pressure is important in Example 5.5, is it also 

mportant in Example 5.3? Equation 5.14 applies as well to Example 5.3 as it does 

o Example 5.5. Therefore, if we want to take the effect of the difference in atmo- 

pheric pressure into account in Example 5.3, we should use Eq. 5.14. This is equiv- 

lent to multiplying the answer in Example 5.3 by (1 — Pair/ Pwater)'’*. For water 

ind air at normal temperature and pressure, this is about 

1/2 3\1/2 

(: " fe uw (: 2 ee = (0.9988)!/2 = 0.9994 (5.1) 
Pwater . m 
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Ignoring the change in atmospheric pressure in Torricelli’s equation for air and water 

makes an error of ~0.06 percent (much less than the error introduced by some of the 

other assumptions). We are justified in leaving this term out if the ratio of the den- 

sity of the surrounding fluid to that of the flowing fluid, Psurrounding fluid / Pitoving tluid> 

is much less than 1. This is true in most hydraulics problems but not in two-liquids 

problems (Probs. 5.15 and 5.16). 

We will discuss one more variant of Torricelli’s equation in Sec. 5.10. 

5.8 B.E. FOR FLUID-FLOW MEASUREMENT 

Several important types of fluid-flow measuring devices are based on the frictionless 

form of B.E. Where the friction effects in these devices become significant, they are 

normally accounted for by introducing empirical coefficients and retaining the fric- 

‘fionless form of B.E., rather than by introducing the friction term into B.E. Thus, we 

consider these devices before we discuss the friction term in B.E., even though these 

devices obviously involve some friction. These devices have been in common use for 

at least 100 years. Modern electronics and computers have made possible other types 

of flow-measuring devices not based on B.E. The devices described here are still more 

widely used than the computer-electronic ones, because the B.E. devices are simple, 

reliable, and cheap. 

5.8.1 Pitot Tube 

The simplest pitot tube (H. Pitot, 1695-1771) is sketched in Fig. 5.8. This is some- 

times called an impact tube or stagnation tube. It consists of a bent, transparent tube 

with one vertical leg projecting out of the flow and another leg pointing directly 

upstream in the flow. 

At location 1 the flow is practically undisturbed by the presence of the tube and 

hence has the velocity that would exist at location 2 if the tube were not present. At 

location 2 the flow has been completely stopped by the tube that has been inserted, 

so V, = 0. Writing B.E. between locations 1 and 2, we find 

P, az P, va 
SS ee Sa hme vee —SF , 5 (5.U) 

But inside the pitot tube the fluid is not moving, so the pressure at location 2 is given by 

P2 = Patm + pg(hy + ha) (5.V) 

If all the fluid flow is in the horizontal direction, then the basic equation of fluid statics 
can be used to find the vertical change in pressure with depth inside the flow, so that 

hy Py = Pam + pghy (5.W) 
on hy Substituting Eqs. 5.V and 5.W in Eq. 5.U and 
ere oe "rearranging, we find 

Flow direction on A172 1/2 "SARTORI RTS? V, = (2gh, + 2%) (S.X) 
FIGURE 5.8 It has been found experimentally that the friction 
Pitot tube for fluid velocity measurement. heating term in Eq. 5.X is normally less than 
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1 percent of the total; it may be ignored, giving 

V; = (2gh;)'/? —_[pitot tube] (5.15) 

The pitot tube allows one to measure a liquid height (a very easy thing to measure) 
and calculate a velocity from it by means of B.E. The device, exactly as shown in 
Fig. 5.8, is used for finding velocities at various points in open-channel flow and for 
determining the velocities of boats. 

Example 5.6. A pitot tube exactly as shown in Fig. 5.8 is used for measuring 

the velocity of a sailboat. When the water level in the tube is 1 m above the 

water surface, how fast is the boat going? 

1/2 ONT 2 ft V,= (2 981-1 m) = (19.62 =) = 443 = 145— (5.¥) 
S S 

z 

5.8.2 Pitot-Static Tube 

The pitot tube shown in Fig. 5.8 is suitable for liquid open-channel flow but not for 

flow of the atmosphere or flow in pipes. For the latter two uses, it is combined with 

a second tube, called a static tube, shown in Fig. 5.9. This is the most common type, 

with the pitot (or impact) tube inside the surrounding static tube. This combination is 

often simply called a pitot tube. 

As the figure shows, the tube that faces the flow is the high-pressure side, 

whereas the surrounding tube that has openings perpendicular to the flow is the low- 

pressure side. These two are connected to opposite sides of some appropriate pressure- 

difference measuring device. Experimental tests have shown that for a well-designed 

8 static holes 

0.02 to 0.04 in 
WLLL LEE 

Impact opening = 0.4D 

Low-pressure 
side 

High-pressure side 

FIGURE 5.9 
Pitot-static tube for fluid velocity measurement. The “low pressure 

side” and “high pressure side” are connected to some appropriate 

pressure-difference measuring device. The dimensions shown are 

typical of those on the devices used to measure stack velocities in air 

pollution sampling. The pitot-static tubes used in aircraft are similar 

in concept but somewhat different in dimensions. They are often 

heated to prevent ice-plugging. - 
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pitot-static tube the friction effect is negligible, so we may read the pressure difference 

from the meter and calculate the velocity from Eq. 5.U rearranged: 

ye 

Y= (737) [pitot-static tube] (5.16) 
p 

Example 5.7. Air is flowing in the duct in Fig. 5.9. The pressure-difference 

gauge attached to the pitot-static tube indicates a difference of 0.05 psi. What 

is the air velocity? 

a (2 -0.05 Ibf/in? 144 in? 32.2 Ibm- ny 2Slina & 
S 

m 

23.9— (5.Z 
0.075 Ibm / ft? ft? Ibf - s” s oe, 

The pitot-static tube is the standard device for measuring the air speed of airplanes 

and is often used for measuring the local velocity in pipes or ducts, particularly in air 

pollution. sampling procedures. One can easily identify the pitot-static probes on air- 

planes. Multiengine planes have them near the nose, at the side below the pilot’s win- 

dow. Single-engine propeller planes place the probe below the wing, far enough out 

from the center not to be influenced by the propeller. Look for these the next time you 

are at the airport! For measuring flow in enclosed ducts or channels, the venturi meter 

and orifice meters discussed below are more convenient and more frequently used. 

5.8.3 Venturi Meter 

Figure 5.10 shows a horizontal venturi meter (G. Venturi, 1746-1822). It consists of a 

truncated cone in which the cross-sectional area perpendicular to flow decreases, a short 

cylindrical section, and a truncated cone in which the cross-sectional area increases to 

its original value. There are pressure taps both upstream and in the short cylindrical 

section (the “throat”); they are connected to some pressure-difference-measuring 

device, usually a manometer. Applying B.E. between locations 1 and 2, we find 

pen Riguew'= = - Te = -F (5.AA) 

The friction in these devices is normally small, so the ¥ term is dropped. Using the 
mass balance for a constant-density fluid, we can write V; in terms of V>, A>, and Aj. 

FIGURE 5.10 

Venturi meter for fluid velocity measurement. 
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Substituting in Eq. 5.AA and rearranging, we find 

ages — 

nA? A?) 

1/2 

| [venturi meter] (5.17) 

Example 5.8. The venturi meter in Fig. 5.10 has water flowing through it. The 

pressure difference P; — P is | psi. The diameter at point | is | ft, and that at 

point 2 is 0.5 ft. What is the volumetric flow rate through this meter? 

From Eq. 5.17, 

(2 LIbf/in* 144 in? 32.2 pany 
62.3 lbm/ft ft” Ibf - s* ft m 

=—A2. Jeo — 1 O.AB) 
S s > = [9/405 fF / [(7 / 4) fe PP 2 

The volumetric flow rate is 

ft ne : Q = V2Ap = 12.7 — 705 ft)? = 2.49 — = 0.070 ~— (5.AC) 

It is found experimentally that the flow rate calculated from Eq. 5.17 is slightly 

higher than that actually observed. This is due partly to friction heating in the meter, 

which we have assumed to be zero, partly to the fact that the flow is not entirely uni- 

form across any cross section of the pipe, and partly to the fact that the flow is not 

perfectly one-dimensional, as we have also tacitly assumed. One could attempt to 

account for these differences by using a more complicated formula than Eq. 5.17; 

however, the more common approach is to introduce an empirical coefficient into Eq. 

5.17, called the coefficient of discharge, Cy: 

2A es he Beli 
5.18 

1 — (A2/ A) a 
Y= c,| 

A large number of experimental tests have shown that C, depends only on the 

Reynolds number, a dimensionless group whose significance will be discussed in 

Chaps. 6 and 9; these results are summarized in Fig. 5.11. 

Example 5.9. Rework Example 5.8, taking into account the experimental 

results summarized in Fig. 5.11. 

This requires a trial-and-error solution because, to calculate V, we need 

to know C,, which is a function of V. The procedure is as follows. 

1. Assume V = Vg, 57 = 12.7 ft/s. 

2. Compute the Reynolds number, % at point 1. 

eve eC = V(A2 / A\)D\p 

LL be 
(12.7 ft/s/4)- 1 ft- 62.3 Ibm/ ft’ 

1 cP: 6.72: 10 *Ibm/ft-s-cP 

3. On Fig. 5.11 we read C, = 0.984. 

Ry 

='9.9=10° (5.AD) 

149 
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R=ViD, p/p 

FIGURE 5.11 

Discharge coefficients for venturi meters. Here velocities and diameters, V; and D, 

are measured at point 1 in Fig. 5.10. The solid line represents the best average of 

the available data; the dotted lines represent the range of the scatter in the 

experimental data. (From Fluid Meters, Their Theory and Practice, 5th ed., 

ASME, New York, 1959. Reproduced with permission of the publisher.) 

ft ft 
4. Veevises = 0.984 - 12.7 — = 12.5 —. (S.AE) 

5. We should now repeat steps 2 and 3, using this revised value of V. However, 

in comparing these, we ask, “How much would C, be changed by using 

Vrevisea = 12.5 ft/s in calculating the Reynolds number (step 2) and then 

using a new value of C,?” Clearly, because of the shape of Fig. 5.11 this 

would cause a negligible change; so-a revised C, would be the same, and 

we accept V = 12.5 ft/s as a satisfactory estimate of the velocity. Then 

ft e ft P 
0=125 a a (05 ft) = 245 re 0.069 we (5.AF) 

If the velocity had been much lower, not corresponding to the horizontal part 

of the curve in Fig. 5.11, this trial-and-error: solution probably would have 

taken several steps; normally these meters are designed to operate at high 

velocities, on the right-hand side of Fig. 5.11, so that this trial and error is very 

simple. a 

The foregoing is all based on a horizontal venturi meter. If we use the setup 
shown in Fig. 5.12 and take the manometer reading as a pressure difference to get 
our value of (P; — P2) in Eq. 5.18, then the result is quite independent of the angle 

to the vertical of the venturi meter. The reason is that the elevation change in the 

meter is compensated by the elevation change in the manometer legs. Consider the 

venturi meter in Fig. 5.12. 
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Fluid of density p, 

Fluid of density p» 
z=0 

FIGURE 5.12 

An inclined venturi meter, with the pressure difference measured by a manometer. 

Applying B.E. between points 1 and 2 on this figure and solving for 
V>(1 — A3/A?)'” gives 

A3 1/2 20 2(P, = P>) | 1/2 

V2 A ge = Pepe nt ABMs — 2) (5.AG) 
I 

To solve for (P; — P>), let us call P, known and work our way through the manome- 
fer step by step: 

P3 = Pz + pig (Zz — 23) (5.AH) 

P, = P3 + pog(z3 — 2) (5.Al) 
Pa hace Ose (74 Za) (5S.AJ) 

Adding these equations and canceling like terms, we find 

P, = P2 + pyg[(Z — 21) — (23 — %)] + pog (zz — z) (5.AK) 

P, — Pp = —pig (zi — 22) + 8(z3 — 24)(P2 — pi) (5.AL) 

Substituting this in Eq. 5.18, we see that the elevation (z; — z ) does indeed cancel, 
ind we find 

VY, = 

2g (z3 — z4)(p2 — eo" : ome venturi (5.19) 
pi(1 — A3/ A?) meter with manometer 

3ut g(z3 — z4)(p2 — p;) is precisely the pressure difference we would have calcu- 

ated for the manometer reading if we had not taken the difference in length of the 

nanometer legs into account. The result found above is true for any angle 6; so we 

onclude that, if the venturi meter is connected as shown in Fig. 5.12, we can neg- 

ect the angle to the vertical and simply use Eq. 5.19 (but see Prob. 5.34). 

.8.4 Orifice Meter 

he venturi meter described above is a reliable flow-measuring device. Furthermore, it 

auses little pressure loss (that is, the actual value of ¥ is small). For these reasons it 

; widely used, particularly for large-volume liquid and gas flows. However, the meter 
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Orifice plate 

(oy Circular drilled hole 

Front view of 

orifice plate 

FIGURE 5.13 

Orifice meter for fluid velocity measurement. 

is relatively. complex to construct and hence expensive. For small pipelines, its cost 

seems prohibitive, so simpler devices have been invented, such as the orifice meter. 

As shown in Fig. 5.13, the orifice meter consists of a flat orifice plate with a 

circular hole drilled in it. There is a pressure tap upstream from the orifice plate 

and another just downstream. If the flow direction is horizontal and we apply B.E., 

ignoring friction, from point 1 to point 2 in the figure, we find Eq. 5.17, exactly the 

same equation we found for a venturi meter. However, in this case we cannot so eas- 

ily assume frictionless flow and uniform flow across any cross section of the pipe as 

we can in the case of the venturi meter. 

As in the case of the venturi meter, experiments indicate that, if we introduce 

a discharge coefficient and thus form Eq. 5.18, then that coefficient is a fairly simple 

function of the ratio of the diameter of the orifice hole to the diameter of the pipe, 

D,/ D,, and the Reynolds number; the relation i is shown in Fig. 5.14. 

Example 5.10. Water is flowing at a velocity of 1 m/s in a pipe 0.4 m in 

diameter. In the pipe is an orifice with a hole diameter of 0.2 m. What is the 

measured pressure drop across the orifice? 

Rearranging Eq. 5.18, we find 

2 2 2 4 
pV> ( “) o( 2) 

AP =—-(1-—)=—s|1-—= 5.AM 
PY Oe AGa ace Dp ( ) 

From the mass balance for steady flow, we knaw that 

A m (7/4): (0.4m) ft y, wt yotleoy Sb Med Y scog Ba syy (5.AN) 
A> S (m/4)-(0.2 m) S S 

The Reynolds number 2, based on D, is calculable and will be found to be 
about 1.6- 10°; so, from Fig. 5.14, we have C, = 0.62. Hence 

(998.2 kg /m*)- (4 m/s)? NS Pir Bp leh a re hs Seat 
2+ 9.62 kg-m N/m 

= 19.5 kPa = 2.83 psi (5.AO) 
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Yt 

ES = 
0.60 + 0.60 

0.55 104 Dy 

0.50 2 

0.45 wa | 7 = U0 il 
040+ |p Gl Co aaa Be ee 
ne Ee tt mel 
35 WA 
5 AT Faas Ee 

| {ttt 
ate Heetled UL bia 

1 10 107 10° 10* 10° 

R= VzD>7 p/ bh 

FIGURE 5.14 
Discharge coefficients for drilled-plate orifices. (From G. L. Tuve and 

R. E. Sprenkle, “Orifice discharge coefficients for viscous liquids,” 

Instruments 6:201 (1933). Reproduced by permission of the publisher.) . 

From Fig. 5.14 we see that for small orifice holes (Dz / D, = 0.4) and high 

flow rates (R2 > ~1000), C, is approximately equal to 0.6. These conditions occur 

in most typical industrial orifice applications, so many practicing engineers 

automatically write down C, = 0.6 for orifice meters, or for the flow through any 

simple orifice. In new applications it is best to check Fig. 5.14 to see whether 

this simplification applies. By the mathematical methods of potential flow 

(Chap. 16), one may show that an ideal orifice should have C, = 7/ (a + 2) = 

0.611 [1]. 

Figure 5.14 is based on a standard location of the upstream and downstream 

pressure taps. When the taps are in some other location, the value of C, will be dif- 

ferent [2]. In comparison with venturi meters, orifice meters have high pressure 

losses—high #—and correspondingly high pumping costs, but because they are 

mechanically simple they are cheap and easy to install. For flows in small-sized pipes, 

orifice meters are much more common than venturi meters. 

The values of C, in Fig. 5.14 are applicable only to drilled-plate orifices (some- 

times called square-edge orifices, because the edges of the hole are not rounded). 

Some other standard types also are used, and sets of C, curves for these have been 

published [3]. 
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tube with diameter 

( Transparent tapered 

D=D + Bz 

Solid ball with 
diameter Dp and 
density pg 

Fluid with density pr 

FIGURE 5.15 

Rotameter for fluid velocity measurement. (The 

taper of the tube is exaggerated; real rotameter 

5.8.5 Rotameters 

The four previously discussed devices use 

a fixed geometry and read a pressure dif- 

ference that is proportional to the square 

of the volumetric flow rate. A rotameter 

uses a fixed pressure difference, and a 

variable geometry, which is a simple 

function of the volumetric flow rate. Fig- 

ure 5.15 shows a schematic view of a 

simple rotameter. It consists of a tapered 

transparent (glass or plastic) tube, in 

which the fluid whose flow is to be mea- 

sured flows upward, and an interior float, 

which may have several shapes, and is 

shown in Figure 5.15 as a spherical ball. 

Suppose the upward flow shown in 

Fig. 5.15 is steady, so that the ball is not 

moving, and is fast enough to hold the 

ball steadily suspended in the flow. If we 
tubes have a much smaller taper.) make a force balance around the ball 

(positive downward), we find 

(5.AP) 

If we assume that the pressure below the ball is practically uniform across the ball’s 

lower surface, and similarly for the pressure across the ball’s upper surface, and 

remember from Chap. 2 that the z component of that pressure force will be simply 

the pressure times the projected area of the ball, we find 

ie PF sravity 7 Pressure from above _ F ooyancy = Pear from below 

7 T 7 qT Fo 
O = Do pong + Ps Do — — Do Pawiag — Pi — DB (5.AQ) 

6 4 6 4 

Ties TR aes 
6 Do(Pvan — Pruia) & = q DolPi = Ps) (5.AR) 

From B.E., we can find that 

bn vow: V3 A} 
Py P3 = pus (2 = “) S— Pruid “>” l= Ae (5.AS) 

But (A, / Aj) is generally much less than 1, so we can drop it in the last term above. 
And as discussed previously, the flow from 2 to 3 is a sudden expansion, so that P3 
is very nearly the same as P27. Making these substitutions in Eq. 5.AS and solving for 
V>, we find 

ae [Bes Pall ~ Prtuid 1/2 

= [rotameter 
3 Pfiuia | 

(5.20) 

Thus, applying B.E. (and some judicious assumptions), we find that for a given 
diameter of the ball and of the densities of ball and fluid, there is only one possible value 
of V> that will keep the ball steadily suspended! That means that for any flow rate, Q, 
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the ball must move to that elevation in the tapered tube where V, = Q/ Az. But 

A = Bk D at De. p. = T 2 acy [(Do + Bz)” — Do] 7 (2Bz + (Bz)’] (5.AT) 

The taper of the tube, B, is generally small enough that the (Bz)? term in Eq. 5.AT is 
small compared to 2Bz and can be dropped. Then it follows that the height, z, at which 
the ball stands is linearly proportional to the volumetric flow rate Q. 

This treatment is simple; more complex treatments [4] lead to similar conclusions. 

Because of some of the assumptions that went into finding Eq. 5.20, we should not 

assume that we can compute the true velocities from it; an empirical coefficient like the 

orifice coefficient would enter. However, most rotameters are treated as calibrated 

devices; for a given tube, float, and fluid, the Q-z curve is measured and thereafter one 

simply reads the float position and looks up the flow rate from that calibration curve. 

Example 5.11. Our rotameter has been calibrated for nitrogen at room tem- 

perature and atmospheric pressure; the calibration shows that for a reading (float 

position) of 50 percent of the height of the rotameter tube the volumetric flow 

rate is 100 cm® / min. We now need to measure the flow of helium at room tem- 

perature and atmospheric pressure, using the same rotameter. When the reading 

is 50 percent of full scale, estimate the helium volumetric flow rate. 

From Eq. 5.20 we know that the velocity V, and hence the volumetric flow 

rate, for a given float position 

= kA 
tase (a _ (5.AU) 

fluid 

Here the density of the ball, if it is made of almost any solid material, is at least 

1000 times the density of nitrogen at atmospheric pressure, so we can safely 

drop the Pryig in the numerator, from which it follows that the velocity is pro- 

portional to 1 / (fluid density)'’”. Thus 
1/2 Wee 

Pnitrogen nz Mpitrogen 

OQ rctinrn ry On iopen is Qaitrogen 
Phelium hi bee 
4 172 

= 100 on (2) = esare (5.AV) 

Rotameters are very widely used for measuring low flow rates. The simple 

spherical ball float is used for the smallest flows, and more complex float designs are 

used for larger flow rates. 

5.9 NEGATIVE ABSOLUTE PRESSURES: 
CAVITATION 

In certain flows B.E. can predict negative absolute pressures, as shown by the fol- 

lowing two examples. In gases, negative absolute pressures have no physical mean- 

ing at all. When B.E. predicts a negative absolute pressure for a gas flow, then, the 

flow probably contains velocities much too high for the assumptions of B.E.; the equa- 

tions developed in Chap. 8 must then be used. 
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@ In liquids, negative absolute pressures can 

exist under very rare conditions, but they are unsta- 

Pipe, 10-in diameter ble. Normally, when the absolute pressure on a liq- 

40ft uid is reduced to the vapor pressure of the liquid, 

the liquid boils. This converts the flow to a two- 

® phase flow, which has a much higher value of ¥ than 

10 ft does the corresponding one-phase flow. Thus, when 

® B.E. predicts a pressure less than the vapor pressure 
Water of the liquid, the flow as calculated is physically 

impossible; the actual flow will have a much higher 

FIGURE 5.16 friction effect, and the flow velocity will be less than 

A, siphons that will mot yen ass that assumed in the original calculation. 
Example 5.12. 

Example 5.12. Figure 5.16 shows a siphon that is draining a tank of water. 

What is the absolute pressure at point 2? 

Applying B.E. without friction from the free surface, point 1, to the outlet, 

point 3, we find 

V3; = [2e(h, — hy)]'”? = (2: (32.2 ft/s) - 10 ft]'”? 
= 25.3 ft/s =7.71m/s (5.AW) 

Then applying B.E. between points | and 2, we find 

V5 
1) er 5 + 8lz2 — 21) 

lbf Ibm [ (25.3 ft/s)? ft <2 2 
= 14.7—5 — 623 at ) 379i fan se ee 

in ft 2 S 32.2 Ibm: ft 144 in? 
bf bf bf 

= 14.7 — 21.6 = -6.91— = —47.6kPa_ 27? (5.AX) 
in in ithe 

This flow is physically impossible. One may show that, when water is open to 

the atmosphere, such siphons can never lift water more than about 34 ft (10.4 m) 

above the water surface, even with zero velocity; the siphon shown in Fig. 5.16 will 

not flow at all. In this example the physically unreal, negative pressure was mostly a 
result of the gravity term in B.E. Negative absolute pressures can also be predicted 
by B.E. for horizontal flows in which gravity plays no role. 

Example 5.13. Water flows from a pressure vessel through a venturi meter to 
the atmosphere; see Fig. 5.17. P; = 10 psig and A,/A 3 = 0.50. What is the 
pressure at location 2? 

Applying B.E. without friction between locations 1 and 3, we find 

me fo = af = E 10 Ibf/in? 32.2 Ibm- ft 144 in? ]!7? f scalpgie-sk essai cmulegne Ente 
p 62.3 lbm/ft® _Ibf- s? 4 

ft m 
= 38:6 — = 11.38 — Sarid: (5.AY) 



CHAPTER 5 BERNOULLI’S EQUATION 157 

The mass balance gives us 

A3 ie 
V, = V3 — = 38.6 —-—— 

eT ek AS s 0.50 
t 

ee OS (5.AZ) 

Applying B.E. without friction between 

FIGURE 5.17 locations 1 and 2, we find 

A horizontal venturi; see Example 5.13. 

V3 62.3 lbm / ft?(77.2 ft/s)? we. -? 2 
P, = P; — p— = 24.7 psia — ( ) -- eyed 

2 2 35 Paar tt lad ane 
= 24.7 psia — 40.1 psi = —15.4 psia = —106 kPa, abs Lane, (5.BA) 

a 

This flow also is physically unreal. At such high velocities the frictional effects 

become large; so the frictionless assumption above is a poor one. If the frictional 

effect were negligible, then the fluid would boil in the venturi and thus convert to a 

two-phase flow with a much lower flow rate. The device sketched in Fig. 5.17 is 

widely used as a vacuum pump. An opening in the side of the tube at point 2 will 

suck in air; such devices, attached to faucets, are widely used as a laboratory source 

of modest vacuum. As the above example shows, with a high flow one produces a 

negative absolute pressure. But with modest flows one does not produce an impossi- 

ble flow, and does produce a useful vacuum. 

Example 5.13 shows that as the velocity increases in horizontal flow, the pres- 

sure falls. The pressure decrease can cause boiling of the liquid. Dramatic examples 

of this phenomenon occur in pumps, turbines, and ship’s propellers, as shown in 

Fig. 5.18. In these devices the fluid is often speeded up to a velo’ which it 

forms a vapor bubble. Then the bubble flows to a region of higher pressure and col- 

lapses. The collapse can cause a sudden pressure pulse, and the pulses, occurring at 

high frequencies, can damage the pump, turbine, etc. The phenomenon of local boil- 

ing due to velocity increase is called cavitation, the study of which is an important 

part of modern research in fluid machines [5]. We will say a little more about this in 

Chap. 10. 

5.10 B.E. FOR UNSTEADY FLOWS 

B.E. is a steady-flow equation; however, it can be successfully applied to some unsteady 

flows if the changes in flow rate are slow enough to be ignored. To decide how slow 

the change must be to be ignored, we reason as follows. For a steady flow (OV/ dt), 5,2 

is zero. This means that, although an observer riding with the fluid would observe a 

changing velocity, an observer watching a specific point in the system would observe 

no change in velocity with respect to time. We are safe in ignoring unsteady-flow 

effects if (8V/ 0t),y,, for all points in the system is small compared with the accel- 

eration we are considering, that is, the acceleration of gravity or the acceleration due 

to pressure forces, (dP / dL) / p. If, on the other hand, (9V/ t),,, at any point in the 
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FIGURE 5.18 

Cavitation bubbles formed at the tips of a propeller. The propeller is 

rotating in a channel with flow from left to right. At the tips of the blades 

the pressure is low enough to cause the water to boil. The bubbles have 

short lifetimes; the collapse of the unstable bubbles produces shock waves 

in the water, which can be destructive. (Photograph from the Garfield 

Thomas Water Tunnel Building, Applied Research Laboratory, The 

Pennsylvania State University.) 

system is comparable to the largest of the other acceleration terms in the system, then 

we cannot safely apply B.E. to the system. 

Example 5.14. If the tank in Fig. 5.7 is cylindrical with a diameter of 10 m, 

and if the outlet nozzle is 1 m in diameter, how long does it take the fluid level 

to drop from 30 m above the tank outlet to 1 m above the tank outlet? 

Here we assume that the (dV / dt)x,y,z is small; we will check that assump- 

tion later. The instantaneous flow rate is assumed to be given by B.E., which 

here takes the form of Torricelli’s equation: 

V5 =(2ph) 2 (5.12) 

But, by the mass balance for an incompressible fluid, 

Ay 
V, = V;— (5.BB) 

A, 

where V, is the rate at which the free surface of the tank is moving downward, 
which is equal to —dh/ dt; so 

—dh Aj / UE A> , Wan w—! = (2ph)!/2. BE 1/2 

amg Nagai Gee) ivaiy ge 8). ee (5.BC) 

he dh a A th A fe " 3 Gin padai loo Aah tag) Fev opens 
my pil? Pars (2g) Siar (2g)'/*t} (5.BD) 

1 ty 
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Therefore, 

Kye A —2(h}!? os Baa ee 

(Ap / A,)(2g)'/? 

Inserting numbers, we find 

—2[(1 m)!/? ie (30 m)!/?] 

[(m / 4) «(1 m)*/ (ar / 4) - (10 m)*]- (2: 9.81 m/s?)!/2 

a oad | (er49) 
e ae tank draining 

Quick-opening 
valve = 2.02: 107 s = 3.37 min (5.BE) 

FIGURE 5.19 The maximum velocity in this tank is at the outlet, and 

Opening the valve all other velocities are proportional to it; therefore, the maxi- 
produces a flow not mum value of (dV/ dt)... must occur at the outlet. Differenti- 
described by Bernoulli’s ating Torricelli’s equation with respect to time, we find 
equation. / 

dV, _ (2g)'/* dh 
Bre Lao a (5.BF) 

Substituting for dh / dt, we find 
aV> g ib A> (2 jr VEL Ay 

—=(—]} -v,—~=(=) (2gn)!/?— = 
at (= Rye Rakion jo Sis sig gina wat) BS) 

Thus, in this example the maximum value of (dV/ df),.,,. is 70 the acceleration 

of gravity, and the unsteady-flow aspect of the problem can safely be neglected. 

rg 

Most of the flow problems in which the unsteady flow cannot be neglected and 

hence in which B.E. cannot be applied involve starting the flow from rest or sudden 

stopping of the flow. Consider the pipe and valve shown in Fig. 5.19. Initially the pipe 

is practically full of fluid and the valve is closed. Then the valve is suddenly opened. 

If the friction effect is negligible, then the fluid will fall freely, maintaining its cylin- 

drical shape, just as a solid rod would. In this case the entire outflow process takes 

place during the flow-starting period; the whole fluid is still accelerating when the last 

particle of fluid leaves the pipe. Friction and surface tension complicate the picture, 

but for low-viscosity fluids in short, large-diameter pipes the result described above 

is experimentally observed. 

In this case all the fluid has the same velocity, and thus (dV/ dt),,, is the same 

at all points where there is fluid. Here it is equal to g, so it is of the same size as the 
largest accelerations in B.E., and the test indi- 

cates that we cannot safely apply B.E. to this 

problem. 

The other general type of unsteady-flow 

problem that cannot be solved by B.E. is the 

problem with sudden valve closing, which 

Quick-closing leads to a phenomenon called water hammer. 

valve Figure 5.20 shows a tank from which a 
liquid flows through a pipe, at the end of 

which is a quick-closing valve. If the liquid 

J) 4s ‘/ 

FIGURE 5.20 

Closing the valve quickly produces a flow : 

not described by Bernoulli’s equation. is flowing steadily and the valve is suddenly 
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closed, the flow during the closing process cannot be described by B.E. B.E. would 

indicate that, once the valve closed, the pressure throughout the system would be the 

pressure given by the basic equation of fluid statics. Actually, at the time the valve is 

being closed, the fluid in the pipe has significant kinetic energy, and the sudden shut- 

ting of the valve requires that kinetic energy be converted either to internal energy, 

with a rise in temperature, or to injection work, with a rise in pressure. 

This chapter has concentrated on problems most easily solved by the energy 

balance (of which B.E. is a restricted form). The problem of suddenly stopping the 

fluid, in Fig. 5.20, and the problem of starting it from rest are both more easily solved 

by the momentum balance (Chap. 7). We will return to this problem and the problem 

of what happens when the valve in Fig. 5.20 is suddenly opened in Chap. 7. For now 

we simply note that although B.E. is immensely useful, there are some problems for 

which it is not useful; the starting and stopping of the flow in Fig. 5.20 is one of those 

problems. 

5.11 NONUNIFORM FLOWS 

So far in this chapter, and in the vast majority of problems in pipes, channels, ducts, 

etc., we assume that the velocity is practically uniform across the pipe, duct, or chan- 

nel, so that we may associate one velocity with the entire flow at any one down- 

stream location perpendicular to the flow. In most flows of practical interest to 

chemical engineers this simplification introduces negligible errors (see Table 3.1). 

However there are some very simple and common flows for which this is not the 

case. The simplest and most illustrative example of this type is the flow over a sharp- 

edged weir. 

Figure 5.21 shows schematically the flow in an open channel that passes over 

a sharp-edged weir. One may study a very similar flow in a kitchen sink by pouring 

water out of a rectangular baking dish, at a high enough velocity that the flow does 

not dribble down the side of the dish but rather flows freely away from the edge, as 

shown in Fig. 5.21. The flow over the weir in Fig. 5.21 is simpler than the flow out 

of baking dish, because the weir is assumed to extend a long way into and out of the 

page, so that the complications where it meets the walls of the channel, equivalent to 

the effects of the corners of the dish, can be ignored. 

Here at 1, far upstream 

from the weir, the velocity is 

presumably uniform (ignor- 

ing the effects of friction), 

equal to V,. Clearly at 1 we 

do not have a single value 

of z; instead, we have eleva- 

tions ranging from z= 0 to 

zZ = z. Similarly, we do not 
O oO have a single pressure, but we 

have gauge pressures ranging 
FIGURE 5.21 from zero at the free surface 
Flow over a weir. to P = pgz, at the bottom. 
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Fortunately, this causes little difficulty because the sum P/ p + gz + V7/2 is con- 
_Stant at point 1, independent of z, because as z declines the pressure rises, according 
to the basic equation of fluid statics, to keep the sum of the P/ p + gz terms constant. 

The same is not true at 2. There the flow is open to the air at both sides, so that 
the gauge pressure at 2 must be zero, at all elevations above the weir. We can thus 
write B.E. between an arbitrary upstream point at 1 and some elevation z (above z>) 
at point 2. Because the sum P/p + gz is independent of z at 1, we choose z = 2), 
for which P,; = 0, and write 

Tipe, Sead BES ft dene 
gz + See V2 = | 2g(z,; — z) + oH (5.BH) 

This says that at the free surface the velocity should be the same as the velocity at 

1, which in most cases is negligibly small, and that at the bottom of the overflowing 

stream, the velocity should be a maximum, with the value given by the above equa- 

tion, with z = z). One can try this by pouring water from a baking dish in the sink 

and seeing that this is not exactly the case. The internal friction in the flow does not 

allow the fluid at the surface to go that slowly, adjacent to the much faster-flowing 

fluid just below it. Instead the faster-flowing fluid drags the surface fluid along, faster 

than Eq. 5.BH predicts. One may also see that as the surface fluid speeds up, its ele- 

vation falls, so that instead of being completely level up to the weir, as Fig. 5.21 

shows, the free surface actually falls slightly just before the weir, to satisfy the energy 

balance. 

Ignoring this disagreement between Eq. 5.BH and what we can see in the sink, 

we can compute the expected flow rate by considering a length W into the page in 

Fig. 5.21. To simplify the integration, we now measure elevations downward from the 

surface, defining h = z, — z, and write 

hy y2\!/2 

a= [vas = wf (2s + *) dh (5.BI) 

Normally V,; is small enough that we can drop it from the right side of the above 

equation, and integrate to find 
ja? 

1 
wii? O22) 

Experimental results show that the 3/2 power dependence of Q on h, is correct but 

that the flow rate is less than predicted by Eq. 5.22, typically about 67 percent of what 

that equation predicts [6]. 
_ The same differences in velocity from top to bottom of the flow that we calcu- 

late here are certainly present in all the horizontal-flow examples in this chapter. How- 

ever, in a flow like that shown in Fig. 5.7, the difference in elevation from the top to 

the bottom of the exit flow is so small compared to the elevation change from the free 

surface in the tank to the centerline of the exit that we make a negligible error in 

ignoring the minor differences in velocity from top to bottom of the exit flow. The 

same is true of most of the flows of practical interest to chemical engineers. But for 

shallow gravity-driven flows, for example, the flow over weirs in distillation columns, 

clarifiers, etc., one must take them into account. 

Q=WV2g 



162 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

Figure 5.21 shows the jet that flows over the weir becom- 

ing thinner as it flows. This is also explained by B.E., as shown 

in the next example. 
Faucet 

Jet Example 5.15. A faucet in an ordinary sink with a par- 

6 tially opened valve is shown in Fig. 5.22. The flow tapers 

(MOS from the faucet, forming a thinner and thinner stream as it 

: flows downward. Eventually it breaks up into drops, due to 

FIGURE 5.22 surface tension, discussed in Chap. 14. If the diameter of 

Slow flow from a the falling column of fluid is 2 cm and its velocity 0.5 m/s 

partly opened faucet, where it leaves the faucet, what is the expected diameter at 

PEDIEE en SEG 0.5 m below the faucet? 
contracts as it falls 

and finally breaks up 

into drops. 

Taking | to be the exit of the faucet and 2 to be 0.5 m 

lower, we find from B.E. that 

V3 Ve = 2¢h0 VIVE (Wie 2gh)'2 (5.BJ) 
2 1/2 

Wee [(os™) +2-9815-0.5m] 
S Ss 

DN DAD : fi = (10.06 =) = 3.172 = 104— (S.BK) 
Ss 

By material balance for a constant-density fluid, 

V, 0.5 m/s 
A, = A; > = = _ = 0.158 : 

VY, 3.17m/s eae 

and correspondingly 

Aa il/A 2 

Dies o(2) = 2cm-0.158'/? = 0.79cm = 0.31 in (5.BM) 
1 

As the velocity of the fluid increases according to B.E., the column shrinks lat- 

erally according to the material balance. | 

For inherently two- or three-dimensional flows, like the flow around an airplane, 
the simple application of B.E. from one point to another in the flow, which we have 
used here, is only applicable if the two points chosen are on a single streamline, as 
discussed in Chap. 16. 

5.12 SUMMARY 

1. B.E. is the energy-balance equation for steady flow of constant-density fluids. 
2. For constant-density fluids the term (Au — dQ/ dm) in B.E. represents the fric- 

tion heating per unit mass, ¥. 

3. Although no fluid has exactly constant density, B.E. can be applied with negligible 
error to almost all steady flows of liquids and to steady flow of gases at low veloc- 
ities, because in those flows the effect of changes in density is negligible. 
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4. A large number of fluid-measuring devices are based on the frictionless form of 
B.E. Friction is present in these devices. The commonly used equations for these 
devices retain the frictionless B.E. form and add empirical correction factors to 
deal with the effects of friction. 

5. B.E. can predict negative absolute pressures for some impossible flows. For gas 
flows, this prediction normally means that the velocities are too high for B.E. to 
apply. For liquids, it normally means that the fluid will boil, leading to a two-phase 
flow and a much lower velocity than predicted. 

6. Although B.E. is a steady-flow equation, it can be used for unsteady flows if the 

time rate of change of velocity at every point in the system is small compared with 

the accelerating forces (e.g., the acceleration of gravity). It is not useful for prob- 

lems involving sudden starting and stopping of flows; those are best solved with 

the momentum balance. 

7. Normally we ignore the differences in velocity perpendicular to the flow in apply- 

ing B.E. to the flow in pipes and channels. This causes negligible errors, except in 

shallow, gravity-driven flows, like the flows over weirs. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover. 

An asterisk (*) on the problem number indicates that the answer is in App. D. 

5.1.*If a body falls 1000 ft in free fall and then is stopped by friction in such a way that all 

its kinetic energy is converted into internal energy, how much will the temperature of the 

body increase if 

(a) It is steel, Cy = du/ dT = 0.12 Btu/ Ibm: °F. 
(b) If it is water, Cy = du/ dT = 1.0 Btu/lbm- °F? Here Cy is the heat capacity at con- 

stant volume. 

5.2. Show that in the head form of B.E. each term has the dimension of a length. 

5.3.*Water is flowing in a pipe at a velocity of 8 m/s. Calculate the pressure increase and the 

increase in internal energy per unit mass for each of the following ways of bringing it to rest: 

(a) A completely frictionless diffuser with infinitely large Ap. 

(b) A diffuser that has 90 percent of the pressure recovery of a frictionless diffuser, with 

infinitely large Ap. 

(c) A sudden expansion. 

5.4. A fluid is flowing in a frictionless diffuser in which A, / A; = 3and V, = 10 ft/s. Cal- 

culate the pressure recovery (Pz — P;) 

(a) For the fluid being water. 

(b) For the fluid being air. 

5.5. Rework Example 5.2, calculating the density from the formula p = MP,y. / RT where Pate 

is 0.5(P; + Pisin): Compare the results with those shown in Table 5.1. 

5.6. Torricelli’s equation can be reduced to a simple plot of V as a function of h. Prepare such 

a plot for heights up to 1000 ft. 

5.7.*The tank shown in Fig. 5.7 is modified to have an outflow area of 2 ft”. The diameter of 

the tank is so large that it may be considered infinite. The height h is now 12 ft. How 

many cubic feet per second are flowing out? Assume frictionless flow. 

5.8. Repeat Example 5.3 when the fluid is gasoline. 
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h=40ft 

FIGURE 5.23 

Buoyancy-driven gas flow. 
5.12. 

FIGURE 5.24 

Tank-draining flow. 

FIGURE 5.25 

Two-fluid, gravity-driven flow. 

5.10. 

5.11. 

5.9.*Repeat Prob. 5.7, except that now the horizontal cross- 

sectional area of the tank is 5 ft’. 

Hoover Dam has a height of 726 ft. Assume the water 

is up to the top of the dam on the upstream side. If 

one were to drill a hole through its base and let the 

water squirt out, and if friction were negligible, what 

velocity of water jet would we expect? 

An ocean liner strikes an iceberg, which tears a 5 m? 

hole in its side. The center of the hole is 10 meters 

below the ocean surface. Estimate the volumetric flow 

rate of water into the ship. 

Rework Example 5.5, making the fluid in the tank air 

be at the same temperature and pressure as the air of 

the atmosphere. Is the answer from Eq. 5.12 plausible? 

Would the answer from Eq. 5.14 be plausible? 

5.13.*The tank in Fig. 5.23 is full of helium, at 

the same temperature and pressure as the 

surrounding atmosphere. Assuming steady, 

frictionless flow, what is the velocity of 

helium through the hole? 

The tank in Figure 5.24 is cylindrical with 

a diameter of 10 m. The outlet is a cylin- 

drical frictionless nozzle, with diameter 1 

m. The top of the tank is open to the 

atmosphere. When the level in the tank is 

10 m above the centerline of the outlet, 

how fast is the level in the tank falling? 

In Fig. 5.25 a tank of water is immersed 

in a larger tank of gasoline, and the water 

is flowing out through a hole in the bot- 

tom. What is the velocity of this flow? 

5.16.*In the vessel in Fig. 5.26 water is flowing 

steadily in frictionless flow under the bar- 

rier. What is the velocity of the water flow 

under the barrier? 

In the tank and standpipe in Fig. 5.27, 

which way is the fluid flowing? Hint: 

Write B.E., taking the two free surfaces as 

points 1 and 2. Compute the magnitude 

and sign of & for flow in each direction. 

5.18.*In the tank in Fig. 5.28, water is under a layer of 

compressed air that is at a pressure of 20 psig. 

The water is flowing out through a frictionless 

nozzle that is 5 ft below the water surface. What 

is the velocity of the water? 

In the preceding problem, if the liquid level 
remains constant, and we slowly lower the air 
pressure, at some air pressure the velocity will be 
10 ft / s. What pressure will that be? 

5.14. 

Sus. 

Seliz. 

5.19% 
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20 ft 
30 ft 

10 ft 

FIGURE 5.26 FIGURE 5.27 

Two-fluid, gravity-driven flow. Which way does this system flow? 

5.20. The system in Fig. 5.29 consists of a water reservoir with 

a layer of compressed air above the water and a large pipe 

and nozzle. The pressure of the air is 50 psig, and the 

effects of friction can be neglected. What is the velocity 

of the water flowing out through the nozzle? 

5.21.*The tank in Fig. 5.30 has a layer of mercury under a layer 

of water. The mercury is flowing out through a friction- 

less nozzle. What is the velocity of the fluid leaving the 

nozzle? 
FIGURE 5.28 oF? (Ser 
Flow driven by gravity and 5.22. The compressed-air-driven water rocket shown in Fig. 5.31 

pressure. is ejecting water vertically downward through a friction- 

less nozzle. When the pressure and elevation are as shown, 

what is the velocity of the fluid leaving the nozzle? 

5.23.*An industrial centrifuge is sketched in Fig. 5.32. 

The fluid in the basket is water. The radii are 

r; = 21 in and rz = 20 in. The basket is revolving 

at 2000 rpm. There is a small hole in the outer wall 

of the centrifuge, through which the fluid is flow- 

ing in frictionless flow. What is the velocity of flow 

through this hole?. 

5.24. Flow-recorder charts frequently have a square scale 

rather than a linear one. Why? 

FIGURE 5.29 5.25.*A pitot tube is being designed for use as a speed- 

Flow driven by pressure against ometer on power boats. For ease of construction the. 

sravity. 

‘IGURE 5.30 FIGURE 5.31 FIGURE 5.32 

[wo-fluid, unsteady tank draining. Compressed air-water rocket. Centrifuge basket with leak. 
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5.26. 

tubes will not extend more than 10 ft above the water. What is the maximum speed at 

which they can be used? 

A pitot-static tube is to be used to measure a flow of air. The manometer fluid is water. 

We will not use the tube for flows so slow that the elevation difference in the manome- 

ter is less than 0.5 in because smaller differences are hard to read. What is the smallest 

air velocity at which we can use this pitot-static tube? 

5.27.*Repeat Prob. 5.26 except that now we measure the flow of gasoline, and the manometer 

5.28. 

5.29. 

5.30. 

5.31. 

5.32. 

5.33. 

fluid is water. 

A pitot-static tube is used to measure an airplane’s air speed. When the pressure- 

difference gauge reads 0.3 psig, how fast is the plane going? 

(a) At sea level where the air density is about 0.075 lbm / ft?? 

(b) At an altitude of 10,000 ft, where the air density is about 0.057 Ibm / fig 

(c) Does this difference cause problems for the pilot? (You may have to ask your pilot 

or aeronautical engineering friends for help on part c.) 

A pitot tube, connected to a bourdon-tube pressure gauge, is used to measure the speed 

of a boat. The tube is just below the waterline and faces directly forward. When the boat 

is going 60 km/h, what is the reading of the pressure gauge? 

In this book and most textbooks, equations are correct for any set of units. In “applied” 

or “practical” publications, one regularly sees equations that are unit specific. For exam- 

ple, Jack Caravanos (Quantitative Industrial Hygiene; A Formula Workbook, ACGIH, 

Cincinnati, 1991, page 66) gives the following equation for the air-flow velocity in a duct, 

based on measurements with a pitot-static tube: 

V = 4005 V VP (5.BN) 

where V is the velocity in ft / min, and VP is the “velocity pressure” in inches of water. 

Is this consistent with Eq. 5.16? 

If the venturi meter in Example 5.10 is to be used on a day-to-day basis, then it will be 

useful to have a plot of volumetric flow rate versus pressure drop, so that one can read 

the pressure drop and simply look up the volumetric flow rate. Sketch such a plot for 

flow rates of 1 to 10 ft*/s. 
In the venturi meter shown in Fig. 5.10, the flowing fluid is air, the manometer fluid is water, 

(D2 / D,) = 0.5, and the manometer reading is 1 ft. Estimate the velocity at point 2. 

The venturi meter in Example 5.8 is now set at 30° to the horizontal, as in Fig. 5.12. 

The flowing fluid is gasoline. The fluid in the bottom of the manometer is colored water. 

The reading of the manometer is z; — z4 = | ft. What is the volumetric flow rate of the 

gasoline? 

5.34.*Repeat Prob. 5.33, except that the two pressure taps have been replaced with pressure 

SESE 

gauges. These are placed on the side of the pipe, so that they indicate pressures on the 

pipe centerline. The gauge at point | reads 7 psig, and the gauge at point 2 reads 5 psig. 

The difference in elevation between the gauges, (z; — Z), is 2 ft. What is the volumet- 

ric flow rate of the gasoline? 

In the apparatus in Fig. 5.33 what is the volumetric flow rate? 

5.36.*The venturi meter in Fig. 5.34 has air flowing through it. The manometer, as shown, con- 

3575 

tains both mercury and water. The cross-sectional areas at the upstream location and at 

the throat are 10 ft” and 1 ft”. What is the volumetric flow rate of the air? The discharge 
coefficient C, equals 1.0. 

Modern autos in the United States, Europe, and Japan have mostly replaced the carbu- 
retors of older autos with fuel injectors. But autos produced for developing countries still 
have carburetors, as do power tools such as lawnmowers. The carburetors in automo- 
biles and power tools are much more complicated versions of the carburetor shown in 
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Cross-sectional 

area 2.0 ft? 

Cross-sectional 

area 0.5 ft? 

FIGURE 5.33 FIGURE 5.34 
Device for Prob. 5.35. Venturi meter with two-fluid manometer. 

Fig. 5.35, but they operate the same way as that simple one. The cross-sectional areas at 

points 1 and 3 are large enough that the velocities there can be considered negligible 

compared to the velocity at point 2, and the pressures at points 1 and 3 are both approx- 

imately equal to atmospheric pressure. The gasoline enters from a constant-liquid-level, 

atmospheric-pressure reservoir through a large-diameter tube and a small jet, which may 

be considered a frictionless nozzle with diameter D;. The diameter at the throat of the 

venturi, point 2, is D>. 

(a) Write the equation for the air-fuel 

ratio, which is the (mass flow rate 

of air) / (mass flow rate of fuel), in 

terms of the diameters of the throat, 

the jet, etc. 

How does this air-fuel ratio change 

with changes in air flow rate to the 

engine? (The air flow rate to the 

engine is governed by the setting of 

the throttle plate, which is connected 

to the driver’s accelerator pedal, and 

located between the part of the car- 

buretor shown here and the engine.) 

(c) If we want an air-fuel ratio of 

15 Ibm/lbm (typical of gasoline 

engines), what ratio of D,/D, 
should we choose? 

Inlet airflow 

@ 

(b SS 

Gasoline 

Gasoline level 

held constant by 
a float valve. 

i t (d) If the carburetor shown here gives 

® Pea an air-fuel ratio of 15 at sea level, 

engine will it give the same, a higher, or a 
lower fuel-air ratio in Denver, ele- 

vation 5280 ft above sea level? 

5.38. In the United States natural gas is nor- 

mally piped inside buildings at a pres- 

FIGURE 5.35 sure of 4 in of water, whereas propane 

Elementary carburetor. The liquid level in the is piped inside buildings at a pressure 

reservoir is held constant by a float valve. of 11 in of water. Why? 
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5.39. An oil (density 55 Ibm / ft*) is flowing through 

the orifice in Fig. 5.36. The oil velocity is 1 ft/s 

in the pipe. C, = 0.6. What is the indicated value 

of P, ea P? 

5.40. One occasionally sees Eq. 5.18 written 

“ os / 
Inside 0.2 in-diameter ses Ce . =" EI 2) 1 be BO) 

: A ye n= 
diameter | in hole (1 i ABl Ay? p 

FIGURE 5.36 One then defines a new coefficient, C= 
Orifice meter. C,/(1 — 43/ Az) ?\ which is called the coeffi- 

5.41. 

cient of discharge, approach velocity corrected. Sketch this coefficient for D2 /D, = 0.8 

and for D, / D; = 0.2 on a graph like Fig. 5.14. 

Mercury is flowing at 1 ft /s in a l-in diameter pipe. We want to select a drilled plate 

to insert in the pipe so that the pressure-drop signal across it will be 3 psig. What diam- 

eter should we select for the orifice hole? 

5.42.*A venturi meter, Fig. 5.10, has A> / A, = 0.5. The fluid flowing is water. The pressure at 

5.43. 

5.44. 

FIGURE 5.37 

Vertical, gravity-driven venturi. 

point 1 is 20 psia. 
(a) What is the velocity at point 2 that corresponds to a pressure at point 2 of 0.0 psia? 

(b) If the water is at 200°F, its vapor pressure is 11.5 psia. What is the highest velocity 

possible at point 2 at which water at 200°F will not boil? 

For a siphon similar to that sketched in Fig. 5.16, we want the fluid to have a velocity of 

10 ft / s in the siphon pipe. If we assume that flow is frictionless and that the minimum 

pressure allowable is 1 psia, what is the maximum height that the top of the siphon may 

have above the liquid surface level? 

In Example 5.12, what is the highest possible value of (z. — z,) for which cavitation will 

not occur? The vapor pressure of water at 20°C = 68°F is 0.34 psia. 

5.45. The tank in Fig. 5.37 is open to the atmosphere at the top 

and discharges to the atmosphere at the bottom. The cross- 

sectional areas are; 1, very large; 2, 1.00 ft”; 3, 1.50 ft”. The 

flow is steady and frictionless. What is the pressure at 2? 

5.46.*A ship’s propeller has an outside diameter of 15 ft. When 

the ship is loaded, the uppermost part of the propeller is 

submerged 4 ft. If the water is at 60°F (vapor pressure, 

0.26 psia), what is the maximum speed of the propeller, 

in revolutions per minute, at which cavitation cannot be 

expected to occur at the tip of the propeller? 

5.47. Is cavitation likely to be as severe a problem with the pro- 

pellers of submarines as with the propellers of surface 
ships? Why? 

5.48. In Example 5.14, instead of the tank being initially filled 

to a depth of 30 m above the outlet with water, it is filled 

to a depth of 10 m with water and then has a layer of 20 

m of gasoline on top of the water. How long does it take 

the level of the top of the gasoline to fall from 30 m above 

the outlet to 1 m above the outlet? 

5.49.*The tank in Fig. 5.38 is cylindrical and has a vertical axis. 
Its horizontal cross-sectional area is 100 ft”. The hole in 

the bottom has a cross-sectional area of 1 ft*. The inter- 
FIGURE 5.38 face between the gasoline and the water remains perfectly 
Two-fluid tank draining. horizontal at all times. That interface is now 10 ft above 
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5 nh the bottom. How soon will gasoline start to flow out the 
|-— bottom? Assume frictionless flow. 

Qy 5.50. (a) In Figure 5.28, if the tank diameter is 10 ft, the outlet 

diameter is | ft and a pressure regulator supplies com- 

pressed air as needed to keep the pressure in the gas 

space constant at 20 psig, how long will it take for the 
20 ft water level to fall from 5 ft to 1 ft? 

(b) Repeat part (a) except that the compressed air system 

is turned off so that the pressure above the water falls 

as the liquid flows out and the gas expands. Assume 

that the gas is an ideal gas and that its temperature 

remains constant at 20°C = 68°F. Initially the gas 
5 ft space is 1 ft high, and at P = 20 psig. 

5.51. The open-topped tank shown in Fig. 5.39 is full to the top 

FIGURE 5.39 with water. The bottom opening is uncovered, so that the 

Tank draining with non- water runs out into the air. The cross-sectional area of the 

constant cross section. bottom opening is 1 ft?. How long does it take the tank to 

empty? Assume frictionless flow. 

5.52. An open-ended tin can, Fig. 5.40, has a hole punched in 

its bottom. The can is empty and is suddenly immersed in 

water to the depth 4, shown and then held steady. The area 

of the hole is 0.5 in*, and the horizontal cross-sectional 

area of the can is 20 in*. If we assume that the flow 

through the hole in the bottom of the can is frictionless, 

how long does it take the can to fill up to the level of the 

surrounding water? 

FIGURE 5.40 5.53. A fluid mechanics demonstration device has the same flow 

Gravity inflow. diagram as Fig. 5.6. The tank is rectangular, 6 in by 5.5 

in. The outlet opening is circular, D = 0.30 in. The tank 

is filled with water and allowed to drain. How long will it take the level to fall from 11 

in above the centerline of the opening to | in above it? 

5.54. A 1-gal paint can, diameter 6.5 in and height 7.5 in, is filled with methane. A 0.25 in. 

diameter hole in the top is covered with masking tape, as is a 0.5 in. diameter hole at 

the bottom; see Fig. 5.41. At time zero, the two masking tapes are removed, and a stop- 

watch is started. The methane flows upward out the hole in the lid by gravity and is 

lighted, producing a yellowish flame. For all the calculations below, assume that the flow 

resistance through the hole in the bottom is negligible. 

(a) What is the initial velocity of the methane through the hole in the top? 

(b) As the methane in the can is replaced by the inflowing air, that velocity falls and the 

flame becomes smaller and bluer. What is the relation between that velocity and 

elapsed time? Here use the two classic mixing models of chemical engineering, 

totally unmixed flow, in which the air and methane form separate layers, one above 

the other, and totally mixed flow, in which the concentration of methane in the mix- 

ture inside the container is always uniform throughout the container. 

When the flow rate through the opening at the top becomes less than the laminar flame 

speed for methane-air mixtures, 1.1 ft/s, the flame burns back into the container, where 

the velocity is less than 1.1 ft / s and spreads rapidly, producing a bang and a flash, 

and propelling the container’s lid into the air. The internal safety chain prevents the lid 

from hurting anyone, and pulls the can up off its bottom. How long does it take for 

this to occur, according to the totally unmixed and totally mixed models in part (b)? 

The observed time is about 325 s. This demonstration is described in detail in [7]. 

(c ~ 2 
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Gas 

flow 

0.25 in. 

diameter hole 

Internal safety chain 

Air 

0.5 in. 

diameter hole 

|}-—_—___——6.5 in. ——————+ 

FIGURE 5.41 

Simple time bomb; see Prob. 5.54. 

5.55. Repeat Example 5.14 with the water in the tank being replaced with propane. Assume 

zero mixing between the propane and the air above it. 

5.56. Figure 5.42 shows a toy fluid-mechanics demonstrator, which consists of a wooden 

(or plastic) spool, a piece of cardboard, and a thumbtack. When one blows hard 

Airflow in 

Cardboard 

Pressure 

| 
| Thumbtack 

| 
Distance 

FIGURE 5.42 

Spool and cardboard fluid mechanics 

demonstrator. 

enough downward into the spool, the cardboard 

is held firmly against the spool; when one stops 

blowing, the cardboard falls away by gravity. 

Sketch a pressure-radius plot for pressure along 

line A-A in the sketch while air is flowing. 

Use the axes shown in the lower part of the 

figure. 

The function of the thumbtack is to prevent 

the cardboard from moving sideways; otherwise 

it plays no role if the device. Assume that the 

cardboard is stiff enough that the distance 

between the cardboard and the spool is constant, 

independent of radius. The device works with a 

piece of ordinary flexible paper, but the mathe- 

matics are more complex because the distance 

between paper and spool is not constant. A piece 

of adhesive tape holding the thumbtack in place 

helps. 
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5.57. In the spool-and-cardboard demonstrator in the preceding problem, the hole in the spool 
has a diameter of 7.1 mm, the outside diameter of the spool is 35 mm, and the space 
between the spool and the cardboard disk is estimated to be 0.2 mm. One lung full of 
air is about 1 L and is blown out in about 2 s. Based on these values, estimate the low- 
est pressure likely to occur in the space between the spool and the cardboard. 

5.58. For frictionless pumps and compressors pumping constant-density fluids, the required 
work is given by Eq. 5.11. If the fluid is an ideal gas, then that equation becomes 

qaWap sta P 

dm MJ P RP 

For very small pressure changes this is practically 

dW RT AP 
SS aS [AP S<9P 3] (5.BQ) 

dm M P, 

Almost all real compressors are intermediate between adiabatic (no heat transfer to the 

surroundings) and isothermal (complete thermal equilibrium with the surroundings). For 

those two cases the required work for ideal gases is shown in Chap. 10 to be 

dW, ¢. RT 
P 

= ] isoth icti sas M ws {isothermal, frictionless] (5.BR) 

and 

AWost. x BT aceabhorn | (Pa\"> DS" wee 41 24 2 
s = me Ter TT Up al {adiabatic, frictionless] (5.BS) 

= i 

Here 7, is the inlet temperature, k is the ratio of specific heats (to be discussed in 

Chap. 8), which is practically constant for any gas (~1.40 for air), and P; and P> are 

the inlet and outlet pressures, respectively. To show how these formulae compare, pre- 

pare a plot of [M/RT,]- (dW, /dm) versus P/ P, for air, showing curves for each 
of the three equations, for the range 1.0 < P,/P, < 1.3. Here the calculated work is 

that done to drive the pump or compressor, which is work done on the system and has 

a positive sign. 

5.59. Figure 5.43 shows an air-cushion car, of the type widely used to slide heavy loads over 

relatively smooth surfaces. In it, a fan or blower forces air under pressure into the con- 

fined space under the car. This air supports the car and its load. Some of the air contin- 

ually leaks out through the gap between the skirt of the car and the ground; the fan must 

supply enough air to make up for this leakage. Assuming that the car and its payload 

have a total mass of 5000 Ibm, that the car is circular with a diameter of 10 ft, and that 

the clearance between the skirt of the car and the floor is 0.01 in, calculate the air flow 

rate. Then, assuming that the blower is 100 percent efficient and isothermal (Prob. 5.58), 

calculate the required blower horsepower. 

5.60.*An air-inflated “bubble” structure has a 

ae skin that weighs 1.0 Ibf/ft?. Real ones 

Y { are cylindrical domes, but for this prob- 

lem consider it to be a flat roof, held up 

by the pressure inside it. The floor area is 

Air leakage 20,000 ft”. All such structures have some 

leakage, which must be supplied by a fan 

IGURE 5.43 that runs constantly. The true leakage area 

\ir-cushion car. consists of many small pinholes in the 

Blower 
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fabric, leaky seams, etc. For this problem assume that the leakage is equivalent to the 

frictionless flow through 5 ft” of opening. 

(a) Estimate the gauge pressure inside the structure. 

(b) Estimate the leakage flow rate that must be made up for by the fan. 

(c) Estimate the power requirement for the fan, which is assumed to be 100 percent 

efficient. 

5.61. Water flows (100 m/s) in a channel 50 m wide and spills over a sharp-edged weir. 
(a) Estimate the difference in elevation between the upstream flow and the top of the 

weir. 

(b) If the upstream channel is 5 m deep, what is the upstream velocity? 

(c) How large a percentage error are we likely to have made in neglecting this velocity 

in formulating Eq. 5.22? 

5.62. In Example 5.3 we computed the exit velocity by Torricelli’s equation, which does not 

take into account the fact that at the bottom of the jet the velocity will be higher than at 

the top, as discussed in Sec. 5.11. How large an error are we likely to have made? If the 

jet is passing thorough a perfectly rounded entrance with an outlet diameter of 0.5 ft, and 

the centerline of the jet is 30 ft below the fluid surface, how much difference shouid there 

be between the velocities at the top and the bottom of the jet? 

5.63. A slow-moving stream of water flows from a faucet into a sink. It is observed that the 

width of the stream decreases with distance from the faucet. If the flow leaves the faucet, 

vertically downward, in the form of a cylindrical jet with diameter 0.25 in. and a veloc- 

ity of 1 ft / s, what will be its diameter one ft below the faucet? 

5.64. In Example 5.15, if the column is expected to break into drops when its diameter is 0.1 in, 

how far below the faucet should this occur? 

5.65. Equation 5.BJ shows V as f(h) for flow from a faucet. Show the corresponding equation 
for D as f(h). 

5.66. A meteorologist, discussing a record-breaking hurricane said, “It had a pressure of 

850 millibars in the center, so it had winds of 250 miles an hour!” Explain this state- 

ment in terms of B.E. 
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6 
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FRICTION 
IN STEADY, 

ONE-DIMENSIONAL 
FLOW 

L. Chap. 5 we found the working form of Bernoulli’s equation (B.E.) 

P v>\ _ dW, 
a(F oe) Ozir =) ere oree OF (5:5) 

and applied it to problems in which we could set the friction term, ¥, equal to zero. 

In this chapter we show how to evaluate the ¥ term for the very important and prac- 

tical case of steady flow in one dimension, as in a pipe, duct, or channel. Using the 

F terms we evaluate here, we can use Eq. 5.5 for a much wider range of problems 

than those we have considered so far, including many problems of great practical inter- 

est to chemical engineers. Keep in mind that our main reason for evaluating ¥ is to 

put the proper relation for # into Eq. 5.5, and then solve the resulting equation for 

the appropriate pressures, velocities, elevations, pipe diameters, etc. 

The form of the friction-loss term is strongly dependent on the geometry of the 

system. The problem is much simpler if the flow is all in one direction, as in a pipe, 

rather than in two or three dimensions, as around an airplane. Therefore, we will first 

consider fluid friction in long, constant-diameter pipes in steady flow. This case is of 

great practical significance and is the easiest case to treat mathematically. Starting and 

stopping of flow in pipes are discussed in Sec. 7.4. In Sec. 6.13 we will consider the 

frictional drag on particles in steady, rectilinear motion, which, although it is two- 

dimensional, gives results quite similar to those found in long, straight pipes. 
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In Part IV we will investigate two- and three-dimensional flows by using some 

of the ideas from this chapter and introducing several others. 

6.1 THE PRESSURE-DROP EXPERIMENT 

The classic pressure-drop experiment to determine ¥ is performed on an apparatus 

like that shown in Fig. 6.1. In this experiment we set the volumetric flow rate of the 

fluid with the flow-regulating valve. We measure the volumetric flow rate with the 

tank or bucket on the scale and a stop watch. At steady state we read pressure gauges 

P, and P, and record their difference. Usually we are interested in pressure drop per 

unit length, so we divide the pressure drop by distance Ax (the length of the test 

section) and plot [(P, — Pz) / Ax] against volumetric flow rate Q. 

Regardless of what Newtonian liquid is flowing or what kind of pipe we use, 

the result is always of the form shown in Fig. 6.2, and for all gases at low velocities 

the result is the same as that shown. 

The salient features of Fig. 6.2 are that for one specific fluid flowing in one 

specific pipe: 

1. At low flow rates the pressure drop per unit length is proportional to the volumetric 

flow rate to the 1.0 power. 

2. At high flow rates the pressure drop per unit length is proportional to the volu- 

metric flow rate raised to a power that varies from 1.8 (for very smooth pipe) to 

2.0 (for very rough pipes). 

3. At intermediate flow rates there is a region where the experimental results are not 

easily reproduced. The two curves for the other two regions are shown dotted, 

extrapolated into this region. The flow can oscillate back and forth between these 

two curves, and take up values between them. If the experimental apparatus is like 

that in Fig. 6.1, with a more or less constant value of dP / dx, then the volumetric 

flow rate will oscillate horizontally between the two curves, producing an irregular 
pulsing flow. 

Pressure gauges Stopwatch 

Flow-regulating 

Long section Test section 
|}+—— ahead of test ——>{+Length = Ax 

section, to 

produce 

uniform flow Bucket | 

FIGURE 6.1 
Apparatus for the pressure-drop experiment. One may read either the increase in weight on the 
scale or the increase in volume in the bucket based on calibration marks on its sides. The flow- 
rate-measuring method here, called “bucket and stopwatch,” is the most accurate method known 
and is used to calibrate other methods, such as those shown in Chap. 5. 
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21a (fe 

Region where —dP / dx is Region where —dP / dx 
proportional to Q to the is proportional to Q to the 
1.0 power 1.8 to 2.0 power 

i il ates 

Unstable region 
where —dP / dx 
oscillates between 

I upper and lower 
curves Pressure gradient, —dP / dx, psi per 100 ft 

0 50 100 150 200 250 300 350 

Volumetric flow rate, Q, gal / min 

FIGURE 6.2 

Typical pressure-drop curve for a specific fluid in a specific pipe. These are calculated values for an oil 

with SG = 1.0 and uw = 50 cP, flowing in a 3 in schedule 40 pipe. For other fluids and other pipes the 

plot looks the same, but the numerical values are different. If the volumetric flow rate, Q, is constant, 

then in the unstable region the flow will oscillate vertically between the two curves of —dP / ax. If, 

instead, —dP / dx is fixed (e.g., a flow by gravity from a reservoir), then in the unstable region the flow 

will oscillate horizontally between two values of Q. 

This experiment is relatively easy to run, and the curves have been found for many 

combinations of pipe and fluid. However, since all possible combinations have not been 

tested, it would be convenient to have some way of calculating the results of a new 

combination without having to test it. Furthermore, no inquisitive mind will be satisfied 

with Fig. 6.2 without asking why it has three regions so different from each other. 

6.2 REYNOLDS’ EXPERIMENT 

Osborne Reynolds [1] explained the strange shape of Fig. 6.2. In an apparatus similar 

to that of Fig. 6.1 but made of glass, he arranged to introduce a liquid dye into the 

flowing stream at various points. He found that, in the low flow rate region (in which 

—dP/ dx is proportional to the flow rate), the dye he introduced formed a smooth, 

thin, straight streak down the pipe; there was no mixing perpendicular to the axis of 

the pipe. This type of flow, in which all the motion is in the axial direction, is now 

called laminar flow (the fluid appears to move in thin shells or layers, or laminae). 
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He also found that in the high flow rate 

region, where —dP/ dx is proportional to the 
volumetric flow rate to the 1.8 to 2.0 power, no 

matter where he introduced the dye it rapidly dis- 

persed throughout the entire pipe. A rapid, chaotic 

motion in all directions in the pipe was superim- 

posed on the overall axial motion and caused the 

rapid, crosswise mixing of the dye. This type of 

flow is now called turbulent flow. 

The two types of curve (linear and approx- 

imately parabolic) in Fig. 6.2 thus were shown to 

represent two radically different kinds of flow. 

The distinction is very important, as we will see; 

students should observe both types in the world 

about them. Perhaps the easiest example to see is 

the smoke from a cigarette rising in a still room 

ot 5; » shown in Fig. 6.3. The smoke rises in a smooth, 
nts canton laminar flow for about a foot, and then the flow 

converts to turbulent flow, with random chaotic 

FIGURE 6.3 motion perpendicular to the major, upward flow 
Tecpings ane ouleat Ses ia tan direction. This case, although easy to demonstrate 
stream of smoke rising in a room with . : waa ; 
VEaWeaE acomene in the laboratory or in the living room, is much 

harder to analyze mathematically than Reynolds’ 

pipe-flow experiment, so we return to the latter. 

Reynolds showed further that the region of unreproducible results between the 

regions of laminar and of turbulent flow is the region of transition from the one type 

of flow to the other, called the transition region. The reason for the poor repro- 

ducibility here is that laminar flow can exist in conditions in which it is not the sta- 

ble flow form, but it fails to switch to turbulent flow unless some outside disturbance 

such as microscopic roughness on the pipe wall or very small vibrations in the equip- 

ment triggers the transition. Thus, in the transition region the flow can be laminar or 

turbulent, and the pressure drop or flow rate can suddenly change by a factor of 2. 

Under some circumstances the flow can alternate back and forth between being lam- 

inar and turbulent, causing the pressure drop to oscillate between a higher and a lower 

value; or for a constant pressure drop, as in Fig. 6.1, the velocity can oscillate between 
a higher and a lower value. 

Besides clarifying the strange shape of Fig. 6.2, Reynolds made the most cele- 
brated application of dimensional analysis (Chap. 9) in the history of fluid mechan- 
ics. He showed that for smooth, circular pipes, for all Newtonian fluids, and for all 
pipe diameters the transition from laminar to turbulent flow occurs when the dimen- 
sionless group DVp/ w has a value of about 2000. Here D is the pipe diameter, V is 
the average fluid velocity in the pipe, p is the fluid density, and yu is the fluid viscosity. 
This dimensionless group is now called the Reynolds number, &: 

tf 

DVp stPVoot 42 

er Vv a7 Dv 

Reynolds number for 
(6.1) 

flow in a circular pipe 
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TABLE 6.1 

Comparison of laminar, transition, and turbulent flows 

Type of flow 

Laminar Transition Turbulent 

Behavior of Oscillates between laminar 

dye streak Phage and turbulent Dye in 
EE ~ 

— Ce 
Flow Flow 

Pressure drop ‘Oe Oscillates from one value to Q'* (very smooth pipes) 
proportional to another; very difficult to measure to Q*° (very rough pipes) 

Reynolds number <2000 ~2000 to 4000 > 4000 

The transition region on Fig. 6.2 corresponds to Reynolds numbers between about 2000 

and 4000. For Reynolds numbers above about 4000, the flow is stably turbulent. For 

flows other than pipe flow, some other appropriate length is substituted for the pipe 

diameter in the Reynolds number, producing a different Reynolds number, as will be 

discussed later. All Reynolds numbers are (some length - velocity - density / viscosity). 

The difference between laminar and turbulent flows is one of the most impor- 

tant differences in fluid mechanics. The equations in this book for laminar flow do 

not describe turbulent flow, nor do the turbulent flow equations describe laminar flow. 

If you learn nothing else in this chapter, learn that. In pipe flow, the boundary between 

laminar and turbulent flow is the region from Reynolds number ~2000 to ~4000. 

This means that almost all flows of gases and liquids like water in ordinary-sized pipes 

are turbulent. The only exceptions to that statement are flows of fluids much more 

viscous than water, such as asphalt, maple syrup, or polymer solutions. (The fluid used 

as an example to make up Fig. 6.2 is 50 times as viscous as water; if that figure had 

been made for water, the laminar region would have practically disappeared into the 

left axis!) However, in very small tubes or other flow passages the flow is normally 

laminar. The flow in the heart and the major arteries near it in our bodies and those 

of most animals our size are turbulent. The rest of the blood flow in our bodies is 

laminar, as is the flow of fluids in filters, in groundwater, and in oil fields. (These lat- 

ter are not exactly pipe flow, but as shown in Chap. 11, the flow passages between 

the solid particles in filters and in the ground behave as irregular-shaped pipes.) River 

flows are mostly turbulent, and the main flows of the atmosphere are turbulent, but 

in low-wind situations and in the stratosphere the atmosphere can be laminar. Both 

laminar and turbulent flows are important; you could not read this statement without 

the turbulent flow near your heart or the laminar flow of blood to your brain and eyes. 

The results of Reynolds’ experiments are summarized on Table 6.1. 

6.3 LAMINAR FLOW 

Laminar flow is the simplest flow, so we discuss it first. Consider a steady laminar flow of 

an incompressible Newtonian fluid in a horizontal circular tube or pipe. A section of the 

tube Ax long with inside radius ro is shown in Fig. 6.4. We arbitrarily select a rod-shaped 
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ec Se element of the fluid, symmetrical 

ow S eae about the center, with radius 7, 

cer ; and compute the forces acting on 

it. Here it is assumed that loca- 

<0 tion 1 is well downstream from 

a the place where the fluid enters 

Eos the tube. This analysis is not cor- 

eee rect for the tube entrance (see 

Part IV). The flow is steady and 

FIGURE 6.4 all in the axial direction. There is 
Force-balance system in pipe flow. The balance is made no acceleration in the x direction, 

around the cylindrical rod-shaped volume, symmetrical about —_ gg the sum of the forces acting in 

ppc the x direction on the rod-shaped 

element we have chosen must be zero. There is a pressure force acting on each end, 

equal to the pressure times the cross-sectional area of the end. These act in opposite 

directions; their sum in the positive x direction is 

Pressure force = P; (ar?) — P>(ar?) = mr?(P, — P>) (6.2) 

Along the cylindrical surface of our rod-like element the pressure forces have no com- 

ponent in the x direction and can be ignored, but there is a shear force resisting the 

flow. The shear force acts in the direction opposite to the pressure gradient, which is 

in the flow direction, and its magnitude is 

Shear force = 2ar Ax: (shear stress at r) = 2arr Ax- 7 (6.3) 

Since the pressure force and shear force are the only forces acting in the x direction, 

and since the sum of the forces is zero, these must be equal and opposite. Equating 

their sum to zero and solving for the shear stress at 7, we find 

Shear stress acting (Pe oP.) 

7 = }"omthe central rod == ——— (6.4) 
2Ax 

at radius r 

The minus sign shows that our intuition is correct, and 7 acts in the minus x direction. 

(See the discussion of the sign of the shear stress in Sec. 1.5). Equation 6.4 applies to 

steady laminar or turbulent flow of any kind of fluid in any circular pipe or tube. 

Here we have applied Newton’s law, F = ma, to the particularly simple case in 

which there is no acceleration and sum of the forces is therefore zero; in Chap. 7 and 

Part IV we will see how to apply it to more complicated cases. 

We saw in Chap. | that for Newtonian fluids in laminar motion the shear stress 

is equal to the product of the viscosity and the velocity gradient. Substituting in 

Eq. 6.4, we find 

dV Pi > iP3 

dr 2Ax 

For steady laminar flow the pressure gradient (P; — Pz) / Ax does not depend on radial 
position in the pipe, so we may integrate this to 

(6.5) 

2 
fee P, ae P, 

V = + dil ee constant (6.6) 
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rSstro To solve for the value of the con- 

stant, we need one observational 

-— fact: that for the flow of every- 

thing except rarefied gases, the 

fluid at the solid surface clings to 

yas ‘ P a 2 the surface. This is not an intu- 

itively obvious fact, and we can- 

FIGURE 6.5 not derive it from some prior 

Velocity distribution in steady, laminar flow of a Newtonian principle. The behavior is quite 

fluid in a circular pipe. different from that of solids, 

whose sliding surfaces do slip 

over one another so that there is a sharp discontinuity in velocity at the sliding bound- 

ary. However, one may observe that it is so by watching the behavior of bits of wood or 

leaves on the surface of a stream: those at the center move rapidly, those near the bank 

slowly, and those right at the bank not at all (this condition is often referred to as the 

no-slip condition; one kind of rarefied gas flow is called, logically enough, slip flow). 

From this observational fact it follows that at r = ro (at the pipe wall), V = 0; so 

2 erg UP ps P. 
sae tiue ) = + constant (6.7) 0= See eS 
4u Ax 

Substituting this value of the constant in Eq. 6.6 and factoring, we find 

2 Z me Py a P 
4u Ax 

This equation says that for steady, laminar flow of Newtonian fluids in circular pipes: 

1. The velocity is zero at the tube wall (r = ro). 

2. The velocity is a maximum at the center of the pipe (r = 0). 

3. The magnitude of this maximum velocity is 

ro Pi ~ Po = 0.12 6.A Vinax ee (6.A) 

4. The pressure drop per unit length is independent of fluid density and is propor- 

tional to the first power of the local velocity and the first power of the viscosity. 

5. The velocity-radius plot is a parabola; see Fig. 6.5. 

In engineering we are generally more interested in the volumetric flow rate Q 

than in the local velocity V. To find the Q of a uniform-velocity flow we multiply the 

velocity by the cross-sectional area perpendicular to flow (see Table 3.1). The veloc- 

ity of the laminar flow described above is not uniform, so we must integrate velocity 

times area over the whole pipe cross section. 

2 2 Pet — Peer Tr 
= = ——__— - ——_—__—_-)7r.dr 

Q nev a4 ie 4p Ax 

ea ee ey Po ie laa Pag PoE x DO 
tics Arey oe Pee a) eee aes apr iio pie et — ines oe fe Ss (6.9) 

Ax pri 2 ANG Ax » 8 Ax MK 128 
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This equation was developed by Hagen and also, independently, by Poiseuille [2a]. 

In the United States it is most commonly called the Poiseuille equation (pronounced 

“pwah-zoo-y”). It shows that the pressure drop (P; — P>) / Ax is proportional to the 

first power of the volumetric flow rate Q, as shown in Fig. 6.2. The solution is 

immensely satisfying; using only very simple mathematics, we find a complete 

description of the flow. The description has been experimentally verified so well that, 

when laminar-flow experiments in circular pipes disagree with it, the experiments are 

in error. 

From Eq. 6.9 it can also be shown (Prob. 6.4) that 

Q _ Vinax 
Viee ass == 6.10 

Fa caae Ke 2 ( ) 

[w?/2)4o [2/2)v-20rar 
Averoe ket= ie in ie Sea GE es Vay (6.11) 

[ao [v-2mrar 

Both of these values are shown in Table 3.1. 

To see how this fits in with B.E. (Eq. 5.5), we apply B.E. from point | to point 2 

in Fig. 6.4 and substitute for — AP from Eq. 6.9 to find 

sa Bh te 
= ——— = Ax, 6.12 

Equation 6.12 relates the ¥ in B.E. to the flow rate, diameter, length, and (viscosity / 

density) of a horizontal flow in which gravity plays no role. If we repeat the entire 

derivation for a vertical flow in a pipe in which the pressure is constant throughout 

(Prob. 6.1), we find that the AP term is replaced with a pg Az term. When we 

substitute this in Eq. 6.12 and then calculate ¥ from B.E., we find 

[Pars re 
= —¢A7= 0 Ax—: 6.13 8 Q p mDé (6.13) 

Thus, for either horizontal or vertical laminar flow we find 

128 laminar flow 
A = 

=O Axe @ eps ee | Leey 

We may readily extend the argument to show that this equation applies also to flows 

at any angle to the vertical, so that Eq. 6.14 is the general-description of friction heat- 

ing in laminar flow of Newtonian fluids in circular pipes. 

Example 6.1. Oil at a rate of 50 gal / min is flowing steadily from tank A to 

tank B through 3000 ft of 3-in schedule 40 pipe; see Fig. 6.6. (Appendix A.2 

shows the dimensions of standard U.S. schedule 40 pipe sizes. The inside diam- 
eter (ID) of 3-in schedule 40 pipe is 3.068 in.) The oil has a density of 

62.3 Ibm/ft° and a viscosity of 50 cP. The levels of the free surfaces are the 
same in both tanks. Tank B is vented to the atmosphere. What is the gauge 



~ 3000 ft of 3-in hn : 
schedule 40 pipe coe industry, particularly when 

Tank A 

FIGURE 6.6 

A pressure-driven fluid transfer from one tank to another, used in 

Examples 6.1 and 6.4. 

Same level 
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pressure in tank A required 

to produce this flow rate? 

(Pushing liquids from one 

container to another with 

gas pressure is common in 

Vent 

a leak of the fluid would be 

dangerous.) 

Applying B.E. between 

the free surface in tank A 

(point 1) and the free sur- 

face in tank B (point 2), we 

see that the velocities are negligible. Since there is no change in elevation or 

pump or compressor work, we have 

r 
AS aH (6.B) 

p 

The density is constant, so in tank A the gauge pressure (P; — Pz) is —(—p). 
If the flow in the pipe is laminar, then we can solve for this pressure from 
Eq. 6.14. The average velocity is 

O 50 gal/min 144in? min _ ft° 
Vay a = * A (aw/4)(3.068 in)? = ft?”—s 60's. 7.48 gal 

ft 
=217—= 0.66 ~ (6.C) 

Therefore, the Reynolds number is 

(3.068 / 12) ft- 2.17 ft/s - 62.3 lbm/ ft” 

~ 50 cP-6.72- 10-4 Ibm / (ft-s cP) 
As shown before, steady pipe flow is laminar if 2 < 2000; so we have lami- 

nar flow here and are safe in substituting for # from Eq. 6.14. Multiplying 

through by —p, we find 

= 1028 (6.D) 

1282 pe 
—AP = PP, — Ps = Sar eye 

1 50 cP in® 
SSD ha iba ee ORO dies: 

min 7 (3.068 in) gal 

Ibis: ymin, .. ft lbf 
2.09" 10° 7 994159 kPa “(6 
Betas cP-ft? 60s 12in in? eg 

This is the gauge pressure in tank A required to produce a flow of 50 gpm. 
| 

Readers may check that this corresponds to 

AP» 23.1 psi _ psi (6F) 

Ax  3000ft 100ft 
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FIGURE 6.7 

Typical capillary 

viscometer; see 

which is the value plotted for 50 gpm in Fig. 6.2. The laminar part 

of that figure was made by repeating this example for a variety of 

flow rates (on a spreadsheet). 

Example 6.2. A typical capillary viscometer (a device for 

measuring viscosity) has the flow diagram shown in Fig. 6.7. 

It consists of a large-diameter reservoir and a long, small- 

diameter, vertical tube. The sample is placed in the reservoir, 

and the flow rate due to gravity is measured. The tube is 0.1 m 

long and has a 1 mm ID. The height of the fluid in the reser- 

voir above the inlet to the tube is 0.02 m. The fluid being tested 

has a density of 1050 kg/m°. The flow rate is 10 * or Js: 

What is the viscosity of the fluid? 

Applying B.E. between the free surface in the reservoir 

Example 6.2. (point 1) and the fluid leaving the bottom of the viscometer 

(point 2), we see that the pressure at each point is atmospheric 

and that there is no pump or compressor work. We can neglect the velocity in 

the reservoir, so B.E. becomes 

V 
g(Z2 — 2) + ee or (6.G) 

The kinetic-energy term here is negligible compared with the other two terms. 

This is found in most laminar-flow problems, so we drop the kinetic-energy term 

and find 

#F = —g hz (6.H) 

Substituting for # from Eq. 6.14 and solving for 4, we find 

pg(—Az) 7Do 
1280 Ax 

_ 1050 kg /m*- 9.81 m/s*- 0.12 m- 7: (0.001 m)* 103 cP-m-s 

i 128 - (1078 m3/s)- 0.1m kg 
= 30.3 cP = 0.0303 Pa: s (6.1) 

Viscometers of the same type, but slightly more complicated than the one described 
above, are very widely used. In using them we recognize ‘that: 

1. They must not be used at flow rates so high that flow is turbulent (Prob. 6.8). 

2. They must be long enough that the error introduced by applying the Poiseuille 
equation (which only applies well downstream from the entrance) to the whole 
tube is small. For a brief introduction to the problem of entrance flow, to which 
Poiseuille’s equation does not apply, see Part IV. 

- The Poiseuille equation applies only to Newtonian fluids, so this type of appara- 
tus can be used simply only for such fluids; see Chap. 13. 
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4. Because the viscosity measured by such a device is proportional to Dé, a small 
error in the diameter measurement leads to a large error in the viscosity measure- 
ment. For this reason these devices ordinarily are calibrated by using a fluid 
of known viscosity and by determining the appropriate average diameter from the 
calibration. 

5. As discussed in Chap. 5, the ¥ term represents the conversion of mechanical 

energy into internal energy. Normally this conversion results in an increase of 

temperature. It can be shown (Prob. 6.6) that in this case the temperature change 

is negligible. However, in more viscous liquids, which are pumped through cap- 

illary viscometers, there can be a significant temperature rise. In most fluids a 

small temperature rise can cause a large viscosity change, so the temperature rise 

must be minimized. 

6. The commercial versions of this device normally require the user to use a 

stopwatch and measure the time for the liquid level to pass from one mark on the 

glass tube to another. The resulting measurement is a time. For that reason vis- 

cosities are often reported as times, e.g., Saybolt Seconds Universal (SSU), the 

standard viscosity measurement for fuel oils in the United States. Formulae for 

converting from SSU or other time-for-the-interface-to-pass-the-marks in various 

standard capillary-tube-gravity viscometers are given in handbooks. 

6.4 TURBULENT FLOW 

Why does the preceding analysis not work for turbulent flow? Equation 6.4 is correct 

for steady laminar or turbulent flow of any kind of fluid, but the substitution of 

(dV / dy) for the shear stress is correct only for laminar flow of Newtonian fluids. 

In laminar flow in a tube there is no motion perpendicular to the tube axis. In turbu- 

lent flow there is no net motion perpendicular to the tube axis, but there does exist 

an intense, local, oscillating motion perpendicular to the tube axis. The transfer of 

fluid perpendicular to the net axial motion causes an increase in shear stress over the 

value given above for laminar flow of Newtonian fluids. This is most easily seen in 

an analogy. Consider two students playing catch with baseballs. One is standing on 

the ground, the other on a railroad car; see Fig. 6.8. 

In Fig. 6.8(a) the railroad car is not moving, and both students throw the 

ball back and forth in the plus and minus y direction. Each time one catches the ball, 

the student experiences a force and, if the student throws it back at the same speed, 

the student exerts an equal force in the opposite direction. Therefore, the net effect 

of their throwing the ball back and forth is that a force is exerted on each one, tend- 

ing to move them apart in the plus or minus y direction. There is no force in the 

x direction. 
In Fig. 6.8(b) the train is moving at constant speed in the x direction. Each stu- 

dent still throws the ball in the plus or minus y direction. However, because of their 

relative motion, each one receives the ball moving, not in the y direction, but at an 

angle between the x and y directions; the directions of the balls (relative to the two 

students) are shown by the arrows. Since each one receives the bails in these 

directions, the force exerted by a student in stopping the ball consists, not only of the 
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Train velocity 

sage ey 
( 

8 

\ 

OT0) 
a) (b) 

FIGURE 6.8 
Illustration by analogy of shear forces due to turbulence: (a) top view of 

students playing catch, neither moving; (b) top view of students playing catch, 

one moving perpendicular to the direction of throwing the ball. 

y component, which the other student put into the ball by throwing it, but also of the 

x component due to their relative motion. When the train is moving, in addition to 

the y-directed force there is a force tending to retard the train and to drag the sta- 

tionary student along in the x direction. 

Exactly the same thing happens in turbulent fluid flow. The exchange of fluid 

between the faster-moving fluid in the center of the tube and the slower-moving fluid 

near the wall increases the shear stress over that which would exist in laminar flow. 

This extra stress is called a Reynolds stress after Reynolds, who first explained it. 

Thus, the actual ¥ in turbulent flow is greater than that predicted by Poiseuille’s 

equation. 

In the case of the students throwing the balls, the extra stress is proportional to 

the velocity of the train and the number of times per second which they throw the 

balls back and forth. In the case of the corresponding stress in a fluid in turbulent 

flow the stress is proportional to the velocity gradient dV / dy times the average mass 

of fluid passing back and forth across a surface of constant y (across which there is 

no net flow). Since the velocity goes from zero at the pipe wall to the average veloc- 

ity near the center, the velocity gradient should be some function of Viiv D. If we 

now assume that this is a linear proportion and that the magnitude of the flow of mass 

back and forth across a surface of constant y is proportional to the average velocity, 

then it follows that 

a 
Vave 

D 
ae (6.15) 

Furthermore, the friction heating should be proportional to the length of the pipe. 
Including this idea, we find 

ai AxVine 
ao —_—— D (6.16) 

This equation rests on the plausible assumption that the friction heating is proportional 
to the length of the pipe and on the more questionable assumption that it is propor- 

. 2) . . . 

tional to Vive / D. Do these assumptions agree with the experimental data? The answer 
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is, Yes and no. To save writing, we now 

All turbulent-flow define a new term, the friction factor f, 

data available for which is equal to half the proportionality 

as ee constant in Eq. 6.16, and drop the avg sub- 

script on the velocity, so that 

AxV? Ax V? 
lt V4 fs ciieaedemam 9 

a pope iy a OID 

FIGURE 6.9 
f = friction factor 

Blasius and Stanton’s friction factor plot. Re 

= 5 (6.18) 
4(Ax/D)(V7/ 2) 

To test these assumptions, Blasius and Stanton [2b] calculated the friction fac- 

tor for a large variety of pipe-flow experiments with smooth pipes. They found that 

the friction factor was not a constant, as predicted by the above simple theory, but 

decreased slowly with increasing Reynolds number. However, all the data for smooth 

pipes of various diameters at all velocities for a large range of fluids formed a single 

curve on a plot of friction factor versus Reynolds number; see Fig. 6.9. 

Once plots like this came into common use, it became apparent that they were 

very good for smooth pipes, such as glass pipes or drawn metal tubing, but that the 

pressure drops they predicted were too low for rough pipes, such as those made from 

cast iron or concrete. It appeared that the roughness of the pipe surface influenced f. 

To resolve the question Nikuradse [3] measured the pressure drop in various smooth 

pipes to the inside of which he had glued sand grains. He found that for a given value 

of e/ D, where « is the size of the sand particle and D is the pipe diameter, he could 

plot all his results on one curve on Fig. 6.9, but that there were different curves for 

different values of e / D. This ratio, ¢ / D, is called the relative roughness. Figure 6.10 

is currently the most commonly used friction factor plot (which chemical engineers 

normally call a friction factor plot, and some other disciplines refer to as a Moody 

diagram), prepared by Moody [4a], who based it on Nikuradse’s data and on all the 

other available data on flow in pipes.* Moody also suggested the working values for 

the absolute roughness, shown in Table 6.2. 

Figure 6.10 shows that, as the relative roughness becomes greater and greater, 

the assumptions that went into Eq. 6.16 become better and better; f becomes a con- 

stant that is independent of diameter, velocity, density, and fluid viscosity. 

To make life hard for the working engineer, there are two values of the friction 

factor in common use The one shown in Eq. 6.18 appears in most chemical engineer- 

ing books, but in mechanical engineering and civil engineering books there appears 

F 
Wswnnech =e (Ax/D)(V? /2) 

= 4fonem (6.19) 

J 2 ee ee ee 

*The friction behavior of a pipe with sand grains glued to the wall is somewhat different from that of a 

commercial pipe. This is believed to be due to the wide range of sizes and shapes of the rough spots in a 

commercial pipe compared with the uniform size and shape of the sand grains used by Nikuradse. Moody 

[4] made Fig. 6.9 according to the Colebrook equation [5], which agrees with the data on commercial pipes. 

The differences between the two kinds of roughness have been discussed ([6], p. 529). 
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TABLE 6.2 

Values of surface roughnesses for various materials,* to be used 
with Fig. 6.10 
ee ee 

Surface roughness 

€, ft €, in 

Drawn tubing (brass, lead, glass, etc.) 0.000005 0.00006 

Commercial steel or wrought iron 0.00015 0.0018 

Asphalted cast iron 0.0004 0.0048 

Galvanized iron 0.0005 0.006 

Cast iron 0.00085 0.010 

Wood stave 0.0006—0.003 0.0072—0.036 

Concrete 0.001-0.01 0.012-0.12 

Riveted steel 0.003-0.03 0.036—0.36 

*From Moody [4]. 

The existence of the two values means that, whenever engineers plan to use a chart 

like Fig. 6.10 or an equation with f in it, they must check to see on which of the two 

f values the chart or equation is based. Throughout this book we will use the value 

Of fchem defined by Eq. 6.18. It is often called the Fanning friction factor, while the 

one 4 times as large is called the Darcy or Darcy-Weisbach friction factor: 

F Fanning i t/(pV*/ 2); SDarcy-Weisbach 7 47 / (pV? / 2). 

There is really not much point in having a curve for laminar flow on a friction 

factor plot, since laminar flow in a pipe can be solved analytically. Poiseuille’s equa- 

tion (Eq. 6.8) can be rewritten (Prob. 6.12) as 

16 
hp Fi (6.20) 

Plotting any equation this simple is unnecessary. However, the laminar-flow line 

usually is included in friction factor plots, as it is in Fig. 6.10. Furthermore, the tur- 

bulent and transition region curves on Fig. 6.10 can be represented with very good 

accuracy by [7] 

= 10° 1/3 

= 0. al et 20;000 Ais 6.21 f = 0.001375 ( DD’ & ) | (6.21) 

which has no theoretical basis, but reproduces the turbulent region in Fig. 6.10 well 

(see Prob. 6.39). 

Example 6.3. Read the value of the friction factor from Fig. 6.10 for 2 = 10° 

and (e/ D) = 0.0002, and compare that value to the value from Eq. 6.21. 

From Fig. 6.10, as closely as I can read it, f = 0.00475. From Eq. 6.21, 

6\1/3 
f = 0.001375 - 1 “t (20.000 - 0.0002 + <) | = 0.0047 (6.J) 

The difference between the two values is less than our ability to read Fig. 6.10. 
a 
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As seen here, Fig. 6.10 can be reduced to two equations; so why bother with 

it? It has great historic significance and considerable intuitive content. Most modern 

engineers have quick computer programs that solve the type of problems presented in 

most of the rest of this chapter. So the hand solutions, using Fig. 6.10, are presented 

to help the student understand and develop an intuitive feel for what is going on in 

those programs. The student is advised to program Eq. 6.21 into a spreadsheet and, 

after making a few chart lookups on Fig. 6.10, only to glance at that figure and use 

the spreadsheet, which is its equivalent, to find working values for problems (and 

exams, if you can bring your spreadsheet with you!). 

6.5 THE THREE FRICTION FACTOR 
PROBLEMS 

The friction factor plot, Fig. 6.10, relates six parameters of the flow: 

. Pipe diameter, D. 

. Average velocity, Vays. 

. Fluid density, p. 

. Fluid viscosity, pw. 

. Pipe roughness, e. 

Nn ff We NY = . The friction heating per unit mass, F. 

Therefore, given any five of these, we can use Fig. 6.10 to find the sixth. 

Often, instead of being interested in the average velocity V,y,, we are interested 

in the volumetric flow rate, 

Ty OQ = DVavg (6.K) 

The three most common types of problem are shown in Table 6.3. For all of these 

problems the equations to be solved are shown in Table 6.4. This appears to be a for- 

midable list of equations, but as the following examples show, their solution, while 

tedious by hand, is straightforward, and they are readily solved by computer. We will 

begin with a type 1 problem by hand and then do types 2 and 3 by spreadsheet. 

Example 6.4. In Example 6.1, Fig. 6.6, we have decided that we wish to trans- 

port 300 gal / min, instead of the 50 gal / min in that example. Now what is the 
required pressure in Tank A? 

This is 6 times the required volumetric flow rate in Example 6.1; the 
average velocity is V = 2.17 ft/s:6 = 13.0 ft/s. If the flow here were lami- 

nar, as it was in that example, then we could 

simply multiply the required pressure by 

6. But in that example the Reynolds num- 
Type Given To fina ber AR = 1028. Here we have the same 

pipe diameter, viscosity, and density, but 

TABLE 6.3 

The three friction factor problems 

: x eee ; 6 times the velocity, so we must have 
; 2 * R= 1032-6 = 6164. This is >4000, so 

the flow is sure to be turbulent. 
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TABLE 6.4 

The equations to be solved in all pipe-flow-with-friction problems 
eid \ Vrs Cn 

2 o 

Bernoulli’s equation (F + oz + *) = aWot — 
pee a 2 dm 

et : - Ax Vv? 
Friction heating term in B.E. F = Af —- 

/ Des se) 
/ 

Reynolds number a= ae aney 40 
us v amDv 

Friction factor, laminar flow, if 2 < 2000 or f= > 

es 10°\'/3 
Friction factor, turbulent flow, if 2 > 4000 f = 0.001375: | 1 + (20.000 oF R ) 

Volumetric flow rate as function of velocity, some Q= —D Vn. 

problems 

To use Fig. 6.10 or Eq. 6.21, we need a value of ¢ / D. Reading the value 

for commercial steel pipe from Table 6.2, we have 

€ — 0.0018in 
D 3.068 in 

Then we enter Fig. 6.10 at the right at ¢ /D = 0.0006 and follow that curve 

to the left to 2 = 6192, finding (as best we can read that crowded part of the 

chart) f = 0.009. We may check that value from Eq. 6.21, finding 0.00905. We 

will discuss later the uncertainties in friction factor values, so for now we accept 

0.0091 as a good estimate of f. ~ 

The B.E. analysis is the same as in Example 6.1, leading to Eq. 6.B. Com- 

bining that with Eqs. 6.17 and 6.21, we find 

= 0.0006 (6.L) 

Axe! Vv 
AP = 4f— p— 

TP 
3000 ft Ibm (13.0 ft/s)? — Ibf- 2 ft 

Pek eed aa 6. aid 2 an 
(3.068 / 12) ft ft 2 32.2 Ibm: ft 144 in? 

= 484 psi = 3340 kPa (6.M) 

This corresponds to 16.1 psi/ 100 ft, which is the value shown on the turbulent 

flow line in Fig. 6.2, which in turn was made by repeating this calculation in a 

spreadsheet for various values of Q. It is (484 / 23.1) ~ 21 times the value in 

Example 6.1. If the flow had remained laminar, it would be 6 times the value 

in Example 6.1. fe 

In all such problems (and the ones that follow) it is necessary to convert the 

volumetric flow rate (gal / min or ft®/s or m/s) into linear velocity (in this case, 

300 gal / min in a 3-in pipe = 13.0 ft/s). This routine calculation can be simplified 

by the use of App. A.2, which shows the volumetric flow rate in gal / min corre- 

sponding to a velocity of 1 ft/s for all schedule 40 standard U.S. pipe sizes. In the 

foregoing example we could have looked up the value of 23.00 (gal / min) / (ft /s) for 
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3-in pipe and computed 

300 gal / mi ft > thn | A (6.N) 
23.0(gal / min) / (ft/s) S 

Like all Type 1 problems, this was quite straightforward. We used all the equa- 

tions in Table 6.4 except the laminar friction factor equation. The sequence of oper- 

ations was 

eae 
Java sfo Far (6.0) 

flow rate, Q 

Please review the calculation to see that all these steps were used. For Types 2 and 

3, we cannot proceed as easily as this but must resort to a trial-and-error solution; 

that is easy with a spreadsheet. 

Example 6.5. A gasoline storage tank drains by gravity to a tank truck; see 

Fig. 6.11. The pipeline between the tank and the truck is 100 m of 0.1 m 

diameter commercial steel pipe. The properties of gasoline are given in the 

Common Units and Values for Problems and Examples. Both tank and truck are 

open to the atmosphere, and the level in the tank is 10 m above the level in the 

truck. What is the volumetric flow rate of the gasoline? 

Applying B.E. between the free surface in the tank, point 1, and the free 

surface in the truck, point 2, we see that all terms cancel except 

DNB cee ene (6.22) 

This is a type 2 problem. The equation contains two unknowns, V and f; there- 

fore, to solve it we need an additional equation or relationship among the vari- 

ables listed. The second relationship is provided by Fig. 6.10, which relates f 

and V. We could use Eq. 6.21 to replace either f or V in terms of the other; 

some computer programs do that. Others follow the trial-and-error procedure 

here, replacing the chart lookups with applications of Eq. 6.21. 

Here we know the fluid 

properties and the pipe diameter 

(0.1 m ID). From Table 6.2 we 

have « = 0.0018 in; sc 

Snot 0.0018 in m 

D O.lm 39.37 in 

= 0.00046 (6.P) 

Truck From Fig. 6.10 we see that for 

this value of the relative rough- 

Pcie cis Pe occaetatt : ness the possible range of f for 
gravity-driven fluid transfer from one tank to another, : 

: turbu ¢ 
used in Example 6.5. The air from the headspace displaced bulent flow. 4s:0,0042nto jabout 

by the liquid flow into the truck exits by the vent on the 0.008. As our first guess, let us try 

tank roof. In the United States such tank vent emissions are _Jfirst guess = 0.005. Then from Eq. 
controlled to prevent air pollutant emissions. 622; rearranged to solve for 

FIGURE 6.11 
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Verse guess; WE have 

V SE ee ee 
ee 4f Ax 4- 0.005 100 m 

= eB ie (6.Q) 

If this is a good guess, then the computed f should match our first 

feurst guess: Using Verse guess, WE compute 

0.1 m- (3.13 m/s) + 720(kg / m° 
Rest guess = — ie : Jee S767 10° .(6.R) 

From Fig. 6.10 for this value of # and e/D we read f ~ 0.0045, and from 

Eq. 6.21 we compute f ~ 0.00450. We could repeat the process by hand, using 

Seecond guess = 9.00450, and continue until we had satisfactory agreement 

between the successive values of f. But computers do this very easily for us, so 

we proceed on a spreadsheet as shown in Table 6.5. 

The first column of Table 6.5 shows the names of the variables, the sec- 

ond shows the nature of each variable, and the third shows the values shown 

above, based on ffirst guess = 0.005. We see at the bottom of the second col- 

umn that the ratio of fcomputea / feuessed = 0.901. We next ask the spreadsheet’s 

numerical solution package (“goal seek” on Excel spreadsheets) to make 

the value of fcomputed / feuessea become equal to 1.00 by changing the value 

Of feuessea- We see that for an fyuessea Of 0.00449, that ratio becomes 

1.0001 ~ 1.00. We could get more significant figures of agreement, but the 

input data do not justify that so we accept the values in the column at the right 

as correct. Then 

7 m m° ft? gal 
Q = — -(0.1m)* - 3.304 — = 0.0260 — = 0.916 — = 411—_ (6S) 

4 Ss Ss Ss min 

& 

TABLE 6.5 

Numerical solution to Example 6.5 

Variable Type First guess Solution 

D,m Given 0.1 0.1 

Em: Given 100 100 

Az, m Given =i, —10 

€, in Given 0.0018 0.0018 

p, kg/m? Given 720 720 
[LCP Given 0.6 0.6 

f, guessed Guessed 0.005 0.00449 

V,m/s Calculated S15 3.304 

R Calculated 375,900 396,500 

e/D Calculated 0.000457 0.000457 

feomputed Calculated 0.004505 0.00449 
al Vencscas Check value 0.901 1.0001 
rag SES Te 



192 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

Example 6.6. We want to transport 500 ft/min of air horizontally from our 

air conditioner to an outbuilding 800 ft away. The air is at 40°F and a pressure 

of 0.1 psig. At the outbuilding the pressure is to be 0.0 psig. We will use a cir- 

cular sheet metal duct, which has a roughness of 0.00006 in. Find the required 

duct diameter. 

Here we are applying B.E. to a compressible fluid. However, as discussed 

—) in Sec. 5.6, for low fluid velocities B.E. gives the same result as the analysis 

that takes compressibility into account. Applying B.E. from the inlet of the duct, 

point 1, to its outlet, point 2, we find 

AP _ 
sna 

This is the Type 3 problem, in which we know everything but the pipe diameter. 

The equation contains the three unknowns f, D, and V; therefore, we need 

two additional relations. One is supplied by Fig. 6.10; the other, by the 

continuity equation, which shows that Q (which is given in the problem state- 

ment) is equal to V(a7 /4) D*. We could use this relation to eliminate V or D 

from Eq. 6.23, but this is not particularly convenient. Rather, we proceed by 

trial and error. First we guess a pipe diameter and calculate the pressure drop 

from Eq. 6.23. Then we compare the calculated pressure drop with the known 

value, 0.1 psi, and readjust the guessed pipe diameter until we find the diame- 

ter for which the pressure drop is 0.1 psi. 

For the density of air we use the average pressure between inlet and out- 

let and the ideal gas law: 

PM | 14.75 Ibf/ in* - 29 Ibm / Ibmol 0-4 Gq fam 
RT 10.73{Ibf- ft /(in?- Ibmol-°R)}-S00°R SS 

For air at 40°F we have x = 0.017 cP (see App. A.1). For our first trial we 
select Deirst guess’ = 1. ft. Then 

VA 

> (6.23) S) | | aos S|F 

ao (6.T) 

(<) = S000re ® — 9,000005 6.U) 
D first guess 12 in ; = 

: (500 ft / min) - (min / 60 s) ft m 
\ first guess = ce = 6 > i 3.23 , (6.V) 

(7 /4)(1 ft) S s 

___L ft: 10.6 ft/s - 0.080 Ibm / f° 
0.017 cP: 6.72: 10° * Ibm/ ft: s+ cP 

From Fig. 6.10 we read f ~ 0.0049 and, from Eq. 6.21, f = 0.00465. Then 

Ak V7 
AP= pai —4f D : r) 

Revs = 7.43-10* (6.W) guess 

Ibm 4 800 ft / ia Be sf r = —0.080 = - 0.00465 - 0 4 Se ee fe 2 32.2 Ibm- ft 144 in? 
Ibt = ~0.0146 —5 = -101 Pa (6.X) 
In 
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TABLE 6.6 

Numerical solution to Example 6.6 
eee 

Variable Type First guess Solution 

Q, cfm Given 500 500. 

D, ft Guessed 1 0.667 
Eat Given 800 800 

e€, in Given 0.00006 0.00006 

p, Ibm / ft’ Given 0.08 0.08 
yp, cP Given 0.017 0.017 
V, ft/s Calculated 10.6 23.8 

Re Calculated 74301 111396 

e/D Calculated 0.000005 7.496E-06 
inated Calculated 0.00465 0.00425 

AP onaiasteds [Sh Calculated 0.01446 0.1000 

Allowed AP, psi Given 0.1 0.1 

De agtecd PAF thrid Check value 0.1446 1.000 

Our first guess of the diameter is too large, because it would result in a 

pressure drop due to friction that is only about one-seventh of that available; 

i.e., a duct 1 ft in diameter will do, but we can use a smaller one and still get 

the required flow with the available pressure difference. We could make a sec- 

ond guess of the diameter and repeat the calculation, but it is much easier to let 

our computer do this. Table 6.6 shows the spreadsheet solution. As in Table 6.5, 

the first column lists the variables, the second describes the variables, and the 

third corresponds to Deirst guess = 1 ft, with the values shown above in this 

example. To find the solution in the fourth row we let the spreadsheet’s 

numerical solution routine vary the value of D to make the check value in the 

lower right corner become 1.0000. This shows that the required diameter is 

0.667 ft = 8.00 in = 0.203 m. a 

5.6 SOME COMMENTS ABOUT THE 
FRICTION FACTOR METHOD 
AND TURBULENT FLOW 

|. The three preceding examples show how we use the friction factor plot, Fig. 6.10, 

or its numerical equivalent, Eqs. 6.20 and 6.21. However, the calculations for tur- 

bulent and transition flow are not reliable to better than +10 percent, because the 

exact values of the roughnesses are seldom known to better than that accuracy. Fur- 

thermore roughnesses of pipes change over time as they corrode or collect deposits. 

It is common practice in the long-distance oil and gas pipeline industry to regularly 

force a scraper (called a “pig”) through their pipelines. This cleans the inner pipe 

surface, thus greatly lowering the roughness and lowering the required pressure 

drop. The savings in pumping cost more than repay the cost of this regular cleaning. 

. The plot is made up for sections of pipe that contain no valves, elbows, sudden 

contractions, sudden expansions, etc. These are probably present in all the actual 
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situations described in Examples 6.3, 6.4, 6.5, and 6.6. We will discuss how to 

account for them in Secs. 6.8 and 6.9. 

3. The data on which the plot is based are all taken well downstream of the entrance 

to the pipe. We will discuss the entrance region briefly in Part IV. 

4. The friction factor plot is a generalization of experimental data. One should 

not attach much theoretical significance to it. So far no one has been able to cal- 

culate friction factors for turbulent flow without starting with experimental data. 

5. It can be easily shown that for turbulent flows the heat-transfer and mass-transfer 

coefficients are related fairly simply to the friction factor f. This is so because the 

eddy that transports momentum (and thus increases the shear stress) also transports 

heat and mass and, thus, increases the heat and mass transfer. This subject is dis- 

cussed in heat-transfer and mass-transfer texts as the Reynolds analogy. 

6. In Part IV we will discuss briefly the measured velocity distributions in turbulent 

pipe flow. Now we simply note that the velocity profile of turbulent pipe flow is much 

flatter than that of laminar pipe flows (see Fig. 3.3). Most of the fluid flows in a 

central core, which moves almost as a unit at nearly the same velocity throughout. 

There is a thin layer near the pipe wall in which the velocity drops rapidly from 

the high velocity of the central core to the zero velocity at the wall. Thus, it is 

quite reasonable to treat the average velocity of a turbulent pipe flow as the velocity 

representing the entire flow. 

7. Now that we all have computers, and many of us have access to programs that 

solve the above examples quickly and easily, the hand solution of these problems 

and the reading of friction factors from Fig. 6.10 are part of an chemical engi- 

neer’s cultural background, but most likely not part of her day-to-day tool kit. 

However, knowing how these methods work helps the engineer know what those 

convenient computer programs are doing, and whether or not they are applicable 

in some unusual situation. 

6.7 MORE CONVENIENT METHODS 

The friction factor plot, Fig. 6.10, is a very great generalization; all the pressure-drop 

data for all Newtonian fluids, pipe diameters, and flow rates are put on a single graph. 

However, as shown in Examples 6.4, 6.5, and 6.6, the plot is tedious to use by hand. 

Therefore, before the computer age, working engineers rearranged the same experi- 
mental data in numerous forms that are more convenient. The resulting methods are 
more convenient but less compact than the friction factor methods; for instance, one 
might be using 20 charts instead of only one. These are now mostly of historical inter- 
est, because our computer programs are so good. However, the student is likely to 
encounter some of them and wonder how they are organized. Furthermore, many of 
them allow more intuitive insight into these flows than the computer programs do. 
Some of these methods are shown in this section. 

Suppose we decide to build an oil refinery, a city water supply system, or an 
aircraft carrier. We will have to deal with a very large number of fluid flows. We 
could calculate the friction effect for each from Fig. 6.10. However, in any of these 
projects we would probably use U.S. standard pipe sizes for practically all of the 
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flows. From App. A.2 we see that they constitute a fairly small number of sizes. For 
Pipes of a given size and of the same material, the diameter and relative roughness 
are constant. Therefore, for a given size of pipe there are only four variables: F per 
foot, Q. p, and 4. These can be plotted (for one pipe size) in a way that’ makes cal- 
culations of friction loss very easy. Thus, if we spend the time to make about 10 such 
plots for the common U.S. pipe sizes, we can save considerable work in designing 

our refinery, water system, or aircraft carrier. Naturally, oil companies. water-supply 

companies, and the Navy have done just that. 

In making such plots and tables it is customary to set them up for the most 

common problem, which is the long, horizontal, constant-diameter pipe. For such a 

pipe, B.E., rearranged, is 

=hF = 4f y? ay flow, horizontal 

Figg RAN pipe, with no pumps or | (6.24) 
friction Ax Ax pe 

compressors 

so the charts customarily can be read directly in —AP/ Ax, dropping the “friction” 

subscript. If we must use such a chart for some other type of problem, we may read 

the appropriate — AP / Ax and then use Eg. 6.24 to find F. 
Figure 6.12 is an example of such a plot. This figure shows, for a 3-in pipe, the 

pressure drop per 1000 ft as a function of volumetric flow rate, kinematic viscosity 

(viscosity / density), and specific gravity. The plot is logarithmic on both axes, but 
the log scale is different for each. A plot like this can be made directly from Fig. 6.10 

(Prob. 6.29). 

Example 6.7. Rework Example 6.1 by using Fig. 6.12. 

Here the B.E. analysis is the same as in Example 6.1. We start on the 

chart at the right at 50 gal / min and read horizontally to the left to 50.0 cSt 

line, and then vertically downward. The bottom section allows for fluids of var- 

ious specific gravities; here the specific gravity is ~1.00, so we read to the bot- 

tom of the plot, finding 7.7 psi/ 1000 ft. In this example the pipe is 3000 ft 

long, so the pressure drop is 3 times 7.7 = 23.1 psi. The perfect agreement with 

Example 6.1 should not surprise us; the laminar part of Fig. 6.12 was made up 

from the same equations we used there. @ 

Figure 6.12 is a “convenience” chart made up from Fig. 6.10. It is well suited 

to the needs of an oil company, which spends large sums of money in pumping flu- 

ids with a wide range of viscosities, sometimes in laminar flow, sometimes in tur- 

bulent flow. But it is poorly suited to the needs of a city water-supply company, 

which deals almost exclusively with water. When Fig. 6.12 was made from Fig. 

6.10, the pipe diameter and roughness were held constant. If we are dealing with 

water, we can assume that the temperature is constant (which is approximately true 

in city water systems) and that the absolute roughness of the pipe wall is constant 

(also approximately true in city water systems). Then the pressure drop as a func- 

tion of pipe diameter and flow rate can be tabulated for all flows of water at the 

chosen temperature. Appendix A.3 is such a table, made up for the flow of water at 
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FIGURE 6.12 

Pressure drop in a 3-in schedule 40 pipe, 3.068 in inside diameter. Example shown; flow rate = 120 

barrels per hour (BPH); kinematic viscosity = 10 cSt; specific gravity = 0.9; pressure loss (follow 

dashed line) = 10.7 psi/ 1000 ft. (Courtesy of the Board of Engineers, Standard Oil Company of 

California.) 
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@®@ 60°F through schedule 40 pipe (the most 

e | common size in United States industrial 

practice). 

Example 6.8. Two reservoirs are 

connected by 2000 ft of 3-in pipe. We 

want to pump 200 gal / min of water 

2000 ft of 3-in from one to the other. The levels in 

schedule 40 pipe the reservoirs are the same, and both 

are open to the atmosphere; see Fig. 

Pump 

FIGURE 6.13 

A pump-driven fluid transfer from one tank to 6.13. What are the pump work per 
another, used in Example 6.8. unit mass, the required pump pressure 

rise, and the required pump power? 

Applying B.E. from the free surface of the first reservoir, point 1, to the 

free surface of the second, point 2, we see that all terms are zero except 

0= OW. F (6:13) 
dm 

The pump work (positive because of the thermodynamic sign convention) is 

equal to the friction loss. We could solve this problem using Fig. 6.10 or the 

spreadsheets in Tables 6.5 and 6.6. But it is faster and easier using App. A.3. 

We start at the left of App. A.3 at 200 gal / min and read horizontally to the 

column for 3-in pipe, where the pressure drop is indicated as (3.87 psi) / (100 ft). 

The pipe is 2000 ft long, so the pressure drop due to friction is 

dm pump p friction 

2 4.3.97" n000 8 3 t-774 (6.2) 
7-100 Pe en 

The pump must increase the pressure of the fluid flowing through it by 77.4 psi 

to overcome the friction in the 2000 ft of pipe. 

The pump power required is 

pepe Kreci SAN B A Sis ee (6.AA) 
dt dm p in 

Here 

gal min line Ibm 
gel beeetier ee 62.3 aaiieete 27.8 —— (6.AB) 

_ T1Albf fin? | Ibm 32.2 lbm-ft 144 in? __hp-s 
ee ina ibis fz 550 ft: lof 

= 8.90 hp = 6.63 kW (6.AC) 

The pump power computed here is the amount of mechanical power delivered to the 

fluid. For a 100 percent efficient pump this would also be the power input to the 

pump. Real pumps are never 100 percent efficient (nor are the electric motors which 

drive most of them); their actual behavior is discussed in Chap. 10. = 
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In using App. A.3 remember where it comes from; each entry represents a 

calculation like that in Example 6.4. One may solve by Fig. 6.10 or Eq. 6.21 for the 

value we read from the table here and see that the values agree. By making such cal- 

culations for a large number of flow rates and pipe diameters we can make App. A.3. 

Thus, that appendix is simply Fig. 6.10, rearranged for the special case of 60°F water 

flowing in schedule 40 pipes. " 

Just as oil refinery engineers have made charts convenient to their class of prob- 

lems, so also have air-conditioning engineers prepared Fig. 6.14, on which they can 

quickly solve most pressure drop problems in common air-conditioning use [8]. Here 

they have recognized that almost all flow in air-conditioning ducts is of air at about 

70°F and 14.7 psia, for which the viscosity and density are known, and that most of 

the ducts are made of galvanized steel or aluminum, for which ¢ is known. Thus, they 

have one fewer variable than the oil refinery engineers (who treat fluids with a vari- 

ety of viscosities), so that instead of having to have a separate plot for each size pipe, 

like Fig. 6.13, they can have one plot that covers all sizes. 

Example 6.9. Repeat Example 6.6 by using Fig. 6.14. Here the figure was made 

for air at 68°F, which we can tell from the assumed density of 0.075 Ibm / ft°, 

while our problem is for 40°F and a density of 0.080 Ibm / ft*. We know that the 

viscosities do not match perfectly either. However, we ignore these differences for 

the moment and simply use Fig. 6.14. We know the flow rate (500 ft* / min), the 

pressure drop (0.1 psi), and the pipe length (800 ft). We need to convert the pres- 

sure drop to pressure drop per unit length, which we can do either as 

AP Ol psi 27.69 in H;0 * aa in H,O0 _ Py in HO (6.AD) 
Ax  800ft psi ft 100 ft 

Or aS 

AP _ 0.1 psi 6.895: 10° Pa 3.28 ft ae ae (6.AB) 
Ax 800ft psi m ar 

These give the same entry point on the abscissa. Reading at the intersection of 

this pressure gradient and 500 cfm, we find that the required pipe diameter is 

about 8.2 in and the velocity is about 1350 ft/min = 22.5 ft/s. The close 

agreement with Example 6.5 (8.0 in, 23.5 ft/s) simply shows that Fig. 6.14 was 

made using the standard friction factor plot. The small differences between the 

density and viscosity of air at 70°F and 40°F are the probable cause of the 

differences shown. a 

Such convenient charts as Figs. 6.13 and 6.14 and App. A.3 are widely used in 

industry for routine calculations, even in the computer age. When engineers leave the 
university and join industrial firms, they find that their colleagues have a large sup- 
ply of them. It is worth the young engineer’s while to trace them back to their sources. 
Not only will they discover how the convenient methods fit in with the ideas learned 
in the university, but also they will see more clearly the limitations of the convenient 
methods. Then they can use them for the routine parts of complex jobs, saving their 
creative efforts for the non-routine parts that will test their talents and education. 
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Volumetric flow rate, Q, m3 /h Votumetric Tow rate, Q, ft/min 
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hs 

Friction loss, in HO / 100 ft 

0.1 1 10 80 

Friction loss, (N /m2)/m = Pa/m 

IGURE 6.14 
‘iction of air in straight ducts for volumetric flow rates of 10 to 2000 ft’ / min (20 to 3000 m’ /h). 
ased on standard air of 0.075 Ib/ ft’ (1.2 kg/m’) density, flowing through average. clean, round, 

ilvanized metal ducts having approximating 40 joints per 100 ft (30 m). Do not extrapolate below the 

art. (Reprinted from the 1972 ASHRAE Handbook—Fundamentals, with permission.) 
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6.8 ENLARGEMENTS 
AND CONTRACTIONS 

The first part of this chapter was devoted 

to the steady flow of a fluid in a part of 

a circular pipe, well downstream from the 

pipe entrance. However, in each of the 

_ | Sudden 

_ | contraction 

Sudden 

ar ieees examples in this chapter there were places 

FIGURE 6.15 where the flow entered and left a pipe. In 
Flows in sudden contractions and enlargements. Examples 6.1, 6.3, and 6.4 the fluid 

flowed from the first reservoir into a pipe 

and left the pipe to enter a second reservoir. Friction losses are associated with these 

transitions; see Fig. 6.15. 

For the enlargements we can calculate the friction effect on the basis of some 

simple assumptions; the calculation, made by means of the momentum balance, is 

given in Sec. 7.3. The results of that calculation can be put in the form 

2 
F=K las (6.25) 5) 

where K is an empirical constant, called the resistance coefficient, that is depend- 

ent on the ratio of the two pipe diameters involved, and V is the larger of the two 

velocities involved. The experimental data agree with it reasonably well [9]. No one 

has successfully calculated the friction effect of sudden contractions without hav- 

ing to resort to experimental data. However, it can be shown [9] that the experimen- 

tal data can also be represented by the same equation. The experimental values of 

K for contractions are shown in Fig. 6.16, as are the calculated values of K for sud- 

den expansions. 

From Fig. 6.16 it is clear that, the larger the change of diameter, the greater the 

pressure losses. The reasons for the losses are as follows. 

1. In a sudden expansion the fluid is slowed down from relatively high velocity and 

high kinetic energy in the small pipe to relatively low velocity and low kinetic 

energy in the large pipe. If this process took place without friction, the kinetic 

energy would be converted to injection work with a resulting pressure increase. In 

a sudden expansion the process takes place as a fluid mixes and eddies around the 

enlargement. The kinetic energy of the fluid is converted into internal energy. 

Therefore, when the downstream velocity is zero, the friction loss is equal to the 

upstream kinetic energy. This is shown by Eq. 6.25 with K = 1, which is the value 

for zero downstream velocity in Fig. 6.16 (see the discussion in Sec. 5.5). 

2. In a sudden contraction the flow does not come into the pipe entirely in the axial 

direction. Rather, it comes from all directions, as sketched in Fig. 6.15. (The flow 

is not completely one-dimensional, but rather two- or three-dimensional.) On 

entering the pipe the flow follows the pattern shown in Fig. 6.17. 

The fluid forms a neck, called the vena contracta, just downstream of the tube 
entrance. The flow into the neck is caused by the radial inward velocity of the fluid 
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Dy 

dD, 
Sudden enlargement 

ate 

k=[1- “4 
D; 

(See Section 7.3) 

Sudden contraction 

K based on 

a eae oe data [9] 

Resistance coefficient, K 

° ron 

0 0.1 0.2 03 0.4 0.5 06 0.7 08 0.9 1.0 
D,/D> 

FIGURE 6.16 

Resistance due to sudden enlargements and contractions. The resistance 

coefficient K is defined in Eq. 6.25. (From Crane Technical Paper No. 

410, reproduced by permission of the Crane Company.) 

approaching the tube. Because it is coming radially inward, the fluid overshoots the 

tube wall and goes into the neck. This neck is surrounded by a collar of stagnant fluid. 

In the neck the velocity is greater than the velocity farther downstream. Thus, the 

kinetic energy decreases from the neck to some point downstream, where the veloc- 

ity is practically uniform over the cross section of the pipe. This kinetic energy is not 

all recovered as increased pressure but leads to the friction loss shown in Eq. 6.25 

with the values of K from Fig. 6.16. 

Our discussion of entrance and exit losses has concerned turbulent flow only. 

In laminar flow these effects generally are negligible, because the kinetic energies gen- 

erally are negligible compared with the 

viscous effects. 

Example 6.10. Calculate the error 

made in Example 6.4 by neglect- 

ing the expansion and contraction 

losses. 

From Fig. 6.16 we see that 

for flow from a tank to a pipe the 

FIGURE 6.17 coefficient K is 0.5 and for flow 
Flow pattern (turbulent flow) in a sudden from a pipe to a tank it is 1.0. Thus, 

i i is not trul - oF contrachon, showing that the flow is no y one the friction loss due to the expan- 

dimensional, but comes in with a radial component, : : 

causing it to form a narrow neck before it sion and Coan should be 

straightens out into one-dimensional pipe flow. 1.0 + 0.5 = 1.5: (kinetic energy 

Flow lines 

Stagnant areas 
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of the fluid in the pipe). In Example 6.4 the velocity was 13.0 ft/s; therefore, it 

can be shown that 
y2 

SAY raat = pF = Le 

and contraction 5 

Ibm 1.5 fc yr fe Ibf - s 
= 623 —:— -( 13.0—) -——- 

fertune s/ 144in? 32.2 Ibm: ft 

Ibf 
= 1.10 — > EERE (6.AF) 

in 

This is ~0.4 percent of the 484 psi calculated in Example 6.4. In this example 

the pipe was long (3000 ft). If the pipe were short, the contraction and expansion 

losses would be just as large, but the percentage error in neglecting them would be 

much greater. We can also consider the role of valves by using Eq. 6.25. A completely 

closed valve is the same as that equation with K = ©; substituting that into Eq. 6.AF 

and then into Eq. 5.5 leads to V = 0, which is the result a closed valve should pro- 

duce. Flow-regulating valves (such as those in your kitchen and bathroom sinks) are, 

in effect variable Ks; wide open, they have a small value of K, fully closed they have 

an infinite value of K, and by handle adjustment they can take up any value in 

between, thus controlling the flow. 

6.9 FITTING LOSSES 

In addition to expansions and contractions, in most fluid systems we must take into 

account the effect of valves, elbows, etc. They are much more complex to analyze 

than the one-dimensional flows we have considered so far (take apart an ordinary 

household faucet and study its flow path; it is much more complicated than that of a 

straight pipe). Efforts at calculating the friction losses in such fittings have been made, 

and the results have been correlated in two convenient ways which allow us to treat 

them as if they were one-dimensional problems. 

The first way to correlate these test results is to assume that for a given flow 

: through m0 esp - id through a length 

a valve or fitting) oye i OL PIDs et oe ae (6.26) 

valve or fitting diameter 

If for a given kind of fitting this constant turns out to be independent of the kind of 
flow, and independent of the pipe diameter, then this correlation will be very easy to 
use. In turbulent flow, the constant in this equation is practically independent of pipe 

: $ize, flow rate, and nature of the fluid flowing. If we know the value of the constant for 
a particular kind of fitting, we can calculate an “equivalent length of pipe” that would 
have the same friction effect as the fitting, and we can add this length to the actual 
length of the pipe to find an adjusted length, which gives practically the same friction 
effect as does the actual pipe including fittings. The constant in the equation is dimen- 
sionless. Typical values are shown in Table 6.7; they are referred to as equivalent lengths. 
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TABLE 6.7 

Equivalent lengths and K values for various kinds of fitting* ee SEE ae HSER EU 2 A 7 | Re 
Equivalent length, Constant, K, in Eq. 6.25, 

Type of fitting L/D, dimensionless dimensionless 

Globe valve, wide open 350 6.3 
Angle valve, wide open 170 3.0 
Gate valve, wide open 7 0.13 
Check valve, swing type 110 2.0 

90° standard elbow 32 0.74 

45° standard elbow 15 0.3 

90° long-radius elbow 20 0.46 

Standard tee, flow-through run 20 0.4 

Standard tee, flow-through branch 60 1.3 

Coupling 2 0.04 

Union 2 0.04 

*Source: Reference 10. 

Example 6.11. Rework Example 6.4 on the assumption that, in addition to the 

3000 ft of 3-in pipe, the line contains two globe valves, a swing check valve, 

and nine 90° standard elbows. 

Using the constants in Table 6.7, we can calculate the equivalent length of 

3-in pipe that would have the same friction effect as these fittings. This is: 

> L/D = 2-350 + 1-110 + 9-32 = 1098 (6.AG) 

From Eq. 6.26 we see that this is the number of pipe diameters needed to 

have the same friction loss as the fittings. Thus, the equivalent length is 

1098 - [(3.068 / 12) ft] = 281 ft. Therefore, the adjusted length of the pipe is 

aoa 13 ee pa UE franca com 

length length for fittings 

= 3000 + 281 = 3281 ft (6.AH) 

The total pressure drop is 

3281 ft 
— AProtat = 484 psi: = 529 psi (6.AI) 

3000 ft 

and that due to the valves and fittings 

=P yaives and fiings = 529 psi — 484 psi = 45 psi'= 310 kPa — 

The second way to represent the same experimental data for the friction losses 

in valves or fittings is to assign a value of K in Eq. 6.25 to each kind of fitting. Those 

values, based on friction-loss experiments, are also shown in Table 6.7. 

Example 6.12. Repeat Example 6.11, using the K values in Table 6.7. 

Using those values, we compute that 

> Kyaives and fittings — SO onl 2.0 9 074 — 27.00 (6.AK) 
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and 

Ibm (13.0 ft/s)? — Ibf-s? ft? 
— AP yaives and fittings = 27.56 62.3 "5" 395 bm ft 144 in? 

= 3( pst = 21okea Got 

The fact that the second method of making this estimate gives an answer only 69% 

of the first reminds us that these procedures give only a fair estimate of the pressure 

drop, not as reliable an estimate as we can make for flow in a straight pipe. These 

two methods appear to be quite different, but are not. If we write the friction heating 

for each method, 

Aertel ie Libertad. 
“ta 4G) gue Zz saith Z Cel) 

we see that they are the same if 4f(L/D)equivaien = Kiting. The equivalent length 

method lets ¥ of a fitting vary with the size of the pipe and the Reynolds number, 

whereas the K method makes it independent of those. Both seem to match the 

experimental data about as well as each other. Lapple [10] suggests that the equiva- 

lent length method matches experimental results better when R < 10° and the K 

method matches experimental results better when R > 10°. 

Laminar flow has yielded little experimental data on which to base pressure- 

drop correlations for valves and fittings. Generally, the adjusted length calculated by 

the method given above will be correct for turbulent flow but will be too large for 

laminar flow. Empirical guides to estimating the adjusted length for laminar flow have 

been published [11]. 

Do not attach theoretical significance to these empirical relations for fitting 

losses. They are simply the results of careful tests of specific cases, arranged in a way 

that is useful in predicting the behavior of new systems. Fitting losses and expansion 

and contraction losses are often lumped as minor losses even though for a short pip- 

ing system they may be larger than the straight pipe loss. 

6.10 FLUID FRICTION IN ONE- 
DIMENSIONAL FLOW IN 
NONCIRCULAR CHANNELS 

6.10.1 Laminar Flow in Noncircular Channels. 

Steady laminar flow in a circular pipe is one of the simplest flow problems. A some- 
what harder problem is steady flow of an incompressible Newtonian fluid in some 
constant-cross-section duct or pipe that is not circular, such as a rectangular duct or 
an open channel. For laminar flow of a Newtonian fluid the problem can be solved 
analytically for several shapes. Generally, the velocity depends on two dimensions. In 
several cases of interest the problems can be solved by the same method we used to 
find Eq. 6.9; i.e., setting up a force balance around some properly chosen section of 
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the flow, solving for the shear stress, introducing the Newtonian law of viscosity for 
the shear stress, and integrating to find the velocity distribution. From the velocity 
distribution the volumetric flow rate-pressure drop relation is found. 

That these are all similar to the solution for laminar flow in a horizontal circu- 

lar tube may be seen by comparing the horizontal, steady-flow solutions with that for 

a circular tube. For a circular tube, 

2 ( Ax i 128° ea 

For a slit between two parallel plates (Prob. 6.48), 

Pare dick 1 
c= (hoe +) owed 8 (6.28) 

where h is the distance between plates and / is the width of the slit. If both sides are 

divided by /, the left-hand side becomes the volumetric flow rate per unit width. For 

an annulus (Prob. 6.49), 

Sf | (De DADE + D? = 
g ( Ax a ing (22 Bie Sata 

D2 — D? 
in(D,/D,) (6.29) 

where D, is the outer diameter and D; is the inner diameter. These equations differ 

only by the terms at the far right, which account for the different geometries. Most 

of the cases that can be worked out by simple mathematics have been summarized by 

Bird [12, Chaps. 2-4] and Sakiadis [13]. One may show (Prob. 6.52) that as the spac- 

ing in the annulus become small (D; > D,), Eq. 6.29 reduces to 

q=(2=%.2). ! Z p( 22>") 6.30) 

APE cage 2 ° 

which is the same as Eq. 6.28 with the slit length and slit width renamed. This is one 

of many circular or annular problems that can be simplified by converting them to 

equivalent straight or planar problems. 

6.10.2 Seal Leaks 

An extremely important chemical engineering application of Eq. 6.30 is the problem 

of seal leakage. Figure 6.18 shows three kinds of seals. Figure 6.18(a) shows a static 

seal, as exists between the bottle cap and the top of a soft-drink or beer bottle. A 

thin washer of elastomeric material is compressed between the metal cap and the 

glass bottle top. This compressed material forms a seal that prevents the escape of 

CO, (carbonation). The leakage rate is not exactly zero, but it is small enough to 

hold the carbonation for many years. Leaks through this kind of seal are generally 

unimportant. Sealing is more difficult when one of the sealed surfaces moves relative 

to the other. 
Figure 6.18(b) shows a simple compression seal between a housing and a shaft. 

The example shown is a water faucet, in which a nut screws down over the body of 
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FIGURE 6.18 

Three kinds of seals: (a) a static seal, as exists between a soft-drink or beer bottle and its bottle cap, (b) a 

packed seal, as exists between the valve stem and valve body of simple faucets, and as also exists on many 

simple pumps, (c) a rotary seal of the type common on the drive shafts of automobiles and some pumps. 

206 
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the faucet to compress an elastomeric seal, which is trapped between the body of the 
faucet and the stem of the valve. The compressed seal must be tight enough to pre- 
vent leakage of the high-pressure water inside the valve out along the edge of the 
stem, but not so tight that the valve cannot be easily rotated by hand. Students are 
probably aware from personal experience that this type of seal often leaks. If the leak 
is a small amount of water into the bathroom sink, that causes little problem; tight- 
ening the nut normally reduces the leak to a rate low enough that it becomes invisi- 
ble (but does not become zero!). 

Example 6.13. A valve has a seal of the type shown in Fig. 6.18(b). Inside 

the valve is gasoline at a pressure of 100 psig. The space between the seal and 

the valve stem is assumed to have an average thickness of 0.0001 in. The length 

of the seal, in the direction of leakage, is 1 in. The diameter of the valve stem 

is 0.25 in. Estimate the gasoline leakage rate. 

This is the case described by Eq. 6.30, Inserting values, we have 

100 Ibf / in? 1 P - ft? in? a CeO ss 0s 
lin 12-0.6 cP 2.0910 lbf-s ft? 

3 es : 

=75-10> = = 027 = =13-10°— (6.AM) 

eS : Ib Ib k 
ra_= Op = 0.27 on 0.026 —~ = 0.007 a = 0.0032 = (6.AN) 

in- 

Tests indicate that the average leak rate from many oil refinery valves, pro- 

cessing this kind of liquid, is about 0.024 lbm /h, 3.5 times the value calculated 

here [13]; see Prob. 6.49. There are enough of these valves in a typical oil refin- 

ery or chemical plant that they contribute significantly to the overall emissions 

of hydrocarbons and chemicals to the atmosphere [14, p. 347]. a 

Figure 6.18(c) shows in greatly simplified form the seal that surrounds the drive 

shaft of an automobile, where that shaft exits from the transmission. The inside of the 

transmission is filled with oil. The flexible seal is like a shirt cuff turned back on 

itself, with the outside held solidly to the wall of the transmission and the inside held 

loosely against the rotating shaft by a “garter spring.” If we set that spring loosely, 

then there will be a great deal of leakage. If we set it very tight, then the friction and 

wear between the cuff and the shaft that rotates inside it will be excessive. The set- 

ting of the tension on that spring is a compromise between the desire for low leak- 

age and the desire for low friction and wear (buyers expect these seals to last as long 

as the auto!). That compromise normally leads to a low, but not a zero leakage rate; 

a small amount of oil is always dripping out and accumulating on the floor of our 

garages. Valves and pumps also have shafts that must rotate and hence have the same 

kind of leakage problem. Pumps and valves in chemical engineering all have the same 

kind of leakage problem shown Example 6.13. The seals regularly used are more com- 

plex versions of the ones shown there. 
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6.10.3. Turbulent Flow in Noncircular Channels 

We are no more able to calculate the pressure drop in steady, turbulent flow in a non- 

circular channel than we are in a circular one. However, it seems reasonable to expect 

that we could use the friction-loss results for circular pipes to estimate the results for 

other shapes. Let us assume that for a given fluid the shear stress at the wall of any 

conduit is the same for a given Vayerage, independent of the shape of the conduit. Then, 

from a force balance on a horizontal section like that leading to Eq. 6.3, we conclude 

that in steady flow 

fe ee ad a mu (ee, at) ih ) Aa (6.31) 

to the flow stress perimeter 

Rearranging this, we find 

ae E (“ae ) / (a8 apa stl (6.32) 

Ax perimeter to the flow 

We now define a new term: 

Hydraulic area perpendicular wetted es ) = ur =( ses )/( 7 (6.33) 
radius to the flow perimeter 

For a circular pipe this is 

ne i 
Nei 

mi = — a : : 
“ar [circular pipe] (6.AO) 

If the assumptions that went into Eq. 6.31 are correct, then we can construct the ratio 

of the pressure drop per unit length in a noncircular conduit to that in a circular one: 

(AP / An)giicieue me 1/HR +f D 

(AP FAX, 4/D  4HR 

rakemoerle) try 8 Ax noncircular Ax circular 4 HR (6. Q) 

But for turbulent flow (AP/Ax)cicular is given by the friction-factor equation, 
Eq. 6.23. Substituting, we get 

AP =4faV~ vADiets safe 
piss + = (6.34) 
Ax noncircular 2D 4 HR 2 HR 

(6.AP) 

Alternatively, we may write 

gF es hk a 
noncircular HR 2 (6.35) 

What value of f should we use in Eqs. 6.34 and 6.35? Experimental results indi- 
cate that those equations work fairly well if one uses the ordinary friction factor plot 
(Fig. 6.10) but replaces the diameter in 2 and in e/ D with 4 HR. The equations do 
not work well for shapes that depart radically from circles, such as long, narrow slits. 
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Example 6.14. Air at 1 atm and 68°F is flowing in a long, rectangular duct 

whose cross section is | ft by 0.5 ft, with Vy, = 40 ft /s. The roughness of the 

duct is 0.00006 in. What is the pressure drop per unit length? 

First we calculate the hydraulic radius: 

0.5 ft” 
HR = = 0.1 : 

CA atthe (20S te) ieee aR) 

Vp(4HR) _ 40 ft/s - 0.075 Ibm / ft* - (4 - 0.1667) ft 

«0.018 cP: (6.72: 10-4 Ibm / ft: s - cP) 
iP oltabss obs 0.00006 in —~ 75.1076 (6.AT) 

D. 4HR. (4-0.1667)ft-(12in/ft) ~ 

From Fig. 6.10 (for this low an e / D we use the “smooth-tubes” curve) we find 

f = 0.0039 or, using Eq. 6.21, we find f = 0.00390. Using the latter value in 

Eq. 6.34, we find 

= 1.65-10° (6.AS) 

_ AP _ 0.00390 - 0.075 lbm/ft?-(40 ft/s)’ ft Ibf - 

Ax 2 - 0.1667 ft 144 jn? 32.2 Ibm: ft 

_, Ibf / in? in HO Pa 
=3'0°10°* =) 82 = 6.8 — 

100 ft ; m ( 

We may check this result by using Fig. 6.14. Here we assume that the pressure 

drop in this rectangular duct should be similar but not identical to that for the same 

volumetric flow rate in a circular duct with the same cross-sectional area. The diam- 

eter of such a duct would be 

4 4-aatoKu . 
D=,/—A =,/— 0.5 ft = 0.80 ft = 9.6 in (6.AV) 

T 7 

Entering Fig. 6.14 at V = 2400 ft / min, 

and interpolating between the 9-in 

Slant length = 55.67 ft and 10-in diameter lines we find 

Slope = 0.5 approximately the same pressure gradi- 

ent values shown in Eq. 6.AU. Many 

air-conditioning ducts are rectangular or 

square, because for a given cross- 

sectional area they can fit in a smaller 

ceiling space than an equivalent circular 

duct. This comparison shows that the 

pressure gradient in them is very simi- 

FIGURE 6.19 lar to that in a circular duct of equal 

Cross-sectional view of one of the large irrigation cross-sectional area. 

water canals of California’s Central Valley Project. 

The sloping sides have dy / dx = 0.50. The cross- Example 6.15. Figure 6.19 shows 

sectional area (at the design depth of 24.9 ft) x f f th 

= 3356 ft*, the wetted perimeter = 196.4 ft, and the cross section of one 0 € 

HR = 17.09 ft. See Example 6.15. canals in the Central Valley Project 
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irrigation system in California. The slope is 0.00004 ft / ft = 0.21 ft/ mile. What 

are the velocity and volumetric flow rate in this canal? 

First we apply B.E. from some upstream point in the canal to some 

downstream point in the canal. Since both points are open to the atmo- 

sphere, the pressures are the same. For steady flow of a constant-density fluid 

in a canal of constant cross-sectional area the velocities at the two points 

are the same. There is no pump or turbine work. Therefore, the remaining 

terms are 

ghz=—F (6.AW) 

This says that the decrease in potential energy is exactly equal to the energy 

“Joss” due to friction, i.e., the mechanical energy converted to internal energy. 

Substituting for # from Eq. 6.23, we find 

Ax V2 -HR-g —Az\!/? 
— os Nz =o HR H V= (Fe =) (6.AX) 

In the previous example the wetted perimeter was the entire perimeter of the 

duct. Here we do not include the part of the perimeter facing the air, because 

the air exerts little resistance to the flow compared with the walls of the canal. 

The reader can verify this by watching the flow of leaves or bits of wood on 

any open stream or irrigation ditch; those at the center move much faster than 

those at the edges. If the air restrained the flow as much as the solid walls 

do, then the whole top surface of the flow would not move at all, just as the 

fluid right at the solid boundaries does not move. Therefore, the hydraulic 

radius is 

flowarea 33356 ft” 
wetted perimeter 196.36 ft 

= 17.09 ft (6.AY) 

The absolute roughness of a concrete-lined irrigation ditch is estimated from 

Table 6.2 at the low end of the range of values shown, 0.001 ft, so the estimated 

relative roughness is 

&! fon 0.001ft 

4HR 4-17.09 ft 
= 0.000015 (6.AZ) 

Here we do not know the velocity, so we cannot directly compute 2. However, 
we can guess a velocity, and proceed. We take Veirst suess = 1 ft/s. Then 

Pie 4-17.09 ft- 1.0 ft fs 62.3 Ibm/ ft 6, 10° (6BA) 
L.O.¢P> (6,72: 10" Tom 7 ft > s*cP) 

Thus, from Fig. 6.10 or Eq. 6.21 we find first guess — 0.0024; therefore, 

2° 17.09 ft-32.2 ft/s" 9 von) = aca scitaaleadl 1°07 Geiss = 4.28— (6.BB) 

The design value is 3.89 ft/s, indicating that we have chosen a smaller value 
for the roughness of the concrete canal walls than did the designer (who had 

Veecond guess = ( 
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experimental data on such canals). We could compute a second guess of 2 and f, tinding { = 0.0023, but we are not justified in doing this, because of our uncertainty of the roughness, 
Using the design value of the velocity, we find 

ft Q=VA= 349 — 3356 fr = 13.100 (6.BC) 

which is the design volumetric flow rate of this section of the canal system. 
a 

611 MORE COMPLEX PROBLEMS 
INVOLVING BLE. 

Now that we can evaluate all the terms in BE, we may consider some of the more 
istexesing types of problem that this equation can be used to solve. 

Example 6.16. A, lasge, high-pressure chemical reactor contains water at a 
pressuse A ID) psi. A 3-in schedule 80 line connecting to it ruptures at a point 
10 ft from the reacts. What is the flow rate through this break? 

This is an unsteady-state problem; the reactor pressure will fall during the 
othow. Bowever, if the reactos is large, the unsteady-state contribution can be 
nepicc2d, ad we will do so here. Applying BE. from the free liquid surface 
in the rexn to the exit of the pipe. we neglect the potential-energy terms, 
which me negiigible, and the small velocity at the free surface. The remaining 
ts aE : 

2 

gp z 

The flow rae in this case will be much higher than is used in common industrial 
pce, 9 App. A3 will be of no use to us. Here the friction loss consists of 
two parts: the extrance Soss into the pipe and the loss due to the flow through 
the 10 ft of pipe. Substinuting from Eqs. 6.25 and 6.17, we find 

2 y2 ee me ae (6.BD) 
2 Dp 3 

—_——_~ —“<_-—_—S 

BOIL sraight pipe 

GEE FETE GM gy 75 \ 
3 / \1/2 vy (Pa (6.BE) 

1 + K + 4f(Ax/D) 

From Fiz, 6.16 we con read K = 05 (the diameter of the line is much smaller 
tea the tak: Gamneses). From App. A2 we find that for 3-in schedule 80 pipe 
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the inside diameter is 2.900 in. Then, from Table 6.2, 

0018 1 2D OONS YS Geeue? (6.BG) 
D ,..2,900.in 

It is safe to assume that the Reynolds number here will be very high; so on Fig. 

6.10 we select as our first guess a friction factor at the far right of the diagram, 

which for an e/ D of 0.00062 gives us f = 0.0043. Then 

2(2000 — 15) Ibf / in’ 32.2 Ibm: ft 144 in? |!” enn 

Be: po ee (1 +05 + ome 108) 
Ibf - s” £2 : 

capi eS pL OU 
; : F 2A 2 AQ 985, 82.20 144, pelt | ee ka on 

62.3-(1+0.5+0.71) s? s c 

We then check to see whether our assumed friction factor is correct: 

(2.9 / 12) ft - 62.3 - lbm/ ft - 365 ft/s > 
R= =a = 8.2-10 (6.BJ) 

1.0 cP: (6.72: 10 “Ibm / ft: s- cP) . 

From Fig. 6.10 we see that our assumed f was correct. From App. A.2 we see 

that for 1 ft/s the flow rate is 20.55 gal / min; so the flow rate is 

ft 20.55 gal / min al % oases te D500 Oa OBES 
S ft/s min 

This is the instantaneous volumetric flow rate. As the flow continues, the pres- 

sure and flow rate will both decrease. |_| 

Appendix A.3 is of no use in this case, because the flow velocity is much larger 

than normal pipeline velocities. Ignoring the kinetic energy of the exit fluid, or the friction 

loss in the pipe, or the entrance loss would have given a significantly incorrect answer. 

Example 6.17. A fire truck, Fig. 6.20, is 

sucking water from a river and delivering it 

through a long hose to a nozzle, from which 

a it issues at a velocity of 100 ft/s. The total 
flow rate is 500 gal / min. The hoses have a 

diameter equivalent to that of a 4-in schedule 

40 pipe and may be assumed to have the 

same relative roughness. The total length of 

hose, corrected for valves, fittings, entrance, 

etc., is 300 ft. What is the power required of 

the fire truck’s pump? 

Applying B.E. from the surface of the 

river, point 1, to the outlet of the nozzle, 

point 2, we find 
FIGURE 6.20 
Fire truck pumping water from a river, used in ( eS a ie) eat dW. 8 (S50 23) = 
Example 6.17. 2 dm 

—F (6BL) 
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Here we may find the friction-loss term from App. A.3 and Eq. 6.24: 

_ TAP Ax _5.65Ibf/in® 300 ft == 32.2 Ibm- ft 144 in” 
Axm-g 100 ft  62.3lbm/ft? —Ibf: s” fic 

is 
PEAR. aa (6.BM) 

Then we have 

qWas. ft 100 ft/s ft? 
—** = 32.25: 100 ft + aL i it + 1260-5 = 9480 (6.BN) 
dm S 2 

Ib k 
ee IE ees mo = 695 2 61.64 Sim nH) 

min gal 60s S 

Therefore, 

dWrs dWas 
Po = = 

dt dm 

ft? hp: = 9480 Koger. Ibf - s? p's 

s  32.2lbm- ft 550 ft: lbf 
= 37 hp = 27.6kW (6.BP) 

Figure 6.21 illustrates a class of problems that occurs very often in water supply 

networks in which multiple reservoirs are connected to multiple users. Water flows from 

one reservoir through a pipe to a division point (called a node), whence it flows to two 

other reservoirs via separate pipes. The elevations of the reservoirs are shown. The task is 

to compute the flow through each pipe branch, assuming steady flow. The three-reservoir 

example illustrates the idea, but not the complexity that can exist in municipal and indus- 

trial plant water supply networks that have grown and been modified over time. 

For such long pipes the kinetic-energy terms in B.E. will be negligible, and the 

gauge pressures at the free surfaces are all zero. If these two simplifications are not 

appropriate, the problems can still be solved, but not as simply as is shown here. 

Writing B.E. for the three sections of the pipe in Fig. 6.21, we find 

® 
Section B, 

2000 ft of | patie ‘ ft © 40 ft 31D Pipe 

P» 
5 i(itted We aa 

A 2 

- (4. ~) (6.BQ) 
A 

ie Section A, > 
2000 ft of + 9(23 — 22) = —Fep 
6-in pipe p s 

Section C, = -| 4f iti : x) (6.BR) 
1000 ft of PLIA98 
4-in pipe _p 

Z 
Ol a ea) er, 

FIGURE 6.21 8(Z4 — 22) c 
Multiple-reservoir system with branching pipes, typical of Westy 

city water systems that have grown and been modified --(44 neat =) (6.BS) 

over time. G 
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From the mass balance we find 

O, = Op + Oc Va = Vg—— + Ve—— (6.BT) 

Here we have four equations relating four unknowns (the three Vs and P;). However, 

to solve the problem, we must use the correct values of the three fs, which are related 

to the pipe diameters and the Vs by the friction-factor chart, Fig. 6.10, or by Eq. 6.21. 

Thus, we could also think of this as a system with seven unknowns and seven equa- 

tions (taking the friction-factor chart or Eq. 6.21 three times). Because of the forms 

of Eq. 6.21 there is no possibility that one can solve these equations analytically. The 

solution must be by trial and error. 

In the problem statement the elevation at point 2 is not given, and the pressure 

at point 2 is unknown. In practice, we will know the elevation at point 2, and the 

flows will determine the pressure there, which will be different from the pressure 

which exists there when no fluid is flowing. The problem is inherently a trial and 

error, easy on computers. We begin by defining 

P,— P 3 a=( 2 + — 21) (6.BU) 
ps 

and guessing a value of a. Using it we can solve each of Equations 6.BQ, 6.BR and 

6.BS, for the velocities in each of the pipe sections. From those velocities we com- 

pute the three volumetric flow rates and check to see if the algebraic sum of the vol- 

umetric flow rates into point 2 is zero. If not, we make a new guess of a@ and repeat 

the flow calculations, to find the unique value of a which makes that sum = zero. 

For this three-branch, one-node example the trial and error is quite easy (Prob. 

6.68). For more complex examples it is not. A widely used systematic procedure for 

solving this type of system was developed by Cross [15]. Computer programs to carry 

out that solution are available [16]. 

6.12 ECONOMIC PIPE DIAMETER, 
ECONOMIC VELOCITY 

From the foregoing we can easily calculate the flow rate, given the pipe diameter and 
pressure drop, or calculate the pipe diameter, given the flow rate and pressure drop, etc. 
A much more interesting question is, Given the design flow rate, what size pipe should 
we select? It is possible that the choice is dictated by aesthetics; e.g., the pipe goes 
through a lobby, and we want it to be the same size as other exposed pipes in the lobby. 
Or it may be dictated by the supply; e.g., we have on hand a large amount of surplus 
4-in pipe that we want to use up. Most often the choice is based on economics; the 
engineer is asked to make the most economical selections, all things considered. 

For economic analysis we must consider two possibilities: 

1. The fluid is available at a high pressure and will eventually be throttled to a low 
pressure, so the energy needed to overcome friction losses may come from the 
available pressure drop. 
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2. The fluid is not available at a high pressure, so a pump or compressor is needed 
to overcome the effects of fluid friction. 

The first is simple: we select the smallest size of pipe that will carry the required 

flow with the available pressure drop. Example. 6.6 is that case. 

If the effects of friction must be overcome by a pump or compressor, then the 

total annual costs of the pump-pipeline system are the following: 

1. Power to run the pump. 

2. Maintenance charges on pump and line. 

3. Capital-cost charges for both line and pump. 

How these change with increasing pipe diameter is sketched in Fig. 6.22. The figure 

indicates the following: 

1. The larger the pipe diameter, the greater the capital charges. The cost of pipelines 

is roughly proportional to the pipe diameter; bigger pipes cost more to buy, require 

more expensive supports, take longer to install, etc. The cost of the pump is pro- 

portional to the cost of the pipe and is included in it. 

2. The maintenance cost is practically independent of the pipe size. 

3. The pumping cost goes down rapidly as the pipe size goes up. The pumping cost 

is proportional to the pressure drop (see Example 6.8), which for turbulent flow is 

proportional to the velocity to the 1.8 to 2.0 power divided by the diameter. The 

velocity (for constant flow rate) is proportional to the reciprocal of the square of 

the diameter, so the pumping cost is proportional to the reciprocal of the diame- 

ter to the 4.6 to 5 power. 

10° As Fig. 6.22 shows, 
SO. Stimorallcosts the sum of these has a rather 

< broad minimum. This mini- 

104 Capital charge mum occurs at the eco- 

= nomic pipe diameter. Here 

+ we are taking the sum of a 

g 1000 power cost during some 

3 finite period, e.g., a year, 

E and the one-year charge for 

100 owning the pipeline and the 

pump, whose lifetime will 

be many years. Books on 

engineering economics or 

A 3 4 5 6 7 8 process design show various 

Pipe diameter, D, in sophisticated ways to do 

that [17]. Here we use the 
FIGURE 6.22 

Relation between capital, operating, and maintenance costs for a simplest possible Bays PRs 

pipeline with pumped flow. The numerical values are based on the puting the annual capital 

economic data in Example 6.18. charge, which is equivalent 
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to what we would pay each year if we did not own the pipeline but instead financed it 

through a bank, making annual payments to “buy it on time,” the same way most of us 

buy houses and cars. The charge we calculate here is equivalent to what the bank would 

charge us to pay for the pipeline in annual installments over the life of the pipeline. 

We begin the economic analysis with 

Caan = pp- (ee (ER ) = PP-D- Ax (6.37) 
price diameter length 

where the purchase price is what we would have to pay a contractor for both supplies 

and labor to build the complete pipeline and pump for us. PP is a constant with dimen- 

sion $/ inch - ft. Typically, the purchase price is about three times the cost of the mate- 

rials used—pipe, fittings, supports, etc. The remainder is the labor cost to install the 

pipe and other associated construction costs. Then 

Gas “en -cc. (Bobiecr| (6.38) 

charge price 

where CC is a constant with dimension 1 / yr. The annual capital charge is our “equiv- 

alent annual payment” to buy the pipeline over time, proportional to the purchase 

price. It includes the portion of the initial price paid, interest on the remaining debt, 

taxes, and insurance; these are the same components of a typical house mortgage pay- 

ment (which is normally paid monthly rather than annually in this calculation). Then 

( Saati PES ne! ar input ie 
6.3 

charge drive the pump Sey) 

where PC is a constant with dimension $ / kWh. 

As shown in Fig. 6.22, the maintenance cost is practically independent of the pipe 

diameter, so we will not include it in the analysis. We want to find the minimum of 

ipa annual 
) = PC:Po + CC: PP-D- As (6.40) 

cost 

Assuming that the pipe is horizontal, we may apply B.E. from the pump inlet, point 1, 
to the pipe outlet, point 2, and see that there is no change in elevation or velocity. We 
assume that the pressure at the pump inlet is the same as the pressure at the pipe outlet; 
i.e., the pump only has to overcome the effects of friction. Then from Eq. 6.17, we have 

dW ¢ Ax V? fA ages 
Sas eee om 7 = — — = 2f — y* 

dm 4 } 5 php 2f D ia (GA) 

dW, t % Ax one 
P = ———. = —— |. 0 im pag D V*-m (6.42) 

m 
M Somes ee arr al D2 (6.43) 

and therefore 

m? 2f Ax(4/ a)? 
© Fe Wate sarees ioe (6.44) po? D> 
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Substituting Eq. 6.44 into Eq. 6.40, we find 

Total annual mv? 2f Ax(4/ mm)? 
— PC : 

o2 D> sre 08 OSE fd CW CORY (6.45) 
cost 

We now differentiate the total annual cost with respect to diameter D and set the 
derivative equal to zero: 

- om = | — of Ad \ te 5 
Da aa =|PC-m x ax(4) arias +rHCE Ay PP) (6.46) 

Solving for the D that minimizes costs, Decon, we find 

10°PC- mf (4/7)(1 ey 

erage 
Decon = (6.47) 

This equation shows that the economic pipe diameter is independent of how long the 

pipe is. This should be no surprise: Both the pumping and capital costs are propor- 

tional to the pipe length. The equation also shows that the economic diameter is pro- 

portional to the friction factor to the ¢ power; we can use a rough estimate of the 

friction factor with little error. Equation 6.47 is only correct for turbulent flow, because 

we have assumed f is a constant. The corresponding equation for laminar flow is 

shown in Prob. 6.73. 

Example 6.18. We want to transport 200 gal/min of water 5000 ft in a 

horizontal carbon-steel pipe. We will install a pump to overcome the friction loss. 

Given the economic data shown below, what is the economic pipe diameter? 

$0.04 $2 _ 0.40 
POSS = 1 PP = : : CCi= — 2 OBY: 

kWh in of diameter - ft of length yr ( ) 

First we guess that the pipe will have an inside diameter of 3 in. 

Then, from Table 6.2 we have e/D = 0.0018/3 = 0.0006. The friction 
factor (Fig. 6.10) will probably be about 0.0042. The mass flow rate is 

200 gal / min - 8.33 Ibm / gal = 1666 lbm / min. Substituting these and the val- 

ues of PC, CC, and PP in Eq. 6.48 produces 

; aNVOY none Fo ee 
2 (een -10-0.0082-( ) ( 

Dien || KW si min Tr 62.3 Ibm 

(0.4 / yr): ($2 / in - ft) 
ea KJ *aqig ledbf sali bomnint 35.2567 10? miny sift is 
3600 kJ 737.6 ft: Ibf 32.2Ibm-ft 3600s? yr 12 in 

= (0.00577 ft®)!/° = 0.289 ft = 3.24 in = 0.082 m (6.BW) 

Because of the approximate nature of the economic data used, a 4-in pipe would 

probably be selected. It would be appropriate to check the assumed friction 

factor (Prob. 6.62). eB 

Because calculations such as these are long and tedious, companies that install 

many pipelines have solved the problem for a large number of cases and have 
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summarized the results in convenient form. The most popular method is to calculate 

the economic velocity: 

Q 
E ic velocity.) Vecsn*aieauy eee (6.48) conomic velocity a 4)(Deon)? 

Substituting for the economic diameter from Eq. 6.47, we find 

m/ p 
Vecon = ="constants -————| (6.49) 

m(1/ p?/>)f1/?- constants fagl/s 

In Example 6.18 the velocity corresponding to the economic diameter is 6.8 ft/s. 

Equation 6.49 says that for a given set of cost data the economic velocity is inde- 

pendent of the mass flow handled and dependent only on the fluid density and on the 

friction factor. More thorough analyses and far more complicated cost equations lead 

to substantially the same conclusion. For example, for schedule 40 carbon-steel pipe 

Boucher and Alves [18] give the economic velocities shown in Table 6.8. 

Table 6.8 refers to turbulent flow only. For laminar flow the value of f goes up 

quite rapidly as the viscosity increases, making the economic velocity go down. Oil 

companies spend more money pumping viscous liquids (crude oils, asphalt, heating 

oils, etc.) than do other companies; they have made up the most convenient economic- 

velocity plots for laminar flow, such as Fig. 6.23. With it one can rapidly select 

the economic velocity and pipe diameter for laminar flow, subject to the restriction 

that the economic data on the line to be installed are the same as those shown on the 

plot. Figure 6.23 has nomenclature similar to that of Fig. 6.12, and the comments on 

the latter are applicable here. Figure 6.23 also shows the economic velocity and diam- 

eter for turbulent flow, which are practically the same as one would estimate from 

Table 6.8. 

Why does App. A.3 show the velocity in feet per second for all the water flows 

given? From Table 6.8 and Fig. 6.23, we can see that for water (which is almost 

always in turbulent flow in industrial equipment) the economic velocity is almost 
always about 6 ft/s. Experienced engineers often simply select pipe sizes for water 
or similar fluids by looking on App. A.3 for the pipe size that gives a velocity of about 
6 ft/s (2 m/s). Similarly, air-conditioning engineers normally select the duct size 
that gives a velocity of about 40 ft/s (12 m/s), without bothering with a detailed 

TABLE 6.8 

Economic velocity for flow in schedule 40 steel pipe* 

Fluid density, Ibm / ft® Economic velocity, ft / s 

100 afl! 

50 6.2 

10 10 

1 19.5 

0.1 39.0 

0.01 78.0 

*From Reference 18. 
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calculation. From their experience or Table 6.8 they know that this is close to the true 

economic velocity for ordinary air-conditioning ducts. 

Table 6.8 and Fig. 6.23 are for one set of costs; for other costs the results are 

different. However, because of the ; factor in Eq. 6.48 the different costs change the 

economic diameter very little (see Prob. 6.76). The values in Table 6.8 are from the 

1960s. The current edition of the same handbook cites ranges of values for various 

fluids, with the values in Table 6.8 falling in the middle of those ranges. In the 44 

years between those two handbook editions we have reduced the value of the dollar 

by about a factor of 10. However, the two prices that appear in Eq. 6.47, PC and PP, 

appear only as a ratio, so that if they both increase by the same percentage, then their 

ratio does not change, and hence the economic diameter does not change. That appears 

to be what has happened over the past 50 years, and is likely to more or less con- 

tinue in the future. 

6.13 FLOW AROUND SUBMERGED OBJECTS 

The flow around a submerged object is more complicated than the flow in a straight 

pipe or channel, because it is two- or three-dimensional. To understand the details of 

the flow around any submerged object, we must use the methods in Part IV. 

Frequently, we are not interested in the details of the flow but only in the prac- 

tical problem of predicting the force on a body due to the flow of fluid around it. For 

example, the airplane designer wants to know the “air resistance” of the plane to select 

the right engine, the submarine designer wants to know the “water resistance” to 

determine how fast the submarine can go, and the designer of a chimney wants to 

know the maximum wind force on it to decede how much bracing it requires. These 

forces are now all called drag forces, following aeronautical engineering terminology. 

By using experimental data on such flows, we can treat the problems as if they were 
one-dimensional. 

Probably the first systematic investigation of drag forces was undertaken by 
Isaac Newton [19], who dropped hollow spheres from the inside of the dome of 
St. Paul’s Cathedral in London and measured their rate of fall. He calculated that the 
drag force on a sphere should be given by the formula 

Ne 

Drag force = F = 7 r’pai, 
w| > 

(6.BX) 

Subsequent workers found that this equation must be modified by introducing a coeffi- 
cient, which we call the drag coefficient, Cy. This coefficient is not a constant equal to 1, 
as Newton believed, but varies with varying conditions, as we will see below. Introducing 
it and dividing both sides of Eq. 6.BX by the cross-sectional area of the sphere, we find 

F Vv? (ae of the drag ) 

a coefficient for any body (6.50) A 2 

Compare this with the equation for the pressure drop in a long, straight, horizontal pipe: 

INE 
si a an a (6.51) 
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From these equations we see that C, plays the same role as f. Equation 6.51 contains 
the factor Ax / D, which describes the geometry of the system (long, thin pipes have 
more pressure drop than short, thick ones for equal velocity and density), but since 
all spheres have the same shape, there is no need to include such a factor in Eq. 6.51. 

In the case of steady pipe flow it was found experimentally that f depends only 

on the Reynolds number and the relative roughness. It has been found similarly that 

the drag coefficient for smooth spheres in steady motion depends only on the Reynolds 

number. Here we must redefine the Reynolds number, which previously included the 

pipe diameter. The common practice is to define a particle Reynolds number, in which 

the particle diameter takes the place of the pipe diameter: 

Particle Reynolds article diameter - velocity - fluid densit 
( )=a, =? d (6:52) 
number fluid viscosity 

With this definition, all the steady-state drag data on single, smooth spheres moving 

in infinite, quiescent, Newtonian fluids at moderate velocities can be represented by 

a single curve on Fig. 6.24. This figure shows also drag coefficients for disks and 

cylinders, to be discussed later. It is limited to steady velocities of less than about one 

half the local speed of sound; velocities higher than this are discussed elsewhere [19]. 

10,000 

WS 
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= 
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5 
op 
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D, pV 
Particle Reynolds Number, 2%, = m 

‘IGURE 6.24 

Yrag coefficients for spheres, disks, and cylinders. R. Perry, D. Green, “Perry’s Chemical Engineer’s Handbook,” 

icGraw-Hill 1997, reproduced with permission from the McGraw-Hill companies, based on C. E. Lapple and C. B. 

shepherd, ‘Calculation of particle trajectories”, Ind. Eng. Chem, 32, 605-617, (1940). For spheres only, the curve for 

Rp < 0.3 is given exactly by Ca = 24/R, and for 0.3 < R, < 1000, the curve is given to a satisfactory approximation 

yy Cy = (24/8): (1 + 0.14 Rp”). 
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Figure 6.24 and the friction factor plot, Fig. 6.10, show marked similarities. In 

both, at low Reynolds numbers, there is a region where f or Cy is proportional to 

1/R or 1/#R,: i.e., a straight line of slope —45° on log paper. For pipes this is 

Poiseuille’s Soragor which can be written f = 16/; for spheres (straight line on 

Fig. 6.23) it is Stokes’ law*, which can be written 

24 Stokes’ drag coefficient for 
Career ( : ) (6.53) 

Ry low %, only 

which can also be rewritten as 

Stokes’ drag force = 
= 37uDV 6.54 

Farag = 37M oe R,, only C29) 

which is sometimes the more convenient form. 

Both figures have a horizontal section at high 1/R or 1/®, in which f or Cg 
is practically independent of the Reynolds number. The value of f or Cg on this hor- 

izontal section cannot be calculated; it is found from experimental data. 

However, the curve of the sphere drag coefficient has some marked differences 

from the friction factor plot. It does not continue smoothly to higher and higher 

Reynolds numbers, as does the f curve; instead, it takes a sharp drop at an %, of about 

300,000. Also, it does not show the upward jump that characterizes the laminar- 

turbulent transition in pipe flow. Both of these differences are due to the different 

shapes of the two systems. In a pipe all the fluid is in a confined area, and the change 

from laminar to turbulent flow affects all the fluid (except for a very thin film at the 

wall). Around a sphere the fluid extends in all directions to infinity (actually the fluid 

is not infinite but, if the distance to the nearest obstruction is 100 sphere diameters, 

we may consider it so), and no matter how fast the sphere is moving relative to the 

fluid, the entire fluid cannot be set in turbulent flow by the sphere. Thus, there cannot 

be the sudden laminar-turbulent transition for the entire flow, which causes the jump 

in Fig. 6.10. The flow very near the sphere, however, can make the sudden switch, 

causing the sudden drop in Cz at 2, = 300,000. This sudden drop in drag coefficient 

is discussed in Part IV. Leaving until Part IV the reasons why the curves in Fig. 6.24 

have the shapes they do, we can simply accept the curves as correct representations of 

experimental facts and show how one uses them to solve various problems. 

Consider a spherical particle settling through a fluid under the influence of grav- 

ity. Figure 6.25 shows the forces acting on a particle falling through a fluid. Writing 
Newton’s law for the’ particle, we find 

2 
i 7 3 es ig’ 

ma = Ppa 8 — Pruid Dg — Cay D Panis > 4 5 (6.55) 

*Stokes’ law, like the Poiseuille equation, can be derived mathematically without the aid of experimental 
data. In doing so we must assume that the flow is laminar, that Newton’s law of viscosity holds, and that 
the resulting terms in the equations involving velocities squared are negligible. The latter condition is called 
creeping flow. Even using these assumptions, the derivation takes several pages [20]. The greater com- 
plexity, compared with the Poiseuille equation, is due to the three-dimensionality of the flow around a 
sphere. 
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Drag ; Buoyant If the particle starts from rest, its initial velocity is zero, so the 
orce force drag force is initially zero. The particle accelerates rapidly; as it 

accelerates, the drag force increases as the square of the velocity 

increases, until it equals the gravity force minus the buoyant 

force. This is the state of terminal velocity; the sum of the forces 

Gravity force  4Cting is zero, so the particle continues to fall at a constant veloc- 

ity. To find this velocity, we set the acceleration to zero in 

FIGURE 6.25 Eq. 6.55 and solve for V: 

Gravity, buoyancy, 

and drag forces V2 = 4D8 (Ppart — Prtuia) 656 
acting on a particle at BO) pais (6.56) 
settling in a fluid. 

This equation is correct for any value of %,. If the particle is very 

small, it probably obeys Stokes’ drag relation, Eq. 6.53, Substituting this in Eq. 6.56 

and rearranging, we find 

D?2(Ppart — Prria) 
a eae [Stokes’ law] (6.57) 

18 w 

Example 6.19. Estimate the terminal settling velocity in air of a dust sphere 

with diameter 1 and SG = 2. (Fine particle calculations in the United 

States are almost always done in SI. 1p = 1 micron = 10 *mm = 10 °m= 

0.000039 in. A typical human hair is about 50 microns in diameter.) 

Substituting those values in Eq. 6.57, we find 

(9.81 m/s*)(10-° m)*[(2000 kg / m*) — (1.20 kg / m’*)] 

(18)(1.8 - 10-° Pa-s) 
ft 

= 6.05: 1075 = = 0.00605 ~ = 1.99-10*— (6.BY) 

We see that the air density in the (Pparticle — Pfuia) term contributed little 

to the answer. If we had set it equal to zero, our answer would have been 1.0006 

times the answer shown above. We will rarely know the actual particle diame- 

ters to this accuracy, so for most applications of particles moving in gases we 

drop the Pauiq term. For high-pressure gases this might lead to significant error; 

for gravitational settling in liquids we can seldom use this simplification. 

Now we must check our assumption that Stokes’ law applies here. The 

particle Reynolds number is 

10° m-: (1.20 kg / m*) : (6.05 - 10-° m/s) 

as 1.8-10->kg/(m-s) 
From Fig. 6.24 it appears that Stokes’ law (the straight-line part of the figure) 

holds to an &, of about 0.3; so the Stokes’ Jaw assumption was good here (see 

Prob. 6.89). it 

= 403-10 ° (6.BZ) R 

Stokes’ law has been well verified for the range of conditions in which its 

\ssumptions hold good. However, both for very large and for very small particles these 

issumptions are not correct. 
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Example 6.20. A solid steel sphere of SG = 7.85 and diameter 0.02 m is 

falling at its terminal velocity through water. What is its velocity? 

As a first trial we assume that Stokes’ law, Eq. 6.57, applies; then 

i (0.02m)? : (9.81 m/s) - (7.85 — 1) - (998.2 kg/m°) Pa NS 

ail 18-1.002-10-* Pa-s N/m? kg-m 
ft 

ss 1488 — =4880— 227 (6.CA) 

The corresponding particle Reynolds number is 

_ 0.02 m- (998.2 kg/m*)-(1488m/s) Pa N-s* 

on 1.002 - 10-3 Pas “N/m? kg-m 
=/2:96:71070 222 (6.CB) 

Clearly, Stokes’ law does not apply here. However, Eq. 6.56 applies for any value 

of the Reynolds number. To solve it, we must assume a value of the drag coef- 

ficient, calculate the corresponding velocity, and check our assumed Cy. This is 

a fairly simple trial and error. On our first trial we let (Ca)first euess = 0-4; then 

8 - 0.01m - (9.81 m/s”): (7.85 — 1): (998.2 kg / m*) ]!/? 

3 - (998.2 kg /m°)- 0.4 

ft 
S$. 

Veirst guess —— 

2.12 ~ = 6.94 (6.CC) 

The corresponding particle Reynolds number is: 

0.02m - (998.2 kg/m°*):(2.12m/s) Pa N-s2 

1.002 - 107 Pas N/m kg-m 
= 4.2-10* (6.CD) 

From Fig. 6.24 we see that the drag coefficient corresponding to this Reynolds 

number is about 0.5. On our second trial we use a (C4)second guess = 0.5; then 

(Ro) sirst guess = 

m /0.4 1/2 ft 
Vessbndigasie  Qeb2catten paben, at bOO ream Gdns on aakO-CE) 

& S 5 S S 0.5 

dt LAGU 
(Rp)second guess = 4.2 107 + > = 3.8 - 10° (6.CF) 

From Fig. 6.24 we see that the assumed C, and &,, agree; so this velocity is 

the desired solution. a 

These calculations are simple if tedious. They have been carried out for a vari- 
ety of spherical particles in air and water, and are summarized on Fig. 6.26. From it 
we see the following: 

1. Figure 6.26 has curves for spherical particles of various specific gravities, at their 
terminak velocities, both in air and in water. 

2. Stokes’ law (Eq. 6.57) shows the terminal settling velocity to be proportional to 
the square of the diameter. Thus, on this plot, Stokes’ law plots as a straight line 
with slope 2.00. 



Equivalent standard 

Tyler screen mesh 

102 

10 

i o 

a N 

Terminal settling velocity, ft/s 

a w 

1. Numbers on curves represent 
true (not bulk or apparent) 
specific gravity of particles 
referred to water at 4°C. 

2. Stokes—Cunningham corr- 
ection factor is included for 
fine particles settling in air. 

3. Physical properties used 

Temp. Viscosity Density HH 
°F centipoise —_Ib./cu.ft. = 
70 0.0181 0.0749 aul 
70 0.981 62.3 

10,000 

Particle diameter, micron = micrometer = » = pm 

FIGURE 6.26 

Terminal velocities of spherical particles of different densities settling in air and water at 70°F under the 

influence of gravity. [From C. E. Lapple et al., Fluid and Particle Mechanics, (Newark: University of 

Delaware, 1951), p. 292.] The screen-size values shown at the top allow-one to convert from screen size 

to diameter in microns. A particle that will pass through a 325 screen has a diameter = 40. (Observe 

thatthe scales are dn, 185; 2.2.05 353-5, 445... ) 
225 
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3. For particles smaller than about 50 settling in water, the lines are straight, with 

slope 2.00. This should not surprise us: The lines were calculated from Stokes’ 

law. 

4. For particles settling in air, the lines are straight and with slope 2.0 from about 

5 p to about 30 pw. For the smallest particles settling in air, the lines are concave 

upward, indicating a slightly larger velocity than one would predict from Stokes’ 

law. The reason is that as the particle size becomes comparable to the mean free 

path, the average distance a gas molecule travels between collisions, the drag 

becomes less than the Stokes’ drag. This is accounted for by the Cunningham cor- 

rection factor, which is not discussed here, but regularly used in fine particle cal- 

culations of all kinds, [14, p. 222]. 

5. Particles smaller than about 5 w in diameter have settling velocities in air less than 

the average velocities of indoor or outdoor air, so that their gravity settling is 

imperceptible. One can see this by watching cigarette or candle smoke. Such smoke 

consists of spherical particles with SG ~ 1 and D between 0.01 and 1 yw. Its grav- 

itational settling velocity is so small that the smoke appears to stay with the air 

parcel that contains it. Such particles are called aerosols, because they behave as 

if they were dissolved in the air (or other gas). 

6. The behavior of particles larger than those that obey Stokes’ law are shown by the 

curves on Fig. 6.26. These curves are made up by repeating Example 6.20 for a 

variety of particle sizes. 

7. The figure is quite reliable for spheres. We can use it to estimate the settling veloc- 

ity of other shapes if we replace the particle diameter with 

(Paes epler oS 7 ( 6 " ’ 3 re: 

particle diameter equiv ~ \ _ "particle (6.58) 

This works well enough for shapes like cubes, but not well for long fibers. 

8. This whole treatment is for single particles widely separated from each other. When 

particles come close to each other, as for example the particles in soup or mud, 

then their motions interact. The settling velocity is reduced; see Prob. 6.94. 

9. Particles that settle slowly under the influence of gravity settle much faster in a 

strong centrifugal force field, or a strong electrostatic field. Air pollution control 

devices and some other particle separation devices make use of this effect. 

The foregoing pertains entirely to spheres. We can use Eq. 6.50 for other shapes, 
if we agree on what area A represents. Generally, in drag measurements it refers to 
the “frontal” area perpendicular to the flow; that is the definition on which the coef- 
ficients in Fig. 6.24 are based. Moreover, we must decide on which dimension to base 
the Reynolds number in our correlation of C, versus R,: In Fig. 6.24 the Reynolds 
number for cylinders takes the cylinder diameter as D, and that for disks takes the 
disk diameter. 

Example 6.21. A cylindrical chimney is 5 ft in diameter. The wind is blow- 
ing horizontally at a velocity of 20 mi / h. What is the wind force per foot of 
height on the chimney? 
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For this case the Reynolds number, based on the cylinder diameter, is 

- _ 5 ft: (20 mi/h) - (0.075 lbm/ft*) 5280ft = h cP: s-ft 
ES. 0.018 cP mi 3600s 6.72: 10 * Ibm 

= 0.91 - 10° — 
From the curve for cylinders on Fig. 6.24 we can read Cz ~ 0.35; therefore, 

Vv? _ [5 ft’ / (ft of height)] - 0.35 - 0.075 Ibm / ft? - (20 mi / hy? 

(Pet) h ). Ibf « s” 
mi 3600s/ 32.2 Ibm: ft 

i rath slactacialilenei a 6.CH 
'” ft of height aby: Git) 

Es 

This is not a very large force. However, we see from Eq. 6.50 that the force is 

proportional to the square of the wind velocity; so for a 100 mi / h wind the force is 

25 times as great. To make matters worse, the wind force on long, thin objects can be 

oscillatory. The oscillatory motion is caused by the formation of vortices, which break 

away rhythmically. If the frequency of the shedding of these vortices is close to the nat- 

ural frequency of oscillation of the system, then the wind force can drive that natural 

frequency disastrously. The most famous case of this was the Tacoma Narrows Bridge, 

which was destroyed by such oscillations by a wind of only ~40 miles /h [21]. 

In aircraft calculations the drag coefficient of a wing usually is based on the 

wing’s horizontal surface, rather than on the area perpendicular to the flow, and the 

length in &@ taken as the chord (the length of the wing from front to rear). In addi- 

tion, aeronautical engineers define a lift coefficient, C,, with exactly the same form 

as Eq. 6.50. In that equation F stands for the upward force of the air exerted on an 

airplane’s wings, A stands for the horizontal wing surface, and Cq is replaced with C). 

Example 6.22. An airplane has wings 15 m long (tip to tip) and 1.5 m wide 

(front to rear). The lift coefficient in level flight is C; = 0.8, and the drag coef- 

ficient is Cz = 0.04. The drag and lift on parts other than the wing may be neg- 

lected. How much force must be exerted by the propeller to keep the plane 

moving 150 km/h? What is the maximum weight of the loaded airplane in this 

condition? 

The drag force is 

2 
V 

| aa oa ACap a 

(15 m- 1.5 m) - 0.04 - (1.20 kg / m*) - (150 km/h)? 

2 
1000m_ ih yx 
ce 3600s) kg-m 

= 945 N = 212 lbf (6.CI) 
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This drag force is equal and opposite to the “thrust” force that must be supplied 

by the engine and propeller to keep the plane moving at this speed. The lift 

force is given by 
2 

Fig = ACip ~ (6.CJ) 

which is the same as the drag force multiplied by EEL 

Fig, = 945 N° a = 18,900 N = 4249 lbf (6.CK) 

The lift is equal to the maximum gross, loaded weight of the aircraft. a 

The last example shows why the lift and drag coefficients are so useful to aero- 

nautical engineers. Their ratios, C;/ Cy are equal to the allowable ratio of total air- 

craft weight to thrust of the power plant. Normally both C; and the C,/ C, ratio are 

functions of aircraft speed and of the angle between the oncoming airstream and the 

wing surface [22]. This also shows why commercial aircraft fly as high as they can. 

To maintain level flight they need a lift equal to their weight and a thrust equal to 

their drag. The lift and drag are both proportional to pV. For a given weight the 

required speed goes up as the square root of the air density goes down. The drag has 

the same relationship. So the higher they go, the lower the air density, and the faster 

they can go for a given hourly fuel input. Thus, their fuel cost per hour remains con- 

stant as they go up, but their fuel cost per mile goes down. (They also deliver the cus- 

tomers to their destination sooner, which the customers like, and pay for fewer hours 

of work to pilots and flight attendants.) 

6.14 SUMMARY 

1. The steady flow of fluids in constant-cross-section conduits can be of two radically 

different kinds: laminar, in which all the motion is all in the flow direction, and tur- 

bulent, in which there is a chaotic crosswise motion perpendicular to the net flow 

direction. The same is true for unconfined flows like the oceans or the atmosphere. 

2. In laminar flow the pressure drop per unit length is proportional to the first power 

of the volumetric flow rate. The entire flow behavior can be calculated simply. 

The calculation requires the observational fact that fluid clings to solid surfaces, 

i.e., the velocity at the surface is zero. 

3. In turbulent flow the pressure drop per unit length is proportional to the flow rate to 

the 1.8 to 2.0 power. The behavior cannot be calculated without experimental data. 

4. All experimental data on the turbulent flow of Newtonian fluids in circular pipes 
can be represented on the friction factor plot. 

5. The friction factor plot can be replaced by two fairly simple equations. The first, 
for laminar flow, is simply a rearrangement of Poisueille’s equation and is 
restricted to laminar flow in a circular tube, for which it is rigorous. The second 
is simply a satisfactory fit of the experimental data. With these two equations we 
can completely replace the friction factor plot. But the plot has considerable intu- 
itive content and is still useful for hand calculations. 
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6. All data on turbulent flow through valves and fittings can be correlated by assum- 
ing that each kind of fitting contributes as much friction as a certain number of 
pipe diameters of straight pipe. That number is about the same for one kind of 
fitting, independent of pipe size, fluid properties, etc. An alternative approach 
assigns a resistance coefficient, K, to each kind of fitting. 

7. Laminar flow in a few kinds of noncircular conduits can be analyzed by the same 
technique used for circular pipes. 

8. Turbulent flow friction losses in many kinds of noncircular conduits can be esti- 

mated by substituting 4 times the hydraulic radius for the diameter in the 

Reynolds number, ¢/ D, the friction factor plot, and B.E. 

9. The economic size for a pipe is the size with the lowest sum of annual charges 

for the purchased cost of the pipe and pump and the annual power cost of running 

the pump or compressor needed to overcome friction. For turbulent flow this 

results in an economic velocity which is practically independent of everything but 

fluid density; it is about 6 ft / s for most low viscosity liquids and about 40 ft / s 

for air and other gases under normal conditions. 

10. The forces of fluids flowing over bodies are ordinarily correlated by the drag 

equation, in which the drag coefficient plays the same role as does the friction 

factor in pipe flow. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover. 

An asterisk (*) on a problem number indicates that its answer is shown in App. D. In 

all problems in this chapter, unless a statement is made to the contrary, assume that 

all pipes are schedule 40, commercial steel (see App. A.2). 

6.1. Derive the equivalents of Eqs. 6.5 and 6.9 for fluid flow in the vertical direction, taking grav- 

ity into account. Then generalize them for fluid flow at any angle, taking gravity into account. 

6.2. Air is flowing through a horizontal tube with a 1.00 in inside diameter. What is the max- 

imum average velocity at which laminar flow will be the stable flow pattern? What is the 

pressure drop per unit length at this velocity? 

6.3.*Repeat Prob. 6.2, for water. 

6.4. Show the derivations of Eqs. 6.10 and 6.11. 

6.5. Show the effect on the calculated viscosity, in the viscometer in Example 6.2, of the 

10 percent error in the measurement of 

(a) Flow rate 

(b) Fluid density 

(c) Tube diameter. 

6.6. In Example 6.2 how much does the internal energy per unit mass of the fluid increase 

as it passes through the viscometer? Assume that there is no heat transfer from the fluid 

to the wall of the viscometer. If the heat capacity of the fluid is 0.5 Btu/lbm- °F = 

2.14 kJ / kg -°C how much does the fluid’s temperature rise? 

6.7.*A circular, horizontal tube contains asphalt, with ~ = 100,000 cP (= 1000 Poise) and 

p = 70 lbm/ ft*. The tube radius is 1.00 in. Asphalt may be considered a Newtonian fluid 

for the purposes of this problem, although it is not always one. We now apply a pressure 

gradient of 1.0 (psi) / ft. What is the steady state flow rate? 
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(6.8) 

6.9. 

What is the Reynolds number in Example 6.2? What is the lowest fluid viscosity for 

which one should use this viscometer? 

The simple capillary viscometer in Example 6.2 is not the same as that actually used. In 

the practical versions, there are two marks on the glass, and the user reads the time for 

the fluid level to pass between the two marks. In Example 6.2, if the upper reservoir has 

a diameter of 10 mm, how many seconds does it take the level in the reservoir to fall 

from 0.02 to 0.01 m? (In actual_practice the marks are placed in narrow parts of a tube 

above and below the reservoir, so that reading the passage of the interface is easy. To see 

how these work look at the viscometers in any laboratory glassware catalog.) 

6.10.*If the students in Fig. 6.8(a) throw a standard 0.31 lbm baseball back and forth, if its 

6.11. 

6.12. 

6.13. 

velocity in flight is 40 mi/h, and if each one throws it an average of once every 10 s, 

what is the average force in the y direction tending to separate them? 

Show that in Fig. 6.8(b) the force in the x direction is independent of how fast the balls 

move in the y directions. 

Show that, if we define the shear stress at the pipe wall as tT = fpV? /2 and then calcu- 

late the pressure gradient for horizontal flow, we find Eq. 6.18. 

Show that Poiseuille’s equation may be rewritten as f = 16/2. 

6. 14. *A fluid is flowing in a pipe. The pressure drop is 10 psi per 1000 ft. We now double the 

volumetric flow rate, holding the diameter and fluid properties constant. What is the pres- 

sure drop if the new Reynolds number 

(a) Is 10? 

(b) Is 108? 
6.15.*As discussed in the text, there are two friction factors in common use, which means that 

(6.16. 

6.17. 

6.18. 

there are two versions of Fig. 6.10 in common use. When one encounters a friction fac- 

tor plot and wants to know on which of the definitions it is based, the easiest way is to 

look at the label on the laminar flow line. For the Fanning friction factor used in this 

book, that is labeled f = 16/2. For a chart based on the Darcy-Weisbach friction fac- 

tor, what is the label on the laminar flow line? 

ater is flowing at an average velocity of 7 ft/s in a 6-in pipe. What is the pressure 

drop per unit length? 

An oil with a kinematic viscosity of 5 cSt and SG = 0.80 is flowing in a 3-in pipe. The 

pressure drop is 30 psi per 1000 ft. What is the flow rate in gallons per minute? Show 

the solution two ways: 

(a) Using Fig. 6.12. 

(b) Using Fig. 6.10 and/or Eqs. 6.20 and 6.21. 

We want to transport 200 gal / min of fluid through a 3-in pipe. The available pressure 

drop is 28 psi per 1000 ft. The fluid properties are SG = 0.75 and w = 0.1 cP. Is a 3-in 
pipe big enough? 

6.19.*Oil is flowing at a rate of 150 gal/min, with w« = 1.5 cP, and SG = 0.87 in a 3-in pipe 

6.20. 

6.21. 

6.22. 

1000 ft long. What is the pressure drop? Calculate it two ways: 

(a) By Fig. 6.10 and/or Eqs. 6.20 and 6.21. 

(b) By Fig. 6.12. 

In Example 6.5, how much does the temperature of the gasoline rise as it flows through 
the pipe? Assume that there is no heat transfer from the gasoline and that its heat capac- 
ity is 0.6 Btu / Ibm: °F. 

(a) Set up the spreadsheet program shown in Table 6.5 and verify the values. 

(b) Using that spreadsheet, find the corresponding values for Az = —30 m. 

(a) Set up the spreadsheet program shown in Table 6.6 and verify the values. 
(b) Using that spreadsheet, find the corresponding values for @ = 2000 cfm. 
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6.23.*Two large water reservoirs are connected by 5000 ft of 8-in pipe. The level in one reser- 
voir is 200 ft above the level in the other, and water is flowing steadily through the pipe 
from one reservoir to the other. Both reservoirs are open to the atmosphere. How many 
gallons per minute are flowing? Show both the solution based on Table A.3 and that based 

on Fig. 6.10/Eq.6.21. 

6.24. In Prob. 6.23 we want to replace the existing pipe with a new one, which will transmit 

/~ —~10,000 gal / min under the same conditions. What size of pipe should we choose? 

(6.25.4Two tanks are connected by 500 ft of 3-in pipe. The tanks contain an oil with w = 100 cP 

and SG = 0.85. The level in the first tank is 20 ft above the level in the second, and the 

pressure in the second is 10 psi greater than the pressure in the first. How much oil is 

flowing through the pipe? Which way is it flowing? 

6.26. We are offered some pipes made of a new kind of plastic. To test their roughness, 

we pump water through a 3-in pipe made of this material at an average velocity of 

40 ft/s. The observed friction factor is 0.0032. Estimate the absolute roughness of 

this plastic. 

6.27. As discussed in Sec. 6.5, the friction factor plot, Fig. 6.10, relates six variables and there- 

fore can be used for finding any of the six if the other five are known. Examples 6.4, 

6.5, and 6.6 show how to find three of these quantities, given all the others. Problem 6.26 

shows how to find a fourth, given all the others. The remaining two are the density and 

viscosity of the flowing fluid. Turbulent-flow pressure drops are almost never used for 

determining fluid viscosities or densities. Discuss why this is so. 

6.28. Equation 6.21 leads easily to quick trial-and-error solutions to all the problems in Sec. 

6.5. One could also use it to eliminate a variable and thus reduce those trial-and-error 

solutions to a single equation. Show the algebra of that elimination and the resulting 

single-variable equations for Examples 6.5 and 6.6. Are those equations likely to be eas- 

ier to solve analytically or numerically? 

6.29. On a piece of log paper 2 cycles by 2 cycles, make up the equivalent of Fig. 6.12 for a 

2-in pipe. Show the following: 

(a) The zero-viscosity boundary. 

(b) The laminar-fiow region. 

(c) The turbulent-flow region. 

(d) The transition region. 

6.30. Calculate the pressure drop per unit length for the flow of 100 gal / min of air in a 3-in 

pipe by using Fig. 6.12. 

6.31.*Oil of a kinematic viscosity of 20 cSt is flowing in a 3-in pipe. According to Fig. 6.12, 

(a) What is the highest volumetric flow rate at which the flow is certain to be laminar? 

(b) What Reynolds number does this correspond to? 

(c) What is the lowest volumetric flow rate at which the flow is certain to be turbulent? 

(d) What Reynolds number does this correspond to? 

6.32. Do any of the values in App. A.3 correspond to laminar flow? 

6.33. Check the values in App. A.3 for 24-in pipe to see whether they correspond to a con- 

stant friction factor or whether the pipe size is so large that the friction factor corresponds 

to the “smooth tubes” curve in Fig. 6.10. The inside diameter of 24-in schedule 40 pipe 

is 22.624 in. 

6.34. Rework Example 6.5 by using App. A.3. Show what corrections, if any, are needed in 

the solution if it is assumed that gasoline has the same flow properties as water. In that 

example the pipe ID was 0.1 m = 3.94 in. From App. A.2 we see that 4-in schedule 

40 pipe has 4.03 in ID. Work the problem assuming that 3.94 ~ 4.03, and then estimate 

how much difference this simplification makes. 
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6.35. 

6.36. 

6.37. 

6.38. 

6.39. 

6.40. 

6.41. 

Estimate the pressure loss for 1000 ft? / min of air flowing in a 12-in diameter air- 

conditioning duct 1000 ft long. 

Estimate the required pipe diameter to transport 100 m?/h of air with a friction loss of 

1 Pa/m. 

Estimate the volumetric flow rate of air for a pressure drop of 5 Pa/m in a duct with 

diameter 0.125 m. 

Estimate the pressure drop for 1000 ft? / min of hydrogen flowing in a 6-in diameter pipe 

500 ft long in two ways: 

(a) Using Fig. 6.10, or Eq. 6.21. 

(b) Using Fig. 6.14, and suitable corrections for its much lower density than that of air. 

The common friction factor plot (Fig. 6.10) is based on the Colebrook equation [5], 

1 ehDanil 255 
= 4 o3( aa a (6.59) 

which itself is a data-fitting equation with no theoretical basis. It is difficult to use, 

because f appears on both sides, once as the argument of a logarithm. There are other 

data-fitting equations that attempt to reproduce Eq. 6.59 with a more easily used form, 

of which one of the most popular is that due to Haaland [23], 

1.11 2 , 

f= 0.25 /(-18 log| 2 (=) }) (6.60) 

another equation, [24], is 

5.74\|7 f = 0.0624 f oo( <= t =) | (6.61) 

where D;, is the hydraulic diameter, twice the hydraulic radius. 

Find the friction factor for 2 = 2.00: 10°, and e/ D = 0.0006, 

(a) From Fig. 6.10. 

(b) From the Colebrook equation (Eq. 6.59). 

(c) From the Haaland equation (Eq. 6.60). 

(d) From Eq. 6.21. 

(e) From Eq. 6.61. 

Figure 6.14 is the “standard chart” for air-conditioning applications. It is based on Fig. 

6.10 and the assumptions that the air flowing is at | atm and 68°F, i.e., the same assump- 

tion as given inside the back cover of the book. The plot is logarithmic on both axes, but 

the length of a decade on the vertical axis is greater than that on the horizontal axis. 
(a) If a given duct diameter corresponded to a fixed value of f, what should the (line? 

curve?) for that diameter look like on this plot? 

(b) Is that shape observed for the small ducts, i.e., those with D < 5 in? 

(c) Is that shape observed for large ducts, i.e., those with D > 10 in? 

(d) Why are these different? 

(e) Figure 6.14 shows a pressure gradient of almost exactly 0.2 in of water / 100 ft for 

1000 ft* / min in a 12-in duct. What value of the absolute roughness ¢ does that cor- 

respond to? 

(f) How does the value just determined in part (e) compare to the value for steel in Table 
6.2? Explain! 

Examples 6.11 and 6.12 show significantly different values for the pressure drop due to 
the valves and fittings, calculated by the equivalent length method and the K method. Is 
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that result a function of pipe diameter? To answer this question, prepare a plot of 
YAW AR oe fittings Versus pipe diameter for the same fluid as in Example 6.4 (SG = 1.00, 

#2 = 50 cP) and the same average velocity, Vave = 13.0 ft/s, covering the pipe diameter 

range of 3 in (that example) to 12 in, with the same fittings as in Examples 6.11 and 

6.12, by the methods in Examples 6.11 and 6.12. 

6.42.*Water is flowing at a rate of 1500 gal / min in a horizontal, 10-in pipe that is 50 ft long 

and contains two standard 90° elbows and a swing-type check valve. Estimate the pres- 

sure drop using both methods of accounting for the elbows and the valve. 

6.43. A piping system consists of 100 ft of 2-in pipe, a sud- 

den expansion to 3-in pipe, and then 50 ft of 3-in pipe. 

Water is flowing at 100 gal / min through the system. 

What is the pressure difference from one end of the 

pipe to the other? 

Very large 

Water 
6.44.*Two large water tanks are connected by a 10 ft 

Oe fare pie piece of 3-in pipe. The levels in the tanks are equal. 

When the pressure difference between the tanks is 30 

psi, what is the volumetric flow rate through the pipe? 

6.45. The water in Fig. 6.27 is flowing steadily. What is the 

FIGURE 6.27 flow rate? 

Tank draining by gravity, with pipe 6.46.*We are going to lay a length of 6-in steel pipe for 

and entrance friction, Prob. 6.45. a long distance and allow water to flow through it 
by gravity. If we want a flow rate of 500 gal / min, 

how much must we slope the pipe (i.e., how 

63 in many feet of drop per foot of pipe length or how 

many ft / mi)? 

6.47. A 1-gal can full of water has the dimensions shown 

9 in in Fig. 6.28, There is a horizontal piece of j-in galva- 

iif nized pipe inserted in the bottom. The end of the pipe 

is unplugged, and the water is allowed to flow out of 

the tank. 

24 in (a) How long will it take the level in the tank to fall 

from 7 in above the centerline of the pipe to | in 

above the centerline of the pipe? Make whatever 

assumptions seem plausible. 

(b) As the level falls, the flow slows down, until it 

finally converts from turbulent to laminar. How far 

will the level be above the centerline of the pipe 

FIGURE 6.28 when this transition occurs? 

Poe ich ok Dy ae el 6.48. Derive Eq. 6.28. It is suggested that you use 

the coordinates shown in Fig. 6.29. Here the 

flow is in the x direction from left to right, 

i and the slit extends a distance / in the z 

LD: _—— direction. Choose as your element for the 

ea force balance a piece symmetrical about the 
2 

eal : ; 

eS | é y axis (other choices are possible but lead 

|}~——— AS eral to more difficult mathematics). Hint: This is 

a repeat of the derivation of Eq. 6.8 in a dif- 

FIGURE 6.29 ferent geometry. Simply follow that deriva- 

Suggested dimensions for Prob. 6.48. tion, changing the geometry. 



234 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

6.49. Derive Eq. 6.29. This equation is derived in detail in Bird et al. [12, p. 54]. 

6.50. Example 6.13 shows that the calculated leakage rate is less than the average observed 

rate for typical valves in oil refineries by a factor of 3.5. In that example we assumed 

that the average thickness of the leakage path was 0.0001 in. If we held all the other val- 

ues in that example constant except this thickness, what value of the thickness corre- 

sponds to the observed leakage rate? 

6.51. In Example 6.13 we replaced Eg. 6.29 (flow in an annulus) with Eq. 6.30 (the linear sim- 

plification of Eq. 6.29). How much difference does it make in our answer? Check by 

repeating Example 6.13, using Eq. 6.29. 

6.52. (a) Show how one obtains Eq. 6.30 from Eq. 6.28. 

(b) Show the ratio of Ogg 6.30/ Oka, 6.28- 
(c) Using a spreadsheet, show the value of this ratio for Df De= VETOL 1001, 

and 1.0001. 

6.53.*The wooden frame of a window is 2 in thick; see Fig. 6.30. The bot- 

Glass 

; Frame 
2 in 

Sill 

0.001 in 
6.54 

FIGURE 6.30 

Leakage flow 

beneath a window, 

Prob. 6.53. 

tom of the window closes against the sill with a space between frame 

and sill of 0.001 in. The width of the window (distance perpendicu- 

lar to the paper in the figure) is 2 ft. When the wind is blowing toward 

the window and creating a pressure difference of 0.01 psi across the 

window, what is the volumetric flow rate of air through the space 

between frame and sill? 

. The cylindrical vessel in Fig. 6.31 is full of water at a pressure of 

1000 psig. The top is held on by a flanged joint, which has been 

ground smooth and flat, with a clearance of 10> in, as shown. The 

diameter of the vessel is 10 ft. Estimate the leakage rate through this 

joint. 

sf rin \, 6.55. Calculate the hydraulic radius for each of the fol- 

lowing shapes: 

(a) A semicircle with the top closed. 

(b) A semicircle with the top open. 

(c) A closed square. 

(d) An annulus. 

6.56.*Rework Example 6.6, assuming that a square 

duct is to be used. For equal cross-sectional 

) areas and equal wall thicknesses, what is the 

ratio of the weight per foot of a square duct to 

FIGURE 6.31 that of a circular one? Based on this, which 
Leakage flow through a flanged joint, would normally be chosen if there were no 
Prob. 6.54. space constraints? Look around public buildings 

in which such ducts are visible, and examine where circular ducts are used and where 

square or rectangular ducts are used. Do your observations agree with your answer to 
this problem? 

6.57.*In Example 6.15, what values of fand e did the designer use to estimate V = 3.97 ft/s? 

6.58. (a) In hydraulics books one regularly encounters the Chézy formula for open channel 
flow, 

sade, 

Ax 
V=C,/HR- (6.62) 

in which we have changed from the notation normally shown in those books to the 
notation in this book. What value of C makes Eq. 6.62 the same as Eq. 6.AX? 
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FIGURE 6.32 

Pressure and gravity-driven flow 

with friction, Prob. 6.59. 

FIGURE 6.33 

Pumped fluid transfer with both pressure 

and elevation change, Prob. 6.60. 

FIGURE 6.34 

Gravity draining flow with 

friction, Prob. 6.61. 

Stack 

h = 100 ft 

Furnace 

Air intake ——~ V 

FIGURE 6.35 
Flow in a furnace and chimney, Prob. 6.62. 

6.62. 

(b) The same books often show the Manning coef- 

ficients to use in the Chézy formula, given by 

HR!/° 

n 
Gu=s08 (6.63) 

in which n is a roughness parameter, whose value 

is ~0.012 for finished cement and aq is a dimen- 

sional conversion factor. Determine the value a 

that corresponds to Example 6.15. 

6.59.*In Fig. 6.32 the 3-in pipe is joined to the tank by 

a well-designed adapter, in which there is no 

entrance loss. What is the instantaneous velocity 

in the pipe? 

. In Fig. 6.33 water is being pumped through a 3-in 

pipe. The length of the pipe plus the equivalent 

length for fittings is 2300 ft. The design flow rate 

is 150 gal / min. 

(a) At this flow rate, what pressure rise across the 

pump is required? 

(b) If there are no losses in pump, motor, cou- 

pling, etc., how many horsepower must the 

pump’s motor deliver? 

6.61.*The tank in Fig. 6.34 is attached to 10 ft of 5-in 

pipe. The losses at the entrance from the reser- 

voir to the pipe are negligible. What is the veloc- 

ity at the exit of the pipe? 

The flue gas in the stack in Fig. 6.35 is at 350°F 

and has M = 28 g/mol. The stack diameter is 5 

ft, and the friction factor in the stack is 0.005. In 

passing through the furnace the air changes sig- 

nificantly in density, because it is heated by the 

combustion and then cooled in giving up heat to 

the working parts of the furnace. Thus, we can- 

not rigorously apply B.E. in the form we use in 

this problem (we could do so by integrating from 

point to point, over points so close together that 

the density change was negligible, but that would 

be very difficult in such a complex flow through 

a furnace). However, experimental data on the 

friction effects of furnaces indicate that if we treat 

them as constant-density devices with flowing flu- 

ids having the density and viscosity of the gas in 

the stack, then we can use Eq. 6.25. For this fur- 

nace, for those assumptions, K ~ 3.0. Thus, in 

applying B.E. to this furnace and stack, assume 

that the air changes at the inlet to the furnace to 

a gas with M = 28 g/mol and T = 350°F, and 

then maintains that M and T throughout the fur- 

nace and the stack. Estimate the velocity of the 

gases in the stack. 
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P = 30 psig Pees 

FIGURE 6.36 

Flow driven one way by gravity and the 

opposite way by pressure difference, Prob. 6.63. 

Vessel | 

Bypass valve, 

normally closed ~~ 

FIGURE 6.37 

A somewhat more realistic pumping situation, Prob. 

TABLE 6.A 

Values for Prob. 6.64 

Vessel 1 

eres psig 20 

Tene psig 8 

Max liquid level, above z = 0, ft 43 

Min liquid level, above z = 0, ft 21 

Total pipe 
length 60 ft | 

20 ft 6.67. 

Minimum 

water 

level 

10 ft 

FIGURE 6.38 

Siphon with friction, Prob. 6.66. 

. . Vessel 2 

6.63.*The vessels in Fig. 6.36 are connected 

by 1000 ft of 3-in pipe (neglect fit- 

ting and entrance and exit losses). In each 

vessel the diameter is so large that V is 

negligible. The fluid is an oil with v = 

100 cSt, and p = 60 lbm/ ft®?. How many 
gallons per minute are flowing? Which 

way? 

The two vessels shown in Fig. 6.37 have 

the design conditions shown in Table 6.A. 

The connecting line between the vessels 

is 3-in pipe that is 627 ft long, containing 

six elbows, four gate valves, and one 

globe valve. The fluid to be pumped has 

a specific gravity range of 0.80 to 0.85 

and a kinematic viscosity range of 2 to 

5 cSt. The flow rate is 150 to 200 gal / min. 

We are ordering the pump. What values 

will we specify of 

(a) the flow rate? 

(b) the pump head, AP / pg, in feet? For 

this problem the head form of B.E. is 

convenient. 

6.65.*If we shut off the pump in the sys- 

tem in Prob. 6.64 and open the 

bypass around it, what are the max- 

imum and minimum values of the 

volumetric flow rate? Which way 

does it go? Neglect the friction 

6.64. 

6.64. 

Vessel 2 losses in the pump bypass line. 
g1 Assume that the bypass valve is 

47 always wide open. 

127. 6.66. Figure 6.38 shows a siphon, which 
100 will be used to empty water out of 

a tank. The siphon is made of 10-in 

pipe, 60 ft long. When the water is at its minimum 

level, as shown, what is the volumetric flow rate, 

and what is the pressure at the top (point A)? The 

bend at the top of the siphon is equivalent to two 

90° long-radius elbows. 

The National Park-Service has recently decided to 

construct a pipeline to carry water across the 

Grand Canyon from the relatively water-rich North 

Rim to the arid South Rim. A cross section of the 

system is shown in Fig. 6.39. The length of 

pipeline between the springs and the river cross- 

ing is 10 mi, and between the river crossing and 

the pumping station it is 4 mi. The desired flow 

rate is 1000 gal/min. The pressure at the springs | 

and at the pumping station may be assumed 



CHAPTER 6 FLUID FRICTION IN STEADY, ONE-DIMENSIONAL FLOW 237 

North Rim atmospheric. Because all the materials 

must be brought into place on mule- 

Springs, South Rim back, which is costly, there is a consid- 
elevation 

erable incentive to make the pipe as 7000 ft 
lightweight as possible. Recommend 

Ea what material the pipe should be made 

Staertcchs of, what its inside diameter should be, 

Tonto and what its wall thickness should be. 

Ribedeiatias ee wer 6.68. Solve for the steady state flows in Fig. 
elevation 2500 ft 4000-4 6.21. As a first guess take a = 10 ft, 

which is close to, but not equal the value 

FIGURE 6.39 of a which makes the sum of the volu- 

Elevations for the freshwater pipeline across the metric flow rates into point 2 = 0. 
Grand Canyon, Prob. 6.67. 6.69. Repeat Prob. 6.68 for 

the case where (z3 — z)) 

{ Copper | = —5 ft and (z4 — z,) = 

tubes —40 ft. Hint: In this case, 

not all the flows will be in 
Cap nee 3 

the same direction as in 

Flow Prob. 6.68. 

6.70.*Figure 6.40 shows the end 

of a manifold in which 

one major pipe feeds into 

FIGURE 6.40 a number of smaller pipes 

Part of a manifold, Prob. 6.70. that branch from it. Many 
air-conditioning ducts are 

manifolds. This figure shows only the last two branches. The flow out through the branches 

depends almost entirely on the pressure in the main channel opposite them, and very little 

on the velocity in that channel. For the flow as shown, will the velocity out of tube 1 be 

greater or less than that out of tube 2; 

(a) For zero friction in the pipe flow (because it is so much bigger than the tubes)? 

(b) For substantial friction in the pipe flow (because a cylindrical rod has been inserted, 

thus making the cross-sectional area perpendicular to flow much less)? 

(c) Dr. J. Q. Cope, vice president of Chevron Research when the author started there 

in 1958, used this device to teach humility to new Ph.D.s. He would describe the 

device, without mentioning the insertable rod. Then he would goad the new Ph.D. 

into betting him which jet would squirt higher when water was introduced. Then 

he would go and get the device, inserting or removing the rod as needed before 

returning to collect on his bet. What practical lessons might a new engineer learn 

from this story [25]? 

6.71. Check the assumed friction factor in Example 6.18. For the value of relative roughness 

shown, the range of possible friction factors in turbulent flow is 0.004 to 0.01. How much 

would the economic diameter differ from Example 6.18 if f = 0.01? 

6.72. The type of calculation of economic diameter of pipes shown in Sec. 6.12 was appar- 

ently first performed by Lord Kelvin [26] in connection with the problem of selecting 

the economic diameter for long-distance electric wires. To see how he obtained his result, 

derive the formula for the economic diameter of an electric conductor (analogous to 

Eq. 6.47) using the following information: The purchased cost of the whole transmission 

line (including poles, insulators, land, construction labor, etc.) is A times the mass of 

metal in the wire, where A has dimensions of $/lbm. The annual cost of owning the 
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6.74. 

6.75. 

6.76. 

transmission line (which includes interest on the capital investment in the line, payment 

on the principal of that investment, taxes, and maintenance) is B times the purchased cost 

of the whole transmission line, where B has dimensions of 1 /y. The electrical energy 

that is lost due to resistive heating in the wire costs C, where C has dimensions of 

$ / kWh. The resistive heating is given by QO = I 2R, where R is the resistance of the wire 

and / is the current. The resistance of the wire is given by R = r Ax/[(a/4)D*], where 

r is the resistivity (with dimension ohm-ft), Ax is the length of the wire, and D is the 

wire diameter. 

Your formula for the economic diameter should be written in terms of the cur- 

rent to be carried (not in terms of the voltage), and in terms of the other variables listed 

above, plus any others that you consider necessary. Do not be concerned about numeri- 

cal units. conversions; your final equation should be like Eq. 6.47, showing Decon aS a 

function of the appropriate variables to the appropriate powers. (Kelvin’s solution is still 

correct for low-voltage transmission lines, but not for the high-voltage lines now used, 

in which the major loss is not resistive heating but corona discharge from the wire’s 

surface.) 

3. (a) Work out the equation equivalent to Eq. 6.47 for laminar flow. Start with Eq. 6.45 

and substitute f = 16/2. Simplify the resulting equation, finding 

32m - PC: (4/ a) uO? 71/5 . 
Daecon, laminar = eee (6.64) 

(b) Check to see whether the laminar part of Fig. 6.23 is made up by this equation, by 

calculating the economic velocity for 200 gpm and 2000 cSt, and comparing your 

answer to the value you read from that figure. Use the economic values that are shown 

with that figure. 

(c) The lines of constant viscosity on Fig 6.23 have slope ~ 0.2. Does this agree with 

Eq. 6.64? 

(d) Figure 6.23 indicates that the economic velocity is practically independent of fluid 

density. Does this agree with Eq. 6.64? 

It has been proposed to solve Los Angeles’ air pollution problem by pumping out the 

contaminated air mass every day. The area of the L.A. Basin is 4083 mi*. The contami- 

nated air layer is roughly 2000 ft thick. Suppose we plan to pump it out every day, a dis- 

tance of 50 mi to Palm Springs. (It is assumed that the residents of Palm Springs will 

not object, which is not a very good assumption.) 

(a) Estimate the economic velocity in the pipe. 

(b) Estimate the required pipe diameter. 

(c) Estimate the pressure drop. 

(d) Estimate the pumping power requirement. 

(e) Comment on the feasibility of this proposal. 

It has been proposed to solve the water problem in Los Angeles by importing water from 
the mouth of the Columbia River, where vast amounts flow into the sea. One way to 
do this would be with a pipeline and pumping station. Both ends of the pipe are at sea 
level, so the only pumping cost would be the cost of overcoming the friction loss. 
The pipe length would be about 1000 mi. Assuming that we want to move 10’ acre-ft a 
year (1 acre-ft = 43,560 ft*), estimate the horsepower of pumps required. State your 
assumptions. 

If in Example 6.18 the fluid were water contaminated with hydrofluoric acid, we would 
have to use a special corrosion-resistant pipe. Suppose that this pipe had a value of PP 
exactly 10 times that of carbon-steel pipe. What would D..o, be? 
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6.77. If Table 6.8 were based on Eq. 6.49 and the friction factor were held constant, then the 
product of the economic velocity and the cube root of the density would be a constant. 
How much does it vary from being a constant? What is the cause of this variation? 

6.78. Does the result in Example 6.18 agree exactly with the data in Table 6.8 and Fig. 6.23? 
If not, how much does it disagree, and what is the most probable cause of the difference? 

6.79. You are selected to design the fuel line for a Mars-landing rocket. Money is unimpor- 
tant; low mass is the main goal. Decide what the significant “economic” factors in this 

problem are, and write in general form the equivalent of Eq. 6.47 for this problem. 

6.80. A 1 « diameter spherical particle with SG = 2.0 is ejected from a gun into air at a veloc- 

ity of 10 m/s. How far does it travel before it is stopped by viscous friction? (This dis- 

tance is the Stokes’ stopping distance, which appears often in the fine particle literature.) 

Ignore the effect of gravity. 

(a) Work out the equation in general terms, by writing F = ma. The drag force is the 

only force acting on the particle, after it leaves the gun, operating in the direction 

opposite the direction of motion, and is given by Eq. 6.54 

dV 18uV 7 
F = —-3a7uDV =ma=—D°p—; —-= 

By bby tusGretacalt dt D’p 
(6.65) 

Substitute dt = dx/V, separate the variables, cancel the two V terms, and integrate 

from V= Vo atx = 0 toV = 0 at XStokes’ stopping distance to find 

VoD*p 
Stokes’ stopping — “18 p- (6.66) 

One often sees this equation with a C, for the Cunningham correction factor in the 

numerator. 

(b) Insert the numerical values and find the value of Xgiokes’ stopping distance: 

(c) On the basis of the logic of this calculation, how long does it take the particle to 

come to exactly zero velocity? How long does it take it to come to | percent of Vo? 

(d) How far does the particle fall by gravity (which we ignored in this derivation) in the 

time it takes to come to | percent of Vo? 

6.81.*Rework Example 6.19 for the particle settling in water at 68°F instead of in air. 

6.82. Rework Example 6.20 for the ball falling in glycerin instead of in water. ply. = 800 cP, 

and Ppiye = 78.5 Ibm / ft’. 
6.83.*A spherical balloon is 10 ft in diameter and has a buoyant force 0.1 Ibf greater than its 

weight. What is its terminal velocity rising through air? 

6.84. A standard baseball has a diameter of 2.9 in and a mass of 0.31 Ibm. Good fast-ball 

pitchers can throw one at about 100 mi/h. 

(a) Neglecting the effect of the stitching on the ball and the spin of the ball, estimate 

the drag force of the air on the ball. 

(b) The distance from the pitcher’s mound to home plate is 60 ft. If the ball left the 

pitcher’s hand at 100 mi/h, how fast will it be going when it reaches home plate, 

subject to the simplifications in part (a)? 

6.85. Probably the most-studied kick in soccer history was David Beckham’s free-kick goal in 

the England-Greece World Cup Qualifiers in 2001, [27]. This kick even made a movie 

title (“Bend it like Beckham,” 2002). 

The kick left his foot at 36 m/s, 27 m from the goal. It was high enough to pass 

over the screen of defenders, and spinning enough on a vertical axis to curve toward the 

comer of the goal. It appeared to be aimed above the goal, but suddenly slowed down 

¢ 
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6.86. 

dramatically in flight, and fell into the upper corner of the goal. Explain in terms of Fig. 

6.24 how this was possible. A standard soccer ball weighs ~425 g, and has a diameter 

of ~22.3 cm. 

You have certainly observed that you can walk much faster in air than you can when 

you are up to your neck in a swimming pool. Why? Is that mostly because the water is 

more viscous than air? Or because the water is more dense than air? Or some other 

answer? : 

6.87.*A 120-lbm parachutist jumps from a plane and falls in free fall for a while before open- 

6.88. 

6.89. 

6.90. 

6.91. 

6.92. 

6.93. 

6.94, 

ing her chute. 

(a) If she falls head first, then her projected area perpendicular to the direction of fall is 

~1 ft? and C, ~ 0.7. What is her terminal velocity? How many seconds must she fall 

to reach 99 percent of this terminal velocity, assuming that the drag coefficient is 

independent of velocity? How far does she fall in this number of seconds? 

(b) If instead of falling head first, she spreads out her arms and legs and lies horizon- 

tally, then her projected area will be ~6 ft” and C, ~ 1.5. Repeat part (a) for this 

condition. 

We want to design a parachute. The requirement is that at terminal velocity the rider will 

have a velocity equal to the maximum velocity the rider would reach jumping to the 

ground from a 10-ft-high roof. The rider weighs 150 Ibf. The parachute will be circular 

and its drag coefficient Cz; = 1.5. What diameter must the parachute have? 

Occasionally, car companies advertise that their sports-model automobiles have very low 

values of C,, typically about 0.3 for teardrop-shaped cars. That drag coefficient is based 

on the frontal area. If a car has that Cz and a width of 6 ft and a height of 5 ft and is 

going 70 mi/h, 

(a) What is the air resistance of the car? 

(b) How much power must be expended to overcome this air resistance? 

In Examples 6.19 and 6.20, we assumed Stokes’ law applies, calculated V, and then 

checked %,, to see whether the assumption of Stokes’ law was a good one. If our 

assumption was not a good one, then the V calculated in the first step was a wrong 

velocity, and the calculated 2, was wrong, too. Is there any chance that this proce- 

dure can lead to a combination of V and &, that indicates that Stokes’ law should be 

obeyed when actually the %, based on the correct solution is outside the range of 

Stokes’ law? 

Check the results of Examples 6.19 and 6.20 on Fig. 6.26. 

A spherical raindrop with a diameter of 0.001 in is falling at its terminal velocity in still 

air. How fast is it falling? 

In James Bond movies the hero is often swimming and has to dive deep into the water 
to escape the bullets from the enemy helicopter flying above him. How deep should he 
dive? Assume the bullet is a sphere of diameter 0.5 in and mass 0.027 Ibm. It hits the 
surface of the water vertically at a velocity of 1000 ft/s and will not inflict serious injury 
if it is slowed down to a velocity of 100 ft/s or less. For the purposes of this problem 
only, assume that the drag coefficient is constant, independent of velocity, and equal 
to 0.1. 

A bullet was fired straight up at 2700 ft/s. The bullet had a mass of 150 grains (the stan- 
dard mass unit in U.S. gun lore, 1 Ibm = 7000 grains), a more-or-less cylindrical shape 
with a sharp point, and a diameter of 0.30 in. 

(a) If there were zero air resistance, how high would it go? How long would it take to 
reach that altitude? How long would it take it to come back to ground? What would 
its velocity be when it came back to ground? 
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(b) It actually went up 9000 ft in 18 s and returned to earth in 31 more seconds for total 
time of 49 s and arrived with a velocity of 300 ft/s [28]. Based on these values, 
estimate the drag coefficient going up, and the drag coefficient coming down. Assume 
in both cases that the bullet retained its vertical orientation due to its axial rotation 
(i.e., did not tumble end-over-end) and that the drag coefficient was a constant (only 
a fair assumption). 

6.95. Figure 6.26 (and the calculations on which it is based) are widely used in chemical engi- 
neering to describe separations processes based on gravity. Large particles can be sepa- 
rated into distinct sizes by screens, but smaller particles cannot. Instead they are sepa- 

rated into size fractions or different density fractions by processes that take advantage of 

their different settling velocities in air or water. Many mineral separations function by 

making a very uniform particle size sample with screens, and then separating by specific 

gravity in differential settlers, mostly in water. In these devices the settling velocity is 

less than that shown in Fig. 6.26, because that figure (and the examples in the chapter) 

assume that each particle is far from any other particle. In these devices the particles are 

close to one another. 

(a) Sketch the flow around a particle which is settling in a closed container, by itself, 

and then in a mud or slurry in which there are many other nearby particles. Indicate 

why one would expect the other particles (and the flow of fluid which they induce) 

to cause the particle to settle more slowly. 

(b) This slowing is called hindered settling. Its effect can be estimated [29] by 

a n 

Vegirninaly hindered a Viera, ‘eokatealy! #: c) (6.67) 

in which c is the volume fraction of solids and n = 4.65 in the Stokes’ law region, 

with value decreasing to 2.33 for #, > 1000. Using this value, estimate the settling 

velocity of a simple spherical particle of SG = 3 and D = 20 yp in water all by itself, 

and in a mud that has c = 0.4. 
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CHAPTER 

7 
THE 

MOMENTUM 
BALANCE 

ewton’s second law of motion, often called Newton’s equation of motion, is com- 

monly written 

F=ma | Cit) 

It is easily applied in this form to the motion of rigid bodies like the falling bodies of 

elementary physics. It also can be easily applied in this form to the motion of fluids 

that are moving in rigid-body motion, as discussed in Chap. 2. However, for fluids that 

are moving in more complicated motions, e.g., in pipes or around airplanes, it is dif- 

ficult to use Eq. 7.1 in the form shown. Therefore, in this chapter we will rewrite the 

equation in the form of a momentum balance. The momentum balances given in this 

chapter are rearrangements of Eq. 7.1, and they, too, are often referred to in the engi- 

neering literature as equations of motion. 

The momentum balance form will prove very convenient for solving fluid-flow 

problems. In particular, it will allow us to find out something about complicated flows 

through a system without having to know in detail what goes on inside the system. 

In this way the momentum balance is similar to the mass and energy balances. For 

example, by using the mass and energy balances we can find out some things about 

a turbine or compressor from the inlet and outlet streams only, without knowing in 

detail what goes on inside. We also will frequently apply the momentum balance 

“from the outside.” , 

Remember that all of this chapter is simply the manipulation and application of 

Eq. 7.1. In this chapter the applications are one-dimensional; in Part IV we apply the 

same ideas to two- and three-dimensional flows. 

243 
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7.1 MOMENTUM 

Momentum, like energy, is an abstract quantity. Unlike energy, it is defined in terms 

of simpler quantities, mass and velocity. The definition of momentum is given in terms 

of the momentum of a body: 

Sones ue tie of nel ese a) = 
. = (6 = mV (7.2) 

of a body the body the body 

It makes no sense to speak of momentum as separate from bodies because, as we 

see from this equation, if there is no mass, there is no momentum. Only bodies—of 

solid, liquid, or gas—have mass, so momentum can exist only in connection with 

some body.* 

Furthermore, momentum is a vector. We have applied the balance equations to 

mass and-energy, which are scalar, here we will apply it to a vector and get similar 

results. Most often in dealing algebraically with vectors, one uses the scalar compo- 

nents of the vector rather than the vector itself. For example, Eq. 7.1 may be written 

in vector form 

F = ma =e CES 

(boldface indicates a vector). However, any vector can be resolved into the vector 

sum of three scalar components multiplied by unit vectors, in three mutually perpen- 

dicular directions.** For example, 

F=F,it+ F,j+ Fk (7.4) 

where F’,, F, and F’, are the scalar components of the vector F in the x, y, and z direc- 

tions, and i, j, and k are unit vectors in the x, y, and z directions, respectively. Simi- 

larly, we can resolve the acceleration vector a and rewrite Eq. 7.3 in the following 

forms: 

Fa PR eres in (Gat oP ak) (7.5) 

(F,. — ma,)i + (Fy, — may)j + (F, — ma,)k = 0 (7.6) 

But this equation is the equation of a new vector, the (F — ma) vector, which is seen 

to be zero. For a vector to be zero each one of its scalar components must be zero, 

so this equation is exactly equivalent to 

F,. — ma, = 0; Py Rae Us F,— ma, = 0 (Jos. 

*Neutrinos and light quanta (photons) apparently possess momentum but not rest mass and thus might be 

considered exceptions to this statement. However, they are observable only when moving at high veloci- 

ties, at which time they have considerable energy and, hence, relativistic mass, so this statement is correct 

even for them. 

**As far as we know, we live in a three-dimensional universe, so we speak of three mutually perpendicu- 

lar directions. If we lived in an n-dimensional universe there would be n mutually perpendicular directions. 

In some problems it is convenient to consider n-dimensional “spaces,” in which a vector is resolved into 
n “perpendicular” components. 
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This shows us that we may consider any vector equation as a shorthand way of writ- 
ing three scalar equations. Vector calculus is a powerful tool for deriving equations 
describing multidimensional problems. In electromagnetic problems and problems 

involving moving coordinate axes (e.g., gyroscopes) it is easiest to work directly with 

the vector quantities. However, for solving practical fluid-mechanics problems it is 

almost always more convenient to use the three scalar (component) equations, which 

are the exact equivalent of the vector equation. In this chapter we will show the 

momentum balance both as a vector equation and as its more useful scalar equiva- 

lents. We will show the application of the vector calculus approach to fluid mechan- 

ics problems in Part IV. 

One distinct complication with the momentum balance as compared with the 

mass and energy balances concerns the algebraic signs of the momentum terms. In 

the energy and mass balances we have little trouble with signs, because we seldom 

consider negative energies and never consider negative masses.’ On the other hand, 

if we wish to represent a velocity in the minus x direction, we write it as 

V = Vii + V,j + Vik (7.A) 
where V- and V, are zero, and V, is a negative number. Therefore, in our scalar equa- 

tions we will have to be more careful of algebraic signs than we were with the mass 

and energy balances. 

7.2 THE MOMENTUM BALANCE 

In Chap. 3 we saw that the general balance equation (Eq. 3.2) can be applied to 

any extensive property—any property that is proportional to the amount of matter 

present. Since momentum is proportional to the amount of matter present, it is an 

extensive property and must obey a balance equation. Here, as in all other balance 

equations, we must be careful to choose and define our system. 

Figure 7.1 shows the system used to state the momentum balance; it consists of 

some tank or vessel with flow of matter in or out and system boundaries as shown. - 

The momentum contained within the system boundaries is 

nae inside ) 

system boundaries / |: image’ Varn (7.8) 
in system 

We simplify this by assuming that all the mass inside the system has the same veloc- 

ity, so that this integral simplifies to (mV),y.. The momentum-accumulation term 

becomes 

Momentum accumulation = d(mV).ystem (7.9) 

‘Although in an absolute sense energies can never be negative, energies, relative to an arbitrary datum can 

be negative. In one-component systems, such as steam power plants or refrigeration systems, the datum 

usually is so chosen that none of the energy terms is negative. However, the common datum for combus- 

tion work and chemical-reaction problems results in negative energy terms. 
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Flow in 

Flow out 

Foundations 

FIGURE 7.1 
System used for stating the momentum balance. 

For one flow in and one flow out, as in the figure, the momentum flow in minus momen- 

tum flow out is 

Momentum flow in — momentum flow out = V;, dm, — Vou dMour (7-10) 

If there is more than one flow in or out, there will be summation terms for momen- 

tum flows in and out, just as there are summation terms for mass and energy flows 

into and out of a system in the mass and energy balances. 

In Sec. 3.4 we discussed velocity distributions in flows in pipes. There we 

showed that simplifying the problems by replacing actual flows, which have a veloc- 

ity gradient from centerline to edge, with flows all at one velocity, V = Vays, 

changed the calculated kinetic energy in the flow by about 6 percent for most tur- 

bulent flows, which we considered negligible. Table 3.1 shows that a similar sim- 

plification changes the calculated momentum in such a flow by about 1 percent, 

which we will also consider negligible. Thus, for the rest of this chapter we will 

replace the real flow in pipes, channels, and jets, which has some nonuniform 

velocity distribution, with a flow with a uniform velocity distribution, V = Vay¢. If 

there is any question whether this is permissible, please refer to Table 3.1 and the 

problems associated with it. 

Now, to account for the creation or destruction of momentum, we invoke 

Eq. 7.1, which can be rewritten 

F a cl fell I tf a ff ae i“ rF (eld) 

The possible changes of mass of the system are accounted for by the flow-in or flow- 

out terms, and the creation or destruction terms must apply equally well to constant- 

mass and variable-mass systems. For a constant-mass system, we can take the m inside 
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the differential sign in the last equation and rearrange, to show that 

d(mV),,, = F dt (Re) 

so that the momentum creation or destruction term is F dt.* 
If more than one force is acting, the F in Eq. 7.12 must be replaced with a sum 

of forces. Usually there are several forces acting in fluid-flow problems, so we write 
the momentum balance with a > F. The forces acting on the system shown in Fig. 
7.1 are the external pressure on all parts of its exterior and the force of gravity. Other 
forces that we might consider are electrostatic or magnetic forces. If we had chosen 
our system such that the boundary passed through the foundations in Fig. 7.1, then 

there would be a compressive force in the structural members of the foundation, which 
would have to be taken into account. 

Writing all the terms together, we find the vector form of the momentum balance: 

d(mV)sys = Vin dmin — Vour dMou + >) F dt (7.13) 

Here we have not included a destruction term, because the > F in the equation is the 

vector sum of all the forces acting on the system. If this sum is in the opposite direc- 

tion of the velocities, then the = F dt term is a momentum destruction term; it will 

enter with a minus sign. Most often we divide Eq. 7.13 by dt to find the rate form of 

the momentum balance: 

d(mV)sy5 
HT Vin Min — Vour Mout + SF (7.14) 

This is not a derivation of the momentum balance, but simply a restatement of 

Newton’s second law in a convenient form. Furthermore, Newton’s laws, like the 

laws of thermodynamics and the law of conservation of mass, are underivable; they 

cannot be demonstrated from any prior principle but rest solely on their ability to 

predict correctly the outcome of any experiment ever run to test them. 

Equations 7.13 and 7.14 are balance equations entirely analogous to the mass and 

energy balances we discussed in Chaps. 3 and 4. They have the same basic restriction 

of those balances, namely, that they may be applied only to a carefully defined system. 

*Equation 7.12 implies that momentum is creatable, which can be misleading. If a person standing on the 

earth throws a ball, the momentum of the ball is increased in one direction and the momentum of the earth 

in the opposite direction by an equal amount. Thus, the momentum of the earth-ball system is unchanged. 

Because the mass of the earth is so much larger than that of the ball, we do not perceive this change in 

the earth’s velocity (Prob. 7.1). However, Eq. 7.12 is correct, because creating momentum in one system 

results in creating equal and opposite momentum in some other system (usually the earth); so the net change 

of momentum of the univegse is zero. 

Modern physicists prefer Eq. 7.12 to Eq. 7.1 as the basic statement of Newton’s law of motion. The 

eason is that, as the velocity of a body approaches the speed of light, the force exerted on it results mostly 

n an increase in mass rather than an increase in velocity. Thus, Eq. 7.1 is limited to constant-mass sys- 

ems and excludes any system that is being accelerated to a speed near that of light, whereas Eq. 7.12 

ipplies not only to constant-mass systems but also to bodies being accelerated to speeds near that of light, 

such as the particles in linear accelerators. 
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With the mass balance we can choose any system in which we can account for all 

flows of matter across the boundaries. With the energy balance we must choose a sys- 

tem in which we can account not only for any flows of matter across the boundaries 

but also for heat flows across the boundaries and work due to electric current, chang- 

ing magnetic fields, moving boundaries, and rotating and reciprocating shafts. In 

applying the momentum balance we must choose a system in which it is possible to 

account for all flows of matter across the boundaries and also for all external forces 

acting on the system. In most fluid-flow problems this means that it must be possible 

to calculate the pressure on every part of the system boundary. Notice, however, that 

there is no term in Eq. 7.13 or 7.14 for heat flows, rotating shafts, or electric current 

flows, so we may choose systems for the momentum balance without necessarily 

being able to calculate those quantities over the boundaries of the system (we must 

account for electrostatic or magnetic fields, if they are significant). As we do with 

mass and energy balances, we may consider closed systems, in which the m terms are 

zero, or steady-flow systems, in which the accumulation is zero. Skill in applying the 

momentum balance is largely a matter of skill in choosing a system in which one can 

conveniently calculate all the terms in the balance. 

Equations 7.13 and 7.14 are vector equations; each of them can be represented 

by three scalar equations, showing the components of the vectors in the x, y, and z 

directions or the r, @, and z directions or in spherical coordinates. The x-component 

scalar equations equivalent to them are 

d(MV,)sys = Va. Oty. — Motes dMou + aS F,. dt CP15) 

d(mV,) sys 
SI oe ti ae Vie Min ~ Lae Moy + SS) er (7.16) 

The corresponding y and z equations can be found from these simply by replacing all 

the x subscripts with y or z subscripts. The r, 6, and z component equations for cylin- 

drical coordinates are shown in App. C. 

To illustrate the application of the momentum balance, we consider first two 
very simple examples not involving fluids. 

Example 7.1. A baseball is thrown in a horizontal direction. What terms of 

the momentum balance apply? 

Taking the ball as our system and using the x component of the momen- 
tum balance, we see that there is no flow of matter in or out; therefore, 

dV, 
d(MV,)eys = (m dV x)sys = Fy at; F.=m Bre = ma, (7.B) , : 

This is a simple restatement of F = ma for a constant-mass system. i] 

Example 7.2. A duck has a mass of 3 Ibm and is flying due west at 15 ft /s. 
The duck is struck by a bullet with a mass of 0.05 Ibm, which is moving due 
east at 1000 ft / s. The bullet comes to rest in the duck’s gizzard. What is the 
final velocity of the duck-bullet system? 
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Here the problem is one-dimensional, so we work with the x-directed 
scalar-component equation, Eq. 7.15, and choose east as the positive x direc- 
tion. First we work the problem by taking as our system the combined bullet 

and duck. No matter is flowing in or out of this system, nor does any external 

force act on it (we ignore the wind force, if a wind is blowing); so Eq. 7.15 

becomes 

d(mV,) sy; = 0 Gi€) 

(mV, sys, fini os (mV,)auck, init a (mV,)butiet, init (7.D) 

When we solve for V, we find 
sys, fin? 

(mV, )auck, init + (MV~)ouniet, init 

Mauck-bullet, fin 

_ [3 Ibm: (—15 ft/s)] + (0.05 Ibm - 1000 ft /s) 

3.05 lbm 

V == 
Xsys, fin 

ft 
= +1.6— = +0.73 = (7.E) 

Now we do the problem over, taking the duck as our system. In this case there 

is mass flow into the system, so we have 

UNV os a y, dMin CEP) 

Integrating, we find 

Cae fin» | Cae init — Meee Min (7.G) 

When we solve for V. we find 
Xsys, fin? 

= si Min iP (mV,.)sys, init 

Vy “sys. final 
(7.H) 

Meyys, fin 

This is exactly the same as the result we found by taking the combined system. 

a 

This example shows the great advantage of the momentum balance; the details 

of the collision are very complicated when we wish to know the exact distance-time- 

shape history of the bullet in traversing the various feathers, bones, muscles, and inter- 

nal organs of the duck, but from the momentum balance alone we can write down the 

final velocity of the bullet-duck system without knowing those details. It also shows 

that signs are important in the momentum balance. For the system chosen, the duck’s 

initial velocity was —15 ft/s. If we had omitted that minus sign we would have cal- 

culated a final velocity of 31 ft/s, which would have been the final velocity if the 

bullet had been moving in the same direction as the duck (and overtaken it). That is 

the correct answer to a different problem. The signs in the momentum balance seem 

to be a permanent problem for students; pay attention to them! 

This example also illustrates that some problems can be solved by the momen- 

tum balance but not by the energy balance. If we write the energy balance for Exam- 

ple 7.2, taking the combined duck-bullet as our system and neglecting the small 
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change in volume of the system as the bullet enters the duck, we find it reduces to 

2 2 Vy? 

fm( ae r)| = fm( “ip r) ai m(u fe r) (7.1) 
2 sys, fin 2 duck, init 2 bullet, init 

Here we know the mass of the system and the initial kinetic and internal energies of 

its two parts, but these alone do not allow us to solve Eq. 7.1 for either the final internal 

energy or the final kinetic energy. However, from the momentum balance we were able 

to find the final velocity, and we can then use it in Eq. 7.I to find the final internal 

energy. In this chapter we will see several other examples in which the momentum bal- 

ance must be applied before the energy balance can be used (see Prob. 7.3). 

7.3. SOME STEADY-FLOW APPLICATIONS 
OF THE MOMENTUM BALANCE 

If we choose as our system some pipe, duct, channel, or jet with steady flow through 

it in one direction, e.g., the x direction, then Eq. 7.16 becomes 

0 = m(V;,. — Vx.) + DF, [steady flow] rere 

The application of this steady-flow one-dimensional momentum balance will be illus- 

trated by several examples. 

7.3.1 Jet-Surface Interactions 

Many applications of Eq. 7.17 involve jets. A jet is a stream of fluid that is not con- 

fined within a pipe, duct, or channel; examples are the stream of water issuing from 

a garden hose and the exhaust gas stream from a jet engine. If any jet is flowing at 

a subsonic velocity, its pressure will be the same as the pressure of the surrounding 

fluid. If a jet enters or leaves a system or device at subsonic speed, it will enter and 

leave at the pressure of the surrounding fluid, although its pressure may be different 

inside the device. Sonic and supersonic 

jets are discussed in Chap. 8. 

Example 7.3. The police are using 

; fire hoses to disperse an unruly 
Garbage can lid | crowd. The fire hoses deliver 

x 0.01 m°/s of water at a velocity of 

30 m/s. A member of the crowd 

has picked up a garbage can lid 

and is using it as a shield to deflect 

System boundary the flow. She is holding it vertically, 
on so the jet splits into a series of 

jets going off in the y and z direc- 

tions, with no x component of the 
FIGURE 7.2 velocity; see Fig. 7.2. What force 

Interaction of a jet with a surface perpendicular must she exert to hold the garbage 
to it. can lid? 

= 

£ a 

= ae — — 

4 

\ 
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By applying Eq. 7.17 in the x direction and taking the lid and the adja- 
cent fluid as our system, as sketched in Fig. 7.2, we find 

3 s3 
F, = pol. o980- i302 Ls 0| pasa Be 900 55N 

S m S kg-m 

= —67.3 Ibf (Ps) 

| 

Here the pressure around the external boundary of the system is all atmospheric, 

so this force is simply the force exerted by the arms of the woman holding the lid. It is 

negative, because she is exerting this force in a direction opposite to the x axis. Here we 

could also have chosen as our system the fluid alone. Then to solve for the force we 

would have had to calculate the pressure exerted on it by the garbage can lid at every 

point of the system boundary. To do this we would have needed a detailed description 

of the flow. From such a detailed description, if it were available, we could calculate 

f= fe PdA (7.K) 

for the lid, finding the same answer. Thus, by a proper choice of system we can find 

the desired force without a detailed description of the flow; we can apply the momen- 

tum balance “from the outside.” 

Example 7.4. The member of the crowd in Ex. 7.3 now turns the lid around 

so that she can hold it by the handle. However, because of the shape of the lid 

the flow goes off as shown in Fig. 7.3, with an average x component of the 

velocity of —15 m/s. What force must she exert? 

Applying Eq. 7.17 exactly as before, we find 

a k N-s* F, = —0.01 = - 998.2 —= [30% -( 15 =| 
S m S 

—449.3 N = —101 lbf C71) 

See Prob. 7.7! 

| 7.3.2 Forces in Pipes 

In the previous examples, the jets were 

open to the atmosphere, so their gauge 

pressure was always zero. Thus, we had 

no difficulty with deciding on the sign of 

pressure forces. The next two examples 

- involves pressure forces inside pipes; 

they require us to consider the sign of 

System the pressure forces. The easiest way to 

poredn decide on the proper sign of a pressure 

FIGURE 73 force is to take the system boundary per- 

A curved surface turns the jet back toward its source. | pendicular to the axis in which we are 
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System | System 2 : 

| 

| 

This pressure force This pressure force 
= PA acts in the = PA acts in the 
positive x direction negative x direction 
on system 2. on system 1. 

FIGURE 7.4 

At the boundary between two systems, the pressure force acts inward on both systems. 

applying the momentum balance, e.g., perpendicular to the x-direction for an x-directed 

momentum balance. If we do that, we will see that the pressure force acts inward on 

our system and simultaneously outward on the surroundings. The direction of the pres- 

sure force in a flowing fluid is independent of the direction of the flow. This is illus- 

trated in Fig. 7.4. 

If two systems adjoin each other, then an equal and opposite pressure force acts 

inward on each of them, as shown in Fig. 7.4. If you squeeze a coil spring between 

your thumb and forefinger, it exerts equal forces on thumb and forefinger, acting in 

opposite directions. It is the same with pressure forces on adjoining systems (or two 

systems we create by drawing a system boundary across a flow). 

Example 7.5. A nozzle is attached to a fire hose by a bolted flange; see Fig. 

7.5. What is the force tending to tear apart that flange when the valve in the 

nozzle is closed? 

y 

System boundary i = 

Valve, closed 
Pressure, 100 psig 

1 

Cross-sectional area 10 in2 7 Bolted flange 

FIGURE 7.5 

A hose nozzle, with the valve closed. 
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M We take as our system the mass 

Frotts of fluid that is enclosed in the nozzle 
nie oe | =: from the plane of the flange to the 

valve. Applying Eq. 7.17, we see that 
Fhuia m is zero, so the summation of the x 

——+ +~—_ 
atm components of the forces on this body 

of fluid must be zero. In this case the 

Footts summation of forces is the summation 

of the pressure forces in the x direc- 

tion. In the plane of the flange the fluid 

outside the system exerts a pressure 

force on the system equal to PA. This 

is all in the x direction, because this 

surface is normal to the x axis. The x component of the pressure force exerted by 

the nozzle must be equal and opposite to this pressure force. The magnitude of 

these forces is 

FIGURE 7.6 

Forces acting on the nozzle in Fig. 7.5. 

F, = PA = (P, + Patm)A = (100 Ibf/in?- 10 in?) + Patm A 
1000 Ibf + Patm A (7.M) I| 

where P, is the gauge pressure and P,,,, is the atmospheric pressure. 

Now we choose as a second system the nozzle itself. From Eq. 7.17 we 

see that for it, too, the sum of the x components of the forces must be zero. The 

forces acting on it are sketched in Fig. 7.6. We have previously calculated the 

force that it exerts on the fluid; by Newton’s third law we know that the fluid 

exerts an equal and opposite force on it, which is given as Fryiq in the figure. 

The bolts also exert a force, as shown, and the atmosphere exerts a pressure on 

all those parts not exposed to the fluid. The atmospheric pressure force is not 

all in the x direction but, as we showed in Chap. 2, we could compute the x 

component of the atmospheric pressure force, which would be —PA,, where A, 

is the x projection of the net area exposed to the atmosphere. (The force is neg- 

ative, because it acts opposite to the x direction.) Therefore, summing the forces 

shown in Fig. 7.6, setting the sum equal to zero, and solving for Fyons, we find 

O75 Shims = Fig = i ahs = —(1000 Ibf + Pam A) ak (= Pie) 

— 1000 Ibf = —4.448 kN (7.N) 

The bolt force shown is negative because it acts on the nozzle in the negative 

x direction. & 

We see that in this problem the atmospheric pressure terms canceled. Because 

this is a common occurrence, engineers ordinarily work such problems in gauge pres- 

sures and thereby only need to show pressure forces on those parts of the boundary 

of the system where the pressure is different from atmospheric. If we had done that 

here, we would have found exactly the same answer. 

We could have solved this problem more easily by not using the momentum 

balance, but it illustrates the method, which will be useful in the next example. 
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Example 7.6. The valve on the end of the fire hose in Example 7.5 is now 

opened. The area of the outlet nozzle is | in’. The pressure at the flanged joint 

is still 100 psig. Now what is the force tending to tear apart the flange? 

We estimate the outlet velocity from B.E., ignoring friction: 

: | Beads 2) tng 

p(l — (A2/Ai)’) 
| 2(100 Ibf / in) 32.2 Ibm: ft 144 in? ]!/? 

| (62.3 Ibm/ ft?) (1 — 0.17) Ibf- s? ft? 
ft = 122.6— = 37.4 (7.0) 

And by material balance we know that the inlet velocity is ib of this value. 

Again, we choose as our system the fluid enclosed in the nozzle. From 

Eq. 7.17 we have 

a m(V,., a — a3 bale (7.2) 

From the mass balance for steady flow we have 

fou © fon 
iii pasa Vise = 62.3 WEL ; 1 Ines 122.6 ae Oo 

ft S 144 ine 

Ibm kg 
= 53.1 meee 24.1 a (7.Q) 

So the net force on the fluid in the x direction is 

: Ib 12 3. fh 192 6k Ibf - s* 
> F, = —m(V,, = Ve ) eee .( r? ) : "Ae 

uu out s Ss Ss 32.2 lbm - ft 

= 182 lbf = 815 N (7.R) 

This is the sum of the forces on the fluid, as sketched in Fig. 7.7. 

As discussed in Chap. 5, the fluid leaving such a nozzle will be at the 

same pressure as the surrounding atmosphere if the flow is subsonic, which it 

is here. Therefore, if we use gauge pressure, then the pressure force on the sys- 

tem as the stream leaves the nozzle is zero, and the 182 Ibf given is the alge- 

braic sum of the pressure 

force exerted on the sys- 
tem at its left boundary 

and the x component of the | 
x force exerted by the noz- 

Sa ay 1B. nozzle zle. Thus, 

oe =—— PA=0 182 lbf = PA — Pea 

= 1000 lbf 
(78) 

and the force exerted by 
FIGURE 7.7 the nozzle on the fluid is 
Forces acting on the fluid in the nozzle. —818 lbf. By comparing 
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this result with the one in 

Example 7.6, we can readily 

deduce that the force on the 

nozzle bolts in this case is 

—818 lbf. a 

Why is the force acting on the 

bolts less in this case? The pressure 

force acting on the system at its left 

boundary is the same as in the no- 

Element of internal area dA flow case (Example 7.5). However, 

‘when there is this flow, some of that 
FIGURE 7.8 ; : 

force is being used to accelerate the 
An alternative way of computing force on nozzle with , ‘ E 5 
fluid flowing. fluid and hence is not being resisted 

by the nozzle bolts. 

This example also illustrates how the momentum balance helps us solve problems 

from the outside without looking inside. We could also have found the force on the 

nozzle by determining the pressure and shear stress at every point on the internal sur- 

face of the nozzle; see Fig. 7.8. The x components of these pressure forces and shear 

forces are equal to the x component of the force on the nozzle: 

Xnozzle 
= fe sin @ + 7 cos 6) dA (7.18) 

Determining the local values of P and 7 for all the internal surface of even a rela- 

tively simple device like this nozzle is a formidable task. For a complicated shape, it 

is beyond our current ability. Nevertheless, we computed the overall force (which we 

were seeking) by the momentum balance fairly easily. 

Example 7.7. The pipe bend in Fig. 7.9 is attached to the rest of the piping 

system by two flexible hoses, which transmit no forces. Water enters in the 

+x direction and leaves in the —y direction. The flow rate is 500 kg/s, 

and the cross-sectional area of the 

if: N pipe is constant = 0.1 m*. The pres- 

Bivtatarc lect | sure throughout the pipe is 200 kPa 

- gauge. Calculate F, and F,, the x and 
piel cates y components of the force in the pipe 

support. 

Applying Eq. 7.17 in the x 

direction to the system shown in Fig 
) 

Gy’ ~—_ System 7.9 and using gauge pressure, we find 
boundary —F,= m(V,,, = Vo) + P,Aj 

(7.T) 

and for the y direction 

= Fy = m(Vy,, = Vv») He P2A2 FIGURE 7.9 
(7.U) Forces on a pipe bend. 
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The velocity is constant, 

fo Oe m/p _ (500 uo Ree kg / m°) Ree ees 

A A 0.1m s 

so that the x component of the support force is 

_r, = 500*2(5.01 — 0) - NS + 200 KPa 0.1 m?- ; 
S Nic oS ko mn Pa-m 

= (2505 + 20,000) N = 22,505 N = 5059 lbf (7.W) 

whereas the y component of the support force is 

= Feiss 500 “= [0 = 4 (5:01))—- = + 200 kPa: 0.1 m*- 
S S kg om Pa: m7? 

= (2505 + 20,000) N = 22,505 N = 5059 Ibf (7.X) 

We see that the support force components are equal and point in the —x and —y 

directions, as sketched on the figure. In this example, and most piping-force prob- 

lems, the pressure terms are larger than the fluid-acceleration terms. A few moments 

spent examining the signs of all the terms in this example is time well spent. Piping 

designers must support piping properly to deal with these forces, as well as those of 

thermal expansion. Failure to do so has led to serious process plant accidents, includ- 

ing the 1974 Flixboro disaster [1]. 

7.3.3. Rockets and 

Jets 

\ Rockets are easy to analyze 

y by means of the steady-flow 

one-dimensional momen- 

tum balance. Figure 7.10 
X 

\ 
| 
| 
| 
| 
| 
| 

: 
shows a cutaway view of a 

| 
! 
| 
| 
| 
| 

| 
| 
| 

liquid-fuel rocket being 

fired while rigidly attached 

— ee to a test stand. What goes on 

boundary Inside the rocket is fairly 

| complicated. We could, in 

Pumps principle, determine the 

force the rocket exerts on 

the test stand by choosing as 

| 
| 
| 

Oxidizer 

tank 

—~— Combustion 

our system the solid parts of 

the rocket and by excluding 

chamber | the fluids inside the tanks, 
: y pumps, combustion cham- 
a J ber, and nozzle. If we could 

FIGURE 7.10 determine the pressure and 
Simplified cross section of a liquid-fuel rocket. shear stress at every point in 
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the system, we could determine the total force by taking the integral 

F= ies 3 _(P sin @ + 7 cos 6) dA (7.19) 

over the whole internal and external surfaces; that would be a giant task. 
But if we want only to know what this force is, we can take the outside of the 

rocket as our system boundary and apply the momentum balance. With this boundary 
[d(mV,) is dt].ystem 18 Zero, because the system momentum is not changing with time.* 

There is no flow into the system, so Eq. 7.17 reduces to 

Fo Ve Mou: (7.20) 
) Yout 

The external forces acting on the system are the pressure forces around the entire 

boundary of the system shown and the force exerted by the test-stand support struc- 

ture. The latter force is the one we are seeking, so we can split the F, in Eq. 7.20 

into two parts and rearrange to 

component of press y comp pres E) 21) 

force on system 

In Sec. 5.5 we noted that for flows moving slower than the velocity of sound we can 

safely assume that a flow leaving an enclosed system and flowing into the atmosphere 

is at the same pressure as the atmosphere. We have made this assumption in the 

foregoing examples of this chapter. However, in the case of the rocket the flow leaving 

the system is generally supersonic, so we can no longer make this assumption. From 

Fig. 7.10 it is obvious that the pressure on the outside of the system is atmospheric 

everywhere except across the exit of the nozzle. Thus, the net y component of the 

pressure force on the system is 

y component of pressure 
ee on system ) = Asxit- (Pex a Fes) = Aexit * Pexit, gauge (7.22) 

Since we have chosen the y direction as positive upward, both Fy .., and V, are 

negative. Multiplying Eq. 7.21 by —1, we find 

Fle Ae Fein 7 Avan Moutitie tonic Penis: aflice (7.23) 

Here we show the force exerted by the rocket as the negative force exerted by the test 

stand, because they are equal and opposite. The force exerted by the rocket is referred 

to as the thrust of the rocket. It is commonly believed that rockets need something to 

push against in order to fly. Equation 7.23 shows that this is false. If it were true, 

rockets could not operate in the vacuum of outer space. 

*Although the system as a whole is not moving in the y direction, some parts of it are, because of the 

internal fuel flows. Thus, the overall system has some y-directed momentum, but since this presumably is 

not changing with time, we have [d(mV,) / dt],ystem = 0. During the motor-starting period this simplifica- 

tion is not correct, but for a rocket standing still this term is always small compared with the other terms 

in the momentum balance. 
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Example 7.8. A rocket on a test stand is sending out 1000 kg / s of exhaust 

gas at a velocity of —3000 m/s (negative, because it is in the —y direction). 

The exit area of the nozzle is 7 m’, and the pressure at the exhaust-nozzle exit 

is 35 kPa gauge. What is the thrust of the rocket? 

From Eq. 7.23 we find 

k 
Frodkes= thrust = -( -3000 * - 1000 “*) + (7m? - 35 kPa) 

3 MN + 0.245 MN = 3.25 MN = 0.73 - 10° lbf (7.Y) 
& 

From this it is clear that, the higher the exhaust velocity, the greater the thrust 

per unit mass of fuel consumed. If the exit pressure were exactly atmospheric pres- 

sure, Pexit, gauge = 0, then the thrust would be directly proportional to the exhaust 

velocity. For horizontally firing rockets, such as artillery rockets and airplane-assist 

rockets, the atmospheric pressure remains constant during burning, and one could, in 

principle, design the rocket nozzle for P.x, = Patm- However, this generally results in 

an impractically large nozzle (too much air resistance or too difficult to fabricate or 

launch), so the nozzle is usually designed for a P.,, significantly greater than the Pam 

at the exit of the nozzle. ; 

Vertically firing rockets, such as ballistic missiles and satellite launchers, must 

operate over a wide range of atmospheric pressures, from those at sea level to those 

in outer space. The nozzle is designed for some average pressure; therefore, P.,, could 

equal Pt, Only at one particular altitude in the flight. Normally P.., > Patm for the 

whole duration of the rocket flight. 

Ignoring this complication for the moment, we can say that for P.., = Patm the 

exhaust velocity is a simple, reliable, direct method of comparing the efficiency of 

various rocket engines. The early German workers in rocketry used it as a comparison 

basis. U.S. workers, on the other hand, have preferred to use the specific impulse, Ixy, 

as a comparison basis: 

( eae) wRGU.2 Ibf of thrust produced ah 

impulse *P (fuel + oxidizer) flow in Ibm /s 728) 

If Ps, = Pam then 

Thrust = I, m1 = —V,__. rm (7.25) 
indicating that /,,, must be exactly the same as —V,,_ except for a conversion of units. 
By inspection this must be the conversion involving force, mass, length and time. 

Example 7.9. For a rocket with an exhaust velocity of —3000 m/s and with 
Pexh = Patm, What is the value of J,,? 

m\ N-s? kN: s Ibf-s 
foo = AV. =a S000 1: = = p (Vim) ( *) =a 3 = 305.9 (1.2) 

It is common practice in the U.S. rocket industry simply to write this as 305.9 s. 
This is incorrect, because 1 Ibf does not equal 1 lbm, and they should not be can- 
celed. Nonetheless, the cancellation is common in rocket publications. 
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| For Details sh 
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\ ] 
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System boundary 

FIGURE 7.11 

Simplified view of a jet engine. The fuel flows down the strut from wing tanks to engine. 

Our discussion has concerned only rockets fixed to a test stand; we will con- 

sider moving rockets in Sec. 7.5. 

Figure 7.11 shows a schematic of a jet engine, attached by a strut to the wing 

of a modern commercial airliner. Fuel flows in from tanks in the wing. Air flows in 

the front, is compressed, mixed with fuel and burned, then expanded to a high veloc- 

ity and exhausted to the rear. The engine exerts a force, Fj-,, called the thrust on the 

airplane, through the strut; the airplane exerts an equal and opposite force on the 

engine, F 4, through the strut. Applying Eq. 7.17 to the system shown, for steady 

flow, we find 

0. Mair (Vix. ia Vi, ) ex Meuer (Vx, Tavs ‘out Xout 
+ (7.AA) 

The fuel flow rate is much less than the air flow rate, so for simple analyses it is nor- 

mally set equal to zero. The F in Eq. 7.AA is the force exerted by the strut on the 

engine, which is equal and opposite to the thrust of the engine, so 

T cine = FF rast Sag Mair (Vs, a Ve ) (7.26) “out 

Example 7.10. A modern jet engine has an inlet velocity of almost zero and 

an exhaust velocity of about 1350 ft/s. Medium-sized ones produce a thrust of 

20,000 Ibf. What is the air flow rate required by such an engine? 

Solving Eq. 7.26 for the mass flow rate, we find 

OA Frew Ne 20,000 bf. 32,2 Ibe 
TPES 9(Vod= Ved) J | (O-2350) 80)" ThE 5 

Ib k 
= a= = 20m (7.AB) 

259 
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The strut exerts a force in the positive x direction, the fluid is accelerated in the positive 

x direction. If one thinks about this from the system shown in Fig 7.11, one sees that 

the external force must be in the same direction as the increase in velocity. The engine 

exerts Firsts Which is equal and opposite to Fy,u:, and drives the plane in the minus 

x direction. 

7.3.4 Sudden Expansion 

As shown in Chap. 6, when there is a sudden expansion in turbulent flow in a pipe, 

there is a resulting friction loss (conversion of some other kind of energy to internal 

energy or heat). Such an expansion is shown in Fig. 7.12. Assuming that the veloc- 

ity is uniform at points 1 and 2, we may write the material balance equation for an 

incompressible fluid (Chap. 3) as 

VA = V>A> (7.AC) 

and B.E. for horizontal flow (Chap. 5) as 

p ula’ 1S sala wt 

Given V,, A;, and A>, we can calculate V>, but we cannot calculate (P> — P,) unless 

we know —¥. However, we can apply the steady-flow momentum balance, Eq. 7.17, 

to this flow. When we take the system as the fluid from point | to point 2, we find 

> Fe = —m(V,, — Ve) (7.AE) 
Here 

SWE = PA, “te PigAta a> P5A> - |: dA,,, (7. AF) 

where P;, is the average pressure over the annular area, and the integral | Tt aA,, is 

the total shear force at the walls of the pipe, due to viscous friction. For a sudden 
expansion the other terms in the momentum balance are large compared with 

ie T dA,,, SO we will drop it. 

Eddying region Fluid streamlines ian 

Annular area 

© 
Side view @ End view 

FIGURE 7.12 

A sudden expansion in pipe flow. 
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Because of our previous discussions about the pressure of a fluid leaving a ves- 
sel, it is plausible that P,,, is approximately the same as P;: i.e., the pressure is the 
same for the entire cross section at point 1. Making this assumption and substituting 
in Eq. 7.AF and then in Eq. 7.AE, we find 

Poa = FyAa = m(V,,— Vz.) (7.AG) 

But m = pV,,A9 and V,, = V,,(A,/ A), so that 

Ay Ay Py — Py = v2, (1-2) , 2 = ipVs, as Fe (7.AH) 

Substituting Eq. 7.AH in Eq. 7.AD and using Eq. 7.AC to eliminate V,,. we find 

A Ate Ys At ~¢ =vi (1-4) 2(, 4) 
"A> A> 2 AS se 

which may be regrouped and factored to give 

Ve A, 
Fa 1- a) 72 5 ( - (7.27) 

Comparing this equation with Eq. 6.25, which describes the same situation, we see 

that the two equations are the same if 

x«=(1-4) 7.28 = Ay (7.28) 

This is the function plotted in Fig. 6.16. Experimental tests indicate that Eq. 7.28 is 

indeed a good predictor of experimental results, so the assumption of uniform pres- 

sure across the cross section at point 1 seems a good one. 

It is interesting to compare what we did here with what we did in Sec. 6.3, 

where we applied a force balance to find Poiseuille’s equation. That kind of force bal- 

ance was usable in that case because there was no acceleration of any part of the fluid, 

so that the sum of the forces acting on any part the fluid was zero. Here the fluid is 

decelerated, so the sum of the forces acting on some part of it is not zero. The sim- 

ple force balance used in Sec. 6.3 is a strongly restricted form of the momentum bal- 

ance; with the complete momentum balance we can deal with much more complex 

flows, such as the one examined here, and in the next section. 

7.3.5 Eductors, Ejectors, Aspirating Burners, 

Jet Mixers, and Jet Pumps 

Figure 7.13 shows a cross section of a typical laboratory Bunsen burner. In it a jet of 

fuel gas flows upward. By momentum exchange with the air in the tube, it creates a 

slight vacuum at the level of the jet (labeled “2” on the figure). This sucks air in through 

the air inlet. The gas and air mix in the mixing tube, and flow out together into the 

flame. This is the most common type of gas burner, called an aspirating burner. The 

burners of all household gas furnaces, water heaters, and stoves are of this type, as are 

hand-held propane torches and small- to medium-sized industrial burners. (The largest 

industrial burners have combustion air driven by fans and thus do not “aspirate” it as 

this burner does.) This burner produces only enough vacuum to suck in the combustion 
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air. The same basic device using high-pressure steam as motive fluid can produce indus- 

trially useful vacuums. Such devices, called eductors or ejectors, are widely used indus- 

trially as vacuum pumps. Modified forms are also used as jet mixers and jet pumps. 

All devices of this type work by exchanging momentum between a centrally located, 

high-velocity jet and a circumferential, slower-moving flow. The Bunsen burner leads 

to a simple analysis, because its body is a simple, cylindrical tube. The eductors, ejec- 

tors, and jet pumps and most simple burners are shaped like the venturis in Chapter 5. 

They are more efficient than the straight tube in a Bunsen burner but lead to a much 

more complex analysis. The simple analysis in this section is correct for any straight- 

tube version of this type of device and shows intuitively what goes on in the more 

complex geometries but is not directly applicable to them. 

To analyze such a device we begin by making a momentum balance, choosing 

as our system the section of the mixing tube between 2 and 3 in Fig. 7.13. We assume 

0.425 in 
tA System boundary 

ing tube, L = 3.75 in 

D 

<<, Mix 1 ! i} 1 \ \ 
: 

Die = 0.035 in 

Gas flow in ——y——_ Air inlet qd) 
—— Pee 

FIGURE 7.13 

A simple Bunsen burner. Here the gas jet is shown above the air inlet, which makes 
the analysis simple. Often the gas jet is at the level of the air inlet, which works well 
but makes the analysis more complex. 
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steady flow in the positive z direction, dropping the direction subscripts, so that Eq. 
7.17. becomes 

O = maic(V3 — Vair,2) + Mgas(V3 — Vgas,2) + P2A2 — P3A3 — Twan™D3 Ax (7.29) 

At point 3 the pressure must be atmospheric, whereas at point 2 it is not. We work 
the problem in gauge pressure, which makes the P3 A3 term = zero. The term for the 
shear stress at the wall is negligible for low-velocity devices like the Bunsen burner 
in Fig. 7.13 (however, for high-velocity applications it is important). For the rest of 
this section we will assume rt ~ 0 and drop the rightmost term in Eq. 7.29. Then 

__Maic(V3 Ib, Voie, 2) us Meas (V3 ine V sass 2) 

Az 

s~ Paige 2 Ang (V3 ca Vak 2) a peesVous 2 raya: (V3 a Vere 2) 

ae 

a (7.30) 
(Aair, 2 a” be Vers 2) 

We also make a steady-flow material balance 

Mair in oi Thos ae Weis eas mixture out 731) 

We then substitute pAV for each of the m terms and rearrange to 

Pgas Pair 
Bienen, ViasApsi ts Ream ViAese 

1xt 1xtur V3 = mixture out mixture out (7.32) 

A3 

If we know P>, we can calculate the velocity of the fuel gas from B.E., and the 

known pressure in the gas supply line, and can also calculate the velocity of the 

air at point 2 from B.E. The equations to be solved simultaneously are one momen- 

tum balance, one mass balance and two B.E., as shown in Table 7.1. This set of 

TABLE 7.1 

Equations to be solved in a simple, cylindrical aspirating burner, eductor, jet 

mixer, or jet pump, for velocities well below sonic* 

Equation 

type Region 

Momentum Point 2 to P Pair aiz 2Aair, (V3 e= Vai 2) ae Pras Vent, 2 Ages, 2(V3 be Weis 2) 

balance point 3 Stee ae (Ag AARc 
air, 2 gas, 2 

Mass balance Point 2 to Peas Pair 
4 3 ivdighciecaie Vis Seas ae Verran 

point Va Pmixture out Pmixture out a= 

Ag 

B.E. High pressure Pos Pay? 

gas to point 2 Veas,2 = | 2 Peas 

B.E. Outside air to eg paee 2) “2 
point 2 ae Dan 

*Pressures are gauge, not absolute. 
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equations is applicable to any cylindrical device of this type, whether the fluids are 

gases or liquids or slurries. If they are not gases, simply replace all the quantities 

with “gas” subscript with the quantity for the high-velocity (driver) stream and all 

those quantities with “air” subscript with the quantity for the low-velocity (driven) 

stream. If the gas velocities are close to the speed of sound, then the simple B.E. 

used here must be replaced by the high-velocity gas flow relations from Chap. 8. 

In the following example we assume that all the flowing fluids are ideal gases at 

low velocities. 

Example 7.11. For the Bunsen burner shown in Fig. 7.13, with the dimen- 

sions shown, estimate P>, V3, and m,;,/ gas The gas is assumed to be natural 

gas, which in the United States is distributed inside buildings at P = 4 in 

H,O = 0.145 psig = 1.00 Pa gauge, and which has a density ~ (16 / 29) times 

that of air. We also know that Ay. = 0.142 in? and Ajer = 0.00096 in’. 

We begin by guessing P> first guess = —9.01 psig. Then by simple B.E. we 

compute that V,ir 2 first guess = 35-2 ft/s and by simple B.E. we know that 

the gas jet velocity ~ 186 ft/s. The densities are computed from the ideal gas 

law by 

Ibm P(abs.) 29(g/ mot) 

ft? 14.7 psia M 
P2006 = 0.075 (7.AJ) 

The mass flow rates of the two inlet streams, calculated from m = pAV, are 

2.6:10-* and 5.15-10°lbm/s for air and gas, respectively. From these we 

can compute that 

lbm 

Ibmol 

Then we substitute values in Eq. 7.32 (dropping the dimensions on the As, which 

are all in in*, and on the velocities, which are all in ft / s), so that 

_ (16/ 28.5) - (14.69 / 14.70) - 186 - 0.142 + 35.2 - (29 / 28.5) - (14.69 / 14.70) - 0.00096 

(142 + 0.00096) 

(7.AK) Mae en mixture at outlet — 28.5 

V3, first guess ~~ 

ft 
= 36.0 = (7.AL) 

Then from Eq. 7.29, 

(0.075 Ibm / ft*) - (35.2 ft/s) - (0.142 in) - (36.0 — 35.2) ft/s 
+ (0.041 Ibm / ft*) - (186 ft/s) - (0.00096 in?) - (36.0 — 186) ft/s 

Py. calculated — —_ 
0.142 in? 

ert Seema YP 0.00044 vt 
32.2 Ibmsft 144 if?——— ae (7.AM) 

This is much less than the assumed —0.01 psig, so we use the numerical 
solution routine on the spreadsheet that we used to generate these values and 
find the solution, as shown in Table 7.2. We see that all the equations are 
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TABLE 7.2 

Numerical solution to Example 7.11 
co atc elt leat lak aed caine ta emia 
Variable Type First guess Solution Sete Ae TE SE ne a el ee ee a eae 
Dyube, in Given 0.425 0.425 
Dresses = Given 0.035 0.035 
Atabes i Calculated 0.142 0.142 
Ajer, in Calculated 0.00096 0.00096 
Pyas, in H2O: gauge Given 4 4 

: psig Given 0.14461 0.14461 

P22, guessed» PSIZ Guessed —0.01 —4.43E-05 

Pair at 2, Ibm / ft? Calculated 0.0749 0.0750 
Peas at 2, Ibm / ft? Calculated 0.04135 0.0414 
Vena tsis Calculated 186.21 180.05 

Vir, ft/s Calculated 35.18 2.341 

m,ir, lom /s Calculated 0.0026 0.000173 

Mgas, om / s Calculated 5.14E-05 4.98E-05 
M, air-gas mix at 3, Ibm / lbmol Calculated 28.5 24.5 

Poossicgis at 3, Ibm / fC Calculated 0.0738 0.0635 
V3, ft/s Calculated 35.95 3.52 
P> calculated> PSIZ Calculated —0.00044 + 4.43E-05 

Pe cited Ea. eisesned Check value 0.044 1.0000 
Mair / Mgas = A/ F ratio Calculated 50.48 3.48 

solved if 

P» solution = —4.43: 107° psig = —0.0003 Pa = — 0.0012inH,O (7.AN) 
ture m 

Vs (= 9152 osc 07 == (7.AO) 

The mass flow rates in Table 7.2 are computed from m = pAV; we see that 

Mair / Mga, = A/ F ratio = 3.48 (7.AP) 
| 

From this example we see the following. 

1. One could, in principle, use algebra to solve the four simultaneous equations 

explicitly, but the spreadsheet solution is quick, simple, and best of all, shows inter- 

mediate values that can be checked for plausibility. 

The calculated air and air-gas mixture velocities are low. Most such burners have 

velocities of the magnitude shown here. 

3. The A/ F ratio is 3.48 (Ibm / lbm). This is about 25 percent of the stoichiometric 

air-fuel ratio, which is a typical value for such burners. They all have adjustable 

shutters on the air inlet; one sets the shutters for the lowest air flow rate which 

gives a blue (non-smoky, non CO-producing) flame. Normally this requires about 

25 percent of the air to be premixed with the natural gas. 

4. The vacuum produced is minuscule. For vacuum pumps operating on the same 

principle, one substitutes high-pressure steam for the low-pressure natural gas, 

= 
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finding velocities of several thousand ft / s for the central jet, and uses much 

smaller ratios of (driven fluid / driving fluid). 

5. This is a very simple device; most of you have several of them in heaters in your 

house. To compute its behavior, we needed the momentum balance, a material bal- 

ance, and two B.E. 

6. See Probs. 7.31 to 7.34. 

7.4 RELATIVE VELOCITIES 

All the examples in the previous section concerned systems fixed in space. When a 

system is moving, the momentum balance still applies, but it is often convenient to 

introduce the idea of a relative velocity. Figure 7.14 shows a student on the ground 

throwing a ball to a student on a moving cart. The velocity of the ball, V is 10 m/s. 

The cart is moving with a velocity V,,, of 5 m/s. As seen by the student who threw 

it, the ball is moving 10 m/s. As seen by the student who catches it, the ball is moving 

5 m/s, because that is the velocity with which it is overtaking the cart. In general, 

v= Veys i; Viel (7.33) 

where V is the velocity of a body or a stream of fluid relative to some set of fixed coor- 

dinates, V,,, is the velocity of the system (the cart in this case) relative to the same set 

of fixed coordinates, and V,.; is the velocity of the body or stream of fluid as seen by 

an observer riding on the moving system. When velocities are near the speed of light, 

this becomes more complicated, but such velocities seldom occur in fluid mechanics. 

We will see in this section that it is often practical to switch back and forth from the 

viewpoint of the fixed observer to that of the observer riding on some device or with 

some part of the flow, most often on a wave of some kind moving through a system. 

Equation 7.33 is a vector equation; like all other vector equations it is simply 

a shorthand way of writing three scalar equations. In this text we will use only its 

scalar equivalents, such as 

(7.34) 

FIGURE 7.14 

Relative velocities, illustrated by throwing a ball from a stationary pitcher to a catcher on a 
moving cart. 
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To illustrate the utility of this equation, let us consider a rocket in horizontal flight 
with no air resistance. We choose the rocket as our system and simplify by letting 
Pexh = Pam. Then, since there is no flow into the system or any external force act- 
ing in the x direction, Eq. 7.13 becomes 

d(mV;)sys = —V. 
Xout 

dMgut (7.35) 

Expanding the left side and substituting for V,.. from Eq. 7.34, we have 

Msys dV;,,, + Vx,,, dMsys = —(Vx, + Vy cay) Mout (7.36) 
rel, out 

Because all the velocities are in the plus or minus x direction, we can drop the x sub- 

scripts. Now we note that dm,,, = —dm,,,. Making this substitution and canceling 

like terms, we can divide by Msys to find 

AV 9 Ti Va, out (dmgy. / Meys) CD) 

If the exhaust velocity relative to the rocket is constant (which is practically true of 

most rockets), then we can readily integrate this to 

Mein 
(Vein = Vinielsys = Viel, out In yy, (7.38) 

init 

This equation, often referred to as the rocket equation or the burnout velocity equa- 

tion, indicates the limitation on possible speeds of various kinds of rockets. 

Example 7.12. A single-stage rocket is to start from rest; V;,i;, = 0. The mass 

of fuel is 0.9 of the total mass of the loaded rocket; min / Mini, = 0.1. The spe- 

cific impulse of the fuel is 430 lbf-s/lbm, and the pressures are P.x, = Patm- 

What speed will this rocket attain in horizontal flight if there is no air resistance? 

From Eq. 7.25 we have 

ibfAs hak i 
Veet, out = —Iep = —430 32.2 : 

ibm bes 
ft 

= ~13,850 = = —4220 — (7.AQ) 

Therefore, 

ft ft m 
Vin = —13,850—-In 0.1 = 31,900 — = 9730— (7.AR) 

This example shows the probable maximum speed attainable with single-stage 

rockets using chemical fuels. It appears that the maximum /,, for chemical fuels is 

about 430 Ibf-s/Ibm. Better structural design may reduce the value of men / Minit, 

but it is unlikely to go much under 0.1 if there is any significant payload involved. 

For higher velocities, staged rockets are needed. Equation 7.38 does not include the 

effects of gravity or air resistance. These can be included, making the equation some- 

what more complicated (Prob. 7.36). For more on rockets see Sutton [2] and Ley [3]. 

Another example of the utility of the relative-velocity concept concerns the 

interaction of a jet of fluid and a moving blade. Such interactions are the basis of 
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FIGURE 7.15 
Cutaway of a modern jet engine. This is a Pratt and Whitney JT8D-219, whose basic parameters are 

shown in Example 7.10. Observe the large number of rotating and fixed blades that interact with the 

moving fluids. (Courtesy of Pratt and Whitney, a United Technologies Company.) 

turbines and rotating compressors as used in turbojet and gas turbine engines and in 

the steam and water turbines that produce almost all of the world’s electricity. Figure 

7.15 shows a cutaway of a modern aircraft jet engine. In it the fluid interacts with 

multiple sets of blades, some of which do work on the fluid, increasing its pressure, 

and some of which extract work from the fluid, to be used in other parts of the engine. 

The rest of this section considers the interaction of a fluid with a single moving blade, 

one of the many blades in Figure 7.15. 

In Examples 7.3 and 7.4 we:saw how the interaction of a jet and solid surface 

produces a force on the surface. For this force to do work it must move through a 

distance. The work will be given by dW = F dx, and the power (or rate of doing work) 

is given by Po = dW/ dt = F dx/ dt. The latter is equal to the force times the veloc- 
ity of the system, Po = FV.y.. 

A curved blade is moving in the x direction and deflecting a stream of fluid; 

see Fig. 7.16. Consider this first from the viewpoint of an observer riding with 

the blade. As far as the observer can tell, the blade is standing still; no work is 

being done. Therefore, with no change in pressure and elevation, B.E. tells the 

observer that 

Vout Vin y =o _ =F — (7.AS a B= 2 Sie 
if hl 

leat os SU } and that, if there is no friction, the outlet 

ele ie | Blade velocity Velocity is equal in magnitude to the inlet 
Fluid velocity —— velocity but in a different direction. If there is 
“ friction, the outlet velocity will be less, but it 

cannot possibly be more, from the viewpoint 

of an observer riding on the blade. Here in the 
FIGURE 7.16 energy balance V” is a scalar, so we have no 
Simplest possible jet-blade interaction. - concern about the signs of V;, and Vour- 

System boundary 

/ 
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Now assume frictionless flow and that the blade in the figure is so shaped that 
the inlet and outlet streams have only x velocity and no y velocity. Then, by apply- 
ing Eq. 7.17 and dropping the x subscript, because all the velocities are in the plus 
or minus x direction, we write 

F = m(Vou — Vin) (7.AT) 

This is the F exerted by the blade. The fluid exerts an equal and opposite force on 

the blade. Substituting Eq. 7.34 twice, we find 

fo m(Vee, out ap Volade am Vick: ie Volade) = m(Vrel, out Vic in) (7.39) 

We see that the velocity of the blade cancels out of the force equation, so the force 

is the same whether viewed by an observer riding on the blade or by an observer 

standing still. 

The work* done by the fluid per unit time (the power) is 

FeaW Atk 
Pos dt =e a 5: = me Vitesse 7? —m(Veer, out V rel, in) Volade (7.40) 

and therefore the work done per unit mass of fluid is 

dw 
a = (Viet ma Viel, out) Volade (7.41) 
m 

As shown above, from B.E. for frictionless flow we know that Vye), our = — Viel, in 

therefore, 

sat sd (2V rei, in) Vi (7.42) dm rel, in/ " blade . 

Now suppose that the velocity of the jet is fixed. This would occur if it were 

a jet of water entering the power plant at the base of a dam with constant upstream 

water level (in which case we could calculate the jet velocity by B.E.) or if it were 

a jet of steam from a boiler with constant steam temperature and pressure (in 

which case we could calculate the jet velocity by the methods to be developed in 

Chap. 8). In Eq. 7.42 we replace Vie in bY Viet — Volade and divide both sides by 

Vje./2 to find 

W/d Volade |) Volade d m= a(1 - bate) blad (7.43) 

Viet / y. Viet Viet 

The left side of Eq. 7.43 is the ratio of the work extracted from the fluid per pound 

of fluid to the kinetic energy per pound of the fluid in the jet. We may think of it as 

the fractional efficiency of the blade in converting jet kinetic energy into useful work 

(of the rotating turbine shaft). The right-hand side of Eq. 7.43 is plotted versus 

Volade / Vjer in Fig. 7.17. 

*The work terms in this chapter are all exclusive of injection work and would have the symbol W,,;, in 

Chaps. 4, 5, and 6. Here we drop the subscript because it causes no confusion to do so. 
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Turbines Atomizers 

205 0 0.5 1 1.5 

Volade / Viet 

FIGURE 7.17 

The ratio of work produced per pound to inlet kinetic energy per pound for a 

range of values of blade speed/jet speed. 

From this figure we see: 

ile 

2. 

For Vplade / Vie. = 0 the work extracted per pound = 0. The blade is standing still 

and resisting the flow but not extracting any work from it. 

FOr aac? Vier = 1.00, the work extracted per pound = 0. The blade is moving 

at the same speed as the jet (like a person walking through a revolving door that 

is turning at exactly the person’s walking speed) and has no force interaction with 

the jet. 

» For Votade / Vier between 0 and 1.00 the work extracted is positive. For Vitage / Vjer = 
0.5 it is a maximum, and (dW/ dm) /(Vj-/2) = 1.00. At this condition all of the 
kinetic energy in the jet is being extracted by the blade and converted to work. If 

we consider Fig. 7.16 from the viewpoint of the person riding on the blade, then 

the fluid is overtaking us at 0.5 times the jet speed and leaving at that speed, in 

the opposite direction. From the viewpoint of a fixed observer watching us ride 

by, the jet leaves the blade at zero velocity; all of its kinetic energy has been 

extracted. (In a practical turbine of this kind the jet leaves with a little y velocity 

to get out of the way of the next batch of fluid that follows it; if it left with only 

x velocity, it would run into the part of the jet behind it.) 

. At the left of the figure for Votade / Viet < 0, the blade is moving in the opposite 

direction from that shown in Fig. 7.16. In this case it is doing work on the jet. 

From the viewpoint of someone riding the jet, the exit velocity is still the same as 

the inlet velocity, but from the viewpoint of a stationary observer the exit velocity 

is greater than the initial jet velocity. The sign of the work has changed because, 

instead of the jet doing work on the blade, the blade is doing work on the jet. This 
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is the description of a pump or compressor; the fluid leaving the blade at a high 

velocity is passed through some kind of diffuser (Sec. 5.5) and slowed, thus 

increasing in pressure. 

5. At the right of the figure for Vijage / Vier > 1.00 the blade is going faster than the 

jet and picks up the fluid and expels it at a higher velocity. This occurs in rotat- 

ing disk atomizers, widely used to produce small drops for spray dryers. The sign 

of the work is the same as for pumps, and the opposite of that for turbines, because 

the rotating blade does work on the fluid. For this application, the orientation of 

the blade in Fig. 7.16 is rotated 180°. 

This is a simple discussion of the interactions of jets of fluid and moving blades. 

The interactions in real turbines, compressors, and atomizers are more complex, but 

almost all of these devices are based on the transfer of momentum between a movy- 

ing jet of fluid and a moving blade, as sketched here. 

7.5 STARTING AND STOPPING FLOWS 

The previous examples have been for steady flows. The momentum balance is pow- 

erful enough to deal with unsteady flows as well. Several very simple examples will 

illustrate this power. 

7.5.1 Starting Flow in a Pipe 

Example 7.13. Figure 7.18 shows a large water reservoir that discharges 

through a long, horizontal pipe, at the end of which is a valve. What is the 

velocity-time behavior of this system when the valve is suddenly opened? 

Here th2 steady-state velocity, V.., can be found by B.E. from point 1 to 

point 3, finding 

Gee reetl 
Using the values in Table A.3, we find that steady-state velocity in the pipe is 

2.45 m/s (8.03 ft/s) and the steady-state friction factor is 0.0042. 

re if 

VV. = faa zZ | (7.AU) 

FIGURE 7.18 
Long pipe with quick-opening and -closing valve. 
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TABLE 7.3 

Flow 

in Example 7.13 

To estimate the starting behavior, we take as our system the pipe from its 

entrance, point 2, to its exit, point 3. Here we can assume that the pressure at 

point 2 does not change during the starting of the flow and is given by 

P> = pg(z; — 22). Applying the x-directed momentum balance (Eq. 7.15), we 

assume that the density of the fluid does not change, so the mass of fluid in the 

system is constant and the mass flow rates and velocities in and out at any 

instant are equal. Then 

Mey AVeys = >, F dt = le, — P3) ge = rxDL| dt (7.44) 

Here the shear force acts in the direction opposite to the pressure force; at steady 

state they will be equal. Replacing 7 by its expression in terms of the friction 

factor, and expressing the mass of the system in terms of its volume and den- 

sity, we find 

y2 
D? - > DL, dt (7.45) 

T 
p7, D'Lav = >) F dt = e; — P3) x 

(Bar Fala wht D 2 2 
eee ee = {Va ee 7.46 

and 

ak z dt (7.47) 

Here f is not constant because the flow starts in the laminar region, so that f is 

initially large, then declines, then increases sharply during the transition, and 

then declines slowly in the turbulent region. But the term involving f is only 

significant near the end of the starting transient, so we can treat f as a constant 

and perform the indicated integration, finding 

D Veoh 
t= In 

Siva Va 

Here at t = 0, V = 0, so the In term on the right is In 1 = 0, from which it follows 

that the constant of integration C = 0. We may also check to see that Eq. 7.48 

gives the correct steady-state solution by setting t = ©. 

The only way the right-hand side can be infinite is for 

the denominator of the In term to be zero, which requires 

that V = V.. To find the velocity-time relation, first we 

a. (7.48) 

starting behavior 

Velocity, m/s Time,s evaluate 

0.1 0.31 D __ [6.065 / 12 ft]: m/3.28 ft 

; ee AfVe 40002-2465 m/e fe 
2.4 17.11 and then make up Table 7.3. We see that the velocity 
bua ate increases quickly at first and then asymptotically 

2.45 Infinite 
increases to the steady-state value. | 
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Turbulent flow of 

water with 

friction, Example 7.13 

Laminar flow of a fluid 

with viscosity 1000 cP 
Example 15.4 

Velocity, V m/s 

0 5 10 15 20 25 

Time, ¢, s 

FIGURE 7.19 

Flow-starting behavior for three situations. These all correspond to Fig. 

7.18. The top curve corresponds to zero friction. The middle curve is 

the solution to Example 7.13; the square points shown are those from 

Table 7.3. The bottom curve is from Example 15.4, which is the same 

as Example 7.13 except that the water has been replaced by a fluid 1000 

times as viscous as water. 

Figure 7.19 shows the result of this example and compares it to two other 

results. The values from Table 7.3 are shown as squares, with a smooth curve through 

them. Above that curve is a frictionless curve, which results from setting f = 0 in 

Eq. 7.45. For the first few seconds it is identical to the curve from this example, indi- 

cating that the effects of friction on the starting behavior are negligible until the veloc- 

ity begins to approach its final value. The lower curve shows the results of Example 

15.4, in which the water in Example 7.13 has been replaced with a fluid 1000 times 

as viscous as water, which makes the flow laminar. That problem cannot be solved 

by the one-dimensional approach used here; it requires the two- and three-dimensional 

approach shown in Part IV of this book. We see that for this viscous a fluid the veloc- 

ity is less than for Example 7.13 at all times, and that the final value is about a tenth 

of that for water. The starting transient is shorter for that case than for Example 7.13. 

7.5.2 Stopping Flow in a Pipe; Water Hammer 

Example 7.14. Repeat Example 7.13 for the case in which the fluid is flow- 

ing steadily and the valve at the end of the pipe is instantaneously closed. Here 

we begin by rearranging Eq. 7.44 to 

aA Bt oe dV, (Pics Ps) i Do t7DL 

ade Msys 
(7.49) 
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If, as the problem suggests, we stop the fluid instantaneously, then the left-hand 

side of this equation must be minus infinity! The only way the right-hand side 

can be minus infinity is for P; to become infinite! If it were possible to stop 

the fluid instantaneously, and if the fluid did not increase in density nor the pipe 

wall stretch, then that is exactly what would happen. One might compare this 

situation and the one in the previous example to dropping an egg off a tall build- 

ing. The velocity of the egg increases steadily as it falls, but the forces acting 

on it are gentle enough that it is unharmed. When it reaches the pavement, its 

deceleration is very rapid, practically infinite; the egg responds by splattering. 

The observational fact is that we generally cannot stop the flow instantaneously 

but that with readily available valves, closed as quickly as possible, we can stop 

the fluid quickly enough to generate very large pressures adjacent to the valve. 

To solve the problem we must take into account the fact that the liquid will 

compress, slightly but significantly. In real problems the expansion of the pipe 

due to the increased pressure must also be taken into account; it makes the pres- 

sure less than the value we will compute here. If we are able to stop the flow by 

shutting the valve at point 3 instantaneously, then the layer of fluid adjacent to 

the valve will be stopped. It will stop the next layer, and so the region of stopped 

fluid will propagate backward up the pipe to the reservoir. (This is analogous to 

the big freeway pileups that occur during heavy fogs. Someone slows down and 

is hit by a faster-moving car coming from behind. The first crash produces a pile 

of stopped, wrecked cars. This pile then enlarges in the upstream direction as 

more and more cars pile into the stopped wreckage.) The rate of propagation 

of the boundary between stopped and moving fluid (assuming rigid pipe walls) 

will be the local speed of sound. That is not proven here, but will seem clearer 

after we have discussed the speed of sound in Chap. 8. From Chap. 8 we can bor- 

row the fact that for water the speed of sound is about c = 5000 ft/s 

(1520 m/s) so that the stopped layer of water will reach the reservoir in 

(¢ = L/c = 3000 m/ 1520 m/s) or about 2 s after the valve is closed. 
To compute the pressure in the stopped fluid we take the viewpoint of the 

person riding on the interface between the moving fluid and the stopped fluid. 

Figure 7.20 shows this change of viewpoint and its consequences. We will apply 

this same logic several times again in this book. The upper part of the figure, 

from the viewpoint of a stationary observer, shows the wave passing from right 

to left, against the flow, with velocity (c — V,). The speed of sound, shown 

above, describes how fast a sound wave moves into a stationary fluid; here the 

fluid is moving, with the result shown. The lower part of the figure shows the 

viewpoint of someone riding the wave. From that’ viewpoint we are standing 

still, and the fluid is moving toward us with Vupstream = Cc. Changing the view- 

point does not change P or p at any point. Changing the viewpoint does change 
both the perceived upstream and downstream velocities. But it does not alter the 
velocity change, AV, across the wave. The merit of this change of viewpoint is 
that it changes an unsteady-state problem to a steady-state one. To see the advan- 
tage, try working out the rest of this problem and the problem in the next section 
from the viewpoint of the stationary observer. 

Taking the viewpoint of the observer riding the wave, and using the system 
shown in the lower part of Fig. 7.20, we find that the x-directed, steady-state 
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Wave moves up stream, to the left, 

with velocity (c— V)) 

(a) 

Wave stands still 
aioe 

System boundary 

Py = p, + Ap 

P, =P, + AP 

(b) 
Deon = Vipstream SAV == i(Ci— Vv) 

In both coordinate systems, (Vypstream — Vaownstream) = Vi — 0 = Vy 

FIGURE 7.20 

A wave as seen (a) passing by a stationary observer and (b) by an observer moving at the same 

speed as the wave. 

momentum balance, Eq. 7.15, becomes 

0 = mi(Vin — Vout) + >) F = cpA AV— AAP (7.50) 

and 
AP = cp AV (7.51) 

where AP is the pressure change across the moving boundary and AV is the 

velocity change across it, which in this case is the velocity of the fluid that has 

not been stopped yet, minus zero, or 2.45 m/s, from Example 7.13. Inserting 

numerical values, we find 

2 
Rhy tO 098 2 os 

S m s kg-m N/m 

3.72 kPa = 539 psi (7.AW) 

This is a very large pressure, and it explains why this phenomenon, called water 

hammer, can be a serious problem, particularly in large hydroelectric structures. One 

often produces the same result at home by closing a faucet quickly; a pounding sound 

in the plumbing indicates that a high pressure has been generated. The treatment here 

is the simplest possible; many more interesting details and complications are shown 

in the books on this subject [4]. 

275 
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Some students find it more intuitively satisfying to arrive at Eq. 7.51 by asking 

how long (f = L/c) the pressure force (AAP) must act to decelerate the mass of fluid 

in the pipe (Ap) from its initial velocity to zero (AV). Substituting those values in 
F = ma leads directly to Eq. 7.51. 

7.5.3 Stopping Flow in an Open Channel; 
Hydraulic Jump ‘. 

Figure 7.21 shows a sloping channel open at the top, with a steady flow in it. For the 

flow to be steady the channel must slope in the downstream direction. However, as 

shown in Example 6.15, that slope may be very small and will be ignored for the rest 

of this section. The figure shows a gate, which may be suddenly closed, stopping the 

flow. When it is closed, the situation is directly analogous to that in Sec. 7.5.2 except 

that the fluid pressure cannot increase because the fluid is open to the atmosphere. So 

instead, it increases in depth. The layer of stopped fluid, which has an increased depth, 

propagates upstream against the flow, just the as the region of stopped fluid with 

increased pressure propagated upstream against the flow in the water hammer case. 

As in that case, the mathematics are greatly simplified if we take the viewpoint of a 

person riding on the boundary between the stopped and moving fluid, which converts 

an unsteady-flow problem to a steady-flow problem. To that observer, the phenome- 

non is as sketched in cross section in Figure 7.22. This transition from a shallow, fast 

flow to a deeper, slower flow is called hydraulic jump. It is easily observed in gutters 

during heavy rainstorms and at the bottom of chutes and spillways. Before we begin 

y 

iwc ae eek Ute | ea Gate open | 

Stopped x 

Small downhill 

gradient 

FIGURE 7.21 

An open-channel flow stopped by closing a gate. 

Fast, shallow flow Disturbed region Slower, deeper flow 

z=0 

FIGURE 7.22 

Hydraulic jump in a linear flow. 
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the analysis, | suggest that you look at this phenomenon 
in a kitchen sink. Pigure 7.23 shows a jer of water trom 
a faucet striking the bottom of 4 sink. it hows outward 

in a shallow, fast flow until it enters 2 hydraulic jump, 
which changes the flow to a deeper, dower flow than the 
flow near the faucet, This is easy see in any sink. The 
sicady, one-dimensional version sketched in Fig. 7.22 is 

easiest to treat mathematically, wo we raurn w it. The 
mathematics treat the wave as 2 step function, but as Fig. 

FIGURE 7.23 7,22 (and observation of the jump in 2 sink) shows, the 
Hydraulic jump in a radial observed behavior is that the change in depth and veloc- 
outward flow, as seen in any sink ity occurs over a short distance, not as a sharp sep. 

In Fig. 7.22 the cross section through the jump 
extends into and out of the paper. Consider a section | ft thick into the paper, and 
assume that the velocity across any section perpendicular to the flow is uniform. Then 
for steady flow of an incompressible fluid such as water, the mass balance gives 

Viz; = Vx (An) 

In a typical problem we might know two of the four quantities here. This equation 
provides a relation for finding a third; one more is needed, BLE. written between tates 
1 and 2 shows 

P, ~ P; V3~Vi 
sore gy ri) hess AF (LAY) 

p ya 

Here, as in Sec. 5,11, the fluid does not al) enter or leave at the same z or the same 
P, so we must use appropriate average values for the zs and Ps. If the friction term 

were negligible, this equation would supply the needed extra relation, but mathemat- 
ical analysis and experimental] tests indicate that friction is quite large, wo, although 

B.E. supplies an additional relation between the unknowns in ka. AY, it does us no 

good because it introduces another unknown, F, 
Equation 7.17, however, can supply the needed relationship. Taking 2s our sys- 

tem the section of the fluid between points | and 2, we see that the only forces at- 

ing in the x direction are the shear force on the bottom, which is negligibly omall and 
will be ignored, and the pressure forces on each side of the liquid in the system, which 

are each of the form 

Lost ‘ (Zones) " 

F=|]PdA=l BP) Zug ~ 2) dz = lep a WAZ) 
z=0 

Since the flow at points 1 and 2 is aI in the x direction, we may write kg. 7.17 and 

drop the x subscripts to find 

| . 
0 = IpzV,(V; — V2) + “ (25 — 23) (BA) 

Equations 7.AX and 7.BA can be solved for z (see App. 3.2), which gives us ky, 7.52, 

- Z te 

n= + (#) pa 1.52) 7 b 
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Here the minus sign before the radical has no physical meaning. From Eqs. 7.52 and 

7.AY we can calculate the value of ¥ (see Prob. 7.52). Equation 7.52 may be put into 

an interesting form by dividing through by z;: 

4 a ae (F353) 
zy 2 - 821 

The dimensionless group Vi/ gz, is called the Froude number (William Froude, 

1810-1879); its significance is discussed in Chap. 9. 

From the foregoing it is clear that z) /z, must always be greater than or equal 

to 1 (a value of 1 would correspond to a jump of negligible height, i.e., one that was 

vanishingly small). One may verify from Eq. 7.53 that zz /z, = 1 for a Froude num- 

ber of 1, and that z,/z, is greater than 1 for any Froude number greater than 1. In 

studying normal shock waves in gases, we see that another dimensionless group, the 

Mach number, plays a similar role. 

This topic is traditionally included in fluid mechanics books for the following 

reasons: 

1. Hydraulic jump is readily observed in nature. 

2. Hydraulic jump is an interesting example of a problem that cannot be solved with- 

out using the momentum balance. 

3. Shock waves and hydraulic jumps are very similar, as we will see when we study 

shock waves in high-velocity gas flow. Hydraulic jumps are easily demonstrated 

in any kitchen sink and easily studied in any well-equipped hydraulics laboratory. 

Shock waves are much harder to demonstrate and study. Therefore, from visual 

observation and mathematical analysis of hydraulic jumps we can gain an intuitive 

understanding of shock waves. We will return to their similarity in Chap. 8. 

Equations 7.52 and 7.AY are equally well satisfied whether a flow is from left 

to right or from right to left in Fig. 7.22. However, if we calculate ¥ for both we see 

that right-to-left flow in Fig. 7.22 (deep, slow flow to shallow, fast flow) results in a 

negative value of ¥. This is forbidden by the second law of thermodynamics, so the 

flow can be only in the sense indicated in the figure. We see here a strong parallel 

with what we will see concerning shock waves, in which the continuity, energy, and 

momentum equations are also satisfied by flow in either direction; but the second law 
of thermodynamics shows that only one direction is possible. We also see that a 
hydraulic jump is only possible if the upstream value: of the Froude number is greater 
than 1; when we study normal shock waves we will see that a normal shock wave is 
only possible if the upstream Mach number is greater than 1. 

Example 7.15. A steady water flow as shown in Fig. 7.22 has V, = 4 ft/s, 
and z; = 0.0005 ft (= 0.006 inches). What are the values of V> and z,? 

First we calculate 

Vi (4 ft/s) 
Froude number = ¥F = — = —————_-——_———__ = 9938 5 

821 | (32.2 ft/s”) - 0.0005 ft Cee 
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and then 

z 
a = —0.5 + V0.25 + 2- 993.8 = 45.08 (7.BC) 

From this we easily compute that z. = 0.0225 ft = 0.27 in = 6.86 mm, and 
V2 = 0.09 ft/s = 0.017 m/s. a 

These are representative values for the bathroom sink flow shown in Fig. 7.23. 
If you plug the sink so that the water cannot escape, you will see that as the water 
depth downstream of the jump increases, the radius at which the jump occurs will 

move inward. The shallow, fast flow decreases in velocity as it moves outward (which 

the material balance for steady flow says it must do if its depth remains constant, 

which it practically does), so the fluid is solving Eq. 7.53 for the place where V, cor- 

responds to the value of (z,/z,) set by the rising water level in the sink. Eventually 
the radius of the jump becomes small enough that the low, swift flow is “drowned,” 

and the hydraulic jump disappears. 

Returning to the straight, rectangular channel in Fig. 7.21 we can consider a 

more typical example, a fluid flow with V; = 10 ft/s as seen by an observer moving 

along with the jump, and z, = 1 ft. Straightforward calculations show that for this 

case the Froude number = 3.1, V2 = 3.24 ft/s, and z. = 3.25 ft. Now if we switch 

back to the viewpoint of a stationary observer, we see that the value of z, is the same 

for a stationary or a moving observer, so our change in viewpoint did not affect that 

value. But the value of V,, which we guessed, is the sum of the velocity of the 

upstream flow, as Seen by a fixed observer, and the velocity at which the jump moves 

upstream. From the viewpoint of a stationary observer, the downstream flow is stand- 

ing still, so we know that the jump must be moving upstream at Vjump = 3.24 ft/s 

and that, from the viewpoint of a stationary observer, the upstream velocity is 

V, = 10 — 3.24 = 6.76 ft/s. The corresponding problem in which we know the 

upstream velocity in Fig. 7.22 and want to know how fast the jump moves upstream 

requires a trial-and-error solution; see Prob. 7.53. 

7.6 A VERY BRIEF INTRODUCTION 
TO AERONAUTICAL ENGINEERING 

Chapters 5 and 6 were devoted to problems that could be most easily understood by 

applying the energy balance, and this chapter has been devoted to other problems, 

which could be most easily understood by applying the momentum balance. Some 

problems are most easily understood by applying both the energy and the momentum 

balances. A very interesting example is the elementary analysis of flight, which helps 

explain the behavior of airplanes and helicopters, and also birds and insects. 

An airplane (or a bird or a flying insect) is a fluid-mechanical device; it flies by 

making a fluid, the air, move. Consider an airplane in constant-velocity, level flight; see 

Fig. 7.24. The airplane has no acceleration in either the x or the y directions; therefore, 

the sum of the forces acting on the airplane in each of these directions is zero. These 

forces are shown in the figure and given their common aeronautical-engineering names. 
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FIGURE 7.24 

Airplane in constant-velocity, level flight. 

The force that gravity exerts, the 

weight, acts downward. To coun- 

teract this, the air must exert an 

equal and opposite upward force, 

called the lift. It is the function of 

the airplane’s wings to make the 

air exert this force. 

To see how the wing does 

this, we make a momentum bal- 

ance around the airplane and take 

as our system the airplane plus an 

envelope of air around it, large 

enough for the pressure on the outside of the envelope to be constant. This system 

boundary is also shown in Fig. 7.24. We base our coordinate system on the airplane, 

so the airplane appears to stand still and the air to flow toward it. Applying the y com- 

ponent of the momentum balance in constant-velocity flight, we see that there is no 

accumulation: we have d(mV).y, = 0.* We have assumed that the pressure around the 

outside of the system is uniform; then the only external y-direction forces acting on 

the plane are the force of gravity and the force exerted by the air. Thus, 

Vyis) 

Since not all the air comes in or goes out at the same velocity, the two V, terms in 

this equation must be some appropriate average velocities, obtained by an integral of 

the flow per unit surface area over the entire surface of the system. However, we need 

not worry about this integration, if we merely think of these velocities as some appro- 

priate average. 

In the direction of the +y axis, F, is negative. The flow through m is positive, 

so (V,. — Vy,,) must be negative; the air must be accelerated in the —y direction, 
downward. Thus, we see that, to stay in level flight, the airplane must accelerate the 

surrounding air downward. This is precisely what a swimmer does in treading water— 

by accelerating the water downward, the swimmer stays up. 

F = weight of the plane = m(V,.. — (7.54) 

Example 7.16. An airplane with a loaded mass of 1000 kg (and thus a weight 
of 9810 N) is flying in constant-velocity, horizontal flight at 50 m/s. Its wing- 
spread is 15 m, and we assume that it influences a stream of air as wide as its 
wingspread and 3 m thick. How much average vertical downward velocity must 
it give this air? Assume that the air comes in at. zero vertical velocity. 

kg k 
m = pAV,,, = 1.215 + (15 m-3m)+50— = 2723 e es ra t=, 600057. GBD) 

S s 

Fy 9810N__—ikg-m 

m  (2723kg/s) N-s? Youtavg 

ft 
J 3.60 — =118—" “(7.BE) 

a 

*In the most exact work, we would have to consider the decrease in mass due to the burning of fuel, but 
that is small enough to neglect here. 
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This is the approach “from the outside.” Without knowing any details of the 
flow around the various parts of the airplane, we can find the average downward veloc- 
ity it must give the air that it influences to stay in level flight. If we chose as our 
system the airplane itself, we would see that it has no flow in or out, excluding the 
negligible engine intake and exhaust, and therefore the sum of the forces on it must 
be zero. For the airplane as the system, these forces are the gravity force and the pres- 
sure force integrated over its entire surface. To find the latter it is necessary to ana- 

lyze the flow in detail around the entire airplane. It can be done in the case of some 

simple structures, such as certain types of wings, by means of B.E.; this type of analy- 

sis is introduced in Chaps. 16 and 17. Briefly, the result of the detailed calculation is 

that the wing is shaped so that the pressure over its top surface is less than that over 

its bottom surface. From the balance of forces in the x direction we see that, in order 

to fly, the plane must overcome the air resistance, which is called drag. In constant- 

velocity, level flight the drag is equal and opposite to the forward force, or thrust, 

developed by the power plant. 

In elementary and high-school science classes students are taught that the wing 

is curved so that the air flow over the top is faster than that over the bottom, and by 

B.E. the pressure is lower over the top of the wing, producing lift. It is true that the 

pressure is lower over the top of the wing, but if this were the correct explanation of 

how lift occurs, then flat-winged aircraft could not fly. We all have seen that flat- 

winged paper gliders fly very well. One could build full-sized airplanes with flat 

wings, and they would fly. However, a flat wing has much more drag than a properly 

curved one producing an equivalent lift. This was discovered by birds in their evolu- 

tion and later by the pioneers in aviation. By careful analysis and much experimen- 

tation, wings have been built that have ratios of lift to drag as high as 20. The turbine 

and compressor blades shown in Fig. 7.15 are shaped like the wings of aircraft, 

because their function is the same, to turn an air flow and in so doing extract or impart 

work to it, with the lowest possible friction (drag). The design of airplane wings and 

of turbine or compressor blades uses the same mathematics as also does the design of 

sailboat sails. 

Example 7.17. A light plane is being designed with an overall aircraft lift / drag 

ratio of 10. The available power plants have thrust / weight ratios of 2. What per- 

centage of the total loaded weight of the aircraft will be power plant? Assume 

that the plane will be used only in constant-velocity, level flight. 

Under these circumstances, lift equals gross weight and drag equals thrust; 

therefore, lift / drag is weight / thrust; then 

Weight _ weight thrust 

Engine weight thrust engine weight 
= 10-2 = 20 (7.BF) 

a 

Suppose that we wish to design a helicopter using a power plant with the 

same thrust / weight ratio. For a helicopter in hovering flight, thrust is vertically 

upward and equals the weight. Thus, with this engine 50 percent of the gross 

weight of the helicopter must be engine. This illustrates the fact that horizontal flight, 

with a wing, is much more efficient than hovering flight. But why is this so? From 
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Eq. 7.54, we see that the upward force is equal to the velocity change of the air times 

the mass flow rate of the air. Thus, we may lift a given load by making a small 

velocity change in a large flow rate of air or a large velocity change in a small flow 

rate of air. 

Now consider the work that must be done to accelerate this quantity of air. We 

will apply B.E. to the system shown in Fig. 7.24. Here again there is negligible change 

in pressure in the air passing through the system and negligible change in elevation. 

Solving for the external work gives 

ui one ye 
dm 2 

This is the negative work which must be done on the air by the airplane’s power plant. 

Here the AV? is the change in the square of the average value of the velocity, which 

is given by V = (Vz + vayi/ *. The power is 

ae 
Po = dacs = in -# mee ) (7.56) 

If we neglect the friction term, we see that the power required is proportional to the 

change in the square of the velocity. 

Thus, from the momentum balance, Eq. 7.54, we see that an airplane with a 

given weight can be lifted by any flow that has the proper combination of m AV, but 

that the power to be supplied by the engine is proportional to m AV°. So, to lift the 

maximum weight with the minimum power, one should make m as large as possible 

and thereby make AV, and AV” as small as possible. This is the same as saying that 

the wings should be as long and thin as possible. However, long, thin wings are dif- 

ficult to build and are not very satisfactory for high-speed flight. The fliers most inter- 

ested in efficiency are soaring birds and human glider fliers; both have settled on the 

longest, thinnest wings that seem structurally feasible. Commercial aircraft designers 

have sacrificed some of this efficiency for better high-speed performance and sturdier 

wings. The first airplane to fly around the world without refueling had even longer 

and narrower wings than any glider or any bird; this feat became possible only when 

the development of fiber-reinforced plastics made it possible to build extremely long, 
thin, lightweight wings. 

This same consideration of the energy and momentum effects of an aircraft 
shows why the helicopter is an inefficient weight-lifting device. In hovering flight a 
helicopter can move only as much air as it can suck into its blades, so it must give 
that air a very large velocity change. This leads to a high power requirement. It also 
explains why helicopters hover as little as possible; as soon as possible they move 
forward so that the amount of air influenced by their rotors is increased by their 
forward motion. The same arguments explain why bees and very small birds like hum- 
mingbirds can hover by wing beating, but larger birds cannot. Insects and humming- 
birds have small values of mass / unit wing area, so they can stay up in inefficient 
hovering flight. Big birds have higher values of mass / unit wing area, and cannot 
hover by wing beating [5]. (Soaring birds like eagles seek out rising air currents: They 
do not hover by beating their wings.) 

(7.55) 
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Finally this same consideration explains why the commercial aircraft indus- 
try is replacing simple jet engines with fan-jet or high-bypass engines, which move 
more air than a simple jet engine, making a smaller change in its velocity, and 
hence getting better fuel efficiency. Figure 7.15 shows this. About 40 percent of 
the air passing the first compressors passes through the combustion chambers; the 
remaining 60 percent passes through the channel around the outside of the engine. 
These flows mix at the tail, so that the overall air flow is greater and the change 
in velocity smaller than was seen in the earliest engines of this type, which did not 
have this “bypass”. 

7.7 THE ANGULAR-MOMENTUM 
BALANCE; ROTATING SYSTEMS 

In the study of rotating systems it is convenient to define a quantity called the angu- 

lar momentum of a body: 

Angular momentum mass of tangential 
= : ‘ : L=mw _ (7.57) 

of a body, L abody, m/ \velocity, w 

The geometric significance of these terms is most 

easily seen by examining a body in motion and 

y a using polar coordinates; see Fig. 7.25.* We see from 

Eq. 7.57 that the angular momentum of a body 

| v,= 2 depends not only on the body’s velocity and mass 

but also on the point chosen for the origin of the 

coordinate system. This causes no confusion if we 

always make clear what choice of origin we make. 

Since the idea of angular momentum is used most 

often in rotating systems, generally it is easiest to 

choose the origin so that it coincides with the axis 

* — of rotation. 

The r of a large body is not constant over the 

do 
a ae 

Small body 

FIGURE 7.25 _entire mass, so we must find the angular momentum 

_ Velocity components in polar by integrating over the entire mass: 
coordinates. Here V is the velocity 

vector, Vg is the tangential L= " rV, dm (7.58) 

component of the velocity, or simply entire mass 

the tangential velocity, and V, is the ‘ ’ ‘ byte ; 
radial component of the velocity, or As shown in Fig. 7.25, the tangential velocity Vg is 

simply the radial velocity. equal to rw; therefore, for constant angular velocity 

over an entire body (i.e., a rotating rigid body), this 

*This equation is really one component of a vector equation, which is written L = mr X V. The other 

components of this vector equation refer to rnotions of the axis of rotation, which are significant in sys- 

tems such as gyroscopes but seldom important in fluid mechanics. Therefore, we refer the reader to texts 

on mechanics for the three-dimensional vector form of this equation. 
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simplifies to 

L= of rdm=wol (7.59) 
entire mass 

where J is the angular moment of inertia, 44 r° dm. 
entire mass 

It can be readily shown that angular momentum, like linear momentum, obeys 

the balance equation, but with the difference that in place of force acting we have 

torque acting, where 

Torque = tangential force - radius; T= Fer (7.60) 

So the angular momentum balance (for a fixed axis of rotation) becomes 

dL = (rVo)in dMin — (TVo)our @Mour + V dt (7.61) 

Again we can divide by dt to find the rate form: 

dL : : 
(=) a (rVo)in Min — (7Vo)out Mout + r (7.62) 

sys 

This equation, often referred to as the moment-of-momentum equation, is one of the 

basic tools in the analysis of rotating fluid machines, turbines, pumps, and other 

devices [6]. In steady-state flow (dL / dt),,, is zero and mj; equals mo; So we have 

| m[(rVe)out ra (rVe)inIsys (7.63) 

which is Euler’s turbine equation. 

Example 7.18. A centrifugal water-pump impeller rotates at 1800 rev / min; see 

Fig. 7.26. The water enters the blades at a radius of 1 in and leaves the blades at 

a radius of 6 in. The total flow rate is 100 gal / min. The tangential velocities in 

and out may be assumed equal to the tangential velocity of the rotor at those radii. 

What is the steady-state torque exerted on the rotor? 

: al Ibm lb k 7 2100 2g eg OR gaa SE became Be (7.BG) 
min gal min min 

(Vo)in = Fin®, (Vo)out = Four (7.BH) 

From Eq. 7.63, we write 

T = mo(rau — ra) (7.B)) 

Impeller rotates [Pas sais Ibm : 2m * 1800 ‘1800 
with angular min min 

velocity w Vo, out 6 2 1 > 

| \(< i) : (4 ft 
22 te 

ie (5) Ru sthalesie 65 
Centrifugal 32.2 lbm: ft 3600 s* 

pump impeller 
= 19.8 ft: lbf 

FIGURE 7.26 = 26.8N-m (7.BJ) 
Centrifugal pump impelier. ; = 
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This is the net torque acting on the rotor; the algebraic sum of the positive torque 
exerted by the shaft driving the rotor and the negative torque exerted by friction 
between the rotor and the surrounding fluid. If we wished to know the total torque 
applied to the shaft, we would need to know the frictional resistance; that is a much 
harder problem than this one. 

7.8 SUMMARY 

1. Momentum is the product of mass and velocity. 

2. The momentum balance is simply the restatement of Newton’s second law, 
F = ma, in a form that is convenient for fluid-flow problems. 

3. The momentum balance is useful in allowing us to solve some fluid-flow. problems 

from the outside, without having to know in detail what goes on inside. 

4. The momentum balance, as we show, is applicable to unsteady flows like starting 

and stopping flows. B.E. is of no use for such flows! 

5. The momentum balance is useful for flows in which two streams at different veloc- 

ities mix and exchange momentum, e.g., the Bunsen burner. B.E. is of no use for 

such flows! 

6. For rotating systems it is convenient to introduce an additional defined quantity 

called the angular momentum, which obeys a simple balance equation. It is used 

to analyze rotating systems like pumps and compressors. 

7. In Part IV we will apply the momentum balance to three-dimensional flows and 

show some of its applications. 

PROBLEMS 

See the Common Units and Values for Problems and Examples, inside the back 

cover! An asterisk (*) on a problem number indicates that its answer is shown in 

App. D. 

7.1.*The earth has a mass of roughly 107° Ibm. A person standing on the earth throws a 1 Ibm 

rock vertically upward, in a direction perpendicular to the earth’s motion about the sun, 

at a velocity of 20 ft/s. 

(a) How much does the velocity of the earth increase in the direction opposite the throw? 

(b) When the rock has fallen back to earth, what is the velocity of the earth compared 

with its velocity before the rock was thrown? 

(c) When the rock has fallen back to earth, is the earth back on the same orbital path it 

had before the rock was thrown, or has its orbital path been shifted? 

7.2. A 5 lbm gun fires a 0.05 lbm bullet. The bullet leaves the gun at a velocity of 1500 ft/s 

in the x direction. If the gun is not restrained, what is its velocity just after the bullet 

leaves? Work this problem two ways: 

(a) Taking the gun as the system. 

(b) Taking the combined gun and bullet as the system. 

7.3. In Example 7.2, what fractions of the initial kinetic energy of the duck and of the bullet 

are converted to internal energy? 
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7.4. In movies and TV thrillers the hero shoots the villain, and the force of the bullet throws 

the villain into the air, causing his corpse to land several feet from his original position. 

If we assume that the bullet remains in the villain, what is the relation of the momen- 

tum transferred by the gun to the hand of the hero, and the momentum transferred by 

the bullet to the body of the villain? Are movies and TV a good place to learn one’s 

physics? 

7.5.*A fire hose directs a stream of water against a vertical wall. ‘The flow rate of the water 

7.6. 

Het: 

7.8 

is 50 kg/s, and its incoming flow velocity is 80 m/s. The flow away from the impact 

point has zero velocity in the x direction. What is the force exerted by this stream on the 

wall? 

Repeat Prob. 7.5, but instead of a fire hose the exhaust from a jet engine flows against 

the wall. Its velocity is 400 m/s, and its mass flow rate 200 kg/ 3. 

In Examples 7.3 and 7.4 the analysis was simple because the jet was at right angles to 

the solid surface. You can observe with a garden hose that such jets, perpendicular to 

walls or sidewalks, go off radially in all directions, with more or less circular symme- 

try. You will also observe that there is a region near the jet that is much shallower than 

the rest, as shown in Fig. 7.23 and described in Sec. 7.5.3. A more interesting and 

complex problem is the flow of a jet against a flat surface that is not perpendicular to 

it; you can also observe this flow with a garden hose. The flow is more or less circu- 

larly symmetrical, but much more goes away in the direction away from the hose than 

in the direction toward the hose. But why does any of it flow back in the direction toward 

the hose? 

We can understand this if we replace the three-dimensional problem (circular jet, 

moving in x, y, and z) directions with a two-dimensional jet (as might issue from a rec- 

tangular slot) that is constrained to move only in the x and y directions (by directing it 

into an open rectangular channel, which prevents flow in the z direction). This flow is 

sketched in Fig. 7.27. Friction is assumed to be negligible, so from B.E. (ignoring grav- 

ity) we see that both streams flowing along the wall must have the same velocity as that 

in the jet, V,. In the figure the stream going off to the upper right, (2), is larger than that 

going to the lower left, (3), in accord with the observation described above. If the flow 

is frictionless, then there can be no shear stress on the wall, so the resisting force must 

act normal to the surface as shown. We could attempt to solve for these flows by writ- 

ing the x and y components of the steady flow momentum balance, but that adds more 

terms and only makes the analysts harder (try it!). 

Instead, we choose a new set of axes for our momentum balance, with one 

axis, the s direction, parallel to the plate and the other, the r direction, perpendicu- 

lar to the plate, as sketched on Fig. 7.27. We now apply Eq. 7.17 in the s direction, 
finding 

0 = mV, cos 80 — mV — m3V3 + F, (7.64) 

From the assumption of frictionless flow, we can see that F, = 0, that the absolute mag- 

nitudes of V;, V2, and V; are the same, but that V3 is in the minus s direction, so that it 

is equal to —V,. Making these substitutions, and dividing by V,, we find 

0 = m, cos 8 — m) + m; (7.BK) 

(a) Using the material balance to eliminate m3, show the equation for mz / my. 
(b) Show the equation for the force exerted on the wall in the r direction. 

In a steady-state methane-air flame at approximately atmospheric pressure the temper- 
ature is raised from 68°F to 3200°F. The incoming air-gas mixture and the products of 
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m, Vy 

FIGURE 7.27 

A jet impinging on a surface not perpendicular to it. We solve in the r-s 

coordinate system, instead of the x-y system. 

combustion may both be considered ideal gases with a molecular weight of ~28 g / mol. 

The flame is a thin, flat region perpendicular to the gas flow. If the flow comes into the 

flame at a velocity of 2 ft/s, what is the pressure difference from one side of the flame 

to the other? This problem and its consequences are discussed in Lewis and Von 

Elbe [7]. 

7.9. A new type of elevator is sketched in Fig. 7.28. The stream of water from a geyser 

will be regulated to hold the elevator at whatever height is required. If we assume that 

the maximum flow of the jet is 500 lbm/s at a velocity of 200 ft/s, what is the rela- 

tion between the weight of the elevator and the maximum height to which the jet can 

lift it? 

7.10.*A sailboat is moving in the y direction. The wind 

approaches the boat at an angle of 45° to the y 

direction and is turned by the sails such that it 

leaves in exactly the minus y direction. 

(a) If we assume that the average velocity of the 

incoming and outgoing wind is 10 m/s and 

that the mass flow rate of air being turned by 

the boat’s sails is 200 kg/s, what are the x 

and y components of the force exerted by the 

boat’s sails on the air? ; 
(b) These are the opposite of the forces exerted 

by the air on the boat. The y component of 

FIGURE 7.28 the wind force drives the boat in its direction 

Hydraulic jet elevator. of travel. What does the x component do? 
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FIGURE 7.29 

Nozzle, bolted to pipe. 

Flanged joint 

Hose 

FIGURE 7.30 

Pipe used as a sprayer. 

Flex hoses 
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| 7.13. 

Flow 
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FIGURE 7.31 

Vertical pipe U-bend. 

@ 

\ 

Flexible hoses 

x 
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FIGURE 7.32 

Horizontal pipe U-bend. 

Support 

7.11.*A nozzle is bolted onto a pipe 

by the flanged joint shown in 

Fig. 7.29. The flowing fluid is 

water. The cross-sectional area 

perpendicular to the flow at point 

1 is 12 in? and at point 2 is 3 in’. 
At point 2 the flow is open to the 

atmosphere. The pressure at 

point 1 ~ 40 psig. 

(a) Estimate the velocity and 

mass flow rate by B.E. 

(b) What is the force tending to 

tear the nozzle off the pipe? 

The 5 ft length of 1-in schedule 

40 pipe in Fig. 7.30 is used on a 

sprayer. The flow velocity is 

100 ft/s. 

(a) What is the pressure at the 

flanged joint, calculated by 

B.E. and the. friction meth- 

ods in Chap. 6? 

(b) What is the force tending to 

tear the flange apart? 

(c) How is this force transmitted 

by the fluid to the pipe? 

Repeat Example 7.7 for 3-in schedule 40 

pipe with water flowing at 8 ft/s and pres- 

sure 30 psig throughout. 

712. 

. The pipe U-bend in Fig. 7.31 is connected 

to a flow system by flexible hoses that 

transmit no force. The pipe has an ID of 

3 in. Water is flowing through the pipe at a 

rate of 600 gal / min. The pressure at point 

1 is 5 psig and at point 2 is 3 psig. What 

is the vertical component of the force in 

the support? Neglect the weight of the pipe 

and fluid. 

7.15.*The U-bend shown in 

Fig. 7.32 is connected 

to the rest of the pip- 

ing system by flexible 

hoses. The ID of the 

pipe is 3 in. The fluid 

flowing is water, with 

an average velocity of 

50 ft / s. The gauge pres- 

sure at point 1 is 30 psig 

and at point 2 is 20 psig. 

What is the horizontal 

component of the force 

in the support? 
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FIGURE 7.33 

U-bend flow meter. 

7.16. A new type of flow meter is sketched in Fig. 7.33. In it we read the two pressure gauges 

and the force on the pipe bend (using strain gauges and dandy electronics). From those 

three readings we compute the fluid velocity in the pipe. The cross-sectional area of the 

pipe and the couplings and of the bend is 1.000 in*. The flowing fluid is water. P1 reads 

20 psig, P2 reads 18 psig. The restraining force, measured by the strain gauge and the 

dandy electronics, is 45 lbf, acting in the minus x direction. The couplings between the 

straight sections of pipe and the bend are of a magical variety that transmit no forces and 

allow no leakage. For this problem, the acceleration of gravity is zero (we are in a space 

capsule). What is the fluid velocity in the pipe? 

7.17.*A pump, together with the electric motor that drives it, is mounted on a wheeled cart that 

can be rolled about to various places in our plant for various pumping tasks. It is con- 

nected to the vessels to be pumped by flexible hoses that transmit no forces and is con- 

nected electrically by a flexible cord that transmits no forces. The pump inlet and outlet 

are parallel both to each other and to the x axis. The inlet pipe diameter is 4.00 in and 

the outlet pipe diameter is 3.00 in. The flow rate through the pump is 230 gal / min of 

water. The pressures at the inlet and outlet are 10 psig and 50 psig, respectively. 

(a) How much force must we exert on the pump-motor-cart assembly to keep it from 

moving? 

(b) In which direction must we exert this force? 

7.18. A large rocket engine ejects 200 kg/s of exhaust gases at a velocity of 4000 m/s. The 

pressure of the exhaust gas is equal to the atmospheric pressure. What thrust does the 

engine produce? 

7.19.*Calculate /,,, for the rocket in Example 7.8. Why is this dif- 

ferent from the result in Example 7.9? 

7.20. The compressed-air-driven water rocket shown in Fig. 7.34 

is ejecting water vertically downward through a frictionless 

nozzle. The exit area of the nozzle is 1 in*. When the pres- 

sure and elevation are as shown, how much thrust does the 

rocket produce? 

7.21. A spherical toy balloon has diameter (when inflated) of 6 in 

and an internal pressure of 1 psig. The neck of the balloon 

FIGURE 7.34 has a diameter of 0.5 in. The skin of the balloon has a mass 

Compressed-air rocket. of 0.0075 Ibm. At time zero we release the neck of 
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the balloon, allowing the air to escape in the positive x direction. The balloon is at rest 

at time zero and then moves away in the negative x direction. Estimate the acceleration 

of the balloon at time zero, when the flow out the neck has reached its steady-state value 

but the balloon has not started to move yet. For this problem ignore any air resistance to 

the movement of the balloon. _ 

7.22.*A typical high-pressure oxygen cylinder of the type commonly found in welding shops 

7.23. 

7.24. 

125. 

and laboratories falls over. The valve at the top is broken off in the fall, making a hole 

with a cross-sectional area of 1 in’. At the time of the accident the cylinder is full, so 

the internal pressure is 2000 psia. The internal temperature is 70°F. The flow through the 

nozzle cannot be described by B.E., because it is a high-velocity gas flow. By using the 

methods of high-velocity gas flow (to be developed in Chap. 8) one may estimate that 

the outlet velocity is 975 ft/s, that the outlet density is 7.0 lbm / ft?, and that the pres- 

sure in the plane of the outlet is 1060 psia. 

(a) How much thrust does the oxygen cylinder exert? 

(b) Is it a worthwhile safety practice to fasten these cylinders so they cannot fall over? 

(c) The tops of high-pressure gas cylinders are protected either by collars (propane 

cylinders) or screwed-on thick-walled caps (gases like oxygen or hydrogen). Explain 

this practice. 

The following is an incorrect solution to the preceding problem. Where is its error? 

Incorrect solution. The pressure everywhere in the container is 2000 psig, except over 

the area of the outlet. So the pressure forces cancel, except for a section of | in*, which 

has 2000 psig pointing away from the nozzle and 1060 psig pointing the other way at the 

nozzle. Thus, the net force is (2000 — 1060) psig: 1 in* = 940 Ibf. 

A typical garden hose has an inside diameter of } in. The water stream flowing from it 

has a velocity of 10 ft/s. 

(a) If such a hose is left loose, will the end move about? 

(b) Would it move about if it were perfectly straight, or must it be curved? 

(c) What is the maximum plausible value of the force involved in any such motion? 

The 3-ft-diameter, horizontal main water cooling line from a nuclear reactor breaks. The 

pressure inside the reactor is 1000 psia, and the water surface inside the reactor is 20 ft 

above the broken line. The exiting fluid (a steam-water mixture) has a density of 

50 lbm/ ft*. Estimate the horizontal force on the pipe-reactor system due to the flow 

through the broken pipe. Assume frictionless flow and B.E. 

7.26.*The rocket motor sketched in Fig. 7.35 has the 

nozzle bolted to the combustion chamber, which 

contains the fuel. The flow rate is 300 Ibm/s. At 

section 1 the cross-sectional area = 5 ft’, the 

pressure is 300 psia, and the velocity is 300 ft/s. 

Combustion chamber 

@ . At section 2 the corresponding values are 1.5 ft’, 

40 psia, and 4600 ft/s. Estimate the following: 

(a) The thrust of the rocket motor. 

(b) The force (compressive or tensile) at the joint 

between the nozzle and combustion chamber. 

7.27. In Example 7.10 we took the system boundary far 
Nozzle @ enough away from the engine that the velocity 

there was negligible. If we take our system bound- 
FIGURE 7.35 aries right at the inlet and outlet of the engine, then 
Solid-fueled rocket. the outlet velocity will be unchanged, but the inlet 
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velocity will become about 500 ft/s. The thrust of the engine is the same, independent 
of what system we choose (the engine does not care what we have in mind). Repeat Exam- 
ple 7.10, making this change in system. Hint: Consider the inlet pressure. 

7.28. In Example 7.10 we ignored the mass flow of the fuel, which we asserted was negligi- 
ble. Actual jet engines have mye / mi, ~ 0.02. For the same air flow rate and inlet and 
outlet velocities, by what fraction does the computed thrust of the engine increase if we 
take this additional flow into account? Assume that the fuel crosses our system bound- 

ary in the y direction, so that its inlet x velocity = 0. 

7.29. If the sudden expansion in Fig. 7.12 were replaced with a gradually outward-tapering 
transition, then the friction losses would be very small, often practically zero. Show how 

the momentum balance for that flow differs from the momentum balance for the sudden 
expansion. 

7.30. Check several values of Fig. 6.16 to see if the sudden expansion curve was actually made 
up from Eq. 7.28. 

7.31. (a) Set up the spreadsheet solution to Example 7.11, and show that the numerical solu- 

tion does converge to the values shown in Table 7.2. 

(b) Using the spreadsheet program, rerun the solution to Example 7.11 on the assump- 

tion that we should have used an orifice coefficient of 0.6 (see Sec. 5.8) in the B-E. 

for the gas flow. How does this change the calculated values of P>, V3, and 

Bpical Mad? 

TSI Ce: — Using the spreadsheet prepared in the previous problem, repeat Example 7.11 for 

propane as a fuel. In the United States propane is distributed inside houses at 11 in 

of water, compared to the 4 in of water for natural gas. What are the calculated val- 

ues of Pz, V3, and mai, / Mgas? 
(b) The values found in part (a) show that simple connection of a natural gas appliance 

to a normal propane supply line will produce a flame much larger and smokier than 

the appliance was designed to produce with natural gas. To solve the fuel-conversion 

problem, appliance manufacturers supply conversion kits. To convert a natural gas 

appliance to propane, the conversion kit normally replaces the fuel jets with ones 

with ~45 percent as large a cross-sectional area as the jets for natural gas. Using the 

spreadsheet program used in the previous problem, rerun part (a) of this problem 

with a gas orifice area 45 percent as large as that in Example 7.12. What are the cal- 

culated values of P>, V3, and m,;, / Mzoat 

7.33. In our treatment of the Bunsen burner in Example 7.11, 

(a) Calculate the Reynolds number of the gas jet, the incoming airflow, and the mixed 

flow (simplify by using the kinematic viscosity of air for all three flows). 

(b) Which of these flows are laminar? Which are turbulent? 

(c) Sketch the velocity distribution in such a flow. Here an intuitive sketch will do. 

(d) In applying Eq. 7.29 we asserted that the rightmost term, which involves the shear 

stress at the wall was negligible. Check that assumption as follows; First, show that 

if we assume laminar flow we can substitute 

YIU AGH VV BhV 

eg ns Ts 
(7.BL) 

which makes the rightmost term 87V3Ax. Second, evaluate the magnitude of this 

term for the values in Example 7.11. Your answer should have the dimension of 

lbf. Third, evaluate the magnitude of the m,,,(V3 — Vgas,2) term for the same exam- 

ple, also in Ibf. Show the ratio of this “momentum of the gas jet” term to the wall 

shear term. 
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————}> X 

Exhaust, normally 

at P= Pat 

High-pressure 

steam P >> Pam 

Flow from 
low pressure 

RB, ES Leo 

FIGURE 7.36 
Steam-jet ejector or vacuum pump. 

7.34, 

7.35. 

: 7.36. 

Figure 7.36 is a sketch of a steam-jet ejector of a type widely used to produce vacuums 

in process equipment. Conceptually, it is the same as the Bunsen burner in Fig. 7.14. A 

faster-moving central flow, produced in this case by high-pressure steam, exchanges 

momentum with a slower-moving surrounding flow, in this case the gas being removed 

at a vacuum; and the mixed stream discharges at a pressure intermediate between that of 

the incoming driver fluid and the lower-pressure driven fluid, in this case at atmospheric 

pressure. If we write the momentum balance (analogous to Eq. 7.29) for the system con- 

sisting of the inside of the device from 2 to 3, what term will appear in the momentum 

balance that does not appear in Eq. 7.29? 

When a rocket is moving in the positive x direction with velocity V, and this velocity is 

equal and opposite to the velocity of the exhaust gas relative to the rocket, then the 

exhaust velocity relative to fixed surroundings is zero. Thus, according to Eq. 7.37, 

d(mV) / dt = 0. Does this mean that the rocket is not accelerating? Explain. 

Show the equivalent of Eq. 7.38 for vertical flight with a constant value of the acceler- 

ation of gravity and zero air resistance. 

7.37. The rocket in Example 7.12 is now fired vertically. The specific impulse and mass ratio 

are the same as in that example. The rocket consumes all its fuel in 1 min. Calculate its 

velocity at burnout, taking gravity into account. 

7.38.*A rocket starts from rest on the ground and fires vertically upward. During the entire 

7.39. 

upward firing the velocity of the exhaust gas, measured relative to the rocket, is 

4000 m/s. The pressure in the exit plane of the rocket nozzle is always exactly equal to 

the surrounding atmospheric pressure. The mass of the rocket and fuel before launching 

is 100,000 kg. The mass of the burned-out rocket is 20,000 kg. The entire burning process 

takes 50 s. What is the velocity of the rocket at burnout? Ignore air resistance. 

A cylindrical tank, shown in Fig. 7.37, is sitting on a platform that in turn rests on 

absolutely frictionless wheels on a horizontal plane. There is no air resistance. At time 

zero the level in the tank is 10 ft above the outlet, and the whole system is not moving. 
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=| 0 ft—+ y Then the outlet is opened 

and the system allowed 
ne to accelerate to the left. 

s The flow through the out- 

let nozzle is frictionless. 

10 ft What is the final velocity, 

assuming that 

(a) The mass of the tank 

and cart is zero? 

(b) The mass of the tank 

and cart is 3000 Ibm? 

7.40. The cart in Fig. 7.38 has a 

mass of 2000 kg. It is rest- 

ing on frictionless wheels 

on a solid, level surface 

and encounters no air 

resistance. At time zero it 

is standing still, and a jet 

from a fire hose is used to 

start it moving. The mass 

flow rate of the fluid from 

the fire hose is 100 kg/s, 

and its velocity relative 

to fixed coordinates is 

FIGURE 7.38 50 m/s. The cup on the 
Starting a cart with a fire hose jet. rear of the cart turns the 

jet around so that it leaves 

in the minus x direction with the same velocity relative to the cart with which it entered. 

Calculate the velocity-time behavior of the cart; assume the jet is unaffected by gravity. 

(This is not a very practical problem, but it is analogous to the more complex and inter- 

esting problem of starting a large turbine from rest. All such turbines must be occasion- 

ally shut down for maintenance; their starting and stopping behavior is more complex than 

their behavior running at a steady speed.) 

Repeat Prob. 7.40 with the following change. Instead of the cart turning the jet around 

by 180° so that it flows out in the minus x direction, the cart only turns the jet by 90°, 

so that it flows out to the side at a right angle to the x axis. How long does it take the 

cart to reach a velocity of 40 m/s? 

In Fig. 7.17 we show that the maximum efficiency for the simple blade-jet interaction in 

Fig. 7.16 occurs when the blade speed is exactly one-half of the jet speed. One can also 

show this by rewriting Eq. 7.42 as 

dw 
ao = 2 (Viet ia Volade) Vplade (7.BM) 
m 

Exit area 

1 ft? 

FIGURE 7.37 

Draining tank on frictionless cart. 

7.41 

7.42 

Differentiate both sides of this equation with respect to Vpjage and set the derivative equal 

to zero. Show that doing so leads to the same conclusion. 

7.43. In Example 7.13 the pipe was long enough that we ignored the kinetic energy in the fluid 

leaving the downstream end of the pipe and the entrance loss. 

(a) Rework the example, taking that kinetic energy and entrance loss into account, and 

show that the change is negligible. 
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7.44, 

(b) Rework the example for a 1-ft-long pipe, for which case the term involving f will be 

negligible compared to the term involving the kinetic energy. 

If a fluid were absolutely incompressible, which no materials known to humans are, then 

the speed of sound in that fluid would be infinite. What happens to the pressure rise in 

Example 7.14 as we replace the water with fluids that are less and less compressible? 

7.45.*Repeat Example 7.14, with the flowing liquid being propane, for which (at 70°F) the den- 

7.46. 

7.47. 

sity is 31.1 lbm/ft® and the speed of sound is 2150 ft/s. The velocity of the flowing 

fluid is the same as in that example. 

Example 7.14 makes clear that rapid valve closure can cause very high pressures at the 

valve. That raises the obvious question of how slowly one must close a valve to avoid 

water hammer. The approximate answer is that if the time to close is longer than the time 

for a sound wave to make a round trip from the valve to the reservoir, then no signifi- 

cant water hammer will occur. Again, see Parmakian [4] for more details. 

(a) In Example 7.14, how long is this? 

(b) Why is the time required that for a round trip, rather than the time for a one-way 

trip? Hint: For instantaneous closure, all the fluid is brought to rest in time 

(t = L/c). When it has all been brought to rest it is at a pressure much higher than 

the pressure in the reservoir. What will happen then? 

Problem 7.46 shows that the time required for a valve to close without causing water 

hammer is linearly proportional to the length of the pipe, whereas Example 7.14 shows 

that the expected pressure rise is independent of the length of the pipe. Why? 

7.48.* Water is flowing at a depth of 2 ft and a velocity of 50 ft/s. It undergoes a hydraulic 

7.49. 

jump. What are the depth and velocity after the jump? 

Water is flowing at a depth of z,. What is the minimum velocity at which this water could 

undergo a hydraulic jump? Why? 

7.50.*Water is flowing steadily in a river 20 ft deep. If an obstruction is placed in the river, increas- 

eos 

7.52. 

USB 

ing the depth at the obstruction, what is the lowest river velocity at which the obstruction 

will cause a hydraulic jump to occur? If the velocity is less than this, what will happen? 

In Eq. 7.AZ, we use gauge pressure, leaving out the atmospheric pressure force terms. 

Is this permissible? The areas on which the fluids exert pressure are not the same. Explain 

why that all works out satisfactorily. 

Show that the friction heating in a hydraulic jump is given by 

af Seleat> zy 
Chad oe (7.65) 

42122 

Water is flowing in a horizontal gutter with velocity 10 ft/s and depth 0.1 ft. We now 

place a large brick in the gutter, which stops the flow. The flow is stopped by a hydraulic 

jump, which then moves upstream from the brick. The brick is large enough that there 

is no flow over it. The fluid between the brick and the jump has zero velocity. The jump 

moves upstream, with a velocity V;. What is the numerical value of V;? 

This is a messy problem analytically. It is fairly easy on a spreadsheet if one takes 

the viewpoint of someone riding on the jump (the lagrangian viewpoint) and solves by 

trial and error for the jump velocity that satisfies the hydraulic jump equation in the mov- 

ing frame of reference. 

7.54.*Water flows through a hydraulic jump, entering at a velocity of 50 ft/s and a depth of 

Too’ 

10 ft. How much does the temperature of the water increase in this jump? For water, 
Cy = du/ dt = 1.0 Btu/ Ibm: °F. 

Figure 7.23 shows a hydraulic jump, in radial geometry, which is easily demonstrated in a 
kitchen sink. If the sink drain is open, then the flow is steady and the depths and velocities 
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in the sink do not change with time. If we now close 

the drain, without changing the flow from the 

faucet, what will happen? Describe the situation in 

terms of the mathematical description of hydraulic 

jumps. 

7.56.*All other things being equal, is it easier for an air- 

plane to take off on a short runway on a hot day or 

on a cold day? Why? 

7.57. An ordinary garden hose sprinkler is sketched in 

Fig. 7.39. All the fluid enters at the axis (r ~ 0) and 

leaves through the nozzles (r = 6 in). If the total 
flow rate is 5 gal / min, and the rotor is held in place 

by someone’s hand, how much torque will the rotor exert? The jets leaving the sprinkler 

each have a diameter of 0.25 in. 

7.58. If the garden hose sprinkler in Prob. 7.57 is turned on and allowed to rotate freely, at 

what speed will it rotate? Assume that there is no air resistance or friction in the bear- 

ing of the sprinkler. 

7.59. If we put the sprinkler in Prob. 7.57 under water and turn it on, will it rotate? Which 

way? 

7.60. Why do helicopters have either one main propeller and a small tail propeller or two main 

propellers rotating in opposite directions? How is the corresponding problem solved in 

propeller-driven airplanes? In jet airplanes? 

FIGURE 7.39 

Rotating garden hose sprinkler. 
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CHAPTER 

8 
ONE-DIMENSIONAL, 
HIGH-VELOCITY 
GAS FLOW 

n this chapter we apply the ideas of the preceding chapters to the flow of gases at 

high velocities. No new principles are introduced in this chapter; those previously 

introduced will supply all our needs. Nevertheless, this is a separate chapter, because 

in high-velocity gas flow several phenomena occur that either are not present at all or 

are present in negligible amounts in the flow of liquids at their ordinary velocities and 

in the flow of gases at low velocities. For working purposes we define high velocity 

as a velocity in excess of about 200 ft/s (61 m/s). In Table 5.1 we showed that 

below this velocity the predictions of B.E. and those to be found in this chapter 

were approximately the same. Here we examine why that is no longer true for higher 

velocities. 

The principal differences between high-velocity gas flows and the flows we have 

studied so far are the following: 

1. In an expanding high-velocity gas flow the gas can convert significant amounts 

of internal energy into kinetic energy. This results in large decreases in gas tem- 

perature and in velocities higher than would be predicted by B.E., which has a 

constant-density assumption (see Table 5.1). 

2. The changes in density that accompany high-velocity gas flows will complicate our 

mathematics. In typical situations we will have one more unknown and one more 

equation to deal with than in the corresponding constant-density flow. As the equa- 

tions in this chapter become longer and more complex than those in the preced- 

ing chapters, remember that this is the reason for the added complexity. 
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3. The velocities in high-velocity gas flows are frequently equal to or greater than the 
local speed of sound. Information about small disturbances in fluid flow propagates 
through fluids at the speed of sound, so when the fluid is moving at the speed of 
sound or faster, certain kinds of information will be unable to travel upstream 
against the flow. This leads to some special phenomena in high-velocity gas flow, 
the most important of which are choking and shock waves. Choking is very com- 
mon in chemical engineering practice. 

8.1 THE SPEED OF SOUND 

The speed of sound which will play an important part in what follows, is the 

speed at which a small pressure disturbance moves through a continuous medium. 

Sound, as our ears perceive it, is a series of small air-pressure disturbances oscil- 

lating in a sinusoidal fashion in the frequency range from 20 to 20,000 cycles per 

second. The magnitude of the pressure disturbances is generally less than 10 ° psia 

(7 Pa). 

Suppose that we have a bar of steel 1 mi long. We tap the steel sharply on one 

end; our tap causes the near end of the bar to move 0.001 in. If the steel were 

absolutely incompressible, the far end of the bar would also move 0.001 in instantly. 

It does not; it moves about one-third of a second after we tap the near end. Nothing 

in this world is absolutely incompressible. 

Consider a pipe full of some fluid, with pistons at each end. We tap one of the 

pistons. This causes the pressure adjacent to the piston to rise. This moves the next 

layer of fluid, whose pressure rises, and so on, causing a small pressure pulse to pass 

down the pipe. This is shown schematically in Fig. 8.1. In Chap. 7 (see Fig 7.20) we 

showed that it is easiest to analyze wave propagation of almost all kinds by taking 

the viewpoint of an observer moving at the same speed as the wave. If we take that 

view, we appear to be standing still and the walls of the pipe to be rushing past us. 

The fluid in the pipe also is rushing toward us and rushing away behind us. We mea- 

sure the velocity, pressure, and density of the fluid ahead of us and behind us; the 

values of those ahead are slightly different from the values of those behind. This sit- 

uation is shown in Fig. 8.2. 

The pressure pulse is assumed to have the small volume shown in Fig. 8.2. The 

mass flowing into it is the same as the mass flowing out, so we can apply the steady- 

flow mass-balance equation, 

pAV = (p + dp)A(V + dV) (8.1) 

Dividing by A, we expand the right-hand side and cancel the pV term to get 

0=Vdp+pdV+dpdvVv (8.2) 

im eee em The far right-hand term here is the 

ee do eine i product of two differentials and may 
WA be ignored (here, but not in Sec 8.5), 

so that 
FIGURE 8.1 

A pressure pulse passing down the fluid in a pipe. 0 = Vdp + pdVv (8.3) 
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Applying the steady-flow momen- 

tum balance, Eq. 7.17, to the 

system shown in Fig. 8.2, we see 

that there is no accumulation, 

that there is a steady flow in and 

out, and that the only forces act- - 

Stationary observer sitting jing are the pressures on either 
on stationary pressure pulse 

System boundaries 

Pressure P + dP Pressure P 

Density p + dp 

Velocity V + dV 

Density p 

Velocity V—» 

side; so 

Deter = peg PO ae 0 = m[V - (V + dV) 
The pressure pulse in Fig. 8.1, from the viewpoint of an 

observer riding with it. + ALP (P+ aP ih asa) 

Replacing m with pAV and simplifying, we find 

=r 
pdV= aa (8.5) 

Substituting this value of p dV in Eq. 8.3 and solving for V produces 

LA2 gia ( 2h bo wan ot os gH ait 
This equation tell us how fast the fluid flows toward the observer riding on the 

small pressure pulse, which is the same as the velocity at which the pressure pulse 

moves past a stationary observer. In deriving this equation we never relied on our ini- 

tial assumption that the material through which the pressure wave is passing is a fluid; 

the derivation is equally valid for a liquid, a solid, and a gas. 

The equation was worked out for a single step change in pressure. Sound, as 

we experience it, is a sinusoidally varying pressure wave. However, it may be thought 

of as a combination of small step changes in pressure following each other. Thus, this 

equation, which we found for a single step change, is applicable also to any shape of 

pressure change, such as a sound wave. 

Equation 8.6, as it stands, is ambiguous, because the derivative dP / dp is 

ambiguous. The pressure P generally is a function not only of p but also of temper- 

ature. Newton [1] derived its equivalent and assumed that the derivative referred to a 

constant-temperature process, that is, that it was (aP / dp)7. On this assumption he 
calculated the speed of sound in air and obtained an answer that was about 80 per- 

cent of the experimentally measured velocity. His assumption was plausible—we do 

not see the air being heated by sound passing through it—but it was wrong. Later 

workers decided that what really occurs is that a layer of gas is heated by being com- 

pressed and then cooled by expanding against the adjacent layer of gas. The net result 

is that the gas undergoes a practically reversible, adiabatic compression-expansion. 

For it to be adiabatic, it must occur so fast that there is little opportunity for the 

warmer gas in the middle of the pressure wave to transfer heat to the cooler sur- 
rounding gas. The success of this assumption in predicting the measured velocities of 
sound waves leads us to believe that the process is indeed this fast. The temperature 
rise in a sound wave is very small (see Prob. 8.2). In a reversible adiabatic process, 
the temperature is not constant, but the entropy is. Therefore, the final equation for 
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the speed of sound is 

’ aP 1/2 

V= (=) (8.7-A) 
dp /s 

The speed of sound is a special quantity, which we will want to keep separate 
from the local velocity of fluid flow. Therefore, we introduce another symbol, c, for 
it. This makes Eq. 8.7-A become 

aP ie \ (2) an 
This equation is correct for solids, liquids, and gases. For solids and liquids, the easily 

measured (dP / dp); is practically the same as the (dP / dp); here; so we may write 

aP 12 aP 1/2 aie. 

c= ap = op [solids and liquids] (8.8) 
JS i 

with satisfactory accuracy. Handbooks often tabulate, not (dP / ap); of solids and liq- 

uids, but the bulk modulus K: 

; oP 
(Bulk modulus) = K = o( =) (8.9) 

Op /r 

or the isothermal compressibility, which is the reciprocal of the bulk modulus. In terms 

of the bulk modulus, 

ty 2 {72 

c= () = (£) [solids and liquids] (8.10) 
P/T 

Example 8.1. Calculate the speed of sound in steel and in water at 20°C. 

For steel at that temperature, K = 1.94-10'' Pa and p = 7800 kg/m’. 

Thus we write 

Ps (2 10''Pa N/m* kg-m 
7800kg/m> Pa N-°-s? 

For water at 20°C, K = 3.14: 10° Ibf/in* and p = 62.3 Ibm/ ft’, and 

1/2 km ft 
) = 1.99 —— = 16.4: 10° — (8.A) 

3.14-10° Ibf/in? 144 in? Ibm - ft\!/2 
oe ae “MT 32-2 : 

62.3 lbm/ ft ft lbf - s 

ft km 
= 4.83-10° a9 en (8.B) 

For real gases, (OP / dp)s is a complicated function of pressure and temperature. 

However, the ideal gas law is a reasonable approximation of the behavior of most 

gases at low pressures and of low-boiling gases, such as air, up to reasonably high 

pressures. For a ideal gas it is shown in App. B.3 that 

iP. 
(=) as [ideal gases] (8.11) 
Op /s.P 
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TABLE 8.1 
Values of the ratio of specific heats 

Gas k Comment | 

Monatomic gases: He, Ar, 1.6667 Exactly 

Ne, Kr, Na, K 

Diatomic gases: Nz, O2, CO, 1.40 Not quite as exact, and decreases 

NO, Hg, air with increasing temperature 

Triatomic gases: H,O, COsg, etc. 1.30 to 1.33 Less exact and more temperature 

dependent 

More complex gases Less than 1.3 Still more temperature dependent 

Here, k is the ratio of specific heats, Cp/ Cy, as defined in App. B.3 (this ratio is 

called y in many texts). It is dimensionless; it values are given in Table 8.1. 

In most engineering calculations we consider k a constant in a given problem even 

though for most gases it decreases slightly with increasing temperature. If we substitute 

for P/ p in Eq. 8.11 from the ideal gas law and inset the result in Eq. 8.7-B, we find 

aP 1/2 kP 1/2 kRT 1/2 

c= (=) = (©) = (S) [ideal gas] (8.12) 
P/s 

where M is the molecular weight and R is the universal gas constant. 

This equation shows why Newton’s calculated value of the speed of sound was 

only 80 percent of the observed value. If we substitute (9P / dp); for (OP / dp)s in 
this equation, we find the same result, except that k is replaced with 1. Since k for 

air is 1.4, this incorrect substitution lowers the calculated value to 80 percent of the 

value shown in this equation. 

Example 8.2. What is the speed of sound in air at 20°C = 68°F? 

We will need R'/?. In speed-of-sound calculations it is convenient to con- 

vert the most commonly used form of R as shown below: 

Ibf ft? in? 32. afi pi aes (10.73% Iden 32.2 Ibm *) 
in? Ibmol:°R ft” Ibf - s* 

ft lbm 1/2 mn g lye 

= 223 —- = 91.2—- 
S nt ; =) aus s (— ; =) Sty) 

For this example we have 

(28z)" vy 

c =|— = R’*| — 

M M 

~ 223 %.( Ibm y( 1.4 528°R ae 
Ss \Ibmol -°R 29 Ibm / Ibmol 

ft m 

“By 
= 1126 ae 344 (8.C) 

The speed of sound of a ideal gas, as just shown, is a function of the temperature 
and not of the velocity. Keep in mind that the speed of sound is a property of the 
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matter, not a property of the flow. If the temperature changes from point to point as 
the fluid flows, then the speed of sound will change from point to point, but at any 
point it is the same in a flowing gas as it would be in the same gas standing still at 
the same temperature. This argument applies equally well for solids and liquids. 
Observe also these magnitudes; c ~ 3 mi/s for steel, 1 mi / s for water, and 4 mi/s 

for air. The “stiffer” the material, the faster sound moves in it; steel is stiffer than 

water, which is stiffer than air. An absolutely incompressible material would be infi- 

nitely stiff and thus have an infinite speed of sound. 

Our discussion of the speed of sound has the built-in assumption that a sound 

wave is a small pressure pulse. The difference in velocity and pressure of the medium 

before and after the sound wave is very small. Another type of pressure pulse, in 

which these differences are large, called a shock wave, will be discussed in Sec. 8.5. 

8.2 STEADY, FRICTIONLESS, ADIABATIC, 
ONE-DIMENSIONAL FLOW 
OF AN IDEAL GAS 

Many of the most interesting features of high-velocity gas flow can be seen in the 

simplest of all cases, the steady, frictionless, adiabatic, one-dimensional flow of an 

ideal gas. We will study this type of flow in detail; other types will be treated more 

briefly, because they have so much in common with this one. The ideal gas assump- 

tion means that in the equations in this chapter P always stands for absolute pressure 

(psia or equivalent) and never gauge pressure (psig or equivalent). It also means that 

in those equations T always stands for absolute temperature (K or °R) and never for 

°F or °C. The problems and examples often start with °F or °C or psig, to conform 

with current practice in industry, but the values are always converted to psia or K or 

°R before the calculations begin. 

The flow is assumed to be in some kind of a duct or pipe or closed channel of 

varying cross-sectional area A. As long as this cross-sectional area changes slowly 

with distance down the duct, the velocities in the direction perpendicular to the main 

flow will be small enough to neglect, and we can treat the flow as one-dimensional. 

The gas is assumed to be ideal and to have a constant heat capacity Cp. 

The open-system energy balance (Chap. 4) between any two points R and 1 in 

such a duct, for steady flow without heat transfer or turbines or compressors, is 

Vv? Vv? 
(: tan Z. oh +) = (: he Zale =) (8.14) 

ZR 21 

It can readily be shown (Prob. 8.8) that the potential-energy changes Agz are 

negligible for most high-velocity gas flows, so we will drop the gz terms from this 

equation. Next we assume that state R is some upstream reservoir, where the cross- 

sectional area perpendicular to the flow is very large; therefore, Vp is negligible. This 

condition is referred to in various texts as the reservoir, stagnation, or total condition. 

We will call it the reservoir condition and use the subscript R. 

Substituting Ve = 0 in Eq. 8.14, we find 

2Rk 
M(k — 1) Vi = 2(hy — hy) = 2Cp(Tr — TM) = (Tr — T;) (8.15) 
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Here we have substituted Cp AT for Ah and then substituted Rk / M(k — 1) for Cp. 

Both of these substitutions are justified in App. B.3. 

We now divide both sides of this equation by RkT, / M, finding 

, 

MV wa A ( a 1) (8.16) 
RkT, k = 1 T, 

But, as shown previously, RkT, / M is the square of the speed of sound at state 1, or 

ci, so the left side is (V, /c,)*. The ratio V/c is called the Mach number, (Ernst 

Mach, 1838-1916). We will see that this ratio plays a crucial role in the study of high- 

velocity gas flows (and is widely reported in the press describing the speed of super- 

sonic aircraft). It is the ratio of the local flow velocity to the local speed of sound. 

For subsonic flows UM is less than 1; for sonic flows it equals 1; for supersonic flows 

it is greater than 1. Making this definition, we can rearrange Eq. 8.16 to 

Sy pga ace ay, (8.17) 

Example 8.3. Air flows steadily and adiabatically from a reservoir in which 

its velocity is negligible and its temperature is 68°F = 20°C. What is the tem- 

perature of the gas at the point where the Mach number is 2.0?) _ 

Air is a diatomic gas, so as shown in Table 8.1, k = 1.4. From Eq. 8.17 

we have 

fi Pasig 
—* _ 2.0°( ) + 1 = 1.80 (8.D) 
T, 

Tr = 68°F = 528°R = 293.15 K (8.B) 

Tay av 28eR 
ih [> — = a ° — _ ° — 3 — —_ ° a ies e 293°R 167°F = 163K 110°C (8.F) 

The startlingly low temperature indicated above shows clearly that the expand- 

ing gas is converting its internal energy into kinetic energy; the decrease in internal 

energy is indicated by the large decrease in temperature. One may also picture that 

the gas, as it expands, does work on the adjacent masses of gas, thus lowering its 

internal energy and temperature. The ratio Tp / T; depends only on k and A,, not on 

the identity of the gas or on the reservoir temperature. 

Example 8.4. What is the velocity of the air in Example 8.3 at the point where 
the Mach number is 2.0? 

We need to know the speed of sound at state 1. From Eq. 8.12 we have 

fi Ibm \'/? ( 1.4-293°R: \!/2 ft ic 
c = 223 —-| ————— 3 - i ft m 

s Greve, 29 rey ee 
ft ft 

Vi = cull = 839 —-2.0 = 1678 — = 511 ais (8.H) 
S 

= 

Equation 8.17 applies to any adiabatic, steady flow of an ideal gas, with or 
without friction (we will see its application to adiabatic flow with friction in Sec. 8.4). 
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Now we add the assumption that the flow is frictionless.-Frictionless, adiabatic flow 
of any nonreacting gas is isentropic; so we may use the relations between temperature, 
pressure, and density for an isentropic change of an ideal gas, as developed in App. B. 
Using these, we find 

Pe Tp k/(k—1) 

pa (72) [isentropic, ideal gas] (8.18) 
1 1 

py Tr 1 /(k- 1) 

ra = (7) [isentropic, ideal gas] (8.19) 
1 

Substituting the value of T/T, from Eg. 8.17, we find 

Pr 5 git k/(k—1) 

Be =(M Taye + 1) [isentropic, ideal gas] (8.20) 
1 

Pr 2 | a 1/(k—1) 

= = gies He 1) [isentropic, ideal gas] (8.21) 

Example 8.5. For the air in Example 8.3, the reservoir pressure is 2 bar, and 

the reservoir density is 2.39 kg /m*. What are the pressure and density at the 

point in the flow where = 2.0? 

The term in parentheses in Eqs. 8.20 and 8.21 is precisely T/T, found 

in Example 8.3 to be 1.80; therefore, 

P 

ps = 1.80!4/04—-) = 1.8035 = 7.82 (8.1) 
1 

A a Oe POND te te 8.J 
hs aac pm es areal ag ~ 

Ee = ppg diss Die 418079 = 4:35 (8.K) 
1 

pe it 62:39. Kg/ om kg Ibm 
ss ee ee oe = 

Fle 435 4.35 m? fe so 
= 

At this point we can compare the calculated behavior of this flow with what 

one would predict by simple B.E. Continuing Example 5.1 for the initial density and 

upstream and downstream pressures in this example (see Prob. 8.29), we find a cal- 

culated velocity of 1253 ft/s = 382 m/s, or 75 percent of the value calculated here. 

The main reason for the difference is that this expanding flow is converting internal 

energy to kinetic energy, which is forbidden by the constant-density assumption in 

B.E. (Below about 200 ft/s, the calculated values are practically the same; see Exam- 

ple 5.1 and Prob. 8.29.) 
Comparing these results with the temperature ratio Tp / T,, we see that the pres- 

sure and the density change much more rapidly in frictionless, adiabatic flow than 

does the temperature. 
Equations 8.11, 8.20, and 8.21 allow us to calculate the change of temperature, 

pressure, and density with a change in Mach number for isentropic, steady flow of an 

ideal gas. From the Mach number and the temperature we can calculate the velocity. 
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The other item of interest is the cross-sectional area perpendicular to flow. By apply- 

ing the mass-balance equation for steady flow between states R and | and solving for 

Apr/ Aj, we find 

ator piV, 
(8.22) 

A, PRVR 

We have defined the reservoir conditions such that Ag is infinite and Vp is zero. If we 

insert these values in Eq. 8.22, we see that both sides are large without bound (i.e., 

infinite). The reservoir condition, which is the most convenient reference condition 

for temperature, pressure, and density, is therefore a very poor reference condition for 

the cross-sectional area; we will choose a better one. In any such flow there is or 

could be a state at which the Mach number is exactly 1. Even if such a state does not 

exist for the flow in question, pretending that it exists will help us solve the problem. 

Let us refer to this state as the critical state and denote it by an asterisk. The mass- 

balance equation between some arbitrary state and the critical state is 

Ae tee 
cabs maid (8.23) 

Substituting the values of the density ratio in terms of the temperature for isentropic 

flow and the velocity in terms of the Mach number and the speed of sound, and then 

eliminating the temperature ratio, we find (App. B.4) 

Ay ot Milk pAS 2 TEs 9 
A*¥ Mil (k-1)/24+1 

which is plotted in Fig. 8.3. 

(8.24) 

1.5 

Mach number, ((, 

FIGURE 8.3 

Equation 8.24 shows that to get a supersonic flow we must use a 
converging-diverging nozzle. 
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Mach number < 1 Mach number > 1 

Nozzle cross-sectional 

area, ft? 

ll 
te o 
a 
=| 
= 
& 

3) 3 
= 

Velocity, density, and cross-sectional area 

units as shown 

Density, lbm / ft3 

1:5 

Distance, arbitrary units 

FIGURE 8.4 
Density, velocity, and area variations through a nozzle. The numerical 

values correspond to Example 8.6. Here the cross-sectional area— 

distance relationship is chosen to make the velocity increase linearly. 

That is not necessarily how one designs a nozzle, but doing so makes a 

simple plot. 

Figure 8.3 leads to the commonplace conclusion that, for Mach numbers less 

than 1, to get the fluid to go faster we must reduce the cross-sectional area perpen- 

dicular to flow. This is how garden hose nozzles work; the flow area decreases, so the 

velocity increases for a constant mass flow rate. However, when the Mach number is 

greater than 1, we are led to the startling conclusion that, to get the fluid to go faster, 

we must increase the area! If this is intuitively obvious to the reader, he has better 

intuition than the author does. Let us simultaneously plot p, A, and V against distance 

through such a nozzle; see Fig. 8.4. 

Here we have let V be some small value at the inlet and increase linearly with 

distance. Because this is an expanding flow, the density decreases with distance. In 

the subsonic range V goes up faster than p goes down, so A must decrease to keep 

pAV constant. However, as the fluid goes faster and faster, p drops more and more 

rapidly, until at “4 = 1 it is decreasing just as rapidly as V is increasing. At super- 

sonic flow, M > 1, the density falls more rapidly than the velocity increases, and 

therefore A must increase. This is shown in the figure. 

From the preceding information we can also calculate the mass flow rate through 

our duct. Since the flow is steady, the mass flow rate must be the same at all points: 

m = pAV (8.25) 

Here the product pAV is the same for every point in the duct, including the point 

where the flow is sonic (the critical point). Writing it for that point, we divide both 

sides by A* and note that V* equals c*, which we can write in terms of k, R, M, by 
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using Eqs. 8.12 and 8.17. Similarly, we can write p* in terms of pr by using Eq. 8.21. 

Making these substitutions in Eq. 8.25, we find 

kRTp / M)'/? Le ae PR(KRTR ) (8.26) 
A*® [(k ee yf a yh ae) 

An alternative form of this equation that is sometimes useful is found by substituting 

for pp its equivalent from the ideal-gas law, MPr/ RTp: 
° 1/2 

A* rey? R [(k te 1)/2 ff fee 

We finally have a complete set of equations for describing the frictionless, 

adiabatic, one-dimensional, steady flow of an ideal gas in a duct. If we know the iden- 

tity of the gas (and hence k and M) and the temperature and pressure in the reser- 

voir, we can calculate the temperature, pressure, velocity, density, Mach number, and 

mass flow rate per unit area perpendicular to flow at any downstream location where 

any one of these variable has a known value. 

Example 8.6. Air at 30 psia and 200°F flows from a reservoir into a duct. The 

flow is steady, adiabatic, and frictionless, with mass flow rate = 10 lbm/s. 

What are the cross-sectional area, temperature, pressure, and Mach number at 

the point in the duct where the velocity is 1400 ft / s? 

We do not know the Mach number at the point in question; to use Eqs. 

8.17, 8.20, and 8.21, we must first find it. From Eq. 8.15 rearranged we get 

k-—1\M 
T, = Tr - Vi (<4)™ 1 R 1 k OR 

(1400 ft/s)? (1.4 — 1)- 29 lbm/ Ibmol 
= 660°R — 

1.4-2- 4.98 - 10*(ft? / s*) - (Ibm / (Ibmol - °R)) 

= 660°R — 163°R = 497°R = 276K (8.M) 

Thus, 

ft Ibm _, \/7f 1.4-497°R \3 ft m 
jeagesgieety: (rts) (3 +o) Ee te es 

and 

Mone baile 1.282 (8.0) 
1092 ft/s 

Now we can use Eqs. 8.20 and 8.21: 

Pr TY k/(K=1) 660°R 3:5 

Pp (7*) = ( | = 2.70 (8.P) 

and 

Pp 30 psia 
Li BACK SeINTN igi a (8.Q) 
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For a flow rate of 10 lbm / s we can calculate the area at the critical condition 
from Eq. 8.27: 

m 30 Ibf / in* - [(29 Ibm / Ibmol) - 1.4]'/? - 32.2 Ibm: ft/ Ibf - s” 
A* 223 ft/s (Ibm/Ibmol - °R)'/? - (660°R)!/? : [0.4/2 + 124/08 

Ibm kg 
= 0.62 = 437], 

s* in? s:m? aE) 

Therefore, 

m 10 lbm/s * 
= 16.1in* = 0.030 m? (8.S) 

~ 0.62 Ibm/in?-s 0.62 lbm/ in? s 

Now that we know A*, we can calculate the area at which V = 1400 ft/s from 

Eq. 8.24: 

An: =f eee are) 4 1 12-4/20.4) 

A* “12282 0.4/2+1 
1 1.329\° 

~ 7,282 pee male? (8.7) 

Therefore, A = 1.059-A* = 1.059 - 16.1 in? = 17.0 in? = 0.011 m2 ig 

Certainly by now the reader has observed that this calculation involves a lot of 

algebra, much of it concerning computation of the quantity (Mj(k — 1)/2 + 1] to 
various powers. For constant k this function obviously can be tabulated to the powers 

of interest for various values of 4, saving us much of the algebra. This is done for 

k = 1.4 in App. A.4. Before we all had computers, high-velocity gas flow problems 

were most often solved using those tables; currently, it is more common to solve stan- 

dard problems in computer programs or on spreadsheets. 

Appendix A.4 is based on Eqs. 8.17, 8.20, 8.21, and 8.24. In addition there is 

a column labeled V/ c*, calculated by Eq. B.6-12. This ratio is useful in problems in 

which we know the velocity and the reservoir conditions and want to find M. We 

could solve for the local temperature and local speed of sound, as we did in Exam- 

ple 8.6, but that is tedious. We would like some velocity ratio like V/ Vp to appear 

in the table, but that is an impossible choice, because Vp is zero. The logical choice 

is V/ V* = V/c*; its use is illustrated below. 

Example 8.7. Rework Example 8.6, using App. A.4. 

First, we calculate c*. To do this we need T*, which we find by looking 

in the table for T/ Tz at M = 1.0, finding T* / Tg = 0.83333; then 

T* = 660°R - 0.83333 = 550°R (8.U) 
kRT* = a3. Ibm y"( 1.4 -550°R i 
M ~~ s \Ibmol - °R 29 Ibm / Ibmol 

fas sept (8.V) 
s Ss 

* ll 

1149 
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N.ow we compute 

Vv _ 1400 ft/s 
c* 1149 ft/s 

We go to the V/c* column in the table and read down until we find 

V/c* = 1.218. (In this and all subsequent examples we could interpolate in 

App. A.4. Instead the values shown are computed from the same equations and 

program used to make up App. A.4 and are accurate to four decimal places). This 

corresponds to  ~ 1.2815. In the same interpolated row on the table we read 

= 1.218 (8.W) 

E i A 
Tr = 0.7528 Px = 0.3701 ae 1.0587 (8.X) 

Thus, 

T = 0.7532 Tr = 0.7532 - 660°R = 497°R (8.Y) 

P = 0.3708 Pr = 0.3708 - 30 psia = 11.1 psia etc. (8.Z) 

This is clearly a gigantic saving in effort over solving this kind of problem long- 

hand as we did in Example 8.6. The homework problems should convince the student 

of the utility of App. A.4. Appendix A.4 makes clear why the calculations have all 

been done in terms of the R and * conditions. How else could one make up such 

a table? 

It is also instructive to consider the following variant of Example 8.6. 

Example 8.8. Rework Example 8.6 for the point where the velocity is 

4000 ft / s. 

As in Example 8.7, c* = 1149 ft/s; so V/ c* = 4000/1149 = 3.48. We 

now look in the V/c* column of App. A.4 for 3.48. In that table the highest 

value of V/ c* is 1.6330. By looking in the original document from which App. 

A.4 was extracted, we find that for up to 100 the value of V/ c* approaches 

2.4489 as a limit; so 4000 ft / s must not be possible in this flow! If we return 

to our method of solution in Example 8.6, we see that substituting 

V = 4000 ft/s leads to 

T, = 660°R — 1340°R = —680°R 22? (8.AA) 

a 

From this we see that the energy balance sets a maximum possible velocity for 

an expanding flow. Once all the internal energy has been turned into kinetic energy, 

the gas can no longer accelerate. Obviously, there are other limits to the velocity. Air 

will turn into a liquid long before it reaches 0°R, and the assumption of constant Cp 

becomes false at very low temperatures. Furthermore, unless the air were very dry, it 

would be expected to form a fog at these extremely low temperatures. This explains 

why high-speed wind tunnels have either big air dryers or big air preheaters. 

How is this maximum velocity to be reconciled with Eq. 8.17, which indicates 

that one can calculate a value of Tg / T, for any M, no matter how large? The answer 

is that, as “ goes higher and higher, it does so by driving the temperature lower and 
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Eq. 8.15, V; = 2Cp(Tp — T;) 

Temperature, 7, °R 

0 500 1000 1500 2000 2500 3000 

Velocity, V, ft/s 

FIGURE 8.5 

Variation of temperature with velocity for steady, adiabatic flow of a 

perfect gas with k = 1.4 and Tp = 660°R. 

lower. Since we have c = (kRT/ M)!’?, we can raise the M by raising the velocity 
or by lowering the temperature or both. At high the calculated temperature is 

very low. 

This may be visualized by plotting Eq. 8.15 as T versus V; see Fig. 8.5. The 

figure is one-half of a parabola with a maximum value V,,,, equal to CGI zs 

Again, remember that the assumptions made in deriving the equation for steady, 

adiabatic, frictionless flow of an ideal gas in a duct become inaccurate as T ap- 

proaches 0 K. 

Our discussion has entirely concerned flow from a reservoir. If the initial con- 

ditions are stated, not for a reservoir where V = 0, but for some other point, we can 

develop the equivalents of all the equations shown so far, with the initial velocity not 

taken equal to zero. That is even messier algebraically than what we have done so 

far! A much more convenient approach is to utilize App. A.4 to solve for the reser- 

voir condition that corresponds to the given starting condition. 

Example 8.9. Air is flow- 
ing in a duct in steady, fric- 
tionless, adiabatic flow. At 

the place in the duct where 
the Mach number is 0.5 the 
temperature is 20°C. What 

@ is the temperature at the 

Some kind of duct point in the duct where the 
FIGURE 8.6 Mach number is 2.0? See 

A supersonic nozzle, used in Example 8.9. Fig. 8.6. 

M, = 0.5 

T, = 20°C = 293.15 K 

® 
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From App. A.4 we get, for , = 0.5, the value T/ Tp = 0.9524; therefore, 

7, £\ Ht 50S 
RE 0.9524: — 40,9524 

Now, to find T>, we look in App. A.4 for M, = 2.0 and find T/ Tp = 0.5556; 
therefore, : 

T> = 0.5556: Tr = 0.5556: 307.8 K.= 171 K = 308°R = —152°F (8.AC) 
& 

= 307.8 K = 554°R (8.AB) 

Clearly, we could use an analogous procedure to find the density, pressure, etc. 

at point 2 if they were given for point 1. This procedure allows us to use the tables 

based on flow from a reservoir for computing flow from any state to any other state. 

Thus, we ought to look on the reservoir state, not as a state that necessarily exists in 

a real reservoir but, rather, as a convenient reference condition that allows us to solve 

many common problems by simple application of tabulated values. If we wanted a 

computer program to do this calculation, we would use the same steps, substituting 

the appropriate equations for the look-ups in App. A.4. 

The existence of two reference states, the reservoir and the critical, is the 

source of some confusion to students. The states are most easily visualized by means 

of Fig. 8.7. We assume that at any point in the flow we could introduce a friction- 

less, three-way valve. The flow is actually going through the valve in the direction 

of the outgoing flow, so the introduction of this imaginary, frictionless valve does 

not change the flow. Now, if we switched the valve so that the flow was diverted 

Reservoir 

Incoming Three-way 
flow 

Outgoing 
flow 

Throat, 4 = 1.00 
we A ae A* 

Frictionless 

sonic nozzle 

To somewhere 

FIGURE 8.7 

Visualization of the reservoir and critical conditions. These conditions need not exist in an 
actual flow, but they still can be conceptually useful in analyzing the flow. 
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frictionlessly to a reservoir, then the temperature, pressure, density, etc., that we 
measured in that reservoir would constitute the reservoir conditions corresponding 
to the incoming flow. Similarly, if we diverted the flow through the sonic nozzle, 
then the conditions we would measure at the throat of the nozzle would be the crit- 
ical conditions corresponding to the incoming flow. Thus, the imaginary valve 
allows us to visualize what we would do experimentally to find the reservoir or crit- 
ical conditions corresponding to the incoming flow. However, since the two nozzles 
that we should use in the figure are assumed frictionless, we need not actually per- 

form the experiments; we can calculate what would happen in them by using the 

equations given in this section. 

For a reversible, adiabatic flow, neither the reservoir conditions nor the critical 

conditions change from point to point in the system. Thus, a measurement or calcu- 

lation of them for any point in the flow gives the values for the entire flow. However, 

in flow with friction (Sec. 8.4) or flow with heating or cooling (not treated in this 

text) or for normal shock waves (Sec. 8.5), the reservoir and critical conditions change 

from point to point in the flow. For such flows we must be conceptually prepared to 

use the apparatus shown in Fig. 8.7 at many points in the flow, and we must not 

assume that the values we find (or calculate) at one point would be the same as those 

at another. 

8.3 NOZZLE CHOKING 

Suppose that we connect a high-pressure reservoir full of air to a low-pressure reser- 

voir full of air by means of a converging nozzle. We assume that by suitable pumps, 

etc., we can maintain the pressure in each reservoir at any value we select and that 

we have some method of measuring the mass flow rate of gas passing through the 

nozzle; see Fig. 8.8. 

At first, the pressure in both reservoirs is the same high pressure, P,. Since there 

is no pressure gradient across the nozzle, there is no flow. Then, holding the pressure 

in the high-pressure reservoir constant at P,;, we begin to lower the pressure P, in the 

low-pressure reservoir. For each value of P; we measure the mass flow rate m, and 

we plot m versus P,/ P,. The results we would find are shown in Fig. 8.9 (here the 

results are shown as m/ Ajozzie Which is independent of the size of the apparatus in 

Fig. 8.7). That figure also shows the values one would calculate from B.E. assuming 

a constant fluid density. 

We observe that the mass flow rate increases steadily as we lower P>, until 

P,/ P, equals 0.5283, and then that further lowering of Pz does not increase the mass 

High-pressure Low-pressure 

reservoir, P; reservoir, P> 

Some device for measuring mass flow rate 

FIGURE 8.8 

Device for measuring the mass flow rate in a converging nozzle. 
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200 

150 

G. 

m/A, \bm/ft2-s 

S 5S 

50 

P,/P, 

FIGURE 8.9 
Mass flow rate per unit area (also sometimes called mass velocity) for 

an isentropic flow with Pe = 30 psia and Tg = 660°R. The Bernoulli’s 

equation (B.E.) curve is computed from V = V2(—AP)/ pp, and 

m/ A = Vpp. As expected, these curves are practically identical for 

low values of AP, but not for high values. The compressible flow 

solution shows nozzle choking, the B.E. solution does not. 

flow rate. If we refer to App. A.4, we see that, if the assumptions of isentropic, one- 

dimensional, steady flow apply, then this pressure ratio corresponds exactly to sonic 

velocity (MZ = 1) at the throat of the nozzle. Lowering the downstream pressure more 

does not increase the mass flow rate, because the flow at the narrowest point in the 

flow is sonic. We also observe that the value of m/A at the throat is exactly the 

value predicted by Eq. 8.27 if we take state 1 as the reservoir state. The flow rates 

computed by B.E. are practically the same at the start (P)/P, close to 1.0, 

AP small). However, as AP becomes large the B.E. solution shows the mass flow 

rate steadily increasing (as it would for a liquid), quite different from what we 

observe for a gas. 

Why does lowering the downstream pressure below 0.5283 times the upstream 

pressure not cause the gas to flow faster in the nozzle? Suppose we attach an observer 

to a balloon and let her ride along with the fluid through the nozzle. When she gets 

to the nozzle throat, she observes that the downstream pressure is lower than she had 

anticipated from the isentropic-flow equations, and she shouts back to those of us who 

are behind her to come faster. Figure 8.10 shows the fate of her shout. 

The shout never leaves the spot where she made it (in the upstream direction). 

The sound signal, that is there is a sharp pressure decrease downstream of the nozzle, 

can never be communicated to the gas upstream of the nozzle. Thus, once the flow 

becomes sonic at the throat, nothing we can do downstream will increase the mass 

flow rate at that point. This situation, in which the flow at the throat is sonic, is called 

choking. One speaks of the nozzle as being choked because no more mass can get 
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Speed of observer’s shout = local speed of sound 

Speed at which observer is moving = local speed of sound 
——$—— 

@ Net velocity of shout = 0 

FIGURE 8.10 

The shout from an observer riding on a flow at sonic velocity can never 

propagate upstream in the flow. (The flow is from left to right.) 

through it without a change in upstream conditions. The adjustment to the lower 

pressure takes place downstream of the throat by a rarefaction, which is neither an 

isentropic nor a one-dimensional process and is not covered by the one-dimensional 

equations developed in this chapter. 

This type of choking is very common in valves, orifices, and vacuum systems. 

For air, any time that the pressure ratio across a valve, orifice, or leak into a vacuum 

system is 0.5283 or less, choked flow is occurring. When one lets air out of an auto 

or bicycle tire the flow is normally choked. Most control valves for gas flow operate 

in the choked condition. Most safety relief valves on gaseous systems, when they 

open, operate in the choked condition. Autos at wide-open throttle on a level road 

have choked flow in their air-inlet system; that choking determines their maximum 

speed. Choked orifices are a common way of providing a small flow of a gas at a 

flow rate independent of the downstream pressure. Although these systems are not 

frictionless or one-dimensional, their behavior can be described reasonably well by 

the set of equations for one-dimensional, isentropic flow derived in Sec. 8.2. Of all 

of the ideas developed in this chapter, the idea of choking in gas flows is the one 

most likely to help an engineer understand the behavior of a system that others do not 

understand. 

Here we can explain the fact, merely stated in Sec. 5.5, that when a fluid, liq- 

uid, or gas flows as a jet into another fluid, the pressure of the jet will be the same 

as that of the surrounding fluid if the flow is subsonic but not if the flow is sonic or 

supersonic. If the flow is subsonic and the pressure of the surrounding fluid is less 

than that of the jet, that information will propagate back along the flow, causing the 

flow to speed up until the pressures match. If the flow is sonic or supersonic, that 

information cannot propagate upstream, and the jet can have a pressure different from 

the surrounding pressure. 

8.4 HIGH-VELOCITY GAS FLOW WITH 
FRICTION, HEATING, OR BOTH 

In previous sections we omitted the possible influence of friction, heat transfer from 

the surroundings to the flowing gas, and chemical reaction (such as combustion) in 

the flowing gas. For the one-dimensional flow of ideal gases it is possible to 

deduce mathematical solutions for flow with friction in constant-area ducts, flow with 

heating in constant-area ducts, flow with combustion in constant-area ducts, and so 
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forth. For subsonic flow these solutions agree satisfactorily with experimental results, 

but for supersonic flow the one-dimensional assumption becomes unreliable, because 

friction at the tube wall causes oblique shock waves, which are not covered by one- 

dimensional flow theory. 

Rather than develop the complete mathematics of these flow here, we will sim- 

ply indicate some of the salient results, referring the reader to other sources where : 

the complete mathematics are shown. We will concentrate on the two types of flow 

of most practical interest to chemical engineers. 

8.4.1 Adiabatic Flow with Friction 

This type of flow occurs when a gas flows through a length of pipe at high velocity. 

If the pipe is insulated or the flow is rapid, the heat transfer to the fluid will be neg- 

ligible, and the flow will be practically adiabatic. 

For this type of flow the mass balance, energy, and ideal-gas equations take the 

same form as for steady, isentropic flow of an ideal gas. However, in Sec. 8.2 we used 

the isentropic relations from App. B; here we cannot, because the effect of friction is 

to increase the entropy of the flowing gas. In their place we will use the steady-flow 

one-dimensional momentum balance, Eq. 7.17, written for two points dx apart in the 

flow direction. For steady flow this becomes 

0 = pAV(dV) — AdP — Tyan7D dx (8.28) 

We saw that for the flow of incompressible fluids the shear stress at the wall, Tyan, 

could be represented in terms of the Fanning friction factor f by 

y2 

Twall — Sp NRe (8.29) 

Experimental data indicate that the same relation holds reasonably well for flow of 

gases at high velocities and that the values of f determined from the friction-factor 

plot, Fig. 6.10, for various Reynolds numbers and pipe roughnesses apply equally well 

to compressible and incompressible fluids. Equation 8.29 may be substituted in 

Eq. 8.28 and, together with the energy, continuity, and ideal-gas equations, solved (see 

App. B.5) to show the change in pressure, temperature, etc. with distance down the 

pipe. The results are Eq. 8.17, which shows the relation of temperature to Mach num- 

ber and is the same with or without friction, and 

: gi caated wy tal cael k+1. (MB 14+ 0(k-—1)/2146 
— 5 > ar In ae 2 Mi M 2k My 1+ [(k — 1)/2] 46 D k 

The result is normally shortened by defining and substituting N = 4f Ax / D. 
The most common and interesting problem of this type is that sketched in 

Fig. 8.11, in which gas flows through a converging nozzle, assumed isentropic, and 
then through a length of straight pipe where the friction is significant. This is the 
situation of a high-pressure relief valve or bursting disk discharging through a pipe 
to a flare or stack, and the situation of a high-pressure vessel discharging through a 
pipe that has broken some distance from it. One normally designs systems to avoid 
this flow, but it occurs in accidents and in many safety analyses. 

} ==u0ia (8:30) 
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Frictionless 

nozzle 

Pi: T;, etc. P>, T, ete. 
Low-pressure 
vessel 

P3, T3, etc., or 

the atmosphere 

High-pressure 
vessel 

Pp 0 To, etc. 

FIGURE 8.11 

Flow from a high pressure to a lower pressure through a frictionless nozzle and an 

adiabatic pipe with friction. 

In the type of apparatus shown in this figure, as the fluid flows down the pipe, 

friction causes its pressure to decrease. This pressure decrease makes the density 

decrease, and hence the velocity must increase. Since the friction effect is propor- 

tional to the velocity squared, the pressure gradient (—dP/ dx) is not the same for 

every foot of pipe, as it is for incompressible flows but, rather, it increases with dis- 

tance down the pipe. 

For the apparatus shown in Fig. 8.11, if the pressures Pp and P3 are the same, 

there will be no flow. If P3 is then lowered while Py held constant, the flow rate will 

increase, and the Mach number at the outlet of the pipe will steadily increase until 

the outlet flow is at “, = 1. Then further reduction of P3 will not cause the flow rate 

to increase, because the flow at the end of the pipe will be choked, just as converging- 

diverging nozzles become choked (Sec. 8.3). When the flow at the outlet is subsonic, 

we have P, = P3. Once the flow at the outlet becomes sonic, the choked situation 

exists, and P; may be lowered further without any change in P>. 

To solve for the flow in such a system we use the steps shown in Table 8.2. 

Example 8.10. In Fig. 8.11, the gas is air, Pp = 30 psia, P3 = 18 psia, and 

Ty = 200°F. The pipe is 1-in schedule 40, steel pipe 8 ft long. Find the mass 

flow rate. 

To solve for the flow in such a system we use the steps shown in Table 8.2. 

For 1-in schedule 40 pipe the relative roughness is about 0.0017 and, from 

TABLE 8.2 

Procedure for solving Example 8.10 

Preliminary step Estimate f, compute NV 

Nozzle, assumed frictionless Guess M,, using that value, compute m, /A*, A, /A*, m/ A, 

Straight pipe with friction Compute M,>, from Eq. 8.30; using that value, compute 7>, cz, V2, 

P2, m/ Ay 

Match Does m/ A, = m/ A>? If so, check value of N, accept solution. If 

not, make a new guess of /,, repeat solution. 
i EI EEIIEI IEEE EEEEIEEEE SEER 
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TABLE 8.3 

Step-by-step solution to Example 8.10 
ne EU 

First guess Second guess Final guess 
Seki ee . eS a eee 

Po, psia 30 30 30 
TR 660 660 660 
N 2.196 2.196 2.196 
P , psia 18 18 18 

M,, guessed 0.5 0.3 0.371 

m,/ A*, Eq. 8.26 0.622 0.622 0.622 

A, / A*, Eq. 8.24 1.340 2.035 1.692 

m,/ A, lbm/s in? 0.464 0.306 0.367 

M,, guessed 0.800 0.363 0.553 
N, Eq. 8.30 0.997 2.196 2.196 
Ge Say 643.052 621.983 
Cp, ft/s, Eq. 8.12 1242.490 1221.966 
V>, ft/s 451.035 675.527 
pz based on P2 and T> 0.076 0.078 

m/ A>, lom/s ft? 34.122 52.837 
m>/ A> lbm/s in? 0.237 0.367 

; m/ Az 
Ratio — 0.776 0.999 

m,/ A, . 

Fig. 6.10, for high Reynolds numbers the friction factor is about 0.006. Thus, 

we estimate that 

_ 4fAx — 4-0.006- 8 ft 
D 1.049 ft / 12 

We record the results of this calculation as we go in Table 8.3. The first four 

rows in that table show the three given values and the preceding value of N. 

Then, for our first guess (column 2) we take (M1, )sirst euess = 0.5. Then we 

can compute the values in the next three rows for (M,)sirst guess = 0.5. Next 

we must solve Eq. 8.30 for “5. This is inherently a trial and error, because the 

equation is transcendental. (It contains both , and its logarithm. Try solving 

it by hand; you will see!) The easy way to solve it numerically on a spreadsheet 

is to guess a starting value of , and then use the spreadsheet’s numerical solu- 

tion engine to find the value of , that makes N in Eq. 8.30 = 2.196. In the 

second column of Table 8.3 we guessed (M>)first guess = 0.8. The next entry in 

the table shows that substituting that value in Eq. 8.30 leads to N = 0.997. The 

numerical solution engine was then asked to find the value of , that makes 

N in Eq. 8.30 = 2.196. It failed. Subsequent investigation shows that for 

(M1 first guess = 9.5 there is no value of M, between 0.5 and 1.0 that leads to 

N = 2.196. So M, cannot equal 0.5 (for this value of N). 
For our second guess (column 3 in Table 8.3) we take (M1)second guess = 9.3. 

Continuing down that column we put in some guess for M, and let the numerical 
solution engine replace it with the value (/, = 0.363), which makes N in 

N = 2.196 (8.AD) 



CHAPTER 8 ONE-DIMENSIONAL, HIGH-VELOCITY GAS FLOW 317 

Eq. 8.30 = 2.196. Then we find T> from Eq. 8.17 (which is limited to adiabatic 
flows, but not to frictionless ones). With that value of T; we find cz from Eq. 
8.12, and V2 from the local speed of sound and the Mach number. We find p> 
from P> and T>, and 

ins (As = pW (8.AB) 

Table 8.3 shows the values in lbm/(s- ft”), calculated by Eq. 8.AE, and the 
corresponding value in Ibm /(s- in’). Finally, the ratio of m/A at 2 to that at 
1 is computed. If we have chosen the right value of ,, this ratio should be 1.00. 

In column 3 it is 0.776, indicating that (M,).econd guess = 0.3 is not correct. Table 

8.3, column 4 shows (;)finai guess = 0.371. (There were some intermediate 

guesses, which are not shown in Table 8.3). For this final guess the calculated 

values of m/A at 1 and at 2 agree to within 0.1 percent. We accept this as a 

satisfactory solution, and read from the table that m/A in the pipe is 0.367 

Ibm /(s-in*). The cross-sectional area of 1-in schedule 40 pipe = 0.864 in’, 
so that 

. Ib Ib k mn = 0.864 in? -0.367 5 = 0.317 = 144 (8.AF) 
S°in 

Finally we compute that 2 ~ 3.4- 10° for which f ~ 0.006, which checks our 

starting assumption. | 

At the end of this Jong and tedious example we observe the following: 

. Because Eq. 8.30 is transcendental and cannot be solved algebraically, its solution 

is inherently trial and error. 

. That solution is inside the trial and error for ,. This leads to nested trial and 

errors. 

. The spreadsheet is a poor way to do this kind of nested trial and error solutions. 

The spreadsheet was chosen here because it shows the details of how such solu- 

tions proceed and shows the intermediate values. 

. Nested trial and error solutions are easy in programming languages like Fortran. 

If one is setting up to do a series of this type of calculations, such a program should 

be used. 

. For hand calculations several authors have prepared graphical solutions to this 

problem by solving for a variety of cases and plotted the results. The most widely 

used is Fig. 8.12. Its use is illustrated in the next example. 

Example 8.11. Repeat Example 8.10, using Fig. 8.12. 

Here the exit flow is subsonic (which we know from Example 8.10 and 

will see from Fig. 8.12) so that P2 = P3 and 

fe P 18 psia 2p dele eae psia 06 = — = (8.AG) 
Po Po 30psia 
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(m /A)/(m /A)* 

FIGURE 8.12 
Pressure—mass flow rate relationship for the apparatus shown in Fig. 8.11. (Levenspiel, O., “The 

discharge of gases from a reservoir through a pipe,” AJChEJ 23:402—403 (1977). Reproduced by 

permission of the publisher.) In the denominator, the (m / A*) is that corresponding to frictionless flow 

from the reservoir shown with subscript 0 in Fig. 8.11. The solid lines are for k = 1.4. A few dotted 

lines are shown for other values of k. N = 4f Ax/D. 

Entering Fig. 8.12 at this value and reading horizontally to the N = 2 curve 

(N ~ 2.196) we then read to the bottom, finding 

ib) 0.6 (8.AH) 
(m/A)* 

The value of (m/A)* in this figure corresponds to adiabatic frictionless 
flow. From Example 8.6 we know that for these values of Po and To, 

[(m/ A)*]prictiontess flow = 0.62 Ibm /(s- in*), so that for N = 2.0 

Ibm 
; (8.AD 

: Ibm 
(m/ A)* ~ 0.6: 0.62 —z = 0.372 — 

Ss‘ in s-in 

which is within chart reading accuracy of the 0.367 found in the previous exam- 

ple forN = 2.196 a 

We can further illustrate the properties of Fig. 8.12 (or the equivalent spread- 

sheet calculations in Example 8.10 on which Fig. 8.12 is based) by asking what 

the flow rates are for a variety of values of P3/ Po. The results are shown in Fig. 

8.13, which is of the same type as Fig. 8.9, but for a nozzle and a pipe with fric- 

tion instead of the simple nozzle in Fig. 8.9. For P3; = 30 psia, the pressure ratio 
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m, lbm / s 

0 0.2 0.4 0.6 0.8 1 
P;/ Po 

FIGURE 8.13 

Flow as a function of (P3/ Po) for the device shown in Fig. 8.11 

and the numerical values in Example 8.10. The B.E. curve is 

computed from V = V2(—AP)/(1 + 4f Ax/D)p z with the same 

numerical values used in Example 8.10. As expected, these 

curves are practically identical for low values of AP, but not for 

high values. The compressible flow solution shows nozzle choking, 

the B.E. solution does not. 

across the nozzle and pipe = 1.00, and the curves for all values of N converge at 

(m/ A)/(m/A)* = 0, i.e., zero flow. As we lower P3, we move to the right on the 
N = 2(= 2.196) curve on Fig. 8.12, showing larger and larger values of 

(m/A)/(m/A)*, and thus higher values of m. For P; = 10.5 psia the flow is 
choked; subsequent lowering of the downstream pressure will not increase the mass 

flow rate. Comparing Fig. 8.13 to Fig. 8.9 we see the following: 

For both plots, the B.E. and compressible flow curves are ~ identical for (P3 / Po) 

close to 1.00 (i.e., small values of AP). As (P3/ Po) becomes smaller (AP becomes 

larger) the two curves separate. 

2. In both plots there is a minimum value of (Poutet / Pintet)» below which the flow at 

the outlet is choked. Further reduction of (Poutiet / Pinter) does not increase the mass 

flow rate. 

3. In Fig. 8.9, that ratio (Poutiet / Pinter) Was 0.5283, here it is 0.35. One may check 

that the curve for VN = 0 on Fig. 8.12, which corresponds to a frictionless nozzle 

and a pipe of zero length (i.e., no pipe), reaches the choked condition at 

(Pouttet / Piniet) = 0.5283, as it must. Increasing the length of the pipe (increas- 

ing N) moves the choked condition to lower and lower values of (Pouttet js Peay: 

4. The BE. calculation substantially overestimates the mass flow rate for low values 

of (Bice d. Pintet). This type of calculation is routinely made in safety analysis; 

1 
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using the B.E. solution instead of the compressible flow solution overestimates the 

flow rates, which can lead to undersized pressure relief lines! 

Lapple [2] showed that these calculations agree very well with experimental 

tests run with this type of apparatus. If the nozzle is not a smoothly rounded one like 

that shown in Fig. 8.11, but, rather, a square-cornered one, Lapple suggests using the 

same contraction coefficient for it ‘that was introduced in Sec. 6.9, that is, adding to 

the friction effect of the pipeline an additional 4f(Ax/D) = 0.5 for the sudden 
entrance. All the foregoing applies to subsonic flows, or flows that become sonic at 

the choked outlet. To obtain a steady supersonic flow in a duct, the duct must be 

attached to a converging-diverging nozzle. The resulting flow is described by Eqs. 

8.17, and 8.30, but the resulting behavior is somewhat different [3]. 

8.4.2 Isothermal Flow with Friction 

The general case of isothermal flow with friction is discussed by Shapiro [4]. How- 

ever, as he points out, at Mach numbers approaching the choking condition an infi- 

nite heat-transfer rate would be required to keep the flow isothermal. Thus, for 

common pipe sizes and lengths high-velocity gas flow is always much closer to adi- 

abatic than to isothermal. The one exception of interest is the flow of natural gas and 

other gases through long-distance pipelines. These may be a hundred miles long 

between pumping stations and are normally buried in the ground, which supplies heat 

as needed to keep the flow isothermal. 

The commonly used formulae for calculating the flow in these pipelines are 

based on the momentum equation, Eq. 8.28, the mass-balance equation, and the ideal 

gas law. Substituting Eq. 8.29 in Eq. 8.26 and dividing by A, we find 

pV dV + dP = i east (8.31) 
2h 1D 

In the previous section we used all three terms in this equation. Here we can 

greatly simplify the calculations by noting that for long pipelines the first term, 

pV dV, is negligible compared with the others (Prob. 8.47) and can be dropped; 
then, from the mass-balance equation, V is replaced with m/ pA, and Eg. 8.31 is 
simplified to 

—4f (mY 1 dx 
dP = 

e) (=) pub oa) 

Replacing p in this equation with its ideal gas law value, we find 

—4f RT (=) 
VO! ie cerpamape Bren Nc > DM\A dx (8.33) 

If f = constant, this equation may be integrated and rearranged to 

dhs a — P3)D°M(a / 4° ]!/2 

Af AxRT 
(8.34) 
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If we substitute the empirical approximation f = 0.0080 / (pipe diameter in inches)! ES 
in this equation, we obtain the Weymouth equation, which was widely used in the 
design of early natural-gas pipelines. The historical trend of the gas pipeline industry 
is to use higher and higher gas pressures; as the pressure increases, the gas departs 
further and further from the ideal gas state. Later workers have corrected the Wey- 
mouth equation to take this departure into account [5]. 

As discussed in Sec. 6.13, the economic velocity in a pipeline is primarily 

dependent on the density of the fluid flowing. For long-distance natural-gas pipelines, 

the pressures are normally in the range of 500 to 1000 psia, so densities are of the 

order of 1 to 2 lbm/ft*. From Table 6.4 we can estimate the economic velocity at 

about 20 ft/s, which is typical of these pipelines. Thus, this kind of flow does not 

really correspond to the subject of this section, high-velocity gas flow. However, it 

fits in naturally here, after we have developed the equations for high-velocity gas flow, 

which explains why it is placed here. 

8.5 NORMAL SHOCK WAVES 

The next three sections (8.5, 8.6, and 8.7) concern supersonic flows. They are of great 

practical interest to aeronautical engineers and to chemical engineers in the rocket 

propulsion industry. There are only a few practical applications of interest to chemi- 

cal engineers outside that industry. These include the steam nozzles in jet ejectors (see 

Fig 7.35), which operate in supersonic flow, and the free discharge of high-pressure 

gases from ordinary valves whose throat area is less than their exit area and whose 

discharge is often supersonic. The one-stage steam turbines often used as drivers in 

process plants also operate with supersonic flows. 

Suppose that a nozzle is steadily discharging a gas stream at M = 2.0 into a 

low-pressure reservoir and that a valve in the end of this nozzle is suddenly shut. This 

will stop the flow. In Sec. 7.5.2 we discussed the analogous problem for a flow of a 

liquid in a pipe. There the flow was subsonic, and the boundary between the stopped 

and moving fluid propagated against the flow at the local speed of sound relative to 

the fluid. Here the fluid is moving faster than the local speed of sound, so how can 

the information that the valve is closed propagate upstream against the flow? This 

information cannot move upstream against a supersonic flow, if it moves only at the 

speed of sound; therefore, there must be some way of conveying this information as 

a pressure signal that moves faster than the local speed of sound. We said before that 

a sound wave was a small pressure disturbance that moved at the local speed of sound. 

Now we will consider shock waves, /arge pressure disturbances that can move faster 

than the local speed of sound. 
Shock waves occur in nature in the air surrounding explosions (the shock wave 

causes much of the destruction of buildings, etc., in any bomb blast) and in the sud- 

den closing of a valve in a duct with a high-velocity flow. Sonic booms are shock 

waves. Shock waves also can be produced in the laboratory in a duct or nozzle with 

supersonic flow. In such cases the shock wave will stand still in one place while the 

fluid flows through it. The latter is the easier to analyze mathematically, so we will 

use it as a basis for calculations. The nomenclature for a shock wave is shown in 

Fig. 8.14. 
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The situation is quite similar to 

that shown in Fig. 8.2, as is much of the 

following mathematical development. 

Writing the equivalent of Eq. 8.1, the 

continuity or mass-balance equation, for 

this flow, we find 

PxVx = PyVy (8.35) 

Shock wave Equation 8.4, the momentum balance, 

FIGURE 8.14 pocones 
Nomenclature of a shock wave. The subscripts x P 

and y refer to conditions upstream and downstream, V= Vv, = Jone ms (8.36) 

respectively, of the shock wave. ; PM pxVx 

These two equations alone were enough 

to solve for the speed of a sound wave, because we were able to neglect one term, 

dp dV, which was small in Eq. 8.2. It is not small here, so we need another relation, 

the energy balance, Eq. 8.17. 

Equations 8.17, 8.35, and 8.36 can be solved to show the changes in tempera- 

ture, pressure, and Mach number in a shock wave; see App. B.6. The results are 

seewit inal ichiDA( kr) 
My = 5 (8.37) 
NY (eee 

| RL) NOE SE le) SE 

PB, acelitadvaieeed ican Betis (8.38) 

and 

ay M2 [(k = 1/2)) #1 7 

780 Lo E + AK = D772 (8.39) 

: kM? = [(k — 1)/2] 

These three functions are somewhat messy, but for a gas with a constant k they can 

be tabulated as a function of ,. Their values for k = 1.4 are shown in App. A.5 with 

some useful combinations of them. 

If a shock wave is a large pressure disturbance and a sound wave is a small 

pressure disturbance, what is the dividing line between them? There is none; as the 

pressure disturbance of shock waves becomes smaller and smaller, these equations 

become closer and closer to those for a sound wave, until they become identical. In 

the case of a sound wave we had the flow in Fig. 8.2 coming toward the wave at 
M, = 1.0. The patient student may verify that substituting , = 1.0 into Eqs. 8.37, 
8.38, and 8.39 shows that there is no change in temperature, pressure, or velocity 
through the shock wave. Thus, an /(, = 1.0 shock wave has the same properties as 
a sound wave, and Wwe may consider a sound wave to be a minuscule shock wave 
which moves at the lowest possible velocity for any pressure disturbance (ML, = 1.0). 

Notice the form of the flow in a shock wave, shown in Fig. 8.14. The fluid enters 
at a supersonic velocity, a low pressure, and a low temperature and leaves at a subsonic 
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velocity, a higher pressure, and a higher temperature. All of the foregoing and all of 
the derivations in App. B.6 place no restriction on the direction of the shock. In the 
derivations, we never made use of the fact that the flow was from supersonic to sub- 
sonic or vice versa. Considering these equations alone, we could conclude that the 
flow could be either from high velocity and low pressure to low velocity and high 
pressure or the reverse. The first might logically be called a compression shock and 
the second a rarefaction shock. 

The second law of the thermodynamics, however, shows that only compression 

shocks are possible (see Prob. 8.51). A compression shock results in an increase in 

entropy whereas a rarefaction shock, if it existed, would result in a decrease in 

entropy, which is impossible in an adiabatic, steady-flow system. Thus, we conclude 

that this type of shock waves always requires a supersonic flow upstream and a sub- 

sonic flow downstream. This explains why we can stop the flow in a supersonic noz- 

zle by closing a downstream valve; a compression shock passes upstream against a 

sonic or supersonic flow and stops the flow. But we cannot increase the speed in a 

choked flow by lowering the downstream pressure, because that would require a rare- 

faction shock to pass upstream, and rarefaction shocks are thermodynamically 

impossible. 

In Sec. 7.5.3 we considered hydraulic jumps, which occur in open-channel 

flow. They are compared with shock waves in Table 8.4. From this comparison we 

see that there is a strong similarity between the two. The principal difference is that, 

because a shock wave occurs in a compressible fluid, we have an additional variable, 

the density, and we must add the energy balance to the mass and momentum bal- 

ances needed to solve for hydraulic jump, with a resulting increase in mathematical 

complexity. 

Our discussion has been restricted to shock waves in which the flow is per- 

pendicular to the wave, the only kind that can occur in one-dimensional flow. 

Such waves are called normal shock waves or normal shocks because of this per- 

pendicular relationship. In two-dimensional flow another kind occurs, called an 

oblique shock, in which the flow is not perpendicular to the shock wave. Oblique 

TABLE 8.4 
Comparison of hydraulic jumps with shock waves 

Hydraulic jump Shock wave 

Flowing material Liquid Gas 

Type of flow Open channel ‘Closed duct 

Inlet flow High velocity, low depth High velocity, low pressure 

Outlet flow Lower velocity, higher depth Lower velocity, higher 

pressure 

Equations needed to solve Balances of mass, momentum Balances of mass, momentum, 

energy, and ideal gas law 

Permissible direction of Second law of thermodynamics Second law of thermodynamics 

occurrence determined by 

Upstream condition Froude number > | Mach number > | 

Downstream condition Froude number < 1 Mach number < | 
en ————————————————————— 
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shock waves form at the leading edge of the wings of supersonic aircraft and 

cause “sonic booms”: for discussion of them see Ooosthuizen and Carscallen [3, 

Chap. 6]. 

8.6 RELATIVE VELOCITIES, CHANGING 
RESERVOIR CONDITIONS 

Thus far we have discussed flows that move past a stationary observer. They are of 

considerable importance and are found in wind tunnels, turbine nozzles, high-pressure 

valves, etc. Equally important are systems in which the gas stands still and the sys- 

tem moves; examples are airplanes, missiles, and meteorites. In principle we could 

develop a separate set of equations for these systems, but it is much simpler to learn 

to apply the equations that we already have applied to stationary systems, and to use 

the tables in Apps. A.4 and A.5. 

The application of the equations in the preceding sections to moving-coordinate 

systems is quite simple, once we grasp the idea that the reservoir conditions are 

a function of the frame of reference. This appears startling at first, but it must 

be so. 

Example 8.12. An airplane is moving at € = 2 in air at O°C = 273.15 K and 

50 kPa. What are the reservoir temperature and pressure of this air? 

If we choose the ground as our frame of reference, then the velocity of 

the air relative to the ground is zero, so we conclude that the reservoir condi- 

tion is O°C = 273.15 K and 50 kPa. However, this would be a very impracti- 

cal choice if we wished to analyze the performance of the airplane. We would 

rather choose a coordinate system based on the airplane. In such a case the air 

is moving at 4 = 2 toward the plane, so it is certainly not standing still and 

hence is not in its reservoir state. To find the reservoir temperature we may 

slow the air down to zero velocity relative to the airplane by an adiabatic device 

and then measure its temperature. From Eq. 8.17 we see that the reservoir 

temperature is 

, 14-1 
Tr = 273.15 K (20° ei 1) = 491.7 K = 885°R = 425°F (8.A]) 

If our device for slowing the air down were frictionless (e.g.. a ideal diffuser, 

Sec. 8.6), then the pressure at its outlet would be the reservoir pressure. From 
Eq. 8.18 we can compute the result: 

Pr = 50 kPa- 1.80°° = 391 kPa = 56.8 psia (8.AR) 
B 

Once we have made this shift of frame of reference and the corresponding shift 
in reservoir conditions, we can solve the problem by using the relations developed 
previously for steady flow in a duct. 

We might also think about this problem in another way. Suppose we wanted to 
test the airplane standing still in a wind tunnel. We want the air to come in at 4 = 2 ~~. 
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at O°C, and at 50 kPa. What must the conditions be in the reservoir that sends air to 
this wind tunnel? Obviously, they are the values computed above. From a fluid- 
“mechanics standpoint it makes no difference whether the plane is moving relative to 
the air or the air relative to the plane. 

From this example we see clearly that the reservoir condition is a function of 

the coordinate system chosen. Notice also the high reservoir temperature we com- 

pute. This is the temperature of the air in contact with the outside of the plane, where 

the velocity relative to the plane is zero. The high value indicates why supersonic air- 

craft must be refrigerated to keep the interior at a temperature suitable for human 
occupancy. 

From the moving airplane the air appears to have the same temperature as it 

appears to have from a stationary position. Changing frames of reference changes only 

reservoir conditions, not local conditions. The temperature at any point, such as 7}, T,, 

and T, in the preceding equations is the same for an observer riding with the fluid or 

an observer standing still. The observer moving relative to the fluid may have some 

difficulty in measuring the temperature (see Prob. 8.56), but with suitable instruments 

one can get the same reading as the stationary observer. 

The equations that we developed for normal shock waves standing still in a noz- 

zle are also applicable to moving systems. 

Example 8.13. An atom bomb blast in still air raises the pressure around the 

bomb to a high value. This high pressure causes a shock wave that flows out- 

ward. The geometry is spherical, the shock wave expands like a balloon. The 

pressure inside the system steadily falls as the shock wave moves out, but at 

any particular instant, the behavior of the shock wave is given to an excellent 

approximation by the steady-flow equations developed in Sec. 8.5. At the instant 

when the pressure inside the shock is 2.0 atm, how fast does the shock wave 

move, and what are the pressure, temperature, and velocity behind it? Outside 

the shock wave, the air conditions are 14.7 psia and 528°R. 

We will use the notation of Fig. 8.14, with the subscript x standing for 

the still air into which the shock wave is advancing and the subscript y apply- 

ing to the gas inside the expanding high-pressure region. Then we have 

pe Py = 2, and from App. A.5 we find that , = 1.3630. The speed of sound 

in the air (Example 8.2) is 1126 ft/s, so the shock wave moves into the still 

air at V = Mc, = 1.3630: 1126 ft/s = 1535 ft/s = 468 m/s. Behind the 

shock the pressure is 2- 14.7 = 29.4 psia, as stated. From App. A.5 we’ find 

F5/ T,. = 1.2309; therefore, 

Dood e i h2 308 049-9 JOT _ (8.AL) 

and so we can compute the speed of sound at y as 1249 ft / s and, from App. 

A.5, we find M, = 0.7558. Then 

V, = Myc, = 0.7558 - 1249 ft/s = 944 ft/s = 288m/s_  (8.AM) 

Thus, in the region just inside the wave, the air is moving 944 ft / s away, as 

seen by an observer riding on the shock wave. Switching to fixed coordinates, 

we see that the shock wave is moving 1535 ft / s, so the air adjacent to it on 

the high-pressure side is moving (1535 — 944) = 591 ft/s outward from the 
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As seen by someone riding on the shock wave 

M, = 0.7558 M,. = 1.3630 
Vy = 944 ft/s Vx = 1535 1t/s 
T, = 649.9°R Cer 528R 
Py = 29.4 psia P,. = 14.7 psia 

Shock (a) 

stands 
still 

As seen by someone standing still 

V = (1535 — 944) V=0 
Sie T = 528°R 

T = 649.9°R P aT ean 
P = 29.4 psia 

Shock moves (b) 

atdoso it7 s 

For both views, (V, — V,) = 591 ft /s 

FIGURE 8.15 

The moving shock wave in Example 8.13 as seen by an observer riding on the 

shock wave (a), and by an observer standing still and watching it go by (b). For 

both observers, the velocity change across the shock is 591 ft/s. 

Bale, 

center. The relations between the velocities and other properties as seen by an 

observer riding with the wave and one watching from the ground are sketched 
in Fig. 8.15. 

The simple picture here hides much of the complexity of the fluid mechan- 

ics of blast waves. It is implied here that the pressure inside the expanding 

spherical high-pressure region is constant. That is not correct. The pressure is 

lowest at the center and highest at the edge of the expanding wave [6]. A light- 

ning strike heats the air it passes through enough to produce a similar shock 

wave. The shock wave is a sharp sound near the lightning stroke, but becomes 

a diffuse rumble as it passes through the nonuniform atmosphere and interacts 

with its ground reflections. & 

NOZZLES AND DIFFUSERS 

Figure 8.3 is a plot of A / A* versus 4 for steady, one-dimensional, frictionless, adi- 

abatic flow of an ideal gas. It is, in effect, a design guide for a supersonic nozzle. If 

we want the Mach number to increase linearly with distance in steady, isentropic flow 

of an ideal gas, then the cross-sectional area—distance relation must be exactly the 

curve in Fig. 8.3. This is the diagram for a converging-diverging nozzle, commonly 

referred to as a de Laval nozzle after Carl de Laval, (1845-1913), who used it in the 

first practical steam turbine. 

We have already discussed (see Fig. 8.4) the intuitive explanation of the neces- 
sity of the converging-diverging shape. In all our derivations for frictionless, adiabatic, 
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steady flow of an ideal gas we never said whether the gas was speeding up or slow- 
ing down; we said only that the flow was steady, frictionless, and adiabatic. There- 
fore, all the equations work equally well for an accelerating flow and a decelerating 
flow. In Fig. 8.3 the flow could be from left to right, as we have tacitly assumed 
before, or from right to left. If the latter, the gas would enter the nozzle in supersonic 
flow and emerge in subsonic flow. When a nozzle is used this way, it is called a dif- 

fuser. There is no known way to obtain a steady, supersonic flow other than by means 

of a converging-diverging nozzle (there are several ways to produce unsteady super- 

sonic flows, e.g., explosives). There is no known isentropic way to slow a steady, 

supersonic flow down to subsonic speeds other than by means of a converging- 

diverging diffuser. We can steadily convert a supersonic flow to a subsonic flow by 

means of a normal shock, which is not isentropic. 

From Fig. 8.3 and the equations on which it is based, we would assume that 

we could change the Mach number by any amount over as a short a distance as we 

wished by changing the area rapidly, because there is no restriction on the equations 

as to dA/ dl, where / is the length of the nozzle. However, if this rate of area change 

becomes too great, then our one-dimensional frictionless-flow assumptions become 

unreliable, and the observed flow no longer follows our isentropic equations. In engi- 

neering practice the converging section has a wide angle (that is, dA / dl has a large 

negative value), and the diverging section has a small angle. Such a nozzle is shown 

in Fig. 8.16. 

We are now able to calculate the flow characteristics of such a nozzle for fric- 

tionless, adiabatic flow, using the equations of isentropic flow and the equations of 

High-pressure Low-pressure 
: : = 2-9. : 

reservoir Pr, Exit area = 1.5 in* — reservoir P5 

ee 

TAD HOOQB> 

Locus of downstream states 

of normal shocks 
Distance 

FIGURE 8.16 j 

Pressue—distance plot for various downstream pressures in a converging- 

diverging nozzle. These curves are worked out in Examples 8.14 to 8.16. 
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normal shock waves. The results we calculate here are a reasonable approximation of 

the behavior of real nozzles, in which friction is always significant. We assume that 

the cross-sectional area perpendicular to flow at each point in the nozzle is known, 

and we prepare a plot of P/ Pe, versus distance for various flows. We begin by mak- 

ing the pressures in the high-pressure and low-pressure reservoirs the same. Then there 

is no flow, so the pressure is the same as the reservoir pressure throughout the noz- 

zle; see line AA in Fig. 8.16. 

Throughout our calculation we will hold the upstream reservoir pressure Pp, 

constant. We begin to lower the downstream reservoir pressure P>. As long as the exit- 

ing gas is in subsonic flow, the exit pressure will be the same as the downstream pres- 

sure; so, if we set the downstream pressure, we have set the pressure at the exit of 

the nozzle. From this pressure and the area of the nozzle we can calculate the pres- 

sure at the throat or at any other point whose cross-sectional area we know, as shown 

in the following example. 

Example 8.14. We now set the downstream reservoir pressure at 0.9506 times 

the upstream reservoir pressure (point B in Fig. 8.16). What is the pressure at 

the throat of the nozzle? 

We look in App. A.4 for P/ Pr = 0.9506 and find that the exit Mach num- 

ber is 0.27. We also observe that A,,;,/A* is 2.2385. Then we can find 

Aheoat Bex Athroat I in 
= : = 2.2385 - = 1.4923 8.AN 

A™  A®  Aexit 1.5 in® sm 
We see in App. A.4 that this corresponds to a Mach number of about 0.43 at 

the throat, and therefore we have P/ Pp = 0.88 at the throat. In the same way 

we could calculate P/ Pe, at any point in the nozzle at which A was known, 

thereby completing the entire curve AB in Fig. 8.16. & 

In this calculation there is no sonic flow anywhere in the nozzle. The A* in the 

calculations does not represent any area that really exists in the nozzle for this flow; 

it is the area that the throat would have if the flow there were sonic with the given 

exit area and exit P/ Pr. By choosiag successively lower values of P.xj and repeat- 

ing this example, we can make a family of curves like curve AB for which the flow 

is entirely subsonic. The lowest pressure for which we can do this is the one for which 
the flow is exactly sonic at the throat. 

Example 8.15. What must P..;, be for sonic flow at the throat in Fig. 8.16? 
If the flow at the throat is sonic, then 

Athroat =A and Asse d Aicoct = Aaxit A* lS (8.AO) 

From App. A.4 we see that his corresponds to M.,i, = 0.43 and P.xi,/ Bees 
0.88. This is point C on Fig. 8.16. For the various cross-sectional areas exist- 
ing in the nozzle, we can look up the corresponding P / Pr; for this exit pres- 
sure and thus complete curve AC. a 
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What happens if we lower P even more, say, to P> / Pr, = 0.8022? If we use 
exactly the same procedure as in Ex. 8.14, we find that Ajhroar/A* = 0.8175. This is 

‘physically impossible, because in such a nozzle the minimum area occurs at the point 
of M = | (see Fig. 8.3), and this calculation indicates that the throat area is less than 
this minimum area. The impossible answer results from an incorrect assumption. We 
assumed isentropic flow through the whole nozzle in Examples 8.14 and 8.15; for 
subsonic flow throughout this is correct, but here it is not. If we start with the con- 

ditions shown by curve AC in Fig. 8.16, and if we lower P>, the flow tends to go 

faster. However, the nozzle is choked, because the flow is sonic at the throat, so the 

mass flow rate m cannot increase. With the same mass flow rate at a lower pressure, 

the flow immediately downstream of the throat becomes supersonic. However, the 

downstream pressure along the whole nozzle is not low enough for the flow to be 

supersonic throughout, so the flow will convert back to subsonic somewhere in 

the nozzle via a normal shock. 

Consider the situation in which we take the subsonic flow after a normal shock 

wave and slow it isentropically to zero velocity, that is, to the downstream reservoir 

condition. We previously showed by an energy balance that for a normal shock wave 

Tr, = Tr,. What about P? By rearranging Eq. 8.18 twice, we find 

as 
Pr, 

RAED Toe amygeyem ioral > 

Substituting these in Eq. 8.38 and rearranging produces 

Pr ( M2[(k — 1)/2] +. 1) (2k? — (k - 1) 

Bash eae Dee (——) (8.41) 

This is another messy equation, but fortunately it, too, is tabulated in App. A.5 for 

gases with k = 1.4. 

The decrease in reservoir pressure has an interesting consequence. In Eq. 8.24 

we showed that m/ A* was proportional to Pr. Thus, when Pp decreases, as it does 

in a normal shock wave, m/ A* also decreases. Equation 8.24 shows that 

(m/ A*), ied Pr, 

(m/A*), Pr, 
(8.42) 

For steady flow mm, = m,, and therefore Ay*/A,* = Pr,/ Pp, We may look at the 

same phenomenon from the viewpoint of reversibility. Isentropic flow is reversible; 

the whole flow could run backward. A normal shock wave is irreversible; once it has 

occurred, the whole flow could not run backward: the same flow could not fit back 

through the same nozzle. 

Thus, in this case, when the normal shock is present, although we have 

Atnroat / A* = 1, we cannot directly calculate the value of Agxit / A*, because the value 

of A* is not the same at these two points. At this point the reader might do well to 

reread what we said about A* at the end of Sec. 8.2. 

329 
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Example 8.16. Construct the curve analogous to curve AC on Fig. 8.16 for 

Pf Pr, = 0.8022. In this case we do not know the downstream reservoir pres- 

sure Pr,, so we cannot yet calculate the outlet Mach number. The key unknown 

here is the upstream Mach number at which the normal shock occurs, M,.. Since 

the exit flow is subsonic, it must exit at P.,j, = 0.8022 Pr, and must have the - 

A/ A* that corresponds to its Mach number. There is only one upstream Mach 

number at the shock that satisfies these conditions. We find it numerically, as 

shown on Table 8.5. As in previous numerical solutions the second column 

shows the calculations for our first guess, with a ratio at the bottom that 

must = 1.00 for the correct solution. In the third column we let the spread- 

sheet’s numerical solution engine find the value of the guessed variable that 

makes that ratio = 1.00, thus solving the problem. 

For our first guess we assume that 1, = 1.10, from which we calculate 

from Eq. 8.37 ,, = 0.9188. Then from Eq. 8.41 we calculate Pr / Pr. = 

0.9989. Here, because all the flow is isentropic except for the flow through the 

shock wave, we have Pr, = Pr, and Pr, = Pr. Then 

eo ahog eel uae fe oes : P, ~ 0.9989 = 0.8031 (8.AP) 

and 

A* Pr 
a = Pr. = 0.9989 (8.AQ) 

so that 

(4) ~ 42 AS _ 15.0.9989 = 1.4984 (8.AR) Bee fo AS 

From the value of P;/ Pr, we compute M,,i, = 0.5686 from Eq. 8.18 and 
from Eq. 8.24 (A / A*)) = 1.2282. Finally, the ratio of the two calculated val- 
ues of (A/A*) is (1.4984 / 1.2282) = 1.2200. If we had guessed the correct 

TABLE 8.5 

Results of trial-and-error solution to Example 8.16 

1, based on 2, solved 

Trial number guessed M, numerically 

P,/ Pr,, given 0.8022 0.8022 
M,, guessed 1.1000 1.4878 
AM, Eq. 8.38 0.9118 0.7055 
Pr, / Pr, Eq. 8.42 0.9989 0.9336 
P>/ Pp, 0.8031 0.8592 
(A/ A*),, based on Pr, / Pr. 1.4984 1.4004 
Mz», based on P/ Pr, and Eq. 8.17 0.5686 0.4706 
(A/ A*)>, based on M and Eq. 8.21 1.2282 1.4004 
Ratio of two (A / A*), values 1.2200 1.0000 
ee rset 



CHAPTER 8 ONE-DIMENSIONAL, HIGH-VELOCITY GAS FLOW 331 

value of M,, this ratio would be 1.00. Then (column 3), we let the spread- 
sheet’s numerical solution engine find the value of M, that makes this ratio 
equal to 1.00. 

For an assumed upstream Mach number of 1.4878, the two calculated val- 
ues of (A / A*), are the same, so this is the correct solution. Now we can locate 
the shock in the duct: It occurs at the place where the upstream M, = 1.4878. 
Using this value in Eq. 8.24, we find that the shock stands where 

A/ Athroat ~ 1.1680. We calculate pressures to the left of this point by the 

isentropic-flow equations, using A* = Agnroar With supersonic flow from here to 

the throat and subsonic on the upstream side of the throat. We calculate pres- 

sures to the right of this point by the subsonic isentropic-flow equations, using 

A* = Atnroat / 0.9336. The entire curve is sketched in Fig. 8.16 as curve AD. 

| 

In this example, we must keep track of three Mach numbers, ,, M,, and Mb, 

time spent identifying those is time well spent. This same example can be solved by 

trial and error using the values in Table A.5; the solution that way is shown in the 

first two editions of this book. Now that we all have good computers the spreadsheet 

solution shown here seems more satisfactory. 

If we continue to lower P3, the shock wave will move to higher and higher val- 

ues of ,, to the right on Fig. 8.16. The farthest to the right that is possible (with 

the shock inside the nozzle) is at the nozzle’s very exit; we can calculate the upstream 

Mach number there from the area ratio (by interpolation in App. A.5), M, = 1.854, 

and P,./ Pr, = 0.1601, so that P7 / Pr, = 0.1601(P,/P,) = 0.1601 - 3.844 = 0.6154. 
This condition is shown as curve AE on the figure. If we continue to lower the pres- 

sure in the downstream reservoir below that shown at E, then the shock wave cannot 

occur in the nozzle at all, and the flow must exit at “, = 1.854, the pressure shown 

at G. If the pressure in the reservoir is more than that at G (for example, that at F), 

then there will be a shock wave outside the nozzle, which will bring the flow up to 

the pressure of the reservoir. This will not be a normal shock but, rather, a two- or 

three-dimensional shock. If the pressure is exactly equal to that at G, the flow will be 

isentropic throughout, and there will be no shock wave at all. If the pressure in 

the downstream reservoir is less than that at G (for example, that at H), then the 

pressure adjustment outside the nozzle will take place via a two- or three-dimensional 

rarefaction. 

8.8 SUMMARY 

1. The speed of sound is the speed of propagation of a small pressure disturbance. 

For ideal gases the speed of sound is given by (kRT/ MyeX 

2. From an energy balance alone we can relate temperature to Mach number for steady, 

adiabatic flow (isentropic or nonisentropic). By using the pressure-temperature rela- 

tion for an isentropic change in an ideal gas we can complete the mathematical 

description of steady, frictionless, adiabatic, ideal gas flow. The mass-balance equa- 

tion is used to solve for the cross-sectional area perpendicular to the flow. 
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. When flow in a nozzle or duct becomes sonic, further lowering of the downstream 

pressure will not cause the flow upstream of the sonic point to increase. This con- 

dition, called choking, is very common in gas flow in valves, orifices, etc. 

. In high-velocity subsonic flow with friction the effect of the friction is to lower 

the pressure, thus lowering the density, thus increasing the velocity, ultimately lead- 

ing to sonic flow and choking. 

. A normal shock wave is a large pressure disturbance that travels faster than the 

local speed of sound. Normal shock waves are irreversible, causing an increase of 

the entropy of the fluid flowing through them. 

. The only known way of producing a steady supersonic flow is by means of a 

converging-diverging nozzle. Such a nozzle is also the only known isentropic 

way of converting a steady, supersonic flow to a subsonic flow. A supersonic flow 

may also be converted to a subsonic one by a shock wave, which is not isen- 

tropic. Unsteady supersonic flows can be produced in several ways, including 

explosions. 

. High-velocity gas flow is of great practical significance in aerodynamics, rocket and 

turbine design, high-speed combustion, ballistics, etc. The pressure differences 

needed to produce high-velocity gas flow are modest, so whenever the pressure of a 

gas is reduced in a pipe, valve, or other fitting, high-velocity flow is likely to occur. 

. This chapter treats only the simplest cases, showing why this kind of flow is 

different from the flow of liquids or the flow of gases at low velocities. The 

reader who wishes to find out more about this fascinating subject should consult 

Oosthuizen and Carscallen [3] or Shapiro [4]. 

PROBLEMS 

See the Common Units and Values for Problems and Examples, inside the back cover. 

An asterisk (*) on a problem number indicates that its answer is shown in App. D. 

In all problems in this section, unless stated to the contrary, assume that gases are 

ideal gases with the properties shown in Table 8.6. 

8.1.*Assuming a friction factor f = 0.005, calculate the pressure drop per foot due to friction 

for flow in a 2-in ID circular pipe at a velocity of 1000 ft / s for 

(a) Water. 

(b) Air. Use the constant-density formulae developed in Chap. 6. 

TABLE 8.6 

Gas properties to be used in all problems unless 

stated to the contrary 

Gas M, g/mol = lbm/ Ibmol k=CsJ/ Cy 

Air 29 1.4 
Helium 4 1.667 
Hydrogen 2 1.4 

Steam 18 iS} 
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8.2. Assuming that a sound wave causes an isentropic pressure rise of 1072 psia in air, cal- 
culate the temperature rise caused by such a wave. Isentropic relations for ideal gases 
(e.g., air) are shown in App. B.3. 

8.3. The “loudness” of sounds is a nonlinear function of the pressure rise caused by a pass- 
ing sound wave. The standard unit of reporting (and regulating) sound for industrial 
hygiene and public nuisance purposes is the decibel, dB. The definition is 

(sete loudness I P = 10 log— = — . expressed in #) Se Ip apts Po — 

Here / is the intensity of the sound wave, its energy per unit area, normally expressed in 

W/m. The intensity seems to correspond best to human perceptions of the loudness of 

sounds. 

The intensity is proportional to the square of the pressure rise, P, leading to 

the 20 in the definition of the dB for sound, which is different from the 10 in most 

electrical engineering applications. The most common datum definition is Pp = 

2-10 * dyne /cm* = 2:10 ° Pa = 2.9: 10 ° psi. Using this definition, estimate the 
pressure corresponding to the following: 

(a) 1 dB, which is the lowest sound pressure that young adult ears can detect. 

(b) 60 dB, which is the sound level in normal conversation at a distance of about 3 ft. 

(c) 140 dB, which is the sound of a jackhammer, and a typical threshold of pain. 

8.4.*Calculate the speed of sound in wood. For most woods, K ~ 1.5: 10° psi and 

p ~ 60 lbm/ ft’. Is the speed of sound likely to be the same “with the grain” as “across 

the grain” of the wood? 

8.5. Calculate the speed of sound in acetic acid at 20°C, at which K = 0.110-10!° Pa. and 

p ~ 1.049 g/cm’. 

8.6.*Calculate the bulk modulus of water at 212°F from Keenan and Keyes’ steam tables or 

equivalent. 

8.7. Calculate the speed of sound in helium gas at SOO°F. 

8.8.*Uranium hexafluoride (the gas used in the gaseous-diffusion separation of uranium isotopes) 

has M = 352 g/mol. Assuming that for it k = 1.2, calculate its speed of sound at 200°F. 

8.9. Air is flowing in a vertical nozzle 1 ft high. In the nozzle its velocity changes from 1 ft/s 

to 2000 ft / s. What is the ratio of the change of potential energy to the change in kinetic 

energy? 

8.10.*Rework Example 8.3 for helium gas. 

8.11. Rework Example 8.4 for hydrogen gas. 

8.12.*Rework Example 8.5 for helium gas. Assume that Pg = 30 psia, and Tp = 70°F. Include 

the values of 7, and P). 

8.13. Air flows isentropically from a reservoir through a nozzle; Pe = 60 psia, and Tp = 

100°F. At some point in the nozzle the Mach number = 0.60. At that point, whatvare the 

pressure, temperature, and velocity? 

8.14.*Repeat the previous problem for helium. 

8.15. Air is flowing from a reservoir into a nozzle in isentropic flow; Pr = 60 psia, and 

Tr = 40°F. At the point where the velocity is 1300 ft / s, what are the temperature and 

pressure? 

8.16.*Helium is flowing from a reservoir through a nozzle in isentropic flow; Pp = 14.7 psia, 

and Tp = 100°F. At the point in the nozzle where the Mach number = 1.00, what are 

the pressure, temperature, velocity, and density? 

8.17. The compressed air-line at a service station has in it air at P = 125 psia, and T = 70°F. 

We now open the valve and let some of this air flow into the atmosphere, through a valve 
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that may be considered an isentropic nozzle. What is the temperature of the compressed 

air when it flows into the atmosphere? This is cold enough that it should cause conden- 

sation of the water in the atmosphere, forming a cloud. Do we normally see such a cloud? 

If not, why not? 

8.18.*Air flows from a reservoir into a nozzle in isentropic flow; Tg = 100°F, and Pr =. 

14.7 psia. At the point in the nozzle where V is 1200 ft / s, what are P, T and M? 

8.19. Hydrogen is flowing steadily and isentropically through a nozzle; Pr = 20 psia, and 

Tr = 60°F. What is the Mach number at the point where the velocity is 6000 ft / s? 

8.20.*Steam is flowing steadily and isentropically from a reservoir through a converging-diverging 

nozzle; Pr = 50 psia, and Tp = 600°F. What are the temperature, pressure, and velocity at 

the point where = 2.0? 

8.21. Helium flows from a reservoir through a converging-diverging nozzle in steady, isentropic 

flow. At the point where “ = 1.8 the temperature is 500°R and the pressure is 20 psia. 

What are the reservoir pressure and temperature? 

8.22.*Air at Pp = 30 psia, and Tg = 70°F flows through a nozzle with a throat area of 1 in’. 

What is the maximum mass flow rate that can be passed through this nozzle? 

8.23. The required test flow rate for the pressure relief valves on uninsulated containers of liq- 

uefied gases [7] is 

Q, = 2:0.00154-P- We (8.AS) 

where Q, is the air flow rate in standard cubic feet per minute (1 atm, 60°F) through 

a wide-open relief valve, P is the test pressure in psia, and Wc is the “water capac- 

ity” of the container, equal to the weight of water required to fill the container com- 

pletely full. 

The “20 lb” propane containers used in backyard barbecues (of which about 

50 million are in use in the United States) have Wc ~ 48 Ibm, and P,.,, = 480 psig. The 

propane industry normally equips such cylinders and smaller ones with a valve sized for 

a “40 lb” container, with Wc = 96 Ibm, to avoid having to make a special valve for each 

size of cylinder smaller than “40 1b.” 

(a) What is the required Q, for the pressure relief valve on these containers? 

(b) If we model the wide-open relief valve as a simple orifice with C, = 0.6, using B.E., 

how large would its diameter have to be to pass this flow of air at a pressure differ- 

ence of (480 — 14.7) psig? Use the ideal gas approximation in Example 5.2. 

(c) If we model this by the isentropic flow models of this chapter, how large would the 

diameter have to be? 

(d) The answer in part (c) is for a frictionless nozzle. The actual design of these 

valves corresponds more closely to a square-edged orifice than a rounded nozzle. 

The orifice coefficient for choked flow through an orifice with downstream 

pressures << reservoir pressure is ~ 0.84 [8]. pe part (c) with this orifice 

coefficient. 

(e) How do these three simple estimates compare with = actual diameter used, which 
is approximately 0.156 in? 

(f) Discuss why such a pressure relief valve is required on containers like these. 
(g) If you have access to such a container, find the pressure relief valve. It will normally 

be marked 375 psi, which is the common setting for such valves. 

8.24. A vacuum tank is connected to a vacuum pump through a valve. The tank fae a vol- 
ume of 100 ft*; the pump has a volumetric flow rate of 10 ft? / min, independent of the 
density of the material flowing through it. The valve (when wide open) is the equiva- 
lent of a reversible nozzle with cross-sectional area 10 * ft”. All of the piping of the 
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system is very large compared 

to the dimensions of the valve. 

fir, PE ham The vacuum tank is full of air 
nee at a pressure of 1 atm. Heating 

coils hold the temperature of 

Compressor Test section the air in the vacuum tank at 

P=1atm 70°F. The valve is opened wide 

M = 2.0 and the pump started. How 
ge long does it take the tank pres- 

FIGURE 8.17 sure to fall to 0.1 atm? 

Flow diagram for a simple laboratory wind tunnel; see 8.25.*Air Pr = 100 psia, and Tp = 

Prob. 8.26. 100°F passes through an isen- 

tropic, converging nozzle into 
a second vessel whose pressure is 80 psia. The area of the nozzle at its minimum is 2 in’. 

What is the mass flow rate? 

8.26. A laboratory wants to design a steady-state, supersonic wind tunnel. This tunnel is to 

exhaust a steady flow of air at 4 = 2 and P = 1 atm to the atmosphere. The exit area 

is to be 1 in*. As sketched in Fig. 8.17, the whole system consists of a compressor, which 

takes in air from the atmosphere, a tank, which stores it at 70°F, and a converging- 

diverging nozzle. Calculate the required tank pressure, the mass flow rate, and the 

compressor horsepower needed to supply this tank and nozzle. For an ideal gas in an 

isothermal compressor the work per unit mass is -W/m = (RT/ M) In (P/ P,). 

8.27. Check the results of Examples 8.3 and 8.5 by using App. A.4. 

8.28. You have been commissioned to make up for helium a table analogous to App. A.4. Show 

that you know how to do this by calculating all the table entries corresponding to App. 

A.4 for M = 0.8. (V/ c* is given by Eq. B.6-12.) 

Section 5.6 shows a comparison of the velocities for flow through a converging nozzle, 

calculated by means of (a) Bernoulli’s equation, assuming that air is a constant-density 

fluid, and (b) the equations for isentropic flow. Show the calculations in the latter case, 

and check your answers against those shown in Sec. 5.6. 

8.30. Steam at Pe = 100 psia, and Tg = 600°F is expanded through a nozzle in steady, isen- 

tropic flow. Calculate the temperature, pressure, and Mach number at the point where the 

velocity is 2000 ft / s from the following: 

(a) The Keenan and Keyes steam tables or their equivalent 

(which do not assume ideal gas behavior) and 

(b) The equations for steady, isentropic flow of an ideal 

gas. 

8.31.*In Example 8.9, assume that at the point where = 0.5 

the pressure is 20 psia and the density 0.102 lbm/ ft’. 
What are the pressure and density at the point where 

M = 2.0? 

8.32. Rework Example 8.9, not by making the assumption of an 

upstream reservoir but, rather, by deriving the equivalent of 

Aexit = 1.90 ft? Eg. 8.17 for two arbitrary states, state 1 and state 2, at each 

of which the velocity is not negligible. 

A simple rocket with a 8.33.*A rocket has the throat area and exit area shown in Fig. 8.18. 

converging-diverging It is to be fired while being held down by the test stand. In the 

nozzle; see Prob. 8.33. combustion chamber the velocity is negligible, P = 200 psia, 

8.29 

FIGURE 8.18 
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8.34. 

8.35. 

8.36. 

8.37. 

8.38. 

8.39. 

8.40. 

T = 2000°R, M = 20 lbm/ Ibmol, and k = 1.4. The flow through the nozzle is steady 

and isentropic. What is the thrust of this rocket? 

Repeat Prob. 8.33 with the following changes 

(a) The combustion chamber temperature is changed from 2000°R to 4000°R. 

(b) The combustion chamber temperature is changed back to 2000°R, but the combus- 

tion chamber pressure is changed from 200 psia to 400 psia. 

(c) The combustion chamber pressure and temperature are the same as in Prob. 8.33, but 

the molecular weight of the exhaust gases is changed to 15 Ibm / lbmol. 

In Prob. 8.33 we have decided to replace the existing nozzle with Axi, = 1.9 ft? with a 

new nozzle, with a different exit area, in which the exit pressure will be exactly atmos- 

pheric pressure (14.7 psia). The chamber pressure and temperature and the throat area 

will not be changed. 

(a) What is new exit velocity? 

(b) What will the thrust of the rocket be with this new nozzle? 

This problem gets you beyond the highest Mach numbers in App. A.4. You must 

use the equations on which that table is based. 

In the vacuum system shown in Fig. 8.19 it has been decided that the pressure 

in the chamber, 0.01 mm Hg, is not low enough. Someone proposes that, if we use a 

bigger vacuum pump, we can get the pressure lower. Is he right? What do you 

recommend? 

A process vessel has a pressure that fluctuates between 15 and 35 psia. The pressure 

never exceeds 35 psia. We want to design a system to admit air into this vessel at a steady 

rate of 1 lbm/h. Our compressed-air supply main is at P = 100 psia and T = 70°F. This 

temperature and pressure do not fluctuate. Your competitor for a forthcoming promotion 

has proposed that we install a conventional flow-rate control system consisting of an ori- 

fice meter, differential-pressure transducer, controller, and control valve in a line between 

the compressed-air main and the vessel. Have you a suggestion that is likely to win you 

the promotion? 

For the data shown in Example 8.10, when the flow is choked at the pipe outlet, what 

are the pressure, temperature, and Mach number at the outlet of the nozzle (station 1 on 

Fig. 8.11)? 

In Example 8.10, estimate the pressure at the point exactly halfway between the end of 

the frictionless nozzle and the end of the pipe. 

Make a sketch to indicate what the lines of constant outlet Mach number would look like 
in Fig. 8.12. 

Control valve 

wide open 

Vacuum Vacuum pump 

chamber = 3 P=Pps 
with air ! 

leaks fe 

P=0(0,.01 mm Hg P = 0.005 mm Hg 

FIGURE 8.19 

A vacuum chamber and vacuum pump; see Prob. 8.36. 
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On Figure 8.12, it appears that for any value of k the states corresponding to choked flow 
form practically straight lines on the coordinates of that figure. Is that 
(a) A coincidence? i.e., the line does not have to be straight, but the numbers just fall 

out that way. . 
(b) Something that is required by the assumptions and the mathematics that went into 

making up that figure and that require the line to be straight? 

For the case shown in Example 8.10, prepare a plot of pressure versus length from one 
reservoir to the other for 

@*P3/ Po = 08. 
(b) ©P;/ Py = 0.4: 
(c) (P3f Po. = 0:2. 

8.43.*For the flow shown in Figs. 8.10 and 8.11, if Pp = 150 psia and P3 = 14.7 psia, what is 

8.44. 

8.45. 

8.46. 

8.47. 

8.48. 

8.49. 

8.50. 

the longest 1-in schedule 40 pipe for which the flow will not be choked at the outlet? 

Assume that f ~ 0.0060 independent of length. 

The N = 0 line in Fig. 8.12 corresponds to an isentropic nozzle only. Check to 

see whether this line corresponds to the equations in Sec. 8.2 by calculating the 

mass flow rate per unit area for air corresponding to M, =0.5 and M, = 1.0 

from the equations in that section and comparing the results with the N = 0 line in 

Fig. 8.12. 

A pressure vessel contains air at 30 psia at 100°F. The air is to be vented to the atmos- 

phere through a frictionless nozzle and a length of 1-in schedule 40 steel pipe of unde- 

termined length, which may take values between 4 and 800 ft. 

(a) Prepare a sketch of the flow rate in lbm /s versus the length of this pipe. 

(b) Repeat the calculation for a square-cornered pipe entrance instead of a frictionless 

nozzle. 

Set up the spreadsheet program shown in Table 8.3. Verify the results shown there. Then 

use it to find the value of m/A for P; = 12 psia. 

In developing Eq. 8.33 we dropped the pV dV term in Eq. 8.31, asserting that it was 

much smaller than the others. For a typical long-distance constant-diameter pipeline the 

pressure is 750 psia at the outlet of a compressor station and 500 psia at the inlet of the 

next compressor station. The fluid may be considered an ideal gas with a constant tem- 

perature of 70°F and a molecular weight of 18 Ibm / Ibmol. If the velocity at the outlet 

of the first compressor station is 20 ft / s, what is the ratio of the first two terms in 

Eq. 8.31? 

Sketch a plot of Pz versus distance, as predicted by Eq. 8.33, for constant mass flow rate, 

friction factor, etc. 

A natural-gas line has an inside diameter of 36 in. The compressor stations are located 

60 mi apart; the pressure at the outlet of the first is 750 psia, and the pressure at the inlet 

of the second is 500 psia. The gas may be considered an ideal gas with molecular weight 

18. The temperature is constant at 70°F. What is the mass flow rate, according to the 

Weymouth equation? How much different would the answer have been if we had used 

the constant-density B.E. (Sec. 6.5) with friction and based the friction calculation on the 

following: 

(a) The upstream density and velocity. 

(b) The average density and velocity from inlet to outlet. 

For M, = 1.50 calculate M,, T,/T,, P,/ Px, and py/ p, for a normal shock in a gas with 

k = 1.4. Compare your results with those in App. A.5. 
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8.51. Show that compression shocks are thermodynamically possible and rarefaction shocks 

are not. The procedure is as follows. Find the entropy change by substituting Eqs. 

B.6-18 and B.6-22 from App. B in Eq. B.3-29 to find 

Pal k/(k—-1) 

Scans k-1 2 
VS = ih PKS ay SS = eae 

k+1 <j pee Tet Ta aes 8.44 
aeoS | ae 

Then show that for k < 1.67 (that is, for all gases) s, — s, is positive for , > 1 and 

negative for , < 1. 

8.52. Why does App. A.5 not contain a column of figures for Ax/ A* for normal shock 

waves? 

8.53.*An earth satellite is entering the upper atmosphere at 30,000 km /h. The air it is enter- 

ing has T = 225 K. Estimate the temperature of the gas in contact with the surface of 

the satellite. 

8.54.*A jet fighter plane is flying at “ = 2 in still air that has T = O°F and P = 4.0 psia. 

8.55. 

The air inlet to the jet engine is a converging-diverging diffuser. Inside the engine the 

flow is subsonic. Aiproat = 2.0 ft”. What is the mass flow rate through this diffuser, assum- 

ing isentropic flow? 

A wind tunnel has a flow with “ = 2 at T = 300°R. If we insert a thermometer at this 

point, what will it read? Hint: If we assume that the air has zero thermal conductivity, 

the solution is quite simple. If the air can conduct heat (as it actually does), then the 

problem is more complex, and we cannot give more than an approximate answer with- 

out experimental heat-transfer data. 

8.56.*Air at 70°F and 10 psia is flowing at 500 ft / s in a pipe. A valve at the end of the pipe 

8.57. 

8.58. 

is suddenly closed. This causes a shock wave to form at the closed end of the duct and 

move up it. Calculate the speed at which this wave moves up the duct and the tempera- 

ture and pressure in the closed end of the duct. Hint: The gas downstream of the shock 

is standing still. Regardless of which coordinate system is chosen, we have 

V, — V, = 500 ft/s. If we take the coordinate system to be based on the moving shock 

wave, then we can use the tabulated values in App. A.5 to solve (by trial and error) for 

the upstream Mach number that has this relation between the two velocities. This is 

conceptually the same as Prob. 7.53 for a hydraulic jump moving upstream. The solution 

method is the same, but because we have one more variable in high velocity gas flow 

than in liquid flow, the mathematics are somewhat messier. (An analytical solution to this 

type of problem is shown by Zucker [9].) 

At some point in the nozzle shown in Fig. 8.16 the cross-sectional area is 1.5 times the 

throat area. If we assume that the flow is the isentropic, steady flow of an ideal gas with 

no shock waves and k = 1.4, what are the possible Mach numbers at that point when the 

Mach number at the throat is 1.0? What is the Mach number at that point when the Mach 
number at the throat is 0.1, 0.5, and 0.9? 

A converging-diverging nozzle has an. outlet area equal to 1.9 times the throat area. 

Using Apps. A.4 and A.5, prepare a plot of outlet Mach number versus P,y/ Pr for all 
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Pr, Tr 

Model being tested 

FIGURE 8.20 

A wind tunnel; see Prob. 8.61. 

possible outlet conditions, subject to the assumptions of isentropic flow, with or without 

normal shock waves. 

8.59. In a converging-diverging nozzle the cross-sectional area at point x (downstream of the 

throat) is 1.5 times the cross-sectional area at the throat. Air with Tz = 530°R is flow- 

ing steadily through the nozzle. 

(a) For isentropic flow list all of the possible values of T at point x. 

(b) For flow that is isentropic except for possible shock waves list all of the possible val- 

ues for T at point x. 

8.60. In a converging-diverging nozzle the exit area is 1.50 times the throat area. The flow of 

air is isentropic except for the possibility of shock waves. What is the Mach number at 

the throat when the Mach number at the exit is 

(a) 0.30 and 

(b) 0.50? 

8.61. Air flows through a supersonic wind tunnel; see Fig. 8.20. The flow is steady and isen- 

tropic, except that somewhere in the system there is a normal shock wave. If 

A>/ A; = 1.01 and M = 1.0 at both A, and A,, what is the upstream Mach number at 

the place where the normal shock occurs? 

8.62.*Repeat Example 8.14 for an outlet pressure of 0.70 Pr,. What is the lowest outlet pres- 

sure for which one can perform this calculation? 

8.63. In the nozzle in Fig. 8.21 air is flowing, and there is a normal shock wave at A. The 

remainder of the flow is isentropic. For this shock wave we have A, = 3.0. What is 

Pr, Ni Pr_? Some of the following values from the National Advisory Committee for Aero- 

nautics tables [10] may be useful. For 1, = 3 we have M, = 0.4752, ge = 10.33, 

T, / T,, = 2.679, and p,/ p, = 3.857. 

Pr, P Ry 

| 
| 

| 
V=0 

FIGURE 8.21 
A nozzle with a shock wave; see Prob. 8.63. 
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PART 

cs 
SOME OTHER 
TOPICS THAT 

CAN BE 
VIEWED 
BY THE 

METHODS OF 
ONE-DIMENSIONAL 

FLUID 
MECHANICS 

he next six chapters cover a variety of topics, which can be considered in any 

order, and from which the student or instructor may choose or omit. Many of 

them are simple introductions to topics that fill large books. The goal in most of them 

is to show how these topics relate to the basic ideas of Parts I and II, and how the 

terms and symbols of those topics relate to the corresponding terms and symbols in 

Parts I and II. 
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CHAPTER 

9 
MODELS, 

DIMENSIONAL 
ANALYSIS, AND 
DIMENSIONLESS 

NUMBERS 

9.1 MODELS 

A model is an intellectual construct that represents reality and that can be manipu- 

lated to predict the consequences of future actions. Most of engineering is the 

application of mathematical models to practical problems. For example, F = ma is a 

mathematical model of the relation between force, mass, and acceleration. Using it, 

engineers have been spectacularly successful in predicting the behavior of real phys- 

ical systems. Much more complex mathematical models are regularly used; as the size 

and power of our computers have grown, the size and complexity of the mathemati- 

cal models we can use has grown. Maintain your skepticism about your models; to 

quote the statistician George Box, “All models are wrong; some models are useful.” 

There are still many problems for which we have insufficient confidence in our 

mathematical models to risk large sums of money or human lives on their predictions 

without first testing those predictions with some kind of a physical model. For exam- 

ple, although we have made great strides in computational power, we still will not build 

a major new type of aircraft based on calculations alone, without wind tunnel tests of 

smaller-scale models of it to verify the computations. We know a great deal about 

chemical reactors, but not enough that we will build a full-scale plant to produce a 

chemical by a novel reaction scheme without some bench-scale or pilot-plant tests to 

verify that our mathematical models are reliable. We still cannot predict the behavior 

of complex structures under earthquake loads with total confidence, so we resort to 
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testing of physical models there as well. Even automobile designers currently use wind- 

tunnel tests on models of new designs, to determine their air resistance! For problems 

like these, in which we still do not have completely reliable mathematical models, engi- 

neers have developed some valuable techniques for making useful predictions without 

a complete answer. These methods played a greater role in the Be era than 

they do now. For that reason, this chapter is more part of an engineer’s historical- 

cultural background than of an engineer’s current technical tool kit. However, the 

methods described here often provide a useful physical insight into problems that will 

complement the insight that mathematical models and computer solutions provide. 

These methods are mostly based on studies using physical model tests. If we 

cannot calculate the behavior of a new shape of ship hull or airplane or a new type 

of chemical reactor, then we must build it and test it. If we can build and test a small 

model of the finished product instead of a full-sized airplane or ship or reactor, we 

will save time, money and, possibly, the lives of test pilots. (Have your failures on a 

small scale, in private; have your successes on a large scale, in public!) The enormous 

progress of the aircraft industry from the first powered flight in 1903 to the present 

is largely due to the fact that engineers have learned to test new designs by using 

small-scale models and to use the test results for designing full-scale airplanes. Sim- 

ilarly, the progress of the chemical industry is largely due to the chemical engineer’s 

ability to scale up bench-size or pilot-size plants to commercial plants with confidence 

that the resulting plants will perform as predicted. With the advent of big computers 

we can do much more by calculation than we could just 10 years ago. For that rea- 

son we do more computing (mathematical model testing) and less physical model test- 

ing than we did in the past. Nonetheless, really important engineering decisions are 

most often made on the basis of a combination of computations and physical model 

tests, with the physical model tests serving to confirm the computations before the 

full-scale airplane, boat, or chemical plant is built. 

However, just making and testing a scale model of the airplane, boat or cher- 

ical reactor is not the whole story, as indicated by the following quotation from J. B. S. 

Haldane [1]: 

The most obvious differences between different animals are differences of size, but for 

some reason the zoologists have paid singularly little attention to them. In a large text- 

book of zoology before me I find no indication that the eagle is larger than the sparrow, 

or the hippopotamus bigger than the hare, though some grudging admissions are made 

in the case of the mouse and the whale. But yet it is easy to show that a hare could not 

be as large as a hippopotamus, or a whale as small as a herring. For every type of ani- 

mal there is a most convenient size, and a large change in size inevitably carries with it 

a change of form. 

Let us take the most obvious of possible cases, and consider a giant man sixty 

feet high—about the height of Giant Pope and Giant Pagan in the illustrated Pilgrim’s 

Progress of my childhood. These monsters were not only ten times as high as Christian, 
but ten times as wide and ten times as thick, so that their total weight was a thousand 
times his, or about eighty to ninety tons. Unfortunately the cross sections of their bones 
were only a hundred times those of Christian, so that every square inch of giant bone 
had to support ten times the weight borne by a square inch of human bone. As the human 
thigh-bone breaks under about ten times the human weight, Pope and Pagan would have 
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broken their thighs every time they took a step. This was doubtless why they were sitting 
in the picture I remember. But it lessens one’s respect for Christian and Jack the Giant 
Killer. 

To turn to zoology, suppose that a gazelle, a graceful little creature with long thin 

legs, is to become large; it will break its bones unless it does one of two things. It may 

make its legs short and thick, like the rhinoceros, so that every pound of weight has still 

about the same area of bone to support. Or it can compress its body and stretch out its 

legs obliquely to gain stability, like the giraffe. I mention these two beasts because they 

happen to belong to the same order as the gazelle, and both are quite successful mechan- 

ically, being remarkably fast runners.* 

9.2 DIMENSIONLESS NUMBERS 

If, as shown in the preceding quotation, holding the shape constant while increasing 

the size does not guarantee equal performance by differently sized equipment or ani- 

mals, what does? In the case of the bones of the giant, presumably one should keep 

constant the ratio stress/crushing strength. To do this, as the height of the giant is 

increased, the crushing strength of the giant’s bones could be increased. Alternatively, 

the average density of the giant’s body could be lowered, to keep the same bone stress 

while the height increased; or the giant could go to a planet with a lower acceleration 

of gravity. Combining all these possibilities, we see that, if the giant keeps the ratio of 

height - average body density - acceleration of gravity 
Bone ratio = 3 (9.1) 

crushing strength of bones 

constant, then the giant can become any height with the same relative resistance to 

bone failure as a human has. This ratio is dimensionless,.a pure number (given the 

fanciful name, Bone ratio). 

Thus, we might suspect that dimensionless ratios like the Bone ratio would be 

important in predicting the behavior of a large piece of equipment from tests of a 

small model. Experience indicates that this is certainly the case. These dimensionless 

numbers have also proven invaluable in correlating, interpreting, and comparing exper- 

imental data. For example, if you were asked to compare a business venture in which 

you invest $4000 for a return of $400 per year with one in which you invest $6000 

for a return of $650 per year, you would certainly make the comparison through the 

most common of all dimensionless numbers, the percentage. 

‘Furthermore, there is often a real benefit in understanding if we can show our 

experimental or computational results in dimensionless form. The behavior of nature 

does not depend on what system of dimensions we humans choose to describe that 

behavior. Thus, the results of our observations, if they are correct, can be expressed 

in a form that is totally independent of the system of units we use. If they cannot, 

then we should wonder whether they are correct. Finding the best way to reduce 

observations made in any system of units to dimensionless form is always a good test 

of the experimental data, and often a good test of our understanding of that data. 

*From J. B. S. Haldane, Possible Worlds, Harper & Row, New York, 1928; reprinted in J. R. Newman, The 

World of Mathematics, Simon and Schuster, New York, 1956, p. 952 et seq. Quoted by permission of the 

publisher. 
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So far in this book we have seen the following dimensionless numbers: &%, f, 

C,, Fr, M. In addition we have seen ratios of dimensions, e.g., Ax/Dande/D for 

pipe flow and z./z, for hydraulic jumps. In Fig 7.17 we saw that the interac- 

tions of a jet of fluid with a moving blade could be best understood on a plot of a 

dimensionless energy ratio versus a dimensionless velocity ratio. In Chap. 8 all the 

parameters in App. A.4 and A.5 are presented as dimensionless ratios. This is a sim- 

ple matter of convenience; presenting them any other way would be very cumber- 

some. Finally, you may not even think of e, 7, 9, and sin@, as dimensionless numbers, 

but they all are. 

The application of dimensional analysis shown in Fig. 6.10, one of the most 

celebrated applications of dimensional analysis in fluid mechanics history, produces 

the following benefits: 

1. It reduces a problem with six dimensioned variables to one with three dimension- 

less variables. That allows us to get all the available friction data for steady pipe 

flow onto one plot, and then finally into two dimensionless equations. This is a 

great economy of presentation and effort compared to the original tables and plots 

of individual experiments on which Fig. 6.10 is based. 

2. It produces a solution that is universal, independent of what system of units the meas- 

urements were taken in or any of the other local idiosyncrasies of the experiments. 

3. From an understanding of the physical meaning of the dimensionless variables (dis- 

cussed in this chapter) one can develop more insight into the physics of the data 

represented on Fig. 6.10 than one could develop from plots or tables of those data 

in their original dimensional form. 

4. If one is planning an experimental investigation of some new phenomenon, find- 

ing the right dimesionless variables first shows what experimental values will most 
satisfactorily clarify the phenomenon. 

The important dimensionless numbers are almost all the product of individual 

variables to powers which are integers (positive or negative) or rational fractions. 

There are none that involve, for example, x” or x°°?’"". The product-of-integer or 
rational-fraction form is necessary to make the dimensions come out right. Sometimes 
one of the variables will be a difference, e.g., AP = P, — P,, which appears in the 
friction factor, or AT = Tyan — Taverage, Which appears in the dimensional analysis of 
heat transfer problems. AP and AT are perfectly well-behaved variables. But some 
combination like (AP / p + g Az), which is dimensionally homogeneous, does not 
appear in any of the useful dimensionless numbers. 

9.3. FINDING THE DIMENSIONLESS 
NUMBERS 

How does one go about finding which dimensionless numbers are important for a 
given type of model study or for changing our experimental findings from the dimen- 
sioned form in which we made the observations to a dimensionless form? Three gen- 
eral methods are in common use: the governing equation method, the method of force 
ratios, and Buckingham’s 7 method. 
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9.3.1 The Method of Governing Equations 

Suppose that the problem with which we are dealing concerns a complicated fluid 
flow system in which we suspect the B.E., along with other equations, would apply. 
Then we can write B.E. in differential form (without pump or compressor work) and 
integrate to find 

P 2 

oO gay TRSe =, + # = constant (9.2) 

Let us assume that the ¥ term is of the form given by the Poiseuille equation: 

(Vavg D6 m / 4) - [Axp(128 / zr) 
F = : (6.14) 

Dop 

Each of the terms in Eq. 9.2 (or any correct equation) has the same dimensions; therefore, 

if we divide through by any one of them, the result will be a dimensionless equation. 

If we divide by V*/ 2, the result is 

2h 2gz if mv Ax _ const. Beh, Laat = 9.3 
pVo! ziVaom) pVD-insD v? So 

The first term on the left in this equation is important enough to be given a name in 

fluid mechanics, the pressure coefficient; it is also sometimes called 1 / (Euler number)’. 

It appears in problems in which there are significant changes in velocity and in pres- 

sure between different parts of the system. For example, Eq. 6.23 may be rewritten 

poe. 2 0.4) 
pV’ Ax ; 

and Eq. 6.50 may be rewritten 

Fo 2 — 2Pay 
C= —'-5 = (9.5) 

AfapV pV 

so the friction factor and drag coefficient introduced in Chap. 6 are special cases of 

this more general pressure coefficient. 

The second term on the left in Eq. 9.3 also is important enough to have a name, 

2 / (Froude number), or 
2 

¥r = Froude number = Zz (9.6) 

(Some textbooks call the Froude number the square root of the value shown here.) In 

problems involving changes in velocity and free surfaces, the Froude number plays a 

very important role, e.g., in ship-model studies and open-channel flow. We saw in 

Chap. 7 that it is the key parameter in describing hydraulic jumps. 

The third term on the left side of Eq. 9.3 is 1/(Reynolds number), times 

64 - (length / diameter). The Reynolds number is important whenever viscous forces 

are important and there are significant changes in velocity. We have seen its use in 

Chap. 6 and will see it again in later chapters. 
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We see from this example that simply by dividing B.E. by one of the terms, we 

can find three of the most frequently used dimensionless groups in fluid mechanics. 

Similarly, we saw in Chap. 8 that dividing both sides of Eq. 8.15 by part of one side 

leads naturally to the Mach number, which also is used very frequently. 

These simple examples do not show all the possibilities of this method; for more 

on it, see Kline [2]. Interesting variants of this method are shown by Bird, Stewart, 

and Lightfoot [3, p. 97] and Hellums and Churchill [4]. 

9.3.2 The Method of Force Ratios 

The method of force ratios, discussed below, is often referred to as the method of 

similitude or the method of similarity. 

Most of the dimensionless groups in fluid mechanics may be thought of as ratios 

of lengths or ratios of forces. For example, in pipe flow we saw two length ratios, 

Ax/D and </ D, and two dimensionless groups—which, as we will see shortly, are 

expressible as force ratios—the Reynolds number and the friction factor. The length 

ratios are obviously important in model studies; a scale model has the same 

length / width or length / height as the original. The force ratios are important in 

model studies because, for two different-sized models to encounter the same kind of 

fluid behavior, the influences of gravity, viscosity, compressibility, etc., must be in the 

same proportion for both. The dimensionless groups generally may be thought of in 

some other way (e.g., the Mach number as a ratio of velocities), but they also can be 

seen as force ratios. This is easiest to see for the pressure coefficient. The pressure 

force exerted by a fluid on some planar body is 

Pressure force = | 
all surface 

Pa pea (9.7) 

Similarly, the force required to stop a unit volume of the flow (which a body inserted 

into the flow does) is given by F = ma. Multiplying both sides by dx, we get 

dv 
F dx = madx =m Re dx = mV dV (9.8) 

but m is the mass of a unit volume equal to pL*, where L is the length of one side 
of the unit volume. Substituting this and integrating, we find 

| F dx = Fiyg Ax'= | pL?V dV = L'pa( +) (9.9) 

Here the final velocity is zero, so we may replace the A(V? / 2) in this equation with 
—V°/2. Ignoring the sign and solving Eq. 9.9 for the average force, we have 

Pave ree ie (9.10) 

3 . . 

Now, L’ / Ax has the same dimensions as an area, so we may replace it with some area 
A. Thus, the force to stop the fluid, which is commonly called the inertia force, is 

y2 
Inertia force = Ap > = F, (9.11) 
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Dividing Eq. 9.6 by Eq. 9.11, we find 

LR AY ieee oF 
F, Ap(V2/2) = p(V2/2) = pressure coefficient (9.12) 

We can find the appropriate force ratios systematically by making up a list of forces 
and their dimensions. 

To find the viscous force, we consider the shear force exerted by a Newtonian 
fluid flowing past a surface in laminar flow. From Chap. 1, we know that the shear 
stress T is given by 

pia) Bably, av i 

Solving for the force gives us 

F= pa 9.13 = (9.13) 

However, at the wall V = 0 and y = 0; so this becomes 

V 
Viscous force = a = Fy (9.14) 

Similarly, the force of gravity on a unit volume of fluid is 

Gravity force = gol” = Fa (9.15) 

and the surface tension force on a unit length of fluid surface is 

Surface tension force = oL = Fs (9.16) 

The elastic force for a spring is given by Hooke’s law as F = kx, where k is the 

spring constant and x is the displacement. If we apply the same equation to the 

one-dimensional compression of a fluid, we find that the spring constant is 

A(dP/ dx); so, 

dP A’ dP A dP 
Elastic force = A — Ax = ogee cone A* — Ax (9.17) 

3 d. A dx dV 

But V = m/ p, so for a constant mass dV = —(m/ p’) dp. Ignoring the sign and sub- 

stituting give 

A’p’ _ dP EA (9.18) 
dp 

Elastic force = 

Then we substitute m = pV to find 

Ao dP Ax dP Pax =A = p— (9.19) 
p 

Elastic force = 

but V/ Ax has the dimensions of an area, so we may call it an area: 

dP 
Elastic force = Ap on = Fr, (9.20) 
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From this list of six kinds of forces we may make up a table of all the possi- 

ble force ratios, Table 9.1. From this table we see that we can combine the six kinds 

of forces into 15 force ratios, of which 8 are important enough in fluid mechanics 

to have the common names shown. An entirely analogous table is also shown by 

TABLE 9.1 

Dimensionless numbers obtained as force ratios*,** 

_ 2(aP / dp) 

These numbers 

are merely 

reciprocals of numbers 

shown above and to the right. 

. 2/ Reynolds number. The Reynolds number is introduced in Chap. 6 and appears in many subsequent chapters. 

. Pressure coefficient = 1 / (Euler number)”. TheFanning friction factor, f introduced in Chap. 6 = (pressure coefficient). 

D/2 Axand the drag and lift coefficients introduced in Chap. 6 = 2 - (pressure. coefficient). 

3. 2/ (Mach number)” = Cauchy number. The Mach number plays a dominant role in Chap. 8. 

. 2/ Weber number. The Weber number plays a dominant role in all phenomena involving drops and sprays; see 

Chap. 14. 

. 2/ Froude number The Froude number is introduced in Chap. 7 in describing hydraulic jumps. It plays a major role in 

open channel flow phenomena and in the design of boat hulls. 

. Stokes number. Stokes law for the settling of spherical particles in laminar flow (Eq. 6.57) can be rewritten as Stokes 

number = 12. One seldom sees it that way, but this formulation shows that for gravity settling of spherical particles in 

laminar flow the Stokes number is a constant. For other shapes that constant has different values. 

. Capillary number. Figure 11.6 shows that the capillary number (in slightly modified form) governs the displacement of 

liquids from porous solids. 

. EétvGs number. The Eétvés number appears in studies of bubbles. For example, Tate’s law, for the size of bubbles form- 

ing at an orifice, Eq. 14.14, can be written as Et = 6 Dyupvie / D. orifice: 

**Other dimensionless groups that appear in this book mostly are not named, and are the ratios of similar quantities; e.g., 

the relative roughness, e/ D, in Chap. 6 is the ratio of two lengths, and A / A*, which appears in Chap. 8, is the ratio of 

two areas. In Chap. 8 most quantities are presented as ratios to some reference value of the same quantity; these are 

dimensionless groups, which are presented that way simply for convenience. 



CHAPTER 9 MODELS, DIMENSIONAL ANALYSIS, AND DIMENSIONLESS NUMBERS 351 

Kline [2] for the dimensionless ratios important in heat transfer, in which, instead of 

using force ratios, we use the ratios of energy quantities. A list of 27 dimensionless 

groups used in chemical engineering fluid mechanics, made up in a way similar to 

Table 9.1 is shown by Tilton [5, pp. 6-49]. 

The merit of Table 9.1 is that in using it we can quickly estimate which ratios 

are likely to be important for a given problem. 

Example 9.1. Using Table 9.1, estimate which dimensionless ratios are prob- 

ably important for (a) steady laminar flow in a horizontal pipe, (b) completely 

turbulent steady flow in a horizontal pipe, (c) resistance to an airplane in steady 

flight, (d) resistance to a ship in steady motion, (e) resistance to a submerged 

submarine in steady motion, and (f) the rise of a fluid in a capillary tube. 

(a) For steady laminar flow in a pipe we would assume that the only important 

forces are the pressure force and the viscous force (in fact, we know from 

Chap. 6 that they are equal and opposite). Then from Table 9.1 we would 

conclude that the only important force ratio is probably the Stokes number. 

We would also assume that the length / diameter ratio would be important 

and hence that the Stokes number was some function of that ratio. If we 

further assume that the Stokes number is a constant times the ratio of 

length / diameter, we can then solve for AP / length: 

TA ae pV 
= constant - —— (9.A) 

Length LD 

Here the L in the Stokes number is length perpendicular to the flow direc- 

tion (in this case, the diameter), so that the right-hand side of the equation 

is pV/ D*. This result is the same as Poiseuille’s equation (written for the 

average velocity). 

Dimensional analysis will not tell us the value of the constant in Eq. 

9.A (which is 4 if we take V as the average velocity), but it will suggest to 

us that for steady laminar flow in horizontal pipes a plot of pressure drop 

per unit length versus (viscosity * average velocity / diameter’) might give 

the same straight line for all fluids, pipes, and velocities (which is experi- 

mentally verifiable). 

(b) For completely turbulent flow, we would assume that viscous forces would 

be negligible compared with the pressure and inertia forces, so that the 

only important force ratio should be the pressure coefficient. The 

length / diameter ratio also should be important, as well as the pipe rough- 

ness. If we further assume that for a constant pipe roughness the pressure 

coefficient is a constant times the length / diameter ratio, we can solve for 

the pressure drop per unit length: 

y2 

ak = ons p— [for a given pipe roughness] (9.B) 

Ax D 2 

Comparing this with the definition of the friction factor, we see that the con- 

stant here is 4f. So far, we have not included the effect of variable pipe 

roughness. It would be plausible to assume that the constant in this equation 
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(c 

(d 

(e 

(f 

) 

) 

) 

wa 

is a function of pipe roughness, so that our final form would be 

9 E ve 
ae = some function of D and on (9.C) 

It also would be plausibie to assume that this function was a linear one, i.e., 

AP e pV? 
ae = some constant - D : an tag (9.D) 

but experimental data (Fig. 6.10) indicate that nature disagrees with this 

plausible assumption. However, Eq. 9.C is a good description of the right- 

hand side of the friction factor plot; the friction factor for very high 

Reynolds numbers depends on the roughness alone, not on the Reynolds 

number. 

For an airplane, the forces that may be significant are pressure force, iner- 

tia force, viscous force, and elastic force. At low velocities the elastic force 

is probably negligible compared with the others, so we would conclude that 

the pressure coefficient (normally called a drag coefficient for airplanes) 

should be a function of Reynolds number and geometry. At high velocities 

the viscous forces are probably negligible compared with the elastic forces, 

so the pressure coefficient should depend on the Mach number and geom- 

etry. Both of these assumptions are experimentally verifiable. We might 

make either of two plausible assumptions about intermediate velocities: 

(i) The two ranges overlap, i.e., there is a range of velocities in which both 

the Reynolds and the Mach number affect the pressure coefficient, or 

(ii) these two ranges do not meet, i.e., there is a range of velocities in which 

neither the Reynolds number nor the Mach number affects the pressure coef- 

ficient, which depends on the geometry alone. From theoretical speculation 

alone we cannot decide between these two possibilities. Experiments indi- 

cate that the second is correct; over a large range of velocities the pressure 

coefficient is independent of the Reynolds and Mach numbers; it depends 

only on the shape of the airplane and its angle of attack relative to the 

oncoming airstream. 

For a ship the forces that may be significant are the pressure force, gravity 

force, viscous force, and inertia force. The gravity force enters this list 

because of the bow wave thrown up by ships; because of this wave the ship 

seems to be steadily traveling uphill. Then, from Table 9.1, we assume that 

the pressure coefficient should be a function of the Froude number and the 

Reynolds number as well as of the shape of the ship. This is experimentally 
verifiable. 

For a submerged submarine the gravity force is no longer important, because 

a submerged submarine causes no bow wave. Therefore, we should drop the 

Froude number from the list obtained in (d). 

For capillary rise the significant forces are gravity and surface tension of 

the fluid. Therefore, from Table 9.1 we see that the important force ratio is 

gpL’ / o, the Eétvis number. Here the L? in the gravity force indicates three 

perpendicular directions. The L in the surface-tension force cancels one of 
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them, but the remaining L* does not refer to one dimension squared, but 
rather to two perpendicular dimensions. Setting this force ratio equal to a 
constant and solving for one of these dimensions, we find 

L, = constant (9.E) 
§42 

If the geometry we are discussing is a right cylinder with vertical axis, and 
if we choose L, as the height of capillary rise for perfect wetting of the sur- 
face by the fluid, then L, is a characteristic length at right angles, e.g., the 

radius of the tube. In that case it can be shown (see Chap. 14) that the con- 

stant in this equation is a dimensionless 2. | 

9.3.3 Buckingham’s 7 Method 

Another systematic approach to finding the dimensionless numbers is the method of 

Buckingham [6] often referred to as the a theorem or Buckingham’s 7 theorem. 

This states that, if there is some relationship in which A (the dependent variable) is 

a function of B,, Bs, ..., B,, (the independent variables), then the relationships can be 

written 

eet ie eae) (9.21) 

or, alternatively, 

TUL BL. Bs... -.D,) = 0 (9.22) 

(For example, F = ma or [F — ma = OJ.) Furthermore, if the quantities contain 

among them k independent dimensions, then it will be possible to rewrite Eq. 9.22 as 

f(7, TDs ise 3 Tn) =) (9.23) 

in which the 7’s are dimensionless quantities and the number of 77’s is (n + 1 — k). 

Here the 77’s may be dimensionless numbers like the Reynolds number, or ratios of 

dimensions, like the L / D that appears in equations for the friction effect in pipe flow. 

This part of Buckingham’s theorem shows how to decide how many such dimen- 

sionless groupings we should seek for a given problem. 

The proof is given by Buckingham [6]; in brief it is that, if a relation such as 

Eq. 9.22 exists, and if the final relation contains more than one term (i.e., is not of 

the form A = 0), then each term must have the same dimensions. Thus, we know that 

some relation of the form of Eq. 9.22 exists and, in addition, we know that k inde- 

pendent equations exist among the dimensions of the (n + 1) quantities in Eq. 9.22. 

This means that we can, in principle, eliminate k unknowns among these equations; 

hence, there are (n + | — k) independent, dimensionless 7’s. 

There are several restrictions in this logic, as follows: 

1. The list of independent dimensions should not contain redundant dimensions. For 

example, if it contains length and force, then it should not contain energy (energy 

is dimensionally equivalent to the product of length and force). If we wish to 

include dimensions that are redundant in this sense, then the conversion factor for 

converting the redundant equations to each other should be included in the Bs. For 
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example, if we wish to include length, force, and thermal energy in our list of 

dimensions, then we should also add to the list of Bs the conversion factor between 

mechanical and thermal energy which is 778 ft: lbf/ Btu = 4.184J/cal = 1. 

Thus, we can add_a redundant dimension and a conversion factor, and the num- 

ber of 7’s, equal to (n + 1 — k), will not change, because both n and k increase 

by 1. The other common example of this approach is the inclusion of force, mass, 

length, and time as independent dimensions. This is permissible if one adds 

g. = 32.2 Ibm: ft/ (Ibf-s*) = 1.00 kg: m/(N-s*) = 1 to the list of Bs. 
2. If two dimensions occur only in a specific ratio, then they are not independent 

and must be treated as one dimension. Suppose, for example, that our list of As 

and Bs consisted of two velocities, V; and V3, and two forces, F, and F>. By sim- 

ple application of Buckingham’s theorem we would conclude that (n + 1) equals 

4 and that k equals 3 (length, time, force); so there should be one 7r. But to con- 

clude that there is only one 7 here is incorrect. Since length and time appear in 

our list of variables only in the combination length / time, there are really only 

two independent dimensions, force and length / time; so k is 2 and there are two 

q’s, which are presumably V, / V> and F / F). In this case it is obvious that the 

dimensions length and time are not independent. In less obvious cases, the rec- 

ommended procedure is to find from the list the largest number of variables that 

cannot form a dimensionless group. In this example that number is two; we can 

select one velocity and one force, and they cannot be converted into a dimen- 

sionless group using the other members of the variable list. Any three from the 

list can form a dimensionless group, either V; / V> or F; / F>. This largest num- 

ber of uncombinable variables is equal to the number of independent dimensions. 

It can never be more than the total number of dimensions; as shown above, it may 

be less. 

Example 9.2. We believe that some force is a function of a velocity, a den- 

sity, a viscosity, and two lengths. How many dimensionless 7’s should be 

required to correlate the data for this problem? 

Here we have three choices as to which set of dimensions to choose, all 
of which give the same result. 

1. We may choose as our dimensions length, force, and time, in which case we 

must express the density in dimensions of [force - time* / length*] and the 

viscosity in [force - time /length?]. In this case (n + 1) equals 6, and k 

equals 3. Can we find three parameters that cannot be combined into any 

dimensionless group? Yes, the force, one of the lengths, and the density can- 
not be so combined; the three dimensions are independent, and we can see 
that the number or 7’s is 6 — 3 = 3. 

2. We may choose as our dimensions length, mass, and time, in which case we 
must express the force in dimensions of [mass ° length / time’] and the vis- 
cosity in [mass / (length - time)]. Here again (n + 1) equals 6 and k equals 
3. The same group of a length, the force, and the density again cannot be 
internally combined into any dimensionless group; so the three dimensions 
are independent, and the number of 7’s is 3. 
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3. We may choose force, mass, length, and time as our dimensions, in which case 

we must add the force-mass conversion factor, g. = 32.2 lbm: ft / (bf: s”) = 

1.00 kg: m/(N-s°), to our list of parameters. Now we can select a length, 
the force, the density, and g. as the four parameters that cannot be combined 

into any dimensionless group, so that all four dimensions are independent, and 

the number of 77’s_ is now 7 — 4 = 3. a 

Having decided how many 7r’s to look for, how do we look for them? Buck- 

ingham’s theorem also provides an algorithm for selecting 7’s; 

1. 

2. 

Select k variables that cannot be combined internally into a dimensionless group. 

These are the repeating variables. 

Then the combination of the repeating variables with any of the remaining, non- 

repeating variables can form a dimensionless group; make up (n + | — k) such 

groups from the variables. This often can be done by inspection, or it can be done 

systematically by the algorithm shown in Example 9.3. 

Example 9.3. For the variables shown in Example 9.2 find a set of three 7r’s. 

This problem can be worked three ways, just as Example 9.2 could be 

worked three ways. We work here only with the first of the three in Example 9.2. 

The other two are Probs. 9.4 and 9.5. 

We choose the independent dimensions as length, force, and time. We now 

construct a table of the variables, shown in Table 9.2, indicating their dimensions. 

As our repeating variables we may select any three that cannot be 

combined internally to form a dimensionless group; for example A, Bz, and 

B, (a force, the density, and a length). Then the three dimensionless 7r’s 

may be formed from the following groups: A, Bo, By, B); A, Bz, B4, B3; and 

A, Bo, By, Bs. 
The first 7 must be some product of powers (plus or minus) of A, 

B>, By, B,;. We form this product, using a, b, c, and d to indicate the unknown 

powers: 

m1 = (A)*(B)"(Ba)(B1)* (OF) 

However, because the 7r’s are dimensionless, the dimensions of this equation are 

PoP Po = (PYF tL 1 (9.G) 

TABLE 9.2 
Dimensions of the variables in Example 9.3 

Variable Description Dimensions 

A A force, F; F 

B, Velocity, V ae 
B, Density, p BEL E 
B3 Viscosity, 1 mes 
By Length, L L 

Bs Length, L, iB 
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9.4 

This can be true only if the following three simultaneous equations are satisfied: 

Equation for length: =] —40 eae (9.H) 

Equation for time: 0'= 2). d. (9.1) 

Equation for force: O.=a-tib (9.J) 

By straightforward ee we may show that this set of equations has the 

solution 

a= 4/2 ETM Be | (9.K) 

Now, we may arbitrarily select a value for d; we select 2 as the lowest value of 

d that avoids fractional exponents. Then our first 7 is 

SVE ES pL°v* m= (A) '(B2)'(BaBy? = = (OL) 

If the force here is a pressure force, then the L’/ F is equivalent to (1/a 

pressure) and 7, is py! (pressure coefficient). If we had chosen d = | above, 

our resulting 77, would be the square root of the 77; we found here. 

By equally straightforward mathematics (Prob. 9.3), we can set up the sys- 

tems of equations for 772 and 73 and solve for them, finding 

TL he and 73 = 
hed Ly 

L (9.M) 

Here 773 is the ratio of the two lengths, and 772 can be shown to be equal to 

2 / (Reynolds number - pressure cofficient)”. Examining this set of 7’s, most 

experienced engineers would select as their dimensionless groups 73, 1 / 7, 

and (a> / m)!/?, i.e., the length ratio, the pressure coefficient, and the Reynolds 

number. The justification for this procedure is that a different selection of the 

repeating variables will give a different set of 7’s. However, the different sets 

are all products or ratios of the first set to some power. For example, if the 

repeating variables in Example 9.3 were chosen as V, p and L,, then the same 

procedure leads to 77; = 2/ (pressure coefficient), 7 = 1 / (Reynolds number), 
and 73 = L/L» (see Prob. 9.6). | 

DIMENSIONLESS NUMBERS 
AND PHYSICAL INSIGHT 

It is extremely unlikely that any reader of this book will use the above procedures to 

discover a significant new dimensionless number. White [7, p. 280], in addition to 

presenting a brief history of this subject, directs the reader to 24 books on the sub- 

ject, including one with over 300 dimensionless numbers. Rather, most readers of this 

book will find the dimensionless numbers and the thought behind them most useful 
in correlating and understanding experimental results, in planning future experimen- 
tal programs, and in thinking about what is going on physically in some unfamiliar 
process. 

Thinking of problems in terms of their dimensionless numbers is often very 
helpful. We have seen that flow in a circular pine is very different at low Reynolds 
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numbers than at high Reynolds numbers, that the behavior of an open channel flow 
that is blocked is very different for a Froude number < 1.00 than for Froude 
numbers > 1.00, and that gas flow is very different for Mach numbers < 1.00 
than for Mach numbers > 1.00. A Mach numbers < 0.2 means that the effects of 
changes of fluid density are unimportant, and we may safely use B.E. A Mach 

number > about 0.5 means the opposite and means that our intuitive picture of low- 

Mach-number flows is not a reliable guide to this flow. Experienced engineers think 

about many physical phenomena this way; students are encouraged to learn to do so 
as well. 

Dimensional analysis is powerful, but not all-powerful. It shows us what three 

dimensionless groups are best for presenting all pipe-flow friction data, Fig. 6.10. But 

it does not tell us what that plot will look like. By dimensional analysis alone we 

would never have discovered the difference between laminar and turbulent flows. Only 

careful experimental observation told us that. Currently, we can solve almost all lam- 

inar flow problems by computational fluid dynamics (Chap. 20); even though dimen- 

sional analysis gives us insight into laminar flow problems, we rarely need it to solve 

them. The same is not true for turbulent flow problems, where we can often learn 

important things about the flows by dimensional analysis. 

One can make up all sorts of dimensionless numbers, only a few of which are 

useful. For example, the mass of this book, divided by the mass of the universe forms 

a perfectly well-defined dimensionless number. What possible use has it? What prob- 

lem would we use it in? 

9.5 JUDGMENT, GUESSWORK, 
AND CAUTION 

Dimensional analysis and physical model studies are needed only in those problems 

that cannot currently be completely or rigorously solved with mathematical models. 

Therefore, we cannot hope to obtain a complete and certain solution by these meth- 

ods. Furthermore, as the examples show, applying these methods requires judgment 

and good guesswork. Because the results are only tentative, they should be applied 

with caution. 

However, the gain in simplifying a problem may be very great. As stated by 

Kline,* 

The use of dimensionless parameters reduces the number of independent coordinates 

required. A convenient way to realize the importance of such a reduction is to recall that 

a function of one independent coordinate can be recorded on a single line; two inde- 

pendent coordinates a page; three require a book; and four, a library. 

The gain in increased understanding of the problem, to be had by seeing it in 

its dimensionless form, may be even more valuable than the gain in simplifying the 

problem. 

*From S. J. Kline, Similitude and Approximation Theory, McGraw-Hill, New York, 1965, p. 17. Quoted by 

permission of the publisher. 
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9.6 SUMMARY 

1. Although many flow situations can be represented by a simple, closed, analytical 

equation (e.g., laminar flow in a pipe), many others currently cannot (e.g., turbu- 

lent flow in a pipe). 

. In the latter case the experimental data often can be correlated and simplified by 

the use of dimensionless ratios(e.g., the friction factor, Reynolds number, relative 

roughness plot). 

. In designing full-size equipment from tests on small-scale physical models, it is 

necessary to “‘scale up,” keeping the values of the pertinent dimensionless groups 

the same for model and full-size equipment. 

. The common methods of finding the pertinent dimensionless groups are the method 

of governing equations, the method of force ratios, and Buckingham’s a7 method. 

. The greatest benefit of dimensional analysis is often the insight it gives us into the 

physical nature of the flows. 

. All these methods require judgment and good guesswork. The results must be 

applied with caution. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover! 

An asterisk (*) on a problem number indicates that the answer is in App. D. 

9.1. Estimate which of the dimensionless force ratios in Table 9.1 should be important for 

each of the following kinds of flow: 

(a) Breakup of a jet of liquid into droplets. 

(b) Formation of a vortex in the free surface of the drain of a bathtub. 

(c) Same as (b), but for a bathtub full of molasses. 

(d) The shape of a bubble rising in a viscous liquid. 

(e) The breakaway of a bubble from a submerged horizontal orifice. 

(f) The simultaneous horizontal flow of two fluids through a porous medium at low flow 

rates, e.g., the flow of oil and gas into an oil well. 

(g) same as (f), but flow in the vertical direction. 

9.2. In the example in the text in which the list of variables consists of two velocities and 

two forces, show what the possible forms of the final equation are if we assume that there 

is only one 7 and if we assume that there are two 7's. 

9.3.*Find a> and 73 in Example 9.3. 

9.4. Rework Example 9.3, using L, m, and t as the independent dimensions. 

9.5. Rework Example 9.3, using L, m, t, and F as independent dimensions (and adding g, to 

the list of variables). 

9.6. Rework Example 9.3, using V, p, and L, as the repeating variables. 

9.7, Rework Example 9.3 by the method of force ratios. 

9.8. Make a list of the dimensionless groups that appear in the common introductory courses 

in thermodynamics, heat transfer and material balances. Indicate whether these are ratios, 

and if so, of what. 

9.9.*An airplane scale model is to be tested. The problem of interest is one in which the land- 
ing behavior is to be tested. Since this is a low-speed problem, the Reynolds number is 
to be held constant between model and full-scale airplane. The model is to be one-tenth 
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of the length of the airplane with the same shape. The landing speed of the full size air- 
plane is 60 mi/h. How fast should the air in the wind tunnel move past the model to have 

the same Reynolds number? Suppose we could test the model in water. What should the 

water velocity be for the same Reynolds numbers? 

9.10. We are designing a new, large centrifugal pump (Chap. 10). We wish to test its behavior 

on a small model. If the pump has an impeller 1 m in diameter that turns at 1800 rpm, 

and we want to test it with a model with a 0.1 m diameter impeller and the same fluid 

the pump will use. We want the same Reynolds number, taking the velocity as the veloc- 

ity of the tip of the impeller. What rotational speed will be required? Is it practical to 

hold the Reynolds number constant in such pump model tests? 

9.11. We are designing a new type of racing boat hull. In the model tests in a towing basin 

we will use a model one-tenth the size of the actual boat. We know that the drag of the 

boat (its resistance to moving through the water) is a function of the Reynolds and Froude 

numbers. Can we simultaneously hold both of these constant between model and real 

boat in our tests? If not, how will we test the model? 

9.12. In Examples 9.2 and 9.3, we now believe that in addition to the variables included, we 

should also add a new variable, a frequency of vibration or oscillation, w, with dimen- 

sion (1 / time). Repeat those two examples with this added variable. 

9.13. What dimensionless groups should influence the speed of a large surface wave in the 

deep ocean, i.e., a tsunami? Of a small surface wave in a shallow pond? 

9.14. A small, spherical particle is settling by gravity in a liquid. Using the method of force 

ratios, estimate what dimensionless groups should describe this process. 

9.15. Repeat Prob. 9.14, for a large particle. 

9.16. Equation 6.56 shows the terminal velocity of a spherical particle settling in a liquid. Show 

that if one multiplies both sides by (Dppuia / bhawal the left side becomes Rs The right 

side is described as (44r/ 3C,) where Ar is the Archimedes number [8]. Show the equa- 

tion for the Archimedes number. Can it be expressed as the ratio or product of other num- 

bers in Table 9.1? 
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CHAPTER 

PUMPS, 
COMPRESSORS, 
AND TURBINES 

LT. Chaps. 4, 5, and 6 we have written energy-balance equations that involve a dW, ¢ 

term (see Sec. 4.8 for a definition of dW, ;). For steady-flow problems this term gen- 

erally represents the action of a pump, fan, blower, compressor, turbine, etc. Here we 

Pump or fan or 

blower or Flow in Flow out 
: compressor or 

Pi, my, Qi turbine or 
expansion engine 

Work flow, (Power, Po ), in 

Heat exchange or out, usually 

with surroundings on a rotating shaft 

Q, usually ~ 0 

FIGURE 10.1 

Flow diagram for any pump, compressor, turbine, or expansion 

engine. A fluid flows in at the left and out at the right. Work 

flows in or out on a rotating or reciprocating shaft. If the inlet 

pressure is less than the outlet pressure, this is a pump or 

compressor, and work flows in. If the inlet pressure is greater 

than the outlet pressure then this is a turbine or expansion 

engine, and work flows out. For steady flow mi, = mou. If the 

density does not change through the device (practically true for 

liquids, almost never true for gases), then Qj, = Qout- 

will discuss the fluid mechan- 

ics of the devices that actually 

perform that dW,;-. Figure 

10.1 shows the flow diagram 

for all the devices discussed in 

this chapter. The names of the 

various devices that fit this dia- 

gram are shown in Table 10.1. 

The boundaries between the 

names are approximate; for 

liquids, there is less variation 

than for gases. The naming 

shown is not absolute; the 

hand-operated air compressor 

used to fill bicycle tires is 

called a bicycle pump. 
From Fig. 10.1 one sees 

that the same diagram describes 

both devices that consume 

work and increase the pressure 
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TABLE 10.1 

Names of various kinds of fluid machinery, based on usage ohm a a id as 8 te 8 2 | nll el iit a 
Fluid passing through Work-consuming Work-producing 
device device, P, > P, device, P; < P, 

Liquid Pump Turbine or expansion engine 
Gas 

AP < 0.1 psi Fan Turbine or expansion engine 
OFA P <i pst Blower Turbine or expansion engine 

AP > 1 psi Compressor Turbine or expansion engine 

Inlet P less than 1 atm Vacuum pump 

Other Bicycle pump 

of the fluid passing through and devices that lower that pressure to produce work. Many 

such devices can work both ways. Most are designed to be efficient one way, for exam- 

ple, an efficient pump works poorly as an expansion engine or turbine. But for some 

applications (pumped storage [1] and tidal power plants [2]) the same device operates as 

an efficient pump running one way part of the time and as an efficient turbine running 

the opposite way part of the time. 

10.1 GENERAL RELATIONS FOR 
ALL PUMPS, COMPRESSORS, 
AND TURBINES 

To determine the performance of a device in Fig. 10.1 we measure the inlet and out- 

let pressures and the steady-flow mass flow rate m or the volumetric flow rate 

Q = m/ p for various downstream pressures. The result, normally presented as a plot 

of AP versus Q, is called a pump or compressor curve or map. As shown below, it 

is common to divide the pressure increase by pg and define 

AP eee Jan (10.1) 

compressor head pg 

This matches the head form of B.E. (Sec. 5.4). In such a pump test, in addition to h 

and Q, we normally simultaneously measure the power input to the device or power 

output from it. Most pump or compressor maps present the data as a plot of h versus 

Q and show the power input or output plotted versus Q on the same figure (Figs. 10.3, 

10.8, and 10.9, discussed later). 

If we write B.E. (Eq. 5.5), from the inlet of the pump, compressor, or turbine 

in Fig. 10.1 to its outlet and solve for the work input to the pump, we find 

dW. + (Z *) 
—— = A|—+ ez+—]+F 10.2) dm pens 

The term on the left is the work flow per unit mass into the pump; it is posi- 

tive for a pump or compressor and negative for any power-producing device such as 

a turbine or expansion engine. The first term on the right of the equal sign represents 
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the “useful” work done by the pump: increasing the pressure, elevation, or velocity 

of the fluid. The second term represents the “useless” work done, either in heating 

the fluid or in heating the surroundings. For most such devices we take points | and 

2 as shown in Fig. 10.1, for which the elevation change is negligible. We observe that 

the change in kinetic energy is generally much less than AP/ p, so that (except in - 

the most careful work) we drop the gz and V?/2 terms from Eq. 10.2. 

The normal definition of pump efficiency is 

useful work _ AP/p 

total work dW,, /dm 
Pump efficiency = n = (10.3) 

This gives the pump efficiency in terms of a unit mass of fluid passing through the 

pump. It is common to multiply the top and bottom of this equation by the mass flow 

rate m = dm/ dt = Qp, which makes the denominator exactly equal to the power, Po, 

supplied to the pump: 

m: AP/p { .2@e AP 

dm / dt) = (dW / dm) POcophed 
me (10.4) 

( 

This form is applicable only to fluids whose density is nearly constant, i.e., liquids. 

For gases we must substitute | (dP/p) for AP/p in B.E. and do the integration, 

finding 

a (10.5) 
|e, 

inf (dP / p) 

As in Chap. 5, for small changes in P (e.g., most fans and blowers) we can use 

Eq. 10.4 for gases with negligible errors. But for large changes in P (most compres- ° 

sors and vacuum pumps), we must use Eq. 10.5. 

Example 10.1. A pump is pumping 50 gal / min of water from a pressure of 

30 psia to a pressure of 100 psia. The changes in elevation and velocity are neg- 

ligible. The motor that drives the pump supplies 2.80 hp. What is the efficiency 
of the pump? 

The right-most form of Eq. 10.4 is almost always the more convenient, so 

(50 gal / min) + (70 Ibf/ in?) hp min 23hin? ft 
2.8 hp 33,000 ft-Ibf gal_—s«:12i ay 0.73 (10.4) 

| 

From this calculation we see that both the numerator and denominator in 
Eq. 10.4 have the dimension of horsepower (or kW). We may think of the numera- 
tor (referred to as the hydraulic horsepower of the pump) as the useful work ex- 
pressed in horsepower (or kW). The pump efficiency = (hydraulic horsepower) / (total 
horsepower supplied to the pump), or the same in kW. In Example 10.1 we may cal- 
culate that the hydraulic horsepower is 2.04 hp. 
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10.2 POSITIVE-DISPLACEMENT PUMPS 
AND COMPRESSORS 

A pump or compressor is a device that does work on a liquid; dW,,¢ / dm is positive 
in the new sign convention used in this book, but negative in the traditional sign con- 
vention used in older books. Most pumps and compressors are one of the following: 

1. Positive-displacement (P.D.). 

2. Centrifugal. 

3. Special designs intermediate in characteristics between these two. 

In addition there are nonmechanical pumps (i.e., electromagnetic, ion, diffusion, jet, 

etc.), which will not be considered here. 

10.2.1 P.D. Pumps 

P.D. pumps work by allowing a fluid to flow into some enclosed cavity from a low- 

pressure source, trapping the fluid, and then forcing it out into a high-pressure 

receiver by decreasing the volume of the cavity. These are extremely common; exam- 

ples are the oil and fuel injector pumps on most automobiles, the pumps on most 

hydraulic systems, the hand-operated dispensers for liquid soap, cosmetics, and cat- 

sup, and the hearts of most animals. The most important pump in my life is a P.D. 

pump, my heart. P.D. pumps and compressors have been used for thousands of years. 

Before about 150 years ago all pumps and compressors were P.D. Since then our 

improved ability to make rotating machinery has made possible other types of pumps 

(centrifugal, axial flow, regenerative), which have replaced P.D. pumps in many 

applications. The P.D. devices still move our blood, and they can produce small, high- 

pressure flows like the oil pumps in our autos most economically. They have many 

other applications. There are more 

ran cae Valve P.D. pumps and compressors in the 
world than all other types of pumps 

and compressors combined. 

Figure 10.2 shows the cross- 

sectional view of a simple piston-and- 

cylinder P.D. pump. The connecting 

rod moves the piston up and down in 

Cylinder a cyclical fashion. The operating cycle 

of such a pump is as follows, starting 

| Piston with the piston at the top. 

1. The piston starts downward, creat- 
Connecting rod : : : . 

ing a slight vacuum in the cylinder. 

2. The pressure of the fluid in the 

inlet line is high enough relative 

to this vacuum to force open the 

FIGURE 10.2 
Positive-displacement pump of the piston-and-cylinder 

type. 
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left-hand one-way valve, whose spring has been designed to let the valve open 

under this slight pressure difference. 

Fluid flows in during the entire downward movement of the piston. 

The piston reaches the bottom of its stroke and starts upward. This raises the pres- 

sure in the cylinder higher than the pressure in the inlet line, so the inlet valve is 

pulled shut by its spring. 

The pressure continues to rise until it is higher than the pressure in the outlet line. 

If the fluid were totally incompressible, this pressure rise would be instantaneous. 

For most liquids it is practically instantaneous. For gases (discussed below), it is 

not instantaneous. 

When the pressure in the cylinder is higher than the pressure in the outlet line, the 

one-way outlet valve is forced open. 

7. The piston pushes the fluid out into the outlet line. 

8. The piston starts downward again; the spring closes the outlet valve, because the 

pressure in the cylinder has fallen, and the cycle begins again. 

al aed 

Md 

Sa 

Suppose that we test such a pump, for various downstream pressures. We begin 

with all downstream valves open, so that the downstream gauge pressure is zero. 

We slowly close a downstream valve, raising the downstream pressure. For a given 

speed of the pump’s motor, the results for various discharge pressures are shown 

in Fig. 10.3. (The input and output pressures and velocities of a P.D. pump vary 

cyclically. All of the values shown in this section are average pressures or average 

velocities.) 

From Fig. 10.3 we see that P.D. pumps are practically constant-volumetric- 

flow-rate devices (at a fixed drive motor speed). To increase the flow rate for a fixed- 

geometry P.D. pump, one must increase the motor speed. When we exercise and need 

more blood supply we increase the number of beats per minute of the P.D. pumps 

in our chests. We also see that P.D. 

pumps can generate large pres- 

Practically a sures. The danger that these large 
& vertical line. Ahigh-pressure. pressures will break something is 
a relief valve opens, s9 severe that these pumps must 
| or some other z 
a Salsiaraavibe always have some kind of safety 

5 limits the pressure Valve to relieve the pressure if 
i: their discharge line is accidentally 

2 blocked. The corresponding prob- 

& Motor speed constant lem in our bodies is high blood 
pressure. If our arteries are con- 

Volumetric flow rate, Q, ft*/s stricted, due to wear and tear or to 
FIGURE 103 fatty deposits, the discharge pres- 

Pump performance curve for a P.D. pump, with the motor  SUFE of our heart increases. This 

running at constant speed. Most pump curves plot the leads to strokes and heart failures. 

pressure rise or the pump head, h = (Pout — Pin) / pg, For a perfect P.D. pump 

vertically and the volumetric flow rate, Q, horizontally. and an absolutely incompressible 
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fluid the volumetric flow rate equals the volume swept out per unit time by the 
piston, or 

Volumetric flow rate = piston area - piston travel - cycles / time (10.6) 

For an actual pump the flow rate will be slightly less because of various fluid leakages 

(around the piston, the wrong way through the valves). The curve on Fig. 10.3 would 

be vertical for zero leakage, but bends slightly to the left of vertical for real pumps. 

For large P.D. pumps the efficiency can be as high as 0.90; for small pumps it is 

less. One may show (Prob. 10.3) that for the pump in this example the energy that was 

converted into friction heating and thereby heated the fluid would cause a negligible 

temperature rise. The same it not true of gas compressors, as discussed in Sec. 10.2.2. 

If we connect our P.D. pump to a sump, as shown in Fig. 10.4, and start the 

motor, what will happen? A P.D. pump is generally operable as a vacuum pump. 

Therefore, the pump will create a vacuum in the inlet line. This will make the fluid 

rise in the inlet line. 

If we write the head form of B.E. (Eq. 5.6) between the free surface of the fluid 

(point 1) and the inside of the pump cylinder (point 2), there is no pump work over 

this section; so 

Pre Poh Va. 

ps 2g, 8 
2Q-y=h= (10.7) 

If, as shown in Fig. 10.4, the fluid tank is open to the atmosphere, then P; = Patm- 

The maximum possible value of h corresponds to P, = 0 psia. If there is no friction 

and the velocity at 2 is negligible, then 

——— (10.8) 

For water under normal atmospheric pressure and room temperature this height, called 

the suction lift is about 34 ft ~ 10 m. 

Pump inlet line, full of air 

ae ae Discharge 

FIGURE 10.4 

Suction lift. PD. pumps work as vacuum pumps and can easily lift liquid 

modest distances above a reservoir. Centrifugal pumps have a harder time 

doing this, as discussed in the text. 
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The actual suction lift obtainable with a P.D. pump is less than that shown by 

Eq. 10.8, because 

1. There is always some line friction, some friction effect through the pump inlet 

valve, and some inlet velocity. 

2. The pressure on the liquid cannot be reduced to zero without causing the liquid to 

boil. All liquids have some finite vapor pressure. For water at room temperature it 

is about 0.3 psia or 0.02 atm. If the pressure is lowered below this value, the liquid 

will boil. 

3. This assumes zero valve leakage in the pump. All pumps of the type shown in 

Fig. 10.2 have some valve leakage so that they cannot produce a very high vacuum. 

Example 10.2. We wish to pump 200 gal / min of water at 150°F from a sump. 

We have available a P.D. pump that can reduce the absolute pressure in its cylin- 

der to 1 psia. We have an ¥/ g (for the pipe only) of 4 ft. The friction effect 

in the inlet valve may be considered the same as that of a sudden expansion 

(see Sec. 5.5) with inlet velocity equal to the fluid flow velocity through the 

valve, which here is 10 ft / s. The atmospheric pressure at this location is never 

less than 14.5 psia. What is the maximum elevation above the lowest water level 

in the sump at which we can place the pump inlet? 

The lowest pressure we can allow in the cylinder (P2) is 3.72 psia, the 
vapor pressure of water at 150°F. If the pressure were lower than this, the water 

would boil, interrupting the flow. The density of water at 150°F is 61.3 Ibm/ ft’. 

Thus, 

(14.5 = 3.7)Ibf/in? 144 in? 

~ 613lbm/ft 322 ft/s fe 
Ibm: ft (10 ft/s) 

Ibf-s?  2-32.2 ft/s? _ 
= 25.4 ft — 1.6 ft = 4 ft = 19.8 ft = 6.04m (10.B) 

An experienced engineer would select a lower suction lift if at all possible. 

max 

waa 

One solution to the suction-lift problem is to place the pump at the bottom of 

the inlet line. That is done on all deep wells (oil and water), because we cannot suck 

the fluid out of them. This solves the suction lift problem, but places the pump where 

it cannot be observed or serviced easily and requires us to transmit pump power to 

the bottom of the well. 

We have discussed only the piston-and-cylinder type of P.D. pump. These have 

a large number of moving, wearing parts and hence are expensive to buy and main- 
tain. Several other types of P.D. pumps have been developed that are simpler and 
cheaper than this type, in small sizes, e.g., gear, sliding vane, peristaltic, and screw 
pumps. Although the mechanical arrangements are different, the operating principle 
and the performance of these are similar to those of piston-and-cylinder types, Of 
these designs, the sliding-vane pumps are the easiest to understand. Figure 10.5 shows 
a cutaway of one such pump, and illustrates how it works. 
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Outlet 

Wid 
j 

Outlet 

Manifold 

Housing 

Manifold 

“Crescent” Blade Cam Inlet Holes 

FIGURE 10.5 

Cross-sectional view of a sliding-vane P.D. pump. The circular rotor is placed off-center in the 

circular casing (called a cam on this drawing). The rotor rotates clockwise. The blades move in and 

out in slots in the rotor, driven against the casing by centrifugal force and/or hydraulic pressure 

below them, and/or springs. As the rotor rotates, it traps a mass of liquid in the space in the crescent 

between two vanes. Then, further rotation forces that fluid into the outlet line. The movement of the 

vanes (in and out) is exactly analogous to the movement of the valves in Fig. 10.2. This device is 

functionally equivalent to Fig. 10.2, but because of its rotary motion it is smaller, simpler, and more 

robust. (Courtesy of the Corken Pump Division of the Ibex Corporation.) 

This type of P.D. pump is very common. Its mode of operation is the same as 

that of the piston-and-cylinder P.D. pump in Fig. 10.2. It sucks the fluid into an 

expanding cavity, traps that fluid, then reduces the size of the cavity, thus forcing the 

fluid out into the discharge line at a pressure higher than the inlet line. Its pump curve 

(like Fig. 10.3) is not quite as vertical as that sketched in Fig. 10.3, because there is 

some leakage around the tips and sides of the sliding vanes. But the curve is close 

enough to vertical that such pumps almost always have a pressure relief (bypass) valve 

to prevent them from developing dangerously high pressures. This is one of the most 

common pumps in the hydraulic systems used on construction equipment. With very 

modest modifications it can be run backward, with high-pressure hydraulic fluid 
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flowing in, low-pressure fluid flowing out, and rotational power being produced on 

the shaft. The same is true of gear pumps and some others types of rotating P.D. 

pumps [3]. 

10.2.2 P.D. Compressors 

As shown in Table 10.1, a compressor is a device that raises the-pressure of a gas by 

AP = about 1 psi. Almost all small compressors are P.D., e.g., the compressors in 

household refrigerators and air conditioners, those in portable air supply systems for 

paint sprayers and pneumatic tools, and common laboratory vacuum pumps. 

A PD. compressor has the same general form as a P.D. pump; see Fig. 10.2. 

The operating sequence is the same as that described in Sec. 10.2.1. The differences 

are in the size and speed of the various parts. The pressure-volume history of the gas 

in the cylinder of such a compressor is shown in Fig. 10.6. 

Here we have simplified the behavior of real compressors by assuming that 

when the piston reaches the top of its travel there is no volume left between the pis- 

ton and the top of the cylinder. This would be a zero-clearance compressor. Later we 

will examine the consequences of the fact that real compressors generally leave a lit- 

tle gas in the cylinder at the top of the stroke; those consequences are minor. 

For a zero-clearance compressor, at the top of the stroke, point A, the pressure 

is equal to the outlet pressure, Pouter, and the volume enclosed in the cylinder is zero. 

As soon as the piston begins to descend the pressure falls instantaneously. When it 

reaches Pinjer, the inlet valve opens, still at V = 0 for a zero-clearance compressor, 

point B. Then the gas from the inlet line flows in at a constant pressure until the pis- 

ton reaches the bottom of its stroke at V>, point C. As soon as the piston starts back 

up, the inlet valve closes, and then both valves remain closed while the gas in the 

cylinder is compressed from its inlet pressure to its outlet pressure. When it reaches 

that pressure the outlet valve opens (P = Poutiers V = V;), point D. Then as the piston 

P 
outlet 

Li outlet 

Area ABCD = V dP 
P 

inlet 

V dP 

Late (eae 

sin OR UAE 
vy V> 

FIGURE 10.6 

Pressure—volume history of one cycle of a zero-clearance piston-and-cylinder 
P.D. compressor. 
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continues to rise the gas is forced out into the outlet line at constant P completing 
the cycle at point A. 

The work of any single piston process is given by 

w= [rav= [raa= frav (10.9) 

The work done by the compressor on the gas is the gross work done on the gas (area 

under curve CDA) minus the work done by the gas on the piston as the gas flowed 

in (area under the curve BC); thus, the net work is the area enclosed by the curve 

ABCD. It is equal to the gross work required to drive the compressor only if there is 

no friction, no gas leakage, etc. (i.e., 100 percent efficient operation). 

This area on a PV diagram is the algebraic sum of three areas: the area Pinte, V1, 

which is the work done by the gas in the inlet line driving back the piston; the area 
D 

ks P dV, which is the work input of the compression step; and the area Pourier V2. 

which is the work to drive the gas out of the cylinder into the outlet line. One can 

see that, although for any one of these three steps the work is given by a P dV integral, 

the algebraic sum of three such P dV integrals adds up to a V dP integral (Eq. 10.10): 

outlet 

Weone onthe = | V dP [zero-clearance compressor] (10.10) 
gas, per cycle inlet 

This integral is the work done by the compressor on the gas. If we take the com- 

pressor as our system, then it is negative, because it is work flowing out of the sys- 

tem; an equal or greater amount of positive-sign work must flow in from whatever is 

driving the compressor. (One can come to the same result directly from B.E., in which 

we included the injection work in our steady-flow energy balance.) 

Compressors are most often used to compress gases that can be reasonably well 

represented by the ideal gas law, PV = nRT. If a compressor works slowly enough 

and has good cooling facilities, then the gas in the cylinder will be at practically a 

constant temperature throughout the entire compression process. Then we may sub- 

stitute nRT/ P for V in Eg. 10.10 and integrate: 

Lie P2'dP P> ’ 
RWasitetaael = V dP = nRT — = nRT|ln— [isothermal] (10.11) 

gas, per cycle 1 Py P P, 

However, in most compressors the piston moves too rapidly for the gas to be cooled 

much by the cylinder walls. If the piston moves very rapidly, the gas will undergo 

what is practically a reversible, adiabatic process, i.e., an isentropic process. In that 

case, we may rearrange Eq. B.3-23 of App. B to 

PV* = constant = P,V{ [adiabatic] (10.12) 

Inserting this in Eq. 10.10 and making the algebraic manipulations shown in App. 

B.7, we find 

Fa nRT|k P, — 1)/k F : 

DSW deneon the ‘i Vt (2) =f [adiabatic] (10.13) 
on per an Py Ne P 1 
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Most often we divide both sides of Eq. 10.11 and 10.13 by the number of mols com- 

pressed, n, to find the work per mol. 

Example 10.3. A 100 percent efficient compressor compresses air from 1 atm 

to 10 atm. The inlet temperature is 68°F = 20°C. Calculate the required work per 

pound mol for (a) an isothermal compressor and (b) an adiabatic compressor, 

(a) For an isothermal compressor: 

AW Btu Btu kJ 
=—= 1], ————— 5 98°R - In 10 = 2416 =5'62—— "10/C 

n eA lbmol -R ‘ i lbmol mol ( ) 

(b) For an adiabatic compressor: 

AW Btu 1.4 oastd 
== = I ee Pie a GN So 

n eel lbmol - °R ae 0.4 ( ) 

Bt kJ 
= A ra (10.D) 

lbmol mol 

The difference between the answers to parts (a) and (b) is due to the rise 

in temperature of the gas in the adiabatic compressor. From Eq. B.3-16 we can 

calculate that the adiabatic compressor’s outlet temperature is 1.93 times its inlet 

temperature, or 1019°R = 559°F. Thus, by the ideal gas law we know that its 

exit volume is 1.93 times the exit volume for the isothermal compressor, and 

the integral of V dP must be larger. | 

Equations 10.11 and 10.13 indicate that the result in Example 10.3 is a general 

result; i.e., the required work per mol for an adiabatic compressor is always greater 

than that for an isothermal compressor with the same inlet and outlet pressures. There- 

fore, it is advantageous to try to make real compressors as nearly isothermal as pos- 

sible. One way to do this is to cool the cylinders of the compressor. Almost all P.D. 

compressors have cooling jackets or cooling fins on their cylinders. Students may 

observe that the cylinders of the compressors in service stations and on paint-sprayer 

compressors always have cooling fins, to reduce the outlet temperature and thus the 

required power input. Another way to reduce the power demand is by staging and 
intercooling; see Example 10.4. 

Example 10.4. Rework Example 10.3 by using a two-stage adiabatic com- 
pressor in which the gas is compressed adiabatically to 3 atm, then cooled to 
68°F, and then compressed from 3 atm to 10 atm. 

Here 

AW Btu 1.4 10 \04/14 
—— = 1,097 -eehs) 59 get Se  ingOat 10 ee 

n Ibmol - °R 04 E shilpa 1 

Btu kJ 
= 2862 = 6.00 

Ibmol mol (10.E) 

The power requirement is more than that of the isothermal compressor in Exam- 
ple 10.3, but less than that of the adiabatic compressor in that example. | 
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This example illustrates the advantage of staging and intercooling. There is a 
limit to the amount of work saving possible; with an infinite number of stages with 
intercooling an adiabatic compressor would have the same performance as an isother- 
mal compressor (Prob. 10.13). Thus, the behavior of an isothermal compressor rep- 
resents the best performance obtainable by staging. The optimal number of stages is 
found by an economic balance between the extra cost of each additional stage and 
the improved performance as the number of stages is increased. 

In Example 10.4 the interstage pressure was arbitrarily selected as 3 atm. It can 
be shown (Prob. 10.9) that for a two-stage compressor (with the same inlet tempera- 
ture to both stages) the optimal interstage pressure (that which requires the least 
amount of total work) is given by 

FP iteestape = UP esctieras , ye ide (10.14) 

This is the interstage pressure that makes the pressure ratio P,,,/ Pj, the same for 

each stage. By similar calculations it can be shown (Prob. 10.10) that for more than 

two stages the optimal interstage pressures are those that have the same pressure ratio 

for each stage. The power-saving that results from staging and intercooling is great 

enough that even compressors as small as those on modest-sized portable compressed 

air systems have more than one stage. In Eq. 10.12, the value of k is that of the gas 

for an adiabatic compressor. One may substitute k = 1 in this equation and see that 

it reduces to Eq. 10.11, the equation for an isothermal compressor. Real compressors 

(with cooling) operate somewhere between these extremes, normally closer to adia- 

batic than to isothermal. The common practice is to use a value of k somewhat smaller 

than that for the gas; this is called a polytropic value of k, chosen to make Eq. 10.13 

match the experimental behavior of real compressors. 

All the foregoing concerned zero-clearance compressors, ones in which no gas 

is left in the cylinder at the end of the discharge stroke. For mechanical reasons it 

is impractical to build a compressor with zero clearance. So in real compressors 

there is always a small amount of gas in the top of the cylinder, which is repeat- 

edly compressed and expanded. If the compression and expansion are reversible, 

either adiabatic or isothermal, then that gas contributes as much work on the expan- 

sion step as it requires on the compression step, and thus it contributes nothing to 

the net work requirement of the compressor. For real compressors the compression 

and expansion of the gas in the clearance volume does contribute slightly to the 

inefficiency of the compressor; compressor designers make the clearance volume as 

small as practical. 

Equations 10.11 and 10.13 were derived with the assumption of a zero-clearance 

compressor. They apply equally well to real compressors if we understand the n in 

them to represent the net number of mols passing through, not the total number of 

mols present in the cylinder at the start of the compression stroke. Because we nor- 

mally analyze the work of compressors on a (work / mol or unit mass processed) 

basis, this causes no difficulty. In these derivations and in Fig. 10.6 we assumed zero 

pressure drop through the inlet and outlet valves. All real compressors of this type 

have some pressure drop through these valves; it is a significant part of the friction 

heating that causes the efficiency to be less than 100 percent. The typical value of 

Pou / Pin for a one-stage P.D. compressor is 3 to 5. If a higher ratio is needed, the 
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common practice is to used staging, as shown in Example 10.4, with as many stages 

as needed to meet the desired value of Pox: / Pin- 

In general we use a P.D. compressor for any small gas flow with PonhPs 

greater than about 1.1, and also for large gas flows when the final pressure is very 

high, as in very high pressure chemical reactors. 
~ 

10.3 CENTRIFUGAL PUMPS 
AND COMPRESSORS 

Starting about 1850, industrial countries learned to build high-speed rotating machin- 

ery. Before that time no such devices existed. Rotating high-speed pumps and 

compressors can be centrifugal, axial flow, or some other kind. They have almost 

completely displaced P.D. devices for high flow rates, and for most medium-pressure, 

medium-flow-rate pumping operations. For those, they are simpler, smaller, cheaper, 

and more robust than the P.D. devices they replace [4]. They are the most common 

type of pump in chemical engineering processes. 

10.3.1 Centrifugal Pumps 

A centrifugal pump raises the pressure of a liquid by moving it outward in a 

centrifugal force field, and by giving it a high kinetic energy and then converting that 

kinetic energy into injection work. The water pump on most automobiles is a typical 

centrifugal pump. As shown in Fig. 10.7, it consists of an impeller (i.e., a wheel with 

blades) attached to a rotating shaft, some form of housing with a central inlet and a 

peripheral outlet, and a back cover with some kind of seal to let the shaft in without 

letting the liquid leak out. 

In such a pump the fluid flows in the central inlet into the “eye” of the impeller, 

is spun outward by the rotating impeller, and flows out through the peripheral outlet. 

Seal in 
back of 

Eye” of impeller Rotation Q housing 

Ls Back of housing 

@ Shaft 

Inlet \) () 
Outlet 

@ @ Impeller 

Front of housing, called diffuser or volute 

FIGURE 10.7 

Exploded view of a very simple centrifugal pump, such as an automobile water pump. 

Real pumps are more complex, but almost all have a rotor with some kind of blades, a 

shaft to drive the rotor, a housing with flow in at its center and discharge at its 
periphery. All simple ones also have a back plate, with a seal where the shaft passes out 
of the pump to the motor that drives it. Numbers | to 4 refer to discussion in the text. 
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To analyze such a pump on a very simplified basis, we consider it as three parts: an 
inlet, a centrifuge, and a diffuser. In the inlet, the fluid flows into the pump and is 
picked up by the impeller. Applying B.E. between the inlet pipe (point 1) and the eye 
of the impeller (point 2) we find 

p 
Po rsuBy Sogri( Walia Vg) poE3 (10.15) 

The impeller acts as a centrifuge, described in Chap. 2. Integrating Eq. 2.34 from the 

eye of the impeller (point 2) to the tip of the impeller (point 3) we find that 

2 r3 Ww 

P3 — Po = | pwr dr = 8 — t) (10.16) 

The third part of the centrifugal pump is the diffuser (see Sec. 5.5), in which 

the fluid flows from the tip of the impeller to the outlet pipe. Applying B.E. between 

the tip of the impeller (point 3) and the outlet line (point 4), we find 

: p 
Peet ere (Vz — V4) — p¥3-4 (10.17) 

Adding these three equations, dividing by pg, and canceling like terms, we find 

Pee Pi wo), 4 (Vs — Vee Si Siz ah) h = ——— = — (r3 — 73) + : ee 
g pg 2g 

The division by pg converts this expression to the equivalent of the head form of B.E. 

(Sec. 5.4), which is commonly used with pumps. We then simplify this equation by 

noting that 

(10.18) 

V> = wr and V3 = oF; (10.19) 

which allows us to group two terms and find 

A alg RC a grag ar OE) SORE SSE) 
ps 8 28 8 

Each of the terms in Eq. 10.20 has the dimensions of a length; / is called the pump 

head, which is the height to which the pump will lift a fluid at a given flow rate. In 

some centrifugal pumps the inlet and outlet lines have the same diameter so that the 

velocity terms in Eq. 10.20 cancel. However, for reasons discussed below, the inlet 

line is often larger than the outlet line, so this term remains. 

Example 10.5. A centrifugal pump has the following dimensions: inlet pipe 

2-in pipe size, (diameter = 2.067 in), outlet pipe 1.5-in pipe size, (diameter = 

1.61 in), impeller inner diameter = 2.067 in, outer diameter = 6.75 in, rotational 

velocity = 1750 rpm. What is the pump head, according to Eq. 10.20, assuming 

zero friction, for a volumetric flow rate of 100 gpm? 

Here we can write 

ark I50 

min 

min 1 
i OOO 10.F) - 7 an : ( ) W 
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and 

100 gal/min 231 in? min ft 

(7/4): (2.067in? ~— gal «60s 12 in 
m ft 

= 9.56 — = 2.91 ia (10.G) 

and similarly, V> = 15.76 ft/s = 4.81 m/s. The impeller inner and outer radii ~ 

are 0.086 ft and 0.336 ft. Substituting these values in Eq. 10.20, with zero fric- 

tion, we find 

(183.26 / s)? 

32.2 ft/s” ! 

= 74.76 ft — 2.44 ft = 72.3 ft = 30.4m 

(0.336 ft)? — (0.086 ft)*] + 
[(15.75 ft/s)? — (9.56 ft/s)"] 

= 3 tt Lae 

(10.H) 

= 

This value and the calculated values for other flow rates are shown in Fig. 10.8, 

along with the experimental values for a pump with the same dimensions as that in 

this example. We see that the experimental values are about half those shown by 

Eq. 10.20 and that the difference increases with increasing flow rate. This simply 

shows that the effects of friction are substantial in pumps of this type and that they 

increase with increasing flow rate. The experimental values are taken from Fig. 10.9, 

which shows a wealth of information about actual centrifugal pumps. 

From Fig. 10.9 we see the following: 

1. This is a pump-head flow rate curve, just like Fig. 10.8. However, it shows 

curves for four different diameter impellers, A, B, C, and D. The reader may ver- 

ify that the Experimental pump curve on Fig. 10.8 was copied from the “C 6 3” 

curve on Fig. 10.9. Pump manufacturers make only a modest number of pump 

external housings, and fit each one with a series of different-sized impellers, thus 

MO pe oe pp 

70 Eq. 10.20 with zero friction 

60 

50 

40 

Pump head, A, ft 
Experimental pump curve 

30 

0 20 40 60 80 100 120 140 

Volumetric flow rate, Q, gal / min 

FIGURE 10.8 

Comparison of the pump curves (head versus volumetric flow rate 

plots) for a frictionless centrifugal pump, as computed by Eq. 10.20, 

and a real pump of the same dimensions, copied from Fig. 10.9. 

providing a suitable-sized 

pump for a wide variety of 

demands, with far fewer 

different models than they 

would need if they pro- 

duced a completely differ- 

ent pump for each service. 

Figure 10.9 shows the 

pump curves for a family 

of four different pumps, 

each with its own impeller 

size but sharing all other 

parts in common. 

. The plot shows lines of 

constant power require- 

ment. Thus, for Example 

10.5, we can interpolate 

on Fig. 10.9 that the 

required power input is 

about 1.15 hp. This power 
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Model 3656/3756 S-Group 

SAI, BF, AB / Size (Tamajio) 1! x 2-8 
Imp. Dwg. 118-88 

1750 RPM| NOTE: Not recommended for operation beyond 

printed H-Q curve. 

NOTA: No se recomienda la operacion mds alld 

de la curva impresa de H-Q (carga-capacidad). 

~-| NPSHk - FEET (PIES) “f= 

i) So 

60 sueecti ans Gta 

= cH | ae 
_ Nn 

TOTAL DYNAMIC HEAD (CARGA DINAMICA TOTAL) 

S 

Nn 

160 U.S. GPM 

0 10 20 30 40 m*/hr 

CAPACITY (CAPACIDAD) 

FIGURE 10.9 

Pump map for a family of four centrifugal pumps (four different size impellers in the same size casing). This map shows results 

in English and some metric units and in English and Spanish. The designation 1; X 2 refers to the sizes of the outlet and inlet 

pipes, 1; and 2-in U.S. pipe size. This is the common way of describing centrifugal pumps in the United States. The horsepower 

lines are only applicable for a fluid with SG 1.00, e.g., water. The plot is discussed in the text. (Courtesy of Goulds Pumps.) 

input is based on a fluid with SG = 1.00. At Q = 100 gpm we read that h ~ 32 ft, 

so the pressure rise through the pump (for water) at this flow rate is 

WE pole 62.8 3.205 - 22d. Ibf  s* 1994 OF 
ee) eon Ges Hee 32.2 Ibm - ft fe 
= 13.8 psi = 95.5 kPa (10.1) 

From Eq. 10.4 we may compute 

_ (100 gal/min) (13.8 Ibf/in*) hp: min 231 in’ __ ft 
1.15 hp 33,000 ft-Ibf gal 12in 

= 0.70 = 70% (10.J) 

The plot shows contour lines of equal efficiency. Based on these, we would esti- 

mate an efficiency in this example of about 71 percent. The power requirement and 

efficiency curves are only approximate, so that 70 percent approximately equals 

71 percent. 
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4. These contour lines suggest that the highest efficiency corresponds to an impeller 

about halfway in size between impellers B and C, although the whole center of 

the diagram has about the same efficiency. 

5. The plot makes clear that this map is for 1750 rpm. In the United States common 

electric motors operate at about 1750-1800 rpm or 3500-3600 rpm. A separate 

pump map is available from the manufacturer for this same pump family operat- 

ing at 3500 rpm. From Eq. 10.20 we would assume that increasing w by a factor 

of 2 would increase all the heads on this map by a factor of 4. That is approxi- 

mately (but not exactly) what that figure shows. 

6. The plot also shows dashed lines marked NSPHa. For this example we would 

interpolate a value of about 6.5 ft. The meaning of NSPHk is discussed in Sec. 

103.2: 

7. At the top of the figure this pump family is described by model numbers and as 

15 by 2. This refers to the size of the outlet and inlet openings, 13 and 2 inches 

US pipe size. This is the standard US way of describing medium-size pumps, 1.e., 

13 X 2. The inlet is almost always larger, as described below. 

8. The manufacturer’s catalog also shows that this family of pumps will pass a 

;-inch (0.8-cm) sphere without clogging. Most centrifugal pumps can handle liq- 

uids with small amounts of suspended solids much better than P.D. pumps can. 

Note the striking difference between the outlet pressure behavior of P.D. pumps 

and centrifugal pumps. The discharge pressure of a P.D. pump is determined by the 

pressure in the outlet line. The piston will continue to raise the pressure of the fluid 

in its cylinder until one of two things happens: 

1. This pressure exceeds the pressure in the outlet line, and the outlet valve opens. 

2. Something breaks, or a high-pressure (bypass) valve opens. 

For a centrifugal pump, on the other hand, there is a maximum pressure rise across 

the pump that is set by rj, 72, and w of the impeller and the fluid density. If the dif- 

ference between the inlet and outlet pressures becomes greater than this, fluid will 

flow backward through the pump—in the outlet and out the inlet, even while the pump 

is running. 

Suppose that we repeat the suction-lift experiment shown in Fig. 10.4 for a cen- 
trifugal pump. Reading values from Fig. 10.9, at zero flow (Q = 0) and 1750 rpm, 
we see that this pump has a head of 47 ft, so if the pump is full of water it will pump 
from a sump below it up to 34 ft minus the friction head loss with no trouble. But 
suppose instead of being full of water, the pump is full of air. This pump will work 
(poorly) as an air compressor. But with a head of 47 ft, full of air, the pressure rise 
across the pump is 

Ib ft see 

AP = pgh = 0.075 me R00 ah A py. a Sa 

ft . 32.2 Ibm ft 

Ibf 
= 3.5 f2 = 0.024 psi = 0.17 kPa (10.K) 
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This will raise the water in the inlet line about 0.7 inch above the reservoir level. 
Thus, to get a centrifugal pump going, it is not enough to start the motor. One must 

also replace the air in the pump and inlet lines with liquid. This is called priming. 

This pump, and all common centrifugal pumps are not self-priming. To start these 

pumps one must normally get a liquid into the pump. Once it is running it keeps its 

prime and has no such problem. Various stratagems have been devised to retain lig- 

uid in the pump when it shuts down (e.g., a one-way foot valve on the pipe inlet from 

the reservoir in Fig. 10.4 that prevents the liquid from draining out of the pump when 

it is shut off), and several other designs called “self-priming pumps.” 

10.3.2 NPSH 

In Example 10.2 we saw that in calculating the permissible suction lift for a P.D. 

pump it was necessary to account for the pressure drop across the inlet valve. The 

difficulty to be avoided there was boiling of the liquid as its pressure was reduced 

through the inlet valve. The analogous problem with centrifugal pumps is boiling in 

the eye of the impeller. As the fluid enters the eye, it has a small velocity in the axial 

direction and negligible rotational velocity. To be picked up by the blades of the 

impeller, the fluid must be brought up to the rotational speed of the impeller blades. 

We again apply B.E. between the inlet pipe (point 1) and the point on the blades of 

the impeller where the pump work starts to increase the pressure of the fluid (point 2). 

If we assume that the friction effects are negligible, ignore changes in elevation, and 

ignore the velocity of the inlet fluid, we conclude that 

V2 

Thus, the pressure falls and boiling may occur, as discussed in Sec. 5.9. Centrifugal 

pumps very often are used to pump boiling liquids: e.g., at the bottom of distillation 

columns, flash drums, evaporators, reflux drums, reboilers, condensers, etc. (see Fig. 

10.10). The elevation, A, in Fig. 10.9 must be large enough to prevent this boiling. 

Some kind 

of vessel 

Sa Discharge 

Centrifugal pump 

FIGURE 10.10 

A centrifugal pump used to pump a boiling liquid, introducing the idea of 

Net Positive Suction Head (NPSH). 
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Example 10.6. For the flow in Example 10.5, how much must h be in Fig. 

10.10 for the pressure in the eye of the pump impeller to be the same as the 

pressure at the vapor-liquid surface in the vessel? Assume frictionless flow. 

Writing B.E. from the free surface in the vessel (point 1) to the eye of the 

impeller (point 2) and setting the two pressures equal, we find 

Ia Vere of impeller a 

(Fs pg : 2 + Fynole system (10.22) 

From the frictionless assumption, we may drop one term. The velocity at the 

eye of the impeller is the vector sum of the rotational velocity at that point and 

the radial velocity due to the flow outward through the impeller. By simple alge- 

bra we find that the rotational velocity is 15.8 ft / s. To find the radial velocity 

we assume that it is practically equal to the inlet velocity, 9.56 ft / s. Their vec- 

tor sum (square root of sum of squares) = 18.45 ft/s, so 

1 (18.46 ft/s)” 32.2 Ibm: ft 
(62.3 Ibm / ft*) - (32.2 ft/s”) 2 Ibf - s? 

= 5.28 ft (10.L) 

R 

This distance is called the Net Positive Suction Head, NPSH. On Fig. 10.9 we see 

dashed curves labeled NPSHp. The R subscript indicates “required.” From those 

curves we interpolate, finding that for this flow rate this pump has NPSHp ~ 6.5 ft, 

which is close to the value shown in Eq. 10.L but is presumably somewhat larger 

because of the # term, which we ignored. 

This is only the value for the pump. To find the value for the pump plus the 

piping system between the free surface in Fig. 10.10 and the pump, we must add to 

this height a friction term of the form 

Gz 
s Fin piping to pump inlet 

hadditional to overcome ~_ (10.M) 
friction in piping Ps 

If the actual distance h in Fig. 10.10 is greater than the sum of these values, then we 

would expect smooth and satisfactory pump operation. But if A is less than this sum, 

then we would expect cavitation in the eye of the pump impeller, with poor pump 

performance and rapid damage to the pump impeller. If the geometry of the system 

does not allow for a large enough value of h in Fig. 10.10 to satisfy the NSPHp of 

a typical centrifugal pump, one may select a special centrifugal pump, designed to 

have a low NSPHr, or one may choose some kind of P.D. pump. For example, 

the local propane dispensers that fill the propane containers for our home barbecues 

are the thermodynamic equivalent of Fig. 10.10. The liquid and vapor in them are at 
the equivalent of boiling, and their height above ground is small. They almost never 
have a centrifugal pump to dispense liquid propane. Instead they use a sliding-vane 
pump (Fig. 10.5) or another type called a regenerative or turbine pump, (Sec. 10.7). 
Both of these types have much lower NSPHR than common centrifugal pumps and 
can deliver higher output pressures than common centrifugal pumps of the same size. 
The NPSH requirement also explains why most centrifugal pumps have larger inlets 
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than their outlets (2 in versus 1.5 in on Fig. 10.9); the larger inlet slows the inlet flow, 
reducing the NPSHR compared to that of a pump with a smaller inlet. 

In summary on centrifugal pumps, we may say: 

1. They are very widely used because they are modest-sized (for their flow rates), rel- 
atively simple, and robust. 

2. The pressure rise they develop (for equal inlet and outlet diameters) would be 

rotor tip \” rotor inlet \* SP = pmsl St) Gees) speed speed 

pci) 

[frictionless] (10.23) ~ Pfluid (0 5 

for frictionless flow. For common pumps at their design flow rates, 

Fo at design flow rate = 0.3 Be caonices (10.24) 

which we will use subsequently in this chapter and which should be used for esti- 

mating purposes in the problems. Equation 10.24 is correct for the small- to medium- 

sized centrifugal pumps most often seen in industry. It is not true for very large 

centrifugal pumps in which the 0.5 is replaced by values up to 0.8; see Prob. 10.20. 

3. To get high values of AP for a given fluid we must go to high values of or of 

D. Often there is a practical limit on these. Very high driver and pump speeds need 

very good bearings, balancing, and servicing. For deep well pumps, on which much 

of irrigated agriculture depends, the pump must be small enough to fit down the 

deep well, whose diameter is set by cost and the size of available deep well drills 

(typically less than a foot). To meet this requirement, deep well pumps are nor- 

mally a series of up to 20 centrifugal pumps like the ones described here, attached 

head-to-tail. The discharge of the first is the inlet to the second, etc. Thus, the mod- 

est pressure rise of one stage is multiplied by the number of stages to produce an 

overall pressure rise suitable for that service (often pumping up from several thou- 

sand feet). These are cleverly packaged together, to fit on a common shaft, driven 

from above, and able to be hung on the shaft down the well. 

4. The simple paddle impeller in Fig. 10.7 is used in some applications, but most 

commercial pumps have much more sophisticated impellers, with a variety of 

designs. For high-head, low-volumetric flow rates the impeller has a large diame- 

ter and is very thin in the axial direction. For low-head, high-volumetric flow rates 

the impeller becomes similar to an ordinary fan blade. The intermediate cases make 

the transition from one of these extremes to the other. 

5. Large pumps often are the equivalent of two pumps like Fig. 10.7, back-to-back, so 

that the flow comes in from both sides and exits from a common peripheral exit pipe. 

This is called a double-suction pump. This design eliminates the axial thrust in the 

shaft, which is modest for small pumps but becomes troublesome for large ones. 

6. A large centrifugal pump may have an efficiency greater than 0.90. However, such 

high-efficiency pumps are expensive and are justified only for very high capacity 
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Comparison of positive displacement and centrifugal pumps 

Characteristic 

Normal flow rate 

Normal pressure rise per 

stage 

Positive displacement 

Low, up to perhaps 100 gpm 

Large, can be dangerous, 

requires high-pressure 

relief or bypass 

Centrifugal 

From small (automobile 

coolant pumps) to huge 

Proportional to square of 

(rpm ° impeller diameter), 

small for small pumps, 

larger for large ones 

Self-priming (i.e., able to Yes No 

work as a weak vacuum 

pump and suck in liquid) 

Number of moving and Many Few 

wearing parts 

Number of basically Many Only one, with modest 

different designs variations 

Outlet flow rate Pulsing Steady 

Works well with high- Yes No 

viscosity fluids 

NPSHp Low Significant, increases with 

of increasing flow rate 

Ability to handle liquids Poor Fair 

with suspended solids 

applications (e.g., the aqueduct from the Colorado River to Los Angeles). For most 

applications, pumps are designed for simpler, cheaper construction and for effi- 

ciencies of 0.50 to 0.80. The efficiency of centrifugal pumps decreases rapidly as 

the viscosity of the pumped fluid increases, for which reason they are seldom used 

for fluids more viscous than ~300 cP. Sliding-vane and similar P.D. pumps work 

better for viscous fluids. 

Figure 10.7 shows that there must be a seal where the shaft enters the pump from 

outside. Most often this is either a packed seal [Fig. 6.18(b)] or a mechanical seal 

[an advanced version of that in Fig. 6.18(c)]. If the fluid pumped is water, these 

seals are normally set loose, allowing a little water to leak out all the time. This 

lubricates the seal, prolonging its life; the modest water leak causes no problems. 

For liquids that are flammable (gasoline) or toxic (benzene), modest leaks are not 

tolerable, and much more attention must be paid to the pump seal (Prob. 10.25). 

Table 10.2 compares the properties of P.D. and centrifugal pumps. 

10.3.3. Centrifugal Compressors 

The P.D. compressor has been a common industrial tool for a century. However, it 
is a complicated, heavy, expensive, low-flow-rate device. The need to supercharge 
aircraft reciprocating engines and the development of turbojet and gas turbine 
engines demanded the development of lightweight, efficient, low-cost, high-fiow- 
rate compressors. By the 1950s high-flow-rate, high-efficiency centrifugal industrial 
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compressors became available. They have largely replaced P.D. compressors in natu- 
ral gas pipelines, in large air conditioners, and in large high-pressure chemical 
processes. Their introduction revolutionized the ammonia production industry, which 
shut down its P.D. compressors and the plants based on them. 

Example 10.7.. A modern multistage centrifugal compressor has an impeller 
diameter of about 2 ft, and operates at about 10,000 rpm (w = 1047/'ss). If the 

fluid in the first stage of the compressor is air at 1 atm, what is the estimated 

pressure rise in the first stage? 

Treating this as a centrifugal pump, we combine Eqs. 10.23 and 10.24 so 
that 

2, 2 2 

AP = 05-0075 Pe (Aet.28) Pits | Bi one 
w 2 J 32.2Ibm:ft 144 in? 

= 8.9 psi = 61 kPa 
it 

This assumes an incompressible fluid. It is only approximately correct, because 

as the pressure and temperature rise, the density increases. But it illustrates that 

with centrifugal compressors this large and at rotatiorial speeds this high, one 

does get substantial pressure increases. 6 

If one continued the analysis of such a compressor, one would see that in each 

subsequent stage the inlet density was larger than in the preceding one, and thus the 

pressure increase per stage would steadily increase. In applications like natural gas 

pipelines and ammonia plants the inlet pressure is often much higher than 1 atm, so 

the pressure increase per stage is comparably greater. 

10.4 AXIAL FLOW PUMPS 
AND COMPRESSORS 

The centrifugal compressors just described are better for raising the pressure of a gas 

already at a modest pressure to a high pressure than for compressing from a low pres- 

sure. Axial flow compressors, described next, are better than centrifugals at low pres- 

sures and have the advantage that for equal flow rates their diameters are smaller, which 

makes them easier to build into jet engines. The jet engine cutaway, Fig. 7.15, shows, 

at the left, a simple axial flow compressor, which consists of a wheel with blades that 

rotates inside a concentric tube. The blades are curved and at an angle to the axis, so 

that as they turn they push the fluid down the tube. This is the functional equivalent 

of the portable fans that move air around in offices and houses, the fixed fans that draw 

air out of our kitchens and bathrooms, and the smaller ones that cool our computers. 

The student should examine such a fan while it is both standing still and moving. 

The first row of blades at the left is fixed; it turns the flow at practically con- 

stant speed. The second row does work on the fluid, increasing its speed. Then the 

third, non-moving row slows the fluid, converting kinetic energy to increased pres- 

sure. This series of moving blades, which increase the velocity, and fixed blades, 

which slow the fluid and increase the pressure, is common in axial flow compressors. 

After the first (large diameter) compressor in Fig. 7.15 are two smaller compressors, 
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with multiple rows of moving and fixed blades (six and seven stages), that raise the 

pressure to ~15 atm at the entrance to the combustion chambers. In these compres- 

sors the blades become shorter and the flow passage narrower in the flow direction. 

As the density of the fluid increases the area perpendicular to the flow is reduced, to 

keep an approximately constant velocity. 

The advantages of the axial flow compressor over centrifugal compressors are 

the small cross-sectional area perpendicular to the gas flow, which makes it easy to 

build into a streamlined airplane, and the lower velocities, which lead to lower fric- 

tion losses and slightly higher efficiency. 

Centrifugal and axial flow compressors generally handle very large volumes of 

gases in small pieces of equipment, so the heat transfer from the gases is negligible. 

Thus, their performance is well described by the equations for adiabatic compressors 

(see Eq. 10.20). Efficiencies (Sec. 10.1) are normally from 80 percent to 90 percent. 

For high-flow applications like natural gas pipelines or ammonia plants, these com- 

pressors have almost completely replaced P.D. compressors. 

In principle, axial flow pumps are the same as axial flow compressors. In prac- 

tice, they generally have only one stage (because of the higher density of liquids) and 

are used for very high flow rate, low-head applications, like storm water removal. 

They have few applications in chemical engineering. 

10.5 COMPRESSOR EFFICIENCIES 

The discussion of compressors (centrifugal and axial flow) has been largely from the 

mechanical viewpoint; this viewpoint is helpful in understanding the fluid mechanics 

of these devices. In elementary thermodynamics books, one considers turbines and 

compressors from a first- and second-law viewpoint. That viewpoint is sketched here. 

For any steady-flow compressor or turbine in which changes in potential and 

kinetic energy are negligible, 

das dQ steady-flow 
a Rs ~ Liss, aha PAed i : 

dm Pat dm compressor or turbine Cpe 

We may readily arrive at Eq. 10.13 by substituting the relation for an isentropic 

process for an ideal gas into Eq. 10.25. We may find Eq. 10.11 by substituting the 

isothermal relation for an ideal gas in Eq. 10.25 and using the entropy balance to 

solve for dQ / dm. Thus, we may find exactly the same results by a fluid mechanical 

view of what happens inside the compressor or by a thermodynamic view of the com- 
pressor as the system. 

In defining the efficiency of a pump (Sec. 10.1), we compared the useful work 
to the total work. For an incompressible fluid this is most easily done by means of 
B.E., which is restricted to constant-density fluids, leading to Eq. 10.4. The definition 
for a pump could be restated as 

work required for the best possible device doing this job 
Efficiency = (10.26) 

work required by this real device 

This statement can be used for compressors, as well. In the case of an adiabatic com- 
pressor, the best possible device is a reversible, adiabatic compressor for which the 
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Inlet, P b> T; 

Adiabatic 

compressor 

Behavior of 

real compressor 
Absolute temperature, T 

Behaviovor Entropy per Ibm, s 

Outlet, P5, T, isentropic 

compressor 

FIGURE 10.11 

A rotating compressor (centrifugal or axial) shown as a schematic, and on a T-s diagram. 

The 2 state is the outlet of a real compressor; the 2s state is the outlet of a corresponding 

reversible, isentropic compressor. 

inlet and outlet entropies are the same, called an isentropic compressor. Thus, we nor- 

mally define 

work of isentropic compressor 
Compressor efficiency = n = ee ee (10.27) 

work of real compressor 

Consider the steady flow, adiabatic compressor shown in Fig. 10.11. The energy 

balance for this process (taking the compressor as the system and assuming that 

changes in kinetic and potential energies are negligible) is 

a aed | ea eae Ay Seed /) (10.28) 

If we wish to compare the work done by this compressor with that done by a 

reversible compressor, we immediately see that we cannot compare it with a reversible 

compressor doing exactly the same thing because the real compressor has a higher 

outlet entropy, temperature, and enthalpy than would the outlet stream from a 

reversible compressor (hz > hp, in Fig. 10.11). Thus, we could compare the real com- 

pressor with a reversible one having the same outlet enthalpy, having the same out- 

let temperature, or having the same outlet pressure. The latter seems to be the most 

logical choice, since real compressors are generally regulated by controlling the out- 

let pressure; this is the choice that has been universally made in defining the efficiency 

of compressors. So Eq. 10.27 becomes 

2 Weentsipic 4 ho, hy (10.29) 

T]pump or compressor 
Wreal hz a hy 

Example 10.8. An adiabatic compressor is compressing air from 20°C and 

1 atm to 4 atm. The air flow rate is 100 kg / h, and the power required to drive 

the compressor is 5.3 kW. What are the efficiency of the compressor and the 

temperature of the outlet air? What would the outlet air temperature be if 

the compressor were 100 percent efficient? 
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The power required to drive an isentropic compressor doing the same job 

is given by Eq. 10.13: 

_dW., 100kg/h 8.314] 1.4 
ses a “Seton eee 

W's h 
lig i) tS aieiiioe (ae 5.32hp (10.0) 

ae 14.75 (10.P) 
5.3 kW 

Ah _ —dW,. / dm 
wer a 7 (eR 

5.3 kW/ (100 kg/h) 3600s J 

~ (29.13/mol-K):(mol/29g) oh  W°<s 
= 190 K = 342°F (10.Q) 
To = 20°C + 190K = 210°C = 410°F (10.R) 

For an isentropic compressor, 

Ah —dW,~-/dm 
PLR Se = Gs a Cp 

3.97 kW / (100 kg/h) 3600s J 

(29.1J/mol:K):(mol/29g) h Ws 

= 142 K = 142°C = 256°F (10.8) 

Tour = 162°C = 324°F (10.T) 

a 

This example shows that compressor inefficiency raises the outlet temperature 

of the compressor. One may look upon this compressor inefficiency as being a type 

of friction heating. The extra work above that which would have been required for a 

100 percent efficient compressor goes either to heat the gas passing through the com- 

pressor or to heat the surroundings, 

10.6 PUMP AND COMPRESSOR STABILITY 

In most chemical engineering situations, a pump or compressor moves a fluid through 

some kind of pipe or duct, with elbows, expansions or contractions, and valves. Most 

often it pumps against a higher static pressure or elevation than that at its inlet. Nor- 

mally, there will be some kind of control valve (manual, like your bathroom faucet, 

or pneumatic or electric, driven by the plant’s process control system), which allows 

us to set and to change the flow through the system. Figure 10.12 shows how these 

interact, on P-Q coordinates. From upper left to lower right we show a typical cen- 

trifugal pump curve, e.g., Fig. 10.9. The system resistance curve consists of a static 

component (the pressure difference from pump inlet to pump outlet with the pump 

turned off, due to the higher pressure in the place to which the fluid is going than 

the pressure in the supply line) and a fluid friction component, calculated by the 
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methods in Chap. 6. The latter 

system increases from left to right, prac- 

tically as the square of Q for tur- 

bulent flow. The sum of these two 

is the AP.) em Curve shown on 

the figure. It intersects the pump 

curve at the wide-open-flow- 

valve rate. Closing the control 

valve makes its value of K (see 

Sec. 6.9 and Table 6.7) increase, 

AP. 

‘S 

| ! ! | ae r | ! ! | AP Loop static 

Typical 

pump curve 

(Dive 

g which rotates the APriction part 

FIGURE 10.12 of the APs ctem Curves counter- 

Pump curve and system resistance curve. In steady clockwise about Q=0, thus 
operation the flow will correspond to the intersection of the moving the intersection of the 

two curves. This pump curve is stable at all flow rates. curves to the left and reducing 

the flow rate. (This also increases 

the pressure at the pump outlet; the pressure reduction through the control valve 

increases as we close it, to offset this increase.) 

The pump system sketched in Fig. 10.12 is completely stable for all settings of 

the control valve. But the one sketched in Fig. 10.13 is not. It shows a pump curve 

with a maximum. Many large compressors, centrifugal and axial, have curves of this 

type. If we start with the control valve wide open, the behavior is the same as in Fig. 

10.12, with the system operating at point A. At this point, if some disturbance 

increases Q slightly, moving to the right on the figure, then the pressure delivered by 

the compressor decreases, reducing Q, thus forcing the system back to point A. Sim- 

ilarly, a small decrease in Q raises the pressure delivered by the compressor, moving 

the system back to point A. 

At any point on the compressor curve to the left of its maximum, the system is 

unstable. Consider point B. At this point, if some disturbance increases Q slightly, 

moving to the right on the 

AP figure, then the pressure 
system : 

Control valve delivered by the compres- 
3 5 
q closed AP system sor increases, thus further 

Control valve increasing the flow through 
wide open ; 

the system and moving the 

system away from point B. 

ea eee Se DIMES. = & Similarly, a small decrease in 

Q lowers the pressure deliv- 

Typical large ered by the compressor, mov- 

Cee AOL MVE” ang the, system. away from 
point B. Thus, point B is 

Q unstable; if a compressor and 

ALE Wo BS Vouar ae its connected system are at 
Same as Fig. 10.12, but for a pump curve that has a maximum. ; : 

To the right of the maximum, the system is stable, but to the left that p unt, then any distur 

it is unstable. This shape of pump curve is common for large. bance will ease it to TONE 

compressors, leading to the problem of compressor surge. away from B, in the direction 



386 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

of the disturbance. The resistance curve changes slowly to adjust to the changed flow 

(increased or decreased) so that eventually a stable flow is again reached. But the 

compressor’s response is rapid, so that rapid, destructive oscillations of the flow can 

occur in the compressor. This is called compressor surge. It is most likely to occur 

when one is (i) starting up a large compressor, which has been shut down, (ii) open- 

ing the control valve slowly, or (iii) shutting down a compressor by closing the con- 

trol valve. One would think that the solution would be not to use compressors that 

have this type of pressure-flow curve. Alas, most of the large, high-efficiency com- 

pressors in the world have this kind of curve. Various control systems have been 

devised to avoid this problem and to get big compressors through the starting and 

stopping phase without surge problems, [5]. 

10.7 REGENERATIVE PUMPS 

Human ingenuity has produced all sorts of pumps, in addition to P.D., centrifugal, and 

axial flow. Of these, the type that the student is most likely to encounter is the regen- 

erative pump, also called a turbine pump. Most auto fuel pumps are of this type, as are 

many low flow rate, high-head pumps in the process industries. Figure 10.14 shows a 

FIGURE 10.14 

Partially cutaway schematic view of a turbine or regenerative pump. The impeller has 
grooves cut near its periphery, making it appear to have teeth. It rotates in a groove 
between the front and back pieces of the pump. The fluid flows in the entrance at the 
right and flows once around, counterclockwise, leaving by the exit at the top. The 
fluid circulates between the impeller and the outer part of the groove as shown by the 
arrows. (Courtesy of the Corken Pump Division of the Ibex Corporation.) 
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200 schematic cutaway of a tur- 

bine pump. The impeller is 

a flat wheel with sections 

150 cut out on both sides of its 

2® periphery to make tooth- 

B 2 like blades. The impeller 

Bs 2 100 rotates in a groove between 

Sass the back and front covers of 

- 5 the pump. The fluid enters 

“i Pump efficiency, % the right opening and flows 

around once in the groove, 

exiting at the top. The mov- 

ing impeller drives the fluid 

0 10 0 30 40 around the groove from 

. -Volumetric flow rate, Q, gal / min inlet to outlet. In its pas- 
sage around the groove the 

FIGURE 10.15 fluid circulates between the 
Pump curve for a turbine or regenerative pump with a 4.5-in 

diameter rotor at a speed of 1750 rpm [6]. blades on the periphery of 
the impeller and the walls 

of the groove and increases substantially in pressure. This is not a centrifugal pump, 

because there is no net outward flow from inlet to outlet, and it is not a P.D. pump 

because the fluid is not trapped or squeezed at any point. Instead, it is one in which the 

fluid is literally pushed, against a pressure gradient by the moving biades, and carried 

along by turbulence and internal vortices produced by centrifugal force. 

Figure 10.15 shows a pump map of a small pump of this type with rotor diam- 

eter 4.4 in and speed 1750 rpm [6]. On it we see that the head-flow curve is neither 

practically horizontal like a centrifugal nor practically vertical like a P.D. pump. 

Instead, it slopes at about a 45-degree angle from left to right. The head at zero flow 

(“shutoff head”) is 180 ft. Extrapolating downward to a 4.4-in impeller on Figure 

10.9, we estimate that a centrifugal pump with that size impeller at 1750 rpm would 

have a shutoff head of about 20 ft. Thus the pump curve in Fig. 10.15 has a shut- 

off head about 9 times as large as that of a common centrifugal pump of the same 

size and speed. This explains the uses of these pumps; when a high pressure rise is 

needed for a small volumetric flow rate, a pump of this type will produce the flow 

with a smaller and cheaper device than a centrifugal pump, with fewer moving parts 

and lower cost and maintenance problems than a P.D. pump. (There are some appli- 

cations in which vane pumps, Fig. 10.5 and turbine pumps are about equal in per- 

formance, and in which both types compete, e.g., propane dispensing.) The theory 

of regenerative pumps [7] is not easily reduced to the simple form used for cen- 

trifugal pumps. 

10.8 FLUID ENG{NES AND TURBINES 

The P.D. pump shown in Fig. 10.2 can be used as a fluid engine with simple changes 

in valve timing. This is the form of the steam engine, which supplied most of the 

world’s mechanical power in the 19th and early 20th centuries; its operation is the 
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Pinwheel reverse of that of the compressor shown diagrammati- 

cally in Fig. 10.6 (going around the cycle in the oppo- 

site direction!). The internal combustion engine, which 

is mechanically similar, has largely replaced the steam 

engine as a power source. This type of P.D. expansion - 

engine (without internal combustion) has been replaced 

for very large applications with turbines (cheaper and 

0 simpler), and for modest-sized applications with elec- 

tric motors. Most of the remaining applications are in 

locations where there is a sufficient fire hazard to 

————s Nee 

FIGURE 10.16 require the distribution and application of power as 

Child’s pinwheel, the simplest steam or compressed air (spark-free) rather than as elec- 

impulse turbine. tricity, e.g., in mines and some chemical plants. 

For large installations extracting power from fluids 

(generally, water in hydroelectric plants and steam or hot combustion gases in thermal 

power plants), the most common device is a turbine. Water, steam, and gas turbines 

have the same principles of operation but very different sizes, shapes, and speeds. 

A turbine consists of a wheel with blades attached to its periphery and the asso- 

ciated casing, etc.; for many kinds of turbines these blades are called buckets. The 

blades change the direction of the flow, which results in a force on the blades. This 

force turning the wheel produces power. The simplest turbine is the child’s pinwheel; 

see Fig. 10.16. In the pinwheel a high-velocity jet strikes the blades and is slowed 

down. This type of device, in which the fluid undergoes its pressure reduction in the 

fixed nozzle (the child’s lips in the figure) and flows through the turbine at practically 

constant pressure, is called an impulse turbine. Its behavior is discussed in Sec. 7.5, 

where it is shown that for the most efficient operation the blade speed should be one- 

half of the jet speed, resulting in the exit fluid’s having negligible velocity (relative 

to fixed coordinates). 

In a reaction turbine, the fluid enters the blades with a negligible velocity and 

leaves at a high velocity relative to the blades. The simplest reaction turbine is the 

rotating garden sprinkler; see Fig. 10.17. This is called a reaction turbine for the same 

reason that a rocket motor is often 

lai called a reaction motor: The force 

exerted is described by Newton’s 

fe third law, “Action equals reaction.” A 

turbine of this type could be con- 
We structed by attaching two rockets to 

iS the ends of a shaft in place of the 

water jets shown in Fig. 10.17. In a 

reaction turbine the pressure reduc- 

tion takes place in a moving nozzle. 

The simple reaction turbine is 

most easily analyzed by the angular 
FIGURE 10.17 momentum balance, Eq. 7.62, which, 
Rotating garden sprinkler, the simplest reaction as shown in Sec. 7.7 for a steady flow 
turbine. turbine, reduces to Euler’s turbine 

Garden hose 
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equation, Eq. 7.63. To find the power produced per unit time, we multiply both sides 
of Eq. 7.63 by a, 

oe! dWy 

dt 
Po =Tqo = ma|[(rVe)out — (rVo)inI (10.30) 

Here the fluid enters at the center (r;, = 0), so the far right term is zero. Then, solv- 
ing for the work per unit mass, we find 

dW, ¢. 

am 2 lrVa)out (10.31) 

But @roy, is the tangential velocity of the nozzle, so 

dW, ¢ 

ee ee Os (10.32) 

The velocity Vs is equal to Vp + Vie, where V,.; is the velocity of the jet as 

measured by an observer riding on the nozzle; so 

dW, ¢ 
ay Vary, 

dm Sed rel 0 mes) (10.33) 

(Vo... and V,-; have opposite signs!) In the simple garden sprinkler shown in Fig. 

10.17, Ve) is independent of V,___.; it depends on the pressure in the garden hose and 

the friction in the system. For constant V,.), we may find the most efficient value of 

Vo... 1:€., the one that gives the largest value of dW,,¢ / dm, by differentiating Eq. 

10.33 with respect to Vg. and setting the derivative equal to zero. The result is 

Jie es 5 Vye1; i-€., the nozzle moves at one-half of the jet speed, as measured by an 

observer riding on the nozzle, and in the opposite direction. 

Comparing the simple impulse turbine in Fig. 10.16 with the simple reaction 

turbine in Fig. 10.17, we see that the former is the more efficient. Either may be con- 

sidered to consist of a nozzle that converts internal energy and injection work (AP/ p) 

into kinetic energy and a device that uses this kinetic energy to produce work. In 

either case the kinetic energy of the fluid leaving the system is wasted. As shown in 

Sec. 7.5, we can, in principle, build an impulse turbine for which the outlet velocity 

(based on fixed coordinates) is zero. However, for a reaction turbine like that in Fig. 

10.17, the maximum efficiency corresponds to Vou = ++ V,e1; So the outlet kinetic 

energy will be one-fourth of the total available kinetic energy. For this reason the 

pure reaction turbine of Fig. 10.17 is inefficient and is never used in industrial prac- 

tice. Some large water turbines solve this problem by placing a diffuser on the out- 

let, thus recovering most of the kinetic energy in the waste stream and improving the 

efficiency. 
Most modern water and steam turbines take part of the pressure reduction in a 

set of fixed nozzles and part of the pressure reduction in the moving wheel. Thus, 

they are part impulse and part reaction. However, since pure impulse turbines are in 

current use, common usage is to reserve the term impulse turbine only for a turbine 

that is 100 percent impulse, with no reaction, and to call any turbine that is not 100 

percent impulse a reaction turbine. Most reaction turbines are less than 50 percent 

reaction, the remainder being impulse. 
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Liquid turbines are large, slow-moving devices, and gas and steam turbines are 

small, fast-moving devices. This is easiest to see for an impulse turbine, for which 

we previously showed that the optimum velocity for the blade is one-half that of the 

jet. So the speed of a single-stage impulse turbine rotor is set by the available jet 

speed. At Hoover Dam the fluid drops about 700 ft. Applying B.E. from the water - 

surface to the turbine nozzle, we can solve for the maximum possible (frictionless) 

jet velocity: 

k ft ae ft V = (2gh)!/2 = (2322-700 ft) = 212 = 65 (10.U) 2 

Therefore, the blade of the turbine should travel about 106 ft / s. It is convenient to 

build the rotor about 10 ft in diameter, so the rate of rotation is about 

foes seta 106 ft/s 60s 

107 ft min 
= approx. 200 rpm (10.V) 

expressed as rpm 

Now consider a steam turbine; as shown by the methods in Chap. 8, the 

reversible, adiabatic expansion of steam through a nozzle from about 100 psia to 

atmospheric pressure produces a flow with a velocity of about 3000 ft / s. Thus, the 

blade should move at about 1500 ft / s. Here also it would be desirable to use a large- 

diameter wheel, but at these high rotational speeds the centrifugal force tending to 

pull the turbine wheel apart becomes so great that only a small-diameter wheel can 

survive. The largest single-stage steam turbine wheels are about 2 or 3 ft in diameter. 

For a 3 ft wheel and a blade speed of 1500 ft / s the rotational speed is 

Angular velocity 1500 ft/s 60s 
Spa ee a es pox 15,000 rpm (10.W) 

expressed in rpm 3m ft min 

The first successful steam turbine, developed by de Laval [8], was a simple one-stage 

impulse turbine, as described above, and turned at about 20,000 rpm. 

The turbines on most jet and gas turbine engines are of the simple impulse vari- 

ety described above and turn at about 20,000 rpm, as do the turbine parts of airplane 

and auto turbochargers. However, this is an inconvenient speed for connecting to a 

generator that is producing 60-cycle current; it must run at 3600/7 rpm, where n is 

any integer. The most common U.S. generator speeds are 1800, 1200, and 600 rpm. 

A high-speed turbine could be connected to such a generator through a gear reducer, 

but the more economical solution seems to be to build a turbine of lower speed. In it 

many wheels are attached to a common shaft; the steam flows through a nozzle, then 

a bladed wheel, then another nozzle, etc. Each combination of nozzle and wheel is, 

in effect, a separate turbine; common terminology calls such a nozzle-and-wheel com- 

bination a stage and thus refers to the multiwheel turbines as multistage turbines. Each 

stage has a small pressure reduction and thus a small jet velocity and a small tip speed 

for efficient operation. In current steam turbine practice the first few stages usually 

are pure impulse, followed by stages that are 50 percent impulse and 50 percent reac- 
tion. In Fig. 7.15 at the right are two turbines, the first a three-stage turbine, the sec- 
ond a one-stage turbine. These drive concentric shafts that drive the two compressors 
at the left at different speeds. 
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For high-head, low-flow-rate, water power application, the most economical 
turbine is the pure-impulse Pelton wheel. For high flow rates and lower heads the fric- 
tion effects in the Pelton wheel cut down its efficiency, and a radially inward-flowing, 
part-reaction Francis turbine seems to be the most economical. For very high flow 
rates and very low heads the most economical is the Kaplan turbine, which looks quite 
like a ship’s propeller, with adjustable pitch blades. The Francis and Kaplan turbines 
can be designed to function efficiently at many more revolutions per minute than an 
impulse turbine with the same input head; this is an advantage, because generators of 

very slow speed (e.g., 50 rpm) are expensive to build. Details of the various kinds of 

steam and gas turbines may be found in [8, 9]; water turbines, in [10]; pumps, in [11]; 

and compressors, in [12]. 

Before about 1900, steam and water power devices drove most machinery, 

including that in chemical engineering. The convenience and flexibility of electric 

drive motors has replaced these devices for most chemical engineering applications. 

However, for driving large fans and compressors, chemical engineers will often 

encounter steam turbines, and the cogeneration plants that are part of major chemical 

engineering complexes often contain such turbines. Chemical engineers in the elec- 

tric power industry will certainly encounter them. 

10.9 FLUID ENGINE AND TURBINE 
EFFICIENCY 

Fluid engine and turbine efficiency is defined as the inverse of pump or compressor 

efficiency: 

work actually delivered 
Efficiency = : : (10.34) 

maximum possible work 

For an incompressible fluid (e.g., water) the common definition of the maximum pos- 

sible work is the work that would be delivered if the fluid left the system with zero 

velocity and if the ¥ term in B.E. were zero. For gases (e.g., steam) the common def- 

inition of the maximum work is that work that would have been obiained for zero 

outlet velocity and isentropic operation. Although the forms of these maximum-work 

definition appear different, they can be shown to be the same, because the ¥ term in 

B.E. is related to the irreversible entropy increase. 

10.10 SUMMARY 

1. PD. pumps and compressors work by trapping a fluid in a cavity and then squeezing 

it out at a higher pressure; they are generally high-pressure-rise, low-flow-rate devices. 

2. Centrifugal pumps and compressors work by moving the fluid out in a centrifugal 

force field and giving the fluid kinetic energy, and then converting this to injection 

work. They are generally high-flow-rate, low-pressure-rise devices. 

3. The problem of boiling in the inlet line (or “cavitation’”’) limits how high any kind 

of pump may be placed above the reservoir on which it is drawing. For a boiling 

liquid the pump must be placed below the boiling surface by an amount equal to 

the NPSHr. 



392 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

4. Compressors are normally practically adiabatic and result in a significant temper- 

ature rise for the gas. The work of compression is less for an isothermal than for 

an adiabatic compressor; for this reason almost all compressors are cooled, and 

many compressors are staged, with intercooling to decrease the work requirement. 

5. Turbines work by impulse, in which a fluid is accelerated by a fixed nozzle and 

slowed by moving blades, or by reaction, in which a fluid is accelerated in a moving 

nozzle. Most turbines are either pure impulse or part impulse and part reaction. 

PROBLEMS 

See the Common Units and Values for Problems and Examples, inside the back cover! 

An asterisk (*) on a problem number indicates that its answer is in App. D. 

10.1.*How many gallons per minute should be delivered by a pump with a piston area of 

10.2. 

10.3. 

10.4. 

10.5. 

10.6. 

10 in* and a piston stroke of 5 in and a speed of | Hz? 

Calculate the hydraulic horsepower for pumping 500 gal / min from an inlet pressure of 

5 psig to an outlet pressure of 30 psig 

(a) For water. 

(b) For gasoline. 

(a) For the pump discussed in Example 10.1 calculate the temperature rise for the 

fluid passing through the pump. Assume that there is no heat transfer to the 

surroundings. 

(b) We normally assume that liquids are practically incompressible, so that there is no 

density change in passing through a pump like the one in Example 10.1. Using the 

values from part (a) and App. A.6 and A.9, estimate the ratio of pou / Pin for this 

pump. Is the effect of pressure more or less important than that of temperature? Is 

the incompressible assumption reasonable in this example? 

We wish to pump mercury from a sump with a P.D. pump. Assuming that there is no 

friction and that the vapor pressure of mercury is negligible, what is the maximum height 

above the sump at which we can locate our pump? 

Sketch the equivalent of Fig. 10.6 for an incompressible fluid. 

Why is it impractical to try to build a zero-clearance compressor? 

10.7.*How many horsepower are required to compress 20 lbmol/h of helium (k = 1.666) 

10.8. 

10.9. 

10.10. 

from | atm at 68°F to 10 atm using; 

(a) An isothermal compressor? 

(b) An adiabatic compressor? 

(c) A two-stage, adiabatic compressor with optimum interstage pressure and intercool- 

ing to 68°F? 

Prepare a plot of work per pound mol versus pressure ratio, P>/ P, for an ideal gas, 

with k = 1.4, being compressed from an inlet condition of 68°F. Cover the pressure 

ratio range of 1 to 20. Show the curves both for an adiabatic and for an isothermal 

compressor. 

Prove that the interstage pressure given by Eq. 10.13 gives the minimum work per pound- 

mol for a given Piniee ANd Poutter- Hint: Write the equation for the total work of a two- 

stage, intercooled compressor, and differentiate it with respect to the interstage pressure. 

Show by induction how it follows from Eq. 10.14 that for a multistage compressor the opti- 

mum interstage pressures are those that result in equal pressure ratios for each stage. 
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10.11.*Rework Example 10.4 using the optimum interstage pressure instead of the interstage 
pressure selected for the example. 

10.12. We wish to compress air from 1 atm at 68°F to 10 atm. We will use a two-stage, adi- 
abatic compressor with an intercooler between stages. For the intercooler we have 

cooling water cold enough to cool the gas to 100°F. What is the optimum interstage 

pressure in this case? Write out the general formula for the optimum interstage pres- 

sure in terms of the inlet temperatures to the two stages. 

10.13. Show that, as the number of stages of a multistage, intercooled compressor becomes 

very large, the work requirement approaches as a limit the work requirement of an 

isothermal compressor with the same inlet temperature and overall pressure ratio. 

10.14. Rework Example 10.4 for a three-stage compressor, using the optimum interstage pres- 

sures. 

10.15. Show that, as k approaches 1, Eq. 10.13 (adiabatic PUMP TESS) aprnoaGhes as 

a limit Eq. 10.11 (isothermal FORRES SOT), Hint: Represent (P>/ P;) ~)7* by its series 

expansion y* = 1 + xIny + (x In y)?/2! + (xIny)>/3! + ... a use In(1 + x) = 

x—x/24+/3+.... 

10.16. Show the steps between Eqs. 10.18 and 10.20. 

10.17. For the flow in Example 10.5, the experimental values are h ~ 32 ft, Po = 1.15 hp, and 

n = 71%. Those are for pumping water. If we use this pump to pump gasoline at 

Q = 100 gpm, what are the predicted values of h, Po and 7? 

10.18. A centrifugal pump is pumping mercury. The inlet pressure is 200 psia. The pump 

impeller is 2 in in diameter, and the pump is rotating at 20,000 rpm. Estimate the out- 

let pressure based on Eq. 10.24. 

10.19.*A centrifugal pump is tested with water and found at 1800 rpm to deliver 200 gal / min 

at a pressure rise of 50 psi. The mechanical efficiency is 75 percent. We wish to pump 

mercury in this pump at the same rpm and the flow rate. Estimate the pressure rise and 

pump horsepower required for this operation, assuming that the pump remains 75 per- 

cent efficient. 

10.20. Figure 10.8 and Eq. 10.24 indicate that the actual head developed by centrifugal 

pumps is about 50 percent of the value we would compute by simple theory. That is 

true for the small- to medium-sized pumps most common in industry. However, for 

really large pumps, it is not true. Rich [1] presents a pump map like Fig. 10.9 for a 

huge centrifugal pump in a pumped-storage project. From it we can read the values 

in Table 10.3. This pump turns at 257 rpm; the inner and outer impeller diameters are 

4.656 and 9.375 ft. Using those values, estimate the ratio of the observed head to that 

estimated from Eq. 10.23, and estimate the efficiency for the four values of Q shown 

in Table 10.3. 

TABLE 10.3 
Data (read from a pump curve) for Prob. 10.20 

Volumetric flow rate, Q, ft? /s Pump head, /, ft Power input, hp 

1600 1220 259,000 

2000 1160 295,000 

2400 1090 327,000 

2800 1015 354,000 
nee TE UUUUUUU a ENE EEUU EERIE EESE EERE RSE 
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10.21. We wish to design a centrifugal blower for air. It will take in air at 1 atm, 68°F and 

deliver it at a gauge pressure of 2 psig. The impeller will rotate at 3600 rpm. What is 

the minimum impeller diameter, assuming Eq. 10.24? 

10.22.*A manufacturer supplies a line of centrifugal pumps that use a gear-speed increaser to 

10.23. 

drive the impeller at 20,000 rpm with an 1800 rpm motor. One of the pumps delivers - 

a head of 4500 ft. Estimate its impeller diameter, based on Eq. 10.24. List the most 

important mechanical design problems for such a pump. What are the advantages of 

such a pump? 

Old hands in the chemical process industries pour cold water onto the suction side of 

any malfunctioning centrifugal pump. Why? 

10.24.*Suppose that, instead of using a P.D. pump in Example 10.2, we used a centrifugal 

10.25. 

10.26. 

10.27. 

pump, which for 200 gal / min had a reported NPSHk of 10 ft. What would be the max- 

imum elevation above the sump at which we could place the pump, assuming that we 

have a way to prime it? The NSPHg is for the pump only, not including the friction in 

the lines. There is no inlet.valve like that in Example 10.2. 

Seal leakage is a problem for any pump in which a drive shaft enters from outside; see 

Sec. 6.10.2. For some applications no leakage can be tolerated (chemical engineers deal 

with some nasty materials!). For these applications we use sealless pumps [13] in which 

the driving force enters a totally closed container as a rotating magnetic field or a rotat- 

ing electromagnetic field. Sketch what such pumps might look like. Discuss their prob- 

able advantages and disadvantages. 

Equation 10.23 suggests that the pump head of a centrifugal pump is proportional to 

the square of the diameter. Figure 10.9 shows the head-flow rate performance of four 

different-sized impellers in the same casing. 

(a) If we consider only the values at zero flow (shutoff), do the reported heads agree 

with this suggestion? 

(b) For a flow rate of 80 gpm, do the reported heads agree with Eq. 10.23 as well as, 

better than, or worse than at zero flow? Suggest an explanation. 

Figure 10.9 relates the following variables: h, Q, Dimpetter, Po, the efficiency, and 

NSPHR. However, it is for only one value of @, and the Po values are for one value of 

p (that of water). Thus, the variable list for a general equivalent of Fig. 10.9 is h, g, p, 

Q, Po, Dimpetter 7, NPSHR, and w. Two other variables we might consider are the vis- 

cosity, 4, and the surface roughness of the metal parts, ¢. However, for this problem 

we assume that their effect is negligible. (If they are included then the Reynolds num- 

ber and relative roughness will appear in our analysis.) 

(a) To use traditional dimensional analysis (Chap. 9) on this problem, we must treat gh 

as one variable and not as two separate variables. Explain why. 

(b) By the methods of dimensional analysis, determine how many dimensionless vari- 

ables are needed to relate gh to p, Q, Dimpetier, and w. First show by dimensional 

analysis that p does not belong on this variable list and should be dropped. Then 

show how many dimesionless variables there should-be, and what values they should 

have if only one contains gh and only one contains Q. 

By the methods of dimensional analysis, determine how many dimensionless vari- 
ables are needed to relate Po to p, Q, Dimpetiers and w. Then show what values they 
should have if only one contains Po and only one contains Q. 

(d) The efficiency is itself dimensionless. Show how it can be expressed in terms of the 
dimensionless variables in the previous sections of this problem. 

(c — 
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(e) By dimensional reasoning, show what the dimesionless variable containing NPSHpr 
should be. 

White [14, p. 724] shows an example of two geometrically similar pumps of dif- 
ferent sizes, indicating that both of their pump maps, redrawn based on these dimen- 
sionless groups, are practically identical. 

10.28. The two variables that describe a pump’s performance are those plotted on pump maps 
(Figs. 10.3, 10.9, 10.10, 10.13, 10.14, and 10.16) namely, h and Q. If one wants to know 

what type of pump to select for some task, one wants to know these variables. To sim- 

plify matters, one would like to have one variable, combining h and Q, that told what 

kind of pump was needed. These two variables alone cannot form a dimensionless group, 

but if we add g and w, they form a dimensionless variable called the specific speed 

pened woVO 

(gh)° im 

ype (10.35) 

This quantity is different at different points on a pump map, but if we select the point 

of highest efficiency on the map, then the map has one value of N, which characterizes 

the pump. A high-flow-rate, low-pressure-rise pump will have a large value of N, and 

a low-flow-rate, high-pressure-rise pump will have a small value. Many texts show that 

centrifugal pump impeller shape is a unique function of N,. The same idea is applied 

to hydraulic turbines; the shape of the most satisfactory turbine is a unique function 

of N,. 

(a) Show that N, is dimensionless. 

(b) Show the value of N, at the maximum efficiency point for the 63-inch diameter 

impeller in Fig. 10.9. 

(c) It is common practice in the United States not to use the dimensionless value of N, 

but rather to show its value in (rpm) - (gal / min)'/?/ (ft of head)’/*. Show the 

numerical value of the answer to part (b) in these units. 

10.29. It has been suggested that for short-term service we could make a simple reaction tur- 

bine by attaching two solid-fuel rockets to the ends of a rotor. What would the opti- 

mum speed for maximum power production be for this type of device? Why does the 

answer differ from that for the garden-sprinkler type shown in Fig. 10.17? 

10.30. One of the highest-head water power plants in the world is that at Dixence, Switzer- 

land, with a net head of 5330 ft. The water from this plant drives an impulse turbine 

(Pelton wheel) with a diameter to the middle of the blades of 10.89 ft. The wheel turns 

at 500 rpm [10]. What is the ratio of blade speed to jet speed for this turbine? How 

does this compare with the optimum discussed in Sec. 7.4? 

10.31. Most P.D. compressors are driven by constant-speed motors. because variable-speed 

motors are much more expensive. This poses a problem in controlling the compressor 

flow rate. One way to control a compressor with a constant-speed motor is to vary the 

clearance volume by means of “clearance pockets,” which are connected to or discon- 

nected from the head of the compressor by remotely operated valves. For a 100 percent 

efficient, adiabatic compressor, what is the effect of such a pocket on the pressure ratio, 

flow rate, and power requirement? 

10.32. See Prob. 10.31. An alternative procedure is to use an inlet or outlet valve that can 

be stopped in the open position by some remote controller. For a 100 percent efficient, 

adiabatic compressor what is the effect of a stuck-open inlet valve on pressure ratio, 

flow rate, and power requirement? Such devices are normally called “valve unloaders.” 
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CHAPTER 

FLOW 
THROUGH 
POROUS 
MEDIA 

A porous medium is a continuous solid phase that has many void spaces, or pores, in 

it. Examples are sponges, cloths, wicks, paper, sand and gravel, filters, bricks, plaster 

walls, many naturally occurring rocks (e.g., sandstones and some limestones), and the 

packed beds used for distillation, absorption, etc. In many such porous solids the void 

spaces are not connected, so there is no possibility that fluid will flow through them. For 

example, expanded polystyrene hot-drink cups, life preservers, and iceboxes have many 

pores, but because of the “closed cell” structure of the plastic these pores are not inter- 

connected. Thus, these porous media form excellent barriers to fluid flow. On the other 

hand, a pile of sand has fewer pores than an expanded 

polystyrene drinking cup, but its pores are all connected, 

so fluids can easily flow through it. Porous media with no 

interconnected pores are described as impermeable to fluid 

flow, and those with interconnected pores as permeable 

(we will give a mathematical definition of permeability in 

Sec. 11.1). The flow of fluids in permeable porous media 

is of great practical significance in groundwater hydrology, 

oil and gas production, filters, distillation and packed 

absorption columns, and fluidized beds. 

To view the similarities and differences between 

this kind of flow and the flows we have previously dis- 

A tank full of a porous cussed, consider the gravity flow of water through some 

medium. vessel in Fig. 11.1. In a vessel of this type, as we saw in 

FIGURE 11.1 

397 
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Chaps. 5 and 6, the flow could be described by B.E. There are no pumps or turbines, 

and the pressure change from point | to point 2 is negligible, so B.E. simplifies to 

SVeus 
D} 

o Ne He, (2121), 

In Chap. 5 we considered numerous cases in which the friction term in Eq. 11.1 was 

negligible. In Chap. 6 we considered how we could calculate the friction term (nor- 

mally based on generalizations of experimental data) in those cases in which the 

friction term was not negligible. 

Now, suppose the entire vessel is filled with some porous solid, such as sand (this 

vessel now resembles the sand filters that are frequently used to clarify muddy water). 

Equation 11.1 still describes the situation exactly as it did before, because it is based 

on the steady-flow energy balance for a constant-density fluid, and it has no built-in 

assumption that the flow is occurring in an open vessel rather than a porous medium. 

The significant differences that we will see, if we compare the two situations, are these: 

1. In most porous-medium flows the friction term is much, much larger than it would 

be in the analogous flow in an empty vessel, and it is not directly calculable from 

the results in Chap. 6. 

2. For most porous-medium flows, even though V> does not equal V;, both velocities 

are so small that AV* is negligible compared with ¥. 

3. If the tank in Fig. 11.1 does not contain sand and is originally full of one fluid, e.g., 

air, when we admit a second fluid, e.g., water, it will quickly flush out all of the first 

fluid. However, if the tank contains sand, and its voids are originally full of air, then 

admitting water will not flush out all the air. Some significant part of the air (proba- 

bly 10 percent to 30 percent) will be trapped permanently in the pores. This kind of 

behavior is of great significance in filtration, groundwater hydrology, and oil recovery. 

In this chapter we will examine the friction term in B.E. for flow in a porous 

medium and examine the phenomena of incomplete displacement of one fluid from a 

porous medium by another. We will also examine competitive countercurrent flow in 

porous media and look briefly at filtration and fluidization. 

11.1 FLUID FRICTION IN POROUS MEDIA 

Consider a porous medium consisting of sand or some porous rock or glass beads or 
macaroni or cotton cloth contained in a pipe; see Fig. 11.2. If we attach this pipe to 
the apparatus for the pressure-drop experiment shown in Fig. 6.1 and run exactly the 
same tests on it that we described there for a pipe, we will find results of the same 
form as those shown in Fig. 6.2, except that the abrupt transition region on Fig. 6.2 
will be replaced with a smooth curve for a porous-medium flow. From these results 
we can guess that the two end parts of the curve correspond to laminar and turbulent 
flows; this is experimentally verifiable.* 

*The term “laminar” literally means in “shells” or “laminae.” This is not an accurate description of the flow in 
a porous medium, in which the width of the individual flow channels changes from point to point. A better 
term is “streamline flow,” indicating that the individual fluid particles follow streamlines, which do not cross or 
mix, as they would in turbulent flow. However, the name laminar is the more widely used and will be used here. 
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Pressure gauges 

Pipe full of bet zs Ax = 
porous solid 

FIGURE 11.2 

Measurement of pressure gradient for flow in a pipe full of porous medium. 

For flow in a pipe we were able to calculate the laminar-flow portion of the 

curve from a simple force balance and to make a simple correlation for the turbulent- 

flow portion of the curve. For porous media this has been done successfully only for 

media consisting of uniformly sized, spherical particles. Here we examine that solu- 

tion, because it provides useful insights into flow in more complex media and it allows 

us to define and discuss many of the terms in common use in the porous-media lit- 

erature. We begin with some definitions. 

At any one cross section perpendicular to the flow, the average velocity may be 

based on the entire cross-sectional area of the pipe, in which case it is called the 

superficial velocity Vs, 

Ga mr, Q m (At2\ Ss => = 

velocity aie PA nie 

or it may be based on the area actually open to the flowing fluid, in which case it is 

called the interstitial velocity V;, 

aa) a) m 
=V,= = 11.3 

velocity : epA ( ) pipe 

where é is the porosity, or void fraction: 

Porosity or ) __ _ total volume of system — volume of solids in system 

void fraction] — oo total volume of system 

A Ax(1 — average fraction of cross section occupied by solids) 

A Ax 

= average fraction of cross section not occupied by solids (11.4) 

From a theoretical standpoint the interstitial velocity is the more important; it determines 

the kinetic energy and the fluid forces and whether the flow is turbulent or laminar. From 

a practical standpoint the superficial velocity is generally more useful; it shows the flow 

rate in terms of readily measured external variables. Both are in common use. 

Previously it was indicated that for noncircular conduits Fig. 6.10 (the friction- 

factor plot) could be used if we replaced the diameter in both the friction factor and the 

Reynolds number with four times the hydraulic radius. The hydraulic radius is the cross- 

sectional area perpendicular to flow, divided by the wetted perimeter. For a uniform 

duct, this is a constant. For a packed bed it varies from point to point; but if we multiply 



400 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

both cross-sectional area and perimeter by the length of the bed, it becomes 

volume open to flow 
= i ium = ibs HR = hydraulic radius for porous medium ee Rav (11.5) 

For a porous medium made of equally sized spherical particles, 

volume of bed: € 
HR = : : : (11.A) 

number of spherical particles - surface area of one particle 

and 

? volume of bed: (1 — €) 
Number of particles = : (ERB =)) 

volume of one particle 

so that, for spherical particles only, 

volume of bed: ¢ 
BIR = 

volume of bed - (1 — «) : (surface / volume) 

sean of [spherical particles] (11.6) = = : spherica S : 
(1 — e)|(wD2)/(aD}/6)| 6 Le : Parse | 

Here D,, is the particle diameter. If we now insert 4 times this definition of the 

hydraulic radius into the definitions of the pipe flow friction factor and the pipe flow 

Reynolds number, we find 

ae tt Dre GOCE S)INL25 be Dns beciialil 
— # = - . 5 ; 

I 4Ax WV? Sond siindas? sant? ee 

ae V,4[D,e/6(1 — &)]p i 2D,€V;p tig) 

be SCL =e) ; 

It is customary to replace V, in these equations with V/s, so 

awe rae -S 1 

3 “Ax (1 —s) v2 eas) 

and 

> oe 2D,Vsp 
‘ TE RSE) (11.10) 

As in the case of flow in pipes, there are several different friction factors in common 
use for flowing porous media, all differing by a constant. The choice between these is 
completely arbitrary; in this text we will drop the } in Eq. 11.9 and the $ in Eq. 11.10 
to find our working forms of the friction factor and Reynolds number for porous media: 

Burau medium | Cali Bis oi £ tp d tt Vv fe. @ity 

R OLOUS MEU =NeaNn Ai ORG R : porous med a (Hib.w) PM. (112) 
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Having made definitions, we now inquire whether the pipe flow friction factor 
plot will predict the pressure drop for flow in porous media. For the laminar-flow 

- region in pipes, Poiseuille’s equation may be rewritten f = 16/&. Here the f and R 

are consistent with the definitions given in Eqs. 11.9 and 11.10. When we convert to 

the definitions given in Eqs. 11.11 and 11.12, this becomes fp. = 72/ Rpm, (see 

Prob. 11.1). There is one obvious error in this derivation, namely, the tacit assump- 

tion that the flow is in the x direction. Actually, the flow is a zigzag; it must detour 

around one particle and then around another. If we assume that this zigzag proceeds 

with an average angle of 45° to the x axis, then the actual flow path is V2 times as 

long as the flow path shown in Eq. 11.11, and the actual interstitial velocity is V2 

times the interstitial velocity used in Eq. 11.11. If we make these changes, we con- 

clude that to agree with the pipe friction factor plot, laminar flow in a porous medium 

made of uniform-sized spheres should be described by fp. = 144 Rpm. (see Prob. 

11.2). Experimental data indicate that the constant is about 150; that is, the 45° 

assumption made above is slightly incorrect (but it is still pretty impressive to come 

within 4 percent of the best experimental value by applying pipe flow results from 

Chap. 6!). For laminar flow we find experimentally 

150 
iba} PM. = ( ) 

or, rearranged, 

Vou(l — ey A 
¥ = 150 sH( a ) yeaa {laminar flow] (11.14) 

D5e p 

== ase Equation 11.14 is known as 

the Blake-Kozeny equation or 

the Kozeny-Carman equation; it 

Water describes the experimental data 

for steady flow of Newtonian flu- 

ids through beds of uniform- 

sized spheres satisfactorily for 

Rpm. less than about 10. 

Example 11.1. Figure 11.3 

lon-exchanige shows a water softener in which 

resin D, = 0.03 in = 0.76mm__ water trickles by gravity through 

a bed of spherical ion-exchange 

resin particles, each 0.03 in 

(0.76 mm) in diameter. The bed 
has a porosity of 0.33. Calculate 

the volumetric flow rate of water. 

Applying B.E. from the top 

surface of the fluid to the outlet 

of the packed bed and ignoring 

FIGURE 113 the kinetic-energy term and the 

Gravity drainage of fluid through a porous medium. pressure drop through the support 

ift 

Wire mesh 

support screen 
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screen, which are both small, we find 

g(Az) = -—F (IC) 

Substituting from Eq. 11.14 and solving for Vs, we find 

g(—Az)Dre"p 
; Son tT = e) Ax 

32.2 ft/s - 1.25 ft- (0.03 ft/ 12) - 0.33° - 62.3 Ibm/ ft* 

~ 150: 1,002 cP: (1 — 0.33)? 1 ft: 6.72- 10-4 Ibm / (ft: s - cP) 
= 0.0124 ft/s = 0.00379 m/s (11.D) 

Therefore, 

Fo» Naar ft ft? cm> 
a= os ere ct f — = ol 27 — = 7.6 — idol wal Be OAs (2 i) 4 0.0124 . 0.000 ; P ( ) 

Before accepting this as the correct solution, we check the Reynolds number, 

finding 

(0.03 ft / 12) - 0.0124 ft/s - 62.3 Ibm/ ft* 
P.M. — ag = 429 (11.F) 

1.002 cP - 0.67 - 6.72 - 10 * Ibm / (ft - s - cP) 

This is less 10, for which we can safely use Eq. 11.13. & 

If there had been no porous medium in the lower part of the apparatus in 

Fig. 11.3, then the exit velocity would have been given by Torricelli’s equation, equal 

to about 9 ft/s. Here the calculated velocity is 34 as large. Fluid friction effects in 

porous media are large! 

We saw that for fully turbulent flow in a pipe the friction factor was constant 

for a given relative roughness but varied greatly for different relative roughnesses. For 

pipes the relative roughness can vary over a wide range, as can the friction factor in 

fully turbulent flow. However, for porous media made of uniform spherical particles 

there can be little variation in relative roughness. Here the roughness does not con- 

sist of rough spots on the surface of the individual spheres but of the constantly 

changing shape of the individual flow channels as they wend their way between the 

individual particles. The height of a typical obstruction is about the diameter of a sin- 

gle particle; the width of a typical flow channel is about one-half the diameter of a 

single particle. Therefore, the relative roughness is generally about 2. Referring to the 

upper right-hand corner of the friction factor plot for pipes (Fig. 6.10), we see that 

this relative roughness is very much larger than that ever encountered in pipes; so we 

would expect that the friction factor for completely turbulent flow in porous media 

should be very much larger than any friction factor ever encountered in a pipe. This 

is experimentally verifiable; the pressure drop for highly turbulent flow in a porous 

medium made up of uniform, spherical particles is reasonably well described by 

frm. = 1.75 (11.15) 
which can be rearranged to 

Ve Ax l= 

BS 
P 

F = 1.75 [turbulent flow] a sh 16) 



CHAPTER 11 FLOW THROUGH POROUS MEDIA 403 

Equation 11.16, known as the Burke-Plummer equation, is satisfactory for Rp. 
greater than about 1000. 

Example 11.2. We now wish to apply a sufficient pressure difference to the 
water flowing through the packed bed in Fig. 11.3 for the water superficial 
velocity to be 2 ft / s. What pressure gradient is required? 

Applying B.E. as before, we find 

AP 
Pak ul ag (11.G) 

Here, however, the gravity term is negligible compared with the others, so, sub- 

stituting from Eq. 11.16, we find 

—AP_ 1.75pV5 1-e 

Ag Ee & 

1.75 - 62.3 Ibm / ft? - (2 ft/s)” - 0.67 

(0.03ft / 12) - 0.33% - 32.2 Ibm - ft / (Ibf - s) - 144 in? / ft? 

= 701 psi/ ft = 15.9 MPa/m (11.H) 

Here we check, finding Rp yy, = 690, so this is at the low end of the turbulent 

flow region (see Fig. 11.4, discussed below). | 

This startlingly high calculated pressure drop (701 psi / ft) illustrates the fact 

that turbulent flows very seldom occur in porous media composed of particles this 

small. Since this particle size is typical of those encountered in most soils or under- 

ground aquifers or petroleum reservoirs and in most industrial filters, we see why 

almost all flows of fluids in the earth or in industrial filters are laminar. 

For the transition region from laminar to turbulent flow in pipes there is no sim- 

ple friction-loss correlation, because the flow may be laminar or turbulent or oscillate 

between these two. This is not the case in a porous medium, because the flow does not 

switch all at once from laminar to turbulent. The reason is that the flow is not through 

one channel, but through a large number of parallel channels, of varying sizes. As the 

flow rate is increased from a low value, it is originally entirely laminar, and then the 

largest channels switch to turbulent flow. As the flow rate is further increased, more and 

more channels become turbulent, until at very high flow rates there is turbulent flow in 

all the channels. This leads to a smooth transition from all-laminar to all-turbulent flow. 

Thus, in a plot of fp versus py, there is one smooth curve for transition 

from laminar to turbulent flow; Fig. 11.4 is such a plot. Ergun [1] showed that, if we 

add the right-hand sides of the Kozeny-Carman and Burke-Plummer equations, the 

result fits the data in the transition region reasonably well, i-e., 

150 
(11.17) 

Rpm. 

fem. = 1.75 + 

which can be rearranged to 

v2 (1 — e)Ax Vsu(1 — ©)? Ax 
gprsizy pps to DEF a pg SH Ma 8) 3 (11.18) 

D, € De p 
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FIGURE 11.4 

Pressure drop data for flow through porous media. (From R. B. Bird, E. N. Stewart, and W. E. 

Lightfoot, Transport Phenomena, 2nd ed. New York: John Wiley (2002), p. 192, who redrew it from 

S. Ergun, “Fluid flow through packed columns,” CEP 48:89-94 (1952). Reproduced by permission 

of the publisher.) 

which is known as the Ergun equation. It fits the data satisfactorily for all Reynolds 

numbers because the second term becomes negligible at high Reynolds numbers, giv- 

ing Eq. 11.14. At small Reynolds numbers the second term becomes so large that the 

first term is negligible in comparison, giving Eq. 11.16 (see Prob. 11.3). 

The foregoing is all for beds of uniformly-sized spherical particles. For other 

shapes of uniform particles some efforts have been made to relate the results to those 

shown here through defining an empirical “sphericity” factor [2, 3]. However, results 

have not been successful enough to allow one to calculate the behavior of such porous 

media accurately without experimental test, because even for a completely uniform 

set of nonspherical particles the porosity is a strong function of how the bed is assem- 

bled, and if the particles are loose, the porosity can be significantly altered by sim- 

ply shaking the bed, etc. 

There has been very little progress in calculating the flow of water, oil, or gas 

in naturally occurring rocks without experimental test because naturally occurring 

rocks are much, much less uniform than the beds of uniformly-sized spheres described 
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by Fig. 11.4. Thus, in the study of groundwater movement and in petroleum reservoir 
engineering it is customary to simplify Eq. 11.14 to 

Vs pb Ferm ae Ax (11.19) 

where k is called the permeability. Equation 11.19 is Darcy’s equation, and the unit 
of permeability is called the darcy: 

I(cm/s):cP 
1 darcy = ENG ASS OO Tem e100" 10 tt "T.20) 

atm / cm 

Example 11.3. In a test of a horizontal-flow filter with compressed air at 1 

atm, the following data were obtained: filter area: es pressure difference 

across filter: 2 psi; length of filter medium in flow direction: + in; flow rate: 

1 ft? / min. Calculate the permeability of the filter medium and estimate the pres- 

sure drop necessary to force | ft* / min of water through it. 

The permeability is given by rearrangement of Eq. 11.19: 

Vsp Ax — Vow Ax Qu Ax 
k= = = 

pF AP A AP 
1 ft/min -0.018 cP: ft/24 ft” 

1 ft? - 2 Ibf / in* 144 in? 

Ibf:s = min | darcy 

ft?-cP 60s 1.06-107'! ft? 

= 0.080 darcy = 80 millidarcy (11.1) 

For water we could use this value directly in Eq. 11.19. However, it is easier to 

solve Eq. 11.19 for the pressure difference and then apply it twice, once to the 

air flow and once to the water flow, and take the ratio. All the terms cancel 

-2.09:10°> 

except 

ARs er water 1.0 P eee eS (11.3) 
AP air Hair 0.018 cP 

so that the required pressure drop for water is 111 psi = 765 kPa. g 

The velocities encountered in groundwater and petroleum-reservoir flow are 

generally small enough for the kinetic-energy terms in B.E. to be neglected. Further- 

more, the flow is almost always laminar, so that ¥ is described by Darcy’s equation 

(Eq. 11.19). Thus, B.E. for this situation becomes 

a(F + g)= 2 ae (11.21) 

which for constant p, k, 4, and g may be rewritten as 

d(P + 
ey (11.22) 

dx ewes 
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If we write a similar equation for the y direction, differentiate each with respect to x 

and y, respectively, and then add them, we find 

a°(P + pgz) (P+ pgz)_ ow (2: a =) 
+ — 

ax? ay* k \ ax dy 
(11.23) 

but from the constant-density mass-balance equation (see Chaps. 15 and 16) the right- 

hand side of Eq. 11.23 is zero; so 

2 2 
oe eG d=P + pgz (11.24) 
Ox Oy 

This is Laplace’s equation, which describes “potential flow.” It is widely used in heat 

flow and electrostatic field problems; an enormous number of solutions to Laplace’s 

equation are known for various geometries. These can be used to predict the two- 

dimensional flow in oil fields, underground water flow, etc. The same method can be 

used in three dimensions, but solutions are more difficult. The solutions to the two- 

dimensional Laplace equation for the common problems in petroleum reservoir engi- 

neering are summarized by Ahmed [4]. The analogous solutions for groundwater flow 

are shown in the numerous texts on hydrology, e.g., [5]. See Chap. 16 for more on 

potential flow. ; 

11.2) TWO-FLUID COCURRENT FLOW 
IN POROUS MEDIA 

So far we have assumed that all the pore space in the porous medium was occupied 

by the same fluid, such as air or water or oil. However, there are very important prob- 

lems in which two immiscible fluids are present in the same pore space, e.g., the 

simultaneous flow of oil and gas or of oil and water, which occurs in petroleum reser- 

voirs or the air-blowing of a filter cake to drive out a valuable filtrate or to lower the 

moisture content of a valuable filter cake. 

In the experimental apparatus shown in Fig. 11.2 if we fill all the pores with 

water and then force air through the system, we find that the fraction of water in the 

outlet stream behaves as shown in Fig. 11.5. Initially only water will flow out of the 

downstream end of the apparatus. Its volumetric flow rate will equal the volumetric 

flow rate of air entering the 

apparatus. Then air will “break 
Volume fraction 
eave bow _ through” and appear at the out- 

let end. For a brief period both 

Qwater air and water will emerge from 
Qwarer + Qair the outlet, the volume fraction 

of water steadily decreasing. 

Finally, no more water will 

emerge (except that which is 

being removed as water vapor 

in the air, due to evaporation 
FIGURE 11.5 inside the apparatus). If, after 
Breakthrough of air displacing water from a porous medium. we have reached the point of 

t 

Total volume injected eit Qa, dt 
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no more water flow in Fig. 11.5, we open the apparatus and determine the amount of 
water present inside, we find that 10 percent to 30 percent of the pores in the sample 
are full of water. 

Why does this water not flow out? It is held in place by surface forces. This 

can be made plausible by comparing the surface of a gallon of fluid in a cylindrical 

container with a gallon of fluid in a typical sandstone. An ordinary 1-gal paint can 

has a surface area of 1.5 ft”. A gallon of fluid contained in the pores of a sandstone 

made of spherical grains of diameter 0.01 in and porosity 0.3 has 216 ft? of surface 

area. One may think of the fluid in the pores of such a Randsione as being spread out 

as a film of average thickness 0.007 in = 0.18 mm. 

If only one fluid is present, then this is all solid-fluid surface, and the interaction 

is simply one of adhesion at the surface. If two fluids are present, then in addition to 

two kinds of solid-fluid interface there will be a fluid-fluid interface. The pressure dif- 

ference that can exist across such a fluid-fluid interface (called the capillary pressure) 

is of the form* 

q Gapills 
( P ae yates (11.25) 
pressure r 

Here o is the surface tension, and r is the radius of the pore space. For a water-air 

interface a is about 4-10 * Ibf/in. For 1 gal of water in an ordinary 1-gal can r is 

about 3 in, so the pressure difference between the air and the water is about 

2-10 “psi, which is negligible in most problems. If, however, the surface is inside 

a pore of radius 0.001 in, then the pressure difference is about 9.8 psi, which fre- 

quently is not negligible (see Chap. 14 for more on surface tension effects). 

These surface forces prevent the complete displacement of one phase from a 

porous medium by another. The displacing fluid (air in the above example) tends to 

move first into the largest of the available flow channels in the porous medium and 

thus bypass some of the displaced fluid. When this bypassed displaced fluid, which 

is still flowing, is reduced in quantity so much that it breaks up into droplets sur- 

rounded by the displacing fluid rather than moving as a continuous filament, then it 

stops moving (in petroleum terminology it becomes immobile). If we examine micro- 

scopically a sand that has had water displaced from it by air, as described above, we 

see that the retained water exists, not as continuous filaments, but as small layers or 

drops, normally held in the junctions between various grains of the sand. 

From this physical description we concluded that a particle of fluid stops mov- 

ing when the displacing force (which equals the pressure gradient times the length of 

the droplet times its cross-sectional area perpendicular to the flow) is balanced by the 

surface force (which equals the surface tension divided by the radius of the drop times 

its cross-sectional area). Equating these, we find that the fluid particle should stop 

moving when 

Sapa aes DS (11.26) 

*This assumes a “contact angle” of zero degrees. See Scheidegger [6] for a discussion of this equation 

without this simplifying assumption. 
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or, rearranging, 

——-=] (11.27) 

For a naturally occurring stone it is impossible to measure L (the length of the drop) 

or rin Eq. 11.27. Furthermore, this analysis only applies to spherical droplets, whereas 

microscopic observation shows that the drops are seldom spherical. However, the basic 

idea is sound. To show this, we note that Lr has the same dimension as the perme- 

ability; low permeabilities go with low values of L and r and high permeabilities with 

high values of L and r, Thus, we could reasonably expect that the fraction of the void 

space full of displaced fluid, when the displaced fluid stops moving, should be some 

function of the dimensionless group 

P. 
— — = capillary number (11.28) 

x 

Figure 11.6 shows a correlation of measured residual saturation (residual saturation 

is the fraction of pore space occupied by displaced fluid when the displaced fluid 

stops flowing) as a function of this capillary number. For high permeabilities (e.g., 
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FIGURE 11.6 

Residual saturation as a function of capillary number. (From L. E. Brownell and D. L. Katz, “Flow of 
fluids through porous media,” CEP 43:601-612 (1950). Reproduced by permission of the publisher.) 
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large-sized pores, as might exist in a pile of bricks or coarse gravel) the residual 
saturation is very low, perhaps 2 percent or 3 percent, whereas for low permeabilities 
(e.g., a very fine-grained sandstone or shale) the residual saturation is very high, per- 
haps 30 to 60 percent. The scatter of the data shows that this correlation should be 
used only for order-of-magnitude estimates of the fraction of immobile fluid in a 
porous medium. 

This kind of two-phase cocurrent flow is very important in oil fields, where the 

two phases may be oil and water or oil and natural gas; in hydrology, where the two 

phases flowing (near the earth’s surface) are air and water; or in filters, where air is 

blowing residual liquid out of the filter cake. The treatment here is much simplified; 

for more detailed treatments see Rushton, Ward and Holdich [3] or Ahmed [4]. These 

flows are complicated by the effect of viscosity. If the displacing fluid is more vis- 

cous than the displaced fluid, then viscosity damps out any unevenness in the bound- 

ary between displacing and displaced fluids. But if the displacing fluid is less viscous, 

then viscosity increases such unevenness, and the less viscous displacing fluid “fin- 

gers” through the displaced fluid, leading to early breakthrough and much less com- 

plete displacement than if the displacing fluid is more viscous than the displaced fluid. 

Unfortunately, in cases of industrial significance (recovery of petroleum, air-blowing 

of filter cakes) the displacing fluid is often less viscous so that this “fingering” is a 

very serious limitation on the effectiveness of the processes [7]. 

11.3. COUNTERCURRENT FLOW 
IN POROUS MEDIA 

When the particles in a porous medium are small, then if a fluid is moving in one 

direction through the medium, any other fluid that is simultaneously moving through 

the medium will almost certainly move in the same direction. However, when the par- 

ticles are large (say }in or larger), it is entirely possible for two immiscible fluids to 

move in opposite directions through the same medium at the same time. This is the 

basis for the gas-liquid and liquid-liquid contacting devices that use a bed of parti- 

cles to increase the surface of contact between the fluids. Such devices, usually called 

packed towers or packed beds, are commonly used for absorption, distillation, humid- 

ification, etc. 

The important feature of the two-fluid flow in such systems is the competition 

of the fluids for the area available to flow. Normally the denser fluid (e.g., water) runs 

down the surface of the particles by gravity, while the less dense fluid (e.g., air) flows 

upward because it is introduced at the bottom of the column at a pressure higher than 

that at which it is withdrawn from the top. Typical pressure-difference results for such 

a system are shown in Fig. 11.7. 

In Fig. 11.7 minus the pressure gradient from the bottom to the top of the tower 

is plotted against gas superficial mass flow rate up the column for various liquid super- 

ficial flow rates down the column. Consider first curve A. This is for flow of gas only; 

its slope (on a log-log plot) is 1.8, indicating that the flow is in the transition region 

on Fig. 11.4, in which fp. is proportional to Rpm. to the —0.2 power. Curve B is 

for no liquid flow, but for the packing having been wetted and drained. The slope of 

the curve is the same as for curve A, but at each flow rate the pressure drop is about 
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FIGURE 11.7 
Pressure drop in competitive countercurrent air—water flow in a porous medium, that consisted of 

raschig rings, which are thin-walled cylinders 1 in long and | in in diameter, with both ends 

open. (From B. J. Lerner and E. S. Grove Jr., “Critical conditions of two-phase flow in packed 

columns,” Ind. Eng. Chem. 53:216 (1951). Copyright 1951 by the American Chemical Society. 

Reproduced by permission of the publisher.) 

25 percent higher, because some of the flow passages are now blocked by retained 

liquid. With some of the passages blocked, the interstitial velocity of the gas must 

increase because less area is available for its flow. That raises the pressure drop due 

to friction. Curve C shows a typical curve for the competitive flow of gas and liquid. 

At low gas flow rates the form is similar to curves A and B, but the pressure drop is 

higher because more of the passages are blocked by liquid. However, at an air flow 

rate of about 600 Ibm / (h: ft”) the curve turns sharply upward. Visual observation 

indicates that at this point fluid begins to be held up in passages in which it previ- 

ously flowed downward. This blocks these passages to the flow of the gas. Continued 

flow-rate increase causes more and more of these passages to be thus blocked, and 

the pressure rises steeply; this behavior is sometimes called loading. 

Curves D and E show similar behavior, but they also show that for higher liq- 

uid flow rates a new region can be entered, in which the steep rise in the pressure- 

drop curve moderates. In this region, called flooding, the liquid fills the column, and 
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it becomes the continuous phase instead of the dispersed one. The gas rises through 
it as bubbles rather than as a continuous gas stream. 

Because devices with this kind of flow are widely used in distillation and 
absorption, the empirical methods for estimating their performance are summarized 
in books on those topics [8, 9]. In a packed bed inside some container the porosity 
is always greater near the walls than in the rest of the bed because the particles can- 

not pack together as well there. This complicates the design and operation of such 
devices. 

11.4 SIMPLE FILTER THEORY 

Filters are widely used to purify gases and liquids or to separate valuable products from 

gases or liquids. We can learn something about their behavior by applying the results 

previously found in this chapter. There are two kinds of filters: surface filters, in which 

the collected particles form a coherent cake on the filter surface (e.g., coffee filters, 

colanders, most industrial baghouses, most industrial thickeners, plate-and-frame or 

drum filters); and depth filters, in which the particles are collected throughout the entire 

depth of the filter (e.g., cigarette filters, auto oil filters, most home furnace filters). 

11.4.1 Surface Filters 

The flow through a surface filter is shown schematically in Fig. 11.8. A slurry (a fluid 

containing suspended solids) flows through a filter medium (most often a cloth, but 

sometimes a paper, porous metal, or bed of sand). The solid particles in the slurry 

deposit on the face of the filter medium, forming the “filter cake.” The liquid, free 

from solids, flows through both cake and filter medium. Applying B.E. from point 1 

to point 3, we see that there is no change in elevation. There is a slight change in 

velocity (due to the solid particles left behind in the filter cake in all cases and due 

to the pressure drop if the fluid is a gas), but this is generally negligible, and there is 

no pump or compressor work; so AP/ p = —F. The flow is laminar in almost all fil- 

ters, so that the pressure drop due to friction is given by Eq. 11.19. Solving Eq. 11.19 

for the superficial velocity, we find 

Ola ok 
Filter \ Uo = (11.29) 
medium an [Yi AN 

Here there are two resistances in series 

Clear fluid with the same flow rate through them. 

(“filtrate”) Letting the subscript “‘f.m.” indicate “fil- 
ter medium,” we write Eq. 11.29 twice 

and equate the identical flow rates (see 

Filter 

cake 

Fig. 11.8): 

wie k notch) be Ax cake 

FIGURE 11.8 “ Po — Ps (+) (11.30) 
Flow in a surface filter. a Axe seh: 
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Solving for P>, we get 

A Ax 
Peary vil *) = Py + av, 2") (11.31) 

k cake k f.m. 

and then solving this equation for Vs, we find 

| aed ac: ay 2 
Vise aS 

w(Ax/ kcake a (Ax/ Kem] Afiner 

This equation describes the instantaneous flow rate through a filter; it is analogous to 

Ohm’s law for two resistors in series, so the w Ax/k terms are called the cake resist- 

ance and the cloth resistance. 

The resistance of the filter medium is normally assumed to be a constant inde- 

pendent of time; so (Ax/k);,,, is replaced with a constant, a. If the filter cake is uni- 

form, then its instantaneous resistance is proportional to its instantaneous thickness. 

However, this thickness is related to the volume of filtrate that has passed through the 

cake by the material balance: 

(“= of cake ( i ) 

area Peake 

l volume of filtrate mass of solids 
‘ k (11.33) 

Peake area volume of filtrate 

Customarily we define 

mass of solids collected | volume of cake 
Wn = = : = : (11.34) 

volume of filtrate Peake volume of filtrate 

TES 2) 

Xie 

Here W is the volume of cake per unit volume of clear liquid processed and 7 is the 

collection efficiency for solids, which is normally assumed to ~ 1.00 and dropped from 

Eq. 11.34, so that 

V ane 
AXcake = | Ww and eas the) = VsW C135) 

Here V is the volume of filtrate = / Q dt.Substituting Eq. 11.35 for the cake thick- 

ness in Eq. 11.32, we find 

2 Salt WE le Iriya es 

A A.dt’ p(VW/kA.+ a) 
(11.36) 

For many industrial filtrations, the filter is supplied by 4 centrifugal pump or blower 
at practically constant pressure, so (P; — P3) is a constant, and Eq. 11.36 may be 
rearranged and integrated to 

a cae Ns Ae tine) 
eV ote 4 te = ct ie ot) [constant pressure] (11.37) 

For many filtrations the resistance a of the filter medium is negligible compared with 
the cake resistance (except perhaps for the very first part of the filtration, in which 
the cake is forming), so that the second term on the left of Eq. 11.37 may be dropped; 
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in such cases the volume of filtrate is proportional to the square root of the time of 
filtration. 

Because of this buildup of cake, the filter must be cleaned at regular intervals; 
the optimum time between cleanings is discussed by Chen [10]. 

For a few industrial filtrations, the filter is supplied by a P.D. pump, which is 
practically a constant-flow-rate-device. Such a pump feeds the filter at a pressure that 
is steadily increasing during the filtration. Equation 11.36 shows that, for constant k 
and negligible a, the pressure increases linearly with time, because the cake thickness 
increases linearly with time. 

In many real filtration problems the k in Eq. 11.36 is not constant but is a func- 

tion of pressure. This occurs because many filtrates, such as the iron hydroxides and 

aluminum hydroxides use in water clarification, are weak-structured gels or flocs. In 

the loose state they have a relatively low flow resistance, but under pressure they col- 

lapse and form denser structures that have a higher flow resistance. The common prac- 

tice in describing such cakes is to write 

| 
Cake specific resistance = ria ape (11.38) 

Substituting Eq. 11.38 in Eq. 11.36 and letting P3 be zero (i.e., atmospheric pressure), 

we find 

Oe Pedy P 
=—- = : (11-39) 

A A dt pl(aP*°VW/A) + a] 

If a is negligible (the usual case), then Eq. 11.39 indicates that at a given cake thick- 

ness increasing the pressure will (i) linearly increase the flow rate if s is O (as for 

sand), (ii) have no effect at all on the fiow rate if s is | (as for some gelatinous hydrox- 

ides), and (iii) have some intermediate effect if s is between O and 1. There are cases 

in which s is less than | at low pressures and greater than 1 at higher pressures, so 

that there is a pressure that gives maximum flow rate with lower flow rates for lower 

or higher pressures. Much of the art of filtration consists of selecting additives, “fil- 

ter aids,” that lower a or s [3, Sec. 5.3]. 

11.4.2 Depth Filters 

Surface filters are used when the concentration of solids to be removed from the fluid 

is high; the solids form a cake, which actually does the filtering. Once the cake forms, 

the filter medium serves only to support the cake but does practically no filtering. 

Depth filters are used when the concentration of solids is low and the goal is to pro- 

duce a very clean fluid stream at the outlet. Often the depth filter is the final cleanup 

step, following a surface filter that takes out most of the particles to be removed. This 

is the case with the depth filters that make the final cleanup of air going to operating 

rooms or to microchip fabrication facilities. Whereas surface filters can be cleaned by 

removing the cake from the surface, most depth filters are thrown away when they 

become loaded with solids, e.g., cigarette filters and auto oil filters. 

The fluid mechanics of depth filters do not lend themselves to as simple a math- 

ematical treatment as the one shown above for surface filters [11, Sec. 9.2.2]. 
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11.5 FLUIDIZATION 

ss eset The previous treatment of flow in porous 

media will help us understand fluidization, 

which plays a major role in many chemical 

Granular processes. Figure 11.9 shows an apparatus 

material — for creating a fluidized bed. A granular mate- 

rial such as sand is resting on some sort of 

support screen in a tube. What would hap- 

pen if we were to flow a fluid, such as air or 

water, upward through this material? 

| The behavior will be described by 

teers B.E., with the laminar-flow friction-heating 

term given by Eq. 11.14: 

y beets nah eo a ad (11.40) 
| p 

Here we have dropped the Av’ /2 term, 

pe which is negligible. Now we can multiply 

FIGURE 11.9 through by p and assume that we are deal- 

A fluidized bed formed by upflow of fluid ing with air, in which the pg Az is also 

through a porous medium. small and can also be dropped. Thus, we 

see that the pressure difference across 

the bed of granular material, (P; — P,), is linearly proportional to the volumetric 

flow rate. 

Now, if we steadily increase the fluid flow rate, what will happen when the pres- 

sure force on the entire bed, [(P: — P,) times the cross-sectional area], is slightly 

greater than the weight of the bed? If the bed is made up of some solid, porous mate- 

rial such as a block of sandstone, then the entire block will be expelled from the tube, 

exactly as a bullet is expelled from a gun by the high-pressure gases behind it. How- 

ever, if the solid is a mass of individual particles, like sand grains, they can decrease 

their resistance to flow by increasing their porosity. Substituting Eq. 11.14 in Eq. 

11.40, we see that for gas-solid systems 

pa Sa § Az(1 ci &) Doartistes 

1 150 Vee = es)’ Ax 

(De 

As V, increases, € may increase and hold AP constant (Ax will also increase, but 

its effect is much less than the effect of a change in €). Thus, the experimental 

result for such a test is shown in Fig. 11.10. For velocities less than V,,s, the min- 

imum fluidizing velocity, the bed behaves as a packed bed. However, as the veloc- 

ity is increased past V,,¢, not only does the bed expand (Ax increases) but also the 

particles are seen to move apart and become able to slide past each other, and the 

entire particle-fluid mass becomes a fluid that can be poured from one vessel to 

another and be pumped, etc. As the velocity is further increased, the bed becomes 

more and more expanded, and the solid content becomes more and more dilute. 

[gas-solid systems] (11.41) 
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Finally, the velocity becomes as 

large as the terminal settling 

velocity of the individual parti- 

cles, so the particles are swept 

out of the system. Thus, the 

velocity range for which a flu- 

idized bed can exist is from V,,¢ 

(whose value can be calculated 

from Eq. 11.41 for spherical 

particles and analogous equa- 

tions for non-spherical ones) to 

V, (whose value can be calcu- 

lated as shown in Sec. 6.15). 

The above description of 

the particles in the bed increas- 

ing their value of € to accom- 

FIGURE 11.10 modate an increasing flow rate, 

The transition from a packed to a fluidized bed. as sketched in the upper part of 
Fig. 11.10, is actually observed 

if the fluidizing fluid is a liquid. However, if the fluidizing fluid is a gas (by far the 

more common case industrially), the behavior is more complex. In that case as the 

fluid flow rate is increased past Vi, the increased gas flow forms bubbles, which 

contain virtually no particles and which rise through the bed of fluidized particles 

very much as bubbles rise through liquids. These bubbles greatly complicate all the 

aspects of the behavior of fluidized beds and of the chemical reactions carried out 

in them. 

These fluidized beds have proved very useful in chemical technology when one 

wishes to move a granular solid through a series of processing steps in a continuous 

fashion. Their most dramatic application is in fluidized-bed catalytic cracking, which 

is a standard petroleum refining operation, but there are dozens of other applications. 

This brief treatment only shows how they are formed; for more on their properties 

and uses see Kunii and Levenspiel [2] and Pell [12]. 

If one continues to increase the velocity of the fluidizing stream, eventually it 

will exceed the settling velocity of the largest particle in the bed, and then the entire 

bed will be conveyed upward. This ceases to be a fluidized bed, but becomes a pneu- 

matic transport pipe, which is widely used to move granular solids like grain, port- 

land cement or plastic pellets [2, Chap. 15]. As a rule of thumb, fluidized beds oper- 

ate with gas superficial velocities of 1 to 3 ft/s (0.3 to 1 m/s); pneumatic transport 

operates with superficial velocities of 30 to 60 ft/s (10 to 20 m/s). 

AP 
Fluidized 

bed 

11.6 SUMMARY 

1. Flow through a porous medium can be laminar, turbulent, or intermediate. The 

transition from laminar to turbulent flow is smoother and more reproducible than 

for flow in a pipe. Generally, the flow in filters, the flow of groundwater, and the 

flow in petroleum and natural-gas fields are laminar. 
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2. For porous media made of equal-sized spherical particles we can calculate the 

laminar-flow pressure drop with fair accuracy, based on the pipe friction factor plot. 

3. For most filter cakes and naturally occurring rocks, it is impossible to calculate 

the pressure drop based on nonflow measurements, but the pressure drop can 

be correlated very satisfactorily in the laminar-flow region by means of Darcy’s 

equation. 

4. Two-phase flow in porous media is strongly influenced by surface forces; these 

generally lead to incomplete displacement of one phase by another in a porous 

medium. 

5. Countercurrent flow of two immiscible fluids in porous media is strongly influ- 

enced by the competition of the two fluids for the available pore space. 

6. Fluidized beds are formed when the fluid friction and pressure forces are equal and 

opposite to the gravity force on the particles. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover! 

An asterisk (*) on a problem number indicates that the answer is shown in App. D. 

11.1. Show that f = 16/ is equivalent to fom = 72/Rpm.- 

11.2. Show that, if one assumes that V, = V2(V,),-air and that the length of the flow path is 

V2 Ax, then the friction factor should be twice as high as shown in fp. = 72/Rpm.- 

11.3. Show the relative sizes of the two terms in the Ergun equation, Eq. 11.17, at 2p. val- 

ues of 0.1, 1, 10, 100, 1000, and 10,000. 

11.4. Calculate py, in Example 11.2. 

11.5.*Calculate the permeability of the bed of ion-exchange particles in Example 11.1. 

11.6. For the flows in Examples 11.1 and 11.2, calculate the magnitudes of the AV? / 2 terms 

omitted in B.E., and compare these with the magnitude of the ¥ terms. 

11.7.*For the apparatus in Example 11.1 estimate the residual saturation of air if the appara- 

tus is originally full of air and then filled with water so that water is allowed to perco- 

late through as shown in Fig. 11.3. 

11.8. In Fig. 11.7 what value would the abscissa have if the packing were filled completely 

with water that was not moving? From this value, what can you say about the fraction 

of the pore space occupied by liquid in the “flooded” regime at the top of curves D 

and E? 

11.9.*(a) Calculate the 2pm, at the low end of curve A on Fig. 11.7. Here use D,, = 1 in and 

é = 0.5. Does this Reynolds number correspond to the laminar, transition, or tur- 

bulent range of flow rates? 

(b) Using the same values of D, and ¢, estimate the pressure gradient for 1000 

Ibm / (ft? *h) according to Eq. 11.16 and compare the result with the value shown 

in Fig. 11.7. Is the agreement satisfactory? 

11.10. The results of a constant-pressure filtration test are a table of volume of filtrate per unit 

area of filter versus time. The data are presumed to agree with Eq. 11.37. Show how 

one may plot these data so that they will form a straightline plot and how one finds the 

values of k and a from the slope and intercept of this line. . 

11.11. Equation 11.41 correctly predicts V,,¢, the minimum fluidizing velocity, for beds of 
spherical particles, but it does not correctly predict the relationship of V, to ¢ after the 

bed has started to expand. Why not? 
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11.12. Write the equation analogous to Eq. 11.41 for water flowing upward through a bed of 
sand. In this case the g Az term in Eq. 11.40 cannot be neglected. 

_ 11.13.*For spherical sand particles with D,, = 0.03 in and Poarticles — 190 Ibm / ft® estimate the 
minimum fluidizing velocity for air and for water. Assume e = 0.3. In the case of the 

water we must rederive Eq. 11.41, taking into account the buoyant force on the particles. 

11.14. Equations 11.14 and 11.16 show that the frictional resistance for flow in porous media 

depends strongly on the porosity, e. The porosity depends on the shape of the particles 

and on how they are arranged. Show the following: 

(a) If we pack cubes of the same size, one above the other and side by side (rectan- 

gular array), the porosity = 0. 

(b) If we stack spheres the same way (egg-crate packing), the porosity is 0.476. 

(c) If we maintain the rectangular array in any one plane, but shift the planes so that 

the individual spheres in one plane fall into the holes between the spheres in the 

plane below (orthorhombic array), the porosity decreases to 0.3954. 

(d) If we use the closest packing in each plane, and then place the planes so that they 

have the closest packing to the planes above and below (rhombohedral array), the 

porosity further decreases to 0.2595. 

These arrays, and data on the porosities of other types of particles, are shown in Brown 

TIS Ay 2A 
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CHAPTER 

Bs 
GAS-LIQUID 
FLOW 

In the preceding chapters, as in most fluid mechanics problems, the flowing fluid was 
composed of one homogeneous phase, such as water, oil, air, or steam. There are, 
however, many interesting and important flows that involve the simultaneous flow of 
two quite different materials through the same conduit, such as the flow in a coffee 
percolator (Fig. 2.17), the flow in most vaporizers or boilers or condensers, and the 
flow in the carburetor of an automobile (Fig. 5.35). These flows can be of gas-liquid 
mixtures, liquid-liquid mixtures, gas-solid mixtures, or liquid-solid mixtures. Although 
there are industrially important examples of each of these combinations, the most 
important and interesting seems to be the gas-liquid case, which we will discuss in 
this chapter. Brief summaries of what is known about gas-solid and liquid-solid flows 
are given by Tilton [1, pp. 6-26]. 

In all of these flows the influence of gravity is much greater than in the one- 
phase flows we have considered previously. For laminar or turbulent flow of water in 
a tube, the velocity distribution and friction effect (¥) would be the same on earth as 
in the zero-gravity environment of an earth satellite. Neither the velocity distribution 
nor # is influenced at all by changing the pipe’s position from the horizontal to the 
vertical. Gravity does not significantly influence the flow pattern or ¥, because it 
works equally on each particle of the fluid. This is not the case for two-phase flows, 
because normally the phases have different densities and thus are affected to differ- 
ent extents by gravity. All of the flows described in this chapter would not be the same 
in a Zero-gravity environment as on earth and, as shown in Secs. 12.1 and 12.2, hor- 
izontal and vertical two-phase flows have very different velocity distributions and ¥ 
values. 
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12.1 VERTICAL, UPWARD GAS-LIQUID FLOW 

Many of the salient features of multiphase flow, and the terms used to describe it can 

be illustrated by considering the simultaneous gas-liquid flow up a vertical pipe with 

the apparatus sketched in Fig. 12.1. 

Assume that at first only water flows; then, from B.E., 

P, — Po = palm — 21) + pF £121) 

For zero flow rate we can calculate (P; — P2) = pg Az = 8.7 psi = 60 kPa. As we 

start the flow of water only, (P; — P2) will increase, because of the increase in ¥ 

with increasing velocity. 
Now let us hold the water flow rate constant at some modest average velocity, 

such as 2 ft/s, and slowly increase the air velocity from zero to some large value. 

This will cause ¥ to increase, since the overall linear velocity is increased. However, 

now there will be bubbles of gas in the pipe; the density in Eq. 12.1 is no longer the 

density of water but the average density of the gas-liquid mixture in the vertical pipe. 

At low flow rates the density goes down much faster than ¥ goes up; so (P; — P2) 

decreases steadily as we increase the gas flow rate. Finally, a point is reached where 

further increase in the gas velocity causes ¥ to increase faster than p decreases, 

(P,; — P2) will increase with increasing gas flow rate. A typical plot of experimental 

data for such a system is shown in Fig. 12.2. 

The pressure gradient curve on Fig. 12.2 has the shape described above, with a 

distinct kink in it near a volumetric flow rate ratio of 10. This is typical of such sys- 

tems and indicates that the change described above does not take place smoothly. If the 

system is made of glass, so that the flow pattern can be observed, it will be seen that 

several distinctly different flow patterns are formed as the air flow rate is increased. 

This is illustrated in Fig. 12.3. At the lowest air flow rates small bubbles rise through 

the liquid. As the air flow rate is 

increased, large single bubbles 

are formed, which practically 

fill the tube, driving slugs of 

liquid between them. At higher 

rates these slugs become frothy, 

and finally at high gas flow rates 

the liquid is present either as an 

annular film on the walls or as 

h = 22.88 ft a mist in the gas. 

Two additional ideas are 

widely used to explain and cor- 

relate the results of experiments 

like that shown in Fig. 12.1: 

Ss holdup and slip. One can meas- 

Air —o<}-—C )-— meee ure what fraction of the tube is 

occupied by gas, ¢, and what 

FIGURE 12.1 fraction by liquid, | — 6, in 

Apparatus for vertical, upward gas-liquid flow. such a flow (experimentally this 

Flowmeters 
Control valves ee 

Water t [80 Pressure gauge 
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FIGURE 12.2 

Typical experimental results for vertical, upward air—water flow in the 

apparatus shown in Fig. 12.1, with constant liquid flow rate. Here V; is Q,/ A. 

The test section is 22.88 ft long, 1.025 in ID, made of transparent plastic 

tubing. The pressure at the midpoint of the test section is 36.0 psia and 

T ~ 70°F. (From G. W. Govier, B. A. Radford and J. S. C. Dunn, “The 

upward vertical flow of air—-water mixtures,’ Can. J. Chem. Eng. 35:58-70 

(1957). Reproduced by permission of the publisher.) 

is done by placing two quick-closing valves in the tube, establishing the flow, and 

then closing the valves simultaneously and measuring the amounts of gas and liquid 

so trapped). One might assume that the ratio of gas to liquid, e/ (1 — €), would be 

the same as the volumetric flow rate ratio of the two streams, Q,/ Q,, but experi- 

mental evidence indicates the contrary [2]. Figure 12.2 shows the experimental val- 

ues for the holdup ratio, which is the ratio of the liquid-gas volume ratio actually 

present in the pipe to the liquid-gas volume ratio in the stream passing through: 

Grey ) 

Holdup _ \ratio in flow/ _ Ql — a) a Tee ib 

ratio ee ) O,/ Q, Her 8 Q; ae 
ratio in feed 

This holdup ratio is always greater than | for vertical, upward flow, because some of 
the liquid is always falling back by gravity and, thus, having to make several upward 
trips to get out. 

Then we define 

Average velocity _ Q, 
ar Vey zas — a 

HR biug ages isa) of gas in tube 
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FIGURE 12.3 

Two-phase flow patterns in vertical tubes. The liquid flow rate is upward at a small, constant 

velocity. The gas flow rate upward increases steadily from left to right. The “annular” pattern 

shown is often referred to as climbing film flow. (From D. J. Nicklin and J. F. Davidson, “The 

onset of instability in two-phase slug flow,” in Symposium in Two-Phase Flow, Institution of 

Mechanical Engineers, London, 1962. Reproduced by permission of the publisher.) 
~ 

and, analogously 

Average velocity Q, 
‘A ee =— avg,liq ge Seay ee (12.4) 

of liquid in tube Ag gths=) 

The difference between these two is defined as the slip velocity: 

1 (Q Q; 
Vip iT Meare, 508 i) Varela FF = = esis (12.5) 

If the holdup ratio were 1.00, then the term in parentheses on the right in Eq. 12.5 

would be zero. For actual upward flows the slip velocity is always positive, because 

the gas mostly moves upward, and the liquid partly moves upward and partly flows 

backward downhill because of gravity, lowering its net average upward velocity. 

Example 12.1. From the data shown in Fig. 12.2 for ees Q, = 10, calculate 

the values of FY, e, and Vyiip. 

We start by reading that at this value of Q, / Q, the holdup ratio is ~3.5, 

so that 

bent) RAPS bases yes vol H 74 (12.A) Bio. dd @ishaOpar 10 

421 
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Although the liquid volumetric flow rate is 1 /(1 + 10) ~ 9% of the total inlet 

volumetric flow rate, the liquid occupies 26% of the volume of the tube. In Eq. 

12.1 we have 

Pa Paint tepwatename ©) (12.B) 

but, since Pair << Pwater We may neglect the first term and use p ~ é 

Pwater (1 — €). Solving Eq.A12.1 for 7, we ‘get 

F =—— = gh (12.C) a Be 

and from Fig. 12.2 we read —AP/ ghpwater ~ 0.5, so that 

pee a oy (3 = 1) 3 0.98en foe) 
(1 a E)P water 

Thus, at this flow rate the conversion of injection work to internal energy by 

friction heating is 93 percent as large as the conversion of injection work to 

potential energy by increasing the elevation of the fluid. Finally, from Eqs. 12.3 

and 12.4, we have 

06 ft / ft View tg =o = ee Ses oe 
Bd - Ange - 1-—-e —4-— 074 s s 

1 102.06 ft/s ft 
Visiedninge el ipa set i, ae = 278—=848— U2F) 

oie Ainpe® OQ; Atube E 0.741 s s 

ft ft ft 
Vaip = 27.8 — -— 79 — = 19.9 — = 6.07 — (12.G) 

Both liquid and gas average velocities are larger than the values they would 

have if they occupied the tube alone, because they have less area available to 

them individually. | 

Vertical cocurrent flow of this type is extremely common in engineering. It 

occurs in almost all flowing and gas-lifted oil wells and in gas-lift pumps. Much of 

the research on this type of flow has been connected with boiling of liquids in verti- 

cal tubes. In a vertical tube in which a liquid (e.g., water) is being boiled, it is entirely 

possible to have all the flow patterns shown in Fig. 12.3 present in the same tube at the 

same time. In that case the fluid enters the bottom of the tube as all liquid. As it passes 

up the tube, more and more of it is converted to a vapor by boiling, so that at the top 

of the tube it may be all vapor (this is generally avoided in boilers, because it results 

in a dangerously high metal temperature at the top of the tube). Thus, the various pat- 

terns shown in Fig. 12.3 exist at various elevations in the same tube, the bottom of the 

tube corresponding to the left of Fig. 12.3 and the top corresponding to the right. 

Because the various flow patterns shown in Fig. 12.3 are so different from each 

other, it is unlikely that there will ever be completely successful single description of 

the friction effect and holdup of vertical, gas-liquid flows that’is comparable, for 

example, to the friction factor plot for pipe flow. The various flow forms are so dif- 

ferent physically that they cannot be expected to obey the same mathematical rela- 

tionships. Several such overall correlations are available, e.g., that of Hughmark and 
Pressburg [3] in which, for a variety of fluids, they correlated liquid holdup (1 — ¢) 
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with the group, 

ia : uo 9-205 oe — 

Me (Q,/ A by. Oni, Apes oo? -H) 

They found that they could represent all the available data for the holdup in such flow 
on a plot of (1 — e) versus this group with an average error of about 12 percent. This 
type of relation has no theoretical basis, but is widely used. 

The other approach is to try to find separate equations for the various differ- 
ent flow patterns shown in Fig. 12.3. This approach requires some kind of “flow 
map” to indicate which flow pattern will be observed for the conditions of interest, 

and then suitable relations for each of the individual flow patterns. There has been 

considerable progress in this approach, [4, 5]; see Prob. 12.5. One major complica- 

tion in trying to correlate the behavior of such flows is the fact that for a given choice 

of fluids, pipe size, and flow rates the quantities « and ¥ are strongly influenced by 

the design of the gas-liquid mixer. If in Fig. 12.1 we switch from the simple pipe 

tee mixer to one in which the liquid is introduced through porous walls, this makes 

no change in our observations in the slug flow region, but it makes a significant 

change in the observations in the annular and mist flow regions [6, p. 248]. This 

effect becomes unimportant for very long pipes, but is important for short ones. 

12.2 HORIZONTAL GAS-LIQUID FLOW 

If the apparatus shown in Fig. 12.1 is turned so that the pipe is horizontal, then the 

behavior will be quite different from that for the vertical flow case. The observed flow 

patterns are shown on Fig. 12.4. For a constant liquid flow rate, as we increase the gas 

flow rate from zero, we will see that at first the gas flows in bubbles along the top of 

the pipe. Then the bubbles grow in size and length. Finally, they become so large that 

they coalesce into a continuous stream of gas flowing over a continuous layer of liq- 

uid. Further increase in gas flow rate causes the gas to raise waves on the liquid sur- 

face. These waves grow until they eventually reach across the tube, in which case they 

are propelled as slugs of liquid with interspersed slugs of gas. Then this pattern switches 

to the annular pattern observed in vertical gas-liquid flow and finally to a mist flow. 

Knowledge of the flow pattern can be quite important. If, for example, we are 

vaporizing a liquid in a horizontal tube under high heat fluxes, then in annular flow 

the tube wall will always be covered with liquid and presumably be safe from exces- 

sive metal temperatures. On the other hand, if the flow is stratified, then the top part 

of the tube will be covered by gas, which is much less effective in conducting heat 

away from the surface; so the inside metal temperatures may become very high, even 

to the point of melting the tube. Although several correlations have been proposed for 

determining what kind of flow patterns will exist [1, p. 6-26]; [6, pp. 199-277] there 

is none now known that is universally applicable. Furthermore, the transitions from 

one kind of flow to another do not occur at sharply defined conditions but may take 

place over a range of conditions and, as in vertical gas-liquid flow for a given set of 

fluids and flow rates, the flow pattern can be completely changed and the value of 

doubled by simply changing the type of gas-liquid mixer. 

All available experimental data indicate that # is always higher for two-phase 

horizontal flow than for single-phase flow under similar conditions. This is principally 
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Flow-pattern sketches 

(4) Wavy (1) Bubble 
ZLL 

(7) Spray 

FIGURE 12.4 
Flow patterns in horizontal gas-liquid flows. These are for a constant liquid flow rates, with the gas 

flow rate increasing as shown by the arrows. (From R. S. Brodkey, The Phenomena of Fluid 

Motions, Addison-Wesley, Reading, MA, 1967, as redrawn from G. Alves, “Concurrent liquid-gas 

flow in a pipeline contactor,’ CEP 50:449-456 (1954). Reproduced by permission of the publisher.) 

due to the movement of the two phases relative to each other in the tube, which does 

not contribute to flow along the tube but, rather, to the conversion of other forms of 

energy into internal energy. For horizontal gas-liquid flow, numerous empirical cor- 

relations have been proposed, in which the most widely used is that of Lockhart and 

Martinelli [7]. The.comparison of those correlations with experiment has been exten- 

sively reviewed by Scott [6] and indicates that it is not reliable to more than about 

+50 percent in most cases but that it is as good as any other single correlation. 

12.3 TWO-PHASE FLOW WITH BOILING 

When a liquid at its boiling point flows in a pipe, the pressure decrease due to fric- 

tion will cause the pressure of the liquid to fall below its saturation pressure, and the 

liquid will boil. This type of flow, called flashing flow, is important in the design of 

boilers, steam condensate lines, etc. 

The principal difference between this type of flow and those discussed above is 

that, as the pressure falls, more and more vapor is formed, so the volumetric flow 
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rates, average velocities, and pressure drops per foot are not constant for an entire 
pipe but vary with length. The velocity and pressure gradient increase rapidly as the 
amount of vapor increases. Furthermore, in this type of flow it is very common to 
have the kind of choked condition found in high-velocity gas flows (Sec. 8.3). How- 
ever, the observed sonic velocities for gas-liquid mixtures are much lower than for 
gas alone, so that this choking occurs at velocities much lower than the sonic veloc- 
ity of the vapor alone [8]. This kind of flow is of great interest in the design of steam 
boilers and vaporizing furnaces of all kinds [1]. 

12.4 SUMMARY 

1. In gas-liquid flows numerous different flow patterns are possible, depending on the 

gas and liquid flow rates and properties and on the direction of the flow relative 

to the direction of gravity. 

2. For such flows the pressure drop due to friction heating of the fluids, ¥, is always 

greater than that for single-phase flows under comparable circumstances. 

3. There are numerous empirical correlations available for predicting pressure drop, 

holdup, and slip velocity for such systems. These are not nearly as reliable as the 

pressure-drop correlations for single-phase flow. For some of the flow patterns we 

have useful theoretical equations. 

4. Countercurrent, vertical gas-liquid flow in packed beds is discussed in Sec. 11.3. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back 

cover! An asterisk (*) on a problem number indicates that its answer is shown in 

App. D. 

12.1. From the data given in Fig. 12.2 prepare a plot showing Payg, 10° Tl and 

F/ gpwaer as functions of Q, / Q). 

12.2. From the data in Fig. 12.2 prepare a plot of slip velocity versus Q, / On 

12.3.*For the flow discussed in Example 12.1 calculate the values of ¥ that would exist if 

only the liquid were flowing and if only the gas were flowing. Compare these with the 

observed value of ¥ for the simultaneous two-phase flow. Assume e/D = 0, ie., a 

smooth tube. 

12.4. Figure 12.5 shows a flow map for upward air-water flow. All such maps are approxi- 

mate, and those of various authors often disagree. There is only fair agreement between 

authors about naming the various regions. With all these caveats, use Fig. 12.5 to esti- 

mate which of the various flow regimes shown on it appear on Fig. 12.2, and at which 

values of Q, / Q, the boundaries between regimes occur. 

12.5. Wilkes [9] summarizes the available relations for estimating ¢ and dP / dz for the var- 

ious flow regimes shown in Figs. 12.3 and 12.5, showing logical bases and references. 

(a) For the bubble flow region he suggests 

Qe 2 121 
he On tein VA sac 
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Superficial liquid velocity, Vi, ft/s 

Input gas-liquid volumetric ratio Q, /Q, 

FIGURE 12.5 

Flow map for co-current air-water flow in upflow in vertical pipes. All 

such flow maps are approximate, and some contradict each other. 

(From G. W. Govier, B. A. Radford, and J. S.C. Dunn, Can. J. Chem. 

Eng. 35:58-70 (1957). Reproduced by permission of the publisher.) 

12.6. 

12.7. 

(b —a 

where V,, is the terminal rising velocity for individual bubbles, and 

dP 
——— =(l- es) (12.J) 
Orie 

Test these relationships for the data in Fig 12.2 at (Q,/ Q,) = 1.0, which is in the 

bubble flow region. From that figure, at this value of Q, / Q,, I read the two curves 

as 0.58 and 1.5. V, varies with bubble size, but for a wide range of sizes it is 

=25 cm/s ~ 0.8 ft/s. 

For the slug flow region, Wilkes suggests 

Qs = 12.K 
© 4.2(Q, +-Q)) + 035A Ve a 

Where D is the diameter of the tube. The pressure drop should be somewhat larger 

than that estimated by Eq. 12.K, but no simple relation exists. Test these relations 

for the data in Fig. 12.2 at (Q,/ Q,) = 5.0 which is in the slug flow region. From 

that figure, at this value of O,/-Q,, I read the two curves as 0.45 and 2.5. 

Wilkes also suggests an estimation method for annular flow, which is too long to include 

here. 

If we wished to perform the same liquid lifting task ‘as shown in Example 12.1, we 

could use the apparatus sketched in Fig. 12.6. For such an apparatus, with the flow rates 

given in Example 12.1, calculate the necessary pressures at the inlets to the turbine and 

to the pump (assume that these pressure are the same). Compare these with the neces- 

sary pressure at the base of the gas-liquid column in Example 12.1. Assume that the 

overall vertical elevation change is 20 ft for both gas and liquid in both cases. Q, is 

based on the inlet pressure. 

For the coffee percolator sketched in Fig. 2.17, estimate on the basis of B.E. the maxi- 

mum possible mass flow rate per unit area of the steam-water mixture in the riser tube. 
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FIGURE 12.6 

A turbine-pump equivalent of the device in 

Fig. 12.1. 

Lower 
3 Upper 

reservoir PP 

other gas 

FIGURE 12.7 

Air lift or gas lift. 
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12.8. Figure 12.7 shows the flow dia- 

gram of an air-lift or gas-lift pump. 

In it a fluid is pumped from the 

lower to the upper reservoir by 

way of a vertical pipe into the bot- 

tom of which air or gas is intro- 

duced. Explain why such pumps 

are widely used in the processing 

of the highly radioactive solutions 

that occur in nuclear fuel process- 

ing. Suggest other applications. 

12.9. For the pump in Fig. 12.7 sketch a 

plot of liquid flow rate versus air 

flow rate for constant geometry and 

fluid properties. Hint: See Fig. 12.2. 

12.10.*In any gas-liquid flow, pressure drop 

will cause the gas to expand, caus- 

ing Q, to increase in the flow direc- 

tion. This effect is very significant in 

a boiling mixture, but can be signif- 

icant in any such flow. For the flow 

in Example 12.1, how much does Q, 

change from the inlet to the outlet of 

the test section? Show the value of 

(Qe)top / (QO cctom: Assume zero 

evaporation, so that m, and m, are 
constant through the test section. 
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CHAPTER 

13 
NON-NEWTONIAN 
FLUID 
FLOW IN 
CIRCULAR 
PIPES 

The introduction to this topic is given in Sec. 1.5.3. In this brief chapter some com- 

parisons will be made between the behavior of Newtonian and non-Newtonian fluids 

in pipe flow, and references will be given for the student who wishes to pursue the 

subject further. 

13.1 THE ROLE OF STRUCTURE IN 
NON-NEWTONIAN BEHAVIOR 

Almost all non-Newtonian fluids contain suspended particles or dissolved molecules 

that are large compared with the size of typical fluid molecules (a typical polymer 

molecule may be many thousands of times as large as a water molecule). Most non- 

Newtonian behavior is believed to be associated with the “long-range structure” due 

to such larger constituents, where “long-range” implies long compared with the diam- 

eter of a small molecule like water. For example, a Bingham fluid is assumed to have 

a three-dimensional structure that will resist small shearing stresses but that comes 

apart when subjected to a stress higher than its yield stress. Pseudoplastic fluids (by far 

the most common type of non-Newtonian fluid) mostly have dissolved or dispersed 

particles (e.g., dissolved long-chain molecules or suspended small particles) that have 

a random orientation in the fluid at rest but that line up when the fluid is sheared. 

They offer more resistance to deformation in the random position, so the viscosity 
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drops as they become aligned. Dilatant fluids are almost all slurries of solid particles 
in which there is barely enough liquid to keep the solid particles from touching each 
other. Their behavior is explained by assuming that at low shear rates the fluid between 
the particles is able to lubricate the sliding of one particle past another but that at 
high shear rates this lubrication breaks down. 

Thixotropic fluids are assumed to have alignable particles, like pseudoplastic 

fluids (most thixotropic fluids are pseudoplastic), but with a finite time required for 

the particles to become aligned with the flow. An additional factor in thixotropic 

behavior is probably the existence of weak bonds between molecules (e.g., hydrogen 

bonds or entanglements of polymer chains). The bonds are gradually destroyed by 

shearing (some authors suggest that ordinary pseudoplastic fluids are really thixotropic 

fluids whose particles align or whose bonds break much faster than can be observed 

on currently available viscometers). Rheopectic fluids are rare and generally only 

show rheopectic behavior under very mild shearing. It has been suggested that 

mild shearing may help particles in the fluid to fit together better, thus forming a 

tighter structure and increasing the viscosity. Viscoelastic fluids normally contain long- 

chain molecules, that can exist in coiled or extended-forms and that can connect one 

to another. When stretched, these molecules straighten out but, when the flow stops, 

they tend to revert to their coiled position, causing the elastic behavior. 

These descriptions are in accord with most observed behavior of these fluids 

and thus provide a mental picture of what is going on within the fluid. However, they 

are by no means rigorous descriptions of the microscopic internal behavior of such 

fluids. 

13.2 MEASUREMENT AND DESCRIPTION 
OF NON-NEWTONIAN FLUIDS 

Much of the past and present research in non-Newtonian fluids has consisted of meas- 

uring their stress-rate-of-strain curves (such as Fig. 1.6) and seeking mathematical 

descriptions of these curves. The study of the flow behavior of materials is called rhe- 

ology (from Greek words meaning “the study of flow”), and diagrams like Fig. 1.6 are 

often called rheograms. Non-Newtonian fluids also have two- and three-dimensional 

behavior quite different from the behavior of Newtonian fluids in similar circumstances. 

Viscoelastic and time-dependent fluids can have truly bizarre behavior. This chapter 

confines itself to steady, one-dimensional pipe flows of two very common types of non- 

Newtonian fluids. Much more is said about the other behaviors in [1—4]. 

As shown in Sec. 1.5.3, the basic definition of viscosity is in terms of the 

sliding-plate experiment shown in Fig. 1.4. For Newtonian fluids it was shown in 

Sec. 6.3 (Example 6.2) that the viscosity could be determined easily by a capillary- 

tube viscometer. It can be shown both theoretically and experimentally that the 

viscosity determined by such a viscometer for a Newtonian liquid is exactly the 

same as the viscosity one would determine on a sliding-plate viscometer. Since 

capillary-tube viscometers are cheap and simple to operate, they are widely used 

in industry for Newtonian fluids. 

For non-Newtonian fluids that are not time-dependent or viscoelastic, it is pos- 

sible to convert capillary-viscometer measurements to the equivalent sliding-plate 
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measurements, but this involves some mathematical manipulations. For time-dependent 

(e.g., thixotropic) fluids, this does not seem to be possible. Thus, most studies of the 

behavior of non-Newtonian fluids use some variant of the sliding-plate viscometer. The 

most common is the concentric-cylinder viscometer; see Fig. 1.5. Cone-and-plate 

viscometers are also widely used, but not discussed here [2, p. 517]. In reading the non- _ 

Newtonian literature, observe that most authors use w as the symbol for viscosity only 

for Newtonian fluids; 7 is used as the symbol for viscosity of non-Newtonian fluids. 

The data from a plot such as Fig. 1.6 can be used more easily if they can be 

represented by an equation. The Bingham fluid can be easily represented by 

T S Tyielas = =10; T = Tyieias T = Tyieia + OAS, (13.1) 

where [Uo is the slope of the straight line on Fig. 1.6. Table 13.1 shows some exper- 

imental values for fluids that can be represented reasonably well by Eq. 13.1. 

From this table we see that the examples are common substances with which 

we are familiar. The yield stresses are small; compare them to that of steel at the bot- 

tom of the table. 

In many cases the experimental curves for both dilatant and pseudoplastic flu- 

ids can be reasonably well represented by the power law, also called the Ostwald—de 

Waele equation: 

dvV\" 
T= «() (13.2) 

Here K and n are constants whose values are determined by fitting experimental data. 

For Newtonian fluids n = 1 and K = uw. For pseudoplastic fluids n is less than 1, and 

for dilatant fluids it is greater than 1. The power law has little theoretical basis; its 

virtues are that it represents a considerable amount of experimental data with rea- 

sonable accuracy and that it leads to relatively simple mathematics. Table 13.2 shows 

some experimental values for fluids that can be represented reasonably well by 
Eero. 

TABLE 13.1 

Parameters for Bingham plastics* 

Yield stress, Tyieta Plastic viscosity 

Material (Pa) fo(Kg / m-s) 

Catsup (30°C) 14 0.08 

Mustard (30°C) 38 0.25 

Margarine (30°C) 51 0.72 

Mayonnaise (30°C) 85 0.63 

Toothpaste 200 10 

Paint 8.7 0.095 

Steel (for comparison) 20 to 50° 10’ — 
OO 

*Assume 20°C unless another temperature is specified. These values are approximate; 
repeated testing would find similar but not identical values. 
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TABLE 13.2 

Parameters for power law fluids* 
oS ES aL te a la nee ha tac aaa aia 
Material n (dimensionless) K (kg/m-s?~") ee Se en See Geri Set Ani TO See) UTR 

Applesauce (24°C) 0.41 0.66 
Banana puree (24°C) 0.46 6.5 
Human blood (body 7) 0.89 0.00384 
Soups and sauces 0.51 3.6 to 5.6 
Tomato juice (5.8% solids, 32°C) 0.59 0.22 

Concentrated tomato juice (30% solids, 32°C) 0.40 18.7 

4% Paper pulp in water 0.575 20.7 

33% Powdered lime in water 0.171 7.16 

23.3% Clay in water 0.229 5.56 

0.67% Carboxymethylcellulose in water 0.716 0.30 

15% Carboxymethylcellulose in water 0.554 Sle 

10% Napalm in kerosine 0.52 4.28 

54.3% Portland cement in water 0.153 225i 

50% Powdered coal in water 0.2 0.58 

Water (for comparison) 1.00 0.001002 

*Assume 20°C unless another temperature is specified. These values are approximate; repeated testing would find 

similar but not identical values. 

Again we see some familiar materials, but also slurries of paper pulp, lime, clay, 

portland cement, and coal, and also one solution (napalm in kerosine). Comparing 

these with water (bottom of the table), we see that for all of these materials K is sub- 

stantially larger than that of 

water; at almost any shear rate 

|| Wines Basincrude ot | || | these materials are more vis- 

cous than water. 

Many other equations 

have been used to represent 

these stress strain-rate curves 

(see. Probs. 13.2 and “1333): 

These two simple ones lead to 

fairly simple mathematics and 

allow us to describe the flow of 

many interesting fluids in pipes 

with reasonable accuracy. 

For time-dependent flu- 

ids (thixotropic or rheopectic) 

T, Ibf / ft? 

0 50 100 150 200 250 300 350 400 450 500 

Time, s : 
there are no simple rela- 

FIGURE 13.1 tions now available for show- 
Stress-time curve for various strain rates for a typical ing the stress-strain-rate-time 

thixotropic fluid, obtained in an apparatus like that shown in dependence. Figure’13.1 is a 

Fig. 1.5. This type of crude oil is waxy and forms a slush of . : f 

solid wax and liquid oil slightly above its melting point, as typical Soh eed curve : or 

shown here. (Courtesy of the late E. B. Christiansen.) a thixotropic fluid, showing 
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lines of constant strain rate (dV/ dy). The change with time occurs mostly in the first 

60 s, after which the change with time is minor. For most engineering applications it 

would be safe to treat this fluid as a simple pseudoplastic fluid with properties cor- 

responding to those of the right-hand side of Fig. 13.1. 

For viscoelastic fluids no simple relations are known at all, and current thought 

is that it may never be possible to describe these fluids adequately by simple scalar 

equations but only by tensorial equations [1]. 

13.3 STEADY LAMINAR FLOW OF 
NON-NEWTONIAN FLUIDS IN 
HORIZONTAL CIRCULAR TUBES 

Most fluids with pronounced non-Newtonian behavior have such high viscosities that 

in most industrially interesting situations their flow is laminar. This section considers 

only laminar, steady, pipe flow, which is the non-Newtonian flow problem that chem- 

ical engineers are most likely to encounter in their work. We saw in Sec. 6.3 that for 

any fluid, in laminar or turbulent flow, the shear stress at any point in a horizontal 

circular pipe for steady, horizontal flow is given by Eq. 6.3: 

eh ae = (2) 
BASS AOR ee Ma Neier io) 

For laminar flow of Newtonian fluids we substituted Newton’s law of viscosity for 

the shear stress and integrated twice to find Poiseuille’s equation. 

13.3.1 Power Law 

For a power-law fluid we can combine Eq. 6.3 with Eq. 13.2 to find 

Wau (=) (2) oe 
7 ee = = 

2 dx /. dy ey 

Here the y in Eq. 13.3 is the same as r in Eq. 6.3. One integration (Prob. 13.5) 
produces 

to gp\it= n v= —: 1 .fp(nt1)/n _ i(n+1)/n 

(+ dx ) n+ 1 (" if ) Gee: 

Then an integration of VdA = V-2mrdr over the area of the pipe (Prob. 13.6) 
produces 

nq 1 —dp\'/" P ntD* D -dp\'/" 

ashi yo ica ix ) 7 ibis ( (13.5) : p) dx 8(3n + 1)\4K dx 

where r,, is the radius of the tube or pipe and D = 2r,,. 

Example 13.1. We wish to pump applesauce at an average velocity of 1 ft/s 
ina Q.5 ft LD. pipe. What pressure gradient (—dP / dx) will we need? For com- 
parison, what pressure gradient would we need for water? 
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Here we assume that the flow is laminar (to be checked later). To use Eq. 
13.5 we need 

ft a ft : Q = VA = 1=-7(05 ft)? = 0.196 — = 0.00556" (13.A) 

Then we solve Eq. 13.5 for (—dP/ dx), 

—dP 8(3n + 1)\" 4K 
ee Oe alee (13.6) 
dx nD D 

Table 13.2 gives n = 0.41, K = 0.66 (kg/m-s*~") for applesauce. It will be 
easier to work in SI, so we note that D = 0.5 ft = 0.152 m. Then 

—4dP 3 8(3°0.41 +1) 94! 4-[0.66 kg/m: s?794)) 
= (0.00556 ari ) :) 4: [0.66 kg/m s 

dx S 0.41 -7-(0.152 m) 0.152 m 

Pa psi 
= 61.3 — = 0.27 

m 100 ft (13.B) 

As described later, this flow is laminar. If we wish to compare the pressure gra- 

dient with that of water at the same flow rate in the same pipe, we may look 

in App. A.4 and see that the required pressure gradient is ~0.03 psi / 100 ft. 

But at this velocity in this pipe, water would be in turbulent flow. The mean- 

ingful comparison is to water at this velocity in laminar flow. From Eq. 6.9 we 

can compute that the required pressure gradient would be 0.0019 psi/ 100 ft. 

So the laminar flow of applesauce requires 145 times the pressure gradient for 

water in the same flow if turbulence were suppressed. a 

Applesauce is a highly non-Newtonian fluid; its power law coefficient is 0.41, 

compared to 1.00 for Newtonian fluids. One consequence of this is that if we repeated 

this calculation for an average velocity of 2 ft/s, the flow would still be laminar, and 

the calculated pressure drop would increase by only 33 percent. For laminar flow of 

a Newtonian fluid, doubling the average velocity doubles the pressure drop, and for 

turbulent flow doubling the average velocity increases the pressure drop by a factor 

of 3.5 to 4. 

13.3.2 Bingham Plastic 

For a Bingham plastic, if the shear stress at some point in the pipe is less than the 

yield stress, Tyieia, then at that point dV/ dy = 0. From Eg. 6.3 we know that the 

shear stress 7 in steady flow in a circular pipe goes from a maximum at the wall to 

zero at the center. So for any flow of a Bingham plastic in a circular tube, there 

must be a central core in which dV/ dy = 0. If the shear stress at the wall is greater 

than Tyieiq, then there will be a region with a velocity gradient between the tube 

wall and a moving, rod-like center. If the shear stress at the wall is less than Tyjeia, 

there will be no flow. You can observe this kind of flow with most products that are 

dispensed in a tube that you squeeze, e.g., toothpaste, hair goo, all sorts of creams, 

gels and lotions, and oil paint pigments. When you squeeze such a tube with a very 

gentle squeeze, there is no flow, i.e., Twan < Tyieias AS you make the squeeze more 
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vigorous, Twan > Tyiea and the fluid begins to flow. The extruded flowing fluid 

retains its shape (normally cylindrical) as the fluid is extruded; most of the flow is 

rod-like, only a small layer near the wall has a velocity gradient. Some fluids in 

squeeze tubes, e.g., most glues, are not Bingham plastics; when you squeeze those 

tubes the velocity is highest at the center of the flow, and the ejected fluid forms a 

semispherical drop. 

If we set Tyieiq equal to the negative of the local shear stress in Eq. 6.3 (opposite 

directions, opposite signs) we find 

T yield x 2 ( Ae )- 4 ( die ) (13.7) 

which gives the location of the boundary, D,, between the rod-like core and the sur- 

rounding fluid with a velocity gradient. For the rest of this section we can simplify by 

observing that in any pipe flow the shear stress at the wall is given by 

- Se (=) - 2 (=#) ae 
pENRE Ag are Bala — 

Combining these, we have 

4r yield Tyield 

(-dP/dx) Ty 
We can write the velocity distribution in this flow in two parts. From r = 0 (the tube 

center) to r = r, the velocity is constant, independent of r. From r, to the wall the 

velocity is given by substituting Eq. 13.1 into Eq. 6.3, 

Dy = (13.9) 

dV ani fade r 
T = Tyieia + nas an Kore bios et (13.10) 

qv _ mea Sp 
dr vt fg CRS Ty T yield (13.11) 

Integrating from r,, (where V = 0) to r and replacing Tyickst DV Mtv / ry give 

Vopr y 

Pa eee 
= Tywlw [ . (=) | = rate ( “| 

210 My Mo Tw 

= ete -(+)] ~ Teth.(, -2) 
20 Tw Ko Tw 

2 
Tywlw Vi 2rp r Se SENS SIF EE yl SAAS 6 Se il oakeald ape at as 

For r less than r, the velocity is constant, the same as that at r, found by substitut- 
ing r, for r in Eq. 13.12. Simplifying, we write 

Twhw rp \ 
Vsoundary a 219 (1 mr ) (13-13) 
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Then we find the volumetric flow rate by 

Q= [ Veg, 13.13 ° 20 dr + [Vou rss 2a ar (13.14) 

After some algebra (Prob. 13.11), we find 

4 

Tew) —aP 4 [ Tyiela 1/7 ve) | 
pe | : 

: 80 ( dz ) Ht Tw ) 5( Tw ee 

The first term on the right of this equation is the same as Poiseuille’s equation 
(Eq. 6.8) for Newtonian fluids. If we set Tyieia = Ty in this equation and solve, we 

find Q = 0, i.e., no flow. For Tyieiq > Ty the equation gives meaningless answers 
because we have assumed in deriving it that Tyieq < Ty. 

Example 13.2. Repeat Example 13.1 for mustard. From Table 13.1 we find 

that for mustard Tyieq = 38 Pa and wo = 0.25kg/m-s. In Example 13.1 

we could solve directly for (—dP/ dx). Here we can solve Eq. 13.15 for 
(—dP/ dx), but 7, appears on the right to the first and fourth powers, and 

from Eq. 13.10 we know that 7, depends on (—dP/ dx). So this problem 
requires a trial-and-error solution. We begin by computing the value of Q 

for a specified value of (—dP/ dx). Then we repeat (on a spreadsheet or 
computer program), finding the value of (—dP / dx) that produces the specified 

value of Q. 

As a first step let us assume that (—dP / dx) is the same value as we found 

in Example 13.1, 61.3 Pa/m = 0.27 psi/ 100 ft. Then 

D =aP. 0.153 m Pa 
—=.| ——_] = * 613 as e238 13-€ 4 (=) 4 61.3 DEAR ER ( ) Ty = 

This is less than the 38 Pa yield stress, so for this pressure gradient the mus- 

tard will not flow at all. For our next guess we increase the assumed pressure 

gradient by a factor of 100, making 7,, = 233 Pa and Tyieia / Ty = 0.163, 

a (0.0762 m)* ( 2) ( 4 1 ‘) 
= ——__—_*__.| 6130 — }-{ 1 — = (0.163) + = (0.163 

g 8(0.25 kg/m: s) m 3 | Leer 
m° 

=0.254—— (13.D) 

This is much larger than the specified Q = 0.00556 m?/s. Now we use our 

spreadsheet to find the value of (—dP/ dx) that meets the specified flow, find- 

ing (—dP / dx) = 1276 Pa/m = 5.57 psi/ 100 ft. ed 

This example shows what we all know, that mustard is harder to flow than apple- 

sauce, and that for small pressure gradients mustard will not flow at all. After these 

two examples we can compare the velocity profiles for laminar flow of these two 

kinds of fluids with that for a Newtonian fluid. Figure 13.2 shows the velocity profiles 
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for Examples 13.1 and 

13.2, together with the pro- 

file for a Newtonian fluid, 

all with an average velocity 

of 1 ft/s. We see the cen- 

tral core for the Bingham 

plastic, over which the 

velocity is constant, and 

see that the power law fluid 

has a velocity profile inter- 

law, mediate between that of the 

en Bingham plastic and the 
Newtonian fluid. Looking 

back to Fig. 1.6, we see 

that the pseudoplastic curve 

lies between the Newtonian 

and Bingham plastic curves. 

As we reduce the value 

of n in a power law fluid, 

FIGURE 13.2 the velocity profile shown 
Calculated velocity distributions for laminar flow in a circular pipe, becomes closer and closer 

for flow of three kinds of fluid. In each case Vay. = 1 ft/s. The 

power law and Bingham plastic curves correspond to Examples 13.1 

and 13.2. The Newtonian curve is based on Poiseuille’s equation. 

plastic, 

Example 13.2 

Radius / wall radius, r/r,, 

Calculated velocity, V, ft/s 

to the curve for a Bingham 

plastic. 

13.4 TURBULENT STEADY PIPE FLOW OF 
NON-NEWTONIAN FLUIDS, AND THE 
TRANSITION FROM LAMINAR TO 
TURBULENT FLOW 

The previous examples show that there is not one simple description of pipe flow for 

non-Newtonian fluids, but rather there is a separate description for the two kinds of 

fluid we consider (and if you study the subject more you will find other descriptions 

for other types). From this we might surmise that the same is true for turbulent flow, 

and for deciding when a flow is laminar or turbulent; that surmise is correct. 

13.4.1 Power Law 

For Newtonian fluids we can expect laminar flow for Reynolds numbers. of about 2000 

or less. For non-Newtonian fluid we must redefine the Reynolds number. For power-law 
fluids, the most common procedure is to write Eq. 6.20 (the friction factor form of 
Poiseuille’s equation) as 

FT aawen law — 16/ Rpower law (13.16) 

Calculating the friction factor from Eq. 13.6, substituting, and solving, we find 

8pVG,” D" 
Power law — CI3.17) 

K[2(3n + 1)/n]" 
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FIGURE 13.3 
Friction factor-Reynolds number plot for power-law fluids (see Fig. 6.10 for 

Newtonian fluids). The friction factor is the same as in Chap. 6, but the normal 

R is replaced by Rpower law aS Shown in the text. Based on Dodge and Metzner 

[5]. The solid lines represent measured values, the dashed lines extrapolations. 

Many authors further substitute K = K’[4n/(3n + 1]” so that the final expression 

becomes 

Reoweriaw = D"pV2z”/8°-) Kt (13.E) 

Figure 13.3 [5] is the equivalent of Fig. 6.10 (the friction factor Reynolds number 

plot) for power-law fluids. It shows that the transition region between laminar and tur- 

bulent flow occurs at values of Rpower law between 2000 and 4000. We will discuss 

the turbulent region later. 

Example 13.3. Calculate f and Rpowerlaw for the flow in Example 13.1. 

Assume the density of applesauce is 1000 kg / m°. 

The Fanning friction factor for horizontal pipe flow of applesauce in 

Example 13.1 is 

(—dP/dx)-D 

Ap Vive! 2 

(61.3 Pa/ m)-0.152 m kg 
ee ee Ue. UL) 

4- (1000 kg /m?*) - (0.305 m/s)*/2 Pa-m:s 

8 - (1000 kg / m3) (0.304 m/s)@~°4 (0.152 m)°*! 

[0.66 kg /m-s?~°4) -[2-(3-0.41 + 1)/0.41]°*' 
= 318.5 (13.G) 

The reader may verify that these values satisfy Eq. 13.15. The calculated 

Reower law < 2000, so the flow in Example 13.1 is indeed laminar. & 

Rosier law 
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Like Fig. 6.10, Fig. 13.3 shows a laminar curve, which is based on theory, and 

transition and turbulent flow curves, which are based on experiment. Instead of hav- 

ing various curves for various ¢ / D, it has curves for various n. The influence of € /D 

is less than that of n and is normally ignored. With this plot we may estimate the: 

pressure drop-fiow rate relation for power law fluids that are not viscoelastic, e.g., 

applesauce. For viscoelastic power law fluids, the experimental values of f can be 

much less than those shown on this figure. 

The decrease in friction factor for polymer solutions compared with Newtonian 

fluids can be quite startling. Dissolving as little as 5 ppm of some polymers in water 

produces a solution with only 60 percent of the friction factor of water at high 

Reynolds numbers [2, p. 88]. Such pressure-loss-reduction additives are in current 

large-scale industrial use [6, 7]. 

Example 13.4. Repeat Example 13.1 for an average velocity of 10 ft/s 

instead of the 1 ft/s in that example. 

Here the velocity has increased by a factor of 10. For Newtonian fluid that 

would increase the Reynolds number by a factor of 10 to 3185. But here the 

velocity enters to the (2 — n) power, so we have 

8 - (1000 kg / m?)(3.04 m/s)?~°4” (0,152 m)°*? 

[0.66 kg / m- s?~°4))]- (2 -(3-0.41 + 1)/0.41]°*! 
= 12,390 (13.H) 

This simply reflects the fact that the definition of Rpower jaw iS Somewhat artifi- 

cial, meant to force the laminar flow curve into the familiar form. One may also 

think of this by considering how we defined the apparent viscosity in Fig. 1.7. 

There, as the velocity increased the viscosity decreased. So in this example (and 

all power law fluids with n < 1) increasing the flow rate increases Rpower law 

both by increasing V and by decreasing pw. 

Reading Fig. 13.3 for this Rpowertaw and n = 0.41, we find f ~ 0.004, 

Dooce law 

from which 

—dP Viv 1000 kg/m?) (3.04m/s)? Pa-m:s2 

dx iD iT 2, 0.152 m , kg 

kPa psi 
= ASS 52.116 

m 100 ft (13.1) 

a 

13.4.2 Bingham Plastics 

The laminar-turbulent transition and the turbulent flow of Bingham plastics is 
described by Fig. 13.4, [8], (which requires some explanation!). 

We needed to develop a new Reynolds number for power law fluids because 
there was no obvious way to define a value of yz to substitute in the standard Reynolds 
number. For Bingham plastics there is, namely, 9. Figure 13.4 simply substitutes Lo 
for w in the Reynolds number. The friction factor is the same as that shown in 
Fig. 6.10. But there are lines of another parameter on the figure, related to the Tyiei. 
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FIGURE 13.4 

Friction factor—Reynolds number plot for Bingham plastics (see Fig. 6.10 for Newtonian fluids), The 

friction factor is the same as in Chap. 6, but the normal & is replaced by Ryingham aS shown in the 

text. Based on Hedstrom [8]. See discussion in the text. 

The parameter is 

(Gari op Ce eee) 
—— e= . 

number number number 

Tyg? DV ave P TyieiaD”p 
= : = (13.18) 

HMoVavg Ho Lo 

The Bingham number is found by the standard methods of dimensional analysis 

(Chap. 9), as one of the proper correlating parameters for this flow. It is the ratio of 

the yield stress of the fluid to the viscous stress in a laminar flow (see Table 9.1). It 

could be used as the additional parameter in Fig. 13.4, but the plot works better and 

is easier to use if one multiplies the Bingham number by the Reynolds number, pro- 

ducing #e, because Ae depends only on pipe diameter and fluid properties, not on 

the fluid flow rate, which the Bingham number does. 

If we calculate the Reynolds and Hedstrom numbers and the friction factor for 

Example 13.2, we find 92.9, 14,100, and 4.2. We see that these are above the upper 

left corner on Fig. 13.4, but if we extrapolate the curves there we find that these val- 

ues match them. We could repeat Example 13.2 for a variety of flow rates and pipe 

diameters, and thus make up all the #e curves on Fig. 13.4. In making up this fig- 

ure, Hedstrom [8] assumed that when the friction factor computed from the flow rate 
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in Eq. 13.15 was less than that estimated for turbulent flow of a non-Newtonian fluid, 

the flow would become turbulent and we could use Fig. 6.10. Figure 13.4 shows the 

laminar line, and the smooth tube turbulent curve from Fig. 6.10; the constant #e 

curves do not extend below it. Hedstrom also showed that the available experimental 

data for Bingham plastics at high flow rates agreed reasonably well with Fig. 13.4. 

This figure says that the laminar-turbulent transition does not occur at one Reynolds 

number for all Bingham plastics, but rather has a unique value for each value of the 

Hedstrom number. 

Example 13.5. Experimental data on the flow of a slurry of 54.3 wt. % pow- 

dered rock in water, [9], show that the fluid appears to be a Bingham plastic 

with Tyicia = 3.8 Pa, and uo = 68 cP = 0.00686 Pa: s. One tube diameter was 

0.0206 m. For the highest and the lowest of the 10 experimental points shown 

for that tube, the velocities were 3.47 and 0.442 m/s, and the measured pres- 

sure gradients were 11.06 and 1.27 kPa/m. For these two data points com- 

pute the values of He, R, and f. Show the location of these two data points on 

Fig. 13.4. 
For both points we have 

TyieaD” p 

Lo 
3.8 Pa - (0.0206 m)*- 1530kg/m? Pa-m-s is ( oy ds yp 

(0.00686 Pa « s) kg 

For the first point we have 

ms 0.0206 m : (3.47 m/s) -(1530kg/m*) Pa-m-s? 
15,900 (13.K) 

0.0686 Pa: s kg 

and 

. (-dPifda)r D 
2 4p Vivg/ 2 

(11,069 Pa / m) - 0.0206 m kg 
I] 

4- (1530 kg/m*): (3.47 m/s)?/2 Pa:m:s? pasties a 

For the last point we have 2 = 2030 and f = 0.044. 

We can sketch the #’e = 52,400 curve on Fig. 13.4, finding that it crosses 

the turbulent smooth pipe curve at 2 ~ 5000, so that for this fluid in this diam- 
eter pipe, the laminar-turbulent transition would be expected to occur at 
AR ~ 5000. The first point would be expected to lie on the smooth curve tur- 
bulent line. For % ~ 15,900 we read that line as f ~ 0.007, which is close (but 
not identical) to the experimental value of 0.0062. For the last point we would 
expect the friction factor could be calculated exactly the same as in Example 
13.2. Repeating that calculation for this flow, we find a calculated friction fac- 
tor of 0.039, which again is close to but not identical to the experimental value 
of 0.044. In making up Fig. 13.4, if we drew the He = 52,400 curve we would 
use the calculated value, showing the experimental value slightly below it. @ 
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13.5 SUMMARY 

1. Although intuitive explanations and numerous equations are available to describe 
the behavior of non-Newtonian fluids, no general, universally applicable theory or 
equation is currently known. For time-dependent and viscoelastic fluids our knowl- 
edge consists mostly of descriptions of observed behavior. 

» For laminar flow of non-Newtonian fluids in circular pipes we can readily calcu- 

late the behavior for the power-law and Bingham plastic representations of the non- 

Newtonian viscosity. 

3. For turbulent flow, we have data and correlations for power-law fluids and Bing- 

ham plastics, both based on the turbulent flow behavior of Newtonian fluids. The 

transition Reynolds number for power-law fluids is approximately the same as for 

Newtonian fluids, with a redefined Reynolds number. For Bingham plastics the 

transition Reynolds number depends on the Tyi-iq of the fluid, in addition to the 

Reynolds number. Some dilute polymer solutions have surprisingly low friction 

factors. 

4. The behavior of non-Newtonian fluids is currently a very active research topic. 

More detailed summaries of results to date can be found in [1, 10]. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover. 

An asterisk (*) on a problem number indicates that the answer is shown in App. D. 

13.1. Show that for n = 1, the power law fluid becomes a Newtonian fluid. Show that for 

Tyield = 0, a Bingham plastic becomes a Newtonian fluid. 

13.2. For pseudoplastic fluids (the most common types of non-Newtonian fluid), the fluid fre- 

quently appears to be a Newtonian fluid with very high viscosity (9) at low shear rates 

and then again to be a Newtonian fluid of lower viscosity (..) at higher shear rates, 

with a transition between, as sketched in Fig. 13.5. 

(a) Show that the Reiner-Phillipoff equation, 

r=(4 pails 5) (13.19) 
1+(r/C)/ dy 

where A, B, and C are data-fitting constants, 

7 corresponds to this behavior, and show what 

im constants in that equation correspond to (Wo 

Y Experimental and [Loo. 
/ results (b) Repeat part (a) for the Carreau equation, 

dV 

Mo — Ho 

[1 + (AdV/ dy) 
= bo + (13.20) 

where A and p are data-fitting constants, 

based on experimental data. 
d 
é 13.3. Show that the Ellis equation, 

FIGURE 13:5 BV hae 

Behavior of some pseudoplastic fluids, ag ad te (13.21) 

A + Br& showing the two limiting viscosities. 
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where A and B are data-fitting constants, corresponds, practically, to a Newtonian fluid 

at low shear rates and a power-law fluid at high shear rates. Show what constant or com- 

bination of constants in the Ellis equation corresponds to fo in Fig. 13.5. 

13.4.*The data for 200 s in Fig. 13.1 can be reasonably represented by a power-law expres- 

13.5. 

13.6. 

13.7. 

13.8. 

13.9. 

13.10. 

13.11. 

13.12. 

sion. Find the constants in that expression. Hint: The power law can be represented as 

a straight line with slope n on logarithmic paper. 

Show the integration of Eq. 13.3 to find Eq. 13.4. Use a definite integration from r,, to r. 

Show the integration of Eq. 13.4 over the cross-sectional area of the pipe to find 

Eure: 

Show that for a Newtonian fluid (1 = 1 and K = yw), Eq. 13.4 becomes the same as Eq. 

6.8 and that Eq. 13.5 becomes the same as Poiseuille’s equation (Eq. 6.9). 

Set up the spreadsheet to solve Example 13.1. Verify the pressure gradient found in that 

example. Use the spreadsheet to solve the problem for V,yg = 2 ft/s. Compare the 

result to the statement in the paragraph following the example. 

Verify the statements in Example 13.1 about the pressure gradient for water in the same 

pipe at the same velocity for laminar and for turbulent flow. 

Table 13.2 for power law fluids shows no values of n > 1.00, i.e., no dilatant fluids. 

The reason is that these are scarce; no values for such fluids appear in the published 

tables from which Table 13.2 was prepared. However, if such a fluid exists, it must fol- 

low the treatment in Sec. 13.3.1. Suppose that a new form of applesauce is discovered, 

which has the same K as in Table 13.2 but has n = 1.5. 

(a) Using the spreadsheet you developed in Prob. 13.8, repeat Example 13.i for this 

new form of applesauce. 

(b) Compare the required pressure gradient with that shown in Example 13.1. 

(c) Sketch the curve on Fig. 13.2 for this new form of applesauce. 

Show the following: 

(a) The integration of Eq. 13.11 to find Eq. 13.12. 

(b) The algebra leading from Eq. 13.12 to Eq. 13.13. 

(c) The integration leading to Eq. 13.15. 

4 1 
Sketch the value of | 1 — . (haat lice z (Tyieta / 7.) | as a function of Tyiea / Ty 

for values from 0 to 2. Comment on the meaning of the values for Tyeld it. 41 =a 

andieale 

13.13.*Set up the spreadsheet to solve Example 13.2. Verify the calculated pressure gradient in 

13.14. 

13.15. 

that solution. Use the spreadsheet to solve the problem for V,,o = 2 ft/s. 

Show the algebra between Eq. 13.16 and 13.E. 

Repeat Example 13.3 for an average velocity of 2 ft/s. 

13.16.*Repeat Example 13.4 for Vayg = 5 ft/s. 

13:17; 

13.18. 

Show the dimensional analysis that leads to the Bingham number as a natural correlat- 
ing parameter for laminar flow of Bingham plastics in pipes. 

Table 13.3 shows the complete set of 10 experimental runs [9], of which the first and 
last are shown in Example 13.5. Compute the values of He, R, and f for each of these, 
and plot them in the form of Fig. 13.4. Do they agree with that figure exactly? Approx- 
imately? Not at all? 

13.19.*Figure 13.2 shows the velocity distributions corresponding to Examples 13.1 and 13.2. 
To verify that it is made correctly, calculate the following: 
(a) The maximum (centerline) velocity and the velocity at r/r,, = 0.5 in Example 13.1. 
(b) The value of r,/r, and the velocity at that point in Example 13.2. 



CHAPTER 13 NON-NEWTONIAN FLUID FLOW IN CIRCULAR PIPES 

TABLE 13.3 
Experimental data for flow of a 54.3 wt. % 
rock slurry in water, in an 0.812 in = 2.06 cm 

diameter pipe* 

Run number Vavgs m/s (-dP / dx), kPa /m 

23-1 3.47 11.06 

23-2 3:23. 10.01 

23-3 2.97 8.43 

23-4 2.26 5.40 

25-5 1.81 3.50 

23-6 1.37 2.04 

23-7 0.893 1.41 

23-8 1.20 1.59 

23-9 0.360 1.10 

23-10 0.442 27 

*From [9]. 

13.20. One of the most economical ways to transport large quantities of small solid particles is 

via a slurry pipeline [10]. The Black Mesa Pipeline [11] transports 660 tons / h of coal 

ground to 8 mesh (2.4 mm) as a 50 wt. % slurry in water with an estimated SG of 1.26 

for 273 mi across northern Arizona. The pipeline ID is 18 in, and the slurry flow rate 

4200 gal / min. There are four pumping stations, which divide the 273 mi of pipeline into 

four sections. The slurry behaves as a power law fluid, as shown in Table 13.2. Estimate: 

(a) The pressure drop in a section (273 / 4) mi long. 

(b) The pumping power required for all four stations, assuming 70 percent efficient 

pumps. 

(c) The total electric cost per ton: mile of coal, with electricity at $0.05 / kwh. How 

does this compare with typical railroad rates gf $0.01 / ton: mile for unit trains on 

long hauls? Is comparing electric cost only to railroad cost a fair comparison? If 

not, why not? 
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CHAPTER 

moe 
SURFACE 
FORCES 

he introduction to this chapter begins with Sec. 1.5.5. There we discussed how 

surface forces arise. Such forces are present in any system in which there is a 

two-phase interface, i.e., solid-liquid, solid-gas, liquid-gas, or liquid-liquid. Thus, they 

are present in all of the examples treated so far in this text; in those examples they 

are generally small and can be neglected without measurable error. But they must be 

taken into account in very small systems or in systems in which other forces are small 

or zero. To see why surface forces are important in small systems, let us consider the 

pressure difference due to surface tension in a spherical drop or bubble. (Surface ten- 

sion values are in Table 1.1). 

Pressure difference force = D? AP 

—+— Surface force = 7Do 

FIGURE 14.1 

Pressure difference due to surface forces. 

Figure 14.1 shows such a drop, 

cut in half along its equator. If the sys- 

tem is at rest, then the surface force, 

which tends to shrink the bubble, is 

equal and opposite to the pressure- 

difference force, which tends to expand 

it, Here AP "Pe te oP oatsiger POUAt- 

ing these two forces and solving for 

AP, we find 

2a% 
D 

AP (14.1) 

As long as D is large, this pressure dif- 

ference is negligible. For example, if 
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this is a drop of water at 20°C = 68°F with a 1 in diameter, then 

_ 4° 0.000415 Ibf / in 

lin 
AP = 0.00166 psi = 11.4 Pa (14.A) 

which is negligible for most engineering applications. But if the drop has a diameter of 
10° in, then the pressure difference is 166 psi = 1.14 MPa, with is seldom negligible. 

One may appreciate why surface forces become important in small systems by 

observing that the surface forces are proportional to the diameter of the body, whereas 

the pressure forces are proportional to the projected area (i.e., proportional to the 

diameter squared), and the gravity and inertia forces are proportional to the volume 

(i.e., the diameter cubed). For other shapes some other dimension replaces the diam- 

eter, but the idea is the same. Hence if we hold the shape of a system constant and 

increase all its dimensions, the inertia and gravity forces grow fastest, the pressure 

force at an intermediate rate, and the surface forces slowest. 

Surface tension forces are also important in problems in which the other forces 

are negligible. For example, in an ordinary liquid-storage tank on earth the shape and 

position of the liquid is determined by gravity and pressure -forces, as discussed in 

Chap. 2. However, in rockets and earth satellites, which have zero gravity, the posi- 

tion and shape of a liquid in a tank is largely determined by surface forces [1, 2]. 

14.1 SURFACE TENSION 
AND SURFACE ENERGY 

Surface tension, as discussed in Sec. 1.5.5, has the dimensions of force / length, 

Ibf / in, or N/m. (Historically, surface tensions have been reported in handbooks in 

dyne/cm; 1 dyne/cm = 0.001 N/m = 5.7- 10° Ibf / in.) However, if we multiply 

the top and bottom of this ratio by length, we obtain (force - length) / length’, e.g., 

ft: Ibf/ ft? or J/m?, which is equivalent to energy / area. Thus, one may conclude 

that the surface tension is connected with the surface energy per unit area. However, 

it is an experimental fact that as we prepare a film, as is shown in Fig. 1.11, and 

stretch it by increasing the weight of the frame, the film cools. Some of the internal 

energy of the fluid is used to create new surface. We may visualize this as the fluid 

below the surface making new surface by pushing molecules from the bulk into the 

surface. Thus, the surface energy is not merely the energy put into the system by the 

external force moving through the distance but also the energy derived from the bulk 

fluid; which suffers-a deerease in internal energy. If the process is performed slowly, 

so that external heat may flow in to hold the temperature constant, then the increase 

in surface energy is equal to the work done (F dx = a dA) plus the heat added. It 

may be shown [3] from free-energy arguments that the correct expression for the sur- 

face energy is 

= eSpornd 5 (14.2) 

This equation is equivalent to the statement that the surface tension is exactly equal to 

the Helmholz free energy per unit area. Thus, we may make use of the thermodynamic 

equilibrium statement that isolated systems tend toward the condition of lowest free 
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energy to show that the stable state of a system is the one with minimum free energy, 

including the contribution of the surface free energy. 

In most fluid mechanics problems it is simplest to think of surface tension as a 

force per unit length, but in problems involving several liquids and a solid it is some- 

times more convenient to work in terms of surface energy. It is hard to visualize a 

solid having surface tension but easier to visualize it having surface energy. 

For almost all pure liquids, the surface tension decreases with increasing tem- 

perature, becoming zero at the critical point. 

14.2 WETTING AND CONTACT ANGLE 

Before discussing how we measure surface tension we must discuss wetting. Fluids 

wet some solids and do not wet others. Figure 14.2 shows some of the possible wet- 

ting behaviors of a drop of liquid placed on a horizontal, solid surface (the remain- 

der of the surface is covered with air, so there are two fluids present). 

Figure 14.2(a) represents the case of a liquid that spontaneously wets a solid 

surface well, e.g., water on a very clean glass or mercury on very clean copper. The 

angle 0 shown is the angle between the edge of the liquid surface and the solid sur- 

face, measured inside the liquid. This angle is called the contact angle and is a meas- 

ure of the quality of the wetting. For perfect wetting, in which the liquid spreads as 

a thin film over the surface of the solid, @ is zero. 

Figure 14.2(b) shows the case of moderate wetting, in which @ is less than 90° 

but not zero. This might be observed for water on dirty glass or mercury on a slightly 

oxidized copper. 

Figure 14.2(c) represents the case of no wetting. If there were exactly zero wet- 

ting, 8 would be 180°. However, the gravity force on the drop flattens the drop, so 

that a 180° angle is never observed. This might represent water on Teflon or mercury 

on clean glass. Many surface treatments, e.g., modern breathable rainwear and stain- 

resistant fabrics, make the fabric surface repellent to water, so that a water drop on 

them looks like Fig. 14.2(c). 

We normally say that a liquid wets a surface if @ is less than 90° and does not 

wet it if 8 is more than 90°. Values of @ less than 20° are considered strong wetting, 

and values of 6 more than 140° are examples of strong nonwetting. 

Most of the methods of measuring surface and interfacial tensions described in 

the next section assume that the liquid wets some part of the apparatus perfectly; that 
is, 9 = 0. 

(a) (b) (c) 

FIGURE 14.2 

Wetting and contact angle. 
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14.3. THE MEASUREMENT 
OF SURFACE TENSION 

One of the simplest measurements of surface tension is by 

means of capillary rise. A small-diameter glass tube is inserted 

in a bath of liquid; see Fig. 14.3. The fluid is assumed to wet 

the surface of the tube perfectly, so that the contact angle 6 is 

0. For small-diameter tubes the free surface of the liquid in the 

tube is practically a hemisphere, so the film pulls up uniformly 

around the perimeter, and the net surface force upward is 

; = 7Do (14.3) 

This is opposed by the gravity force on the column of fluid, 

which is equal to the weight of the fluid that is above the free 

sig 1 eneagal surface and which equals 
Capillary rise in a 

circular tube. Th 5 

species re hgp; (14.4) 

Here p; is the density of the liquid. Equating these forces and solving for the surface 

tension, we find 

_ AgpD ee Se: 7 (14.5) 

This equation leaves out the buoyant force due to the air, which is generally small 

compared with the fluid’s weight and also the fact that the top surface is not flat. How- 

ever, these omissions are not as serious as the difficulties of knowing the small diam- 

eter of the tube accurately and of getting the inside of the tube very clean so that 

there will be perfect wetting and 6 will be zero. 

To solve these problems, we sometimes use the drop-weigiii method; see 

Fig. 14.4. In this method we allow drops to fall slowly (one every 2—5 min) from the 

tip of a buret or hypodermic needle. The drops are caught and weighed. If the liquid 

wets the buret perfectly, then at the instant that the drop breaks 

away its weight must be exactly equal to the surface force 

holding it up, or 

VaropPig = 7™Do (14.6) 

Varop P18 
Sesma oat 14.7 

ie aD ( 

Again, we neglect the buoyant force due to the air, but this is 

negligible in most cases. The drop-weight method solves the 

problem of measuring D accurately, because measuring the out- 

side diameter of a small cylinder is much easier than measur- 

ing its inside diameter. Furthermore, the surface, which must be 

ete (Ae ie dof Very clean, is an exterior surface, which is easier to clean than 

cast y an interior surface The difficulty with this method is that the 
measuring surface aS : 

tension. liquid surface is not always vertical but may take one of the 
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i) cm) F 

Circular ring of 

platinum wire, 

normal diameter ~ 0.01 in ~ 0.25 mm 

ma Normally about 

pa Se + in ~ 12mm 
FIGURE 14.5 

Difficulties with the FIGURE 14.6 

drop-weight method. Du Nouy tensiometer ring. 

shapes shown in Fig. 14.5. In either of these cases all the surface tension force does 

not act in the vertical direction, so the volume of the drop at breakaway will be less 

than that shown by Eq. 14.6. Experimentally, we must multiply the calculated surface 

tension by a correction factor, whose value is generally about 1.5, to take this shape 

change into account [3, p. 45]. 

The most common routine laboratory method of measuring surface tension 

involves the Du Nouy tensiometer. As sketched in Fig. 14.6, a small ring is fabricated 

from thin platinum wire and then immersed in the liquid. The ring is drawn out of 

the liquid by applying a force F on a hanger or stirrup. This force is applied through 

a balance (normally a torsion balance), and the force required to remove the ring is 

measured. If the fluid wets the ring perfectly (@ = 0), and if the films at the inside 

and outside of the ring point vertically downward at the instant of breakaway, then 

F 
= 2(aD = 14. (7Do) or Co ae (14.8) 

Experimentally, it is found that the assumptions of perfect wetting, etc. are not exactly 

correct and that the surface tension calculated by Eq. 14.8 is too large by a factor of about 

1.1. However, with this kind of apparatus the cleaning problem is much easier than the 

case of the other two, and the dimensions are easily measured. For these and other reasons 

of convenience this is the most common laboratory device for measuring surface tension. 

14.4 INTERFACIAL TENSION 

Surface forces exist not only at gas-liquid interfaces but also at liquid-liquid inter- 

faces. The latter are called interfacial tensions. They can be measured most easily 

with a Du Nouy tensiometer (Fig. 14.6), if the denser fluid wets the ring. In that case 

the force required to pull the ring from the lower fluid up into the upper fluid depends 

on the interfacial tension. 

In general, interfacial tensions are greater for liquid pairs with low mutual solu- 

bilities than for those with high ones. Thus, hexane-water (very low mutual solubility) 

has an interfacial tension two-thirds that of air-water, whereas butanol-water (reason- 

ably large mutual solubility) has an interfacial tension only a few percent of that of air- 

water. For miscible liquid pairs, such as ethanol-water, there can be no interfacial tension 
because there can be no interface. ! 
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In all surface and interfacial tension measurements we must take extreme care 
to keep the surfaces clean. Many impurities tend to collect at interfaces, and very 
small quantities of them can make large changes in interfacial properties. Soaps, deter- 

gents, and wetting agents are prime examples of surface-active agents. These normally 

consist of tadpole-shaped molecules with a polar, water-soluble head and a nonpolar, 

oil-soluble tail. Here “oil” means any organic liquid not miscible with water. Small 

quantities of detergent are soluble in either water or oil, but their preferred position 

is at the water-oil interface, where they can put their water-soluble heads in the water 

and their oil-soluble tails in the oil. Thus, the concentration of such agents at water- 

oil interfaces is much higher than in the bulk fluids surrounding the interfaces. Their 

high concentration there changes the chemical and physical properties of the inter- 

faces. The principal function of such soaps and detergents is to disperse oils and fats 

into microscopic droplets, called micelles, and to keep them from coalescing. Thus, 

they disperse oils in water and allow them to be washed off surfaces. 

14.5 FORCES DUE TO CURVED SURFACES 

A plane surface exerts forces in the plane of the surface, as shown in Fig. 1.10. A 

curved surface can also exert a net force a right angles to itself, as shown in Fig. 14.7. 

Here we see a small piece of curved liquid surface perpendicular to the z axis, 

whose projection on the x-y plane is the small rectangle Ax - Ay. The forces exerted by 

the surface along its four edges are F = o Ay for the two edges perpendicular to the 

x axis and F = o Ax for the two edges perpendicular to the y axis. Assuming that this 

piece of surface is symmetrical about the x and y axes, we can see that the x and y com- 

ponents of the force on the surface are zero, because the plus and minus parts cancel. 

To find the z component of this force, we sum the z components of the four 

surface forces on the edges to find 

= >. F, = 20 Ay sina, + 20 Ax sin ay (14.9) 
4 sides 

Ztotal 

nN 

FIGURE 14.7 

Forces due to curved surfaces. 



450 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

yy For small angles a, and a>, we have 

Circle of radiusR, sina, ~ 5 Ax/R, and sin ay ~ } Ay/R,> 
(14.10) 

where R, and R> are the radii of curvature of the_ 

surface in the x-z and y-z planes. One may visual- 

ize these radii by imagining a circle drawn tangent 

to the surface at the origin; its radius is the radius 

of curvature in that plane; see Fig. 14.8. 

Surface 

Circle tangent to surface at origin 

FIGURE 14.8 Substituting Eq. 14.10 in Eq. 14.9, we find 

Radius of curvature at a point. 

1 Ax l =) ( 1 I ) 
Fy. = 20\ Aya teAtSSt hs CA) seh 14.11 : of pe ai ene ge On we eae ee wy) 

Here A is the area of the surface Ax: Ay. 

Example 14.1. Evaluate the force per unit area due to surfaces in the shape 

of (a) a sphere, (b) a cylinder, and (c) a plane. 

(a) Let the sphere have radius r and have its center at the origin. Then in the 

x-y plane it forms a circle, whose equation is 

dy x d? x+y e+e, so Rees ate a ¥ 

dx y dx y 
(14.B) 

In the calculus it is proven that the radius of curvature of any curve on the 

x-y plane is given by 

[1 + (dy/dxy Pp”? 
R= : Pilae (14.C) 

So here 

(1 fa uae a : 
oe - es a Wy 

1 (x? che y)/y (x » ) r (14.D) 

Similarly, for the y-z plane we have R> = r, so 

fey Ll _2a0 4c 
A resi lis = (14.E) 

which is the result found from Eq. 14.1. 

Let the cylinder have radius r and its axis along the x axis. Then its inter- 
section with the x-z plane is a straight line perpendicular to the z axis, for 
which dz/ dx and d°z/dx* are both zero. So 

ollie Oe 
ite, Bae (14.F) 

In the y-z plane its intersection is a circle with radius r so by a similar 
argument to that used in part (a) we have Rj = r and 

F 1 | C DO 
an ce a ie (14.G) 

fe (oe) 

(b a, 
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(c) Let the plane be parallel to the x-y 

plane, so that its intersections with 

both the x-z and y-z planes are straight 

lines perpendicular to the z axis, for 

which, by the argument in part (b), we 

have R; = Ry = ©. Thus, 

F ifitt 
mis o(+++)- 0 (14.H) 

00 A 00 

i 

FIGURE 14.9 
Soap bubble suspended between two wire For static surfaces the force described by 

frames. Eq. 14.11 is normally balanced by a pressure- 

difference force. If the fluid is moving, this 

force can serve to accelerate the fluid, causing oscillations, breakup of jets, etc. 

For a fluid at rest with both sides exposed to the same pressure, Eq. 14.11 indicates 

that [1 /R, + 1/R,] must be zero. This is obviously true of a plane surface, but it is 

also true of many complicated surfaces, such as the one shown in Fig. 14.9. This is the 

shape taken by an open-ended soap film attached to two circular wire loops. Here the 

center of curvature in the x-y plane is on the z axis, and the center of curvature in the x-z 

plane is outside the film. Since these are on opposite sides of the film, R, and Rz have 

opposite signs. To make [1 /R, + 1/ R] equal zero, we must make them have the same 

absolute value; we can show (Prob. 14.8) that this is the description of a catenoid curve. 

14.6 SOME EXAMPLES OF SURFACE- 
FORCE EFFECTS 

In many industrial devices bubbles are formed by forcing a gas through an orifice into 

a stagnant pool of liquid. For gas being forced through a circular, horizontal orifice 

this situation is shown in Fig. 14.10. 

If the bubble is spherical, then the buoyant force on the bubble is 

(pp; = pale 

6 iments (14.12) 

If the liquid wets the orifice, including the vertical part of the hole, as shown in 

Fig. 14.10, then the surface force at the bottom of the hole acts vertically downward 

zo with magnitude 

| Furface = Doo (14.13) 

The bubble breaks away from the orifice when 

Solid plate with the buoyant force exceeds the surface force. 

circular orifice Assuming that breakaway begins when these 

forces are just equal, we can equate these two 

bubble 
Liquid 

[ | Do forces and solve for the bubble diameter: 
Gas 

- 

6Doe ils 

FIGURE 14.10 = | ———_ (14.14) 
Gas bubble growing at a circular orifice. Wr = Py) 8 
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which is called Tate’s Law. This treatment ignores the possibility that the bubbles may 

interact with the preceding or following bubbles and neglects the momentum of the 

gas flowing into the bubble and the momentum given to the fluid around the bubble. 

Nevertheless, it can be shown experimentally that Eq. 14.14 gives excellent predic- 

tion of the observed bubble diameter for low gas flow rates through an orifice. The 

criterion for the departure of the experimental data from this simple equation is dis- 

cussed by Soo [4]. A more complex treatment, which takes into account the momen- 

tum of the gas and the liquid, and which is accurate to higher velocities, is given by 

Hayes et al. [5]. This behavior is greatly complicated by the interaction between the 

growing bubble and the gas chamber from which it grows [6]. 

As shown in Fig. 14.10, this treatment assumes that the gas does not wet the 

orifice and that instead, a thin film of liquid wets the inside of the orifice. This is 

commonly observed for gas-liquid systems and also for some liquid-liquid systems. 

However, if the fluid flowing through the orifice wets the surface of the orifice, then 

much larger bubbles result [7]. 

An unconfined jet of liquid will break up into drops; this is observable in the 

jet leaving a faucet or a garden hose; see Fig. 5.22. A cylindrical jet of liquid leaves 

a nozzle. As the fluid falls, it speeds up, because it is being accelerated by gravity. 

This causes the jet to decrease in cross-sectional area to satisfy the material balance. 

Finally the jet breaks up into liquid droplets. This breakup is caused by surface forces; 

the cylindrical column of fluid can rearrange into a system with less surface area by 

changing into spherical droplets. 

This breakup is possible for a cylinder whose length is 4/9 that of the diame- 

ter (Prob. 14.11), but such a cylinder is metastable: to pass from the cylindrical shape 

to the spherical one, it would have to pass through intermediates states with more sur- 

face. Rayleigh [8] analyzed the problem as follows. He assumed that there existed 

such a cylinder of length L (Fig. 14.11), which had superimposed on its cylindrical 

surface a cosine wave disturbance of wavelength L. Thus, the radius at any point is 

given by 

277 
r= CRBC ee (14.15) 

In his analysis a is always assumed very small, so that the 

curvature shown in Fig. 14.11 is quite exaggerated. By 

assuming that a was very small he could show (Prob. 14.12) 

that, if L was greater than 27ro, a small disturbance of this’ 

form resulted in a decrease in the surface area compared 

with the undisturbed cylinder. It can be shown by thermo- 

dynamic reasoning that systems proceed to states of lower 

free energy whenever possible and that a state of lower sur- 

face area is a state of lower free energy; hence, a fluid cylin- 
ae x“ Y der longer that 27rro is unstable and will break down under 

a Me tee ee a a small disturbance. This can be experimentally verified [9] 
it would Bpbeuramtaatee ote with cylindrical soap bubbles. When their length is less than 
make the displacements 27ro, they are stable; for any length longer than this they 
visible. break down as a result of any minor vibration. 

FIGURE 14.11 
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Rayleigh also showed in the same paper that, although any disturbance with 
wavelength greater than 27779 would grow and break up a cylindrical jet of liquid, the 
fastest-growing disturbances should be those with wavelength 9 rp. One may demon- 
strate this breakup in a kitchen sink by adjusting the flow from the faucet so that it 
has the smallest flow for which a continuous column of fluid will reach the bottom 
of the sink. Then tapping the faucet with a hand will cause the faucet to vibrate, intro- 
ducing such disturbances and causing the jet to break up into droplets. 

This simple analysis only indicates what size of jet is unstable and how the sur- 

face forces cause the breakup of the jets. It does not indicate how fast such breakup 

proceeds. Rayleigh’s analysis of the most favored wavelength for breakup was based 

on the assumption that the viscosity of the fluid was negligible. For thick jets of lig- 

uids such as water, the experimental data [10] indicate that the breakup occurs most 

frequently at lengths corresponding 10 79 to 12 rg rather than the 9 ro predicted by 

Rayleigh. 

For a very viscous fluid like maple syrup the breakup is very slow (which is 

why we can pour a long, thin stream of maple syrup onto our pancakes without its 

breaking up into droplets). Jet breakup is very important in such processes as spray 

drying, vaporization of liquid fuels in combustion, spray painting, and insecticide 

spraying. For more on this subject see [10, 11, 12]. 

In all of the preceding it has been assumed that the surface tension is uniform 

on the entire surface. If there is a gradient in the surface tension, then the surface will 

tend to flow in the direction of the higher surface tension and to drag adjacent liquid 

with it, causing bulk fluid motion. Such gradients in the surface tension can arise from 

differences in composition, differences in temperature, or differences in electric 

charge. An easily observed example of surface flow caused by 

concentration gradients is the formation of “wine tears,” Fig. 

14.12. To see these, place any liquor or wine with at least 12 per- 

cent alcohol (beer, with an alcohol content <4 percent, will not 

work!) in a clean glass and swirl the glass to coat the sides with 

fluid. Because the liquid wets the glass, a film of liquid remains 

on the side of the glass. Alcohol is constantly being evaporated 

from all the exposed surface of the liquid. In the bulk liquid in 

the glass the concentration is kept practically constant, because 

alcohol diffuses in from below to replace that being evaporated. 

In the films along the walls there is no comparable source of 

FIGURE 14.12 alcohol resupply, so the concentration of alcohol there falls. In 

Wine tears, which can alcohol-water solutions the surface tension increases with 

be demonstrated with increasing water concentration, so the surface tension is higher 
wine or any srove on the film upon the walls of the glass than in the bulk liquid. 
alcohol-water solution ; ‘ ie 

in a clean glass. Red ‘This causes the film to flow up the walls and drag fluid with it 

wine is easier to see from below. At the top of this film the fluid accumulates, forming 

than white. The wine the “tears,” which run back down the glass. 

should be sloshed in The same kind of motion can occur at the interface 
DRGs us is between two immiscible phases when there is a chemical reac- 

"avian Grats tion taking place between components present in both phases or above the liquid pda : 

surface. there is diffusion of one substance from one phase to another. 
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Liquid 
® Liquid @ 

FIGURE 14.13 

The Jamin effect. The bubble can stay in this location only if P; > Po. 

This type of behavior occurs in several chemical engineering systems and is called 

interfacial turbulence or the Marangoni effect [13]. 

Consider a gas or air bubble that is at rest in a converging tube, as shown in 

Fig. 14.13. The tube is assumed small enough for the ends of the bubble to be hemi- 

spherical with radii r; and r>. The bubble is assumed at rest, so we may assume a 

uniform pressure P; inside the bubble. From Eq. 14.1 we can then calculate the pres- 

sures at points | and 2, finding 

ee as Po Saki Fars p~ Pr = 20(2- +) (14.16) 

r Fospateny 

Thus, in the absence of viscous forces this bubble can stay in the converging tube 

only when there is a pressure difference, as indicated by Eq. 14.16, from its large end 

to its small end. It can only be driven into the converging direction by a pressure dif- 

ference greater than that computed by Eq. 14.16. If it is driven into the converging 

direction the values of the radii will decrease, until it finds a location where the sur- 

face tension forces will exactly balance the pressure difference force, and then the 

bubble will remain in place. 

This ability of a bubble to resist a pressure gradient, which would tend to move 

it, can be very annoying in laboratory glassware and in the small-diameter lines used 

for measuring instruments. Such bubbles regularly form, often from the evolution of 

dissolved air from water, and block the tubing. The same effect is of great technical 

and economic significance in two-phase flow in porous media, such as groundwater 

flow in the presence of air and oil flow in the presence of water or gas. Such flows 

may be conceived of as occurring in a series of interconnecting, irregularly shaped 

tubes of very small diameter. The flow normally occurs as a result of a pressure dif- 

ference. When one of the fluids breaks up into globules or bubbles, it can become 

trapped, just like the bubble in Fig. 14.13. It is experimentally observed in such sys- 

tems that once one of the phases becomes discontinuous (i.e., breaks up into bubbles 

or drops), it then stops moving, and no amount of flushing with the other fluid will 

make it move. Although other factors are involved, this surface-tension factor is one 

of the major causes of this result. This effect is known in the petroleum engineering 

literature as the Jamin effect [14]. 

Chemical engineers are likely to encounter two other devices that depend 

strongly on surface tension, ink jet printers (Prob. 14.16) and mercury porosimeters 

(Prob. 14.17). Surface tension governs the whole field of nucleation, bubble forma- 

tion and bubble collapse [15, Chap. 14]. Wetting and surface tension play a crucial 
role in biology, particularly in small systems. A duck, thoroughly washed to remove 
the water-repellent oils on its feathers, will sink and drown in water. 



CHAPTER 14 SURFACE FORCES 455 

14.7 SUMMARY 

1. Surface forces are likely to be important in small systems and in systems in which 
other forces are small or negligible. 

2. We may think of surface tension as a force per unit length or as an energy per unit 
area. The surface tension is exactly equal to the surface Helmholz free energy per 
unit area. 

3. When solid surfaces are involved in surface phenomena, it is necessary to take into 
account the wetting or nonwetting properties of the solid-fluid boundaries. These 
are normally expressed by means of the contact angle. 

4. Surface forces are also present at the interfaces between immiscible liquids; these 

are called interfacial tensions. Such tensions are strongly influenced by impurities 

in the fluids, called surface-active agents. 

5. The study of bubbles, drops, sprays, coatings, and interfaces between fluids gen- 

erally requires the study of the surface forces involved. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover! 

An asterisk (*) on a problem number indicates that the answer is shown in App. D. 

14.1. Some automatic dishwashers add a “wetting agent” to the final rinse water to prevent 

the formation of droplet marks on glassware. Explain how these agents do this. 

14.2.*The surface tension of a liquid was measured with a capillary-rise tube and found to be 

A. Later tests show that this liquid does not wet the glass perfectly but makes a contact 

angle of 6 = 30°. Estimate the true value of the surface tension of this liquid. 

14.3. As discussed in Sec: 14.4, we may use a Du Nouy tensiometer to measure the interfa- 

cial tension of immiscible liquid pairs in the normal way, if the more dense fluid wets 

the ring. Sketch how to set up to use this instrument to measure such tensions if the 

less dense fluid wets the ring. 

14.4. Calculate the correction factor to be applied to Eq. 14.7 for the case in which the film 

at the surface is slanted 10° from the vertical. Does it make any difference whether the 

film slants inward or outward? 

14.5.*A common statement in chemistry laboratory manuals is “20 drops from a buret equals 

approximately | cm”.” Assuming this applies only to dilute aqueous solutions whose 

surface tension is approximately equal to that of water, calculate the diameter of the tip 

of a standard buret. Does your calculated D match your observation of such devices? 

Would the number of drops per cm* be the same for benzene (@29°c = 28.9 dyne / cm, 

P20°c = 0.8765 g/cm*)? 

Experiments [3, p. 45] indicate that the surface tension calculated from drop-weights on 

burets by means of Eq. 14.7 must be multiplied by a factor that ranges up to 1.5 to 

agree with those obtained by the most reliable methods. Assuming that the need for this 

correction factor is entirely due to the shape of the droplet just before breakaway, cal- 

culate the angle that the surface of the drop makes with the vertical. 

14.7.*Two perfectly flat glass plates are assembled as shown in Fig. 14.14. The space between 

the plates has the form of a wedge with zero thickness on one side and thickness B on 

the other side; A >> B. The lower edges of the plates are now immersed in a pan of 

water. Calculate the shape of the water layer drawn up between the plates by surface 

14.6 ° 
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FIGURE 14.14 

Capillary rise in a wedge-shaped space. 
14.9, 

14.10. 

FIGURE 14.15 

Figure for Prob. 14.8. 

14.11. 
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FIGURE 14.16 

Soap bubble attached to two circular rings. 

tension in terms of A, B, and a. This result is 

quite easy to verify experimentally; the glass 

plates used for microscope slides are easy to use. 

Show that the surface shown in Fig. 14.9 is a 

catenoid surface (one described by rotating 

a catenary curve about the z axis). Hint: See 

Fig. 14.15. From the condition that the film 

exerts no force in the direction normal to it, we 

know that the two radii of curvature at right 

angles to each other and normal to the film 

are equal and of opposite sign. These are R, 

and R>. Equate these, and then show that 

R,=y[1 + (dy / azyy'"?. Then show that the 

resulting differential equation is satisfied by 

y =a cosh(z/a), which is the equation of a 
catenary curve. Here a is an arbitrary constant. 

One can prepare a closed-end cylindrical soap 

bubble by blowing the bubble between two solid 

rings, as shown in Fig. 14.16. Because of the 

pressure inside the bubbie, which is necessary to 

hold the long surface in the cylindrical shape, the 

top and bottom surfaces will bow out into spher- 

ical segments. If the rings have diameter D, what 

is the radius of these spherical segments? 

Two flat, rectangular pieces of glass are held par- 

allel and vertical, about 4 in apart. Their lower 

edges are immersed in water. The water rises in 

the space between them because of surface ten- 

sion; the plates pull together. After they have 

pulled together, they can be easily separated by 

being slid parallel to their surface, but they are 

very difficult to separate by being pulled per- 

pendicular to the surface. Why? What is the 

magnitude of the force pulling them together? 

Does this force change if they are now removed 

from the water and placed on a horizontal table? 

(a) Consider a cylindrical column of length L 

and diameter D.. Show that, if this column 

were rearranged into a sphere of equal 

volume, the ratio of the surface of the 

new sphere to the cylindrical surface 

of the cylinder (total surface less surface 

of ends) would equal S, [Seyi = (37 2" 

(D./L)'’> and, hence, that such a te- 
arrangement causes a decrease in surface if 

L is greater than 4 D./9, no change if L 
equals 4 D,./ 9, and an increase if L is less 

than 4 D../ 9. 
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(b) If we take the area of the ends into account in calculating the surface of the cylin- 
der, what minimum length is required so that the cylinder can rearrange into a sphere 
with a smaller surface area? 

14.12. Below is an excerpt from Rayleigh’s classic paper [8] on the instability of jets, in which 
he describes the maximum stable length; see Fig. 14.11. (Here we have changed from 

the symbols in the original paper to those used in this book.) 

“Let us, then, taking the axis of z along the axis of the cylinder, suppose 

that at time f, the surface of the cylinder is of the form 

27 i 
1? (1) r=7o + acos 

where a is a small quantity variable with the time... 

“Tf we denote the surface corresponding (on the average) to the unit length 

along the axis by A, we readily find 

1 2a 
A = 27179 + 3 Yo (27) as (2) 

“In this, however, we have to substitute for ro (which is not strictly con- 

stant) its value obtained from the condition that V, the volume enclosed per unit 

of length, is given. We have . 

1 
V= Tro + 2 Ta’, (3) 

seca) Soe (4) 

“Using this in (2), we get with sufficient approximation 

a at’ 271 2 . 

A= 2V(nv) + |(= 1]; (5) 
0 

whence 

or, if Ag be the value of A for the undisturbed condition, 

iam A=Ay= 2 : 1]. (6) 

From this we infer that, if (277r9/L) > 1, the surface is greater after displace- 

ment than before.’’* 

And, conversely, if 27779 / L < 1, the surface is less after displacement. 

Fill in the missing steps in the derivation. Hint: In finding Eq. 1, he started 

with the equation for the length of an element on the surface of the cylinder, par- 

allel to the axis, and then used the binomial theorem to perform the necessary 

integration. Similarly, to obtain Eq. 4 from Eq. 3, he used the binomial theorem. 

In both cases this is the form of (1 + xiv? = 1 + 4x + other terms. When x is 

small, the other terms may be neglected, which he has done here. 

*From Lord Rayleigh (John William Strutt), “On the Instability in Jets,” Proc. London Math Soc. 10, 4-13 

(1879). Reprinted in Scientific Papers of Lord Rayleigh, Dover, New York, 1964, p. 362. Quoted by per- 

mission of the publisher. 
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FIGURE 14.17 

Vertical liquid film, held in a ring. 

14.15. 

14.16. 

14.17. 

Soap film 

Surface force 14.13. It is frequently stated that the breakup of a jet of 

fluid is a way of preparing a high-surface area of 

the fluid for vaporization, chemical reaction, etc. 

However, the analysis in Sec. 14.6 indicates that 

the breakup occurs because the fluid is decreas- 

ing its surface area. How are these ideas to be 

“ reconciled? 

14.14.*Calculate the pressure difference required to 

make an air bubble move through a water-wet 

orifice whose diameter is 0.001 in. 

If we dip a wire ring into a soap solution and hold it as shown in Fig. 14.17, we have a 

vertical soap film. From a force balance on a small section of the film we see that it is 

acted on by gravity force downward and, if it is to stay in place, it must be acted on by 

an upward surface force. How can this upward surface force be generated? From this con- 

sideration can we conclude that it is impossible to form such a film from an absolutely 

pure liquid? This topic is discussed in detail by Ross [16]. 

Ink jet printers work by spitting small drops of ink out of nozzles onto paper, in a very 

well controlled way. The drops are expelled by pressure generated by either a piezo- 

electric crystal actuator or by a vapor bubble formed by the sudden application of heat. 

A typical nozzle has a diameter of 10 p = 10 > m = 0.00039 in. The inks are complex 

and expensive fluids, which for this problem only may be assumed to have the physi- 

cal properties of water, and to wet the nozzle with 6 = 0. 

(a) Estimate the pressure required to eject a drop. 

(b) If the drops are spherical with the same diameter as the nozzle, what is their volume? 

(c) How does this compare to the observed volume, approximately 10 pL? 

(d) What is the probable cause of this disagreement? 

(e) If a drop has volume ~ 10 pL, how large a dot will it make on the paper? Assume 

that the drop is spherical and expands in diameter by a factor of 3 as it flattens onto 

the paper. How does your answer compare with the reported printing quality of 300 

dots per inch? 

Adsorbents and catalyst supports are normally solids, typically the size of a pea, with 

many internal pores, some quite small. One should examine a charcoal briquette with a 

magnifying glass to get an idea of the structure. It is often worthwhile to measure sizes 

of the internal pores. One of the most widely used devices for this measurement is a 

mercury porosimeter. In such a device a sample of the solid is placed in a chamber, the 

chamber and sample are evacuated, and then mercury is introduced. When the mercury 

has filled the chamber and surrounded the sample, it is then forced into the pores by 

increasing its pressure. A record is made of the volume forced into the sample as a func- 

tion of the pressure, from which the distribution of pore sizes can be computed. The 

process is the inverse of that shown in Fig. 14.3. The mercury does not wet the solid, 

so the interface points toward the liquid surface. Other than that, the mathematics are 

the same. Estimate the mercury pressure needed to force mercury into pores with diam- 

eters of 10 p, 1 p, 0.1 w and 0.01 p. 
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PART 

TWO- AND 
THREE-DIMENSIONAL 

eC GANG, 
MECHANICS 

B efore powerful digital computers became available, two- and three-dimensional 

fluid mechanics were of great use to aeronautical and civil engineers, who 

developed most of the hand-calculation methods for estimating their behavior. But 

there were few practical chemical engineering problems for which these calculation 

methods were of much use. Now that our computers can solve numerically problems 

for which no analytical (hand) solutions are known, chemical engineers are finding 

more and more use of two- and three-dimensional fluid mechanics, normally through 

Computational Fluid Dynamics (CFD). Many chemical engineers have access to very 

user-friendly CFD programs that can solve complex fluid mechanical problems for 

which no hand solutions are possible. 

This section shows the basic equations for two- and three-dimensional fluid 

mechanics and some simple (hand) applications (Chap. 15). Then it shows the clas- 

sic concepts of potential flow and the boundary layer (Chaps. 16 and 17). These two 

are rarely used in chemical engineering calculations but provide valuable insight for 

reexamining and reinterpreting the one-dimensional flows in Part III. Chapter 18 dis- 

cusses turbulence, and how we apply turbulence theory in CFD. Chapter 19 shows a 

little about mixing, and Chap. 20 is a very brief introduction to CFD. 
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CHAPTER 

LS 
TWO- AND 

THREE-DIMENSIONAL 
FLUID 

MECHANICS 

he previous sections of this book showed that we can solve a wide array of prob- 

lems of great practical interest using one-dimensional fluid mechanics. Most of 

the flows of interest are really two- or three-dimensional, but we can approximate 

them, e.g., by substituting Vayerage for the true velocity distribution, and produce cal- 

culations that match and predict experiments very well. If we wish to understand 

those flows in more detail, then we need to examine their three-dimensional forms. 

Furthermore, most of the flows we have considered so far have been geometrically 

simple, e.g., flow in a pipe. Many industrially interesting flows are not geometrically 

simple, e.g., those in the furnace in Fig. 1.15. Before we had big computers, we 

designed those furnaces with one-dimensional approximations; now we can use 

CFD to take their complex geometry into account. Finally, there are flows, which are 

not basic chemical engineering but are of interest to all broadly educated engi- 

neers, that are inherently two- or three-dimensional, e.g., the atmosphere, the oceans, 

flow around airplanes and ships. For these we need the methods in this section of 

the book. 

In one-dimensional fluid mechanics we mostly take the view from the outside, 

solving for the volumetric flow rate(s) entering and leaving some system and the pres- 

sures and elevations at various entries and exits. In two- or three-dimensional fluid 

mechanics we look inside, asking what are the local values of the velocity.as a func- 

tion of x, y, z, and ¢ at every point in the system. 

463 
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15.1 NOTATION FOR MULTIDIMENSIONAL 
FLOWS 

In Chap. 7 we introduced the velocity vector as 

VV Vy) Vk (7.A) 

We will continue that notation throughout this book. However, in the fluid mechan- 

ics literature one often sees 

V = ui + vj + wk (E520) 

in which we have replaced V,, V,, and V, with u, v, and w. The student should be 

prepared to translate between these two notation systems as needed. 

As discussed in Chap. 7, a vector equation is a shorthand way of writing three 

scalar component equations. In two- and three-dimensional fluid mechanics it is 

common to express the equations only in vector form. In this book we will show all 

important equations both in scalar component form and in vector form. Appendix C 

summarizes the vector notation used in this book. 

15.2 MASS BALANCES FOR 
MULTIDIMENSIONAL FLOWS 

To find the mass balance equation for an arbitrary point in space, we define the coor- 

dinates and the components of the local fluid velocity, as shown in Fig. 15.1. Our sys- 

tem is a small open-faced cube. We may think of it as being a wire frame with flow in 

or out through all six of its faces. The frame itself is fixed in space and does not move. 

The rate form of the mass balance is 

oceaaee rate na af bi mass yi he mass flow 
) (152) 

mass in the system rates in rates out 

The mass in the system at any instant is p Ax Ay Az. The flow into the system through 
face | is ' 

m, = PiVx, Ay Az (15.3) 

Velocity 
components 

@) face 

numbers 

FIGURE 15.1 

Notation for the three-dimensional mass and momentum balances. 



CHAPTER 1S TWO- AND THREE-DIMENSIONAL FLUID MECHANICS 465 

and the flow out of the system through face 2 is 

mM — p2Vx., Ay Az (15.4) 

Writing the analogous terms for faces 3, 4, 5, and 6, and inserting all in Eq. 15.2 we 
find 

dp 
Ax Ay Az—— = Ay Az(piV;, — paVs,) + Ax Az(p3V,, — paVy,) 

+ Ax Ay(psV., — peV.,) (15.5) 

We now divide through by — Ax Ay Az; 

_ 9p (p2Vx, a pPiVx,) a (pV), ~~ p3V).) 4 (p6V-, me psV-.) 

ot Ax Ay Az 
(15.6) 

Now we. let Ax, Ay, and Az each approach zero simultaneously, so that our cube 
shrinks to a point. Taking the limit of the three ratios on the right-hand side of this 
equation, we find the partial derivatives, 

Bpheno(oVe 6:0 (pV)).-<a(oVe prep @(pVa) 9 O(PVy).-8(pV2) 
ot Ox oy Oz 

= V- (pV) (15.7) 

Here we show the result both in the algebraic symbols and in the identical vector short- 

hand. Equation 15.7 shows clearly that V - any vector is a scalar, called the divergence 

of that vector. The time rate of decrease of density at any point equals the net rate of 

mass flow away from the point, or the rate at which the vector (density - velocity) field 

is spreading out (or diverging) at that point. 

4 (One often sees V~ any vector written as 

div - vector.) See Fig. 15.2. Equation 15.7 is 

not a vector equation, even though its rightmost 

term contains vector notation. The rightmost 

term is the dot product of V with a vector, 

Velocity vectors which produces a scalar. Intuitively, we know 
——_____. ee 

this must be true because this is mass balance 

and mass is a scalar; it has magnitude, but not 

direction. 

If the density is constant, or the density 

changes are small enough to be neglected, 

then Eq 15.7 simplifies to 

fe) Ve 0 ue a) V-. 

‘IGURE 15.2 0=—+—+- 

f the velocity vectors all point away from Ox oy Oz 

diverge from) some point (as, for example, in =U. [constant density] (15.8) 

m explosion), then the density at that point 

nust be decreasing with time, as required by In going from Eq. 15.6 to Eq. 15.7, by 

iqs. 15.7 and 15.8. For a constant-density letting Ax, Ay, and Az approach 0, we have 

luid, these equations show that div - V must 

e zero, so the diverging pattern shown here 

annot occur for a constant-density fluid or a 

onstant-density solid. 

shrunk our system to a single point. Thus, Eq. 

15.7 is the mass balance for any point in 

space; it is often called the general continuity 
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equation. Equation 15.8 is the mass balance for any point in space that contains a 

constant-density fluid. Equation 15.7 is one of the basic or governing equations for 

two- or three-dimensional flows. 

One of the advantages of showing this and the other basic equations in vector 

form is that the vector form is independent of the coordinate system used, and 

the rules for expressing the scalar components in alternative coordinate systems are 

well known. Appendix C shows Eq. 15.7 in rectangular, cylindrical, and spherical 

coordinates. 

15.3 MOMENTUM BALANCES FOR 
MULTIDIMENSIONAL FLOWS 

In Chap. 7 we showed the rate form of the general momentum balance as 

d mV sys . . 

~ “= V tis = V Sat Mou + SF (7.14) 

and its x-component as 

d mv, sys . . 

\ = “= Voit, a Vi. lout i > is (7.16) 

These equations are perfectly applicable to multidimensional flows, but in such flows 

Vx,» Ve and 2, are more complex than in one-dimensional flows. To make the 
working form of the momentum balance for multidimensional flows, we apply the 

general momentum balance to the flows and forces acting on the small cube in 

Fig. 15:1. 

Our system is the small cube shown. For this system we can write three sepa- 

rate, independent momentum balances, one for each of the x, y, and z directions. The 

rate form of the x-directed momentum balance for this system is Eq. 7.16 with the 

flows and forces applied to all 6 faces, numbered | to 6. 

Previously we have written the first term as d/ dt; here we write it as 0/ dt 

because V, is a function not only of time but also of position; that is, V, = V,(x, y, z, 2). 

Thus, our momentum balance will be a partial differential equation, and @ / dt implies 

d/ dt at some fixed location. 
It is common practice in fluid mechanics not to include in partial differentials 

the subscripts that indicate which variables are being held constant. With very few 
exceptions the independent variables are x, y, z, and ¢, or 7 6, z, and ¢ in polar coor- 
dinates. Thus, the symbol 4(pV,) / ax really means | d(pV,) / dx|,,..,. Throughout this 
text any partial derivative that does not have a subscript indicating what is being held 
constant will be assumed to have as independent variables x, y, z, and ft or, in polar 

coordinates, 7 0, z, and ¢. 

The mass of fluid in the system is equal to the system volume times the den- 
sity of the fluid in the system; so we may write 

Hiv’ =p Ax Ay Az (15.9) 

The mass flow rate in through face 1 is 

m, = PiAV,, = p; Ay AZV., (15.10) 
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and the mass flow rate out through face 2 is 

M> = PrAV,, = pr Ay AzV,, . (1.40) 

Thus, the contribution of faces 1 and 2 to the first term on the right of the equal sign is 

(mV,); — (mV,)2 = Az Ay(p1Vi, — p2V2,) (15.12) 
The mass flow rate in through face 3 is 

mz = p3AV,, = p3 Ax AzV,, (ele I) 

and the flow in through face 4 is similar. The contributions from faces 3 and 4 to the 

first term on the right of the equal sign are 

(mV,), — (mV,)4 = Az Ay(p3V5, — paV5,) (15.14) 
Faces 5 and 6 contribute the following 

(mV,)5 — (mV.)6 = Az Ay(psV2, — poV2,) (15.15) 

The forces acting on the cube are the force of gravity on the entire body of the fluid 

and the normal and shear forces on the faces of the cube. The gravity force in the 

x direction is 

(Gravity force), = mg cos 6 = pg Ax Ay Azcos@ (15.16) 

where @ is the angle between the gravity vector and the x axis. 

The only normal forces on the cube that have components in the x direction are 

the normal forces on faces 1 and 2. We will denote a normal force in the x direction 

by the symbol o,,; then the normal force contribution may be written 

Normal force = Ay Az(Oxx, — Oxx,) (15.17) 

(In most circumstances the normal force is practically the same as the pressure. But 

in some circumstances it is not, so we will keep the general term.) The shear forces 

on faces 1 and 2 have no component in the x direction and do not enter the x-directed 

momentum balance. The shear forces on faces 3 and 4 will be given the symbol 7, 

and those on faces 5 and 6 the symbol 7,,, so the shear force contribution is 

Shear force = Ax Az(T,y, — Txy,) + Ax Ay(Txz, — Txzs) (15.18) 

Making all these substitutions in Eq. 7.16, we divide by Ax Ay Az and find 

a BY Va Vge Pay Vea, (PSV a POR, 
£ (pv,) = (2 2 Ss OS es 
ot Ax Ay ae 

1 3 O xx, T. Oxx xya Txys 7 xe 0 “s:) e Epes eas OF mee SESEONE OEY WY BIO! 15.19 
TEN ( Ax Ay Az joa 

Now we let Ax, Ay, and Az simultaneously approach zero and take the limit, which 

makes the difference terms on the right become minus partial derivatives, finding 

a a(pVz)  9(pVxV,) see) 
ie = —|—~—— + ____ 7 S| + pg-cos 0 
at (eVs) Ox dy dz 88 

~ OT OT x 
ip ( OG ssi, STB *s) (15.20) 

Ox oy 0z 
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This is one form of the x component of the three-dimensional momentum balance. 

We can find a different, equally useful form by using the mass balance for a three- 

dimensional flow, Eq. 15.7, to eliminate several of the terms. First we expand the left 

side of Eq. 15.20 and also expand the first term in brackets on the right, choosing our 

terms on the right in a special way: 

OV. 0 
Pees sii gis 

Ot mk 

a(pV,) AV, a(pV,) aV, d(pV-) av, 
== tH OWVaR eae E ipV, 4 ie Sop Vee 

Va 5 Et a Eby pep PE, 
+ remaining terms (E562 1) 

The underlined terms in this equation are exactly minus V, times the terms in Eq. 15.7 

and, therefore, the underlined term on the left is exactly equal to the underlined terms 

on the right. Dropping the underlined terms on both sides of Eq. 15.21 and rear- 

ranging, we find 

ai, WAs aA: Se ee 
ot Ox ~ oy 06 

OCF xx OT xy OTy. ) xx ETL. 

ax dy Oz 

(< OVy dV, av) 
p 

= pgcos@ + ( (15.22) 

which is the other widely used form of the x component of the three-dimensional 

momentum balance. 

In going from Eq. 15.19 to Eq. 15.20 and letting Ax, Ay, and Az simultane- 

ously go to zero, we have shrunk our system to a point, so that the Eq. 15.20 is the 

momentum balance for some point in space. It applies to any point in any kind of 

flow that does not include magnetic or electrostatic forces. If the latter are significant, 

they will enter in forms similar to that of the gravity term. 

Equations 15.20 and 15.22, as they stand, are of little practical use, because 

their right-hand terms are written in a form that is not readily evaluated. In Sec. 15.4 

we will examine one way of evaluating those terms. 

Equations 15.20 and 15.22, which are alternative forms of the x-directed 

momentum balance, represent two ways of regarding fluid mechanics problems. In 

Eq. 15.20 the left-hand side is the time rate of change of momentum of the fluid con- 

tained in an infinitesimal volume at some fixed point in space. The right-hand terms, 

in order, are the increase of momentum due to flow of matter into and out of this vol- 

ume and the net forces on the system due to gravity, normal, and shear forces. This 

viewpoint, that of an observer fixed in space, is called the eulerian viewpoint. 

Equation 15.22, which is Eq. 15.20 rearranged and simplified, has as its left 

side the time rate of change of the x momentum of an infinitesimal element of fluid, 

as seen by an observer who is not fixed in space but who rides with the fluid. The 

entire left side of Eq. 15.20 is often abbreviated DV, / Dt and is called the Stokes 
derivative, the substantive derivative, convective derivative, or the derivative follow- 
ing the motion. In this case attention is focused on a specific piece of fluid rather 
than on a region of space. In this approach to the subject there can be no flow of 
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matter into or out of the piece of matter we are watching. Thus, the left side is the 
increase in momentum of this piece of matter as it moves along, and the terms on the 
right are the gravity, normal, and shear forces acting on this fluid particle as it 
moves. This is called the lagrangian viewpoint. Both the eulerian and the lagrangian 
viewpoints are used in fluid mechanics, the choice between them depending on the 
problem at hand. 

Equations 15.20 and 15.22 show only the x components of the momentum 

balance. One may produce the corresponding y and z components by repeating the 

foregoing derivation for those directions. The three resulting equations can be sum- 

marized in vector shorthand as 

f terms involving 

= (pV) = —[V: VpV + pV: VV] + pg + | normal and shear | (15.23) 

stresses 

which is the eulerian viewpoint. Equation 15.20 is the x component of Eq. 15.23. The 

vector form of the lagrangian viewpoint of the momentum balance is 

terms involving 
av 

(= # Ve vv) = pg + | normal and shear (15.24) 

stresses 

Equation 15.22 is the x component of Eq. 15.24. We will say more about these forms 

in the next section. 

We could develop the analogous three-dimensional energy balance equation. 

It is used in flows with heating or combustion, and some high-velocity gas flows, 

mostly in computational fluid dynamics (CFD, Chap. 20). But for the flows consid- 

ered in this book it is not very useful, and it is not included. Most of the historical 

and current work on two- and three-dimensional fluid mechanics has begun with the 

conservation of mass and momentum equations shown here (called the governing 

equations), and applied simplifications and mathematical techniques to produce useful 

solutions. 

15.4 THE NAVIER-STOKES EQUATIONS 

To use Eqs. 15.22 and 15.24 it is normally necessary to replace the normal-stress and 

shear-stress terms with terms involving measurable properties, such as viscosities, 

pressures, and velocities. No one has yet found a way to do this without introducing 

very severe restrictive assumptions. The commonly used set of assumptions is the 

following; 

. The fluid has constant density. 

. The flow is laminar throughout. 

. The fluid is Newtonian (Eq. 1.4). 

The three-dimensional stresses in a flowing, constant-density Newtonian fluid have 

the same form as the three-dimensional stress in a solid body that obeys Hooke’s 

law (that is, a perfectly elastic, isotropic solid). 

awn 
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If we make these assumptions, then it can be shown that 

= oT a = OY 0 Vee eda 
LE PAE TI EA ON x  caialte Maa: (15.25) 

ox oy 0Z 

The derivation of this equation is shown in numerous texts [1, 2]. The intuitive mean- 

ing of three of the terms on the right is obvious, the fourth is a bit harder to see. The 

dP / dx term is the result of pressure force on the infinitesimal cube. The u(d°V,/ dy”) 

and w(a°V,./ dz’) terms represent the net shear force on the cube due to changes of 

the x velocity in the y and z directions. One can see how these arise by assuming that 

the shear forces are independent of each other and by substituting Newton’s law of 

viscosity, Eq. 1.4, in the OT, / Oy and 07,,/ dz terms in Eq. 15.22. 

The 4(d°V, / dx”) term is more subtle; it arises because, according to the fourth 

assumption listed above, the normal force is not the same as the pressure. For a fluid 

at rest the normal force is the same in all directions and is equal to the pressure. For 

a moving viscous fluid it is not the same in all directions because of the interactions 

of the various perpendicular shear forces. The pressure is defined as the average of 

the normal forces in three perpendicular directions; this is the pressure that appears in 

Eq. 15.25. The .(d°V,/ dx’) term results from this difference between the pressure 

and the normal force. It may be visualized by considering a piece of taffy being pulled 

while one end is held fixed. As the taffy stretches in one direction, it contracts in the 

two perpendicular directions. Thus, although the applied force is in one direction, 

there are resulting normal forces in the directions perpendicular to the direction of 

pulling. The normal force is tensile in the direction of pulling and compressive in the 

perpendicular directions; in any one direction it is not equal to the pressure. When 

taffy is pulled, with one end fixed, there is an increase in velocity with distance from 

the fixed end; therefore (d°V, / dx”) is positive, leading to a force of the type shown 

here. In most applications of Eq. 15.25 the latter term drops out, either because of 

the geometry of the system or because it is assumed negligible compared with the 

other terms. 

Substituting Eq. 15.25 in Eq. 15.22 yields 

ie av... aVy ta) 
p 

Ox oy 0Z Ox 

+V,— + V, 
ot “EON “ dy paz 

ee (= nee a 
4 ax? ay’ 20k 

(15.26) 

which is the differential momentum balance for the x direction, subject to the list of 
assumptions given above. Analogous balances can be made for the y and z directions; 
the three together make up the Navier-Stokes equations. Their vector shorthand form 
(with all terms divided by p) is 

oS ars +—V°V (15.27) 

Equation 15.26 is the x component of Eq. 15.27. 
As with the mass balance, the Navier-Stokes equations can be expanded from 

their vector form in any coordinate system. The expansions in rectangular and cylin- 
drical coordinates are shown in App. C. The great advantage of the vector shorthand 
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Plates 

extended to 

infinity inx  Z 

and y 

z=h directions 

Flow direction 

FIGURE 15.3 

Notation for flow between horizontal, parallel plates. 

and its expansion in various coor- 

dinate systems is that, whereas 

most of us can work out the rec- 

tangular coordinate momentum 

balance on an intuitive basis, as 

was shown here, doing the same 

in cylindrical or spherical coordi- 

nates is much less intuitive. (Try 

it, and compare your results to 

those shown in App. C; you will 

be impressed!) The correspon- 

ding equations for fluids with variable density also are shown in numerous texts [2, 

3, 4]. If we set w = 0 in the Navier-Stokes equations, thus dropping the rightmost 

term, we find the Euler equation, which is often used for three-dimensional flow sit- 

uations where viscous effects are negligible. 

Example 15.1. To illustrate the application of the Navier-Stokes equations we 

investigate the flow between two stationary, infinite, parallel plates a distance h 

apart; see Fig. 15.3. 
Before we can begin with the Navier-Stokes equations, we must make the 

assumptions listed previously, namely, that we are only considering laminar flow 

of a constant-density, Newtonian fluid. Then, from the geometry of the problem 

we can make the following assumptions: 

1. There is no flow in the z or y directions: V, = V, = 0. 

2. The velocity at any z is not a function of x or y; that is, the fluid appears to 

flow in sheets that are parallel to the plates. This is equivalent to dV, / ax = 

aV,/ dy = 0. 

3. The direction of gravity is perpendicular to the plates, so that cos 6 = 0. 

Making these simplifications in Eq. 15.26, we find 

av, oP Ove 
ee ~ 15,28 

of at ) sa ag poe 
This equation can be solved for various kinds of time-dependent flows. In 

this example we limit ourselves to finding the steady-flow solution, for which 

the term to the left of the equal sign is zero. For steady-state flow, subject to 

the assumptions given above, the pressure depends on x alone, and V, depends 

on z alone, so we may replace all the partial derivatives with ordinary deriva- 

tives. We can further assume that the pressure gradient dP / dx is a constant and 

then separate the variables and integrate twice: 

OP ain i (4) dP fa i pie 

ddedn dz dz J dx a dz 

dP dV, ae) a ‘| Pani +O; &—feae=u fdv.+C, | de (5B) 
7s te dz dx er : 

(E32) 

dP. z 
XxX 
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where C, and C) are constants of integration. To solve for the constants of inte- 

gration, we use the boundary conditions that at the surfaces of the plates, where 

z = 0 and z =f, the velocity V, = 0. Substituting these into Eq. 15.D leads to 

dP [h 

Lec ie Wed —(dP / dx) A 
Sf SS lle — 7 = ——__(7h, — 15.E V, (EV zh) my ch —z) (15.E) 

This gives the velocity distribution. To find the volumetric flow rate for a sec- 

tion of distance / in the y direction we must integrate: 

—(dP/ dx)l [z= 
o= [vas =A | (zh — z*) dz 

2m =0 

—(dP/dx)l {2 3}z=h  —(dP/ dx)ih° 
mia ) S : | a es (15.F) 

Qu 2 Bolte 12u 

which is Eq. 6.28. re 

This example illustrates the advantages and disadvantages of the Navier-Stokes 

equations. We could have found Eq. 15.28 just as easily from the force balance shown 

in Sec. 6.3 or from a one-dimensional momentum balance, as we did from the Navier- 

Stokes equations. However, in more complicated problems in spherical or cylindrical 

geometry it is often difficult to set up the proper force balance or momentum balance, 

so it is convenient to start with the Navier-Stokes equations as a list of all the terms 

and then to drop out terms when necessary to find a solution, as was done here. Three 

more related examples illustrate this. 

15.4.1 Three Examples of Laminar Flow 
in a Circular Tube 

In Sec. 6.3 we used a simple force balance around a rod-like element, symmetrical 

about the center, to find Poiseuille’s equation for steady, laminar flow of a Newtonian 

fluid, well downstream from the entrance in a circular pipe. Here we examine that 

same problem, but consider not only the steady flow well downstream from the 

entrance but also the entrance region flow and the starting flow. 

We begin with the decision to use cylindrical coordinates (which is the only 

logical choice—if you do not believe that, try to work the following problems in any 
other coordinate system!), and with the assumption that the flow is all in the z direc- 
tion, so that the r and 6 components of the velocity are everywhere zero. With this set 
of assumptions we can see from App. C that only the z-component equation (Eq. C.20) 
has nonzero terms. It is 

av. dV. Vy AV, av. 
+ +V,— 

Or or r 06 02 

aP 1a/ Vv. feed” Vegi, 
oe r Fieger 

7 100 Oz 
| T, PSy (C.20) 
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In the following examples we will assume that the z direction is perpendicular to the 
direction of gravity, so that the last term in Eq. C.20 disappears. 

Example 15.2. Show which terms remain in Eq. C.20 for steady, laminar flow 

of a constant-density Newtonian fluid in the axial direction in a cylindrical pipe, 

far downstream of the entrance. 

It is intuitively obvious (or is intuitively obvious after someone tells you) 

that in a steady, one-dimensional flow in a cylindrical pipe the flow has only a 

z component, and that this varies with r but not with z or 6. Because V. depends 

only on 7 we can see that the following terms are zero: dV-./ dt, V,aV-./ dr, 

(V_/r) aV./ 00, V. AV./ dz, (1/ 1°) 8?V,/ 007, and 6°V,/ dz". The remaining 
terms are 

eta fue oe 
0z i r or : or oS) 

If we further assume that the pressure gradient (—dP / dz) is a constant, we can 

separate variables and integrate, finding 

[(®)a-(2)h+0- (<2) 15.H 
az Jian | dz/ 2 Bota ae weds 

OV, Cy oP \r 
jy a A (15.1) 

or 

or r dz / 2 

We know that the velocity cannot be infinite at the center of the tube (r = 0), 

so the constant of the first integration, C,, must be zero. Furthermore, V- 

depends only on 7, and P depends only on z, so that all the partial derivatives 

in Eq. 15.1 become total derivatives, and 

aVvee (=) r (-*: — 2) r (65) 

Mar \d/2 Ag 2 

This must surely seem like a lot of work to find Eq. 6.5, which we obtained 

easily by a simple force balance on a properly chosen free body. One would scarcely 

go to this much trouble for this simple case. But see the next two examples. 

Example 15.3. Show which terms remain in Eq. C.20 for laminar flow of a 

constant-density Newtonian fluid in the axial direction in a cylindrical pipe, far 

downstream of the entrance, for the assumption that the velocity is everywhere 

zero at times less than fp and that at fy the pressure gradient is applied instantly. 

After a long time the solution must be the same as in Poiseuille’s equation 

(Eq. 6.8). Here we are interested in the starting transient. 
One of the terms on the left (part of the substantive derivative) does not 

disappear, and we have 

cto.29) 
av. oP i 2 ( =) 

Shee Wise a 
ot Oz r or 
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This is a much more complex equation to solve than Eq. 15.G. Bird, Stewart and 

Lightfoot [5, p. 126] show the solution, which takes three pages and involves an 

infinite series of Bessel functions. The same authors show a much less detailed 

solution on p. 150 of their second edition. The results are summarized in Fig. 15.4, 

in which Eq. 15.29 has been divided by p. @ 

Example 15.4. In Example.7.13 we estimated how long it took a long pipe 

attached to a water tank to come to its steady-state velocity. Repeat that exam- 

ple for a fluid with u = 1000 cP and p = 1000 kg / m?. This high value of the 

viscosity is chosen to make the flow laminar, so that we can use Fig. 15.4. 

Here the pressure at the pipe inlet is 0.981 MPa, so the pressure gradient 

is 327 Pa/ m. Using this value and the pipe dimensions in Eq. 6.8, we find that 

at steady flow, centerline velocity is 0.48 m/s and the steady flow average 

velocity is half of that, or 0.24 m/s. The Reynolds number corresponding to 

this velocity is 1470, so the flow is laminar. 

From Fig. 15.4 we read that the centerline velocity will be 0.2 times the 

maximum velocity when vt / re = 0.05 where rp is the tube radius. This veloc- 

ity thus occurs at 

vi OG cae (0.0770 m)” ; 

roe ~~ (1000 - 0.001 Pa - s) / (1000 kg / m?) Soa. aaa 

We can read the other curves from Fig. 15.4 and prepare a plot of Veentertine 

versus ¢. The more interesting plot is one of Vy. versus t. We can see from 

Fig. 15.4 that the upper curves in the figure are close to parabolas, whereas the 

lowest few are flattened in the center, compared to parabolas. Ignoring that detail 

we can say that for parabolic velocity profile in a circular pipe the average 

4 
Tube center —> vt _ 

ONTOS EOG MOASHO? O2 560-4) 10:6 O0lSie 1:0 

r/ Qype a3 

FIGURE 15.4 

Flow-starting behavior for laminar flow in a circular tube, with the 

pressure gradient suddenly applied at r = 0. The uppermost curve 

corresponds to the steady-state solution. (Based on P. Szymanski, 

J. Math. Pures Appl., Series 9, 11, 67-107; (1931).) In this figure ro 
is the tube radius. 
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velocity is 0.5 times the centerline velocity, so we would say that at 0.296 s, 
the average velocity was 

Vave ~ 0.5°0.2-0.48 m/s = 0.048 m/s = 0.157 ft/s (15.K) 

This value plus the ones corresponding to all the other curves in Fig. 15.4 are 
shown in Fig. 7.19, where they are compared to the result from Example 7.13. 

iS 

We see that because of the 1000-fold increase in viscosity, the average velocity 

is about a tenth of that for turbulent flow of water, and that it comes to practically 

steady flow much faster. From Fig. 15.4 we see that for the lowest curves the veloc- 

ity profile is flattened relative to the steady-flow curve, but as the flow approaches its 

steady velocity the velocity profile approaches the steady-flow velocity profile. 

Example 15.5. Show the derivation of Eq. 15.29 from the force balance 

approach used to find Poiseuille’s equation in Sec. 6.3. 

In Sec. 6.3, which considered only steady flow behavior, we could choose 

a free body that was a cylinder symmetrical about the center. Here if we were 

to try that choice, we would find 

0V OV 
> F = ma WAP mr? + pr Ax = rp Ax 

r 

Ae oY * (INCORRECT! 15.L72? 
Men cir Acai ) eat) 

We may compare that result with Eq. 15.29 and see that it is similar but not the 

same. The reason it is wrong is that it assumes that the central rod-like region 

about which the force balance is made all has the same acceleration, while in 

fact the acceleration is a strong function of r. 

However, if we chose our free body element as a cylindrical shell of infin- 

itesimal thickness (see Fig. 15.5), we will get the right result; see Prob. 15.7. 

Example 15.6. To make the unsteady-state force bal- 

ance for the start of a laminar flow in a pipe, one must 

choose as the force-balance element a cylindrical shell, 

[LS with inner diameter 7; and outer diameter r + Ar, and 

eas then let Ar approach zero, taking into account that the 

shear rate dV, / dr changes from one side of the infin- 
itesimal shell to the other. See Prob. 15.7. | 

We also see that if we apply the simple force bal- 

ance correctly, we will get the correct result. However, for 

more complex geometries, it is harder and harder to do that 

FIGURE 15.5 i properly, and the possibility that we will overlook some 

The proper element on which term and find an incorrect equation like Eq. 15.L??? 
to make a force balance for : i / f 

becomes greater. Starting with the full equations in App. C 
starting flow in a circular 

tube. and canceling terms is more reliable. 
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Example 15.7. Show which terms remain in Eq. C.20 for steady laminar flow of 

a constant-density Newtonian fluid in the axial direction in a cylindrical pipe, in 

the entrance region, (i.¢., the region at the start of the pipe) with the assumption 

that at z = 0, the velocity profile is flat, i.e., V, = constant independent of r. 

Here we know that far downstream from the entrance the flow must be as 

described by Poiseuille’s equation. At the tube entrance the velocity profile is 

flat, and the part of the flow.that is slowed down by friction at the wall grows 

from the sides of the tube, eventually meeting in the center. To conserve mass, 

the fluid in the center must speed up as the fluid near the wall is retarded by 

friction, so that far downstream the velocity at the center is exactly twice the 

inlet velocity. 

We also know from the continuity equation that our assumption that the 

r component of the velocity is zero cannot be correct. From the cylindrical ver- 

sion of the mass balance equation (Eq. C.13), we know for constant density, 

steady flow, and zero value of the 6 component of the velocity, we have 

——(rV,) + =0 (15.30) : 

which says that as the centerline velocity increases, there must be a radial inflow 

to conserve mass. 

In the cylindrical momentum balance, Eq. C.20, the time derivative disap- 

pears, but two components of the substantive derivative remain, so that we have 

av. av. aP bed “RSV 0° 
pl¥,. see = +p r a3 ow (15.31) 

or Oz Oz rar or 

, ak: ZV which we must solve simultaneously with 
arameteris —s— = 

DR 4roVo Eq. 15.30. g 
} y 

oO 

In Example 15.3 we could find a sim- 

ple, closed-form solution (Poiseuille’s equa- 

tion). In Example 15.4, a complete solution 

is known in the form of an infinite series of 

Bessel functions (see Fig. 15.4). No such 

closed-form solution to Eqs. 15.30 and 15.31 

is known. However, the equations can be 

solved numerically [6]. Several authors have 

simplified these two equations enough to find 

approximate analytical solutions, e.g., Lang- 

haar [7]. Figure 15.6 summarizes Langhaar’s 

solution. Figure 15.7 compares that solution 

to some other approximate solutions and to 
FIGURE 15.6 

Summary of Langhaar’s approximate solution 

for the flow in the entrance region in steady, 

laminar flow of a constant-density Newtonian 

fluid. (The original data are from H. L. 

Langhaar, Trans ASME, 64, 1942, p A.55.) 

Nikuradse’s experimental data. The approxi- 

mate solutions are a fair, but not perfect, 

match of the experimental data. Figure 15.8 
compares the friction factors for Poiseuille’s 
equation, Langhaar’s solution, and some 
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1.8 
Langhaar [2] _-- iS 

ae ate Sparrow et al. [5] 

aie eae Ss 14 Wy Nikuradse [3] 

/ B 
2 i | a au! 

1.0 fod ised ee 
0.0 0.01 0.02 0.03 0.04 

z/(DoR) 

FIGURE 15.7 

Comparison of the experimental data of Nikuradse with the approximate 

solutions of various authors for the cen terline velocity in the entrance 

region in steady laminar flow of a constant-density Newtonian fluid. 

(The reference numbers are [1] J. Boussinesq, Compt. Rend, 113, 1891, 

pp. 9 and 49, [2] H. L. Langhaar, Trans ASME, 64, 1942, p. A.55, [3] 

J. Nikuradse, Monographie, Zen. f. wiss. Berich., Berlin, 1942, [4] L. 

Schiller, Physik, Z. 23, 1922, p. 14 and also ZAMM, 2, 1922, p. 96, and 

[5], E. M. Sparrow, S. H. Lin and T. S. Lundgren, Phys. Fluids, 7, 

1964, pp. 338-347.) 

experimental data. The entrance region average f values are substantially greater than 

the “standard” values calculated from Poiseuille’s equation. 

15.5 WHAT GOOD IS 10! 

ALL OF THIS? 

Examples 15.1 through 15.7 

show that for simple geome- 

tries (e.g., steady laminar flow 

in a tube or a slit) we can 

Ss throw out enough terms in 

107" the Navier-Stokes equations to 

find a form we can integrate 

and solve for local velocities, 

10-2 which we can then integrate 

10°° 10’ to find the volumetric flow 
ee eee" GAN O:\ rate. If we add change with 
DoR — 4roVo ae 

time, then the remaining terms 

FIGURE 15.8 become complex enough that 
Comparison of the average friction factor from the entrance we cannot do that analytically, 

(z = 0) to length z to that calculated from Poiseuille equation. but sometimes we can find 

Here (i) is Langhaar’s solution, (ii) is a curve fit of 

experimental data, and (iii) is Poiseuill 

J. G. Knudsen and D. L. Katz, “Fluid Mechanics and Heat 

series solutions or other closed- 
e’s equation. (Based on i : 

form solutions. Finally, as the 

Transfer” New York, McGraw-Hill, 1958.) geometry becomes even more 

477 
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complex, we must use numerical solutions. The problems at the end of the chapter 

show many of the cases in which the geometry is simple enough that we can find 

analytical solutions. A complete exposition of all the known analytical solutions is 

given by Churchill [8]. Many of these are of practical significance. 

For even more complex geometries or time variations, we must resort to com- 

putational fluid dynamics (CFD, Chap. 20) in which we divide the flow region up into 

grids (over space and/or over time) and integrate the Navier-Stokes equations numer- 

ically over those grids to find the desired solutions. Figure 15.6 shows an early 

example of the results of that procedure. With current computers much more complex 

problems are regularly solved. 

In principle, we should be able to use the grids and the Navier-Stokes equations 

to solve turbulent flow problems. But the required grid spacing must be as small as 

the smallest turbulent eddy, which is a fraction of a millimeter, so the number of 

required grid points becomes unmanageably large, even for our biggest supercom- 

puters. Instead, we have developed approximate methods (Chaps. 19 and 20) that 

allow us to produce approximate solutions of the Navier-Stokes equations for turbu- 

lent flows. These approximate solutions are good enough that industrial users will pay 

the cost of finding them. 

15.6 EULER’S EQUATION, BERNOULLI’S 
EQUATION AGAIN 

If we consider a fluid with negligible viscosity, then the last term in Eq. 15.27 becomes 

zero, and we have 

=_¢-— (15.32) 

which is Euler’s equation. Its component forms are Eqs. C.15, C.16, and C.17 (see 

App. C), with the rightmost terms dropped. By starting with this equation, it is pos- 

sible to find the complete descriptions of many flows. If viscous friction and turbu- 

lence play negligible roles, then the computed descriptions will agree well with the 

experiments. For flows near surfaces in which the fluid is accelerating down a nega- 

tive pressure gradient (e.g., the leading edge of an airplane wing), these conditions 
are reasonably well approximated, and the computations and experiments agree fairly 
well. However, if the fluid is being decelerated by flowing up a positive (“adverse”) 
pressure gradient (as in the wake of an airplane or a ship), then Euler’s equation does 
not predict the experimental results well. 

It is possible to integrate Eq. 15.32 along a streamline [2, p. 112], finding 

av Vv’ aP 
rar Se + — gz = constant (15.33) 

where r is the position vector, measured from the origin, which for steady flow 
(dV / dt = 0) and constant density becomes the familiar B.E., 

v2 

a5 32 im — gz = constant (15.34) 
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This derivation applies only along a streamline. By obtaining it from a momentum 
balance, we have no easy way to incorporate a friction term or a pump or compressor 
term, which appeared naturally in Chap. 5 when we found the same result from an 
energy balance. The fact that the velocity is a vector here causes little problem because 
it appears squared (which is the equivalent of the dot product of the vector with itself, 
or a scalar equal to the square of the absolute value of the vector). 

15.7 TRANSPORT EQUATIONS 

Shear stress is normally defined as having dimensions of (force / length”). If we con- 
sider a very simple flow like steady laminar shearing between two plates (see Fig. i.4), 

we can see that for a Newtonian fluid 

r= (1.5) 

However, we can also make the following dimensional manipulation: 

eeu _ force mass-length — mass- velocity | momentum mes 

stress length? force - time” area-time area time oo 

or 

dV 
Momentum flux = pp — (15.M) 

dy 

Most often, we see Eq. 15.M written with a minus sign. Since which direction we 

assign to the shear stress is arbitrary, we normally write 

dV 
Momentum flux = —p— (15.36) 

dy 

This is a simple renaming and sign change, which seems of little use. However, if we 

look into heat and mass transfer books, we will find 

: dT 
Conductive heat flux = —k ou (LS: 37.) 

y 

which is Fourier’s law of heat conduction. Here k is the thermal conductivity and T 

is the temperature. Similarly, 

chr it dc 
Molecular diffusive mass flux = —Y - (15.38) 

which is Fick’s law of diffusion. Here @ is the molecular diffusivity and c is the con- 

centration of the diffusing species. Comparing these three equations, we can see that 

if we know the solution to any one of them for some geometry, then we know the 

solution to the other two for the same geometry, because we need only rename the 

variables to switch from one to another. This idea was popularized in chemical engi- 

neering by Bird, Stewart and Lightfoot [5] and given the name Transport Phenom- 

ena. The solutions-to these equations for a wide variety of geometries are known, as 
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TABLE 15.1 

Parallel forms of transport equations for laminar and turbulent flows* 
pk idee ANN A a aio ES RT 

Parallel forms for laminar Parallel forms for 

Flux of flow or in solids turbulent flow 

pV dV V Heddy dV _ dV 
Momentum ae =U eu A = ey =e enay a 

2 = viscosity (or molecular viscosity) Heddy = turbulent eddy viscosity 

QO dT 1 QO keday dT*! dT 
os es, Cp A Cp dy dy 

k = thermal conductivity (or molecular Kedgy = turbulent eddy thermal 

thermal conductivity) conductivity; @eqqy = thermal 

eddy thermal diffusivity 

m mac m dc 
Mass ra —9 ps eo =D eiey % 

® = diffusivity (or molecular diffusivity) Desay = turbulent eddy diffusivity 

*The laminar forms are shown to emphasize the simple parallels. The turbulent forms are rearranged to show the coeffi- 

cients Vegays @eady» ANd Doggy each of which has the same dimensions (length / time, e.g., m?/s). 

summarized by Carslaw and Jaeger [9]. Normally the solution is shown in vector 

form; e.g., Eq. 15.36 is shown as a simplification of Eq. 15.27. 

The equations presented above are applicable only for laminar flows and for 

heat conduction or diffusion in solids. However, they can be extended to turbulent 

flows if we introduce empirical coefficients shown in Table 15.1. 

If there exist simple relations between the eddy viscosity, eddy thermal con- 

ductivity, and eddy molecular diffusivity, then we can make the same kind of com- 

parison of fluid flow, heat transfer, and mass transfer problems in turbulent flow that 

we do for laminar flow. 

Reynolds’ analogy (Sec. 6.6) suggests that for simple turbulent flows there should 

exist simple ratios between the three eddy properties listed above. Experiments show that 

Reynolds’ analogy is only approximately correct, but it has proven very useful in study- 

ing the relations between turbulent fluid flow, heat transfer, and mass transfer. 

To feel comfortable with the Transport Phenomena approach, one must think of 

shear stress as being momentum flux. Most of us are more corafortable thinking of shear 

stress as force per unit area. But returning to Fig. 1.4, we can see that for the upper 

plate to slide there must be a force applied to the moving plate in the positive x direc- 

tion, and to prevent the lower plate from moving there must be an equal and opposite 

force applied to it. The product of force and velocity is equal to (momentum / time), 

so that if we think of these forces as forces per unit area, we see that they are the equiv- 

alent of a (flow of momentum / unit area - time), as Eq. 15.36 requires. 

15.8 SUMMARY 

1. We can solve most of the simple, practical chemical engineering problems in fluid 
mechanics by using the one-dimensional flow simplifications in Parts I, II, and III 
of this book. 

2. We can have a deeper understanding of those problems, at the cost of more math- 
ematics, if we study them as two- or three-dimensional flow problems. 
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3. Many problems of practical interest can only be understood as two- or three- 
dimensional flow problems. 

4. Before we had big computers, we could only solve a few of these. Some exam- 
ples are in this chapter, some in the next two. Now that we have big computers 
we can solve many more, using CFD. 

5. The basic tools of two- and three-dimensional fluid mechanics are the three- 
dimensional mass and momentum balances in partial differential equation form. 

6. The Navier-Stokes equations are the simplification of the differential three- 

dimensional momentum balance for laminar flow of constant-density Newtonian 

fluids. 

PROBLEMS 

See the Common Units and Values for Problems and Examples, inside the back cover! 

An asterisk (*) on a problem number indicates that its answer is shown in App. D. 

15.1. Show which terms of the mass balance equation (Eq. 15.7) remain for: 

(a) Steady compressible flow in the x-y plane. 

(b) Unsteady incompressible flow in the x-y plane. 

(c) Unsteady compressible flow in the y direction only. 

(d) Steady compressible flow in plane polar coordinates [i.e., polar coordinates in which 

there is no motion in the axial (z) direction]. 

(e) Describe the equipment you could use in a laboratory to demonstrate these four 

kinds of flow. 

15.2. Show which terms of mass balance in cylindrical coordinates, Eq C.13, remain for: 

(a) Steady flow of a constant-density fluid in a straight circular pipe, (e.g., Chaps. 5 and 6). 

(b) Steady flow of a fluid with variable density in a straight circular pipe (e.g., Chap. 8). 

15.3. The x component of the flow in a converging nozzle with its axis on the x axis is 

described by 

V, = Vo: (1 + x/L) (15.N) 

Here x is the distance from the nozzle inlet and L is the total length of the nozzle. 

(a) Compute the value of the x acceleration, dV, / dt, as a function of x. 

(b) Compute the time required for a fluid particle to travel from x = 0 to x = L. 

15.4. (a) Show the equation for V, in Prob. 15.3. Assume that the flow is axisymmetric and 

that there is zero velocity in the @ direction. 

(b) Sketch the flow in Prob. 15.3. 

15.5. In Fig. 15.3 instead of parallel plates, the bottom plate is horizontal, but the top plate 

slopes down in the x direction, with slope dz / dx = —a. The space between the plates 

is a wedge, with height h at x = 0, and decreasing height in the flow direction. The 

flowing fluid has a constant density. 

(a) Show the mass balance equation for this flow. 

(b) If the inlet velocity is Vo, and V, is independent of z at any x show the equations 

for V, and V, as functions of x. 

15.6. The left-hand term of Eq. 15.22 is often called the Stokes derivative or the derivative 

following the motion. Show that if V, = V,(x, y, z, ¢), then 

dVinwnoVe ov, ov, OV, 
bs ay En, (15.0) 

dt at ax Y day = 0z 
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15.7. 

That is, the Stokes derivative is indeed the total (not partial) derivative of V, with respect 

to time for a small element of fluid. 

Repeat Example 15.1 for the case in which the plate at z = / is moving steadily in the 

x direction with velocity Vwa; While the other plate is stationary. This type of flow with 

the plate moving is called Couette flow; it is somewhat similar to the flow of oil in a — 

bearing, such as main bearings of your auto. Sketch values of the velocity profile for 

2: 

h ( #) =o, = SB pea iiabs=3 (25-P) 
2h walt 

15.8.*In Chap. 6 we showed that for laminar flow in a circular tube, the average velocity was 

one-half the centerline velocity. What is the corresponding relation for the flow in 

Example 15.1? 

15.9. A constant-density Newtonian fluid is flowing as a thin 

film down a vertical wall in laminar flow; see Fig. 15.9. 

Thin liquid film Find the velocity distribution and the volumetric flow rate 

per unit width of wall by using the Navier-Stokes equa- 

tions (z component) on the assumptions that there is no 

Thickness Ax flow in the x or y directions, that the z component of the 

velocity is zero at the solid wall, and that there is no shear 

stress at the liquid-air surface, and the flow is steady- 

FIGURE 15.9 state. (Waves may appear on the fluid surface in this 

A thin liquid film flowing situation; ignore that possibility for this problem). 

down a wall. 15.10. In Prob. 15.9, we are now blowing air upward neat to the 

15.11. 

15.12. 

fluid film at a high-enough velocity that the assumption 

of no shear stress between the liquid and the air is no longer a good assumption. 

Instead, we now assume that there is a shear stress at the gas-liquid interface, in the 

upward direction as seen by the liquid, with magnitude 7,;, (where 7,;, has dimensions 

of force / area). Repeat Prob. 15.9 for this modified circumstance. 

Repeat the solution to Prob. 15.9, showing both the velocity distribution and the volu- 

metric flow rate, for the case in which the flow under the influence of gravity is between 

two parallel vertical plates, separated by the distance Ax. In Prob. 15.9 the pressure gra- 

dient in the flow direction was zero, because the film was open to the air, which is at 

practically a constant pressure. Here also, assume that the pressure gradient in the flow 

direction is zero, because the vertical plates must end somewhere, and the pressure at 

the top and the bottom of the space between them may be assumed to be the same. 

Repeat Prob. 15.9 with this change: instead of the wall being vertical, it forms an angle 

@ with the horizontal. Hint: Take the flow direction as the x direction, and the normal 

to the surface as the z direction. In this case the g vector no longer points in the —z 

direction as it normally does, so you must use the proper value of this vector. 

15.13.*We are designing a new paint. It will be sprayed on a wall, with a uniform thickness 

of 0.003 in. Like all paints it will harden by evaporation of its solvent, so that its vis- 

cosity will increase rapidly with time as the solvent evaporates. We are only concerned 

with the problem of the paint running down the wall (called “sagging” in the paint indus- 
try) for the first few minutes. The density of the paint, as applied will be 80 Ibm / ft’. 
For this problem. only you may assume that paint is a Newtonian fluid. 

Our paint experts tell us that there will be no visible sagging if, when the paint 
is first applied, the vertical velocity due to gravity of downward flow of the paint sur- 
face exposed to the air is less than or equal to 0.1 in/ min. To meet this specification, 
what viscosity must the paint have, as applied? 
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15.14. Problem 15.9 is a very simplified version of the real problem of technical interest, which 
is the flow of a fluid like a paint or a coating down a vertical wall, as for example the 

behavior of the paint on an auto body that is dipped in a paint bath and then lifted out 

and suspended so that the excess paint can drip off. A closer approximation of that prob- 

lem is as follows. At time zero, the vertical surface has a paint layer with uniform thick- 

ness Ax. At time zero we turn on gravity and allow the paint to flow down the vertical 

wall, without bringing in any new paint. As the flow progresses, the paint layer at the 

top of the wall becomes thinner, while that at the bottom of the wall becomes thicker. 

(At the bottom of the wall paint drips off, but we need not consider that.) The mathe- 

matical problem is to compute the thickness of the film at any position on the wall (at 

any value of z) at any time after time zero. The vertical direction is z and the direction 

perpendicular to the surface is x. The surface is large enough in the y direction that the 

problem is two-dimensional in z and x. The density and viscosity of the fluid are con- 

stant. (In the real problem the solvent evaporates, so that both viscosity and density 

change rapidly with time, but the problem is difficult enough without taking that into 

account here!) The fluid is assumed to be Newtonian (although real paints are highly 

non-Newtonian!) with viscosity ww and density p. The vertical wall has height h. 

(a) Show the proper form of the material balance (continuity equation) for this problem. 

(b) Show the proper form of the momentum balance (z-component Navier-Stokes 

equation) for this problem. 

15.15. A tank of fluid has a long, narrow rectangular slot in its bottom. A fluid flows steadily 

out of the slot, in the form of a thin sheet. From the slot the sheet of fluid falls through 

the air, eventually falling on a solid surface. This is the arrangement used to put coat- 

ings on various products, which move on a conveyer belt under the falling sheet of fluid. 

For this situation, write out the z component (i.e., vertical component) of the 

Navier-Stokes equations. Indicate which terms are zero or negligibly small. Indicate 

what additional information would be needed to solve for the velocity as a function of 

z and x. 

15.16. A constant-density Newtonian fluid of infinite extent is adjacent to a solid wall. At time 

zero the wall is suddenly set in motion, with velocity Vp. (This is roughly what would 

happen in the water near the side of a speedboat that started from rest at full throttle.) 

Write the differential equation for V, as a function of y and ¢ for this problem by start- 

ing with Eq. 15.26 and canceling the terms that will be zero. List the boundary condi- 

tions. The resulting equation reappears several times in the following chapters. 

15.17. Show that if one attempts to solve the starting problem for laminar flow in a circular 

tube, using the cylindrical shell element shown in Fig. 15.5, and follows the analogy of 

the derivation in Sec. 6.3, one finds Eq. 15.12. 

15.18. Repeat Example 15.3 for flow between parallel plates instead of in a circular pipe. Make 

the same assumptions as in that example. Take z as the flow direction and x as the direc- 

tion perpendicular to the plates. 

15.19. Figure 15.4 (the starting behavior of a pipe in laminar Newtonian flow) does not include 

the pipe length explicitly. Does it contain it implicitly? If so, how? 

15.20.*Repeat Example 15.4 for V/ Vmax = 0.8. Compare your result to the value shown on 

Fig. 7.19. 

45.21. A fluid with kinematic velocity 10 * m’/s (about 100 times as viscous as water) flows 

through a well-rounded entrance into a circular tube with diameter 0.01 m, in steady 

flow. Vayg = 1 m/s. 

(a) Estimate how far downstream the centerline velocity will be 95 percent of the 

centerline velocity at infinite distance. 
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(b) Estimate the pressure drop from the entrance to that point. The fluid density is the 

same as that of water. 

(c) Estimate the pressure drop for an equal length of pipe, far enough downstream to 

be out of the entrance region. 

15.22. (a) Show the derivation of Eq. 1.AH. Starting with Eq. C.19, drop all the terms that 

are zero, finding 

0=— 42 ovo) | (15.Q) 

Integrate twice, and evaluate the constants of integration from the two boundary 

conditions, Vz = 0 @ r= R and Vg = wkR @ r = kR. 

(b) Show the corresponding equation for the other version of the couette viscometer, in 

which the outer cylinder rotates, and the inner one does not. For this case the 

integrated form above is the same, but the constants of integration are evaluated 

from Vy = aR @ r= Rand Vz = 0 @r=RkR. 

(c) Show the derivation of Eq. 1.AI and 1.AJ, from the equation you find in part (a). 

Ow 
Here: go; =.7,=—. 

or 

(d) In Ex. 1.2 and Prob. 1.10 at the wall of the outer, non-moving cylinder, what are 

the shear stress, shear rate, and the viscosity you would calculate as their ratio? 
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CHAPTER 

16 
POTENTIAL 

FLOW 

Il the basic material on two- and three-dimensional flow (Chap. 15) was known 

by 1900. But without big computers, it could only be applied to laminar flows 

in very simple geometries. To deal with problems of technical interest, which involved 

two- and three-dimensional flows, two useful simplifications of the ideas in Chap. 15 

were developed, potential flow and the boundary layer. Currently, chemical engineers 

make little use of potential flow, but much more use of the boundary layer. Thus, this 

chapter is mostly part of a chemical engineer’s cultural background, not of her/his 

active technical tool kit. 

16.1 THE HISTORY OF POTENTIAL FLOW 
AND BOUNDARY LAYER 

In the late 19th century two schools of thought existed on fluid mechanics. One group, 

called the hydraulicians, looked at experimental data and attempted to generalize them 

into useful design equations. Their equations were generally empirical, without much 

theoretical content. The other group, called the hydrodynamicists, started with the 

equations in Chap. 15 and App. C and tried to apply them to practical problems. It 

was quickly apparent to the hydrodynamicists that, if they retained the viscous-friction 

terms or the change of density terms, then the resulting differential equations would 

be so cumbersome that solutions would seldom if ever be possible. So they ignored 

the viscous-friction and density-change terms by hypothesizing a perfect fluid with 

zero viscosity and constant density. For this perfect fluid they were then able to cal- 

culate the complete behavior of, many kinds of flows. For flows that did not involve 

solid surfaces, such as deep-water waves or tides, these mathematical solutions agreed 

485 
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very well with observed behavior. But the hydraulicians found that the perfect-fiuid 

solutions did not agree with observed behavior in the problems that concerned them: 

flow in channels, flow in pipes, forces on solid bodies caused by flow past them, etc. 

By 1900 the two schools had gone their separate ways, the hydrodynamicists pub- 

lishing learned mathematical papers with little bearing on engineering problems and 

the hydraulicians solving engineering problems by trial and error, intuition, and exper- 

imental tests. A wit of the period said, “Hydrodynamicists calculate that which can- 

not be observed; hydraulicians observe that which cannot be calculated.” . 

In 1904 Ludwig Prandtl [1] suggested a way to bring the two schools together by 

introducing a new concept, called the boundary layer. If a fluid flows past the leading 

edge of a flat surface, there will develop a velocity profile, as shown in Fig. 16.1. 

According to the laws of perfect-fluid flow, the surface should not influence the flow in 

any way; the velocity should be V;, everywhere in the flowing fluid. According to the 

equations of Chap. 15 and App. C, there should exist a velocity gradient in the y direc- 

tion extending out to infinity. Prandtl’s suggestion to reconcile these views was that the 

flow be conceptually divided into two parts along the line shown. In the region close to 

the solid surfaces the effects of viscosity are too large to be ignored. However, this is 

a fairly small region; outside it the effects of viscosity are small and can be neglected. 

Thus, outside this region the laws of perfect-fluid flow should be satisfactory. 

Prandtl called the region where the viscous forces cannot be ignored the bound- 

ary layer. He arbitrarily suggested that it be considered that region in which the 

x component of the velocity, V,, is less than 0.99 times the free-stream velocity, V.. 

Then, to obtain a complete solution to a flow problem in two or three dimensions, 

one should use the Chap. 15 and App. C equations inside the boundary layer and the 

equations of perfect-fluid flow outside the boundary layer. At the edge of the bound- 

ary layer the pressures and velocities of the two solutions must be matched. 

This division does not correspond to any physically obvious boundary. The edge 

of the boundary layer does not correspond to any sudden change in the flow but rather 

corresponds to an arbitrary mathematical definition. Even with this simplification the 

calculations are very difficult, and in general only approximate mathematical solutions 
are possible. Nonetheless, this idea clarified numerous unexplained phenomena and 
provided a much better intellectual basis for discussing complicated flows than had 

ioe 
“4 Edge of the 

boundary layer, 

V= 0.99 V,, 

Solid surface 

V 

Velocity profile 

upstream of 

surface,V = V,, 

FIGURE 16.1 

The idea of the boundary layer. 
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previously existed. As a result, the boundary layer has become a standard idea in the 
minds of fluid mechanicians. Once it became accepted in fluid mechanics, an analo- 
gous idea was tried in heat transfer and in mass transfer, generally with useful results. 

From the preceding, it is clear that the ideas of perfect-fluid flow and of the 
boundary layer are intimately tied together. Both are generally needed for completely 
describing physically interesting flows, although sometimes one alone is sufficient. 
We will consider perfect-fluid flows in this chapter and the boundary layer in the next. 
First we must introduce the idea of streamlines. 

16.2 STREAMLINES 

In one-dimensional flow the direction of flow at every point in the flow is the same, 

although the velocity at every point may not be the same (e.g., laminar flow in a tube). 

In two- and three-dimensional flows both the velocity and direction change from place 

to place. For unsteady (i.e., time-varying) flows they also change from one instant to 

the next. For steady flow, we can map out the velocity and direction at any point; see 

Fig. 16.2, in which the velocity at any point is represented by an arrow showing the 

relative velocity and direction of the flow at various points. © 

If we follow the history of a fluid particle starting at A, we see that it moves, 

not in a straight line, but rather along a curve whose direction at any point is tangent 

to the flow direction. Such a curve, showing the path of any fluid particle in steady 

flow, is called a streamline. Obviously, there is a streamline passing through every 

point in the flow; so, if all the streamlines were drawn in Fig. 16.2, the entire flow 

area would be printed black. Therefore, it is common practice to draw only a few 

streamlines, from which the intermediate ones can be readily interpolated. In steady 

flow there is no flow across (1.e., perpendicular to) a streamline. 

For unsteady-flow problems the direction and magnitude of the velocities in Fig. 

16.2 are changing with time; so the direction and velocity of the streamline through 

A are changing with time. A fluid particle that was on the streamline through A at 

time f, may not be on the new streamline through A at time t, + Ar. To handle such 

problems, two other concepts are introduced: the streakline, which is the line made 

by a dye injected into a fluid at one point and which thus marks the position of all 

the particles of fluid that have passed that point, and the pathline, which gives the 

instantaneous velocity and direction of a single particle of fluid at various times. In 

steady flow, streaklines, pathlines, and streamlines are the same. Since we will deal 

only with steady flow, we will refer only to streamlines in the rest of this chapter. 

If we use the alternative 

view of a streamline—a line 

across which there is no flow— 

1 een ae «to: Sate then it is clear that the bound- 
a a = aries of solid objects immersed 

Page Aircraft wing s¢ction “+e... in the flow must be streamlines. 
ues OF 2, 2 See ‘se. —- For real fluid flows the fluid 

FIGURE 16.2 adjacent to the boundary of 

Point values of the flow velocity and direction for steady, a solid body does ee move 

two-dimensional flow, and the idea of a streamline. relative to the body; it clings to 
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the wall. Thus, in real fluids the wall is a streamline of zero velocity. In the theory of 

perfect-fluid flow, the imaginary perfect fluid has no tendency to cling to walls because 

it has no viscosity. Thus, the streamline adjacent to a solid body in perfect-fluid flow is 

one with finite velocity. This leads to the idea that we may divide a perfect-fluid flow 

along a streamline and substitute a solid body for the flow on one side of the stream- - 

line without changing the mathematical character of the flow on the other side of that 

streamline. Thus, to compute the flow around some solid body in perfect-fluid theory, 

we need only find the flow that has a streamline with the same shape as the solid body 

and then conceptually substitute the solid body for that part of the flow; this does not 

affect the rest of the flow. Several examples of this procedure will be shown. 

16.3 POTENTIAL FLOW 

In the region outside the boundary layer, where the fluid may be assumed to have no vis- 

cosity, the mathematical solution takes on the form known as potential flow. This form 

is analogous to the flow of heat in a temperature field or to the flow of charge in an 

electrostatic field. The basic equations of heat conduction (Fourier’s law) are these: 

the fas ibd eres ‘Sw 416.1) na i haa rete az : 
Here q, is the flow of heat per unit time per unit area (heat flux) in the x direction, 

etc., k is the thermal conductivity, and T is the temperature. An energy balance for some 

arbitrary region in space (analogous to the procedure shown in finding Eq. 15.7) yields 

aT _ A[—k(AT/ dx)] n d[—k(dT/ dy)] d[—k(dT/ dz)] 

Ot Ox oy Oz 
(16.2) 

Here p is the density and Cy, the heat capacity. For constant k this simplifies to 

pCy aT aT i aT if aT (16.3) 
kot ax* ay? az?” aii 

For steady state the left term is zero, so that the steady-state heat conduction equa- 

tion becomes 

Cr wae eaae 
0=—+—45+-—5=VT (16.4) 

Oxsaniroys Oz” 

This is Laplace’s equation, shown here both in algebraic form and in the vector short- 
hand. Solutions to Laplace’s equation are known for many geometries [2]. 

Similarly, in an electrostatic field the flow of charge is given by 

a sa ee (16.5) 

Here J, is the x component of the current density, E is the potential, and p is the resis- 
tivity. For steady-state and constant resistivity, these also lead to Laplace’s equation 
in the form 

OE OB tO E 
LENE Rs a2 ay? ag? (16.6) 
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Because the flow of heat and electric charge obey Laplace’s equation (under certain 
restrictions), the hydrodynamicists introduced a similar formulation for the flow of a 
liquid; they defined a velocity potential by the equations 

=¢ 
V, = x component of velocity = = z (16.7) 

x 

mu 
V, = y component of velocity = ae (16.8) 

yi 

and 

—og 
V. = zcomponent of velocity = poee (16.9) 

Z 

By applying the steady-state mass balance for a constant-density fluid, Eq. 15.8, we 

find that this definition also leads to Laplace’s equation: 

2 2 2 
ee ye 

0 
ax? ay? dz" 

= Vd (16.10) 

From Eqs. 16.7, 16.8, and 16.9 it is clear that @ must have the dimension of ft? /s 

or m?/s. 

The advantage of the formulation of flow problems in terms of the velocity 

potential is the great simplification that this formulation allows. If we are trying to 

determine the general solution to some steady-flow three-dimensional problem, then 

we will have V, = f,(x, y, z), V, =f y, z), and V, = fa(x, y, z), three’ unknown 
functions of three independent variables. If the problem can be formulated in terms 

of velocity potential, then we can find all three of these functions from ¢ = (x, y, z), 

so the problem is reduced from that of finding three functions to that of finding one. 

What physical meaning should one attach to the velocity potential? For steady 

flow of an ideal, frictionless fluid, the velocity potential has no physical meaning 

whatsoever. To illustrate this, consider the steady flow of a frictionless, constant-density 

fluid in a horizontal pipe; see Fig. 16.3. (Such a frictionless fluid, once started in 

motion by some external force, would continue moving forever because there is no 

force to stop it.) For such a frictionless fluid the velocity is uniform over the cross 

section perpendicular to the flow. From B.E. we can see that there is no change with 

distance of pressure, velocity, or elevation, and by straightforward arguments we can 

show that there is no change of temperature, refractive index, dielectric constant, or 

any other measurable property. But from Eq. 16.7 we know that, because V, is con- 

stant, there is a steady decrease of ¢ in the x direction. Intuitively we would like to 

Sem 
FIGURE 16.3 

Steady flow of a frictionless fluid in a horizontal pipe. 
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identify @ with the pressure, but for the flow shown in Fig. 16.3, if the pressure were 

steadily decreasing in the flow direction, then a frictionless flow would have to accel- 

erate steadily in that direction, which a constant-density fluid cannot do in a constant 

diameter pipe. Thus @, the velocity potential for the steady flow of a perfect fluid, is 

not a function of any measurable physical property of the fluid: It has no physical - 

meaning.* 

We need not be disturbed by this lack of physical significance of @. There are 

other such quantities in engineering, such as i = (—1)!/ *. Clearly, there can be no 

physical interpretation of imaginary voltages, currents, etc.; nonetheless, the treatment 

of alternating currents is easier if one uses i. We should take a similar view of ¢; it 

has no real physical meaning but is a useful mathematical device for solving some 

problems. 
An alternative meaning of @ appears in the study of the flow of real, viscous 

fluids through porous media. In Chap. 11 we saw that the V?/ 2 term in B.E. is often 

negligible and that the friction-loss term is of the laminar form 

viscosity - velocity - length 
F= 16.11 

permeability - density ( 

Here the permeability k is a property of the porous medium (discussed at greater 

length in Chap. 11). If we make this substitution, B-E. becomes 

P be 
a(F + :) = —-— VA 16.12 5 8 reais x ( ) 

If we now multiply through by (k p/m Ax), take the limit of both sides as Ax 

becomes infinitesimal, and rearrange, we find 

k d(P + pgz) | 
= a witeew adit (16.13) 

This is the same as Eq. 16.7, if 

k 
fp = B (P + pgz) (16.14) 

This interpretation is intuitively quite satisfying. For the flow of a real, viscous fluid 
through a uniform, porous medium the density, viscosity, and permeability are nor- 
mally constant; so, for constant elevation, the velocity in the x direction, —dd / dx, is 
proportional to the negative pressure gradient, —dP/ dx. Although this porous- 
medium meaning of potential flow is intuitively satisfying and of considerable prac- 
tical use in petroleum reservoir engineering, groundwater hydrology, and the study of 
filters and packed beds, it is not the chief application of potential flow. The chief 
application is for imaginary perfect fluids, for which ¢ has no intuitive meaning at all. 

*One physical interpretation of ¢ is that, at time zero, a pressure pulse was used to set the fluid in motion 
and was then instantly withdrawn. The instantaneous pressure pulse, which disappears while the flow goes 
on forever, is the gradient of @. See [3, p. 155]. 
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TABLE 16.1 

Comparison of systems obeying the Laplace equation 

ao ayes St Sia V‘od = 
ox oy” Oz 
ee ee ee 
System What is flowing? d Lines of constant @ 

Steady-state Heat (i.e., thermal Temperature Isotherms 
temperatures energy) 

Steady-state electric Charge (i.e., electrons Potential (voltage) Equipotentials 
field in opposite direction) 

Steady-state perfect- Perfect fluid (zero No physical meaning Equipotentials 

fluid flow viscosity, constant whatsoever 

density) 

Steady-state viscous Real, viscous, k es Equipotentials (or, for 

flow in porous constant-density p ( ps2) constant elevations, isobars: 

media fluid or for constant pressure, 

elevation contour lines) 

These potential-flow systems are compared in Table 16.1. All four potential 

flows can be expressed by Eq. 16.10. One consequence of Eq. 16.10 is that the flow is 

always perpendicular to the equipotential lines. Thus, in fluid-mechanics terminology 

the steady-flow streamlines are always perpendicular to the lines of constant @. This 

property is contrary to our experience in watching balls roll down hills. They start 

from rest, rolling perpendicular to the contour lines but, unless the contour lines are 

straight and parallel, the balls eventually cross them at some other angle. Balls do this 

because they have inertia and try to keep going straight when the hill curves. Flows 

that obey Laplace’s equation generally involve no inertia. Electricity and heat have no 

inertia. In viscous flow in a porous medium the inertia term V* /2 is so small that it 

can be ignored. In perfect-fluid flow the inertia can be significant, but the nonphysi- 

cal character of ¢ and the irrotational character (described in Sec. 16.4) allow this 

flow with inertia to fit an inertia-free formula. 

To gain some feeling for the idea of a potential flow, we will show what kinds of 

flows are described by various choices of ¢, restricting our attention to two-dimensional 

flows, because they are mathematically much easier than three-dimensional flows. In 

general, @ will be ¢ = (x, y), but not every such function satisfies Laplace’s equa- 

tion, so not every such function represents a potential flow. The student may verify that 

b=x,¢=x + y, b =e and $ = sin x do not satisfy Laplace’s equation, so they 

cannot represent potential flows because they violate the mass balance for a constant- 

density fluid (see Prob. 16.4). 

Example 16.1. To illustrate some functions that do satisfy Laplace’s equation, 

map out the flows described by the equations 

ob, = —Ax (16.A) 

$2 = —(Ax + By) ~  (16.B) 
and 

$3 = CIn(x? + y’)'” (16.C) 
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Uniform flow in 

this direction with 

velocity V. = A 
at all x and y 

a 

Streamlines —> 
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Lines of constant , 

FIGURE 16.4 

Flow described by the velocity potential 6; = —Ax. 

Here A and B have dimensions of velocity (ft/s or m/s), and C has dimensions 

of velocity times distance (ft? /s orm? / s). For $;, 62, and 3 the student may 

verify that Laplace’s equation is satisfied. 

For @¢;: 

» Ad Irn0s eCes La Od 
V.. a 

ox 5 oy 
=0 (16.D) 

and ¢, describes a uniform, steady flow of velocity A in the positive x direc- 

tion. This velocity is the same over the entire region described; this might be 

the description of a wind blowing over the ocean at a steady, uniform velocity 

of A; see Fig. 16.4. 

For ¢3: 
rae —d cirrobihgp 2vjova ioral 

Vy 
Ox ; oy 

= B (16.E) 

This flow is shown in Fig. 16.5. From these two examples it is clear that 

any equation of the form ¢@ = Ax + By + C represents a uniform, constant- 

Local velocity at any 

y y point = VA? + B? in 

this direction 

3 ars VA 

pie ees 

FIGURE 16.5 

Flow described by the velocity potential @, = —(Ax + By). 
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velocity flow with velocity (A* + B?)!/?, making the angle arctan (B/ A) with 
the x axis. Such uniform, constant-velocity flows are not of much practical inter- 

est alone, but we will see later how they are combined with other flows to solve 

more interesting problems. 

For many potential functions it is easier to work in plane polar coordi- 

nates than in rectangular coordinates. In polar coordinates Eqs. 16.7 and 16.8 
take the form 

: =9p 
Radial velocity = V, = maf (16.15) 

r 

06 OD 
Tangential velocity = Vg = r— = Awe ee 16.1 gential velocity Tea eke ae: (16.16) 

and Laplace’s equation takes the form 

a a a 
é + ia ths an Vo = 0 (16.17) ——+— + 

et acl aah me 

Although the algebraic expression looks different from that in Cartesian coor- 

dinates, the vector shorthand form is the same for any coordinate system (one 

of the merits of the vector shorthand!). 

In polar coordinates $3 is expressed 

$3 =ClInr (16.F) 

and the velocity components are 

| V, = 0 (16.G) 

Thus, the streamlines are radially inward lines, and the lines of constant poten- 

tial are circles, as shown in Fig. 16.6. If C is positive, the flow is radially inward; 

if it is negative, the flow is 

radially outward. This flow 

is of practical significance 

in the petroleum indus- 

try; it describes the flow 

into an oil well in a thin, 
\ Lines of ¢3 = constant 

we afe.cancenttiocinles horizontal stratum; see 

Fig. 16.7. By 

y 

Equation 16.G shows 

that the radial flow velocity 

becomes infinite at r = 0; 

thus, this equation cannot 

describe any real flow at 

r=. In Fig. 16.7, Eq. 

16.G describes. the flow 

from the oil-bearing stra- 

—<+— Streamlines are 

radial lines inward 

FIGURE 16.6 

Flow described by the velocity potential #3 = C In r. tum up to the well. Inside 
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ie 

Oil flow 

Surface 

Overburden 

Oil-bearing stratum 

Lines of constant of thickness h 

pressure 

Pipe is perforated in 

oil-bearing straturn 

FIGURE 16.7 | 

Flow from a thin, horizontal stratum into an oil well. The flow is two-dimensional and obeys 

3 = Clnr except very close to the origin, where it flows in the z (vertical direction) up 

the pipe. 

the well the flow turns and moves in the direction perpendicular to the plane of Fig. 

16.7 and is clearly not described by Eq. 16.G. 

From Eq. 16.G we can calculate the value of C for any known flow up the well. 

If the oil-bearing stratum is h ft thick and is producing Q ft* /h of oil, then the steady- 

state flow inward across any cylindrical surface surrounding the well is Q. The radial 

velocity is 

nai tena ohie 
"flow area h2ar Co 

Substituting in Eq. 16.G, we find 

Coe an 
r h2ar a as 2th (Le) 

In terms of frictionless perfect fluids, this flow alone has limited significance; 

but it has the same conceptual description. It is commonly referred to as a sink if the 

flow is radially inward or as a source if the flow is radially outward. 

Laplace’s equation has the useful property (which is the basis of most applica- 

tions to perfect-fluid flow) that, if @, and 5 are both individually solutions of 

Laplace’s equation, then their sum must also be a solution, because if 

Io if Po Ib, Pd» 
5+ =0 and — =F — =0 ; 

atone ay? ax’ ay” ee 

then 

dstiuig SiPangs® 1, 80s _ 5 Tibi es) | a Oe 
ax? Ox” Oy Oy” ax* dy" 

(16.K) 
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Example 16.2. Illustrate this property by adding the two potential functions, 
, and 3, discussed previously. 

bs = $ + b3 = —Ax + Cin(x? + y’)!”? (16.L) 

which has velocity components 

CX a Cy 
V.= -(-4 qt 35) ' Ge (16.M) 

Sera Ae Gh mau 

and which is sketched in Fig. 16.8. a 

There are several physical systems that display the flow pattern in Fig. 16.8. 

The flow can be in the direction of the arrows shown or in the reverse direction 

(to reverse the direction of the flow, we need only reverse the signs of A and C in 

Fq= 16:8): 

1. If there is a steady flow from left to right in a thin, porous stratum (as would exist 

in a horizontal oil stratum with a linear pressure gradient) and some of the fluid 

is being withdrawn from a well in a direction perpendicular to the page, then the 

flow pattern is as shown, and the equipotential lines are isobars. 

If the flow direction is reversed, then this is the pattern of a fluid being injected 

into a stratum in which there is steady flow from right to left. 

3. The lines of flow direction marked A and B in Fig. 16.8 close on the point at 

which there is zero flow (i.e., y = 0 and x = C/A). If we divide the flow along 

Y 

FIGURE 16.8 ; Tex 

Flow described by the velocity potential 6, = —Ax + C In(x* + y°) “*. Drawn to scale for A = 1 and 

C = 1. The markings ““ = 7” etc., on the streamlines are discussed in Section 16.5. 
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the curve AB and consider only the flow to the right of this curve, then this rep- 

resents the potential flow outside some two-dimensional body shaped like AB. 

If the flow is from right to left, then this is quite similar to the flow over the 

leading edge of an airplane’s wing or the upstream side of a rounded bridge 

abutment. 

The latter interpretation is the one normally sought in the study of perfect-fluid 

flows; we wish to find the flow pattern around some arbitrary body. This is nor- 

mally done by judicious combinations of steady flows, sources, sinks, etc. When a 

combination is found that produces a streamline with the shape of the body in ques- 

tion, the flow outside that streamline is a representation of the flow around the body. 

The flow inside that line (i.e., inside line AB in Fig. 16.8) normally has no meaning 

and is ignored. Figure 16.8 also shows curves of another function, w, whose properties 

are discussed in Sec. 16.5. 

Similar flow maps for a wide variety of functions and their corresponding 

geometries are given in Porzikidis [4] and Kirchoff [5]. 

16.4 IRROTATIONAL FLOW 

Equations 16.7, 16.8, and 16.9, which define the velocity potential, have an interest- 

ing consequence: Any flow that obeys them must be irrotational. If 6 = (x, y) has 
continuous derivatives, then the order of differentiation is immaterial, and 

vp ae 
ax dy day ax voip) 

But by substituting Eqs. 16.7 and 16.8 in Eq. 16.18, we find 

Oe a avy avy dV. = 
ay re or = ay = (16.19) 

which is the definition of a two-dimensional irrotational flow. 

How Equation 16.19 is related to rotation may be seen by viewing a body 
of fluid rotating in two-dimensional, rigid-body rotation (see Sec. 2.9) about the 
origin; see Fig. 16.9. (This flow is called a forced vortex.) If, as shown, the fluid is 

rotating in rigid-body rotation with 

3 angular velocity w, then at any point 
j Siarntiines the velocity in polar coordinates is 

given by” 
_ Angular velocity @ 

—_ 2 2\1/2 
d@ 

r= (x2 + y2)l/2 r = constant = —. Op— CONStant 
Some arbitrary dt 

point (x, y) (16.N) 
eae 

We can convert to Cartesian coordi- 

nates 
FIGURE 16.9 by 
Solid-body rotation (called a forced vortex). x = rcos 6 y=rsin@ (16.0) 
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so that 

dx dé y 
V. — SS ; ee am Be —— 2orig; r sin @ ah ii ,@ yw (16.P) 

and 

dy do x 
V. Ss —= = = = ae rcos @ si, r - @ = xw (16.Q) 

so that 

SUIS fe ad 16 *. ay =w+ w= 2a (16.R) 

These calculations were carried out for any rigid-body rotation, so we see that 

[(aV, / ax) — (AV,/ dy)] is exactly twice the angular velocity. This quantity is given 
the name vorticity in theoretical fluid mechanics: 

Vorticity = £ = 20 = — —- — [two-dimensional flow] (16.20) 
Ox oy 

This set of derivatives also has a name in the vector shorthand (see App. C), 

os aVy OV, 

Ox oy 
= Vx V=curl V = rot V (16.21) 

The names curl (English usage) or rot (short for rotation, German usage) indicate that this 

function has to do with the rotation of the fluid. For three-dimensional flows there are 

more partial derivatives than the two shown here. Since this function describes rotation, 

if a flow is irrotational (described in more detail below) then at every point in the flow 

ai dV, OV, 
Vorticity = £ = 20 = a ces =Vx V=curlV=rotV=0 (16.22) 

x y, 

It is a property of potential flows that this combination of derivatives is zero at every 

point in a potential flow, so that potential flows are everywhere irrotational. In vector 

shorthand, vorticity is a vector whose direction is that of the axis of rotation and whose 

magnitude is twice the angular velocity. For a flow in the x-y plane, the axis of rota- 

tion must be perpendicular to that plane, i.e., in the z direction. For three-dimensional 

flows the magnitude and direction (2 times angular velocity and direction of the axis 

of rotation) are found by Eq. C.10. 

We see that for simple, rigid-body rotation [(aV, / dx) — (dV, / dy)] is not zero. 
Thus, it is impossible to find any potential function @ that, when substituted in 

Egs. 16.7 and 16.8, will describe such a flow. This does not mean that there can be no 

potential flows that have circular motion. Only those circular motions that have zero 

vorticity are irrotational and hence can be potential flows. For a flow to be irrotational 

requires that the two derivatives, dV, / ax and aV,/ dy, be equal. This is illustrated by 

the potential flow described by 

penser, gy ees dha (16.8) ch 2 V 
ds xy Be ax y dy 
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A fluid cross This flow satisties Laplace's 

Y at times equation and does have the 
suenddir ep? irrotational property (Eq. 

16.22); it is sketched in 

iS : B Fig. 16.10. 

ae On this flow we have DTA 
aw g marked four particles of 

fluid at A, B, C, and D. At 

time t, these are at the 

corners of a cross. Now, if 

we follow them to time 

t; + At, we see that they 

have deformed into a flat- 

tened figure. The line AC is 

seen to be rotating in a 

clockwise direction, because 

FIGURE 16.10 the x component of the 
Flow described by the velocity potential 6; = —xy. The lines velocity increases in the y 

x = y and x = —y are streamlines, which can be replaced in daextion and ‘point 4 

perfect fluid flow by solid surfaces, so that this is the flow into a 

corner, reproduced in all four quadrants. moves to the right faster 
than point C does. How- 

ever, line BD is rotating counterclockwise, because the y component of the velocity 

increases in the x direction. We may show that these lines are rotating in the oppo- 

site directions at the same speed, so that, although the fluid is being deformed by the 

flow, it has no net rotation. 

The flow shown in Fig. 16.10 is representative of the flow into a square corner. 

This may be seen by noting that the lines y = x and y = —x are both streamlines: 

thus, there is no flow across them. 

To see that this irrotational property can exist in a flow in which the stream- 

lines are circles, consider the potential flow described by 

=! 
do = —A arctan ~ = —A@ (16.T) 

Here both the rectangular and polar forms of @, are shown, In polar coordinates the 

velocity components are 

_ —db6 —1 0d A 
View =.(y inniacaiee as ‘3 

or : r 0g r (16.U) 

So at any point the velocity component toward the origin (V,) is zero; thus, the stream- 
lines are circles, and the equipotential lines are rays passing through the origin. This 
flow is sketched in Fig. 16.11. 

In this figure we see that, if we mark a fluid cross ABCD at time ft, and then 
look at it again at time ft, + Az, line BD has rotated in the counterclockwise direec- 
tion, but line AC has rotated in the clockwise direction, because the fluid at C is mov- 
ing much faster than the fluid at A. Thus, although the streamlines in this flow are all 
circles, the individual particles of fluid are not rotating. We can demonstrate this by 



The same cross 

att =(t, + Af) 

Equipotential lines are rays 
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Streamlines are concentric 

circles about the origin; 
on any one, the velocity 

is proportional to | / r. 

passing outward from the origin 

FIGURE 16.11 

Flow described by the velocity potential d, = —A arctan(y/x) = —A@ (called a 

free vortex). The circumferential velocity increases toward the center, proportional 

to (1/r). 

placing a float on such a flow and observing that it moves in a circle but maintains 

its x-y orientation, just as a compass needle would if the compass were moved in a 

FIGURE 16.12 

Flow described by the velocity potential 6; = —A@ + Clnr. 

Drawn to scale for A = 1 and C = 1. The markings y = 1 + 7, 

etc. are discussed in Section 16.5. Each streamline and potential 

line make an infinite number of circles about the origin as r 

approaches zero; this drawing only shows them entering the 

region in which they begin their infinite number of circles. 

circle. For the flow in Fig. 

16.9, such a float would 

keep the same side radially 

outward at all times, making 

one rotation for every trip 

around the origin. 

The flow shown in 

Fig. 16.11 is called a free 

vortex; it is not common 

alone in nature. However, 

the combination of a free 

vortex with the sink shown 

in Fig. 16.6, obtained by 

adding the potential func- 

tions, produces 

ob; = $3 + $6 

= AG + "Gdn (62V) 

which describes a flow in 

which fluid spirals into a 

central sink; see Fig. 16.12. 

Figure 16.12 is a fair 

description of most of the 
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flow into the eye of a tornado or of the flow spiraling inward toward the drain of a 

bathtub. In both cases the flow does not extend into the origin but turns and moves 

in the +z or —z direction over some small region near the origin. Thus, Eq. 16.V and 

Fig. 16.12 are satisfactory descriptions only of those regions in the flow that are far 

enough from the origin to have negligible velocities in the z direction. 

The important idea of an irrotational flow is that at any point in the fluid the 

angular velocity about any axis is zero. The demonstration is shown for zero angular 

velocity about any axis perpendicular to the x-y plane in Figs. 16.10 and 16.11. It can 

be shown that for any three-dimensional flow that obeys Laplace’s equation, the angu- 

lar velocity at any point is zero about any axis. 

16.5 STREAM FUNCTION 

So far in mapping out potential flow directions we have merely noted that the 

streamline at any point must be perpendicular to the equipotential line, and we 

have sketched such streamlines. Now we introduce a more formal method of show- 

ing the flow directions at any point. From Eq. 15.8 we know that for a steady, incom- 

pressible, two-dimensional flow 

OV, dV, 5 A 
i —.() [two-dimensional flow ] (16.23) 

Ox oy 

We now arbitrarily define a new function wW, called the stream function, or Lagrange 

stream function, by the equations 

\ Bae pears y= 16.2 ay ive of; (16.24) 

If y& has continuous derivatives, then we may substitute Eq. 16.24 in Eq. 15.8, so that 

ve aor ee. de = 
Ox dy Oy Ox Ox dy 

(16.25) 

So any flow that satisfies Eq. 16.24 automatically satisfies the two-dimensional, 

steady-flow, incompressible-material balance. We see that y must also have the dimen- 

sion of ft?/s or m?/s. Comparing Eqs. 16.7 and 16.8 to Eq. 16.24, we find 

poe _ ete tye OO = rs AT Be Boks (16.26) 

Equations 16.26 can be satisfied only if for every x and y the curve of constant ¢@ and 
the curve of constant y passing through that point are perpendicular. This is illus- 
trated by Fig. 16.13 and proven in App. B.8 (see also Prob. 16.7). 

Since streamlines also have the property of being everywhere perpendicular to 
equipotentials, all the streamlines that appear in Figs. 16.3, 16.4, 16.5, 16.7, 16.8, and 
16.10 are lines of constant w. 

The stream function has an intuitive explanation, shown in Fig. 16.14. If, as dis- 
cussed above, curves of constant w are streamlines, then there can be no flow across 
a curve of constant w. In Fig. 16.14 the entire flow that is passing between the curves 
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d& = constant 

Some arbitrary x, y; at any such 

point, the @ = constant and 

w = constant lines are perpendicular 

w = constant 
x 

FIGURE 16.13 

At any point in an irrotational flow, the lines of constant stream function 

and constant velocity potential are perpendicular; see App. B.8. 

yw = 1 and w = 2 at A must also be passing between them at B. However, the space 

between them at B is less than that at A, so there is less area available to the flow at 

B; hence, by mass balance the velocity must be greater. From Eq. 16.24 we see that 

the velocity in the x direction can be greater at B than at A only if the curves of con- 

stant are closer together at B; that is —dy/ dy is greater at B than at A. We may 

thus think of the curves of constant w as being the boundaries of flow channels; as 

they squeeze together, the flow between them must go faster. 

If we imagine the flow shown in Fig. 16.14 as being h ft deep in the z direc- 

tion, then the flow passing between lines Ww = 2 and & = 1 at A is 

w=1 ft?/s Ww=1 ft/s w=1 ft/s ay 

o- | v.aa = f Vindy =n f - () dy 
p=2F/s Y=2 ft/s p=2 ft/s Oy /, 

w=2 ft?/s - ft? ft2 

h i dy = h[Whiters = h(2 — 1I)— = h— (16.W) 
w=1 ft?/s Ss Ss 

(Here h has the dimension of a length, so that the dimension of the volumetric flow 

rate is indeed correct.) Thus, if on a flow field curves of constant w are drawn at equal 

intervals of wy, then the volumetric flow between each two such successive curves must 

be the same for each two (e.g., in Fig. 16.14 the volumetric flow between y% = 1 and 

yw = 2 is the same as the volumetric flow between % = 2 and w = 3, etc.). 

Flow direction —— 

- Curves of 

w= 1itss constant y 

p= 221s 

w= 37s 

1 
| 

A 

FIGURE 16.14 

Stream function for steady flow in a channel transition of constant depth. The velocity 

must increase as the stream function lines crowd together at the right of the figure. 

501 
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In Fig. 16.14 the curves of constant y are numbered from the top down, so that 

ay / dy is negative and hence, the flow is in the positive x direction. If they had been 

numbered from the bottom up, then dy / dy would be positive, and the flow would be 

in the negative x direction. This is a purely arbitrary arrangement; we must number 

them this way because of the signs in the definitions in Eq. 16.24. We could have - 

reversed those signs and still had a satisfactory stream function, with the numbering 

direction of the stream function curves reversed. German writers usually use a stream 

function that has the signs so reversed; when reading German texts we must be care- 

ful to observe this sign difference. 

If we know the potential function that describes some flow, we can compute the 

stream function, and conversely. The calculation is based on the following general 

integration property of partial derivatives. If A = A(B, C), where A, B, and C are any 

mathematical functions, then 

0A Plat en aan el ae 
Here f;(C) is some function of C alone. If we now let A be w, and if we know ¢, we 

can immediately write down the necessary partial derivatives and integrate. 

Example 16.3. To illustrate the use of Eq. 16.27, find the w that corresponds 

to d4 (Eq. 16.L). 

Using Eqs. 16.26, we find for @4, 

Od, OW, ( Cx 
Ve = i — — = —A + 5 i 

: ox Oy ce SE y? = 

and 

dd ow Cy 
yeoSe ett 5 (16.Y) 

oy Ox x” hey 

Letting B in Eq. 16.27 be y in Eqs. 16.X and 16.Y, we find 

Ze Cs y 
Wy = i] —Alch 4. dy + f,(x) = —Ay + C arctan © + fi(x) (16.Z) 

Here the integration has been performed by treating x as a constant, as required 
by Eq. 16.27. 

Now we differentiate Eq. 16.Z with respect to x at constant y: 

a G d SU7g a ; a =e if; (x) 

Ox Seats vues dx 

From Eq. 16.27, we know that f, depends on x alone, so that the derivative at 
the right is not a partial derivative. Comparing Eq. 16.AA with Eq. 16.Y, we 
see that df, (x) / dx must be zero; so, by simple integration, f;(x) must be a con- 
stant. Thus, for 64 we have 

(16.AA) 

y 
Wy = -Ay+C arctan © + some constant (16.AB) 
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One may show (Prob. 16.8) that, if we choose to make the B in Eq. 16.27 the 
x in Eqs. 16.X and 16.Y, we obtain the same result. By plotting various lines of 
constant y given by Eq. 16.AB, we may see that the lines of constant w given by 
Eq. 16.AB are the streamlines in Fig. 16.8. 

Example 16.4. Repeat Example 16.3 for 3, which is shown in rectangular 
coordinates in Eq. 16.C and in polar coordinates in Eq. 16.F. It is easier to work 
in polar coordinates. The stream function in polar coordinates takes the form 

a1 os 
V, =e Se a ; eicketys (16.28) 

dys 
Y= mean (16.29) 

Thus, from Eq. 16.C we have 

Oba shies VG 
V a oe . pa 2 a caer : (16.AC) 

1 063 _ dps 
V = i. = => 6 iS ORs Fs 0 (16.AD) 

So, letting B in Eq. 16.27 be 6 and C be +, we find 

3 = | C00 = it) = <CO, 1a n) (16.AE) 

“ts _ df\(7) 
( Pay bala (16.AF) 

but from Eq. 16.AD we know that this is zero, so f;(r) must be a constant and 

Ww = —Cé + constant (16.AG) 

So the streamlines are rays passing to the origin at various angles, as shown in 

Fig. 16.6. = 

An interesting property of the stream function and the velocity potential is that, 

if for a given flow dg = f; (x y) and We = f2(x y), then there is another flow given 

by do = fo(%, y) and Ww = fi (x, y). This second flow has exactly the same map as the 

first, except that the labels are reversed; the streamlines on one are equipotentials on 

the other, and conversely. For example, Figs. 16.6 and 16.11 bear this relation one to 

the other. This property is also a property of the real and imaginary parts of any ana- 

lytic complex function. Because the stream function and velocity potential have this 

property in common with the real and imaginary parts of an analytic complex func- 

tion, they can be manipulated by the rules for complex functions. In particular, they 

obey the rules of conformal mapping, a complex-function procedure that is widely 

used both in heat flow and in potential flow of fluids [6, p. 66]. 

The discussion has all been for the application of the stream function to poten- 

tial flows. However, it can also sometimes be used to advantage for flows that are not 

irrotational and for which a potential function cannot exist (see Probs. 16.10 and 17.4). 

This is possible because the stream function is used in these cases simply as a way 

of combining the mass balance with the other pertinent equations. 
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The entire discussion of the stream function has been for two-dimensional flow. 

The definition of a satisfactory stream function for three-dimensional flows is more 

difficult. However, if the flow is symmetrical about some axis, e.g., the uniform flow 

around some body of revolution, then it is possible to define a different stream func- 

tion that is convenient for that problem. This three-dimensional stream function is 

called Stokes’ stream function [6, p. 125], to distinguish it from the Lagrange stream 

function, the one discussed in this chapter. 

16.6 BERNOULLI’S EQUATION FOR TWO- 
DIMENSIONAL, PERFECT-FLUID, 
IRROTATIONAL FLOWS 

The velocity-potential stream-function methods shown in the preceding sections 

allow us to calculate the flow velocity and direction at any point in a two-dimensional, 

perfect-fluid, irrotational flow. Sometimes this is all the information sought. More often 

the desired information is the force on some body immersed in the flow, for example, 

the lift and drag of a wing section or the drag on a particle settling through a fluid. 

In Chap. 5 we derived B.E. from the energy balance equation: Since the energy 

balance has no one-dimensional restriction on it, the same approach must apply to 

two- and three-dimensional flows. However, in our derivation of B.E. we restricted 

our attention to systems with only one flow in and out. How can we apply this idea 

to a two-dimensional flow field in which there is a continuously varying velocity over 

some region of space? In Fig. 16.15 such a region is shown with no sources, sinks, 

or solid bodies, but with streamlines. 

At A we draw a closed curve (e.g., a circle) around a streamline, perpendicular 

to the flow. Then we draw streamlines from every point in that closed curve, in the 

direction of flow. Since streamlines cannot cross or separate except at a source, a sink, 

or the edge of a solid body, we can draw a closed curve farther downstream (e.g., at B) 

through which all the streamlines that pass through the curve at A must also pass. This 

curve at B probably will not have the same shape as the curve at A, but it will exist. 

Such a set of streamlines, which form a closed curve in any plane perpendicular to the 

flow, is called a stream tube. Let us choose the tube from A to B as our system. Then, 

for steady flow there is only flow into or out of the stream tube at the ends A and B. 
y In deriving B.E. we assumed that 

the flow into and out of the system was 

of uniform velocity, etc. This will not be 

B true in general of any stream tube, 
Stream tube because the -velocity may be different 

from one streamline to the next. How- 

ever, if we make our stream tube smaller 

and smaller, then the nonuniformity of 

the flow across its entrance (and exit) 

Streamlines 

x becomes negligible. In the limit the 

stream tube can be thought of as being 
FIGURE 16.15 so thin that it shrinks down to just a 
A stream tube is a small region of space streamline. For such a stream tube 
surrounding a streamline. B.E., as derived in Chap. 5, is obviously 
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applicable. This result is true for any kind of incompressible flow; if the flow is fric- 
tionless (i.e., an ideal fluid), then the friction term may be dropped and B.E. inte- 
grated from some point in the streamline to any adjacent point, to find 

a(2 + +E <0 
Sa a 

> along a streamline, 

or 

le 
a ate OZ cs = constant frictionless, constant- (16.30) 

density flow 

Here V is the velocity relative to our fixed coordinate system, given by 

Vee = (ve v;)2 (16.31) 

This result allows us to evaluate the pressure on the surface of any body immersed 

in the flow and hence the force, if only we know the pressure at some upstream posi- 

tion and the total velocity field. (It is proven in various hydrodynamics texts that for 

irrotational flow from a single reservoir the constant in Eq. 16.30 is the same for all 

streamlines, whereas for rotational flows it is not the same but is only constant along 

one particular streamline.) 

16.7 FLOW AROUND A CYLINDER 

To illustrate the idea of potential flow and how one can use it to calculate forces, we 

calculate the pressure distribution on the surface of a cylinder that is immersed in a 

perfect-fluid flow perpendicular to it. If this is a very long cylinder, then there will 

be negligible change in the flow in the direction of the cylinder’s axis, and hence the 

flow will be practically two-dimensional. To find the flow field, we must make a judi- 

cious combination of a steady flow, a source, and a sink. Consider first a source and 

a sink with equal flow rates located some distance A apart on the x axis; see Fig. 16.16. 

The flow between them is given by 

Oui Gales Gye ac Gdn Alt? (16.AH) 

Figure 16.16 is a fair representation of the flow between an injection and a pro- 

duction well in a porous medium and hence has some application in petroleum reser- 

voir engineering and hydrology. If the C in Eq. 16.AH is a constant, then, as A gets 

smaller and smaller, the flow at any point (except a point directly between the source 

and the sink) must become smaller and smaller, approaching zero, because more and 

more of the flow will take the direct path from the source to the sink. If. we replace 

the C in Eq. 16.AH with C/A, then the total flow increases just as the distance between 

sink and source (A) decreases. In this case the flow at any point does not go to zero 

as A goes to zero; we find the value of ¢j9 as A goes to zero by L’Hopital’s rule: 

iB a eon ee Oe 
limit —- (= In | 
A—0 dA 2 (x - A) am Wy —Cx 

= = 16.AI 10 as A->0 eked ( ) 
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Streamlines 

Lines of 

constant & 

FIGURE 16.16 
Flow represented by @j9 = —C In(x* + oils + CIn[(x — A)’ + ited dé consisting 

of a source and a sink, separated by distance A. 

This limiting case of a source and a sink at zero distance apart is called a doublet. If 

we now combine this doublet flow with a uniform flow given by ,;; = —Dx, we find 

Cx 
= DF : 16.AJ 12 Sir (16.AJ) 

At this point it is convenient to switch to polar coordinates, in which case Eq. 16.AJ 

becomes 

cos 8 (G 
$1. = —Drcos 6 — C f 7 = -(£ o pr) cos @ (16.AK) 

r 

so that 

6 G 
V, = gatP 2 -(§ = D) cos 6 (16.AL) 

or ee 

and 

—1 dd) G . 
Vj =i a Sa i 
4 r 00 (S D) ne Ait 

This flow is sketched in Fig. 16.17, in which one of the streamlines is a circle. From 

Eq. 16.AL, this is the circle for which V, = 0; that is, r = (C/ Pye Thus, this is a 
perfect-fluid flow that has a circular streamline. In perfect-fluid theory we can sub- 

stitute a solid body for any streamline without affecting the flow outside that stream- 

line; so the flow for r > (C/ p)'’ * is the same as the perfect-fluid flow that would 

exist outside a circular cylinder oriented perpendicular to the flow. 

Example 16.5. Based on the equation for potential flow around a cylinder, use 

B.E. to estimate the pressure at any point on the surface of the cylinder. We 

assume that far to the left in Fig. 16.17 the flow is undisturbed by the cylinder, 
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Flow 

Aa Te co Way A 

Streamlines 

FIGURE 16.17 

Streamlines for 6). = —[{(C/r) + Dr]cos @. The circular streamline has radius 
VC/D. The flow inside that streamline is normally ignored; the flow outside that 

streamline is the perfect-fluid flow perpendicular to a long circular cylinder. 

so that it is moving from left to right at a uniform velocity Vo with a uniform 

pressure Po and that the changes in elevation in the entire flow are negligible. 

Then from Eqs. 16.30 we know that the pressure at any point in the flow is 
given by 

ey 
P=Py)+ A(%2 = +) (16.AN) 

Here the velocity is given by Eq. 16.31. Along the surface of the cylinder 

V, = 0; so V = Vp. Substituting from Eq. 16.AM for r = (C/D)!/?, we find 

(Vo)at the surface — —2D sin @ (16.AO) 
of the cylinder 

We can compare ¢ > to ¢, and see that as x becomes very large (positive or 

negative) the second term in ¢;> approaches zero, so that the velocity far away 

from the cylinder, which we have defined as Vo, must equal D. We also see that 

at the surface of the cylinder V, = 0, so that 
2 V 

Pyurface of the — Po 9 p= (1 aaa sin 0) (16.AP) 

cylinder Z 

i 

Now that we have found the perfect-fluid solution for the pressure at various 

points on the surface of a cylinder, we should ask whether nature really behaves this 

way. Figure 16.18 shows the pressure at various values of 6 calculated from Eq. 16.AP 

and also the measured pressures at the same angles at two different flow rates. For 

both of these flow rates there is fair agreement between the observed pressures and 

Eq. 16.AP along the front of the cylinder (0° to 90° and 270° to 360°), but there is 

very poor agreement for the back of the cylinder. The explanation is in terms of sep- 

aration, described in the following section. 
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FIGURE 16.18 

Pressure on the surface of a cylinder; comparison of the perfect-fluid calculation and 

experimental observations. The theoretical curve is Eq. 16.AP; the other curves correspond 

to Reynolds numbers of 1.86 X 10° and 6.7 X 10°. The reason for the great difference 

between these two curves is given in Sec. 17.6. (From H. Muttray, “Die experimentalen 

Tatsachen des Widerstandes ohne Auftrieb”—“The Experimental Data of Drag Without 

Lift’—in Handbuch der Experimentalphysik Hydro- und Aero-Dynamik, Leipzig: 

Akademische verlagsgesellschaft m.b.h. p. 316 (1932); based on data by Flaschbart.) 

8 = 0 corresponds to the front stagnation point, which would be 180° in Fig. 16.17. 

16.8 SEPARATION 

Figure 16.17 shows the perfect-fluid solution for the flow around a cylinder. The 

flow splits at the upstream face, flows smoothly around the cylinder, and rejoins at 

the downstream face. Equation 16.AP shows that at 6 = 0 and @ = 180° the flow 

velocity is zero; these are the points where the flow divides; hence, the flow has no 

velocity here. Such zero-velocity points are commonly called stagnation points. 

The actual flow pattern of a real fluid flowing around a cylinder can be observed 

by putting dye markers or bits of lint in a fluid. The observed pattern is sketched in 

Fig. 16.19. To the left (upstream of the cylinder) the flow is very similar to that 

Solid cylinder 

Chaotic, eddying wake 

Streamlines 

Saar Scan eats 

FIGURE 16.19 

Real fluid flow around a cylinder at high Reynolds number. 
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described by Eq. 16.AP for a perfect fluid. However, downstream, instead of closing 
together behind the cylinder as a perfect fluid would, the flow pulls away from the 
cylinder at the points marked A, leaving the back of the cylinder covered by an eddy- 
ing wake. This departure of the streamline from the body around which it is flowing 
is called separation. 

Separation is caused by friction. In a real fluid the viscous friction in the bound- 

ary layer near the wall of the cylinder causes the fluid to go slower than the corre- 

sponding perfect fluid would. On the front of the cylinder this has relatively little 

effect on the flow pattern, because there the fluid is speeding up and decreasing in 

pressure. However, on the rear of the cylinder the perfect-fluid flow is one in which 

the fluid is slowing down and increasing in pressure. For the fluid to reach the rear 

stagnation point it cannot have lost any momentum due to the effects of viscous fric- 

tion. Since the real fluid has lost some momentum due to viscous friction, it does not 

have enough momentum to overcome the adverse pressure gradient on the rear of the 

cylinder, so it flows away, as illustrated in Fig. 16.20. 

For the designer of an aircraft, a racing car, or a structure, separation is very 

troublesome. Comparing the pressures before and behind the cylinder in Fig. 16.18, 

we see that the average pressure behind the cylinder, although high enough to cause 

the flow to separate, is not nearly as high as the pressure that would have existed if 

the flow had not separated. Thus, the cylinder has a large net pressure force acting on 

it. For an aircraft this would be a drag force, which would require the expenditure of 

power to overcome. This power is ultimately used up in friction heating in the eddy- 

ing wake behind the cylinder. Much of the ingenuity of modern aircraft designers 

has gone into designing special wing structures (flaps, slots, spoilers, jets) to prevent 

separation [7]. 

For a bluff body like a cylinder or a flat plate perpendicular to the flow, sepa- 

ration is almost inevitable. On the other hand, for a streamlined body like an airplane 

wing or a fish, separation normally does not occur, and the flow pattern is very much 

like that shown by perfect-fluid theory. Figure 16.21 shows a comparison of the pre- 

dicted and observed pressures on a “streamlined” body; the agreement between the 

predictions of perfect-fluid theory and experiment are quite good except at the very 

rear. Thus, the aeronautical engineers can predict the lift of a “streamlined” wing with 

fair accuracy by using perfect-fluid theory. However, perfect-fluid theory predicts zero 

Velocity decreasing, 

pressure increasing 

ea Fluid does not 

Xx have enough 

momentum to 
penetrate high- 

pressure region 

behind cylinder, 

so flow separates 

Maximum velocity, minimum pressure 

NK 
Velocity increasing, 

pressure decreasing 

Streamline 

Solid 

cylinder 

FIGURE 16.20 

Separation in flow around a cylinder at high Reynolds number. 
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Flow direction ——p=> 

(P — Po) /(pV/ 2) 

Experiment 

Length ——H_+ 

FIGURE 16.21 

Comparison of experimental pressures with those calculated from perfect-fluid theory 

for a streamlined body. (From H. Muttray, “Die experimentalen Tatsachen des 

Widerstandes ohne Auftrieb”—‘“The Experimental Data of Drag Wiihout Lift’—in 

Handbuch der Experimentalphysik Hydro- und Aero-Dynamik, Leipzig, Akademische “ 

verlagsgesellschaft m.b.h. p. 316 (1932); based on data by Fuhrmann.) 

drag, whereas all real-fluid flows show drag; so perfect-fluid theory alone is of little 

use in drag predictions. 

One may define a streamlined body as one for which the real-fluid streamlines 

cling to the body all along its length without separation; normally such shapes are 

blunt in front and gradually taper in back. 

The development of supercomputers has made it possible to apply the idea of 

potential flow outside the boundary layer and viscous flow inside the boundary layer to 

very complex structures and situations. Currently, commercial aircraft designs are 

“tested” with supercomputers using the combination of potential flow and the bound- 

ary layer, much more quickly and cheaply than they could be tested with scale models 

in wind tunnels or in flight tests [8]. 

16.9 SUMMARY 

1. As shown in Chap. 15, the mathematics of two- and three-dimensional flows are 

much more difficult than those of one-dimensional flows. To simplify these math- 

ematics, the concept of a perfect fluid with zero viscosity and constant density was 

invented. 

= This perfect fluid obeys the laws of potential flow, just as heat conduction and elec- 

trostatic fields do. 

3. This potential-flow theory also describes the flow of a viscous fluid in a porous 

medium, which is of considerable practical significance in petroleum reservoir 

engineering, hydrology, filters, etc. . 

> Perfect-fluid solutions give fair descriptions of many flows, except near solid 

boundaries. 
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5. To handle complex flows involving solid boundaries, Prandtl introduced the idea 
of using perfect-fluid theory far from the solid surface and taking viscosity into 
account only in a thin boundary layer near the surface of the solid. 

6. Potential flows are irrotational. 

7. For many real flows the streamlines separate from the body around which they are 
flowing. This results in the formation of eddying wakes, low pressure behind the 
body, and large drag forces. This is not predictable by perfect-fluid theory, but it 
can be approached through boundary-layer theory. 

PROBLEMS 

See the Common Units and Values for Problems and Examples inside the back cover. 

An asterisk (*) on a problem number indicates that the answer is given in App. D. 

16.1. Describe the heat conduction and electrostatic fields that correspond to Figs. 16.4, 16.6, 

16.8, and 16.16. 

16.2. The flow described by Fig. 16.6 may be thought of as an oil well drawing fluid from a 

horizontal stratum. The oil stratum is 10 ft thick, and the flow is 100 ft?/h of a fluid 

with p = 50 lbm/ ft? and x = 10 cP. The permeability of the stratum is 10 '' ft*. The 

pressure at the inside of the well (radius 0.25 ft) is 1000 psia. Prepare a sketch of the 

pressure versus distance from the center of the well. 

16.3. Map out the following potential flows. In each case verify that Laplace’s equation is 

satisfied, calculate the equation of the stream function, and indicate to what physical 

situation these flows might correspond: 

(a) $13 = A(x — y’) (16.AQ) 

(b) i4 = Ar” cos nO /n forn = 3,4, 1,3, and 2 (16.AR) 

(c) gis = Bx + Cin(x* + y’) — ClIn[(x — A)? + y’] (16.AS) 

16.4. Map out the flows predicted by di, = X, O17 =x + y*, big = —e*, and dio = sinx, 

and show that each of these does indeed result in a flow in which mass is not conserved 

(for a constant-density fluid), as discussed in Sec. 16.3. 

16.5. Show the derivation of Eqs. 16.15, 16.16, and 16.17. Hint: These transformations are 

made in terms of the “chain rules,” as shown in any text on advanced calculus. 

16.6. (a) Show that the vorticity (Eq. 16.20) in plane polar coordinates is given by 

£ = V,_/r t+ dV_/ dr — (1/r) (0V,/ 06) (16.32) 

(b) Using Eq. 16.32, show that the flow described by Eq. 16.N is not irrotational, but 

that the flow described by Eq. 16.T is irrotational. 

16.7. Show that Eqs. 16.26 can be simultaneously satisfied only if both @ and w& each satisfy 

Laplace’s equation, Eq. 16.4. Hint: Differentiate V, with respect to y at constant x and 

V, with respect to x at constant y, and then subtract one equation from the other. 

16.8. Show that if we choose B in Eq. 16.27 to be x in Eqs. 16.X and 16.Y, then we find the 

same y shown in Eq. 16.AB. Hint: Use the identity that arctan x = 7 / 2 — arctan(1/ x). 

16.9. Find the stream functions that correspond to $2, $5, de, and o>. 

16.10. Although the stream function is most often used with the potential function, it can 

be used for viscous flows for which no potential function exists. For example, the 

laminar flow of a viscous fluid along a sloping flat plate is given by the equation 
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y direction 

Flow re Film thickness d a 

pes 
x direction 

FIGURE 16.22 
Laminar flow of a viscous liquid down an inclined plane; see Prob. 16.10. 

16.11. 

V, = [(pgd* cos B)/ 2p][1 — (y/d)’], as described in Bird, Stewart, and Lightfoot 

(9, p. 45]; see Fig. 16.22. Calculate the stream function for this flow. Show that this 

flow cannot be represented by any potential function. 

Show that one cannot calculate a ¢ from the w calculated in Prob. 16.10 by the method 

shown in Sec. 16.5 for finding @ from wW. To do this, calculate ¢ from yw, and show that 

the resulting function does not give back the correct values of 06 / ax and dys / dy on 

differentiation. The reason this cannot be done is that Eqs. 16.26 hold only (as may be 

shown) if both ¢ and w satisfy Laplace’s equation, and the & found in Prob. 16.10 does 

not satisfy Laplace’s equation. 4 

16.12.*The potential flow of a frictionless fluid with p = 60 lbm / ft? is described’ by 

16.13. 

16.14. 

1 2 2 

dio = (-10 ‘ee pe ie (16.AT) 

The pressure at x = 0, y = 0 is 20 psia. Calculate the pressure at x = 1 ft and y = 1 ft; 

at x = Sft and y = 0. 

In Prob. 16.3(a) you showed that equation ¢,3 described the frictionless potential flow 

into a rectangular corner. At x) and y = 0 (i.e., location x9 on the positive x axis) 

P = 1.00 atm and V = 1 ft/s in the minus x direction. Show the equation for the pres- 

sure as a function of position along the positive y axis (i.e., for all points for which 

x=Oand y=0. 

A tornado is described by #7. At a distance 1 mi from the eye of the tornado (i.e., the 

origin of the coordinate system) the radial velocity is 1 mi / h inward toward the origin 

and the tangential velocity is 1 mi/h. 

(a) What are the radial and tangential velocity components 50 ft from the center of the 

tornado? 

(b) If the pressure is 14.7 psia 1 mi from the center of the tornado, what is the pres- 

sure 50 ft from the center? 

16.15.*In Prob. 16.14, if we put a marker (e.g., a neutrally buoyant balloon) in the air at a point 

1 mi from the center of the tornado, how long will it take it to move to a point 50 ft 

from the center? 

16.16.*Figure 16.16 represents the flow from an injection well to a production well in a porous 

16.17. 

16.18. 

medium. How much of the flow between the two wells passes outside the streamlines 

that pass through the points (A /2,A/2) and (A/2, —A/ 2)? 
Figure 16.8 is drawn for A = 1 and C = 1. Sketch the equivalent of this figure 

(a) For A = 1 and C = 10. 

(b) For A = 10 and C = 1. 

Figure 16.12 is drawn for A = 1 and C = 1. Sketch the equivalent of this figure 
(a) For A = | and C = 10. 

(b) For A = 10 and C = 1. 
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16.19. In Chap. 2 we showed that if we put a real fluid in an open can on a turntable and 

rotated it, after a long time the fluid would be in solid-body rotation, which corresponds 

to the forced vortex in Fig. 16.9. Suppose that we replaced the real fluid with a perfect 

fluid and repeated the experiment. After a long time, what would the flow in the can 

be? What does this tell you about how one would produce vorticity in a perfect fluid? 
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CHAPTER 

He 
Shiels: 
BOUNDARY 
LAYER 

A n introduction to the topic of the boundary layer is given in Sec. 16.1. The topic 

is a very large one. It is an active field of fluid mechanics research, so new results 

are constantly being published. Here we cannot hope to cover the entire topic; rather, 

we intend to show by a few examples what types of solution are obtainable and to 

impart some feeling for the results of the boundary-layer approach. More terminology 

will be introduced than is necessary for the subject actually treated. This terminology 

is in common usage in the boundary-layer literature; it is introduced here to show the 

student how these common terms relate to the other subjects treated in this book. 

17.1 PRANDTLU’S BOUNDARY-LAYER 
EQUATIONS 

Ludwig Prandtl, the father of the boundary-layer theory, after making the conceptual 

division of the flow discussed in Sec. 16.1, set out to calculate the flow in the bound- 

ary layer. He chose as his starting point the Navrer-Stokes equations (Sec. 15.4) and 

simplified them by dropping the terms he considered unimportant. His simplifications 
are as follows: 

1. The solid surface is taken as the x axis, the boundary layer beginning at the origin; 
see Fig, 17.1. 

2. Gravity is unimportant compared with the other forces acting, so the gravity term 
can be dropped. 
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4 3. The flow is two-dimen- 
sional in the x and y direc- 

V,. tions. This means that V. 

(the z component of the 

Boundary layer velocity) is zero, as are all 

x derivatives with respect to 

z. These simplifications 

make the z momentum 

FIGURE 17.1 balance all zeros, so it can 

The boundary layer on a thin, flat plate. be dropped from the list of 

equations to be solved. 

Solid surface 

4. Although there is some flow in the y direction within the boundary layer, it is slow 

enough compared with the flow in the x direction for us not to need to consider 

the y-directed momentum balance. This does not mean that V, is zero, but it does 

mean that dP/ dy is negligible. 

5. The 4(d°V,/ dx*) term in the momentum balance is small compared with the 
(0°V,/ dy*) term and may be dropped. 

Making these simplifications in Eq. 15.26, dividing by p, and replacing uw / p 

by v (the kinematic viscosity), Prandtl found 

aV, av, aV, 1 oP a°V, 
+ V~. + Vy = — + yp > (Wigai) 

ot Ox “ oy p ox oy 

This equation and the two-dimensional, constant-density material balance (see Eq. 15.8) 

OV ecrnbOVy 
3S ES) (17.2) 
Ox dy 

are referred to as boundary-layer equations or Prandtl’s boundary-layer equations. 

In boundary-layer flows, as in flow in a pipe, the flow can be laminar or tur- 

bulent. Prandtl’s equations, as shown above, are limited to laminar flows because of 

the form of the fluid friction term. The analogous form for turbulent flows can be 

derived [1, Chap. 18] but is of little use. 

17.2 THE STEADY-FLOW, LAMINAR 
BOUNDARY LAYER ON A FLAT 
PLATE PARALLEL TO THE FLOW 

As an example of the use of the boundary-layer equations, we consider the simplest 

possible boundary-layer problem, the steady flow of a constant-density, Newtonian 

fluid past a flat plate placed parallel to the flow at velocities low enough for the flow 

to be laminar everywhere, shown schematically in Fig. 17.2 

To find a complete description of this flow, we must find a function, 

V, = V,(x, y), that satisfies Eqs. 17.1 and 17.2 together with the conditions that at 

y = 0 and x > 0 the velocity components V, and V, are zero (that is, no flow along 

or across the solid surface) and that, as y becomes large, V, becomes the same as the 

perfect-fluid flow (see Chap. 16) outside the boundary layer. 
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V, = 0.99 V,. 

FIGURE 17.2 
The velocity distribution in the boundary layer on a thin, flat plate. 

For the system shown in Fig. 17.2 the perfect-fluid flow is described by 

b = —Vaox ‘ (17.3) 

so that, outside the boundary layer, V, = V.; and V, = 0 for all x and y. Thus, the 

second condition is that, as y becomes large, V, must approach V... 

From the perfect-fluid solution we find ap / dx = 0. This is true outside the 

boundary layer; inside the boundary layer it may not be exactly true but, according 

to Prandtl’s third assumption, there is no change in pressure in the y direction inside 

the boundary layer. Therefore, at any point in this boundary layer the pressure is 

the same as the pressure at that x in the perfect-fluid flow outside the boundary 

layer. Boundary-layer experts describe this assumption by saying that the pressure 

in the perfect-fluid flow outside the boundary layer is impressed on the boundary 

layer. Thus, according to this assumption, the dP / dx term in Eq. 17.1 can be dropped, 

giving 

AV, Vint ni nV +V,— = : Srila ip ae (17.4) 

This problem of determining the flow velocity at every point near the plate is a 

boundary-value problem, 1.e., a set of partial differential equations with specified val- 

ues on the boundaries. To see how it was solved, we consider first a simpler boundary- 

value problem. Suppose that an infinite fluid at rest is adjacent to an infinite plane 

wall at rest. At time zero the wall is suddenly set in motion in the x direction with 

velocity Vo. If the flow is laminar throughout, then from the momentum balance (Prob. 

17.1) for any particle of fluid we find 

2 av, &V, 
Ape ay? (17.5) 

together with a set of boundary conditions. This problem is an approximate descrip- 
tion of the flow near the flat side of a ship that starts suddenly. 

This boundary-value problem can be completely and rigorously solved by the 
method of separation of variables or by Laplace transforms. The same equation, with 
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variables renamed, is solved in all heat transfer books and appears in Chaps. 19 and 
20. The solution is: 

y 
VY= V (: = ef] 17.6 

: 2(v1)!/2 Av 
Here “erf” is Gauss’s error function, defined by 

2 ae 
enix = TS LN e dx (17.A) 

qri/2J0 

where A is a dummy variable. The values of erf are presented in most books of math- 

ematical tables and Fig. 19.5. 

The interesting point about Eq. 17.6 is that, although V, depends on both y and 

t, the solution indicates that it does not depend on them separately but, rather, depends 

only on a fixed combination of them, y/(vt)°°. If we introduce a new variable, 

A = y/(vt)°°, then the velocity, instead of being a function of y and ft, becomes a 

function of A alone. This is a great simplification. Mathematically, it means that the 

partial differential equation, Eq. 17.5, can be replaced with an ordinary differential 

equation. Graphically, it means that instead of representing V, by a plot of V, versus 

y with lines of constant f, we can represent V, as a single curve on a plot of V,. ver- 

sus A. This simplification results from the character of the differential equation and 

its boundary values. 

Now we may reconsider the problem of the boundary layer on the flat plate. 

Blasius [1, p. 156] observed that, although Eqs. 17.4 and 17.5 are not exactly the 

same, they have a similar form. He also noted the physical similarity between the 

situations described; if we consider the fluid to be at rest and the boundary layer to 

be formed by a sharp-edged plate moving through it at constant velocity (that is, 

Fig. 17.2 as seen by an observer riding with the fluid), then this situation physically 

has much in common with the flow described by Eq. 17.5. Therefore, Blasius 

assumed that the solution would be of the same form: that V,, instead of depending 

on x and y separately, would depend only on some combination of them. Compar- 

ing the physical situation with that in the problem described by Eq. 17.5, he decided 

that the ¢ in Eq. 17.6 is the time that the fluid has “known” that the plate is moving. 

For the boundary-layer problem this would be the distance x from the leading edge 

of the plate divided by the free-stream velocity V... Making this substitution, he 

defined 
V. 1/2 

p= rf ) (17.7) 
Vx 

By comparison with Eq. 17.6, he assumed he could write 

V V.. B/2, 

— = some function of »() | (17.8) 
Va, xv 

In the case of the other boundary-value problem mentioned, we can demonstrate math- 

ematically that such a substitution is correct; here we cannot make such a demon- 

stration, so the resulting solution rests on this additional assumption. This assumption 
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© 7.28 X 10° 

Pea 

sulS 3 eRe 
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FIGURE 17.3 
Blasius’s solution for the laminar boundary layer on a flat plate and Nikuradse’s experimental tests 

thereof. (From J. Nikuradse, “Laminar Reibungsschicten an der langsangestroemten Platte’—“Laminar 

friction layers on plates with parallel flow,’ Monograph Zentrale fiir Wiss. Berichtwesen, Berlin 

(1942.)) 

converts the set of two partial differential equations into a single, ordinary differential 

equation, which Blasius was able to solve in numerical form. The details of this 

calculation are shown by Schlichting and Gersten [1, p. 157]; see Prob. 17.4. The 

result is in the form of a curve of V,/V.. versus n, which is shown in Fig. 17.3. 

17.2.1 Boundary Layer Thickness 

Blasius’s solution for the laminar boundary layer on a flat plate, shown in Fig. 17.3, 

rests on a considerable string of assumptions and simplifications. However, it has 

been tested by numerous investigators and found to represent the experimental data 

very well (Fig. 17.3 shows the comparison between the Blasius’s solution and 

Nikuradse’s experimental data). Thus, these assumptions and simplifications seem to 

be justified. 

Blasius’s solution to this problem is one of the landmarks of fluid mechanics. 

From a detailed study of this solution, we can observe most of the principal terms 

and ideas in boundary-layer theory. Although this solution was found for a flat plate, 

it provides a guide for the solution for the flow over gently curving surfaces. Thus, 



CHAPTER 17 THE BOUNDARY LAYER 519 

although an airplane’s wing surface is not flat, most of the calculated values for 
the laminar boundary layer on a flat plate will be qualitatively true for the laminar 
flow over an airplane’s wing, and much of the quantitative information in Blasius’s 
solution is approximately correct for gently curving surfaces like airplane wings and 
ship hulls. 

From Fig. 17.3 we see that, if the boundary layer is defined as that layer out to 
V,/ V.. = 0.99, then the laminar boundary layer extends out to a distance of n ~ 5. 
If we let 6 be the thickness of the boundary layer, then 

Wi 

Six (=) (17.9) 

This shows that the laminar boundary layer grows proportionally to the square root 

of the distance from the front of the plate and that the parabolic shape sketched for 

it in Fig. 17.2 is correct. 

Example 17.1. Calculate the boundary-layer thickness for: 

(a) A point on an airplane wing 2 ft from the leading edge, when the plane is 

flying 200 mi/h through air. 

(b) A point 2 ft from the bow of a ship, when the ship is moving 10 mi/h 

through water. 

For the airplane 

su ( 1.61: 107‘ ft?/s-2 ft ie 
200 mi / h - 5280 ft / mi -h/ 3600 s 

= 5.24- 10° ft = 0.063 in = 1.60 mm (17.B) 
and for the ship 

a ( 1.08: 107° ft?/s-2 ft ye 
e 10 mi/h- 5280 ft/ mi: h/ 3600 s 
= 6.06: 10° ft = 0.073 in = 1.8 mm (17.C) 

5 

In Sec. 16.1 we discussed Prandtl’s assumption that the effect of the transition 

from the zero velocity at a solid object to the free-stream velocity took place over a 

very thin layer of fluid. From Example 17.1 we see that this is certainly a very good 

assumption for laminar flow of air and water and typical ship and airplane velocities. 

17.2.2. Boundary Layer Drag 

From Blasius’s boundary-layer solution we can calculate the drag on any part of a 

flat plate. Because the solution is based on laminar flow of a Newtonian fluid, we 

know that the shear stress at any point is given by 

(a | Fee (L:5) 
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Differentiating both sides of Eq. 17.7 with respect to V, at constant x, we find 

72, 

() a () (2) (17.10) 
AVeul x Vx ANE 2 

which can be inverted and rearranged to 

Viger Sk 4 e24 
(=) = v.(%) Weloile) (17.11) 
dy /x Ux dn 

We want the value of d(V,/ V..),/dn at the surface of the plate, that is, at y = 0 or, 

therefore, 7 = 0. This we can find from the slope of the curve in Fig. 17.3 to be 

0.332. Thus, the shear stress at any point on the surface of the plate is given by 

Vv: (fi 

To = o.32uv.( “) : Cal) 

In Sec. 6.13 we showed that the drag force on numerous bodies could be rep- 

resented in terms of a plot of drag coefficient versus Reynolds number. If we now 

define a local drag coefficient for some small part of a flat plate as 

To C= —— (17.13) 
(1/2)pv2, 

then from Eq. 17.12 we can calculate the drag coefficient corresponding to Blasius’s 

solution: 

0.332 pb Vos (te) ( v js 
Cr = ead ls = 0.664 - | —— 17.14) 

Yt lal Da) Pam Vues Vex ae! 

Here the term in parenthesis on the far right has the same form as 1 /&. We have 

seen Reynolds numbers in which the length was a pipe diameter and those in which 

it was a particle diameter. In boundary-layer theory the natural length to use seems 

to be the length measured from the leading edge of the solid body. Thus, 

__ { Reynolds number based _ { boundary layer Vex (17.15) 

on distance from leading edge Reynolds number v : 

Equation 17.14 says that, according to Blasius’s solution, a plot of local drag coeffi- 

cients C; versus the Reynolds number should be given by 

0.664 

(R,)! /2 
,= (17.16) 

Figure 17.4 shows such a plot of experimental local drag coefficients. Those for which 

the flow is laminar agree very well with Blasius’s solution. However, we see that, if 

the flow is turbulent, the result is quite different. We will discuss turbulent boundary 
layers in Secs. 17.3 and 17.5. (Elsewhere in fluid mechanics, a drag coefficient is nor- 

mally Cy. However as shown here, in boundary layers it is normally Cz) 

At the leading edge of the plate (x = 0) the Reynolds number is zero; so, 
according to Eq. 17.16, the drag coefficient should be infinite. This is physically 
unreal and leads to the conclusion that Blasius’s solution is not correct in the 
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small region nearest the leading 

edge [1, p. 162]. This is a minor 

flaw, which is of little practical 

concern. 

The drag coefficient de- 

fined above, C;, which gives the 

local drag force, is less conven- 

ient for practical calculations 

than one that gives the drag 

force on an entire plate. That 

force for a plate of width W is 

F= w| to dx (17.17) 

10* of 2 Ae $6) BID 17-12 4 6 810° 
Now we define a new drag coef- 

He ficient for the entire surface: 

FIGURE 17.4 

Local drag coefficient for a flat plate. Experimental data are = oe 

compared with Blasius’s solution (Eq. 17.16) and with : (1 /2)pV2A 
Prandtl’s equation (Eq. 17.36). (From H. W. Liepmann and 1 

S. Dahwan, “Direct measurements of local skin friction in = a ‘i Ch dA (17.18) 

low-speed and high-speed flow,” Proc. First U.S. Nat. Congr. 

Appl. Mech., New York: ASME, (1952) p. 873. Reproduced 

with the permission of the publisher.) For Blasius’s laminar boundary- 
layer solution this becomes 

0.332 WyvVie!»)!? | dp? 1 398 

p92 = = 17.19 
‘ 0.5 pV2, Wx (R,)'/? rd 

Example 17.2. A square flat plate 1 m? is towed behind a ship moving 

15 km/h by a long, thin wire that does not disturb the flow. The boundary lay- 

ers on both sides of the plate are laminar. What is the force required to tow the 

plate? 
The Reynolds number based on the whole length of the plate is 

15:10°m/h:-1m h 
x= =415-10° (17.D) 

(1.004-10°°m*/s) 3600s 

so that 

Vs 2 

© rece Ua = 6.521074 (17.E) 

and 

ex kg (15,000 ny N:s? 
= 2 sa esi Bete [esses sarees all 2. FyO5 2040 icin 998.2 3 (am ; er 

=n11.3.N = 2.54 Ibi (17.F) 
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In addition to the boundary-layer thickness 6, two other thicknesses occur 

frequently in the boundary-layer literature: the displacement thickness 6* and the 

momentum thickness 0@. 

17.2.3 Displacement Thickness 

To see the meaning of the displacement thickness, consider the streamlines for the lam- 

inar boundary layer on a flat plate, as sketched in Fig. 17.5. To get around the layer of 

slow-moving fluid in the boundary layer, the streamlines in the entire flow are diverted 

away from the solid surface. To see how far, we make a material balance around the sec- 

tion marked in Fig. 17.5 for a width into the paper of W. Tke upper and lower boundaries 

are along streamlines, so there is no flow across them. Thus, the material balance is 

y+ d* 

pV.yW = ow | V..dy (17.20) 

Dividing out pW and subtracting V..6* from both sides, we can rearrange to 

yt od* 

=V.0* = —Va(yerhos\er +. V,. dy + 3(4724) 

which is then rearranged to 

lee 

ade = OS 
5* = ; =) Np aterae 6 (17.22) 

Here 6*, the displacement thickness, is the distance the streamlines are moved in the 

direction perpendicular to the plate. Since (V.. — V,) is (501 at the edge of the bound- 

ary layer and rapidly goes to zero as y increases, the upper limit of integration in 

Eq. 17.22 is normally shown as infinity, although any large number will do. Equation 

17.22 is correct for any constant-density boundary layer, whether laminar or turbulent. 

For Blasius’s solution we may perform the integration in Eq. 17.22 graphically 

on Fig. 17.3 by noting that the region above and to the left of the solid curve is 

oc) V. irae 142 V.. iy be 

iat anes |- (F) ges 

FIGURE 17.5 

Displacement thickness. 
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By graphical integration this region has area 1.72; so that 

i/2 

pee 12( 2) (17.24) 
lee) 

Comparing Eq. 17.24 with Eq. 17.9, we see that the displacement thickness for a lam- 
inar boundary layer is 1.72 /5, or about one-third of the boundary layer thickness. 

17.2.4 Momentum Thickness 

The solid body slows down a layer of the fluid without bringing any but the fluid 

actually touching the wall completely to rest. From all the fluid slowed down it 

extracts momentum in the form of a drag force on the solid plate. This same amount 

of momentum and hence the same force could be obtained by stopping completely 

some layer of the oncoming stream; the thickness of such a layer is called the 

momentum thickness 6. If such a layer were stopped by a plate W wide, the force 

required would be WépV:.. The force actually exerted by the plate is given by 

| fe I al EE 

1 3 
6 = aa To dx (e725) 

pV240 
> dé 

Th = pVaace (17.26) 
dx 

which will be used later in the study of turbulent boundary layers. For Blasius’s lam- 

inar boundary-layer solution we can substitute for tT) in Eq. 17.25, finding 

ae = 1 2a d= 7 0322 av.( : ) oe Ril? Cle -2i7)) 
ioe) 

Comparing Eqs. 17.27 and 17.9, we see that for the laminar boundary layer on a flat 

plate the momentum thickness is 0.664 / 5, or about one-eighth of the boundary-layer 

thickness. 
We can also show (Prob. 17.9) by a momentum balance around the same region 

we made the material balance around in Fig. 17.5 that for any boundary layer, lami- 

nar or turbulent 

sae Ve a3 a5 ee OR 17.28 
° i; mal = : ee 

This equation also is used in treating turbulent boundary layers. 

Blasius’s steady-flow, laminar, flat-plate, boundary-layer solution is a numerical 

solution of his simplification of Prandtl’s boundary-layer equations, which are a sim- 

plified, one-dimensional momentum balance and a mass balance. This type of solu- 

tion is known in the boundary-layer literature as an exact solution. Exact solutions 

can be found for only a very limited number of cases. Therefore, approximate meth- 

ods are available for making reasonable estimates of the behavior of laminar bound- 

ary layers (Prob. 17.8). 
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17.3 TURBULENT BOUNDARY LAYERS 

Like the flow in a pipe (Sec. 6.2), the flow in a boundary layer can be laminar or tur- 

bulent. In a pipe the transition takes place at a Reynolds number of about 2000, 

although it may be delayed to higher Reynolds numbers by extreme care to avoid pipe 

roughness or vibration. In a constant-diameter pipe the flow has the same character 

over the entire length of the flow, except for a small region near the entrance. The 

same is not true of a boundary-layer flow. In a boundary-layer flow the characteristic 

dimension is the distance from the leading edge. As we have seen, the appropriate 

Reynolds number for boundary-layer calculations is based on this length. As in pipe 

flow, the Reynolds number furnishes the criterion for transition from laminar to tur- 

bulent flow in a boundary layer. For a flat plate, the transition takes place in the 

Reynolds number region from 3.5: 10° to 2.8 - 10°. This transition is strongly influ- 

enced by turbulence in the stream outside the boundary layer and by roughness of 

the surface. A typical boundary layer on a smooth surface of sufficient length might 

look like Fig. 17.6. The figure shows not only laminar, transition, and turbulent bound- 

ary layers but also a “laminar sublayer” beneath the turbulent boundary layer (to be 

discussed later). 

For laminar boundary layers, as for laminar flow in a pipe, it was possible to 

calculate the flow behavior from a set of plausible assumptions and then to show 

experimentally that the flow behaved as calculated. For turbulent boundary layers, as 

for turbulent flow in pipes, no one is yet able to calculate the flow behavior without 

starting with experimental data. However, from experimental measurements it has 

been possible to make some generalizations, which can then be used to extrapolate to 

other conditions. 

In a turbulent flow the velocity at any point fluctuates randomly with time. One 

may speak of any such velocity as consisting of a time-average component, Viime aves 

and a fluctuating components, v, so that, at any point, at any instant 

Meath fore biee, (17.29) 
These are defined such that Viime avg is the average reading over some time interval 
of a velocity meter at the point 

] t 

Vee avg — a Vat (17.30) 

Free stream 

Transition Cy Turbulent 

al fan sme sil 
= Laminar sublayer 

FIGURE 17.6 

Laminar-turbulent transition in a boundary layer. 
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and such that the average value of v over some time interval is zero, because it is 

positive and negative for equal parts of the total time. In all the following discussions 

the velocities are the time-average velocities, Vase 

Most of the results available for turbulent boundary layers have been found by 

measuring time-average velocities at various points in flow in pipes or over flat plates 

and by attempting to generalize the velocity profiles. For various experimental rea- 

sons it is easier to make such measurements in pipes, so most of the results are pipe 

results. We now consider the turbulent flow in pipes for one section and then return 

to the turbulent boundary layer. 

17.4 TURBULENT FLOW IN PIPES 

As discussed in Sec. 6.4, turbulent flow differs from laminar flow in that the principal 

cause of the shear stresses between adjacent layers of the fluid is the interchange of 

masses of fluid between adjacent layers of fluid moving at different velocities. This gives 

rise to additional stresses, called Reynolds stresses. The most dramatic effect of these 

stresses is the large increase of friction heating in turbulent flow over that found in lam- 

inar flow. The other dramatic effect is the change in the shape of the velocity profile from 

laminar to turbulent flow. This is shown in Fig. 17.7, where the experimental turbulent 

velocity profiles measured by Nikuradse are compared with the profile for laminar flow. 

/| 

rae Rea ama ee 

a Laminar, any 2 < 2000 He 

0:10: 0:3: 1014 05) 0:6 07 0.8 0.9 1.0 

(Clas ral ies p) 

0.4 Vay, g / Veenterline 

Centerline 

Wall 

FIGURE 17.7 
Velocity distribution in laminar and turbulent fiow in smooth circular 

pipes. (From J. Nikuradse, “Gesetzmaessigkeiten der turbulenten 

Stroemung in glatten Rohren,”—‘“Regularities of turbulent flow in 

smooth tubes” —Forschungsheft 356 (1932). Reproduced by 

permission of the publisher.) 
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As discussed in Sec. 6.3, the velocity profile for laminar flow in a tube is par- 

abolic. For turbulent flow it is much closer to plug flow, that is, to a uniform veloc- 

ity over the entire pipe cross section. Furthermore, as seen from Fig. 17.7, as the 

Reynolds number is increased, the velocity profile approaches closer and closer to 

plug flow. At the wall the turbulent eddies disappear; so the shear stress at the wall 

for both laminar and turbulent flow of Newtonian fluids is given by To = (dV, / dy). 

Although it is very difficult experimentally to measure velocity gradients very close 

to the wall, it is clear from Fig. 17.7 that at the wall the velocity gradient is steeper 

for turbulent flow; hence, the shear stress and friction heating must be larger for tur- 

bulent flow than for laminar flow. 

Prandtl showed that each of the different turbulent-flow curves in Fig. 17.7 could 

be represented fairly well by an equation of the form 

V n 

——_= (: = at ) (17.31) 
V wecatedine Twall = 

For the curves shown in Fig. 17.7 the value of n that gives the best representation of 

the experimental curves varies from t for the lowest Reynolds number to 75 for the 

highest Reynolds number. The best-fit values of n in Eq. 17.31 for all the ec OE 

curves are shown in Apel rT 

Prandtl selected + as the best average, deducing “Prandtl’s + power velocity dis- 

tribution rule.” This is not an exact rule, because if it were a general rule, then all the 

curves in Fig. 17.7 would be identical. Furthermore, it cannot be correct very near 

the wall of the tube, because there it predicts that dV/ dy is infinite and hence that 

the shear stress is infinite. Nonetheless, it is widely used because it is simple and gives 

useful results, as we will see in Sec. 17.5, as shown in Table 3.1, and as used later 
in Chap. 18. 

It is possible to find more complex correlations for the velocity distribution 

in a pipe that do not have the limitations of Prandtl’s + power rule. In Fig. 17.7 we 

see that the Reynolds number appears as a parameter in the velocity distribution 
plot. In trying to produce a universal velocity distribution rule it seems logical to 
change the coordinates in Fig. 17.7 so that the Reynolds number enters either explic- 
itly or implicitly in one of the coordinates, in the hope of getting all the data onto 
one curve. 

TABLE 17.1 

Best-fit values* of n in Eq. 17.31 

Reynolds number Best-fit value of n 

4.0: 10° 6.0 
2.3: 104 6.6 
eea02 7.0 
1.1: 10° 8.8 

2.0: 10° 10 

SOeaOS 10 
—_ 

*From Schlicting [3, p. 563). 
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The most successful method of doing this has been to define a new quantity 

called the friction velocity, u*, 

Friction meret Nia f\'/2 
— * => Se, Ss} ae 

(oem is ( " ) Vowel § (17.32) 

where f is the Fanning friction factor used in Chap. 6. The friction velocity is not a 

physical velocity, which one could measure at some point in the flow, but a combina- 

tion of terms that has the dimensions of a velocity and hence is called a velocity. 

Using this “velocity” as a parameter, we can prepare a universal plot of pipe veloci- 

ties, as shown in Fig. 17.8. 

Figure 17.8 shows that in making up the universal velocity distribution it is 

necessary to introduce two new combinations of variables, which are in common use in 

the fluid mechanics literature. The ratio of the local velocity to the friction velocity is 

called u* (spoken of as “wu plus”). This is also the ratio of the local time-average veloc- 

ity to the average velocity in the entire flow times V2 /f. The combination of the dis- 

tance from the pipe wall and the friction velocity divided by the kinematic viscosity 

is called y*. This can be understood as the product of a kind of Reynolds number that 

is based on distance from the wall rather than on pipe diameter and Vf/ 2. 

Figure 17.8 shows that the flow can be divided conceptually into three zones: 

a laminar sublayer nearest the pipe wall, in which the shear stress is principally due 

to viscous shear; a turbulent core in the middle of the pipe, in which the shear stress 

SS Pe er ee ees ee Ee a ee 
The solid curves are Fee de aie a! 

20 O< yt <5: Yat = yt [1- 0.2567 14.5) ] L 
5< y+ <30: ut =5In(yt + 0.205) — 3.27 _— 

ut =2.5 nyt + 5.5 Lt} a 

Ste pa ie 
F ste el 

eee Ee © 
ae ees POTD a). | Ream | 

' ee 
seus Ci oa ee 

Age Pe a a La 
Ge HH} 
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[Ss meas tt + }}——_— 
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FIGURE 17.8 
Universal velocity distribution for turbulent flow in smooth tubes. 
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is principally due to turbulent Reynolds stresses; and a layer between them, called the 

buffer layer, in which both viscous and Reynolds stresses are of the same order of 

magnitude. Good experimental measurements are difficult to make in the laminar sub- 

layer and buffer layer, so there is some controversy over the best location for the 

boundaries shown in Fig. 17.8. Most investigators place the buffer layer at a y” of 

approximately 5 to 30; some [1, p. 523] use 5 to 70. Furthermore, current work seems 

to indicate that the location of the edge of these layers is not fixed in place but fluc- 

tuates up and down; so these values indicate only the mean locations of these edges 

[2]. Thus, Fig. 17.8 may be too simple a picture of the actual behavior. Nonetheless, 

it provides a reasonable conceptual model and is able to correlate most of the avail- 

able data with reasonable accuracy. 

Figure 17.8 is for smooth pipes. As shown in Fig. 6.10, increasing the rough- 

ness of the pipe wall in turbulent flow generally leads to an increase in the friction 

factor. In Fig. 17.8 we see that increasing the friction factor will increase y~ and 

decrease u*; so increasing the roughness while holding everything else constant will 

move a point on the curve downward and to the right. Schlichting [3, p. 584] presents 

a plot like Fig. 17.8 with a smooth-pipe line identical to that in Fig. 17.8 and other 

lines below and to the right of it for various relative roughnesses. 

Example 17.3. Water is flowing in a 3 in ID smooth pipe, with an average 

velocity of 10 ft/s. How far from the wall are the edge of the laminar sublayer 

and the edge of the buffer layer? What is the time average velocity at each of 
those points? 

Here we have 

~7_ 101 s* got 

1.08 - 10> ft*/'s 

From Fig. 6.10 for smooth pipes we have f = 0.0037; so 

=) 210° (17.G) 

ft (0.0037 \!/? ft 
iS 10*( ) =044—=0.13— (17.H) 

S 2 S S 

From Fig. 17.8 at the edge of the laminar sublayer we have u* ~ 5 and y* ~ 5; 
SO 

ft ft 
Ve = utur = 5°0.44— = 26— = 0.79 — (17.1) 

S 

+ —S £42 
YIP oe LOS LOR tte is 

Twa ) 5 =12-101~ 
("wan ~ 7) us 0.44 ft/s ue SALE Make 

= 14-10)” in = 0,037 mm. (17d) 

At the edge of the buffer layer we have wu" ~ 12 and y* ~ 26: so 

ft m = aC V5.2 = 1.59 are rw — F = 7:10 ~in = 0,18mm_ (17.K) 

% 

This example illustrates why there are so few experimental data in the laminar 
sublayer and buffer layer; these layers are extremely thin and have very steep velocity 
gradients. 



CHAPTER 17 THE BOUNDARY LAYER 529 

17.5 THE STEADY, TURBULENT BOUNDARY 
LAYER ON A FLAT PLATE 

There are no known analytical solutions for turbulent boundary layers that are analogous 
to Blasius’s solution for the laminar boundary layer on a flat plate. Prandtl, to describe 
the steady, turbulent boundary layer on a flat plate, made the following assumptions: 

1. The average velocity in the x direction at any point has the same kind of distribu- 
tion as that found in a pipe and is represented by Prandtl’s + power rule (Eq. 17.31) 
in the form 

V. 1/7 

ae () (17.33) 

This presupposes that the velocity profiles at any x are similar to each other; this 

is the kind of assumption made by Blasius when he assumed that the velocity was 

a function of 7, not of x and y separately. 

2. Over the Reynolds number range of 3 - 10° to 10° the friction factor plot for smooth 

pipes can be approximated (see Prob. 17.13) by 

_ 0.0791 

CaS: Ril2 (17.34) 

Blasius has shown that this equation fits the smooth-pipes curve in Fig. 6.10 quite 

well. Prandtl assumed that it could be taken over directly for determining the shear 

stress at the surface of the plate, understanding the length term in the Reynolds 

number given above is twice the thickness of the boundary layer. 

Combining Eqs. 17.33 and 17.34, as shown in Prob. 17.14, Prandtl found 

o 1/5 

Oo = o3m( 2) (Ge. 35) 
VEX. 

From this equation and several other relations (Prob. 17.15) we can compute the drag 

coefficient for a turbulent boundary layer, finding 

_ 0.0576 

0.072 
,= Ril (4.7.37) 

These two equations are based on some very severe assumptions, and their use 

can be justified only by experimental verification. Most tests have indicated that they 

give a very good representation of experimental data. For example, Fig. 17.4 shows 

a comparison of experimental data on the local drag coefficient with Eq. 17.36; the 

agreement is excellent. Other experimental data can be adduced to show that these 

equations are at least satisfactory for engineering purposes. Equation 17.37 assumes 

that the boundary layer is turbulent from the beginning of the plate (x = 0) to the end 

of the plate. Such a situation can exist if the beginning of the plate is artificially rough- 

ened. However, more commonly (Fig. 17.6) the first part of the plate has a laminar 

boundary layer, which then makes a transition to turbulent flow farther down the plate. 
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To calculate the drag on such a plate, we would calculate the separate contributions 

from the laminar and turbulent parts of the boundary layer. 

Equation 17.35 also indicates that turbulent boundary layers grow with distance 

as x to the $ power, compared with the + power for laminar boundary layers. Thus, 

for the same distance the boundary layer will be larger and growing faster if it is tur- 

bulent rather than laminar. 

Example 17.4. A speedboat is towing a smooth plate 1 ft wide and 20 ft long 

through still water at a speed of 50 ft / s. Determine the boundary-layer thickness 

at the end of the plate and the drag on the plate. 

At the end of the plate 

ont (30Mt is. 20 ft 

1.08- 107° ft?/s 

and the boundary layer is turbulent, so, from Eq. 17.35 

0.37 - 20 ft 
6 = =f on SALA 0.189 ft = 2.3 in = 58 mm (17.M) 

(0.93 - 10°) . 

As a first approximation, we assume that the entire boundary layer is turbulent 

so that Eq. 17.37 applies. Then 

= 0.93 - 10° (17.L) 
x 

1 
ag pVxA 

0.072 I Ibm ft\? Ibf - s 
= ————_ :— - 62.3 —-[ 50—]} - (2-20 ft- 1 ft): —————_ 
(0.93 - 108)!/5 2 ft° ( 4 ( ) 32.2 - Ibm - ft 

= 178 lbf = 790N (17.N) 

Now, to ascertain how large an error we made by assuming that the entire 

boundary layer was turbulent, we assume that transition from laminar to turbu- 

lent flow takes place at an %, value of 10°. From the above, we see that this 

corresponds to a distance of 1 / 100 of the length of the plate; so the boundary 

layer over the first 0.2 ft presumably is laminar. For this area the drag due to a 

laminar boundary layer is given by Eq. 17.19, 

1328-1 Ibm Tin -§? F= 7 23-ee (50%) -@-028-1 A) PES 
(10° nae ft” s 32:2,° Ibi sat 

= 1.3 lbf = 5.8N (17.0). 
In the calculation that assumed that the entire boundary layer was turbulent, this 
leading area contributed a force of 

O02 1 1 Ibm ( “) Ibf - s? 
= ‘+ 62.3 ——:( 50—] -(2-0.2 ft: 1 ft) -———_——_ 
ere: ft? S ( ) 32.2 - lbm - ft 

= 4.4 lbf,= 19.5.N (17.P) 

So the calculation assuming a completely turbulent boundary layer gives a drag 
force that is too high by 4.4 — 1.3 = 3.1 Ibf. This error is small compared with 
the uncertainties introduced by the approximate nature of Eq. 17.37. a 
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17.6 THE SUCCESSES OF 
BOUNDARY-LAYER THEORY 

The foregoing shows that even in the simplest possible boundary-layer problems the 
mathematics are formidable. For calculating the boundary layer around an airplane or 
a ship the mathematics are beyond our current abilities. We must resort to approxi- 

mations and simplifications, mostly based on the results of the simple cases like those 

shown. Nonetheless, the success of boundary-layer theory in explaining the behavior 
of ships, airplanes, projectiles, etc. has been very good. 

In Sec. 16.8 we discussed separation. In almost every case, separation results in 

a great increase in drag, which is normally a very undesirable result. From boundary- 

layer theory it is possible to make some good estimates of when separation will or 

will not occur. In particular, it can be shown that turbulent boundary layers are less 

likely to separate than laminar ones. One may visualize why by considering the flow 

around a cylinder, as shown in Fig. 16.20. There separation occurs because the fluid 

flowing near the surface has lost momentum due to drag and cannot penetrate the 

high-pressure layer behind the cylinder. The effect of turbulence is to transfer momen- 

tum from the free stream into the boundary layer by means of turbulent eddies. Thus, 

the layer near the wall is not slowed as much and does not separate as soon. 

The most dramatic example of this occurs in the case of flow around a sphere. 

A laminar boundary layer separates well ahead of the maximum diameter perpendicu- 

lar to flow, while a turbulent one clings on much further. This is illustrated in Fig. 17.9, 

which shows two bowling balls moving at the same velocity in water. One of the balls 

has a patch of sand glued to its leading surface, making the boundary layer turbulent. 

This holds the separation back much further. The turbulent boundary layer has a higher 

FIGURE 17.9 

Two 8.5 in bowling balls entering still water at 25 ft/s. The one on the left is smooth; the one on 

the right has a patch of sand on its nose. For both photos, #, ~ 1.6- 10°. For the left photo, 

C, ~ 0.4, for the right photo, Cz ~ 0.2. (Official photograph, U.S. Navy). 
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skin-friction drag than the laminar one but has a much smaller low-pressure wake 

behind it. Since this low-pressure wake is the principal source of the total drag on the 

ball, the net drag is greatly reduced by the patch of sand. This principle was discov- 

ered long before the idea of the boundary layer by golfers, who found that old, rough 

balls went farther than new, smooth ones. This discovery led to the invention of the 

dimpled golf ball, which is rough enough to have a turbulent boundary layer, but still 

smooth enough to putt well. Its performance was enjoyed by many but understood by 

no one until the invention of boundary-layer theory [4]. 

In Fig. 6.24 we showed that the drag coefficient for a sphere moving in_a still 

fluid drops dramatically at a particle Reynolds number of about 3 - 10°. Perceptive 

readers will recognize this as being the lower limit of the transition from laminar to 

turbulent boundary layers on a flat plate and will conclude that this must be the result 

of the transition of the boundary layer on the sphere from laminar to turbulent flow. 

This has been verified experimentally. The function of the dimples on the golf ball is 

to make this transition occur at a lower Reynolds number. 

The lift obtainable from an airplane wing is a strong function of the plane’s 

angle to the horizontal, which is called the angle of attack. The higher the angle of 

attack, the more the lift, up to the point where the flow separates on the top of the 

wing, causing the lift to decrease dramatically. This phenomenon in airplanes is called 

stall. A stall close to the ground is almost certain to cause a crash. Considerable efforts 

have been directed at preventing this separation so that airplanes can lift more or have 

smaller wings. 

Stall is normally a problem only on takeoff and landing. One can increase the 

lift by going faster, but both high takeoff and landing speeds require longer runways 

than low ones. Thus, there is considerable incentive to find ways to increase the low 

speed lift of a wing so that the airplane can take off and land from short runways. In 

most airplanes the wing shape is modified during takeoff and landing by slats and 

flaps, which allow some high-pressure air to flow from the bottom of the wing into 

the boundary layer on the top of the wing, increasing its velocity and making sepa- 

ration less likely. Other airplanes use small obstructions on the surface of the wing 

to increase the turbulence there and thus prevent stall. The function of all these devices 

is referred to as boundary-layer control; their success indicates that the boundary-layer 

viewpoint has been very fruitful in aeronautical engineering. 

For many years mariners were amazed at the swimming speed of dolphins, who 

can swim for hours at high speeds. Careful studies showed, for example, that the drag 

coefficient of a dolphin must be less than one-half that of the best torpedo designs 
produced by our navies. Apparently, the dolphin can do this because it has a specially- 
designed resilient skin, which damps out turbulence and keeps his boundary layer 
laminar in circumstances in which a smooth but rigid surface would have a turbulent 
boundary layer [5]. 

In discussing friction in pipes in Chap. 6 we restricted ourselves to the case of 
flow well downstream of the pipe entrance. Much higher pressure losses per foot are 
observed in the “entrance region” of a pipe; see Fig. 15.8. When the flow enters a 
pipe, a boundary layer begins to grow at the wall. From what we have seen here we 
know that the shear stress is highest at the front of a plate (where the boundary layer 
is thin). Thus, we would expect the pressure loss per unit length to be greatest at the 



CHAPTER 17 THE BOUNDARY LAYER 533 

inlet and to decrease with distance down the pipe. At some distance down the pipe 
the boundary layers from the opposite walls grow together, filling the pipe. Thereafter 
the flow is no longer of the boundary-layer type and can be treated as a pipe flow. The 
distance for the boundary layers to grow together, forming “fully developed” flow, is 
a function of the pipe diameter and the Reynolds number; see Example 15.7. 

Other cases of the success of boundary-layer theory can be cited. The same kind 

of idea has been taken over into heat-transfer and mass-transfer theory with generally 
useful results. 

Notice also that this entire chapter seems to be a mixture of mathematics and 

sweeping assumptions. This is typical of boundary-layer studies. The entire prob- 

lem of describing the flow around some complicated structure like an airplane is 

far beyond our current abilities, even with supercomputers. However, by using judi- 

cious guesswork we can reduce the important parts of the problem to mathemati- 

cally manageable form. The real genius of Ludwig Prandtl was his ability to guess 

correctly which terms he could drop out of his equations and still have the calcu- 

lated result agree with experiments. This inspired guesswork usually can be made 

only by engineers who have a very good understanding of what every term in an 

equation means physically. It is strongly recommended that students try to develop 

this understanding. 

17.7 SUMMARY 

1. Prandtl started with the Navier-Stokes and material balance equations and dis- 

carded enough terms to make his boundary-layer equations, which are the work- 

ing form of the momentum and continuity equations for boundary-layer problems. 

2. By assuming that the velocity was a function of y(V../ xv)'/?, Blasius was able 
to solve Prandtl’s equations for the steady-flow laminar boundary layer on a flat 

plate. He found that the laminar boundary-layer thickness is proportional to the 

square root of the length down the plate. 

3. The solution for the turbulent boundary layer is based on results obtained in pipes. 

Using pipe results plus some strong assumptions, Prandtl calculated that the thick- 

ness of a turbulent boundary layer is proportional to the length of the plate to the 

+ power. 

4. Only a very small number of boundary-layer problems can be solved in any closed 

or simple mathematical form. However, the boundary-layer viewpoint has been 

very fruitful in the field of flow around solid bodies and in several other fields. 

PROBLEMS 

See the Common Units and Values for Problems and Examples, inside the back cover. 

An asterisk (*) on a problem number indicates that its answer is shown in App. D. 

17.1. Derive Eq. 17.5 in each of the following two ways: 

(a) By writing a momentum balance for a small element of fluid. 

(b) By canceling the zero terms in the x-directed Navier-Stokes equation, Eq. 15.26. 

For laminar flow in this geometry it may be assumed that the y and z components 

of the velocity are everywhere zero. 
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17.2. 

17.3. 

17.4. 

List the boundary values for Eq. 17.5. 

Show that the substitution of A = y/(vt)°* converts Eq. 17.5 from a partial differ- 

ential equation with y and ¢ as variables to an ordinary differential equation with A as 

a variable. 

Blasius’s laminar boundary-layer solution (Fig. 17.3) is an excellent example of the use 

of the stream function to simplify and solve the partial differential equations of fluid 

mechanics. To solve Eqs. 17.4 and 17.2 together, he substituted for V, and V, from Eqs. 

16.24. 

(a) Show that this leads to 

aw eb awry ow Xx 25 
dy dydx dx ay* ay? 

(17.Q) 

in which, instead of having two dependent variables, V, and V,, we have only one, w. 

(b) We wish w& to depend on the dimensionless group 7, but it cannot depend on 7 

alone, because w has the dimensions of (length? / time) and 7 is dimensionless. 

Therefore, it must depend, not only on 7, but also on some combination of the vari- 

ables x, y, v, and V.,. Several such combinations have the required dimensions; 

Blasius found that the mathematics were simplest if he made the choice 

b = (vxVe)'/? f(n) — (7B) 

where f(7) is an unknown function, to be determined. Show that on the basis of 

this choice 

ow ous On 
ee ee ie Me ay ye f'(n) (17.8) 

where f’ stands by df/ dn, and that 

ous VV 1/2 

Y= = —0.5 = 2 ree ( é ) (nf — f)(n) (17.T) 

Hint: For V,, differentiate directly for af / ax and note that df / ax = (df/ dn)(an/ ax). 

Show that, if we proceed to compute the necessary second and third derivatives the 

same way as in (b) and then substitute them in the first equation in this problem, 

we find 

—Vy2 ron Ve a 1 ee Ve m 
( ax ar last (Soar —f\f" = (%2)r (17.U) 

which can be simplified to ff” + 2f” = 0. This is now an ordinary differential 

equation, involving only f(7) and its derivatives with respect to 7. Although it 

appears simple, it is nonlinear, and no analytical solution of it has been found. How- 
ever, it has been solved numerically by using an infinite-series method, and tabu- 
lated values are available [3, p. 129]. The solid curve in Fig. 17.3 is based on this 
infinite-series solution. 

(c ~ 

17.5.*Assuming that the transition from a laminar to a turbulent boundary layer takes place 
at a Reynolds number of 10°, what is the maximum thickness for the laminar bound- 
ary layer on a flat plate for 

(a) Air flowing at 10 ft/s? 

(b) Water flowing at 10 ft/s? 

(c) Glycerin flowing at 10 ft/s (Ugiycerin = 807° 10> ft? /s)? 
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17.6. Calculate the values of the 2, for the two parts of Example 17.1. Boundary layers on 
flat plates are laminar only up to 2, ~ 3.5- 10° to 2.8- 10°. Are these values exceeded 
for the boundary layers in Example 17.1? 

17.7. From Blasius’s solution (Fig. 17.3) we wish to find V, (the y component of the velocity) 
at any point. 

(a) Starting with the mass-balance equation, Eq. 17.2, show that 

(av, V. nd(V,/ Vs.) 
v= -| )a| = “ - “ dn (17.V 
z 0 Ox y all at constant x 9A sores By oes 0 dn ea 

Then rearrange to 

we (tet) spelt: Vac) z sais 
7m > Jo a nan (17.W) 

and integrate graphically, noting that d(V,/V..)/dn is the slope of Fig. 17.3. 

Schlichting [3, p. 129] gives a table showing these slopes to five significant figures; 

he also gives a plot of the result of this graphical integration. 

(b) The same source shows that at the edge of a laminar boundary layer 

Vy 0.8604 
(=) = (17.X) 

At the edge of a Ve Os 
laminar boundary layer 

Using this equation estimate (V, / V,)at the Sapebes for Z,. = 10, 100, and 1000. 
laminar boundary layer 

What does this tell you about Prandtl’s assumption that we could safely ignore the 

y component of the momentum balance? 

17.8. For boundary layers on curved surfaces, the pressure will change with distance. This 

greatly complicates the solution of the boundary-layer equations compared with that on 

a flat plate (in which dP / ax = 0), and as a result very few “exact” solutions are known 

for such boundary layers. Estimates of the behavior of such boundary layers are given 

by several methods. To illustrate these methods, we will apply them to the laminar bound- 

ary layer on a flat plate, where we can compare the results with Blasius’s “exact” solu- 

tion. These methods begin by assuming a velocity profile of the form V,/ V. = f(y/ 6), 
where 6 is the boundary-layer thickness. 

(a) Show that any satisfactory assumed function f(y / 5) must have the following prop- 

erties: When (y/ 6) = 0, then f = 0; when (y/ 6) = 1, then f = 1. In addition, for 
best results it is desirable that secondary conditions be met: When (y/ 5) = 0, then 

af / dy? = 0; when (y/8) = 1, then df/ dy = 0 and d’f/dy* = 0. Show graphi- 
cally the meaning of these conditions. 

(b) Several useful choices of f(y/6) are f = (y/5), f = 3(y/8) — 5(y/5)’, and 
f = sin(7/2)(y/6). Show which of these conditions are satisfied by these 

functions. 

(c) Below is the approximate boundary-layer calculation for the assumed function 

f = (y/8). Repeat the calculation for the other assumed functions shown in part (b). 

Substituting V,/V.. = y/6 in Eq. 17.28 and integrating only from zero to 6, we 
find 

a ”] La al 5 esisaintad teste fatsfecitat at YoOs awa 15 P 17.Y 
fi Sune 2 1 eBdlenos ie? 
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and, using Newton’s law of viscosity in Eq. 17.26, we find 

dv. Vs > dé 
= oe — Vie —— TO) ae he dy be 5 p a 

But, as shown above, 0 = 6 / 6, and therefore 

dé 1 dé dd 6vx 
SS SS or a 
Ake OMOk dx Vn 

(17.Z) 

(17.AA) 

Separating variables and integrating from x = 0 and 6 = 0 to x = x and 5 = 6, we find 

2 1/2 

ES LS A rere (2) = 3.46 
Dea AVG Vex 

(17.AB) 

Comparing this result with Blasius’s “exact” solution for the same boundary layer 

(Eq. 17.9), we find that this approximate solution gives a boundary-layer thickness 

that is about 3.46 / 5, or approximately 70 percent of the correct one. 

Computing the local drag coefficient from Eq. 17.13, we get 

Vea 1 ; 

cps as/B oy 22 ( ue ) - osm 
4 pV Wha NADA De 

(17.AC) 

Comparing this value with the drag coefficient based on Blasius’s solution (Eq. 17.14), 

we find that this approximate solution gives a drag coefficient of 0.577 / 0.664, or 

about 87 percent of the correct solution. In the same way, all the other properties of 

the boundary layer can be computed for this assumed velocity profile or for any other 

assumed one. The striking thing here is that this very simple assumed profile gives 

reasonably accurate results with an expenditure of much less effort that does Blasius’s 

solution. For more complicated flows this saving in effort can be vast. More on these 

approximate methods is given by Schlichting [1, Chap. 8]. 

17.9. Derive Eq. 17.28 by making an x-momentum balance around the boundaries shown in 

Fig. 17.5 and solving for the force on the plate. Then eliminate the displacement thick- 

ness by means of Eq. 17.22, and equate the force on the plate to WpV>. 

17.10. For Prandtl’s 5 power velocity rule, calculate the ratio of the maximum velocity at the 

center of the pipe to the average velocity in the entire pipe. Also calculate the ratio of 

the kinetic energy of the fluid to the kinetic energy it would have if it were all flowing 

at the average velocity, and the same relation for the momentum of the flowing fluid. 

This problem repeats Probs. 3.9 and 3.10. See Table 3.1. 

17.11. Any velocity distribution equation that is to represent the flow in the neighborhood of 

the wall must satisfy the following requirements: V, = 0 at y = 0; dV, / dy is finite and 

nonzero at y = 0. As we saw in the text, Prandtl’s +. power rule satisfies the first condi- 

tion but not the second. Which of the following kinds of functions satisfy both conditions? 

(a). V, =A + By. 
(b) V, = By", when n is some power other than 1. 

(c) V, = A sin y. 

(d) V, = Aexp y", where n is any power. 
17.12. (a) Show from the definition of u* and y* and from the definition of the friction fac- 

tor that the limiting value of the relation of u* to y* as y* approaches zero must 
be u’ = y", called the law of the wall. 

(b) Figure 17.8 shows that a slightly different function is given as a better fit of the 
experimental data. It is only intended to be used for u* = 5. Atu* = 5, how much 
does this function differ from uy = y*? 
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17.13. Show that Eq. 17.34 is approximately correct over the Reynolds number range from 
3- 10° to 10° by calculating the friction factor from it and comparing it with the fric- 
tion factor for smooth pipes in Fig. 6.10 for several % in this range. How well does this 
approximation work for R = 10°? 

17.14. Show that, if we make the assumptions shown in Sec. 17.5, we find Prandtl’s equation 
for the drag on a flat plate with a turbulent boundary layer. The procedure is as follows: 

(a) From the seventh-power distribution rule (Eq. 17.33) deduce the ratio of the momen- 

tum thickness to the boundary-layer thickness by using Eq. 17.28. Here the inte- 

gration is from 0 to 6 rather than from 0 to «©. Answer: 6 = (4)6. 
(b) In Eq. 17.34 the velocity in the Reynolds number and the velocity in the expres- 

sion for the friction factor are average pipe velocities. From Prandtl’s + power rule 

it can be shown that for circular pipes (Prob. 17.10) this average velocity is 0.817 

times the maximum velocity. Prandtl rounded this off to 0.8. Making this substitu- 

tion and recalling from Chap. 6 that 

1 
f=To/p 5 Mes (17.AD) 

convert Eq. 17.4 to 

To v2 V ve 
ae 229 ea 17.AE 

(c) Combine this result with Eq. 17.27 and the answer from part 1 of this problem to 

obtain 

a ds 1/4 

cs EO 0225(.) (17.AF) 
Ife sais V6 

which may be integrated from 6 = 0 at x = 0 to 6 = 6(x) at any x, obtaining 

Boel 35. 

17.15. Starting with Eq. 17.35, derive Eqs. 17.36 and 17.37. Use Eq. 17.26 for the shear stress 

as a function of the momentum thickness and the result obtained in Prob. 17.14 that 

6 = (4)6. The two different drag coefficients are defined in Eqs. 17.13 and 17.18. 

17.16.*In Example 15.1 we considered the laminar flow of a Newtonian fluid between two par- 

allel plates and showed that well downstream from the entrance the velocity distribu- 

tion was parabolic. At the entrance to such a pair of plates the flow will initially have 

a uniform velocity, Vo, independent of x and y. Boundary layers will grow from the 

walls, eventually meeting in the center, as sketched in Fig. 17.10. Show that if we make 

=a ——s SS Sa pre ea Ee an rpee N ieee 
BSF aes Edges of i fie. Tt. 

if Rama es 
See eaene pee EX Parabotic 
ae Rete 4 velocity 

Ces profile 

FIGURE 17.16 

The entrance length for flow between two parallel plates. 
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V7As. 

the simplest possible assumption, that the growing boundary layers do not interact 

with each other and that the fluid between the boundary layers has a constant velocity, 

then the distance downstream required for the boundary layers to grow together (the 

“entrance length”) would be given by L,/h = 0.01 ®. These assumptions are gross 

simplifications; the worst one says that the fluid in the center does not speed up. 

By material balance we may show that it must reach a velocity of twice the entrance 

velocity when the layers meet. More complicated analyses that take this into account 

[3, p. 178] lead to an approximate formula for parallel plates of L/h ~ 0.04 R. To see 

the magnitude of this entrance length, calculate it for air flowing at 5 ft/s between 

plates 1.0 in apart. (Here @ is the Reynolds number based on distance between plates, 

not on distance from the leading edge.) 

The fins on the radiator of your car are about 2 in long. When your car is going 60 mi/h, 

the free-stream velocity of the air approaching these fins (under the hood of the car and 

behind the grille) is estimated to be 40 mi/h. Estimate the boundary layer thickness at 

the downstream end of the fins. 
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CHAPTER 

18 
TURBULENCE 

he detailed behavior of turbulent flows is so complex that in spite of consider- 

able research effort over the past hundred years we do not now possess a com- 

prehensive theory of turbulence or a simple conceptual model of how it works in 

detail. We can write suitable equations for turbulent flow, but if we attempt to cap- 

ture the detail in the equations, the resulting computations overwhelm our largest com- 

puters. Most of what we know consists of qualitative observations, measurements of 

various properties of turbulent flows, and some definitions and correlations of these 

measurements. Turbulence theory helps us understand many of these observations and 

extend them in some cases. This chapter is largely devoted to descriptions of turbu- 

lence, definitions of some of the terms used in describing turbulence, and elementary 

applications of turbulence models. In the chapter on mixing we will need some ideas 

from this chapter. 

Even though we cannot provide a detailed mathematical description of turbu- 

lent flow, we can provide several physical descriptions to help the student form an 

intuitive picture of turbulent flow. 

18.1 NONMATHEMATICAL OBSERVATIONS 
AND DESCRIPTIONS OF TURBULENCE 

Normally we cannot see turbulence in clear fluids like air and water, nor can we see 

it inside vessels and pipes unless those are transparent. Most of our nonindustrial 

observations of turbulence are made with clouds, smoke plumes (Fig. 6.3), or mix- 

ing of fluids with different colors (e.g., coffee and cream). From those observations, 

which the reader has certainly made, we can develop some intuitive understanding 

of turbulence. 

539 
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18.1.1 Decay of Turbulence 

The first observation we can make is that turbulence dies out. If the student vigorously 

stirs a bowl of soup, the soup will have obvious turbulent eddies in it, but after a 

few minutes they will be gone and the soup will be motionless. This happens because 

of viscosity. Large turbulent eddies transfer energy to smaller ones, and they transfer 

energy to even smaller ones, until the size of the eddy is small enough that viscosity 

slows and stops it. Thus, the total store of turbulent kinetic energy (ke) that the stu- 

dent put into the soup with a spoon is said to decay into internal energy by viscous 

friction heating. If we want the mass of fluid to have turbulence that does not die out, 

then we must continue to put in turbulent ke as fast as viscosity is converting that 

energy to heat. 

18.1.2 Production of Turbulence 

A shear layer is the most common way to produce turbulence. Stirring the soup 

most often will be done with a circular motion, inducing a circular flow and/or cir- 

cular eddies. That is also common in vessels with rotating mixers. But for flows in 

pipes, ducts, around airplanes or ships, or in the atmosphere there is no such rotat- 

ing element. Still, we observe that such rotating eddies occur in flows like the flow 

between two plates, in which no solid surface is rotating. Figure 18.1(a) shows one 

plate sliding relative to another, with fluid in between. If, instead of fluid, the space 

between the plates had been filled with cylindrical rods, aligned at right angles to 

the flow, the plates would set the rods in rotation, in the clockwise direction shown. 

So this shear flow sets the fluid between the plates into rotational motion as shown. 

However, the whole fluid cannot form one rotating cell, so the fluid tends to form 

parallel threads of rotation, called vortex threads. If the viscosity is high enough 

or the velocity low enough these rotational threads will be quickly stopped by 

Moving plate V=Vo 
LL f 

Stationary plate 

(a) 

are 

High-velocity Velocity Jet of 

\ gas flow profile fast-moving 
gas 

oo 

\ Jpeg or j (_) Fluia rotation 

Circular Vee 

nozzle 

(b) 

FIGURE 18.1 

Fluid rotation produced by (a) flow between moving plates and (b) a free jet. 
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viscosity. But for high velocity or low viscosity (actually for high Reynolds num- 
ber) they will persist. 

If the vortex threads were permanently attached to rigid masses of fluid, then 
they would behave like the solid cylindrical rods described above. But they are not; 
fluid flows through them, just as fluid flows through the isolated, stationary vortex 
that forms in a sink drain. The fluid in a vortex thread deforms in response to the 
forces acting on it. Each vortex thread influences the behavior of its neighbors, 
because at their boundaries they are generally moving in opposite directions. As a 
result they twist, kink, stretch, split, and divide. If vortex threads were visible, then a 

turbulent fluid flow would look like a wriggling mass of interlaced spaghetti, with 

many different diameters and lengths of spaghetti pieces present, and with large ones 

constantly being formed, turning into smaller and smaller ones, and the smallest ones 

eventually disappearing. 

The turbulence in pipes, ducts and channels is produced by the shear layers at 

the walls of the duct. Turbulence is steadily fed into the main flow in the duct and 

ultimately consumed in viscous heating in the main flow. The turbulence in the wake 

of ships and airplanes is caused by the shear layer adjacent to the surface of the air- 

plane or ship. It decays with time, due to viscosity, after thé airplane or ship passes. 

We can also have shear layers not involving solid surfaces as shown in Fig. 

18.1(b). The jet of hot gas leaving a jet engine is moving very rapidly, relative to the 

surrounding air; the boundary between the jet of hot gas and the surrounding air forms 

such a shear layer, which sets the surrounding air into rotation. If the jet is circular, 

under some conditions it can form circular vortex threads, which form “smoke rings.” 

Similarly, the hot smoke from a cigarette, rising in a still room due to buoyancy (Fig. 

6.3) sets up a shear layer between itself and the surrounding air, inducing turbulence. 

18.1.3 Free and Confined Turbulent Flows 

The turbulent flow in a pipe is quite different in character from the turbulent flow in 

a wind tunnel or in the lower atmosphere. In the atmosphere or in the central section 

of a wind tunnel, the nearest wall is so far away that it has little influence on the flow. 

This kind of flow, substantially uninfluenced by nearby walls, is called free turbu- 

lence. In a typical long pipe the flow is strongly influenced by the nearby presence 

of a wall. This kind of flow is often called shear turbulence or wall turbulence. 

In the lower atmosphere or in a wind tunnel the turbulence at any point generally 

has the same properties in all directions; this is called isotropic turbulence. The same 

term is used with an analogous meaning in the study of matter. Water is isotropic; it 

has the same properties in all directions. Wood is nonisotropic; it has different prop- 

erties “with the grain” and “across the grain.” (If you do not believe this, try splitting 

a log across the grain.) Turbulence in pipes is generally not isotropic; it is more intense 

in the flow direction than at right angles to the flow direction, and most intense in the 

region about one-tenth of the distance from the pipe wall to the center. 

In a pipe, the turbulence character does not change as one moves downstream at 

a constant radial position. This type of turbulence is called homogeneous turbulence. 

Normally this is not the case in the atmosphere or in a wind tunnel, where the turbu- 

lence, although isotropic at a point, tends to become less intense with distance down- 

stream from the source of the disturbance. 
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18.1.4 Turbulence in the Atmosphere 
and the Oceans 

On a sunny day, the lower atmosphere is normally in turbulent motion, driven by the 

horizontal shear layer between wind and the ground, and by vertical shear layers 

caused by rising warm air masses and sinking cold air masses. This turbulence mixes 

the troposphere, up to about 30,000 ft; above that the stratosphere has very little tur- 

bulence, (see Fig. 2.4). The boundary between the two is often visible to travelers, 

because modern passenger aircraft fly above that boundary. Below the boundary tur- 

bulence slowly mixes fine particles (both natural and man made) up from the ground 

and makes the air hazy; above the boundary the air is clear. 

Students have probably observed, on calm days, that jet airliners leave a con- 

densation trail high in the sky. The trail itself is wrinkled and convoluted, because of 

the turbulence put into it by the shear layer in the airplane’s wake and the turbulence 

due to the interaction of the rapid jet exhaust and the stationary surrounding air. But 

after the plane passes, the condensation trail does not grow or disperse; it remains 

practically constant in size and in place. Eventually molecular diffusion evaporates it. 

Such trails are formed and visible only in areas of the atmosphere high above the 

ground, where there is practically no turbulence; if there were turbulence the con- 

densation trails would disappear quickly. 

Closer to the ground, turbulence can be fed into the atmosphere by the wind-driven 

shear layer at the ground or by hot air nising from the solar-heated ground, as in the 

example of the hot plume from the cigarette in a still room. Students have probably 

observed that in the lower atmosphere the plumes from smokestacks or from cars on dry 

dirt roads continually expand as they flow in the downwind direction. This expansion is 

caused by the turbulence in the lower atmosphere. At night, when the ground is cold, 

there is very little turbulence in the lower atmosphere and plumes spread very little. 

In the oceans turbulence enters mostly through wind-driven waves at the sur- 

face and penetrates only a few wavelengths down. There is large-scale buoyant motion 

in the ocean, caused by solar heating and by temperature and salinity differences. 

These, and the large-scale ocean currents such as the Gulf Stream, can generate large- 

scale turbulence at their edges. Away from the surface and from the edges of these 

large-scale flows, there is very little turbulence in the oceans [1]. 

In both atmosphere and oceans, density stratification inhibits or destroys turbu- 

lence. Atmospheric inversions (cold air under warmer air) damp atmospheric turbulence 

strongly. When you see a smoke plume that forms a thin, nonspreading streak down the 

sky, you are almost certainly looking at an atmospheric inversion, [2, Chaps. 5 and 6]. 

In the oceans density stratification depends on temperature (warm above cold) and salin- 

ity (fresh or fresher water over salty water). These stratifications also inhibit turbulence. 

Such stratifications also occur in flows in pipes and process equipment. If the stratifi- 

cation is unstable (e.g., hot fluid produced at the bottom of a saucepan on a stove) then 

it will cause vertical flows and turbulence, like water boiling in a saucepan. 

18.1.5  Three-Dimensional Turbulence 

Turbulence is inherently three-dimensional. If we have a pressure-driven laminar flow 
between two parallel plates, the velocity will all be in one direction, and the velocity 
gradients will all be in the direction perpendicular to the parallel plates. There is neither 
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velocity nor a velocity gradient in the direction perpendicular to these two directions. 
If we increase the Reynolds number enough for the flow to become turbulent, then we 
will observe fluctuating turbulent velocity components in all three directions. 

18.1.6 The Size of Eddies 

In liquids or gases at atmospheric pressure, the smallest eddies, which are busily con- 
verting turbulent ke into internal energy by viscous heating, are thousands or millions 
of times as large as the space between molecules, or the mean free path, so that treat- 

ing turbulence as a phenomenon in a continuous phase and ignoring the existence of 

molecules and atoms does not introduce any serious error [3, p. 8]. 

The largest eddies in a confined flow cannot be larger than the dimensions of 

the confining container. Generally they will be 0.1 to 0.5 times as large as the bound- 

aries of the system or the size of the disturbance causing the turbulence. So in tur- 

bulent flow in a pipe or duct, the largest eddies have a length about 25 percent of the 

pipe diameter. In the wakes of ships and airplanes the largest eddies will be a simi- 

lar fraction of the size of the ship or airplane. On the scale of major storms in the 

atmosphere the flow is not turbulent, whereas on the scale of individual parts of the 

storms it generally is. Thus, the huge eddy of a hurricane or a major storm, seen from 

an earth satellite and presented by TV weather persons, has little flow and eddying 

across the main directions of flow, but the cloud edges are ragged, indicating local 

turbulence. 

There is practically no turbulence in small systems. The Reynolds number has 

a characteristic length (the diameter in pipe flow) and as this becomes small, the 

Reynolds numbers become small, and the effect of viscosity overwhelms turbulence. 

There is very little turbulence in the flows in our bodies, and inside most living things. 

18.2 WHY STUDY TURBULENCE? 

The principal goal of turbulence research is to place turbulent flows on as sound a 

scientific and computational footing as we now have for laminar flows. For laminar 

flows we can start with Newton’s laws of motion (generally in the form of the Navier- 

Stokes equations, Sec. 15.4) and from a description of the flow boundaries and the 

fluid properties deduce a complete mathematical description of the flow. This can be 

done analytically only for very simple flows, but with computers it is possible to do 

it numerically for very complex flows by using computational fluid dynamics (CFD). 

Furthermore, for laminar flows, if we can find the velocity distribution as described 

above, then we can generally describe the heat transfer and mass transfer in the flow 

by mathematical analysis without recourse to experimental measurement. 

For turbulent flows we are not so fortunate. In general, we cannot calculate such 

velocity distributions or heat transfer and mass transfer from basic laws but must 

depend on correlations of experimental measurements. For widely used systems such 

as the flow inside a straight, cylindrical pipe or the perpendicular flow across the 

outside of a cylinder, experimental data are available and have been correlated suffi- 

ciently well by the methods of dimensional analysis (Chap. 9) to allow us to predict 

the results of any new experiment with considerable accuracy. However, although this 

may be satisfactory for the practical engineer, it is unsettling to the theorist. Further- 

more, when an extrapolation outside the range of experimental data is required, or 
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application is desired to a shape for which no experimental data are available, the 

need for a turbulence theory becomes apparent. 

Turbulence theories are not so far advanced that they allow us reliably to extrap- 

olate experimental data or calculate flows around new shapes. Rather, they have 

concentrated on trying to reproduce the existing experimental data from some kind of 

comprehensive theory. This has not yet been accomplished. On the other hand, the par- 

tial results and partial understandings of turbulent flow have been useful in predicting the 

results of some experiments, e.g., turbulent boundary layers, as discussed in Sec. 17.5. 

One of the first historical examples in which turbulence research proved very use- 

ful was in the comparison of aircraft tests in wind tunnels with the corresponding results 

in free flight. The early experimental work in this field indicated that results from one 

wind tunnel did not necessarily agree with those from another wind tunnel or with the 

results for free flight. These differences were ultimately explained by the study of the 

differences in turbulence between various wind tunnels. Some of the first careful mea- 

surements of turbulence were made to explain these contradictory experimental results [4]. 

Heat transfer and mass transfer studies look to fluid mechanics for an under- 

standing of turbulence, because such an understanding of turbulence is very useful in 

those fields. Even our limited understanding of turbulence already has been of value in 

those fields. The mixing of fluids plays a significant part in many processes, e.g., the 

fuel-oxidizer mixing in all combustion processes, the mixing of reactants in most chem- 

ical reactors, and the blending of ingredients for foods, plastics, etc. (see Chap. 19). If 

the fluids being mixed have low viscosities, then turbulence greatly speeds the mixing. 

Thus, a knowledge of the detailed structure of turbulence is a prerequisite of any sci- 

entific understanding of the mixing of low-viscosity fluids. Turbulence plays a major 

role in low-altitude meteorological processes [5]. Modern theories of astronomy on a 

galactic scale indicate that turbulence is very important in the evolution of galaxies [6]. 

Thus, although the study of turbulence is difficult, and the large efforts expended 

have not resulted in general or comprehensive results, the potential benefits of such a 

thorough knowledge of turbulence are great enough to justify the effort. For the typ- 

ical chemical engineer, this chapter is mostly technical-cultural background. However, 

the terms defined here are in widespread use, and the approximate methods discussed 

here are used in the two- and three-dimensional CFD programs that typical chemical 
engineers use. 

18.3. TURBULENCE MEASUREMENTS 
AND DEFINITIONS 

As discussed in Sec. 17.3, it is common in discussing turbulence to regard the veloc- 
ity at any point and any time as consisting of an average component and a fluctuat- 
ing component: 

Pee pe (18.1) 

Here V, is the instantaneous value of the x component of the velocity, V, is the time 
average of this velocity over some reasonable period, and v, is the instantaneous fluc- 
tuation of this velocity from its time-average value. This is one component of a vector 
equation 

V=Vitv (18.A) 
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which obeys the vector manipulation rules in App. C. Throughout the turbulence 
literature (and this chapter) a bar over a symbol indicates the average value of that 
quantity. 

Here we must distinguish between time averages and position averages. A time 

average of some arbitrary function of time, ¢, is given by 

4 1 ft 
& = limit — af o(t) dt (18.2) 

which is the average value of the reading of some kind of $-meter located at some 

fixed point. We can also define position averages as, for example, the average veloc- 

ity across the cross section of a pipe, as defined in Chap. 3. All average quantities in 

this chapter are time averages, as defined by Eq. 18.2. 

Although the time average given above is shown as the limit as time goes to 

infinity, in practice it is only necessary to make measurements over a period that is 

long compared with the frequency of the fluctuations. Thus, for turbulence measure- 

ments in pipes the average value found by Eq. 18.2 for t equal to a few seconds is 

numerically equal to that found for any longer period of time. According to these def- 

initions, the average value of v, must be zero, because it is negative for as much of 

the time as it is positive. 

The fluctuations in turbulent flow in pipes and channels are mostly so fast that 

ordinary fluid-flow measuring devices do not detect them at all; those devices record 

only the values associated with V,. For example, the pressures in turbulent pipe flow 

fluctuate with a very high frequency. However, ordinary pressure gauges do not 

respond to such high frequencies, so they show a steady average pressure for such a 

flow. Similarly, the velocities indicated by venturi meters, orifice meters, pitot tubes, 

etc. for turbulent pipe flows generally do not show the fluctuating component at all; 

their response is simply too slow. Therefore, a pitot tube in a turbulent pipe flow sim- 

ply reads V, (subject to slight corrections due to turbulent fluctuations). 

To measure v, we need a flowmeter, which is much more responsive to rapid 

changes in flow rate. The most successful flowmeter and the one that produced most 

of the world’s measurements of turbulence before about 1980 is the hot-wire 

anemometer, shown in Fig. 18.2. In such a device a fluid flows over a very thin elec- 

trically heated wire whose temperature is much higher than that of the fluid. The wire 

is generally platinum or tungsten; both metals show a significant increase in electri- 

cal resistance with increasing temperature. By suitable electrical circuitry we can 

measure the fluctuating resistance (and hence the fluctuating temperature) at con- 

stant heat input, or the fluctuating heat input required to hold the wire’s temperature 

constant. 
Over a wide range of flow rates the 

heat removed from a hot wire by a fluid 
Flow Support . : — : 
—— needles flowing perpendicular to it is described by 

Platinum or Heat-removal rate ~ 
t t i ungsten wire A + B- (fluid velocity)’ {2 (488) 
FIGURE 18.2 ; \ 

Hot-wire anemometer. The wire is usually about where A and B are experimental con- 

0.005 mm in diameter and about 1 mm long. stants. Thus, after suitable calibration we 
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can use a hot-wire anemometer to measure fluid velocities. Furthermore, it can be 

shown experimentally that, because the wire is very small (the best are about 0.005 mm 

in diameter, a tenth of the average diameter of a human hair), it can respond very 

rapidly to changing flow rates. Some hot-wire anemometers can follow velocity fluc- 

tuations that are as fast as 50,000 Hz. 

The hot-wire anemometer shown in Fig. 18.2 is very sensitive to flow perpen- 

dicular. to the wire but much less sensitive to flow in the direction parallel to the wire 

which is much less effective for heat transfer. Thus, by using arrays of hot-wire 

anemometers placed at different angles to the flow we can determine not only the 

fluid velocity but also its direction. 

Once the basic scheme for hot-wire anemometry was worked out, numerous 

variants on it were developed [7]. Generally, hot-wire anemometers are delicate, tem- 

peramental instruments that require expensive electronic circuitry and considerable 

care and training to use. 

The other procedure for studying turbulence is to inject some tracer into a tur- 

bulent flow and measure its concentration distribution at some point downstream in 

the flow. (This was the method use by Reynolds in his pioneering exploration of tur- 

bulence, described in Sec. 6.2). As a tracer we can use a dye, which is injected at a 

point and then photographed downstream, or an electrically conducting solution (e.g., 

salt solution in water) whose presence is detected downstream by electric conductivity 

probes. Both of these methods have the drawback that the “tracer” fluid they intro- 

duce may disturb the flow. Another approach is to suspend in the fluid small particles 

of the same density as that of the fluid and then record their trajectories photograph- 

ically or by laser-Doppler measurements. Since about 1980 laser-Doppler methods 

have largely replaced hot-wire methods [8]. 

18.4 THE EXPERIMENTAL AND 
MATHEMATICAL DESCRIPTIONS 
OF TURBULENT FLOWS 

The ultimate description we would like to have of turbulent flow would be an explicit 

expression for V,, V,, V., and v,, V,, and v_, as functions of time and position. Then 
we could predict the average and the fluctuating velocities at any point and any time. 
Currently it seems impossible to make such a description; the problem is much too 
complex. The next best thing is a statistical description of the flow, i.e., what fraction 
of the time V, v,, Vy, etc. have certain values. Much of the experimental and theoret- 
ical work done on turbulence has been directed at these statistical properties of the 
flow. Below is a set of definitions that are widely used in the turbulence literature to 
describe such statistical properties of the flow and some experimental values of the 
quantities so defined. These form the basis for the empirical correlations of turbulent 
behavior used in CFD (Chap. 20). 

18.4.1 Turbulent Intensity 

Turbulent intensity or, simply, intensity, is a measure of how strong, violent, or intense 
the turbulence is. (In the older literature it is often called level of turbulence or degree 
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of turbulence.) Turbulent intensity is defined by 

x — turbulent intensity = (way? (18.4) 

Here (oy 2 is the root-mean-square (rms) of the fluctuating x component of the 
velocity. The relative intensity is defined by 

neue oe. 
x — relative intensity = T, = 7 (18.5) 

Here V is the average of the absolute magnitude of the vector velocity, equal to 

(V2 =) Vv; + y?)! /? We may define the y and z components of the intensity by replacing 

the subscript x in Eq. 18.4 with a subscript y or a subscript z. If Eg. 18.5 defines the x 

component of the relative intensity, then the entire relative intensity must be given by 

1 ((v3) , (5) hm E ae ei TS=( 2 59444 Sat ETERS LEAT 18.6 
Bes v- v- 3 | 2 ace / 

Some writers call T,, which we call the relative intensity, simply the intensity; others 

call it the absolute intensity. 

As discussed in Sec. 18.2, the average value of v, is zero, because it is positive 

as often as it is negative. However, (v;)! ‘2 the rms value of Ux, IS not zero, because 

squaring before averaging removes the minus signs. Many authors, to save writing, 
Te sara eS 

use the symbols uw’, v', and w’ in place of pet Uy Sandys — 

Example 18.1. A turbulent flow at some point is described by the equations 

ft 
Vag 10— +1 sine V,=V.=0 (18.B) 

a — = t/2 

Calculate V,, v,,U, (vz), Ty, and T. 

No real turbulent flow can be described by equations this simple. These 

equations serve only to show the relations between some defined quantities for. 

turbulent flow. By inspection, 

= ft ft 
Ve = 10, = 1 — sin? (18.C) 

S Ss 

= rem it ft cos t 
a = tim +f 1—-sintdt = 1 im ( st) <9 (18.D) 

; t>~ f[J0 S S t>x t 

ata (18) nt)’ dt =) = = == }) (Si 
(Ux edo S 

ft\? eel | Lf? 
-(12) lim 4(—Zeosssins + 31) = 355 (18.E) 

= Lio? ft m 22 axe | — eh cies a2 18.F (v2) (; =] 0707 =022— (18.F) 

Ve (Vii Ot 0)1/7 = V, = 10ft/s = 3.05 m/s (18.G) 

Se EOE Sets (18.H) 
Fol Se fers 
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and 
We 

fuss +-oo707'| = 0.0408 (18.1) 

s 

By suitable electronic circuitry a hot-wire anemometer can be made to read 

directly the rms fluctuating velocity. Thus, with suitable equipment we can directly 

read the turbulent intensity in the direction perpendicular to the anemometer wire. A 

typical set of experimental results for turbulent-intensity measurements in a rectan- 

gular channel are shown in Fig. 18.3. From this figure we see the following: 

1. The intensity varies with location and is generally greatest in a layer near the wall. 

2. The intensity falls off to zero right at the wall. This must be, because the solid 

boundary stops any motion at right angles to the flow direction, and there is zero 

velocity in the flow direction right at the wall. 

3. The maximum observed relative intensity T, is about 0.19 (measured relative inten- 

sities seldom exceed this value). 

4. The intensity in the flow direction is greater than the intensity in the direction at 

Wall Genter right angles to the flow. 

5. Near the center of the channel 

the intensities in the x and y 

directions are approaching 

each other (for a very large 

channel they become practi- 

cally equal at the center, so that 

the turbulence there is practi- 

cally isotropic). 

Intensity, cm/s 
The measurements shown in Fig. 

18.3 are typical of those made in a 

channel where no effort has been 

made to hold the turbulence level 

low. For wind tunnels we desire as 

low a turbulent intensity as possi- 

ble; good ones have T ~ 0.0005. 

18.4.2 Turbulent ke 
FIGURE 18.3 
Turbulent intensity measurements in a rectangular channel A fluid flowing in turbulent flow 
1 m wide and 0.24 m high. The centerline velocity (V,) is possesses more ke per unit mass 

1 m/s. The value of V, at the point near the wall where than would the same fluid moving 
SAA / Dink . . 

(v2)'’? is a maximum is about 0.7 m/s, so that the Dr 
Nee , at the sam S 

maximum value of T is about 0.19. (From H. Reichardt, Orne See a a 

“Messungen turbulenter Schwankungen’”—“Measurements turbulent flow. Furthermore, the 

of turbulent oscillations,” Naturwissenschaften 26:407 more intense the turbulence, the 
(1938). Reproduced by permission of the publisher.) greater the amount of turbulent ke. 
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The turbulent ke is fed into the flow by some kind of external work, generally 
a pressure gradient (i.e., injection work) in a pipe or a fan or a blower in a wind tun- 
nel or the sun-driven work of thermal convection currents in the lower atmosphere. 
This work may first cause an increase in ke in the flow direction or merely a gradi- 
ent in the velocity that will lead to turbulence. The turbulent ke leaves the flow by 

viscous conversion to internal energy. 

In a wind tunnel the turbulent ke is put in by the blower or an inlet screen, 

downstream from a blower; no further turbulent ke is put into the flow as it moves 

through the tunnel (because the tunnel is so short and wide that the walls have little 

effect in the center, where the tests are made). Thus, the amount of turbulent ke 

decreases with distance from the blower in a wind tunnel; the turbulent ke decays. 

Similarly, if we measure the turbulent ke in the wake of a ship or airplane, we find 

that the turbulent ke is strong close to the ship or airplane but decays farther from 

the ship or plane, eventually vanishing far enough downstream. In the latter case the 

turbulent ke is supplied by the engines, which drive the ship or airplane, overcom- 

ing drag. 

At the other extreme, in “fully developed” turbulent.flow well downstream 

from the entrance of a pipe, turbulent ke is steadily being fed into the flow by the 

work being expended, overcoming the shear (frictional) resistance at the pipe walls. 

This ke is steadily being converted to internal energy by viscous friction in the tur- 

bulent flow, so that the rate of addition of turbulent ke to the flow exactly bal- 

ances the rate of destruction of ke by viscous friction, and the amount present stays 

constant as the fluid moves down the pipe. Thus, the turbulence in a pipe does not 

decay with distance, as does the turbulence in a wind tunnel or the wake behind a 

ship or plane. 

Example 18.2. Air is flowing in a rectangular channel, 1.0 m wide and 

0.24 m high; see Fig 18.3. The centerline velocity is 1.00 m / s. How much 

nonturbulent ke per unit mass in the flow direction does it have? How rapidly 

does it degrade to heat? 

Based on Table 3.1 we estimate the average velocity as 0.82 m/s. The 

hydraulic radius is 0.0915 m; the Reynolds number ~ 20,000; and for an 

assumed relative roughness of 4-10 ° the calculated friction factor is 0.0065, 

from which the pressure gradient is —0.0286 Pa/ m. 

The first part is easy: 

(eee ) 

kinetic energy v2 (0.82 m/s) m2 = = = 0336 = 
Mass 2 2 s 

J Bt 
29.336} '0.000144 — (18.3) 

kg Ibm 

If all this ke were converted to internal energy, it would raise the temperature 

of the air by 0.00060°F = 0.00033°C. 

To compute the rate of conversion of some other kind of energy to heat, 

called the dissipation rate (which we will need later in this chapter), we consider 
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a section of pipe with length AL and cross-sectional area A: 

pute converted ) 

(aa ab) to internal energy —AV AP. ora 
—= E = = = (18.7) 

p rate mass A ALp AL 

For this example we calculated that -AP/ AL ~ 0.0286 Pa/m = 0.00013 

psi/ 100 ft, so 

_ -APV_ 0.0286Pa 082m/s _N_ kg-m 
NESTS m 1.20kg/m*> Pa-m?. N-s? 

fi W ft? _, Btu = 0.0196 + = 0.0196 — = 0.215 = 84-10 (18.K) 
Si kg S Ibm: s 

If there were no heat loss, then the external work converted to internal energy 

would raise the temperature of the air by 0.000035°F/s = 0.0000195°C/s. 

The values computed here are averages over the whole flow. Later we will 

see that € varies from place to place in the flow and that we will need local 

values. ES] 

At any point in the flow the x-component of the ke per unit mass is given by 

1 4: 

(vz) = = (x intensity) (18.8) 
Turbulent ke per unit) | 1 —x 

5 Py lett: mass, x Component 

and the total ke is the sum of the three component values, so 

Turbulent ke per unit OF rae 5 5 35,2 b= ( perunt \=2(@+W+@)=s"r ase 
mass, three components 2 2 

Example 18.3. Estimate the value of k for a point 2 cm from the wall in 

Fig. 18.3. 7840) ssa 
Based on chart reading, we have (v2)'/? ~ 9.5 cm/s and (ug)? = 

5.0cm/s. No values are shown for (v2)'/?, its value will be assumed ~ 0. 
Then 

: k= = (0 5 om) + (so m) | 
2 s s 

cm” m J _¢ Btu 
= 57.6 —s>'= 0.00576 —— = 0.0086 SO or 105) 1s i) 

se 8% kg Ibm c=) 

This is a local value, at one point in the flow. 

18.4.3 Scale of Turbulence 

The intensity is a measure of “how much” turbulence is in some small mass of 
matter. We would like to know how big the eddies are as well. Individual eddies are 
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continually changing and do not have fixed or easily defined dimensions. So we refer 
to the scale of an eddy, which represents its characteristic dimension. Scale is like an 
eddy diameter, but fuzzier. From the discussion above we know that the largest eddies 
are typically 25 to 40 percent as long as the dimensions of the turbulence-generating 
system (e.g., pipe diameter or ship hull width). For mixing studies we want to know 
the size of the smallest eddies. It was shown by Kolmogorov [3] that the scale of the 
smallest eddies is 

Geaae ig ee scale & ps 18.10 

scale of smallest eddies) \¢ ia 

Example 18.4. Estimate the scale of the smallest eddies in Example 18.2. 

Here we know the average value of € but not the point values, which vary from 

place to place in the flow. But, using that average value and the kinematic vis- 

cosity of air, we can say that 

ligaeagary 4 a ate AO? Mtt% Ls aps 

0.21 ft?/s° 

= 0.0021 ft = 0.025 in = 0.64 mm (18.M) 

Again, this is based on the average energy dissipation; in some parts of the flow 

this dissipation will be larger, in others smaller. But because of the + power in 

the definition, the changes in Kolmogorov scale from place to place in any one 

flow will not be great. 

This value is not typical, because it corresponds to a very slow air flow 

(Fig. 18.3), chosen to make the turbulence measurements there possible. Typi- 

cal air-conditioning ducts have Vaverase ~ 40 ft/s ~ 12 m/s. If we repeat 

Example 18.2 and this example for 12 m/s (Prob. 18.3), we find the smallest 

eddy has a scale of 0.10 mm. For a typical water flow (6 ft/s in a 3 in pipe, 

Prob. 18.4) the smallest eddy has a scale of 0.033 mm. & 

scale 

Observe that the smallest eddies in a typical water flow are about 33 microns 

large or about 65 percent of the diameter of a typical human hair. There are other 

defined lengths in the study of turbulence, the Prandtl mixing length and the Taylor 

scale, neither of which is widely used by chemical engineers. 

18.4.4 Correlation Coefficient 

In estimating the effect of eddies, we need to know whether two eddies, or two com- 

ponents of an eddy, work together or are independent of each other. The correlation 

coefficient R (borrowed from statistics, where it is widely used and most often shown 

as R*) is a measure of how much of the time two variables coincide with each other. 

The correlation coefficient of two arbitrary functions of time, ¢;(¢) and ,(t), is 

defined by 

Pib2 
Correlation coefficient = R = —= ——_—__ (18.11) 

(63) "7 (63)? 
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This is the average of the product of the instantaneous values of any two functions, 

divided by the product of their rms averages. 

Example 18.5. Determine the correlation coefficients for the following sets of 

functions: (a) $,(t) = t and #2(t) = t; and (b) o,(t) = sint and 2(t) = cost. 

For (a) we have 

? | 
Loi (AY ()'/2 (18.N) 

Taking the averages as shown by Eq. 18.11, we see that R = 1. Thus, for two 

functions which are the same, R = 1. 

For (b) we have 

sin t cos ¢ 
Re == (18.0) 

(sin? 1) /2 (cos? t)! os 

Here the numerator is zero (Prob. 18.2), so R = 0. Thus, for any two functions 

that are 90° out of phase with each other, R = 0. & 

The correlation coefficient can take values from +1 to —1. Here, it is illustrated 

for simple analytic functions, where its value is obvious. In the study of turbulence, 

it is generally applied to randomly fluctuating variables. It can be shown that, if 4;(r) 

and ,(t) are any two randomly fluctuating variables whose average values are zero 

and whose instantaneous values are not related in any way, then their correlation coef- 

ficient is zero. In turbulent flow velocity measurements, suitable electronics let us eas- 

ily determine the correlation coefficients between simultaneous velocities at two 

points, or velocities at one point, separated by some small time interval, or two per- 

pendicular components of the velocity at one point. 

18.4.5 Spectrum of Turbulence 

Another measurable physical property of a turbulent flow is the distribution of fre- 

quencies of turbulent oscillations. Bysuitable electronic filters it is possible to separate 

the output signal from a hot-wire or laser-Doppler anemometer into various frequency 

ranges. e 

If n is the frequency of oscillation in Hz, and we record first the value of v2 for 

the entire range of frequencies and then the value of Av; for some frequency range 
An, we can form the ratio 

aN 1 ae 
v2 An 

tC) bas (18.12) 

In experimental practice we must always use a finite value of An, but in principle we 
can take the limit as An approaches zero, finding 

— (18.13) 
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fn) 

FIGURE 18.4 

Spectrum of kinetic energy for the system shown in Fig. 18.3. [From H. 

Motzfeld, “Frequenzanalyse turbulenter Schwankungen,’—“Frequency analysis 

of turbulent oscillations,” Z. fiir Angew. Math. Mech. 18:362-365 (1938).] 

This f(n) is thus the fraction of the total value of v2 per Hz. Here v2 is twice the 

x component of the turbulent ke per unit mass, so that this fraction (Eq. 18.13) is 

really the fraction of the x component of the turbulent ke per Hz. A typical experi- 

mental measurement of this fraction (of the total turbulent ke, rather than of the 

x component) is shown in Fig. 18.4, which also shows the function 

n=n dv? n=n if 

F(n) = er f(n) dn = a oft - dn (18.14) 

This function, which is simply the area under the f(n) curve up to a given value of 

n, shows what fraction of the turbulent ke is contained in oscillations of lower fre- 

quency. By definition, the value of F(n) must approach 1 as n becomes very large. 

A curve like Fig. 18.4 is called a turbulent kinetic-energy spectrum, analogous 

to the energy spectra of light that appear in optics texts. From Fig. 18.4 it is appar- 

ent that for this flow half of the turbulent ke is contained in velocity fluctuations that 

have frequencies between 0 and 2 Hz, and 90 percent of the turbulent ke is contained 

in fluctuations having frequencies between 0 and about 8 Hz. As a general rule there 

are more small (high frequency) eddies than large (low frequency) eddies, but most 

of the turbulent ke is in the large eddies. 

553 
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Experimentally it is observed [9] that at higher fluid velocities the spectrum 

curve is shifted to higher frequencies. Thus, for high-velocity flow in a pipe we should 

expect more of the turbulent ke to be contained in oscillations of higher frequency, 

whereas in low-velocity flow of the lower atmosphere we should expect more of the 

turbulent ke to be contained in oscillations of lower frequency. 

It can also be shown [9] that there exists a relatively simple mathematical rela- 

tionship between the spectrum of turbulence and the correlation coefficient, so that a 

detailed, accurate measurement of one allows the calculation of the other. 

18.5 REYNOLDS STRESSES 

In Sec. 6.4 we discussed how turbulent fluctuations lead to shear stresses in addition to 

those due to simple viscous shear, called Reynolds stresses. It can be shown mathemat- 

ically [10, p. 499] that the Reynolds stress components for a general three-dimensional 

flow (see Sec. 15.3) are given by 

Txz.= =PUs (18.15) 

Txy = —pU,xvy (18.16) 

with analogous equations for T,, and 7,.. Using these Reynolds stress components, 

we can form the equivalent of Eq. 15.26 for turbulent flow. The v,v, term is the 

numerator of the correlation coefficient for v, and v,. Equation 18.16 can only have 

a nonzero value if these two variables are correlated. 

The most interesting of the Reynolds stresses are the shear stresses. From Eq. 

18.16 we see that these require that the fluctuations be in two perpendicular directions. 

If there is no velocity gradient and the turbulence is isotropic, then there will be no such 

correlation, so that the Reynolds shearing stress will be zero. If there is a velocity gra- 

dient (as exists in any flow near a wall or at the boundary of a free jet) then, as shown 

below, there is always such a correlation, and there will always be a Reynolds stress. 

Figure 18.5 represents a flow near a solid wall. The value of V, is shown; V, is 

0. Now consider a small mass of fluid that is carried by an eddy upward from A to 

B. This mass of fluid moves to a larger y over some finite time, so it must have a 

positive y velocity. However, V,, is zero, so this means that for this eddy, v,, is positive. 

y 

Yo 

Va Ve Ve i 

FIGURE 18.5 

Diagram showing how Reynolds stresses arise in a turbulent flow with a velocity 
gradient. 
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Before this mass of fluid began to move in the y direction, its x velocity was V4. When 
it arrives at B, it probably has not had time to change its x velocity, so it still has an 
x velocity of V4. This is less than the average x velocity at that point (V,), so this 
represents a negative x fluctuation of the velocity at y or a negative v,. 

_ Now some time later a mass of fluid from C is brought to B by an eddy. By 
similar arguments, v, is negative and v, is positive. Thus, for both kinds of fluctua- 
tions U,V, is negative, and there is, indeed, a correlation between the two velocity 
fluctuations at right angles to each other and hence a significant Reynolds stress. 

18.6 EDDY VISCOSITY 

The magnitude and character of these Reynolds stresses can be visualized through the 

concept of the eddy viscosity, first introduced by Boussinesq [3, p. 23]. He suggested 

that we retain the form of Newton’s law of viscosity, 

dV, 

dy 
T=p (1.4) 

which only holds for laminar flow, and make it fit the experimental turbulent-flow 

data by introducing a new quantity called the eddy viscosity «. The eddy viscosity 

is really an eddy kinematic viscosity, but its common name is simply eddy viscosity. 

dV, 
T= (a + pe) (18.17) 

dy 

To avoid confusion in discussions involving the eddy viscosity, the “ordinary” vis- 

cosity is often called the molecular viscosity. Observe the notation problem; here we 

see ¢« having two meanings in this chapter: the rate of turbulent ke dissipation in 

Eq. 18.7 end the turbulent eddy kinematic viscosity in Eq. 18.17. These are the stan- 

dard symbols for these quantities. We will try to make clear which we are using when- 

ever they are used. 

This definition of the eddy kinematic viscosity ¢ has the disadvantage that ¢ is 

not a simple property of the fluid, like the molecular viscosity, but is also a function 

of the flow rate and of position in the flow. It has the advantage that it lets us easily 

formulate the ratio of the Reynolds stresses to viscous stresses. In addition, in calcu- 

lations of heat and mass transfer we may introduce a similar eddy thermal conduc- 

tivity and eddy diffusivity. Under some circumstances these three eddy properties are 

identical, and under most circumstances they are at least of the same order of mag- 

nitude, so this approach helps to apply fluid-flow data to the solution of problems in 

heat and mass transfer; see Sec. 15.7. This approach to solving problems in turbulent 

heat and mass transfer through fiuid mechanics is called Reynolds’ analogy. 

18.6.1 Finding Eddy Viscosities from 
Experimental Velocity Distributions 

From a measured average velocity profile (V, versus y or r) in some flow and from 

information on the viscosity and density of the fluid, we can calculate the eddy vis- 

cosity for any point in the flow. A typical plot of velocity versus position in turbulent 
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pipe flow is shown in Fig. 17.7. The V,. curves there for various # can each be well 

represented by an empirical data-fitting equation of the form 

Vx 1/n 

er Wits (: an fa (18.18) 
Ve centerline Fwall 

Example 18.6. For the flow in Example 18.2, estimate the value of the eddy 

viscosity at a point half-way between the wall and the center based on Eq. 18.18. 

Combining the equation for the shear stress in pipe flow (Eq. 6.4) with 

Eq. 18.17, we find 

Taheastl i dv, 
Se + es 18.19 r= 2(E a + pS (18.19) 

or 

(r/2)(-aP/ dx) —(r/2)(—dP / dx) 
ae = = 18.20 

ees dV,/ dy dV,/ dr ere: 
where y = ’yan — 7 and dy = —dr. We know all the terms from Example 18.2 

except 

dV, 7s V centerline Lp See 
Fe = ne Lo (18.21) 

Twall 

From Example 18.2 we know that —AP/ AL ~ 0.0286 Pa/m = 0.00013 
psi/ 100 ft and that V.entertine ~ 1.00 m/s. From Table 17.1 we estimate that 

n ~ 7. The equivalent of r,,,1 is the distance from the wall to the center of the 

channel in the short direction, 0.122 m, so that 

dv, —1.00 m/s 1 ae 1 '9:5)@— Deere anal Ee 

dr 7 20220 ( ay — s So 

and 

pla ere / 2)(0.0286 Pa / m) 
(u + pe) = 

(212 fs) 

iawn s Ibf:s 
= 8.2410, = hae 18. 

m- ft? tase 

Most often one sees this as a ratio, 

€ &)) lobbityPs Ay S + pe 

w/ p be Ki 

= Viurbulent ce 8.24 - iar N:-s/ m- 

Vmolecular et - ore N ges) / m? 
68 (18.R) 

which shows that for this approximate velocity distribution equation, at this 
point in this flow, the Reynolds stresses are ~ 68 times as large as the viscous 
stresses. « 
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18.6.2 Finding Eddy Viscosities from 
Semitheoretical Correlations 

The previous example shows that if we know the velocity distribution (which we do 
for simple flows like steady flow in a circular pipe), we can work back from those 
data to values of the eddy viscosity. But the real problem is the inverse of this one: 

using the eddy viscosity to estimate the velocity distribution (and other properties 

like heat transfer and mixing) in complex flows, like that in the industrial furnace in 
Fis. 1.5. 

The CFD programs that make such calculations mostly do so by substituting 

Serpe 
ae DS ae 18.22 

barese Ptonitsha ti lean 

in place of yw in the Navier-Stokes equations (Eq. 15.26) and then solving numerically 

for the resulting velocity distribution. To do so they use semitheoretical correlations 

for 4, of which the most widely used is the k-e model. The ¢ in the kK-e model is 

the turbulent ke dissipation rate (Example 18.2), not the eddy kinematic viscosity. This 

model calculates the turbulent viscosity by 

k? Ly k? 

Br = PCy or Laima Cue (18.23) 

where C,, is a data-fitting constant. The values of k and e€ vary from place to place in 

the flow and obey the general balance equation, rate form (Eq. 3.3), which includes 

creation and destruction terms. 

Example 18.7. Estimate the value of the turbulent kinematic viscosity in a 

flow of air at a point where k = 0.00576 m’/s” (see Example 18.3), 

€ = 0.0196 m?/s? (see Example 18.2), and C,, = 0.09 (based on a value taken 

from a CFD manual). 

By direct substitution into Eq. 18.23, we find 

0.00576 m? / s*)? 7 N- 
», = 0.09 $ : ) = 1.53- 10-4 = = 11.53 "1074 

(0.0196 m*/s”) s m 

ght 
Sag gers (18.S) 

and 

. —4 . 2 Vturbulent iz imosreulkt N:s/m = 103 (18.T) 

V molecular Lal 10> INsi/ m? 

This is approximately 5 of the value in Example 18.6, mostly because we used 

the available value of k for the whole flow, with the available value of e& at 

half the distance from the wall to the center. |_| 

This example only illustrates how a CFD program would compute the turbulent 

kinematic viscosity at some point, given the input values. The computation of those 
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values is complex and depends on the value of the turbulent kinematic viscosity, so 

the computation of the three-dimensional velocity at any point must be a circular iter- 

ative solution. The k-e model and related models are rarely if ever used for hand cal- 

culations. This example serves only to give some insight into what is going on in CFD 

models. 

18.7. TURBULENCE THEORIES 

Most of the best-known theoretical fluid mechanicians of the 20th century attempted 

to deduce a comprehensive theory of turbulence. The resulting theories each provide 

some insight into the relations that must exist between various quantities in turbulent 

flow, but all of them contain undefined constants that must be measured experimen- 

tally to make the theory fit the observations. The theories of Prandtl and von Karman 

are well summarized by Schlichting [11, Chap. 19]. That of G. I. Taylor is summa- 

rized by Dryden [12]. The theories of Kolmogorov are discussed by Hinze [3] and 

Corrsin [6]. The problem of calculating the velocity distribution in turbulent flow in a 

pipe from the various theories is discussed by Bird, Stewart, and Lightfoot [13, p. 165]. 

Many of these theories are quite complex mathematically. The more involved 

mathematics led one fluid mechanician to comment that these theories “confirm one’s 

suspicion that the aim of the statistical theory of turbulence is full employment for 

mathematicians” [14]. 

18.8 SUMMARY 

1. In analyzing and measuring turbulence it is customary to divide the flow concep- 

tually into steady and fluctuating components. 

2. Historically, most turbulence measurements have been made with hot-wire 

anemometers. In recent years laser-Doppler anemometers have been widely used 

as well. 

3. Free turbulence has a different experimental character from that of turbulence near 

a solid wall or a free jet. 

4. The readily measured experimental properties of a turbulent flow are the time- 

average velocity and the intensity, scale, and spectrum of the turbulence. 

5. Reynolds shear stresses arise out of the correlation of turbulent fluctuations in two 
perpendicular directions. These are rare in free turbulence but almost always pres- 
ent in turbulent flow near a wall or the edge of a free jet. 

PROBLEMS 

See the Common Values for Problems and Examples inside the back cover. An aster- 
isk (*) on a problem number indicates that its answer is in App. D. 

18.1. Show the relationship between the ke of a stream with velocity V = V + v and the ke 
of a stream with velocity V = V. 

18.2. Repeat Example 18.1 for the same flow, but with V, = (0.5 ft/s)(sint) instead of 
1/2 

V, = 0. Show the values of Me, Vy, Vy, (v2 ) TrandD. 
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18.3. Repeat Example 18.2 for air flowing 12 m/s in the same duct as Example 18.2. 

18.4.*Repeat Example 18.2 for water flowing 6 ft/s in a 3-in schedule 40 pipe. 

18.5.*Repeat Example 18.3 for a point 6 cm from the wall in Fig. 18.3. 

18.6. In Example 18.4, if we double the energy dissipation rate, how much will that change 

the Kolmogorov scale? 

18.7. Select two functions ¢)(t) and 2(t) whose correlation coefficient is —1. 

18.8. Show that sin t- cos rt = 0. 

18.9.*If the size of the smallest eddy in a flow is that shown in Example 18.4, the frequency 

of such an eddy should be about the same as the local stream velocity divided by eddy 

size. Estimate that frequency for a fluid velocity of 1 m/s and the eddy size from 

Example 18.4. 

18.10. Repeat Example 18.6 for r/ ry = 0.9. 

18.11.*Repeat Example 18.6, using the universal velocity distribution plot (Fig. 17.8) instead 

of Fig. 17.7. 
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CHAPTER 

Ly 
MIXING 

19.1 TYPES OF MIXING PROBLEMS 

Chemical engineers regularly deal with fluid mixing problems of the foilowing types. 

Mostly, we mix by generating turbulence in the fluids in which the mixing occurs. 

19.1.1 Suspension of Solids 

When you put sugar in your coffee, tea, or lemonade, it settles to the bottom. When you 

stir, the first thing you are doing ‘is suspending the solid sugar (SG = 1.58) in the liquid 

(SG = 1.00). In doing so, you increase the rate of dissolution of the sugar, both by 

increasing the surface area exposed to the liquid and by producing fluid flow over the 

solid surfaces. This is one of the easiest mixing problems: The requirement is only that 

most of the solids be carried upward by the fluid so that they do not form a pile on the 

bottom of the container. Many similar suspension operations occur in chemical engineer- 

ing, mostly requiring mild stirring. If the local upward velocity is greater than the terminal 

settling velocity of the particles (Sec. 6.15) then suspension will be practically complete. 

19.1.2 Dispersion of Solids 

In suspension of solids, the requirement is mostly that the solids not settle to the bot- 

tom of the container. In dispersion of solids the requirement is normally more difficult: 

that the solids be uniformly distributed throughout the liquid. The classic example is 

the dispersion of paint pigment, which consists of opaque, colored particles, normally 

0.01 to 5 microns in diameter. To do their job in the paint they must be uniformly 

dispersed so that, in the paint film placed on the wall, each particle contributes to the 

paint’s ability to hide the underlying surface. Typical pigments have SG ~ 4, so 
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gravity settling in the can during storage was a major problem until 50 years ago. 
Since then the rheology of the liquid parts of the paint has improved enough that, on 
a human time scale, pigment settling is negligible. 

19.1.3 Blending of Miscible Liquids 

When you put cream in your coffee and stir it, the operation you are performing is 
blending, causing two miscible fluids (almost always liquids) to form a single fluid 

with no perceptible differences in concentration from point to point. In coffee this 

requirement is not severe; we do not demand uniformity at the scale of a droplet, only 

at the scale of a mouthful. The corresponding blending of gasoline requires uniformity 

down to perhaps | mm size drops. The various liquids that are blended to make gaso- 

line have different octane numbers; if the blend is not complete at the level of the 

charge to a single cylinder on a single firing, then some cylinders will receive a higher 

octane than they need and others will receive less than they need, causing knock. For 

low-viscosity fluids like coffee and gasoline, blending is done mostly by turbulence, 

in which the larger eddies repeatedly move parts of one batch of fluid into the midst 

of the other batch of fluid. For viscous fluids like paints, the flow is mostly laminar, 

and the blending is accomplished by repeatedly dragging a layer of one fluid through 

another. The student has perhaps observed in hand-mixing of paints that the first few 

strokes of the mixer make trails of the pigment into the unpigmented parts of the paint, 

and over time those trails become thinner and harder to see until they vanish. 

19.1.4 Molecular Mixing 

For many chemical processes and for combustion, the mixing must be practically com- 

plete at the molecular level. This is a more difficult requirement than suspension or 

blending and generally requires more energetic mixing. As discussed in Chap. 18, tur- 

bulent eddies have a minimum size, which is large compared to the dimensions of 

molecules. Thus, in this kind of mixing we use turbulence to mix down to the size 

of the smallest eddy, and then rely on molecular diffusion to finish the job. 

19.1.5 Blending of Solids 

Miscible liquids, once blended, cannot be separated by any ordinary mechanical 

process. The same is not true of solids. If the individual solid particles have different 

sizes or different densities, then after mixing they can be separated by screens or grav- 

ity devices, or by simple shaking, which will cause the smaller particles to go to the 

bottom and the larger ones to rise to the top. Tablets of medicines are normally pressed 

mixtures of a variety of solids; keeping that mixture uniform as it flows from the 

blender to the tablet presses is not easy. Mixing of solids is a special problem, which 

will not be discussed further in this book [1]. 

19.1.6 Mixing in Pipes 

Sometimes we wish to blend fluids by flowing them together through a pipe; other 

times, we want batches of fluid that are following each other down a pipe not to mix. 
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19.1.7. Emulsification 

Many consumer products—mayonnaise, cold cream, salad dressing, homogenized 

milk—are emulsions, which consist of two immiscible liquids that have been intimately 

mixed by a high-intensity mixer and whose dispersed droplets do not coalesce, often 

because the mixtures contains a surface-active emulsifier that prevents coalescence. 

19.1.8 Atmospheric or Oceanic Dispersion 

Streams of combustion products, often containing pollutants, are regularly emitted 

from smokestacks to the atmosphere. There they are dispersed by atmospheric mix- 

ing, so that their maximum concentration, observed at ground level, is several orders 

of magnitude less than the concentration in the emitted stream. Similarly treated (or 

untreated, alas) sewage is dumped into the ocean (or rivers) by a sewage outfall. There 

it is dispersed to nontoxic concentrations. Before about 1970 the motto of the envi- 

ronmental engineers was “Dilution is the Solution to Pollution.” Many cities and states 

had regulations (e.g., stack height requirements) forcing the dilution of emissions. 

Current U.S. pollution law is strongly oriented toward treatment and removal of pol- 

lutants rather than dilution and disposal in the environment. Nonetheless, such dis- 

persion occurs and is important. Similarly, small amounts of gaseous fuels are released 

to the atmosphere in many fuel transfers, e.g., filling the gasoline tank of one’s car. 

Atmospheric dispersion reduces the concentration to below the lower flammable limit 

in a few feet. If it did not, fueling one’s car would be very dangerous. 

19.2 THE ROLE OF TURBULENCE 

We use turbulence for mixing in most mixing applications. The large eddies in tur- 

bulence are very effective in coarse mixing, moving the fluid about and folding-and 

turning it. However turbulence is not effective for mixing at the molecular level. We 

saw in Chap. 18 that the smallest eddies in a turbulent flow will have 

(SES ¥ (eee scale ) pol 

\scale of smallest eddies / ( € ) a? 

In Example 18.4 we saw that for a typical turbulent flow of water this scale was about 

0.03 mm = 30 micron. The intermolecular spacing in liquids is of the order of 

10°? m = 0.001 microns. Thus, the smallest turbulent eddies are on the order of 

30,000 times the spacing between molecules. If we mix more vigorously, we will 

increase the value of «, but it enters Eq. 18.10 to the 0.25 power, so that large changes 

in € produce small changes in the size of the smallest eddy. The kinematic viscosity, 

v, enters Eq. 18.10 to the 0.75 power, so that as the fluid viscosity increases, the size 

of the smallest eddy increases significantly. Turbulence mixes well enough that the 

resultant nonuniformities are sufficiently small that molecular diffusion will finish the 

mixing job for us if the fluids are not too viscous. 

19.3. THE ROLE OF MOLECULAR 
DIFFUSION 

In both the cream- and the sugar-in-coffee examples, once we get to uniformity down 
to perhaps 10 *m = 100 microns, molecular diffusion finishes the job for us, giving 
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us uniformity down to 10°? m. The role of molecular diffusion in mixing is illustrated 
in Example 19.1. 

Example 19.1. Two layers of fluid, each L thick, are brought into contact. One 

is pure water, the other is water containing 1 percent acetic acid (HAc). Over time, 

molecular diffusion causes the concentration in the two layers to become uni- 

form, in this case at 0.5 percent acetic acid throughout. But how long will it 

take? Figure 19.1 shows the geometry and the change in concentration profile 

over time, starting as a step and changing over time to a uniform concentration. 

This is a classic diffusion problem, which is mathematically identical to 

a similar problem in heat transfer, whose solution is shown in all heat transfer 

books (a slab, insulated on all sides but one, with the temperature at that side 

suddenly changed from 0 to T and maintained at that temperature). The diffu- 

sion or heat conduction equation has an infinite-series solution, which is shown 

in graphical form in all heat-transfer books. Absolute chemical composition 

uniformity (or temperature uniformity in the heat-transfer problem) requires an 

infinite time, but 99 percent of all the acetic acid (or heat in the heat transfer 

problem) that will flow in infinite time flows by the time at which 

Fourier number _ molecular diffusivity « time mn Qt ie (19.1) 

Lewis number (length)? Om 

c=1% 

ones t increasing 
f=ec 

C= 0.5% SESS eee eee Seeseeaseenabas 

+ 1 ——+}+——_ 1——+| 

FIGURE 19.1 

Schematic for Example 19.1. Two fluid layers, each L thick, are brought 

together at time zero. The one on the left initially contains no HAc, the 

one on the right contains 1% HAc. Thus, the initial concentration profile 

is the step function shown. Over time, diffusion makes the concentration 

uniform; the profile changes to a horizontal line at 0.5% HAc. 
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In this problem & is the molecular diffusivity. In the corresponding heat trans- 

fer problem it is the thermal diffusivity, a = (k/ pC). Both of these quantities 

(and the kinematic viscosity, which may be thought of as the momentum dif- 

fusivity) have the dimension of m?/s or equivalent. 

For acetic acid in water near room temperature, we have D ~ 1.2- 10m 

m*/s. The time to complete 99 percent of the transfer by molecular diffusion 

is a very strong function of the thickness L of the layers. If the thickness is 

10° m = 1 micron, then 

2 (10-6 m\2 
pes ee LD ir ="1.667710, 5 (19.A) 

BD. 1.2-10°? m7/s 

One micron is approximately the spacing between individual nerves in our bod- 

ies, These nerves pass signals to each other by diffusing acetylcholine across 

the water-filled spaces between them; this calculation shows that the chemical 

messages cross the spaces in about 1.7 ms. At this size level, diffusion is fast 

enough that our brains and nervous systems do not perceive this diffusion delay 

at all. 

However if we repeat the calculation for layers of thickness L = 1 mm or 

1 cm, we find that the calculated times for 99 percent completion by diffusion 

increase by 10° and 10° to 0.46 h and 46 h. At the size scales of ordinary objects, 

molecular diffusion is slow. = 

For the eddy size of 30 microns computed in Example 18.4, the diffusion times 

would be 900 times as long as those in Example. 19.1, or ~1.5 s. This is normaily an 

acceptable delay for liquid-mixing problems. Table 19.1 shows the room-temperature 

values of the diffusivity for some typical mixing problems. It makes clear that for gases 

the diffusivities are about 5000 times faster than for liquids such as water, so diffusion 

mixes gases much quicker than it does liquids. The table also shows that the diffusivity 

of liquid is approximately proportional to 1 / viscosity, so that molecular diffusion is 

slow in highly viscous fluids. 

TABLE 19.1 

Typical values of molecular diffusivities* at or near 20°C 

Substance diffusing Typical value of 2, m*/s 

Common organic vapors in air 5 to 20-10°° 

Same vapors in hydrogen About 4 times the values in air 

Acids and other ionized species in water 1 to 3°10? 

Dissolved gases in water 1 to 3-10 ° except for Hy and He, for which @ is about 
twice as large 

Sugars and weak electrolytes in water 0.5 to 1:10? 

Common organic liquids in other common 1 to 3:10-° 

organic liquids 

Any of the above in a viscous fluid Approximately the value in water > (Wwater / Maia) 

*Based on more extensive tabulations in Perry’s Chemical Engineers’ Handbook and the Handbook of Chemistry and 
Physics. Equations for predicting diffusivities and showing the effects of temperature and pressure change on them appear 
in The Properties of Liquids and Gases by Poling, Prausnitz, and O’ Connell. 
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19.4 MIXING IN STIRRED TANKS 

Figure 19.2 shows schematics of two versions of a stirred-tank mixer. These are 
extremely common in chemical engineering. Books on mixing are mostly about this 
type of mixer and its variants [2-6]. The mixer consists of a vertical, cylindrical vessel, 

Wall baffles 

B=1/10to1/12T 

D = impeller diameter 

T = tank diameter 

Liquid height 

H=T 

\ 
se 

one =1soU3T ) 

Ose 

T = tank diameter 

(a) 

Impeller blade width 

W=1/4tol/6D 
Impeller 

clearance 

C=1/6tol/2T 

Wall baffles 

B=1/10to1/12T 

D = impeller diameter 

T = tank diameter 

Liquid height | ae 

H=T Kemp? GPR Ss 

Impeller blade width 

W=1/4tol/6D : : 
mpeller 

clearance 

C=1/6tol/2T 

T = tank diameter 

(b) 

FIGURE 19.2 

Schematic for two variations of a cylindrical mixing tank. In both, a shaft, entering from 

above drives an impeller, which mixes the fluid. Baffles on the wall prevent the whole 

mass of fluid from rotating. The dimensions shown are typical of these tanks. Part (a) 

shows a radial-flow impeller whose blades are vertical; it produces mostly radial flow, with 

modest vertical circulation. Part (b) shows an axial-flow impeller, whose blades are 45° 

from the vertical; it produces mostly axial flow, normally downward. [From G. B. 

Tatterson, Fluid Mixing and Gas Dispersion in Agitated Tanks, New York: McGraw-Hill, 

1991. Reproduced by permission of the publisher.] 

565 
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often open at the top. A vertical shaft from the top drives an impeller, which mixes 

the fluid. Two different impeller designs and their resulting fluid flow patterns are 

shown. Baffles at the wall (typically four) prevent the whole fluid mass from rotating. 

These tanks are used in a batch mode or with steady flow in and out. The dimension 

ratios shown are typical. 

19.4.1 Power Input to Stirred Tanks 

The power input to such tanks is shown in dimensionless form in Fig. 19.3. The hor- 

izontal scale is a Reynolds number, based on the impeller tip velocity and the impeller 

diameter: 

p: (impeller tip velocity / 277): Dimpetier p*ND:-D ND? 
Rimpetier = sd ce ae ae ym (19.2) 

pL L 

where 

N = (revolutions / time) = w / 27 (19.3) 

= Po/ pN>D> 

(Power number) 

I 10 10? 10° 104 105 

Rimpetier = ND*p/ 

FIGURE 19.3 

Power number-Reynolds number correlation for Newtonian fluids using six different impeller designs. [Reprinted with 
permission from R.L. Bates, P.L. Fondy and R.R. Corpstein, “An Examination of Some Geometric Parameters of Impeller 
Power”, J & EC Proc. Des. Dey. 2:310 (1963): Copyright 1963 American Chemical Society. ] 
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and the 27 has been dropped. The vertical scale is the power number, 

fie ) Po (F/ D*) View AP 
= eas OE Boe eae 19.4 

pN°D” p(Viip/ 2m) p(Viip / 222)? nee} 
where F is a force, Po is a force times a velocity, and AP is a force / area. Except 
for constants, the rightmost term in Eq. 19.4 is the same as the Fanning friction fac- 
tor used in Chap. 6. Figure 19.3 is simply Fig. 6.10 for a different geometry. 

number 

Example 19.2. A mixing tank with Dj... = 3 ft and Dancin ae ltsnas Lue 

dimension ratios shown in Fig. 19.2(a). The impeller corresponds to Curve 1 in 

Fig. 19.3 and has N = 240 rpm = 4/s. The fluid has the same properties as 

water. Estimate the power input to the impeller. 

(4/s) - (1 ft)? 
ee = Boy a? 19.B 

Bnet anl0Z7-dOn? fis Sie 
which is well into the turbulent region on Fig. 19.3. From that figure we read 
that the power number ~ 5, so that 

Ibm (4) iS hp: Po = 5pN3D° = 5- 23. te (4) seep motels. so nP 16 
ft? \s 32.2 Ibm: ft 550 ft- Ibf 

=1.13 hp = 0.84 kw (193@) 

id 

19.4.2 Required Power Input and Mix Time 

The preceding calculation is simple. Using Fig. 19.3 or its equivalent for other im- 

pellers and tank dimensions, we can easily estimate the power input for any impeller- 

tank combination. The harder and more interesting question is how much power for 

how long a time is needed to produce satisfactory mixing. There is no simple answer 

to that question, because the answer depends on what is “satisfactory,” e.g., the level 

of dispersion needed to suspend sugar? to disperse paint pigments? to make emul- 

sions? for uniformity at the molecular level? The answer also depends strongly on the 

properties of the fluid(s) and/or solid(s) or gas(es) to be mixed. No simple rule exists. 

For mixing jobs for which we have no previous data, we normally must test. We can 

do small-scale tests fairly easily; most engineering laboratories have mixing tanks like 

that in Example 19.2. But there is no simple set of rules for scaling up from those 

laboratory tests to the industrial size. 

Example 19.3. Tests indicate that the tank-mixer combination in Example 19.2 

produces satisfactory mixing for our application in an acceptable time period. If 

we now build an industrial version that is a scale model with all dimensions 

increased by 5, using the same N, what should we expect its performance to be? 

First, we see that Rimpener increases by 5* = 25. This keeps us on the flat 

part of Fig. 19.3, so the power number is unchanged. The required power increases 

by 5° = 3125, so we would need a 3530 hp drive. That is a huge number, prob- 

ably unacceptable. A common basis for comparing the intensity of mixing is the 
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(power / tank volume). That ratio is proportional to (D° / D?),= 45? =25, sug 

gesting that simply keeping the dimension ratios constant and keeping the speed 

constant leads to much more vigorous mixing as we go up in size. 

If, instead of keeping N constant, we decided to keep (power / tank volume) 

constant, then 

Po pN Dm 
== ee 

V D° 

so for constant (power / tank volume) the N 3p” product must be a constant. 

Thus, in this case, 

(19.5) 

2/3 

~ = (7) = 52/3 = 992 (19.D) 
1 Pe 

and Nz = 240/292. = 82 rpm. E=4 

The point of this example is that there is no obvious rule for scaling up from 

laboratory to industrial mixers of this type. One might choose dimensional similarity 

and constant Rimpetter OF Constant (power / tank volume) or constant impeller tip 

speed, or some combination of these, but one cannot match them all. The most com- 

mon choice seems to be constant (power / tank volume), but this ratio is only a rough 
estimate of the best design. In spite of this caution, the suggested values in Table 19.2 

are widely published. A summary of rules for estimating how much power and time 

are needed for mixing is given in McCabe, Smith, and Harriott [7, Chap. 9]. One rule 

that appears useful is for blending. The impeller that mixes the fluid also pumps fluid 

through itself, leading to the currents sketched in Fig. 19.2. (Such impellers are quite 

like the impellers of centrifugal pumps, operating without a pump casing.) There are 

adequate correlations for the pumping rate of common impeller types. For example, 

for modest-viscosity miscible liquids, blending will be satisfactory when the total vol- 

ume that has flowed through the impeller is about five times the volume of the tank. 

Using this idea and a correlation for the flow, McCabe, Smith, and Harriott [7, p. 260] 

present the following equation for estimating:the required time to blend a tank: 

we) ( Deank i 
Ntpienad = 4.3 ° ; : 
se ion Dcpctier ike ®) 

TABLE 19.2 

Commonly reported values of (power / tank volume) and tip speed 
for mixing in baffled tanks 

Power / tank volume, 

Operation hp / 1000 gal Rotor tip speed, ft / s 

Blending 0.2-0.5 <5 
Homogeneous reaction 0.5-1.5 7.5-10 
Reaction with heat transfer 1.5-5.0 10-15 
Liquid-liquid mixing 5-10 15-20 
Liquid-gas mixing 5-10 15-20 
Slurrying 10 >20 
SL 
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Example 19.4. For the tank in Example 19.2, how long should it take to blend 
two miscible, low-viscosity liquids? 

Ntsiena = 4.3 (1)° (3)* = 38.7 (19.B) 
38.7 

tend ies are = 9.758 (19.F) 

| 

The same source gives a plot of Nfpienq Versus Rimpetter for a variety of impeller- 

tank combinations. The presentation in terms of Népieng is common because Ntpieng iS 

dimensionless, sometimes called the mixing time factor. 

19.5 MIXING IN PIPE FLOW 

Often we put two different fluids into a pipe and use pipe flow for mixing, or put flu- 

ids into a pipe one after the other and want them to arrive at the other end of the pipe 

unmixed. The second case is of great practical significance in petroleum product 

pipelines. 

Consider the situation in which two miscible fluids (e.g., two grades of gaso- 

line) are sent sequentially through the same pipeline. We want to know how much of 

a mixed zone will exist between them at the end of the line. The situation is sketched 

in Fig. 19.4. We take the viewpoint of a person riding with the interface between the 

two fluids. If there were absolutely no mechanical mixing between fluids, then this 

would be a simple molecular diffusion problem, whose solution is well known. The 

three-dimensional molecular diffusion equation is 

ac 
Zz az = Rab ae 19.7 

where c is the concentration 

of the diffusing species and 

%,. is the diffusivity in the 

x direction, etc. For most 

cases of molecular diffu- 

sion, the values of Z do not 

depend on direction, so we 

can factor them out on the 

right side of Eq. 19.7 and 

find the exact analog of Eq. 

16.3 for heat transfer. 

Flow, velocity V 

Mixed zone between 

Pipe with fluids 1 and 2 The problem sketched 

ae i i in Fig. 19.4 is the exact ana- 
; log of two semi-infinite slabs 

FIGURE 19.4 initially at different tempera- 
Schematic of fluid 2 displacing fluid 1 in a long, constant-diameter 

pipeline. This is seen from the viewpoint of an observer riding 

with the interface (the Lagrangian viewpoint). The derivation in the 

text is based on fluid standing still, for a time f equal to the length 

of the pipeline divided by the fluid velocity t = L/ V. 

tures, brought together at 

time zero. The plane of con- 

tact immediately takes up the 

average between the two 
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l = temperatures and remains at that 

temperature. This differs from the 

situation in Fig. 19.1, because 

2 here the areas into which the dif- 

' fusion occurs are infinite in depth, 

re not the limited depths in Fig. 19.1. 

e 0.1 The mathematical solution to this 

3 problem (with diffusion only in 

e the x direction) is 

E 
= C — Cinterface 

Coriginal — Cinterface 

° O01 0.1 1 5 = et(—) (19.8) 
Any function or variable, x 2Vot 

FIGURE 19.5 where erf is the Gaussian error 

The error function, erf(x) as a function of x. Excel integral, whose values are given in 
spreadsheets generate this function by erf(x) = mathematical tables and shown in 

2-(NORMSDIST (x V2) — 0.5). In Example 19.5 we use Fig 19.5. 
this plot (or this equation) to evaluate erf(x/2V@Qt). 

Example 19.5. The Chevron Products Pipeline System runs 700 mi from Salt 

Lake City to Spokane, with intermediate stations at Boise and Pasco. There are 

two parallel lines, each 8 in in diameter. One line mostly transports different grades 

of gasoline, the other mostly several grades of diesel fuel and jet fuels. Two dif- 

ferent grades of gasoline (fluids 1 and 2) follow each other 700 mi at an average 

velocity of 8 ft /s. If the only mechanism for mixing were molecular diffusivity 

(see below), and a concentration of 0.1 percent fluid 2 in fluid 1 is the maximum 

allowable, how far would that be from the initial interface, at the end of the pipe? 

Q for two types of gasoline in each other is about 2- 10° m?/s. 

Here we let c refer to the concentration of fluid 2. Thus, 

C ~ Cinterface = 0.1% — 50% 

Coriginal — Cinterface O=50% 

x 
= 0.998 :=erf| ——— i 

; (; és tee 

From Fig. 19.5 (actually, from the table on which it is based), we read that 

0.998 = erf (2.15), so that 

eT ~ 2.15 (19.H) 

The time for the fluid to travel 700 mi at 8 ft / s is 4.57: 10° 5s = 127 h, so 

x © 2.15-2VBt = 4.3V(2-10-° m/s) - 4.57: 10°s 
= 0.13 m = 0.42 ft (19.1) 

and the mixed zone (from 0.1 to 99.9 percent liquid 2) would have a volume 
of 

Vinixea = 2° 0.42 ft - (0.355 ft* of liquid / ft of pipe) = 0.30 f° = 2.2 gal (19.3) 
e 
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This solution is the same as what we would compute if we brought the two flu- 
ids into contact and had them stand still for 127 h. If only molecular diffusion were 
operating, then the mixed zone would be very small. That is not what happens at all. 
Instead the turbulence in the fluid makes the mixing much more intense. Recall Exam- 
ple 18.6, where we found that the eddy viscosity at one point in a low-speed air flow 
was 68 times the molecular viscosity. We should expect the same situation here. The 
experimental data for this type of mixing in turbulent flow are reasonably represented 

by the semitheoretical relation [8] 

SD areiient 
Uy sur 3.57Vf (19.9) 

where f is the Fanning friction factor for the flow. For turbulent flow, & is called a 

dispersion coefficient to distinguish it from the molecular diffusivity. In this case, with 

the dispersion in the flow direction, it is called an axial dispersion coefficient. 

Example 19.6. Repeat Example 19.5, taking turbulent mixing into account. 

For this flow the friction factor, determined by the methods of Chap. 6, is 

Ff = 0.0039, so that 

Dearbuient = 0.665 ft: (8 ft / s) -3.57V0.0039 = 1.20 ft?/s  (19.K) 

and 

x = 2.15-2VGt = 4.3V (1.2 ft/s) - 4.57: 10°s = 3183 ft =970m (19.L) 

i Iss Sah = Qi = 970m 

= 16,539 gal = 394 bbl (19.M) 

s 

Experience with this pipeline [9] indicates that the mixed zone is about } of 

the value calculated above, which reminds us that Eq. 19.9 is only approximate. (But 

see Probs. 19.9 and 10.) The typical batch size sent through the pipelines is about 

10,000 bbl, so from the above calculation we would conclude that approximately 

4 percent arrived as the mixed zone, whereas experience suggests about | percent. 

For some products the mixed zone is zero, because, for example, one can put a mix- 

ture of regular and premium gasoline in the regular gasoline tank. That mixture will 

meet regular gasoline performance specifications. 

This whole discussion is about axial dispersion in turbulent flow; in laminar 

flow it is different [10, p. 49] and also interesting. 

The previous discussion concerns axial mixing, which we generally would like 

to avoid. In contrast, we often use flow down a pipe to mix fluids, in which case we 

want such mixing. Consider Reynold’s experiment, in which he introduced a dye 

streak into a flow (Table 6.1). In turbulent flow, how far down the pipe must we go 

before we will observe uniform dispersion of the dye? This problem has no well- 

known solution like the axial dispersion problem discussed above, but we may esti- 

mate the distance as follows: 

1. First we assume that we can use a turbulent dispersion coefficient and that the 

semitheoretical value from Eq. 19.9 will serve us. This is a strong assumption, 
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because axial and radial values of the eddy diffusivity need not be the same; see 

Fig. 18.3. But it may be the best assumption we can make. 

2. We assume that Eq. 19.1 can be used, with the radius or the diameter as the appro- 

priate diffusion length. The choice of the diameter seems conservative. 

3. In Eq. 19.1 we can replace t by L/ V, where L is the downstream distance. 

Then 

351 VD VILL) 9) Repose (19.10) 
D D 

or 

Pes U5 AS ee 19.11 Bee (19.11) 

Example 19.7. In redoing Examples 19.5 and 19.6, we now decide to use the 

pipe to blend a dye into the fluid by introducing it into the flowing stream. How 

far downstream does the dye become uniformly distributed throughout the fluid? 

From Example 19.6, we know that f = 0.0039, so that 

L 0.56 
= 0 19.N 
D  ¥0.0039 

or 

L = 9.0 - 0.665 ft = 6.0 ft = 1.8m (19.0) 

a 

This speculative calculation suggests that at R ~ 6-10° the turbulence is 

intense enough to mix the dye (or any other soluble substance) into the flowing fluid 

in a pipe length ~ 9 diameters. Such values are widely reported, but others suggest 

greater lengths, up to 100 diameters. In laminar flow the eddy diffusivity is zero, so 

the mixing across the flow is much weaker. When we wish to mix two fluids in lam- 

inar flow in a pipe it is common to insert static mixers in the pipe, which divide and 

rotate the flow, repeatedly alternating direction of the rotation. These increase the pres- 

sure drop but are effective in laminar flow mixing [3, Chap. 19]. 

19.6 MIXING IN TURBULENT, 
CYLINDRICAL FREE JETS 

In many cases a jet of fluid passes into a large mass of the same fluid or another 

fluid of comparable properties, for example, the exhaust from a jet engine or an auto 

engine, the flow from an air-conditioning duct into a room, or the jet of fluid that is 

pumped into a tank to stir and mix it. These have been intensely studied for gases, 
not nearly as much for liquids. The available data are mostly for turbulent flow of 
jets from a circular orifice, which is the type considered here. Figure 19.6 shows the 
shape of such a jet for one gas discharging into another, and the nomenclature for 
describing it. 

The figure makes clear that the jet enters from a rounded nozzle from a plenum, 
in which turbulence should be negligible, so the inlet velocity over the inlet area is 
practically constant, Vo. As the jet flows into the surrounding gas it generates an annular 
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turbulent boundary layer that 

eats into the jet and grows out- 

ward from it. The inlet flow 

extends from the orifice to the 

point at which the central jet, 

uninfluenced by the gas around 
FIGURE 19.6 ae, l é 

The behavior of a turbulent free jet, and the notation used to It, 1s all eaten away. This 

describe it. occurs at x/ Dp ~ 6.4 to7. Up 
to that distance the velocity 

along the centerline = Vo. Then, from x / Do ~ 7 to 100 the jet grows steadily in diam- 

eter, entrains more and more of the surrounding gas, and slows down. Beyond 

x/ Do ~ 100 the jet has slowed enough that its velocity is comparable to the random 

movements in the surroundings, and it ceases to exist as a coherent jet. 

Experiments indicate that the momentum flow across any plane perpendicular to 

the x axis is practically the same; the total mass flowing increases, the velocity falls, 

and the integral /,1, ea” 4A remains constant. Furthermore, over the range from 

x/ Do ~ 7 to 100, the velocity profiles are self-similar; they have the same bell-shapes 

around the axis of the jet. In this region the behavior is. reasonably well represented 

by the following semitheoretical equations [11, pp. 6-21] for air flowing into air: 

Vcehtensine D 0 
= K— 19.12 2 2 (19.12) 

where K = 5 for Vo = 2.5 to5 m/s, and K = 6.2 for Vy = 10 to 50 m/s (see Prob. 

19.11). 

V. rline ‘ loe( ee —) = w0(2) (19.13) 
Vy. at radial distance r x 

Jet angle = a = 18° to 24° normally ~ 20° (19.14) 

and 

pate) = cesitiat flow rate of —) Sei a Pee (19.15) 

ratio (volumetric flow rate of jet)) Qo Do 

Example 19.8. Air flows from a round, horizontal 1 ft diameter jet into the 

atmosphere at Vo = 40 ft/s (typical building ventilating system velocity). Esti- 

mate the velocity on the centerline at a downstream distance of 10 ft, and the 

velocity 1 ft away from the centerline at that distance. Estimate the width of the 

jet and the entrainment ratio at that distance. 

From Eq. 19.12, at 10 ft we have 

V entenline 1 ft ft 
ee 2 OL Veenterline = 24.8 — = 

Vo 10 ft re s 

A plot of Veenterline Versus x is a rectangular hyperbola, which falls to Dole? s 

at 100 ft. To find the velocity at a downstream distance of 10 ft and a radius of 

1 ft, we write 

hie (19.P) 

( Veenterline ) x3 192001 / 10" ft: 10°-4 =251 (19.Q) 

Vy at radial distance r 
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and 

ft 
pare 9.9— = 20s (19.R) 

Vg at radial distance r= | ft 
and x= 10 ft Drs) | 

We may calculate the jet diameter by 

Dx, = p(i+2 a es sin «) = Lit(L-+- 10 sit 203) 
0 

= 4.42 ft = 135m (19.S) 

At 10 ft, the entrainment ratio is 

/10 ft 
g —nO2 feud = 1.96 (19.T) 
Qo 1 ft 

This example shows the following: 

1. The calculations using these approximate equations are straightforward. 

2. The velocities shown are time averages. In any turbulent flow the velocities in sim- 

ple formulae like these always show time averages. 

3. The spreading angle is not clearly defined, and reported values have some variables 

4. The equations are not totally internally consistent. If, for example, we ask for the 

velocity at the edge of the jet in this example, we find 

( 7) - 194442/2/0MF — 19!95 = ggg —(19.U) 
x at radial distance r 

and 

24.8 ft/s ft 
Vy at radial distance r= 2.24 ft — =. 28 = ae tt). 084 = EK (19.V) 

and x= 10 ft 89.9 

where perfect consistency of the equations would require a velocity equal to zero. 

5. The equations are only reliable to x / Dp ~ 100, at which 

Q/ Qo = 0.62100 = 6.2 (19.W) 

which says that the maximum dilution obtainable in this type of flow is a factor of 

approximately 6. Beyond the end of the jet, dilution continues by mixing in the sur- 

rounding fluid, based on the surrounding fluid turbulence, uninfluenced by the jet. 

19.7 MIXING IN ATMOSPHERIC PLUMES 

Many chemical engineers are involved with mixing of pollutants into the environment. 

An important example of this type of calculation is the gaussian plume atmospheric 

dispersion model, sketched in Fig. 19.7. This type of model is widely used in safety 

and environmental analyses. As shown in that figure, a plume of combustion gases 

rises from a smokestack and then levels off and flows in the downwind direction. 

Such plumes normally rise a considerable distance above the smokestack 

because they are emitted at temperatures higher than atmospheric and are emitted with 
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Ky 
O 
q 
y 

7) 
S, 
<2? 

x=y=z=Oat base of stack 

FIGURE 19.7 

Coordinate system and nomenclature for the Gaussian plume equation. It replaces the real source with a 

mathematical point source at 0, 0, H, steadily emitting Q (g/ s) of pollutant with neither buoyancy nor 

momentum. 

a vertical velocity. For a gaussian plume model, the real plume is replaced with a 

mathematical point source, which has neither upward momentum nor buoyancy, with 

emission rate Q (normally g / s) emitted from a point with coordinates 0, 0, H, where 

H is called the effective stack height, which is the sum of the physical stack height 

(A in Fig. 19.7) and the plume rise (Ah in Fig. 19.7). Physical stack height for any 

existing plant can be determined with ordinary measuring instruments. Plume rise is 

discussed in Prob. 19.16. The wind is assumed to blow in the x direction with veloc- 

ity u, independent of time, location, or elevation. The problem is to compute the con- 

centration due to this source at any point (x, y, Z). 

Figure 19.8 sketches the instantaneous view of the plume, and a time exposure. 

Like all turbulent mixing flows, the instantaneous behavior of the plume shows tur- 

bulent eddies and snake-like curls (see Fig. 6.3). But a time exposure averages that, 

and the time-averaged plume is quite smooth and well behaved. 

To solve the problem mathematically, we begin with the viewpoint of an 

observer, riding with the wind (lagrangian viewpoint) passing right over the emission 

point. We first consider a small “puff containing X g of pollutant at 0, 0, H, and t = 0. 

Then we apply Eq. 19.7. The solution of this problem is well known [12, p. 225]. 

x WBbacratiee a (= ua 
= . + =P 19.16 

«~ 8(n0)°/? (G,9,9,)2 fee en RB," GD, oie” 
Here, f is the time since the release. From the viewpoint of an observer riding with 

the flow, Xjagrangian Fepresents the downwind or upwind distance from the center of the 

pollutant cloud, which is assumed to move with local wind velocity. 

PY fs) 
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Snapshot Time exposure 

FIGURE 19.8 
Comparison of a snapshot and a time exposure of a visible plume. All turbulent plumes show this 

behavior; a snapshot shows a rumpled plume with visible eddies (Fig. 6.3), a time exposure shows the 

average behavior of the plume, with a shape like that shown in Fig. 19.7. 

For most engineering purposes we prefer the viewpoint of a nonmoving 

observer. We can change to that viewpoint by observing that the instantaneous down- 

wind distance of the center of the puff is Xeuterian, center of puff = Ut, where u is the wind 

velocity (assumed constant) and ft is the t in Eq. 19.16. Using this twice for t and once 

for x, we change Eq. 19.16 to 

X 
C= > exp 

8(arx/u)?’? (D.D,B,)\/? 
l ans t)? 2 — HY 

-{.|£ = oe EG = ) i} (19.17) 

where this x is the distance downwind of the source. As written, this assumes that the 

Ys are molecular diffusivities. But from our previous estimates of turbulent diffusion, 

we know that in turbulent flow the eddy diffusivities are much larger than the molec- 

ular diffusivities. Experimental evidence is strong that while molecular diffusivities 

are isotropic (which would lead us to simplify Eq. 19.17), eddy diffusivities are not 

isotropic, so we retain the three different symbols, here and below. 

Although Eq. 19.17 would be perfectly satisfactory for our use, for historical 

reasons the form that appears in the air pollution literature is obtained by making the 

following three substitutions 

DQ, = 20? — (19.18) 
oy 

D, = 203 — (19.19) 

Q, = Zips (19.20) 

where a, 7, and o-, are the three-dimensional atmospheric dispersion coefficients or 
dispersion factors. The Greek sigmas are used here to make the formulas look the 
same as those in the gaussian distribution formulas in statistics. There is little theo- 
retical connection between the two, and some other symbol could just as well have 
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been used here, but the sigmas are used throughout the air pollution literature. Mak- 
ing these substitutions in Eq. 19.17, we find 

x x — ut) 2 z — Hy Css ilies hw bait) 
Se exp — ; - 19.21 

(2r)3/? O,O,O-, i 20x are 209 ( ) 

the gaussian puff equation. It describes the behavior of a “puff”of pollutants. In 
Eq. 19.21, if we have x — ut = y = (z — H) = 0, ie., the exact center of the mov- 
ing cloud, then the exp term is exp 0 = 1. This shows that the term before the exp 
term is the concentration at the center of the cloud, and that the exp term shows how 

‘that concentration decreases as we move away from the center of the cloud in three 

directions. Equation 19.21 (and some variants of it) are used in nuclear and chemical 

plant safety analysis, where the puff of pollutants is the radioactive or chemical cloud 

that could be emitted quickly in certain possible types of nuclear or chemical plant 

accidents. To use it we need the values of the as, which will be discussed below. 

The steady-state equivalent of Eq. 19.21 is used more often than Eq. 19.21. To 

find it, we assume that the dispersion in the x direction (up and/or downwind) is 

insignificant compared to that in the two crosswind directions (y and z), so that the 

basic dispersion equation, Eq. 19.7 is modified by dropping the °c / dx” term. In this 

case the source term X in the dispersion equation becomes Q/ u because we are con- 

sidering spreading by dispersion in the y and z directions, in a slab of air with unit 

length in the x direction that passes over the source with velocity u. (The reader may 

verify that Q/u has dimensions of mass / length: i.e., the amount injected per unit 

length of air passing over the stack.) 

Making these substitutions into Eq. 19.21, we find 

Bs agpt abchig Catt 
= 2 

27TUC >»O-z 
(19.22) 

20; 207 
(Gs 

where the symbols have the same meaning as before. It is the basic gaussian plume 

equation. It has several widely used variants. It is called the “gaussian” plume equa- 

tion because the exponential terms have the same form as Gauss’s normal distribu- 

tion function. (If we had chosen our coordinates so that the pollutant source were 

at some arbitrary point, say (x’, y’, z’) instead of being at (0, 0, H), then the terms 

in the exponential part of Eqs. 19.21 and 19.22 would be (x — xP (y- yy, 

etc. The choice of the origin in Fig. 19.7 simplifies these expressions; one might 

choose to put the origin of the coordinate system at the top of the plume rise (which 

would drop the H out of Eq. 19.22), but most of us prefer to have z = 0 at ground 

level. 

Example 19.9. A factory emits Q = 20g/s of SO;. The wind speed is 

u = 3m/s. At a distance of 1 km downwind, the values of a, and a, are 30 

and 20 m respectively. What are the SO, concentrations at the centerline of the 

plume at x = 1 km downwind, and at a point 60 m to the side of and 20 m 

below the centerline at the same x? 
The centerline values are those for which y = 0 and z = H, so both of 

the terms in the exp expression are zero. Because exp 0 = 1, the exponential 

term is unity. Thus, we see that just as in Eq. 19.21, Eq. 19.22 consists of two 



578 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

parts: the first gives the centerline concentration, and the second gives the fac- 

tor by which the centerline concentration is reduced as we move away from it. 

At the centerline, 1 km downwind 

7 20 g/s 

~~ 2ar(3 m/s)(30 m)(20 m) 

= 0.00177 Pe = 1770 “= (19.X) 
m m 

(E 

At the point away from the centerline, we must multiply the above by 

1\/60 m\? 1\/20m | ( :) 
ati ae —————s — = a =; ae 18 1NY exp (Z)(S =) + (5)(2 =) exp Dhar 5 0.08 ( ) 

so 

145 ) -oosis sere (19.Z) 
m 

3 

(= wg 
a a ae 

m 

The basic gaussian plume equation predicts a plume that is symmetrical with 

respect to y and with respect to z. Thus, if we had asked for the concentration 60 m 

to the other side of and 20 m above the plume centerline, we would have gotten the 

same answer. The different values of o, and a, mean that the spreading in the verti- 

cal and horizontal directions are not equal. Most often 0, > o, so that a contour of 

constant concentration is like an ellipse, with the long axis horizontal. Close to the 

ground, this symmetry is disturbed, as discussed in Prob. 19.14. 

To use Eq. 19.21 or 19.22, one must know the appropriate values of ao, and c, 

(which were simply guessed in the previous example). From Eqs. 19.18 to 19.20 we 

would expect them to have the form 

2 D,x 1/2 

Oy = : ) etc. (19.AA) 
u 

However, if we reconsider our values of the Ys, we see that they are eddy diffusivi- 

ties, which should depend on wind speed and on the degree of atmospheric turbu- 

lence, which is a function of wind speed and degree of solar heating (“insolation”). 

It is quite plausible to assume that for any given degree of insolation the value of D 

will be linearly proportional to the wind speed, i.e., that for any such situation (Q, / u) 

and (Y,/u) are constants. Thus, from Eq. 19.AA we would conclude that for any 
given meteorological condition, each of the os should be proportional to the square 

root of the downwind distance. . 

Experimental evidence does not agree very well with this prediction. The best 
available data have been correlated by Turner [13] and others and presented in the 
form of plots of log a, versus log x and log a, versus log x. If the above calculation 
were correct, for each atmospheric condition such plots would be straight lines with 
slope 3. The best correlations of the experimental results, shown in Figs. 19.9 and 
19.10, illustrate that on such plots the horizontal dispersion coefficient, 0, does form 
a family of straight lines (for various atmospheric conditions), but these have a slope 
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FIGURE 19.9 

Horizontal dispersion coefficient, o,, as a function of distance downwind from 

the source, for various stability categories. (From D. B. Turner, “Workbook of 

Atmospheric Dispersion Estimates,’ U.S. Environmental Protection Agency Report 

AP-42, Washington, D.C: U.S. Government Printing Office, (1970).) For puff 

calculations this plot is often used for a, as well. This plot and the next are useful 

for hand calculations. For computer calculations they are replaced by their exact 

equivalents, a, = ax°®™ and o, = cx“ + f, where x is the downwind distance, 

expressed in km, the os are in m, and a, c, d, and f are constants found in the 

following table. 

Stability 

category x =1km x=2l1km 

a Cc d if c d af 

A 213 440.8 1.941 9.27, 459.7 2.094 —9.6 

B 156 106.6 1.149 3.3 108.2 1.098 2.0 

Cc 104 61 0.911 0 61 0.911 0 

D 68 33:2 0.725 sui beyh 44.5 0.516 — 13.0 

E 50.5 22.8 0.678 =1'3 55.4 0.305 —34.0 

F 34 14.35 0.740 035 62.6 0.180 —48.6 

579 
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o,™m 

1 

Downwind distance, x, km 

FIGURE 19.10 

Vertical dispersion coefficient, 7, as a function of distance downwind from the 

source, for various stability categories, from Turner [13]. 

of 0.894 instead of the 0.50 that we would expect from the above derivation. The 

vertical dispersion coefficient, o,, forms a fan-shaped pattern for various atmospheric 

conditions. 

Why do the experimental data disagree with our neat theory? They disagree 

because the assumption that the eddy diffusivity depends only on wind speed and 

insolation is much too simple to account for all the complicated things that actually go 

on in the atmosphere, even on days with very simple wind patterns, which are the only 

ones on which experimental tests of Eq. 19.22 are attempted. Thus, we can say that the 

preceding derivation shows us a way to obtain a logical material balance for dispersion 

of a pollutant in the atmosphere, subject to some strong simplifying assumptions, but 

that we must regard the values of o, and a, (or the corresponding eddy dispersion val- 

ues) as experimental quantities that we cannot compute from theory. However, if we 

accept Figs. 19.9 and 19.10 as adequate representations of the experimental results, we 

can use them, along with Eq. 19.22, to make predictions of concentrations downwind 

from point sources. Modern point source atmospheric modeling uses advanced versions 

of this procedure. The experimental data on which Figs. 19.9 and 19.10 are based are 
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very limited and not necessarily directly applicable to cities. Most of the data were taken 
for steady flow of winds over grasslands (the Salisbury Plain in England and the grass- 

lands of Nebraska). We use them for cities because we have nothing better. 

So far, we have said nothing about the lines labeled A through F on Figs. 19.9 

and 19.10. These correspond to different levels of atmospheric stability. On a hot 

summer afternoon, the sun heats the ground, which in turn heats the air near it 

causing that air to rise and thus to mix pollutants very well. In this situation the 

atmosphere is very unstable, and the values of Y, and D, leading to a, and a, will 

be large. On a cloudless winter night, the ground cools by radiation to outer space 

and cools the air near it. The air forms an inversion layer, making the atmosphere 

very stable and inhibiting the dispersion of pollutants, so the values of a, and a, 

will be small. 

Figures 19.9 and 19.10 rely on the stability-category classification given by 

Turner [13], which considers only the incoming solar radiation and the wind speed, 

reproduced in Table 19.3. There are other systems for estimating os, but this one is 

simple and widely used. 

Example 19.10. Estimate the values of o, and o, at a point 0.5 km down- 

wind from a pollution source on a bright summer day with a wind speed greater 

than 6 m/s. From Table 19.3 we conclude that a bright summer day is one on 

which the incoming solar radiation is strong, so we would use stability category 

C. Then, using Figs. 19.9 and 19.10, we would read (for x = 0.5 km) a, = 55m 

and 0, = 32 m. | 

This brief section shows only the relation between the atmospheric mixing used 

in air pollution calculations [14, Chap. 6] and the other fluid mixing problems dis- 

cussed in this chapter. The analogous problem of the dispersal of wastewater (treated 

sewage or storm drain water or other wastewater) into other bodies of water (oceans, 

lakes, rivers) is basically similar, but is made more complex by the significant den- 

sity differences between the wastewaters and the water into which they are discharged. 

TABLE 19.3 

Key to stability categories 

Day* Night* 

Incoming solar Thinly overcast or 

radiation =4/8 low cloud =3/8 Cloud 

Surface wind speed 
(at 10 m), m/s Strong Moderate Slight 

0-2 A A-B B _— = 

2-3 A-B B G E F 

3-5 B B-C G D E 

5-6 Cc C-D D D D 

=6 (@ D D D D 

*The neutral class, D, should be assumed for overcast conditions, day or night. 
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19.8 SUMMARY 

» 

> 

. Chemical engineers deal with a great variety of mixing problems. 

. The vast majority of these involve turbulent flow and use turbulence to reduce the 

scale of the inhomogeneities to fractions of a millimeter. 

At that scale, molecular diffusion is fairly rapid, so mixing down to the molecu- 

lar level (as needed for combustion or other chemical reactions) is finished by 

molecular diffusion. 

It is common in mixing calculations to use the mathematical forms for molecular 

diffusion (Fick’s law) and replace the molecular diffusivity, which is a function of 

the fluid but not of the flow, with an eddy diffusivity, which is mostly a function 

of the flow, and which varies from place to place. The methods for doing this are 

all approximate; they are widely used. 

Mixing in laminar flow (high viscosities or small diameters) is different from tur- 

bulent mixing; it has an extensive literature [3, 15]. 

PROBLEMS 

See the Common Values for Problems and Examples inside the back cover. An aster- 

isk (*) on a problem number indicates that its answer is in App. D. 

19.1.*Gasoline is normally blended from three or four liquid streams. The resulting blend must 

have approximately the same octane number in every charge sent to the cylinder of an 

engine. If an auto with a four-cylinder engine is driving 60 mi /h, with an engine speed 

of 2500 rpm, and fuel use of gal / 25 mi, how large is the charge of fuel going into 

each cylinder for each combustion? In four-cycle engines fuel is inserted on every sec- 

ond revolution. 

19.2. It is a rule of thumb that suspension of solids is easy if their terminal settling velocity 

is <0.03 ft/s, and difficult if it is >0.15 ft/s. For sugar in water, to what diameters do 

these settling velocities correspond? Does this rule correspond to your experience stir- 

ring sugar into your coffee, tea, or lemonade? 

19.3. If paint pigments have SG = 4 and D = | ,, and if the viscosity of the paint is 

50 times that of water, how fast should the pigments settle in a stored can of paint? Use 

Fig. 6.26, and observe that in the Stokes law region the settling velocity is proportional 

to 1/ viscosity. How far would you expect the particles to settle in a month? This 

assumes that the liquid part of the paint is a Newtonian fluid. Fifty years ago they all 

were, and pigment settling was significant. Since then, they have been formulated to be 

highly non-Newtonian, (thixotropic Bingham plastics), and settling is no longer a 

problem. 

19.4. Repeat Example 19.1 for the mixing of two gases, e.g., CO and Op. 

19.5.*In Example 19.2, 

(a) What is the impeller tip velocity? How does this compare to the values in Table 

IM Py 

(b) What is the (power / tank volume)? Assume the tank dimension ratios in Pigeon 

How does this compare to the values in Table 19.2? 

19.6. In Example 19.4, we have now decided to increase all the tank dimensions by a factor 
of 2. The impeller dimensions and rpm are unchanged. What is the expected time to 
blend the contents of the tank? 
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19.7. In Example 19.3, if we want to keep the same Rimpetier in the full-sized tank as in the 
test tank and also keep geometric similarity, how many revolutions per minute should 
we use? 

19.8. In Example 19.6 we computed an axial dispersion coefficient of 1.2 ft? /s. What is the 
ratio of this value to the value for the molecular diffusion coefficient? 

19.9. In Example 19.6 we estimated the size of the mixed zone between two grades of gaso- 
line after a 700-mi pipeline trip. The pipeline operators inform us that this estimate is 
high by a factor of ~4. Could it be that they use a lower requirement for product purity? 

Repeat that example, assuming that the requirement is no more than 1 percent fluid 2 in 

fluid 1, instead of the 0.1 percent in that example. In principle you can read the value 

you need from Fig. 19.5, but in practice you need the table that Fig 19.5 is based on. 

From the table we find that 0.98 = erf(1.65). 

19.10.*Smith and Schulze [16] present details on laboratory and field tests of product pipelines 

such as those in Example 19.6. They correlated their results by the totally empirical 

relation 

Length of mixed ipe lensth \°-°2 

ee sigan )- ies a. ) “(1.075 RN + 0.550) (19.23) 

where the mixed zone is that from 1 to 99 percent pure product and & is based on the 

viscosity of the 50:50 (% / %) mixture of the two fluids. Repeat Example 19.6 using 

this correlation. Compare the calculated value with that in Prob. 19.9, that in Example 

19.6, and that reported by the pipeline operators [9]. 

19.11. Equation 19.12 shows two values for the constant, corresponding to two different veloc- 

ity ranges. These values are based on the flow of air jets into still air. Rushton [17] sug- 

gests that, for liquid jets flowing into large tanks of liquids, Eq. 19.12 applies, with 

K = 1,41 2° (19.24) 

How do the two values of K given for air compare with this equation? Assume that the 

values of K with Eq. 19.12 apply to jets of air at 20°C, 1 ft in diameter. 

19.12. Equation 19.W shows that the maximum entrainment ratio from a free jet is about 6. If 

pure methane (~natural gas) flows in a free jet into the atmosphere, will the turbulent 

mixing between the jet and the surrounding air lower the methane content at the end of 

the jet to below the lower combustible limit, which is about 4 percent? 

19.13. Figure 7.13 shows a Bunsen burner, which is a simple example of a confined jet, i.e., 

a jet inside a tube whose walls are close enough to the jet that the jet is not a free jet. 

It is different from free jets and from the radial pipe mixing in Sec. 19.5. This type of 

flow has a considerable literature [18]. 

(a) Typical results indicate that complete mixing of gases occurs in such flows by a 

downwind distance of x / Dpipe or tube ~ 5. What is the value of this ratio for the 

Bunsen burner in Fig. 7.13? 

(b) Another recommended approach to estimating the distance for complete mixing is 

to compute the distance downstream at which the jet diameter, calculated for a free 

jet of the same dimension as the central jet, becomes equal to the outer tube diam- 

eter, and use twice that distance. What would the calculated distance be for that esti- 

mate for the jet in Fig. 7.13? 

19.14. Equation 19.22 is our best current prediction method for the concentration in steady- 

state plumes far above the ground. However, we are generally most interested in con- 

centrations at ground level because people and property are exposed at ground level. 
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19.15. 

19.16. 

The blind application of Eq. 19.22 at or near ground level gives misleadingly low results. 

The reason is that it indicates that the pollutants continue to disperse at any value of z, 

even at z less than zero. (Using it alone, we could continue Example 19.9 and compute 

the concentration underground; the result would bear no relation to what we would 

observe in nature.) For this reason, it is necessary to account for the effect of the ground. 

The ground damps out vertical dispersion. The upward and downward turbulent 

eddies that spread the plume in the vertical direction cannot penetrate the ground. Thus, 

the vertical spreading terminates at ground level. The method commonly used to account 

for this in calculations is to assume that the pollutants that would have carried below 

z = 0 if the ground were not there are “reflected” upward as if the ground were a mir- 

ror. Thus, the concentration at any point is that due to the plume itself, plus that reflected 

upward from the ground. This is equivalent to assuming that there is a mirror-image 

plume below the ground that transmits as much up through the ground surface as the 

above-ground plume would transmit down through the ground surface if the ground were 

not there. 

The concentrations due to the “mirror-image” plume are exactly the same as those 

shown by Eq. 19.22, except that the (¢ — H)* term is replaced by (¢ + H)°. At the 

ground, z = 0, both the main plume and the mirror-image plume have identical values. 

High in the air, for example, at z = H, the main plume has a high concentration 

[exp — (0) = 1] while that for the mirror-image plume [exp — (2H)? etc.] is a small 

number. The combined contribution of both plumes is obtained by writing Eq. 19.22 

and the analogous equation for the mirror-image plume, adding the values for the two 

plumes and factoring out the common terms to find 

apie ee aan (2) 
aa 27rUud yo toe) ng oy 

: exp os os(2 > ay te CXPiieg os(2 ss ay (19.25) 
oO, Oo: 

(a) Show the form that this equation takes for a point directly downwind of the source 

(y = 0) and at ground level (z = 0). This form is the most widely used simple point- 
source air-pollution modeling equation. 

(b) Using that equation, estimate the concentration at ground level, directly under the plume 

centerline, at x = 1 km, for H = 100m, Q = 10 g/s, u = 3 m/s, and C stability. 

See Prob. 19.14: 

(a) Show that the resulting equation for (y = z = 0) can be written as 

cu / Q = FiEZ A) for a given stability category (19.26) 

Figure 19.11 shows this function for C stability. 

(b) Check the point on this plot for H = 100 m, x = 1 km, using Figs. 19.9 and 19.10 
or their equivalent equations. 

(c) Repeat part (b) of the preceding problem, using Fig 19.11. 

Figure 19.7 shows the plume rising a distance Ah above the top of the stack before lev- 
eling out. This distance is called the plume rise, described in detail by Briggs [19]. 
Holland’s semi-theoretical equation 

V,.D (Jerse ten 
Ah = ——-| 1.5 + 2.68: 1073 Pp —_—_* h 3 68-10 ~ PD Tr. (19:27) 

is widely used for estimating plume rise. This is a dimensional equation, in which 
Vs is the stack exit velocity in m/s, D is the stack diameter in m, u is the wind speed 
in m/s, Ah is the plume rise in m, P is the pressure in millibars (one standard 
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FIGURE 19.11 

Ground level cu / Q directly under the plume centerline for C 

stability only, computed from Eq. 19.25. Similar plots for the other 

five stability categories are shown by Turner [13]. At the far right the 

plume has mixed up to the mixing hight (Z, m) and can no longer 

spread upward. The effective stack heights, H, are in m. 

atmosphere = 1013 millibars), T; is the stack gas temperature in K, and T, is the 

atmospheric temperature in K. 

(a) Estimate the plume rise for a 3 m diameter stack with V; = 20m/s, u=2m/s 

P = 1 atm, T; = 100°C, and 7, = 15°C (373 and 288 K). 

(b) Show that Eq. 19.27 is the sum of two terms, the first of which depends only on 

V,, D, and u, and the second of which depends on these and on P and T of the 
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atmosphere and on the temperature difference between the stack gas and the sur- 

rounding air temperatures. 

(c) If the stack gas is at the same temperature as the surrounding air (i.e., is not a com- 

bustion gas), then only the first term appears. Estimate the plume rise from the pre- 

vious example for stack temperature = ambient temperature. 

(d) Compare this to the distance one would compute to bring the jet to a stop from the 

equations for a free jet in Sec. 19.6. Comment on the agreement or disagreement. 

19.17. For C stability, 1 = 1 m/s, and x = 1 km, what are the values of the eddy dispersion 

coefficients D, and D,? How do these values compare with the values seen in other parts 

of this chapter? 
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CHAPTER 

20 
COMPUTATIONAL 
FLUID DYNAMICS 

(CFD) 

re Chap. 15 we saw that even though we can write the three-dimensional material 

and momentum balances in a general way, applicable to any fluid flow, we can 

solve them in closed form (i.e., a set of equations describing the velocities at every 

point in the flow) only for laminar fiows in very simple geometries. With the very 

restrictive perfect fluid assumptions (Chap. 16) we could solve more complex flows in 

closed form. But for most flows of practical interest, e.g., the furnace in Fig. 1.15, we 

do not know how to find such closed-form solutions. Before there were large digital 

computers, it made no sense to try to find such detailed solutions. With digital com- 

puters we can now find solutions to such problems, not in closed algebraic form, but 

as numerical output in the form of tables or plots. Commercially available computer 

packages do these calculations, often with very user-friendly input interfaces, so that 

ordinary chemical engineers can use them without a detailed knowledge of what is 

going on inside them. This chapter shows what is going on in those computer pro- 

grams, in simple form, to help such users see how what these packages do relates to 

the topics covered in this book. 

20.1 REPLACING DIFFERENTIAL 
EQUATIONS WITH DIFFERENCE 
EQUATIONS 

All CFD programs replace the basic differential equations (mass, momentum, some- 

times energy, sometimes chemical species balances) with algebraic difference equations, 

which they then solve numerically. This process (called discretization) is illustrated in 
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Fig. 20.1 where the curve 

a (Case) ee xf (20.A) 

(chosen for its simplicity) is 

drawn, with five equally 

spaced points that lie on that 

curve, and three straight 

Point (n — 1) lines discussed below. For 

this equation we know that 

dy > 

Curve is y = x — x4 5 rae: b= 47° (208) 

and that 

: d’y 
x aa —12x7 (20.C) 

patie Pe of forward-backward- and central-difference I anstead:ot oe 

approximations of (dy / dx) at x = 0.5 for simple algebraic the curve and the equation 

expression, y = x — x‘. See Example 20.1. The points are spaced at ON which it is based, we 

Ax = 0.25; the example also considers Ax = 0.1 and 0.01. knew only the values of 

the five points, shown as 

squares on Fig. 20.1, we could estimate the value of dy / dx and dy / dx” numerically 

several ways, as shown below. In these estimates, we estimate the values of these two 

derivatives at point n. The procedure is obviously transferable to point (m + 1) by 

simply shifting all subscripts upward by 1, etc. At point n we make three estimates 

of dy/ dx, viz., 

d A ath Yn 
(2) os (5 ena — we (20.1) 
dx abn Ax difference Xn+1 Xn 

d A et gon 
(Sr) 2 ba rece a0 

aun X/ difference ds n—I 

d A wig eset (2) J (x2) a Ynt+1 Yn-1 (20.3) 

dx atn Ax pentral Xn+1 ~ Xn-1 . difference 

These three estimates are the slopes of the three straight lines drawn on 
Fig. 20.1. Similarly, we can estimate dy / dx’ by 

Ay ( Ay 
Ax /forward WARE backward 2 

(< *) ss difference difference __ Ynt+1 2Yn Se Yn-1 ; F : esqtht See Be eS 

dx atn 

re Gee (20.4) 

Example 20.1. Compute the values of the three estimates of dy / dx and the 
one estimate of d*y/ dx? from the values of y and x at points (n — 1), n, and 
(n + 1) shown on Fig. 20.1. The x values are 0.25, 0.5, and 0.75, the y values 
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(computed by Eq. 20.A) are 0.2461, 0.4375, and 0.4336, so that 

(2) x (x2) OABAtioT CARO: ley igen eeloah 
teas Nike Aerrertin il Is 09 52—:0.50 ian 

*) (5°) 0.4375 — 0.2461 

(2 -rte4 io ety adhe O—"0:25 3 oe) 

Gees aes orwafr& a5 axe ackwar» 

(2) pe. ( Ay ) = Ax TAS Ax Aaeae 

dx atn Ax a a oe - 

—0.0156 + 0.766 
= 5 = 0.375 (20.F) 

and 

ee 2) (2) NAL citterence \A*/ disterence _ 0.0156. — 0.766 
high pre Ax 0.25 

hye) LS) (20.G) 

& 

None of these are very good estimates of the true values, which we can com- 

pute from Eqs. 20.B and 20.C. If we repeat this exercise, spacing the points at 

x = 0.1, 0.2, ..., then Fig. 20.1 will be difficult to read, but the numerical results will 

agree with the true values better, and for x = 0.01, 0.02, 0.03, ..., they agree very 

well, as shown in Table 20.1. 

TABLE 20.1 
Comparison of numerical estimates of first and second derivatives 

in Example 20.1 

(dy / dx) at x=0.5 (d’y / ax?) at x=0.5 

True value (Eq. 20.A) 0.50 —3.00 

Numerical values for x = 0, 0.25, 0.50, ... = Sali35 

Forward —0.0156 

Backward 0.765 

Central 0.375 

Numerical values for x = 0, 0.1, 0.2, 0.3, ... —3.00 

Forward 0.329 

Backward 0.631 

Central 0.480 

Numerical values for x = 0, 0.01, 0.02, 0.03. ... —3.00 

Forward 0.485 

Backward 0.515 

Central 0.4998 
eS 
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From this exercise we see the following: 

1. The numerical difference formulae are simple, simple to program in computers, 

and easily visualized as the slopes of lines (and their combinations) on Fig. 20.1. 

2. Of the three equations for the first derivative, the central difference gives a better 

estimate of the correct value at all three values of Ax. The mathematics of this is 

shown by Anderson [1, p. 132]. 

3. The accuracy of the approximation increases as Ax decreases. Small intervals mean 

long computing time. The selection of the proper value of Ax requires a tradeoff 

between accuracy and computing time. 

4. As Ax decreases, the three first-derivative estimates become practically the same. 

The central difference is always the most accurate, but the other two are widely 

used in CFD, because they are simpler, and because they work at a solid boundary. 

5. This was a simple, one-dimensional example. The examples of technical interest 

are 2-, 3-, or 4-dimensional (3 space and | time). 

6. Here we compared our numerical procedure to a known solution. All CFD pro- 

grams are tested on problems with known analytical solutions. If they can solve 

those properly we have some confidence they can solve problems for which no 

analytical solution is known. Similarly most textbook examples, like this one, com- 

pare numerical results to known analytical solutions. 

7. This replacement of derivatives by divided differences changes a differential equa- 

tion into a set of algebraic equations. This leads to a lot of bookkeeping, but com- 

puters are good at bookkeeping, and we know how to solve large systems of alge- 

braic equations on computers. 

20.2 GRIDS 

To apply these difference equations to multidimensional problems, we divide the space 

of interest into many points, located on some kind of a mathematical grid. The sim- 

plest possible is the rectangular grid shown in Fig. 20.2 which divides the x-y plane 

into intervals of Ax and Ay. In two- and three-dimensional fluid mechanics we are 

always looking for partial derivatives. If we assume that there is a known value of z 
at every intersection (called a node) on Fig 20.2, then we can use the central differ- 
ence formula to write 

Oz Az %i+1,j) — %i-1,,) Cpe) analis ae ans ac difference (i+1,j) ~ %G-1,)) 
constant » 

and 

dz Az i, +1) ~ 2G, j-1) Gs) ea alee ane) Yat n DF Rigeeare YG, j+1) — Yi, j-1) 
constant x 

There is no reason we cannot extend this type of grid to three dimensions (three sub- 
scripts instead of two) or three dimensions and time (four subscripts). 

The simple rectangular grid and the equations associated with it are the easi- 
est to use; they are used wherever practical. However, we often want the flow to 
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follow the shape of some nonrec- 

tangular body, so we must make 

one of the grid lines in Fig. 20.2 

match the shape of that boundary. 

To capture the detail of the flow in 

the boundary layer near a solid 

surface we normally want a much 

closer grid spacing near such a 

surface than far away from it. The 

CFD computer packages normally 

have a grid-generation routine that 

will select a suitable grid for your 

x problem; advanced users make up 

their own grids. Cylindrical or 

Ax 
———- 

i—1,j+lfi, j +1 

ig 

i—1,j—1]i j—-1 

FIGURE 20.2 : : ; 

A simple rectangular grid, centered on point P, where spherical ooacinate grids alg used 

the subscripts are i, j. The i subscript increases in the x for problems with cylindrical or 
direction, the j subscript increases in the y direction. spherical symmetry. 

20.3 CFD EQUATIONS 

Using the grids and difference equations, we can transform the working differential 

equations into algebraic form. The example chosen to illustrate this is the unsteady-state 

one-dimensional laminar flow equation, 

Ve 400 ey 
- 17.5 

ot . ay? ie 

which we saw in Chap. 17. If we rename the variables, replacing V, by T and v (the 

kinematic viscosity) by a@ (the thermal diffusivity), then this becomes the one- 

dimensional unsteady-state heat flow equation, and if we use c (the concentration) and 

Y, the molecular diffusivity or the eddy diffusivity, then it becomes the one-dimensional 

unsteady-state diffusion equation used in Chap. 19. This is a favorite example equation 

in CFD, heat-transfer, and mass-transfer texts, because it is simple and useful. 

Example 20.2. We wish to represent Eq. 17.5 on t-y coordinates, as shown in 

Fig. 20.3. There we see that each node (intersection of two lines) is described 

by two indices, i and j, and that the intervals between lines are constant, equal 

to At and Ay. (Other choices are used in CFD, but these are the simplest.) Show 

the data difference (discretized) algebraic equivalent of Eq. 17.5 for this set 

coordinate grid. 

First we drop the x subscripts because Eq. 17.5 is only about the x com- 

ponent of the velocity. Then we observe that V; ; represents the value of the 

x component of the velocity at time = i At and distance in the y direction = j Ay. 

Then we replace the two derivatives in Eq. 17.5 with their approximate values 

from Eqs. 20.1 and 20.4 to get 

Vi pay a6 V2 peat wei V i= init oe 41 
= 20.7 

At E (Ay)? Ge 
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y = Ay y = 2Ay y = 3Ay y = 4Ay 

FIGURE 20.3 

t-y grid for Example 20.2. The nodes (intersections of lines) are spaced Ar apart in the vertical 

direction and Ay apart in the horizontal direction. The subscripts increase with distance as shown 

in Fig. 20.2. 

which we can rearrange to 

v At 
ea es > Vina par 2 Ven, pate View one) (20.8) 

There is one such algebraic equation for every node (every combination of 

i and j). 

This equation has the property that we can compute the value of V; ; at any 

point, one at a time, based on the values of V at the (i — 1) time and [v Ar/(Ay)’], 
which is a constant for any given kinematic viscosity and any regular rectangular grid 

arrangement. For any formulation of this type, called an explicit formulation, we can 

simply march from one time step to the next, solving for all the y points at each time 

step, based on the values from the end of the preceding time step. 

Example 20.3. Solve for V, as a function of t and y, using Eq. 20.8, for the 

problem in which, at t = 0, the velocity is zero everywhere, and for t = 0, V, at 

y = 0 is 5 ft/s, and the fluid is water. This corresponds physically to the 

boundary layer near the side of a ship that starts suddenly. The heat transfer ana- 

log is in all heat transfer books, and the mass transfer analog is Example 19.5. 

Here we arbitrarily choose time steps of 2 s, and distance steps as 0.01 ft. 

The results for the first several time and distance steps are shown in Table 20.2. 

We see that the column for y = 0 ft has value 5 for t = 0. The row for t = 0 
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TABLE 20.2 

Numerical results of Example 20.2* 

0 5 0 0 0 0 0 0 
2 5 1.077 0.000 0.000 0.000 0.000 0.000 
4 5 1.690 0.232 0.000 0.000 0.000 0.000 

6 5 2.089 0.496 0.050 0.000 0.000 0.000 

8 5 2.373 0.743 0.135 0.011 0.000 0.000 

10 5 2.588 0.963 0.239 0.035 0.002 0.000 

12 i) PREY | 1.157 0.351 0.072 0.009 0.000 

14 5 2.896 1.328 0.465 0.119 0.021 0.002 

16 5 3.011 1.480 0.576 0.172 0.038 0.006 

18 5 3.110 1.615 0.684 0.230 0.060 0.011 

20 =) S95 L737 0.787 0.291 0.086 0.019 

Analytical solution 3.150 1.676 0.742 0.270 0.080 0.019 

*The first column gives time value(s), the second row the position values (ft). The remainder of the table gives the values 
of V,, in ft / s, at that time and location. The last row gives the analytical solution for V, at t = 20 s, corresponding to 
the numerical solution in the row above. 

is all zeros except at y = 0. For the chosen set of values, 

1.077: 10~° ft?/s):2s 
Fed = bil a = 0.2154 (20.H) 
(Ay) (0.01 ft) 

Then, the V value at i = 1,j = 1(t = 2s, y = 0.01 ft) is 

Vi, = 0 + (0.2154) - [(5 ft/s) — 2-0 + 0] = 1.077 ft/s (20.1) 

This value is shown at 2 s and 0.01 ft in Table 20.2. Repeating Eq. 20.I for the 

rest of that row shows all zeros. For the next row (t = 4s), the value at 0.01 ft 

(i = 2,7 = 1) is 

V2.1 = 1.077 + (0.2154) - [(5 ft/s) —.2- 1.077 + 0] = 1.690 ft/s (20.J) 

and for 0.02 ft 

Vo. = 0 + (0.2154): [(1.077 ft/s) — 2-0 + 0] = 0.232 ft/s —— (20.K) 

Once this is set up on a spreadsheet, the remaining values in the table are 

produced in seconds. a 

From this example we see: 

1. The procedure is simple. We can start at t = 0 and solve for one At and then the 

next, one point at a time (one equation at a time). 

2. Table 20.2 shows values rounded to three figures. To minimize round-off error the 

actual computations carry as many significant figures as the computer allows. 
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3. This is a favorite problem for CFD examples because its analytical solution is 

known (if we include the additional assumption that y extends to infinity). That 

solution (see Eq. 19.8, with variables renamed) is 

Ve Vays 

V,@:=0 — Vre@ey=0 2Vvt 

or 

: x 
es San ye) a (Vrzs0 a View -erf a>Vvt 

ft 
= feared Wi igh = 88 20.L 

: | : Ge )| COn 
The values of this analytical solution for t = 20s are shown as the last row of 

Table 20.2. 

4. Comparison of the last two rows of Table 20.2 reminds us that the numerical solu- 

tion is an approximation, not an exact solution. In this case the agreement is good; 

none of the numerical solution values differs from the analytical solution value by 

more than 0.06 ft/s. 

5. This example (and most CFD examples in textbooks) is for one partial differential 

equation. In real CFD problems there is almost always more than one such equa- 

tion. Recall Prandtl’s boundary layer equations (Chap. 17), which require the 

simultaneous solution of the mass and momentum equations. In this example we 

do not bother with the mass equation, Eq. 15.8, because all the terms in it are zero. 

If all the streamlines are straight and parallel, as they are in this problem, then all 

the terms in Eq. 15.8 are zero. That is rarely the case in problems of economic 

interest, so CFD programs are almost always solving more than one partial dif- 

ferential equation simultaneously. 

20.4 STABILITY 

The previous example also allows us to explore the issue of numerical stability. The 

process of replacing a derivative by its numerical approximation introduces an error, 

and round-off in computers introduces an error. If these errors decrease in size from 

step to step, then the solution is stable. If they increase from step to step, then the 
solution is unstable. It is proven in CFD texts, e.g., Anderson [1, p. 161], that a solu- 

tion of this type is stable only if 

v At 1 
=F (20.10) 

(Ax)* 2 
In Example 20.3 (see Eq. 20.H), this quantity was 0.2154, so stability was not a prob- 
lem. We may illustrate this difficulty by repeating Example 20.3, taking At = 10s, 
which makes this ratio = 1.08. Calculating the first point, we find V = 5.385, which 
is an impossible result (faster than the wall is moving)! The next few entries at 
y = 0.01 ft are —0.83, 12.59 and —17.31 ft/s. The oscillation grows with time, and 
occurs at all values of y, becoming weaker as y increases. (See Problem 20.7). 
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If the real problem allows choices of At and Ax that satisfy Eq. 20.10, then there 
is no stability difficulty. For many problems it is a difficulty, and a different approach 
is needed. In Examples 20.2 and 20.3, we computed the value of (V; soa AP Bao 
based entirely on the values at (i — 1). That is one of the causes of the instability. If 
instead we use the values halfway from (i — 1) to i, then Eq. 20.7 becomes 

ae es ee, 

At 

0.5(V;-1,j-1 + Vij-1) — 2[0.5(Vj-1,; + Vi;)) + 0.5(Vi-1, j41 + Vi 541) 

(Ay)? 

J 

=p 

(20.11) 

This solves the stability problem, but makes the solution more difficult, because we 

cannot simply march forward solving one equation at a time as we did in the previ- 

ous solution. With Eq. 20.11 we must solve the equivalent of Eq. 20.11 for all the 

points in the problem simultaneously. This is called an implicit solution. There will 

be a set of algebraic equations, one for every point in (i, j) space, to be solved simiI- 

taneously. These equations are expressed as matrices. They are much too large to sokve 

by hand, or with spreadsheets. CFD programs use matrix-solver routines on them. For 

some problems this approach is faster and more satisfactory than the explicit approach 

in Examples 20.2 and 20.3. 

20.5 CFD APPLICATIONS 

The various ways CFD are used, in order of increasing complexity, are 

1. Material balance only. If one starts with the two-dimensional stream function 

(Chap. 16) in some arbitrary space, one can use CFD to map the flow, and then 

use that flow map to find other properties [2, p. 541; 3, p. 566]. This approach is 

used to model the flow around complex structures such as airplanes. 

2. Material and momentum balances, laminar flow. Equations 15.8 and 15.27 are 

solved simultaneously, for arbitrary geometries. These solutions have all the 

assumptions of the Navier-Stokes equations. Many CFD packages offer this option. 

3. Same as item 2, with turbulence. As discussed in Chap. 18, the kinematic visco- 

sity in the Navier-Stokes equations is replaced by an eddy kinematic viscosity, nor- 

mally based on the k-e method. This option is offered in most CFD packages. 

4. Same as item 3, but the three-dimensional energy balance is solved simultaneously. 

This addition accounts for changes in physical properties with temperature 

changes. It is used in aircraft simulations where, as shown in Chap. 8, there are 

major changes in temperature in adiabatic flows. It is used by chemical engineers 

in heat transfer problems. 

5. Same as item 4, but with chamical reaction, e.g., combustion. This is the version 

that would be used to model the behavior of the furnace in Fig. 1.15 This type of 

_ program is widely used, aiming to improve efficiency of furnaces, product quality, 

and yield of the materials processed, and to reduce pollutant formation. 

6. Even more complex situations, e.g., two-phase flows, flows with drops or particles, 

flows with freezing or melting, non-Newtonian flows, and porous medium flows [4]. 
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20.6 SUMMARY 

1 The basic mathematics of CFD was mostly developed before the advent of fast 

computers. Using it, one could solve some simple problems by hand, but applica- 

tions to most problems of engineering interest only became possible when fast 

computers were developed. 

. CFD solves the basic fluid mechanics equations numerically. 

. This is done by dividing the space (two- or three-dimensional) of the solution into 

small intervals on some kind of grid and replacing derivatives with divided differences. 

. The result is a set of algebraic equations. In explicit formulations, these can be solved 

one at a time. In implicit formulations they must all be solved simultaneously. 

. The combination of CFD with heat transfer and chemical reactions, e.g., combus- 

tion equations, provides chemical engineers with powerful tools for analyzing prob- 

lems of great practical interest. 

. This chapter shows only the simplest ideas of CFD. Many more details are pre- 

sented in Anderson [1]. 

PROBLEMS 

See the Common Values for Problems and Examples inside the back cover. An aster- 

isk (*) on a problem number indicates that its answer is in App. D. 

20.1. Show the calculations at all three x intervals (Ax = 0.25, 0.1, 0.01) for Example 20.1. 
20.2. Repeat Example 20.1 for x = 0.75. 

20.3. Repeat Example 20.1 for y = sin x at x = 40°, using intervals of Ax = 10° and 1°. Com- 

pare the numerical derivatives to the analytical derivatives. Hint: Spreadsheets normally 

evaluate sines of angles expressed in radians. 

20.4. Show the two second derivatives corresponding to Eqs. 20.5 and 20.6. 

20.5. In Example 20.3, 

(a) Set up the spreadsheet to make the calculations. 

(b) Rerun Example 20.3 to show that you get the same answers as are presented in 

Table 20.3. 

(c) Repeat the calculation out to 20 s, using At = 1 s. Compare the computed values 
with those in Example 20.3. 

20.6. Show the calculation of the analytical values at 20 s in Example 20.3. See Fig. 19.5. 
20.7. Repeat Example 20.3 using At = 10, out to 100 s, showing the overshoot and oscilla- 

tion in the values at y = 0.01 ft. 
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APPENDIX TABLES AND CHARTS OF 
PN FLUID PROPERTIES, PIPE 

DIMENSION AND FLOWS, 
AND HIGH-VELOCITY 

GAS FLOWS 

A.1_ VISCOSITIES OF VARIOUS FLUIDS AT 1 ATM PRESSURE 
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FIGURE A.1 

Viscosity as a function of temperature for a variety of gases and liquids. 

Changes in pressure have little effect on the viscosity, both for gases and liquids, 

except near the critical point. (From G. G. Brown et al., Unit Operations, New 

York: Wiley (1951), p. 586. Reproduced by permission of the publisher.) 
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A.2. DIMENSIONS OF U.S. SCHEDULE 
40 STEEL PIPE 

Schedule 40 is the common pipe in the United States; in your local hardware store 

the steel pipes for sale are schedule 40. (These are called “galvanized iron” and “black 

iron” in the hardware store but are actually steel, with or without a rust-preventing 

zinc coating.) The next thickest wall pipe is Schedule 80, which is required in many 

applications, e.g., liquid propane transport. Corresponding dimensions for schedules 

from 5 to 160 are shown in Perry’s Chemical Engineer’s Handbook (all editions). The 

nominal pipe size is less than the true outside diameter for small pipes. The various 

schedules, for a given nominal size, all have the same outside diameter (so they can 

be connected to common fittings) and different wall thicknesses. For example, 3-in 

schedule 40 and schedule 80 pipes both have 3.500 in outside diameters, but the wall 

thicknesses are 0.216 and 0.300 in. Their volumetric flow rates at 1 ft / s are 23.00 

and 20.55 gpm. 

The schedule number corresponds roughly to (1000 - allowable pressure/ 

allowable stress). Thus, a schedule 40 pipe with an allowable stress of 10,000 psi 

would have an allowable pressure of 400 psi. Pipes below about 4-in can be assem- 

bled with screwed fittings; larger pipes are almost always connected some other way, 

most often by welding. 

Inside Q, US. 

Nominal Outside Inside cross-sectional gal / min at 

pipe size, in diameter, in diameter, in area, ft? V=l1ft/s 

3 0.405 0.269 0.00040 0.179 

i 0.540 0.364 0.00072 0.323 
3 0.675 0.493 0.00133 0.596 

} 0.840 0.622 0.00211 0.945 

3 1.050 0.824 0.00371 1.665 

1 1.315 1.049 0.00600 2.690 

15 1.660 1.380 0.01040 4.57 

15 1.990 1.610 0.01414 6.34 
2 2.375 2.067 0.02330 10.45 
23 2.875 2.469 0.03322 14.92 
3 3.500 3.068 0.05130 23.00 
33 4.000 3.548 0.0687 30.80 
4 4.500 4.026 0.0884 39.6 
5 5.563 5.047 0.1390 62.3 
6 6.625 6.065 0.2006 90.0 
8 8.625 7.981 0.3474 155.7 

10 10.75 10.020 0.5475 246.0 
12 12.75 11.938 0.7773 349.0 
14 14.0 13.126 0.9397 422.0 
16 16.0 15.00 1.2272 550.0 
18 18.0 16.876 hisfel3) 697.0 
20 20.0 18.814 1.9305 866.0 
a a ee 
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A.4 ISENTROPIC COMPRESSIBLE-FLOW 
TABLES FOR k = 1.4 

These tables were made up from Eqs. 8.17, 8.20, 8.21, 8.24, and B.6-12. In.exam- 
ples in the text that call for interpolation in this table, the values shown are found 
from the original equations by using the program that generated this table. 

M Ti. PYP, p/ pr A/A* V/c* 

0.00 1 I I 0 0.0000 
0.05 0.9995 0.9983 0.9988 11.5914 0.0548 
0.10 0.9980 0.9930 0.9950 5.8218 0.1094 
0.15 0.9955 0.9844 0.9888 3.9103 0.1639 
0.20 0.9921 0.9725 0.9803 2.9635 0.2182 
0.25 0.9877 0.9575 0.9694 2.4027 0.2722 
0.30 0.9823 0.9395 0.9564 2.0351 0.3257 
035 —~0.9761 0.9188 0.9413 1.7780 0.3788 
0.40 ~ 0.9690 0.8956 0.9243 1.5901 0.4313 
0.45 0.9611 0.8703 0.9055 1.4487 0.4833 
0.50 0.9524 0.8430 0.8852 1.3398 0.5345 
0.55 0.9430 0.8142 0.8634 1.2549 0.5851 
0.60 0.9328 0.7840 0.8405 1.1882 0.6348 
0.65 0.9221 0.7528 0.8164 1.1356 0.6837 
0.70 0.9107 0.7209 0.7916 1.0944 0.7318 
0.75 0.8989 0.6886 0.7660 1.0624 0.7789 
0.80 0.8865 0:6560 0.7400 1.0382 0.8251 
0.85 0.8737 0.6235 0.7136 1.0207 0.8704 
0.90 0.8606 0.5913 0.6870 1.0089 0.9146 
0.95 0.8471 0.5595 0.6604 1.0021 0.9578 
1.00 0.8333 0.5283 0.6339 1.0000 1.0000 
1.05 0.8193 0.4979 0.6077 1.0020 1.0411 
1.10 0.8052 0.4684 0.5817 1.0079: 1,0812 
1.15 0.7908 0.4398 0.5562 1.0175 1.1203 
1.20 0.7764 0.4124 0.5311 1.0304 1.1583 
1.25 0.7619 0.3861 0.5067 1.0468 1.1952 
1.30 0.7474 0.3609 0.4829 1.0663 1.2311 
1.35 0.7329 0.3370 0.4598 1.0890 1.2660 
1.40 0.7184 0.3142 0.4374 1.1149 1,2999 
1.45 0.7040 0.2927 0.4158 1.1440 1.3327 
1.50 0.6897 0.2724 0.3950 1.1762 1.3646 
1.55 0.6754 0.2533 0.3750 1.2116 1.3955 
1.60 0.6614 0.2353 0.3557 1.2502 1.4254 
1.65 0.6475 0.2184 0.3373 vayit.-2922 1.4544 
1.70 0.6337 0.2026 0.3197 1.3376 1.4825 
1.75 0.6202 0.1878 0.3029 1.3865 1.5097 
1.80 0.6068 0.1740 0.2868 1.4390 1.5360 
1.85 0.5936 0.1612 0.2715 1.4952 1.5614 
1.90 0.5807 0.1492 0.2570 1.5553 1.5861 
1.95 0.5680 0.1381 0.2432 1.6193 1.6099 
2.00 0.5556 0.1278 0.2300 1.6875 1.6330 

er ee 0.2176 1.7600 1.6553 
ns 0.5313 0.1094 0.2058 amass eS ae 1.6769~ 
IE OST __ O1017" © 0.1946 Toes 1 TT 
oper een 20509) pats 4.040 0030 eaP see ISL. [ant O00 tet. 21.7179 / 
2.25 0.4969  «=~——*0.0865—™ 0.1740 ~~ 2.0964 1.7374 
2.30 0.4859 0.0800 0.1646 2.1931 1.7563 
2.35 0.4752 0.0740 0.1556 2.2953 1.7745 
2.40 0.4647 0.0684 0.1472 2.4031 1.7922 
2.45 0.4544 0.0633 0.1392 2.5168 1.8092 
2.50 0.4444 0.0585 0.1317 2.6367 1.8257 
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A.5 NORMAL SHOCK WAVE TABLES 
FOR k = 1.4 

These tables were made up from Egs. 8.37, 8.38, 8.39, B.6-20, and 8.41. In exam- 

ples in the text that call for interpolation in this table, the values shown are found 

from the original equations, using the program that generated this table. 

M,, My TEA, PULP, py/ py Pr,/ Pr, 

1.00 1 1 1 1 1 
1.05 0.9531 1.0328 1.1196 1.0840 0.9999 
1.10 0.9118 1.0649 1.2450 1.1691 0.9989 
11S 0.8750 1.0966 1.3763 4.2550 0.9967 
1.20 0.8422 1.1280 1.5133 1.3416 0.9928 
1.25 0.8126 1.1594 1.6563 1.4286 0.9871 
1.30 0.7860 1.1909 1.8050 1.5157 0.9794 
1.35 0.7618 1.2226 1.9596 1.6028 0.9697 
1.40 0.7397 1.2547 2.1200 1.6897 0.9582 
1.45 0.7196 1.2872 2.2863 1.7761 0.9448 
1.50 0.7011 1.3202 2.4583 1.8621 0.9298 
155 0.6841 1.3538 2.6363 1.9473 0.9132 
1.60 0.6684 1.3880 2.8200 2.0317 0.8952 
1.65 0.6540 1.4228 3.0096 2.1152 0.8760 
1.70 0.6405 1.4583 3.2050 2.1977 0.8557 
1.75 0.6281 1.4946 3.4063 2.2791 0.8346 
1.80 0.6165 1.5316 3.6133 2.3592 0.8127 
1.85 0.6057 1.5693 3.8263 2.4381 0.7902 
1.90 0.5956 1.6079 4.0450 2.5157 0.7674 
1.95 0.5862 1.6473 4.2696 2.5919 0.7442 
2.00 0.5774 1.6875 4.5000 2.6667 0.7209 

A.6 FLUID DENSITIES 

For gases at low pressures the density is given to satisfactory accuracy by the ideal 
gas law, 

p = MP/ RT (A.1) 

Values of M for common gases are shown in App. A.7. R is a universal constant whose 
values in various units are shown inside the back cover of this book. For higher pres- 
sures, one must account for departures from the ideal gas law. For many gases there 
are published data on the behavior of that specific gas, e.g., the “steam tables.” For 
quick estimates the best procedure is to use the compressibility factor z, defined so 
that 

p = MP/zRT (A.2) 

Clearly, z is identically 1 for ideal gases. For real gases, it can be shown that z for 
all gases is given approximately by 

Z = Abode) (A.3) 
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where Pp = P/ Pz, and Tp = T/ Tri. This relation is shown graphically in App. 
A.8. This simple relationship is accurate to + a few percent for values of z near 1, 
but may have errors of +10 percent for values of z less than about 0.6. If greater 
accuracy is needed, either find specific data for the gas in question, or see Poling, 
Prausnitz, and O’Connell [1] for more details on estimating the value of z. Values of 

Tri, and P.,i¢ for some common gases are also given in App. A.7. 

For any fluid (or solid) the density can be written as a Taylor series: 

dp dp cor oe ap is SINE = poh — UW =—ao) + —(P — Po) + Se | a P — Po aa 0) aP ( 0) aT? ) ap? ) | 

ap 

oP oT 
oe (P= Polit —aet >" (A.4) 

This equation is correct for solids, liquids, and gases under all conditions, if one uses 

an infinite series of terms. For liquids at temperatures well below the critical temper- 

ature (say, 200°F below the critical), and also for solids, one may neglect all but the 

first three terms on the right and write the equation as 

role £()r-m9 +2 (BY 
poll Sal Io) BP’ Po) (A.5) 

where 

1 / dp ; : 
a@ = —— | — ] = coefficient of thermal expansion (A.6) 

Po \OT 

B= == (2) = isothermal compressibility = 1 / bulk modulus (A.7) 
0 

Values of the density, isothermal compressibility, and coefficient of thermal expansion 

for some common liquids are listed in App. A.9. Notice that for most liquids the effect 

of a change in temperature is more significant than the effect of a change in pressure. 

Normally, a temperature decrease of 1°F will have the same effect on the density as 

a pressure increase of 100 psi. 

Generally, the bulk modulus is practically constant over a wide range of pres- 

sures, but the coefficient of thermal expansion increases with increasing temperature. 

Therefore, the single value given in App. A.9 should not be used for temperature 

changes above 100°F. For a more complete set of values, which includes the effect 

of increasing temperature on a, see Perry’s Chemical Engineer’s Handbook (all 

editions). The behavior of liquids near their critical states can be best estimated from 

App. A.8. 

REFERENCE FOR APPENDIX A.6 

1. Poling, B. E., J. M. Prausnitz, J. P. O'Connell. The Properties of Gases and Liquids. 5th ed. New 

York; McGraw-Hill, 2001. 



604 FLUID MECHANICS FOR CHEMICAL ENGINEERS 

A.7 SOME PROPERTIES OF GASES 

Much more extensive tables are in Perry’s Chemical Engineer’s Handbook (all 

editions) and various other reference books. 

M, g/ mol or 

Gas Ibm / Ibmol f beter) 8s Perit) atm 

Hydrogen 2 Sees 12.8 

Helium 4 9.47 2.26 

Nitrogen 28 2a BBS 

Oxygen 32 278 47.9 

Air (~79% No, 21% Oz) 29 ~240 ~37 

Water 18 1165 218.5 

Carbon monoxide 28 239 34.5 

Carbon dioxide 44 548 73.0 

Freon 12 121 694 40.7 

Methane 16 343.4 45.8 

Typical gasoline vapor ~=100 ~ 1000 aS: 



A.8 COMPRESSIBILITY FACTOR 

z 

compressibility factor, 

0.9 

0.8 

07 

06 

0.5 

0.4 
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0.2 

GENERALIZED COMPRESSIBILITY FACT 

FIGURE A.2 
Compressibility factor as a function of reduced temperature and reduced pressure. This plot gives good estimates 

for fluids with z, ~ 0.27, less accurate estimates for other values of z,. (From O.A. Hougen et al., Chemical 

Process Principles, 2nd ed., New York: Wiley (1959). Reproduced by permission of the publisher.) 
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A.9 SOME PROPERTIES OF LIQUIDS 

Much more extensive tables are in Perry’s Chemical Engineer’s Handbook (all edi- 

tions) and various other reference books. 

Liquid Density,* Ibm / ft? 10° a(1/ °F) 10° B (1 / psi) 

Hydrogen 4.4 34 11 

Helium oul 15 48 

Typical gasoline ~44.8 0.7 0.7 

Benzene 54.6 0.67 OF 

Water 62.3 0.11 0.3 

Carbon tetrachloride 992 0.67 0.7 

Mercury 845 0.10 0.3 

*At 20°C and 1 atm, except H2 and He, which are at their 1 atm boiling points, 20 and 2.1 K, respectively. 



APPENDIX 

B 
DERIVATIONS 

AND 
PROOFS 

de: many places in the text there are proofs and derivations that seem to interrupt 

the flow of the material. To keep the main text simple and readable, those are placed 

here, and only referred to in the main text. 

B.1 PROOF THAT IN A FLUID AT REST 
THE PRESSURE IS THE SAME IN 
ALL DIRECTIONS (SEE SEC. 1.6) 

The laws of fluid mechanics work perfectly well in any gravity situation, including 

the zero gravity of an earth satellite. The following proof is shown for zero gravity, 

because that makes it simple. The result is then extended for a finite gravity field. The 

proof rests on the definition of a fluid: “A fluid, when subject to any shear stress, 

moves.” 
Consider a prism of fluid, as shown in Fig. B.1. For the fluid to be at rest, there 

can be no shear forces on any of the surfaces of the prism. Furthermore, because it 

is at rest, there are no unbalanced forces; i.e., the sum of the forces in any direction 

is zero. For the sum of the forces in the z direction to be zero, the pressure force on 

ABCD must equal the z component of the pressure force on BCEF; or 

ProttomAx Ay = Pyioping face Ay (length BE)cos 6 (B.1-1) 

But length BE is exactly Ax/ (cos @), so Eq. B.1-1 reduces to 

(B.1-2) Prottom = Psoping face 
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Equation B.1-2 is true for any angle @. 

It shows that the pressure in any direc- 

tion is the same as the pressure verti- 

cally upward and hence that the pressure 

is the same in all directions. 

In the foregoing it is shown that 

for the zero gravity situation the pressure 

in an entire body of fluid at rest is the 

same in all directions. To apply the 

same reasoning to the prism in the case 

in which there is significant gravity, 

one includes in Eq. B.1-1 a term for the 

force of gravity on the fluid element. 

One then lets the size of the prism 

decrease, i.e., Ax —> 0, and observes that 

the gravity term is proportional to Ax? whereas the pressure terms are proportional to 

Ax’; so in the limit (i.e., at a point) the same argument holds as that given above for 

any value of the acceleration of gravity. 

FIGURE B.1 

Prism in fluid, for showing force balance. 

B.2. THE HYDRAULIC JUMP EQUATIONS 
(SEE SEC. 7.5.3) 

We start with the continuity equation, 

ViZ1 = V222 (7.AX) 

and the one-dimensional momentum balance, 

0 = IpzV,(V, — V2) + 2 2 (z} — 23) (7.BA) 

We then divide Eq. 7.BA by lpg /2 and substitute for V> from Eq. 7.AX to find 

0 = ane (: 2 x) + ( — 2) (B.2-1) 

We factor (1 — 27/23) into (1 + z;/z)(1 — z,/z) and divide by Gl — 214 Zz), 
finding 

2Vr 21 2 ( it) 0=——-gli+— : F 2 si (B.2-3) 

which can be multiplied out to give 

2Vi 21 
(B.2-4) 
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which is a standard quadratic equation with solution 

SABO Zz 2Viz1 
LQ\en raere th is Ee i 3 (752) 

B.3. THE PROPERTIES OF AN IDEAL GAS 

In several derivations in the text, we use the properties of an ideal gas. All of these 
properties are derived here. 

B.3.1 Definitions 

An ideal gas is one whose pressure, density, and absolute temperature are related by 

Po ORL 
ae (B.3-1) 

Here R is the universal gas constant, whose values in various units are shown inside 

the back cover. The density in this equation is the mass density (mass / volume). If 

we wish the molar density (moles / volume) we simply drop the M from Eq. B.3-1 

and from all the equations in this appendix. There is rarely any question whether the 

mass density or molar density is the one used in any of the equations in this book. 

It is shown in any standard text on thermodynamics that for an ideal gas the 

enthalpy per unit mass, A, and the internal energy per unit mass, u, are functions of 

temperature alone; they do not depend on pressure. (The same is not true for real 

gases, or solids or liquids). Thus, for an ideal gas we can define the heat capacity at 

constant pressure, Cp, and the heat capacity at constant volume, Cy, as follows: 

dh = dh =CpdT B.3-2 Cp oe P ( ) 

cj 4 gpg (B.3-3) 
ioe se 

For any material, the enthalpy per unit mass is defined by h=u+ P/p. Com- 

bining these definitions with Eqs. B.3-1, B.3-2, and B.3-3, we find 

P 

dh = du + (2) (B.3-4) 

R 
CpdT = CydT + aT (B.3-5) 

R 
Cp = Cy “ir M (B.3-6) 

We now introduce the definition of k, using Eq. B.3-6: 

Ce_Cy+R/M_ |, R 

Cy Cy MCy 
(B.3-7) ie 
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Rearranging produces 

Fis MN hae} (B.3-8) 
MC, 

or 

R Ne ed he B.3-9 Seach jeDe (B.3-9) 

and 

R Rk 
ig a= B.3-10 

CRY Ce EESD ; 

B.3.2 Isentropic Relations 

In any standard text on thermodynamics, one may find the relation among entropy 

per unit mass, pressure, enthalpy per unit mass, temperature, and density shown 

below: 

1 
dh = Tds + (th (B.3-11) 

(which is true for any pure substance, solid, liquid, or gas; sometimes called the prop- 

erty equation). For a constant entropy process. (i.e., an isentropic process), T ds = 0. 

We then substitute for dh from Eq. B.3-2 and substitute for Cp from Eq. B.3-10 to 

find 

Rk 1 
—— iB =—_— - WEL ae (B.3-12) 

The subscript is to remind us that this equation applies only to isentropic processes. 

Now we replace p by its equivalent from Eq. B.3-1: 

Rk RT 
Mk —1) aT; = PM aPs (B.3-13) 

Canceling the Rs and Ms and rearranging, we find 

ke +dT¥y = dP; 
Male = P (B.3-14) 

which is readily integrated to 

k T> P, 

oo rs| = In Ps (B.3-15) 

or 

(By"” - (2) a, 

Te P,)s (B.3-16) 
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Substituting pRT/ M for P, and for P>, and canceling Rs and Ms, we find 

Be 2) = 

T. ac tl Mh age (B.3-17) 
( Ss T)/s\Pi/s 

(2) ele T, z (k/(k-1)]}-1 is 1/(k-1) 

Gis Te NT, =o B.3-18 
Pi/s \Ti/s Be (2) (2) ( ) 

Returning now to Eq. B.3-17, we substitute PM/ Rp for T; and for T> and cancel, 

finding 

P P k/(k=1) 
(72) = (22 - es) (B.3-19) 

Pi/s Py P25 

Taking both sides to the (k — 1)/k power produces 

P (k—1)/k P 

(F), -GMG) oD Pi/s Pi /s\P2/s 

P (kK—1)/k P P —I/k 

Gi) le), Cele G a P2/s5 Pi/s P2/s Fis 

k -1 

ees) B32 P2/5 Pi/s P2/s 

or 

so that 

This we rearrange to 

or 

A 
(4) = constant (B.3-23) 

Pp /s 

Now we differentiate this: 

dP —kd, 
a + Bg (=) =0 (B.3-24) 
p p 

or 

kPsps _ kP aPs _ (=) = eT oA Ae 
dps dp/s ps Ps 

B.3.3 Entropy Change 

Solving Eq. B.3-11 for ds, we find 

ds = ay © (B.3-26) 
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Substituting from Eqs. B.3-2 and B.3-1 produces 

dT R/(adP 
=| Cpt | B.3-27 ds P T z( P ) ( ) 

Then, inserting Eq. B.3-10 and factoring, we get 

R Ky (alr dP 
ds = = B.3-28 *  M ; = ( z P | Cae 

which integrates to 

M(s. —s pe!) P Oe aa 2 (obi inf 2) ~In— = In (2) (=)| (B.3-29) 
R T| Le T; Py 

B.4 THE AREA RATIO 
(EQ. 8.24, SEE SEC. 8.2) 

Starting with Eq. 8.23, 

Ag sa 8.23 
iy pivi cay 

we substitute from Eq. B.3-18: 

p* iam 

a ee B.4-1 ot T, ( ) 

and 

Ve tees 1 (=) 

Vi Mc, M, \ cy ies 

because * = 1. But, from Eq. 8.11, 

c* T* yD) =-(2 = 
Substituting Eqs. B.4-1, B.4-2, and B.4-3 in Eq. 8.23, we find 

A 1] (=) " T* 1/(kK—1) 1 T* (k+ 1) /2(k=1) 

ean) a) ota) Ba 
5 

eee Test, _ Milk — 1)/2} +1 

T, Tpr/T*  17[(k—- 1)/2] 84 

However, 

(B.4-5) 

so that 
' 

(k+1)/2(k-1) A. qe {ee ~1)/2 + i)/(te —1)/2)+ 1)} ~~" (@24) 



APPENDIX B DERIVATIONS AND PROOFS 613 

B.5 HIGH-VELOCITY ADIABATIC FLOW 
WITH FRICTION 

We begin with 

0 = —pV aV — dP — D (8.28) 

and 

2 

Twa = fp os (8.29) 

Dividing through by —AP and substituting for 7 produces 

VdV dP pV? 2fdx 
Ee LO. La, (B.5-1) 

ad Ie ‘a D 

The next few steps replace all terms in PV, and p with terms involving the Mach 

number and constants. First, we rewrite the definition of the Mach number and the 

speed of sound in an ideal gas as 

V4= = M (B.5-2) 

or 

y2 

a ke? (B.5-3) 

which we substitute into the third term in Eq. B.5-1. Then we multiply both sides of 

Eq. B.5-2 by dV/ V to find 

V dV PF’ dV = ke — (B.5-4) 
e V 

We differentiate both sides of Eq. 8.15 and divide left and right sides by 

KRT 
V2 = B.5-5 v7 ( ) 

and simplify, finding 

dT dV 
a =k a B.5-6 7 M( ) V ( ) 

Next we take the natural logarithm of both sides of Eq. B.5-5 and differentiate, finding 

dv _aT | ddl = B.5-7 
V ra M ( ) 

Eliminating dT / T between the last two equations and rearranging produces 

Al Sa oe (B.5-8) 
Vio M(k — 1)/2) +1 
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Substituting this value of dV/ V into Eq. B.5-4 produces 

V kM dm PdVv=— (B.5-9) 
P ACK = D)/ 2) 1 

Next we write the mass flow rate per unit area (which must be a constant in this flow) 

as 

m MP 
== pV V B.5-10 a ORT a 

Taking the natural logarithm of this equation and then differentiating (at constant m/ A) 

produces 

P “*dar “aV 
og (B.5-11) 
Va T V 

Eliminating dT / T with Eq. B.5-6 and dV/ V with Eq. B.5-8 produces 

dP k~ Dd +1 dk 
aS eis e (B.5-12) PP ikea 

Then returning to Eq. B.5-1, inserting Eqs. B.5-3, B.5-9, and B.5-12 and simplifying, 

we find 

Af dx 2(1 — M’) dM 
= —_ 3 (B.5-13) 

D [(k —1)/2])M*> +1 kM 

which can be expanded by partial fractions to 

4fdx 2m k+1 dM pee, 
D kG kk MA[(k — 1)/2) 42 + 13 i 

and integrated from M = M, atx = Oto M = M, atx = Ax, finding 

4fAx 1f 1 1 k+1. [dB 1+ ((k- 1)/2)40 - a :)+ nf = sak rt =o (8.30) 
D kM MG 2k My 1+ [(k — 1)/2)4G 

B.6 NORMAL SHOCK WAVES (SEE SEC. 8.5) 

In this appendix we derive the equations for a normal shock wave in a ideal gas, start- 
ing with the continuity equation, 

PxV;, = PyVy (8.36) 

the momentum balance, 

V.-V,=—- (8.37) 
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and the energy balance, 

= = we(%) + ] (8.17) 

From the ideal gas law and the equation for the speed of sound in a ideal gas, 

cll ing 
. ie rs (B.6-1) 

Substituting this twice in Eq. 8.37, we find 

ron cc 
VV, = WW, — Wy, (B.6-2) 

Now we write Eq. 8.17 twice: once for any arbitrary state 1, and once for the criti- 

cal state (*), at which M = 1. For these states Tp is the same, because the flow is 
assumed adiabatic, so, dividing one energy balance by the other, we find 

T/T tO Pa on 

jig jy bautinty Oeste (i age Wy) es ee 

but T*/ T, = c*¥?/ c? and M2 = V?/ c?, so 

2 2 2 ats a (Vi / cz)[(k — 1)/2] + 1 men 

c ((k —1)/2] +1 

Multiplying through by cj, simplifying the denominator, and solving for ci gives 

hte k-1 
he om ; )- vi") (B.6-5) 

Here we have let 1 be an arbitrary state, so we can let it be either x or y. Thus, we 

will use Eq. B.6-5 twice to eliminate c? and cs from Eq. B.6-2: 

cM [(k + 1)/2)— Volk — 1)/ 2] baie Pk ot Wy Qs Vile ff 2] 
Vy. i= Vy as kV, KV, 

(B.6-6) 

Now we multiply both sides by 2kV,/(k + 1), finding 

2kV. Valmnw vy 1 | 6 a(¢ - .) 
Boo te = 6° tA | (8 ) ae Ue V;) ac v3(t c DN Gay ( ) 

y 

Regrouping gives us 

2kV. MeV, athe ee ye yee + V,(V, - V. 
Pe ey ey 

(B.6-8) 

Canceling (V, — V,), multiplying by V,, rearranging, and simplifying, we find 

V,Vy = c¥ (B.6-9) 
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which is known as the Prandtl relation or the Prandtl-Meyer relation. Now, return- 

ing to Eq. B.6-4, we multiply by (c, / c*)*[(k — 1)/2 + 1], finding 

2 tated 2 

ae ie (4) (i+) 1 (2) (B.6-10) 
2 eas 2 Gs 

Substituting for (c, / c*)? from Eq. B.6-4 and simplifying, we find 

2/k — k+1)/2 oie 2 (“) (+) a ie EE (B.6-11) 
2 c* 2 Mi(k —1)/2+1 

Multiplying by (k — 1)/2 and rearranging gives 

Vv, \ By Mi(k + 1 
(4) = Laue i 2 1 | =: ia) (B.6-12) 
pe Pe Mik, — 1) £2 + Ad 4 MB Yt2 

Equation B.6-12 is not specific for shock waves but applies to any steady, adiabatic 

flow of an ideal gas. The reader may check a few V/c* values in App. A.4 to see 

that they have indeed been made up from Eq. B.6-12. 

We may now use Eq. B.6-12 twice in Eq. B.6-9, finding 

M2(k + 1) l M5(k + 1) bad ~ 

M2(k — 1) + 2) MO(k- 1) +2) ii 

from which 

M2(k — 1) +2 2 beur| Abe apypee i e easy [(M2(k — 1) + 2] (B.6-14) 

Collecting M? terms and using a common denominator gives 

W MEK + 1)? = (k = 1) (M2(k = 1) + 2] +8 af ae —1)+2 

‘ ME(k + 1° M2(k + 1)? 
| (B.6-15) 

Dividing out the term on the left and simplifying, we find 

Bia + M2[(k — 1)/2] 

* KM — [(k -— 1)/2] 
(B.6-16) 

Now that we have a. relationship between the upstream and downstream Mach num- 
bers, we can compute the other relations easily. Writing Eq. 8.17 twice, 

Tr/T, Ty AGK(k-1)/2) +1 

Tr/T, Te M3 [(k— 1)/2) +1 (B.6-17) 
Substituting for “, from Eq. B.6-16, 

Ty M2I(k — 1)/2] +1 
iy (B.6-18) Jig. (: a aE + Mk — 1)/2 

A= kMz — (k —1)/2 
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To find the velocity ratio, we write 

yo AV, VE ere E41) ets 

Vy, Viv, cee 1) +2 ao 
Here we have substituted for V,V, from Eq. B.6-9 and then for V,/c* from Eq. 
B.6-12. 

From Eq. 8.36 we know that 

Py Y.. Mik iz 1) 
Sess 5a B.6-20 

Px Vy, MAk—-1)+2 

Finally, we find P,/ P, from 

| M2 (k + 1) [oe eee) 

Py _ PyT, _ LMe(k- 1) +2 = [(k — 1)/2] 
Pe pet, Mei — 1) 7 2) rt 

(B.6-21) 

which after some algebra simplifies to 

ee SO ee 
ee eee I 

(B.6-22) 

Thus, we now have all the pertinent property ratios in terms of ,, which allows us 
to tabulate these ratios in App. A.5 and thus to solve normal shock wave problems 

very conveniently. 

B.7 EQUATIONS FOR ADIABATIC, 
ZERO-CLEARANCE, ISENTROPIC 
COMPRESSORS PROCESSING 
IDEAL GASES (SEE SEC. 10.2) 

Starting with 

PV* = constant for an isentropic process (B.3-24) 

P, 1/k aL (ale 

vey ec ee B.7-1 
(2) Be ASP. ( ) 

/k P 1/k P2 nRT, vf Sy nRT; ER 
= —— = - dP (B.7-2 fe yen pane nis tires ts ee aie Oe (B.7-2) 

P» P» 1 1/k la / 1] g, 

= a Po kipiss a 2 ips 468 

[ (3) cla P, it 7 1/k P, 

pete = B79) 

we write 

Then 

But 
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so that 

P2 k pet _ pair Laie (a4 7 | 

io pres ee pe v7k hee 1 P, 

(9.15) 

B.8 PROOF THAT THE CURVES OF 
CONSTANT @ AND THE CURVES OF 
CONSTANT w ARE PERPENDICULAR 
(SEE SEC. 16.5) 

Starting with 

_ _(36\ _ _( 9 s -(=) -(*) 16.26 
a ce i C ) ” ay), \ax/, Kose 

we now introduce the identity proven in all calculus books, 

(4) a -(4) (=) (B81) 

dB/¢ dC /3\ 0B / 4 

which is true for any A, B, and C. Using this identity, we find 

(2) --(2)) esa Obs Oy J, \OX/ 4 

eae BSD ay), Lax /\av/, 
Substituting these in Eq. 16.26 produces 

(2)(2), (2), we. Oy J,\ OX] Ox )\\OV/ y 

Substituting for (d¢ / dy), from Eq. 16.26 and canceling, 

oy Ox 
-(2) = (**) (B.8-5) 

Ox db Oy wu 

ay\ (ay y 
(=) (*) = +] (B.8-6) 
Ox ob OX wu 

Equation B.8-6 says that the product of the slopes of a curve of constant @ and 

a curve of constant y is —1. This is the condition that the two curves be perpendi- 

cular, proven in all calculus books. This was shown for any x and y, not for a spe- 

cific one, which indicates that at any point x the lines of constant @ and constant 

passing through that point are perpendicular. 

or 



APPENDIX 

Ss 
EQUATIONS FOR 

TWO- AND 
THREE-DIMENSIONAL 

FLUID 
MECHANICS 

C.1 SUMMARY OF VECTOR NOTATION 

Please reread Secs. 7.1 and 15.1. This topic is covered in much more detail in math- 

ematics and physics books, and in Bird, Stewart, and Lightfoot [1] and Prandtl and 

Tietjens [2]. In this book we define the velocity vector as 

V=Va+ V,j + VK (7.A) 

Here V,, V,, and V, are the scalar components of V, and i, j, and k are unit vectors 

in the x, y, and z directions. This can also be written in cylindrical (polar) coordinates as 

V = V,e, + Veg + Vk (C.1) 

where V,, Vo, and V, are the scalar components of V and e,, eg, and kK are the unit vectors 

in the r, 6, and z directions. For spherical coordinates, the corresponding definition is 

V = V,e, + Voeg + Vae (C.2) Cat 

The unit vectors in the 6 and ¢ directions are not nearly as intuitive as the rectangu- 

lar unit vectors; see any advanced calculus book for their properties. 

One of the great merits of the vector notation is that if we can write out the 

component values in Eq. 7.A, then by straightforward (if tedious) mathematics, we 

can rewrite the same vector velocity in cylindrical or spherical coordinates. This gives 

the velocity components in those coordinate systems. This property is also true for 

619 
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vector equations. In the text the equations for conservation of mass and momentum 

are derived in rectangular coordinates. The following text shows the values of those 

equations in rectangular, and cylindrical coordinates. In making up or using those 

equations, we follow the following definitions: 

Vector addition or subtraction consists of adding or subtracting the scalar 

components. 

Multiplying a vector by a scalar is equivalent to multiplying all the scalar 

components of the vector by that scalar. 

There are two types of vector multiplication, the dot product and the cross 

product. The dot product of two vectors, written V - r, is a scalar whose value is the 

product of the length of the two vectors, V and r, times the cosine of the angle between 

them. The cross product of two vectors, written V X r, is a vector whose magnitude 

is the product of the length of the two vectors, V and r, times the sine of the angle 

between them, multiplied by the unit vector normal to the plane that contains the two 

vectors. The direction of the normal chosen is based on the “right-hand rule.” 

The dot product of a vector with itself, V - V, sometimes written V’, is a scalar 

whose value is the square of the length of the vector. (The cosine of the angle between 

a vector and itself is cos 0 = 1.0). The dot product of any unit vector (i, j, or k) with 

itself is 1.0. The dot product of any unit vector with any of the other unit vectors is zero. 

The cross product of a vector with itself is a vector of zero length (the same as 

a scalar zero). The sine of the angle between a vector and itself is sin 0 = 0. The 

cross product of any unit vector (i, j, or k) with itself is zero. The cross product of 

any two unit vectors is + the third unit vector. 

The derivative of a vector is a vector consisting of the derivatives of the scalar 

components, multiplied by the corresponding unit vectors, e.g., 

dV dV.. dV, dy. ja ieds paetk 2 

dt ee ieee ee 

The Hamiltonian operator V called “del” or “nabla” is defined as 

0 0 0 
VS i ek (C.4) 

ox oy Oz 

The dot product of del with a vector is a scalar called the divergence. For example, 

fe) 0 fe) V-Vediv VV =f 2p bk) Gy. + iV. + ky ( ne Jy 2. (iV, + jV, + kV,) 

ait ala alia heres (C.5) 

(See Fig. 13,2,) 

The dot product of del with a scalar is a vector called the gradient. (One often 
Sees V + any scalar written as grad - scalar). For example 

at) 0 oP oP oP 
Ve p=grad- P= (12 4 ed aed Coe ee 

me. dy dz as dy dz bee. 
This vector points “downhill” (i.e., perpendicular to contour lines) and has a magni- 
tude equal to the “steepness” of the slope in the “downhill” direction (Fig. C.1). 
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¥ Multiplication of a vector by 
del, VV (not the same as the dot prod- 

uct V - V), produces a tensor (a nine- 

50 ft member array of derivatives). It is 

seldom seen by itself, but most often 

seen in the following dot product: 

av ov dV 

“Mount|Scalar” Ne ak jake oh, + Vy ay +, an 

Contour lines (of constant F dV, OV, OV, 

se qlee: 
Vv. ov, ov, 

+i +V,— + v=) 
Ox oy OZ 

FIGURE C.1 ov, ov, av, 

On a two-dimensional contour map, the contours Im WE fA i US Te V. rs 

represent lines of equal elevation (which is a scalar); 

there is a gradient line (a vector) through every point. (C.7) 

Its direction is downhill, perpendicular to the contour 

lines, and its magnitude is proportional to the steepness This product appears in the substan- 

of the gradient (i.e., how close together the contour tive derivative and is widely used in 
lines are). Only four such vectors are shown, as fluid mechanics. 
representative examples of the vectors through every The dot product of del with 

port in he scolar Seid: itself, called the laplacian operator, 
normally written as V’, is 

0 0 0 . 0 1? 0 
vaveva(it+j2+n2).(i2+j2+n2) 

Ox oy 0z Ox oy Oz 
a2 or 3 

= (5 = aa nF EA (C.8) 
Ox oy 0z 

Applying it to a scalar produces a three-term scalar. If that scalar is zero, then the 

three terms of that scalar obey Laplace’s equation (Eq. 15.7). Applying V* to a vec- 

tor produces a vector of the form 

2 2 2 2 2 2 
y. . OY, OV i Over 0 ¥, 

vy =1(2e 4 x4 *) +3( ++ 
ax? oy Ox oy OZ 

O Vie OVE 8 iV, 
+ K( : 2 7 ae a © (C.9) 

The cross product of del with a velocity vector is a vector, called the curl (or 

rot in the German literature), that shows the angular velocity of the fluid at any point. 

The direction of the vector is the axis about which the particle of fluid is rotating. 

The definition is in terms of a 3-by-3 determinant, 

0 
V x V=curl V = ae = (C.10) 
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In this book the only application of the curl is in Chap. 16, where it is applied only 

in two-dimensional (x-y) flow. In such a flow, a/az= V, = 0, so the determinant 

simplifies to 

lige, Oy av, av, 
Vx V=curlV=Kjlox ay| =k — -—— (CTB 

Ox oy 

Ve Vy 

It is shown in Chap. 16 that for a two-dimensiona) flow 

V xX V = curl V = £k = 20k (C212) 

where ¢ is a defined quantity called the vorticity, which is twice the angular velocity . 

The unit vector k shows that the axis of rotation points in the direction perpendicu- 

lar to the x-y plane. 

C.2 THE MASS BALANCE IN THREE 
COORDINATE SYSTEMS 

The three-dimensional mass balance equation (Eq. 15.7) in vector notation is 

= VN) (15.7) 

This appears to be a vector equation, but it is not. The only term in it in vector nota- 

tion is del of a vector, which is a scalar. Equation 15.7 does not have directional com- 

ponents as does the momentum balance. Equation 15.7 is 

_op _ HpVs) | a(pVy) , eve) 
[rectangular coordinates] (15.7) 

Ot Ox oy 0z 

— “e = ~ BAe, + : er) + ae [cylindrical coordinates]  (C.13) 

dp 1 a(pr’V,) 1 d(pVo sin@) 

Pier ee re a 

1 (pV) . 
rand © a [spherical coordinates] (C.14) 

C.3. THE MOMENTUM BALANCE FOR 
LAMINAR, NEWTONIAN, CONSTANT- 
DENSITY FLOWS (THE NAVIER- 
STOKES EQUATIONS) 

Equations. 15.27, 

DV Wi? os dt DV 
st a V7V =< = _ ° 2 Dt 8 p 0 or p Di pars VesP ae aN isa 7) 
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have the following component equations in rectangular coordinates: 

OV. OV. OV, OV, 
pi Vy +2445 ¥, 

at ax » ay * dz 

aP (ae a’V, a) 
bb te a pad i Ox a ax? oa a (C15) 

eV, eV, av, ov, 
p\-— + V, —+ V, —+ V,— 

ot Ox oh oz 

ap (#Vy OV, dV, 
ie on ay ae ax? ay? az on) 

and 

ov, av. ov, OV, 
p a Ve SV ave 

ot Ox “ oy 0z 

‘ aP a a yu V1 000° V. 
= P&z — re + ax2 ay? a az? (C.17) 

Here g, is the x component of the gravity vector = g cos @. If the gravity vector points 

in the negative z direction, then g, = g, = 0 and g, = —1. 

For cylindrical coordinates, the component equations are 

av, OE enanls OV soni av, 
p ae = Tay, z sah 

ay or r 00 r >" 0z 

aP afl 1 3V.... 9 0V5 oY. 
= ee, os + C.18 

dig SEY nt 2/4 an | r 00> rr 06 az (¥) 

av, BVeny Vs OVe 0 VEVe av, 
( Sey y — + 22 4 v.2%e) 

ot or (ano r Oz 

1 oP afl a 1oV_ 2.0. “Yel 
= ee te a — =— + —} (C19 

COE KO wf 2[2¢ ) 2-962 2 00 “Wbeah “LP 
and 

(=: fu av, 2 Vp OV, ) 

PY at OF r 06 * "Oz 

aP 1 a a) 1 av, a 
= pe, = — + p|—— + — re C.20 

PE: Oz u|+ or (- or r 3er az : 

For spherical coordinates, the component equations are shown in Bird, Stewart, and 

Lightfoot [1]. They are used much less often in chemical engineering than the rec- 

tangular or cylindrical forms and are not needed for any problem in this book. 
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APPENDIX 

is, 
ANSWERS TO 
SELECTED 
PROBLEMS 

1.3. 102 lbm/ ft 
1.5. 1.110 g/cm’, an error of 0.1% 

1.11. Sphere, 6/D; cube, 6/ E; cylinder, 6 / D 
1.15. 1.14mi? 
1.18. toof = 32.2 ft; dnoces' = s/ V32.2 
1.21. 9669 ft/s 

1.23. 4.6-10° 
1.25. 0.0145 N = 0.0033 Ibf = 1.48 g (force) 

1.28. Air pollution models work in g, auto usage data are in mi. 

2.1. 5.29-10~° ft = 0.018 mm 
2.3. 998.3 kgf /m? = 9.792 kN/m°* 
2.8. 16,115 psia = 1096 atm = 1.11-10° kPa 

16,100 psig = 1095 atm, g = 1.109 10° kPa, g 
2.12. 0.2236 ft 
2.18. 96,783 ft; P = 0 
2.20. —0.00356 °F/ ft, —0.00536 °F / ft 
2.22. 1.186-10'? Ibm 
2.24. 88.92 kPa, g = 12.81 psig 
2.27... F.= 2per?/ 3 
2.30. 0.60 in = 1.52 cm 

2.39. 89.6 vol % 



2.40. 

2.43. 

2.46. 

2.49. 

2.52. 

2.54. 

2.58. 

2.60. 
2.62. 

2.65. 

2.68. 
2.70. 

2.72. 

Sete 
3.13: 
3.14. 
3.16. 
19. 
o-21. 
3.26. 

4.3. 

4.7. 

4.9. 

4.11. 

4.15. 

4.21. 

Sel. 

53. 

Pa Fs 

o. 

5:13. 

5.16. 

Syd & 

eae 

20s 

S27. 

5.34. 

5.36. 

5.42. 

5.46. 

APPENDIX D ANSWERS TO SELECTED PROBLEMS 

62.5 lbf = 278N 
(a) 2573 Ibf; (b) 2.49991 Ibf 

2000 kg 
5.2 ft = 1.58 m 

APS 5 és ths 
Pug ~ Pw 

(a) 2.77 in = 70 mm; (b) 10.72 in = 272 mm 
(a) 4.808 ft = 1.465 m; (b) 0.15% 
0.017 psi = 0.47 in H,O = 0.117 kPa 

(a) 1234 psia = 1219 psig = 8400 kPa, g 
127.3 psig 

14.3 ft/s? = 4.36 m/s”, upward 
1.779° = 0.031 rad 

0.153 lbf = 0.683 N 

500 ft? /s = 14.16 m?/s; 0.467 ft/s = 0.145 m/s 
4.8 mi/h 
2.25 ft? /s; 159 Ibm/s; 13 ft/s 
0.0133 atm 
Rising, 72 mm/h = 2.8in/h 

0.0051 Ibm / min = 0.0023 kg / min 
About 50,000. Depends on some assumptions. 

3.75 ft lbf = 5.05 J 
412 kJ/kg 
— 1.602 MW (negative because of sign convention) 

14.8 Btu = 15.62 kJ 

—1.44-10-7 Ibm = —0.65 g 
—2.24 Btu/lbm = —1.07 kJ/kg 

11°F, 1.3°F 
(a) 31.9 kPa = 4.64 psi, 0 
(b) 28.67 kPa = 4.28 psi, 3.20 J/kg 
(c) 0; 32.0J/kg 
55.6 ft? /s = 1.57m°/s 
60.6 ft? /s = 1.71 m?/s 
127 ft/s = 39 m/s 
eS fees — 3. 46ma/'S 

5.58 m/s = 18.3 ft/s 
1341 in/ ss = 2 tt / s = 34m/s 

25.4 ft/s = 17.3 mph = 7.7 m/s 

0.46 ft/s = 0.14 m/s 

24.0 ft/s = 7.33 m/s; 4.72 ft?/s = 0.13 m’/s 
123 ft/s = 37.5 m/s; 123 ft®/s = 3.48 m°/s 
60.3 ft/s = 19.2 m/s; 41.1 ft/s = 12.5m/s 

49.1 ft/s = 15.0m/s; 1.04 rps = 62 rpm 

625 
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5.49. 36.55 
5.52. 9.97(s/ Vit) Vhy 
5.60. (a) 1.0 lbf/ ft? = 0.007 psi = 0.0479 kPa 

(b) 29.3 ft/s = 8.93 m/s; Q = 146.5 ft*/s = 8760 cfm = 4.15 m°/s 
(c) 0.344 hp = 0.264 kW 

6.3. 0.0174 psi/ ft = 0.92 psi/ mi = 0.0039 Pa/m 

6.7. 0.068 ft/s = 0.0185 m/s 
6.10. 0.114 lbf = 0.507 N 
6.14. 20 psi/ 1000 ft; ~40 psi / 1000 ft 
6.15. 11.2 psi/ 1000 ft = 0.253 Pa/m 
6.19. 20.5 psi = 141.6 kPa 

6.23. 1.73 psi/ 1000 ft = 0.392 Pa/m 
6.25. 0.038 ft?/s = 17.2 gpm = 0.065 m*/s 
6.31. 1600; 4500: 
6.42. 0.910 psi; 1.103 psi 

6.44. 1032 gpm = 0.0623 m?/s 
6.46. 0.0166 = 1.66 ft/ 100 ft 
6.53. 2.22-10°° ft? /s = 6.3: 10° m/s 
6.56. 7.31 in = 0.185 m; 22.4 ft/s = 6.83 m/s 
6.59. 295.7 ft/s = 92.4m/s 
6.61. 48.1 ft/s = 14.7m/s 
6.63. 0.126 ft? /s = 56.7 gpm = 0.0036 m?/s 

6.65. Max = 402 gpm = 0.025 m?/s 
Min = 238 gpm = 0.015 m?/s 

6.70. Far end; near end; don’t bet much. 

6.81. 5.44-10°’m/s = 1.79: 10° °ft/s = 0.15 ft/ day 
6.83. 1.48 ft/s = 0.45 m/s 
6.87. 384 ft/s = 117 m/s; 31.6 s; 8954 ft = 2778 m 

107 ft/s = 32.7 m/s; 8.8 s; 696 ft = 212m 

Tt = 2°10" hs 
7.10. F, = —586N = —131.7 lbf 

F, = 1414N = 318 lof 
7.11. (a) V; = 19.9 ft/s; V> = 79.7 ft/s; m = 103.4 lbm/s 

(b) F = 288 lbf 
7.15. 828 lbf = 3.68 kN 
7.17, —232.2 lbf = —1.04 kN 
7.19. 3.25 kN/(kg/s) = 331.4 lbf / (Ibm /s) 
7.22. —2480 lbf = —11.0kN 
7.26. (a) 48,300 lbf = 215 kN 

(b) 1.65- 10° bf = 736 kN 
7.38. 5947 m/s = 19,500 ft/s 
7.45. 816kPa = 118 psi 
7.48. 16.65 ft = 5.07 m; 6.01 ft = 1.83 m 
7.50. 25.4 ft/s = 7.73 m/s 

II 



7.54. 

7.56. 

8.1. 

8.4. 
8.6. 

8.8. 

8.10. 

8.12. 

8.14. 

8.16. 

8.18. 

8.20. 

8.22. 

8.25. 

8.31. 

8.33. 

8.53. 

8.54. 

8.56. 

ee 

9.9. 

9.12, 

10.1. 
10.7. 

APPENDIX D ANSWERS TO SELECTED PROBLEMS 

0.014°F = 0.0077°C 

Cold day; air density greater 

807 psi / ft = 18.2 MPa/ m; 0.97 psi/ ft = 22.0 kPa/m 
10,800 ft/s = 2.0 mi/s = 3.28 km/s 
3- 10° psi = 2.07- 10° bar 
334 ft/s = 102 m/s 

226.3°R = —233.7°F = —147.6°C 
226.3°R = —233.7°F = —147.6°C 
3.60 psia = 24.9 kPa 

0.0059 Ibm / ft? = 0.095 kg / m? 
500°R = 40°F = 4.6°C 
42.5 psia = 311 kPa; 1931 ft/s = 589 m/s 

7.16 psia = 49.4 kPa 
420°R = —40°F = —40°C 
2950 ft/s = 899 m/s 
0.00636 Ibm / ft? = 0.102 kg / m? 
6.3 psia = 43.6 kPa 

440°R = —20°F = —28.7°C; 1.1697 
662.5°R = 2025°F = 94.9°C 
6.52 psia = 45.0 kPa; 3085 ft/s = 940 m/s 
0.69 lbm/s = 0.315 kg/s 

3.69 Ibm /s = 1.67 kg/s 
3.03 psia = 20.9 kPa 

0.0265 lbm/ ft® = 0.42 kg/m? 
38,000 Ibf = 0.26 MN 
62,700°R ~ 62,200°F ~ 34,500°C 
167 lbm/s = 75.7 kg/s 
967.5 ft/s = 295 m/s 
631° Re= 171 R = 773°C 
18.05 psia = 124.5 kPa 

2 
a 2 

‘te Fp (> Pressure coefficient)” 
ae Pw ales 
40.2 mi/h 

F Pony, 
4 = 

ss pLiw* is pL?Vv . Vw 

ae ( pressure ): (Cee) - 

~ ~~ \coefficient/ \ number 

13 gpm = 8.2:10 *m°/s 
18.98 hp = 14.16 kW; 31.16 hp = 23.1 kW 
24.11 hp = 18.0kW 
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10.11. 

10.19. 

10.22. 

10.24. 

11.5. 

11.7. 

93 

11.13. 

12.3. 
12.10. 

13.4. 

13.13. 

13.16. 

13.19. 

14.2. 

14.5. 

14.7. 

14.14. 

15.8. 

15.13. 

15.20. 

16.12. 

16.15. 
16.16. 

17.5. 

17.16. 

18.3. 
18.4. 

18.10. 

19.1. 
19.5, 

19.10. 

2860 Btu / Ibmol 
106 hp = 79 kW 
0.514 ft = 6.2 in = 0.157 m 
11.4 ft = 3.47m 

315 darcies 

Ca = 4.17: 10 >; residual saturation ~ 0.16 
Rpm. = 1913; turbulent, 

dP / dx ~ 0.52 in H,O/ ft 
0.64 ft/s = 0.195 m/s; 

0.0067 ft/s = 0.020 m/s 

Fiquia = O02) chi FAs F32.3.2h 

Oe! Qs-bottom = 1.15 

K = 0.44 lbf/ ft; n ~ 0.31 
—dP / dx = 6.22 psi/ 100 ft 
—dP / dx = 7.81 psi/ 100 ft 
(a) 1.583 ft/s; 1.437 ft/s 
(b) ry fry = 0.7816;Vie= 1.159 ft i s 

1.155 A 

0.084 in; 49 drops / cc 

Az = 20 A/ (gpBx); a hyperbola 
1.6 psi 

0.6667 

862 cP 

1.78 s 

14.82 psia 

=0.50h 
1 
2 

0.081 ft; 0.0054 ft; 4.03 ft 

8.6 ft 

22.7 ft? /s° = 2.108 J / (kg -s) 
34.6 cm*/s? = 1.5-10 ° Btu/ Ibm 
dV,/ dr = —2.13/s 

0.03 mL per injection 
12.6 ft/s; 7.1 hp/ 1000 gal 

6492 ft 



INDEX 
A 

absolute pressure, 17 

absolute viscosity, 13 

accumulation, 82 

adiabatic bottle filling, 127 

adiabatic flow with friction (gases), 314 

adjusted length, 202 

adverse pressure gradient, 509 

aerodynamics, 3 

aeronautical engineering, 279 

aerosols, 226 

air pollution regulations, 96 

angle of attack, 532 

angular moment of inertia, 284 

angular-momentum balance, 283 

API gravity, 7, 32 

apparent viscosity, 11 

Archimedes principle, 52 

area ratio, compressible flow, 612 

average velocity, 88 

axial-flow pumps and compressors, 381 

B 

background concentration, 95 

balance equation, 81 

barometer, 56 

barometric equation, 38 

basic equation of fluid statics, 38 

Bernoulli’s equation, B.E., 133, 173, 

361, 478, 504 

engineering form, 134 

extended form, 134 

for fluid flow measurement, 146 

for gases, 141 

head form, 138 

for unsteady flows, 158 

Bingham fluid, Bingham plastic, 11, 428 

laminar flow in circular tubes, 433 

turbulent flow in circular tubes, 438 

Bingham number, 439 

Blake-Kozeny equation, 401 

Blasius solution, 534 

blending of miscible liquids, 561 

block flow, 88 

bluff body, 509 

bottle filling, 127 

boundaries (system), 82 

boundary layer, 486, 514 

control, 532 

drag, 519 

equations, 515 

thickness, 518 

turbulent, 524 

bourdon tube, 58 

box model, 96 

British thermal unit, 23, 112 

Buckingham’s 7 theorem, 353 

buffer layer, 528 

bulk density, 6 

bulk modulus, 299, 603 

buoyancy, 52 

buoyant force, 52 

Burke-Plummer equation, 403 

C 

calorie, 23, 112 

capillary number, 408 

capillary pressure, 407 

capillary rise, 447 

capillary viscometer, 182, 429 

carburetor, 167 

Carreau equation, 441 

cavitation, 155, 378 

centipoise, 13 

centistoke, 13 

centrifugal compressors, 380 

centrifugal pumps, 372 

centroid, 72 

Chézy formula, 234 

choking, 311 

closed system, 83 

coefficient of discharge, 149 

coefficient of thermal 

expansion, 603 

coefficient of viscosity, 10 

Colebrook equation, 232 

complex fluids, 10 

compressibility factor, 608 

compressible flow tables, 601 

compressive stress, | 

compressor, 617 

compressor efficiencies, 382 

computational fluid dynamics 

(CFD), 587 

conformal mapping, 503 

conservation of energy, 103 

constant-density fluids, 40 

contact angle, 446 

continuity equation, 85 

continuity principle, 85 

control volume, 83 

converging-diverging nozzle, 326 

correlation coefficient, 551 

corrosion allowance, 73 

Couette flow, 482 

Couette viscometer, 8, 484 

countercurrent flow, 409 

creation, 82 

creeping flow, 222 

critical state, 304 

curl, 497 

D 

darcy, 34, 405 

de Laval nozzle, 326 

dead-weight tester, 78 

decibel, 333 

density, 5, 602 

depth filters, 413 

derivative, substantive, convective, 

Stokes, 468 

destruction, 82 

difference equations, 587 

differences, forward, backward, 

central, 588 

diffuser, 138, 327, 372 

diffusion, molecular, 562 

dilatant fluid, 11, 429 

dimensional analysis, 176 

dimensionless numbers, 345 

discharge, 88 

discretization, 587 

dispersion coefficient, pipe 

flow, 571 

dispersion, of solids, 560 

atmospheric, 576 

displacement thickness, 522 

double-suction pump, 379 

doublet, 506 

draft tube, 77 

drag coefficient,.220, 227, 520 

drag forces, 220, 281 

drilling mud, 31 

Du Nouy tensiometer, 448 

E 

economic pipe diameter, 214 

economic velocity, 218 

eddies, 543 

eddy viscosity, 555 

eductors, ejectors, aspirating burners, 

jet mixers, jet pumps, 261 
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efficiency, compressor, 382 

pump, 362 

turbine, 391 

electrostatic energy, 106 

Ellis equation, 441 

emulsification, 562 

emulsion, 106 

energy, 103 

energy balance, 103, 108 

energy transfer, 107 

enlargements and contractions, 200 

enthalpy, 118 

entrance flow, 182 

entrance length, 537 

entrance region, 476 

equation of motion, 243 

equivalent diameter, 226 

equivalent lengths, 202 

Ergun equation, 404 

Euler equation, 473, 478 

Euler number, 347 

Eulerian viewpoint, 468 

Euler’s turbine equation, 284 

exact solution, 523 

explicit formulation of PDEs, 592 

extensive property, 83 

F 

filters, 411 

depth, 413 

surface, 411 

First Law of Thermodynamics, 103 

fitting losses, 202 

flashing flow, 424 

flooding, 10 

flow around a cylinder, 505 

flow around submerged 

objects, 220 

flow energy, 117 

flow work, 117 

flue, 61 

fluid, | 

fluid friction, 173 

fluid statics, 37 

fluidization, 414 

foot valve, 377 

force, 19 

force ratios, method of, 348 

forced vortex, 496 

forces due to curved surfaces, 449 

forces, pressure, inertia, viscous, 

gravity, surface, elastic, 348 

forms of energy, 104 

free jet, 572 

free vortex, 499 

friction factor, 185 

Darcy-Weisbach, 187, 230 

Fanning, 187, 230, 437, 527, 571 

more convenient methods, 194 

plot, 185 

porous media, 400 

power law, 436 

problems, 188 

friction head loss, 136 

friction heating, 134, 180 

friction loss, 135 

friction velocity, 527 

Froude number, 278, 347 

fully-developed flow, 533 

G 
gases, 4, 604 

gas-liquid flow, horizontal, 423 

vertical-upward, 419 

gauge pressure, 17 

gaussian plume model, 575 

general balance equation, 81 

general continuity equation, 465 

governing equations, 466 

method of, 347 

gravities, 7 

grids, 590 

H 

Haaland equation, 232 

head, 138 

pressure, gravity, velocity, pump, 

dynamic, static, 138, 361 

head form of Bernoulli’s 

equation, 138 

heat, 107 

heat flow rate, 121 

Hedstrom number, 439 

high-velocity gas flow, 

frictionless, 296 

with friction, 613 

hindered settling, 241 

holdup, 419 

holdup ratio, 420 

hoop stress, 49 

hot-wire anemometer, 545 

hydraulic horsepower, 362 

hydraulic jump, 276, 608 

hydraulic radius, 208, 399 

hydratlicians, 485 

hydraulics, 3 

hydrodynamicists, 485 

hydrology, 3 

I 

ideal gases, 41, 609 

impact tube, 146 

impeller, 372 

implicit formulation of PDEs, 595 

impulse turbine, 388 

incompressible flow, 135 

industrial hygiene, 97 

injection work, 116, 134 

intensity of turbulence, 546 

intensive property, 83 

intercooling, 371 

interfacial tensions, 448 

interfacial turbulence (Marangoni 

effect), 454 

internal energy, 105, 112 

interstitial velocity, 399 

irrotational flow, 496 

isentropic compressor or 

turbine, 383 

isentropic relations, ideal gas, 610 

isothermal compressibility, 299, 603 

isothermal flow with friction 

(gases), 320 

J 
Jamin effect, 454 

jet engine, 268 

jet-surface interaction, 250 

K 

kilocalorie, 113 

kilogram-force, 21 

kilogram-mass, 21 

kinematic viscosity, 13 

kinetic energy, 103, 105, 110, 134 

Kolmogorov scale (of turbulence), 

551, 562 

Kozeny-Carman equation, 401 

L 

lagrangian viewpoint, 469 

laminar flow, 175, 177, 472 

laminar sublayer, 527 

Laplace equation, 406, 488 

laser-doppler anemometer, 546 

law of the wall, 536 

leveling, 13 

lift, 280 

lift coefficient, 227 

liquids, 4, 606 

loading, 410 

lost work, 136 



M 
Mach number, 278, 302 

magnetic energy, 106 

Manning coefficients, 235 

manometer, 54 

manometer-like situations, 59 

mass, 19 

mass balance, 81, 84, 464, 622 

mass flow rate, 88 

mass velocity, 312 

material balance, 85 

mechanical energy balance, 136 

mechanics, | 

meteorology, 3 

minimum fluidizing velocity, 414 

minor losses, 204 

mixing, 560 

in atmospheric plumes, 574 

molecular, 561 

in pipes, 569 

in stirred tanks, 565 

models, 343 

moment-of-momentum equation, 284 

momentum, 244 

momentum balance, 245 

applications, 250 

for multidimensional flows, 466 

rate form, 247 

momentum flux, 479 

momentum thickness, 523 

Moody diagram, 185 

N 

natural gas, 167 

Navier-Stokes equations, 470, 622 

net positive suction head (NPSH), 377 

Newtonian fluid, 10, 182 

Newton’s equation of motion, 243 

Newton’s law of viscosity, 9 

node, 213 

non-circular channels, fluid friction 

in, 204 

laminar flow, 204 

turbulent flow, 208 

non-Newtonian flow in circular 

pipes, 428 

non-Newtonian fluid, 10 

non-uniform flows, 160 

normal shock waves, 321, 602, 614 

no-slip condition, 179 

notation for multidimensional 

flows, 464 

nozzle, converging-diverging, 326 

nozzle-choking, 313 

nozzles and diffusers, 326 

nuclear energy, 106 

O 
one-dimensional flow, 131, 173, 463 

open system, 83 

orifice meter, 151 

Ostwald-de Waele equation, 430 

P 

packed towers, packed beds, 409 

particle density, 6 

particle dynamics, 3 

pathline, 487 

peizometer, 59 

perfect fluid, 485 

perfect mixing, 95 

permeability, 397 

pipes, forces in, 251 

dimensions, US Sch. 40, 598 

flow rates, US Sch. 40, 599 

pitot tube, 146 

pitot-static tube, 147 

plug flow, 88 

plume rise, 584 

pneumatic transport, 415 

poise, 13 

Poiseuille equation, 180 

polytropic, 373 

population balance, 81 

porosity, 399 

porous medium, 397, 490 

positive-displacement compressors, 368 

positive-displacement pumps, 363 

potential energy, 105, 110, 134 

potential flow, 406, 488 

poundal, 19 

pound-force, 22 

pound-mass, 22 

power, 122 

input to stirred tanks, 566 

number, 562 

power law fluid, 430 

laminar flow in circular tubes, 432 

turbulent flow in circular tubes, 436 

Prandtl’s 1/7 power rule, 100, 526 

Prandtl’s boundary-layer equations, 514 

pressure, 16, 607 

pressure coefficient, 347 

pressure drop, 174 

pressure forces on surfaces, 44 

pressure hill, 140 

pressure measurement, 54 

pressure recovery, 139 

INDEX 631 

pressure vessels and piping, 47 

pressure-depth relationships, 40 

priming, 377 

principle of conservation of 

mass, 85 

principles and techniques, 25 

propane, 167 

pseudoplastic fluid, 10, 428 

pump, 360 

curve or map, 361, 375 

head, 373 

pumpdown, 98 

pycnometer, 5, 31 

R 
radiation, 108 

rarefaction, 313 

rate equation, 82 

rate of shear deformation, 8 

rate of strain, 8 

ratio of specific heats, 43, 300 

reaction turbine, 388 

regenerative or turbine pump, 386 

Reiner-Phillipoff equation, 441 

relative roughness, 185 

relative velocities, 266, 324 

reservoir condition, 301, 324 

reservoir mechanics, 3 

residual saturation, 408 

resistance coefficient, 200 

Reynolds analogy, 194, 480 

Reynolds experiment, 175 

Reynolds number, 176, 347 

boundary layer, 520 

impeller, 566 

particle, 221 

porous media, 400 

power law, 436 

Reynolds stress, 184, 525, 554 

rheograms, 429 

rheology, 429 

rheopectic fluid, 12, 429 

rigid body motion, 63 » 

rigid body rotation, 66 

rocket equation, 267 

rockets, 256 

rotameter, 154 

rotating systems, 283 

roughnesses, 187 

S 

Saybolt viscosity (SSU), 183 

scale (of turbulence), 551 

seal leaks, 205 
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second law of thermodynamics, 125 

separation, 508 

sharp-edged weir, 160 

shear layer, 540 

shear rate, 8 

shear stress, 1, 8, 178 

shear thickening, 11 

shear thinning, 10 

shock waves, 321 

shutoff head, 387 

sign convention for work, 110 

sink, 494 

siphon, 156 

sliding-vane PD pump, 367 

slip, 419 

slip velocity, 421 

slug, 19 

slurry, 443 

solid, | 

source, 494 

specific gravity, 7 . 

specific impulse, 258 

specific speed, 395 

specific weight, 39 
spectrum of turbulence, 552 

speed of sound, 297 

square-edged orifice, 153 

stability, pump or compressor, 384 

numerical solutions of PDEs, 594 

staging, 373 

stagnation condition, 301 

stagnation point, 508 

stagnation tube, 146 

stall, 532 

standard atmosphere, 43 

starting and stopping flows, 271 

starting flow in a pipe, 271, 473 

steady, frictionless, adiabatic flow of an 

ideal gas, 301 

steady state, 86 

steam-jet ejector, 292 

Stokes derivative, 468 

Stokes law, 222 

Stokes number, 351 

Stokes stopping distance, 239 

Stokes stream function, 504 - 

stopping flow, in a pipe, 273 

in an open channel, 276 

streakline, 487 

stream function, Lagrange stream 

function, 500 

stream tube, 504 

streamline flow, 398 

streamlined body, 509 

streamlines, 487 

substantive derivative, 468 

suction lift, 365 

sudden expansion, 138, 260- 

superficial velocity, 399 

surface active agents, 449 

surface energy, 106, 445 

surface filters, 411 

surface forces, 444 

effects of, 451 

surface tension, 14, 445 

gradient, 453 

measurement, 447 

surge, compressor, 386 

surroundings, 82 

suspension of solids, 560 

system, 82 

at 

tank breathing, 45 

Tate’s law, 452 

tensile stress, 1 

terminal velocity, 223 

therm, 23 

thick-walled pressure vessels, 74 

thin-walled pressure vessels, 74 

thixotropic fluid, 12, 429 

throat, 148 

throttle, 129 

thrust, 228, 257, 281 

time-dependent fluids, 431 

torque, 122, 284 

Torricelli’s equation, 143 

transition region, 176 ~ 

transport equations, 479 

turbine, impulse, 388 

reaction, 388 

turbulence, 539 

decay of, 540 

dissipation rate, 549 

free and confined, 541 

intensity, 546 

isotropic, 541 

kinetic energy of, 548 

measurements and definitions, 544 

production of, 540 

scale, 551 

shear, 541 

three-dimensional, 542 

wall, 541 

turbulent core, 527 

turbulent flow, 176, 183 

turbulent viscosity, 557 

two- and three-dimensional fluid 

mechanics, 463 

two-fluid cocurrent flow, 406 

two-phase flow with boiling, 424 

U 
u plus, 527 

units and conversion factors, 19 

unsteady state, 91 

Vv 
vapor conservation valve, 45 

vector, 244, 619 

velocity, interstial, 399 

minimum fluidizing, 414 

superficial, 399 

velocity potential, 489 

vena contracta, 200 

venturi meter, 148 

viscoelastic fluid, 12, 429 

viscosity, 7, 10, 597 

void fraction, 399 

volumetric flow rate, 88, 93 

volute, 372 

vortex threads, 540 

vorticity, 497 

Ww 

washout, 98 

water hammer, 159, 273, 294 

weight, 19 
weir, 160 

well-mixed model, 97 

wetting, 446 

‘Weymouth equation, 321 

wine tears, 453 

work, 108 

y plus, 527 



CONVERSION FACTORS* 

Length: 

1 ft = 0.3048 m = 12 in = mile / 5280 = nautical mile / 6076 = km/ 3281 

1m = 3.281 ft = 39.37 in = 100 cm = 1000 mm = 10° micron = 10!°A 

= km/ 1000 

Mass: 

1 Ibm = 0.45359 kg = short ton / 2000 = long ton / 2240 = 16 oz (av.) 

= 14.58 oz (troy) = metric ton (tonne) / 2204.63 = 7000 grains 

= slug / 32.2 

1kg = 2.2046 Ibm = 1000 g = (metric ton or tonne or Mg) / 1000 

Force: 

1 Ibf = 4.4482 N = 32.2 Ibm: ft/s* = 32.2 poundal = 0.4536 kgf 

1N = 0.2248 lbf = kg- m/s? = 10° dyne = kgf /9.81 

Volume: 

1 ft? = 0.02831 m® = 28.31 L = 7.48 US. gal = 6.23 Imperial gal 

= acre-ft / 43,560 

1 U.S. gallon = 231 in® = barrel (petroleum) / 42 = barrel (beer, U.S.A.) / 31 

= 4US. quarts = 8 US. pints 

= 3.785 L = 0.003785 m?* 

1m? = 35.29 ft? = 1000 L 

Energy: 

1 Btu = 1055 J = 1.055 kW-s = 2.93: 10°* kWh = 252 cal = 777.97 ft: lbf 

= 3.93-10 *hp-h 

1J=1N-m=1W:-s=1V-'C = 948-10 * Btu = 0.239 cal = 10’ erg 

6.24: 10'% eV 

*These values are mostly rounded. There are several definitions for some of these quantities, e.g., the Btu 

and the calorie; these differ from each other by up to 0.2 percent. For the most accurate values see the 

ASTM Metric Practice Guide, ASTM Publication No. E 380-97, Philadelphia, 1997. 



Power: 

1 hp = 0.746 kW = 550 ft: Ibf/s = 33,000 ft: Ibf / min = 2545 Btu/h 

1 W = 1.34-10 *hp =J/s =N-m/s = V ‘A = 0.239 cal/s 

= 9.49-10°* Btu/s 

Pressure: 

1 atm = 101.3 kPa = 1.013 bar = 14.696 Ibf / in? = 33.89 ft of water 

= 29.92 in of mercury = 1.033 kgf / cm* = 10.33 m of water 

= 760 mm of mercury = 760 torr 

1 psi = atm/ 14.696 = 6.89 kPa = 27.7 in H,O = 51.7 torr 

1 Pa = N/m = kg/m-s? = 10 ° bar = 1.450° 10-4 Ibf / in? 

= 0.0075 torr = 0.0040 in HJO = 10 dyne/cm 

Viscosity: 

1 cP = 0.01 poise = 0.01 g/cm:s = 0.001 kg/m-s = 0.001 N-s/m? 

= 0.001 Pa-s = 0.01 dyne: s / cm? 

= 6.72: 10°“ Ibm/ ft: s = 2.42 lbm/ ft-h = 2.09: 107° Ibf-s / ft 

Kinematic viscosity: 

1 cSt = 0.01 Stoke = 0.01 cm*/s = 10°° m?/s = 1 cP/(g/cm*) 

= 1,08: 107° ft? /s = cP/ (62.4 Ibm/ ft*) 

Temperature: 

Ko= °C 2/303 = R/S =°C +26 °C = (°F — 32)/1.8 

°R = °F + 459.67 = °F + 460 = 1.8K SRSSL SCH ae 

Psia, psig: 

Psia means pounds per square inch, absolute. Psig means pounds per square 

inch, gauge, i.e., above or below the local atmospheric pressure. 

Force-mass conversion factor, g, 

This factor is equal to dimensionless 1.00. Any dimensioned quantity may be 
multiplied or divided by g, without changing the value of that quantity. 

Ibm: ft | slug: ft _ Ibm - ft kg-m 
PSL 490 - = 

lbf « s Ibf « s poundal - s? N:s? 

kgmass ‘ m 
9.8) sar tase 

kgforce : s 



COMMON UNITS AND VALUES FOR PROBLEMS AND EXAMPLES 

For all problems and examples in this book, unless it is stated explicitly 
to the contrary, assume the following: 

The acceleration of gravity is g = 32.17 ft/s* = 9.81 m/s? 

The surrounding atmospheric pressure is the “standard atmospheric pressure”, 
Pyurroundings = Patmospberic = 1 atm = 14.696 ~ 14.7 lbf /in? = 33.89 ft of water = 
10.33 m of water = 29.92 in of mercury = 760 mm of mercury = 760 torr = 

101.3 kPa = 1.013 bar = 1.033 kgf/cm’. 
If the fluid in the problem or example is water, then it is water at 1 atm pres- 

sure and 20°C = 68°F = 293.15 K = 528°R, for which 

p = 62.3 lbm/ ft? = 998.2 kg / m? = 3.46 Ibmol / ft? = 55.5 kgmol / m? 

= 55.5 mol/L 

pw. = 1.002 cP = 1.002: 10° Pa: s = 6.73: 10 * Ibm /ft's 

= 2.09: 10°? lbf- s/ ft? 

y= pl p= 1004-10 m/s = 1-004.cSt = 1.07710 ott 1s 

M = 18 g/mol = 18 lbm/ |bmol 

o = 0.000415 Ibf / in = 72.74 dyne / cm = 0.07274 N/m 

If the fluid in the problem or example is air, then it is air at 1 atm pressure and 

20°C = 68°F = 293.15 K = 528°R for which 

p = 0.075 lbm/ ft® = 1.20 kg/m? = 2.59- 10° Ibmol / ft? = 41.6 mol / m? 

= 0.018 cP—18-410— Paws 

y= p= 1488 10> m/s = 14,88 St = 1.613 10 “ft/s 

Cp = 3.5 R = 6.95 Btu/Ibmol °R = 6.95 cal / mol K = 29.1 J/ mol K 

M = 29 g/mol = 29 lbm/ Ibmol 

k= 1.40 

Any unspecified gas will be assumed to have the properties of air at 1 atm and 

20°C shown above. Standard temperature and pressure (stp) means 1 atm and 

20°C = 68°F. 
For any ideal gas, the volume per mole is given by Vinoiar = | i OM 

Wherever R appears in this book it is the universal gas constant, shown on the 

next page. For real gases at 1 atm pressure the ideal gas equation is an excellent 

approximation. 



Values of the Universal Gas Constant 

p _ 10-73 (Ibf /in’)ft? 0.7302 atm: ft® 
Ibmol-°R —sidIbmoll-°R 

8.314m*:Pa 0.08206 L-atm 0.08314 L- bar 
~  mol-K mol: K mol: K 

_ 1987 Bir T.987.cake VST kcals eet 9 

~ Ibmol: °R mol: K kgmol-K = mol:K 

Chemical engineers normally work with the universal gas constant, R. Several other 

branches of engineering use separate values of R for each gas. These are defined by 

Rneivicieal = Rudivevsal / M, so that, for example, 

Raniversat 10-73] (Ibf / in?)ft?] / Ibmol - °R (Ibf / in*)ft? 
Ris ee = = 0.3705 aE one 

Mair 28.96 Ibm / Ibmol Ibm: °R 

ft - Ibf 
= 5335 - 

Ibm: °R 

The molecular weights (g/mol = lbm/Ibmol) of common gases are, approximately, 

as follows: hydrogen, 2; helium, 4; methane, 16; carbon monoxide, 28; nitrogen, 28; 

air, 29; oxygen, 32; carbon dioxide, 44; propane, 44. 

Other fluids should be assumed to be at 20°C = 68°F and | atm, for which the 

values in the following table should be used: 

Fluid Specific gravity (water = 1.00) Viscosity, cP 

Mercury 13.6 55: 

Typical gasoline 0.72 0.6 

Sea water 1.03 1.0 





Fluid Mechanics for Chemical Engineers, Third Edition retains the characteristics that have made this 

introductory text a success in prior editions. Its hallmark features include: 

¢ Aone-dimensional-first, energy-first approach 

* Combined mathematical simplicity, clarity and scientific rigor 

¢ Clear explanations 

* Practical examples given in both English and SI Units 

* Computer problems 

NEW to this edition: 

¢ Thirty percent newor revised problems 

¢ Chapter 15 on Two- and Three-Dimensional Fluid Mechanics 

¢ Chapter 18 on Turbulence has been completely revised 

¢ Chapter 19 on Mixing 

¢ Chapter 20 on Computational Fluid Dynamics (CFD) 

See what reviewers have to say about the third edition! e : ~ 
"| think this is one of the most 'teachable' fluid books around." —RussellO n University of Kansas 

"The writing style of this text is excellent. Problems are discussed ve. rously. Concepts, that typically cause 

problems for students, are explained very carefully with sufficient background information, and! wish | had been 

taught fluid mechanics using such an accessible text."—Johannes Khinast, Rutgers University 

“Generally speaking, the text is easy to read, w 

generally cover a wide range of applications 

areas), which lends itself to greater enthusias 

well as example problems throughout the 

—Christine M. Hrenya, University of 

big plus for students. Also, the end-of-chapter problems 

ons (not just the traditional chemical and petrochemical 

e topic area. The intermittent humor of these problems (as 

ter) is appreciated by the instructor and students alike!” 

t Boulder ‘el 
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